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ABSTRACT 

This thesis characterizes the optimal operating policy 

of a multi-server queueing system subject to Poisson arrival 

process and exponentially distributed service times (M/M/S 

queue). Optimal policy minimizes the long-run total expected 

discounted cost to the system. The cos~ components 9f the 

system are,taken as the server cost and the holding cost 

which is considered as the lost profit from the business 

or the lost production with respect to the type of the 

system. 

Markov Decision Theory i~ used in th~ characterization 

of the controlled process. Generator is the basic tool of 

the formulation. Application of some solution procedures 

is very easy for this type of formulation. Two different 

algorithms are presented to obtain the optimal policy: 

Successive .approximation algorithm and policy improvement 

algorithm. 

Optimal policy for a simple maintenance problem is 

found using these two methods. Computational experiments 

on the computer indicate that the policy improvement method 

converges to the optimal policy more quickly. 

The theoretic re$ults are extended to tandem queueing 

systems at the end. 
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o Z E T 

Bu ~a11~ma, .Poisson geli~ slire~li, lissel dag1l1m11 

hizmet sUreli ve ~ok' i~gorenli (M/M/S) kuyruk sistemlerinde 

eniyi i~letme politikalar1n1 belirlemeyi ama~lamaktad1r. 

Eniyi politika, sistemdeki toplam maliyet beklentisini en­

azlayan olarak tan1mlanmaktad1r. TOp~q~ maliyet i~levi 

uzun slireli ele a11~makta ve paran1n zaman 'i~e~isinde de­

ger yitirmesi ozelliginide i~ermektedir. 

Denetim alt1ndaki sistemin ozelliklerini tan1mlamakta 

kullan11an yakla~1m Markov Karar Kuram1na dayanmaktad1r. 

Uretmen (generator), model gosteriminde yararlan1lan temel 

ara~t1r. Bu tlir model gosterimlerinde ~e~itli ~ozUm yon­

temleri kolay11kla uygulanabilmektedir. Bu ~a11~mada en­

iyi politikan1n bulunabilmesi i~in ardarda yakla~1klama ve 

kural iyile~tirm~ yontemleri kullan11m1~t1r. 

KU~lik boyutlu bir bak1m sisteminde eniyi politikaY1 

belirleme problemi bu iki yontemle ayr1 ayr1 ~ozUlmli~tlir. 

Sistem k1saca N makina11 bir liretim Unitesinde makinalar1n 

zaman zaman bozulmalar1n1 ve bak1m linitesinde onar11malar1n1 

i~ermektedir. GozonUne a11nan maliyetler, hizmet gorenlerin 

saY1s1na gore birim zaman onar1m maliyeti ve makinalar1n ~a-

11~mamas1ndan dog an liretim kayb1 maliyetleridir. Her durum 

i~in i~gorenlerin saY1s1n1 belirleyen politikalar i~inde en-
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iyisi olarak sisternin rnaliyetlerini enazlayan1 se~ilrnekte­

dire Bu 6rnek lizerinde iki algoritrnan~n ~6zlirnsel verirn-
, 

liligi k1yaslanrn19 ve kural iyile9tirrne yonterninin yak1n-
. ,I 

sarna h1Z1n1n dah~ ~abuk oldugu g6zlenrni9tir. 
I 

Kurarnsal sonu~lar seri bagl1 kuyruk sisternleri i~in-

de ayr1ca geni9letilrni9tir. 

.t 



I. INTRODUCTION 

, 
The purpose of this thesis is to characterize the , 

qptimal operating policy of the multi-server queueing 

systems with a Poisson arrival !process and exponentially 
I 
r • l. 

distributed service times and with finite or infinite 
. 

capacity. The shorthand notati~n ~/M/S/K refers to such 

1 

a queue. After the characterization, two algorithms will 

be presented to obtain the optimal policy. Then the theo-

retic results will be extended to some other queueing systems. 

The arrival process is assumed to be a Poisson process 

with a content dependent arrival rate and the service time 

of each server is exponential. At any time, the decision 

maker has to decide on the total number of servers to be 

employed by observing the total number of customers in the 

,queue. To be more precise, if the content of the queue is 
': I I 

X and poli~y TI(x) is used, then there is a Poisson stream 

of arrivals with rate A(X) and the number of servers working 

is TI(x). I£ the service rate of each server is v, then the 

. queue size either increases by one with rate A(X) by an 

arrival or decreases by a service completion with rate VTI(x) 

whichever comes first. 
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For each policy TI(x) , we define the economic effective-

ness of the service station by the long-run total expected 

discounted return. Shortage, holding and server costs 

effect this return by discounting continuously at rate a > O. 

A policy minimizing this total expected discounted return is 

cat led optimal. We seek to find the conditions under which 

an optimal policy exists. We also seek to characterize an 

optimal policy, if one exists. 
-t 

Based on the Markovian property of the process, Markov 

Decision Theory is applied. Generator is an important tool 

in the optimal control of Markov processes. So, using the 

generator and its characteristic~ the dynamic functional 

equations are written. Then an algorithm is developed to 

solve these equations. 

Before we discuss the contents of this thesis, we 

present a brief summary of the literature on_the optimum 

control of queueing systems. 

A great deal of emphasis in queueing theory recently 

has been in the area of design and control. The early:works 
'. ! 

on the control of queues were essentially in the form of 

descriptive analysis of a set of plausible control policies 

from which roptimal policies' were selected by mathematical 

optimization techniques. More recently researchers have 

begun to employ Markovian Decision model to solve queueing 

control problems. 



Considerably more effort has been put forth on the 

rate-control models which deal with when and how arrival 

or service rates should be changed to optimize some ob­

jective function. 

3 

The work to date on these models can be classified as: 

a) Control of server 

b) Control of service rate 

c) Control of arrivals. - " 

Here we only deal with the fi-rst two cases. In the 

first case, the control action is to turn the server on 

or off at the service completions or at the customer arrivals. 

Miller (1969) considers a c-server no-waiting-space 

queueing system with m customer classes, each class yielding 

a different reward. The q~eueing model is assumed to be 

M/M/C/C, and the problem is formulated as an infinite hori-

zon, continuous time Markov decision problem. The objective 

function here is the expected reward rate over an infinite 

I planning horizon and i~ is de~ired ~o find the policy which 

maximizes this. Qualitative results which characterize the 

form of the optimal policy are given, as well as a compari-

son, via simulation, of some approximate policies deduced , , 
from the analysis, for arbitrary service-time distributions. 

Heyman (1968) considers an M/G/1 state dependent model. 

He considers a server start-up cost, a server shut-down cost 

and a cost per unit time when the server is running and a 
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customer waiting cost. He proves that the form of the optimal 

policy is "turn the server on when there are n customers in 

the system and turn the server off when the system is empty." 

Heyman considers various combinations of cases involving dis-

counting or not discounting costs over time and a finite or 

infinite planning horizon. 

Sobel (1969) considers the same problem as did Heyman, 

namely, starting and stoping service bv.t generalizes it 

tg G/G/l, as well as assuming more general cost structure . 
. 

Considering the average cost rate "over an infinite horizon, 

he shows that the policy form is "provide no service if the 

system size is m or less, when system size increases to 

M (M > m), turn the server on and continue serving until 

the system size again drops to m". He refers to these as 

(M,m) policies. 

Blackburn(1972) also treats an extension of Heyman's 

model in that he incorporates balking and reneging into the 

M/G/l queue. Now, the longer the server is in the off posi-

tion, the more chance there is of a balk or renege. He 

shows that the stationary optimal policy which maximizes 

discounted re\-lard over an infinite horizon can also be 

characterized by a simple pair of critical values (M,m). 

Blackburn analyzes the problem as a Markov renewal decision 

process. 
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Mag~zine(197l) shows that a policy of (M,m) form is 

also optimal for the M/M/l system under periodic review and 

extends his work and shows the existence of an analogous 

rule for the multi-server systems. Formulation as a dynamic 

programming problem is given and proofs for existence are 
/ 

represented for finite horizon, infinite horizon and average 

cost criteria. 
.t 

In the case of "b", a service rate can be chosen from 
. 

a set of allowable service rates ~t customer arrivals or at 

service completions. 

Brosh(1970) considers a two service-rate model, with 

a limit on queue size. The system is observed at short, 

equally spaced intervals of time, and at each interval, 

after observing the system size, a decision on which service 

rate to use is made for the next interval. A Markovian. 

anqlysis is used, since the assumption is made that in any 

interval at most 'one arrivalioccurs with the probability 

of.an ar~ival being A. The ~robability of a service comp­
I 

letion is ~i depending on which service r~te was chosen. 

Thus Brosh is essentially dealing with a state-dependent 

M/M/l/K model. Considering different costs for each service 

rate and cost for lost customers, the optimal policy which 

minimizes the long-run average cost rate is desired. Brosh 

categorizes the structure of the policy space, eliminating 

from consideration those policies which are dominated by 
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better ones, and from this structuring of the space develops 
I 

an algorithm which searches over the admissible policies. 

Crabill(1972) has employed a continuous time. Markovian 

decision model to investigate ,the M/M/l queue with k possible 

service rates. Including holding and service costs he finds 

the optimal policy which minimizes the long-run average cost 

rate. He proves that the optimal policy is characterized 
. y, 

completely by k-l numbers and that the optimal service rate 

is nondecreasing in'the state of the system. 

Lipman(1975) generalizes Crabill's results by implementing 

a different cost structure. Also Lipman establishes the exis-

tence of monotone optimal discounted and average cost policies. 

Mitchell (1973) considers a single server, Poisson arrival 
I 

general service queuing system in vlh:hch the service rate may 

be varied continuously between fixed limits. The problem is 

to find a policy for selecting the service rate which mini-

mizes the expected average service plus holding cost per 

unit. time. Considering it as a Markov decision process, 

the model is approximated in that the service rate can be 

changed only at equally spaced points in time. He proves 

that if (i) 'the service cost rate is a convex function of 

the service rate and (ii) the holding cost rate is a poly-

nomial approximation to a convex function of the work re-

maining in the system, then there exists a stationary de­

terministic optimal policy in which the service rate is a 
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nondecreasing function of the work remaining in the system. 

There does not seem to be any study of finding optimal 

policy by using the generator of the Markov process, in the 

queuing models. But there are some studies on Markov Deci­

sion processes which use generator in general without making 

any assumption about the specific nature of the controlled 

process. 

Miller(1968) considered a Markov.f.lecision process wfth 

continuous time par~meters by restricting his attention to 

a finite state space case. Later~ Kakumanu(1972) extended 

his results to the case of a countable state space. Markov 

decision processes with continuous time parameter and fairly 

general state space case is studied by Doshi(1976) . 

This thesis combines the studies in the aforementioned 

areas. As it is pointed out in the literature survey, there 

is no work except Magazine (1971) on .the selection of the 

optimum number of servers for a given cost structure. The 

studies which are done in the control of server are generally 

based on the decision of shutting down the available singl~ 

server or starting it up. 

