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ABSTRACT 

Possibility of fonnation of a highly concentrated anisotropic 

phase in a dilute soluticn 6f rodlike molecules is investigated. The 

free energy expression for quiescent solutions of rodlike particles, 

iv 

introduced by Flory, is extended to the case where the molecules are 

subject to homogeneous velocity field. An B;dditional term accounting 

for the contribution of the flow field to phase transition is incorpo­

rated into the free energy expression. The contribution of stress­

induced diffusion is considered too. It is concluded that there will 

be a highly concentrated liquid crystalline phase deposition on the 

stagnant regions of the conduit, provided that the solvent-solute inter-
. n 

. action is sufficiently high. The application of the theory to the agg-

regation of cholesterol molecules, in bl06d vessels, is discussed. 
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U Z E T 

Flol~y'nin cubuksu cisimler iceren coze1tiler icin tammlad191 

serbest enerji denklemi, homojen bir aklS1n etkisini de kapsayacak 

sekilde genellestirilmistir. MolekUllerin gerilirni en dUsUge indir­

mek egilimlerinden ddgan diffUzyon gozonUne a11narak, durgun bolge- -

lerdeki muhtemel derisik anizotropik eyre olusmasl incelenmistir. 

Pozitif bir enerji-etkilesme parametresinin katklsl oldugu takdirde, 

belirli bolg'elel'de S1Vl kristal bir eyre belirecegi tespit edilmis-

tiro Matematiksel modellemenin damardaki kolesterol birikimini bir 

'olcUde aClklamasl tartlS11mlstlr . 
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I. INTRODUCTION TO ANISOTROPIC FLUIDS 

In this chapter, various ordered fluid mesophases, com~only called 

liquid crystals, are described, with particular attention being given to 

the nature of molecular ordering. Also, some of the factors inf~uencing 

the phase transition from isotropic liquid to ordered fluid, are explained, 

as an introduction, to understand the behaviour of anisotropic fluids. 

1.lMESOPHASES 

Many organic materials exhibit more than a single transition in 

passing from liquid to solid, necessitating the existence of intermediate 

phases, known as 'limesophases ". There are bm rna in groups of mesophases: 

(Priestley, et.al, 1975). 

i) Disordered crystal mesophases, commonly called plastic crystals, 

which 'retain a three dimensional crystal .. lattice but are charac­

terized by substantial rotational disorder, due to the fact 

that beyond a critical temperature, the molecules are energetic 

enough ~o overcome rotational energy barrier, but are not ener­

getic enough to break up the lattice so that they are transi­

tionally well ordered. 
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ii) Ordered fluid mesophases, referred to as "liquid crystals", 

most often composed of elongated molecules; they are charac­

terized by their lack of crystal lattice together with some 

degree of rotational order. As a result, they posses simul­

taneously liquidlike (fluidity) and solidlike (molecular 

order) character. 

1.2 />JAIN TYPES AND PROPERTIES OF LIQUID CRYSTALS 

To generate a liquid crystal, one must use elongated objects, 

referred to as the "building blocks" (P.G. de Gennes, 1974). This may 

be achieved using either small organic molecules, such as p-azoxyanisole 

(PAA), N-p-methoxybenzyli denep-butyl ani 1 i ne (14BBA), chol esterol esters 

or synthetic polypeptides in suitable solvents, some standard examples 

incl uding deoxyribonucl ei c aci d (DNA), tobacco mosaic vi rus (TNV) . 

. Phase transition from amorphous to anisotropic state takes place 

either by increasing the concentration of the rodlike entities in solvent­

solute systems, or by varying the temperature as in the case of thermo­

tropi c 1 iqui d crystals. In thermotropic systems, most wi dely encountered 

in the case of pure systems, the arrangement of the molecules are deter­

mined by the van der Waals attractions between pairs of neighbouring 

molecules, touching each other. Though, recently, the theory of phase 

equilibria in thermotropic liquid crystalline systems, has been extended 

to the case where the rods are dispersed in a diluent, thermotropic systems 

occur most readily, with pure com~ounds in view of the fact that the van 

deer Waals force of attraction between molecules come into play when the 

molecules are closer together. These attractive force will have a more 

pronounced effect at lower temperatures because the molecules will have 

! . 
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lower velocities and hence, will be within interacting distances of one 

another for longer periods of time. 

