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ABSTRACT

Ana]ys1s of the trans1ent response of an 1sotrop1c, homogene—
ous and elastic half- -space due to the app11cat1on of a- p01nt, a fini-
te 11ne, and area] sources are presented in this thes1s The source
is either bur1ed or on the surface wh1]e the rece1ver is a]ways taken
on the surface. Solutions are obtained for vert1ca11y and rad1a]1y
or1ented sources and for d1fferent va]ues of z, depth of the source
and ro radla] dlstance from the source to the receiver, The response
due to f1n1te s1zed 11ne and area] sources are obta1ned by integrating
numerically the point source resu]ts along the line and over the area A
respectively. | | o | |

The results obtained dn this work'can be nsed to’exp]ain the

effect of the size of thevtransducershused'in Nondestructive Testing

of materials. Here, the solution gives the response of a half-space .

for a Heaviside's step input function.
" In the numerical oalculations, usingkthe'generalized‘ray theory,

the’response of the ha]f—space is expressed in terms of the contribh—

.t1ons from 1nd1v1dua1 rays. Each ray is expressed in terms of 1nteg-

ra]s in the comp]ex Laplace transform space, and the Cagn1ard s

method is used to take the inverse transform of the express1ons As

_each ray has a dlst1nct path and a certain arrival time, on]y the

rays that arrive prior to the time of interest are considered.
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UZETCE

Bu tezde; bfr nokta kuvvet, bir sonlu ¢izgi kuvvet ve bir
yUzeyse] kuvvet etkisindeki homojen.‘elastik ve isotropik bir yari
'uzay1n zamana bag]1 tepkls1 incelenmistir. Kuvvet yari uzayin icin-
de ya da uzer1nde a]1c1 ise daima lizerinde bu]unmaktad1r Kuvvetler

dikey ya da yatay olarak cesitli derinlik z_ ve yatay uzakliklarda

0
ro uygulanarak cﬁzUm]er e]devedilmistir: Sonlu ¢izgi ve yiizeysel kuv?
vet ngu]anmas1 durumlarinda cozimler, nokta kuvvet icin bulunan co-
zimlerin nUmerik olarak ¢izgi ya da ylizey lizerinde entegre edilmesi

ile bu]uﬁmustur. | | -

Elde edilen sonuglar, tahribatsiz malzeme kontro]]efﬁnde'kulla-
nilan cevireglerin (transduéer) yuzey alanlarinin kontrol iizerindeki
etkisini saptamakta kullanilabilir. Burada cﬁiUm]er yari uzayda -
"Heaviside basamak" fonksiyonu icin'buiunmustur.

Sayisal hesaplarda, genel daiga teorisi kullanilarak, yari uza-
yin tepkisi, ayr1 ayr1 dalgalara olusan tepkiler ginsinden ifade edf]-
mfstir. Her dalganin hareketi complex Laplace doniisim uzayinda intég-
rallerle ifade edilmis, ve ters doniisiimler Cagniard metodu kullanila-
rak elde edilmistir. Dalgalarin takip ett1k]er1 yol ve varis zaman]ar1
farkll oldugundan, sadece, 1]g11en1]en zaman 1c1nde a11c1ya ulasan dal--

galar degerlendirmeye a11nm1st1r
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Chapter 1
INTRODUCTION

The quality and integrity of a material is greatly affected
by the number and size of the defects such as cracks and<voids~con—
tained in the material. Under loading and service conditions, these
defects may cause failures. Hence, it is importanf to detect them .
before any failure occurs. The technology used to detect thesevde—
fects is called fhe Nohdestructive Testing of materials, and a wi-
dely used technique in this area is acoustié emission. To tesf a
material, forces are applied on structure; and the transient elastic
waves generated by the defects, due to the rapid release of energy
at these points, that is acoustic emissidns, are picked up.by sen-
sitive transducers p]éced on the structure. The recorded signals
~are used to find the location and the character Qf the defects.

To make an accurate evaluation of a hateria], the transducer
to be used should be calibrated. The transducers are calibrated as a
source and as a receiver, through a cbmpariéon with a standardAsource
and a-standard receiver respectively. For this purﬁqse, a trdﬁsducer
of known characteristics such as a capacitive tranéducerand a trans-
fer media of known theorética] solution is used. A large block
representing a half-space can be chosen aé the transfer media so
that its theoretical solution can easily Be obtained; In addition,
it is important to know the effect of the size of the source and |
- the receiver, namely, the transducer used in Nondestructive Testing |
of materials.

The purpose of this work is té study the responsé of a homo-
geneous isotropic ané elastic half-space due to a finite siied line
and areal forces. The basis for.such forces is the single concentra-

e
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ted force. :That is, the‘response due to thei}inite sized sources
éan be obtained by integrating numerically the single force results
over a fiﬁite Tine or area. Surface response of the half-space due
to buried and surface forces will be p%esented.

The method,of.generalized rays.wi1] be used in the mathematical
- analysis of the problem. In this method, the response of the media
is decomposed into contributions from fndividua] rays originating
at.the source location and reaching the receiver after travelling
different paths. Since each ray has a definite arrival time, only
a finite number of them have to be cach]ated within a given time
of interest. The expressions for each ray are interms of complicated
integrals in the cemplex Laplace transform space. The inverselaplace
transform will be fouﬁd using the modified'Cagniard DeiHoop method.

In Chapter II, the basic equations of e]asficity are given, -
and the_partiCu]ar solution for the displacements due to a single
force are fodnd; | | |

In Chapter I1I,abrief history of the méthédipf generalized
rays 15 giVen. Also in this chapter, the reflection coefficients at
a ffee surface and the ray solution for a half-space are discussed.
The expressions fof the source and receiver functions at different
locations afe also presented at the end of this chapter.

| In Chapter v, app11cat1on of the Cagn1ard S method and the

1hvers1on of Laplace transform are d1scussed in detail.

Finally, in Chapter V, numerical results are presented for a
point, and a finite line and areal sources. Surface displacements
of a half-space are given for different locations of the aforemen-

tioned sources-



Chapter II"

EQUATIONS OF ELASTICITY AND SOLUTION FOR

A-POINT SOURCE IN AN . UNBOUNDED.. MEDIUM

The basic equations of dynamic elasticity and the particular
sofution for a single concentrated force in an unbounded, isotropic,
-._homogeneous and elastic medium.wi11 be presented in this chapter.

The linearized equations of .motion and the solution of them for a
~single force in an infiniteAmedia can be found in the classical book
by Love [14] and Achenbach [2]. Here, these solutions will be given

in terms‘of Laplace transforms so -that one can modify them to the

half-space problems as well.

2.1. DYNAMIC EQUATIONS OF ELASTICITY

When forces are applied, a solid body deforms and the distance
between any two point changes. The ratio df,the ne1atiye changes to
the‘originai d{stanéesare ca]]ed,strainsjln this'wonk, as the strains
. are considered to be small, the linear equations of fhe thepry of
elasticity are used. | |
' In the linear theory of elasticity, for a homogeneous, isotropic

and elastic body, the displacement field, u(r,t), satisfies the

equation [2]

uV2

ur (W2Y(Tew) + oF = ol | BENCAY
where p is the mass density, A and u are the Lame constants of the-
material, F is the body force per unit mass and a "dot" denotes the
partia]’differentiation with respect to time, t. In the equation

2

above, V" is the usual Laplacian operator, and V: and Y are the
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divergence and gradient operators respectively. For an isof?opic
elastic material, the stress-displacement relations are given by [2]

0= A(V;E)I:+ 2u(Vu + uV)- . ) (2:2)

~

where g and ; are the Cauchy stress and unit tensors respectively,
and uy 1is the transpose of yu. |

Equations (2.1) and (2.2) must be satisfied at every interior
point of a body oc@upying a volume V ihAspace bounded by a surface
S. In adqition, the‘$61ution u must satisfy certain boundary
'conditioﬁs on 5 and fhe 5nft1a1‘conditions at t=0. The initial

conditions are usually of the.form

u(r:0) = uy(r)
(2.3)

u(r-0) = d5(r) »
while  the boundary conditions can be in térms of diép]aéements or
tractions or both. The boundary conditions involving tractions bn]y

are specified as

-
i
HQ
=)

on S - RS 2 '. : (2.4)

In an unbounded medium fadiation conditions must be.uséd instead
of boundary conditions. That is, all componenté of the displacement
vector must vanish at infinity. |

Our approach to solve Eq.(2.1) will be first to reduce it to

wave equations, using the Helmholtz decomposition theorem,



b =
|
1<
=
—
It
o

ARSI

| (2.5)

-
1

- VG + VXH

v <
S
I
o

where the single valued vector fields, u and F, are expressed in terms
of the gradient of scalar fields, ¢ and G, and the curl of vector
fields, w]and H, respectively. Substituting Eq,(2?5) into Eq.(2.1),

one obtains the wave equations in terms of the potentials,

czvz‘-'q; + G = (A+2u)/p

I
RS
-

(2.6)
Cg fvp/p |

|
=)

CZVZS;}l + L{ =

The potentials ¢ and w give rise to longitudinal-waves (P-anééj,_-'
ktrave111ng with a speed ¢, and shear waves(S waves), trave111ng
with a speed C, respect1ve]y Equat1on (2.6) g1ves the comp]ete
so]ut1ons of Eq.(2.1), (Sternberg [23] For p]ane waves the partic-
Te mot1on of a P-wave is in the direction of n, the normal to the
wawe front, and that of S~wave is in a plane perpend1cu]ar to n.

In curvilinear coordinate systems, the equatibns in termshbf
the vector potential are coupled, hence, itisdifficult to,obtaih a
solution. However, in theAcase of propagation of elastic waves. the :
particle displacement due to S-wave can be further decomposed into
two orthogonal components; one that is parallel to a inen direction
is called the SH or horizonta]]&Apolarized shear-ﬁave compohent while
the‘other oneiperpendjcu]ar to it is called the SV\or Qertica]]y
polarized shear waveleomponent. ih the case of waves in a half-space

SH-waves are associated with displacements parallel to the surface.



