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ABSTRACT 

\ 

In this thesis, the motion and vibration 

characteristics of edge dislocations are investigated. 

Topics included, are shear stress-dislocation' velocity 

i 

relation; effects of model parameters and ph~nomenological 

damping on the dislocation motion; motion of a dislocation 

in a lattice with some impurities such as one or two fixed 

atoms; vibration characteristics of pinned dislocations; 

'" 
effects of temperature, damping_and geometriC parameters 

. on the vibration character£stics of dislocations,. 

The importance of this subject is due .to the ~ajor 

role of dislocations on the plastic deformation of materials. 

By the improvement of knowledge about the dislocation 

behaviour, it. would be possible to produce more appropriate 

materials for engineering use. 

The model is ~ two-dimensional, ~tomistic one. For ; 

every atom on the lattice, the governing equa~ion of motion 

is "derived, and it is solved asa functi9n of time, 

numerically. To perform the calculations, a computer 

program is used. 

The results obtained for several parameters are 

presented, and a discussion about the results is include~.-

At the end of the thesis, a list of recommendations for a 

continuation of this study is given. 

"' . 
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QZET 

\ 

Bu tezde, kenar tipi dislokasyonlar1n hareket ve~ 

titre§im karakteristikleri incelenmektedir. Igerilen ko-

nular kesme kuvveti-dislokasyon h1Z1 ba~nt1s1,model 

parametrelerinin ve i9 stirtUnmenin disl'okasyon bareketi 

tizerindeki etkileri, dislokasyonun ge§itli engeller 

aras1ndaki bareketi, bag11 dislokasyonlar1n titre§im ka-

rakteristikleri ve s1cak11k,stirtlinme ve geometrik para-

metrelerin dislokasyon titre§im karakteristikleri tizerin-

deki etkileridir. 

Bu konunun onemi, dislokasyo~lar1n, malzemelerin 

plastik §ekil degi§tirmelerinde en onemli etken olmala-

r1ndan kaynaklanmaktad1r. Dislokasyon hareketi hakk1nda 

bilgilerin artmas1 da amaca uygun malzeme se9iminde ve 

hatta tiretiminde fayda11 olacakt1r. 

Kullan1lan model, iki boyutlu ve atomlardan olu§an 

bir modeldir. Modelde bulunan her atom i9in kuvvet 

denklemi yaz1l1r, ve bu denklemin ntimerik metotlarla 

90ztilmesiyle 0 atomun zamana gore pozisyonu belirlenir. 

Hesaplamalarda bir komptiter program1 kullan1lmaktad1r. 

ge§itli parametreler i9in elde edilen sonu9lar 

ve bunlar1n bir analizi sunulmaktad1r. Tezin son k1sm1nda 

bu tezin devam1 olarak yap1labilecek 9a11§malar hakk1nda , 
oneriler verilmektedir. 
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CHAPTER I 

INTRODUCTION 

The perfect crystallinity of materials is disrupted 

by. imperfections of various kinds. These are point defe'cts,' 

line defects, surface defects and volume defects.' The 

major imperfections are point defects (vacancies, inter-

.stitials) and line defects (edge dislocations and screw 

dislocations) • Although these affect a very small £ract~on 

of the atoms, they are very important in determining the 

properties of materials such asstreng.th, hardness and 

ductility. 

An edge dislocation is a linear defect that is respon-

sible for nearly all aspects of the plastic deformation of 

materials. In order to introduce an edge dislocation in a 

perfect lattice, an extra half plane of atoms are added to 

the lattice. ( Fig. 1 ) 

" 

( a ) ( b ) 

Fig. 1 Crystal without (a) and with (b) an edge 

dislocation 
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The ex.perimental value 0-£ the she~r stress necessary 

to move a plane o£ atoms over another is much less than·the 

value calculated theoretically. (About .. l/100 th or 1/1000 

th) This discrepancy arises because o£ dislocations. Fig. 

2 shows how. an edge dislocation £acilitates the motion o£ 

one plane over another. Because only one row o£ atoms must 

move at any time, and because the row which moves is a.lready 

in a distorted, energetically unstable position, less f'orce 

is needed to carry out the shear. 

E ••• 
--7"7 . 7 . ---"7 7 

Fig. 2 The motion o£ an edge dislocation under a 

shearing, stress. 

The dynamics ot dislocations in 'crystals has long 

been a subject o£ active investigation because o£ its 

central role in the plastic £low o£ crystalline solids as 

expressed above. 

An extensive review o£ the research done on the 

subject is g,iven in chapter II. 

Most o£ the research on dislocation beha~iour has 

been done theoretically, because experimental methods f'or 

,observing. dislocations and studying, their individual 

properties, have been developed recently,: and it is stili 

di££icul t to utilize these techniques. (see re£. [1,2,3} ) 

! i 
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Theoretical treatments of the problem have been made 

on the basis of purely cQntinuum moa~ls, combined continuum 

and atomistic models and. on purely atomistic models. 

Most of the theoretical analysis have been based on 

continul.ilDl models .. uSing; linear (isotropic or anisotropic) . 
~ elasticity. [~ ,. [5J 

While these continuum treatments have provided 

valuable insight to the problem, the use of atomistic 
• 

. approach became more attractive because of the discrete 

nature of the la~tice itself. After 1970's, hig~ speed 
.. 

dig~tal computers enabled' the use of "numerical methods, 

so it became possible to simulate more realistic models, 

even in three dimensional (3-D) form, for the actual 

crystal. 

Atomistic models can be grouped in two broad 

categories which are complementarY in their purpose. The , 

first type is designed with a particular material or a 

"c~ass of materials in mind and is formula ted to be as 

realistic as possible both with resp~ct to crystal 

geometry and interatomic force laws. lfhen analyzed by 

computer simulation, these lQodels provide~luable 

detailed information regarding atomic processes in the 

"given class of materials. Because of their complexity, 

however, it is difficult to compare the computer simulation 

studies by analytical treatment of the same models, and 

dynamical treatment of the dislocation motion in such 

realis"tic models, even by computer simulation methods, 
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w~uld be very costly and have not yet been attempted. 

The second category of atomistic models are highly 

id~alized both from the viewpoint of crystal geometry 

tsometimes taken as one dimensional) and of intera~omic 

force laws. They clearly, therefore, are not, intended to 

represent directly any particular real material. 

Nevertheless, they do serve to provide insight into these 
1 

broad features' of dislocation motion which are introduced 

by the discrete atomic character of, crystalline materials' 

in general, without entering, into the detailed characteris-

tics peculiar to a particular materia~. Their idealized 
i 

nature makes the analytical treatment of these models 

reasonable, if not easily attainable,' objective. When 

treated by computer simulation techniques, their simplicity 

facilitates extracting significant patterns of behaviour 

from the numerical results, particularly when compute~ 

graphics techniques are employed. 

The model used in this study falls into the second 

category given above. Its details will be explained ext en-

sively in chapter IV • 

It would be better to discuss the purpose and the 

importance of this study after making the literature survey 

of the subject. 
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CHAPTER II 

REVIEW OF THE ATOMISTIC APPROACH 

5 

The simplest atomistic model was introduced by 

Frenkel and Konto~ova[6J. The basic element '0£ their theory 

consists in the longitudinal displacement of a chain of 

elastically bound atoms over a similar chain which is rigid. 
\ 

'!'hey show that this displacement can proceed in a similar 

way to ~he motion of a caterpillar, the atoms o~ the front 
, 

portion still being in their positions while the atoms of 

the rear portion have already moved one elementary distance 

'b'; the state of the inter~ediate portion(compression) 

being propagated along the chain with a definite velocity. 

The two chains are assumed to be infinite, the atoms of" 

the upper chain lying in the normal position just above 

the corresponding atoms of the lower chain ( Fig. 