In the ~tudy that follows, solvent-solute systems, whose transi­

tions are most naturally effected by increasing the concentration of the 

solute will be treated. The effect of increase in concentration is 

reflected as: 

i) increase in electrokinetic and electrostatic interactions in 

the case of lyotropic liquid crystals 

ii) competition for space, in the case of solutions of relatively 

long~r rodlike particles that cannot i~terpenetrate each other~ 
1 

Lyotropic liquid crystals are mixtures of amphiphilic compounds 

(Winsor and Gray, 1974), and a polar solvent most frequently Idater. 

Aggregates of amphiphilicmo1ecules in aqueous solution, always form in 

such a manner as to reduce the hydrophobic interaction between their 

hydrocarbon tails and the water, while simultaneously maximizing the 
, , 

hydrophilic interactions of their polar heads with the aqueous solvent. 

As a result, they acquire lamellar structure (referred to as the neat 
• J 

phase or gel phase) or give riseio the formation of spherical and 

cylindrical micelles. According to R-theory of fused micellar phases 

(Winsor, 1974) the ratio R which is a measure of the relative tendency of 

the amphiphilic layer to become convex towards its lipophilic environment 

compared to that of it to become convex to its polar environment, is 

equal to unity so that the lamellae retain their parallel and planar 

arrangement. With certain binary aqueous neat phase, dilution beyond a 

certain limit leads to a discontinuous phase transition producing an iso­

tropic solution. The breakdown of the gel phase is associated with the 
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tendency of dilution to decrease R below unity., because with increasing 

dilution, the tendency of the amphiphilic layer to become convex to \'/ater is 
. 

relatively increased. The stability of the gel phase may eventually be 

maintained by some internal rearrangement (i.e. the average micellar form 

approaches spherical) so as to increase the interfacial area per polar 

group. However, on further dilution, the spherical micelles too, are 
~ 

dissociated and join the'isotropic phase. It is emphasized that all the 

effects of dilution ·considered above are reversible, thus commencing with 

a dilute disordered solution and progressively increasing the concentra-

tion, lamellar loci appear \'/ithin the isotropic solution, resulting in 

the separation of the anisotropic phase, finally. 

As stated above, increase in concentration, induces phase transi-

tion not only with amphiphilic solute molecules, but in the case of non 

amphiphilic, rigid, highly asymmetrical molecules dispersed in a diluent, 

where the only interparticle force is in the form of steric repulsion, 

associated with the accomodation in a limited volume. The behaviour of 

this group constitutes the main subject of this thesis. The statistical 

theory of phase separation in such systems of rodlike particles, will be 

fully explained in Chapter 2. 

1.3 CLASSIFICATION ACCORDING TO MOLECULAR ORDER 

The classification distinguishes three major classes: the nematic, 

the cholesteric, and the smectic. 

1.3.1 Nematic Order 

In nematic order, the molecules tend to align parallel to each other, 

in the direction of a common axis, fi, the director. Nematic phases occur 
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only with materials \>Jhich do not distinguish between right and left, \'Jith 

no dipole moment, and which are not ionizable. A schematic representati 
~. 

of the nematic order is shown in Fig. 1.1. 

FIGURE 1.1- Tile arrangement of molecules in the nematic 
mesophase 

. 1.,3.2 Cholesteric Order 

If we dissolve, in ~ nematic liquid a molecule which is chiral 

(i.e. different of its mirror image), we find out that the structure 

undergoes a helical distortion, common to cholesterol esters. On a 

1 oca 1 scal e ,chol esteric and nemati c orderi ng are very simil ar. However, 

in cholesteric order, the director fi, is not constant in space, but 

rotates from plane to plane. In·other terms, the structure of a choles­

teric liquid crystal is periodic with a spatial period L, equal to one 

half of the pitch. A schematic representation of cholesteric order is 

shown in Fig. 1.2. 