The closest work related to ou~ thesis is Magazine's 

article as it is seen in the literature survey. Even though 

this thesis is primarily focusses on the optimal control of 

M/M/S/K system, it clearly differs from Magazine's work in 

several respects. Magazine takes the arrival rate as cons­

tant, but in our study arrival rate depends on the queue 
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content. He assumes that the decision points are at equally 

spaced time intervals. But we are observing the system con­

tinuously and we could make a decision any time we want by 

noting the number of customers at that time. Also the cost 

structures are different. He considers a constant shutting­

down cost, starting-up cost and unit operating cost for an 

open server and a convex holding CO$t function. We have no 

switching cost _and our server cost is. pot constant. The 

requirement for the server and' holding-costs in our thesis 

is to be real-valued, nonnegative; bounded functions. 

After defining the structure of the system Magazine 

gives the dynamic programming formulation for the infinite 

and finite horizon cases. At this stage we completely fo11o~ 

a different approach from Magazine. We formalize the control 

problem as a Markov Decision problem and then give two diffe­

rent solution procedure to obtain the optimal policy. 

In the remainder of this chapter, scope and organization 

of this thesis will be briefly mentioned. 

Chapter II deals with the analysis of M/M/S/K queue 

problem. In Section 1, we will describe the control problem, 

define the admissible policy set and then we will prove the 

Markovian property of the system. Section 2 defines the 

methods to find the generator of the process. Since gene­

rator has an important role in our study we give two method. 

The first one is from Breiman(1968) which can be used for 

every general process and the second method is from G~n1ar(1975) 
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which is very simple for the single station birth and death 

processes. Section 3 characterize the expected discounted 

cost function for any arbitiary policy an~ proves its uni-

queness. 

In the first section of Chapter III, the character i-

zation of the minimum expected discounted return and that 

of the optimal policy is given. Section 2 describes a 

version of successive approximation al~orithm and proves 

that it generates a sequence of iterating cost functions 

which finally converge to the minimum expected discounted 

cost. Section 3 defines the policy-improvement algorithm 

which is originally suggested by Doshi(1976}. 

Chapter IV extends the original single station model 

to the series queue model and also to the optimum service 

rate selection models. Section 3 compares the algorithms 

by solving a maintenance system as an example on the computer. 
I 
\ 

Chapter V summarizes the conclusions of the thesis. 
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II. ANALYSIS OF THE QUEUE PROBLEM 

This chapter analyzes all characteristics of our 

M/M/S/K service system. After the analysis of the sys-

tern's Markovian property, the basic, Markov decision pro­

cess is presented. Since the g~ner~tdr is a basic tool 
I 

in the control of Markov process, all characteristics 

of it will be given. 

Using generator, the dynamic functional equations 

10 

is found for the uncontrolled queue process and the exis-

tence of the unique solution to this functional equations 

is verified .. 

11.1 Description of The Control Problem 

Let Xt denote the number of customers present in the 

queue at time t > O. The s~a~espace of,Xt is E = {0,1,2,.~,K}, 
where K denotes the queue capacity which is either infinite 

or a given finite positive integer. In some queueing pro-

cesses there is a physical limitation to the amount of 

waiting room, so that when the line reaches a certain 

length, no further customers are allowed to enter until 

space becomes available by a service completion. These 

are referred to as-finite queuing systems. In our model 
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K is finite, in other words when the number of customers 

present in the queue is equal to K, the new arrivals can-

not enter the queue until a departure occurs. The results 

obtained in this thesis are stated for finite K, but simi-

lar results can be obtained for the infinite queue capa­

city case. The similarity will be pointed out by remarks 

throughout the thesis. 

At any time t, the planner observes X
t 

customers 
. t. 

present in the queue, and based on that information he 

determines the number of servers to be employed. In 

other words, if St is the number of servers employed at 

time t, then St is a function of Xt only, i.e. St = ~(Xt) 
for some nonnegative integer valued function ~ defined on 

E. 
• I 

Clearly ~(.) is the control function in our problem 

which gives the number of servers \vhen the queue content 
! ' 

is (.) and it is only reasonable to assume that 

~ (x) E M ~ {O,1~2, ... ,x A m} for all x E E where m is 
x 1 

'I 

some positive integer denoting the maximum number of 

ser~e~s .that can be emP10yedi and! x. A 

assumption implies that the number of 

m ~ min(x,m} .. This 
i 

servers employed 

cannot exceed the number of customers in the system or 

the number of available servers. 

The customer arrivals are modeled as a Poisson process 

whose parameter (mean arrival rate) varies with the total 

'number of customers present in the system. Thus, this is 
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a state-dependent arrival process. Service times of serv-

ers are assl~ed to be independent and identically distri­

buted with an exponential distribution. If the content 

of the queue isx, ~then there is a Poisson arrival with 

rate A(X) and the number of servers working is TI(x). If 

the common service rate is ~, then the queue size either 

-
increases by an arrival with rate (x) .or decreases by a 

departure with rate ~TI(x) whichever c~mes first. In real 

practice, it is often likely that arrivals become discouraged 

when the queue is long and may not wish to wait. If people 

see K ahead of them in the system, they do not join and 

A(K) = O. Figure 1 shows the multiserver system which is 

described above. 

(1.1) DEFINITION: An admissible policy is a measurable func­
I 

tion mapping E into M. Let M be the set of al1'ad-
! 

missible controls, then it is reasonable to define 

M = {TI:{O,1,2, ... ,K} + {O,l, ... ,m}) 

j '., i· . 
So, M is the set of all bounded, positive and integer 

valued functions defined on E and bounded by an in-

teger m. 

(1.2) REMARK: Thoughout this thesis, we require that St = 0 

is the only admissible decision whenever Xt = O. 

That means, for all TI E M, TI{O) = o. 
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stomers 
lrriving ,J 

'1 0000 ll--.'----O)I~ 
served customer 

1------"-7) lea v i ng 

waiting room 

service facility. 

Fig. 1 .- Multiserver queueing system 
. Y. 

Let A = {At; ~ ~ oj and D = {Dt ; t ~ oj be the customer 

arrival and departure processes respectively. In other 

words, At and Dt are the total number of arrivals and de­

partures until time t respectively. Then it is clear that 

the queue content process X = {Xt ; t > OJis given by, 

which implies that, 

This shows that the number of customers at time 't+s' is 

equal to the sum of Xt and the number of'arrivals d~ring 

the interval [t,t+s), less the number of services comple­

ted during [t,t+s). In generalized Poisson processes, the 

numbers of arrivals' in nonoverlapping intervals are statis-, 

tically independent; that is the process has independent 

increments. Therefore, the number of arrivals during 

[i,t+s) is independent of everything else that went on before 
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time t. Also from the memoryless property of the exponen-

tial distribution the remaining service times are comp-

letely independent of the past. Memoryless property 

states that the remaining service time of a customer 

currently in service is independent of how long he has 

already been in service. Hence the number of services 

completed during [t,t+s) can depend only on X
t 

and the 

arrivals during this interval. 
. t. 

This analysis shows the Markovian property of the 

queue process X = {Xt ; t ~ O} which states that future 

behaviour is independent of the past given the present. 

That is, 

p{Xt + = ilx ;u < t} = p{Xt . = ilxt } s u - +s . 

The size of the queue at time t increases by one 

when an arrival occurs or decreases, by one when a service 
~ 

is completed. This is a pure, jump process which is also 

referred to ag a "Birth and Death Process". 

Figure 2 shows a typical:realization of the queuing 

process X. Tl is the time of the first arrival and at 

that timeXt increases by 

customer requires service 

one, then XT = 1. This first 
.1 

up to time Dl . But before time 

DI , two more customers arrive at time T2 and T3 which inc­

rease the number of customers to 2 and 3 respectively. 

When the first customer leaves the system at time DI , queue 

content decreases-by one then XD = 2, and so on. 
I 



NUMBE I< IN 
SYTEM 4 • 

3 ,.~ -
2 -- • --
1 

0 
T, TZ T3 D, T . t. 4 D2 TS T6 

Fig. 2 - A realization of Markov Process 

In the following theorem we prove that X is indeed 

a Markov process. 

(1.3) THEOREM: The process X = {Xt ; t > O} is a Markov 

process with state space 

Proof: Let Vt and Wt be respectively the lengths 

of times from t until the instants of the next 

arrival and next departure. That is, 

Throughout the following we will let 

P {.} = p{'lx = x} x 0 
X E: E 

for notational convenience. 

15 

TIME 
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We shall first find the probabflity that an arrival 

occurs before a departure aftcir tim~ t given the 
! 

past information and that xt = x 

p{Vt 2. wtlxu;u 2. t, Xt = xl = p{vt :2. wtlxt = xl 

= P x {v t' .s. wt } 

= Ex[Px{Vt .s. WtlVtl] 

.- E [e- 1T (x)}lVt J 
x 
. t, 

A (x) 
= 

A (x) + "If (x) }l 

The first equality follows from the fact that once 

Xt is given bothVt and Wt are independent of the· 

past since interarrival and service times have the 

memoryless property. The second equality is simp-

lified notation and the third one follows from basic 

probability theory. The fourth equality simply 

states that if 1T(X) servers are employed in the sys-

tern and there are no arrivals then Wt or the time of 

first service completion is exponentially distributed 

with parameter ~1T(X). Similarly if there are no de-

partures the fact that Vt or t~e time of the first 

arrival after time t is exponentially distributed 

with parameter A(X) justifies the fifth equality. 
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A similar argument given above shows that, 

-TI(x)~u -A(X)U = e. • e 

(I. 5) -/(A (x) + TI (x) ~)u = e . 

From the definiton in ~~n1ar(197~,p.271) equation 

(1.4) and (1.5) imp,ly that X is a Markov process with 

17 

state space E. Furthermore, since X can either increase 

or decrease by one, it is a 'birth and death process'. 

(1.6) REMARK: It is clear from the proof given above 

that limiting the queue capacity does not effect 

the proof and Markovian property remains unchanged. 

Before we formally state the total expected cost, 

we shall attempt to give a physical interpretation of 

individual cost components in our system • 

iDecisions·regarding the amount of service capacity 
1 

to provide usually are based primarily on two considerations: 

(i) the cost incurred by providing the service, (ii) the 

cost of waiting for that service. It is apparent that 

these two cost components create conflicting pressures 

on the decision maker. The objective of reducing service 

costs recommends a minimal level of service. On the other 

hand, long waiting-times are undesirable, which recommends 
i 



a high level of service. Therefore, for the comparison 
I 

of service costs and waiting times, it is necessary to 

adopt a common measure of their impact. The natural 

choice for this.measure is· monetary so that it becomes 

necessary to estimate the cost of waiting which is also 

referred as holding cost. 

A common viewpoint in practice is that the cost of 
, 

waiting is often too intangible to b~,.amenable to esti-

mation. For diffe~ent types of situations, the subjec­

tive waiting cost can be viewed as follows: 

18 

For the profit-making organizations where the custo-

mers are external to the organization providing the ser-

vice, the cost of holding probably would consist primarily 

of the lost profit from lost business. This lost business 

may occur immediately (because the customer grew impatient 

and left) or in the future (because the customer was con-

siderably irritated that he did not come again.) 
.. 

For the social service systems, the cost of waiting 

usuciliy:is asociial.cost of ~ome ki~d. It is necessary 

to evaluate the consequences of waiting for the indivuals 

involved or for society as a whole and to try to impute 

a 'monetary value to avoid these consequences. 

