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ABSTRACT

Possibility of formation of a highly cohcentrated anisotrqpic
phase in a dilute solution of rodlike mo]eéu]es is‘investigéted. The
free energy expression for quieécent solutions Qf rodlike particles,
introduced by Flory, is extended to the case where the molecules are
subject to homogéneous Ve]o;ity field. An additional term accounting
for the contribution of the flow field to phase transition is incorpb—
rated into the free energy expression. The contribution bf stress-
induced diffusion is considered too. It is concluded that there will
be a highly concentrated liquid crystalline phase deposifion on the

'stagnant regﬁons of the conduit, provided tha} the solvent-sclute inter-.
caction is sufficiently hfgh. The application of the theory to the agg-

regation of cholesterol molecules, in blood vessels, is discussed.



0ZET

Flory'nin cubuksu cisimler iceren ¢bzeltiler i¢in tamimladign
serbest enerji denklemi, homojen bir akisin etkisini de kapsayacak
sekilde gene]]estfri]mistir. Molekiillerin geri]imi en dislige indir-
- mek egf]im1erinden dogan diffiizyon géanUne alinarezk, durgun bdlge- -
lerdeki muhtemel derisik anizotropik evre olusmasi incelenmistir.
Pozitif bir enerji-etkilesme parametresinin katkisi oldugu takdifde,
belirli bolgelerde sivi kristé] bir evre belirecedi tespit edilmis-
ﬁir. latematiksel modellemenin damardagi kolesterol birikimini bir

L)

"6lclide acrklamasy tartisiimistir.
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I. INTRODUCTION TG ANISOTROPIC FLUIDS

In this chapter, various ordered fluid mesophases, commonly called
liquid crystals, are described, with particular attention being given to
the nature of molecular ordering. A]So, some of the factorsvinf}uencing
~ the phése transition from isbtropic.]iquid to ordered-f]uid,.are éxp]ained,

“as an introduction, to understand the behaviour df,anisotropitlfluids.

1.1 MESOPHASES

Many organic materials exhibit more than a single transition 1in
passing from Tiquid to solid, necessitating the existence of intermediate
phases, known as “"mesophases". There are two main groups of mesophases:

(Priestley, et.al, 1975).

i) Disordered crysfé] hesophases; commonly called p]aétic crystals,
which retain avthrée dimensiona],crystalrlattiée but are charac-
terized by substantia] rotational disorder, due to the fact
that beyond a crifical temperature, the molecules are energetic

;hough to dvercome rqtationa] energy barrier, but are not ener-

getic enough to break up the lattice so that they are transi-

tionally well ordered.




i) Orderedvf]uid mesophéses, referred to as "]iquid crystais",
moét often composed of elongated molecules; they arevcharac-
terized by their 1éck of crystal iattfce together with some -
degree of rotational order. As a result, tHey posées'simu]-.
taneously liQUid1ike (fluidity) and solidlike (molecular

order) character.

1.2 MAIN TYPES AND PROPERTIES OF LIQUIDYCRYSTALS

To generate a liquid crystal, one must use elongated objects,
referred to as the "building blocks"” (P.G. de Gennes, 1974). This may
be achieved using either small organic molecules, such as p-ézoxyaniso]e
(PAA), N-p-methoxybenzy1idene.p-buty1ani]ine (MBBA),'cho]esterpl esters
or synthétic po]ypeptides in suitab]ersolvents, some sténdard examples
~including debkykibonuc]eic acfd (DNA), tobacco mbééic virus (TMV).

" Phase transition from amorphous to anisotropig state tékes place
either by increaéing the concentration of the rodlike entitiés in solvent-

solute systems, or by varying the temperature as in the case of thermo-

tropic liquid crysté]é. In thermotropic sysfems, most widely encbuntered
in the case of pure'systems, the arrangement ofvthe molecules aré deter-
~mined by the van der‘Waa]s attracfions between pairs of néighbouring
mo]ecuies, touching éach other. ‘Though, recentTy, the theory of phése
equilibria in thermotropic 1iquid crystalline systems, has been extended
to the case where thé rods are diépeféed.in a diluent, thermotropic systems
occur most readily, w{th pure compounds in view of the fact that the van
deer Waals force of attraction between molecules come into play when the
molecules are closer togethef. These attractive force_wi]f have a more

pronounced effect at lower tempefatures because the molecules will have




- lower velocities and hencé, will be wfthin interacting distances of one
another for longer periods of time. |
In the study thét follows, solvent-solute syStemsg whose traﬁsi-
tions aré most naturally effected by increasing the concentration of the
solute will be treated. The'effect of increase in concentration is

reflected as:

i) dincrease in electrokinetic and electrostatic interactions in

the case of lyotropic 1iquid crystals

'ii) competition for space, in the éase of sd1utions of relatively

1ohgér rodlike particles that‘cénnot interpenetrate each other.

Lyotropic 1iquid;cry$ta]safe mixtUre§ of-amphiphi]ic‘tompounds
.(wihsor and Gray, 1974), and a polar solvent most frequently water.
Aggregates of amphiphilic molecules in aqueous solution, aiways form 1in
such a manner as to feduce the hydrophobic interaction between their
- hydrocarbon tails and the water, wﬁi]e simu1tanéous1y maximizingrthe
hydrophilic interactions of their»pb]ar]heads‘with the\aqueous solvent.
As a result, they acquiré 1ame11§ﬁi$tfucture (referked to as the neat
phase or’ge]lphase) or give riseffqiﬁhe_fdfhaf{bn of spherical and
,cylindrical micelles. According £6 §-thebry of %used micellar phases
(Winsor, 1974) the ratio R which is a measure of the relative tehdéncy of
the amphiphilic layer to becomé.conVex towards its ]ipophi]ic‘environment
compared to that of it to Become convex to its polar environment, is
equal to unity so that the lamellae retain their para}]e] and planar
arrangement. With certain binéry:aqueous neat phase, dilution beyond a
certain limit 1ead$'to a discontinuous phase transition producing an iso-

tropic solution. The breakdown of the ge1}phasé is associated with the




tendency df dilution to decréase R below unity, because with increasing
dilution, the tendency of the amphiphilic layer to become'cdnvex tkoéter is
relatively increased. The stability of the ée] phase may evéntua]]y be
maintained by some internal rearrangement (i.e. the average micellar form
approaches spherical) so as to increase the dinterfacial area per poTar
'éroup. However, on further pi]ution, the spherical ﬁice]]és too, are
dissociated and join the/isotropic phase. It is emphasized that all the
effects of di]utibn-considered above are reversible, thus commencing with
a dilute disordered solution and progressively increasing the concentra-
tion, lamellar loci appear within the disotropic so]ution,.resﬁlting in

- the separation of the anisotropfc phase, finally.

As stated above, increase in concentration,'induces phaée transi-
tioh not only with-amph{philic sd]ute moTeculés,‘but‘in the case of non
amphiphilic, rigid, highly asymmetrica]'molecu]es dispersed ih a di]uent,
where the only interpartic]e forcé,is ih the fOrm of steric repu]sion,
associated with the accomodation in a Timited volume. The behaviour of
this group constitutes the main gubjeét of this thesis. The statistical
theory of phése separation in such'systémé of rodlike partie]es; will be-

fully explained in Chapter 2.

1.3 CLASSIFICATION ACCORDING TO MOLECULAR ORDER

The classification diStinguishés three major classes: the nematic,

the cholesteric, and the smectic.

“1.3.17 Nematic Order

In nematic order, the molecules tend to align parallel to each other,

in the direction of a common axis, fi, the director. Nematic phases occur



'only with materials which do not distin@Uish between right and left, with
no dipole moment, and Which are not ibnizab]e. A schematic representation

of the nematic order is shown in Fig. 1.1.

n/ W
H//l‘\"\/

FIGURE 1. 1‘- Tne arrangement of mo]ecu]es in the nematic
‘mesophase

* 1.3.2 Cholesteric Order

If weidissblye, in a nematic 1iquid a mo]ecﬁ]e which is chiral
(i.e. differgnt.df iﬁs mirror image), we find out that the structure
undergoes a he]icalidisfortion, common to cholesterol éstérs. On a
1o§a] scale,cholesteric and nematic ordering are very similar. However,
in cholesteric order, the director f, is not constant in‘space; but
rotates from b]ane to plane. Iﬁ'other terms, the structure of a choles-
teric liquid crystal is periodié with a spatial period L, equal to one
half of the pitch. A schematic representation of cholesteric order is

shown in Fig. 1.2.
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FIGURE 1.2 - Schematic representation of cholesteric mesophase

1.3.3 Smectic Order

Smectics are layered structures with a weﬁ]—defined interlayer
spacing. In the casé of smectic A, the layer thickness is identica]ly. 2
,1‘eqUa] to the full molecular length; thére.is a substantial probability
:for,intefiayer diffusion, while 1in smectfc C, there is a uniform tilting
of the mo]etb]ar axes with respéct to the layer normal, resulting in
interlayer diffusion of lower probabi1ity.”

In this work, solutions exhibiting a hematiC-order will be con-
sidered. Cholesterol order occurs with chiral systems; smectic order is
most frequently observed with amphiphi]ié compounds. As ‘to the nematic
order, it occuré when the system is achiral or a racemic.mixture of right
and left handed species. Since, the mesogens considefed in this wdrk will
be rigid rod]ike,-non—iohizab]e, non-polar particles, nemétic ordering

- will be prevailipg in the anisotropic phase.

|
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FIGURE 1.3 - Schematic representation of two types of smectic
order (a) smectic A order, (b) smectic C order.




