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ABSTRACT 

In this study, solutions to forced, convection heat 

transfer problems in fully developed laminar flow 

are obtained for Newtonian fluids with constant 

properties. Internal flow for square, triangular and 

elliptical cross-sections have been solved. In 

addition, an approximate solution is presented for 

conduits with internal flow given by X4+ y4= a 4 . 

To solve the aformentioned problems, Complex 

Variable Techniques, Biharmonic Solutions, Variational 

and Finite Element Methods have been used. 

Biharmonic Solutions are ·directly applied to square 

and t~iangular pipes using the available solutions,iri 

the plate theory. 

The Variational formulation of the governing equations 

are obtained. Based on this formulation velocity and 

t!=mperaturedistributions are found in square pipes 

using the Ritz Method. Variational formulation is 

further used in corporation with the Finite Element 

Technique to determine approximate solutions for 

noncircular pipes. 

The Complex Variable Method is very suitable when 

applied to parallel plates, circular, triangular and 

elliptical pipes. It also gives considerable know­

ledge of heat transfer for the cross-section given by 

X4+ y4= a 4 . 

Theoretical solutions for each of these geometries are 

then compared numerically by Finite Element Method. 
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DZET 

Bu <;al1!,?mada, ·uniform ve laminer ak1!,?lar iyin 

ZOrlanm1!,? lSl ta!,?ln1m1 problemleri, kare, e!,?kenar 

u<;gen ve eliptik kesitli borularo iqin <;ozulmu!,?tur. 

Buna ek olarak kesiti x4+y4~a4 olarak belirlenen 

borular i<;in y~kla!,?lk bir <;ozlim getirilmi!,?tir. 

YUkar1da sozu edilen problemlerin gozlimunde Komp­

leks Degi!,?kenler Metodu, Biharmonik·yozlimler, 

varyasyonal ve Sonlu Elemanlar Metodlar1 kullan1l­

m1!,?t1r. 

Biharmonik ~ozlimler, ince plakalar teorisindeki 
< 

sonu<;lar kullan1lmak suretiyle kare ve e!,?kenar 

li<;gen borulara direkt olaraR uygulanm1!,?t1r. 

Problemi genel ola~ak tan1mlayan ana differansiyel 

denklemlerin Varyasyonal formlilasyonu yap11m1!,? ve 

buna bagl1 olarak kare borular i<;in h1Z ve slcakl1k 

dag1l1mlar1 Ritz Metodu kullan1larak bulunmu!,?tur. 

Kompleks Degi!,?ken.ler Metodu paralel duzlemlere, 

dairesel, e!,?kenar u<;gen ve eliptik kesitli borulara 

uygulanabilmi!,?tir. Ayri1 zamanda bu metodla kesiti 

X4+y4= a 4 olarak tariflenen boru~ar i<;in yakla!,?lk 

sonu<;lar elde edilmi!,?tir. 

Bulunan teorik <;ozlimler daha sonra Sonlu Elemanlar 

Metodu ile elde edilennlimerik neticelerle kar!,?lla!,?­

t1r1lm1!,?t1r. 
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Temperature difference between fluid 
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Difference between fluid bulk temperature and 
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_ dp 2 
--a' 
dz 

Dimensionless temperature, Pc ~ ERa4 0 
Pdz dz 

Dimensionless temperature, 8k e 
q 

8k Dimensionless bulk temperature, 0 
q b 
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I 

INTRODUCTION 

Forced convection heat transfer problems involving 

fully developed laminar flow under the conditions of 

constant heat flux in axial direction and uniform 

peripheral wall temperature have important applications 

in compact heat ~xchangers where design considerations 

may dictate pipes with unconventional .shapes. Generally, 

one way to reduce heat exchanger costs is to select 

suitable cross~sections leading to lighter weight and 

higher heat transfer .coefficients. It fo-Ilows then that 

the laminar flow solutions obtained here for various 

cross-sections become important. 

For compact heat exchangers the flow passages must have 

a small hydraulic radius. For the low Reynolds number 

design range of such heat exchangers fully developed 

laminar flow may prevail along most of the flow 

length. Thus hydraudynamically and thermally fully 
* developed laminar flow (1) solutions are needed. 

The determination of such solutions for noncircular 

pipe geometries, (Fig.I.I), is the subject matt~r of this 

study. Constant property, fully developed laminar forced 

convection heat transfer i~ considered under constant 

heat flux and peripherally constant wall temperature 

boundary conditions. 

*Numbers given in brackets refer to references in text 



Figure I.I-Noncircular pipe geometries, 
(a) Square, (b) equilateral triangular, 
(c)Ell~ptical, (d) Shape· given by ~4+y4= a 4 

2 

A survey of the available literature shows that although 

considerable information exists on this problem~ analy­

tical solutions have been confined to relatively simple 

shapes such as circular pipes and parallel plates 

(2,3,4). More complicated geometries such as the 

square, triangular and elliptical pipes require two 

dimensional.analysis. Profiles of flow velocity in these 

pipes are available in many Fluid Mechanics books(S,6,7). 

Existing solutions to torsional and thin plate problems 

(8) of elasticity can be used for square and equilateral 

triangular pipes due to similarity of the governing 

equations. The utility of Complex Variable and Varia-" 

tional Methods as a tool for .the solutions of Poisson 

type equations in the theory of elasticity (9,10) is 

well established. The numerical solutions have been 

mainly obtained by the Finite Difference technique(ll) 

·for square and equilateral trtangular pipes. Further 
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results concerning these geometries can be found in(12). 

Solutions regarding the geometry described by X4+ y4= a 4 

has not been analyzed. 

The study comprises 

a) Mathematical formulation of the problem presented in 

Chapter II. 

b) Theoretical solutions of the governing equations 

using the Biharmonic Solutions, Variational ~nd 

Complex Variable Methods given in Chapters III, 

IV, V respectively. 

c) Numerical solutions by Finite Element Method discussed 

in Chapter VI. 



II 

FORMULATION 

A. Assumptions and the Governing Equations 

The equations governing the motion of a Newtonian 

fluid are Continuity, Navier Stokes, Energy equations 

and the equations of state. Using indicial rotation 

-these equations are expressed as follows: 

Continuity Equation 

l£ + l (pu k ) = 0 

dt dX, 
. :r~ 

Navier Stokes Equation 

p~ + pU
k 
~j=_ dP + l (A~.k) + 

dt dXk ax] dX j dXk 

Energy Equation 

~ -{ ~ (~ +~) } + p f . 
dX. dX. dX' J 

~ J ~ 

p ~ + PUk~ =-p~ + l (k~ )+A( l.~k~ 
dt dX k dX k dXj dX j dX k 

+ f.1( ~ + dUj 

where i,j,k = 1,2,3 

State Equations 

Ii P(P, T) 

e = e ( p, T) 

dX. dX. 
J ;t. 

(11.1) 

(11.2) 

(11.3) 

(11.4) 

(11.5) 



In equation (11.1) p is the .density, t is the time 

and u is the velocity. 

In equation (11.2) P .is the pressure, Ais the bulk 

viscosi ty, ]..l is the viscosity and fj .is the components 

of the body forces per unit volume. 
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In equation (11.3) e is internal energy per unit volume, 

T is the temperature and k is the thermal conductiv:ity. 

In the most frequently encountered situations, formu­

lation of the problem is based on the following 

assumptions: 

1) Flow is time independent. 

2) The fluid is assumed to be viscous and its 

properties are constant. 

3) Viscous dissipation.is neglected. 

4) Body forces and internal he~t generation are not 

present. 

5) Fully devel~ped velocity profile is assumed. 

6) Fully developed temperature profile is assumed. 

Under these conditions , the governing equations in 

Cartesian Coordinates for the flow configuration 

shown in Figure 11.1 become 

iu 1 dP C, - --
]..l dz 

2 
pc 

.aT p 
'VT = az u 

k 

For thermally fully developed flow R.A. Seban(l)has 

that 

a (TW-T ) :: 0 
oz Tw-Tb 

Then 

aT dTw Tw-T dTW Tw-T dTb 
+ = Tw-Tb dz Tw-Tb dz oz dz 

(11.6) 

(11.7) 

shown 

(11.8) 



y 

z 

Figure 11.1- Flow configuration 

B. Boundary Conditions. 

(a) No-slip condition of the wall gives U= 0 

at the wall. 

