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ABSTRACT o
In this thesis, the motion and vibration
characteristics of edge dislocatioﬁs are investigated.
' Topicé included, are shear. stress-dislocation velocity

relation; effects of model parameférs and phgnomenologicél

damping on the dislocation motion; motion of a dislocatiom '

—
4

in a lattice with some impurities such as ohé or two fixed
atom;; vibration characteristics of pinned dislocatioﬁa{jg
effects of éemperature, damping and geometric parameters

-on the vibration characteristics of dislocations,.

The impoftance of this subject is due to thevmajor
role of dislocations on the plastic deformation of materials.
By thgvimprovement<of knowledge'abqut the dislocation
behaviour, it.woﬁld.be possible to produce more approPriatel
materials for engineériné use,

The model is a two-dimensional; atomistic one.AFor:/
every atom on the 1attice, the governing equ@jion of mofion
iS'derived; and it is solved as a function of time,
numericglly. To perform‘the calculations, a ébmpgter
prngaﬁ is used., -

'The:resuits dbtaiﬁed for severﬁl parameters are
presented, and a discussion about the results is included,’

At the end of the thesis, a list of recommendations for a

continuation of this study is given,

~

~ ~ ] oA
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OZET
\

Bu tezde, kenar tipi dislokasyonlarin hareket ves
titre§im karakteristikleri incelenmektedir, igerilen ko=
nular kesme kuvveti-dislokasyon hizi baélntlsl,model
parametreierinin ve ig¢ sﬁrtﬁnmeniﬁ dislokasyon hareketi
ﬁzeéindeki etkileri, dislokasyonun gegitli engeller
arasindaki hareketi, bagla dislokasybnlarln titregim ka-
rakteristikleri ve sicaklik,siirtiinme ve geometrik para¥
met£;lerin dislokasyon titregim karakteristikleri iizerin-
deki etkileridir,

Bu konunun onemi, dislokasyonlarin, malzemelerin
plastik gekil degistirmelerinde eﬁ onemli etken olﬁala—

rindan kaynaklanmaktadir, Dislokasyon hareketi hakkinda
bilgilerin artmasi da amaca uygun malzeme segiminde ve
hatta iliretiminde faydali olacaktar.

Kullanilan model, iki boyutlu ve atomlardan olugan -
bir modeldir. Modelde bulunan her atom igin kuvvet
denklemi ya2111r; ve bu denklemin niimerik metotlarla
goziilmesiyle o atomun zamana gore pozisyonu belirlenir,
Hesaplamalarda bir kompiiter programa kullanilmakﬁa&1r.

Cesitli parémetreler igin elde edilen sonuglar
ve bunlarin bir analizi sunulmaktadir. Tezin son klsmlnda
bu.tezin deﬁaml olgrak yapilabilecek galaigmalar hakkinda

oneriler verilmektedir,
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CHAPTER I
INTRODUCTION ‘ ! .

. The perfect crystallinity of materials is‘disrupted
by,i@perfections of various kinds. These are point defects,
liﬁe defects, surface defects and volume defeCts.'The
ma jor imperfections are point defects (vacéncies, inter—
.stitials) and line defects (edge dislocations and screw
dislocations) , Although these affect a very small fraction
of the atoms, they are very important in determining the
properties of materials such aSvstrength,‘hardness and
ductility.

An edge dislocation is a linear defect that is respon-
sible for nearly all aspects of the plastic deformation of
materials, In order to introduce an edge dislocation in a

perfect lattice, an éxtra half plane df atoms are added to

the lattice, ( Fig. 1 )

(a)  (s)

Fig. 1 Crystal without (a) and with (b) an edge
dislocation )



The experimental value of the shear stresébnecessary
to move a plane of atoms over another is much less than the
v#lue calculated theoretically. (About,i/lOO th or 1/1000
th) This discfepancy arises because of dislocations, Fig.

2 shows how an edge dislocation facilitates the motioniof
one plane over another, Because only one row of atoms must:
move at any time, and because the row which moves is already
in a distorted, energetically unstable poéition, less force

~is needed to ecarry out the shear,

é_____z____.L___—

Fige, 2 The motion of an edge dislocation under a

shearing stress,
The dynamicé of dislocations in crystals has long
been a subject of active investigation because of its
céntral role in the plastic flow of crystalline solids as

3

expressed above, . ‘ , ’

An extensive review of the‘reseérch done on the
subject is given in chapter II, |

Most of the research on dislocation behaviour has
beeﬁ done theoretically, because exp;rimental methods for
pbserving,dislocations and studying their inqividual
properties, have been developed recently, and it is still

difficult to utilize these techniques. (see ref;‘},z,B] )

t



. Theoretical treatments of the problem‘have beenimade
on the basis of purely continuum models, combined coﬁtinuum
and atomistic modei§rand‘on purely atomistic models,
| Most of the theoréticai analysis have been based on

continuum modgls, using, linear (isotropic‘ornanisotrOpic)
elasticity.E@ ,'Eﬂ

While these continuum treatments ha#e'provided
valuable insight to the prqblem, the use Qf atomistic
_apbroach became more attractive because of the discrete
nature of the l#?tice itself, After 1970's,rhigh’speed
digital computers enabled the use of numerical methdds,
so it became possible to simulate more%realistic models,
even in three dimensional (3-D) form, for the actual
Cr&stal. |

AtOmistié models can be grouped in twb broad
categories which are complementa?j in their purpose. The
first type is designed with a pérticular material or a
.class of materials in mind and is formulated to be as
realistic as possible both with respect to crystal -
geometry and interatomic force 1aws; When analyzed'by
computer simulation, these models brovidé.éaluable
detailed information regarding atomic processes in the
. given class of materials, Because of their complexity,
however, it is difficult to compare the computer ;imulation
studies by analytical treatment of the same models, gnd
dynamical treatment of the dislocation motion in such

realistic models, even by computer simulation methods,



would be very costly and have not yet been attempted,

The second category of atomistic models are highly
idealized both from the viewpoint of crystal geometry
(semetimes taken as one dimensional) and of ipteratomic
force laws, They clearly, therefore, are not'intended td
rebresent directly any particular real material,
,Nevgrtheless, they do serve to provide insight into these
,broad,features'of dislocation motion which are introduced
by the discrete atomic character Q;wcrystalline materials
in general, without entering into the.detgiled characteris-
tiés peculiar to a particular matéria;. Their idealized
nature makes the analytical treatment: of thesg models
reasonable, if not easily attainable, objective, When
treated by computer simulation techniques; their simplicity‘
facilitates extraéting significant patterns of behﬁviour
from the numerical results, particularly when compufeq |
graphics techniques are employed, | . ¢

The model used in this study Qalls intq the second
category given above, Its details will be explained exten-
sively in chapter IV , | .

It would be better to discuss.the purpose and the
importance of this study after makiﬁg the literature survey

of the subject.
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CHAPTER II

REVIEW OF THE ATOMISTIC APPROACH

~

The simplest atomistic model was introduced By
Frenkel and Kontofova[ﬁ]. The . basic element 'of their theory
consists in the longitudinal diSPiacement of aphéin of
elastically Bound atoms over a similar chai§~which ié rigid,
They show that ;his displacement can proceed in a similar
way.to the motion of a catgrpillar, the atoms of the front
poftion 8till being in their posifions wﬁile.the atoms of
the rear portion have already mﬁved one elementary digéance
'bf; the ;tate of the intermediate porfion(cémpression)
being propagated along the chain with a definite velocitye
The two chains are agéumed to be infinite, the atoms of

- the upper chain lying in the normal position Jjust above

the corresponding atoms of the lower chain ( Fig. 3 ).

—| b e
. - ® © © 06 0 ©
PR O Y O Y O M. O M O M O) ‘:;;,

Fig, 3 Upper and lower chain of atoms used in

Erenkel-Kontorova approach

AN

\
If the lower atoms are not rigid, then, this leads to
a gradual leak of energy from the upper chain and to a

final stopping of process of slip. But if they are treated



as fixed, then, their influence on the upper atoms reduces
to the production of a certain periodic field ofjforce;
Now the atoms of the upper chain behave as small
spheres lying in their eéuilibrium places in equidisfént
valley of a éinusoidal mountain chain and bound to each
qfher by elastic forces, pr0portidﬁai fo their relativé

displacements, ( Fig. 4 )

Fig. 4 The conditions of the upper chain atoms

Under these conditions, two types of motion are
possible: |

1) Small oscillations of the spheres (atoms) about their
équilibrium pbsitions,’

2) A displacement of each sphere from its original
equilibrium position to that formerly occupied by the
next, | '

The second type of motion is régarded as the
fundamental mechanism undérlying the phenomenavof plastic .
deformation (slip) or twinniﬁg.;. |

- Under these conditions, Frenkel and Kontorova find
the equation of meotion for an atom, and by éolvingfit,
they conclude that: |

i) The velecity of slip pr0pagatioq is always smaller than

the velocity of sound,



2) To every value of the total energy of the system
corresponds a definite velocity of élip proPagation;>

3) In the aﬁsence ofﬁdamping (energy exchanée between fhe
chains) a single impulse starfing.thé slip“process could
lead to a displacement of the whole atémié chain edﬁalffo
an arbitrary large multiple of thé'eiementary interatbmic
distance,