4 b ~ 
0 0 '0 0 0 0 

• (0) 0 :0 0 ::0 tu -> 

Fig'j 3 'Upper and lower chain of atoms used in 

~~~nkel-~ontorova approach 
"--

3 ).' 

If the lower atoms are not rigid, then, this leads to 

a' gradua~ leak o~ energy from the upper chain and to a 

final stopping 0:1' process 0:1' slip. But if they are treated 



as fixed, then, their influence on the upper atoms reduces 

to the production of a certain periodic field of force. 

Now the atoms of the upper chain behave as small 

spheres lying in their equilibrium places in equidistant 

valley of a sinus oidal mountain chain and bound to each 

other by elastic forces, proportional to their relative 
/ 

4isplacements. ( Fig. 4 ) 

Fig. 4 The conditions of the upper chain .atoms 

Under these conditions, two types of motion are 

possible: 

1) Small oscillations of the spheres (atoms) about their 

equilibrium positions, 

2} A displacement of each sphere from its original 

e~ilibrium position to that formerly occupied by the 

nex..t. 

The second type of motion is regarded as the 

fundamental mechanism underlying the phenomena o£ plastic 

def&rmation (Slip) or twinning. 

Under these conditions, Frenkel and Kontorova find 

the °eqcuati&n of .motion for an atom, and by solving. it, 

they conclude that: 

1} The velocity of slip propagation is always smaller than 

the ~elocity of sound, 
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2.) '.1;'0 every value of the total eriergy of the system 

corresponds a definite velocity of slip propagation, 

3) I~ the absence of damping (energy exchange between the 

chains) a single impulse starting. the slip process could 

lead to a displacement of the whole atomic chain equal to 

an arbitrary large multiple of the elementary interatom.ic 

distance. 

This one-dimensional theory can be generalized to two 

dimensions without any difficulty. The slipping is prop-

agated in this case with a linear front along a definite 

direction in a given plane (x,y) • the atoms of the 

underlying plane ~emaining f~ed. Generalization to three 

dimensions is also possible. 

In another paper, Frenkel and Kontorova[6] find a 

relation between the energy 108s o~ the atomic chain and 

its total energy when the lower chain is not fixed.~ut the 

atoms are making small oscillations (damping): The r~te of 

diss,ipation is hig)l i£ the total. energy is small and it 

decreases with the increase 0:6. total energy. They also 

~ve the equation for the distance, travelled by the slip 

up to the moment o£ its complete stopping,. 

In 1962, Sanders[7] made an analytical investigation 

of the geometry of an edge dislocation in a simple atomic 
) 

model of an infinite crystal, and the ef£ect on the 

dislocation of ex..ternally applied shear stress •. The 

physical model was a two dimensional latti~e. and the 
" 

variation of dislocation width and Peierls-Nabarro stress 
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was inve~tigated for some mode~ parameters. 

Kratochvi~ and Indenbom[ 8J so~ved the one dimensional 

Frenke~-Kontorova model with dislocation by changing the 

• I 
sinuso1da1 substrate potential into a parabo1.ic one so that 

the substrate force is piecewise linear. They also derived 

an expression f'or Pe:h.er1s stress; cases were found when 

this stress :ls eqpa1 to zero. 

In 1964, a similar study was done by lveiner and 

Sanders[9J ,in which the Frenke1-Kontorova model is'm9dified 

by replacing the sinusoidal substrate force by one which 

is piecewi.se linear" and exact solutions are found f'or the 

static configuration of the linear chain and f'or the 

Peier1s stress, <r: • 
p 

As a continuation of this study, Weiner[lOJ ca1cl\1,lated 

the veloCity w.ith which the dislocation will continue to 

move under stress once it has surmounted the first potential 

barrier, analytically. The treatment is approximate in that 

Qnl~ localized modes of motion (local modes) are included. 

Some calculations are also made about the dynamic Peierls 

stress which is the stress req,uired to move the dislocation 

from one stable e~ui1ibrium position to, an adjacent one, 

under quasistatic conditions and in ,the absence of thermal 

motion. Analytical results are compared with numerical ones • .. 
I 

It .is f'ound that the dislocation velocity is a very 

sensitive function of s~ress at low velocities, becoming 

'less sensitive to stress when dislocation velocities 

approximately 0.1 V~ are reached, where V~ is the speed , 
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of wave propagation for infinite wavelength in the linear, 

chain with the, substrate potential -neglected • 
./ 

Weiner~l] examined the effects of thermal motion 

upon the sustained dislocation motion which was studied 

in [lOJ from an athermal viewpoint. 

By using the same Frenkel-Kontorova model of a 

dislocation with a piecewise parabolic potential, Atkinson 

and Cabrera[12] made some theoretical study on the low and 

high velocity motion of the dislocation. They concluded 

that continuum models are not proper for this problem 

because of, the discrete' nature of the lattice itself. so' 

they discuss the problem on the simplest possible lattice 

model of a moving singularity, namely the Frenkel-

Kontorova model. 

Sanders [13J extended the one dimens ional Frenkel-

Kontorova dislocation model,with a piecewise linear 

,substrate force to two dimensions to describe the entire 

slip plane of the dislocation with one kink. 

In another paper, Sanders [14J develops a one-dimen-

sional approximation to this two-dimensional lattice mOdel 

through the use of single chain localized modes. After 

making almos t the same analys is as the previous one ([13] ) , 

it is found that all the e~uilibrium properties are in 

excellent agreement with the properties of the two~ 

dimensional model, and the computation time is about J 

1/3000 as long. So,it appears that the same one-dimensional 

model' could be used for more extensive investigations of 

dislocation behaviour, including dynamic effects. 
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,Hartl and Weiner[15] investigated the dynamics of an 

edge dislocation in a two-4imensional crystal model. They 

find an energy loss mechanism which leads to a steady state 
\ 

dislocation velocity when a shear stress is applied to the 

lattice, and calculate the transient and steady state 

velocities and the minimum stress necessary to .maintain a 

steady state velocity. They observed the absence of 

localized mode associated with the stableequilibri~ 

configuration of the model, as opposed to the results for 

the linear chain. 

Earmme and lveiner [16J tested ·the hypothesis 'of super­

sonic motion of dislocation proposed by Ishioka [17J • 

The result of their study is as follows: 

When the dislocation velocity reacheslthe'value 0.94 

(for some model parameters), the dislocation breaks down, 

i.e., the regular dislocat~on motion exhibited up to that 

time and postulated in the analytical solution no longer 

takes place. This velocity is called the breakdown 

velOCity Vb. This is checked by several cross checks and 

proved to be correct .• Their conclusion is that, Atkinson-

Cabrera[lZJ solution does not provide support for the 

hypothesis that dislocations may be accelerat~d to 

supersonic speeds since it ceases to be valid at velocities 
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In a f'ollowing study,. Earmme and \veiner[lSJ dem-

onstrated this breakdown phenomena analytically. They also 
( , 

studied the behaviour of' the model at stress levels hi~er 

than that which causes breakdown~ numerically. They f'ound 
\ . 

that a growing extended f'ault.is then generated which has 

highly compressed region in the lead portion and a highly 

raref'ied region in the trailing portion. Under continued 

stress application, collision waves are generated which 

travel at supersonic velocities. 

\veiner and Pear [l9] indicated that breakdown occurs 

in the case of' motion of' an edge dislocation in an idealized 
I 

two dimensional crystal model also, when the dislocation· 
I 

velocity approaches the speed of' longitudinal waves. 
\ 

Perchak and \veiner [20J extended the local mode 

approximation methods used bef'ore in the absence of' 

viscosity to the case in which viscous f'orces are present. 

Ef'f'ect of' temperature was examined also. 

-
Another problem is the behaviour of' a dislocation 

when it encounters some obstructions. This subject is f'irst 

discussed by Frank[2~] • In that'paper, he states that when 

a dislocation encounters an obstacle on~its path, 

multiplication of' dislocation occurs in the interior of' 

the g,lide surf'ace by dynamic crassover of' dislocations~ 

( Fig. 5 ) 

If' the energy of'the dislocation at the time.of' 

interaction with obstacles, is not hig~ enough to pass 
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Fig. 5 Multiplication of dislocations[2~ 

over them by multiplication, it will begin vibrating such 

a~ a string fixed at both ends. Then, the damping and other 

characteristics of the vibration give idea about the 

internal friction of materials. 

This subject was investigated in detail by Weiner 

et al., [2~ in a t~o dimensional lattice; the following 

results were obtainod: The frequency of free vibration, 

Wo' is proportional to the square root of the shear 

modulus and inversely proportional to the loop length. 
I 

For the case of model parameters leading to zero Peierls 