I1. PHASE EQUILIBRIA IN SOLUTIONS OF
RODLIKE PARTICLES

The precipitation of rodlike particles in guiescent solutions was.
explained by Flory (1956), through the use of a statistical mechanicai
approach based on a modified lattice model. As can be predicted from
this theory, separdtion into an fsotfopic and a sbmewhat more concen-
trated anisotropic phase arises as a consequence of particle asymmetry.
In what foT]ows, an outline ofkthe theory of phése gqui]ibria in solu-

tions of rodlike particles will be presented.

2.1. EQUILIBRIUM DEGREE OF DISORDER

By making use of a partition function for a system of rigid rod-
1ike partic]eg with partial orientation abbut’aﬁ axis, Flory (1956)
derived a general expression for tne free éhéfgy‘of mixing as a function
of the mole numbers the axis ratio x (or length to width ratio) and a
disof%entation parameter y. The final'expression has the form (See

Apbendix A1 for detailed derivation):

AGm

kT

= 0 ]nv]4+ N, 1nv2 - (n] + yn2)1n[1 - v2(1 - y/x)]

- n2[1n(xy2) -y + 1]+ X1Xn,Vy | (2.1)



~ where _ N

- VisVo = volume fractions of the solvent and solute, respectively;

nyshy = number of molecuies of solvent ard solute;

X = dimensionless solvent-solute interaction parameter;
k- = Boltzmann constant;

T = absolute temperature.

Since, no external restraints apply to y, it will be assumed to
adopt the value which minimizes AG . Hence, we differentiate Eq. (2.1)

with respect to y, at constant x, n,, n, and T, and equate to zero

BAGm | Vz/x o 'v .
, = '(n] + ynz)[ ) ] - nz]n(] - Vz(] - .Y/X)) '
oy [x,n],nz ‘ 1 - v2(1 - y/x)
2%y '
- n,[ J+n,=0 2.2
2 xy? 2 . v (2:2)

Substituting ny = x(v]/vz)n2 and rearranging, we obtain

vé = —%X 1 - exp{- —24} - (2.3)
X -y y |

or _
(1= vy(1 - y/x) = =2y | | (2.4)
Hence the y thatvhinimizes AGm is the one that satisfies Eq. (2.3).
By making use of Eq. (2.3) one can find the possible set of (vz,y), that
are most stable for a given x. Among this set, there is a pair (vz,y*)
corresponding to minimum solute fraction, together with maximum cisorien-

tation parameter, for stable anisotropy. This pair is obtainable by

differentiating Eq. (2.3) with respect to y and equating to zéro, so that:

i
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Vi1 - (1 - 27y Jexpl- £ (2.5)
y* :
and |
1 1T %, 1 e
Yy o= —(x=1) = (—y  + — y*2 +...... ) (2.6)
2 3 6 |

For Vo < v;, AGm decreases monotonically with y, hence a necessary
condition for existence of stable anisotropic phase is Vo > v;. However
for values of Vos slightly above v;, there is a metastable region, where

2

manisbtropic > AGmisotropic" In both cases, 4G is calculated from
Eq. (2.1), only using y = x (See Appendix A2) for the case of isotropic
liquid. Calculations. show that this metastable region is rather small.

In the absence of di]Uent (v2 = 1), according to Eq. (2.5), y = 2.
Substituting these va]ﬁes in Eq. (2.3) we get x = 2e = 5.44 as the minimum
value of x required for a stablé anisotropic stéte for the pure solute
(Flory, 1956). Hence, a length to width rétio of about 2e is'sufficient
to cause spontaneous ordering of the phase, for a pure system. For
particies in solution, the critical x value increases with dilution, if

the system is atherma]l(X] = 0). For non-athermal solutions, the pro-

perties change drastically and will be considered later.

2.2 CHEMICAL POTENTIAL

By substituting Eq. (2.3) in Eq. (2.1) the following more convenient
expression is obtained for the free energy of formation of the phaée with

“ezuilibrium disorder:

L6 Zn] '
—— =ny Invy + 0, Inv, + — - n,[In(xy?) -y - 1]
KT 1 1 2 2 oy 2 i
+ X]xn2vl ’ (2'7)

where y is given by Eq: (2.3).




11
The chemical potential of a solvent in solution relative to that of
the solvent as a pure component, may be obtained by differentiating AGm
with respect to ny- If the n's represen tﬁe number of moles instead

of molecules, we may write:

o)
AG u, - u
LY )/an, = —— :

N KT RT

where N = Avogadro's number;

u:= chemical potential of component i in solution

u?= chemical potential of pure compound 7.
Then,
wo - w0 a(ny Tnvy)  3(n, 1nv.) - 2n
1 1 - -l . ] + 2 i 2 +l2 _ { 1}( d_V )eq
.RT an] an] y-» y dn]
v ooy 3(x xn,v.)
+ {ny( dy )eq + nz(gé%)(_ﬂl_)eq} g1 21 (2.8)
dn] Xy dn] k an,
an, 1nv] alnv1 an a]nv]
— = + ]an-———:_]nv] +n,
- any én] Bn] | an]
bt av1 ] a[n]/(n] + xn2)] ] ny + xn, - n, ] Vo
2
an, an, (n] + an) Xn 5
3(ny Tnvy) , _ .
————— = (1 - v,) +v, v, (2.9)

| Bn]
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but = =

- s (2.10)
an, Vo XN, X
(XX N v, ) 3V o S
—L 21 yxn, —L = v (2.11)
o oy

Inserting Eqs. (2.9), (2.10), (2.11) in Eq. (2.8), we obtain,

0
,1-!] - Ul . 2
- = 1n(1 - VZ) + (1 - 1/x)v2 + —
RT . 'y
2n 2n
d
+ (ny - — - )= (2.12)
Yy Yy dn]
Also evaluation of (dy/dn])eq from Eq. (2.3) yields, finally,
o ‘
ST - : '
7% R ALV o (2.13)
RT X y '

This equation fepresents the chemical poientialvfor the anisotropic
phase. As to the chemical potential of the isotropic phase, it is given

by the well-known equation (Flory, 1953):

_%_)VZ + x]v2 (2.14)

=M1 - vy) + (1 - 5
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Similarly, the chemical potentials for the solute in nematic and

’disordered‘phase are given by Equations {2.15) and (2.16), respectively.

. |
Mo T Hy V2 2 2 £
2T o n(B) + y - vy ¢ 2 - dnyE Eyqx(1 = w2 (2.15)
RT e
0 i :
Y, - U v :
22 s (- vy - In R+ xx(1 - v,)2 (2.16)
RT 1y=X .

Chemical potentials calculated from Eq. (2.13) to (2.16) in conjunc-

tion with Eq. (2.3) are shown in Fig. 2.1.

~Solvent: '1', left-hand ordinate
scale ‘

Solute : '2', right-hand ordinate
scale

(%2}

|
.

Region of metastable order are
shown by broken 1ines.

10%quy = p)RT

FIGURE 2.1 - Chemical potentials for X, = 0 and x = 100

The calculations were carried out, for x = 100, by Flory. The
curves for isotropic solutions are valid up to Vo = 0.0935 of absolute

stability. Then a discontinuity corresponding to metastab]e regioh is
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observed. For higher solute volume fractions, nematic and isotropic pnases
coexist;‘

Simi]ar calculations were done to fina out the chemical potenticls,
for x = 20. >The 1imit of absolute stability was found to be equal to
Vp = 0.4354, by using the following procedure: the isotropic curve’must
be continued until reaching the concentration vé corresponcing to
AGmiso = AGmaniso' The free'energy of mixing of the isotropic mixture
may be found from Eq. (2.1), if x is substituted for y. That of the
nematic phase may be computed using Eq. (2.7). By equating these two

equations and upon rearranging we end up with an expression of the form:

1y p2x B _ -

v = =5y [ Y + 2In(y/x) - y + x - 2] (2.17)
Simultaneous solution of Eq. (2.17) and Eq. (2.3), yields by trial-

error calculation procedure v2v:‘0.43545 at y = 5.10 (for x = 20). Hence

solving Eqs. (2.14) and (2.16) for Vo! 0 to 0.43545, will give the chemical

potential curves of the solvent and solute respective]y'for isotropic mix-

ture. To draw the anisotropic part, simultaneous solution of Eq. (2.13)

and (2.3) will yield the solvent chemical potential. Similarly Eq. (2.15)

and (2.3) will yield the chemical potential of the solute in nematic phase.

The resulting curves are shown graphically in Fig. 2.2. As mentioned
earlier all these calculations were carried out for athermal solutions;

those for the non athermal will be explained later.
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2.3  PHASE EQUILIBRIUM IN SOLUTIONS

2.3.1 Athermal Solutions

For the coexistence of two liquid phases, the necessary and sufficient
condition is that the chemical potential of either component, solvent or .
solute, must have the same numerical value in each phase. We may write

the phase equilibrium condition- as:

b, = w o | (2.18)
TR _ o | (2.19)

where accents are adopted to denote the more concentrated phase. There-

- fore we obtain, with the aid of'Eqs. (2.13) and (2.16):

2 l = 1y,
In(1 = vy) + (1= 1/x)v, + xqVp = In(1 = vy) + (- x V2
+'_§_ + X3Vy s for the solvent , 7(2.20)

and
]n(vz/x)'+ (x - l)v2 - In x2 + x]x(l - v2)2 =
An(vo/x) + (y - 1)Vé - In y% + % *(1 = v5)2, for the solute

Numerical sb?dtions,of these equations, along.with Eq.'(2.3) will give the

equilibrium concentrations in conjugated phases, the three unknowns being

!