This one-dimensional theory can be genéralized to two
dimensions without any difficulty. The sliéping is prop;r
agated in this case with a liﬁéar frdnt along’a definife
direction in a givﬁn plane (x,y) , the étoms of the
underlying plane remaining fixed, éeneraiization‘to threé
dimensions is also possible, v

In another paper, Frenkel and Kontoroval 6 ] find a
relation between thé energy- loss of the atomicyéhain and
its total emergy when the lower chain is not fixed but the
atoms are making small oscillations (damping): The ra;ekof
dissipation is high if the total emeigy is small and it
decreases with the increase of total energy, They also
glve thé equation for the distance, travelled by’theiélip;
up to the mément of its coﬁplete stopping,

| In 1962, Sanders[ 7] made an analytical investigation
of the geometry of an edge dislocation in a éimﬁle;atomic
model of an infinite crystal, and the efﬁecf on the
dislo;ation of externally appliéd $hear stress, The
ﬁhysical model was a two dimensional lattice, #nd the

variaﬁion of dislocatioh width and Peierls-~Nabarro stresé



was inveqtigated'for some model parameters,

Kratochvil and Indenbom[8_] solved the one dimensional
Frenkel-Kontorova model with dislocation by changing the
sinusoidal substrate potential into a parabolic one so thét
the substrate force is piecewise linear, They also derived
an expression for Peierls stress; cases were found ﬁhen'
this stress is equal te zero,

In 1964, a similar study was done B&_Weiner and
SandersL9J ,in which the Fremkel~Kontorova model is’modifiéd
by replacing the sinusoidal substrate force by one which
is piecewise linear, and exact solutions are found feor the
static configuration of the linear chain and for the
Peierls stress, Gb . | | ’

As a continuation of this study, Weiner[10] calculated
‘thé velocity with which the dislocation will continue to
move under stress once it has surmounted the first pétential
barrier, analytically. The treatment is approximatg in that
only localized modes of motion (locgl modgs) are included.
Some calculations are also made about the dynamic Peierls'
stress which is the stress required to move}the dialocatlon
from one stable equilibrium position to an adjacent one,
under quasistatic conditions and in the absgnce of thermal
motion, Analytical results are compared with numerical ones.
It is foﬁnd that the dislocation velocity is a verf
sensitive function of stress at low velocities, becoming
'leés sensitive to stress when dislocation velocities

approximately 0.1 V, are reached, where V, is the speed



ef wave propagation for infinite wavelength in the linear
chain with the sﬁbstrate potential neglected,

Weiner [11] examined the effects of thermal motion
upon the sustained dislobation~motion which was studied
in [10] from an athermal viewpoint, \

By using the same Frenkel-Kontorova model of a
dislocation with a piecewise parabolic.potential, Atkinson
and Cabrera[12] made some theoretical stﬁdy on the low and
high velocity motion of the dislocation, They concluded
that continuum models are not proper for thié problem
because of.fhe discrete nature of the lattice itself; so’
they discuss the broblem on the simplest possible lattice
model of a moving singularity, namely the Frenkel-
Kontorova model,

Sanders [13] exfénded the ﬁne dimensional Frenkel-
Konforova dislocation model, with a piecewise linear
substrate forcé to two dimensions‘to describe‘the entire/
slip plane of the dislocation witﬁ one kink, '

In another paper, Sanderstﬂﬂ develops a one-dimen-
sional approximation to this two-dimensional lattice model
through the use of single chain localized modes, After
making almost thé same analysis asrthe previOus.one ([}3] ),
it is found that all the equilibrium properties are in
excellent agreement with the properties of the two;
dimensional mod;i, and the computation time is about - | s
‘1/3060 as long. So,it appears that the same one;dimensional

model could be used for more extensive investigations of

dislocation behaviour, including dynamic effects,
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Hartl and Weiner[15] investigated the dynamics of an
edge dislocation in a two-dimensional crystai model. They
find an energy loss mechanism which leads to a steady state
dislocatidh velocity when a shear stress is éppliqd to the
lattice, and calculate the transient and stéady stafe‘
IVelocities and the minimum stress necessary tb~mainfain a
steady State velocity., They observed the absence of
localized méde associated with the stablé.equilibriumr
configuration of the ‘model, as opposed to the results for
the linear chain. '

Ear@me and Weiner[iﬂ] tested .the hypothesis of Super-
sonic motion of dislocation proposed by Ishioka [17] .

The result of their study is as follows:

When the dislocatioq velocity reacheéthe\value O.9h
ﬁfor some’model paramefers),,the dislocation breaks down,
i.e,, the regular dislocation motion exhibited up to that
time and poatulated_in the analytical solution no 1onger 
takes place, This velocity is called the breakdown
velocity Vb This is checked by several cross checks and
proved to be correct, Their conclusion is that, Atkinson-
' Cabrera [12] solution does not provide support for the
hypothesis that dislocations may bé accelerated to

supersonic speeds since it ceases to be valid at velocities

ngeater» than vb <l . |
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In a following study, Earmme and Weiner[;gl dem-

onstrated this breakdown phenomena<énalytically. They also

4
studied the behaviour of‘the model at stress levels higher
than th%t which causes bfeakdown, numerically, They found»
that a growing extended fault is then genera¥ed which has
highly compressed region in the iéad portion and a highly
rarefied region in the trailing’portion. Under éontinued
stress application, collision waves afe genérated which
travel at supersonic veloéities.

Weiner and Pear[jgj indicated that breakdown oécurs
in the case of motion of an edge dislocation in an idealized
two diﬁensional crystal model also, when the dislocation -
velocity approaches the speed of 10ngi?udin;l waves,

Perchak and wéinelj [20] extended the local mode |
approximation methods wused before in the_absence of.

viscosity te the case in which viscous forces are present, .

Effect of temperature was examined also,

Another problem is the behaviour of a dislocation
whén it encounters s ome obstructions. This subject is first
diécussed by Frank[21] . In that'pgper, he statesvtﬁat when
a dislocation encounters an obstacle on . its path,
mﬁltiplication of dislodation occurs in the inﬁerior‘of
thé glide surface by dynamic. crassover of‘dislocationsl

( Fie. 5 ) | - | \
If the energy of the disiocation at the time of

intefaction with obstacles, is not high enough to pass
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> O
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Fig, 5 Multiplication of dislocations[2i]

over them by multiplication, it will begin vibrating sucﬁ
as a‘string fixed at both ends., Then, the damping and other
characteristics of the vibration give idea about the-
internal friction of materials,

This subject was investigated in detail by Weiner
et al.,[22] in a two dimensional lattice; the following
results.were obtained: The frequency of free vibrétion,
Wo? is proportional to the square root of tﬁé shear
modulus and inversely pr0po?tiOnal to the loop 1eﬁgth.

For the case of model pafameters leading to zero Peierls .
OF ’
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stress ( Gb==0-)-, the amp}itude of dislocation vibration
in the atomic medel for sufficiently iarge loop length
decays exponentially as in the string~ﬁodeliﬁith linear
damping, The logarithmic decrement ,A, of the de¢€Y of
free vibration is independent of u)o o N |

© Weimer et al. [23] extended this medel by using a
one-dimensional discrete string model and by including
additional anharmonicity to the substrate'potential. Good

agreement was observed between the one and two dimensional

N v

\

!mbdels.

Altantag[24] compared three different models
(continuous string, two-dimensional lattice model and
discrete string model) for a pinned dislocation, under
an applied stress and Qhen viscous forces are present. It
was found'that, if the boundary conditions of the 1-D-anq
2-D discrete lattice models are chosen préperly, the results .
\are in cloée agreement with each other and with thé_ |

continuous string model,
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CHAPTER IIT
DEFINITION OF THE PROBLEM

When we make an analysis of the subject and the
metheds used in the investigation Bf that subjecﬁ, we»seé
that one of the most important problems in the dislocation
dynamics is the motion of dislocations undef certain
conditions, The basic question discussed to a large extent
up to this time 'is the velocity of the dislocation when the
crystéi is subjected to a shear stress, What is the applied
stress—-dislocation velocity relation, what are the effécts
of the model chosen, initial conditiens, viscosity, and
" other model parameters on the stress-velocity relationship?

In this thesis, the behaviour of the dislocation when
it encounters another impurity, such as a fixed ato@ is
also investigated, besides the velocity-stress relation.
The last part is about the vibration characteristics of
the dislocation when it is fixed at two points, which can
be used in obtaining some information-abOut fhe internal
friction of materials. |

About the method which will berused in the investiga-.
tion of the dislocation dynamics; the best one seems to be
the atomistic approach with a very simplified and .
generalized model suitable for the problem., Because,it can
be directed to represent any material we want by oﬁly

1

changing the model parameters used in the modelling, For
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this reason, we ﬁsed the two-dimensional form of the
modified Frenkel-Kontorova modei, which was used by Weiner
and co-workers [22] , The difficulties arising due to time
and data register limitations in computer simulation
prevents the use of a 3-D lattice although a 3-D crystal
model would give more realistic results. The effiect of the
third dimension is simulated in the form of a substrate
poetential field, Even though the use of a 1-D chéin.wogld
be simpler to handle than a 2-D lattice; the discrepancies
between the 1-D and 2-D simulations[15] lead us to use a
2-D lattice, '

For each atom on the lattice, the governing equation
of motion is derived. These equations are then solved |
numerically by the addition of necessary initiél and
boundary conditions, and the position of eaéh atom is
determined as a function of time,

A digital computer (UNIVAC 1106) is used in the
‘evaluation of numerical calculations.