(b) .In the case of constant heat flux at the 

6 

wall, q=hP(Tw-Tb) = C 

Since h is constant 

where C is constant. 

Thus, from equation (11.8), it follows that 

aT dTw dTb az = CfZ = CfZ 

(c) The condition of peripherally constant wall 

temperature gives 

T=Tw or 0 = 0 at the wall, 

where 0=T-Tw 

Now summarizing the governing equations and the 

boundary conditions one gets 

V2 u C, (11.6) 

V2 0 = C2u (II. 9) 

u = 0 (II.6a) 

and 
0=0 (II.9a) 

at· the wall. 



In equation (II.6) 
C = 1- dP 

1 II dz 

and in equation (II.9) 
pc 

C = --E 
2 k 

dTb 
dz 

c. Determi.nation of the Nusselt Number 

Once the velocity and the temperature distribution 

is known, Nusselt number is calculated from its 

definition, that is 

where 

hDh 
NU=j( 

4A 
D =­

h P 

is the hydraulic diameter. 

In equation (11.11) A is the cross-sectional area 

and P is the perimeter~ 

7 

(II.lO) 

(11.11) 

The heat transfer coefficient h may be evaluated from 

the consideration of heat balance as shown in fig.II.2 

q 

! 
~Z -Flow 

--ldzk-

Tbl Tb2 

Figure II.2-Description of Heat Balance· 
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In some differential length dz, the heat added dq 

can be expressed either in terms of a bulk temperature 

difference(T
b2

- T
b1

) or in terms of the heat transfer 

coefficient such that 

Noting that m puA , 
m , 

where 1 
u = - Iludxdy 

m ·A D 

is the avar~ge velocity and 

1 
G = T - T =--- II uGdxdy 

b b W umA D 

is the bulk 

and . 

temperature, one 
AC 2 ku

m 
h = - pG 

b 

q = C2kumA 

gets 

Now combining equations (II.IO), (II;II)~nd(II.14) 

results in 

Nu 

(J:I.12) 

(II.13) 

(II.14) 

(II.14a) 

(II.IS) 
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USE OF THE BIHARMONIC SOLUTIONS 

,-

Considering equations (11.6) and (11.9) one can 

eliminate u such that 

\7 4 0 = C}C2 (111.1) 

The corresponding boundary conditions are 

o = 0, 
and 

at the wall. 

Equation(III.l) is similar to the governing equation 

for the small deflection theory of thin plates 

subjected .to uniform load and simply supported along 

all edges(8). That is 

4 go 
\7 W=-

D
f 

Where go is the load intensity, D
f 

is the flexural 

rigidity and w is the deflection. 

(111.2) 

Now if the boundary conditions which must be satisfied 

by the solution of equation (111.1) are also to be 

satisfied by the solution of equation(III.2), then 
. . 

equations(III.l) and (111.2) are identic~l. For 

a ~imply supported plat~ '(supported along all edges) 

of polygonal shape one has 

and 

at the wall. 



Therefore equations (III.l) and 

made identical if w is replaced 

Above results will be applied to 

equilateral triangular pipes. 

(III.2) can be 
qo 

by 0 and D by 
f 

square and. 

A. Pipes with Square Cross-section 

10 

For uniformly loaded squ~re plate shown in figure III.l, 

deflection surface is given (8) as 

w 
16q a 4 

• m'IT 
5l.n-X 

a 
. n'IT 

5l.n
a

y 
0 0000 

---l: L .. 
'IT6Dfm~h3..p=h3 ... mn(m 2 + n2) 2 

qo 
Now substituting 8 for wand c 1 c 2 for - one gets 

Df 
the corresponding. solution for 0 . That is 

. m'IT . n'IT 

o 
16C1C2a4 r E 5l.naX .5l.na y 

'IT 6 m=h3..p=h3 .. m~ (m 2 + n 2 ) 2 

To determine the velocity, equation (III.4) is 

differentiated such that 

1 2 u=-V 8= 
C2 

. m'IT 
5l.n-X 

a 

. rloE'--- Q ---1 r,.---------,- X 

Q 

1 J----------l 

• 1 

Y 

Figure III.l~Coordinate System of the Square Pipe 

(III.3) 

(III.4) 

(III.5) 



Now substituting equation (III. 5) in equa,tion 

(11.12) one gets the average velocity 

. m1f . n1f 
s~n-x s~n-y 

u = 16 C 1ft E E a a 
m 4 66m=I,3 n =I,3" (2 n 2 ) 2 1f '" , , mn m + 

Integrating gives 

u 
m 

64Cla 2 
00 00 L L 

7f 6 m= 113.n = 113.·· m 2 n 2 (m 2 + n 2 ) 

dxdy 

11 

(111.6) 

Also substituting equation (111 .. 4) in equation(II.13) , 

the bulk temperature is obtained 

1 00 00 

L l: 
m=113.n =113··m 2 n 2 (m2 + n 2 ) 

• 2 m1f 
s~n -x 

a aa 00 00 

II L L --------------------dxdy 
o 0 m= i,3..;n= 1,3.., 

Performing the integration with 

• 2 m7f 1 I s~n -xdx=-a oa . 2 

a 

00 00 1 L L;. 

C1 C 2 a 
4 m= 1,3. n = 113· .. m 2 n 2 (m 2+ n 2) 3 

e = 
00 00 1 b . 7f 4 L L 

m=I,3.;n=h3. .. m 2 n 2 (m2+ n 2 ) 

Finally substituting equations(III.6), (111.7) with 

P = 4a in equation (11'.15) and rearranging gives the 

Nusselt number as 

(III.7J 
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Since the series converge quite rapidly, -few terms 

are sufficient. Performing the summation for 

(111.8) 

m = 1,3,5, 7 ,9 and n = 1,3,5,7,9 results in Nu = 3.600. 

B. Pipes with Equilateral Triangular Cross-section 

The equations of the boundary corresponding to this 

pipe geometry shown in figure 111.2 are 

x+ a
= 0 

3 
x 2a" 
-+y- -. =" 0 

13 313 
x 2a 
.-.-y- -= 0 
/3 3/3 

Multiplying these equations and rearranging gives 

X 3 _ 3 x Y 2 - a ( x 2 + Y 2) . + 247 a 3 = 0 

For uniformly loaded equilateral triangular plate, 

deflection surface is(8) 

4 2 2 2 [-a - x - y ] 
9 

Multiplying out and differentiating yields 

(111.9) 

(111.10) 

(111.11) 



Noting that equations (111.10) and (111.11) satisfy 

the boundary conditions one can make equations 

(III~l) and (111.2) identical by replacing w by 8 . q 
and DOby C1C z • Then 

f 

and 

1 z C 1 3 Z Z z 4' 3 u= 'V 8=-- [x -a(x +y ) -3xy +-a ) 
Cz 4a 27 

Now the average velocity and the bulk temperature 

can be calculated. Substituting equation(III.13)" 
z 

with A= a in equation (11.12) gives 

u = 
m 

13 

_Cp!) 

2a 3 

2a 
3 

J a 
3 

J 
° 

3x-2a 

313 - z z Z 4 3 [x'-a(x +y ) -3xy +27a )dxdy 

(111.12) 

(111.13) 



Integrating results in 

2 
Cl a, u =--m . 60 

Also substituting equation (111.12) in equation 

(11.13) one has 

2a 3x-2a 

CIC2 
3- 3/3 

f f [x 3 _a(x 2 + y 2) 

a 6 a 0 

3 

Carrying out the multiplication and integrating 

results in 

Finally substituting equations (111.14), (111.15) 

'with p~6a in equation (II.15)gives the Nusselt 
/3 

number as 

Nu= 
28 
-= 

9 
3.11. 

