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ABSTRACT

This thesis characterizes the optimal operating policy
of a multi;server queueing system subject to Poisson arrival
process and exponentially~distfibuted service. times (M/M/S
queue). Optimal policy minimizes the long-run total expected
discounted cost to the system; The cosg components of the
system are, taken as the server cost and the holding cost
which is considered és the lost profit from the business
or the lost production wiﬁh»respect to the type of\the

system.

Markov Decision Theory ié used in the character;zétion
of- the controlled process. Génerétbr is the basicvtoolvof
the formulation. Application of some solution procedureé
is very easy for this type of formulation. Two different
algorithms are presented to obtain the optimal policy:

Successive approximation algorithm and policy improvement

aigorithm.

Optimal policy for a simple maintenance problem is
found using these two methods. Computational experiments
on the computer indicate that the policy improvement method

converges to the optimal policy more quickly.

The theoretic results are extended to tandem gqueueing

systems at the end.
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OZET

Bu ¢aligma, Poisson gelig siire¢li, ilissel dafilimla
hizﬁet siireli ve ¢ok' isgdrenli (M/M/S) kuyruk sistemlerinde
eniyi isletme politikalarini belirlemeyi amaglamaktadlr.
Eniyi politika, sistemdeki toplam maliyet beklentisini en-
azlayan olarak tanimlanmaktadir. Toplam maliyet islevi
uzun silireli ele alinmakta ve paranln zaman ‘igerisinde de-

Jer yitirmesi 6zellidinide igermektedir.
{

Denetim altindaki sistemin 6zelliklerini tanimlamakta
kullanilan yaklasim Markov Karar Kuramina dayanmaktadir.
Uretmen (generator), model géstériminde yararlanllan temel
- aragtir. Bu tir model gosterlmlerlnde gesitli ¢bzim yon—
temleri kolaylikla uygulanabllmektedlr. Bu galismada en-—
iyi politikanin bulunabilmesi igin ardarda yaklaglklama ve

kural iyilestirme yOntemleri kullanilmigtir.

Kugdk boyutlu bir bakim sisteminde eniyi politikayi
bellrleme probleml bu iki ydntemle ayrl ayri ¢ozilmistir.
Slstem kisaca N makinali bir lretim initesinde makinalarin
zaman zéman.bozulmalarlnl ve bakim initesinde onarilmalarini
icermektedir. GO&zdnilne alinan maliyetler, hizmet g8renlerin
sayisina gore birim zaman onarim maliyeti ve makinalarin c¢a-
lismamasindan dojan tretim kaybi maliyetleridir. Her durum

igin isgérenlerin sayisinil belirleyen politikalar ig¢inde en-

. '
]
i
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iyisi olardk sistemin malivetlerini enézlayanl segilmekte-
dir. Bu Ornek lzerinde iki algofitménin ébzﬁmsel verim-
.1ili§i kiyaslanmig ve kural iyilestifme yéhteminin yakin—
sama hizinin daha ¢abuk oldugu gbzlénﬁistgr.

Kuramsal sonug¢glar seri bagli kuyruk sistemleri ig¢in-

de ayrica genigletilmigtir.

',‘



I. INTRODUCTION

The purpose of this thesis is té characterize the
optimal operating policy of thé multi-server queueing
systems with a Poisson arrival}process aha exponentially
distributed service times and Qith fiﬁ££e or infinite
capacity. The shorthand notation M/M/S/K refers to such
a queue. After the characterization, two algorithms will
be presented to obtain the optimal policy. Then the theo-
retic results will be extended to some other queueing systems.

The arrival process is assumed to be a Poisson process
with a content dependent arri&al rate and the service time |
of each server is exponential; At any time, the decision
maker has to decide on the total number of servers to be
employed by observing the total number of customers in the
‘,qgeue.&A$9lb9;mor¢>pre?is¢, iF the qgntent ofvtpe queue ;s
'x and éoliéy n(x) is used, then theréyis a Poisson'stééam
of arrivals with rate A(x) and the number of servers working
is m(x). Iﬁ,the service rate of each server is u, then the
“queue size either increases by one with rate A(x) by an .

arrival or decreases by a service completion with rate um(x)

whichever comes first.



For each policy 7m(x), we define ﬁhe economic effective-
nesé of the service station by the long-run total expected
discounted return. Shortage, holding and server costs
effect this return by discounting continuously at rate o > 0.
A policy minimizing ﬁhis total expected discounted return is
catled optimal. )We seek to find the conditions under which
an optimal policy exists. We also seek to characterize an
optimal policy, if one exists. .

-\
Based on the Markovian property of the process, Markov

Decision Theory is abplied. Generator is an important tool
in the opiimal control of Markov processes. So, using the
generator and its characteristics the dynamic functional
equations are written. Then an algorithm is developed to
solve these equations. ;

Before we discuss the canéents of this thesis, we .
present a brief summary of the;literature on the optimﬁm»
control of queueing systems.

A great deal of emphasis in queueing theory recently
has been in the‘aiea of design’and cqntroi. The early works
on the control of queues were essentially in the fbrm of
descriptive analysis of a set of plausible control policies
frOm which Toptimal policies' were seleéted by mathematical
optimization techniques. More recently researchers have

begun to employ Markovian Decision model to solve queueing

control problems.



ConSLderably more effort has been put forth on the
rate-control models which deal Wlth when and how arrival
or service rates should be changed to optimize some ob-

jective function.

The work to date on these models can be classified as:

a) Control of server
b) Control of service rate

’ "‘
.¢) Control of arrivals.

Here we only deél with the first two cases. 1In the
first case, the control action is to turn the server on
or off at the service completions or at the customer arrivals.

Miller (1969) considers a c-server no-waiting-space
queueing sysﬁem with_m cuStomér classes, each élass yielding
a different reward. The queueing model is assumed to be
M/M/C/C, and the problem is formulated as an infinite hori-
zon, continuous time Markov dgcision problem. The objective
function here is‘the expected reward rate over an infinite
' .planning horizon and it is desired to find the policy which
maximizes this. Qualitative result§ which characterize the
form of the optimal pblicy are given, as well as a compari-
éon,vvia siﬁulation, of some appioximate policies deduced
from the analysis, for rarbitrary ser;ice—time distributions.

Heyman (1968) considers an M/G/l1 state dependent model.
He considers a server start—up'cost, a server shut-down cost

and a cost per unit time when the server is running and a



customer Waiting cost. He proves that the form of the optimal
policy is "turn the server on when there are n customers in
the system and turn the server off when the system ié empty.
Heyman considers.various combinations of cases involving dis-
counting or not discounting costs over time and a finite or
infinite planning horizon.

Sobel (1969) considers the same problem as did Heyman,
namely, starting and stoping service bgt generalizes it
to G/G/1, as well as assuming more general cost structure.
Considering the average cost rate over an infinite horizon,
he shows that the policy form is "provide no service if the
system size is m or less, when system size increases to
M (M > m), turn the server on and continue serving until
the system size again drops to m". He refers to these as
(M,m) polieies.

Blackburn(1972) also treats an exteﬁsion of Heyman;s
model in that he incorporatesrbalking and reneging into the
M/G/1 qaeue. Now, the longer the server is in the off posi-
tion, the more chance there is of a balk or renege; He
shows that the stationary optimal policy thch maximizes
discounted reward over an infinite horizon can also be
characterized by a simple pair of critical values (M,m).

Blackburn analyzes the problem as a Markov renewal decision

process.



Magazine (1971) showé thét a policy of (M,m) form is
”also optimal for the M/M/1 system under periodic review and
extends his work and shows the éxisténcé of an analogous
rule for the multi-server systems. Formulation as a dynamic
programming problem is given and proofs for existence are
represented for finite horizén, infihiée horizon and aVerage
dost criﬁefia.

In the case of "b", a service raﬁé cahvbe chosen from
a set of allowable éervice ra£es at customer arrivals or at
service completions. |

Brosh(1970) considers a two service-rate model, with
a limit on queue size. The system is observed at short,
equally spaced intervals of time, and at each interval,
after observing the system size, a deci;ion on which service
rate to use is made for the next interval. A Markovian
analysis is used, since the assumption is made that in any
interval a£ most'oné arrival 'occurs with the probability
of an arrivai being i. The ?robabi}ity of a service‘comp~
letién iéﬁgi depending on which serﬁice rate was chosen.
Thus Brosh is essentially dealing with a state-dependent
M/M/1/K model. Considering different costs for each service
rate and cost for lost customers, the opfimal policy which
minimizes the long-run average cost rate 1s desired. Brosh

categorizes the structure of the policy space, eliminating

from consideration those policies which are dominated by



better ones, and from this structuring of the space develops
an algorithm which searches over thé admissible policies.

Crabill (1972) has emploYéd a continuous time. Markovian
éécisioﬁ model t§ investigateithe:M/M/l queue With k possible
lserviée rates. 'Including holding and service costs he finds
thé optimal policy which minimizes the long-run average cost
rate. He proves that the optimal poléff.is characterized
\completely by k-1 numbers and  that the optimal service raté
is nondecreasing in:the staté of the system.
Lipman(1975) generalizes Crabill's results by implementiﬁg
a different cost structure. Also Lipman establishes the exis-
tence'of monotone optimal discounted and éverage cost pdlicies.
Mitéhell(l973) considers a single server,vPoisson arrival
general service queuing syStém in which the service rate may
be varied continuously betweén fixed limits. The problem is
to find a policy for selecting the service rate which mini-
mizes the expectéd average service plus holding cost per
unit time. Considering it as a Markov decision process,
the ﬁodei is apéroximated in‘that thé service rate can be
changed only at equally spaced points in time. He proves
that if (i) 'the service cost rate is a cénvex function of
the service rate and’ (ii) the holding cost raLe is a poly-
nomial approximation to a convex function of the wofk re-

maining'in the system, then there exists a stationary de-

terministic optimal policy in which the service rate is a




nondecreasing function of the work reméining in the system.

There does not seem to Be any study of finding optimal
policy by using the generator of the Markov process, in the
queuing models. ABut‘there are some studies on Markov Deci-
sion processes which use generator in general without making
any assumption about the specific nature of the controlled
process.

Miller (1968) considered a Markov gecision process with
continuous time parameters by restricting his attention'to‘
a finite state spacé case. Later, Kakumanu(1972) extended
his results to the case of a countable state space. Markov
decision processes with continuous time parameter and fairly
general state space case is studied by Doéhi(l976).

This £hesis combines the studies in the aforementioned
areas. As it is pbinted out in the literature survey, there
is no work except Magazine(1971) on the selection of the
optimum number of servers for a given cost structure. The
studies which aré done in the control of server are generally
based on the decision of shutting down the available sihgle
server or starting it up.

'~ The. closest work related to our thesis is Magazine's
article as it is seen in the literaﬁure survey. Even though
this thesis is primarily focusses on the optimal control of
M/M/S/K system, it clearly differs from Magazine's work in
several reSpects: Magazine takes the arrival rate as cons-

tant, but in our stuay arrival rate depends on the queue



content. He assumes that. the decision‘points are at equally
spaced time intervals. But we are observing the system con-
tinuously and we could make a decision any time we want by
noting the number of customers at that time. Also the cost
structures are different. He considers a constént shutting-
down cost, starting-up cost and unit operating cost for an
open server and a convex holding cost function. We have no
switching cost and our server EOst is_gét constant. The
requirement for the,server and holding costs in our thesis
is to be real-valued, nonnegative; bounded functions.

