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ABSTRACT 

Analysis of the transient response of an isotropic, homogene­

ous and elastic half~space due to the ~pplication of a'point, a fini­

te line, and areal sources are presented in this thesis. The source 

is either buried or on th~ surface while the receiver is always taken 

on the surface. Solutions are obtained for vertically and radially 

oriented sources and for different values of Zo depth of ~he source 

and ro radial distance from the source to the receiver. The response 

due to finite sized line and areal sources are obtained by integrating 

numerically the point source results along the line and over the area 

respectively. 

The results obtained in this work ~an be used to explain the 

effect of the size of the transducers used in Nondestructive Testing 

of materials. Here, the solution gives the response of a half-space 

for a Heaviside1s step input function. 
-'\ .. 

In the numerical calculations, using the generalized ray theory, 
. , . 

the. response of the half-space is expressed in terms of the contribu­

ti~ns from individual rays. Each ray is ·expressedin terms of integ­

rals in the complex Laplace transform space, and the Cagniard1s 

!I1ethod is used to take the inverse transform of the expressions. As 

. each ray has a distinct path and a certain arrival time, only the 

rays that arrive prior to the time of interest are considered. 

-iii-



UZETCE 

Bu tezde, bjr nokta kuvvet, bir s6nlu cizgi kuvvet ve bir 

yUzeysel kuvvet etkisindeki homojen, -elastik ve isotropik bir yarl 

UZaYln zamana bagll tepkisi incelenmistir. Kuvvet yarl UZaYln icin­

de ya da Uzerinde, allcl ise daima Uzerinde bulunmaktadlr. Kuvvetler 

dikey ya da yatay olarak cesitli derinlik Zo ve yatay uzakllklarda 

ro uygulanarak cozUmler elde edilmistir. Sonlu cizgi ve yUzeysel kuv­

vet uygulanmasl durumlarlnda cozUmler, nokta kuvvet icin bulunan co­

zUmlerin nUmerik olarak Cizgi ya da yUzey Uzerinde-entegre edilmesi 

ile bulunmustur. 

Elde edilen sonuclar, tahribatslz malzeme kontrollerinde kulla­

nllan cevireclerin (transducer) yUzey alanlarlnln kontrol Uzerindeki 

etkisini saptamakta kullanllabilir. Burada cozUmler yarl uzayda -

"Heaviside basamak Jl fonksiyonu icin bulunmustur. 

SaYlsal hesaplarda, genel dalga teorisi kullanl1arak, yarl uza­

yln tepkis~, ayrl ayrl dalgalara olusan tepkiler c;.insinden ifade edil­

mistir. Her dalgamn hareketi complex Laplace donUsUm uzaYlnda integ­

rallerle ifade edilmis, ve ters donUsUmler Cagniard metodu. kullamla­

rak elde edilmistir. Dalgalarln takip ettikleri yol ve varlS zamanlarl 

farkll oldugundan, sadece, ilgilenilen zaman icinde allclya ulasan dal­

galar degerlendirmeye allnmlstlr. 
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Chapter I 

INTRODUCTION 

The quality and integrity of a material is greatly affected 

by the number and size of the defects such as cracks and voids con­

tained in the material. Under loading and service conditions, these 

defects may cause fail ures. Hence, it is important to detect them .. 

before any failure occurs. The technology used to detect these de­

fects is called the Nondestructive Testing of materials, and a wi­

dely used technique in this area is acoustic emission. To test a 

material, forces are applied on structure; and the transient' elastic 

waves generated by the defects~ due to the rapid release of energy 

at these points, that is acoustic emissions, are picked up by sen­

sitive transducers placed on the structure.·The recorded signals 

are used to find the location and the character of the defects. 

To make an accurate evaluation of a material, the transducer 

to be used should be calibrated. The transducers are calibrated as a 

source and as a receiver, through a cbmparisonwith a standard source 

and.a-standard receiver respectively. For this purpose, a transducer 

of known characteristics such as a capacitive transducer and a trans­

fer media of known theoretical solution is used. A large block 

representing a half-space can be chosen as the transfer media so 

that its theoretical solution can easily be obtained~ In addition, 

it is important to know the effect of the size of the source and 

the receiver, namely, the~ansducer us~d in Nondestructive Test~ng 

of materials. 

The purpose of this work is to study the response of a homo­

geneous isotropic and elastic half-space due to a finite sized line 

and areal forces. The basis for such forces is the single concentra­
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-
ted force.~hat is, the response due to the finite sized sources 

can be obtained by integrating numerically the single force results 

over a finite line or area. Surface response of the half-space due 

to buried and surface forces will be presented. 

The method of generalized rays will be used in the mathematical 

analysis-of the problem. In this method, the response of the media 

is decomposed into contributions from individual rays originating 

at the source location and reaching the receiver after travelling 

different paths. Since each ray has a definite arrival time, only 

a finite number of them have to be calculated within a given time 

of interest. The expressions for each ray are interms of complicated 

integrals in the cemplex Laplace transform space. The inverse Laplace 

transform will be found using the modified Cagniard De Hoop method. 

In Chapter II, the basic equations bf elasticity are given, 

and the particular solution for the displacements due to a single 

force are found. 

In Chapter III,a-.ibrief history of the method of generalized 

rays is given. Also in this chapter, the reflection coefficients at 

a free surface and the ray solution for a half-space are discussed. 

The expressions for the source and receiver functions at different 

locations are also presented at the end of this chapter. 

In Chapter IV, application of the Cagniard's method and the 

inversion of Laplace transform are discussed in detail. 

Finally, in Chapter V, -numerical results are presented for a 

point, and a finite line and areal sources. Surface displacements 

of a half-space are given for different locations of the aforemen-

ti oned sources-.. 



Chapter II 

EQUATIONS OF ELASTICITY AND SOLUTION FOR 

A POINT SOURCE I N AN . UNB09NDED.· .. MEDIUM 

Tne basic equations of dynamic elasticity and the particular 

solution for a single concentrated force in an unbounded, isotropic, 

homogeneous and elastic medium will be presented in this chapter. 

The linearized equations of .motion and the solution of them for a 

single force in an infinite media can be found in the classical book 

by love [14] and Achenbach [2J. Here, these solutions will be given 

i~ terms of Laplace transforms so ·that one can modify them to the 

half-space problems as well. 

2.1. DYNAMIC EQUATIONS OF ELASTICIT.Y 

When forces are appl'ied, a solid body deforms and the distance 

between any two pOint changes. The ratio of the relative changes to 

(2. 1 ) 

where p is the mass density, A and ~ are the Lame constants of the' 

material, E is the body force per unit mass and a "dot" denotes the 

partial differentiation with respect to time, t. In the equation 

above, v2 is the usual Laplacian operator, and V~ and ~ are the 

-3-
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divergence and gradient operators respectively. For an isotropic 

elastic material, the stress-displacement relations are given by [2J 

cr,= A(V.u)I, + 2~(Vu + uV) - - - - ---- '(2~2) - -
where g and 1 are the Cauchy stress and unit tensors respectively, ... 
and uV is the transpose of ~M. 

Equations (2.l) and (2.2) must be satisfied at every interior 

point of a body occupying a volume V in space bounded by a surface 

s. In addition, the solution M must satisfy certain boundary 

conditions on S and the initial conditions at t~O. The initial 

conditions are usually of the ,form 

while', '4he boundary conditions can)e in terms of displacements or 

tractions or both. The boundary conditions involving tractions only 

are specified as 

T = cr;n - -- on S (2.4) 

In an unbounded medium radiation conditions must be used instead 

of boundary conditions. That is, all components of the displacement 

vector must vanish at infinity. 

Our approach to solve Eq.(2.l) will be first to reduce it to 

wave equations, using the Helmholtz decomposition theorem~ 
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(2.5) 

F = VG ~ VXH V·H = 0 

where the single valued vector fields, u and E, are expressed in terms 

of the gradient of scaiar fie)ds, ~ and G, and the curl of vector 

fields, ~1 and ~, respectively. Su~stituting Eq.(2.5) into Eq.(2.1), 

one obtains the~ave equations in terms of the potentials, 

2 2 .. 
c V-·~ + G = ~ 2 c = (A+211)/P 

(2.6) 

C2V211L + H = iii 
':'1 - -1 

c~ = lJ/p 

. The potentials ~ and ~l give rise to longitudinal·_waves (P-waves) ~ 

travelling with a speed c, and shear:waves(S...;waves)',· travelling . ~ . . .. ." . 

with a speed C, respectively. Equation (2.6) gives the complete 

solutions of Eq.(2.l), (Sternberg [23]). For plane waves the partic­

le motion of a P-wave is in the direction of n, the normal to the 
. -

wawe front, and th·at of S'-wave is in a plane perpendicular to ~ . 
. . 