>.; .... 
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FIGURE 1.2 - Schematic representation of cholesteric mesophase 

1.3.3 Smectic Order 

Smectics are layered structures with a well-defined interlayer 

6 

spacing. In the case of smectic A, the layer thickness is identically 

equal to the full molecular length; there isa substantial probabil ity 

forinterlayer diffusion, while in smectic C, there is a uniform tilting 

of the molecular axes with respect to the layer normal, resulting in 

interlayer diffusion of lower probability. 

In this work, solutions exhibiting a nematic order will be con­

sidered. Cholesterol order occurs with chiral systems;smectic order is 

most frequently observed with amphiphilic compounds. Ast6 the nematic 

order, it occurs when the system is achiral or a racemic mixture of right 

and left handed species. Since, the mesogens considered in this work \,.,rill 

be rigid rodlike, non-ionizable, non-polar particles, nematic ordering 

will be prevailiog in the anisotropic phase. 
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FIGURE 1.3 - ~,chematic representation of ti'IO types of smectic 
order (a) smectic A order, (b) smectic C ordel~. 
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II. PHASE EQUILIBRIA IN SOLUTIONS OF 
RODLIKE PARTICLES 

8 

The precipitation of rod1ike particles in quiescent solution~ was 

explained by Flory (1956), through the use of a statistical mechanical 

approach based on a modified lattice model. As can be predicted from 

this theory, separation into an isotropic ana a somewhat more concen­

trated anisotropic phase arises as a consequence of p}lrtic1e asymmetry. 

In what follo\'Js, an outline of the theory of phase equilibria in solu­

tions of rod1ike particles will be presented. 

2.1. EQUILIBRIUM DEGREE OF DISORDER 

By making use of a partition function for a system of rigid rod­

like particles with partial orientation about an axis, Flory (1956) 

derived a general expression fo)- tile free energy of mixing as a function 

of the mole numbers the axis ratio x (or length to width ratio) and a 

disorientation parameter y. The final expression has the form (See 

Appendix Al for detailed derivation): 

/·G 
W m 
--: 

kT 

(2. 1 ) 



\'ihere 
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vl ~v2 = volume fractions of the solvent and solute, respectively; 

nl ,n2 =. number of molecules of solvent cGd solute;. 

Xl = dimensionless solvent-solute interaction parameter; 

k = Boltzmann con~tant; 

T = absolute temperature. 

Since, no external restraints apply to y, it will be assumed to 

adopt the value which minimizes 6Gm; Hence~ we differentiate Eq. (2.1) 

with respect to y, at constant x, n2 , nl and T, and equate. to zero 

- n [ 2xy ] + n = 0 
2 xy2 2 

(2.2) 

Substituting nl = x(vl /v2)n2 and rearranging, we obtain 

x . 2 
v2 = -- 1 - exp{ - -} 

x - y y 
(2.3) 

or 

In(l - v2(1 - y/x)) = -2/y (2.4) 

Hence the y that minimizes 6Gm is the one that satisfies Eq. (2.3). 

By making use of Eg. (2.3) one can find the possible set of (v2,y), that 

are most stable for a given x. Among this set, there is a pair (v~,y*) 

corresponding to minimum sol ute fraction, together \·lith maxii.1u:;, disorien-

tation pal~ameter, for stable anisotropy. This pair is obtainable by 

differentiating Eq. (2.3) with ~espect to y and equating to zero, so that: 



'and 

v*2 = 1 - (1 - 2/y*)exp{- __ 2 __ } 
y* 

1 1 1 ° y* = -( x - 1) - (- y* + - y*2 + .•.... ) 
236 
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(2.5) 

(2.6) 

For v2 < v2, [,Gm decreases monotonically with y, hence a necessary 

* condition for existence of stable anisotropic phase is v2 > v2. However 

for values of v2, slightly above vi, there is a metastable region, where 

~Gm' . > ~Gm' .. In both cases, ['G is calculated from an1sotrop1C 1sotrop1C ° m 
Eq. (2.1), only using y = x (See Appendix A2) for the case of isotropic 

liquid. Calculationsosh6w that this metastable region is rather small. 

In the absence of diluent (v2 = 1), according to Eq. (2.5), y = 2. 