Chapte; IV explains the model used in the simulation,

The results of the calculations are given in Chapters V
. N 4

and VI .
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CHAPTER IV g

MODEL?DESCRIPTION AND THE DERIVATION "OF THE EQUATION

OF MOTION FOR A SINGLE ATOM

The model used for the coﬁputer simulation is based
‘on a simple cubic crystal with nearest-neighbor centr;l
and non-central interactions, the so called "Rosenstock-
Newell" model [25] , which was usedvby Sanders[13] , in his
atomistic treatment of aislocation kinks in a 2-~D form;
and by Weiner et al.[?%], in the treatment of theAviﬁration
of a dislocation fixed at two points after making the
necessary modifications

In order to simplify the computer program used in
the simulation and to shorten the execution time of each
run, only the atoms in the slip plane afe treated in

detail.

IV.,1 Model Description: Consider a three dimensional

simple cubic crystal containing a single straight edge
dislocation in the EOld] direction, Let the slip plahe in
which the dislocation moves(or vibrates when it is perfect-
ly pinned at equal distances along its length) to be the

(001) or x plane., ( Fig. 6a )

1%2
Only the atoms in x,X, plane are treated explicitly

in this simulation, Motion of these atoms are constrained

1

direction need be considered explicitly.

fo the x. direction so that oﬁlwaorce components .in that
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N . - -

Fig. 6 Model. (a) Simple’ cublc crystal containing stralght

edge dislocation. (b) Perfect lattice. (c) Lattice.with a

dislocation.
.}
The efflect of the rest of the crystal is simulated by
requiring each élip—plane atom to move in a periodic substrate
potential, or force field. That substrate potential is chosen

to be piecewise quadratic to obtain linear force components in

the equation of motion,

IV 2 Substrate Potential.

poteﬁtial well———\I . V-V(ﬁ): e o
: T u
b L
P—s - F(a)
N\ —>
u

Pié. 7 ,Subétrate potential and substrate.force
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The force field is a piecewise quadratic one; so the

force exerted on every atom , due to that force field, is

piecevise linear, ( Fig., 7 )

The point of intersection of the upper and lower

portions of the substrate potential. is defined by the

distance P from a potential minimﬁm.

If u is a displacement of an atom.froﬁ the nearest

potential minimum, then,

substrate potential Vs

Supstrate force

1 - -
3 k. .u |uhs¢

2
VER G s - [ / (o2)] (o - [3])?
| | d<lafed

[z v

where,

k2 :

b H
P

shear spring constant (noncentral interaction)

lattice constant

the distance from a pbtential minimum to the point of

change of curvature . .
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V.3 TLattice with dislocation: In order to introduce a.
dislocation in a perfect lattice (Fig., 6b) ,.the nu;berr
of atoms in one row is kept higher than the number of
potential wells., (Fig. 6¢) According to the parameters
chosen, this difference between the number of atoms in one
row and the number of potential wélls, defines the numbef
of dislocations in the lattice, and the compatability and
stability of the analytical solution of that model. A
detajiled explanation on this subject is given by Wediner
and Sanders[y:]. The related parts from that stﬁdy are
given in Appendix A, including the s£ab1e.and unstable
configurations and the Peierls stress, -

Here, that difference between the number of atoms
and the number of potential wells, is taken té be onej;
hence, the magnitude of the Burger's vector of the
dislocation is one atomic distance, b,

IV.4 Derivation of the Dimensional Fguation of Motion:

Consider the atom with mass m in the (j,k) coordinate,
connected to ifs-nearest neighbors in the xl\and X,
directions by springs with linear spring cohstant kl and
shear spring coustant'kz respectivély. (Fig. 8 ) ii and.ff.
represent the phenomenological damping friction cpnstant
and the force on the atom due to applied shear stress,
respectively. Let_ij’k(t) denote the x, coordinate of the

atom in the j'th row and k'th column at time t.



~ Fig. 8 A single atom with nearest neighbors

Considering a small displacement of the referenced
atom, we write the equation of motion using Newton's

second law:
(1.4 ®
mx . X k. (X, , -X,. X - .
Jak +-Q Jak * l(xJ,k xJ,k-l) + kl(xj,k xj,h+l)

k (X, - X, ., - % = F(X ;
FralEy e - Fya,u) (R - B ) = TR L) 4

orxr

-2X . X. —
Jryk * XJ’k‘l) + kz(x

mE, = -9%X. ., + k,(%.
K X5k 1V¥%5, k41 .
J’ J’ \]” J‘I-l,k

-2X ., +%, F(X, ) +&

Ji K + J"lsk) t+ P J)K) ¢

Superposed dot is used to denote differentiation with
respect to time, as usual.i} shows the force due to applied

shear stress,

1V,5 Derivation of the Nondimensional Fquation of

Motion: To avoid the difficulties arising from the

dimensions of the variables used,. we introduce the non-

dimensional forms of them,



Introducing the dimensionless variables E?O,th]

x5, %5, /P Q=2P Y/ ('1-229)
.\‘=¢/b t=T (x /m)l/2’

G =0/(k,b) =7 (k, m) -1/2

P — kz/kl F(xj,k)-fF(xj’k)/(klb)

using these parameters, 7

k<< Y

o) Y /2

_d==(kl/m)1/2 d
dt '

j;;' _2._ (k /no
/
substituting
mbEJ,Kkl{m= -\'Z(klm)l/z X (kl/m)l/zb + k 1:>(x\]’k+l 2x 4
o+ X5 jem l) + k b(xJ+l _ xj,k : xj—l;k)

+F(bx’j,_k) + @ k,b

divide by klb

4

os . N L4 - . . P - 2 V.
5= 0% b (3 = 200 b %y e) L POey, e - 2R,

+ x )+F(x.k)+P0‘

j-1,k * Ty ' (1)

Nondimensional equation of motion
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IV.6 Initial Conditions: It is assumed that initially,.

at t=0, the dislocation line is straight in the X,
direction, and is in the edge orientation with the extra
half plane of atoms, in ‘the upper haif of the crystal,
ending in the k=D column in the slip plane.

Under these,COnditions, the initial atomic posi¥ions
are independent of thg row index. j, and therefore,there
4is no interaction between rows.-Each row then correSpdnds
to a one-dimensional modified Frgnkel—Kontorova of the
type treated by Kratochvil and Indenbom[s:]and by Weiner
and Sanders[9j s S50 that the initial atomic p051t10ns may
be computed dlrectly from the apprOprlate formulae whlch
are given in Appendix A, also, The initial positions
corfespond to tPe unstable equilibrium positions (M==3/2),
under zero stress (§=0),

Initially all atoms are at rest, that is, thg_initial
atomic.velocity.of each atom is zero,

IV,7 Boundary Conditions: Since it is assumed that the

motion of each segment of dislocation line ( rig. 65) is
equivalent, the following relations apply for t2 0 and

all k.

XL+l , k= *L-1,k

(2)
*_1,k= *1,k
In the xl'direction, the strip is taken as infinite.
In order to simulate this pr0perty, localized character of
the dislocation motlon is used; for atom columns

sufficiently far from tha dislocation line,
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i) atomic positions x are independent of k;

Jyk
interactions between rows may be neglected,

ii) atomic displacements remain' near the bpttom of their
respective potential wells and do not exceed ¥ in magnitude;
the linearity of the equations of motion, governing the
atoms in the exterior regions, is ensured,

Therefore, the displacement Yy Mp1 of the j,Mt+l atom
from the bottom of its well may be expressed in~terms.of
the corresponding displacement uj M by means of the

convolution theorem, [22]

First consider a semi infinite chain with defining

. equation:

z, = zk+l - (Ie".-l-'P)zK + zk-l -Kl z) k>0

—— L] — — . ¥ ! ) ’ N
zK(O)—zk(O)—O t=0, k>0 (3)
go(t)zl t>0

Then, by convolution theorem,
t
= =T)z_ (T)at . a
u g, g () oj ug,ul 802, (1)

t ] |
¥ N z uy,0(e=T%,(T) aT s

The rele?ant atom positions may be obtained from the

corresponding atom displacements by the following

1)
relations:

: . = - X . - u.
*iy-1=vy, 1~ L "3,07 75,0 ( 5)

. —u. W__
‘xJ,M J,M + (M-l) xj,Mfl—iuj,M+l + M
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IV.8 Finite Difference Approximations: For the ' !
numerical solution of the equation of motion (1), finite

difference approximations are used:

K2 U5 20 w500 /(B0% (6 )
B Ol - S s (7)

n  is the iteration number at time t ( n=t/ At )

. . 9
Substitution of equation (6) into equation (1) permits
n+l | 1

. n n-
in terms of x. and x The
Jrok Jrk Jek® 7T

computation is begun by utilizing'(7) with the prescribed
0

and taking X, _ =0 in order to
J. kT y

the computatlon of x

initial configuration x? K
o ?