A situation that may be more amenable to estimating 

waiting costs is one in which the customers are internal 

to the organization providing the service. Business-
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industrial service systems are good examples for this case. 

For_example, the customers may be the machines or employees 

of a firm. The primary cost of waiting for this case may 

be the lost profit from lost productivity. 

Throughout this thesis holding (waiting) cost is sym­

bolized by h{X t ). It is assumed that h(X
t

) is quantified 

according to the aforementioned guidelin~s and made avail-
\ . 

able to the investigator. Service cost is denoted by 
. l. 

c(St) = c(TI(Xt » and is basically considered as the cost 

which is paid to tHe servers. The only requirements for 

the functions hand c are to be nonnegative, real-valued, 

bounded and monotonically increasing functions. 

In addition to the above costs, "le have a shortage 
) 

cost for the finite systems. It incurres only when the 

system size achieves the full capacity level of the 

waiting space. When the system is completely full the 

new arrivals cannot enter (A(K) = 0) and the system will 

hav~ a lost profit with rate 1 per lost customers. If 

we take the avarge arrival rate as y then the shortage 

cost rate is yl. 

Economic effectiveness of the system is described 

by the expected total discounted cost composed of the 

three cost components described above. In this thesis, 

we try to find the policies which minimize the expected 

discounted cost. Since the process has the Markovian 

property this is a Markov Decision Problem. 
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For a formal statement of Markov Decision Problem; 

let Ds(x,t) denote the expected cost incurred up to time 

t by following the policy s and with x customers in the 

system initially. And let u > 0 be the interest rate 

used for discounting future cost, i.e. the present value 

f . -ut 
' 0 cost c incurred at time t is ce . 

Let the expected continuously discuounted cost of 

a policy TI over an infinite time horizon be denoted by, 
.t 

v (x): E [ f-e- ut D (x,t)] 
TI TI s 

o 

Let Vex) be the minimum expected discounted cost function, 

(1.7) Vex): inf V (x) 
TI 

Define TI* E M as an optimal policy if, 

11.2 The Generator of The Queue Process 

x > 0 

x > 0 

The generator plays an important role in the optimal 

control of Markov processes. The objective of this sec-

tion is to find an expression for the generator of the 

queue process X. 

There are some relationships between the transition 

function, transition matrix and the generator of a process. 
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If the transition function P
t 

is kno\'in, then its deri va­

tive at t = 0 gives the generator A. The generator can 

determine the transition matrix Q which shows the proba­

bility of going from one state to another. Considering 

the converse problem, knowing the transition matrix Q 

and y(i) (the parameter of exponential distribution of 

a sojourn time in state i) generator A can be found. 

Generator shows the rate of change of state. After 
. ,. 

calculating the generator, transition function can be 

computed. One method is to solv.e thi infinite system 

of differential equations. 

d 
~ Pt = APt 

These equations are called, respectively, Kolmogorov 1 s 

backward and forward equations. If the state space of 

Markov process is discrete, then the generator could be 

written in matrix form. And the computation of Pt from 

A is done by using certain matrix theoretic methods. 

(2. 1) DEFINITION: For every TI £ M, the generator A of 
TI 

the process X, the range R(A ) of A and the 
TI TI 

domain D(A ) of A are defined as follows: 
TI TI 



(2. 2) 

i)R(ATI ) is the set of all bounded measurable 

functions f on E such that, 

as t + 0, for all x £ E 
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ii) D(A w) is the set of all f £ R(A
TI

) such that, 

iii) 

converges boundedly poin~wise on E as t + 0 

to a function in R(A ) 
TI 

For any function f £ D(A ), A f is defined 
TI TI 

to be the limiting function in (ii). Such 

that 

EX[f(Xt )] - f(x) 
lim ----------------- = A f 
t+O t w 

Note that this definiton of the generator is 

equivalent to the weak infinitesimal generator 

given in Breiman(1968, pp. 341). 
.: -t,<'r 

PROPOSITION: For each TI £ M, R(A ) consists of the 
TI 

set of all bounded functions on E. 

Proof: Let f be any bounded function on E and T 

be the time of the first jump, such that 

T _. inf{t > 0, 



(2.3) 

(2.4) 

(2.5) 

For notational convenience, ~efine 

For every x E E and t ~ 0, 

= f (x) • P {T t.> t} x 

= f(x) •. e-(A(x) + 7T(X)V)t 

= a l (x,t) + a 2 (x,t) 
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A and D represent the times of the first arrival and first 

departure respectively. Using the strong Markov property 

at T we obtain, 

= Ex[l{A=T}·l{A~t}·EXT[f(Xt-T)]J 

= Ex[l{A=T}·l{A~t}·Ex+l[f(Xt_T) J] 
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= EX[EX[l{A~t}·l{A<D}·Pt_Af(~+l) IAJ] 

= E [1 P f( '\ -1T(X)VA] x {A~t}· t-A x+l~.e 

= . foo A (x) e - A (x) u 1 P f ( + 1 ) -1T (x) V u d 
o {u~t}· t-u x e u. 

t 

(2.6) = A(X) (11'(X)V+A(x»e-{A(X)+1T(X)V)Up f{x+l) 
It (x) + 1T (x) v 6 t-u 

Similarly, using the strong Markov ~l.operty at T we obtain 

a 2 (x,t) =·~[f(Xt) .1{T~t}·1{T=D}] I 

(2.7) 
= • (x) V f t ('(x) h (xlv) e - (' (x) h (x) V)"P t-uf (x-I) J 

A(X) + 1T(X)V 0 . 

By a change of variables setting w = t u we obtain 

(2.8) al(x,t) = 

t 
A (x) J (1T (x)v H(x) ) e - (A (x) +1T (x)v) (t-w) Pwf (x+l l 

A(X) + 1T(X)V 

(2.9) 

t 
1T (x) v f (A{x)+n{x) v) e- (A (x) +1T (x) v) (t-W)Pwf (x-l 

A(X) + 1T{X)V 0 

Putting (2.8), (2.9) and (2.4) together 

It follows from (2.8) and (2.9) that for all x E E, 

Lim a
l 

(x,t) = Lim a 2 (x,t) = 0 
t~O t+O 

Therefore, it is clear from (2.10) that 



Lim Ptf(x) = f(x) 
t+O 
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So the range of the generator is the set of all bounded 

functions on E. 

We will now try to characterize D(A ). To be able 
1T 

to do that first we will state a definiton. 

(2.11) DEFINITION: A sequence of functions {f
t

} _ b(E) 

converges boundedly pointwise' to a function f E b(E) 

(2.12) 

as t+O if,-. 

i) Lim ft(X) = f(x) 
t+O 

for every 

ii) there exists some constant M < 00 such that 

I Iftl I = sup Ift(~) I ~ M 
XEE 

for all t sufficiently small. 

PROPOSITION: For each 1T E M, D(A ) consists of all 
1T 

Proof: By definition 

A'f(x) = lim t1 [Ptf(x) - f(x) ] 
1T t+O 

f E R(A ) 
1T 

where the domain D(A
n

) is the set of all f ER(An ) 

for which this limit exists boundedly pointwise 

and belongs to R(A ). 
n 

. i 

BOGAZIQi ONivERSiTESi I\U \ UPHANE: 



(2.13) 

. It follows from (2.10) that 

1 
t 

a
l 

(x,t) + 1 
t 

where a
3

(x,t) =. e-(A(X) + TI(x)~)t.f(x) - f(x) 

It is clear that for f E R(A ) . n 

(2.14 ) 

. t, 
Lim 
t-l-O 

1 
t a 2 (x, t) = lln (x) f (x - 1) 

Also it follows from (2.8), (2.9) and definition (2.11) 

that, for all f E R(A ) 
n 
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~ \a l (x,t) I ~ A(X) Ilfll 1 
t l 

t 
- (A. (x) +n (x) ~) zd e Z 

t 

~ la2 (x,t) I ~ n(X)lll If I I ~ J 
o 

- (A. (x) +rr (x) ll) zd e Z 

where I = max A(X) and m is the maximum number of servers. 
x 

Since they are finite, it shows that these limits exists 

bounded1y pointwise. Therefore f E R(A ) is in D(A ) if TI TI 

and only if (1/t)a3 (x,t) converges bounded1y pointwise 

as t-l-O. 

To proceed, note that 

e-(A(x).+ rr(x)ll)t = 1 - (A(X) + n(x}J.J)t + OCt) 

where O(t)/t + 0 as t-l-O. Therefore, 

1 
t 

~ m~ \ \ 
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~ a 3 (x,t) = ~ [f(x) (1- (X(x) + iT(xl}dt + O(t» - f(x) ] 

Now, 

(2.15) lim ~.[-{\{x) + iT{x)l1)t.f{x) + O{t)] = -(;>dx) + iT{x)l1)f{x 
t+O 

boundedly pointwise for all f E R(A ) 
iT 

These results imply that the domain of A is also 

the set of bounded functions defined on E • 
. l. 

~1nlar(1975) gives a simple way of calculating the 

generator for. the birth and death processes. Since we 

proved in Section 1, that the process X = {Xt , t ~ O} is a 

birth and death process we can use his definition. 

Looking to the definition in ~1nlar(1975, p. 271), 

the time rates of arrivals and departures, which are sym-

bolized as a i and b i respectively when the population size 

is i, can be found by using the equation (1.4) and (1.5). 

Therefore, 

(2.16) a, = A(i) 
1 

Depending on the time rates the generator of a 

birth and'death process is given like, 

-a a 0 
0 0 

b -a -b a 
1 1 1 1 

(2.17) A = b 2 
-a ,;.,b 

2 I 2 a 2 

() 
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Adopting this form to our process using equation 

(2.16), the generator of our finite capaciity queue system 

for any n E M can be written 

0 1 2 . . . K-l 

0 - A (0) A(O) 0 

1 lln(l) -A (1) -n (1) II A(l) 

2 .. 
(2.18) A = . t. 

n 

K 

K o II n (1<) -ll n (1<) 

The matiix A shows that~ by using policy TI E M, 
1f 

if there is one customer in the queue with rate lln(l) there 

\olill be nobody in the queue (A (1 r 0) ); and with rate A (1) 
n 

another customer arrives and the queue content becomes 

two (A (1,2». As you notice, b = a K = O. Because, if n, 0 

there is nobody in the queue the only possible action 

could be an arrival. Also if the queue is completely full, 

i.e. the process is in state K, an arrival could not be 

occur then a K = O. Also no pair of (ai,b i ) = (0,0). If 

a
i 

= b
i 

= 0, then there could not be any state called i. 

(2.19) REt-lARK: For the case of infinite capacity system, 

the generator matrix will have infinite states and 

all of them will be written in the form of (2.17) 

after finding the time rates. 
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We could end up with the same result as in (2.18) 

by using the definition of A given in the definition (2.1) 
TI 

lim t
l 

[Ptf(x) - f(x)] = A f(x) 
t+O TI 

Combining the equations (2.13), (2.14) and (2.15) we obtain 

for 0 < x < K 

llTI(x)f(x - 1) - (;\(x) + TI(x)ll)·f(x) + ;\(x)f(x) = A f (x) TI 
. t, 

II.3 The Uncontrolled Queue Process , 

In this thesis, our first objective is the charac-

terization of the Vex) function which is defined by (1.7). 