Thus, a decomposition of the form -
¥y = xe, + Vx(ve,) S (2

H=He, + Vx(Hpe,) (2.8)

is possible.
In these expressions, e, is a unit vector perpendicular to the surface

of the half-space. Using the decomposition, Eq.(2.6) yields

c2V2¢ +G=9¢
&Py +Hy = | (2.9)
2 2

CVx +Hy =X

and the initial conditions in terms these potentials will be in the

form

or0) = oo(r) 5 H(r,0) = d(r)

Wr,0) = Polr) s W(ri0) =g (r) (2.10)

x(r:0) = X(r.0) = %,(r)

|
Pad
o
—
s
~
w»

It is understood that ¢ gives rise to SV-wave and x to SHwave.
In the analysis of vaves in a half-space, we introduce the

following non-dimensional quantities



. .z G F
u=rl 5 tergie . TergW
_ .25 ' 3= 2 -
¢ = r0¢ ] w - row 3 X - rO X,
2.11)
2 B _ 2 e
G=cG , H2 =r.c H2 s H] = C H]

naQ
il

.(A+2u)§- . K afc/c

nAn

~ where shows the non-dimensional quantities and o is the radial
distance between the source and the receiver. Using Eq.(2.11),

Eq.(2.9) can be written in non-dimensional form

VY +«k H2 = K (2.12)
{725( + KZH] = KZ)—{

The sign "™ will be dropped, as all the quantifies in this thesis

will be non-dimensional.

2.2 PARTICULAR SOLUTION FOR A SINGLE FORCE

In this section, the solutions for the potentials ¢ , ¢ and x

will be obtained. For that purpose, Laplace transform of f(r,t),

denoted as f(r,s),is defined by



fir,s) = S f(r,t)e_-st dt :

~ o - , (2.13)
f(r,t) = 1 J Tc(r,s)eSt ds

= amig ”

" where s is the transform variable and Br in the second expression is
the Bromwich contour in the complex s-plane, which is a 1line parallel
to the imaginary axis and to the right of all singularities of ?kg,s).
Note that, the second equation defines the inverse transform.

Consider a concentrated force with a time function f(t) applied
at a point (0,0,z,) and acting in fhe direction of a unit vector a,

(Fig.1). -Vector a is defined as

(r,0,z)

] af(t)

Figure 1. Geometry of an oblique, concentrated force.
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I

I 1 B A B b | .
. . o ' | - (2.14)

ae- -+ a

e, + a_e
r<r 0=

6. Z~Z

where g1, gz, g3 and € €0 &, are the unit vectors in cartesian
and cylindrical coordinates respecﬁiye]y. Components of the vector
a in the cylindrical coordinatesare related to the components in

cartesian coordinates through the relations

o
n

a]cose + azsine

3y = -2;51nd + a,cosé (2.15)
4; = 23

Note that similar relations app]y‘for the unit vectors. The

concentrated force, F is representednby

P = aF f(t)s(z-z )8 (r)/2mr S (2.16)
The particular solution of the potentialé are (see Appendix A)

- ) o 2, _-sn|z-z

CP(rsSjsg) = a,s F(s) £ Spe n| ol.Jo(sgr)..;g dg

20, % o\ -snlz-z_|
+ ars’F(s) J Sse sn|z zoL J](sgr)g dg
: )

- vay . 2a © - -
x(r,sag) T3y S F(s) é Sue stz zol J](Sgr) dg
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@(g,s;g) = -asF(s) J Sve—sglzqzoldésgr) dg

(o]
2 ) "SCIZ“Z |
_arsF(s) i Sve ' %0 J](sgr) dg (2.17)
where
=/ 2/ 22 2 _ G :
F(s) = Fof(s) / 4mks ury s Sp = - ,, Sp = -¢ / n
S.=«fle . S.=E/C . S =c | (2.18)
S Ty S VR .

1

L = (~.£_:2+|<2-)J‘f s N (g2+l.)E s E = sgn(z-zo)
nandz are the slowness in the z-direction of the P and S waves
respectively.and ¢ is the directivity constant . Note that Eq.(2.17)

completely agrees with Ceranoglu [5].

2.3. DISPLACEMENTS DUE TO A SINGLE FORCE

‘In studying the response of a half-space due to a point source,
it is more convenient to use’the cylindrical coordinates (r,g,z).Using
Eq.(2.5) and (2.7), the relations between the disb]acements and the

potentials can be written as [2]

Y
u=2%9%;39 1 3

" or ardz r 26
1 1 5% |

%=_%4_.;En% (2.19)
rae. r 209z or ‘
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Note that in cylindrical coordinates

2. . ..
. V2 _ 9 +.l
9 r

ar

Substituting the potentials from Eq.(2.17) into Eq.(2.19), one can

obtain the vertical displacement as

o ) . .
u,(r,s;a) = s°F(s) {a, £ Sp0zpe sn|z-z,| Jo(skr) £ de

+a, g SVDZVe-SClZ_ZO'I.JO(sgr) £ dE

(2.20)
ta g s")DZIDe'ST”Z‘ZoI "J](sgr).:g dg
ta, é ,s\;Dzve’S?|z‘Zo| J '(s;r:)g’dg}

Te express the above equation in a simpler way, let one integral
represent both P and SV contributions and suppress the subscripts

p and v in both the source and receiver functions. Hence, Eq.(2.20)

can be written as

Y ‘3) = <9F P -sh(z,&)
G esia) = STHO) Loy 1Sy TR (sery € ae

o - (2.21a)
+a, 7 510,00 N2y (ser) £ a)
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] .
up.; (nss3a) = s7F(s) {a, f SJDrJe (z,g)s J,(str) € dg

-, £ 5, e (BB g (ser) £ ag)
5 , _
(2.21b)
v S F F(s) ( F s e SNi(ZE) g (aery g -
rr o J rJ . 1 , 3
+ SHjDrHje—Shj(z’g?ql(sgr) 9}
- ' §? sh{z,£)
Goglrsssa) = -2 & Fs) ¢ f T R NE O
v SHJDeHJ sz, | (sEr) dE ) (2.21c)
-3 oo Zch(: E - -
"33 () J Sg;Pens Wz ié)-‘]o(_szi’“) £.dg
where .
sz = =£N ’ DZV = -E
Dyp = Dgp =" » Dy =Dgy = 5 Dpy=Dgy =1
(2.22)
f n|z-z | for P-waves
hj(z,g)= { 0

tjz-z| for S-waves



-13-

Note that S and D denote thessource and receiver functions
Vrespectively. The subscripts r,p,z denote the directions of the
'dispfacéhents, and p;v,H‘thé P,S and SH wayes'respectjvely. The
transient response of the unbouhded medium can now be obtéined by
simply taking the inverse Laplace trans%orm of the expressions

given in Eq.(2.21).



- ~ Chapter III

METHOD OF GENERALIZED RAYS AND
SOLUTIONS FOR A HALFYSPACE

In a bounded medium, warag emitted by the.source travel along
different paths before they reach the receiver. Some of the rays travel
the distance between the source and the receiver directly while some »
get reflected by the boundaries. The method of génera]ized_rays is
based on expressing the so]utjon ih terhs of rays which foT]ow
different paths. -

In this section a brief hiatory of the method together with the
expressions for the reflection coefficiénfs will be given. Each ray
is identified with a source and a receiver function together with
different combinations of the refiection coeffients. The final
solution is then obtained by summing up all possible rays. To get the
inverse Laplace transform of the rays, Cagniard's method will be
used. As each ray has a uniqué arrivaT time; a finite number of them

are to be added up to get the transient solution.

_3.1; METHOD. OF GENERALIZED RAYS, A SURVEY OF LITERATURE

One of,tﬁe approaohes to study the_résponse of a medium onoer any
kind of éxcitation is to use‘the theory'of normal. modes. There, the
~ complete solution of tﬁe potentia1é ¢,V andX ofvK (2.9) are found
with two unknown coeff1c1ents for each wh1ch are determined by
applying the boundary conditions. Tak1ng the inverse transform, the
so]ut1on is found in terms of a summat1on with infinite number of terms.
Hence, the accuracy of the're$u1ts arev1imited with the numoer of terms
taken in the summat1on | | |

An a]ternat1ve method is known as the genera]1zed ray theory

-14-
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where the total.displacement is expressed in terms of the contributions
due to'different rays trave]]ing along different path;. Summing up. all
the possible rays, one can obtain,the final solution.

The gehera]ized ray theory was appiied to the propagation of
elastic waves by Cagniard [4] » When he studiéd the transient waves
jn two ha]f—spaceé welded together.vThrough a series of contour
deformations and change of integkationavariab]és , he was able to

Ffind the inverse transform of the expressions for each ray.
Lamb [12] solved the buried force problem in a'half—space when
‘he studied the propagation of earth tremofs over the surface of the
earth. There, he completed the inveréion of Fourier transform into
the time domain‘by chénging the integration variables in a manner |
very ﬁimi]ar to Cagniard's. Later on, Pekeris and Lifson [20] solved:
) the buried and surface source problems in a half-space. Lapwood [13]
and Garvin [9]»f0rmu1ated the buried line source'prob]eﬁ using the
generalized ray theory and Cégniardfs meﬁhod. Tangential surface
l]ogdvover a half-space was studied by Chao [71. |
~ On the other hand, NorQood [16] studied the case of rectangular
load and proposed a method to remove the singularities that are
along the integration path which made the analytica1~so]ution-for
the case of loads applied over finité régions, possible. Norwood
[17, 18], also, studied tﬁe céses of asémiinfinite'1iné, a finite
line, a quadrant and fectangu]ar ibad1ngs'écting at the surface of
a ha]f—space using the Cagniard's methodp

The generalized ray theory was also applied to the plate
problems by Sherwood [21], Spencer [22] and recently by Ceranoglu [5],
and Pao and Gajéwski [19] applied the method to a layered media. |

Until 1960, the individual ray integrals in the generalized

ray theory were found by using the Bromwich expansion of the exact
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solution. This procedure gets tedious for a layered media problem.
Spencer [22] showed that the integral solution for each of the multiply
~ reflected and transmitted rays in a layered media can be found by a

ray grouping technique. In that technique, the rays are grouped effec-
tively disregarding.their,moﬂe conversion history. Wu [24] and Norwood
[16] used this technique together with Cagniard's methodin solving the
problem of the propégation of transient waves in an elastic thick plate

under an afbitrary Toading.