Substituting these values in Eq. (2.3) we get x = 2e = 5.44 as the minimum 

value of x required for a stable anisotropic state for the pure solute 

(Flory, 1956). Hence, a length to v/idth ratio of about 2e is sufficient 

to cause spontaneous ordering of the phase, for a pure system. For 

particles in solution, the critical x value increases with dilution, if 

the system is athermal (Xl = 0). For non-athermal solutions, the pro­

perties change drastically and will be considered later. 

2.2 CHEMICAL POTENTIAL 

By substitutlng Eq. (2.3) in Eq. (2.1) the follovJingOmore convenient 

expression is obtained for the free energy of formation of the phase with 

e~uilibrium disorder: 

L::G m 
kT 

. 
wher'e y is given by Eq. (2.3). 

(2.7) 
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The chemical potential of a solvent in solution relative to that of 

the solvent as a pure component, may be obtained by differentiating DGm 
\·lith respect to n1. If the n's represer.t the. number of moles instead 

of molecules, we may write: 

vJhere 

Then, 

but 

1 ~G 
- a(~)/dn = 

N kT 1 

o 
~l ~ ~ 1 

RT 

N = Avogadro's number; 

~.::: , chemical potential of component i in solution 
0 chemi'ca 1 potential of pure compound i. ~.= , 

~ - 1.1 0 
1 1 

a(n l 1 nVl ) = 
RT anl 

+ {n2(~)eq 
dn, 

+ 
a(n2 lnv2) 2 

. +--
anl .y 

+ n (2xy)(~) } + 
2 xy2 dh eq 

= 

1 

nl + xn
2 

- n
l 

(n
l 

+ xn2)2 

2n 
{_l}(~) 

y2 dn eq 
1 

a(x l xn2v,) 

an l 
(2.8) 

(2.9) 



a(n
2 

1nv
2

) . alnv
2 

n
2 av2/v2 

n
2 aV 2 = n2 = -----

an
l . . on

l an l v2 em 1 

a[xn 2/(xn 2 + nl)J 
2 

but 
aV2 v

2 -- --
an

l an1 xn
2 

a(n 2 
lnv2) 

2 
n2 V2 v

2 
=-[-J --

anl v2 xn 2 x 

Inserting Eqs. (2.9), (2.10), (2.11) in Eq. (2.8), \'le obtain, 

= In(l - v2) + (1 - 1/x)v
2 

+ _2_ 
y 

2n l 2n 2 dy 
+ (n2 - - - -)(-) 

y y dn
1 

eq 

Also evaluation of (dy/dnl)eq from Eq. (2.3) yields, finally, 

RT 

y - 1 2· 2 
= 1 n (1 - v 2) + --v 2 + - + Xl v 2 

x y 

12 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

This equation represents the chemical potential for the anisotropic 

phase. As to the chemical potential of the isotropic phase, it is given 

by the well-knovm equation (Flory, 1953): 

(2.14) 

'. 
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Similarly, the chemical potential·s for the solute in ne~atic and 

. disordered phase are given by Equations (2.15) and (2.16), res~ectively. 

(2.15) 

(2.16) 

Chemical potentials calculated from Eq. (2.13) to (2.16) in conjunc­

tion with Eq. (2.3) are shown in Fig. 2.1. 

. . 3....-----,------....... ----1 i 
t 

I 
I~ 

I i~ 

.\ ? 
~ ....... 

~ 

.Ie, " .;'L. 

Solvent: 11 I~ left-hand ordinate 
scale 

Solute: 1 2 1
, rigilt-hand ordinate 

scale 

Region of metastable order are 
shown by broken lines. 

FIGURE 2.1 - Chemical potentials for Xl = 0 and x = 100 

The calculations vlere carried out, for x = 100, by Flory. The 

curves for isotropic solutions are valid up to v2 : 0.0935 of absolute 

stability. Then a discontinuity corresponding to metastable region is 
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observed. For higher solute volume fractions, nematic and isotropic phases 

coexist. 