After.defining the structure of the system Magazine
gives the dynamic brogramming formulation for the infinite
and finite horizon cases. At this stage Qe completely follow
a different approach from Magazine. We formalize the control
p¥oblem as a MarkoV»Decision*problem and then give two diffe-
rent solution procedure to obtain the optimél policy.

In the remainder of this chapter, scope and organization
of this thesis will be briefly mentioned.

Chapter II deals with the analysis of M/M/S/K queue
problem. In Section 1, we,Will describe the contfol problem,

e policy set and then we will prove the

‘Markovian property of the system. Section 2 defines the
methods to find the generator of the process. Since gene-
rator has an important role in our study we give two method.

The first one is from Breiman(1968) which can be used for

every general process and the second method is from Cinlar(1975)



which is very simple for the single station birth and death
processes. Section 3 characterize the expected discounted
cost function for any arbitrary policy and proves its uni-
queness{ |

In the first section of Chapter 111, the eharacteri—
zation of the minimum expected discounted return and that
of the optimal policy is given. Section 2 desqribes>a
version of successive approximation a;gerithm and provee
that it generates a_sequence of iterating cost‘funetiens
which finally converge to the minimum expected discounted
cost. Section 3 defines the policy-improvement algorithm
which is originally suggested by Doshi(l976).

Chapter IV extends the original singie(station model
to the seriee gueue model‘and also to the optimum service
rate selection models. Section 3 compares the algorithms

by solving a maintenance system as an example on the computer.

1

Chapter V summarizes the conclusions of the thesis.
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IT. ANALYSIS OF THE QUEUE PROBLEM

This chapter analyzes all characteristics of our
M/M/S/K service system. After the analysis of the sys-
tem'e Markovian pfoperty, the basic Markov decision pro-
cess 1s presented. Since;the‘generétdr is a basic tool
in the control of Markov process, all characteristicsr
of it will be given. | '

Usihg generator, the dynamic functional equations
is found for the uncontrolled queue process and the exis-
tence of the unique solution‘£o this functienal equations

is verified.. !

II.1 Description of The Control Problem

Let Xt deﬁote the number of customers present in the
1:queue at time t > 0 The state space of Yt-is E = {0 l 2,..,K},
where K denotes the queue capa01ty Wthh is elther 1nf1n1te

or a given finite positive integer. In some queueing pro-
cesses there is a physical limitation £o the amount of

waiting room, so that when the line reaches a certain

length, no further customers are allowed to enter until

space becomes available by a service completion. These

are referred to as finite gqueuing systems. In our model



K is finite, in other words when the number of customers
present in the queue is equal to K, the new arrivals can-
not enter the queue until a departure occurs. The results
obtained in this thesis are stated for finite K, but simi-
lar results can be obtained for the infinite Queue capa-
city case. The similarity will be pointed out by remarks
throughout the thesis.

At any time t, the p1anher dbse;xééxt customers
present in the queue, and based on that information he
determines the number of servers to be employed. In
other words, if St is the number of servers employed ét
time t, then St ié a function of X |

only, i.e. S. = m(X)

t t
for some nonnegative integer valued functiqn 7 defined on
E. Clearly w(.).is the cont%ol function ‘'in our problem
‘which gives the number of seFvers when the queue content
is (.) énd it is only reasonéble to assume that |

T(xX) € MX = {0,1,2,...,x A m} for all x s'E where m is

\
i

some positive integer denoting the maximum number of
servers that can‘be employed andiix‘A_m = min(x,m) . . This .
aSéuﬁétién implies that the nﬁmbér of seévers empioyed o
cannot»exceed the number of customers in:thevsystemvor
the number»bf available servers.

The customer arrivals are‘modeled as a Poisson process
whose parameter (mean arrival rate) varies with the total

number of customers present in the system. Thus, this is
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a state-depeﬁdent arrival process. Service times of serv-
ers are assumed to be independent and identically distri- -
buted with an exponential distribution. If the content

of the queue is_x,:then there is a Poisson arrival with
rate A(x) and the number of servers working is 7(x). If
the common service rate is 1, then the queue size either
increase§ by an affival with rate (x)_or decreases by a
departure with rate umT(x) whichever cgmes first. 1In real
practice, it i; often likely that arrivals become discouraged
when the queue is iOng and may not wish to wait. If people
see K ahead of thém in the system, tﬁey do not join and
A(K) = 0. Figure 1 shows the multiServer’system which is

described above.

- (1.1) DEFINITION: An admissible policy is a measurable func-

| .
tion mapping E into M. Let M be the set of all ad-
| ,
missible controls, then it is reasonable to define

M= (n:{0,1,2,...,K} >~ {0,1,...,m})

A R f P R . o :
So, M is the set of all bounded, positive and integer
valued functions defined on E and bounded by an in-
teger m.

(1.2) REMARK: Thoughout this thesis, we require that Sy = 0
is the only admissible decision whenever X, = 0.

* That means, for all = € M, w(0) = O.

1
1
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0000 t——— leaving

waiting room

[EBEH

service facility
Fig. 1 - Multiserver queueing syﬁtem
Let A = {At; t > 0} and D = {Dt; t > 0} be the customer
arrival and departure processes respectively. In other
worxds, At and Dt are the total number of arrivals ahd de-

partures until time t respectively. Then it is clear that

the dueue content process X = {X_; t » 0} is given by,

tl

which implies that,

Zipg = Xp ¥ Bpyg = By = Dy - D)

This shows that the number of customers at time 't+s' is
equal to the sum of‘Xt and the number ofjarfivals dﬁring

the interval [t,t+s){ less the number of services comple-

ted during [t,t*s). In generalized Poisson processes, the

numbers of arrivals in nonoverlapping intervals are statis-
tically independent; that is the process has indépendent
increments. Therefore, the number of arrivals during

[t,t+s) is independent of everything else that went on before
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time t. Also from the memofyless pfoperty of the exponen-
tial distribution the remaining serﬁicé times are comp-
letely independent of the past. Memoryless property
states that the remaining service time of a customer
éurrently'in service is independent of how long he has
already been in service. Hence the number of services
completed during [t,t+s) can depend only on X_ and the
arrivals during this interval. .

-Yl

This analysis shows the Markovian property of the
queue process X =’{Xt; t > 0} which states that future
behaviour is independent of the past given the present.

That 1is,

;u <t} = P{xt+s = ilxt}

Pix = i|Xu,

t+s

The size of the queue at time t increases by one
when an arrival occurs or decreases, by one when a service
is completed. This is a pure!jump %rocess which is also
referred to as a "Birth and Death Process".

figure 2 shows a typicalirealization of the queuing
is the time of the first arrival and at

process X. T1

that time Xt increases by one, then XT = 1. This first

1

 customer réquires service up to time Dl. But before time

Dl’ two more customers arrive at time T2 and T3 which inc-

rease the number of customers to 2 and 3 respectively.

When the first customer leaves the system at time Dy, dqueue

~content decreases -by one then XD = 2, and so on.
1 :



Kt
| NUMBER IN' | v o
‘ SYTEM 4l S o

| R

14 —_—

0 , SN %TiME

T T2 T3 Dy WDy T5 T
(
Fig. 2 - A realization of Markov Process

In the following theorem we prove that X is indeed

a Markov process.

(1.3) THEOREM: The process X = {X t > 0} is a Markov

t;

process with state space .

Proof: Let Vt and W, be respectiﬁely the lengths

t

5 of times from t until the instants of the next

arrival and next departure. That is,

X o+ 1} - ¢

v S S

t

inf{s > t; X

g = Xg- - 1} - t

Wy 'inf{s >t X

Throughout the following we will let

for notational convenience.
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-~

We shall first find the probability that an arrival

occurs before a departure_aftér time t given the

I

past information and that kt =x |

PV sw lxsu 2 ¢, X = x) = Py, 2w X = x)
=P v, <w}
= Ex[PX{Vt < wtlvt}]
= g [e7m (0 WVe]
X
"l
- ' = Jm Ax)e MRV mTxIWY 44
. =M

Ax) + m(x)u

(1.4) -

The first equality follows from the fact that once
- X, is given both V. and W, are independent of the-
past since interarrival and service tiﬁes have the
memoryless property. The second equality is simp-
lified notation and the third one follows ffom basic
p;obability theory. The fourth equality simply
states thét if m(x) servers are employed invthebsys—
tem and there are no arrivals tﬁen Wt or the time 6f‘
first.service completion is exponentially distributed
with parameter ﬁﬂ(x). Similarly if there are no de-
pértures the fact that Vt or the time of the first

arrival after time t is exponentially distributed

with parameter A(x) justifies the fifth equality.
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. . | 7
A similar argument given above shows that,

A, =0, W, > u}

PX{Vt > u, W, > u} P { &

t x Bryu T Be

P W, > u[At+u - Atl:o}PX.{At+u - A =0

ef“(X)ﬁu . e—A(x)u
(1.5) - oA+ m(x)W)u

From the definiton in Clnlar(197g,p.27l) equation
(1.4) and (1.5) imply that X is a Markov proceSs with
state space E. Furthermore, since X can either increase

or decrease by one, it is a 'birth and death process'.

(1.6) REMARK: It is clear from the proof given above
that’limiting £he queue capacity does not effect .
the proof and Markovian property remains unchanged.
Before we formally state the total expected cosﬁ,

we shall attempt.t; give a_ﬁhysical interpretation of

individual cosf components in our system.

;b%nwaecisions;regarding the: amount of,$¢rvice capacity

fo‘ﬁrovide usually are based priﬁarily oh two,coﬁsiderations:

(i) the cbst incurred by providing the service, (ii) the

cost of waiting for that service; It is apparent that

these two cost components create conflicting pressures

on the decision maker. The objective of reducing service

costs recommends a minimal level of service. On the other

hand, long waiting times are undesirable, which recommends



a high level of service. Therefbré, for the comparison
of service costs and waiting Eimes, it is necessary to
édopt a cémmon measure of their impact. The natural
choice for this_meaéure is monetary so that it becomes
necessary to estimate the cost of wéitiné which is also
referred as holding cost.

A common viewpoint in practice is'that the cost of
waiﬁingwié often too'intangible to belaménablebto esti-
mation. For different types of situations, the subjec-
tive waiting cost can be Vieﬁed as follows:

For the profit-making organizations where the custo-
mers are external to the organization providing the ser-
vice, the cost of holding probably would consist primarily
of the lost profit from lost business. This 1bst business
may occur immediately (because the customer greW‘impétient
;\and left) or in the future (because the customer was con-
siderably irritated that he did not come again.)

For the social service systems, the cost of waiting
usually 'is a social cost of some kind. It is hecgsSary
to’evaluate the consequences of waiting for the indivuals
involved or for society as a whole and to try to impute
a'monetary.vaiue to avoid these consequences.

A situation that may be more amenable to estimating
waiting costs is one in which the customers are internal

+to the organization providing the service. Business-
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industriél service systems are good exémples for this case.
For.example, the customers may be the maéhines or employees
of a firm. The primary cost of waiting for this case may
be the lost profit from lost productivity.

Throughout.this thesis holding (waiting) cost is sym-
bolized by h(X.). It is assumed that h(x,) is quantified
according to the aforementioned gu%delinés and made avail-
able to the investiqatdr. Service‘co$£ is denoted by
c(5y) = c(n(X.)) and is basically coﬁsidered as the cost
which is paid to the servers.‘ The only requirements for
the functions h and ¢ are to be nonnegative, real-valued,
bounded and monotonically increasing functions.