1 

i 

'I 

I 



stress (cr:=o) p 

1,3 

, the amplitude of dislocation vibration 

in the atomic model for sufficiently large loop length 

decays exponentially as in the string, model with linear 

damp.ing,. The lQgfi.r:LthmiC decrement ,A, of the decay of 

free v:Lbration is independent of lU
O 

• 

We.iner et ale [23J extended ·this model by us ing a 

one-dimensional discrete string model and by including 

additional anharmonicity to the substrate potential. Good 

agreement was observed between the one and two dimensional 

models. 

Alt:Lnta§ [2..4J compared three different models 

(continuous string, two-dimensional lattice model and 

discrete string model) for a pinned dislocation, under 

an applied stress and when viscous forces are present. It 

was found that, if the boundary conditions of the l-D and 

2-D discrete lattice models are chosen properly, the results 

are in close agrpement with each other and with the 

continuous string model. 
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CHAPTER III 

DEFINITION.OF THE PROBLEM 

When we make an ana1ysis of the subject and the 

methods used in the investi~tion of that subject, we see 

that one of the most important prob1ems in the dis1ocation 

dynamics is the mot;lon of dis1ocati.ons under certain 

conditions. The basic question discussed to a 1arge ex.tent 

up to this time 'is the ve10city of the dis1ocation when the 

crysta1 is subjected to a shear stress. What is the app1ied 

stress-d:Ls10cation ve10c:hty re1ation, what are the effects 

of the mode1 chosen, initia1 conditions, viscosity, and' 

other mode1 parameters on the stress-ve10city relationship? 

In this thesis~ the behaviour of the dis10cation when 

it encounters another impurity" such as a fixed atom is 

a1so investigated, bes,ides the ve10city-stress re1ation. 

The 1ast part is about the vibration characteristics of 

the dislocation when it is fixed at two pOints, which can 

be used in obtaining some information about the interna1 

friction of materia1s. 

About the method which will be used in the investiga-, 

tion of thedis10cation dynamics; the best one seems to be 

the' atomistic approach with a very simplified and. 

genera1ized model suitable for the problem. Because,it can 

be directed to represent any materia1 we want by on1y 

changfng the model parameters used in the mode1ling. For 
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this reason, we used the two-dimensional form of the 

mOdified Frenkel-Kontorova model, wh\ch was used by Weiner 

and co-workers [22J •.. The difficu1 t'ies aris ing due tot ime 

and data register limitations in computer simulation 

prevents the use of a 3-D lattice although a 3-D crystal 

model would g~ve more realistic results. The efflect of the 

third dimension is simulated in the form of a substrate 

potential field. Even though the use of a l-D chain.would 

be simpler to handle than a 2-D lattice; the discrepancies 

between the l-D and 2-D simu1ations[l~ lead us to use a 

2-D lattice. 

For each atom On the lattice, the governing equation 

of motion is derived. These equations are then solved 

numerically by the addition of necessary initial and 

boundary conditions, and the position of each atom is 

deter-mined as a function of time. 

A digital computer (UNIVAC 1106) is used in the 

evaluation of numerical calculations. 

Chapter IV explains the model used in the simulation. 

The results of the calculations are given in Chapters V 

and VI • 
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CHAPTER IV 

.... 
'.r;. MODEL DESCRIPTION AND THE DERIVATION 'OF THE EQUATION 

OF MOTION FOR A SINGLE ATOM 

The model used for the computer simulation is based 

on a simple cubic crystal with nearest-neighbor central 

and non-central interactions, the so called IIRosenstock­

Newell" model [25J , which was used by Sanders [13J , in his 

atomistic treatment of dislocation kinks in a 2-D form; 

and by \veiner et ale [2~, in the treatment of the vibration 

of a dislocation fixed at two points after making the 

necessary modifications 

In order to simplify the computer program used in 

the simulation and to shorten the execution time of each 
\ 

run, only the atoms in the slip plane are treated ~n 

detail. 

IV.l Model Description: Consider a three\dimensional 

simple cubic crystal containing a single straight edge 

dislocation in the [010] direction. Let the slip plane in 

which the dislocation Uloves{or vibrates when it is perfect:", 

ly pinned at equal distances along its length) to be the 

Only the atoms in x l x 2 plane are treated explicitly 

in this simulation. Motion of these atoms are constrained 

to the Xl direction so that only. force components in that 

direction need be considered explicitly. 



, i 

17 

k=O k=M 

(a) ( c) 
, 

Fig. 6 Model. (a) Simple' cubic crystal containing straight. 

edge dislocation. (b) Perfect lattice. '(c) Lattice.with a 

dislocation. 

, } 

The efflect of the rest of the crystal is simulated by 

requiring each slip-plane atom to move in a periodic substrate 

potential, or force field. That substrate potential is chosen 

to be piecewise quadratic to obtain linear force components in 

the equation of motion. 

IV.~ Substrate Potential: 

u 

eo ~ .Substrate potential and substrate force • ~g. I 

( 



18 

The force field is a piecewise quadratic one; SO the 

force exerted on every atom, due to that force field,is 

piecewise linear. ( Fig. 7 ) 

The pOint of intersection of the upper and lower 

portions of the substrate potential, is def~ned by the 

distance ~ from a potential minimum. 

-If u is a displacement of an atom frofu the nearest 

potential minimum, then, 

substrate potential V 
2 

k ~ -2 

lul:::;¢ 

t.! / (b-2¢~ 

• i sUbstrate force F(u)-.- dV(u) 
- du , or 

F(U)= 
( ~ b -lui ) 

where, 

( ~:.b ~ lui )2 

¢~lul~~ b 

k2 : shear spring constant (noncentral interaction) 

b lattice constant 

~ : the distance from a potential minimum to the point of 

change of curvature 

r 
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IV,3 Lattice with dislocation: In order to introduce a 

dislocation in a perfect lattice (Fig. 6b) , the number 

of atoms in One row is kept higher than the number of 

potential wells, tFig.6c) According to the parameters 

chosen, this difference betw,een the number of a toms in one 

row and the number of potential wells, defines th~ number 

of dislocations in the lattice, and the compatability and 

stability of the analytical solution of that model. 'A 

detailed explanation on this subject is given by Weiner 

and Sanders[9] , The related parts from that study are 

given in Appendix A, including the stable and unstable 

configurations and the Peierls stress. 

Here, that difference between the number of atoms 

and the number of potential wells, is taken to be one; 

hence, the magnitude of the 'Burger's vector of the 

dislocation is one atomic distance, b. 

Iv.4 Derivation of the Dimensional Equation of ~lotion: 

Consider the atom with mass m in the (j,k) coordinat~, 
, 

connected to its nearest neighbors in the xl and x 2 

directions by springs lvith linear spring constant kl and 

shear spring constant k2 respectively. (Fig. 8 ) ~,and CJ 

represent the phenomenological damping :t:riction constant 

and the force on the atom due to applied shear stress, 

re'specti vely. Let i. k( t) denote the xl coordinate of the 
J, 

,atom in the j'th row and kith column at time t. 



2.0 

J 

j-l 

- Fig. 8 A s:ingle atom with nearest neighbors 

Considering a small displacement of the referenced 
\ 

atem, we write the equation of motion using Newton's 

second law:. 

Xj,k+l) 

.. ~ 

or 

•• 
mXj,k=' 

• 
-~Xj,k + kl(Xj,k+1 -2X j ,k t Xj,k_l) t k

2
(X

j
'l-l,k 

-2x. k rX. I k) t F(x. k) +<r J., J-, J, 

Superposed dot is used to denote differentiation with 

respect to time, as usual. ~ shows the force due to applied 

shear stress. 

IV.5 Derivation of the Nondimensional Equation of 

Motion: 'r.o avoid the difficulties arising from the 

dimensions of' the variables used,. we in~roduce the non-

dimensional forms of them. 



Introducing the dimensionless variab1es80,2~ 

X. k= x.. k/b 
- J, J, 

')f = ¢/b 

(f -=- () / (k2b) 

P = k2/k1 

substituting 

Q = 2P 't / (1-2: '6 ) 

.t:.t (k
1

/m)1/2: 

'fj=yt (k
1
m)-1/2 

F{x.. k)=F(x. k)/(k1b) 
J, . J, 

21 

/ 

mbX j ,kk1(m = - -CZ(k1m)1/2 ~ (k1/m)1/2b + k 1b(X j ,k+1- 2X j ,k 

divide by k 1b 

+ X j ,k_1) + k 2b(X j +1 ,k -2X j ,k + X j _ 1 ,k) 

+F(bx.. k) +a- k 2b 
J, 

·Xj,k=-~ i + (X j ,k+1 - 2x j ,k t Xj ,k_1) -f.. P (Xj +1 ,k - 2x j ,k 

+x. )+F{X.k)+p(l"' 
J-1,k J, ( 1 ) 

Nondimensiona1 equation of motion 
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Iv.6 Initial Conditions: It is assumed th~t initial.ly,. 

at t= 0, the dislocation line is s-traight in the x
2 

direction, and is in the edge orientation with the extra 

half plane of atoms; in the upper halt" of the crystal., 

ending in the k=D column in the slip plane. 

Under these conditions, the initial atomic positions 

are independent of the row index,j, and therefore,there 

is nO interaction between rows. Each row then corresponds 

to a one-dimensional modified Frenkel-Kontorova of the 
I 

type treated by Kratochvil and Indenbom[S] and bylo[eine;.r 

and Sanders[9] , so that the initial atomic positions may' 

be computed directly from the' appropriate formulae which 

are given in Appendix A, also. The initial positions 