1

compute x°, . .
P Jsk

The convolution integrals of (4) are evaluated
numerically, in thé following manner: For a given choice
of At, the problem corresponding to equation (3) ig solvéd
numerically, using the fiﬁite differénce equations (6)

and (7), and the values of z- =z .(nbt) are stored. Then,

1= %y
equation (ha) is approximated as

ks

n n-m m-1
uJ,M+le Wi (£ = =) (&)

m=1

‘A similar approximation is used for (4b), For a
‘ ' | . : m m-1
sufficiently large m, m:>ML , the difference zl - 23 =0,
it is therefore necessary to étore~zT only for m<_‘ML and

permissible to truncate the sﬁm'in equation (8) at ML‘

for n> M o
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CHAPTER V

SIMULATION RESULTS

V,1 Dynamic Peierls Stress: In order te calculate the

dynamic Peierls stress of the dislocation, the procedure -

given in Appendix A was followed: For a given YL, a stress

0" was chosen, and iteration: was begun by. the use of

initial and boundary conditions; Since the initial atOmic.

v configuration does correspond to unstable.configuratioh;

following Appendix A, we can conclude if the applied stress

o

or lower

is higher than the dynamic Peierls stress GfD

than it,by only observing if the dislocation moves or-it

cannot pass over the first potential barrier. This proée-

dure was continued by increasing O if the dislocation

does not move, or by decreasing O if the dislocation

moves, until O p was obtained,

P

The parameters used in the calculations:

s 41 lattice column number or lattice width

- " row " " " height

: 0'5 i
: 0.3

6o obtained for two different Yl valges are:

Q : 0.1 g : 0,0038

PD

~ e : . 68 : ’ . ’ i
xl. 0.2 OBD 0.00 | |

- BOGAZIGH {INIVERSITESH Kmi;PHANEsz f
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V,2 Dislocation Velocity: To determine dislocation

velocity a i ] i o

Yy as a fupctlon of tlme, a stresscj?(rPD(Q) was
chosen, and the simulation was allowed to proceed until a
steady-state (SS) condition for the dislocation motion

was reached, As a measure of dislocation velocity, three

‘different approximations were used:

1) v(t)'_‘%‘ >0 > %5,(%)

2) v(t)=

ﬁ1H
=,
Me
=
=
%1
.
.
o
b
‘K‘,\
(@]
L~ 1

row =

., M | ,
3) v(t)=%4 >0 EjN,k(t) - xjN’k(oﬂ' jN: middle

Here, the firSt'approximation is the }nstantaneous
velocity of the,dislocation,whergas the second and third
ones are time averaged velocities. In the second‘
approximation, all of the atoms are taken into considera- -
tion, but in the third one only the middle row is included,

It was observed that, the second and third
épproximations for the dislocation velocity give exactly
the same result, showing the dislocation.remains straight\
during motion, unless the lattice contains an impurify.

The instantaneous veloéity fluctuates mugh at the
beginning, differing from the other two velocities to a
large eftent; but as the SS velocity is‘approached

‘if takes almost the same value of other two approximatioﬁs.

Fig. 9 shows a typical dislocation velocity vs,

time curve,
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-

Parameters used:

P : 0.5 ' M Ly

¥: 0.25 N

W

Xl: 0.1 . J°: 0,0050

e e e S e A e Y e e

Dislocation
velocity v

0,12 L

| ¢ XX KX X
o | XX X X XXX X XX XXX XXKX
E x X ‘

o.;o 1Ny ' x
0,08 - .

);66; 4+ X

0;04__ - . ; /|

0002'- -T

] k- 3 |

. L L - 3
o.og‘ 00 1000 1500 2000 2500 Time . t
| ' S X50/T -

Fig.fg A typical dislocation velocity vs. time curve



28

.

V.3 Dislocation Velocity for Nonzero Peierls Stress:

In Appendix A, it is explained that s for a given'value of

n_ (the number of weak bond atoms) » Gp can be calculated

as a function of P and Y.

For n =1, the relation between P and Y which

corresponds to o"P=0 is

B’=—ﬁ— E -}-a- (P? 4+ 49)1/2].

When ¥ is not chosen according to this relation; Peierls
stress exists for the model, and, its magnitude may be

calculated by following the formulations in Appendix A,

( rig. A2)
Some runs wéré evaluated to see the effect of applied-
stress- CV on steady dislocation velocity v,  when Peierls _
stress exists, To compare the results with the one
dimensional calculations of Perchak and ’Weiner[ZQ] ,P::O..S
and _X.—:O.B were chosen. For these parameters, the Pleie/rls
stress, ¢ p=1. y2x 1072
The steady state dislocation velocities for xl__o «0,

0.1 and 0,2 are shown in Fig. 10

|
/r‘ Steady State [ Q=07 e
Dislocation _ _H,_—-—\-——‘i'
| _,)(‘ ‘ -
0.4 | velocity Vv L X {
X ! v
X,‘ll I . !:".l-»‘
[ 5 e | * .
-~ | =0.17y -
X : l n > - X
0.27 % ! Lo X 01
* l" ‘ "f*’ : X f__ _,—*—}_*
4 * || '/’X .}(.-J(”’Y’-—
o N M [ b
| [} ¥ :
0.0 ,)i frmeet o Gp ' " 0,01 . 'Shear | .
0.0 %> 0,005 ) Streas

W

FigA. 10 Stress dependance of d:.slocat:l.on velocity
J __for nonzeroc Paidrls stress
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V.4 Dislocation Velocity vs Peierls Stress: The effect
of the Peierls stress on the SS dislocation velocity was
investigated by changing ¢ while keeping P constant for

an applied stress (T<ch . The results are seen on Table 1.

Parameters used:

P : 0.5 ‘ -

M : 41

N : 3

q_: 0.1

¢ : 0.0075

nﬁzger ‘y. 6}:)(102 v

1 ~ 0.2500 b.oo 0.178
2 0.2525 0.10 0.172
3 0.2550 0.25 0.168
b 0.2650 0.65 0.161
5 0.2750 1,03 0.165
6 0. 3000 1.42 0.192
7 0. 3100 1.30 0.187
8 0. 3200 0.93 0.168

Table 1 Dislocation velocity vs Peierls stress
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Vo5 Dislocation velocity for zero Peierls stress:

For some combinations of P and Y

Peierls stress

vanishes, Some runs were evaluated to see'the effect of -

the applied stress ¢ on the SS dislocation velocity.

\

Parameters used and results obtained are given on Tables:

52 and 3 ,
| ™

\’l=0.0 )Q:O,l TL::O..? \

a - v a v s v,
0.0003 | 0,041 0.,0003 | 0.0073 0.0003 | 0.0040
0.,0010 | 0.095 "0.,0010 | 0,0256 0.,0025 | 0.,0352
0,0017 | 0.131 0.,0020 | 0.,0512 0.0050 0.0695
Q.oozu 0.270 0.0030 | 0.,0756 0.0075 0.1027
0,0030 | 0.315 0.0040 | 0,0971 0.0100 0.1315
0.0040 0.369 0.0050 '\ 0,117 0.0125 | 0.1652
0.0045 | 0.390 0.0075 | 0.178

0.0100 | 0.247 )
0.0125 | 0,305
-
P : 0.5 ¥ : 0.25 M: 4 N: 3

BN

Table 2 Dislocation velocity for zero Peierls stress

at different damping constants
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€

psll 0.3 | o.u 0.5 | 0.6 0.7

0.0003 | 0.039 | 0.039 | o.o41 | o.oks | ©0.047

0.0010 0.093 0.092 0.095 0,101 0.109

0.0017 0.163 0,156 0,131 0.123 0.128

0.0024 0.249 0.265 -0.270 0,264 0.138

0,0030 0.292 0. 306 0.305 0.327

0.,0040 0.341 | 0.357 0. 369 0.378 0.385

M : 41 N : 3 G,: 0.0 {1: 0.0

Table 3 Dislocation velocity for zero Peierls stress

at different P values

' Results given on Table 2 are drawn in Fige 11

SS Dislecation | P = 0.5 S
velocity X - S P
v x ¥ = 0.25 R
//, |\ /x g ‘ ‘
‘ X Q: O-O ///{ )
003 T // . /” '
X ;X/ !
/ — 0. i
, M=ol Y
/l r’,
/ -~
0.2 T X
° l/l //z - O-Q—N’,/./X
': ’,’, ,/)(’/’
1/ X ’,X,~ AX”””
0. l L x‘ ”X' ”’/f” .
: ! ,x/ /,X”
/ ,” ”,ﬂ
)t ,/'X/)(” , , o
R [l | 9 s
0.0 M e —""5T0T ¢
° 0.0

0,005 . . Shear i
s _ stress ;|
Fig, 11 Stress dependance of S5 dislocation velocity %@ﬁ'

for 0;::0



V.6 Movement of the dislocation in the Substrate

Potential Field:

in Appendix A, the instantaneous velocity of the

32

To examine the analogies given

dislocation at the beginning of the motion is given as 'a

function of time in Fig, 12

Instantaneous

Dislocation
'P velocity v

0.1 -

U
11T

Ull
Sl
by Ir v
| |
| ’x)(>(x | T
X
| x X
» 1X
X | '
. | X
X | X e

M3 41, N: 3, P:o0.,5 ¥:o0,3, ¥): 0.2, @1 0,0085

Figs 12 Instantaneous dislocation velocity vs time

for g,# 0

Region I

Region II

Region III:

Region IV

Region V

Two weak bond atoms (6-7),

One

Two

One

Two

Numbers in paranthesis

bond atoms

"

show the column

(7)),
(7-8),
(8),

- (8-9),

U (unstable)
S ( stable )
U
g

un

number of weak
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The velocity of the dislocation is maximum when it