3.2. REDUCED BOUNDARY CONDITIONS AT A PLANE SURFACE

The boundary conditions of Eq.(2.3) for a traction free surface

reduces to

(3.1)

t{e}

5

1]
o

In cylindrical coordinates, the components of the stress tensor are

related to the displacement potentials through the expressions [2,5]

2
. kk23by 2 _g_[_za__+9_iuz;_gza_\g]
22 2 52 T % as ez ez at
rz EZf-ar 3z 9z ~.3tt kr 90 9z o
g,y 210 b
%2 “r 90 Y 3z 3t2 . i or az-

If the equation of the surface is z=%, where % is a constant, then

Eq. (3.1) becomes

9,, = 0 atz=2 (3.33)

i}
©

0. =0 atz (3.3b)

rz
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Og, =0 atz=2" | ) (3.3c)

Substituting Eq.(3.2) into Eq.(3.3), one obtains the expressions for
the boundary conditions. To express the last two boundary condition

in reduced form, consider a function g (r,8) such that

2
(22 + 237?— Kzﬁ;) | =%
0z 0z g=g 99

. (3.4) -

Then the boundary condition (3.3b) is satisfied identically, and the
condition (3.3c) will be satisfied if the functiono(r,) satisfies

the équation

2 2 \ v .
‘930, 1 3o 1 3¢ '
___2.+.__._+ ___2.=0 (3.5)
ar” . r 3r. ;2.86 o

which is the Laplacian of g(r,0) in the plane i=¥£u Hence, g(r,e6) is
a harmonic function. Since the solution has to be bounded at infinity,
Liouville's theorem [15] states that ¢ (v,8)is constant. Therefore,

the boundary conditions of 'Eq.(3.3) reduces to

((kP-2)F o+ 22 %J,"’_Z% - EE ] =0

0z 9z 9z 7=2
e k2 | (3.6)
2z(222 + 228 - k) | =0 :
og 02 82 g ,
—/ 0¥
ZH|=(§§) | =0

z=4 z=4%
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where I shows the component of the stresses drz and g, due to
P-wave and S-wave, and ZH due to SH-wave. Note that Ceranog]u'[S]
-and Chandra [6] used the same boundary cond1t1ons Us1ng these

boundary cond1t1ons, the ref]ect1on coeff1c1entsfbr the tract1on"

free plare surface of the ha1f space ‘can be found

3.3 REFLECTiON COEFFICIENTS AT A FREE SURFACE

Waves emitted by a buried source in a half-space act like those
in an infinite medium until they reach to a point on the surface
where they are reflected and transmitted. Therefore, the particular
so]utions found in Chapter II are valid for the incident,waves on the
surface. Using Eq.(3.2) incident streﬁses can also be found.

The ref]ectiop coeffi¢ients at a free surface will be derived
considering the case of a concentrated single force inside a hé]f
space. Substitution of Eé. (2.17) 1n§o Eq.(3.2) after taking Lap];ce

transform yields

Oé;nc) - s4F(s ) fa, ¢ SpD(p) sn|z z IJ € de

+

- -sg|z-z,|
a, g SVDZZ Jg & dE

(3.7)

+

a, J spD(p S”IZ z IJ £ de

a g 7sopieselzZoly, £aey

+

‘where .

Ve e dind ol = 2erend | (3.8)
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Similar expressions can be obtained for‘i(inc)‘and i(inc)using Eq.(3.6).
In-a half-space, z> 0,;thewaves»that are generated at z=€)

will be reflected when they reach the surface z=0. On a plane surface,
-aPor Swawe will be reflected both as a P and S wave, which is .

known as mode conversion. However, a SHwave will be reflected as a

SH--wave only. The corresponding quantities for the reflected waves

can be expfessed as | |

ngef)’

=5 F(s){[a ¥ SpRppD(p) (z+z )J £ dt

pp (p) (z+z ).
2! SpR D, 0/-J, & dE]

+
o]
-8

2 ¢ ppsp(V) -s(nz +cz)
2] SpR DZz 0 40 g dg

+

™
ol
-

+ Z»S;Rpsngzié-§(nz°+§?)dl £ dt] (3.9)
+'[az°zszssb§\Z/) Sé(z+z J E dg |

+a Z sReS{Vese(#2,) 5. ¢ ag]

’;[a% ZASVRSpogg)e"S(CZof”Z)JO £ dE

*a, Z s;R§RD§§)e'S(§Zo+“Z)J] £ dg]}

Note that each bracket in the above expression represents a different
ray; the first is the incident P reflected P, the second is the incident
P reflected S, the third is the incident S reflected S, and the fourth

is the incident S reflected P wave. These different rays are identified
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with {heir reflection coefficients Rpp’ Rﬁg, RSS, R°P respectively.
Similar expressions can be written for 7(ref) ond i&ref).
The boundary conditions has to be satisfied by the total wave

field which is:the sum of incident and reflected waves. Adding.the

two and setting z=0 yields

- _ =(inc), -(ref), _ .

0zzlz=0". zz |z=0 +‘° , lvz=0_ 0

= _ =(inc), | =(ref) A . |

Z =t l,0 * 2 g™ 0 o (3.10)
= ‘ _ =(inc) =(ref) _

Iflmo = 2% oo v Iy lpgm O

onhe can obtain the generalized reflection coefficients for a traction

free plane surface as [5]

RPP _ R-;s _ [%ng +'(€2+§2)2]/M :

RPS = —ang (£%c2) /o

R5p§ (£)RPS R o | | (3.;1)
R < 1

Ar 2

ange? < (P4ch)
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3.4. RAY SOLUTIONS FOR A HALF SPACE

The complete solution of the displacements due to transient
waves in a ha]f-spéce is obtained by combining the particular so]q-
tions of sec.(2.3) and the reflection réys of seé;(3.3).

Considef a concentrated force acting at a pdint (0,0,20) with
the receiver at a point Q’(r,e,z), (Fig.Z).‘It is clear that the waves
reach to the receiver through different paths. First one is the path.
1 where é direct P-yave and a direct S-wave travel along. Note thet
the P-wave reaches to the receiver before the S-wave. As there is
no reflection in path 1, these Wéves are the direct waves just like
in an unbounded medium, (Fig.2). The waves thatbaré reflected at the
surface will reach to the receiver travelling along the paths similar
to path 2. The total vertica] displacement on the surface of the
half-space due to the waQes,travelling along path 2 is
RppDZpe-sn(z+zo)Jo;g-dg;

S(ref) v 3eray rra o
UZ - (r’s,f) =S F(S) {[azg Sp

vpPPR -
S'R DZ

: e—sn(z+zo?J] £ qg]

+
o
o8

p

oPSn  .~s(nz +gz), ...
*[a, SpRp D, € (n25+22)y < dg -
L ® oPSn -s(nzoazz) . Lo
+a g's R™°D_ e "1 702" d, & dg]

P

SvRssDzve-sC(z“o)d0 £ dg

o -8

“ia f S\.lesDZV'e—s;(z+zo)‘]] £ dg]
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0 r
29
1
Q(r,6,z)
1L A
z
(a) Direct wave, Path 1 ~ (b) Reflected wave, Path 2
r r r p
0 0 P oo ) -—
B s
z, z, S S z, S
G.:acr ‘ o
r0/20<1//2 ro/zo=]//2 ' ro/zo>]/¢2

tana=ro/z0 . tanqcr=1//2

‘ '(c) Head wave

Figure 2. Rays in a half-space
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2 o eSPy szztm2)
+[a% é S,R sze 0" £ dE
- 1 pS -s{zz 4nz) 4 _
+a, £ SR psze (£zgtn )J] £ d&]} | (3.]2)

As stated earlier, each bracket in>this expression represents a single
ray_propagating along path 2. The phaée of each ray is given by the
argument of the exponential term. In general the phase function is

written in the form

-sh = —s(nz. +72;) , | (3.13)

p

where zp and z, are the.total vertical components of‘the segments in a
particular ray, travelling in P and S modes reSpective1y. As each réy
has a unique arriva] time, only the ones that arrive prior to the

time of interest are cons1dered

The key point in Eq.(3.12) is that the terms in brackets are all

similar in nature, hence, one can wr1te the contribution of the Jtt
ray to the vert1ca] d1sp1acement as ‘:

- . _ — _S .-‘

u,;(r»ssg) 5 s F(s) {qz i S0 5e " 3 JoE dE

(3.14a)

é SJHJDZJe 5“3 3,8 dg}

Similarly prj,and Ugj can be written as
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up;{Lss58) = s F(s) {a, f S. IIJDme Jg]gdg

-a, f S'I.D .e S'H'Jbgdg}

J"3r]
(3.14b)
2 o she
+ 3 F j
S (s) a, {f Sk HJDrJe Jg?dg
> -sh,,. |
+f SHJHHJDY‘HJ Hj Jqdg}
_ 4 s2 ey
Ugj(r>s32) = - 5 F(s) 1 / SDgge S 3yde
o] h )
+{a.sF |
{ags (s) f SHJHHJDBHJ Hj Jo glqg (3.14¢)
52 = -sh
“ag 5 F ( )fSHJHJeHJ H 9y dey

where II's are the reflection coefficient for the jth

ray in a half-space.
Therefore, it is understood that each ray is expressed by a
definite source, receiver and phase -function, and a reflection coeffi-

cient. Along path 1, 1 .=1 as there is no reflection. Along path 2,

j=HHJ,
Hj=Rpp, Rps’ RSS and RSP for the mentioned reflected rays in P and S

modes and HHjél for the reflected SH-waves.

3.5.-EXPRESSIONS FOR THE SURFACE SOURCE AND RECEIVER FUNCTIONS

Until now, we discussed the case in which both the source and
the receiver were buried in a half-space. Now, the three other cases,

1h which éither the source or the receiver or both of them
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simultaneously on the surface, will be discussed.