! .
V2> V2 and y. Also, by a careful analysis of Fig. 2;2, for the chemical
potentials of rodlike solutions with x = 20, one can see that at Vo = 0.379

"~ and vé = 0.5405, W= u; and M, = u; ; hence these volume fractions are

the equilibrium ones for x = 20.




17

2.3.2 Non Athermal Solutions

EVen a smalj positivé so1vent—so]uté jnteraction parameter X
has a marked effect on thé course of N viith Vos S is ‘i1lustrated in
Fig. 2.3. The outstanding feature is the emergence of a maximum étva
higher conéentration. A Simi]ar behaviour is observed for x = 20,

shown in Fig. 2.4.

FIGURE 2.3 - Solvent chehica] botentia]s for non athermal .
solution with x = 100 - ‘

The presence of the maximum together with the preceeding minimum
raises the possibility for coexistence of two anisotropic phases. In-
deed, for 0.055 < xi < 0708 we have two coﬁjugate nematic phases in
equilibrium together with an isotropic-anisotropic pair, henée two
heferégeneous regions: one involving an Ssotropic phase in equilibrium
~with a‘difute nematic phase and the other, a pair of anisotropic phases.
At X] = 0.07, a stable coexistence of three phases is observed. This

explanations can be understood more easily in connection with Fig.'2.5.
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GJ\ ﬁcl: ogeneavs regicng

0 o1 o1 o4 oy
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FIGURE 2.5 - Composition of phases in equilibrium for non athermal
rodlike solutions with x = 100
At X = 0.09 the compositioﬁ of the‘concentrated phase reaches
Vp = 0.873 where according to Eq. (2.3), y falls to unity. In order to
preserve consistency with the identification of y = 1, és the limit for
perfect orientation, we take y equal io unity for all X > 0.09, in cal-
culating the uppermost portions of Fig; 2.4. The equations for the phase

equilibrium, accordingly become (Flory, 1956):

vl

n(1 - VZ) + (1 - 1/x) + x]v; - 1n[(],_ ‘Vé)_/(]'_.. vé + —Xé)]

2

+ x]\/2 - (2.22)
]n(vz/x) + (x - l)v2 - In x% + X1x(] - vz)2 =
In[{va/x)/ (1 = vy + v3/X)] # %x(1 - vy)? (2.23)

—~
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in which the solute chemical potentials for the dilute phase are equated
to those of regular solution theory for the concentrated phase.

The sudden shift in the concentration'vé, from ~.G.15 to_> 0.9,
brought above by a comparatively small change 1n'x] is of great impoktance.
Also, the;e values of X]-parameter toﬁsidered, are §ma]f compared to those
vcommén]y encountered in polymer-solvent éystems. Ca]tu]étions were done
for x = 20, to obtaiﬁ X = 0.4825, for y = 1 (together with Vo = 0.155)
by simultaneous solution of Eq. (2.22) and Eq. (2.23), making use of

vé,

Xy = 0.4825, the compositions of two conjugate phases were compufed by

0.9104(obtained from Eq. (2.3) for y = 1). Hence, for x =20, above

solving Eq. (2.22) and Eq. (2.23), while for X < 0.4825, Eq. (2.20) and
(2.21) were used. The resulting curves are drawn in Fig. 2.4.

We are mostly interested'in the region were a hﬁgh]y concentrated
anisotropic phase is in equi]ibrium with a‘fair1y dilute isotropic phase,
due to the effe;t of a. positive heaf fhtéraction parameter. This region
corresponds to values of Xl-parameter,Aobeying~Eqs; (2.22) and (2.23), |
in general. |

To summarize, phase separation arises spontaneously, in solutions
of rigid rodlike parti?les, provided the macromolecular volume fraction
exceeds a critical Qa]ue v;, this value decreasing as particle asymmetry
increases (i.e. for higher x); Whereas both phases in equi]ibfium are
predicted to be fairly dilute in the case of athermal systems, a compar-
atively small, positive energy interaction parameter Xj» causes the con-
centration of the nematic phase to increase sharp1y. 1f the particles.
are of uniform structure even a smettic or cholesteric order can bebobserved

in this concentrated phase, depending on the nature of the particles.
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HIL EFFECT OF HOMOGENEOUS FLOW ON
PHASE TRANSITION

Flory's theory of phase equilibria of rodlike molecules can be
abp]ied to a solution subject‘to homogeneous. velocity field, by incor-
porating into the expression for the free energy of mixing, an additional
term, accounting fof the contribution of the flow. This additional term,
as will be shown be]ow, c&n be fdund easily, provided that the velocity
field admits a potential so that we can speak of equi]ibriUm condition of
macromolécuTes,‘as already pointed out by Kramers (1946). Marucci and
Ciferri (1975) analyzed phase equilibria in solutions exhibiting a nematic
ordering under extensional flow. In this chapter; we will derive a most
general formula, app]icéb]e not only to irrotational f]ows,but to any type :

~of homogeneous flow, by an appropriate selection of the reference frame.

3.1 MOTION OF THE POLYMER MOLECULE

A polymer molecule is idealized as a rfgid rod CD, with center ofy
mass A. '0212223 is the laboratory fixed coordinate system. Let the
-molecule be composed of x segments and X; is the vector (subscript ~
denotes ‘vector) from the center of mass to the i'th segment located at
B.b Let us assume the polymer molecule is suspended in a liquid f]dwing

with velocity v'. Then it will be set in motion by the friétiona] forces
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acting upon each of the segments. The center of gravify A, wi]] be moving
with the velocity of the fluid at the position where this center is momen-
tarily situated (neg]ecting the Brownian motion). This situation is re-
ferred to in the literature as "no drift condition" (Erihgen,»19§7).
, Let fA.é diStaﬁce from the originbto the centef of mass A

rg = distance from the origin to the point B

Ve1ocity of the fluid at B

=
Vg = |
vg = veiocity of rod at B
= . " L. ‘ - [ "
vp = relative velocity at B = Vg = Vg ©(3.1)

-~

w = instantaneous angular velocity.

We assume that w coincides with the ahgu]ar velocity of the fluid,
at point A. This assumption is the rotational counterpaft of the no drift
condition stated ‘above. From continuum thedfy the ahgu]ar velocity for
figid rotatidn, is related to the vortfcity tensor g of the fluid (subScript

~ denotes the tensors). Then,

vep = Vi + (w X r;)
~B ~AI \ 'i' ~1 (3.2)
=t Xy
combining Eqs. (3.1) and (3.2), we obtain,
vg= (Vg = Ya) - lwxry) (3.3)

But for homogeneous flow,

Substituting this result in Eq. (3.3), we get:

= v(ry) - (wxry) | (3.4)
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Let F, denote the friction force acting on the rod, at point.B. By defi-
nition FB = V3 where ¢ is the friction coefficient. Hence, - 4
Fg = 8(v(ry) = (e x1y))

Let Mi denote the moment exerted by FB about a:
r~ ) ~

Moo= ro x Fp=gro xv'(ry) - (@ xr.)] . (3-5):

Now, let us consider the quantity in the brackets. This term represents:
-the ve]ocit} of the fluid as observed from a reference frame roating

with an angular velocity w. Hence it can be viewed és the f]uid\velocity
without the rotational part; provided that the velocity is decp::osed info
two parts, the one rotationa]’and_thevother-irrotatioﬁa]. :Thé term 1in

brackets will stand for the irrotational part and will be the one fespon-

sible for the moment exerted on the rod. As a result it can be expressed '

in terms of a velocity potential @(ri) such that

() < e xr)d = ) N CX)

Consequently, the friction forces exerted by the 15quid updn the rod
admit a potential and the moment of these forces on the i'th segﬁent B

is given by

M= gy x velry)) / - 37

so that the overall moment for the entire rod, composed of x segrents

will be:

X
M= ) {-g(r; x ve(
i=1 - -

-~

r.))} ' ~(3.8)

~1

The potential energy associated with this moment will be denoted by UG*.
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U fw Mo d
* = 4 J)
G o ~ b
X 1% : o
=€ ] {7 (ry x7e(ry)) - ¢} | (3.9)
1=1 O .

where y is the instantaneous angular deviation of the axis of the rod
from the nematic director. |

To‘get a simpler form from Eq. (3;9), let us consider the terms
within the 1ntegration.' |

For a rotation around the z=axis

rx vé = {r cosy _g_g_ - r-siny o) 1k
S - E y -
=-{r COSyY a? _@JL_ - r Sinq; 2% ?\J } K (3.]0)
8#) X a'y X 34} y o_X. -~ .
v y |
But. X = rcos sv .1 ]
o i oX rsing -y
y =rsing '
sy _ 1
~ 3y - rcosp T X
Inserting the Tast two equalities into Eq. (3.10), we obtain:
0% 3%
(r x vo) = { o+ } ok
~ W Ny Wy~
then (’: X Vé)'d’g = -——gi dy
] W S 0]
an * = £/ ~ dy
G iz=1 o oY ~
x/2
or Ug* = 28 ] "[e(ry)] (.11)
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Equation (3.11) provides a rather easy method for calculating the
change in enérgy associated with the effect of homogeneous flow, by simply
finding the potential function corresponding to the'irrotafiona] part of
the flow. Asyexp]ained by Kramers (1946), the error introduced by se]ec-
tion of a rotating frame is negligible.