correspond to the unstable equilibrium positions (M=J/2), 

under zero stress (cr=.O). 

Initially all atoms are at rest, that is, the initial 

atomic velocity, of each atom is zero. 

Iv.7 Boundary Conditions: Since it is assumed th~t the 

motion of each segment of dislocation line ( Fig. E;)a) is 

eVlivalent, the following rela ti6ns apply for t~ 0 and 

all k. 

x -x L+l,k- L-l,k 
( 2 ) 

In the xl direction, the strip is taken as infinite. 

In order to simulate thi~ property, localized c~aracter of 

the dislocation motion is used; for atom columns 

sui'f'iciently far from the dislocation line, 
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i) atomic positions x ° ·k are independent of k; 
J, 

interactions between rows may be neglected, 

ii) atomic displacements remainonear the bottom of their 

respective potential wells and do not exceed ¥ in magnitude; 

the linearity of the equations of motion, governing the 

atoms in the exterior regions, is ensured. 

Therefore, the displacement ,uj,H+l of the j,Mtl. atom 

from the bottom of its well may be expressed in terms of 

the corresponding displacement Uo M by means of the 
J, 

convolution theorem. [2;f} 

Firs t c'ons ider a semi infinite chain with defining 

equation: 

Zk= zk+l - (2+P )Zk + zk_l - '6), zk 

Z k ( 0 ) = ~k ( 0) = 0 t = 0, k ~ 0 ( 3 ) 

Then, by convolution theorem, 
t . 

Uj,Mfl.(t)= oJ Uj,M(t-T)zl.('f)d'l" 

U ° l( t) 
J,-

a 

( 4 ) 

b· 

The relevant atom positions.may be obtained from the 

corresponding atom displacements by the following 

relations: 

x. ° 1= U - 1 J,- j,-l 
XJo 0= u. 0 , J, ( 5 ) 
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IV.8 Finite Di££erence Approximations: For the 

numerical solution o£ the equation o£, motion' (1), finite 

diff'erence approximations are used: 

lin N (n+l n n-l) J.. 2; x J' k= x. k -2x. k +x. k /(f.,).t) , J, J, J • 

• n N (n+l n ' .. 
x J' k;C: X-. k - x. k) / (bt )'"" , , J, J, i 

( 6 ) 

( 7 ) 

n is the iteration number at time t ( n=t/.6t) 

Substitution o£ equation (6) into equation (1) permits 

the computation o£ x~+kl in terms o£ x~ k and x~-kl. The 
J, J, J, 

computation is begun by utilizing'(7) with'the prescribed 

initial con£iguration x~ k and taking x~ k=O in order to 
J, J, J 

1 compute x. k­J, 
The convolution integrals o£(~ are evaluated 

numerically, in the £ollowing manner: For a given choice 

of ~t, the problem corre~ponding to equation (3) is solved 

numerically, using the £inite di££erenc& equations (6) 

and (7), and the values o£ Z~;== z:(n~t) are stored. Then, 

equation (4a) is approximated as 

n 
u. M+l J, 

( 8 ) 

A similar approximation is used £or (4b). For a 

• 'ill m-iN 
sufficiently large m, m> ML ' the dl.fference zl - zl =0. 

, m .. 
It is there£ore necessary to store,zl only £or m~ML and 

permissible to truncate the sum·in~quation (8) at ~ 
, 

'. 

" .. 
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CHAPTER V 

SIMULATION RESULTS 

V,I Dynam~c Peierls Stress: In order to calculate the 

dynamic Peierls stJ'ess of the dislocation, the procedure 

given in Appendix A was followed: For a given ¥t, a stress 

cr was chosen, and iteration' was begun by· the use of 

initial and boundary conditions. Since the initial atomic 

configuration does correspond to unstable configuration, 

following Appendix A, we can conclude if the applied stress 

~ is hig~er than the dynamic Peierls stress ~PD or lower 

than it,by only observing if the dislocation moves or-it 

cannot pass over the first potential barrier. This proce-

dure was continued by increasing () if the dislocation 

does not move, or QY decreasing <J if the dislocation 

moves, until (J" PD was obtained. 

M 

N 

P 

t( 

The parameters used in the calculations: 

41 lattice column number or 'lattice width 

5 " row " " " height 

0.5 

0.) 

(JPD obtained for two different ~ values 

"1: 
tt.: 

0.1 

0.2 

OPt): 0.00)8 

OPD: 0.0068 

are: 

i . 
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V,2 Dislocation Velocity: To determine dislocation 

velocity as a function of time, a stress (f~ (JPD(¥l) was 

chosen, and the sim-ulation was allo,,;~d to proceed until a 

steady-state (SS) condition for the dislocation motion 

was reached. As a measure of dislocation velocity, three 

"different approximations were used: 
M N 

1) v( t)= ~ ~ ~l x j, k ( t) 

2) v( t)=~ 
M ii tj,k( t) ~ - x. k(OB tN 

k=l J, 

v( t)={-
M 

EjN.k(t) - XjN.k(O~ ~ jN: middle 
k=l rOl-l 

Here, the first approximation is the instantaneous 

velocity of the .dislocation,whereas the second and .third 

ones are time averaged velocities. In the second 

approximation, all of the atoms are taken into considera-

tion, but in the third one only the middle row is included. 

It was observed that, the second and third 

approximations for the dislocation velocity give exactly 

the same result, showing the dislocation remains straight 

during motion, unless the lattice contains an impurity. 

The instantaneous velocity fluctuates mu~h at the 

beginning, differing from the other two velocities to a 

large extent; but as the SS velocity is .approached 
/ 

"it takes almost the same value of other two approximations. 

Fig. 9 'shows a typical dislocation velocity vs. 

t ilrie curve. 
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',t 

0.10 
i 

0.08 

Parameters used: 

P : 0.5 

¥: 0.25 

0.1 

Dis location 
ve,locity v 

x 

XX 

:>.06 X 

0.04 

0.02: 

27 

M 

N: J 

<J: 0.0050 

x X )( X >< >( Xx X X X X X X X X 
XXXXX 

o.oO£L-------5o~0------~1~0~0------~1-~50bO~----~270-0-0------2-5t-0----T-i-m-e-t.--~ 
X50/1t 

Fig. 9 A typical ditilocation velocity vs. : time curve 
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V,) Dislocation Velocity for Nonzero Peierls Stress: 

In Appendix A, it is explained that , for a given value of 

nw (the number of weak bond atoms) , ()p can be calculated· 

as a function of P and ¥ • 

For n =. 1, the relation between P and 't which w 

corresponds to <Jp = 0 is 

When ¥ is not chosen'according to this relation, Peierls 

stress exists for the model, and, its magnitude may be 

calculated by following the formulations in Appendix A, 

( ,Fig. A2) 

Some runs were evaluated to see the effect of applied-

stress- fJ on steady dislocation velocity v,' when Peierls 

stress exists. To compare the results with the one 

dimensional calculations of Perchak and Weiner[2g] ,P=0.5 

and )! = 0 • .3 were chosen. For these parameters, the P?ierls 

4 -~ stress, <Jp==l. 2><10 

The steady state dislocation velocities for tt=O.O, 
0.1 and 0,2 are shown in Fig. 10 

0.4 

0.2 

G"pp 0.005 
0.01 

10 Stress dependance of. dislocation 
_t:.or n.op.z~ro ,1~o.iuI.'1..s stress 

Shear; 
Stress' I 

velocity 

:. e, 
j!,,' 
... 1. 

" 
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v,4 Dislocation Velocity vs Peierls Stress: The e££ect 

o£ the Peierls stress on theSS d'islocation velocity was 

investigated by changing 't while keeping P constant £or 

an applied stress o-<<:rpD ' The results are seen on Table 1. 

Parameters used: 

P : 0,5 

H . 41 • 

N : 3 

"tf.: 0.1 

CS': 0.0075 

, 

RWl )/ (fpx 10
2 

number v 

1 0,2500 0,00 0.178 

2 0.2525 0.10 0.172 

3 0.2550 0,25 0.168 

4 0,2650 0.65 0.161 

5 0.2750 1~03 0.165 

6 0,3000 1.42 0.192 

7 0.3100 1.30 0.187 

8 0.3200 0.93 0.168 

Table 1 Dislocation velocity vs Peierls stress 

\ 
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V,S Dislocation velocity for zero Peierls stress: 

For some combinations of P and ~ , Peierls stress 

vanishes, Some runs were evaluated to 'see -the ef.t'ect of 

the applied stress ~ on the SS dislocation velocity. 

Parameters used and results obtained are. given on Tab1es 

2 and 3 • 

¥L =0.0 t). = O. 1 D"L= 0.2 ) 

, 

() 
v cr- v <r 

V 

0.0003 0.041 0.0003 0,0073 0.0003 0.0040 

0.00,1.0 0.095 0.0010 0.0256 0.0025 0.0352 

0.0017 0.131 0.0020 0.0512 0.0050 0.0695 

0.0024 0.270 0.0030 0,0756 0,0075 0,1027 

0.0030 0.315 0,0040 0.0.971 0.0100 0.1315 

0.0040 0.369 0.0050 ' 0.117 0.012:5 '0.1652 

0.0045 0.390 0.0075 0.178 
~ 

0.0100 0.2:47 , 

0.012:5 0.305 

P 0.5 0.25 M : 41 N 3 

Table 2 Dis1'ocation velocity for zero Peierls stress 

atdi££erent damping constants 



. ; 

·,t 

31 

($" 0.3 0.4 Q.5 0.6 0.7 
'" p~ 

0.0003 0.039 0.039 0.041 0.044 0.047 

0.0010 0.093 0.09;! 0.095 0.101 0.109 
----.-

0.0017 0.163 0.156 0.131 0.123 0.128 

0.OQ2.4 0.2..49 0.265 0.270 0.2.64 0.138 

0.0030 0.2..92. 0.306 0.305 0.32.7 

0.0040 0.341 0.357 0.369 0.378 0.385 

M .41 N 3 ap: 0.0 11.: 0 • 0 

Table 3 D~slocat~on velocity for zero Pe~er1s stress 

at d~fferent P values 

Results g,~ven on Table 2.. are dralm. in F·~g. j,l 
••. \'; '\, ,I 

SS D~sloca t:lon 
ve1oc~ty 

0.3 

0.2.. 

0.1 

0.0 

V 

I 

I 
I 

I 

.p = 0.5 

'a = 0.2.5 

stress / ~~: 

F~g. 
11 Stress dependance of' SS dislocat~on' vel~.Q.;l,ty 

for Cfp==O 

1,.Jf 
\ . / 

-J ~:, . 
',,{ 
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v.6 Movement of the dislocation in the Substrate 
~ 

Potential Field: To examine the analogies given 

in Appendix A, the instantaneous velocity o£ the 

dislocation at the beginning of the motion is given as'a 

f'unction of' time in Fig. 12.. 

Instantaneous 
Dislocation 
velocity v 

U 
I II 

S 
I , 

U' 
III 

S' 
IV 

~XX I XXX 
1* X 1 ,X >< 

x/ A</ Ix 

r 
I 
I 
I 
I 

un 
V 

X I 
I 

Ix .~ 

X· )( 1 I· X 

1 ,x 
I S(· I I .. /<. X I )((~-~-~ I X){-----I~ ____ - --- -:..---

I 
X I 

~--t-- ----------+-_._-