3}5.T.Surface Source

To gét the surface source function, we consider thé buried
source. and burjed receiver case. Both P and S rays are emitted by the
source, and after reflection in addition to the direct P and S waves,
PP,'PS? SS and SP waves wi11 also reach to the receiver. Cons{der
only the ray integra]s-for khe P, PP and SP waves, In the limit as zg
apbroaches zero, these three integrals - Will combine and result in a

single 1ntegra1 with a new source function, (Fig.3)

s: = S, + SRPP 4 5 R°P | , (3.15)

This is the ray travelling the distance between the source and the .
. receiver as a P-wave. Considering'the ray integrals :for-S, SS and

PS waves and going through a similar prbcedure, an expression for the
source function of the ray travelling as a S-wave between the source

and the receiver can be obtained.

53 =5, SVRSS+.SpRpS . o (3.16)

Recalling that no mode conversion takes place for the SH-wave, the
surface source function, Sﬁ, for such waves is obtained from the -

SH-component of the integrals for S and SS waves. Hence

* s H (3.17)

3.5.2.Surface Receiver

The expressions for the surface receiver functions can be
obtained by going through a similar procedure outlined in the
previous section. For example, considering the integrals for the

BOGAZIG) UNIV ERSITESYKUT JPHANES\



-26-

(a) P-source (b) S-source

Figure 3. Raysruéedﬂin the derivation of surface source

- functions: ... . .

(a) P-receiver (b) S-receiver -

Figure 4. Rays used in the derivation of surface receiver

functions.
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P, PP and PS rays and taking the limit as z approaches to zero, yields
a single integral with a P-wave receiver function of the form, (Fig.4)
£ pp ps :

Dap = Dop * DypR" + DR _ (3.18)
Similarly, integrals for the rays S, SS and SP combine»together to-
give the surface receiver function for the SV-wave as

_ sS sp
av = Doy + DR+ D RSP o (3.19)

Accordingly, for SH-waves we have

-.':_ H_ ,
Dop = Dy + Dy = 2Dy, | (3.20)

3.5.3.The Source and the Receiver’on'the Surface

The expressions for the Caée, in which'both'the source and}the
receiver are on the surface, can be obtéfnéd by going through a
similar procedure outlined for tﬂe surface source case. Thig time,
in the Timit, as z and z, approachés to zero, a P and a S-waye}travel-
]1ng from the source to the réceivér can be obtained. One can gek the
same result in Eq.(3;]4), replacing the source function with a sur-

face source function, and takingan inside receiver function andI:=1.



Chapter IV

CAGNIARD'S METHOD AND
{, _ _.THE INVERSION-OF LAPLACE TRANSFORM

The general expressions for the disp]acementsldue to a concent-
~rated force was given by Eq.(3.14). A1l of the integrals appearing in

these expressions are of the two kind

Eo(r,z,s) JEE) E Jo(sgr)e—s(zpn+zsC) dg
(0]

(4.1)

i](r,z,s) = [ E,(£) gZJ](Qgr)e's(zpn+ZsE) dg
o _

where Ei and’Ez are the even‘functions of & involving the source and
the receiver functions, énd the reflection coefficient.'The'coeffi—
cients of these integfa]s are of the form s"F(s), therefore, after
finding the inverse transform of Io and Iy, one can obtain the final

solution through a convolution integral.

4.1. INTEGRAL REPRESENTATION IN THE t-PLANE

The representation of the integrals in the.g-plane are given by
Eq.(4.1). There,the key point in the application of Cagniard's method
is to use the integral representation of Bessel functions, J, and J7.

These are, (Abromovitz and Sfegun[]]),

2 .
2 .“/ izcosw
J(z)==Re. .S e " dw
4 - (4.2)
/2 .
J](z) = %-Im é e1zcoswc05@dw

-28-
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Using the above expressions in Eq.(4.1) and changing the order of

integration, as the integrals in £ are uniformly convergent for all

values of w between o and m/2, we get

/2 o

1 =2 -s(~iErcosw+z_n+z
I,(rsz,s) = “Re [ do S (g) e~S(-ibrcosurz iz z) @
‘ (4.3)
- m/2 '
I(rsz,s) =2m S cosw do f EE, (g) -s(-igreoswrz nizeg) ¢ gp
i 0

The most important point of the Cagniard's method is to make

the fo]]owing transformation
t = -ifrcosu+z.n + 2L = 9(r,z;E) : : (4.4)

In the complex £-plane, g(r,z;E) is a multivalued function with branch
‘points at £=11i due to the second term and E=tik due to the third:.term
in Eq.(4.4). Intro&ucing'thebranch cuts as shown in Fig.(5a),it becomes
single valued. These Sranches areﬁchosen such that if £ is real and
positive, the radicals are positive. 4

Considering £ as a complex variable, one can make the transfor-
mation of complex é-p]ahe to compdex t-plane, (Fig.Sbj. The original
Tine of integration, the real g-axis,is.mapped into the curve AfB'
in the t-plane. The ofigin, A', of this curve corresponds‘to the value

of t=tp where
tA = Zp ot ZSK

Note that the curve A'B' has an asymptoteof the form

-X _ S | (4.5)

where x=rcosw. On the other hand, by substituting'géiz, one can make



Im(g)

iC

K Mttt

Figure 5a. Z-plane

. Figuré 5b. Map of the £-plane in the t-plane.

_08.—



-31-

~ the transformation of the ihaginary g-axis,

- : 2,3 2_,2+%
t= X0+ 1-¢ -
L= xp- z‘p( 27) * 25(k"-27) (4.6)
Equation (4.6) show; that the points on the imaginary £-axis wiih
[2]<1 if z,#0 and the points with |o|<c if 2,=0 will lie on the real
t-axis. It can be shown that as g+, t approaches an asymptote

given by
S R B | | (4.7)
From the behavior of Eq.(4.6), the points that are mapped into

the real t-axis may be double valued if there is a stationary point

M. This point is an extremum.for g(r,z;&) satisfying the relation

- z. & z £
(.?I’.. = -iXx +_i_+ S

o s
ol B | (4.8)

This equation has the root &= "ify. Considering the surface response

of a half-space, we either have z or z, equal to zero, hence, this

p
equation can be solved for %y '
. o ) ' - ‘ '
= 5 C : (4.9)
M (zg FrAE - ,

where 2072, and o=1 for the P-waves and4io=zs and o=« for the S.waves
To render the single valuedness of the mapping, a branch cut is int-
roduced along the réal t-axis starting at the point ty. Thus, the -
segment AME of the positive imaginary g-axis is mapped into A'M'E'

in the t-plane where A'M' lies below the branch line and M'E' above,
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(Fig.5b). The point ty is given by

M+Z

2 2.1
’o(:a ‘zm)I (4.10)

Therefore, using the transformation giveh by Eq.(4.4), the .

expressions for Ip and I become

2 ra

I(r.z,s) = < Re I du - E,[E(t)] E(t) (dt)w e St i
(4.11)
/2
I (r z s) = é%~1m J cosw dw f 2[£ t)]g (t) dg ) St gt
0

4.2. INVERSION OF LAPLACE TRANSFORM AND TRANSFORMATION
INTO THE &-PLANE

The integral representations in the complext-plane were found
in Eq.(4.11),where the new path of integration is a]bng A'B'. Now
consider the contour A'B'L'M'A'. Since there are‘no singularities
inside this contour, the integral a]dng this_¢1osed‘contour, from
Cauchy's.principle, is zero. Also, as B'L' is moved to infinity, the

~integrand of Eq.(4.11] vanishes a]dng this portioh»of the contour.
Therefore,A'M'L’ cah be taken as the new path of integration along

the real t-axis, instead of A'B'. Rewriting Eq.(4.11), we have

'ﬂ'/2 [}

T 2 dg -st
,z,s) = = R " de :
I,(rsz,s) - e g duw {A E][g(t)]g(t) ( dt)we dt
(4.12)
S /2 o '
1,(r,z,s) = 2 Im; coswdw SE [E(t)]EZ(t) (JEL) e”St dt

A .
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The above analysis is true when wf/2. If w=r/2, Eq.(4.4)'becomes

t=zn+ 2.5 : : - (4.13)
* which means that the real £-axis is mapped directly into the real
t-axis. For this. case, ta=tys so it is understood that Eq.(4.12) is
also valid for w=w/2. Note that,.the integrals in Eq.(4.12) converge
uniformly for all Oswsm/2 and t except-at t=ty where»(dg/dt)whés a
half order singularity. Therefore, changing the order of integration,
we get '

© m/2
r,z,s) = [ 2 Re S Ey [E(t50)] g(t;w)(—d-g-)wdw}e_st dt

R 0

dt
t | (4.14)

IO(

I](r,z,s) = f
t

/2 '
ﬁ%.lm J Ez[g(t;w)] Ez(t;w)(gé) cosw du)}e—St dt
. 4N
A 0

w

que that if tﬂe Tower Timits of integfation were zero rather than -
tys the-abovg expression would have been in the form of the Laplace
transform of the quantities inside theﬁquybrackét { Y. This can be
achieved by introducing a Heaviside's step function H(t-ty). Thus
.the inverse Laplace transform of the expressions are simpJystheir .

corresponding integrands;with the Heaviside's fun;tion attached to them,

i.e.
2 o ™2 3
Io(rsz,t) = H(t-t) = Re é E, [E(t50)] &(tsw) (E— p 90
(4.15)
I,(r,z,t) = H(t-t,) = In 1}/2 E,[e(tsw)] £%(tw) (25 cosw d
1 sL A - 5 2 s : ) at W OosSw dw
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In calculating the above integrals numerically, for each value

of t, the values of £ have to be found for different values of w,
Oswsn/2. Also (dg/dt), will have a singularity at sdme value of w

for each value of t. Therefore, to overcome these difficulties
another change of variable is appropriate, namely the change of vari-
able w back to £. For this purpose we use the transformation given by
Eq.(4.4) once more. This transformation will allow to transform the
finite integral in the w-plane into another finite integral in the
‘g-plane. From Eq.(4.4) |