In addition to the above costs, we have a shortage
cost for the finite systems: It incurres only when the
SYStem size achieves the full capacity level of the
waiting 5pace. When the system is completely full the
new arrivals cannot enter (A(K) = 0) and the system will
have a lost profit with rate & per lost customers. If
we take the avarge arrival rate as y then the shortage

L : | L ' i ' .
cost rate is Y.

Economic effectiveness of the system is described
by the expécted total discounted cost cbmposed of the

three cost components described above. 1In this thesis,
we try to find the policies which minimize the expected

discounted cost. Since the process has the Markovian

property this is a Markov Decision Problem.
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For a foimal statement of Markov Decision Problem,
let Ds(x,t) dénote the expected cost incurred up to time
t hy following the policy s and with X customers in the
system initially. And let o > 0 be the interest rate

used for discounting future cost, i.e.the present value

ot

of cost c incurred at time t is ce
Let the expected continuously discuounted cost of

a policy m over an infinite time horizon be denoted by,
-

V (x)= E [ [emot

D (Xrt) ]
o S ’

Let V(x) be the minimum expected discounted cost function,

(1.7) V(x)= inf V_(x) o x >0
' TeM

Define 7* ¢ M as an optimal policy if,

Vﬂ*(x) = V(x) ' X

| v
o

I1.2 The Generator of The Queue Process

The generator plays an important role in the optimal
control of Markov processes. The’objectiﬁe of this sec—
tion is to find an expression for thé génerator of the
queue process X.

There are some relationships between the transition

function, transition matrix and the generator of a process.
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If the transition function Pt is known, then its deriva-
tive at t = 0 gives the generator A. The generator can
determine the transition matrix Q which shows the proba-
bility of going from one state to another. Considering
the converse pfoblem,.knowing the transit@on matrix Q
and v (i) (ﬁhe parameter of exponential distribution of

a sojourn time in state i) generator A can be found.
Generator shows the rate of change of.state. After

. —“
calculating the generator, transition function can be.

computed. One method is to solve thi infinite system
of differential equations.

a
ac Tt t

i}
o
vl

d P, =PA

T vt
Thesé equations are called, respectively, Kolmogorov's
backward and forward equations. If the state space of
Markov process is discrete, then the generator could be
written in matrix form. And the computation of Pt from

A is done by using certain matrix theoretic methods.

(2.1) DEFINITION: For every w ¢ M,'the generator A“,of
the process X, the range R(A“) of ATT and the

domain D(Aﬂ) of ATT are defined as follows:

v

b



(2.2)

i)

ii)

iii)
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'R(Aﬂ) is the set of all bounded measurable

functions £ on E such that,

EX[f(xt)] + £ (x) as t + 0, for all x ¢ E

D(A ) is the set of all f ¢ R(A“) such that,

[, £xp) - £(x) 1/t

converges boundedly poinﬁwise on Eas t + 0

to a function in R(A“)

For any function f ¢ D(A“), Aﬂf is defined

to be the limiting function in (ii). Such
that | ’
E_L£(x,)] - £(x)
lim X% = A f
£40 t

Note that this definiton of the generator is

equivalent to the weak infinitesimal generator

given in Breiman (1968, pp. 341).

PROPOSITION:

For each 7 ¢ M,-R(Aﬂ) consists of the

set of all bounded functions on E.

Proof:

Let f be any bounded function on E and T

be the time of the first jump; such that

T = inf{t > 0, X_ # XJ)
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For notational convenience, define

P E(x) = E[e(xp] = Blf(x,) 1%, = x]

For every x ¢ £ and t > 0,
(2.3) P f) =ELexp; m> el + B LE(x); T < t]
1

EX[f(Xt).l 1 ==8 [ (x) .1

{T>t} {T>t}

f(x).PX{T’o t}

—(X(X) T r(x)uw)t

(2.4) = £(x).e
(2.5) Ex[f(Xt).l{Tiﬁ}] = Ex[f(xt).l{Tiﬁ}.l{T=A}]
FELER) iy Lipapy]

al(x,t) + a2(x,t)

A and D represent the times of the first arrival and first
departure respectively. Using the strong Markov property

at T we obtain,
ay (x,t) = BB [EX) .15 oy -1ipopylT]]

= Bl acry Tiacey- T[f‘xt,T)]]

{p=T}" {Ait}'Ex+1[f(Xt—T)]]

(a=T} Lacg) Pepfx + 1))
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A (x+1) [A]]

Ex[Ex[l{Ait} : l{A<D} “Pe-

' - A
Ex[l{Ait}'Pt—Af(x+l2'e “(X)HA]

7 -2 (x)u -1 (x) yu
J. X(x)e : 1{uit}.Pt_uf(xf;)e du.

t
(2.6) s *ixzr(x)u l (x G (x) e~ & VT TG g

Similarly, using the strong Markov pgoperty at T we obtain

a2 (X,t) = ‘E[f (xt) 'l{Tf_t}_.l{T=D}]

t

7 (%) u (M) 4 Gou)e” MEATEIIN £y

A(x) + 1(x)u ©

(2.7) =

By a change of variables setting w = t - u we obtain

' t
A (%) A (w (X)U +\(x) ) e— (A (X) +n (X) U) (t~w) ow (x+1 |

Ax) + w(x)u

(2.8) al(x,t}

£ _
7 (x) u [ (M) ) e

A(x) + m{x)u o

(A(x)+ﬂ(X)u)(t~W)ow(X_1

(2.9) a2 (Xl,t)

Putting (2.8), (2.9) and (2.4) together

(2.10) P £(x) = fx)e” MXIFT(IWE ay (x,8) + ay(x,t)

It follows from (2.8) and (2.9) that for all x e E,

Lim al(x,t) = Lim a2(x,t) =0
t+0 t40

Therefore, it is clear from (2.10) that _ /
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Lim Ptf(x) = f(x)
t+0

So the range of the generator is the set of all bounded

functions on E.

We will now try to characterize D(An). To be able

to do that first we will state a definiton.

(2.11)

(2.12)

DEFINITION: A sequence of functions {f_} b(E)

converges boundedly pointwisd to a function £ ¢ b (E)

as t¥0 if;
i) Lim £ _(X) = £(x) for every X € B
t+0  © | :

ii) +there exists some constant M < w;such that

e 0] = sup [£,60] =M
XeE ,

for all t sufficiently small.

PROPOSITION: For each ™ & M, D(Aﬂ) consists of all

f e R(A“) . ‘ :ﬂ
Proof: By definition

Af(x) = lim ——[P £f(x) - £(x)] , £ e R(A)
T t t i
t40
where the domain D(Aﬂ) is the set of all £ e'R(An)

for which this limit exists boundedly pointwise

and belongs to R(A“).

ROGAZICH UNIVERSITES! KU UPHANES
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"It follows from (2.10) that

1 1
al(x,t) + —— az(x,t) + —= a3(x

(2.13) —%—[Ptf(x) - £(x)] = t

1
t

e—(X(x) P or{x)u)t

where a3(x,t) = (x) - £(x)

It is clear that for f ¢ R(Aﬂ)

AMx)E(x + 1)

1

(2.14)  Lim = a, (x,t)
£40

1 | 3

Lim —/— az(x,t) = ur(x)f(x - 1)

tv0 &2

Also it follows from (2.8), (2.9) and definition (2.11)

that, for all f ¢ R(An)

t
SONEE|

t

ol el |

e—(A(X)+W(X)U)ZdZ < 7| |£]

| A

1
—E—lal(x,t)l

e—(X(X)+ﬂ(X)H)de < myllf

Ia

1
—E—laz(xrt)l

where 1\ = ng A(x) and m is the maximum number of servers.
Since they are finite; it shows that these limits exists
boundedly Pointwise. Therefore £ e R(A“) is in D(a ) if
and ohly if (l/t)aa(x,t) converges boundedly pointwise i

as ty0.

To broceed, note that

o (M(x) -+ w(X)u)t =1~ (A(x) + a(x)u)t + O(t)

where O(t)/t - 0 as t+0. Therefore, |
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33 008) = £ (1 - (Ax) + 1wt +0(E) - £(x)
Now,
(2.15) Lin [ (Ax) + TR WE.E() + 0() ] = —(Alx) + m(x) ) E£(

boundedly péintwise for all £ ¢ R(Aﬂ)

These results imply that the domain of A is also
the set of bounded functions defined 6n E.

Cinlar(1975) gives a simpleiway of calculating the
generator for.the birth and death processes. Since we
proved in Section 1, that the process X ='{Xt, t > 0} is a
birth and death process we can use his definition.

Looking to the definition in Ginlar (1975, p. 271),
the:time rates of arrivals and departures; which are sym?

bolized as a, and bi respectively when the population size

is i, can be found by using the equatién (1.4) and'(i.S).

Therefore, .
(Q,lﬁ); ai,=,k(i)
) biz':. 'n'(i)]..l

Depending on the time rates the‘generator of a

birth and death process is given like,

. ]
ao aO 0
b, -a,=b, a
(2.17) A = b2 —az-"b2 a2
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Adopting this form to our process using equation
(2.16), the generator of our finite capacity queue system

for any m € M can be written

0

- 1 2 . K-1 K

’ —

01-x(0) A(0) 0

1 pm(l) “A(L)-m(1)u A (1)

2 .

(2.18) A = . A
i
K| 0 pun (K)  =uw(K) |

The matrix A_ shows that; by using policy wn ¢ M,
if there is one customer in the queue with rate uw(l) there
‘will be nobody in the queue (Aﬂ(l,O));’and wifh'rate A (1)
another customer arrives and the queue content becomes ‘ .
two (An(l,Z)). |

As you notice, b_ = a, = 0. Because, if

(o) K
there is nobody in the queue the only possible action

could be an arrival. Also if the queue is completely full,
i.e. the process is in state K, an arrival could not be

occur then a, = 0. Also no pair of (ai’bi) = (0,0). 1If

K
a; = bi = 0, then there could not be any state called i.
(2.19) REMARK: For the case of infinite capacity system,
the generator matrix will have infinite states and
all of them will be written in the form of (2.17)

after finding the time rates.
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We could end up with the same result as in (2.18)

by using the definition of A1r given in the definition (2.1)

. 1 .
lim —[P _f(x) - f = A f
P fLx (x)] LE(x)

Combining the equations (2.13), (2.14) and (2.15) we obtain

for 0 < x < K

W (x)£(x = 1) = (A(x) + n(x)urE(x) + A(xX)E(x) = A_£(x)

B &

IT.3 The Uncontrolled Queue Process

In this thesis, our first objective is the charac-
terization of the V(x) function which is defiﬁed by (l.?).
Following the standard Markov Decision Theory, this is
accomplished in three steps. First writé aown the dynamic
- functional equations. Secondly verify that there exists
a solution to thesé functional equations and then inyés—
tigate the solution properties. The final step is'to
confirm that this solution is indeed equal to the minimum
expected discounted cost function.

The 6bjective of this section is to do the first
stép of the Markov decision theory.

Now, we shall state a theorem without proof, which
is the basic tool in our thesis. For a proof see Cinlar

(1975, p. 257).




’ For a regular Markov proceSs with state space E

and generator A, Cinlar states;

(3.1) THEOREM: Let o > 0. For any g ¢ R(A) there exists

a unique function f e D(A) which satisfies

(oI - A)F g

where

-\

£(x) = Ex[i e ot gixpatl ,  x e E

In the above theorem g(Xt) is the rate of reward
at time t and f(x) represents the expected value of the
total discounted reward given the initial State is x.