I 

200 

M : 41, N : 3, P : 0.5, (S': 0.3, "1: 0.2, (J: 0.0085 

Fig. 12 Instantaneous dislocation velocity vs time 

f'or (J" p=F 0 

Region I Two weak bond atoms (6-7) , U (unstable) 

Reg,ion II · One " " II ( 7 ) , S ( stable ) · 
Region III: Two " " II ( 7-8), U' 

Region IV One " " II ( 8 )~ S' 

Region V • Two " " II' . (8-9) , UtI · 
Nwnbers in paranthesia show the column number, of weak 
bond atoms 

t 

><50/tfr 
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The velocity of' the dislocation is maximum when it' 

is almost at the middle of' the stable region, and mi.nimum 

at the middle of' the unstable region. This result is i.n 

good agreement with the analogies given i.n Appendix A. 

Note that the instantaneous velocity values, at 

which the curve is minimum, i.ncreases as time goes on, so 

does the maxima. As the dislocation velocity reaches 88 

value, that inc~ease in the minima and maxi~a ends. 

It was also observed that the regions II and IV 
, 

becomes narrower and narrower as the Peierls stress 

decreases; if' 0-P= 0, those regions vanish, pointi.ng that 

we have UU' motion instead of' U8U' motion which is assumed . ," 
, 

initially in the analytical solution. ( see Appendix A ) 

Fig. 13 shows the variance of' instantaneous velocity 

vs time f'or similar parameters except t5 =0.25, resulti.ng 

o-p=o.o 
• .a. •• _._'~:'~", __ ,_ 

88 Dislocation. 
velocity 

liT 

I 

) I 
I U' J 
II I III 
I k >(J-x 

U" 

IV 

'" )( X XI X\.,)( )( I X \.0 

XX" I Xx '\ '\ 
X x-x-X _ ------1-- _~~~~ X-=--=-=-_t __ -~k~" 

I I 
I I 
I I 
I I 
I I 
I 

. I 
Time t ," 
X.50/'TT". 

,M: 41, N: 3, P: 0.5, 't:0.25, "l: 0.2, Cf: 0.0100 

Fig. 13 Instantaneous. dislocation velocity vs' time f'orClf,::"O 



34 

V.7 Dislocation Position: Position of the disl.ocation 

was calculated by using the following formulae: 

1) (t i Ix. k(t) - x. k(o)1-) 
j.=llJ, . J, ~ 

1 

~ 

M 
r(t) L 

k::l 

These are obtained by multiplying the time averaged 

dislocation velocities by time. 

i~hen there is no obstruction, these two approxima-

tions give exactly the same results for the positi.on of 

the dislocation. 

Fig:. 14 shows a typical dislocation position vs time 

curve. 

Parameters used: 

P . 0.5, . 0.25, M • 41, N 3, ¥l._: 0.1, (): O. 09_~(). _____ .... __ • . . 
r Dislocation 

Position )( 

x~ 
16 )( 

X 
)( 

X 
)( 

12 )( 
)( 

X 
X 

)( 

8 x 
"1 X. 

X ! ; 

X 
J( 

-4 
X 

J( 

>( 

:. 
)< 

X 
'.~~ 

0-
2000 Time t 0 

Fig. 14 Dislocation position vs time X50!1T 
,_, '0, .. 
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V.S Motion in a lattice with an obstruction: The 

hypothesis of "mult:J,.plication o;f dislocations", proposed 

by Rrank[2jJ, which is explained in chapter II also, 

was examined by fixing an atom on the path o;f the 

dislocation. The configuration and parameters are as 

;follows: 

1-'1 : 33 lattice width 

N . 11 " height . 
p 0.5 } '6: 

Of> =0.0 
0.2:5 

"I.: 0.1 

0-: 0.0050 

Dislocation is at 4.5 atomic distance from left 

j;::.lJ.. 

\ 

Fixed atom row· number j = 6 

Fixed ~~.~m c().lumn. number k=26 

disloca ti.on 

Fixed atom 

j:=l1c::.l - b 
k=33 

Fig. 15 Lattice with dislocation and a :fixed atom· 



Eq~ations.£or the fixed atom: 

x... k (t)::: x. k( 0) } JJ' J, 

v·'k(t)=o.O 
J_" . 

fixed atom 

Fi.g,. 12 shows that the 88 velocity v=0.116 for these 

parameters if there were no, obstruction. 

Until' t~lJ6, the dislocation motion is normal with 

a time averaged velocity of 0.115 and a-dislocation 

po~ition of 20.J. There is only a slight difference (around 

the order of 1/10000), between the time averaged velocities 

(or the positions) of the'dislocation, calculated by 

including all of the atoms or only the atoms at the middle 

row. The velocity of the middle row is less than the total 

velocity, and the dislocation takes a curved shape with 

the dislocation at the center row is behind the dislocation 

line at the end rows .• After t=150, the instantaneous 

velocity begins to decrease and becomes zero at t=178., 

Fig. 16 shows the decrease of the instantaneous dislocation 

velocity with time. 

After t:178, the dislocation velocity becomes 

negative, which is an indication of a bowing and reflect/ion 

around the fixed atom. After making some oscillations, 

the dislocation is almost stopped at t:J25. The last 

. position of the dislocation at the middle row is 23.66 • 

Fig. 17 shows the change of dislocation position 

with time. 
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0.16 

0.12: 

Instantaneous 
Dis1ocation 
ve10city 

Xx 
)(x 

x X X 
X >< 

0.08 

0.04 

0.0 

1400 

><X X 

1500 
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x 

1600 
Fi~ 16 Instantaneous dislocation velocity vs time 

at the time of stopping 

Time t 

x 30/7r 

r Dislocation 
gos ition 

2..4 

16 

x 

8 
x 

4 

x 

x X X X v< XX X X X X X )< )< 
)c 

single obs ta cle 

at k=2.6 

Time t 
,><30 / rrr 

F · . 17 n-lslocation position vs time with obstacle 
~g.. ... 
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By the use of Fig. 17, we can draw a velocity vs. 

time curve for the dislocation.- t Fig. 18 ) 

In Fig,. 18, the time increment used in the 

calcu:l.ation is 10 X I7T /3 .1 

~ 
. --~--.-" -

v Dislocation velocity 

0.14 

0.1.2 
'f.. X X X X X X X X X X X X X X X X X X X X.X X X X X >< 

0.10 
'I.. ,- X 

0.08 '/... x 
0.06 

x 

0.04 

0.0 

Fig. 18 Veloqity vs time graph o£ the dislocation, 

when there is an obstruction on the path of it 

In another simulation, 2: pbints were fixed, with 

row numbers j~l and j=ll. Other parameters are the same 

as the parameters of the preceeding one. 

It was observed that the decre~se of the 

instantaneous velocity is very·similar to that one. Only 

difference is that the position of' the dislocation at the 

'" 

x 
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middle rOly is now ahead of the dislocation at the time 

of stopping. 

The dislocation configuration at ~356 is as £ollows, 

row, number j 

j=ll 
e 

o 
o 
G 

j=6 9 

'G) 
j=l 

o 

• (f) 

• 
0.4 

Fig. 19 Final configuration of dislocation 

Then, due to the energy stored in the springs, 

instantaneous velocity becomes negative, showing that 

-. 
the dislocation is moving. left. But after some time, the 

dislocation stops again and moves to the rig~t, because 

the shear stress (J is still being applied. As a conse-

quence of these motions, dislocation becomes vibrating as 

if a string fixed at both ends. This vibration ends when 

the energy of the dislocation is lost completely by the 

effect of phenomenological damping "l • 
Several computer runs were carried out in order to 

determine the characteris tics. of the dis location vibration, 

and they are outlined in chapter VI. 
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CHAPTER VI 

VIBRATION OF A PINNED DISLOCATION 

This subject was investigated in detail by Weiner, 

et al [22J , and several important results were obtained. 

It is possible to utilize the computer program used 

in dislocation motion, in the study of vibration 

characteristics of dislocations, after making necessary 

modifications. By dOing so, the modified program was, used 

first to obtain results as Weiner et al have obtained, 

and we found the same results. Then, the program was 

ex.tended to include damping. 

VI.I Model Description: The same model described in 

chapter IV was used, except the items given below: 

1) Initial Configurati~~: Initial positions of ' atoms 

correspond to the stable atomic configuration for M=1: and 

~~O case. ( see Appendix A) 

2) Initial velocity: It is dif~icult to investigate 

the v±brat~on of dislocations when an external shear 

stress is applied to the atoms. This difficulty is 

eliminated by choosing this stress to be zero. ~n order 

to initiate the vibration, all atoms are given an initial 

velocity v. (0). Now, the problem becomes simpler; we 
J"k , 

\ 

have free vibration of the dislocation, instead of forced 

vibration. 
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In~t~al velocity distribution: 

where, 

Vo maximum initial velocity 

j row number of any atom 

k column II II .. .. 

D column number of dislocation 

L dislocation length (atomic distance between f'~xed 

atoms ) , , 

r l/Z (p t 2 _ (P2.+4P) 1/ 2. ) 

P P + A 

i\ 2 + P _ ~P+Q)2 -+ j 
Q 2P(j' /(1-2~) 

This initial atomic velocity distr~bution sp~c~fies: 

a) a sinusoidal variation in j Qirection, 

b) the lowest frequency localized mode of vibra t~on ·w the 

stable configuration, in the k direction. (see re~ 9) 

3) Energy: As a check of the calculat~ons, an energy 

balance was computed at selected time steps. 

Kinetic Energy 

Elastic Spring Energy 

Shear Spring, Energy 

M 

fu 
N 

Vr;=L-
. j=l 

1 .2: 
-:r x j., 1e 

N-l 
V= L s 

j~l 



0,_ 

Substrate "Potential Energy 

where, 

M 

L V(x ° k) 
k-l J, 

Energy lost to the surrounding meqium up to time t 

N 
F( t)=- ..!... L 

2 ° 1 J=-

M 

Z 
k==-l 

where, NN: number of time increments 

~t: time increment 

Energy lost from the boundaries up to time t 

t 

f ° ~'1 1 x JO , ~'1+ ld T + j J"l" '+ 1" f ° Ii. ° ldT) J,- J,-
I 

where, fj,H4ol=x'j,M - xj,Mtl + 1 

fo 1 
J" -

X-j,o - xj,_l -1 

The energy balance requires, 

T t V
L 

+ Vs + Vp+F(t) + Q(t)=E(O) <E--__ initial energy 

4) Logarithmic Decrement D.s 

using the following method. 

It is calculated by 

Let the overall dislocation velocity be 

M 
L,Xok(t) 
k=l J, 

42 