In curviliriear coordinate systems, the equations in terms of 

the vector potential are coupled, hence, itisdifficult to obtain a 

solution. However, in the case of propagation of elastic waves. the 

particle displacement due to S-wave can be further decomposed into 

two orthogonal components; one that is parallel to a given direction 

is called the SH or horizontally polarized shear ~ave component while 

the other one perpendicular to it is called the SV or vertically 
.. ., , 

polarized shear wave component. In the case of waves in a half-space 

SH-waves are associated with displacements p~rallel to the surface. 
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Thus, a decomposition of the form 

(2.7) 

(2.8) 

is possible .. 

In these expressions, :z is a unit vector perpendicular to the surface 

of the half-space. Using the decomposition, Eq.(2.6} yields 

(2.9) 

and the initial conditions in terms these potentials will be in the 

form 

(2.10) 

x(r,O) =5< (r) 
- 0 -

It is understood that ljJ gives rise to SV-wcfve and X to -SH-wave. 

In the analysis of:waves in a half-space, we introduce the 

fo 11 owi ng .rion-dimens i ona 1 quanti ti es 



A. 

U = r u 
. 0-

t = r tic 
.0 ... 

, 
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. 2-
X = r X a . 

(2.11) 

where IIAII shows the non-dimensional quantities and ro is the radial 

distance between the source and the receiver. Using Eq.(2.ll), 

Eq.(2.9) can be written in non-dimensional form 

(2.12) 

- 2~ 2~ 2:.: 
V X + K Hl = K X 

The sign IIAII will be dropped, as all the quantities in this thesis 

will be non-dimensional. 

2.2 PARTICULAR SOLUTION FOR A SINGLE FORCE 

In this section, the solutions for the potentials <I> , W and".x 

will be obtained. For that purpose, Laplace transform of f(!,t), 

denoted as feE's) ,is defined by 
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00 

¥(~,s) = f f(~,t)e-st dt 
o (2.13) 

f(~, t) 1 - st = - J f(r,s)e ds 
2ni Br 

wh~re s is the transform variable and Br in the second expression is 

the Bromwich contour in the complex s-plane, which is a line parallel 

to the imaginary axis and to the right of all singularities of 'f(r,s). 

Note that, the second equation defines the inverse transform. 

Consider a concentrated force with a time function f(t) applied 

at a point (O,O,zo) and acting in the direction of a unit vector 2' 

(Fig.l).·Vector ~ is defined as 

y 

z 

I 
I 
I 
I 
I 
I 
I 
I 

af(t) 

Figure 1. Geometry of an oblique, concentrated force. 

x 
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. (2.14) 

= a e . + aa ea + azez r-r v- -

where e , e ,e and e , ea, ez are the unit vectors in cartesian -1 -2 -3 -r - -

and cylindrical coordinates respectively. Components of the vector 

a in the cylindrical coordinates are related to the' components in 

cartesian coordinates through the relations 

. (2.15) 

Note that similar relations apply for the unit vectors. The 

concentrated force, F is represented by 

The particular solution of the potentials are (see Appendix A) 



.' 
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~(r,S;E) = -azsF{s) 7 sve-s~lz-ZoIJdssr) ds 
o 

-arsF(s) j s~e-s~tz-zOIJl(ssr) ds 
o 

where 

, S = -E " s· = -E / n p p 

.(2.17) 

(2.18) 

:9 and ~ are the slowness in the z-direction of the P and S waves 

respect.i-vely.and ~ is the directivity constant. Note that Eq.(2.17) . 

completely agrees with Ceranoglu [5]. 

2.3. DISPLACEMENTS DUE TO A SINGLE FORCE 

In studying the response of a half-space due to a point source, 

it is more convenient to use the cylindrical" coordinates (r~e,z).Using 

Eq.(2.5) and (2.7), the relations between the displacements and the 

potentials can be written as [2] 

u = a<l> + lw +.1. .£L 
r ar oroz r ae 

u" = l2.1 +.1. "~~w _ ~ 
e r ae. r aeaz or 

(2.19) 
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Note that in cylindrical coordinates 

2 a2 . 1· a 
"V =:-:-z+-

ar r ar 

substituting the potentials from Eq.(2.l7) into Eq.(2.l9), one can 

obtain the vertical displacement as 

+ a z 

+ a r 

00 

JS~Dzve -:oS?; I z-zo I J,.( s~r.) ~ . di;} 
o 

(2.20) 

Te express the above equation in a simpler way, let one integral 

represent both P and SV contributions and suppress the subscripts 

p and v in both the source and receiver functions. Hence, Eq.(2.20) 

can be written as 

(2.2la) 
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Urj (~,S;~) = S3F(s) {az j ~jDrje-Shj(Z'S)~ Jl(s~r) ~ d~ 
o 

where _ 

o = -e:n zp 

-a r 

2 00 

+a ~ F(s) {J S'.D~e-shj(z'~)J (sl:"r) dl:" . r r. . J rJ . 1 ~ , ~. 
o 

00 .. • 

. 3F-() J S 0 ,;-sh.(z'~)J· ( )"d +aas SSHj aHje 'J . - , 0 ssr s ,. i; 
o . 

o =_l:" zv ~. 

. nl z-z I 
hj(z,s)= { 0 

for p-waves 

r;!z-z I o 
for S-waves 

(2.21b) 

(2.21c) 

(2.22) 
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Note that Sand D denote the.'so~rce and receiver functions 

respectively. The subs~ripts r,8,Z denote the directions of the 

displacements, and p,v,H the P,S and SH waves respectively. The 

transient response of the unbounded medium can now be obtained by 

simply taking the inverse Laplace transform of the expressions 

given in Eq.(2.21). 



· Chapter I I I 

METHOD OF GENERALIZED RAYS AND 

SOLUTIONS EOR A HALF SPACE 

In a bounded medium, wayes emitted by the source travel along 

different paths before they reach the receiver. Some of the rays travel 

the distance between the source and the receiver directly while some 

get reflected by the boundaries. The method of generalized rays is 

based on expressing the solution in terms of rays which follow 

different paths. 

In this section a brief history of the method together with the 

expressions for the reflection coeffici~nts will be given. Each ray 

is identified with a source and a receiver function together with 

different combinations of the reflection coeffients. The final 

solution is then obtained by summing up all possible rays. To g~t the 

inverse Laplace transform of the rays, Cagniard's method will be 

used. As each ray has a unique arrival ti-me, a finite number of them 

are' to be added up to get the transient solution. 

3.1. METHOD. OF GENERALIZED RAYS, A SURVEY OF LITERATURE 

One of. the approaches to study the response of a medium under any 

kind of excitation is to use the theory of normal. modes. There,the 

complete solution of the ~otenti-als cj>, lP and X of Eq.(2.9} are found 

with two unknown coefficients for each which are determined by 

applying the boundary conditions. Taking the inverse transform, the 

solution is found in terms of a summation with infinite number of terms. 

Hence, the accuracy of the-results are limited with the number of terms 

taken in the summation. 

An alternative method is known as the generalized ray theory 

-14-
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where the total . displacement is expressed in terms of the contributions 

due to different rays travelling along different paths. Summing up. all . . 

the possible rays, one can obtain the final solution.' 

The generalized ray theory was applied to the propagation of 

elastic wave~ by Cagniard [4] ,It/hen he studied the transient Jt{aves 

in two half-spaces welded together. Through a series of contour 

deformations and change of integration~variables , he was able to 

·find the inve~se transform of the expressions for each ray. 

Lamb [12] solved the buried force problem in ~ half-space when 

he studied the propagation of earth tremors over the surface of the 

earth. There, he completed the inversion of Fourier transform into 

the time domain by changing the integration variables in a manner 

very similar to Cagniard's. Later on, Pekeris and Lifson [20] solved' 

. the buried and surface source problems in a half-space. Lapwood [13] 

and Garvin [9] formulated the buried line source' problem using the 

generalized ray theory and Cagniard's method. Tangential surface 

load over a half-space was studied by Chao t7]. 
. . 

on the other hand, Norwood [16] studied the case of rectangular 

load and proposed a method to remove the singularities that are 

along the integration path which made the analytical ·solution for 

the case of loads applied over finite regions, possible. Norwood 

[17,18], also, studied the cases of as~i.infinite "line, a finite 

line, a quadrant and rectangular loadlngs acting at the surface of 

a half-space using the Cagniard's method. 