The problem reduces now, to the derivation of ¢ of thé ifrotationa]
part of any homogeneous flow. | |

A homogeneous flow is represented by (Erﬁngen, 1967):

QX

v=ker  (subscript = denotes tensor)

where 5 is the velocity gradient tenSor, which is traceless for'incomp-
ressible fluids. As to the velocity potential of irrotational flows is

defined as (Bird, et.al, 1977):

1

@=-T(:rr)A | | (3.]2)

=

where : indicates the double dot product.

In the section that follows, the application of the above theore-
tical argumehts to some homogeneous flows will be discussed. We will
concentrate mainly on simp]e shear flow, the most widely encountered
rotational flow after a brief consideration of irrotational flows such

as steady potential flow and elongational (or extensional) flow.

3.2 ° APPLICATION OF THE THEORY ESTABLISHED IN SECTION 3.1
TO HOMIGENEOUS FLOWS

3.2.1. Irrotational Flows

Irrotational flow is characterized by the property (Slattery, 1972):

Q = vorticity tensor = 0

-~
-~

RER—
BOBAZICH (NVERSITES! Kuxu?ﬂf\_gw
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i) Steady homogeneous potential flow is defined by v = -7¢

with ¢ :'%T(E:f f)’ in compact notation with.éi, éj and'§k representing

-~

the unit vectors in z,, zz'and 23‘dfrection§ we have

o= - —%—{kij ﬁiéj:(rk gkr£§£)} » in indicial notation

. 'I .

= kg (8585788, )

1 3 3

= - .er.r.
i iiy-gs, 1
Al ]_ . 3 . i = )

so that Vi = o[ > % ?,kijrirj]/°ri | i=1,2,3

For potential flows we may write:

. . . T :
l = rate of deformation tensor = W+ Vo= ? §(®,ij @’ji)§1§j
and Q0= yv - vVT = T5(® s: - @ ::)8:6: = 0 |
x o~ o~ 'IJ s1J sJ1°21~] -

where 855 denotes the second order derivative of ¢ with respect to ,

z; then zj,

For steady potentia] flow, Eq. (3.11) is»direct]y_épp]icab]e, for

one molecule. As mentioned earlier, this term represents the contribution-

of the velocity field to AGm; so that the whole expression for the free

energy change of mixing becomes, by adding Eq. (3.11) tovK. (2.1):

AGm

"M Tnv, + n, Inv, - (n] + ynz)ln[1 - Vo(l - y/x)]

X n
= ny[1n xy2 -y + 1]+ %X MoV, +.g_<iz1 ¢(r;)>

where average potential function over the n, macromolecules is to be considered.




i1) Extensional (or elongational) flow is identified by:

so that
Y1
V2
'3
and b
. or

Application o

Let

In elongational flow the nematic director coincides with the

direction of
instantaneous

be written in

12 0 0
= 0 -%T 0
0 0 T
T
=TT Y
I A
- 2 "2
= FZ3
] T 2

LI o - 2 2
= glknrl =l 4 7 - 273)

T . r?

= 5l - z%] in cylindrical coordinate.

f Eq. (3.11) yields,

= length of a segment

;= humber of segments from the center of gravity to the

i'th segment (the total number of segments equals x).

the flow. . Hence y will represent the angle between the

position of the rod and the z-axis. Then r. and z{‘can

terms of ¢, b and X; such that:

b xi'sinv

b X5 CcoSy

27

(3.13)
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Substituting the above relationships in Eq. (3.13), we}obtain:_ k'

, v x/2 b2x§ sin?y v
U=26 — Y [ —5%—— - b2x% cos?y] (3.14)
, 2 . 2 i o) :
X.i'"]
x/? , ,
=Teb? ] x3 [-1+ 372 sin2y]¥ (3.15)
X.=1 - ° '
1
X/2 . ‘ . 3 . :
But I x3 (5 5=+ Dx + 1)/6 = (Fg=+ ..., ) (3.16)

‘Combining Egs. (3.16) and (3.15), we end up with:’

X 1
Us* ™ 6

ET b2 x%sin?y - ' (3.17)

This expreésion is exactly the‘same as the one derived by Marucci
| (1975), though we reached the same cohc]usfon by making use of Eqg. (3.11);
Marucci andeiférri's approach, which is vé11d for elongational flow only,
is based on the formulation of an expression for the moment of friction
force exerted on the rod, while our method, prov{des a more powerful tool
to deal with any type of.homogeneous flow (even rotational)as will be

shown be]ow.'

Equation (3.]7)'gives the potential energy associated with. a single . -

macromolecule, oriented such that its axis makes an angle ¥ with the
nematic director. For a system of né macromo]ecu]es,/random1y oriented,
an average expressioh accounﬁing for the most probable orientation should
be used. In other terms, an expreséion for <sin?y> should be found. |

It is explained in Appendix A2, that

<sin?y> = (y/x)? R (3.18)

for random distribution. Inserting this last equality iﬁ Eq. (3.17) and
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combining with Eq. (2.1), the full expression for the free énergy becomes:

AGm

—r= = My Invy + 0, dnv, - (ng ynz)lh[l = v,(1 - y/x)]

e : R T ; (3.19)
- n2[ nxy* -y f 17 + Xy % novy + —5= G n,Xy

2 {
G* = _%T'F%%E , is a dimensionless quantity reflecting the ratio

of the effect of the bulk flow to that of diffusional flow, the denominator

where

(kt/g) defining the diffusion coefficient of the macromolecule (Villars,

Benedek, 1974).

3.2.2 Rotational Flows

A motion in which the vorticity vector field does not vanish is said
to be rotational.. The vorticity vector field x, is defined as (Slattery,

1972):

' where €55k is the permutation symbol.

A rotationaT flow can be viewed as the superposition of two flows,
one of them jrrotationa] and the other being a uniform rotation. The
effect'of rotation can be neglected, ff E, the velocity gradient tensor
is not too large, as already explained. Then, the effect of flow can be
described by the potential function associated with the irrotational part
of our rotational velocity field. Hence our first task is to divide the
flow into two parts. A practica] method will be to extract the irrotational
part by making use of Eq. (3.4). The next step will be to evaluate the

function ¢ corresponding to this irrotational flow and then to incorporate
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this potential funétion within the most general exbression for AGm; a]sb;
the flow induced energy term must be averaged ovef the ensemble of Ny
rmacromolecules, by considering»their instantaneous.angu]ar displacement
from the nematic director, whose direction is prescribed by the tybe of
flow in question. |
These explanations will be made clearer, in coﬁnectibn with the

example of simple shear flow, the simplest and most common type of fota-
tional f]dw. In a volume element of sufficiently sma11 size, the well-

known Poiseuille flow, may be approximated by simple shear flow (! ramers,

1946). The components of the simple snear flow in cartesian coordinate

are
vy = Tzz where T is a constant (velocity gradient)
3° 0 ]
] T 1
Then Q = € ik {—7— Vv -V} = —| 0
-2T

From continuum mechanics (Eringen, 1967), the angular velocity w for rigid

rotation in shear flow, equals one half of the vorticity vector. Hence
_ : .
w=9/2 = [0 0 -T/2]

With these informations, we may apply Eq. (3.4) to find out the

irrotational part of the flow, i.e.,

r rz, 0 24
Vo= y' - (wxr) = 0 - 0 X1z
0 -F/Z, Zq
h T T r T T r
=(fzp 0 0 -2, 77 0 =z 77

(3.21

)

0)"

)
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Superposing to the irrotational flow given by Eq. (3.21), a uniform
rotation we must end up with Eq. (3.20); Clearly this rotational velocity

field will be given by:

1
V-l = 'Z—T 22
V) = - T 2 (3.22)
2=~ 7T 7
V3 =0

Now, our objective is to find the potential function associated
with the irrotational flow given by Eq. (3.21). Clearly, this will be .

done by making use of Eq. (3.21); First k has to be determined

| K1 K2 kgl [ [ E ket kg7,
kel kg Kpall| 2ol | K2y ¥ Kypzy t kpgzg
ko K Kggl [ 23] | Kt kg2t ‘3373
but (1/2)rz, |
ve| (1/2)re, e (3.23)
: |

Comparison of the two equations above, yields

0 - T/2 0
k=|r/2 0 0|
0 0 0 |
but
TS L B B
L e S A B
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U 1
so that ¢ = - X3 5.5 r= —2-—[.2122 o rz]zz]
Finally
o= -T2 z | (3 24)
- T ]2 S .

Usirig the potential formalism given by Eq. (3.11), ve obtain, for the

contribution of the flow to AGm,

(2 v |
Ug = 28 -Z [~ — Fz]zzji o per macromolecule (3.25)

1=1
To find a more convenient expression for the flow-induced energy
term, we have to investigate the direction of the nematic director. The
formal procedure to find out this direction for any type of flow, is
explained in Appendix A3. For the simple case of simpe shear flow,

Fng 3.1, will help to visualize the situation.