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Let this f'unction have zeroes at t ., j =:.1, 2, 3, ••• 
n:n .+1 J t. • -

Then, X - ~t 2:,J X (nAt) J .- n.= J /J n n. 
At J 

half' cycle number 

so that X. approximates the area under the half' cycle of' J . 
• 

the curve ~f' X} t) lying bet,ieen t j an.d' t j+l' If' we draw 

a semilog graph of' X.vs. j, 2 times the slope of' the lane 
J 

which best f'its to the points on the graph, gives the 

logarithmic decrement f'or the process [22J 

VI.~ Simulation Results: 

1) Energy of' the system: From energy calculations, 
I 

it is seen that the total energy of' the system decreases 

steadily, while the energy lost f'rom the boundaries 

increases. The sum of' these two is satisf'ied within a f'ew 

percent deviation. That deviation is at most 3%. As a 

result we can conclude that the results of' this st~dy are .. 
reliable. 

~) Zero Peierls Stress: Figures 20 and 2~ show tue 

varia tion of' f'requency of' f'ree vibration Wo with VP', and 

period of' f'ree vibration 7:0 with dislocation loop length 

L. 0.>0 
Frequency 

,/" , 
0.2 

X"" 
... ~ 

"" )('" 
'" , 

)<''''' 

0.1 " )('" 
.;' 

.;' , 
"" .;' 

"" '" .- .-
Jp' .-, 

.8 0.00. .2: 
Fig. 20 Freq,uency Wo vs !IF 

,/ 
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Fig. Zl Period of free vibration vs. dislocation 
loop length 

From these two graphs, we see that the period- of 

free vibration increases linearly with dislocation 

length L" and freq,uency increases linearly with VP', 

as usual. 

Fig,ures 22: and 2:3 show, the variation of logari.thmic 

decrement ~s with Land P • 
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3) Nonzero Peierls Stress: It was observed that, f'or' 

any P and ¥ conf'iguration, the variation of' X. with j 
J 

depends on Vo chosen. 'vhen Vo is large enough, a linear 

descending. curve is obtained giving the b.
s 

value. But f'or 

small Vo values, 6.s =0, showing no energy lost. This 

phenomena is explained by 'veiner et al. [22:J , as the 

trapping.of the dislocation in a Peierls valley. For large 

v 0' after a certain time, 6.. s= 0 is reached. 

Figures 24 and 25 show the change Of'~s and ~O 

wi th (J p and ¥. 
3 

~ )(10 s 
Lagarithmic decrement 

period 01' vibration 
Period 

.. " 

".10 

300 

250 

200 

150 

l.00 

50 

Fig.,,24 Logarithmic decre,ment 
Period of vibration 

+-- --+ To 

vs peierls stress 

"" " 
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4) Effect of temperature: In order to see the effect 

of temperature on the dislocation vibration behaviour, 

random initial atomic ve~0cities corresponding to that 

temperature are added to the initial velocities of the 

atoms. The distribution of these added velocities is a 

Gaussian one with zero mean and J v:2 ' root mean square/) The 

rela tion bet,,,een T and s is T =-cs 2. 

where" s 

T temperature in K 

c 39550 for a typical example. ( NaCl) 

(see ref.[2~D 

These velocities are generated by means of a computer 

subroutine (RANDN) • A seed number is given as input to 

the subprogram, and all the atomic velocities are 

determined by that seed. 

Fig. 26 shows the effect of temperature Ton-the 

logari thmic decrement b..;; for three dif:f'erent 'If values 

for constant P. 

5) Effect of damping: W"hen. external damping is not 

included, the system looses energy. This energy lost is 

in the form of radiation. More information is given in 

ref. [?2.]. Shortly we can state that, energy loss from 
( 

the vibrating, dislocation may be ascribed to the imperf~ct 

transfer of energy from the localized mode associated with 

the dislocation in an unstable con...:'iguration U to the 

localized mode with the next such configuration UI. The 

energy which is not transferred from one localized mode 
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to the succeeding, one is carried o£f by nonlocalized 

modes, i.e., traveling lattice waves, so that radiation 

energy lost occurs. 

In order to see the effect of external viscous 

forces to the system, nonzero 1 values were chosen. 

Fig. 2.'7 shows Xj vs.J curve for several 'tJ. values. 

~s Logarithmic Decrement 
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CHAPTER VII 

DISCUSSION OF THE RESULTS 

Before dealing, ,'lith the simulation results, it would 

be better to discuss the choice of some parameters used 

in the simulation. 

VII.l Effect of dimensions: In the dislocation motion 

part, it was seen that the dislocation moves in the form 

of a straight line;, that is, there is no interaction 

bet"leen ro\yS unless the lattice has an. obs truction. This 

observation enabled us to choose the number of rows in 

the lattice as small as possible. In most calculatif>ns, 

number of ro\.,rs was three •. But in order to let the 

dislocation to have a steady state velocity, the number 

of 901umns was chosen to be 41, in most simulations. That 

nwnber proved sufficient for this purpose, at least for 

small s tress values. By keeping column number large, i.the 
') 

assumptions made in the model description chapter were 

als 0 satisfied. 

\vhen we included an obstruction in the lattice, such 

as a fixed atom at the middle row·, or two fixed atoms at 

the boundaries, rO"1 number ,.,ras increased .to 11, in order 

to let the dislocation make a bowing around the fixed 

atom or between the f:ixed atoms. It , .. as observed that 

this number is not larg'e enough, be caus e the maximum 

dii'ference bet,.,reen the dislocation line at .the middle row 

,. 
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and at the end 'rows is around O. 5 atomic dis tance. It is 

obvious that i~ row number increases, this di££erence will 

increase too, and maybe the multiplication will occur. But' 

due to computer limitations explained be£ore, this 

multiplication process has not been aChieved. 

In the vibra t ion part," a la t t ice o£ 20x20 (c olumn 

number~row number) lattice was su~f.icient to satis£y the 

assumptions. For some parameters ( P~O. 3) even a 10'><10 

lattice was enough £or the purpose. For small P values 

( P«0.3) , since the bond between rows is small, le£t 

and right boundary atoms may move larger than the 

permissible values, and this a~~ects the reliability o£ 

results. To see the e£~ect o£ dimensions on 'the energ'i.es , 

o£ the system, some runs were evaluated and it was,£ound 

. that the di~~erence between a 20xIO and a 30XIO lattice 

is very small as compared to the di~~erence between a 

10xl0 and a 20xIO lattic~. We can conclude that, the 

choice o~ a 20xlO lattice was a good choice; 'the use o£ 

larger dimensions is unnecessary. 

VII,2 E~~ect of' ~t: Nost of' the computations used 

/It::0.2.09. In order to see the e~fect .6.t chosen, some 

calculations were per£ormed by changing At only, while 

other parameters being kept unchanged, f'or the.-:vibra ting 

dislocation. 'The results are shown on Table 4. 

parameters used: 

P : 0.5 M 20 

0.25 N 10 
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1/-- .6t To ~s 

1 0.419 28.274 0.334 

2 0.209 2.8.274 0.335 

3 0.140 2:8.2.74 0.346 

4 0.105 28.274 0.403 

Table 4 Ef£ect of ~t 

Table 4 shows that At 0 'lA9 i d h' -~ =.~ s a goo c 01ce~ 

because the period of vibration TO is constant, and 

logarithmic decrement~ calculated do'not fluctuate much - s 

by a change in ~t, around Ltt=0.209. The reason for the 

slig~t chang~ in ~s for very small~t is probably due to 

the increased number of iterations. 

VII. 3 Model Parameters: r-lodel parameter values used by / 

Weiner et ale ([9J" [lOJ, [20]) w:ere chosen to make a 

comparison. P was usually around 0.5 which is a very 

realistic value. Applied shear stress was within the stress -, 

rang~ determined by the static and dynamic Peierls stresses. 

In the vibration part, external damping was zero, 

except that the direct effect of viscosity on the 

calculations was observed. In dislocation motion 

simulations, because this external damping helps the 

dislocation reach its SS velocity in shorter time and 

distance, nonzero tt values were used mostly-. 

Now we can discuss the results obtained, one by one: 

VII. 4 Dynamic Pe ierls s tres s : (J" PD Values for two 



different damp:ing constants (1l.=0.1 and 0.2) are almost' 

the same as the O-pD values obta:ined analytically, by the 

use of locai mode approximation. (see Fig~ 5 of ref.[2~) 

VII.5 SS Dislocation Velocities when ~P is present: 

Comparing Fig. 10 of this thesis and Fig. 6 of ref[2ill , 

we can see that the results for tt=O.l and fL=0.2 cases 

are in g,ood agreement. For yt-O.O case, SS dislocation 

velocities obtained here are less than the corresponding 

ones in retia [20J. This may be a result of insuf~icient 

dimensions~ because there'was still a small increase in 

the d~slocat~on velocity when the dislocation hits to 

right boundary. 

The velocity stress relation will be discussed after 

searching the ef~ect of Peierls stress on SS velocities. 

VII.6 Effect o~ Peierls stress: As shown in Table 1, 

SS dislocation velOCity does not show a clear dependance 

on the Peierls stress, ~P' even though a small decrease 

in velocity by increasing O"p' for small 0" P values.' 

VII.7 SS Dislocation Velocity when ~p is absent: 

Table 3 shows that the change of P does not have a 

dei~ite effect on the velocity, ~or a given str~ss~ when 

()p :=0. For small and large stress values, some increase 

is observed~ but for medium stress levels, there seems 