Similar calculations were done to find out the chemical potentials, 

for x = 20. The limit of absolute stability \'/aS found to be equal to 

v2 = 0.4354, by using the following procedure: the isotropic curve must 

be continued until reaching the concentration v2 corresponding to 

~Gm' = M~ , . The free energy of mixing of the isotropic mixture 
150 '1l1an150 

may be found from Eq. (2.1), if xis substitute.d for y. That of the 

nematic phase may be computed using Eq. (2.7). By equating these two 

equations and upon rearranging we end up with an expression of the form: 

1 'y 2x V2 :; 2X [-y- + 2ln(y/x)- y+ x - 2] (2.17) 

Simultaneous solution of Eq. (2.17) arid Eq. (2.3), yields by trlal­

error calculation procedure v2 =0.43545 at y = 5.10 (for x = 20). Hence 

solving Eqs. (2.14) and (2.16) for v2: ° to 0.43545, will give the chemical 

potential curves of the solvent and solute respectively for isotropic mix­

ture. To draw the anisotropic part, simultaneous solution of Eq. (2.13) 

and (2.3) vli11 yield the solvent chemical potential. Similarly Eq. (2.15) 

and (2.3) will yield the chemical potential of the solute in nematic phase. 

The resulting curves are shown graphically in Fig. 2.2. As mentioned 

earlier all these calculations were carried out for athermal solutions; 

those for the non athermal will be explained later. 
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2.3 PHASE EQUILIBRIUM IN SOLUTIONS 

2.3.1 Athermal Solutions 

For the coexistence of two liquid phases, the necessary and sufficient 

condition is that the chemical potential of either component, solvent or 

solute, must have the same numerical value in each phase. We may \'Jrite 

the phase equilibrium condition as: 

~ = ~I (2.18) 
1 1 

~2 = ~~ (2.l9) 

where accents are adopted to denote the more concentrated phase. There~ 

fore we obtain, with the aid of Eqs. (2.13) and (2.16): 

and 

2 12 
+ -y- + Xl v2 ,for the solvent (2.20) 

In(v2/x) + (x - 1 )v2 - ln x2 + Xlx(l - V2)2 = 

1(2.21) 
.In(v2/x) +(y - 1)v2 - ln y2 + xlx(l - V2}2, for the solute 

Numerical solutions of these equations, along.with Eq. (2.3) will give the 

equilibrium concentrations in conjugated phases, the three unknowns being 

V Vi 2' 2 and y. Also, by a careful analysis of Fig. 2.2, for the chemical 

potentials of rcidlike solutions with x = 20, one can see that at v2 = 0.379 

and v2 = 0.5405, ~l = ~~ and ~ = ~ I 
2 2 

hence these volume fractions are 

the equilibrium ones for x = 20. 



2.3.2 Non Athermal Solutions 

Even a small positive solvent-solute interaction parameter Xl' 

has a marked effect on the course of fll \'iith v2, as ;s ill ustrat~d in 

Fig. 2.3. The outstanding feature' is the emergence of a maximum at a 

higher concentration. A similar behaviour is observed for x = 20, 

shown in Fig. 2.4. 

l­
e:( 

Cr--------------.------~--~~---I 

- .1 

-~.: 7'" -.lj 
3-
"6 - _ (i 

o 0.1 

FIGURE 2.3 - Solvent chemical potentials for non athermal , 
solution with x = 100 
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The presenc.e of the maximum together with the preceeding minimum' 

raises the possibility for coexistence of two anisotropic phases. In­

deed, for 0.055 < Xl < 0.08 we have two co~jugate nematic phases in 

equilibrium together with an isotropic-anisotropic pair, hence two 

heterogeneous regions; one involving an ~sotropic phase in equilibrium 

with adil ute nematic phase and the other, a pair of anisotl~opic phases. 