The generalized ray theory was also applied to the plate 

problems by Sherwood [21}, Spencer [22] and recently by Ceranoglu [5], 

and Pao and Gajewski [19] applied the method to a layered medi~. 

Until 1960, the individual ray integrals in the generalized 

ray theory were found by using the Bromwich expansion of the exact 
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solution. This procedure gets tedious for a layered media problem. 

Spencer [22] showed that the integral solution for each of the multiply 

reflected and transmitted rays in a layered media can be found by a 

ray grouping technique. In that technique, the rays are grouped effec­

tiveJy disregarding.theirmode conversion history. Wu .[24] and Norwood 

[16] used this technique together with Cagniard's method~n solving the 

problem of the propagation of transient waves in an elastic thick pla~e 

under an arbitrary loading. 

3.2. REDUCED BOUNDARY CONDITIONS AT A PLANE SURFACE 

The boundary conditions of Eq.(2.3) for a traction free surface 

reduces to 

cr.n = 0 :::: .. - .~ 
(3.1) 

In cylindrical coordinates, the components of the,stress tensor are 

related to the displacement potentials through the expressions [2,5] 

22' 2 2 
cr - K -2 () <f> + 2 ,~-[ B<f> + a ~ _ k;2 a, ~] 

zz - 7 ~ 7 az az· az at 

cr
rz 

= 1 1... [2 a<f> + 2 -4 _ K2 a2~] + + 1.... ax 
T ar az az ' at K r aB az 

(3.2) 

. . . 2 ·'2',,~'" 0' 

cr - 1 a [2. ~$ + 2 a-1]J 2 a 1]J] 1 a ay'" Bz - ~ - ,- -::--2 - K :-:7 - ~ -:- ~, 
K r aB az . az at· K ar az-

If the equation of the surface is z=£, where £ is a constant, then 

Eq. (3.1) becomes 

cr = 0 at z = £ :-·zz 

cr = 0 at z = £ rz 

(3.3a) 

(3.3b) 
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aez ~ 0 at z = £ (3.3c) 

Substituting Eq.(3.2) into Eq.(3.3), one obtai.nsthe expressions for 

the boundary conditions. To express the~ last two boundary condition 

in reduced form, consider a function a(r,e) such that 

2 
(2

acp 
+ 2~ - K

2
ijJ") I 

az az . z=£ 

aa 

ae 

(3.4 ). 

Then thebo~ndary.condition (3.3b) is satisfied identically, and the 

condition (3.3c) will be satisfied if the function a(r,e) satisfies 

the eq'ua ti on 

22· a a 1 aa 1 a .. a 0 -::-z + -- + -Z~ = 
ar. r ar r ae 

(3.5) 

which is the Laplacian of a{r,e) in the plane z=,·i .• Hence, a(r,e) is 

a harmonic function. Since the solution has to be bounded at infini~y, 

Liouville's theorem [l5] states that a(l",e)is constant. Therefore, 

the boundary conditions of Eq.(3.3) reduces to 

. 2 .. . a acp' a ~ 2 .. )} I {(K -2)cp·+ 2- (- +:-z - K ~. = 0 
az az az z=£ 

2 
LI=(2

acp 
+ 2~ - K2~) I = 0 

z=£ az az . z:=.£ 

(3.6) 

LHI=(M} I = 0 
z=£ z=£ 
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where L shows the component of the stresses a and a due to rz 8z . 
P-wave and S-wave, and LH due to SH-wave. Note that Ceranoglu' [5] 

and Chandra [6J used the same boundary ~ondi ti ons. ~si ng these:,' .. 
, • i. • - _ _ 

boundary condi ti ons, the refl ecti on coeffi ci ents for the tracti on 

free plane surf~,ce of, the half-space can b,e found. 

3.3 REFLECTiON COEFFiCiENTS AT A FREE SURFACE 

Waves emitted by a buried source in a half-space act like those 

in an infinite medium until they reach to a point on the surface 

where they are reflected and transmitted. Therefore, the particular 

solutions found in Chapter II are valid for the incident waves on the 

surface. Using Eq.(3.2) incident stresses can also be found. 

The reflection coefficients at a free surface will be derived 

considering the case 6f a concentrated single force inside a half 

space. Substitution of Eq. (2.17) into Eq.(3.2) after taking Laplace 

transform yields 

(3.7) 

where 

(3.8) 
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Similar expressions can be obtained for f(inc) and f(inc)using Eq.(3.6). 

In a half-space, z~ 0, ',the waves that are generated at z=zo . 

will be reflected when they reach the surface z=O. On a plane surface, 

a P or S wa'le wi 11 be refl ected both as -a P and S wa;ve, whi ch is'. 

known as mode conversion. However, a ~~wave' will be reflected as a 

SH-wave only. The corresponding quantities for the reflected waves 

can be expressed as 

-, 
+[ai S RPsD(v)e-s(nzo+~z)J ~ d~ 

z 0 p zz .0 

(3.9) 

Note that each bracket in the above expression represents a different 

ray; the first is the incident P reflected P, the second is the incident 

P reflected S, th~ third is the incident S reflected S, and the fou~th 

is the incident S reflected P wave. These different rays are identified 
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with "their reflection coefficients RPP, RJ5S, RSs , RSP respectively. 

Similar expressions can be written for ~(ref) and ~~ref). 

The boundary conditions has to be satisfied by the total wave 

field which is the sum of incident and reflected '.'/aves. Adding the 

two and setting z=O yields 

- I - -(inc) + -(ref) . _ 
Ozz z=O- °zz I z=O a Iz=o- 0 

~ I ~ ~(inc)1 . + f(ref)I = 0 
z=O z=O z=O (3.10) 

f I " = f (i nc) I + f( ref) I = 0 
H z=O H z=O H z=O 

one can obtain the generalized reflection coefficients for a traction 

free plane surface as [51 

H R= 1 

2 222 
6r = 4n~~ - (~ +~ ) 

(3.11) 
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3.4. RAY SOLUTIONS FOR A HALF SPACE 

The complete solution of the displacements due to transient 

waves in a half-space is obtained by combining the particular solu­

tions of sec.(2.3) and th~ reflection rays of sec.(3.3). 

Consider a concentrated force acting at a point (O,O,zo) with 

the receiver at a point Q (r,e,z), (Fig.2). -It is clear that the waves 

reach to the receiver through different paths. First one is the path 

1 where a direct P:-wave- and a direct $.:..v/ave· travel along. Note that 

the P-wave reaches to the receiver before the $.:..wa~e. As there is 

no reflection in path 1, these ~aves are the direct waves just like 

in an unbounded medium, (Fig.2). The wav-as. that are reflected at the 

surface will reach to the receiver travelling along the paths similar 

to path 2. The total vertical di-splacementoh the surface of the 

half-space due to the waves travelling along path 2 is 



_z 
.0 

o 

z 

r 

Q(r,8,z) 

(a) ·Direct wave, Path 1 

r Iz <1/12 o 0 
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(b) Reflected wave, Path 2 

P P 

zo 

Ci 

(c) Head wave 

Figure 2. Rays in a half-space 
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(3.12) 

As stated earlier, each bracket in thi~ expression represents a single 

ray propagating along path 2. The phase of each ray is given by the 

argument of the exponential term. In general the phase function is 

written in the form 

-sh = -s(nz + sZ ) p s· (3.13) 

where zp and Zs are the total vertical components of the segments in a 

particular ray, travelling in P and S modes respectively. As each ray 

has a unique arrival time, only the ones that arrive prior to the 

time of interest are considered. 

The key point in Eq.(3.12) is that the terms in brackets are all 

similar in nature, hence"one can write the co.ntribution of the jth 

,ray to iheverti ca'l 'di spl acementas , 

+a j S~II.D ~e-shj J1Cd~} 
r 0 JJ ZJ 

Similarly ~rj and ~ej can be.written as 

, (3. 14a) 
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(3. 14b) 
2· 00 

+ ~ F( s) ar {f S ~II.O .i:(sh,j: J d~ 
r 0 J J rJ . l 

2 - 00 - s - h us·(r,s;a):= -a - F(s) f SI.II.D .e-s d Jld~ 
J - - S r 0 . J J 6J 

(3. 14c) 

where IIIS are the reflection coefficient for the jth ray in a half-space. 

Therefore, it is understood that each ray is expressed by a 

definite source, receiver and phase :function, and a reflection coeffi-

cient. Along path 1, IIj=IIHj=l as there is no reflection. Along path 2, 

IIj=RPP, RPs, RSS and RSP for the mentioned reflected rays in Pand S 

modes and IIHj=l for the reflected SH-waves. 