Following the standard Markov Decision Theory, this is 

accomplished in three steps. First \-Trite dovm the dynamic 

functional equations. Secondly verify that there exists 

a solution to these functional equations and then inves-

tigate the solution properties. The final step is' to 

confirm that this solution is indeed equal to the minimum 

expected dis~oUnte~ cost function. 

The objective of this section is to do the first 

step of the Markov decision theory. 

Ndw, we shall state a theorem without proof, which 

is the basic tool in our thesis. For a proof see Glnlar 

(1975, p. 257). 
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For a regular Markov process with state space E 

and gen~rator A, Glnlar states; 

(3. 1) THEOREM: Let Ci > O. For any· g £ R (A) there exists 
I 

a unique function f £ D (A) . which satisfies 

where 

(aI - A)f = g 

. l. 

f(x) ~ E
x

[l°O e-at g(Xt)dt] , X £ E 

In the above theorem g(Xt ) is the rate of reward 

at time t and f(x) represents the expected value of the 

total discounted reward given the initial state is x. 

In our problem, we have t~o types of costs which 

are defined in Section 1. At time t, when the state is 

Xt = x, the rate of cost for any policy TI £ M, 

(3.2) g (x) = h (x) + c (TI (x) ) TI 

For, the, state K, Xt = K, we have a shortage cost in 

addition to the others 

(3.3) gTI(K) = h(K) + c(TI(K» + y9. 

Since hand c functions are given as bounded, g function TI 

will also be bounded. In proposition (2.2) we proved that 

the range of A is the set of all bounded functions on E, 

therefore gn £ R(A ). 
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(3.4) THEOREM: Let a > O. For any -policy n £ M, expected 

total discounted cost Vn is the unique solution of 

the system of linear equations, 

(3.5) 

Vn(x) 
1 

[hex) + c(n(x» + A(X)V (x + 1) = 
a+ A(X) + n(x)j.l 

n 

+ J.lTI(x)Vn(x - l)J , o < x < K 
. 1. 

V (K) 1 
[h(K) + C (n (K» + y~ + j.ln(K)V (K-l)J , x = K = n n 

a + j.l1f (K) 

I 

Proof: Since Vn is defined for any n £ Mas, 

, . X £ E 

where g (x) is defined in (3.2) and (3.3), according to 
n 

the theorem (3.1) V is in the domain of A and is the 
n n 

unique solution of 

Then 

(3.6) aV = g + A V .TI TI TI TI 

Putting the generator A found in (2.18), we obtain 1f 

(3.7) aVTI(O) = h(O) + c(O) - A(O)VTI(O) + A(O)Vn(l) , x = 0 
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a. V n (x) = h (x) + c (n (x» - [~A (X) + lln (X) V n (X) 

+ A(X)V (x + 1) + vn(x)V (x - l)J, 0 < x < K 
1T n 

a.Vn(K) = h(K) + c(n(I<) + y£ + vn(K)Vn(K - 1) 

- 111T (K)V (K) , 
1T _ x = K 

Rearranging the above equations we end up with the equa-

tions (3. 5) . 

. t. 

(3.8) RE~~RK: In the case of infinite state space, the 

final equation which is' for the state K ,.,ill be 

omitted. 

This result gives the characterization of the 

expected infinite time horizon discounted cost for any 

policy n when the rate of cost is given by g. Theorem 

(3.4) will be our basic tool in the optimal control 

problem as we shall see in the next chapter. 
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III. OPTIMAL CONTROL OF THE QUEUE PROCESS 

We are first interested in characterizing the 

expected return function V
TI 

for any policy TI £ M. This 

is achieved by expressing V as the unique solution of 
TI 

the functional equations in theorem·~3.4) in the previous 

chapter. NOw, our, objective is to obtain a similar func­

tional equation characterization for the minimum expected 

discounted return. 

After obtaining the sufficient condition of opti-

malitYi two algorithms will be presented to find the opti-

mal policy. 

III.l A Sufficient Condition of Optimality 

In this section, following the standard Markov , 

Decision Theory, we characterize the minimum expected 

discounted return function V and obtain a sufficient 

condition of optimality. 

We shall first state a definition and a theorem 

which will aid us in providing our main theorem. 
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(L 1) DEFINITION: Let B be the Banach space with the 

usual supremum norm I 1'1 I. A mapping T:B + B 

is said to be a contracting mapping if 

I ITu - Tv I I 2.. e I I u - v I I 

for some B < 1, for every usB, v s B. 
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We shall state the following theorem without proof. 

For a proof see Ross(1970, App.l). 
. t. 

(1. 2) 

(1. 3) 

(1.4) 

THEOREl1: t~ontraction Mapping Fixed Point Theorem) 

If T:B + B is a contraction mapping, then there 

exists a unique function Wi s B,' such that 

Tw = w 

Furthermore, for all:u s B 

n+ ro 

We are now ready to prove the following theorem. 

THEOREM: Suppose V = Min V . n 
n sM 

Then V is the unique 

solution of 

aV(x) = Min {g (x) + A V(x)} , 
, M n n' ns 

X s E 

Proof: To be able to make the proof clearly, we 

write the equation (1.4) in an open form by using equation 

(3.5) from Chapter II and defining 



'"\ . 
. ;,1: " i 

~ .. ' ," , ys(x) = hex) + c(s) ° < x < K 

/ 

/ 

y s (K) = h (K) + c (s) +y 9. , 

then it becomes 

(1. 5) V(x) Min { 1 
+ SlJ[Y s (x) + A(x)V(x+l) = 

SEM a + A(X) 
x 

As you notice we combine the three equation in (3.5). 
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+ sllV(x-l)]} 

We 

can do this, because we know that . A (It) = ° then the term 

1 A (x)V(x+l) 1 drop~ in state K and satisfies the third 

equation in (3.5). Also for th~ first equation, we know 

that for x = 0, Mo = {OJ. Then s can take only zero value \ 

and all the terms which consist s drop and it satisfies 

the first equation in (3.5). 

So, let B be the Banach space of all bounded real 

valued functions on the state space E with the usual sup-

remum norm. In other words, for any fEB 

I I f I I :: sup I f ( i) I 
iEE 

Define an operator r mapping'B into itself, 

(1. 6a) rf(x) 1 • = Min { [y (x) + A(x)f(x+l) + slJf(x-l) ]}, 
a + A (x) + SlJ s· 

SEMx o < x < K 

Now, if we can show that r is a contraction mapping then 

it will follow that V is the unique solution to (1.4). 

Let f and 9 E B, 
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(l.6b) (r(f) - r(g» (x) = inf { 1 ~ [y (x) + ;\(x)f(x+l) +sjJf(x-l)}] 
s£Mx a + SjJ + ;\(x) S 

- inf 
[y (x) + ;\ (x) g (x+ 1) + sjJg (x-I) ] 

------ S 
1 

s£M a + SjJ + ;\(x) , 
x 

Let s* minimizes the second part of the right hand side of 

the equation (l.6b). It follows that, 

(r (f) - r (g» (x) < 1 Ii- (x) (f (x+l) - g (x+l) ) 

Or we can write, 

a + s*jJ + A(X) 
+ s*jJ(f(x-l) - g(x-l»] 

< __ 1-,--_ (;\(x) Ilf - gil + s*jJ Ilf - gil] 
a + s*jJ + ;\ (x) 

.:. ;\(x) + s*jJ Ilf _ gil 
a + ;\(x) + s*f.! 

(r(f) - r(g» (x) < Max {;\(x) + Sf.! } Ilf - gil 
sdO, .• mAx} a + A(X) + Sf.! 

(1. 7) (r (f) - r (g» (x) < 

where ;\ = .max ;\ (x) 
x 

-r + InjJ' IIf - gil 
a + -r + mjJ 

Reversing f and g, and repeating the sam~ procedure, we 

will. get the same result. 



(1. 8) (r(g) - r(f» (x) < 

Let k" = "X + mll 
< 1 

./ ex. + "X + mll 

"X + mll ~ 

ex. + "X + mll 
Ilf - gil 

Then combining (1.7) and (1.8), we obtain, 

(1.9) II rf - rg II ~ k II f - gil 
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Therefore from the definition (l.l) ;lwe can say that r is 

a contraction mapp~ng. Then with respect to\the theorem 

(1.2), there exists a unique function V E B such that 

V = rv 

which is the equation (1.5) itself. 

By an optimal policy we mean the specification as 

to when the server should be opened or closed as a func-

tion of the number of customers in the system so as to 

minimize the cost function. The following theorem gives 

the characterization of the optimal policy. 

( 1.9) 
, 

THEOREM: Let a policy n* E M and corresponding 

V n* satisfies 

V * (x) n 
= Min {g (x) + A V *(x)} 

'IT 'IT n 

Then for all x E E 

, for all n E M 

and 'IT* is called as the optimal policy. 
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Proof: Let "IT £ M be an arbitrary policy and assume 

v * is given as above. "IT Then V £ D(A) and from equation "IT 
(3.6). For 0 < x ~ K, 

a[V *(x) - V (x)] = "IT "IT Min{g (x) + A V *(x)} 
"IT£M 7f "IT "IT 

- {g (x) + A V (x)} "IT "IT "IT 

Using equation (3.5), we write the above equation in an 

open form. For x = 0 

(1.10 ) a[V *(0) -r V (O)J 
"IT • "IT 

For 0 < x < K 

( 1.11) 

. t. 

I 

= ,,(O)[V'*(l) - V (l)J "IT "IT 

- ,,( 0) [V * (0) - V (0)] IT 7f 

Min {hex) + c(s) + ,,(xlV *(x+l) IT 

- {hex) + c(IT(x» + ,,(xlV (x+l) 
7f 

+ 7f (x) 11V (x-l) - (I. (x) + IT (x) 11) V (x)} 
7f • 7f . 

Add the right hand side' of the equation (1.11) the quantity 

"IT (x)j.J(v * (x-l) - V * (x-l» + (" (x) + 7f (x) 11) (V
7f

* (x) - V * b "IT IT 7f 

and rearranging it we obtain 



(1.12 ) Min {e(s) + spV *(x-l) 1T se:M 
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x _ (A(x) + Sll)V 1T *(X) } 

- {e (1T (x» + 1T (x) llV * (x-I) 
1T 

- (A (x) + 1T (x) pV 1T+ (x) } 

+ A (x) (V * (x+l) - V (x+l» 1T 1T 

+ 1T(X)ll(V *(x-l) - V *(x-l» 1T 1T 

For x = K .J. 