In our problem, we have two typés of costs which
are defined in Section 1. At time t, when the state is

X = Xy the rate of cost for any policy T £ M,

(3.2) g, (x) = h(x) + c(n(x))
For the state K, X,

= K, we have a shortage cost in
addition to the others

(3.3) g (K) = h(K) + c(n(K) + vz

Since h and c¢ functions are given as bounded, 9. function
will also be bounded. In proposition (2.2) we proved that
the range‘of A is the set of all bounded functions on E,

therefore g, € R(A‘).
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(3.4) THEOREM: Let ¢ > 0. For any policy 7 € M, expected
total discounted cost V, is the unique solution of

the system of linear equations,

(3.5)  V,(0) = =gy [H(O) + (o) + 2@V, (W], x =0
V(%) = . [hx) + clr(x)) + A(AIV_(x + 1)

ot Mx) + w(x)u
un(x)V_(x - ], 0<x<K
A .

V_(K) -—;;—;L————-[h(K) t c(n(X)) + ve +‘Uﬂ(K)Vﬂ(K—i)] r X = K
o t un(K)

]
Proof: Since V_ is defined for any m ¢ M as,

V_(x) = Exfi et g x)1 ., x ek

where gﬂ(x) is defined in (3.2) and (3.3), according to
the theorem (3.1) V_-is in the domain of A_ and is the

unigque solution of
(oI - A )V,‘T = g“‘
Then
- + 3
(3.6) oV = gt AV,

Putting the generator A found in (2.18), we obtain

(3.7) &V, (0) = B(0) * c(0) = A(0)V,_(0) + A(O)V (1) , x =0
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aVv_(x)

hix) + c(r(x)) - [A(x) *+ ur(x) V_(x)

FAGOV (x + 1) 4wV (x - D], 0 < x < K

aV (K} = h(K) + c(n(X)) + y2 + un(K)V_(K - 1)

]
=

- pn(K)Vﬂ(KZ ’ X

Rearranging the above equations we end up with the equa-

tions (3.5).
4

(3.8) REMARK: In the case of infinite state space, the
final equétion which is’fof the state K will be
omitted.

This result gives the cha;acterization of the
expected infinite time horizon diécounted cost for any
policy wm when the ratehof cost is given by g. Theorem
(3.4) will be our basic tool in the optimal control

problem as we shall see in the next chapter.
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III. OPTIMAL CONTROL OF THE QUEUE PROCESS

We are first interested in characterizing the
expected return function V., for any policy m & M. This
is achieved by expressing V1r as the unique solutionbof
the functidnal equations in theorem §3.4) in the previous
chapter. ©Now, our objective is to obtain a similar func-
tional equation characterizatioﬁ for the minimum expected
discounted return. |

After obtaining the sufficient condition of opti-
mality; two algorithms will be presented to find the opti-

mal policy.

ITI.1 A Sufficient Condition of Optimality

In this §ection, following the standard Markov
Decision Theory, we characterize the minimum expected
' diécoﬁnted‘return function V and obtain a sufficient
condition of optimality.

Weé shall first state a definition and a theorem

which will aid us in providing our main theorem.




(1.1)

For a proof see Ross (1970, App.l).

(1.2)

(1.3)

(1.4)

solution of

34

DEFINITION: TLet B be the Banach space with the
usual supremum norm ll'll. A mapping T:B > B

is said to be a contracting mapping if
lhra = ovi| < gllu - v]]|

for some B < 1, for every u € B, v &€ B.

We shall state the following theorem without proof.

-4

THEOREM:  (Contraction Mapping Fixed Point Theorem)
If T:B +~ B is a contraction mapping, then there

exists a unique function w, e B, such that
Tw = w

Furthermore, for alliu € B
Lim TMu = w
ne
We are now ready to prove the following theorem.

THEOREM: Suppose V = Min V“. Then V is the unigue
, TeM :

aV(k)k= Min {g (x) + A vix)} , x e E
" wmeM i i

Proof: To be able to make the proof clearly, we

write the equation (1.4) in an open form by using eguation

(3.5) from Chapter II and defining



Yg{x) = hix) + c(é) ,"v‘o < x <K
’ YS(K) = h(K) + c(s) + &2,,' 'x = K
then it becomes
1

(1.5) V(x) = Min {

o + A(x) + su[Ys(X) + A(X)V(g+1) + suvix-1)1}

ssMx
As you notice we combine the three equation in (3.5). We
can do this, because we know that A(K) = 0 then the term

"A(x)V(x+1)! drops in state K and satisfies the third
equation in (3.5). Also for the first equation, we know

that for x = 0, M, = {0}. Then s can take only zero value

and all the terms which consistis drop ahd it satisfies
the first equatlon in (3.5). | |

So, let B be the Banach space of all bounded real
valued functions on the state space E with the usual sup—

remum norm. In other words, for any £ € B

|[1£]] = sup[£(i)]
© ieE

Define an operator I mapping B into itself,

N .

o + A(x) + sp [y () + M) £(xD) + suf(x-1) ]},

(l.6a) Tf(x) = Min {
seM
% 0 <x <K

Now, if we can show that I' is a contraction mapping then
it will follow that V is the unique solution to (1.4).

Let £ and g.¢ B;
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(L.6b) (T(f) - T(qg)) (x) = inf { 1 [YS(X) + A (x%) £(x+1) +spf(x-1) }]
: sﬂ%{a-*su'*x(x)

- inf 1 [y (0 +2(0g(xtl) +sug(x-1)]
seMch+ sy + Ax)

Let s* minimizes the second part of the right hand side of
the equation (1.6b). It follows that,

1

o t s*p + A(x) '
) + s*u(E(x-1) - gl-1))]

(T(£) = T(g)) (x) [ G (£0xt]) - g(x*1))

| A

1
a + s*p + A(x)

| A

[Ax)||€£ - g]| + s*ul|£ - g]l|]

RG2S jg - g
@+ Ax) *+ s*u

Or we can write,

+
Max (Al * su
se{0,..m\x} a + A(x) + su

(T(f) - T'(g)) ()

IA

g - gl

I A

lif - gl|
my

(1.7)  (T(F) - T(@) (0 <—
+

.|..
ot X+

where A = .max A (x)
X

Reversing £ and g, and repeating the same procedure, we

will get the same result.
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(1.8) (I(g) - T(£)) (x) :——:*%“—‘i——‘— HE - gl

Let X T my

+ {>]

X+ myp
Then combining (1.7) and (1.8), Qe obtain,
(1.9)  [Irf - rgl| < x|If - g]]

Therefore from the definition (1.1),'we can say that T is
a contraction mapping. Then with respect to. the theorem

(1.2), there exists a unique function V ¢ B such that
V =TV

which is the equation (1.5) itself.

By an optimal policy we mean the‘sbecification as
- to when the server should be opened or closed as a func-
tion of the number of customers in the system so as to |
minimize the cost function. The following theorem gives

the characterization of the optimal policy.

L

(1.9)  THEOREM: Let a policy n* ¢ M and corresponding

~

Vox satisfies
V s (x) = Min {g_(x) + AV ,(x)}
. TeM ‘

Then for all x ¢ E

Vﬂ*(X) = V(x) j_Vﬁ(x) , for all = ¢ M

and ©* is called as the optimal policy.
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Proof: Let n € M be an arbitrary policy and assume

V“* is given as above. Then VTT e D(A) and from equation

(3.6). For 0 < x < K,

alv s(x) - v (0] = ?iﬁ{gn(x) + AV . (x))
- {g (%) *+ AV _(x))

Using equation (3.5), we write the above equation in an

open form. For x = 0
3

(1.10) o[V, (0) =V (0] = 2(0)[V) (1) - v_(1)]

- A(0) [V 4 (0) - Vv _(0)]

For 0 < x < K

(1.11) a[(V“*(x) - Vﬁ(x)]

Min {h(x) + c(s) + A(x)V_, (x+1)
SEMX T

suVﬂ*(x—l) - (A(x) + su)V“*(x)}

- {h(x) + c(nr(x)) + A(X)VH(X+1)

tor(x)uv (x-1) = (A (x) + 7 (x)W)V _(x)}

Add theiright hand side of the equation (1.11) the quantity
TR UV e (x=1) = V 4 (x=1)) + (A(x) + 1)) (V 4 (X) = V_, (5

and rearranging it we obtain
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(1.12)  alv 4(x) - v (x)] = Min {c(s) + suV_s(x-1)
T - (M(x) * sWV & (x)}
~{e(m(x)) + m(X)uV_ «(x-1)
= (A(x) + m(x)uv_, (x)}
+ l(x)(V%*(x+l) - V_(x+1))
() (Vs (x-1) = V_,(x~1))

= (M%) 1) W) (V4 (x) - V _(x))

For x = K . -

(1.13) o[V 4(x) - v _(x)] Min-{h(K) + c(s) + y& + SUV_ . (K-1)

seMK ) ‘

= sUV_x(K)} - {h(K) + c(n(K)) *+ v2

+ n(K)pV“(K-l) - ﬂ(K)an(K)}

Adding the quantity

TR (Vo (K=1) = V_4(K-1)) + m(R)u(V 4(K) = V_,(K))

to the RHS of (1.13) and rearranging it, we obtain

(1.14) o[V _4(K) - V_(R)] = Min {c(s) + suV_,(K-1) - suV_,(K))
~{e(n(K) + m(K)uv,_4(K-1) - ﬂ(K)uVﬂ*(K)ﬁ
(R ulv o (K-1) - v _(R-1)]

- 1K) ulV 4 (K) - V_(K)]

Define,
u(x) = VTT*(X) - VTT (x)

and
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Min {c(s) + sWV u(x=1) - (A(x) + SWV_,(x))
ssMX ; .

- {e(n(x)) + T(X) WV_ 4 (x-1) - (M (x) +bw(x)u)v“*(x)}
, 0 < x <K

w(x) =

Min{c(s) +'suVﬂ*(K—l) - suvw;(K)}

S€MK

: A
- {e(n(x) + m(x) WV 4 (K-1) = m(R)UV_4(K)} , x = K

-

It is now clear that w < 0, w ¢ R(A) and u ¢ D(A) and in

particular combination of (1.10), (1;12), (1.14) gives
au = w + A u
T

It follows from the theorem (II.3.1)
® —at
u(x) = Ex[i e ¢ w(Xt)dt]

where X is the queue process obtained by using 7 e M as

a control. Therefore w < 0 implies that u < 0, then

Vﬁ*(x) < Vﬂ(x) . for all T e M

From our definition of the optimal control problem in

equation §1.4)
Vﬂ*(x) = V(x) , for all x e E

Since m* selects the action (server number) minimizing
the right hand side of (1.4) in each state, then a* is

the optimal policy.
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As a result of theorem (1.3) -we can show that the

unique optimal solution V is bounded in the following

Lemmas.