At Xl = 0.07, a stable coexistence of three phases is observed. This 

explanations can be understood more easily in connection with Fig. 2.5. 
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FIGURE 2.5 - Composition of phases in equilibrium for non athermal 
rodlike solutions with x = 100 

At Xl = 0.09 the composition of the concentrated phase reaches 

v2 = 0.873 vJhere according to Eq. (2.3), y falls to unity. In order to 

preserve consistency with the identification of y = 1, as the limit for 

perfect orientation, vIe take y equal to unity for all Xl > 0.09, in cal­

culating the uppermost portions of Fig. 2.4. The equations for the phase 

equilibrium, accordingly become (Flory, 1956): 

Vi 

= In[(l- v2)l(l - v2 + /)] 

X 12 
+ '1 v2 

In(v2/x) + (x - 1 )v2 - ln x2 + X,x(l - V2)2 = 

1 n [ ( v 2/ x ) / (1 - v 2 + v 2/ x ) ] :+- Xl x (1 - v 2 )2 

(2.22) 

(2.23) 
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in which the solute chemical potentials for the dilute phase are equated 

to those of regular solution theory for the concentrated phase. 

The sudden shift in the concentration v~, from -0.15 to > 0.9, 

brought above by a comparatively small change in Xl is of great importance . 
. 

Also, these values of Xl-parameter considered, are small compared to those 
I 

commonly encountered in polymer-solvent systems. Calculations were done 

for x = 20, to obtain Xl' = 0.4825, for y = 1 (together with v2 = 0.155) 

by simultaneous solution of Eq. (2.22) and Eq. (2.23), making use of 

v~- 0.910 (obtained from Eq. (2.3) for y = 1). Hence, for x =20, above 

Xl = 0.4825, the compositions of two conjugate phases were computed by 

solving Eq. (2.22) and Eq. (2.23), while for Xl < 0.4825, Eq. (2.20) and 

(2.21) were used. The resulting curv~s are drawn in Fig. 2.4. 

We are mostly interested in the region were a highly concentrated 

anisotropic phase is in equilibrium with a fairly dilute isotropic phase, 

due to the effect of a positive heat interaction parameter. This region 

corresponds to values of Xl-parameter, obeying Eqs. (2.22) and (2.23), 

in general. 

To summarize, phase sep~ration arises spontaneously, in solutions 

of rigid rod1ike particles, provided the macromolecular volume fraction 

exceeds a critical value v~, this value decreasing as particle asyrrmetry 

increases (i.e. for higher x). Whereas both phases in equilibrium are 

predicted to be fairly dilute in the case of atherma1 systems, a compar-

ative1y small, positive energy interaction parameter Xl' causes the con­

centration of the nematic phase to increase sharply. If the particles. 

are of uniform structure even a smectic or cholesteric order ca~ be observed 

in this concentrated phase, depending on the nature of the particles. 

: I 



III. EFFECT OF HOMOGENEOUS" FLOW ON 
PHASE TRANSITION 
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Flory's theory of phase equilibria of rodlike molecules cali be 

applied to a solution subject to homogeneous velocity field, by incor­

porating into the expression for the free energy of mixing, an additional 

term, accounting for the contribution of the flow. This additional term, 

as will be shovm below, can be found easily, provided that the velocity 

field admits a potential so that we can speak of equilibrium condition of 

macromolecules, as already pointed out by Kramers (1946). t'1arucci and 

Ciferri (1975) analyzed phase equilibria in solutions exhibiting a nematic 

ordering under extensional flow. In this chapter, we will derive a most 

general formula, applicable not only to irrotational flows but to any type 

of homogeneous flow, by an appropriate selection of the refe)-ence frame. 

3.1 MOTION OF THE POLYMER MOLECULE 

A polymer molec~le is idealized as a rigid rod CD, with center of 

mass A. Ozlz2z3 is the laboratory fixed coordinate system. Let the 

molecule be composed of x seg~~nts and x. is the vector (subscript -
-1 " 

denotes "vecto~) from the center of mass to the i'th segmerit located at 

B. Let us assume the polymer molecule is suspended in a liquid flowing 

with velocity Vi. Then it will be set in motion by the frictional forces 
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acting upon each of the segments. The center of gravity A, will be moving 

. with the velocity of the fluid at th~ position where this center is momen-

tari ly situated (neglecting the Brownian motion). This situation is re-

ferred to in the 1 i terature as "no drift condition" (Eringen,1967). 