(1.13) Min'{h(K) + e(s) + y~ + SllV *(K-l) 
M 1T , 

se: K 

- SllV1T *(K)} - {h(K) + e(1T(K» + y~ 

+ 1T (K) pV (K-l) - 1T (K) llV (K)} 1T 1T 

Adding the;quantity 

to the RHS of (1.13) and rearranging it, we obtain 

(1.14) a[V *(K) - V (K)] = ~in {e(s) + SllV *(K-l) - spV *(K)} 1T 1T . 1T 1T. 
se:~ 

) '! 
-{e(1T(K» + 1T(K)pV *(K-l) - 1T(K)llV *(K) 1T 1T 

+ 1T(K)p[V *(K-l) - V (K-l)] 1T 1T 

1T (K) p[V * (K) - V (K)] 1T 1T 

Define, 

u (x) = V *(x) - V (x) 
1T 1T 

and 
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o 

- {c (7T (X» + 7T (x) ~V * (x-l) - (A (x) + 7T (x) ~) V * (x) } 
7T 7T 

o < x < K 
w(x) = 

Min{c(s) + s~V *(K-l) - s~V *(K)} 

l
SE~ n nt, 

- {c (n (x) + n (x) ~V * (K-l) - n (x) ~V * (K) } 
n n. x = K 

It is now clear that w ~ 0, W E R(A) and u E D(A) and in 

particular combination of (1.10), (1.12), (1.14) gives 

au = W + A u 
'Ii 

It follows from the theorem (II.3.l) 

00 

u (x) = Ex[I 
o 

where X is the queue process obtained by using TI E M as 

a control. Therefore w < 0 implies that u < 0, then 

V 7T* (x) ~ V n (x) for all n E M 

From our definition of the optimal control problem in 

equation (1.4) 

V n* (x) = V (x) I for all X E E 

Since n* selects the action (server number) minimizing 

the iight hand side of (1.4) in each state, then n* is 

the optimal policy_ 
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As a result of theorem (1.3) ~we can show that the 

unique optimal solution V is bounded in the following 

Lemmas. 

(1.15) LEMMA: Optimal solution is nonnegative for all 

possible states. That is, 

V (x) > 0 for all X E E 

Proof: To prove this lemma . .Jr:t is sufficient to 

show that for any.function fEB; if f > 0 then rf > 0 

also holds. But this is trivialiy true from the definition 

of rf in (1.6a) .. Function y (x) > 0, since hand c func-
o s-

tions are assumed to be nonnegative. So, given f > 0 imp-

lies rf > O. Therefore, from the properties of contrac-

tion mapping, 

V (x) > 0 for all X E E 

(1.16) LEMMA: There is an upper bound for the optimal 

solution, such that 

h + c(O) 
V (x) < a. 

where h = max hex) . 
x 

+ yR. 
X E E 

Proof: If we can show that for any fEB and 

f < (h + c(O) + yt)/a., rf is also less than this quantity, 

then the proof is completed. Assume f < (h + c(O) + yt)/a. 
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and put this value to the definition~of rf in (1.6a) and 

take s = 0 

rf (x) < _l_l __ [h (x) + c (0) + A (x) 
Ct '+ >- (x) 

(11 + c (0) + Y 9,) ] 

Ct 

rf (x) < _-.,;1~_[11 + c (0) + >- (x) 
ex + >-(x) 

(11+ c(O) + y9,)] 

ex 

rf(x) < 11 + c(O) + 
ex . t. 

-
Lemma (1.1·5) and (1.16) show that V has an upper 

and lower bound, such that 

O 
11 + y9, + c(O) ::. Vex) < 

ex 

The upper bound can be considered as the worst 

case in the system; it denotes no server, so the lost 

profit and shortage cost incurres all the time. 

111.2 Successive Approximation Algorithm 

In this section we present an algorithm by which 

the optimal policy actually can be obtained. Although it 

was shown that optimal policy exists in M when it satis-

fies the equation (1.9), the problem of finding optimal 

policies is nontrivial. The number of policies in M may 

be astronomically large. For example if E contains N 

states and if the possible action~ for each state is 2, 



the~ M contains 2N different policies. For very small 

. values of N and for small action space the method of 

simple' enumeration is feasible; hOvlever for large N, 

comple~e enumeration is virtually impossible. 
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Here we present a version of the succ~ssive app-

roximation method originally suggested by Derman(1970) • 

This is one of the classical methods used in solving 

differential and integral equations~tln itself it does 

not provide a met~od for obtaining a solution in a finite 

number of iterations; however sl'ightly modified it can. 

Now, we describe this algotithm and prove that 

it successively iterates to the minimum expected dis-
I 

counted cost. We also seek to establish the conditions 

under which this procedure converges to the optimal policy. 

Before presenting the algorithm, we shall state 

the transformation which is the core of the procedure. 

We define a sequence {Vn ; n ~ O} by 

(2.1) v = rv n+l. n 

That is, for 0 < x < K 

(2.2) 
1 Min {------ [y (x) + A (x)V (x+l) 

+ s n 
Sl1 

And also corresponding policies generate a sequence 

{n ; n > a}. In sequence n, for the state x, the ~ value 
n . -

which minimizes the right hand side of the (2.2) is put 

in to the nn(x). 
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ALGORITHM. 

STEP 1: INITIALIZATION. Set n = O. Take an arbitrary 

policy TIo E M and find the corresponding values Vo from the 

equation (3.5) in Chapter II. (For the simplicity of com-

putation the initial policy TI can be taken as TI (x) = 0, 
o 0 

for ali x € E; i.e. use zero server in each state. At this 

time some of the terms in equation (3.5) drop and the 'so-

lution can easily be obtained starting from state K. Since 
. ,. 

this policy is in M, there is no problem of choosing it. 

If we choose an arbitrary policy· other than this one; then 

we have to solve a system of linear equations.) 

STEP 2: TRANSFORMATION. Calculate Vn+~ by using the 

transformation 

and find the corresponding policy TI + . 
n ~ 

STEP 3: TERMINATION. I f I V - V n I < E terminate and 

TIn+~ is the €-optimal policy. Otherwise go to step 2. 

The following theorem shows that in each iteration 

the transformed values are decreasing in each sequence. 

And then we show that in the limit this sequence reaches 

the optimal value. 



(2.3) THEOREM: Vn+l. (x) ~ Vn (x) for~ all n , x E: :E. 

Proof: Here we will use the induction method. 

Taking n = I, we shall see first if VI' < V . 
- 0 

For x = 0, utilizing equation (2.2) 

1 
Vl (0) = [h(O) + c(O) + A(O)Vo(l) ] 

a + 1.(0) 

45 

which turns out to be equal to V (0) where V (x) is defined 
, O. t. 0 

as the unique solution to equation (3.5) when using the 

initial policy TIo(x) = O. 

For 0 < x < K, taking s = 0 in equation (2.2) we obtain 

For x = K, 

1 
[h(x) + c(O) + X(x)Vo(x+l)] 

a + A (x) 

The right hand side of the above inequalities is equal to 

'the Va (x) knd V 0 (K) respectively ~ So, combining these 

three results we end up with 

for all x e: E. 

Now assuming V + (x) < V (x), for all x E: [, we can show n 1 - n 

that 
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Using transformation (2.2), for 0 < x < K, 

Vn +2 (x) = 

Vn+l(x) = 

rVn+l(x) = Min { __ l ___ [ys(x) + A (x)V
n

+
l 

(X+l) 
s£M.x ('( + A (x) + S11 

rv (x) n 

+ s~Vn+l(x-l)J} 

= Min {I [ ys(x) + A(x)Vn(x+l) 
s€~ a + A(X) + s~ 

+ s~V (x-I)]} 
n 

Since we assume that V n+l (x) .::. V n (x)",t· compar~son of the 
.f 

right hand side of, the two equations above justifies that 

Vn +2 (x) .::. Vn +
1 

(x). Therefore, by mathematical induction, 

it is true for all n. 

(2.4) LEMMA. Lim V (x) = V (x), for all x e: E. n n-+co 

Pro~f: Since the sequence Vn is defined as in 

(2.1) and iince we proved that r is a contraction mapping 

then it is obvious from the theorem (1.2) that for all 

V· € B, 
n 

lim rv = V n 

Since Vn is the solution to (2.2) then Vn € D(A) where 

D (A) :: B. 

Up to here, we proved the convergence of the V " 
n 

values to the minimum cost. But this does not imply the 

convergence of the policies to the optimum policy. To 

prove the convergence of the policies, we define another 

sequence {Un; n ~ O} by 
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(2.5) aUn (x) = gif (x) + A U (x) , for all x E E TI n n n 

where gTI (x) is defined in (IL3.2) and (IL3.3) and if 
n n 

is the obtained policy in sequence n. In the sense that , 

U (x) c V (x) 
n TI 

n 

where VTI is expected discou~ted cost for policy 
n 

TI . 
n 

(2.6) LEMMA: U (x) < V (x); for all" n, x E E. n - n 

Proof: Take TI as the obtained policy for 
n 

sequence n and subtract equation (2.5) from (2.2) and 

vIr i te in an open form. 

1 O(O)[V (1) - U (l)]} 
a + 1..(0) l").-~ n 

For 0 < x < K, 

V (x) - U (x) = n n 
___ ~l _____ { A (x) [V (x+l) 

A (x) + if (x)~ n-~ 
n 

a + 

- U (x+l)] + if (x)~[V (x-l) - U (x-l)]} n· . n n-~ n i 

____ l ___ {if (K)[ V (K-l) - U (K-l)]} 
TI (K) n n-~ n 

n 
a + 

Add the following quantities to the above equations, 

First one: 
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Second one: A(X)[V (x+l) - V (x+l)J + TI (x)~[V (x-l) - V (x-l)J n n n n n . 

Third one: TI (K)~[V (K-l) - V (K~l)J n n : n 

Rearranging the terms, we obtain 

(2.7) 

(2.8) 

(2.9) 

Define, 

and 

1 {A(O)[V (1) - V (l)J 
a + A(O) n-~ n 

+ A ( 0) [V n (1) - Un (1) J} 
. t. 

V (x) - U· (x) ::: ___ .......:1=--____ { TI (x) ~[V (x-l) - Un (x-l: 
n n. a + A (x). + TI (IX) ~ n n 

v'(O) ::: 

w(x) ::: 

w(K) ::: 

n 

+ TI (x)~[V (x-l) - V (x~l)J n n-~ n 

+ A(X)[V. (x+l) - U (x+l)J + A(X)[V (x+l) n n n-~ 

- V (x+l)J} 
n 

__ l=--__ {TI (K) ~[V (K-l) - V (K-l) 
a + TI (K)~ n n-~ n 

n 

+ 11 (K) ~[V (K-1) - U (1<-1) J} 
n n n 

, for all x 

A(O) [Vn_~(l) - Vn (l)J 

A (x) [V (x+l) - V (x+1)] + TI (x)~[V (x-l) 
n-~ n n n-~ 

- V (x-l)J n 

TI (x) ~ [V (K-1) - V (K-l)J 
n n-~ n 
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After these definitions; equation (2.7), (2.8) and (2.9) 

become 

y(O) = 1 [w(O) + X(O)y(i)] 
a + 1.(0) 

For 0 < x < K 

y (x) 1 [w(x) + A (x) Y (x+l) = 
a + X (x) + 1T n(x)~ 

+ 1T ~ (x)~y(x-l)] n .1 

y (K) 
_ 1 

[w(K) + 1T (K) ~y (K-l) ] = 
a + 1T (K) ~ 

n . 
n 

By previous result (theorem (3.1) in Chapter II) we have, 

[f OO -at ] 
y(x) = Ex e w(Xt)dt 

o 

where Xt is the queue process obtained when policy 1Tn is 

used. Since we showed in theorem (2.3) that V < V n - n-~' 

which implies w(x) ~ 0, for all x £ E. Then this justifies 

that y(x) ~ 0, i.e., 

(2.10) LEMMA: 

Proof: 

V(x) < U (x) - n 

, 

, 

X £ E 

X £ E 

It is obvious that V(x) < U (x). Because, - n 

Un is obtained by using a policy 1Tn' but only the optimal 

policy n* gives V. 
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Lemma (2.6) and (2.10) together show that the 

pOlicies in each iteration converges to the optimal 

policy at the end. 