14 

(111.14) 

(111.15) 



IV 

VARIATIONAL METHOD 

A. Description of the Method 

Consider a -function U which depend upon x and y 

and may represent the velocity or the temperature. 

Knowing the differential equation which U must 

satisfy, then according to the calculus of variations, 
au au one must first find a function G (x,y,u,3X'ay) which 

when inserted into the Euler Equation 

yields the differential equation for U. \\Then G is 

known one can write the variational integral, 

I=ffG(X,y,U,~~ ,~~ ) dA 

and minimize it by the Ritz Method. According to 

this method, U is written as a- linear combination 

of functions each of which satisfies the boundary 

conditions. With the choice of U, the-function G 

is evaluated and the integration in equation(IV.2) 

([V.l) 

(IV.2) 

is carried out. The result is an expressio~ containing 

the constants of the trial function U. To achieve a 

minimum value of the integral I, this expression is 

-differe~tiated seperately with respect to each constant 
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and each result is set equal to zero. This provides 

equations which. can be solved for the unknown 

constants. 

Now considering equation(II.6) for the velocity one 

finds 

The variational integral corresponding to equation 

(11.6) is then 

I = JJ[(dU)2+ (.~.~/+ 2CIU]dxdy 
M dX dy (IV. 3) 

Considering equation (11.9)' for the temperature 

one finds 

~0 
U 

m 

wi th q = C1kAu . The corresponding variational integral m 
is 

U 
- 0] dxdy 
U 

(IV. 4) 
m 

The boundary conditions that the velocity be zero 

at the wall and uniform peripheral wall temperature 

are essential. Therefore the variational integrals 

(111.3) and (111.4) correspond to the governing 

equations (11.6) and (11.9) with their associated 

boundary conditions without any modification. 

B. Pipes with Square Cross-section 

For the square pipe as shown in figure IV.I,the velocity 

profile chosen is 

(IV. 5) 
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y 

T 
20 o~----~~------ x 

1 
L20~ 

Figure IV.l~Coordinate System of the Square Pipe 

Performing the differentiations and substituting 

equation (IV.5) in equat10n (IV.3) yields 

aa 
I =8//[4A2x2y4-8A2x2a2y~4~a~x2+16A A x4y4+8AoAlx2y6 

M 00 0 0 0 0 1 
-24AoA1a2x2y4-32AoA1a2x4y2+ 24AoA1~4x2y2+16AoA2x4y6 

-32A A a2x4y4-8A A a2x2y6+16A A a4x2y~16A A a 4 x4 
o 2 '0 2 . 0 2 0 1 . 

- 8 A 0 A 1 a 6 x2+16 A 0 A 2 a 4 x.4 i- 8 A 0 A 2 a 6 x 2 Y 2 + 1 6 A 2 X 6 y4+ 16 A 2 X 4 Y 6 
1 1 

-48A2a2x4y~32A2a2x6i+48A2a4x4y2+32A A x6y6_64A A a 2x 6 y 4 
1 1. 1 12 12 

-64A1A2a2x4y6+80A1A2a4x4y4+4Afx2y8-16Afa2x2yE+24Afa4x2y4 

+16A A2x4y8_8A A s2x2y8~24A A a4x2y6_16A2a6x2y2 
1 1 2 1 2 1 

"-24A A a6x2y4+16A2a4x6_16A2a6x4+32A A a 4 x 6y2-32A A a 6 x 4 y2 
12 1 1 12 12 

+4A2a8x2+16A2x6y8_32A2a2x6y6+16A2a4x6y4+8A A a 8x 2y2 
1 2 2 2 1 2 

_16A2a2x4y8+32A2a4x4y6_16A2a6x4y4+4A2a4x2y8 
2 2 2 aa 2 

_8A2a6i2y6+4A2a8x2y4)dxdY + 8C lf/[A (x 2 y2_a 2x 2 _ a 2y2 
2 2 0 0 0 

+a 4 )+A 1 (x4y2+x2y4_2a2x2y2_ a2x4_~2y4+ a 4 x2+a 4 yZ) 

+A2(x4y4_a2x4y2_ a2x2y4+a4x2y2»)dxdY 

Integrating and rearranging gives 

2 2 4 8 0.71111 Aoa +0.48762AoAla +0.0774 AIA2 a 

+0.04064AoA2a6+0.29799Ata6+ 0.01064A~alO 

4 8 2 4 4 
+Cl (gAo+45A1a +22SA2a ) (IV. 6) 
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To determine Ao, All A21 equation (IV.6) is differen­

tiat"ed with respect to each A and the resulting 

equations are set equal to zero. This operati'on yields 

1.4222 Aoa 2+ 0.48762Ala4+0.040635A2a6+iy =0 
~ 9 

0.48762 Aoa 2+ 0.59598Ala4+ 0.07740A2 a6 +:
5 c I =0 

0.040635Aoa2+ O.07740Ala 4+ 0".021284A2a6+2~5cI=O 

Solving these equations yields 

After substituting these expressions in equation(IV~5), 

one can calculate the average velocity from equation 

(IL12)such that 

u = 
m 

aa 
_£l. II [(x2f-a2x2-a2y2+a4)0.29492 a 4+(x 4y2_a 2 x 4 

as 00 

_2a2y2x2+a4x2) 0.041015a2+(x2y4-a2y4+a4y2)0.041015a2 

+(x4y4_a2x4y2_ a2x2y4+a4x2y2)0.12305]dxdY 

Carrying out the integration results in 

Then 

u = 
m 

-0.140555 Cla 2 

U 1 2 2 2 2 
U = 0.140555a S (x -a ) (y -a ) 

m 

(IV. 7) 

(IV. 8) 



Before proceeding to determine the temperature 

distribution let 

a = ~ x=~ 
q/8k ' a 

Then equation (IV.4) becomes 

1 1 a a 
I = 4 II [ (~)2 + (~)2 +4 ~ a] dXdY 

E 00 ax ay u 
m 
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(IV. 9) 

Noting that the temperature around the boundary is 

uniform, the temperature distribution across the 

cross-section would be expected to have a shape 

similar to the velocity. Therefore,as an approximation 

the following temperature distribution is selected. 

(IV.I0) 

substituting equations (IV.8), (IV.IO) in (IV.9), 

differentiating ~nd performing the integration results 

in 

256 ~ 2048 11264
E 2 

IE = 45 LO +5"25E 0 E 1 + 4725 1 + 10. 01014 Eo 

+2.96329El (IV .11) 

Now differentiating equation (I~.ll) with respect to 

each E and setting the resulting equations equal to 

zero gives 

2048 . 22528 E =-2 96329 
525 Eo+ 4725 1 • 

Solving these equati6ns yields 

Eo=·0.1366 

El=-0.9267 

• I 
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substituting Eo and El in equation(IV.lO) gives 

(IV.12) 

From the usual definition(II.l~), the dimensionless 

"bulk temperature may be calculated. Then 

a = 
b 

1 11 
o • 140555 // -{ (X 2 -1) 2 (Y 2 -1 )2[ 0 . 29492 + 0 .041015 

(X2+y2) +0 .12305X 2y 2 ] [-0.9267+0.1366 (X2+y2)] }dXdY 

Multiplying- out and integrating results in 

a
b

=-0.55501 

0
b Noting that a =-- and q=-hP8 . Then 

b ~ b 
8k 

-h= 
8k 
pa

b 

Nu= A -32---
p2'1, 

Finally substituting equation (IV.13) with A=4a 2 

and P=8a in equation (IV.14)results in 

Nu=3.604 

An exact calculation by Biharmonic solutions gives 

a value of Nu= 3.600 in precise agreement (to 

(IV .13) 

(IV .14) 

three significant figures)with Nu= 3.604 . Hence 

there is no need to use-more comp~ex approximations 

for u or for a . 
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COMPLEX VARIABLE METHOD 

A.Use of Complex Variables 

Complex Variable Method has been used succesfully 

in the theory of elasticity to solve problems 

governed by a biharmonic equation(13). The use of 

this method will reduce equations (II.6)and(II.9) 

to the determination of some analyt~c functions 

which satisfy the bo.undary conditions. 