- is almost at the middle of thé stable region, and minimum

© at the middle of the unstable region, This result is in

good agreement with the analogies given in Appendix A,

Note that the instantaneous velocity values, at

which the curve is minimum, increases as time goes on, so

does the maxima., As the dislocation velocity reaches SS

value, that increase in the minima and maxima ends;

It was also observed that the regions II and IV

becomes narrower and narrower as the Peierls stress

decreases; if Gk::o, those regions vanish, pointing that

we have UU' motion instead of USU' motion which is assumed

initially in the analytical solution, ( see Appendix A )

Fig. 13 shows the variance of instantaneous velocity

vs time for similar parameters except §=0.25, resulting

. M: 41, N: 3, P: 0.5, ¥:0.25, ): 0.2, C: 0,0100
Fig. 13 Instantaneous dislocation velocity vs' time for«¢=0

O—P‘::O._? ) ~ o . L _
v SS Dislocation . . .
velocity '
0.2+ ! | )
0 : U | U
I ] IIT X | IV
[ » X
) « X~ T X e X IS xoe-=
o.11l XX—X——- ———————l—'— —— T T e e
| |
[ [
= :
= |
1 1 1 Lt ] 1 ] 3 = : : - : -
040 j55—+—+—315 300 - T8 rame '
- | X50/T .
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Vo7 Dislocation Position: Position of the dislocation .

was calculated by using the foliowing formulae:

: ~ M N | 1
1) ;r(t)__ E J_ZL x5 () - xj’k('oﬂ N
M - s \ 3
A wle) = 2 Ean,k(t) 'xJN,k(Oﬂ

These are obtained by multiplyiﬁg the time averaged
dislocation velocities'by time,

When there is no obstruction, these two appfoxima—
tions give exactly the same results for the position of
the dislocation,

Fig; 14 shows a typical dislocation position vs time
curve, |
Parameters used:

P : 0-59 H 0025’ M : L"l’ N : »»39 Q_: O‘l" q:. Q'.OQ‘;Q_W;..M-W".
\ Dislocation - '

Position xix
X
16 1 X .
X .
X - ;
e x N r
. X \
12 | X
e
X .
L X
x |
8 X '
2. x .
x 1
A X
X
X
RYTR x
X
L X
.4 x g
. X | 1 3 I ) )
O &J‘ ! | ! ! ! : T " T T T >
o ' | 1006 | 2000 Time t

Fig. 14 Dislocation position vs time X 50 /1
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V.8 Motion in a lattice with an obstruction: The

hypothesis of "multiplication of dislocations", proposed
by Erank[21], which is explained in chapter II also,
was examined by fixing an atom on the path of the

dislocation, The configuration and parameters are as

follows:
M : 33 lattice width ,
N : 11 " height
P 005 . ‘
’ O—é =0.,0
¥: 0.25
Yl: O.1 \
g: 0,0050

Dislocation is at 4,5 atomic distance from left

Fixed atem row number j=2©6

Fixed atom column number k=26

Jj=11 o
esdislocation

e - - - -

Pixed|atom

- h - ‘ |
FEl T k=h.5 =26

k=33

Fig. 15 Lattice with dislocation and a fixed atom
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Equations. for the fixed atom:

x. (t)=x.
%5, 8)= x5, (0)
» ' fixed atom
Lo (t)=
vaik( ) 0.0

Fige. 12 shows that the SS velocity v=0.116 for these
parameters if there were no/oﬁétruction.

Untilit=136, the dislocation motion is normal with
a time averaged velocity of 0.115 and a dislocation
position of 20.3, There is only a slight difference (around
the ordef of 1/10000), between the time averaged velocities
(or the positions) of the dislocation, calculated bj |
including all of the atoms or only the atoms at the middle
row. The velocity of the middle row is ieSs than the total
velocity, and the dislocation takes a»curved shape with
the dislocation at the center row is behind the dislocation
line at the end rows, After t=150, the instantaneous
velocity begins to decrease and becomes zero at t=178,

Fig. 16 shows the decrease of the instantaneous dislecation‘
velocity with time, -

After t=178, the dislocation velocity becomes
negative, which is an indication of a bowing and reflec@ioﬁ
around the fixed atém. After making some oscill#%ions,
the dislocation is almost stopped at t=325. The last
'position of the dislocation at the middle row is 23,66 ,

Fig. 17 shows the change of dislocation position

with time,
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‘Fig,.' 17 Dislocati,on'position vs

time with obstacle

Instantaneous
Dislocation
0,16 | velocity
X x
X X X
0.127T X X
X X X
K X x X
X X X
X X X
0.08-- X X ) X
X
" X
0.0 T!- x
X x »
X X
X
oo bttt —t—t—t—t—t —t
1400 1500 1600 Time t
Fig., 16 Instantaneous dislocation velocity vs time ><30/'ir
at the time of stopping
T 4\ Disigz:ation
position XX XXXXX XXX XX XX
24 + * » A
% )
4 % single obstacle
at k=26
20: + X .
X
T X
X
16 +
X
1 x
"z X
: X
T X
8 L x
. x,
+ A
RS T B S B ey
1 } } . f ] .
4 e —+—735% 12000 Time” t

x30'/rrr
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0.14.

By the use of Fig, 17, we can draw a velocity vs.
time curve for the dislocation. ( Fig, 18 )
" In Fig. 18, the time increment used in the

calculation is 10XW/3 ,,

Dislocation velocity‘

YR XX Xx XX XXX XXX XXXXXX XXX XXxX
X : v

X X

|
500 000 T " 1500 ' .
' . - | ) x30/T
Fig., 18 Velocity vs time graph of the dislocation,

1
when there is an obstruction on the path of it

In another simulation, 2 pbints were fixed, with
row numbers Jj=1 and j=11, Other parameters are the same
| as the parameters of the preceeding one,
It was observed that the decrease of the
instantaneous velocity is vérY»similar to that one. Only

difference is that the position of the dislocation at the
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middle row is now ahead of the dislocation at the time

of stopping,

The dislocation configuration at t=356 is as follbws}

row number Jj

j=11 g
e

i+
. ®
Jj=6 1 ) |
P :
@

Fig.e 19 Final configuration of dislocation

Then, due to the energy stored in the springs,
instantaneous velocity becomes negative, showing that
the dislocation is moving left., But after some time;'the
dislocation stops again and moves to the right, because
the shear stress O is still being applied, As a conse-
quence of these motions, dislocation becomes vibrating as
if a string fixed at both ends, This vibration ends when_
the energy of the dislocation is lost completely by the
efféct of phenomenological damping q'.

Several computer runs were carried out in order to

determine the characteristics of the dislocation vibration,
|

And they are outlined in chapter VI,
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CHAPTER VI
VIBRATION OF A PINNED DISLOCATION

This subject was investigated in detail by Weiner,
et al[22] , and several important results were obtéined.

It is possible to utilize the computer program used
in dislocation motion, in the study of vibration
characteristics of dislocations, after making necessary
modifications: By doing so, the modified program was used
first to obtain results as Weiner et al have obtained,

and we found the same results, Then, the program was

extended to include damping,

VI,1 Model Description: The same model described in
chapter IV was used, except the items given below:
1) Initial Configuration: Initial positions of atoms

correspond to tﬁe stable atomic configuration for M=1 and

\ -

¢=0 case. ( see Appendix A)
2) Initial velocity: It is difficult tO'inVestigate
the vibraéion of dislocations when an external shear
stress is applied to the atoms, This difficu}ty is
eliminated by choosing this stress to be zero., In order
to initiate the vibratién, all atoms are given an initial
velocity vj,k(o) . Now, the problem becomes simpler; we

\ v
have free vibration of the dislocation, instead of forced

vibration,
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Initial velocity distribution:

x v “\k‘D\ sin ( Jﬁ')

*3,6= Yo P T

where,

Vgt maximum initial velocity
J ¢ row number of any atom
COlumn " ”" f n

column number of dislocation

¢ oo w

13

dislocation length (atomic distance between fixed'
atoms ) | : \

:1/2 (B + 2 - (FRup)H/2 )

P+ A

: 2 4P - EP+Q)2-+ E]

: 2PY /(1-2%)

o v vl =

1

This initial atomic velocity distribution specifies:
a) a sinusoidal variation in j direction,
b) the lowest frequency localized mode of vibration “in the

stable configuration, in the k direction. (see ref 9)

3) Energy: As a check of the calculations, an énergy

balance was computed at selected time steps,

N M 1 2
Kinetic Energy T= Z -Z_ - xj,,k
. J=1 c=1 -
, N o M-l o

Elastic Spring Energy Vi?-‘z , 2 _E-(xd,k+l-xj,k-l)

Jj=1 k=1 :

N-1 M b 2
Shear Spring Bneray Vo= 2 355 (e w0

=L k=1



k2

M
Substrate Potential Ener V v (
8y 2 2 J ’k
Jj= k=1
. 1 2
where, — Px K<< Y

V(x)=

=[] Gowm)? e

Energy lost to the surrounding medium up to time t

O Dl D 2 PN
F(t)= = N x At

2 =T k= £ 15,k
where, NN: nunber of time increments

Ai: time increment

Energy lost from the boundaries up to time t

-’

t , t

. .
= . % . vpqd 1%y g9
a t») Z’ 5 fJ.yM-l-l xJ,M'*‘l T+ fJ’ "li’-l ‘T
Jj=1 0 4
Where, fJ,I\/1+l:xJ,M = xJ,I‘i'{'l + l
‘~f, = X - X -1 ‘ o

Jy-1 Js0 Ja—=1

The energy balance requires,

T + V + Vg + VF(t) + Q(t)=E(0) e——initial energy

S

4) Logarithmic Decrement A_ : It is calculated by

using the following method.