3.5. EXPRESSIONS FOR THE SURFACE SOURCE AND RECEIVER FUNCTIONS 

Until now, we discussed the case in which both the source and 

the receiver were buried in a half-space. Now, the three other cases, 

in which either the source or the receiver or both of them 



-25-

simultaneously'on the surface, will be discussed. 

3~5.l.Surface Source 

To get the surface source function, we consider the buried 

source, and buried receiver case. Both P and S rays- are emitted by the 

source, and after reflection in addition to the direct P and S waves, 

PP, PS, SS and SP waves will al~o reach to the receiver. Consider 

only the ray integrals for the P, PP and SP waves~ In the limit as Zo 

approaches zero, these three integra is ,wi 11 comb5 ne and resu1 tin a 

single integral with a 'new source function, (Fig.3) 

J. 

S" = S + $ RPP + S RSP 
P P P v (3.15) 

This is the ray travelling the distance between the source and the 

, receiver as a P-wave. Considering the ray integrals forS, SS and 

PS waves 'and goirig through a similar procedure, an expression for the 

source function of the ray travelling as a S-wave between the source 

and'the receiver can be obtained . 

... 
S~ = (3.16) 

Recalling that no mode conversion takes place for the SH-wave, the 
... 

surface source function, SH' for such waves is obtained from the 

SH-component of the integrals for Sand SS waves. Hence 

* S· S R'H 2S SH = H + H = H 

3.5.2.Surface Receiver 

The expressions for the surface receiver functions can be 

obtained by going through a similar procedure outlined in the 

previous section. For example, considering the integrals for the 

(3.17) 



·z o 

(a) P-source 

z 
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(b) S-sOlJrce 

Figure 3. Rays used i.n the derivati-on of surface source 

function.s; :-
( • _ ",. • t 

z 

s s 
(a) P-receiver (b) S-receiver 

Figure 4. Rays used in the derivation of surface receiver 

functions. 

:R 
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P, PP and P5 rays and taking the limit as z approaches to zero, yields 

a single integral with a P-wave receiver function of the form, (Fig.4) 

D
o!: 

== ap o + 0 RPP + 0 RPs ap ap av (3.18) 

Similarly, integrals for the rays 5, 55 and SP combine together to 

give the surface receiver function for the 5V-wave as 

0* == D + 0 RSS + 0 RSP aV aV av ap (3.19) 

Accordingly, for SH-waves we have 

(3.20)' 

. 
3.5.3.The Source and the Receiver on the Surface 

The expressions for the case, in which" both "the source and the 

receiver are on the surface, can be obtained by going through a 
, 

similar procedure outlined for the surface source case. This time, 

in the limit, asz and Zo approaches to zero, a P and a S"wave travel­

ling from the source to the receiver can be obtained. One can get the 

same result in Eq.(3.14), replacing the source function with a sur­

face source function, and taking an inside receiver function andn~l. 

". 



Chapter IV 

CAGNIARD'~ METHOD AND 

1, _"THE INVERSION,OF LAPLACE TRANSFORM 

The general expressions for the displacements due to a concent­

rated force was given by Eq.{3.l4). All of the integrals appearing in 

these expressions are of the two kind 

00 

Io{r,z,s) = 1 El(~) ~ Jo(s~r)e-S(Zpn+zss) d~ 
o 

Il{r,z,s) = ~ E2(~) ~2Jl(ssr)e-~(Zpn+zss) d~ 
o 

{4. 1 ) 

where E1 and E2 are the even functions of ~ involving the source and 

the receiver function~, and the reflection coefficient. The coeffi­

cients of these integrals are of the form snF(s), therefore, after 

finding the inverse transform of 10 and 11, one can obtain the final 

solution through a convolution integral. 

4.1. II'HEGRAL REPRESENTATiON IN THE t-PLANE 

The representation of the integrals in the ~-plane are given by 

Eq.(4.1). There,the:key point in the application of Cagniard's method 

is to use the integral representation of Bessel functions, Jo and Jl. 
" 

These are, (Abromovitz and Stegun[l]), 

2 ,n/2 izcoswd 
Jo(z) = TI Re.1 e W 

o 

(4.2) 

-28-
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Using the above expressions in Eq.(4.l) and changing the order of 

integration, as the integrals in s are uniformly convergent for all 

values of w between 0 and n/2, we get 

(4.3) 

The most important point of the Cagniard's method is to make 

the following transformation 

(4.4) 

In the comp]exs-plane, g(r,z;s) is a multivalued function with branch 

points at s=~ldueto the second term and s=::iK due to the third'.term 

in Eq.(4.4). Introducing the branch cuts as shown in Flg.(5a),it becomes 

single yalued. These branches are/chosen such that if s is real and 

positive, the radicals. are positive. 

Considering s as a complex variable, one can make the transfor­

mation of complex s-plane to compctex t-:-plane, (Fig.5b). The original 

line of integration, the real s-axis,is .mapped into the curve A'B' 

in the t-plane. The origin, AI, of this curve corresponds to the value 

of t=tA wher:e 

Note that the curve A I B I has an asymptote of the form 

-x t=--­
z + Zs .p 

(4.5) 

where x=rcosw. On the other hand, by substituting's=H, one can make 



iK 
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E 

Im(s) Im(t) 

.- .~. ; 1- IB fNwlwmk:htJi7;,>,z,z,>;G W \ L ' ~ 
-i~ r ;'t:Re(s) E' 

E . "L -iK~ _ ) / zp+zs 
F . 

-iC R 

G 

Figure Sa. E-plane 

G' 

Figure 5b. Map of the s-plane in the t-plane. 
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the transformation of the imaginary s-axis, 

(4.6) 

Equation (4.6) shows that the pOints on the imaginary s-axis with 

111<1 if zp#O.and the points withl11<K if zp=O will lie on the real 

t-axis. It can be shown that as 1~oo, t approaches an asymptote 

given by 

t = (4.7) 

From the behavior of Eq.{4.6}, the points that are mapped into 

the real t-axis may be double valued if there is a stationary point 

M. This point is an extremum. for g(r,z;~) satisfying the relation 

(~.8) 

This equation has the root s= ·HM' Considering the surface response 

of a half-space, we either have zp orzs equal to zero, hence, this 

equation can be solved for 1M 

ra 
1H= '( 2 2)' z + r "2 o 

(4.9) 
--

where zo=zp and a=l for the P-waves, and zo=zs and a=K for the S-waves 

To render the single valuedness of the mapping, a branch cut is int­

roduced along the real t-axis starting at the point t M. Thus, the ,. 

segment AME of the positive imaginary ~-axis is mapped into A'M'E' 

in the t-plane where A'M' lies below the branch line and M'E' above~ 
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(Fig.5b). The point tH is given by 

(4.10) 

Therefore, using the transformation given by Eq.(4.4), the 

expressions for 10 and 11 become 

2 TI/2 
lo(r,z,s) = -: Re f_ dw f El [s(t)] s(t) (~) e-st ~t·: 

TIl o· A'B' dt,w 

_ 2 TI/2 
Il(r,z,s) = - 1m f cosw dw f E2[s(t)]s2(t) (~) e-st dt 

TI 0 A I B I . dt w 

4.2. INVERSION OF LAPLACE TRANSFORM AND TRANSFORMATION 

INTO THE f,;-PLANE 

(4.11) 

The integral representations in the complext-plane were found 

in Eq.(4.l1),where the new path of integration is along AIB'. Now 

consider the contour AIBILIMIAI. Since there are no singularities 

inside this contour, the integral along this closed contour, from 

Cauchy's.principle, is zero. Also, as BILl is moved to infinity, the 

integrand of Eq.(4.l1) vanishes along this portion of the contour. 

Therefore,A'WL ' can be taken as the new path of integration along 

the real t-axis, instead of AIBI. Rewriting Eq.(4.ll), we have 

2 TI/2 (Xl ds t 
lo(r,z,s) = - Re f dw f El [s(t)]s(t) (-) e-s dt 

TI 0 tA dt w 
(4.12) 

ll(r,z,s) 
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The above analysis is true when W#t/2. If WFn/2, Eq.(4.4) becomes 

( 4.13) 

which means that the real ~-axis is mapped directly into the real 

t-axis. For this case, tA=tM; so it is understood that Eq.(4.12} is 

also valid for w---rr/2. Note that, the integrals in Eq.(4.12) converge 

uniformly for all O~w~TI/2 and t except at t=tM where (ds/dt)whas a . 

half order singularity. Therefore, changing the order of integration, 

we get 

00 TI/2 
Io(r,z,s) = J {~Re J El[s(t;w)] s(t;w)(ds) dw}e-st dt 

t TI 0 dt w 
A (4.14) 

Il(r,z,s) = ~ {~.Im TI~2 E2[s(t;w)] s2(t;w)1 ds ) cOSW dw}e-st dt 
t 1T. 0 - dt w 
A 

Note that if the lower limits of integration were .zero rather than 

tA, the above expression would have been in the form.of the Laplace 

transform of the quantities inside the~~rl'ybracket { L This can be 

achieved by i.ntroducing a Heaviside's step function H(t-tA). Thus 

. the inverse Laplace transform of the expressions are s'fmp.Jy;,their _ 

corresponding integrands .. _ with the Heaviside ' s function attached to them, 

i . e. 