In terms of the variables z=x+iy, z=x-iy, 

Laplace operator can be expressed as 
2 a2 
'V=4~ 
. oZoz 

Applying this operator to the governing equations 

(11.6) and (11.9) one gets 

and 

To find the solution of 0,uis eliminated between 

equations (V.l) and (V.2) such that 

Letting 

(V.l) 

(V.2) 

(V. 3) 

(V.4) 



equation (V. 3) becomes 

o 

.dZ 2 dZ 2 

which admits· a general solution of the form 

where F(z)and X(z) are Goursat functions (14). 

The bar denotes the complex. conjugate. 
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(V.5) 

(V. G) 

The corresponding boundary conditions are obtained 

combining equations (II.Ga), (II.9a) (V.2)and (V.4). 

These are 

81= 

d 2 81 --= 
dZdZ 

Now differentiating equation (V.G) gives 

(V. 7) 

(V.8) 

d
2
81=F' (z)+F' (z) (V.9) 

dZdZ 

The equation(V.8) .is comparable with equation(V.9) 

only if the equation of the boundary is expressible 

in the form of zZ= h(z)+h(z) (V.IO) 

Then 

F' (z) = (V .11) 

F' (z) = - C 1 C2i}( Z ) 
16 

(V.12) 

To obtain zF(Z) and zF(Z), 

equations (V.ll), (V.12) are integrated and multiplied 

wi th z and z respectively.' 

.Now to get X(z)and X(z) equations(V.G)and(V.7)are 

combined such that 

(zz)2 =-~[ZF(Z) =zF (z)] -c
64

c [X (z) +x On] 
CIC2 1 2 . 

(V .13) 



The final form of the solution for velocity and 

temperature is obtained using equations (V.2), 

(V.4), (V.lO)and (V.4), (V.6) respectively. 

Hence 

or 

and 

23 

(V .14) 

(V .15) 

(V .16) 

B~ Pipes with Equilateral Triangular Cross-section 

Considering figure(III.l) and using complex variabl~s 

z=x+iy, z=x-iy 

equation(III.3)becomes 
- 1 3 -3 4 2 

zZ=2a(z :z ) +27a 

Comparing equations (V.lO) and (V.lS) one gets 

1 3 2 2 
h(z)= 2a z +27 a 

h(z)= ~ z3+2a 2 
2a . 27 

Using equations (V.ll) and (V.12)and doing the 

integrations yields 

Then 

CIC2 1 3 2 2 F(z)=---- z[--z +--a ] 
16 8a 27 

- - C1C2- 1 -3 2 2 F(z)=---- z[--z +--a ] 
16 8a 27 

(V .17) 

(V .1S) 

(V.19) 

(V.20) 

(V.2l) 

(V.22) 

(V. 23) 

substituting equation(V.23) in equation(V.13)g~ves 
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- 2' 1 3 -3 16 - 64 
(zz) =[--(z +z )+--a 2 ]zz - ---C [X(z)+X(z)] 

2a 27 Cl 2 

The find X(z) and X(z)both sides oI the equation 

(V.18) is squared and rearranged such that 

. - 2 1 _. 3 -'3 2 3 --s. 16 '+ 
(zz) =2azz(z +Z )+27a (z +zJ+27a 

(V. 24) 

then when added to it the equation (V.18)in the form 

of 

.16 2 - 1 3 - 3 4 2 
O=27a [zz-2a(z +Z )-T7a ] 

this will lead to 

( Z z) 2 = [~ ( Z 3 + Z 3 ) +~a1 Z z -~ a (z ~ + Z 3 ) -~ a '+ 
2a 27 27. 272 

Now comparing equations (V.24) and (V.2S) one gets 

F~nally the velocity and temperature fields are 

obtained substituting equations (V.19) ,(V.20)in 

(V.IS) and (V.23), (V.26) in (V.16) respectively. 

C1 - 1 3 - 3 4 2 
U =- [ Z Z --- (z + Z ) - -- a ] 

4 2a 27 

C C C C 1 3 -3 16 2 e = __ 1 _2( Z z) 2 _ 1 2 - [ ( + Z ) +--a ] 
64 ~ zz 2a z 27 

CIC2 [2a ( 3+-3)+ 16 If] +--- Z Z --a 
64 9 243 

In terms of(x-y)coorciinates, they are 

C1 3 2 2 2 4 3 ] u=--[x -3xy -a(x +y )+--a 4 27 

The calculation of the Nusselt number is alrea~y 

presented in Chapter III. 

(V. 2S) 

(V. 26) 

(V. 27) 

(V. 28) 

, : 
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C. Pipes Described by n n x + L = 1 
~_n 

b
n 

a 
n n 

The e~pression x +L (V. 29) 
n 

b
n 

a 

.where n is an even integer, is.a general equation 

- from which some important pipe geometries can be 

deduced. Consider now equation(V.29) under some 

typical conditions. 

Case I- Letting n = 2 provides the equation of 

an ellipse such that 

(V.3D) 

with a and b being semiaxes. Also for a approaching 

infinity and b being finite one gets the equation 

of the parallel plate such that 

(V.31) 

Case II- Assigning a = b , equation (V. 29) reduces 

to 
n n n 

X +y = a 
, . 

For the choice of n = 2 this equation corresponds 

to that of the cir'cle such that 

Other choices (of n = 4,6, ... ) would correspond 

(V. 32) 

(V. 33) 

to equations of some pipe geometries which will 

lie between the circular and square pipes as shown 

in Figure V.I 

Now these pipe geometries will be studied seperately. 

'BOGAZiQi- ONivERSiTESi KOTOPHANESI 
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Figure V.I-Some Pipe Geometries Describey by 
n n n 

x +y =a 

I-Elliptical Pipes 

Rewrite equation (V.30) in the form of 

=8 

n=6 

n=4 

n= 2 

where a and bare semiaxes. In terms of complex 

variables it is 

zz= 

(V.34) 

(V. 35) 

Comparing equation(V.35) with equation(V.IO)gives 

h(z) 
a 2 b 2 1 b 2 _ a 2 

z2 

a 2 + b 2 2 
b 2 + a 2 

(Y. 36) 

h(z) a 2 b 2 1 
b 2 _ 

a 2 
~2 

a 2 + b 2 2 
b 2+ a 2 

(V.37) 
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Using equations (V.ll)and (V.l2) and performing 

the integrations results in 

Then 

(V.38) 

substituting equation (V.38) in equation(V.l3) gives 

64 - ------ [X(z)+X(z)] c 1 C2--

To determine X(z)and X(z) first both sides of 

equation (V.35) is squared and rearranged such 

that 

- 2 (zz )= 
2a 2b 2 1 zz + -
a 2+b 2 2 

Also multiplying 

and rearranging 

a
2

_ b
2 

(zz) 2 

a 2 + b 2 

equation 

yields 

a 2_b 2 
zz(z2+z2) 

a 2+b 2 

(V. 35) with (z2+z2) 

8a 2 b 2 

Now multiplying equation (V.35) with 
a 2 +b 2 

and rearranging gives 

8a 2 b 2 
-

0=-- zz 
a 2 +b 2 

(V. 39) 

(V.AD) 

(V.4l) 

(V.42) 



Combining equations (V.40) ,(V.4I)and (V.42) 
results in 

(zz) 

8 a 4 b 4 5a 4 +5b 4 +26a 2 b 2 

3 (a2+b2)2a4+b4+6a2b2 

1 (a 2 _b 2 )2 

6 (a 4 +b 4 +6a 2 b 2 ) 
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Comparing equations (V.39) and(V.43) one gets 

Finally the velocity and temperature fields are 

obtained substituting equations (V.36), (V.37) 

(V. 43) 

in (V.IS) and (V.38), (V.44) in (V.16) respectively. 



+i. a 2b 2 (a 2_b 2 ) 

3 (a2+b2)2 

In terms of (x-y) coordinates, they are 

u 

where , is the aspect ratio. 

e Cl C2 
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To calculate the Nusselt number one needs to 

evaluate average velocity and bulk temperature. 