Zn+ zsg -t

cosw = —& , r#0 - (4.16)

iEr

Note that if &=0, then t=£Asz+st‘tfrom Eq.4.4) and the above expres-
sion becomes indeterminate. Using the 1'Hopitals rule, we find that

wn/2 as £+0. For @ = 0, Eq.(4.4) yields £ = £,(r,z,t)s where

t=-igyr+zmng +z,5y 5 Ny = (€%+1)% s L= (£2+K2)% (4.17)

P

Therefore,Eq. (4.15) becomes

o]

v2., 9. 9E, 9w
I (r,z,t) = H(t-t,) = Re [ E(g)-—)()ardﬁ
olrsZ .) i(t-t,) n g (rst) 1 Yt
(4.18)
0 z n+z _g-t. : ’
Lirz.) = B(et) 2In 1 gEy(8) B, D)k d

It is understood that g] is a'comp1ex number on the contour, AML,
which is the mapping of the real t-axis in the g-plane. The integrals

of the above equation are along AME, which is the finite portion of
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AML, (Fig.6a and 6b).
From Eq.(4.4)

N ~ircosw + 2. &/n + z _E/C

(&), = _P ST 7 (4.19) -
ok -irgsinw.

and using Eq.(4.8) we get

) :

(_g_)w(a_w)t -1 (4.20)
ot & 3E =irgsinw ' '

. Solving Eq.(4.16) for sinw and substituting it in Eq.(4.20), one

obtains

9 dw -1 |

(§i)s Gt = (4.21)

ot ‘w ‘93g ‘t iK(r,z,t5E) :

where K(r,z,t:g) = [gzrz +(zn+z2L - t)z]% (4.22)
" p o s .

Substituting Eq.(4.21) in Eq.(4.18), one obtains the expressions to

be used in numerical-calculations.

I(rzt)=H(t—t)—2—-I: §]E( ) £ 4
o\l 24t A-T:rmo ]E)'_K“E

(4.23)
g zn+2zZC -t
I(rz;t) = -H(t-ty) TZT? Im ﬁ] EE,(£) pA K s o

‘The K has a branch point at =&y, hence, a branch cut has to be int-

roduced at £q. "The branch cut is chosen such that the real part of

K is positive when real part of £ is positive.



Im(&)

Re(E)

Figure 6a. Integration path for the direct

and reflected rays.

A Re(E)

Figure 6b. Integration path for the refracted
rays when real part of & is not

zero,

-9¢-
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(In(e)

o

Re(£)

Figure 6c. Integration path for the cases of
surface source,'and refracted

rays when real part of £ is zero.
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4.3. ARRIVAL TIMES OF INDIVIDUAL RAYS

The expression for the arrival time of a ray, in the case of
a buried source and receiver in a half-space, can be obtained.

-considering Eq.(4.10) as
ty = Lyr cosw + 2‘(]—22)% + 2z 2_g2y3
M p M ; S(K 2

W O (s28)

The physical meaning of tM is made clear by the following analysis

of geometry. Let

Ly = sina = ksing , a,8>0 ; B<n/2 (4.25)
and
zptana = I cosw ’ zstan B = r,Cosw : _ (4.26)

Substituting the above expressions in Eq.(4.8) we get

- From Fig.(7a),it is seen that

_ rléosw , récosw
tang, = - -~y - tane, =
¥ 2 pa
Zp - S

(4.27)

Comparing Eq. (4.26) and (4.27), we get

e]"=a and 6, = B
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and Eq.(4.25) becomes

2y = sing; =« sing, (4.28)
Using the above analysis, Eq.(4.24) can be written as
ty = [rjcosu sing; + zpcosel] i[5 C08w sing,.+ 2,€050,] (4.29)

Note that this value of t(zM) is also a function of w. Then
tm(w) > zpcossl-+ ZSCOSBZ

where the equality exists for w=n/2. ty, fsua;COhtihUOUSFfunction of

w (O<w<r/2) and from Eq.(4.4)

39H{4n) - ~Zyr sinw
ow .

thhs,'tM is maximum for w—O. Now, Fig.(7).can: be1nterpreted cons1der—A
ing A as the source point, D as the receiver po1nt and EF as a:part
of the surface of the half-space. In Eq.(4.28)? 5ing;= ksindy, which
is the classical law of reflection of e]astic:wavés.

For w=0, Eq.(4.27) becomes
tan6]=r]/zp > tanbp=ry/zg

and the value of tM(D) is

ty(0) = [r1sine] + zpcose]] + K[rzsine2 + zécosez]' : (4.30a)
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Y‘-I Cosw rZCOSm

Figure 7a. Geometric 1nterprefétion of Eq.(4.29)

(e

Figure 7b. Geometric interpretation of Eq.(4.30a). |
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Note that the parameters in the above equation are non-dimen-

sional. Restoring the dimensions according to Eq.(2.11), we find

tM(O) = {g{r]sinel + zpcoSe]) +::%T(tzsin92 +'zsco$62) (4.30b)
This is exéctly the arrival time of the wave along the ray path AB as
a P-wave and the path BD as a S-wave. Therefore, the vaiue of f=tM
corresponding to the stationary value £=£M, is thé arrival time of the -
ray whose path has a total vertical projection of z, and Zg travel-
1ing in P and S modes respectively. It is called the direct arrival
time of those‘rays'that are reflected at the surface of a-half-space.
On the other hand, if the angle incidence of the S&mve‘is
greater or equal to the critical ang]e, ac where ac=sin']C/c, then
there wiT] be a refracted P-wave: travelling along the .surface of the-
half-space. It means that the ray travels the path from the source
t0'£he surface. in S mode and the rest in P mode. It means that, it
arrives to the receiver before the direct S-wave .and is-called the
Ahead:Wave Fbr the head waves', the slowness in the radial direction,
%,1s equal to fhe slowness of theILWavehTherefore,‘normalizing it
with the slowness of fhe P-wave and considering zp=0, one obtains
.the expression to be used in finding the arrival time of the head
. waves. theadlm=0"=»r + ZS(KZ;])% ' o (4.31)
A thirdwave which is known as the Rayleighwave exists with a
velocity Cp, which is less the shear wave velocity. It is giveh as
\§§=0.9194C [8] where C is the shearwave. velocity. The Rayleigh
waves decay as r=% in the direction of propagation anq exponentia]]y
wifh depth. They can not be explained by a single generalized ray.

The arrival time of the Rayleighwaves. can be calculated for the-

surface and receiver case as the distance and the speed are known.
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For the-burie&'source case, the point on the surface where the ..
Rayleigh wave originates due to diffraction is not known. Pekeris
and Lifson [20] found that there were no distinct peaks in disp-
lacement for the buried source case when ro/Zy<5.

Now consider the P and $ waves travelling from a buried source
to a surface receiyer. For the'P§ané 25720 zsfb and for the S-wave
zs=z¢ and zp=0. Solving for the upﬁer limit-of integration, £1> from

Eq.(4.17), one obtains

z 2 2, 2 2 .
0 A2 -
» a“(r +z,) , _itr ) A (4.32)

r + z
Zo r+zo . .

g'|=
where o=1 and k. for the P and S waves respectively.

4.4 CONVOLUTION OF RAY INTEGRALS

It was mentioned at the begihniﬁg of this chapter that the
integrals of the form I, and I] appearing %n the expressions of the
displacements had as their coefficients, terms in the form of_sn?(s);
and that the complete transient response would be given through a
convolution integra] involving the inverse Laplace ﬁransform of I's
and their coefficients. In our study n is either 2 or 3 and the
function F(s) ihvo]ves the Laplace transform of the time dependency

of the force input. Recalling Eq.(2.18), we have

s°F(s) = =8520— = G (s)

(4.33)

(V24
Ny
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Note that.if f(t) was a Heaviside's step function, f(t)=H(t), then

f(s)=1/s and the above expressions reduce to

4nK2ur2
4.34
61(s) = o (1) o
dc“ur s
0
Hence, the inverse Laplace transform of these quantities are
6,(t) = —20— 8(t)
4 ur
0
6, () = —F
1(t) 57— H(t) (4.35)
4me ury :

where §(t) is the Delta-Dirac function. Therefore, the integrals
with s??(s),as their coefficients should be convoluted by: 86(t) and
those withFSZ?(s) as their coefficients should be convoluted by
H(t). Note that - |

8(t) * f(t)

t
S 8(t - 1) f(t) dt
0

f(t)

(4.36)

H(t) * f(t) M(t - 1) f(t) dr

It
O~

f(t) dt

Il
O et
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In view of the above re]ations, for a.Heaviside's input, only the
integrals with sZF(s) as théir coefficients should be.integrated
from t=0 to t=t. However, since each iﬁtegra] has a specific arrival
time, the lower limit of integration is to be replaced by the corres-
ponding arrival time of the ray, i.e., the integration is from tAj to
t=t.

Thus using the above ideas, we take the inverse Laplace tras-

form of uzjand “rj(Eq-3']4) and get

u :(r,z,t) = —9— (a ,I_+a I,) (4.37a)
Z] 4“K2Ur§ z°0 rl
- Fo -
u_. (r.,z,t) 75 [(aZI] - arIo)
47 ury
a,. t ' t ‘ :
+—( I](Y,Z,T) dt + f i]H(r,z,T) dt)] (4.37b)
r 0 ) -

where H denotes the SH-wave.

Note that I]H(r,z,r) can be solved analytically, yieldinc
I]H(r,z,r) = 2K : : {4.38)

which agrees with the numerical results.



Chapter V

NEAR FIELD REéPONSEgr‘

.In this chapter, the procedure usedin calcu]atingithe‘ray»inf
tegrals will be explained and the response of a han—space due to .:
point, finite Tine and areal loads with Heaviside's step function
time dependance will be discussed. Both buried and surface sources
will be considered. In all the examp]es[pkeSented, the Poisson's ratio

for the»half—space;materia] is taken.as 0.25 corresponding td K2=3. .