. . \i’
‘\\C/
(A e
\\/
Ve
s
rd
7/
s
4
(4
: - >
R zl
Ei (2. 20)

FIGURE 3.1 - Schematic representation of a fluid body under
shear flow
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As can be seen c]eér]y, the effect of the irrotational part is
analogous to that of an elongational the only cifference residing in
the shifting of the nematic director by an éng]e of 450. Hence, in this
present case, for the i'th segment of the rodlike molecule, the Eq. (3.26)
will hold | |
(z])i = b x; cos(y +45%)

. o (3.26)
b Xi sin(y + 457"

(22)1

Inserting these re]ationships4in Eq._(3.25), and summing over all segments,
we obtain, the flow induced change in energy per molecules, as follows
x/2
= 2E 151 [- —§— cos(w+45)s1n(w+4o)]
but |
cos(¢+45)sin(¢+45)'Q‘(cosw cos45 - siny sin45)(cosw sind5 + cosy si

[V2/2]%[cos?y - sin?y]

Back substituting this relationship in Eq. (3127),

X/2 x?

Y
Ug* = -2erb? ) [ —~ 1 (cos?y - sin?y)]
i=1 ©
x/2
Ug* = - Tb%g Z x2 [ ~2s59n? ] - (3.27)

i=

For a system consisting of n, macromolecules, with random spatial

orientation, the total energy contribution to AGm, will be given by
Ug* = ny(x®/24)TE b2<sinys B  (3.28)

where Eq. (3.16) is inserted in Eq. (3.27).
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It was previously stated that <sin®y> = (y/x)?

then
U.* A_ , .
2 ) : . .
where o B (3.30)
12 kT/E

/

As expected, an expression similar to that of elongational flow is
obtained, differing only by a proportionality constant.. Hence, Eq. (3.19)

is valid for simple shear flow, provided that G* is-defined by Eq. (3.30);

3.3 EXTENSION OF FLORY's THEORY OF PHASE EQUILIBRIA FOR QUIESCENT
SOLUTION TO THAT SUBJECT TO HOMOGENEOUS FLOW

Once an expression for the free energy of mixing is obtained, the
relative effect of the flow field can be deduced’from the equation relating .
the equilibrium compositions in the nematic phgse, to their orientation
paraméter. This equation, analogous of Eq. (2.3), is again derived by
differentjating AGm (of Eq. 3.19) with respect to y and eqﬁating to zero,

to get:

vh s 2 1 - expl- % + 6*xy}] (3.31)

X =y

As explained in Chapter 2, the above equation gives the set of
(vé, y), that minimizes AGm. It can easily be noticed that the volume

fraction of the polymer in nematic phase vé, will be equal to zero, at

* 2
critical ~ 3

(3.32)
X
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Hence, for values of o higher than this critical value no phase

' Separation occurs; the solution is totally anisotropic. As to values

* *

G -< critical’ either totally isotropic or two Pﬁ658fsystem can be

‘observed depending on macromolecular volume fraction. It has been
checked (Marucci, Ciferrf, 1975) that the net effect of the flow field
is the shifting of tHe phase‘separation interval towards smaller va]ueé
of Vo | |

The equilibrium volume fractions in the two phases are calculated
by equating the chemical potentials of each component, separately in the
two phases. The chemical potentials of the solvent U and the sp1ute M,

under anisotropic conditions are given by:

U%R; i = 1n(1 -.vé) + Xei—l-vé + —%— +Xxvo? - 6" xy (3.33)
“ZR; v, In(va/x) + (¥ = 1)vp + 2 = Iny? + Xx(1 - v,)*
- _%_ G*xy (3.34)
~ For the isotropic solution
El_:_Ez = 1In(l - v,) + (1 - —l—)v + X, V3 (3.35)
RT yex 2 x 2 172
My T Y = In(vy/x) + (x = 1)v, = In x2 + Xx(1 = v,)?
RT y=x :
+9_*2>i - (3.36)

Equating Eq. (3.33) to Eq. (3.35) and Eq. (3.34) to Eq. (3.36) and
considering Eq.'(3.3]) too, we will havé three equations, whose simu]ta-

neous solutions will yield the three unknowns v,, vé and y.



A few representative results, calculated by Marucci and Ciferri
(1975), for athermal solutions under extensional flow are showm in
Fig. 3.2. Obviously, the same graph will be valid for simple snear

flow too, provided that G~ is defined by Eq. (3.30).

© 2.0T
2
[ IR N
L]
1.5
q.0
V. .
“ ' anlsdropi:
. zolropic ke\(erogzneaus rejion
0. r 67 on r€9lon
0-0 - - ' L4 3. %
05 06 0¥ .08 109 00 0 LSRR
‘ Va, Va

FIGURE 3.2 - Equilibrium concentratiohs in the two phases
versus G '

36
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IV, CONTRIBUTION OF STRESS-INDUCED DIFFUSION TO
| PHASE EQUILIBRIUM

In the preceeding chapter, the role of the fluid mechanics in the
process of nematic phase formation in dilute so]utions of rodlike parti-
cles has been analyzed, concentrating mostly on elongational and éhear
flows. vReéent]y, it has been recognized (Tirrel, et.al, 1977)'that the
-well-known thermodynamic driving force, entrcpic in nature, which tends
to restore the molecules to their unpertugbed dimensions, will cause the
macromoiecu]es to diffuse from regions of higher stress, to regions or
Tower stress, if such regions are present, resulting in a non uniform

spatial distribution of macromolecular concentration.

4.1  THEORY OF STRESS INDUCED DIFFUSION

Let us. consider a solvent-solute system, with initial concentration
spat1a11y uniform. The apb]ication of a stress field which is not cons- |
tant over the domain occupied by the mixture, wi]T produce a thermo-
dynamic driving force for the diffusion of'the solute towards regions
of 1ower stress. e may express this‘force as tHe gradient of a potential

field, say V, such that

Fz-w | B | (4.1)

-~
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On the other hand
F=Evz=vB - (4.2)

where B is defined to be the mobility and equals D/kT, where D is the
diffusion coefficient..

Eqs. (4.1) and (4.2), yield

! = '_'BVV = —VY ) (4.3)

This force gives rise to a stress-induced mo]ar flux, gs’ of the
polymer molecules. Let T denote tne Tlocal solute molar concentration

in moles/volume. Then by definition, (Silebi, McHﬁgh, 1979):
gs = F x ‘ o (4’4)
Combining Eqs. (4.3) and (4.4), we obfain
Dc

g =L w S . (4.5)
~ kT -~ . i ~

This stress induced flux will produce a concentration gradient:
which, in furn will produce a flux, QF’ due to Fickian diffusion, such

that
QF = -D YC ) B ’ (4.6)

Then, the net.flux in the system, will be

3= g+ Jp = -DIVE + <] o | (4.7)

kT
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At equi]ibrium; the net flux will be zero; then assuming cylindrical

symmetry, for:a flow in the z-direction, Eq. (4.7) gives:

@€ , T A _g . (4.8)
dr kKT dr .
or & - f dv
o kT
c = A' exp{- —é!—J \
- kT

where A' is a.constant. Upon rearrangement, we may write:

LEV constant - ' - (4.9)

=~ +1Inc=1nA'-=
kT ’ -
But "E.- moles of solute _ moles of solute  volume of solute
T total volume volume of solute total volume
or ‘ 1
c = v, A (4.10)
v

m

where Vm is the molar volume of the solute, then
]n»c = 1In Vo - In Vm . | - _ (4.11)
- Substituting Eq. (4.11) in Eq:'(4.9),.we obtain,

A 4 1n Vo = In V_+ In A' = constant - (4.12)

kT
In our system of rodlike particles in solution, under homogeneous flow,

AGm
AV =

s given by Eqg.{3.19).
N2
Hence, for any region i

[EEET + 1n VZ]. = constant =~ o (4.13)
i .
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4.2 EFFECT OF DIFFUSION ON A SYSTEM OF RODLIKE PARTICLES

\

UNDER POISEUILLE FLOW

Now, let us confine our attention to a system‘of‘rodlikg narticles
under Poiseuille flow, in a narrow‘cylindrical pipe. Tnhe fliow near the
wall can be approximated by simple shear flow, if a.very small region \
is éonsidered. Hence in this region Eq. (3.19), fbgether with.Eq; (3.31)
~will describe the change in free energy.
| If we investigate flow hear surfaces, we observe the drag caused
completely by viscous shear forces associated with the variation of
velocity frbm zero at the so]id.surface, to v in-the undfstqrbedvstream’
This region near a so]id,‘where the fluid motion is affected by thé solid
boundary is called the boundary layer. ‘Within this region, the layers of
f]uid near the surfece are retarded by viscous friction or unfavourable
pressure gradient, in the presence of surface roughnesses. These two
factors are enough to cause the fluid near the surface to come to rest
‘and even to flow in the reverse direction (Beﬁnett, Myeré, 1962), as

shown 1in Fig. 4.1.

Peint ef,

~ 5ePam 191}

FIGURE 4.1 - Separation in flow, past a solid surface




41

The boundary layer, then leaves the surface. VThis phenomenon;
called separation is more frequent with laminar fiows (Evans, ]968).