Let the overall dislocation velocity be

M

X(t) —-z 2o %

=1 k=1 ok
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Let this function have zeroes at t., J=1,2,3,...
n=n _.+1 , . J t.
Then, X;= a6t S % (nat) n= 3
; J
. n n,
J / At

half cycle number

so that Xj,approximates the area under the half cycle of'
the curve of i.(t) lyin between t, and "t , ..

- & C J+1
a semilog graph of vas. Jy 2 times the slope of the lane

¢ .

If we draw

which best fits to the points on the graph, gives the

logarithmic decrement for the process[?2]

!

VI,2 Simulation Results:

1) Energy of the system: From energy calculations,
1
it is seen that the total energy of the system decreases

steadily, while the energy lost from the boundaries

increases, The sum of these two is satisfied within a few .-

percent deviation, That deviation is at most 3%, As a
result we can conclude that the results of this study are
reliable,

-

2) Zero Peierls Stress: Figures 20 and 21 show the

variation of frequency of free vibrationtgo with Jﬁz and

period of free vibration vro-with dislocation loop length

L. woﬁ Frequency
//
0.2+ x/,x
x
x :
O0.1.L x-”
//
P
//
// 1
P 1 ]
-7 ) ) } 4 | 4 y T ?\[F
0.0o. T .'2‘ | . & .b 08

Fig. 20 Frequency w, Vs VP! ~
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Fig., 21 Period of free vibration vs, dislocation '
loop length : :

From these two graphs, we see that the period of
free vibration increases linearly with dislocation‘

length L, and frequency increases linearly with VP,

as usual.

Figures 22 and 23 show the variation of logarithmic

decrement As with L and P ,
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3) Nonzero Peierls Stress: It was observed that, for
any P and Y configuration, the variation of Xj with j
depends on Vo ‘chosen, When Vo is large enough, a linear
descending curve is obtained giving the As value, But for
small Vo values, AS=O, showing no energy lost. This |
phenomena is explained by Weiner et al. [’_22] , as the

. S
trapping of the dislocation in a Peierls valley., For large
Voo after a certain time, AS=O is reva;ched.

‘Figures 24 and 25 show the change of_As and ‘170

with G‘P and Y .
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4) Effect of temperature: In order to see the effect
of temperature on the dislocation vibration behaviour,
random initial atomic veivcities correspondiné to that
temperature are added to the initial velocities of the{
atoms, The diétribution of these added velocities is a
Gaussian one with zero mean and J%E1root mean square, The

relation between T and s is T==-cs2

where, s : Vv2

T : temperature in K

i

c 39550 for a typical example. ( NaCl) '

(see ref.[2@)

These velocities are generated by means of a computer

subroutine (RANDN) . A seed number is given as input to
thé subprogram,‘and all the atomic velocities are
determined by that seed. '

Fig. 26 shows the effect of temperature T on-the !
logarithmic decremenj AS for three different ¥ valueé
for constant P; "

5) Effect of damping: When external damping is not
included, the system looses energy. This energyAlést is
in the form of radiation, More information is given in '’
ref, [22]. Shortly we can state that, energy loss from (
the vibrating dislocation may be ascribed to the imperfect
transfer of energy frﬁm the localized mode associated with
the dislocation iﬁ an unstable con:iguration U to the

Jjocalized mode with the next such configuration U', The

energy which is not transferred from one localized mode
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to the succeeding one is carried off by nonlocalized

modes,

energy lost occurs,

i.e., traveling lattice waves, s0 that radiation

In order to see the effect of external wviscous

forces to the system, nonzero q’values were chosen,

Fig, 27 shows Xj vs, j curve for several ¥] values,

‘Logarithmic Decrément

As

for.differehtheierls stresses .
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CHAPTER VII
DISCUSSION OF THE RESULTS

Before dealing with the simulation results, it would
be better to discuss the choice of some parameters used

in the simulation,

VII,1 FEffect of dimensions: In the dislocation motion
part, it was seen that the dislocatioh moves in the forﬁv
of a.straight line; that is, fhere is no interaction
between rows unless the lattice has an obstruction, This
observation‘enabled us to choose the number of rows in
the lattice as small és possible, In most célculatigns,
number of rows was three, But in order to let the
dislocation to have a steady state velocity, the number
of columns was chosen to be 41, in most simulations, That
number proved sufficient for this purpose, at least for
small stress values, By keeping column number large, the
assumptions made in the modé& description\chapter were
also satisfied,

When we included an obstruction in the lattice, such
as a fixed atom at the middle row, or two fixed atoms at’
the boundaries, row number was increased to 11, in order
to let the dislocation make a bowing around the fixed
atém or between the fixed étoms. It was observed that
this number is not large enough, because the maximum

difference between the dislocation line at .the middle row
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and at the end ‘rows is around 0.5 atomic disfance. It is .
obvious that if row number increases, tﬁis difference will
, P .
increase too, and maybe the multiplication will occur, But
due to computer limitations explained beforé, this
multiplication process has not been achieved.,

In the vibration part, a lattice of’20x20 (column
numberxrow number) lattice was sufficient to satisfy the
assumptions, For some pafameters ( P:;O.B)'even a 10%10
lattice was enough for the purpose, For small P values'.

( P<0.3) , since thewbond between rows is small, léft

and right boundary atoms may move larger fhan thgr
permissible values, and this affects the reliability of
results, To see the effect of dimensions on the eneréie; 3
of the system, some runs were evaluated and it was - found
'that the difference between a 20x10 and a 30X10 1attice'
is very small as compared to the difference between a
10x%10 and a 20x10 lattice., We can conclude that, the
choice of a belo lattice wés a good choice; the usé_of' .
larger dimensions is unnecessary. |

VII,2 Effect of At: Most of the computations used

At =0,209, 1ln order to see the effect At chosen, some .
calculations were performed by changing At only, whiié
other parameters being kept unchanged, for thecﬁibrating
dislocation.‘The results are shown on Table 4,

parameters used:

20

P

Y

0.5 » - M
10

0.25 7 N



53 .

# At To A
1 0.419 28,274 | 0,334
2 | o.209 28,274 | 0.335
3 0,140 28,274 | 0,346
i 0,105 28,274 | 0.403

Table 4 Effect of At ' | ‘

Table 4 shows that At=0,209 is a good choice, 
because the period of vibration Tb is éonstant, and
ngarithmic decrement[ls calculated do'not fluctuate.@uéh‘
by a change in[kt,‘around [t=0,209. The reason forlthe 
slight change in C&S for very small At is probably due to

the increased number of iterations,

VII,3 Model farameters:'Model pafameter values used by
Weiner et al, ([ 9], [10],[2d] ) were chosen to make é. .
comparison, P was usually around 0.5 which is a veryA
realistic valﬁe. Applied shear‘stress was within tﬁe_stress
range determined by the static and dynamic Peierls streéses.

In the vibration part, external damping was zero,
except that the direét effect of viscosity on the
calculations was observed, In dislocation motion
simulations, because»this external damping,hélps the
dislocation reach its SS velocity in shorter time and
distance, nonzerotlvalues were used mostly.

Now we can discuss the results obtained, one by one:

VII.4 Dynamic Peierls stress: gpp Values for two
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different damping constants (q:o.l and 0,2) are almost

the same as the O0pp Values obtained analytically, by the

use of local mede approximation. (see Fig, 5 of ref.[2@)

VII.5 SS Dislocation Velocities when Gb is_present:
Comparing Fig, 10 of this thesis and Fig, 6 of refEZQi,
we can see that fhe resu1£é for xr:o.l and {l=0.2 cases
are in good agreement, For rv:0.0,case, SS dislocation
velocities obtained here are less thén the ceorresponding
ones in/reﬁ.[}Q]. This may be a result of insufﬂicieﬁt
dimensiens, because there was still a small increase in
the dislocation velocity when the dislocation hits to
right boundary, E o

The velocity\stress relation will be discussed after
searching the éfﬁect of Peierls stress on SS veloéities.

VII,6 Effect of Peierls stress: As shown in Table 1,

i

SS dislocation velocity does not show a clear dependance
on the Peierls stress, Gb, even though a small decrease
in velocity by increasing (3, for small (TP values,”

VIT,7 SS Dislocation Velocity when O, is absent:

Table 3 shows that the changé of P does not have a
definite effect §n the veleocity, for a given stress, when .
CFP:;O. For small and large stress values, some increage
is observed, but for mediﬁm stress levels, there seems
t6 be some other factors which affect the.dislocation.
motion,

Comparing Figures lowand 11, we see that for a given

31 , the slopes of those linés are almost equal. But, the
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line is cut at a stress called dynamic, Peierls stress,
when GP exists, So we can conclude that, the presence of .
Peierls stress does not have an important.efﬂectgon
velocity-stress relation,vana it only proauces a minimum
stress level for the dislocation to be able to mové.