(4.15) 
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In calculating the above integrals numerically, for each value 

of t, the values of ~ have to be found for different values of w, 

0~w~TI/2. Also (d~/dt)w will have a singularity at some value of w 

for each value of t. Therefore, to ov~rcome these difficulties 

another change of variable is appropriate, namely the change of vari­

able w back to ~. For this purpose we use the transformation given by 

Eq.(4.4) once more. This transformation will allow to transform the 

finite integral in the w-plane into another finite integral in the 

~-plane. FrQm Eq.(4.4) 

r :f 0 (4.16) 

Note that i f ~=O, then t=tJ{" zp+zsK. {from Eq. 4.4) and the above expres­

sion becomes indeterminate. Using the 1 'Hopitals rule, we find that 

1JTYIf./2· as ~-+O. For w = 0, Eq.(4."4) yields ~ = ~,(r,z,t).,. where 

(4.17) 

Therefore,Eq.(4.15) becomes 

(4~ 18) 
z n+z r;..;t . 
p s· ~( a~), (aw) .. ~ d~ 
i~r at w a~ t 

It is understood that ~l is a complex number on the contour, AML, 

which is the mapping of the real t-axis in the ~-plane. The integrals 

of the above equation are along AM~l which is the finite portion of 



AML, (Fig.6a and 6b). 

From Eq.(4.4) 

~ -ircosw + z tIn + z tJ~ 
(~) = p s 
at t -irtsinw. 

and using Eq.(4.S) we get 
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(4.19)' 

(4.20) 

Solving Eq.(4.16) f.or sinw and substituting it in Eq.(4.20), one 

obtains 

(4.21) 

(4.22) 

Substituting Eq.(4.21) in Eq.(4.1S), one obtains the expressions to 

be used in numerical calculations: 

(4.23) 

z n + z r; - t 
P s dt 

K 

'The K has a branch point at t=tl' hence, a branch cut has to be int­

roduced at t
l
- . The branch cut is chosen such t~at the real part of 

K is positive when real part of t is positive .. 
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Re(~) 

Figure 6c. Integration path for the cases of . 

surface source, and refracted 

rays when real part of ~ is zero. 
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4.3. ARRIVAL rH1ES OF INDIVIDUAL RAYS 

The expression for the arrival time of a ray, in the case of 

a buried source and receiver in a half-space, can be obtained 

considering Eq.(4.l0) as 

(4.24) 

The physical meaning of ~~ is made clear by the'following analysis 

of geometry. Let 

(4.25) 

and 

zptana. = rlcosw (4.26) 

Substituting the above expressions in Eq.(4.8) we get 

r = r l + r 2 

From Fig.(7a},it is seen that 

tanS l = 
;lcOSW 

". , J4.27) 

Comparing Eq. (4.26) and (4.27), we get 
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and Eq.(4.25) becomes 

(4.28) 

Using the above ana'ysis,E~(4.24) can be written as 

tM = [r, cOSW si ne, + z cose ] + 0 f 0 • e e ] p 1 K~ r2cosw Sln 20 + zscos 2 (4·29) 

Note that this value of t(R'f4) is also a function of w. Then 

o 0 

where the equal i ty exi sts for w=rr/2. tM j s· .a ..;continuous>ofuncti on of 

w (O~w~u/~ and from Eq.(4.4) 

thus, tM is maximum for w=O. Now, Fig .. (7~can ;boe interpreted consider­

ing A as the source point, D as the receiver point and EF as a:part 

of the surface of the half-space. In Eq.(4.28), sins l= Ksins2' which 

is the classical law of reflection of elastic waves. 

For w=O, Eq.(4.27) becomes 

and the value of tM(O) is 

(4.30a) 

.1 
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r,cosw r2cosw 

E B F 

" \ / 
/ 

" \ 
" Zs 

" .... ~t:O"'-
\ ~C:J. 

" 
~ '. 

p (.0 ,,,,-

A 

. 
Figure 7a. Geom~tric interpretation of Eq.(4.29) 
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Note that the parameters in the above equation are non-dimen­

sional. Restoring the dimensions according to Eq.(2.11), we find 

tM(o) = +(rl Sin81 + ZpCOS81) +'-~ (:25 ;'n8,2 + ZsCOS82) 
_0· .. '.:. . 

(4.30b) 

This is exactly the arrival time of the wave along the ray path AB as 

a P~wave and the path BO as a S-wave. Therefore, the value of t=tM 

corresponding to the stationary value ~=~M' is the arrival time of the 

ray whose path has a total vertical projection of zp and zS' travel­

ling in P and Smodes respectively. It is called the direct arrival 

time of those rays 'that are reflected at the surface of a,half-space. 

On the other hand, if the angle incidence of the S-wave, is 

greater or equal to the critical angle,' ac where ac=sin-1C/c, then 

there will be a refracted ~wave: travelling along the;surface of the· 

half-space. It means that the ray travels, the path from the source .. 
to the surface· in S mode and the rest in P mode. It means that, it 

arrives to the receiver before the direct S-wave.and istalled the 

.. head·wave For the head waves", the slowness in the radial direction, 

~,is equal to the slowness of the P-wave· •. Therefore, normalizing it 

with the slowness of the P~w~xe and considering zp=o, one obtains 

_the expression to be used in finding the arrival time of the head 
. 2 ~ 

. waves. theadlw=o'-= r + Zs (K -1) (4.31) 

A third wave which is known as the Rayleigh wave exists with a 

vel.oci ty CR' which is less the shear wa~e velocity. It is given as 

_~R=0.9l94C [8] where C is the shear wave. velocity. The Rayleigh 
1 direction of propagation and exponentially waves decay as r-2 in the 

with depth. They can not be explained by a single generalized ray. 

The arrival time of the Rayleigh wavesc can be calculated for the· 

surface and receiver case as the distance and the speed are known. 
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For the.buried source case, the point on the surfac~ where the. 

R,ayl ei gh wa ~~. ori gi na tes due to diffracti on is not known. Pekeri s 

and Lifson [20] found that there were no distinct peaks in disp­

lacement for the buried source case when ro/zo<5. 

Now cons i der the P. and S ~.a ves tra ve 11 i ng from a buri ed source 

to a surface recei ver. For the P~wave Z =Z , Z =0 and for the S-wave . p 0 s· . 

zs=zo and zp=O. Solving for the upper limit-of integration, sl' from 

Eq.(4.17), one obtains 

l:"l = ---r,z_o ---,., !t2 - (l( r2 + Z~) + i tr 
':> 2 2 ""'2--'2 r+z' r+z b 0 

(4.32) 

where a.~ 1 and K for the P and S .waves respectively. 

4.4 CONVOLUTiON OF RAY INTEGRALS 

It was mentioned at the beginning of this chapter that the 

integrals of the form 10 and 11 appearing in the expressions of the 

displacements had as their coefficients, terms in the form of snF(s); 

and that the c~mplete transient response would be given through a 

convolution integral involving the inverse Laplace transform of lIs 

and their coefficients. In our study n is either 2 or 3 and the 

function F(s) involves the Laplace transform of the time dependency 

of the force input. Recalling Eq.(2.18), we have 

(4.33) 
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Note that.if f(t) \lias a Heaviside's step function, f(t)=H(t); then 

f(s)=l/s and the above expressions reduce to 

Go(s) = Fa 
2 2 4TIK' l-lr 0 

Gl(s) Fg 1 (4.34) = (-) 
4TIK2l-lr~ ~ 

Hence, the inverse Laplace transform of these quantities are 

Go(t) = Fa o( t) 2 2 4TIK l-lr 0 

Gl (t) = ~Q 2 H(t) (4.35) 
4TIK l-lr 

·0 

where o(t) is the Delta-Dirac function. Therefore, the integrals 

with s~F(S) .as their coefficients shou}d be convoluted by: o{t) and 

those with s2F(s) as their coefficients should be convoluted by 

H(t). Note that 

t 
'o(t) * f(t) = f o(t - T) f(T) dT 

o 

= f(t) 

t 
H{t) * f(t) = f H(t·- T) f(T) dT 

o 

t 
= f f(T) dT 

o 

(4.36) 
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In view of the above relations, for a Heaviside's input, only the 

integrals with s2F(s) as th~ir coefficients should be integrated 

from t=O to t=t. However, since each integral has q specific arrival 

time, the lower limit of integration is to be replaced by the corres­

ponding arrival time of the ray, i.e., the integration is from tAo to 
J 

t=t. 