On the basis of the above_exp]anatidés, it is a good aSsumption
to accept the fluid in a thin region (denoted by"subscript B), next-to
the boundar1es of our condu1t as stationary. Also, 1ét us denote by
subscript A, the reg1on near the walls, where fhe Poiseui]]e flow is . =
approximated by simple shear flow. Following, the theory of stress
induced diffusion, the particles in region A, will tend to diffuse
towards region B. Since the ve10c1ty gradieht is flat in the center
of the tube and steeper near the wa]i, there will be a slight diffusion
towards. the center of conduit, too. However, as far as we are concerned,
we will consider only the boundafies’whére the stress induced diffusion
is relatively intensified. »

For a sufficiently d1]ute so]ut1on, the so]ute molecules in reg1on'
A, will be distributed isotropically. As to the stagnant region B,
depend1ng on the solute vo]ume fract1on 1$¢rop1c, nematic or both phases
can be observed, according to Flory's theory of phase equilibria for

quiescent so]utions. - .

Assume both’phasesvare jsotropic. Then substitution of Eq. (3.19) ~ :

in Eq. (4.13),'gives:
- ey ,
nZA ["1" Vip * maalnVap T Mgpln X7 - x AT A X npve

L . .1 '
+ —E— G Ny X 1+ 1nv2A z nZB[n]B]nv]B + nZB]nVZB

3
- n28(1nx X+ 1)+ X)X nZBle] + In Vop

or
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MA ' 1 o
- _ 3 _
,EEK n Via + 21n Vop T X3X Vip t > G*x° =
"B -
EEE‘]n Vig ¥ 21n Vop t KX Vqp (4.14)
But
nin _ X Vip i x(1 - VZA)
"an VA V2A
| (4.15)
Ng _ x(1 - VZB)
28 V2B

Inserting Eq. (4.15) in Eq. (4.14), we obtain,

1 = 3 X - _ : , - -
_E_G X +-VE; (1 VZA)]H(] VZA) + 21n Vop + x]x(1 VZA) =
(1= V) , i
- X In(1 - VZB) + 21n Vog + x]x(1 - VZB) (4.16)
B

As can be seen from Eq. (4.16), the contribution of the flow field to
the free enefgy is counterbalanced by the decrease in volume fraction
of macromolecules, so that a diffusion towards stagnant region takes
b1ace. | '

The concentration gradient between the two region§ is higher

as the velocity increases or consequently for higher G values. However,

* -

. . *
the increase in G° beyond G~ . .
critica

1° will induce anisotropy to the pre-
vious1y disordered flowing éystem. So Eq. (4.16) is no longer valid
and should be replaced by an appropriate exbression relating the free

energy of the stagnant isotropic fluid to that of the f]owinglf]uid
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exhibiting nematic ordering. Consequently, the diffusion in this case
will be governed by the following expression, whose derivation is quite

similar to that of Eq. (4.16):

X —{1 = v, )In(1 = voa) + 2In v,, = ——(1 - v -+'y ZZ&
v2A | 2A - 2A 2A Vop | ZA Tox

V .

[n(1 - vy + ¥ LRy XX (1 - ) + = Gxy? - [1n[xy?] -y + 1)

28(1 - v B)]n( - VZB) + 21n Vog *+ x]x(l - VZB)

S[Inx*-x+1]=0 | | (4.17)

Eq. (4.17), Comb€ned Wiﬁh Eq. (3;31) will describe the behaviour of
macromolecules in’homogenebus flow. By haking use of thése,equations, one
can determine the so?uté.concentrationiat the.wa11, for a giveh system.
Cafcu]ations will shbw that'the amount of aﬁcumu]ation increases with
1ncréasing flow rate, but-isbmokerstrong1y dependent on X]-parémeter.

To be abie td visualize.the behaviour of macfomo1ecu1es under these
conditions, and to determine the pafametefs that prescribe this behaviour,
it is’use¥u] to examine more closely a solvent-solute system with known
so]ﬁte fraction, say 0.01, and studyithe effect of variables such as
flow rate, axis ratio X, solvent-éo]ute interaction parameter Xy» oOn
the amount of accumulation by stress-induced diffusion, on stationary_

locations.

4.3 CALCULATIONS

As a first approach, let us consider the influence of the increase
in flow rate to the amount of change in macromolecular concentration,

for athermal system.

o1
o
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An increase in the dimensionless quahtity ¢ js_equiva]ent_to either
an increase 1n.the flow rate (or the velocity gradient k) or a decrease
in the diffusivity coefficient (which is p;oportional to temperature and
inversely proportional to friction coefficient). As expected, as G
increases, the stress-induced difosion being intensified, the concen-
tration of the macromolecules in stationary kegions increases too. The
corresponding curve is shown in Fig. 4.2 (for X = 0). Fig. 4.2 was
constructed for rodlike particles of axis ratio equal to 100, having a
volume fraction of 0.01 in the flowing stream. As can be seen from the
araph, increase in G* causes the So1ute Cdncentration in the quiescent
solution (VZB), to reach levels of about five times that of the flowing
stream. The procedure to obtain these curves is based on a trial-error
method coﬁsisting bf first eva]uatjng‘the disorientation barameter y from
Eq.,(3.31),and théh using Eq. (4.17) to compute VéB by iterative calcu-
1ation§, for given X and G* values, keepfngix = 100 fixed.

For non athermal systemg, the re]ative,éffect of the energy inter-
action parameter X}, becomes more conspicious as the f]ow rate increases
(or as an alternative for compounds with'rgiatively 1owér diffusion co-
efficients). R

Now, before proceeding to search fof‘the possibi]fty of a concen-
trated nematic phase at the stagnant regions, it is instructory to revise
briefly the_phaée‘transition in non athermal quiescent solutions, with
particles of x = 20, 50, 100, for comparison. We will concentrate main]y
oh the uppermost portion of the p]oftiné showihg the equilibrium composi-
t%ons of the two phases. We will start with the one for x = 100 (See
Fig. 2.4). As mehtioned earlier, above Xy = 0.09, the identification
of y = 1 as the 1imit for perfect orientation requires the use of chemical

potential expressions for regular solutions; ‘the equations of
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phase  equilibrium, accordingly, will be (2.22) and (2.23)." Simulta-
neous solution of these two equations, by iterative trial and error pro-
cedure gives. Fig. 4.3, which is nothing ei;e than the UppermOSt portion
 of Fig. 2.45. As can be seen a very concentrated nematic phase coexists
with the isotropic phase.

Similar calculations were done for solutions with x = 20 and

X

50.. For x = 2, it was already calculated, 1n‘Chapter 2, that Egs.
(2.22) and (2.23) were va1id-startjng from Xy = 0.4825 corresponding to
the point where‘y, the disorientation parameter becomes equal to unity.
So calculations were carried out for X]'> 0.4825. ‘Same reasoning wasl
used for x = 50 too. The resulting curves are shown in Fig. 4.4. The
compositions of the anﬁsotropic phase are not shown in the graph; they

“are tabulated below.

x = 20 v x = 50 ) x = 100

X I TR V28 VB * V2B V2B
0.4826 0.155 0.9100 0.20 0.0825 0.9003 0.10 0.054 0.895
0.550  0.062 0.92345 0.23 0.0557 0.01478 0.11 0.0459 0.3054
0.600  0.024 . 0.93207 0.25 0.0380 0.92265 0.125 0.0336 .0.9180
0.650  0.0089 0.93943 0.28 0.0169 0.93247 0.135 0.0255 0.9248

1 0.700  0.00335 0.94568 0.30  0.0080 0.93979 0.145 0.0180 0.9306
| 0.150 "0.0144 0.9335
0.155 0.0115 0.9357
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As caﬁ be seen from the above data the nematickphase is highly
Aconcentrated and naturally Wi]] exhibit 1icquid crysta]]inelbéhaviour.

Now, let uS come back to Fig.»4.2. Tﬁe cdrves.in.this figure
répresent'the variation of the macromolecular concentration in the
stagnanf region (B), with increasing flow rate for a so]ution with
Vop = 0.01. These curves may be combined by that of Fig. 4.3 which
gives the minimum concentration required for spontaneous appearance
of a concentrated nematic phase, for a quiescent so]ution. By incorpo-
raéing.thé data points of Fig. 4.3 within Fig. 4.2, onevcan separate
Fig. 4.2 into two parts, the upper parf'standing for the two phase
equilibrium system and the Tower representing points belonging to solely
jsotropic solution. Hence, dashed line in Fig. 4.2 s obtained
directly from Fiﬁ. 4.3. From the resulting figures, one can determine the
critical values G:, (in the sense that those which give rise to the forma-
tion of a nearly crystalline nematic phése in the stationary region) aé
a function of the solvent-solute interaction parameter Xy from the inter-
sections of the dasted lines with the constant - X 11nes( The resﬁ]ting
curve is shown in Fig. 4.5, where Gz 's are plotted against the corres-
ponding X, -parameters. | M
| The next step will be to extend the above theoretical arguments
to the case involving rodlike particles of smaller length to width ratio,
say X = 20 and x = 50. 'Again the solute volume fraction will be Vop =
0.01, in the flowing stream. For molecules with x = 20, Eq. (3.32)
implies that the solution wii] be totally isotropic for G* 5_2.5x10_u.