(1.15) LEMMA: Optimal solution is nonnegative for all

possible states. That is,

[

V() >0 ' for all X €

Proof: To prove this lemma it is sufficient to
show that for any function f € B; if £ > 0 then Tf > 0
also holds. But tﬁis is trivially true from the definition
of T'f in (1.6a). . ?unction ys(x) > 0, since h and c func-
tions are assumed to be nonnegative. So, given £ > 0 imp~-
lies Tf > 0. Therefore, from the properties of contrac-

tion mapping,
vix) > 0 ’ for all x e E

(1.16) LEMMA: There is an upper bound for the optimal

solution, such that

h + c(0) + v

V(x) < "

where h = max h(x).
) X
Proof: If we can show that for ahy f ¢ B and
f < (h + c(0) + y2) /o, TEf is also less than this quantity,

then the proof is COmpleted. Assume £ 5_(H + c(0) + v2)/a
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and put this value to the definition of TI'f in (l.6a) and

take s = 0
FE(x) < —2  [h(x) + c(0) + A(x) BFcl0) * vo),
ot A (x) o
a + A(x) a
IE (x) E.H + c(0) + vy&

‘o i A

Lemma (l.iS) and (1.16) show that V has an upper

and lower bound, such that

h + v2 + c(0)

o

0 < V(x) <

The upper bound can be considered as the worst
‘case in the system; it denotes no server, so the lost

profit and shortage cost incurres all the time.

ITT.2 Successive Approximation Algorithm

~.In this section we present an algorithm by which
the dptimal policy actually can be obtained. Although it
was shown that optimal policy exists in M when it satis-
fies the equation (1.9), the problem of finding optimal
policies is nontrivial. The number of policies in M may
be astronomically large. For example if E contains N

states and if the possible actions for each state is 2,
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then M contains 2 different policies. For very small
-values of N and for small action space the method of
“simple enumeration is feasible; however for large N,
complete enumeration is virtually impossible.

Here we present a veréion of the successive app-
roximation method originally suggested by Derman(1970).
This is one of the classical methods used in solving
~differential and integral equations., In itself it does
not provide a method for obtaining a solution in a finite.
number of iteratiohs; however slightly modified it can.

Now, we describe this algorithm and prove that
it successively iterates to £he minimum expected dis-
counted cost. We also seek éo establish the conditibns
under which this procedure converges to the-optimal policy.

_Before presenting the algorithm, we shall state
the transformation which is the core of the procedure.u

We define a sequence {Vn; n > 0} by

(2.1)  V_, =TV,
That is, for 0 < x < K

g 1 , )
(2.2) Vn+'l(x) = Min { [ys(x) AV (xt]) + sV (x 1

seMX‘a + A(x) + su

And also corresponding policies generate a sequence
{n i1 > 0}. 1In sequence n, for the state x, the s value

which minimizes the right hand side of the (2.2) is put

in to the nn(x).
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ALGORITHM.

STEP 1: INITIALIZATION. Set n = 0. Take an arbitrary

Lpolicy T, € M and find the corresponding values Vo from the

’

equation (3.5) in Chapter II. (For the simplicity of com-
putation the initial policy w_ can be taken as m (x) = 0,
for all x ¢ E; i.e. use zero server in each state. At this
time some of the terms in equation (3.5) drop and the so-
lution can easily bé obtained startiqghfrom state K. Since

this policy is in M, there is no problem of choosing it.

If we choose an arbitrary policy other than this one; then

we have to solve a system of linear equations.)

STEP 2: TRANSFORMATION. Calculate V_,, by using the

+1
{
transformation

Vn+1 = I'Vn

and find the corresponding policy LI

STEP 3: TERMINATION. If |V - V_| < e terminate and

i is the e-optimal policy. Otherwise go to step 2.

n+i \
The folloWing theorem shows that in each iteration
the transformed values are decreasing in each sequence.

And then we show that in the limit this sequence reaches

the 6ptimal value.
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(2.3) UEQm%h Vn+l(X) 2 Vv, (x) for-all n, x ¢ E.

Proof: Here we will use the induction method.

Taking n = 1, we shall see first if Vi 2V,

For x = 0, utilizing equation (2.2)

1

vV, (0) =
1 a + A(0)

[h(0) + c(0) + A(0)v_(1)]

which turns out +o be equal to VO(O) yhere Vo(x) is defined

as the unique solution to equation (3}5) when using the

initial policy 7 (%) = 0.
For 0 < x < K, taking s = 0 in equation (2.2) we 6btain

1

[h(x) + c(0) + A(x)V, (x+1) ]
o + A(x)

Vl(X)

IA

1

a

v, (K)

I

[h(R) + c(0) + v&]

The right hand side of the above inequalities is equal to
‘Ehé-Vg(X) and vV, (K) respectively. 8o, combining these

three results we end up with oo
Vl(x) §_Vo(x) ' for all x e E.

Now assuming V_, (x) <V (x), for all x e E, we can show

that

n+2(x) = Vn+l(x)
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Using transformation (2.2), for 0 < x <K,

Vaea (%) = TV (0 = Min —2 [y (0 + A0V, (x+1)

sr,lvg( a +A(x) + su
' + mm%+lbe1)]}

TV (x) = Min {—
seMx o+ A(x) + sp

‘Vn+l(x)

[ v (x) + AV (x+1)

+ sth(x—l)]}

Since we assume that Vn+l(x) g_Vn(x)f‘comparison of the
right hand side of the two equations above justifies that
Vn+2(x) < Vn+1(x)' Therefore, by mathematical induction,

it is true for all n.

(2.4) LEMMA. Lim Vn(x) = V(x), for all x ¢ E.

n-—row

Proof: Since the sequence Vn is defined as in
(2.1) and since we proved that T is a contraction mapping
then it is obvious from the theorem (1.2) that for all
Vh € B, ‘

lim TV_ =V

n

S nre , '
Since V_ is the solution to (2.2) then v, € D(A) where
D(A) = B.

Up to here, we proved the convergence of the v,
values to the minimum cost. But this does not imply the
convergence of the policies to the optimum policy. To

prove the convergence of the policies, we define another

sequence {U_; n > 0} by
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(2.5) aU_(x) = gwn(x) t A U, (x) -, for all x € E
n

where 9. (x) is defined in (II.3.2) and (II.3.3) and T
n
is the obtained policy in sequence n. In the sense that
U, (x) = V_ (x) =
n

where V“ is expected discouﬂted cost for policy LI
n

-,‘
(2.6) LEMMA: Un(x) g.Vn(x); for all n, x ¢ E.

-

Proof: Take m, as the obtained policy f@r
sequence n and subtract equation (2.55 from (2.2) and

write in an open form.

v_(0) - U_(0) = :le-(—o;{X(O)[vn_lgl) - u_ (1]
For 0 < x < K,
Vn(#) - Un(x? = é N A(x; " Trn(X)u{)\(x)[Vn__l(x+l) l
€  -~ Un(Xf})]‘+_nn(x)u[Vn l(x—l) - Un(x~l)]}
vy (K) = U, (K) = E (x_(K) [, v, (K-1) _ u, (K-1) 1)

+
™ (K)
Add the following quantities to the above equations,

First one: A(O)[Vn(l) - Vn(l)]
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Second onei A(x)tvn(x+1) - Vn(x+l)3 + ﬂn(k)u[vn(x—l)«- Vn(X-l)]w

i

. ' \
Third one: wn(K)u[vn(K—l) - vn(K-l)]

Rearranging the terms, we obtain

1

(2.7) V.(0) - U_(0)
n n 0L+)\(0)

oy lv (1) - v (1]

+ A(O)[Vn(l) - Un(lﬂ}

- %

~

L (n_(oulv, (x=1) - U (x-1

a t A(x) t wnOX)u

(2.8) Vn(x) - Uﬁfx)

+4

no v (x-1) - v (x-1) 1

A o0 [V (x+1) = U Gerl) ]+ A0 [V ) vy

-+

Vn(x+l)]}

1
+
o ﬂn(K)u

(2.9) vV, (K) - U_(K) tr (R)ulv _ (x-1) - Vv, (K-1)

+

1rn(K) u[Vn(K—l) - Un(K—l)]}

Define,
y(x) = Vn(X) - Un(x) . fOr_all X
_and
w(0) = A0 [v__ (1) - Vv (1]
w) = A0 [V Gerl) = Ve T+ Goulv ) (e
_ - Vn(x—l)]
w(K) = nn(x)u[Vn_l(K—l) - Vn(K—l)]
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After these definitions; equation (2.7), (2.8) aﬁd (2.9)

become

v(0) = ;——l———~[w(0)‘+ A(0)y (1) ]
a + A(0)

For O <vx <vK

yix) = — 1 [w(x) *+ A(x)y(x+l)
a t A(x) + nn(x)u
+ ﬂnﬁl(X)uy(x—l)] -
Y(K) = ——rt [w(K) + 7_(K)uy(k-1)]

o
o ﬂn(K)u

By previous result (theorem (3.1) in Chapter II) we have,
y(x) = E [J et w(x,)at]
b'd t
o
where Xy is the queue process obtained when policy ™ is
used. Since we showed in theorem (2.3) that Ve 2V e
which implies w(x) > 0, for all x € E. Then this justifies

that y(x) > 0, i.e.,

Vn(x) > Un(x) | ’ X ¢ E
(2.10) LEMMA: V(x) 5_Un(x) ’ X e E
Proof: It is obvious that V(x) < U (x). Because,

Un is obtained by using a policy LI but only the optimal

.policy n* gives V.
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 Lemma (2.6) and (2.10) together show that the
policies in each iteration converges to the optimal
" policy at the end.

Theorem (2.3) shows that in each sequence the

value function'iterates. But for the sequence {Un; n > 0}
this is not true. For the same policies L and»nn+l we
obtain Un(X) = Un+1(x) for all x € E. But this equality
does not imply that these policies are optimal, because

. ',l
from the characteristic of successive approximation

algorithm we can ébtain the same policy in the preceeding
iterations and some steps later it\could change.

In the successive approximation method the limiting
function will satiéfy equatién (1.4) and the optimal policy
will be obtained. In practice, the limiting function will
only be approximated. However, in order to have an approx-
imation close enough to V, a large number of iterations
are réquired. This method does not have a specific stopping
criterion. So based on your problem you can modify a
étopping rule and you end up with e~optimal policy. In
the algorithm we defined the stopping rule as |V - an < e
for any epsilon which will be specified according to the
nature of' the problem.

(2.11) LEMMA: For any € > 0, n > n(e) = 1n(5—(-1—_§—)—)/ln k
c =

rd

implies
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v - v Il <
then ﬂn(e) is e-optimal policy.

Proof: From the definition of contraction mapping

in (1.1), we know

v, = v 1] < kllv, - v__ |

where k is defined in (1.8) as

+ >
>+

My
+ mu

Using the transformation in (2.1), the above equation turns

out to be,

<x|lv, - v,

v .. -V eyl |

n+1i n-ll‘

Then

AT AT
!

HVn+1

From Lemma (1.16) and (L.15) '

nh'+ yo + c(0)

v, = Voll =k
o
" h + +
Lot c = h v 4 c(0)
a
So
n
[v,, -~ Vall <k7.C




Also

Wom = Yl £ 1V = Vo D+ e
: ¥ IIVn-!—2 - Vn+J_ll ¥ an+1 -V
5 n+m
WV = Vol = 2 k .C
i=n
m
Co n
WVaem = Yl %7 1 xlec
=0 —
Then we could write
_ |—~.__ . - n v .
v - v il= ﬁjﬁ”"mm voll = x jzo K.c
Then ‘
n
v -v || <« -*—c
oo 1 -k
If an e—ioptimal.policy is desired
11V - v || <
Therefore é .
; S | ;
il i ’1‘ Mi 5 {
ko C < ¢
1 -k
(2.12) n > 1n((—l—1—k)—€)/1n K
So ,
n(e) = inf{n » 0: n > In( X&) /15 i3
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From Lemma (2.6) we could write

| lu - vl < v -v|| < e

n(e) n(e)

Since T (e) is obtained from the transformations

of Vn(e) and since Un(s) is obtained by using " (e) policy,
we could say that for all n(e) satisfying equation (2.12)

m ) is e-optimal policy.

n(e

‘.,0
ITT.3 Policy Improvement Algorithm

In this section we shali give another algorithm
which is given by Doshi (1976). This is a version of
policy improvement algorithm. It finds the optimum policy
for the equation (1.4) and proves the existence of the |
solution. _ .