5.1 PROCEDURE IN NUMERICAL CALCULATIONS

‘ih a ha]f—spate,waves_'radiatéd at the source location trave1
along different paths dependihg oﬁ the’oriéntation of the source.and
the receiVer- before they reach the recei?er. Therefbre, as a first
step in numericai ca]cu]ations,Aavsketch 6f tﬁe péssib]e'wave paths -
shou]d‘bebmade taking into accoUhf’ail thé réf]ectidns; (Fig.2);
Note that in all the exémpTes preééhted"%n this work, we have taken
the receiver to be on thevsurface of the ha]f—sbace. o ]
In the}case of a buried.soukce, the direct Prwaveﬂ(zp=zo, z5=0) |
and the direct_S-wavet(zp=O, 25=2,) are-thq-on]y possibieﬂwaves
reaching the receiverwon the surface, where z, is the depth of the
soufce. To start the numerical calculations, the stationary point‘of
the'Cagniard's path, e and the arrival time of the ray, ty, are
found using Eq.(4.9) and (4:10) respectively. If there is a head wave
effect in thé direct S-wave, the arrival time of it can be calculated
from Eq.(4.31). The upper limit of integration, g» for each value of
time, t, is obtained from Eq.(4.32). By choosing the appropriate
source function and the receiver function, the integrands of the in-

tegrals are formed and the integration along the path AME,, (Fig.6),
' ~45-



-46-

can be carried on.

For the R-wavés and the S-waves with no head wave, the stationary
point €y 1s below the point £=i. It can be shown that the integrandiof .
the integfa]s are all real valued for & below gy and since the imagi- . .
nary part of the integré]s are required as the answer, the response
is zero for t less tHan tM' This 1is. expected because, tM corresponding
to gy is the arrival time of the individual ray and no response is
expected prior to the arrival of it. Hence, the pathﬁAMg] can be rep-
laced by the path QMg] as the integral is zero along AQ; At point M,
| the path ]eayes the imaginary £-axis and goes along ME].

Now lets consider the contour QMg]PéP]Q. The integrals have no
singularities inside this contour. Thus, we can replace the integfa—
‘tion along QMgq by fhe sum of the integrations along the straight
lines QP;, P1Py, Pogy, (Fig.6a). This is chose%, since it 1§ much
easier to evaluate the integrals a]ong'the straight lines. Q, P] and
Po are called pivot boints. The ]pcation of the bivot points were

chosen as follows. Let g] be expressed as gfa+5b, then

If a<0.05y,

Q = 10.8g, |

Py = 0.05%, + 0.8, | (5.1)
Py= 0.054, + i[0.9b + 0.3(0.8g, -

and if a>0.055L’M
Q= 1‘0.82M
Py

(a + 0.03) + 10.82M . (5.2)
(a + 0.03) + i(b-0.08) _ :

]

In the case of S-waves with the head wave effect, the statios '

nary point M lies between the points &=i and g=ik. It can»be shown

that the integrals are zero for the values of &7 below £=i which
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corresponds to the arrival of the head waves. (Eq.4.31). For these

rays, the pivot'points Py and Py are chosen as shown in Fig(6c) if

g] lies on the imaginary £-axis and as in Fig.(6b).otherwise. Again

representing g] as a+ib, the points Q,%P] and P2 are chosen as

If afd, that is £, is on the imaginary £-axis
Q= 10.9

P] = 0.05 + 140.9

P2 =0.06+ ib ,

if 0%a<0.05

Q = 0.9

P] = 0.05 + 0.9

P, = 0.05 + (b-0.08)

and if a>0.05

Q =-10.9

P1 = (a + 0.03) + 0.9

-l

P2 (a + 0.03) + i(b-0.08)

Note that there is a half order singularity at

(5.3)

(5.4)

(5.5)

g£=E, on the Cagniard's

path due to the K function. To avoid it, a new variable, a, is int-

roduced such that
o= (Sz-g%)% ., oda = EdE
=172 2%

where op is the value of o at point P,.

(5.6)

This transformation reduces ‘the integrals of Eq.(4.23), along Pzg] to
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2 0 . o
1| = H(t-ty) = Im J/ E,[E(a)] — d
0'P2E4 A‘v“ ap, 18] K[r,z,t:8(0)] ¢
( (5.7)
o -t
Llp g = -H(t-ty) Ly E,[£(e)] zpnie)r2geie) 1] e
_ 2°1 oo,  Kr.z,t58(a)]

When o approaches zero, the term a/K in the above integrals becomes
indeterminate. To remove this; the K function i; expanded into a
power.series around a=0, and thé common factor o is cancelled py.the
o in the numerator, (Appendix.B).

Fiha]ly each of the integrals along QP], P]Pé qnd Pzglin the
complex g&-plane can be trénsfofmed into an integration with respect to .
a- real variable, y, in the interval [-1,1], using the following o
transformations.

Along QP1

(5.8)

(5.9)
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Along P]P2
o= (1-y)ap /2 da_ o /2
: 2 . dy Pa.
o (5.10)
2
£=(a *‘«‘Z%)I . L
do
‘Thus, Eq. (4.23) yields
+1 '
_ 2 - £ dg
Io=H(t-t,) = Im[ s (E, =), dy
0 A -1k dy o
41 C+] Sl »
+ 1 (E _E__E_)P b dy + 7 (E L“_ﬁ_)p e 4]
-1 Kdy "12 -1 K dy "221
: ) 2 [ +1 t-zpn—zsz dg. .
= H(t-t,) — Im[ J (E NE —)2 dy ~ (5.11)
1 A 7 ? 2 dy QP] . 7 ‘
+] t-zpnéz 4 dg |
+ [ (E )
-1 2 K dy P]PZ dy
+1 t—zpn-isc aa
+ S (E & —)p £ dy]
-1 K dy " 2°1

The above integrals can be calculated using Gaussian quadrature .~

integrations.

If the source is on the surface, we choose the ray groups and
the- surface source functions as explained in seg.(3.5)}_1n the
numefica] calculation of the ray'integrals, the procedure explained
for the buried source case is used with the following exceptions.

The integration‘bath of the Cagniard's path lies along the imaginary
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g-axis, and the path shown in Fig.(6c)andthe pivot points given by
Eq.(5.3) are used. Also, for the K function, the power series expan-
sion is not needed, as Kera, (Appendix B).

5.2. NUMERICAL RESULTS

5.2.1.Point Source

Since the response of a ha]f—spacé due to either a buried or a
surface point source has been studied in great detail [20,7,12], we
present some of the resu]tsAfor completeness. .

Numerical results for different orientations’of the concent-
rated force are shown in Fig.(11) and (13). Note that a positive
direction for the displacement is the direction of the positive

z-axis which is taken into the half-space.

5.2.2.Finite Line Source

The response of a half-space due to finite sized line sources
can be obtained by integrating the point-sourcé results along the
line which éhéracterizes thé finite line source. Since the analyti-
cal integration is very difficult, in our work, we carry out this
integration numerically. For this,the line Seg$ent is divided into n .
edua] parts and a concentrated force is assumed to act at the middle
of each segment, (Fig.é and 10). The final solution is then obtained
by sﬁmming up the responses due to each concentrated forée.

| Numerical results for the buried line sources are presented
in Fig.(12) while those for surface line sources are shown in
Fig.(14) and (15). The distances involved in such problems are all

normalized with respect to the distance of the receiver from the

center of the line source.
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'

y

Figure 8. 5x5 point surface square area source approximation

with 2=0.1 and OR=r=1.

Figure 9..7.point buried 1ine source approximatidn with 2=0.49,

r0=] and zo=0.5.



Figure 10. 7x7 point surface square area source and 7 point surface line source, BEH and DEF,

approximations with 2=O.49:and'ER=r0£1.'

_ZS_
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5.2.3. Finite Areal Source

The response of the half-space due to finite sized area1~sour—
ces can be obtained by 1ntegratingrthe,pointrsource results over the
area which characterizes the finite areal.SOurce. In:the numerical
- integration, the area is divided into n equal subareas and a concen-
trated force is assumed to act at the middle of each subarea,
(Fig.8-and 10). The final solution is then obtained by summing up
the responses due to each concentrated force.

Numerical results for the'surface areal sources are presented
in Fig.(16) and (17).:The distances involved in such problems are
all normalized with respect to the distance of the receiver from

the center of the areal source.

5.3. DISCUSSION AND CONCLUSION

The ana]ys1s of the transient surface responses of a homoge-
heous, 1sotrop1c and e]ast1c half- space due to the app]1cat1on of -
a po1nt, a finite line, and area] sources are presented in this workt
Before start1ng the actua] ca]cu]at1ons, the resu]ts obta1ned from
the computer program for an 1nf1n1te med1a are compared with the
correspond1ng ana]yt1ca1 resu]ts g1ven by Love [14] and Achenbach [2].
The resu]ts agreed up to 6- 10 dec1ma1 po1nts when 32 po1nt Gauss1an
quadrature integration was used. A]so,the ana]yt1ca] so]ut1on of the
ihtegra] due to the Sd-wave completely agrees with the'humericalb
results (Eq.4.38). o

In the following sections, the behavior of the time-displace-

ment diagrams will be discussed for the previously described sources.
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5.3.1. Buried Point Force

The numerical results for different orientations of the buried
concentrated force are shown in Fig(11) for ro/z0 =2and r, = 1.
The results agree with Pekeris and Lifsen [20] for the vert%ca] force
case. In the diagrams, the finite Jumps can be seen at the arr1va1
of P and S waves. If r /z > 1//2 s there 1sa head wave and the
displacement is marked by logaritmic infinity at the arrival of it.
For large ranges, ro/z0 >>1 , it has only a sharp maximum and the
solution approaches the so]ution'of surface s0urce [20]. A little
after the afriva] of S-waves, the peak due to Ray]eigh Waves can be
seen if r /z > 5 [20] Note that the Green's tensor is not symmet-~

ric, wh1ch means that the vert1ca1 d1sp]acement due to a radial force

is not equal to the radial d1sp]acement due to a vertical force,

”z(ar) # ur(az)..