Substituting equation (V.45)with A=TIab 

in equation (11.12) one gets 

u = 
m 

a !b~s2x2 
f f (S2x 2+y2_b 2 )dydx 
o 0 

Before integrating one needs ~o transform the 

ellipse to circle by 

x=xa } 
y=yb 

Such that 

(V. 45) 

(V. 46) 

(V. 47) 



Then u = m 

Integrating with respect to y yields 

Letting 

u = 
m 

x =sin t 

1-x 2=cos 2 t } 

Performing the integration gives 

u = -
m 

Su~stituting equations (V.45), {V.46)and (V.49) 

in equation (11.13) and applying the transfor­

mations (V.47) ,(V.48) gives 

8 =­
. b 

- 31T(1+s 2 ) (1+s4+6s 2 ) 

1T cost 
fh f {(s +5) 
o 0 

+(11+7s2)sin4ty2-12(1+s2)sin2t y2 

+(1+5s 2 ) (y6_2y4+y2) __ , __ [(5+26s 2+5s 4 ) 
(1+s2) 

30 

(v. 48) 

(V. 49) 
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Performing the integration results in 

e CIC2bl+ (1751++9852+17) 

,b 144(1+52)2 (1+51++65 2 ). 
(V. 50) 

Details of the integration is' given in Appendix A. 

Also the heat flux rate from equa'tions (II .14a) and 

(V.49) is 

CIC2 k q=-
4(1+5 2 ) 

substituting equations (V.49), (V.50) in equation 

(11.15) gives 

n 2 a 2 (1+5 2 ) (1+51++65 2 ) 
Nu=144--

p2 (1751++9852+17) 

where P=4aE(a,~), is the perimeter. 

(V.5l) 

(V. 52) 

E(a,;) is the elliptical integral of second kind. 

The values of P £or va~ious aspect ratios ar~ given 

in Appendix A. 

2-Parallel plates 

Rewrite equation(V.31) in the form of 

Using complex variables, this equation becomes 

zz = 2b 2 +!(z2+z2) 
2 

which is in the form of equation (V.lO). 

3-Circular Pipes 

Rewrite equation(V.33) in' the form of 

x 2 +y2_a 2 = 0 

Using complex variables, this equation becomes' 

. which is also in the form of equation(V.lO ). 

(V. 53) 

(V. 54) 
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Hence'Complex Variable'Method is applicable 

to these geometries. But the solutions for these 

pipes will not be given in this study, since they 

are available in many heat transfer books. 

4-Pipes given by x4+y4= a 4 

Consider equation (V. 32) forn=4 which will 

correspond to x4+y4= a 4. 

Using Complex variables, this equation becomes 

To be able to apply the Complex Variable Method 

equation(V.57) is expanded by Binomial Expansion 

such that 

2a 2 1 =-- -=-----
/3 8/3 

Comparing equation (V. 58) with equation (V.lO) 

one gets 

, a 2 1 Z4 h(z) 
/3 813 a 2 

h(z) 
a 2 1 z4 

13 813 a 2 

Using equations (V.ll)and (v.12) and integrating 

one obtains 

a,2 
[-

/3 

(V. 56) 

(V. 57) 

(V.58) 

(V. 59) 

(V.60) 



Then 

- - - C1C - Sa 2 
ZF(z)+ZF(Z)=----2 ZZ [ __ 

. 64 /3 

substituting this equation in equation (V.13) 

one has 

TO determine x (z) and x (z) fir,st equation 

(V.S8)is multiplied by (-4zz) such that 

then adding this equation to equation(V.S6) 

and rearranging yields 

33 

Now comparing equations (V.62)and (V.63)one has 

- - C1C2 4 7 4-4 X ( z ) + x ( z ) =--- [4 a - -- (z + z ) ] 
64 30 

(V.61) 

(V. 62) 

(V. 63) 

(V. 64) 

To obtain the velocity 2nd t:emperature fields one 

substitutes equation(V.S7) in (V.14) and equations' 

(V.61), (V.64)in (V.16) respectively. 

CC2 - . 1 - 4 - 4 Sa 2 -8=-1-[(ZZ)2+ zz(z +z )--- zz 
4 1013a 2 13 



34" 

In terms of (x-y) coordinates, they ~re 

The "last expression in equation (V.66) 

is used to modify 

the temperature distribution by some intuitive 

reasons which will be discussed in Chapter VII. 

For the calculation of the av"erage velocity the 

expression in 4 1 I; [_a 4 __ (X4+y4_6x2y2») 2 
3 3 

(V. 65) 

(V. 66) 

equation (V.65) is expanded by Binomial Expansion 

up to four terms such that when equation (V.65) 

is substituted in equation (II.12) one gets 

+ 1 (x4+y4_6x2y2)2+ 1 (X4+y4_6x2y2)3 
6413a 6 51213a 10 

5 
+ " 

1638413a 14 
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where A=a 2 B C~, i) as given in Ap~endix B., 

To perfolim this' .integ17at.ion tw.o trans;forma.t.ions. 

are needed such that 

V 
2 

X· 

} 
W y2 

} 
w crsi'n6 

Using these transf0l7mat.ions the avarage velocity 

becomes 

(V •. 67) , 

(V.68)· 

c U = __ 1 
m 4A 

2a 2. 0'2' r a (cose +si'n8).,-- +-- (.l-6cose si'nS) 

1 +--
6413 

13 4/3a 2 . 

0'6 
a lf (1-6c.osSsinS) 2+ ___ ~ (1-6cosSsine) 3 

a 6 51213a 10 

5 as +._---- (1-6cosesine )~ dade 

Icosesine 

This integral is evaluated in terms of S functions 

as given in Appendix B and the following result 

for u is obtained m 

(V. 69) 

substituting the expanded velocity profile and 

equation (V.66~with the speci~ied transfdrmations 

(V.67) .and (V.68) in'equation' (IL13)one obtaines 

the bulk temperature as 



,36 

a 2 'IT 
e Ct C 2 h 2 
-b 256 U A f f {[a(cose+siner--a 2 

mOO • 13 

1 0'2 1 
+- - (1-6cosesine)+--

4/3 a 2 6413 

4 
a (1-6cosesinej2 
a 6 

B 
+' (1-6cosesine) 3+_5_0'_, ___ _ (1-6cosesine)"J 

\ 

51213a 10 1638413a 14 

- 1
7
5 0'2 ( 1- 6 cos e sin e ) +_1__ a 3 (c 0 s e + sin e) (1- 6 cos e sin e ) 

5/3 a 2 

1 --- 0'4 (1-6cose'sine)2]) dade 
20/3 a 4 Icosesine 

Performing the integration the following result is 
obtained: 

Detailes of the integration and the calculation of 
the perimeter is given in Appendix B. 
Finally substituting equations (V.69)and(V.70) 
wi th P = 7.0168 a in equation (11.15), the 
Nusselt number is obtained as 

Nu= 4.197 
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FINITE ELEMENT METHOD 

The governing equations are solved numerically 

with the Finite Element Method. Before applying 

this method, the following dimensionless variables 

are introduced 

'1= e X 
1 X=- 1 

a 
(VI. 1) 

where a Is the characteristid length of the cross­

sections. Then equations (II.6) and (II.9) in dimen­

sionless form are 

and 

at the wall. 

a2 qJ . a2 ¢ 
-- + -i-- +1=0 
a X2 a y2 

a2 ,¥ a2 ,¥ 
-- +qJ=O 

a X2 a y2 

qJ=O 

'¥=o 

(VI. 2) 

(VI. 3) 

The continuous quantities, velocity and temperature 

will be approximated by a discrete model composed 

of a set·of piecewise continuous functions defined 

over a finite number of subdomains. 
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In this. study domains used are two-dimensional 

pipe geometries which will be devided into a 

finite number of subdomains by using two-dimen­

sional tria~gular elements •. Details of descretization 

of the· pipe geometries are given in Appendix c. 