Thus ~Sih~ the above ideas, we take the inverse Laplace tras­

form of uzjand Ur j(Eq.3.14) and get 

Fa (a I + al l ) 
4 22 z 0 r· 

TIK ].lr 0 

( ) Fa 
U r j r ,z , t = --2~L;;2:---

4TIK ].lro 

a t t 
+ ~ ( J Il(r,z,T) dT + J llH(r,z,T} d-r)] 
roo 

where H denotes the SH-wave. 

Note that I1H(r,z,T) can be solved analytically, yieldin r 

which agrees with the numerical results. 

(4.37a) 

(4.37b) 

{4.38) 



Chapter V 

NEAR FIELD RESPONSES 

. In this chapter, the procedure used in calculating the ray in­

tegralswill be explained and the response of a half-space due. to 

point, finite line and areal loads with Heaviside'sstep function 

time dependance wi·ll be di scussed. Both buri ed and surface sources 

will be considered. In alJ the examples pre~ented, the Poisson's ratio 

for the half-space material is taken.as D.25 corresponding to K2=3. 

5.1 PROCEDURE IN NUMERICAL CALCULATIONS 

In a half-space,waves radiated at the source location travel 

along different paths depending on the orientation of the source and 

the receiver before they reach the receiver. Therefore, as a 'first 

step in numerical calculations, a sketch of the possible'wave paths 

should be made taking into accounta~l the reflections, (Fig.2). , 

Note that in ~ll the examples presented'in this work, we have taken 

the receiver to be on the surface of the half-space. 

In the case of a buried source, the direct P-wave··(zp=zo' zs=O) 

and the direct S-wave:(zp=O, zs=zo) are·th~ only possible.waves 

reaching the receiver on the surface, 'where Zo is the depth of the 

source. To start the numerical calculations, the stationary point of 

the Cagniard's path, ';N' and the arrival time of the ray, tM, are 

found using Eq.(4.9) and (4.10) respectively. If there is a head wave 

effect in the direct S-wave, the arrival time of it can be calculated 

from Eq.(4.3l). The upper limit of integration, ';1' for each value of 

time, t, is obtained from Eq.(.4.32). By choosing the .appropriate 

source function and the receiver function, the integrangs of the in­

tegrals are formed and the integration along the path AM';" (Fig.6), 
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can be carried on. 

F or the P.-wa ves and the S-wa ves wi th no head ,wa ve. the s ta ti ona ry 
. -'- . 

. point i;M is below the point i;=i. It can be shown that the integrar'ld;of . 

the integrals are all real valued for ~ below sM and since the imagi~ 

nary part of the integrals are required as the answer, the response 

is zero for t 1 ess than tw Thi sis expected because, tM correspondi ng 

to sM is the arrival time of the individual ray and no response is 

expected prior to the arrival of it. Hence, the path·AN~l can be rep­

laced by the path QMi;l as the integral is zero along AQ. At point t~, 

the path leaves the imaginary s-axis and goes along Msl . 

Now lets consider the contour QMslP~P1Q. The integrals have no 

singularities inside this contour. Thus, we can replace the integra­

tion along QMsl by the sum of the integrations along the straight 
') 

lines QP1, P1Pz, P2i;1' (Fig.6a). This is chosen, since it is much 

easier to evaluate the integrals alon~ the straight lines. Q, Pl and 

P2 are called pivot points. The, location of the pivot points were 

chosen as follows. Let sl be expressed as sra+~b, then 

If a<0.05R.M 
Q = iO.8R..M 

Pl = 0.059..1;1 + iO.8~ 

P2'= 0.o59..M + i [0.9b + 0 . .1(0 .. 8;911:] . 

and if a>O. 05~1 

Q = iO.89..rv1 

Pl = (a + 0.03) + iO.89..N 
P2 = (a + 0.03) + i(b-0.08) 

(5.1 ) 

(5.2) 

In the case of S-waves with the head.wave effect, the statio~ 

nary point M lies between the points s=i and S=iK. It can be shown 

that the integ!"als are zero for .the values of sl below s=i which 
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corresponds to tne arrival of the head waves. (Eq.4.3l). For these 

rays, the pivot points Pl and P2 are chosen as shown in Fig(6c) if· 

~l lies on the imaginary s~axis and as in Fig.(6b).otherwise. Again 

representing sl as a+ib, the points Q"~l and P2 are chosen as 

If a~O, that is ~l is on the imaginary ~-axis 

Q = iO.9 

Pl = 0.05 + iO.9 

P2 = 0.05 + ib 

if 0-ta<0.05 

Q = iO.9 

Pl = 0.05 + iO.9 

P2 = 0.05 + i(b-0.08) 

and if a>0.05 

Q =iO.9 

Pl =' (a + 0.03) + iO.9 

P2 = (a + 0.03) + i(b-0.08) 

(5.3) 

(5.4) 

(5.5) 

Note that there is a half order singularity at ~=~l on the Cag~iardls 

path due to the K function. To avoid it, a new variable, u, is int-

roduced such that 

where up is the value of u at point P2. 
. 2 

(5.6) 

This transformation reduces 'the integrals of Eq.(4.23), along P2Sl to 

., 



-4B-

(5.7) 

When a approaches zero, the term a/K in the above integrals becomes 

indeterminate. To remove this, the K function is expanded into a 

power series around a=O, and the common factor a is cancelled by the 

a in the numerator, (Appendix.B). 
. . 

Finally each of the integrals along QP1, P1P2 and P2s1 in the 

complex s-plane can be transformed into an integration with respect to 

a' real variable, y,- in the interval ,[-1,11, using the following 

transformations. 

Along QPl 

s = .~ (sP
l 

+-~sQ) + --~ (sp] - sQ}y 

(5.B) 
d!; 1 . 
_. ::i: - (sp - sQ) 
oy ~ ] 

Along P1P2 

1 1 
s = 2" ~~2+sPl) + -2 "(SP2-sPl)y 

ds 1 _ = -. - (sp -sp ) 
-dy 2 2 1 

,(5.9) 



a = (l-y)ap /2 c 
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da 
- = -a /2 
dy Pc. 

dl; = a/I; 
da . 

Thus, Eq. (4.23) yields 

. 2 +1 1: d 
Io = H( t-tA) - Im [J (£ -'" --L) dy 
, , 7f - 11 K dy QP 1 

+ 1 ' t: d 1: + 1 ' , '" 'd,.;, '. 
+ J ( E 1 ~ -'" ) p P dy + J (E "" u.) d ] 

, -1 K dy 1 2 -11K dy p 2~ 1 Y , 

, 2 + 1 t-z n~z l; d1; .. 
Il ~ H(t-tA) - Im[! (E p s :.1; -)/ dy 

7fr -1 2 . K dy QPl 

+ 1 t-z n~z l; dl; 
+ J (E2 _-,-p_s_ I; - ) 

-1 K' dy P1P2 dy 

+1 t-z n-Z l; Ha 
+ J ( E P s a -) dy] 

-1 2 K dy P21;1 

The above integrals can be calculated using Gaussian quadrature 

integrations. 

(5.10) 

(5.11) 

If the source is on the surface, we choose the ray groups and 

the-~urface source functions as explained in se~.(3.5). ,In the 

numerical calculation of the ray integrals, the procedure explained 

for the buried source case is used with the following exceptions. 

The integration path or the Cagniard's path lies along the imaginary 
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s-axis, and the path shown in Fig.(6c)and"the pivot points given by 

Eq.(5.3) are used. Also, for the K function, the power series expan­

sion is not needed, as K=ra, (Appendix B). 

5.2. NUMERICAL RESULTS 

5.2.l.Point Source 

Since the response of a half-space due to either a buried or a 

surface point source has been studied in great detail [20,7,12], we 

present some of the results for completeness. 

Numerical results for different orientations of the concent­

rated force are ~hown in Fig.(ll) and (13). Note that a positive 

direction for the displacement 1S the direction of the positive 

z-axis which is taken into the half-space. 