We will consider the stress induced diffusion under G* =_10—“, 10-5
and 10-6 respectively. So the diffusion in this rangé yi}] be governed

by Eq. (4.16), which is applicable to istropic flowing streams only.
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Again curvers simi]a}‘to that of x = 100 (See Fig. 4.2) are obtainable;
their combination with Fig.44.4, yields the critical X]'s that will cause
the precipitation of a concentrated nematiﬁ phase, for different G values.
Simi]af calculations were repeated for x = 50. The resulting cﬁrves
are shown in Fig. 4.6. From these curves, one can verify that, as expeﬁted,
the contribution of re]ative}y small energy interaction wi]] induce the
precipitation of the longest particles under a given flow and gradua]]y
aé the X-parameter increases, sma]]er and smaller particles will accumulate.
Also, nematic phase formation at stationary regions will be easier in the
case of higher flow rate, necessitafing,the-contribution'of a ré]ative]y
small energy interaction parameter compared to lower c*, especfa11y in

“the case of longer rods.
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V. DISCUSSION AND\,CONCLUSIONS'

One purpose of this work was to find an explanation to the aggre-
gation of cho]esterol molecules on ‘the inner walls of blood vessels, a
phenomenon known as atherosCierosis. Although considerable data on-
cholesterol metabolism is available, their exact re]atiqnship to mecha-
nisms cqntro]1ingvthe Tevel of plasma- cholesterol or the corresponding
rate of deposition are not fully understood. Clinical investigators
- suggest the need for simp1erkmethods for apéroaching this problem (Bencze
et.al, 1975). In fact, this situation may be explained, to a certain
extent on the basis of theoretical arguments presentedlin the preceeding
chapters. | | )
Cholesterol molecules possess‘rigid rodlike conformatfon with the
exception of a ffexib]e tail that is neglected in the present study.
Their volume fraction, together with cho}estryl esters and some 1ipids
that forms a]so.Tiquid crystalline denosits, reaches about 0.01 (Lehninger,
1575). Hence .the selection oij.O] for initial macromolecular concentra-
tion in the flowing stream was not arbitrary but followed from the actual
concentration of rodlike particles susceptible in giving rise to the fof—
mation of a nematic phase along the inner walls 6f the vessels. On the
other hand Poiseuille flow is reasonable for'sma11 arteries where ré1a¥

tively high shear rates causes tne blood to approach Newtonian rather

than Casson behaviour (Lightfoot, 1974). Also near the walls the Poiseuille
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flow can be ‘approximated by simple shear flow,"so that Eq. (3.19) nholds
with the dimensionless paraméter 6" defined by Eq. (3.30). |

.Now let us confine our attention tO’tﬁe dimensionless quantity G*
prevailing in blood vessels. The denohinatof répresents the diffusion
coefficient of the solute and is in the order of 107 cm?/sec for all
plood lipoproteins (Lehninger, 1975). The segmént Tength of the macro-
molecule may‘be taken to be equal to 10 R. ‘The only remaining unknown,
I may be calculated from the ve]bcity gradient at the wa]i. For Poiseuille

flow the volume flow rate Q, is given by (Slattery, 1972):

o RY 3P aP At

Q=-L 28 o (5.1)
where R is the tube radius, 1y is the viscoéity of the f?uid, oP/3z
denotes the pressure drop in the direction of the flow and L is the
length of the tube. Also the velocity field is given by

- 2 . )
v = gy - g - (5.2)
S 4yl Rz, :
v 2 | Sl
Then 2 .- PR 1 AR (5.3)
ar {r=R ZuLRZ Y‘;R ZUL RS
Eq. (5.1) yields
__ AP _ 4Q o | (5.4)
2yl TwR*

: Substituting Eq. (5.4) in Eq. (5.3), we may write /

P =2 R { | (5.5) .

sr {r=R nR3
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Using Q = 5.3 'L/min, R :'Q.OS cm for arterioles (Lightfoot, 1974)
we obtain I = 100J/sec. Also avérage capillary radius is in the order
of 107" cm and the c:rrespondfng fiow ve?acify is 0.1 cm/sec (Villars,
1974), to obtain acain T = 10%/sec. Substituting there data in G*,

Qe observe that G¥ = 107, which is within our.doméin of calculations.

Ca]cu]ations carried out in this work indicate thatvthere”wi]l
be a highly concentrated nematic phase formation in the stagnant.parts
of a system of rodlike particles subject to homogeneous flow characterized
by a G*, in the order of 107°, even if the system is very di1ﬁte (VZA =
0.01), provjded that the solvent-solute interaction parameter exceeds a
critical value. As stated earlier the migration of macromolecules towards
stagnant regions is driven by gradients in entropic potential, i.e. choles-
terol molecules have a natural tendency to diffuse to regions of lower
~ stress where the fluid is stagnant due to some possible surface roughness.
Recently it has been shown (Huang, 1978) that the growth of atherosclerotic
plaques occurs, in fact at certain favored sites.and particularly next to
surface layers of fibrinogen which causes a surface roughness initiating
cholesterol ahd other 1ipoproteins accumylation.

Though initially the molecules are randomly distributed in these
regions, sufficient]y high G* values, associated with high shear rate may
bring the macromolchlar concentration in these quiescent locations to
attain certain critical levels corresponding to isotropic-nematic equi-
1ibrjum concentration, with the assistance of a positive so1&ent-solute
interaction. These results are in accordance with Copley's hypothesis
(1978) that étherogenesis is strongly influenced by high shear rétes at
the arterial wall. In fact G is factor responsible for the diffusion L
of macromolecules: the higher the value of 6" (or implicitly T), the

stironger the diffusion is.
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The newly formed anisofropic phase is so conqentrated‘that_we may
speak of the "precipitation" of a liquid crystalline phase where the
'bui1d1ng blocks are the cholesterol and its esters. An excessive ecgio-
meration of these molecules may lead to occ]uéion of b]odd vesseﬁs.

To be more specific, let us consider the case of G* = ]0-5, a
plausible value for blood flow. Starting with a flowing stream with 1%
solute volume fraction, at Xi = 0.135, thé narticles with axis ratio
x = 100 will be Torming é hignly concéntrated anisotropfc phase (VéB =
0.9243) és can be derived from Fig. 4.6. As the x]-parameter increases,
gradua]iy smaller and smaller particles will precipitate. For example

at Xy = 0.285, particles with x = 50 will undergo phase separatiohvand

give rise to an ordered phase with VéB = 0.935.

For shorter rodlike particles (~x < 25), the variations in the flow

rate have a negligible influence on the formation of nematic phase. Here,
the appearance of the concentrated ordered phasé is brought about by the
~effect of a sufficiently high interaction energyksolely; For example,

for kods of x = 20 deposition occurs, if x]-exceeds ~0.63, regardless of
thé flow rate; Bearing in mind that fhe'precipitating molecules in the
blood are relatively short, this”property points out the importance of
the solute-solvent interaction parameter in nematic phase formation.

The theory presented in this work is applicable to deposits from
suspensions or polymer solvent systems in industrial equipment, referred
to as the “fou]ing effect": The tendency of certain fluids to fofm
fouling deposits on heat transfer surfaces is a serious problem in the
desiagn of heat—exchanée equipment. It is emphasized that some solutes

in process streams polymerize and the resulting less soluble material is
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deposited on the surface as a film, often of considerable toughness
(Bennett, Myers, 1362) this deposit being deperdent on both the flow

rzate egnc the nature of ths fisid, in agreement with the theory presented.
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A.l. DERIVATION OF ag, FOR SOLUTIONS OF
RODLIKE PARTICLES

Let J solute molecules be assigned locations in thé volume to
be occupied by the solution. The specified distribution of their orien-
tations will be assumed to be symmetrical about an axis. We shé]1 esti-
mate the number Vj+1 of sftuations available to an additional molecu1e;
J+1, oriented at an angle U,

i+
laced by submolecules such that a molecule i inclined at an angle ¢. to

to this axis. Each molecule will be rep-

&
the orientation axis, will be divided into.yi submolecules. The width
of a submd1eCU1e is chosen to be egual to Q/x where £ is the total
length of the molecule and x is the total number of segments in the
molecule.

As can be seen from the Fig. A.1 {the number of submolecules
y; per molecule i} = (& sin y;)/(s/x) =y, or yi/xi = sin g,
Obviously, each Eubmolecule contains x/yi segments and requires there-
fore, x/yi vacant lattice sites. o |

The number of sites avzilable to the first segment of the
first submo]ecule of (j+1)'th molecule = (nd -‘xj) vihere Ny is ihe
total number of lattice sites.

Considering the vacancies and the submolecules as two sets
arranged in random linear sequence, the probability that the subseqqent

segment of tne first submolecule is given by:

o
i
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FIGURE A.T - Schematic representation of a rodlike

macromolecule

number of vacant sites

number of vacant sites + number of submolecules .~

For all tne segments of the first submolecule, this probability becomes

Ny = XJ ({(x7y) = 1)

{ }

o

n. - xj+
0 XJ o -yi
) iz

(A.2)

since there are ((x/yj+]) - 1) remzining secments in the first submolecule.