A. Shape Functions 

In this study the velocity and temperature are 

approximated by 

<P= [N] {v} 

and 

where [N] is a row matrix which consists of the 

selected shape functions. {v} and {T} are the 

nodal values of the velocity and temperature res­

pectively. Shape functions of a triangular element 

are 

1 
N.=--{a.+h.X+c.Y] 
~ 2A ~ ~ ~ 

a.=X.Y -XkY. 
~ J k J 

1 
N.=--[a.+h.X+c.Y] 

J 2A J J J 

a.=XkY.- X'Y k J ~ ~ 

h.= Y-Y 
J k i 

c j = Xi-X k 

(VI. 4) 

(VI. 5) 

(VI.6a) 

(VI.6b) 
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1 
Nk = 2A [ak +bkX+c k Y.l (VI.6c) 

ak=xiy j - XjY i 

1 X. Y. 
~ ~ 

where 2A= 1 X. Y. 
J J 

is the area of the triangle. 

1 X
k

" Y
k 

(X.,Y.), (x.,Y.) and (Xk,Y
k

) denote the 
~ ~ J J 

coordinate ~airs of the three n6des of the triangular 

element. 

B.Derivation of the Element Equations 

Using Euler equation (IV.I), the associated variational 

integrals corresponding to equations (VI.2) and 

(VI.3) come out to be 

I = ff .! [ (1!) 2+ (1!) 
2 

- 2q,] dXdY" 
M 2 ax ay 

I = ff .! [ (~) 2+ (~) 2 - 2q,'l']dXdY 
E 2 ax ay 

Since the boundary conditions are essential the 

variational integrals(VI.7)and (VI.8) will be not 

modified. 

Let j-aq,­

ax 
aq, 
ay 

[D] = I-~n 

(VI. 7) 

(VI. 8) 

(VI. 9)" 

(VI.IO) 



substituting equations(VI.4), (VI.S) in equation 

(VI.9), (VI.lO)respectively one gets 

'and 

. ,-aN -
{ 9 ~ = I ~ ~ { v}= [B ]{ V } 

ay 

{g}=[B] {T} 
E 

where [B] is the gradient matrix. 

Combining equations(VI.7),(VI.9) and (VI.lla) 

one has 

Using the minimization condition one obtains 

or 

J J [B] T [0] [B] {V}dXdY=J J [N] TdXdY 

40 

Equation (VI.13) can be written in condensed form 

[ke]=JJ[Be]T[D]lBe]dXdY 

{fe}=JJ[N]TdXdY 

The final system is obtained by considering 

the whole domain 

[K]{V}={F} 

E 
[K] = e ~ 1 [ke ] 

(VI.lla) 

(VLllb) 

(VI.12) 

(VI .13) 

(VI .14) 

(VI .15) 
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Now combining equations (VI.8) , (VI.10)and (VI.11a·,b) 
one gets 

I{}T T 
IE=!! "2 T [B] [D) [B) {T}dXdY. 

-!![N]{T} [N]{V}dXdy 

Using the minimization condition one has 

OlE 
a{T}= !![B]T[D] [B]{T}dXdY 

T 
-!![N] [N]{V}dXdY=Q 

or 

!! [B) T [D) [B) {T}dXdY=!I [N] T [N] {V}a.XdY 

Equation (\(I.17) can be written in condensea form 

where T . 
{ f e } =! ! [N] [ N] {v} d X.d Y 

n 

The final system is obtained by considering the 

whole domain 

[K]{T}={F} 
n 

where 

Now the element stiffness matrix [k e ] and the 

element force vectors {fe},{f e } are evaluated 
n 

by using the shape functions. 

Using equations (VI.6a,b~c) and (VI.1la,b) ,the 

gradiant matrix becomes 

[B e ]=---..!. 
b. b. b

k ]. J 
2A c. c. c

k ]. J 

(VI.16) 

(VI.17) 

(VI .18) 

(VI .19) 

(VI.20) 
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Then 
b. c. 

1 

:J 
b. b. b

k
-

Akel=ff l 
l. l. l. J dXdY b. c"j 0 

C. c. c
k 4A2 J ]. J 

b
k 

c
k 

Since all the terms under the integral are 

constants they can be removed to yield 

rb . b .+ b.b.+ -C.C. C.C. bibk + cick l. l. l. l. l. J l. J [kel=~ b.b.+ C.C. b.b.+ C.C. bjbk + cjc k dXdY 4A J. l. J l. J J J J 
bkb i + ckc i bkb j + ckc j bkb k+ ckc k 

To evaluate the force vectors area coordinates 

are employed. 

Then {f e } =ff L2 dXdY 

Ls' 

and 1- 2 
-L} L}L2 L}L3 

{ f e } = f f L 2 L,} L~ L2 L 3 {v} dXdY 

n - LL3.L.} LsL2 L23 

To perform these integrals, the following formula 

is used: 

More information about the area coordinates can 

be found in Ref. (15) . 

l 



VII 

RESULTS AND DISCUSSION 

The theoretical solutions of fully developed laminar 

forced convection under the conditions of constant 
( 

heat flux in axial direction and uniform peripheral 

wall temperature are obtained for square, equilateral 

triangular.and elliptical pipes. Also the geometry 

described by X4+ y4= a 4 is solved approximately. 

To tes~ .the validity of the results obtained by 

Biharmohic Solutions, Variational and Complex 

Variable ,Methods, the results are compared.with the 

solutions available in the literature and the 

numerical results evaluated by Finite Element 

Method. Tpe flow and heat transfer characteristics 

are found for all cross sections. All the results 

are plotted in nondimensionalized form. Velocity 

and temperature profiles are parabolic and reach 

their 'maximum values at the center of the cross­

section. The profiles decrease near the walls due 

to the no-slip condition and prescribed constant 

wall temperature at the walls respectively. 
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A. SQUARE PIPES 

Biharmonic Solutions are directly applied to square 

pipes. Based on the known solutions of thin plate 

problem, velocity and temperature distributions 

are determined which are in. good agreement with 

the sol~tions obtained by the Variational Method. 

These solutions are then compared with the numerical 

results of the Finite Element Method. The subdivision 

of the square pipe into triangular finite elements 

can be don~ in many different ways. Two possible 

divisions are shown in Figure C.l (with elements of 

. unequal size) and Figure C.2(with elements of 

equal size). Figure VII.l and Figure VIL 2· show the 

comparison of the theoretical and the numerical 

results of velocity and .temperature fields respectively~ 

It is observed that numerical results converge to 

the exact values as more nodes are used. The 

Nusselt number obtained ~oth by Biharmonic Solution 

and Variational Method is 3.60 which agrees with 

the numerical result of 3.63 obtained by Clark, ··S.H., 

W.M.Kays(ll) arid with 3.80 given in (12). 

B.EQUILATERAL TRIANGULAR PIPES 

Similar to square pipes, known solutions of thin plate 

theory are again existing. Same solutions are 

obtained by Complex Variable Method. These solutions 

are compared with Finite Element Solutions. 

Two possible division of the pipe is shown in 

Figure C.3 and Figure C.4. The division scheme 

found to be most convenient to descretize the pipe 

in finite elements w~th shapes similar to the cross-

section. 
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Theoretical 
finite element 

A 49 nodes 
o 81 

o . 0.125 .25 .375 '.5 :625 .75 .875 1.0 

0.06 

0.05 

0.04 

0.03 

. 0.02 

0.D1 

Figure m.1_ Velocity profiles along axis of symmetry(x=O) 

Theoretical 
Finite element 

A. 49 nodes 
o 81 

L-____ --__ --~-~~----------~~--~--~y 

o 0.125 .25 .375 '.5 .625 .75 .975 1.0 

Figure VII.2 _ Temperature pro~iles along axis of symmetry (x=O) 
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Comparison of the theoretical~ and numerical results 

are shown in Figure VII.3 and Figure VII.4. As 

observed from the figures, convergence of the res~lts 

is achieved more rapidly as more nodal points are 

used. The Nusselt number is calculated to be 3.11 • 

It is in good agreement with t.he numerical result 

of 3.00 obtained by Clark, S.H~W.M.Kays(ll) and 

3.1 given in (12). 