Following the relationship given by Weertman |?6]

gb=Bv-

where B is the damping constant, B=£AYL A: a constant,

80, we can derive a relation for the velocity and stress;

-

o

V=Cib——
a, -
where ¢ is a constant to be determined.
By inspecting figures 10 and 11, we see that, this
relation holds for the results of this model also, with
the constant c=2,5 . SS velocities found in this simulation

are comparable to that of experimental methods, given in

Fig., 5 of ref[26],

VII.8 USU' Motion: Counting the ﬁumber of weak bond
atoms at any time showed that the USU' motion assumed
initially by the local mode épproximétion[}d] is correct,
For G}:O, UU!' motion is seeﬁ (two weak bonds at any timg)..

VII.9 Stopping of a dislocation by an atom: In the

second part of the simulation, it was observed that‘the
presence of of a fixed atom on the path of a d%élocétion
stops the motion of the dislocation, Due to 1imitaﬁions,
this study couldn't be énlgrged to see the multiplication

of dislocations, proposed by'Frank[?i]. But, it is probable
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that this multiplication process might be observed by
increasing lattice dimensions and applying larger stress'es.
The application of stress is another difficulty.
Stress values ﬁsed here,' were in the range o‘i,D< oC<gp’
S© we were able te apply the shear stress instantar.xecoﬂuSly,
at t=0, since the stability of the model is maintained
for ¢<@p. Application of high stresses (0‘>6') at t=0
disturbs the stabillty, hence, begmn:.ng with a low:
stress, we musti increase it gradually. But, this proéedﬁre "
requires enormous computation time. If these problems are
‘siolved,then, it would be possible to see the multiplica-
tion of dislocations at an obstacle, and breakdown of |
dislocations at velocities close to the speed of sound,

as explained in references [16], [18], [19]

VII,1O0 Vibration of a pinned dislocation:  Results
given in figures 20,21,22,23 are almt")st the same as.‘ the '
results found by Weiner et al. [22] ; discussion of these
figures are given in ref, [22] ; shortly we can state that,
the results of a pinned dislocation are in accordance
with the prediction of a string, fixed at both ends, with
small damping.

Fig., 24 shows logarithmic decrement vs Peierls sfress
relation, Following equation 1.5 of ref, [22]
INE
and observing Fig. 24 , we can state that the damping

constant for the model, Whep a phenomenological damping

is not included, is not a function of Peierls stress,
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This dampi#g‘is due to the energy loss from the boundaries

by the traveling lattice waves,

Vil,11 Temperature Effect: Fig., 26 shows that; for.
zero Peierls stress, the rate of decay decreases with
increasing temperature. This result is not in agreément
with the usual picture of ‘the effect of temperature upon
a steadily moving dislocation, an effect usually described

as due to phonon drag. But the dedrgase in rate of deéay

may be due to the phenomena of " thermal energy tfapping ",

a process discussed by Weiner in[i1] .,

Fof nonzero Peierls stress, this decrease. in rate of
decay is not seen,

Iﬁ fact the method used in creating thermal . s
equilibrium at'temperature T may be inaccurate, Because
atoms are given an initial velocity corresponding to
temperature T, only at the béginning of the computgtion.}
In a recent study, Perchak and Weiner [?Q] includedvthe

temperature effect in:the equation of motion explicitly,

and obtained more realistic results, Here, the equation'v-i

of motion has a rapidly fluctuating force term R(T) .

VII.12 Effect of Damping : As predicted, the rate of

decay increases with external damping.constant,

VII.13 Recommendations for future work: This thesis

covers, mainly the stress—disloéation velocity felation,
and partly the vibration characteristics of dislocations.
For a continuation of this study, the following additions

and modificatiens are possible,

e
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1) Model: Model may be changed‘yo simulate a more
realistic crystal, A 3-D model may be used,
2) Numerical Methods: In the solution of ‘the differen-

tial equations, some higher order approximations may be

-

used,

3) Substrate Potential: The shape of the substrate
potential may be changed to another form such that a
sinusoidal one to see the differenées in results of the
modified and ;nmodified forms of Frenkel-Kontorova mbdéi.

4) Number of imperfections: By taklng a very large

lattice, the number of dlslocatlons may be increased, so

it would be possible to see the interaction of dislocations

with each othex,

5) High velocity region: By using proper streés
application methods, an investig;tion in the high.velocityb
region would be usefui. | | ;

6) Shape of dislocation: Instead of taking a stréight
dislocation, a kinked dislocation may be used, so-thp
effect of kinks on dislocation behaviour could be studiéd.

7) Collected Impuritiesi A léttiée with a collection
of fixed atoms coulg be performed iﬁ order to simulate an
actual impurity.

VII.14 Closure: The most significant conclusion to be .

drawn from this work is that, it is possible to simulate
an actual crystal with some imperfections, in the form of
a computer model.Although the models in the 51mulat10n are

highly idealized, they can provide valuable insight into

the mechanical behaviour of materials,
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APPENDIX A DISLOCATION MOTION IN ONE DIMENSIONAL MODEL £

This‘éppéndix.is about the choosing of préper
model parameters fdr usé in numerical computations,
calculation of‘Peiérls stress and the explanation bf SuUs!
(stable-unstable-stable) motion of the dislocation, The
model is a modification of the Frenkel-Kontorova f6j
one dimensional model,

A.l Model Description: Consider a linear chain of maés

points interconnected by linear springs with spring
constant kl and equilibrium spacing b, and subjected to a
periodic potential. This substrate potential represents

. the effect of the remaining atoms in the 3-D crystal,

Assume a piecewise quadratic, continuous potential U(x)

2

3 kpx M<h |

1 2 b 2 b

T B - 5oy 5 - x) B s

A
where,
k2 : a measure of the shear modulus of the crystal
. 1 " " L] ! ' " 1 1 "

kl : Young's
¢ s M " " " hardness ‘ " " ‘ ]

In order to introduce a dislocation in this model,
start with the linear chain as in Fig. Alajand subject
the j'th atom to a longitudinal force Gj’ where

— | - =1
G,=G iklb;G_=G

— = — kX b :, G.=0 for all
M T-MylT T 2 i "M Tz FiP ot

# This appendix is a review of the studies by Weiner ]
and7Sanders[9],'Weiner[}O] , and Perchak and Weiner[éd],

~

other j ( A2
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Fig A1 Linear chain dislocation

“ model

"As a result, all atoms i>M are displaced b/2 to theiléft,
all atoms jg -M are displaced to the right, and those. |
for which -M< j <M are undisturbed, For the specia1 ¢asé
M=2, this new equilibrium configuration is shown in
Fig. Alb , Now we have a dislocgtion. N

Then the atoms are subjected to the substrate
potential defined in equation (Al) énd sketched in
Fig. Alc , | |

Next apbly forces _Ej to the configuration of Alb
and Alc , gnnulling,those originally applied, and also
apply a constant force G‘(extefnal shear stress) to each
atom, Let the resulting displacement of the j'th atom
from the_configuration'of.Alb be ;j « With the subsfrate
potential of equation (Al), the substrate force on.the

j'th atom is:
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k¥ for |,j[>M,- providing v JKQS (43)

[N

2.k2¢'
b-2¢

v, for |j<M, providing l\-r;il\<(—%-- g)

Note that in the first of equation (A3), V., is measured

J
from a potential minimum, while in the second, ;j is-
measured from a potential peak,

The final configuration is shown in Fig., Ald , The
atoms in the range\jk:M are termed subject to weak bonds
to a substrate potential, while the others are referred
to as strong bonds,The number of weak bonds, n;;ZM—l may
be odd or even, In the latter case, the atoms are indexed‘
as shown in Fig. Ale, that is j understood to take on the
%—w-%?, é% ’ l—%; esey When 2M is odd. There-

fore in both cases the weak bond atoms may be taken to

values ...-1
correspond to -M< j< M ,

The eqpations of equilibrium for the configuration

Y

Ald are:
oyl - Oy - ..— A= it > M
kl(vj+l+ Vi1 2vj) kv -G+ 0 o , > |
(.A4)
2k P : _ _ , :
—& 5. -G P =0 -M<j<M

b-20 7 J

with the introduction of dimensionless variables,

V'._—_-.;f. —_ - / |
5=Yilv G= G /(k;p) Y =@/b
6‘=0‘/(k2b) P=k,/k;. .. Q= ihle;

‘and the reduced displacement u =y -c
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these equations may be written

| (a5)
gP

u‘]‘\‘-l - (Z—Q)\JJ + u.]-l = GJ - 1-2X —M<J.<M J

A,2 Displacement Solution: As N2 , the solutions are

u(o M)=(§'FM4-GM)p-‘j i< -M

(CF, - G,) gd s iz
u.:d-(p_'l) cos jo ’_
J 2y ( ﬁcos(M-l)G—cosM&) (a6 )
+(42_1) sin j& C_ . M< <M

2.( sinMo- g sin(M-1)9) 2

where F—._COsMO - cos(M-1)e -
’ M M M-1
2¥( g cos(M-1)6 - ¢ cosM&)

Q
cosg =1 - )

i

G _SinME ~ sin(M-1)&
M M. . M-1_. ‘ .
Z(F sin(M-1)6~ -~ ) s:LnMe) P_:_T]é__E) + 2 - (P?*up)l/ﬂ )

A.3 Compatability and Stability of the Solution:

Assume that M, P, and 0 are given., We are to determine

the range of ¥ for which a solution with n = 2M-1 weak

bonds is
i) compatible with the force law in equation (A3)

ii) mechanically stable,

i) Compatability: For compatability,
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Vg = —(0/2-9) V_me1  (p/2-9)
thése are necessary (and sufficient).