5.3.2. Surface Point Force

" The numerical }esults for different orientations of the surface
concentrated force are shown in Fig.(13) for ro = 1. The results
agree with Chao [7] for the radial force case and with Pekeris and
Lifson [20] for the vert1ca1 force case. At the arrival of P and S
‘rwaves, the f1n1te Jjumps can be seen and és the-rece1ver moves away,
“the initial response is weaker. There is always a discontinuity at

the arrival of Rayleigh waves, and the Green's tensor has the pro-

perty, uz(ar) ='—ur(az).

5.3.3. Buried Ljne Force

The.numerical results for the buried line force are shown in

Fig.(12) for r = 1and z = 0.5..The peak due to the Rayleigh wave

can not be seen as ro/zo‘= 2, and it is expected to be seen for
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ro/z, 2 5 [20]. If we. compare the responses of the buried point and

buried line forces, they look similar, (Fig.11,12).

' 5.3.4. Surface Line Force

The numerical results for the‘sﬁrface line forCes, DEF'ah‘BEH
(Fig.10) are shown in Fig.(15) and (14) respective]y.lFor the Tine
‘force DEF, along the x?axis, the oscillations due to the interference
of the waves from different points on thé line, are seen. On the
other hand, for the ]inejfofcé BEH, along the y—axis, waves from
different points onrthe line interfere in-such a way that the finé]
~response is very similar to that of a point force'placed at the

origin, (Fig.13,14). Once again, u,(a,) = -ur(éz).

5.3.5. Areal Forces

The numerical results for two different surface areal forces
are shown 1n.Fig.(]6) and'(]7). In the first, the load is taken to
be distributed over a square with sidés aqual to 0.1 and tHe distance
~of the receiver from the ;ehter‘of the Toad is taken aé 1 (Fig.8).

In the second case, the sides of the Square load is taken as 0.49
while the receiver is again 1bcated at ro =1 (Fig.10). As seen, the
responses in the first case are very similar to the point force case.
This is expected because in the former case the katio of the size of
the Tload to the distance ro of the receiVer is 10 resembling fhe far
field response while in the latter this ratio is 2 resembling the
near field respoﬁse of the half-space. In view of the above discus-
sion, we can conclude that the areal forces can be.resemb1ed by point
forces safely if the far field responses are in concern.

The above results can be used to explain the-effect of the
size of the source and the receiver, namely, the transducer used

in . Nondestructive Testing of materials. The numerical results show
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that the fall time of the drop of the Rayleigh wave is finite for
“the cases of finite line and areal sources, and zero for the case
of a point source. It is found that the responses due to-areal (line)
source-point receiver and point source-a?ea] (line) receiver cases
are equal, thus, the above analysis is valid for the receivers as
well. It is also well proven experimentally t3] that the size of
the transducer affects its accuracy. For that purpose, transducers -
are calibrated by considering them as éither a source or a
receiver. .

In the calibration of a fransducer as a receiver'[10],a.known‘
force is app]ied on the surface of alarge block: and the response
obtained by.a standard transducer and a test"transducer‘are compared.

For this purpose, a transducer of 'known characteristics or a transfer

media of known theQretical so]ution is used. Note that thé response -

of a capacitive transducer agrees with the theoretical solution [10]. .

Simple geometries such as a large block representing a half-space
are chosen as the transfer media so that the transfer‘functioh-of

_ it can easily be calculated. The most widely used calibration tech-
hique is the step force technique}[S,IO] in which the force is app-
lied by means of a breaking g]assyéapi11ék9 or a mechanical acoustic

emission simulator.

The response of a media due to arbitrary time dependency of the

source can be obtained by applying the principle of superposition.

Mathematically, this principle can be written as [5,10]

h(t) = S G(t)f(t-t) dt :  (5.12)

o e+

where G(t) is the transfer function of the media due to a §(t) inputs,
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f(t) is the input time _funct1on and h(t) is the output of the system.
This equation can be eva]uated numerically by break1ng the tota]

durat1on 1nto n dntervals of At, In matr1x form it can be wr1tten

as |5}

1 | | - -
— {h} = [G] {f} .
v [G] | | ) (5.13)

In the calibration of a transducer as a source [3], the response
‘due to an unknown input force is,piekedrﬁp by a sfahderd;transtCer.
Then finding the transfer function of the media as explained above,
the 1nput function can be calculated by deconvoluting Eq (5. 12) In

matrix from, using Eq.(5.13), it can be written as

£} = — [a]7" ) R S (5.4)

At

Thus, in this work, We'obtained.the theoretical solution for an
_isotropic, homogeneous ana.elastic half-space due to the application
of a po1nt a f1n1te ]1ne and area] sources W1th a Heav1s1de S step
V1nput funct1on The so]ut1ons can be used es a compar1son in the
calibration of transducers having different sizes. In the future,

a layered media can be studied 1n'detai1, by applying the afore-’s

mentioned sources; and the effect of the size and the location of

the source and the receiver can be analyzied.
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APPENDIX A

DISPLACEMENT PQTENTIALS FOR AN ARBITRARILY ORIENTED
CONCENTRATED FORCE IN AN UNBOUNDED MEDIUM

In this appendix, a detailed derivation 6f the disp1acemen£
potentials of Eq.(2.17) will be presented using an approach given
by Achenbach [2]. |

For an elastic, isotropic and homogenous medium, the displace-

ment field, g,vsatisfies the equation.
. 2 . c . e P
wWu  + (Mu)Wiu + pFi'= pu : . (A.1)

Note that the parameters were previously defined in sec.(z;])_;
Consider a concentrated force of magnitude f(t), directed aiong
the constant unit vector a. and acting at the point X5 in the cartes-

ian coordinate system, (Fig.1). Thus, the erce is represented by
Fo(x.t) = af(t) s(xx)) | | (A.2)

where 6(x-xo) is Delta-Dirac function. Now, we wish to decompose

Eq.(A.1) using Eq.(2.5): The result of the decomposition is

¢2v2¢ +G6G=249
(2.6)

2 2 .
Cv ?1 tH= $1

- If F(x,t) is given, G and H can be found. Consider the equation

Vo W=F | (A.3)
-60-
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which is known as the vector Poisson's [15] equation. Solving for

W, .we have [2]

w="Ll ;s E—(—i—)-dx

Y Ay 'V,' |x-x"| = (A.4)
_ where V is the volume ofAthe body; Using the identity

= BT - T ~5)

iﬁ Eq.(A.3) and comparing-tﬁe feéu]f with Eq.(2.5), Qe;éét>

G = Z.H s H=-UXW v‘ (A.6)

Hence,bconsidering‘Eq.(A.Z) and (A.6), Eq.(2.6) can be written as

o
ol - HE gz o g
47 = =R

(A.7)
a .
C2V21p.| * .ﬂ_E)_ VX (—) = ?
- 47 ~ R
: 2 2 2
where R2 = (x:xo) + (y—yo) + (z-z,)
Now, introducing the following non-dimensional quantities
" -2 R = V=rVv
= gr, » R=R/r, , V=ry
. (A.8)
Y=Y ro? = L %2= tﬁ/r
t1=%1 o , K = ;/C > 0
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Eq.(A.7) yields

R . "E.

@ - H05 - §

aD - . 3 e

V¢]+K2f](t)Yx (:_AR_-)= KZQ)-‘ (A.g)

where ro is the radial distance from the source to the receiver.

- Dropping the "hat", and taking Laplace transform after introducing

g = v-(a9)
(A.10)
LA =.vx(ay)
Eq.(A.9) becomes
v - By(s) =58 .
R . | . (A
vey - ?](s)-% - §%%9

-~

where & (X,8) = J @1(x,t)e'5t dt
- )

Since the “inhomogeneous terms in Eq.(A.11) show polar symmetry, it

js easier to obtain the solution using spherical coordinates. Thus,

Eq.(A.11) can be written as
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1 % 255
(R —) -
-g2 )

zeey 1o o2z S
— - f(s) —=5%%
R 3R i )R ) | (A.12)

Intrqducing ® (A.13)

It
o
—
~
=

we get

2-

Egiﬁ%- RO | (A.14)

with the boundary condition that & has to be finite at the origin,
R = 0. Therefore

3(R,s) =-§%é§l, (e SR.1) ~ “(A.15a)

and similarly

§ (R,s) = E%éil (e”S<R_1y ' ' | (A.15b)

At this step, faking LapTace transform of Eq.(2.5) and (A.10), we get

e
n
<
<
+
<«
>3
-
oanad

¢ = V-(ad) o © (A.16)

1
—
i
1
<
b3
—
[+3]
<]
~



-64-

e
I
<
—~
13
L)
L]
Lo
!
<]
b3
—
<l
>
o)
&1
~—

(Kzszﬁ e Kzf] (s)/R)

il
<]
<1
m
'e'l
'-EI

S
.|.

Substituting the expressions for & and ¥ from Eq.(A.15), the above

equation yields

o= F10S) rvanura - 2.2 ~
Ch. [Va-¥(g,-g,) + ax"s%g ] (A.17) .
where
-sR : -skR
_e e
gp ._._ T s gS = R 7 . (A.]S)

Note that R is given by Eq.(A.7). Also note that Eq.(A.17) agrees

wfth’Pao and Gajewski [19]. The functions g  and g, are called the

p
radial wawe functions for longitudinal and shear wawes. Using

Sommerfield!s integral representation]|[8], gp'and g can also be

written as
-sR o
e £ _-snjz-z_|

== =35 [ =¢ o'J _(sgr) d

% — sro,n . Q( gEr) dg
_ (AC19)

e s 7 E e75t1220ly (ser) de

9, T R 0 L 0

where -
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= (EZ;])% ’ g = (€?+KZ')%
| (A.20)

%= (i) (yey,)?