to be some other factors which affect the dislocation. 

motion. 

Comparing Figures 10 and 11, we see that for a given 

the slopes of those lines are almost equal. But, the 
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l~e is cut at a stress called dynamic. Pe~erls stress, 

when <f'p exists. So we can conclude that, the presence of. 

Peierls stress does not have an important efflect,~on 

velocity-stress relation, and it only produces a minimum 

stress level ~or the dislocation to be able to move • . . 
FOllowing the relationship given by Weertman [2~ 

cTb=Bv 

where B is the damping constant, B=AfL A: a constan,t, 

so, we can derive a relation flor the velocity and stress, 

() 
v= c'---

'1 
where c is a constant to be determined. 

By ~spect~g figures 10 and 11, we see that, this 

relat:lon holds for the results of this model also,· with 

the constant c=2.. 5 • SS velocities £ound in this simulation 

are comparable to that of experimental methods, given in 

Fig. 5 of ref[26]. 

VII,S USU"Motion: Counting the number of weak bond 

atoms at any time showed that the USU' motion assumed 

initially by the local mode approximation[lO] is correct. 

For <f"p==O, UU' motion is seen (two weak bonds at any tim,e) •. 

VII.9 Stopping of a dislocation by an atom: In the 

second part of the Simulation, it was observed that the 

presence of of a fixed atom on the path of a dislocation 

stops the motion of the dislocation. Due to limitations, 

this study couldn't be enlarged to see the multiplication 

of dislocations, proposed by Frank [?lJ. But, it is probable 
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that this multipl~cation process might be observed by 

increasing lattice dimensions and applying larger stresses. 

The application o£ stress is another di£ficulty. 

Stress values used here, were in the range OFn< cr<o-p, 
so we ,,,ere able to apply the shear stress instantaneously, 

at t~O, since the stability of the model is maintained 

for <J"<Up" Application o£ high stresses (G'">U'p) at t;:;:.O 

disturbs the stability, hence, beginning with a low 

stress, we mus.t increase it gradually. But, this procedure 

requires enormous computation time. I£ these problems are 

solved, then, it would be possible to see the multiplica-

tion of dislocations at an obstacle, and breakdown or 

dislocations at velocities close to the speed of sound, 

as explained in re£erences [16J, [18J , \19J • 
VII.10 Vibration of a pinned dislocation: Results 

given in figures 20.2:.1,22,,23 are almost the same as the 

resul ts found by Weiner et al!. [22J ; dis cuss ion of these. 

£ig~es are given in re£. [22J ; shortly we can state that, 

the results o£ a pinned dislocation are in accordance 

with the prediction o£ a string., fixed at both ends, with 

small damping. 

Fig~ ~4 shows logarithmic decrement vs Peierls stress 

rela t:i.on. Following equation 1.5 o£ re:£.. [?ZJ , 

and observing Fig. 24 , we can state that the damping 

constant for the model, when a phenomenological damping 

is not included, is not a £unction of Peierls stress. 

i: 
! 
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This dam· . d P1ng 1S ue to the energy loss from the boundaries 

by the traveling lattice waves. 

VII.11 Temperature Effect: Fig. 26 shows that, for, 

zero Peier1s stress, the rate of decay decreases with. 

increasing temperature. This result is not in agreement 

with the usual picture Of'the effect Of temperature upon 

a steadily moving dislocation, an effect usually described 

as due to phonon drag. But the decrease in rate of decay 

may be due to the phenomena of " thermal energy trapping ", 

a process discussed by, "Ie mer in [llJ • 

For nonzero Peier1s stress, this decrease in rate of 

d~cay is not seen. 

In fact the method used in creating thermal 

e~i1ibrium at temperature T may be inaccurate. Because 

a toms are given an initial velocity corresponding, to 

tempera ture T, only at the beginning. of the computation. I 

In a recent study, Perchak and Weiner [?O] included the 

temperature effect in . .::the eq.uation of motion explici~ly, 

and obtained more realistic results. Here, ~he equat~on 

of motion has a rapidly fluctuating force term,R(t) • 

VII.12 Effect of Damping: As predicted, the rat~ of 

decay increases with external damping. constant. 

VII.13 Recommendations for future work: This thesis 

covers, mainly the stress-dislocation velOCity relation, 

and partly the vibration characteristics of dislocat'ions. 

,l<"'or a continuation of this study, the following additions 

and modifications are possible. 



1) Mode,].: Model may be chang,ed _~o simulate' a more 

realistic crystal. A J-D mOd'el may be used. 
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2) Numerical Methods: In the solution of' 'the dif'f'eren-

tial equations, some higher order approximations may be 

used. 

J) Substrate Potential: The shape of' the substrate 
\ -r 

potential may be changed to another f'orm such that a 

sinusoidal one to see the dif'f'erences in results of' the 

modif'ied and unmodif'ied :forms of' Frenkel-Kontorova m·odel. 

4) Number o:f imper:fections: By taking a very large 

lattice" the number of' dislocations may be increased, SO 

it would be possible to see the interaction of' dislocations 

with each other. 

5) High velocity region: By using proper stress 

application methods, an investigation in the hig~ velocity 

reg~on would be use:ful. 

6) Shape o:f dislocation: Instead of' taking a straight 

dislocation, a kinked dislocation may be used, so t~e 

e:ff'ect o£ kinks on dislocation behaviour could be studied. 

7) Collected Impurities: A lattice with a collection 

of' f'ixed atoms coul~ be per:formed in order to simulate an 

actual impurity. 

VII.l4 Closure: The most signi:ficant conclusion to be 

draw.n:from this work is that, it is possi~le to simulate 

an actual crystal with some imperf'ections, in the f'orm of' 

a computer model.Al though the mode'ls in the simulation are 

highly idealized, they can provide valuable insight into 

the mechanical behaviour of' materials. 
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APPENDIX A DISLOCATION MOTION IN ONE DIMENSIONAL MODEL ~ 

This appendix is about the choosing of proper 

model parameters for use in numerical computations, 

calculation of Peierls stress and the explanation of SUS' 

(stable-unstable-stable) motion of the dislocation. The 

model is a modification of the Frenkel-Kontorova [6J 

one dimensional model. 
. . 

A.l Model Description: Consider a linear chain of mass 

points interconnected by linear springs with spring 

constant kl and equilibrium spacing b, and subjected to a 

periodic potential. This substrate potential represents 

the effect .of the remaining atoms in the J-D crystal. 

Ass·ume a piecewise quadratic, continuous potential U(x) 

(. Ai >' 
b )2 ~ - x 

where, 

k2 a measure of the shear modulus of the crystal 

ki " " " " Young's " " " " 
¢ " " " " hardness " " " 

In o+der to introduce a dislocation in this model, 

start with the linear chain as in li'ig. Ala,and subject 

longitudinal force Gj,' where 
, _ 1 -

" 

the j'th atom to a 

G M G_M+l :::. - ~ .k:l b GM_ l G_M" 2: klb :, Gj=-Ofor all 
other j ( 

I- This appendix is a revie, .. of the studies 

and 'Sanders[ 9J, . \veiner Q.OJ , and Perchak 

by Weiner 

and \veiner[201. 

A2: 
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--------+4--~~~~-----~) 

Fig Al Linear chain dislocation 

model 

.. 

As a result, all a toms j~ M are displaced b/2 to the, left, 

all atoms j~-M are displaced to the right, and those 

I 

for which -M< j.<M are undistur.bed. For the speci~l case 

N:o:.2, this new. eq,uilibriwn conf'igura tion is shown in 

Fig. Alb • Now we have a dislocation. 

Then the atoms are sUbJected to the substrate 

potential def'ined in equation (Al) and sketched in, 

Fig. Alc • 

Ne~t apply f'orces -G
j 

to the conf'iguration of Alb 

and Alc , .aruiull:L.ng. those originally applied" and also 

apply a constant force () (ex-ternal shear stress) to each 

atom. Let the resulting displacement of the j'th atom 

from the configuration of Alb be v .. lvith the substrate 
. J 

potential of e~uation (Al), the substrate force on-the 

j'th atom is: 
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-k2:.V ' f'or Ijl~M, providing tv~¢ . . J J; ( AJ 
F:=. 

J 
2k~ - f'or \jl<M, Iv j~{~ - ¢) 2 v. providing 
b-2¢ J; 

Note that in the f'irst of' equation (AJ) , - is measured v j . 

f'rom potent±al minimum, while in the second, - is a v. 
J 

measured f'rom a potential peak. 

The f'inal conf'igUX'a tion is shown in Fig. AId •. The 

atoms in the range \jKM are termed subject to weak bonds 

to a substrate potential, while the others are ref'erred 

to as strong bonds.The number of' weak bonds, nw 2M-l may 

be odd or even. In the latter case, the atoms are indexed 

as shown in Fig. Ale, that is j understood to take on the 

1 1 1 1 
values ••• -1'2 ,,-'2' 2:. ' l2' ••• , when 2N is odd. There-

f'ore in both cases the weak bond atoms may be taken to 

correspond to -M< j< M • 

The eq~ations of' equilibrium f'or the conf'iguration 

Ald are: 

) 

(A4 ) 

w:ith the introduction of' dimensionless variables, 

and the reduced displacement ur-v .- cr 
oJ J. 



these equations may be lvritten 

. lJI~ M 

( AS ). 

u-i..Ll - (2-Q)u. + u. 1 = G. _ (J P 
~ J "J- J l-2~ 

A. Z Displacement Solution: As N~oo, the solutions are 

u/ cr J M) = «(fFM + GM ) ~-j 

( cr F M - G
M

) p j 