After some manipulation , we find that

1-B o . -
tanMo= e p cotg > gives lower4;1m1t on X
( A7)
_ 1-f S, 1 n " ' )
tan(M—l)Q— T cotg—- upper

Note that ¥ is included implicitly in © .
Assume that X-l which satisfies the first equation

is denoted by CM s and the second equation by CM 1

-1 )
then, CM—1$:X 5£-CM

( the lowest value of 6 must be chosen not to violate the
inequalities of (A3) except the ones.for j=M ) \ /
ii) Stability: After the necessary calculations,’it is
found that, the solution corresponding to 2M-1 weak bpﬁd;

will be stable only for
'\K-l > Cn-1- where, C 1 is given by
= "2 ’ M-
tan(M-%)&=%§% cotgg— upper limit for stability

Combining stability and compatability results,

c, 1 -1
M-5-L¥ ~ L Cy

"If the value of Y¥~1 is in the range given above, a

solution with 2M-~1 weak bonds is both compatible and
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stable, while the only other compatible solution for the

same ¥ , that with one more weak bond is unstable.

A4 ¥ Ranges for M=1 and M=3/2 :

1) M=1
tano = 1-8 cot'g
— 1-£ st _
0= Tes cotg— —_ X-\. 0, hlilih
1 1~ o
tan 5 © = _ng' cotg——z—,- —> ¥=0.3333
2) M=3/2
tan-—3-6-= 1-P cofg_&_ —= ¥ =0 1928
T2 l+8 2 *
1, 1-p ©- -
tan 5 © = T p cotg—z———- —> ¥=0.3333
. 1-F o Y
tan® Y cotg—§?> —_— ¥=0.25
If we draw ¥ axis,
I v o
I, I , IIT IV oY
T 14 1

0.1928 0.25 Ol. 3333 O, 4hhlh
Regions I and V: The solution is not compatible and stable
for M=l, or M=3/2
Region II ‘:The solution is compatible and stable for
M=3/2; neot compatible and not stable for M=l
Region IIX: The solution is ‘compatible and stable for Ms=lj;

" compatible but not stable for M=3/2
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Region IV: The solution is not compdtible and not stable

for M=3/2; compatible but not stable for M=1.

These values are calculated for P=0,5

A,H5 Peierls Stress:

Equations of stability show that

M M=1
+ G X% G
0 < ¥ PM - Uy il—l -
1eg Fy , 1+nP Fy

db is defined as the stress above which these inequalities

are invalid,

Of these two, the first one is the controlling,

By substituting the variables,

cosMO ~ B cos(M-1)&

sinMe- - § sin(M-1)8

G-P:'X[sinMe - B sin(M—l)e] [ cosMO - 6¢os(M—l)6

where §=p(2¥-1)/(2¥-p)

A,6 Change of 0. with ¥ , for different P
o

values:

Fig. A2 shows the variation of ¢, with X,

for M=1

and M=3/2, and for different P values . (p=0. 3, 0.5, 0.7)
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A.7 Dynamic Peierls Stress: It was shown that the
L&

Peierls stress Op is the stress required unde# quasi-
static conditions and in the absence of thermal motion to
move the dislocation from one stable equilibrium position
to an adjacent one, However, once the dislocation is in
motion, i, e, , has surpassed one potential barrier, it<
acquires kinetic energy and continued motion will be
possible at lower stress values, This stress is called the

Dynamic Peierls Stress G}D‘

A,8 Stable and Unstable Positioﬁs: We have seen before
that for a given set of P and ¥ , there exist two
equilibrium configurations for the dislocation:

1) Stable configuration with n =2M-1 weak bonds,
2) Unstable'configuration with one more weak bdnd.
For example;’let P=0.5 and ¥=0.3 )
if M=1 the configuratien is stable, and
if M=3/2 the configuration is unstable,
This sifuatiOn holds as long as the applied stfessfr
is less than Gb (Peierls stress) .

For d:;cb no stable equilibrium solution exists.

A.9 Motion of the dislocation: Let the dislocation be

in the successive configuration as in Fig. A3.
This motion can be described as the motion of a series
of alternately suspended (stable) and inverted (unStable)

pendulums, ( Fig. Al)
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Fig., A3 Sequence of atom Fig., A4 Pendulum analogy
states ’ ‘

In ref.EUﬂ s it is given that the energy transfer
at transition times from S %o U or from U to S, enérgy
transfer is partial. |

Another analogy is the movement of a ball on a
mountain chain with certain obstructions,k which absorbs

.

part of the energy of the ball. ( Fig. A5)

— DA o s
VAV A VYA N

T NSNS

Big, A5 Ball analogy
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It is clear that, during motion, if the ball comes
to the top of a hill (unstable equilibrium point), then,
it will be able to reach the top of second'hill by the -

help of dynamic Peierls stress, rPD

« But if it is
stationary in a well, then,‘the necessary stress to take
it to the top of a hill is the Peierls stress, 0, . After
it reaches the top, it will continue to move,

After this discussion, we cén staté that the motion
of the dislocation model depends on the initial conditions.
If atoms are in stable equilibrium positions (M=1), at
least Peierls stress is necessary to move the dislocation,
but if théy are in unstable equilibrium positions (M=3/2),
dynamic Peierls stress is sufficient to move it, As a
result, it is possible to calculate the Peierls stress
(or dynamic Peierls stress) for a given set of parameters,
experimentally (by computer simulation) by only chopsiné
the stable (or unstable) equilibrihm configuration for
the atoms by thé use of proper formulae given in part
A,2 , applying any stress 0 , and observing if the
dislocation moves, The minimum stress which will make the
dislocation move is the Peierls stress_(or the dynamic_
Peierls stress).

Addition of damping and temperature brings éome
complexity to this discussion; these topics are studied
by Perchak and.weiner[?Q]‘in detail., In that paper,[20],

steady state velocities of the dislocation under certain

parameters are calculated by computer simulation and
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analytically. Good agreement is found between the results
of these calculations,

In this thesis, a two dimensional model ié used, .
Initialcopfiguration is such that the atoms in any row
are in unstable equilibrium positions for zero apﬁlied
stress; there is no difference between rows, Then, a
stress Gbﬁgd'sgai) is applied and steady state velocity
of the dislocation is calculated. The results are

campared to that of the one-dimensional results of the

studies explained in this appendix,
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APPENDIX B PHYSICAL INTERPRETATIONS OF THE PARAMETERS

USED IN COMPUTER SIMULATION

In the computer simulation of dislocation model,
dimensionless quantities were used to simplify thev
calculations, and to generalize the model. This appendix
explains the meanings of the dimensionless variables,
and gives numeriéal information in CGS units, about the
true values of these parameters,

A typical example is NaCl crystal with the
following properties:

Density : 2,17 gm/cm3

11

Shear Modulus G : 1,26>10 dyn/cm2

5.O><lOll dyn/cm2

2, 8%10™° cm

Young's Modulus E

Lattice Constant b

B.l position or distance: It is defined as i/b, where

X is the true length. To find the actual distance, the
. ' X

nondimensional distance x must be multiplied by lattice .
constant b,

8

for example, 1 atomic distance means X= 2,8%10" cm,’

B,2 linear spring constant kli It is a measure of

Young's Modulus E, Assuming the proportionality constant

to be b,

kl:;l.hxlou dyn/cm

dyn/ emSK 2. 8xlo'8 cm



B,3 shear spring constant kzi It is a measure of shear

modulus G. ' Assuming the proportionality constant to be b,

11 8

k = Gxb =1, 26x10 dyn/ cm2>< 2,8%10" " cm

2
Ll- .

k= 1. 410 dyn/cm

B,4 Ratio of shear spring constant to linear spring

constant, P:

P-:.—kz/kl:“-G/E

usual range for P : 0,2 - 0,5

— _ 3 .
t:t—l—- m= P b”, k;=bE
<y .
b S
E
4 g
2,17 .gm/cm3 .
cmX
5.)(10ll dyn/cm -
::-:tXS,. 833>d0-1l} sec

: \
-14
every dimensionless time is around the order of 10 sec,



B.6 velocity v:

X Gb 1

e Y

A

cs:transverse wave speed

C; longitudinal " "

Vg, —
— L t

unit dimensionless velocity represent the wvelocity of

longitudinal waves in crystal when the substrate potential

is neglected.

For NaCl , cs=/_4;;_=/-%— ::2.Ll><105 cm/s
o 5

OL-_—. Cs = 2.0 5= — 4, 8%10
VP 1,26x%10 ’
\ 5- Klos

5

cm/s

v=1 means speed of sound. | 4.8X105 cm/s for NaCl)

B.,7 Stress J :

E‘:G’kab <«— definition

G =0 Gbb= O‘sz

1

— - 2
0":0’><l.26><101 dyn/cm2><(2.8><10 8 )2 cm”

T=9. 88><J_0_5 dyn 2 force
01;, Ts= Ba'/bz — 1.26%10Mt dyn/ cm? <«—stress
For example, (¢ =L. 42x10~ means
T =1.8x10° dyn/cm® ,or

a—;:l.l#xJ.O-é dyn/ unit atomic area
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