5.2.2.Finite Line Source 

The response of a half-space due to finite sized line sources 

can be obtained by integrating the point source results along the 

line which characterizes the finite line source. Since the analyti­

cal integration is very difficult, in our work, we carry out this 

integration numerically. For this, the line segment is divided into n " 

equal parts and a concentrated force is assumed to act at the middle 

of each segment, (Fig.9 and 10). The final solution is then obtained 

by summing up the responses due to each concentrated force. 

Numerical results for the buried line sources are presented 

in Fig.(12) while those for surface line sources are ~hown in 

Fig.(14) and (15). The distances involved in such problems are all 

normalized with respect to the distance of the receiver from the 

center of the line source. 
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5.2.3. Finite Areal Source 

The response of the half-space due" to finite sized areal sour­

ces can be obtained by integrating the. point. source results over the 

area which characterizes the finite areal source. In the numerical 

integration, the area is divided into n equal subareas and a concen­

trated force is assumed to act at the middle of each subarea, 

(Fig.8and 10). The final solution is then obtained by summing up, 

the responses due to each concentrated force. 

Numerical results for the surface areal sources are presented 

in Fig'.(-l6) ana (l7»The distances involved in such problems are 

all normalized with respect to the distance of the receiver from 

the center of the areal source. 

5.3. DISCUSSION AND CONCLUSION 

The analysis of the transient surface responses of a homoge­

neous, isotropic and elastic half-space due to the application of . 

a point, a finite line, and areal sources are presented in this work. 

Before starting the actual calculations, the results obtained from 

the computer program for an infinite media are compared with the 

corresponding analytical results given by Love [14J and Achenbach [2]. 

The results agreed up to 6-10 decimal points when 32 point Gaussian 

quadrature integration was used. Also, the analytical solution of the 

integral due to the SH-wave completely agrees with the numerical 

results (Eq.4.38). 

In the following sections, the behavior of the time~displace­

ment diagrams will be discussed for the previously described sources. 

'" .. 
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5.3.1. Buried Point Force 

The numerical results for different orientations of the buried 

concentrated force are shown in Fig.(ll) for r Iz = 2 and r = 1 
" 0 0 o· 

- " 

The results agree with Pekeris and Lifson [20] for the vertical force 

case~ In.the diagrams, the finite jum~s can be seen at the arrival 

of P and S wav~s. If r/zo ~ 1/12 , there isa,head wave and the 

displacement is marked by logaritmic infinity at the arrival of it. 

For large ranges, ro/zo »1 , it has only a sharp maximum and the 

solution approaches the solution of surface source [20J. A little 

after the arrival of S-waves, the peak due to Rayleigh waves can be 

seen if ro/zo ~ 5 [20J. Note that .the Green's tensor is not symmet­

ric, which means that the vertical displacement due to a radial force 

is not equal to the radial displacement due to a vertical force, 

5.3.2. Surface Point Fcrce 

The numerical results for different orientations of the surface 

concentrated force are shown in Fig.(13) for ro = 1. The results 

agree with Chao [7] for the radial force case and with Pekeris and 

Lifsrin [20] for the vertical forye case. At the arrival of P and S 
; ~ 

waves, the fi ni te jumps can be s~en, "and "~S the receiver moves away, 

the initial response is weaker." There is always a discontinuity at 

the arrival of Rayleigh waves, and the Green's tensor has th~ ~r6~ 

5.3.3. Buried Line Force 
i 

The numerical results for the buried line force are shown in 

Fig.(12) for ro = 1 and Zo = 0.5 .. The peak due to the Rayl~igh wave 

can not be seen as r Iz = 2, and it is expected to be seen for o 0 
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r /z > 5 
"a 0- [20]. If we compa~e ~he responses of the buri ed poi nt and 

buried line forces, they look similar, (Fig.ll,12). 

5.3.4. Surface Line"Force 

The numerical results for the surface line forces, DEF an BEH 

(Fig.10) are shown in Fig.(15) and (14) respectively. For the l~ne 

force DEF, along the x-axis, the oscillations due to the interference 

of the waves from different points on the line, are seen. On the 

other hand, for the line force BEH, along the y-axis, waves from 

different points on the line interfere in such a way that the final 

response is very similar to that of a point force placed at the 

origin, (Fig.13,14). Once again, uz{ar ) = -ur(az). 

5.3.5. Areal Forces 

The numerical results for two different surface areal forces 

are shown in Fig.(16) and (17). In the first, the load is taken to 

be distributed over a square with sides aqual to 0.1 and the distance 

. of the·receiver from the ceriter of the load is taken a~ 1 (Fig.8). 

In the second case, the sides of the square load is taken as 0.49 

while the receiver is again located at r~ = 1 (Fig.10). As seen, the 

responses in the first case are very similar to the point force case. 

Th"is is expected because in the former case the ratio of the size of 

the load to the distance ro of the receiver is 10 resembling the far 

field response while in the latter this ratio is 2 resembling the 

near field response of the half-space. In view of the above discus­

sion, we can conclude that the areal forces can be resembled by point 

forces safely if the far field responses are in concern. 

The above results can be used to explain the~effect of the 

size of the source and the receiver, namely, the transducer used 

in . Nondestructive Testing of materials. The namerical results show 
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that the fall time of the drop of the Rayleigh wave is finite for 

the ca~e~ of finite line and "areal sources, and zero for the case 

of a point source. It is found that the responses due to"areal (line) 

source-point receiver and point source-areal (line) receiver cases 

are equal, thus, the above analysis is valid for the receivers as 

well. It is also well pro"ven experimentally I3] that the size of 

the transducer affects its accuracy. For that purpose, transducers" 

are cal ibrated by considering them as either a source or a 

receiver. " 

In the calibration of a transducer as a receiver [10], a known' 

force is a~plied on the surface of alarge block~ and the response 

obtained by a standard transducer and a test transducer are compared. 

For this purpose, a transducer of "known characteristics or a transfer 

media of known thebretical solution is used. Note that the response :: 

of a capacitive transducer agrees with the theoretical solution [lOJ~ . 

Simple geometries such as a large block representing a half-space 

are chosen as the transfer media so that the transfer function of 

it can easily be calculated. The most widely used calibration tech­

nique is the step force technique [3,10] in which the force is app­

lied by means of a breaking glass ~apillary or a mechanical acoustic 

emission simulator. 

The response of a media due to arbitrary time dependency of the 
\~ 

source can be obtained by applying the principle of superposition. 

Mathematically, this principle can be written as 15,10] 

t 
h(t) = J G(T)f(t-T)d~ (5.l2) 

o 

where G(t} is the transfer function of the media due to a o(t) input, 
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f{t) is the input time function and h{t) is the output of the system. 

This equation can be evaluated numerically by breaking the total 

duration into n .int~rvals of 6t. In matrix form it can be written 

as ISl 

1 -- {h} = [G] if} 
~t 

(S.13) 

In the calibration of a transducer as a source [3], the response 

due to an unknown input force is picked up by a standard ;transducer. 

Then finding the transfer function of the media as explained above, 

the input.function can be calculated by deconvoluting Eq.{S.12). In 

matrix from, using Eq.(S.13), it can be written as 

if} .= _1 [Gr 1 {h} 
~t 

(S.14) 

Thus, in this work, we obtained the theoretical solution for an 

isotropic, homogeneous an~.elastic half-space due to the application 

of a point, a finite line and areal sources with a Heaviside's step 

input function. The solutions can be us~d as a comparison in the 

calibration of transduceis having different sizes. In the future, 

a layered media can be studied in detail, by applying the afore­

mentioned sources; and the effect of the size and the location of 

the source and the receiver can be analyzied. 
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·APPENDIX A 

DISPLACEMENT POTENTIALS FOR AN ARBITRARILY ORIENTED 

CONCENTRATED FORCE IN AN UNBOUNDED MEDIU~1 

In this appendix, a detailed derivation of the displacement 

potentials of Eq.{2.17) will be presented using an approach given 

by Achenbach [2]. 

For an elastic, isotropic and homogenous medium, the displace­

ment field, u, satisfies the equation. 

(A.l) 

Note that the parameters were previously defined in sec.(2~1). 

Consider a concentrated force of magnitude f{t), directed along 

the constant unit vector ~ .. and acting at the point ~o in the cartes­

ian coordinate system, (Fig.l). Thus, the force is represented by 

.' 