Theorem (2.3) shows that in each sequence the 

value function iterates. But for the sequence {Un; n > O} 

this is not true. For the same policies TI and TI + we 
n n 1 

obtain U (x) = U + (x) for all x E E. But this equality n n 1 

does not imply that these policies are optimal, because 
-t 

from the characteristic of successive approximation 

algorithm we can obtain the same policy in the preceeding 

iterations and some steps la~er itl could change. 

In the successive approximation method the limiting 
i 

function will satisfy equation (1.4) and the optimal policy 

will be obtained. In practice, the limiting function will 

only be approximated. However, in order to have an approx-

imation close enough to V, a large number of iterations 

are required. This method does not have a specific stopping 

criterion. So based on your problem you can modify a 

stopping rule and you end up with E-optimal policy. In 

the algorithm we defined the stopping rule as Iv - V I < E . n 

for any epsilon which will be specified according to the 

nature of'the problem. 

(2.11) LEMMA: 

implies 

For any E > 0, n > n(E) = In(E(l-K))/ln k 
C 
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then TI n (£) is £-optimal policy. 

Proof: From the definition of contraction mapping 

in (1.1), we know 

where k is defined in (1.8) as 
. t, 

k = A + Rlll 

a + I + mil 

Using the transformation in (2.1), the above equation turns 

out to be, 

Then 

From Lemma (1.16) and (1.15) : 

Let 

So 

11 + y9, + c(O) 
C = 

a 



, i ; , I 

'! 

Also 

I I V, n+m - Vn I I < I I V + - V I I + ....•.... n m n+m-.1. 

+ Ilv - V II + Ilv V II n+2 n+.1. n+.1. - n 

n+m . 
L k.1.. C 

i=n -

'11v ',- V II n+m n 

m 
<: k n L kj.C 

j=o -

Then we could write . t. 

co 

I I V - V I I' '= Lim I I V n n+m V II n < .k
n L kj.C 

j=o n+w 

Then 

Ilv - V II < 
i n c 

If an E-optimal policy is desired 

Ilv - V II < 'E n 

Therefore . 
i 

i ", Ii 
;j i kn 

1 - k 

(2.12) n > 

So 

c < E 

= inf{n 

! 
i 
I, 
I 

> 0: n > In((l - k)£)/ln k} 
C 

52 
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From Lemma (2.6) we could write 

Ilun(e:) - vii .2: Ilvn(e:) - vii < e: 

Since TIn (e:) is obtained from the transformations 

of Vn(e:) and since Un(e:) is obtained by using TIn(e:) policy, 

we could say that for all n{e:) satisfying equation (2.12) 

TI n (8) is e:-optimal policy. 

. t. 

III.3 Policy Improvement Algorithm 

In this section we shall give another algorithm 

which is given by Doshi (1976). This is a version of 

policy improvement algorithm. It finds the optimum policy 

for the equation (1.4) and proves the existence of the 

solution. 

Doshi describes his algorithm and proves that it 

generates an improving sequence of stationary policies. 

He assumes finite action space and states that the exis-

tence of a solution to the functional equations and of an 

optimal policy cannot be established directly using this 

algorithm when the action space is not finite. 

In the following we give his algorithm adopting 

to our case. 

ALGORITHM: Given a policy TI
o e: M we generate a 

sequence {TIn; n ~ O} of policies in M by the policy 

improvement algorithm. 
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STEP 1: After finding nn E M we obtain the expected 

discounted return function for nn from the value determina-

tion equations 

X E E 

If n > 2 and Vnn(x) = Vnn- 1 (x) for all x E E, then we ter-

minate the algorithm and conclude that nn and 

optimal in M. Otherwise proceed to step 2 . 
. t. 

STEP 2: A ~olicy nn+1 is defined as 

X £ E 

where for each x E E 

n-1 
n are 

Min { 1 [Ys(x) + A (x)Vnn(x+l)· + SllVnn(x-l)]J 
s~x a + A(X) + Sl1 

Go back to ste~ 1 . 

. Policy 'improvement algorithm is an iterative pro-

cedure that improves on each iteration and terminates after 
, 

a finite number of iterations with an optimal policy. As 
, you notice in the .iteration cycle it has two steps: (i) Value 

determination operation, (ii) Policy-.improvement routine. 

The first step yields values as a function of policy whereas 

the second one yields the policy as a function of the values. 
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The properties of the pOlicy-1mprovement algorithm 

can be described as follows, 

i) The solution of the decision process is just 

solving" sets of simultaneous linear equations, 

ii) Each succeeding po.1icy found in the iteration 

cycle has a cost smaller than the previous one, ..... 

i. e. , VTIn+i. < VTIn " t. 

iii) The iterat10n cycle has a specific stopping rule 

such that the optimal policy is reached when the 
..... 

policies on\two successive iterations are identi-

cali it will usually find this policy in a small 

number of iterations. 

Since Mcontains only a finite number of policies 

and since each iteration is accompanied by a strict improve-

ment, no repetitions will occur. This method finds the 

policy that has a smaller average return per transition 

than any pther policy under consideration. Thus at some 

point no improvements will be possible, then the procedure 

terminates after a finite number of iterations. 

I~ the next chapter, we shall solve a simple 

example with these two algorithms and make a comparison 

between them. 
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IV. APPLICATIONS AND EXTENSIONS 

This chapter extends our original single station 

system to some other queue models. First the series queues 

are considered and the corresponding generator and its range 

and domain is found. Secondly we ta*e our original system 

to find the optimu~ service rate from the given set. In 

the third model, not allowing the queue formation in front 

of the stations we formalize the problem of optimum service 

rate selection in series queues. 

Then in Section 3 we give an example problem and 

solve it by computer with the given algorithms. Examining 

the results we make an analysis of the .algorithms. 

IV.l Examples of Actual Queueing Systems 

There are many well-known, common areas of applica-

tion for the queueing theory. Let us just briefly mention 

some examples of real queueing systems. Generally, real-

life systems do not lend themselves for operating charac-

teristics found in a standard textbook on queues. However, 

one sometimes is lucky enough to find a system which behaves 

like ·the textbook models. Such is the case in drive-in 
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banking. For ey-ample: A local bank "wanted to expand 

their drive. in facilities. Two options were basically 

available for expansion: Teller stations or Robo-window 

stations. Since the space is limited up to a teller sta­

tions could be used vlhere as the number of robo-stations 

was limited to b. Upon discussion, the prime considera­

tion was lost customer due to poor service and the cost 

of new servers. 
. t. 

Another example of queueing network theory being 

applied is the transportation system. Consider an air 

terminal design problem. It is car~ied out by analysing 

the flow of passengers through terminal and finding the 

number of necessary person in the necessary ar~as to cope 

with the range of flows encountered in all the component 

areas. The flow of passengers can be described as a series 

of linked queueing model. 

Examples for the applications of queueing theory 

to the healthcpre systems can be categorized as: 

( i) appointment systems; (ii) determination of the 

optimum staffing level, (iii) determination of the number 

of patients in a hospital. The second case is relevant 

to our th~sis. Consider the messanger unit at a hospital~ 

The function of it is to transport patients, specimens, 

reports and miscellaneous objects in response to request 

from ·any section of the hospital whenever a call is received, 



the dispatcher sends ~ messenger, if-one is available, 

to provide a service. If no messenger is free calls 

must wait and may thus accumulate, forming a queue. 

The question to be answered here is: how large a staff 

is required to give adequate service from a hospital 

messenger unit? Due to the difficulty of estimating 

the cost of a waiting call the variation of the ratio 

of the cost of waiting per call per hour to the cost 
.t· 

of service per messenger per hour. 

Most of the studies in the optimum control of 

queueing processes are applied to the maintenance prob-

lems. The basic question in this area is to determine 

the optimum number of a repair or ~ervicing crew for a 
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given number of machines. Machines break down from time 

to time needing the service of repair crew to put it back 

in running order. Machines are assigned to operators 

with the objective of minimizing an expected cost model 

of the queueing system. 

IV.2 Extensions 

This section extends the original problem to some 

other queueing systems. First we consider the optimiza-

tion properties in the series queues. Then we show the 

similarity of the problem which finds the optimal service 

rate to minimize the infinite horizon expected discounted 



cost" with the original problem that~ finds the optimum 

server number. Thirdly we will analyze the case which 

does not allow queue formation in the series queues. 
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In this section we consider models in which there 

exits a series of stations vlhich each calling unit must 

visit successively prior to leaving ,~he system. Some 

examples of such tandem queueing situations (sometimes .. 
referred to as series queues) are manufacturing or assembly 

line processes in which units must proceed through a series 

of work stations, each station preforming a given task, or 

a clinic physical ~xamination procedure where the patient 

goes through a series of stages. 

The tandem model to be considered here is composed 

of two service station with limited '\vaiting room capacities 
( 

Kl and K2 respectively. Such a situation is pictured in 

Figure 3," We further assume that the customers arrive 

according to a Poisson process with mean A, and the service 

time of each server at station i (i = 1,2) is exponential 

with mean l/~i' Maximum number of servers that can work 

in each station is m .• 
l 



STATION 1 STATION 2 
()----7 
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leaving 
customers 

000 00····00 ~ 

~ Kfustomers TIO-----7 
m 1 servers ~ servers 

. t. 

Fig. 3 - Series queue, finite waiting room 

Walrand(1980) claims that he~could not find any 

study of optimal policies when there are two or more 

connected service stations. In our literature survey, 

we have come across some studies about series queues; 

but not in their optimization generally in the distribu-

tion of their output processes. Walrand analyzes the 

case where customers in a Poisson stream enter a netvlOrk 

consisting of two exponential servers in tandem. The 

service rate U E [O,a] at station 1 is to be selected as 

a function of the state (x l ,x2 ) and the service rate at 

station 2 is constant with~. He wants to minimize the 

expected total discounted cost corresponding to the 
. I 

instantaneous cost clxl + c 2x 2 . He first formalizes the 

problem as a dynamic programming and then constructs an 

equivalent linear programming problem to prove the convexity. 

He finds that the optimal policy is of the form u = a or 

U D 0 according as xl < S(x2 ) and xl > S(x2 ) and S is a 

switching function. 

. I 
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Our case is very different from Walrand. The 

service rate in a station is changing when we increase 

or decrease the server number. As you notice Walrand 

takes constant service rate in the second station, and 

Ihis cost· structure is a simple linear cost .In our 

system server number can change in each station and our 

cost structure is more general. 

The state of the system at ttme t is defined as 

1 ,2 .i Xt = {_X t ,X: t } wher~ X- t is the number of customers at time 

t and the state space is E = ElxE2 where El = {O,l, ... ,Kl } 

and E2 = {O,l,2, ... ,K2 L At any time t,the designer 

determines the number of servers to be employed (St) in 

each station by knowing the state of the system. Then 

( 1 2 . (1 2) 
~t is a function of Xt , i.e. St = ~t,St) = n Xt,Xt 

where n(.,.) is the control function which gives the 

number of servers in each station and n(xl ,x2 } e M = M1 XM2 

where Ml = {O,l, ... ,xlAmll, M2 = {O,1, ••. ,x2 Am 2 1. In this 

case admissible policy set can be defined as, 

or simply, 

M = (n:E -+ M) 

The first station is an M/M/§l/Kl model. It is 

necessary to know the output distribution of the first 

station in order to find the input distribution to the 



second station. Early studies show that the departure 

time distribution from an M/M/S
1

/K
1 

queue is identical 

to the interarriva1 time distribution. So the second 

station is an ~/1-1/S2/K2 model. 