Let r:.A = distance from the origin to the center of mass A 

r:.B = distance from the origin to the point B 

VI 
-B - velocity of the fl ui d at B 

v" 
-B - velocity of rod at B 

~B - relative velocity at B = vB - VB (3. 1 ) 

w = instantaneous angular velocity. -
We assume that ~ coincides with the angular velocity of the fluid, 

at point A. This assumption is the rotational counterpart of the no drift 

condition stated above. From continuum theory the angular velocity for 

rigid rotation, is related to the vorticity tensor n of the fluid (subscript 

= denotes the tensors). Then, 

v" = VII + (w x r.) -B -A - -1 

VI + 1 
= -A (~ x ~i) 

combining Eqs. (3.1 ) and (3.2), we obtain, 

~B = (VI - V I) - (w x r.) 
-B -A - -1 

But for homogeneous flow, 

Substituting this result in Eq. (3.3), we get: 

'" 

V I (r. ) 
-1 

(3.2 ) 

(3.3) 

(3.4 ) 
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Let ~B denote the friction force acting on the rod, at pointB. By defi­

nition ~B = ~~a where ~ is the friction coefficient. Hence, 

Let ~i denote the moment exerted by ~B about a: 

M. = r. x FB = ~r. x[vl(r.) - (w x r.)] (3.5) "",1 _ 1 _ _ 1 _ _ 1 _ _ 1 

Now, let us consider the quantity in the brackets. This term represents 

the velocity of the fluid as observed from a reference frame rotating 

\-Jith an angular velocity w. Hence it can be viewed as the fluid velocity 

\'/ithout the rotational part; provided that the velocity is deco:::;Josed into 

th'O parts, the one rotational and the other irrotational. The term in 

brackets will stand for the irrotational part and will be the one respon­

sible for the moment exerted on the r6d. As a result it can be expressed 

in terms of a velocity potential ~(r.) such that 
-1 

[vl(r.) - (w x r.)] = -v~(r.) _ _1. _ _1 __1 (3.6) 

Consequently, the friction forces exerted by the liquid upon the rod 

admit a potential and the moment of these forces on the ilth seg~ent B 

is given by 

M. = -s(r. x v~(r.)) -1 _1 __ 1 

so that the overall moment for the entire rod, composed of x se9~ents 

\,/i 11 be: 

x 
tlJ = I 

i =1 
{-~(r. x Y¢(r.))} - 1 _ _1 

(3.7) 

(3.8) 

The potential energy associated with this moment will be denoted by UG*. 
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1j; 

u * - f M d;:; 
G 

0 

x 1j; 

= ~ I f f (r. x 7~( r.)) . d·"} (3.9) l -1 '" -1 y 

i=1 0 
A./ 

where 1j; is the instantaneous angular deviation of the axis of the rod 

from the nematic director. 

To get a simpler form from Eq. (3.9), let ui consider the terms 

within the integration. 

But 

For a rotation around the z~axis 

r x \79 

x = r cos'.jJ 

y = r sinl/l 

= {r cos\IJ ~I - r sirr4i 69 }k 
. ay ,x ax y 

= {r cos", ~I ~ 
. 'I' a;p ay r sin,i, ~ dW 

't' a;Ji at< x x 

.~ 1 
d x = - -r-s-'i:-n-1.jJ = 

~_ 1 1 
ay - r cos1.jJ = x 

1 
y 

y 

Inserting the last two equalities into Eq. (3.10), we obtain: 

(r x \7q» = { ~~ I. + ~,~ } k 
- - 01lJ X 0'1' Y -

then aq> 
(r x \7¢)' d\)J = -- dljl 

- - IV a'.jJ ..... 

and 
x 1.jJ a¢(r.) 

= I ~ f -1 d~ 
i =1 0 aljl 

or 
x/2 1.jJ 

UG* = 2~ .L . [~(!'i )JI 
1 =1 

. 0 

} k (3.10) 

y 

(3.11) 
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Equation (3.11) provides a rather ~asy method for calculating the 

change in energy associated \'lith the effect of homogeneous flOloJ, by simply 

finding the potential function corresponding to t~e irrotational part of 

the flow. As explained by Kramers (1946), the error introduced by selec­

tion of a rotating frame is negligible. 

The problem reduces nOlAJ, to the derivation of <P of the irrotational 

part of any homogeneous flow. 