Doshi describes his algorithm and proves that it
generates an improving sequence of stationary poliéieé.
He assumes finite action space and states that the exis-
tence of a solution to the functional equations and of an
optimal policy cannot be established directly using this
algorithm when the action spéce is not finite.

In the following we give his algorithm adopting

to our case.

ALGORITHM: Given a policy ° ¢ M we generate a
sequence {(«"; n > 0} of policies in M by the policy

improvement algorithm.
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STEP 1: After finding LA M we obtain the expected

discounted return function for 1 from the value determina-

tion equations
Van{¥) = g (%) + AV 4 (x) ' X € E

If n > 2 and V“n(X) = V.n-1(x) for all x ¢ E, then we ter-
minate the algorithm and conclude that =" and 7" % are

optimal in M. Otherwise proceed to %tep‘2.

n+a

STEP 2: A policy = is defined as

N :
'n'nl(X)=SX - X ¢ E

where for each x ¢ E )

1 r _
lye (X) + M)V q{xtl) + S 4V . (x-1)] =
o + )\(X) + qu SX ‘ Trn X -

Min { L

[y. (0 + AGIV . (L) + Sw (x=1) 1]
SeM, o+ AG) +sp O o= e

Go back to step 1.

1Policy’improvement algorithm ié an iterative pro-
cedure that improves onAéach iteration and terminates after
a finite numbef of iterations with an‘optimai policy. As
you.noticeﬂin the iteration cycle it has two steps: (i) Value
determination operation, (ii) Policy-improvement routine.
The first step yields values as a function of policy whereas

the second one yields the policy as a function of the values.



The)PrOPerties of the policy-improvement algorithm

can be described as follows,

i)

ii)

iii)

The solution of the decision process is just

solving sets of simultaneous linear equations,

Each succeeding policy found in the iteration

cyc%g has a cost smaller than the previous one,

A

il.e., Vnn+i < Vﬂn ’ 1

The iteration cycle'has a specific stopping rule
such that the optimal policy is reacheq~when the
policies on,two successive iterations are identi-
cal; it will usually find this policy in a smali
number of iterations. -

Since M contains only a finite number of policies

and since each iteration is accompanied by a strict improve-

ment, no repetitions will occur. This method finds the

- policy that has a smaller aVerage return per transition

than any other policy under consideration. Thus at some

point no improvements will be possible, then the procedure

terminates after a finite number of iterations.

In the next chapter, we shall solve a simple

example with these two algorithms and make a comparison

between them.
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IV. APPLICATIONS AND EXTENSIONS .

This chapter extends our original sinéie station
system to some other queue models. First the serieé queues
are considered and the‘corresponding generator and ité range
and domain is found. Secondly we take our original system
to find the optimum service rate from the given set. In
the third model, not allowing tﬁe queue formation in front
of the stations we formalize the problem of optimum service
rate selection in series queues. |

Then in Section 3 we give an example problem and
solve it by computer with the given algorithms. Examining
£he results we make an analyéis of the algorithms.

Iv.l Exampleé of Actual Queﬁeing Systems

 There are many wéll—known, common areas of applica-
tionvfor the queueing.théory. Let us just briefly mention
some examples of real queueing systems. Generally, real-
life sYstéms do not lend themselves for operating charac-
teristics found in a standard textbook on queues. HoWevef,

one sometimes is lucky enough to find a system which behaves

like .the textbook models. Such is the case in drive-in
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banking. For example: A local bank‘wanted to expand
their drive in facilities. Two options were basically
available for expansion: Teller stations or Robo-window
stations. Sinqe the space is limited up to a teller sta-
tions could be used where as the number of robo-stations
was limited to b. Upon discussion, the prime considera-
tion was lost customer due to poor service and the cost
of new servers. |

A
Another example of queueing network theory being

g

applied is the trahsportation system, Consider an air
terminal design problem. It is carried out by analysing
the flow of passengers through terminal and finding the
number of necessary person in the necessary areas to cope
with the range of flows encountered in all the component
areas. The flow of passengers can be described as a series
of linked queueing model.

Exampies for the applications of queueing theory
to the health'care’systems can be categorized as:
(i) appointment systems} (ii) determination of the
optimum staffing level, A(iii) determination of the number
of patients in a hospital. The second case is relevant
to our thésis. Consider>the messanger unit at a hoépital;
The function of it is to transport patients, specimens,
reports and’miscellaneous objects in response to request

from -any section of the hospital whenever a call is received,
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the dispatcher sends a messenger, if-one is available,
to provide a service. If no messenger isrfree calls
must wait and may thus accumulate, forming a queue.
The question to be answered here is: how large a staff
islrequired to'give adequate service from a hospital
messenger unit? Due to the difficulty of estimating
the cost of a waiting call the variation of the ratio
of the cost of waiting per call per QOﬁr to the cost
of service per messenger per hour. h

Most of tﬂé studies inAthe optimum control of
queueing processes are applied to the maintenance prob-
lems. The basic question in this area is to determine
the optimum number of a repair br Servicing crew for a
given number of machines. Machines break down from time
to time needing the service of repair crew to put it back
in running order. Machines are assigned to;operators_"

with the objective of minimizing an expected cost model

of the queueing system.

Iv.2 Extensions.

This section extends the original problem to some
othér queuéing systems. First we consider the optimiza-
tion properties in the series queues. Then we show the
similarity of the problem which finds the optimal service

rate to minimize the infinite horizon expected discounted
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cost, with the original problem that finds the optimum
server number. Thirdly we will analyze the case which

does not allow queue formation in the series queues.

Iv.2.1 Optimization in The Tandem Queues

In this section we consider models in which there
exits a series of stations which each calling unit must
visit succéssively prior to leaving the system. Some
examples of suchl@andem‘queueing situationé (sometimes
referred to as seriés queués) are manufacturing or assembly
line processes in which units must proceed through a series
of work stations, each station preforming a given task, or
a clinic physical examination procedure where the patient
goes through a series of stages,

The tandem model to be considered here is composed
of two service station with limited'waiting room capécities
K, and kz respectively. Such a situation is pictured in |
Figure 3. We further assume that the customers arrive
according to a Poisson process with mean A, and the service

time of each server at station i (i = 1,2) is exponential

with mean 1/ui. Maximum number of servers that can work

in each station is m, .
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STATION 1 STATION 2
o—

K custonwers K
~ customers
o0——
o servers
m, servers m,
-t
Fig. 3 - Series queue, finite waiting room

-

Walrand(l9éO) claims tﬁat he-could not find any
study éf optimal poliéies when there are two or more
connected service stations. 1In our literature survey,
we have come acrosé some studies about series queues;
but not in their optimization generally in the distribu-
tion of their output processes. Wélrand analyzés the
casé where customers‘in a Péiéson stream enter a network
cbnsisting of two exponential servers in tandem. The
service rate u € [0,a] at station 1 is to be selécted as
a function of\the state (Xl;Xz) and the sérvice rate at
station 2 is constant with u. He wgnts to minimize the
expected total discounfed cost corresponding to the |
instantanégus cost Cq¥q + CoXy He first formali;es the

problem as a dynamic programming and then constructs an

leaving
customers
%

equivalent linear programming problem to prove the convexity.

He finds that the optimal policy is of the form u = a or
u = 0 according as x; < S(xz) and - S(xz) and S is a

switching function.
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Our case is very different from Walrand. The
service rate in a station is changing Qhen we increase
or decrease the server number. As you notice Walrand
takes constant service rate in the second station, and
his cost structure is a simple linear cost. In our
system server number can change in each station and our
cost structure is more general.

The state of the system at time t is defined as
Xe = QXQIXE) where xi is the number of customers at time
t and the state séace is E = EleZ where El = {0,1,...,K}
and E2 = {0,1,2,...,K2}. At any time t, the designer
determines the number of servers to be employed (St) in
each station by knowing the state of the system. Then
St is a function of Xt,’i.e. St = (ﬁé,si) = n(xé,xé)
where 7(.,.) is the control function which gives the
number of servers in each station and ﬂ(Xl,Xz) e M = MlxM2 |
where My = {O,l,...,xlAml}, M, = {O,l,...,szmz}.> In this r

case admissible policy set can be defined as,

M (“:{Olll'- 'IKl}X{OIlI' '-IKZ}'_—* {O,l,...,ml}x{o,l,. -'mi

or simply, | : i
M= (w:E > M) » ' : ’ |

The first station is an M/M/_S_l/Kl model.: It is
necessary to know the output distribution of the first |

station in order to find the input distribution to the 1
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secoﬁa station. Early studies show that the departure
tine distribution from an M/M/Sl/Kl queué is identical
- to the interarrival time distribution. So the second
station is an M/M/SZ/K2 model.

Now, our aim is to find an optimum policy which
minimizes infinite horizon expected discounted cost. The

cost structure of the system is described as following:

.. -t
i) h(x!,x?) - cost of holding customers at the
stations.’,
ii) c(m(x!,x%)) - server cost in the stations.
iii) A% - shortage cost at station 1,

- ) . v
where,l is the mean arrival rate and % is the lost profit

from lost customers. When the queue cépaci;y of the

first station is completely full in the first station,
then new arrivals will not enter and the system will havé
lost profit from these lost custogers. The cost appears
only at-the states_(Kl,xz) where 0 < x?2 < K,. We have

not this type of cost in the second station because when

a customer comes to the system, after his service comp-
letion in_ station 1, he has to take service from station 2
necessarily.

i
Define for any policy m € M, the rate of cost at

time t as,

(2.1) g (X)) = hi{x!,x?) + C(n(x!,x?))
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For the states of (Kl,xz), 0 <x, <K

2 2

(2.2) 9, (Rysx,y) = h(Ky,x?) + c(Ry,x?)) + v2 )
Then expected total discounted cost for any policy m = M,
given the initial state is x = (x!,x?)

o

vV (x) = Ex[f e ot gﬂ(Xt)Bt] ' x e E
o

Define the miﬁimum expected discoun?édrcost function as,

V(x) = Min V_(x) , x ¢ E.

meM " - '
Now, this problem turns out to be the same one of the
original problem. So, if we find tﬁe generator of the-
process and write the functional equatibns, then we can
use the algoriﬁhms defined in Chapter IIi;

This process is also a 'Birth and Death Process'.
‘Because, we aré continuousiy observing the system, there
could only be one change at one time. One can arrive to
the station 1 or the service of a customer can be completed
in station one and he joins the second queue'qr a service
completion occurs at station 2. Let us use the.defini—
tion (II.2.l1), to find the generator of the process and
also the 'range and the domain of it.