Now, our aim is to find an optimum policy which 
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minimizes infinite horizon expected discounted cost. The 

cost structure of the system is described as following: 

i) h(x 1 ,x 2
) - cost of holding ctstomers at the 

stations .. , 

ii) c(n(x 1 ,x2 » - server cost in the stations. 

iii) ~~ - shortage cost at station 1, 

I 

where A is the mean arrival rate and ~ is the lost profit 

from lost customers. When the queue capacity of the 

first station is completely full in the first station, 

then new arrivals will not enter and the system will have 
\ 

lost profit from these lost customers. The cost appears 

only at· the states (K1 ,X 2 ) where 0 ~ x 2 ~ K 2 . We have 

not this type of cost in the second station because when 

a customer comes to the system, after his service comp-

1etion in~station 1, he has to take service from station 2 

necessarily. 
\ 

Define for any policy n £ M, the rate of cost at 

time t as, 

(2.1) 
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(2.2) 

Then expected total discounted cost for any policy TI s M, 

given the initial state is x = (xl,x2) 

00 

V (x) = E [f 
TI X X E: £ 

o 

Define the minimum expected discounted cost function as, 
. t, 

V(x) = Min V (x) 
TI 

TIEM 

X E: E. 

Now, this problem turns out to be the same one of the 

original problem. So, if we find the generator of the 

process and write the functional equations, then we can 

use the algorithms defined in Chapter 111~ 

This process is also a 'Birth and Death Process'. 

Because, we are continuously observing the system, there 

could only be one change at one time. One can arrive to 

the station 1 or the service of a customer can be completed 

in station one and he joins the second queue or a service 

completion occurs at .station 2. Let us use the defini-

tion (1I.2.l) , to find the generator of the process and 

also the 'range and the domain of it. 

Define for x = (xl ,x2 ) \'lhere 0 < xl < K
l

, 

0 < x 2 
< K2 
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(2.3) 

where T is defined as the time of the first change, i.e., 

where A is the time of the first arrival to station 1, 

D is the time of the first departure from station 1 and 

C is the time of the first departure ·from station 2. 

Then define for arbitrary policy 1T .J. M 

Let us find the probability of no change in the state 

(2.4) 

(2.5) 

= a
1 

(x,t) + a 2 (x,t) + a 3 (x,t) 

(2.6) 
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If we put a condition on A to the above equation, we 

obtain 

'al(x,t) = E [1 P f(x +1 x) e-(1Tl(xl)111+1T2(x2)1l2)AJ 
x {A<t}· t-A 1 '2· 

t 

= f "e- AU P
t

_
u

f(X
1

1.l,X
2

) .e-(1Tl(xl)111+1T2(x2)112)u du 

o 

Make a change of variables by s~tting w = t-u, 

t 

(2.7) al(x,t) = f Ae-A(t-W).e-(7Tl(xl)lll+7T2(X2)1l2)(t--W).Pwf(xl+l,x2) 

o 

Following the same procedure, 

(2.8) 

(2.9) 

o 

t 

. P f(x,-l,x2 l)dw w _ 

f () -(1T2 (x2) 11 2) (t-w) -(A+1Tl {x..)111). (t-w) = 7T 2 x2 1-1 2 . e . e .L 

o 

It is clear from (2.7), (2.8) and (2.9) that for all 

X E: E 
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The only left term in P
t
f(xl'x

2
) is f(Xl'X2)e-(A+lTl(Xl)lll+lT2(X2)1l2)t 

from equation (2.4). It is obvious that this term goes to 

f(X l ,x2 ) when t+O. Therefore from the definition the range 

of the generator consists the set of all bounded measurable 

functions on E. 

From the definition, 
. Y. 

where the domain D(A lT ) is the set of all f £ R(AlT ) for which 

this limit exits boundedly pointwise and belongs to R(AlT ). 

It follows from (1.10) that 

(2.11) 
'. 1 

Lim tl [Pt f(x l ,x2 ) - f(x l ,x2)] = Ll.m{~[f.(xl,x2) 
t+O t+O ----

.e-(A+lTl(xl ) ll l + lT
2 (x 2) 1l 2)t - f(x

l
,x

2
)] 

+ 

+ 

1 
t 

1 
t 

It is obvious that for f £ R(A) 

a
3 

(x,t) } 

(2.12) Lim al(x,t) = f(x l +l,x2 ) 
t+O 

(2.13) Lim a
2

(x,t) _. lTl(xl)lllf(xl-l,x2+l) 
t+O 

1 
t 
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Also from the definition (2.11) in Chapter II 

" t, 

t 

~ \a
3

(x,t) \ ~ 1T
2

(x
2

»)J2\\f\"\ ~ f e-(A+1T1 (x1»)J1+1T2(x2»)J2)z dz 

o 

1 
t 

Since m1)J1' m2)J2 and A are finite, then it shows that 

a 1 (x,t), a 2 (x,t)-and a
3

(x,t) converges bounded1y point­

wise. Therefore f € R(A) is in D(A) if and only if the 

left term in equation (2.11); 

converges bounded1y pointwise as t+O. We coun1d write 

it as, 

where Lim (O(t»/t = O. 
t+O 

, ' 
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Now, 

This result with the others imply that the domain of ATI 

is also the set of bounded functions defined on E. 

Therefore putting equations (2.12), (2.13), (2.14) 

. " 
and (2.15) into the equation (2.10) we end up with the 

generator. We shall give the generator of a two-series-

connected-station system in general. In the following 

think the state of generator as N(i,j); (k,£» for any 

a) If i = 0, j = 0 

= f A, 

k = i+l, £ = j 

A «i,j); (k,£» 
TI -A, k i £ j = , = 

b) If i = 0, j ~ 0 

A k--= i+l £ = j 

A «i,j); (k,£» = TI 2 (X2 )fl 2 k = i £ = j-l 
TI , 

- ( A + 1\ 2 (x 2) ~ 2) , k = i 9- = j 



c) If i r 0, j = 0 

ATf ( (i , j) ; (k I 9, ) ) 

d) If i r 0, j 1 0 

e) If i = K1 , j 1 0 

1\ « i, j) ; (k, 9,) ) 
IT 

f) If i 1- 0, j = K2 

A «i,j); (k, 9,» 
IT 

= 

= 

A 

Tf1(x1)~1 , 

-(A+Tf 1 (X1)~1)' 

. T. 

A 

Tf1·(X~)i.J1 

Tf2(X2)~2 

Tfl(Xl)~l 

Tf 2 (x2 )]l2 

k = 

k = 
k = 
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i +1, ~ = j 

i-1, 9, = j+1 

i 9, = j 

,k=i , 9,=j-1 

k :::Ki~l, ~ = j+L 

~ 
k =K1 

9, = j-L 

-(lT 1 (xl) 111+lT2(x2)~2)' k =K1 
Q, = j 

( A , k = i+1 , 9.. = K2 

=!'2(X2)P2 ' k = i 9, = K -1 
2 

-(l..+1T
2 

(x
2

) 11
2

) , k = i , 9, = K2 
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g) If i = KIf j - K2 

r "2(X2)P2 • 
k = Kl Q, = K -1 

ATI ( (i, j) ; (k, Q,) ) 2 = 
-(1T

2
(X 2) Jl

2
), k = Kl , Q, = K2 

Therefore, from the equation (3.6) in Chapter II, 

for any policy TI 8 M, the expected total discounted return 

V is the unique solution of the following functional 
TI .t 

equations. 

1 [h(O,O) + c(TI(O,O)} + "AV (1,0)] 
7T 

ex + "A 

--------1~-----[h(O'X2} + C(7T(O,X 2» 
7T + "A + TI 2 (x2)Jl 2 

--------~1~--------------[h(Xl'x2} 
ex + "A + TIl(xl)Jl l + 7T 2 (x2)Jl 2 



For 

For 

/ 

. t. 

---------l~-----------[h(Kl'X2) 
a + TIl(Xi)~l + TI 2 (x 2 )P2 
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-------1-------"-[h(X
1

,K
2

} + C(TI(X
1

,K
2

}} 
a + A + TI 2 (X 2 }P2 

------1------[h(K1 ,K2 ) + c(TI(K1 ,K2 » 
a + TI 2 (X2 )P 2 
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Since we defined as, 

; 

Then V is the unique solution of 

These equations turns out to be similar to the original 

equation (111.1.5), so we can apply'the algorithms, that 

we defined, to tQese equations. ' 

(2.16) REMARK: As you notice, the basic difference 

VI.2.2 

between the two connected service station system 

and our original single station system is that 

the state of the system in the original case is 

a point, but in here the state is a two-dimen-

sional vector. If we extend this system the" 

state will be an n-dimensional vector and the 

new state space is (K1XK 2X ••. XKn } where Ki is 

the waiting-room capacity of the i station. 

In many service systems, the overall system may 

consist of several types of service facilities of different 

capacities and different operating costs which may be used 



at different times. Other things being equal, it is 

desirable that the policy for selecting which service 

. facility to employ be the function of the system state. 

Now, we shall consider the optimal control of 
,.. 

an M/M/I/K queue where I indicates a single server with 

a variable service rate. Other assumptions being the 

same \-lith the original problem, we say that a policy 1T 
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is any rule for selecting the service rate from the given 
. t, 

set as a function of system state. Here service cost 

(operating cost) can be considered as the function of 

the different service rates, i.e., C(1T(X» = c(r). NOw, 

we are trying to find the optimum service rate as a 

function of system state which minimizes the infinite 

horizon expected discounted cost. 

Let R ~ [r1 ,r2 , .... ,rk ] be the available service 

rate set. Then the equation (III.l.S) turns out to be, 

v (x) Min{ 1 
Yr(x) + A(x)V(x+l) + rV(x-l)]} = 

rER a + A (x) + r 

0 < x < K -

where 

h (x) + c (r) , 0 < x < K 

y (x) = r h (K) + c(r) + y£ x = K 

For every state x E E, the corresponding values 

which minimize the right hand side of the above equation 



gives the optimum policy '1"[*. The algorithms presented 

in the previous chapter are also applicable to this 

problem. 

VI. 2. 3 2E!i~~~-~~E~i£~_~~!~_~~!~£!i£g_ig_~~Ei~~_9~~~~~ 

~i~~_g£_~~i!i~~_~£~~ 
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In this section, \'le study the model ""hich combines 

the model in Section 2 with the on.E1. in Section 3 and adds 

a new property wpich does not permit any queue formation. 

We consider a simple two-station sing1e-server­

at-each-station model where no queue is allowed to form 

at either station. If a customer is in station 2, and 

service is completed at station 1, the station 1 customer 

must wait there until the service of the station 2 customer 

is completed; that is, the system is blocked. Arrivals at 

station 1 when the system is blocked are turned away. Also 

if a customer is in process at station 1, even if station 

2 is empty, arriving customers are turned away, since the 

system is a sequential one; that is, all customers require 

service at 1 and then service at 2. 