From Eq.(A.17), we can obtain the components of the displace-

ment, U, as follows

= "2 2
- _Ti(s d 0 2 2
u (r,s ._.__]._(___). o -
~(r5s) 2 ‘[(aﬁ;;? +,azaraz)(gp gs)vf’ars kg ]

- S

52
+ az——g) (9,-95) + a, s S]

iy(r.5) = afody(a, 2

araz
Note that the term ?1(5)/52R in Eq.(A.15) does not appear in the

expressions for the displacements, so it also won't be seen in the

stress expressions. Dropping this term and using Eq.(A.19), we get

(A.22)

&(r,s) = —li_l.z _%.e'snlz'zolJo(sgr) dg
__iﬁl

2 £ omstlz-z]
g z -e 0 Jo(sgr) dg

»el
't-s

The relations between the potentials and the dfsp]acements
are given by Eq.(2.19). Using those and Eq.(A.21), the expressions

for the potentials § and  are obtained as [19].
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v =-a 'féiél-? Sye—sclz—zoido(sgr) dg
o VY .

Fi(s) © <1 .-stlz-z.|)
-a,. —%i—l-é Sye g kolq](sgr) dg (A.23)
X = -a, f(s) 7 SHe"Sglz'zo}J](sgr)~dg
and using Eq.(A.10) and (A.22), we get the potential ¢ as [19]
¢ = V-(a9)
- < -snlz-z
= f](s)azlé Spe | olJo(sgr) £ dg - (A.24)
z © o .-~snlz-z_|; /.
+f1(s)a, é Spe 0 Jj(sgr) £ dg
‘where € is the directivity parameter
= = 22 s = 2/
€ = sgn(z—zo) s f](s) = f(s)/4urc R y=x/g

(A.25)

s,=€ > Sy=c&m . S, =&, Sy=¢




APPENDIX B

- THE POWER SERIES EXPANSION OF THE “K" FUNCTION

In the discussion of sec.(5.1), it was said that the path of
integration has a singularity at the upper limit of integration, €1
The singularity occurs, -when § approéches g1, due to the K function

given by Eq.(4.22) as

: = e ’ (B.1)
K(r,z,t:g) - [gzr2 + (zpﬁ+zs;_t)2]% v ‘ ’ '

Fo remove the singularity, a new variable o, .given by Eq.(5.6), is

introduced as

g2 = (oF4ed)? | (8.2)

Thus, we get

- “ . (B.3)

i K(Y,Z,t;g) ) K(r,z,t;E(a))

The above equationis;undeterminate when a approaches zero. To remove

it, the K function will be expanded into a power series around o=0.

Note that Eq.(B.1) can also be written as

< ' (B-4)
[(i£r+zpn+zsc—t)(—i£r+zpn+zsc-t)ﬁ

£ _
K

1t is understood that the undetermihancy occurs due to the second

-67-
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bracket in the denominator, for, from Eq.(4.17)

= - - ' .
2 : (4.17)
Thus, only that bracket will be expanded into a powér series. Uéiﬁgr
Eq.(B.2), we have ' S

A]

2 20% 2
+E]) T+ zy(a ¢+;g% +1)°

-igr + Zon + 2.8 - t = -ir(q

2 2 3 :
+ zs(a + E] + Kz)I -t (B.5)

Then consider the following definition of power series expansion

around.a=0
2 . k4 6 8 10 12
2 2 1o 1 a 1 5 o 7 ‘o 21 o
(0" +L°)= L+ ——"-—==5+— - — + = - — +
2L 813 16L° 128 L7 256 U0 1024 LV
(B.6)

To apply the above :expansion in Eq.(B.5),take, L = gy for the first
bracket, L = ub for the second and L = Zq for the third, where

R I

Considering these values, we get

1 A 1 2 ? 2
Keroz,tie(a)) = (ir(oleed ez (a@sgianFaz(aPoelnd’) -t]o
2 2
1 o 1 1 a
Sip( - = ) F 2 (— - gt
[ 2, 8E Pon, 8
2 3 . |
1 1o
+7 (—_.__——-—3——+ )—t]} . (B.7)
s 2z, 8¢
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Finally, substituting the ;bove equation in Eq.(B.3), a's are cancelled
and the uncertainty is removed.
The above expansion is needed for the buried source problem. For

the surface source case, the expression for the K function can easily

be found. For this case, z, = 0, thus, z_= Zg = 0. Substituting those

p

in Eg.(B.1)
K(r,ft;g) (azr;%nz)"’ (8-5)
and using Eq.(B.2), we get

Q. - o
K(r,z,t;E(a?) i (q2r2+§$f2¥t2)% | o (B.9)
Now, reconsider zp % zs'é 0 , then Eq.(4.17). yields
t = -'1‘51{« | o (8.10)
Thus, Eq.(B.9) becomés :

or ‘ K =ar ' (B.11)

= e
1
~ |—




APPENDIX C -

SOURLE AND RECEIVER FUNCTIONS FOR THE SINGLE FORCE

1) Interior Source Functions

SP'=‘ &
S! = -

D E/n
Sy = &/t
S& =g

_ 2
SH =k /C

2) Surface Source Functions

Sp = 92K2(£2+;2)/Ar

56 = 4K2£;/Ar

$V = -4K2n£/Ar

sy = 2¢2 (%% /ar
a2

Sy = &/t

3) Interior Receiver Functions

D,p = -en

Doy = €

brp = Dep = -
Dpy = Doy = et
rH = DeH =1

D

4) Surface Receiver Functions

sz = -ZK%Qn(g2+§2)/AF
= 2 lrrE/)
D,y = 4k nzE/Ar
=D = 4l
Dpp = Dgp = 4c"Tne/Ar
Dy = Doy = -2kt (£%+c2) /o

D =DH=2
rH 0 -70-
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where
ar = 4% - (£%4c2)?

Note that 1f the vertlcal projectlon of a ray is in the positive

z-direction, e=+1; if not, e=-1. At the surface of a half-space,

where z=0, £ = +1,
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- (a)

Figure 11. Response due to a buried point source. The ordinate

is the normalized nondimensional displacement

2 R o - o
u—UﬂurO/Fo and t—tc/r0 with ro-l.and zo=0.5;




0.5

0.4

0.3

0.2

0.1

-73-

§=(1,0,0)

Figure 11b.
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0.05 |

-0.05 b \

Figure 12. Response due to a buried Tine source. The ordinate is
is the normalized nondimensional disp]acement'

u=Unur§/Fo and T=tc/r, with r =1, z,=0.5 and £=0.49.
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Figure 12b.
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Figure 13. Response due to a surface point source. The ordinate
is the normalized nondimensional displacement

. 2 n— . _ _
u—unuro/Eo and t—tc/r0 with ro—l and zO-O.
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Figure 13c.
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0.4k (b)

Figure 14. Response due to a surface line source, BEH. The
ordinate is the normalized nondimensional displa-

2 ~ . _ B
cement U—Uﬂuro/Fo and t—tc/r0 with ro—l and 2=0.49.
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Figure 15. Response due to the surface line source, DEF. The

ordinate is the normalized nondimensional displace-

el e il b o _
ment u—unuro/Fo and t—tc/rO with ro—] and 2=0.49.
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Figure 15c.

0 ”’//ﬂ;’—‘\hj\\\\ T
o ] ~
2.5 t
-0.1¢
- a=(0,0,1)
-0.2IF
u
r
Figure 15b.
u
,
0.21
) a=(1,0,0)
0.1
0 1 1 1 . 1
1 1.5 2 2.5 % 3




-82-

0.004[

2.5

>

-0.002;

-0.004

0.002 ¢

D
w-—l

-0.002 |-
a=(0,0,1)

-0.004

-0.006 -

(b)

Figure 16. Response due to the surface area source. The
ordinate is the normalized nondimensional disp-

lacement u=unur§/Fo and E:tc/ro with r0=1 and: ¢=0.1.




-83-

0.008

r a=(1,0,0)
0.006}~

0.004]_

0.002f

! Figure l6c.

LY




-84-

0.08 |-
u, a=(0,0,1)
0.04 |
0 A /\
v 1 M T T T v T
1 1.5 V 2 2.5 4 3
- t
(a)
0 : : —
i 1 )
-0.04 |
a=(0,0,1)
UY‘ L
-0.08 L (b)

Figure 17. Response due to the surface area source. The -

ordinate is the normalized nondimensional displa-

cement u=unur§/F0 and €=tc/rO with r0=1 and 2=0.49.




0.08

0.04

-85~

Figure 17c.

>




	Tez4475001
	Tez4475002
	Tez4475003
	Tez4475004
	Tez4475005
	Tez4475006
	Tez4475007
	Tez4475008
	Tez4475009
	Tez4475010
	Tez4475011
	Tez4475012
	Tez4475013
	Tez4475014
	Tez4475015
	Tez4475016
	Tez4475017
	Tez4475018
	Tez4475019
	Tez4475020
	Tez4475021
	Tez4475022
	Tez4475023
	Tez4475024
	Tez4475025
	Tez4475026
	Tez4475027
	Tez4475028
	Tez4475029
	Tez4475030
	Tez4475031
	Tez4475032
	Tez4475033
	Tez4475034
	Tez4475035
	Tez4475036
	Tez4475037
	Tez4475038
	Tez4475039
	Tez4475040
	Tez4475041
	Tez4475042
	Tez4475043
	Tez4475044
	Tez4475045
	Tez4475046
	Tez4475047
	Tez4475048
	Tez4475049
	Tez4475050
	Tez4475051
	Tez4475052
	Tez4475053
	Tez4475054
	Tez4475055
	Tez4475056
	Tez4475057
	Tez4475058
	Tez4475059
	Tez4475060
	Tez4475061
	Tez4475062
	Tez4475063
	Tez4475064
	Tez4475065
	Tez4475066
	Tez4475067
	Tez4475068
	Tez4475069
	Tez4475070
	Tez4475071
	Tez4475072
	Tez4475073
	Tez4475074
	Tez4475075
	Tez4475076
	Tez4475077
	Tez4475078
	Tez4475079
	Tez4475080
	Tez4475081
	Tez4475082
	Tez4475083
	Tez4475084
	Tez4475085
	Tez4475086
	Tez4475087
	Tez4475088
	Tez4475089
	Tez4475090
	Tez4475091
	Tez4475092
	Tez4475093
	Tez4475094