" Now, let's consider the second submolecule; the probability of vacancy of
_ P _ Y

lattice site for the first segment, equals
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- (8.3)

and tnat for all its remaining segments is given by the same exsression

as in {A.Z). Since there are y - 1 submolecules, the product of

it

(A.2) and (A.3) should be raised to the nower (y = 1), so thet the -

Jn
final expression will be:

n_ - xj
. - s 0 (%=y:..)
N \)j+'| = (no xJ) .y - J I+
(no - xJ) Z y.
. i
1=1
n_ -xj ., _ : ’
(——)in 7 | (A.4)
n : ‘
o -
| \ . J :
Upon rearrangement and using y = I yi/J, we obtain,
) iz1
(X
(n0 - xJ)
\)j_H = (A'S)

- x§ + i)Y Fin no(yj+1"1)

The expression for the partition function of an isotropic
solution consisting of n]'solvent molecules and n, solute moleculies is

» \

given by

. n2 ‘
- 1 -
Qm = q.1 9,5 I V3 /T N =9 4 9 (A.6)
J=1 k _
where Q> G, are the internal partition functions for molecules 1 znd 2,
and n, whose directions occur within the solid angle 8o - Hence we will
insert the expression (5) into the Eq. (6). To get a more concise expres-

sion we use the approximation:
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) (n_ - xi)!
(ng - xi)* = °
In - x(i + 1)]
n
2 (n )
X
3 .0 (ng = x) = > ,
. J=1 (n0 - n2x)
to obtain finally,
" ny By (ny + yny): n,'
9 = 9, Q[ 2 2 (A.7)

n]:nzlln] + xn2)<y-1)n2 T

In the above expression n2!/H nk! corresponds to the number of orienta-
k : ,
tions each solute may choose, and is equal to y2n2 (Flory, 1956)

so that @ = probability or number of ways of arrangements of sclute mole

cules within the mixture is found to be:

(n] + ynz): | 2n2

| | A.8
n]fnzl(n] + xné)(y'])hz Y ., ~ (A.8)

Q=

Using Stirling approximation (1h n. =nlInn-n), we get, after some

algebraic manipulations:

In @ = nylnv. + nyinv, = (ng + yné)]n[] - V(1 - y/x)]

- lin(xy?) -y + 11 - (A9)
o ' X0,
where Vo = =

ub + Xy

n

;

V]: =
ﬂ] + an

are the respective volume fractions.
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Inserting the expression (A.9) into the Bo]tzmann.Equatidn
S £S_ = KinQ 5 (A.10)

we obtain the change in entropy upon mixing. This term includes only
configuratiohal entropy change, the one associated with tﬁe entropy
changebdue~to.interaction.between unlike pairs being imp]icit]y containec
in the Van Laar expression for AHm: consider the change in energy asso-
ciated with_ breaking 1/2 pairs of solvent and po]ymer_bonds, gach, and

joining one [1,2] bond. This may be formulated as:

12 12

Aw = W "——Z—wll

1
-—w
2

22

where w's refer. to the energies associated with these respective bonds.
This energy includes the heat of mixing and, if there is, tne enérgy

related witn interactional entropy change, i.e. bw , = Awh - TA:S.

The average value of the number of [1,2] contacts in a solution containing

N, polymer molecules, with x segments each and z = coordination number, is

{nz[(z - 2)X + 2]}[v1] (A

where (z - 2)x + 2

number of neighboring sites/molecule

v mole fraction of solvent = probability that this

1

neighboring site will be a molecule of a solvent.

The quantity labelled (11) is approximately equal to

I r
: or Z
(n, z x v.} in, z v}

energy associated,

{total number of [1,2] contactsH i1 "each contact:

so that e

nzzxv1)(ﬁw12) (A.12)

If we define X = zbw /KT, ~ (A13)
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substituting Eq. (A.13) in Eq. (A.12) yields the well-known Van Laar

expression: -

LR kTX_n_v
X0

0 o = KTX xn,v_ (A.14)
By definition, ﬁva: BH -*T'_'-,Sm A | . (A.15)

Combining Egs. (A.9), (A.10), (A.14) and (A.15), we get the final expres- -

sion for the Gibbs free energy of mixing: ’

4G
m

kT

- 2y - | |
n,[In(xy®) =y + 1] + % xn,v, (A.16)

= h11n v, + nyin v2’— (n, + yn,)In[1 -'yvz(] - y/x)] |
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:

‘A2, CALCULATION OF <sin ¢> aNDp <siny>

2n Y

S sin?y dy de .
Y. <51“¢°'502ﬂ Qw, . @2 - (1/2)sing cosyp 4,
X S J sin o dy d2 1 - cosy
0o o
jw sindy dy
<sin?y> = 3w
siny . dy
0
| | v
[-(cosy sin?y)/3 + (2/3)[-cosu]] o
1 - cosy
: (1/3)[-cosu[sin®y + 2] + (2/3) | (A.18)

1 - cosy

By making use of Eq. (A.T7) and (A.18), the following table may be calculated:

¥(o) <sin ¥> or y/x (<siny>)? or (y/x)? <sin?y>
0 0 0 | 0

15 0.173 0.030 | 0.034
30 0.338 0.114 B 0.128

45 0.487 . 0.237 : 0.264
60 0.614 -~ 0.373 | 0.417

75 | 0.712 0.507 0.558

90(random) 0.7854 0.616 | 0.667
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For random distribution, <siny> = <sin w/2> or y/x = %/4 = 0.7854.

cut
Flory took y/x = 1, for convenience .
Liso &s can be seen from the zbove table, tekinz<sin?y> = (y/x)* 1s an

accepteble approximation .
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A.3. DERIVATION OF THE DIRECTION'OF
- THE NEMATIC AXIS

Let's consider k,ithe velocity grédient tensor

=

SH

i 21
!k31

X
n
-

for irrotational flow we must have k

matrice.

K k

12 K3
kg ka3
K32 ka3 ‘A

symnetrical or it must be diagonal

To diagonalize k, an ortnogonal transformation matrix P sucn

that PT k P

~

tic equation)

is diagonal, has to be found. The prbcedure is as follows:

1) Find the characteristic polynomial 4(t) of k

'2) Find the eigenvalues of k (that satisfy the characteris-

=

3) Find the eigenvectors, substituting the eigenvalues in

the matrix tI - k , where ti's are the eigenvalues

S
g

Ul
~—

The

shear flow:

Normalize the eigenvectors

P is tne matrix whose columns are the eigenvectors.

above procedure is illustrated by the example of simple



? o T2 o)
k = 1T/2 0 0
0 0 0
\ M
{- t T/2 0
(1) a(t) = [tI - k| = | T/2 t 0| = t(t® - (1/4)1%)
[ 0 0 t \
(2) t, = -(1/2)r
t, = +(1/2)r
t3: 0
(3) t, = -1/2r 41/2r 1721 0 !lx
| “tjer -2 0 l y
0 0 -1/21|| z
:
-1/2r x + 1/2 Tty = 0
(X,_y,Z)] = (.l s 1 B
= 1/2Tz =0
t, =+1/2r 12 1/ 0 ‘ X
| V/er . V/er 0l y
[ 0 0 1/2r

1/2(Tx + Ty)

(x,y,z)z.: (1, -1,0)

70
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t, =0 1/2Ty = 0
1/2 Tx = 0 kx,y,;)3 = (0,0,constant)
0=0 -
4) (xoy52)y = Uy = (W2, 12, 0)
(Xs¥52)y = Uy = (=12,  1}V2, 0)
(x,y,z)3 = Ug = (0 N | 1)
5) | 172 -1/2 0 !
P - ! VW2 ANZ 0 %
‘ 0 0 14
But I cosy -siny 0 | o
l § (general form for every
P = ‘ siny coSsy 0 | :
® i B : orthegonal matrix P for
| 0 0 1|

Comparison of

~which det (P) = 1)

-~
~

the last two equalities yields ¢ = r/4.(=450).
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A4, SAMPLE CALCULATION FOR FIGURE 4.2

Figure 4.2 was drawn by simultaneous solution of Eq. (3.31)

and Eq. (4.17),.by making use of a programmable ca]éu]ator.

The program includes the fo]]oﬁﬁng steps.

8)

Give X, Xps Vops G
Assume y ‘
Substitute y in Eq. (3.33). Evaluate the righthandside

(RHS) of the equation and compare with the Tefthandside

(LHS) (vop)

If %error (6(y)) is high go to (2). If 8(y) <107
cdntinue.

Calculate LHS of Eq. (4.17).

Assume Vop

Substitute RHS of Eq. (4.17) If ((RHS - LHS)/RHS) x 100

1

(= %6(v,5)) exceeds 0.01, go to (6)

With the above sequence one can easily compute, Vops corres-

ponding to any X, Xy» Vozs G

En example is shown below:
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o Selected data points—, -Assumption (AésUmptibn

- » y ¢ LHS v, ¥ RHS %

G X ¥y - Von _ (y)-a .. ek error
) 14 -6.68x10 (6.17) (4.17)

100 100 0 , 0.0 .
| 13.8  -1.93x10

3.7 3.65x10
13.74  -5.7 x107"
13.71  1.29x107"
13.72 - -1.06x10"
13.715 1.00x107 -

-18.98  0.04 -19.22 1.27
0.045 -18.73 -1.32
0.0422 -13.88

(we]
-

0.0623 -18.99  0.05
0.0624 -18.93 0.0

Hence for & 10

=
1

100 Vop = 0.0424

L— ~

X,z 0 (with y = 13.715 in the A region)
Cvgps 001
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