Therefore using the assumptions in Section 2.1, 

the possible system state and corresponding generator is 

as follows, 

!". 



(0,0) 
r 
I 

(1,0) 
I 

A = 1T 
(0 ,1) 

(1,1) 
L 

(0, 0) 

-). 

1-12 

(1,0) 

-11 
1 

(0,1) (l,1) 

where 1T(x1 ,x2) = (11 1 ,11 2) and 11
1

,11
2
" E: R:: [r

1
, ... ,r

m 
] 

. l. 
and also our state space E = {(O,l) x (O,l)}. 

For this.problem, w.e d? not have holding cost 

because of the no allowance of queue formation. So we 
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have only operating cost depending on which service rates 

are used; that is, c(1T{xl ,x2» = c(1-11'~2) and also lost 

profit incurres with A~ when the system 1s blocked. 

Therefore, the minimum expected discounted cost 

is the unique solution of the following equations. 

v (l, 0) ::: Min 

V(O,l) 

11 E:R 
1 

1-12E:R 

-----1----[C(l1 l ,11 2) + ),V(l,l) + 1-1 2V(0,O)] 
a + ). + 1-12 



V(l,l} Min { I 
[c(~I'~2} + A~ P

2
V(l,O}]} = 

PIER a + ~2 
~2ER 

Optimum policy iT* corresponds to the III and 112 
values in each state which minimize the right-hand-side 

of the above equations. 

IV.3 Application: Finite Population Problem 

. t. 

In this section we give a simple problem and 

write computer programs for the algorithms defined in 

the previous chapter to see the convergence of them and 

to prove the existence of the optimal policy for that 

problem. 

As an example we study the finite population 

model and not the finite queue model as in the original 

problem. Consider a computer model like in Figure 4. 

Here we have M users, or computer consoles, that make 

demands upon the time-shared computer system. Finite 

population model operates as follows: when a user at 

a console makes a request for service of the computer, 

the request enters the processor's queue and proceeds 

to receive service. During this time the user cannot 

generate any new request. When finally that request 

is complete, the response is fed back to the console 
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at which point the user at the console begins to generate 

a new request far the computer. 



)NSOLE 5 

processor 
with queues 

Fig. 4 -~Finite input population 
. t. . 

Another 1mportant case for this model is the 

maintenance systems on which we shall concentrate as 

an example. 

TZ 

EXAl1PLE PROBLEM: Consider a company which has 60 machines. 

However, because these machines break-down and require 

repair frequently, the company has only enough operators 

to operate 50 machines at a time, ,so ten machines are 

available on a standby basis for use in cases of failures 

of the operating machines. Thus 50 machines are always 

operating whenever no more than ten machihes are waiting 

to be repaired, but the number of operating machines is 

reduced by one for each additional machine waiting to be 

repaired'. 

The time until any given operating machine breaks 

down has an exponential distribution, with a mean of 20 

days. The time required to repair a machine also has an 



exponential distribution with a mean of 2 days. The 

company has no repairman to repair these machines. 

However, productivity )is .reduced by having less than 

50 operating machines. They want ~o make a decision 
\ 

about the number of server they can hire by considering 

the repair cost and their lost profit. But the company 

whj.ch gives the server to this company has at most 15 

servers for this kind of repair activities. Figure 5 
. l. 

shmvs the system situation. 

As you notice the queueing system to be studied 

has the repairmen as its servers and the machines requir-

ing repair as its customers. This is a simple maintenance 

problem. In this problem, customer number is limited with 

60 machines. This is the case of 'limited source I problem. 

Thus when the number of customers in the system (number of 

broken machines) is n, there are only (60-n) potential 

customers. The elapsed time from leaving the system until 

returning for the next time for a machine is given as an 

exponential distribution with rate ~ = 1/20 machines per 

day. When n machines are broken, the current probability 

distribution of a remaining time until the next arrival 

t.o the queueing system has an exponential distribution 

with parameter ~(n) = (50 - n)~, for n > 10. Because of 

the standby machines ~(O) = ~(l) = .... = ~(lO) = 50~. 



As you notice the state of the system (X
t

) is 

taken as the number of broken machines in the system. 

This model is not the finite queue model, but this does 
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not change anything in the formulas that we found in the 

original case. Only we will not have any shortage cost 

here. Then we use the formulas (1.4) in Chapter III and 

(3.5) in Chapter II, by taking y~ (shortage cost) equal 

to zero. 
. ,. 

The company estimates its lost profit for not 

having a machine'operating to produce units as 36500 TL/year. 

And the yearly server cost list is given in the program. 

The discount rate is taken as 0.25. 
. 

With respect to this data we will discuss the 

result of the programs. The computer programs and the 

results for successive approximation and policy improve-

ment algorithms are given in Appendix I and II, respec-

tively. 

ANALYSIS OF THE RESULTS: 

The major difference of the two algorithms is 

their convergence rates. In our limited computational 

experience typical computer run reaches the optimal 

policy in 3 iterations with 60 second CPU time for the 

policy improvement algorithm whereas the successive 

approximation method does not reach the optimal in 901 

f " 
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iterations with 120 seconds CPQ time. Even though the 

computational burden at each iteration of the policy 

improvement method is higher, its overall computational 

efficiency with small size problems that we experimented 

on is much promising. 

l [1J ........ ···00 I ~ IT] [II .......... .' ........... .Y •••.• ~ 
I 
I 

D-Syl' STAN 
MACHI NES 

. OPEIlA rING· MACHfNES . 

. . 
.;. 

ill I2J ....... [5] v 

SEIlVICE. FACILITY 
(one server in each chonne l ) 

Fig. 5 - Haintenance system in the example 
problem 

" t,..-O 
0 
0 
0 

snOKEN 
!vIACHI 
IN QUEUE 

occur. 

In policy improvement method no repetitions will 

In each iteration the new policy has a smaller 

return than the policy under consideration. But this 

is not the case in successive' approximation method. 
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It determines ,the values iteratively. In any iteration 

the nevi value is smaller than the previous one, but the 

policy could be the same. 

In practice, method of successive approximation 

may be used when an approximation or guess to an expected 

discounted cost criterion is available. Then several 

iterations will hopefully improve it. In any case, use 

of the method of successive approx4,nation never necessi­

tates the computation of an exact discounted cost cri-
. 

terion. If we wish to minimize the total expected dis-

counted cost over only a few stages of the process, not 

the infinite duration, then successive approximation 

method is preferable. 
\ 

In summary, policy improvement procedure provides 
I 

I 

a monotone convergent sequence of policies and attains 

the optimal policy in a finite number of iterations. 

Its dra~vback is that the'discounted cost function for 
", 

each policy 7T in the sequence must be calculated. This 

involves solving the system of linear equations. When 

the size of the problem increases, thi~ inflates the 

computational burden tremendously. Also each computer 

has different restrictions in taking the inverse of a 

matrix. After some specified size, computer cannot take 

the inverse of a matrix, then it cannot solve the system 

of linear equations. Therefore in such cases, the only 

possibility in obtaining the optimal policy is the 

successive approximation algorithm., 



V. CONCLUSION 

This thesis has accomplished two tasks. The 

first is the control of the queue model de~cribed in 

Section II.I. This model is a continuous-time Markov 

process, and we want to find the i~finite horizon ex­

pected discounted return of this process based on the 

given cost structure. We specified the generator of 

the process and its range and domain in Section II.2. 

The importance oftne generator can be. seen in theorem 

(II.3.1). This theorem saves us from the integral and 

expectation parts of equation (II.I.4), then it turns 

out to be the system of linear equations. Theorem 

(II.3.4) gives us a complete characterization of the 

return function ~or'any given policy, which is in the 

admissible policy set, as the unique solution of a 

functional dynamic equations~ 
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Section III.I analyzes the controlled queue 

model and theorem (III.I.9) states the sufficient con­

dition of optimality. Then the results of the original 

problem are extended for some other queue models in 

Section IV.2. 
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The second taks is the analysis of the algorithms 
I 

used in obtaining the optimal po~icy, which are defined 

in Section' 111.2 and 111.3. We proved that successive 

approximation algorithm determines the values iteratively 

and then it converges to the minimum expected discounted 

cost function and also determines optimal policy. But 

the policy improvement algorithm is taken from Doshi(1976) 

and adopted to our model. 
, t. 

Section IV.3 gives a maintenance system as an 

example. This problem is solved by computer with these 

holO algorithms I then the comparison of the two method is 

done in the previous chapter. 

In summary I vie can say that; for any Markov pro-

cess with finite state space and finite action space, 

if you want to find the infinite horizon expected dis-

counted cos't function use theorem (II.3.l) and write 

the corresponding functional equations. And the optimal 

policy which ~inimizes the cost function is easily found 

by the policy improvement algorithm if the system size 

does not exceed the computer restrictions. Otherwise, 

use the successive approximation algorithm. 
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APPENDIX· I 

INPUT-OUTPUT STRUCTURE 

OF THE COMPUTER P~OGRAM~ 
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After the process is modeled and its functional 

equations are written, compare them with the equation 

(II.3.5) if the general structure is the same, these 

programs can be used. 

POLiCY IMPROVEMENT ALGORITHM: 

INPUT DATA: Necessary data to run this program is as 

follows: 

. " The first card contains: ALF (discount rate) , 

MBAR (maximum number of servers that can be employed) , 

K (system size), L (lost profit/customer; it will be 

zero if you have no shortage cost), SR (common service 

rate of each server), GR (average arrival rate, which 

is necessary in the presence of shortage cost) . 

Second data card contains the ser~er costs. 

It has (MBAR+I) data. 

The third and the fourth data cards contains 

( ) h ' th . b ' th f . t K+I numbers where t e 1. num er 1.n e 1.rs one 

shows the holding cost incurred when there are i customer 

in the system and the second one shows the ar,rival rate 

when the system size is i . 

. AII data is given with free format. 

INITIALIZATION: Initial policy in this program is taken as, 

x e: E 



~If you want to give different initial policy change 

the statements 500-530 where Vn (x) values (V(O,x» 
0, 

, are computed for this given initial policy. 
I 
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OUTPUT DATA: In the output, you \'lill first see the in­

put data. Then in the solution part, the optimal policy 

and the cost corresponding to this policy will be seen. 

At the end you will find the number of iterations re­

quired to reach the optimal 'policy'!' 

SUCCESSIVE APPROXIMATION ALGORITHM: 

INPUT DATA: The input structure is same with the other 

method. Since this method finds the epsilon-optimal 

policy, it needs epsilon value. Add this value to the 

end of the first data card. 

OUTPUT DATA: Also the output structure is similar with 

the policy improvement algorithm. Since this method, 

needs too more iterations to reach the optimum policy, 

we put a restriction on the iteration number (N = 1000). 
I 

Then in the solution part, only the values for the last 

two preceeding iterations and the policy obtained in 

the last cycle is printed. 
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APPEND IX' I I 

PROGRAM LISTING AND RESULTS 

OF THE POLICY IMPROVEMENT ALGORITHM 

1 -

( I 

, ~ II 
- "\ 

-I 
, : 
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