C. ELLIPTICAL PIPES 

The theoretical solutions·forthis pipe are obtained 

by Complex Variable Method. For numerical solution 

only one subdivision is presented for the aspect 

ratio s=£=0.5 as shown in Figure C.S • Figure a 
VII. 5' and Figure VII. 6 show the theoretical and 

numerical distributions of the velocity and the 

temperature respectively. The Nusselt number is cal­

.culated for s between 0.1 and 1.0 . These results 

are given in table VII.l and sho~n in Figure VII.7. 

It is observed that for the limiting case s=l, 

Nusselt number is equal to 4.363 which corresponds 

to the Nusselt nur.ber of the circle. But for the 

other limiting case of s=o(either b=O or a=oo ), 

the Nusselt number has no physical meaning because 

considering equations (V.SO) and (V.Sl), 0 b and q 

are either zero or q is infinite. 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 LO 

5.123 4.962 4.802 4.666 4.558 4.477 4.421 4.387 4."370 4.363\ 

Table VII.l 
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- Theoretical 

A Finite element 55 nodes 

o 66 

ODS .1 .2 .3 .4 . 5 .5 .7 .s . .9 .95 1.0 

Figure W.3 Velocity distributions along axis of symmetry (Y =0) 

Theoretical 

Finite element 

tJ. 55 nodes 

o 66 

0.0004 . 

0.0003 

0.0002 

0.0001 

~--~~--~----~--~--~--~--~=-~~~ 
0.05.1 .2 .3 .J. 5" .6 .7 .8 .9.951.0 

Figure W.4 Temperature distributions along axis of symmetry (y=O) 
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~----~------------------~----~--__ x 
O. .1 .2 .3 .4 .5 .6 .7. .8 .9 1.0 

Figure VII.5~Velocitv profile along axis of 

symmetry (y =0 ) for 5=0.5 
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L-____ ~ __ ~ ____________________ ~~ __ ~x 

.2 .3 .4 .5 .6 .7 .8.9 1D 0 .1 

Figure VII.6- Temperature profile along axis 

of symmetry (y~O) for 5=0.5 
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FigureW-7 Nusselt number variation of an elliptical pipe with respect to aspect ratio S 
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D. PIPE DESCRIBED BY x~+ y~= a~ 

The solution for this pipe is analyzed by Complex 

Variable.Method. This method permits exact solution 

for the velocity field. Expansion of the boundary 

equation by Binomial Expansio~ provides approximate 

solution for the temperature field. The discretization 

scheme of this geometry is shown in Figure C.6 • It 

is observed that theoretical results for the tempera­

ture field agree with the numerical: results well 

within Izl=/x 2 + y2 <1. For \z\>l further terms must 

be included in Binomial Expansion. But in this case 

the method is not applicable anymore. Considering 

the Finite Element results to be true (with about 3% 

difference from actual results) we intuitively add 

one suitable term to the theoretical solution which 

makes the theoretical and numerical results comparable. 

Another approximation is needed to calculate the 

average yeloci ty and the bulk t·emperature. This 

approximation does not disturb the accuracy much since 

enough terms are taken by Binomial Expansion of the 

velocity field. Also the expanded velocity field is 

compared with the exact· velocity field .to test the 

accuracy induced by this approx~ation. Figure VII.8 

and Figure VII.9 show theoretical and numerical 

distributions of the velocity and temperature fields· 

respectively. The Nusselt number is calculated to 

be 4.197 which lies between the value of 3.60 and 4.363 

for square and circular pipes respectively. 
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Theoretical 

Finite element 

75 nodes 

.625 .75 .875 

Figure VII.8- Velocity profile along axis'of 

symmetry (y= 0) 
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Figure VII.9- Temperature profile along axis of 

symmetry (Y=.O) 
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CONCLUSION 

The problem qf fully developed laminar flow forced 

convection under the conditions of constant heat 

flux in axial direction and unifor~ peripheral 

wall temperature has been studied f.or square, 

triangular and elliptical pipes using Biharmonic 

solutions, Variational, Complex Variable and Finite 

Element Methods. Also approximate solutions are 

obtained for the pipe described by x4+y4=a 4 by 

Complex Variable Methods. 

The following conclusions may be drawn: 

I.Biharmonic solutions are convenient to use for 

any pipe geometry provided its solutions are 

known in the thin plate theory. 

2. Variational Method although lengthy and approximate 

leads to accurate results with any desired degree of 

accuracy for the square pipes. 

3. Complex Variable Method can be adopted to studies 

of certain family of pipes with uniform cross-secti­

onal area, bounded by a closed curve such that the 

equation of the boundary is expressible as 

z~=h(z)+h(~). The solutions for· the velocity and 



temperature fields are then deducible directly 

from the boundary conditions. 
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4. For laminar'flow in pipes the Nusselt number is 

g~eatly influenced by the shape of the pipe. 

Interesting feature of the solutions for shapes 

with sharp corners, like the square, is the fact 

that the heat flux varies around the periphery 

and approaches zero at the corner~. 

Other factor which influences the Nusselt number 

is the hydraulic diameter. 

5. The highest Nusselt number is obtained for the 

elliptic~l pipe depending on the aspect ratio. Two 

limiting cases are observed for this pipe, that is 

.the Nusselt number at s = 1 corresponds to that 

of circular pipe and that at 5=0 has no physical 

meaning. 

6. Nusselt number for the pipe given by X4+y4= a 4 

lies between the square and the circular pipe. 
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APPENDIX A 

I-Tabulated values of the Perimeter for Elliptical 

Pipes 

The values of the Perimeter P is given in 

Referance(16) as follows: 

b P s=- -a a 

0.1 4.0640 

0.2 4.2020 

0.3 4.3860 

0.4 4.6026 

0.5 4.8442 

0.6 5.1054 

0.7 5.3824 

0.8 5.6723 

0.9 5.9723 

1.0 2n 
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2-So1ution of some Trigonometric Integrals 

General Solutions for some trigonometric integ­

. rals are given in Referance (16·) as follows: 

Then 

Also 

cost . n-l
t n-1 I . n-2 t "Isin n 

tdt 
Sln +-- Sln 

n n 
n-l n 

Icos tdt 
sint cos t n-1 +-- n-1 

Icos t 
n 

7T 

I12cos 2t 
o 

7T " 

IIzcos 2 t 
o 

7T 

I 12 sin 2t 
o 

7T 
I 12 cos 6 t 
o 

7T 
f (2cos 4 t 
o 

7T 

IIzcos 4 t 
o 

n 

• 4 d 7T sln t t=-
32 

2 7T cos tdt=-
16 

· 2 57T 
sln tdt=256 

· 2 7T Sln tdt=-32 

• 4 37T 
Sln tdt=256 

dt 

dt 



APPENDIX B 

I-Values of some Gamma and Beta-Functicns 

In reference (3) , the values of some Gamma~ 

Functions are given as 

Noting that r(n+l)=nr(n) 

r(~)=3.6240 
3 r ("4) = 1 . 2·2 5 3 

r ( 14
1 

) = 1 • 6080 

r(~)=3.3225 

r(Q)=52.3294 
2 

r (1
2
3 ) = 2 8 7 • 8115 

r(~)=1.6120 

r(!)=1.1325 

r(%)=1.3290 

r(%)=11.6287 

r ( 14
3 

) = 2 . 54 8 1 
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r(m)r(n) 
Now using the relation S(m,n)=S(n,m) r(m+n) 

one obtains 

S (.!.,.!.) =7.4116 
4 4 

5 5 
Q (- -, = 0 • 6176 
~ 4' 4' 

S (%'%) =0 .1362 

S(~,~)=0.0225 
4 4· 

S (~,~) =3.7058 
4 4. 

S ~ ).-) =0.4163 
4 4 

3 3 
Q (- -) =1 6946 
~ 4' 4 . 

7 7 
S (-,-) =0.2542 

4 4 

Q (~ Q) =0 0494· 
,~ 4'4 . 