Define for x = (xl,xz) where 0 < Xy < Ky

0 < 32 < KZ

Ptf(X) = Ptf(Xl,XZ) = Ex[f(Xl,X%)]
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2.3 = e X2 e X
(2.3) P f(x) = Ex[f(xt,xt)linﬁ}]‘f E LE(XL X2 1, e4]

where T is defined as the time of the first change, i.e.,

T = inflt > 0: X # X } = inf{a,D,C}

where A is the time of the first arrival to station 1,
D is the time of the first departure from station 1 and
C is the time of the first departure from station 2.

Then define for arbitrary policy T d M

w(xllxz) = Tl-('n-l(><l)l-n'2(}<2))
Let us find the probability of no change in the state

]

1 2
(2.4) Ex[f(xt,xt).l

{T>t}

{T>t}]= Ex[ffxl,xz).l

f(xl,xz)Px{T.> t}

- Oty Geg )y, G ) ¢

f(xl,xz)e

]

] .

(x! x2
(2.5) B LEOXL XY Dypopyl= BRLEGLXD) g py - Liper)

P L
FELERGXE) L ippy - Limar)

+

]

1 2
Ex[f (Xt'xt) * l{T:C} - l{Tf_t‘}

al(x,t) + az(x,t) + a3(X,t)vj

(2.6)  ap (x,t) = Ex[f(Xé,X%).l{Tit};l{T=A}|T]

. . 1 2
Ex[l{Aiﬁ}'l{T=A}E(xl+l,x2)[f(xt—T’Xt—T)]]
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fix +1,x2)]

f(xl+l,x2)]

E Ll (actt-Yacm) Liacc)-Peor
If we put a condition on A to the above equation, we
obtain

! _ - (m, (X )ty () u,)A
a) (x,t) = Ex[l{Ait}.Pt_Af(xl‘Fl,xz).e 1 R T Fa i ]

Lo f(xyhlx,) e (M Gy Goduodu g

—

Make a change of variables by setting w = t-u,

t

(2.7) al(x,t) = f A
: o

e-—)\ (t-w) . c (Trl (Xl) ul+ﬂ2 (X2) Uz) (t~w) .ow (X]_+11X2) dw

Following the same procedure,

s

£(x,~1,%,*1) .e” Oty (x5)u ) Dy

(2.8) a,(x,t) ='Ex[l{Dit}'Pt-D 1

t
= J ﬂl(xl)ul.e—("1(¥1)”1(t‘w)_e”(k+“2(X2)u2)(tdw)
o
. ow(xl—l,x2 1) dw

‘ -\ o
(2.9)  ag(x,t) :‘Ex[l{cit}.Pt_cf(xl,xz—l).e (Atmy (x9)u9)Cy

t

! = J' “Z(Xz)l“z'
O

7y () ) (E) = Ok (o)) (649)

. wa(xl,xz—l)dw

It is clear from (2.7), (2.8) and (2.9) that for all

x e E
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lim ay (x,£) = 1lim az(x,t) = lim a

(x,t) =0
£40 £40 €0 3

The only left term in P f(xl,xz) is f(xl,xz)e (A1T(Xl)ul15“x2)u2yt
from equatlon (2.4). It is obvious that this term goes to
f(xllxz)‘when £+0. Therefore from the definition the range
of the generator consists the set of all bounded measurable

functions on E.

From the definition,
i

. |
(2.10) A £(xyexy) = ii@ = —[p £(xy,x)) = £(x;,x)], £ ¢ R(A))

where the domain D(Aﬂ) is the set of all f£f ¢ R(A,;) for which
this limit exits boundedly pointwise and belongs to R(Aﬂ).
It follows from (1.10) that

(2.11) Lim ———[p £(xy,%,) = £(x5,%, )] = Lim{—= [f(x rX,)
ts0 F 1 1 £40 R

e-(x+nl(xl)ul+ﬂ2(xz)“2)t'- f(xl,xz)]ﬁ

1 1

, 1
+ —if-a3(x.t)}

It is obvious that for £ e R(A)

(2.12) Lim ag (x,t)

f(x.t1,x.)
+40 1 2

(2.13) Lim a,(x,t)

Lin a, nl(xl>ulf(xl—1,x2+1)

(2.14) Lim a3(x,t) wz(xz)uzf(xl,xz—l)

t+0



e

!

Also from the definition (2.11) in Chapter IT

1 c - ' |
—la G0 | < Allgl] -%— [7 e Orm ity phu) 2 gy

(o]
1

. A —_—

<allel] L

L ; , L t v ‘
= (A +
1yt | < eepu [ 1g]| —11:—! o (T Gy () u))z )
. 1 b
< mwllEll = "
) t

%1a3(x,t)| <y G| 1£]] % I e—(>\+nl(xl)ul+n2‘(x2) b2 g,

' o

' 1
< mu, | £ ==

Since myu;, m,u, and A are finite, then it shows that

al(x,t), a.,(x,t) and a3(x,t) converges boundedly point-

2
wise. Therefore £ € R(A) is in D(A) if and only if the R

left term in equation (2.11);
1 — (Mt o (x)u +ro(x, )t
—Ef[f(xl,xz)e 1 l 17222 f(xl,xz)]

converges boundedly pointwise as t+0. We counld write
it as,
.1 oo _

where Lim (0(t))/t = O.
£40
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Now,

1

Lim E {[-r - nl(xl)ul - n2(x2)u2]t + O(t)}f(xl,xz)

£40
(2.15) = —(x + nl(xl)pl HRPICANNEICEIN

This result with tﬁe,others imply thét the domain of A_
is also the set of bounded functions defined on E.
Therefore putting equations (2.12), (2.13), (2.14)
and (2.15) into the equation (2.16;.we end up with the
generator. We éhall give the generator of a two-series-—
connected-station system in general. 1In the.following

think the state of generator as A((i,j); (k,%)) for any

policy n(xl,xz) = (ﬂl(xl),nz(xz))
a) Ifi:O,”j:O

A, k = i+1, L

1}
(IR

A_((1,3); (k,0) =

il
P
-~
=
]
wJ

’_A, k
" b) If i =0, J %0

A 7 k--: i+l % = :]

i
.
|
H

A“((ilj); (klz)) = ﬂ2(§2)U2 ’ k = i 2

‘—(A+“2(X2)92)' k = i L = 3



c)

d)

e)

£)

Ifi?OerO

A
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’ k = it1, £ =3
A'ﬂ'((i'j);(klg)) = ﬂl(xl)ul ¥4 k - i—ll ,Q, = J+l
If L # 0, J %0
i A
. A , k=itl, =3
L Mo Ax, )0 i it
A ((,9)5(k,0)) =1 T ¢ k=i-l, 2=3%1
ﬂz(xz)u2 , k=i, f=j-1
—(A+ + :
wl(xl)ul , k =Kljl, L o= j+L
B ((4,3)5 0,0) =) 7, () m, , ko=K; 4 8= 3-1
- + - _
(ﬂl(xl)ul ﬂz(xz)uz), k =K; o+ & = ]
If i 0, J= K2
A_((L,3)5(6,2)) ={my(x)uy , k=1 , & =Kyl
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g) If i =K, J =K

1
=~
©
it
=
I
=

TT(X)]J r k=
B, 9)(k,0) =) 2722

H
=

"'("Tz(xz) Uz)l k =

Therefore, from the equation (3.6) in Chapter II,
for any policy 7 € M, the expected total discounted return

VTr is the unique solution of the following functional

PR {3

equations.

vV, (0,0) = ——[h(0,0) *+ c(x(0,0)) + AV_(1,0)]
a t A m
For 0 < x2 §_K2 Y Xl =0
v, (0,x,) = L [h(0,x,) + c(n(0,x,))

+ +
T A w2(x2)u2
AV _(L,x,) + wz(xz)}JZVﬂ(O,xz-l)]

<~K1, 0 < x, <K

For 0 < x 5 5

1

’ 1
V (X, ,X,) = [hix,,x,)
T 1772 + 1772
a + A+ ﬁl(xl)ul ﬂz(xz)u2

+ c(ﬂ(xl,xz)) + Avﬁ(xl+l,x2)r

oy (% Vo= xot1) b oo (o) up Vo (% %, -1
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1
+ )+

(h(x,,0) + c(m(x;,0))

<
3
»
’-—l
o
S
|

AV (y*1,0) * omy(xq)ug Vo (x-1,1)]

o
| A
s
A
=~

A
V(K ox,) = — 1 [h(x, . x,)

+ )
e o (xghuy Ty (xylu,

-+

c(n(Kl,xz)) + “1(x1)“1vn(K1'1'X2+l)

+ -1).
ﬂz(xz)uZVﬂKKl,x2 })]

L | ‘
Vo (x),K,) = [h(xl,Kz) * c(n(xy,K,))

+ +
o A 172(x2)u2

+ AV“(xl+l,K2) + wz(xz)uzvﬂ(xl,Kz—l)]
For xl = Kl’ x2 = K2

1
a + Trz(xz)u2

V_(K;,K,) = [h(Ky,K)) + c(n(Ky,K,))

B “2(X2)u2Vn(K1'K2-l)]
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Since we defined as,

V(Xlrxz) = Min V“(Xl,x

) i X
TeM 2 ’ 1

—

Then V is the unique solution of

aV(xl,xz) = ?iﬁ{gﬁ(xl,xz) + A“V(xl,xz)}

These equations turns out to be similar to the original
equation (IIi.ltS), SO we can applf‘the algorithms, that

we defined, to these equations.

|
(2.16) REMARK: As you notice, the basic difference

between the two connected service station system
and our original single stétioﬁ system is that
the state of the system in the original case is
a point, but in here the state is a two-dimen-
sional vector. If we extend fhis system thé
state will be an n-dimensional vector and the

new state space is [lesz...xKn} where K, is

the waiting-room capacity of the i station.

VI.2.2 Optimum Service Rate Selection_in M/M/I/K. Queues

In many service systems, the overall system may
consist of several types of service facilities of different

capacities and different operating costs which may be used
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at different times. Other things being equal, it is

desirable that the policy for selecting which service

~facility to empioy be the functioh oﬁ the system state.
Now, we shall consider the optimal control of

an M/M/I/K queﬁe where I indicates a single server with

a variable service rate. Other assumptions being the

same with the original problem, we say that a pOlicy.ﬂ

ce'rate from the given

-‘l
set as a function of system state. Here service cost

is any rule for selecting the servi

(operating cost) c¢an be considered as the fgnction of
the different service rates, i.e., c(1{x)) = c(r). DNow,
we are trying to find the optimum service rate as a
function of system state which minimizes the infinite
horiéon expected discounted cost;}

Let R = [rl,rz,...,rk] be the available service

rate set. Then the equation (III.1.5)>turns out to be,

V(x) = Minf 1

y (%) + A(x)V(x+l) + rv(x-1) 1}
reR ao + A(x) + r

0 <x <K

where

h(x) + c(xr) , 0 x < K

| A

(%) =
Yr h(K) + c(r) + v& , x = K

For every state x e E, the corrésponding values

which miniﬁize the right hand side of the above equation
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gives the optimum policy n*.‘ The élgorithms presented

,inwthe previous chapter are also applicable to this

problem.

Vi.2.3 Optimum Service Rate Selection in Series Queues

With no Waiting Room

In this section, we study the modél which combines
the model in Section 2 with the ong in Section 3 and adds
a new property which does not permit any queue formatioﬁ.