(A.2) 

where o{x-x ) is Delta-Dirac function. Now, we wish to decompose 
- -0 

Eq.{A.l) using Eq.{2.5)i The.result of the decomposition is 

'(2.6) 

If £(~,t) is given, G and H can be found. Consider the equation 

(A.3) 
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which is known as the vector Poisson's []~] equation. Solving for 

W,.we have [2] 

(A.4) 

where V is the volume of the body. Using the identity 

2 . . 
V W = V{V,W) - vx(VxW) (A.5) - - - - - --

in Eq.(A.3) and comparing the result with Eq.(2.5), we get 

G = V.W . H = -rJXW (A.6) 

Hence, considering Eq.{A.2) and (A.p), Eq.(2.6) can be written as 

(A.7 ) 

Now, introducing the following non-dimensional quantities 

~ = ~r-2 R = R/ro 
,.. 

, V = r V 
0 

_ 0-

(A.B) 

- -2 .... 
~l = ~l r 0 K = c/C t = tc/ro 
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Eq.(A.7) yields 

(A.9) 

where ro is the radial distance from the source to the receiver. 

Dropping the IIhat ll
, and taking Laplace transform after introducing 

(A.10) 

Eq.(A.9) becomes 

2- - 1 2-V ~ - f 1(s) - = s ~ 
R (A. 11 ) 

2 - 1· _2.2-
V W - fl(s) - = S K ~ 

R 

00 -st 
where i (x,s) = J ~·(x,t)e dt - -o 

Since the ·'inhomogeneous terms in Eq.(A.ll) show polar symmetry, it 

is easier to obtain the solution using spherical coordinates. Thus, 

Eq.(A.ll) can be wri~ten as 
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1 d (R2 d~) - 1 2-:-2"- -:- f,(5) -= s <I> 
:- R. aR . aR 1 R . (A.12) 

Introducing ~ = ~l/R (A.13) 

we get 

2-
~d <P 2- -. - _5 <Pl = f (S) 

dR 1 
(A.14 ) 

with the boundary condition that ~ has to be finite at the origin, 

R = O. Ther.efore 

(A.15a) 

and similarly 

(A.15b) 

At this step, taking Laplace transform of Eq.{2.5) and (A.10), we get 

(A.16) 
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Thus 

= ~(~.~~) - V(v·a~) + av2~ - - - -

Substituting the expressions for ~ and ~ from Eq.(A.15}, the above 

equation yields 

- f, IS' [ 2 2 u = ~2 -. Va ·V( 9 -g ) + aK s 9 ] 
- S -- - p s - s 

where 

-sR e 9 =_. 
p. R 

-sKR e 
9 =--s R 

(A.l7) . 

(A.18) 

Note that R is given by Eq.(A.7). Also note that Eq.(A.l7) agrees 

~ith .Pao and Gajewski [19]. The functions gp a.nd gs are called the 

radial wawe functions for longitudinal and shear wawes. Using 

Sommerfield~s integral representat10nl [8], 9 and gs can also be p . 

written as 

-sR . 00 I I 
9 = _e_ .= s J .1.. e-sn z-zo J (s~r) d~ 
p R ~o n 0 

(A'.~19) 

-sKR 00· ~ I I e = s J _'" .-e-S7; z-zo J (s~r) d~ 
gs ~ R 0 7;; 0 

where 
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(A.20) 

. , 

Ftom Eq.(A.17), we can obtain the components of the displace-
-ment, u, as follows 

(A.2l) 

f,((s) . 2 ()2 2 2 u (r,·s) = +[(a ~ + a:-z}(g -g ) + aSK g ] 
z - s r()r()z z()Z p s z s 

Note that the term f 1(i)/s2R in Eq.(A.15) does not appear in the 

expressions for the displacements, so it also ~on't be seen in the 

stress expressions. Dropping this term and using Eq.(A.19), we get 

(A.22) 

The relations between the potentials and the displacements 

are given by Eq.(2.l9). Using those and ~q.(A.2l), the expressions 

for the potentials .~ and X are obtained as (19]. 
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~ = -a f,{s) j 
Z S 0 

-sz;;lz-z I 
5 e 0 J (str) dE Y 0 

an~using Eq.{A.10) and (A.22), we get the potential ~ as [19] 

where E is the directivity parameter 

5 =-E 
P 

5· =-F,,/n p 
5· = E 

V 

(A.23) 

(A.24) 

(A.25) 



APPENDIX B 

THE POWER SERIES EXPANSION OF THE IIKII FUNCTION 

In the discussion of sec.(S.'}, it was said that the path of 

integration has a singularity at the upper limit of integration, sl. 

The singularity occurs, .when s approaches sl' due to the K function 

given by Eq.(4.22) as 

s s 
K(r,z, t;s) . - [s2r2 + (Zpri+zsz;;-t)21-! 

(B.l ) 

+0 remove the singularity, a new variable a, .given by Eq.(S.6), is 

introduced as 

(B.2) 

Thus, we get 

s a ---:.-- = --~--
(B.3) 

K(r,z,t;s) K(r,z,t;s(a)) 

The above equationisjundeterminate when a approaches zero. To remove 

it, the K function will be expanded into a power series around 0.=0. 

Note that Eq.(B.l) can also be written as 

(B-4) 

It is understood that the undeterminancy occurs due to the second 

-67-
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bracket in the denominator, for, from Eq.(4.l7) 

(4.17) . 

Thus; only that bracket will be e~panded into a power series. ~sin~ 

Eq.(B.2), we have 

2 2 2 ! 
+ zs(a + ~l + K) - t 

Then consider the following definition of power series expansion 

around a=O 

(B.5) 

(B.6) 

To apply the above :expansion in Eq.(B.5),take, L = ~l for the first 

bracket, L~ nl for the ·second and L = sl for the third, where 

Considering these values, we get 

K~r,z,f;~(a» 

1 1 2 
) + z (- - - ; + ... ) • • • P .J 

2n, 8 n, 

1 1 a2. J .t +z (- - - T + ... )-t } .. 
s 2s, _ 8 S, 

. ·(B.7) 
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Finally, substituting the above equation in Eq.(B.3), a's are cancelled 

and the uncertainty is removed. 

The above expansion is needed for the buried source problem. For 

the surface source case, the expression-for the K function can ea~ily 

be found. For this case, Zo = 0, thus, zp = Zs = O. Substituting those 

in Eg.(B.l) 

K(r,z,t;s) 

and using Eq.(B.2), we get 

Now, reconsider tp ~ Zs = 0 ,then Eq.(4.l7) yields 

t = -is r 
1 

Thus, Eq.(B.9) becomes 

or K = gr-

(B .8) 

(B.9.) 

(B.10) 

(B.ll) 



APPENDIX C 

SOURCE AND RE~EIVER FUNCTIONS FOR THE SINGLE FORCE 

1) Interior Source Functions 

S =-E P ... 

S' ",; -~/n p 

Sv = ~/r; 

S' = E 
V 

2 SH = K Ir;, 

2) Surface Source Functions 

3) Interior Receiver Functions 

D = -En zp 

D =-~ zv 

Drp = 0 ep = -~ 

Drv = Dev = -Er;, 

DrH = D eH = 1 

4) Surface Receiver Functions 

D = -2K~n(~2+r;,2)/~r zp 
2 Dzv = 4K nr;,~/~r 

D = D = 4K2r;,n~/~r rp ·ep 
D = De = -2K2nr;,(~2+r;,2)/~r rv v 

DrH = DeH = 2 
-70-. 



-71-

where 

Note that lf the vertlcal projectlon of a ray is in the positive 

z-direction, £=+1; if not, £=-1. At the surface of a half-space, 

where z=O, n = +1. 

. , 
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Figure 11. Response due to a buried point source. The ordinate 

is the normalized nondimensional displacement 

:u=U7fllro2/F andt=tc/r with r=l.and z· ;;"0.5· 
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Figure 12. Response· due to a buried line source. The ordinate is 

is the normalized nondimensional displacement 

2 " u=uTTllr/F
o 

and t=tc/ro \,/ith r o=l, zo=O.5 and.R.=O.49. 
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Figure 13. Response due to a surface point source. The ordinate 

is the normalized nondimensiona1 displacement 

u=uTI~r~/~o and t=tc/ro with ro=l and zo=O. 
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Figure 14. Response due to a surface line source, BEH. The 

ordinate is the normalized nondimensional displa-
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cement u=un~ro/Fo and t=tc/ro with ro=l and i=0.49. 
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Figure 16. Response due to the surface area source. The 

ordinate is the normalized nondimensiona1 disp-
. 2 ,. 

1acement u=uTIjJr/Fo an.d t=tc/ro with ro=l and: 1=0.1. 
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2 ,.. 
cement u=uTI~ro/Fo and t=tc/ro with ro=l and i=0.49. 
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