_ (j (~ -" 1) cos je-u. _ --:--;~ __ -:-_-:--___ -..,... 
J, 2)( ( ~ COS(M-l)&-COSMG-) 

; j,~-M 

; j~ M .... 
. " 

( A6 ) 

+ (~-l) sinj& Cf 
- 2:.'6 .; 

~( sinN&- ~ Sin(M-l}e) 
-M< j < M 

where, F = cosMe - cos(M-l)e-
M --( --:1"';"""""1 -(-->-\-f"\~M-"'-l:---J---~ 

Z~ ~ cos 1-1-1 r:r - ~ cosMG-) 
Q 

cos&=l - 2 

A,3 Compatabilityand Stability of the Solution: 

Assume that M, P, and () are given. WOe are to determine 

the range of (f for which a solution with n -=- 2M-l weak 
w 

bonds is 

i) compatible lfith the force law in eq.uation (A3) 

i~) mechanically stable. 

i) Compatability: For co~patability, 
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these are necessary (and sufficient). 

After some manipulation , we find that 

taxUtle:; 1-13 
l+~ 

~ 
cotg2" gives lower limit on 

1 r -& tan(M-l)&= --- cotg- " 
1+ J3 2: 

upper " " 

Note that ¥ is included implicitly in iT • 

( A 7 ) 

" 

Assume that ~-l which satisfies the first equation 

is denoted by CM ' and the second equation by CM_
1 

then, C ./ -1 ./ C 
M-l~~ ~ M 

( the lowest value of -G- must be chosen not to violate the 

inequalities of (A3) except the ones for j= M ) 

ii) Stability: After the necessary calculations, it is 

found that, the solution corresponding to 2H-l weak bpnds 

will be stable only for 

-1 C 1 
.'({ '-. M-­

~ 2 where,. C 1 
M-Z 

is given by 

upper limit for stability 

Combining stability and compatability results, 

If' the value of v-l . 
o J..s in the range given above, a 

solution with 2H-l weak bonds is both compatible and 



.... 

stable, while the only other compatible solution for the _ 

same ¥ , that with one more weak bond is unstable. 

,-

A.4 ~ Ranges for M-l and M-3/~ 

1) M=l 

1- ~ .g. 
tanS =. 1+ ~ cotgz- -=7 

l-fl 0=.--
1+ f3 

tan 1:. -e - ~ ot -G 
2 - 1+f3 c g-z 

2) M= 3/2 

3 1- f3 tan--9-= 
2. 1+ f3 

----=7 't( = o. 4444 

~ ~=0.333J 

1 l-P ..g.. 
tan-z -e-= 1+/3 cotgz- -?;> '¥ 0.3333 

tan€) 
_ l-P .g 

)(=0.25 - 1+f1 cotg 2:. _ » 

If we draw )( axis, 

.I II 
I 

III IV V 

0.1928 0.25 0.3333 0.4444 
-;,'t 

Regions I and V: The solution is not compatible and stable 

for M::.l, or M=3/ ~ 

Region II ':The solution is compatible and stable for 

1-b3/2; not compatible and not stable for 1'-1=1 

Reg:ion III: The solution is compatible and stable for M=l; 

compatible but not stable for N-3/2 



" . 

I 

68 

Reg±on IV: The solution is not compatible and not stable . 

for H=3/z.; compatible but n9t stable for M=l. 

These values are calculated for P=0.5 

A.5 Peierls stress: 

Equations of stability show that 

Op is defined as the stress above which these inequalities 

are invalid. 

Of these two, the first One is the controlling. 

By substituting the variables, 

r cosJvle - J3 cos (M-l )-e- J r.: 
(fp = "ttSinHG - f3 sin(M-l}e- J >< L 

sinMG- - S sin(M-l)e l 
cosMe- - 6 cos (M-l)e J 

At 6 Change of <T p with '({ • for dif:£'erent P values: 

Fig. A2:. shows the variation of 0 P ,dth '6 , for M=l 

and M=3/2" and for different P values. (P;::0.3, 0.5, 0.7) 
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A.7 Dynamic Peierls Stress: It was shown that the 
I' 

Peierls stress is the stress required under ~uasi-

static conditions and in the absence of thermal motion to 

move the dislocation from one stable eq~ilibrium position 

to an adjacent one. However, once the dislocation is in 

motion, i. e. , has surpassed one potential barrier, it 

acquires lcinetic energy and continued motion will be 

possible at lower stress values. This stress is called the 
I 

Dynamic Peierls Stress UpD ' 

.. i A,8 Stable and Unstable Positions: We/have seen before 
' .. 
'.~ that for a g~ven set of P and '({ , there exist two 

eqMi~brium' configurations for the dislocation: 

Stable configuration with n = 2M-l . w weak bonds, 

2) Unstable configuration with one more weak bond. 

For example, let P~O.5 and ~=O.3 

if M=l the configuration is stable, and 

if M-3/2:. the configuration is unstable, 

This situation holds as long as the applied st~ess ~ 

is less than ~P (Peierls stress) ~ 

For (J~ <lp no stable eq.uilibrium solution exis ts. 

A.9 Motion of the dislocation: Let the dislocation be 

in the successive configuration as in Fig. A3. 

This motion can be described as the motion of a' series 

of alternately suspended (stable) and inverted (unstable) 

pendulums. ( Fig. A4) 
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~s' 
ds' 

Fig~ AJ Sequence of atom 
states 

.Fig. A4 Pendulum anaJ..ogy 

In ref. [10J, it is given that the energy transfer 
\ 

at transition times from S to U or from U to S. energy 

transfer is partial. 

Another analogy is the movement of a ball on a 

mountain chain with certain obstructions, which absorbs 

part of the energy of the ball. ( Fig. AS) 

~,-/~, S 

~u 

~~S' 

Fig. AS Ball analogy 

'I 
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It is clear that, during motion, if the ball comes 

to the top of a hill (unstable equilibrium point), then, 

it will be able to reach the top of second "hill by the' 

help of dynamic Peierls stress, <rPD • But i:f it is 

stationary in a well, then, the necessary stress to take' 

it to the top of a hill is the Peierls stress, (J" P • After 

it reaches the top, it will continue to move. 

After this discussion, we can state that the motion 

of the dislocation model depends On the initial conditions. 

If atoms are in stable equilibrium positions (M=l), at 

least Peierls stress is necessar~ to move the dislocation, 

but if they are in unstable equilibrium positions (M.3/2), 

dynamic Peierls stress is sufficient to move it. As a . 

result, it is possible to calculate the Peierls stress 

(or dynamic Peierls stress) for a given set of parameters, 

experimentally (by computer simulation) by only choosing 

the stable (or unstable) equilibrium configuration for 

the atoms by the use of proper formulae given in part 

A.·2 , applying any stress (f , and observing if the 

dislocation moves. The minimum stress which will make the 

disloca tion move is the Peierls stress, (or the dynamic 

Peierls stress). 

Addition of damping and temperature brings some 

cQmplex:i.ty to this discussion; these topics are studied 

by Perchak and _Weiner[20J in detail. In that paper, [2Ql , 

steady state velocities of the dislocation under certain 

parameters are calculated by computer simulation and 
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ana~ytica~~y. Good agreement is found between the resu~ts 

of these ca~cu~ations. 

In this thesis, a tw.o dimensiona~ mode~ is used •. 

Initialconfiguration is such that the atoms in any row 

are in unstab~e equi~ibrium positions for zero app~ie~ 

stress; there is no dif£erence between rows. Then, a 

stress ~p~~~~p is app~ied and steady state velocity 

of the dis~ocation is ca~cu~ated. The resu~ts are 

compared to that of the one-dimensiona~ resu~ts of·the 

studies exp~ained in this appendix. 
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APPENDIX B PHYSICAL INTERPRETATIONS OF THE PARAMETERS 

USED ::LN COMPUTER SIMULATION 

In the compu.ter simulation of dislocation model, 

dimensionless quantities. were used to simplify the 

calculations, and to generalize the model. This appendix 

explains the meanings of' the dimensionless variables, 

and gives numerical information in CGS units, about the 

true values of these parameters. 

A typical example is NaCl crystal with the 

f'ollowing properties: 

Density 

Shear Nodulus G 

Young's Modulus E 

Lattice Constant b 

1. 26><10
11 

5.0XIO
ll 

2.8X10-8 

dyn/cm2 

2 dyn/cm 

cm 

B.l position or distance: It is defined as x/b, where 

i is the true length. To find the actual distance, the 

" 
nondimensional distance x must be multiplied by lattice 

constant b. 
0. 

- -8 f'or example, 1 atomic distance means x= 2..8xlO cm. 

B,2 linear spring constant kl~ It is a measure of' 

Young's Modulus E. Assuming the proportionality constant 

to be b, 

11 / 2... -8 kl E><;b =5.xlO dyn cm X 2. 8XIO em 

4 
k l -= 1. 4X10 dyn/ cm 
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B.3 shear spring constant k2.!.. It is a measure of'shear 

modulus G.'Assuming: the proportionality constant to be b, 

. 11 / 2 -8 
k~ G,Xb == 1. 26':1<:10 dyn cm >< 2. 8~10 cm 

4 
k 2- 1. 4XlO dyn/ cm 

B.4 Ratio of shear spring constant to linear spring 

constant, P: 

usual range f'or P : 0.2 - 0.5 

B,5 time t 

_ -/?fb3 
t=t --

. bE 

- -8 
t = tX2. 8)(10 

tbJ: \ 
2.17 gm/cm3 

5.X10
11 dyn/ cm

2
-

- -14 
t =- t'<5-. 833><.10 sec 

\ -14 
every dimensionless time is around the order of' 10 sec. 

~. 
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B.6 velocity v: 

x 
v=--=-= 

- t tF
·

l 
---X ~ == 

m t 

bx 
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where es=/-J ' ="L {P' 
cS:transverse wave speed 

x. 
v=cLt 

cL : longitudinal fl 

unit dimensionless velocity represent the velocity o~ 

fl 

longitudinal waves in crystal when the substrate potential 

is neg,lected. 

l'or NaCJ., es1;'1; \:= 2. 4'<1-05 emf. 

cm/s 

v:= 1 means speed of' sound. l 4.8><l.0 5 cm/ s f'or NaCl) 

B.7 Stress cr : 

0-:= (J kz:b ~ def'inition 

7r = (JGbb= <tGb 
2 

- 6 11 / 2. ( 8 -8) 2 (f.=(fx 1. 2 )(10 dyn cm )< 2. )<10 

- -5 a: 9.88;)<10 dyn~ f'orce 

2 cm 

- ---I 2 r 6 11 or,05= 0 b =.1.2 X10 dyn/cm2 ~stress 

4 -2 
For example, ()=1. 2X10 means 

- 8 9 2 (J = 1. X10 dyn/ cm , or 

- -6 / ~=-l. 4X.LO dyn unit atomic area 
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