S(~,!)=4.4406 

3 5 . 
6{4'4)=1.1101 

7 9 
6 (4 '4 )= 0 .1735 



9 11 -
13("4'4)=0.0759 

.2-Detailes of Integration corresponding to 

Chapter V 

By definition 

1 m-l n-l -13 ( n , m) = f3( m,n) = J x ( 1 - x ) d x 
o 

iT; - - \'1 I/: 1 1 - % - 1/4 1 3 1 
J 2cos Zesin 2ede=- J(I-x) x dx=- 13(-4'-4) 
o 2 0 2 

iTh I/: =-1/: 1 1 -31. -1 I. 1 1 3 
J cos 2esin 2s d e=- Jxi4(I_x~4 dx=- 13(--) 
o 2 0 2 4'4 

The solution of the following integrals 

can be founa ih the same manner as 

'IT :/: ~ 1 7 7-
J /2 sin 2ecostld8=-S (-,-) 
o 244 

'IT 7/: 7h 199 
J 12 sin 28 co stld8=-f3 (-,-) 
o 244 

7T S/: 9A 1 11 11 
J 12 sin 2ecosod8=-S (-,-) 
o 2 4 4 

7T ll/: Ilh 1 13 13 
J 12 sin 2 8costlde=-s (-,-) 
o 2 4 4 

'IT I/: 3/2 - 1 3 5 
J h s in 2 e cos 8d8=-S (- ,-) 

. 0 244 
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7T 3 5 

f ·I2 S l.· n '12 S" 1'2 157 cos SdS=-Q (- -) o 2~ 4&4 

f~2Sl.·n%S 712 '1' 7 9 cos ede=-Q (- -) o 2~ 4 ' 4 

7T 7 9 

f 12 . 12e 1'2 1 9 11 
O 

Sl.n cos edS=-f3(-,--) 
2 4 4 

1112 S dS _1 f3 (11 13) cos -- -- __ 
2 4 1 4 

3-Calculation of the Area and the Perimeter of 

the Cross-section given by x'++y'+= a'+ 

a. Calculation of the Area: 

A=4/ '+/a'+ -x'+ dx 
o 

one gets 

7T 3 -1 
1~ = 2 a 2 f 12 sin 12 S COS h e dEl 

o 

60 

Also letting x= sin 2S 1 l-x=cos 2e , it follows that . 

b. Calculat~on of the Perimeter: 

Letting X=~, y-y ,one gets by definition 
a a. 

This 

where 

integral 
00 

P=4 L 
n=l 

b.X=O.OI 

y =1 o 

can be approximated by 

A.+!H 
b.X 

b.X 

b.y=y - y 
n-l 

x =0 . and . 0 

n 1 

Y =/I-X'+ 
n n 

x =X l+b.X n n-

The calculation is done in Computer u?ing Gouble 

Precision and the perimeter is obtained as 

P=7.0168. 

• i 
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APPENDIX C 

Discretization of the Domains 

1. Square Pipe 

The subdivision of this geometry is done in 

two different ways. In the first study, a grid 

of 72 triangular elements of unequal size with 

49 nodes (Figure C.l) and in the second study, 

a grid, of 1~8 triangular elements of equal size 

with 81 nodes (Figure C.2) is used. 

2. Equilateral Triangular Pipe 

The division of this pipe geometry is also done in 

~wo different ways. First it is devided into 81 

triangular elements of unequal size with 55 nodes 

(Figure C.3) and then in 100 triangular elements of 

equal size.with 66 nodes(Figure C·.4) 

3. Elliptical Pipe 

The discretization of this pipe domain is done with 

82 triangular elements and 55 nodes (Figure C.5) 

4. Pipe Described by x~+y~= a~ 

This geometry is devided into 119 triangular elements­

with 75 nodes (Figure C.6) 

Equations of each pipe geometries are dimensionalized 

by x=~ y=Y and only necessary parts of the 
a a - . 

domains are descretized due to axial symmetry. 
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. Figure C.l- Subdivision of a Square Pipe into 

Triangular Finite Elements of unequal Size 
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Figure C.2~ Subdivision of a Square Pipe i~to Trian­

gular Finite Elements of equal Size 



64 

y 

iE-- Q-~ 

41 r-~--~--~k---------~ 

35~4-~~--~~--------~--------~ 

2 3 5 6 7 8 9 10 

,Figure C.3-Subdivision of a Equilateral Triangular Pipe 

into Triangular Finite Elements of uneaual Size 
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Figure C.4- Subdivision of·a Equilateral Triangular Pipe 

into Triangular Finite Elements of equal Size 
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y 

Figure C.s- Subdivision of an Elliptical Pipe into 

Triangular Finite Elements 
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Figure C.6- Subdivision of a Pipe described by 
X4+y4; 1 into Triangular Finite Elements 
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APPENDIX D 

1. COMPUTER PROGRAM FLOWCHART 

READ INPUT DATAl 

COMPUTE THE ELEMENT 

STIFFNESS MATRIX 

COMPUTE THE ELEMENT 

FORCE MATRIX 

ASSEMBLY THE SYSTEM 

FORCE MATR!X 

ASSEMBLY THE SYSTEM 

STIFFNESS MATRIX 

SOLVE THE SYSTEM 

MATRIX 

l~RINTI 
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2. COMPUTER PROGRAM LOGIC 

The computer program consists of a main program 

.and two subroutines. 

MAIN PROGRAM: Reads some parameters, necessary 

constants and the boundary cQnditions as input 

data, determines the element stiffness matrix and 

the element force matrix. The system force matrix and 

the system stiffness matrix are assembled by the 

use of code·numbers. It. prints out the results 

and stops the program. 

SUBROUTINE POW: This subroutine forrrsthe element 

force matrix. 

SUBROUTINE GAUSS: This subroutine solves the 

system matrix. 

Definition of the variable names used in the Program: 

MST - Degree of freedom 

NJ - Number of nodes at each element 

MS - Number of unknowns at each element 

MEN - A control parameter. It takes the values 0,1,2,3 

for square, equilateral triangular, elliptical 

pipes and the pipe described by X4+y4= a 4 

respectively. 

ME - Total number of elements 

NNO - Total number of nodes 

N -Total number of unknowns 

DEF - A control parameter. It takes the value "0" 

on the boundaries. Otherwise it numbers the 

unknowns. 

IDEF- It labelles.the unknowns at the nodes 

RR - System force matrix corresponding to momen~um 

equation 



S ~ ·System Stiffness matrix 

M Sp~cific node number 

V - Reads node numbers of each element 

NCODE-Code numbers 

SM - Element Stiffness matrix 

70 

R PW- Element force matrix ?orresponding to momentum 

equation 

THV - Theoretical velocity distribution 

ERV - Absolute error 

o - Numerical velocity distribution 

TEMP- Assembly velocity vector for each element 

ST - Convection related matrix 

RS - Element force matrix corresponding to energy equation 

RT - System force matrix corresponding to energy equation 

THT Theoretical t~mperature distribution 

TT - Numerical temperature distribution 
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Input Description:, 

1. The first number given in this. set is a control 

parameter. It takes the values 0,1,2,3 for square, 

equilateral triangular, elliptical pipes an~ the 

pipe described by x4+y4= a 4 '·respectively. 

The second number gives total number of elements. 

The thind number gives total number of nodes. 

Format: (3 I 3) 

2. The first number labelles the nodes. 

The second and the third numbers give the x and 

y coordinates of nodal points respectively. 

The forth is a control parameter. It takes the 

value "0" on the bounda~ies. Otherwise it numbers 

the unknowns. The fifth prepares x-coordinates for 

graphical distribution of the results. 

Format: 3FB.0, F4.0, F5.0) 

3. The first number indicates specific node number. 

The other numbers are node numbers of· each element. 

Format: (I3,3F5.0) 

On the output nodal values of the theoretical and 

numerical velocity and temperature with the correspon­

ding absolute error are listed. 

Format: (14xiF4.0,7x,FI2.8,7x,FI2.8,IOx,F12.8) 

All results are plotted by Graph 4 Libary BU*Bulib. 
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