We consiéer a simple two-station singlé—éerver—
at-each-station model where no queue is allowed to form
at either station. If a customer is in station 2, and
service is completed at station 1, the station 1 customer
must wait there until the service of the station 2 customer
is completed;‘that is, the system is blocked. Arrivals at
station 1 when the system is blocked are turned aWay. Also
if a customer is in process at station 1, even if station
2 is empty, érriving customers are turned away, since the
system is a sequential one; that is, all customers require.
service at 1 and then service at 2.

Thefefore'using the assumptiqns in Section 2.1,
the possible system state and corresponding generator is

as follows,

-
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(0,00 (1,00  (0,1)  (1,1)

(0,0) - A
(1,0) -y u
A = ’ | 1 1
\ (0,1) Moy —(X?uz) A

where w(xl,xz) = (ul,uz) and ul,uz‘é R = [rl,_...,rm ]
and also our state space E = {(O,I;'x (0,1) 1.

For this.problem, we do not have hoiding cost %
because of the no allowancé of queue formatibn. So we
have only dperating cost depending on which service rates
are used; that is, c(n(xl,xz)) = c(ﬁl,ﬁz) and also lost
profit incurres with A% when the system is blocked. ‘

Therefore, the minimum expected discounted cost

is the unigque solution of the following equations.

V(0,0) = Min {——[c(uy,uy) + AV(1,0013
p.eR o + A
TeR
2
. |
V(1,0) = Min {——--[c(ul,u2) + ulV(O,l)]}
p.eR a + My
uzeR
V(0,1) = Min { —————T[c(uy,uy) + AV(L,1) + u,¥v(0,0)]

+ +
pleR o A Mo

uzeR
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V(1,1) = Min {—1—-——[0(111,}12) +AL 4 V(1,00 1)
eER o + uz CT :

- Optimum policy n* corresponds to the Hy and Mo

values in each state which minimize the right-hand-side

of the above equations.

Iv.3 Application: Finite Population Problem

, ) _
In this section we give a simple problem and

write computer piograms for the algorithms defined in
the previous chapter to see the convergence of them and
to prove the existence of thé optimal policy for that
problem. “

As an example we study the finite population
model and not the finite queue model as in the original
problem. Consider a computer model like in Figure 4.
Here we have M users, or computer consoles, that make
- demands upon the time-shared computer system. Finite
population model operates as‘follows: when a user at
a console makes a fequest for service of the‘cbmputer,
the request enters the processor's queue and proceeds
to receive service. During this time the user cannot
generate any new request. When finally that request
is complete, the response is fed back to the console

aﬁ which point the user at the console begins to generate

a new request for the computer.
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A -

%

! . I . o . A
INSOLES .:::E%;\\\\\\\\\ o T : C: :
processar | '
with queues

Fig. 4 -"Finite input popu%ation

Another "important case for this model is the
maintenance systems on which we shall concentrate as

an example.

EXAMPLE PROBLEM: Consider a company whicﬁ has 60 machines.
However, because these machines break-down and require
repair frequently, the company has only enough operators
to operate 50 machines at a time, .so ten machines are
available on a standby basis for use in cases of failures
of the operafing machines. Thus 50 machines are always
operating whenever no more thap ten machihes are waiting
to be repaired, but the number of operating maéhines is
reduced by one for each additional machine waiting to be
repaired.

The time until any given operating machine breaks
down has an exponential distribution, with a mean of 20

days. The time required to reéair a machine also has an



78

exponential distribution with a mean of 2 days. The
.company has no repairman to fepair these machines.
However, productivity’is,reduéed by having less than

50 operatiﬁg machines. They want to make a decision
about the'number of server they can.hire by considering
the repair cost and their lost profit. But the company
which gives the server to this company has at ﬁést 15
servers for this kind of repair activities. Figure 5

, i
shows the system situation.

As you ngtice the queueing system to be studied
has the repairmen as its servers and the machines requir-
ing repair as its customers. This is a simple maintehance
problem. - In this problem, customer number is limited with
60 machines. This is the case of 'limitéd source' problem.
‘Tﬂus when the number of customers in the system (number of
broken machines) is n, there are only (60-n) potential
customers. The elapsed time from leaving the system until
returning for the next time fqr a machine is given as an
exponential distribution with rate A = 1/20 machines per
day. When n machines are broken, the current probability
distribution of a remaining time until the next arrival
to the qﬁeueing system has an exponential distribution

with parameter A(n) = (50 - n)A, for n > 10. Because of

the standby machines A(0) = A(l) = .... = A(10) = 50A.
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As you notice the state of the system (X.) is
taken as the number of broken machines in the system.
This‘model is not the finite queue model, but this does
not qhange anything in the formulas fhat we %ound‘in the
original case; Only we will not have any Shortage cost
here. Then we use the formulas (1.4) in Chapter III and
(3.5) ip Chapter II, by taking Y& (shortage cost) equal
to zero. '

- 'l
The company estimates its lost profit for not

having a machiné:operating to producé units as 36500 TL/year.
And the yearly server cost list is given in the program.
The discount rate is taken as 0.25.

With respect to this data we will discuss the
rgéult of the programs.‘ The éomputer érégrams and the
resuits for successive approximation and policy imprOve¥

ment algorithms are given in Appéndix'I and II, respec-—
' 1

tively. ’ |

~

. '/ANALYSIS OF THE RESULTS:

The major difference of the two algorithms is
their convergence rates. In our limited computational
expeéieﬁce typical computer run reaches the optimal-
policy in 3 iterations with 60 second CPU time for the
policy improvement algorithm whereas the successive

A approximation method does not reach the optimal in 901
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iterations with 120 seconds CPU time. Even though the
computatlonal burden at each 1teratlon of the policy
improvement method is hlgher, 1ts overall computatlonal
efficiency with small size problems that we experimented

on is much promising.

STAND-BY o OPERATING' MACHINES
MACHINES :
]
1 | BROKEN
[ |MACHINES
O |IN QUEUE
m [Z] ....... @

SERVICE FACILITY |
(one server in each channel)

'Fig. 5 - Maintenance system in the example
problem

In policy improvement method no repetitions will
occur. In each iteration the new policy has a smaller
return than the policy under consideration. But this

is not the case in successive approximation method.
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It determines the vélues iterativeiy. -In any iteration
the new value is smaller than the previous one, but the
ﬁolicy could be the same. ”

In practice, method of successive approximation
may be used when an a?proximation or guess’to an expected
discounted cost criterion is available. Then several
iterations will hobefully improve it. In ény case, use
of the method of successive approx%pation never necessi-
tates the compu;gtion of an exaét discounted cost cri-
tefion. If we wish to minimize the total expeéted.dis—
counted cost over only a few stages of the process, not
the,iﬁfinite dufation, then successive approximation
method is preferable, ‘

In summéry, policy impré%ement procedure provides
a monotone<convergent sequence of poiicies and aﬁtains
the optimal policy in a finite number'of iterations.

Its drawback is that the'discounted cost fuﬁction for
each policy = in the ééqueﬁcé must be calculated. This
involves solving the systemvof linear equations. When
the size of the’problem increases, this inflates the
kcomputational burden tremendously. Also each computer
has different restrictions in taking the inverse of a
matrix. After some specified size, computer cannot take
the inverse of a matrix, then it cahnOt solve the system
of linear equations. Therefore in such cases, the only
possibility in obtaining the optimal policy is the

successive approximation algorithm.
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V. CONCLUSION

This thesis has accomplished two tasks. The
first is the control of the queue model described in
-Section IT.1. This model is a continuous-time Markov
procéés, and we want to find the ithfinite horizon ex-
pected discouhteg return of this process baéed on the
given cost structure. We speéified the generator of
the process and its range and domain in Section II.2.
The importance of the generator can be seen in theorem
(IT.3.1). This theorem saves us from the intégral and
expectation parts of equation'(II.l.4), then it turns
out to be the system of linear equations. Theorem V
(II.3.4) gives us a complete characterization of the
“return function for ‘any given policy, which 1s in the
admissible pélicy set, as the unique solution of a
functional dynamic equationéi

Section III.l analyzes the controlled queue
model and theorem (III.1l.9) states the sufficient con-

dition of optimality. Then the results of the original

‘problem are extended for some other queue models in

Section IV.2.
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The second +taks is the aqalysis of the algorithms
used in obtaining the optimél policy, which are defined
in Section III.2 and III.3.: We proved that successive
approximation“algorithm determines the values iteratively
and then it converges to the minimum expectéd discounted
cost function and also determines optimal policy. But
the policy improvement algorithm is taken from Doshi (1976)
and adopted to our model. _L.

Section }V.B gives a maintenance system as an
'example. This pfoblem is solved by computer with these
two algorithms, then the comparison of the two method is
done in the previous chapter. |

In summary, we can say that; fér any Markov pro-
cess with finite state space and finite action space,
if you want to find the infinite horizon eXpecﬁed dis-
counted cost function use theorem (II.3.1) and write
the correspondiﬂg functional equations. And the optimal
policy which minimizes the cost function is easily found
by the policy improvement algorithm if the system size

does not exceed the computer restrictions. Otherwise,

use the successive approximation algorithm.
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APPENDIX ™ 1

INPUT-OUTPUT STRUCTURE
OF THE COMPUTER PROGRAMS
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After the process is modeled and its functional
equations are written, compare them with the equation
(I1.3.5) if the general structure is the same, these

programs can be used.

POLICY IMPROVEMENT ALGORITHM:
INPUT DATA: Necessary data to run this program is as
follows:

The first card‘contains: Aﬁf (discount rate),
MBAR (maximum nﬁﬁber of servers that can be employed),
K (system size), L (lost profit/customer; it will be
zero if you have no shortage cost), SR (common service
rate of each server), GR (ayerage arrival rate, which
is necessary in the presence of shortage bqst).

Second data card contains the server costs.
It has (MBARt1l) data. ' . .

The third and the fourth data cards contains

(K+1) numbers where the ith number in the first one

shows the holding cost incurred when there are i customer

in the system and the second one shows the'anrival rate

when the system size is 1.

.All data is given with free format.

INITIALIZATION: Initial policy in this program is taken as,

'n"o(x) = 0, x e E
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i

JIf you want to give different initial policy change
the statements 500-~530 where V1r (x) values (V(0,x))

o,
are computed for this given init%al_policy}

OUTPUT DATA: In the Qutput,‘you will first see the in-
put data. Then in the solution part, the optimal policy
and the cost corresponding to this policy will be seen.
At the‘end you will find the number of iterations re-

quired to reach the optimal"policyﬂh

.

SUCCESSIVE APPROXIMATION ALGORITHM:

INPUT DATA: The input structure is same with the other
method. Since this method finds the epsilon-optimal
policy, it needs epsilon value. Add this value to the

end of the first data card.

OUTPUT DATA: Also the output structure is similar with
the policy improvement algorithm. Since this method .
needs too more iterations to reach the optimum poiicy,
we put a restriction oﬁ the iteration ngmber (N = 1000).
Then in the solution part, only the values for the last
two preceeding iterations and the policy obtained in

the last cycle is printed.
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I;"ROGRAM LISTING AND RESULTS
OF THE POLICY IMPROVEMENT ALGORITHM

V-



,_—-v'_’:lq—?‘*’k!"*w:f *-y+**H.*r

kAR

“7FY Ivnpowrrrmr -

) Al”nhyvux T
s : g
*****fw#***+k*+++**++++***-~

“'r*v&-:«*

e D IMENSTON A (g7 0e 027095 v . Y Ty T
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APPENDIX - 111

 PROGRAM LLISTING AND RESULTS OF
THE SUCCESSIVE APPROXIMATION ALGORITHM
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