A homogeneous flOl'/ is represented by (Eringen, 1967): 

v = k • r (subscript = denotes tensor) 
-;::: -

where k is the velocity gradient tensor, which is traceless for incomp­

ressible fluids. As to the velocity potential of irrotational flOl'l's is 

defined as (Bird, et.al, 1977): 

¢ = - __ l __ (k: r r ) 
2 = --

where indicates the double dot product. 

(3.12) 

In the section that follows, the application of the above theore-

tical arguments to some homogeneous flows will be discussed. We will 

concentrate mainly on simple shear flow, the most widely encountered 

rotational flow after a brief consideration of irrotational flows such 

as steady potential flow and elongational (or extens10nal) flow. 

3.2 APPLICATION OF THE THEORY ESTABLISHED IN SECTION 3.1 

TO HOMJGENEOUS FLOWS 

3.2.1 Irrotational Flows 

Irrotational flow is characterized by the property (Slattery, 1972): 

Q = vorticity tensor = 0 
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i) Steady homogeneous potential flow is defined by v = -:~ 

with ¢=+(~:~ r), in compact notation with ~i' ~j and ~k representing 

the unit vectors in zl' z2 and z3~{rectioni we have 

so that 

1 . 
~ = - --2--{k .. o.o .. (rk 0k r 0 )} 1J :..l-J ... t ... t 

1 =- ~2 k .. rkr (6.5.:o ko )} 1J -l-J ~ ~. 

1 3 3 
= -~ \ \ k .. r.r. 

e.. • L. . • L 1 J 1 J 
1=1 J=l 

1 v. = a[- --2-- I I k .. r.r.J/a r . 
-1 i j 1J 1 J 1 

in indicial notation 

i = 1,2,3 

For potential flows we may write: 

• _ rate of deformation tensor = vv + vvT = X 

and n = 'Vv - 'Vv
T = Il:(~ ., - ~ ··)8.6· = 0 

ij ,1J ,J1 ... l-J 

L I(~ .' + ¢ ··)6·6· i j , 1 J , J 1·. 1 ~ J 

where 9,·· denotes the second order derivative of ¢ with respect to 
lJ 

Zi then zr 

For steady potential flow, Eq. (3.11) is directly applicable, for 

one molecule. As mentioned earlier, this term represents the contribution 

of the velocity field to ~Gm' so that the \'/hole expression for the free 

energy change of mixing becomes, by adding Eq. (3.n) to Eq. (2.1): 

x 
- 112[ln xy2 - y + lJ + Xlx n2vl + ~<.I <t,(r i » 

1=1 

where average potential function over the n2 macromole~ules is to be considered. 



i i ) Extensional (or elongational) flow is identified by: 

-~ 0 0 

k = 0 -~r 0 
:::: 

0 0 r 

so that 
r vl = -T z . 1 

v2 = 
r 

- -2- z2 

and 

or in cylindrical coordinate. 

Appl ication of Eq. (3.11) yields, 

" r~ 
UG* = 2~,~ [-z-(-;f--

1 

Let 

b = length of a segment 

2 \)J 
Z .)] 

1 o 

xi= number of segments from the center of gravity to the 

i'th segment (the total number of segments equals x)~ 

In elongational flow the nematic director coincides with the 

.direction of the flow. Hence \)J \..,i11 represent the angle bet\..,een the 

instantaneous position of the rod and the z-axis. 

be written in terms of $, band x. such that: 
1 

r. = b x. sin~ , 1 

Zi = b Xi COSlP 

Then r. and z. can 
1 1 
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(3.13) 



Substituting the above relationships in Eq. (3.13), we obtain: 

But 

~ x/2 b2x~ sin2~ 
U = 2f; -+- I . [ --:.'=2--

xi=' 

x/2 
= rEb2 I ~~. [-1 + 3/2 sin2~J~ 

x·=i , 
x/2 
Ix~ = (-f-)(+ + l)(x + 1)/6 = 

x·=o 
1 

x3 

(24 + ...... ) 

Combining Eqs. (3.16) and (3.15), we end up with:' 
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(3.14) 

(3.15) 

(3.16) 

(3.17) 

This expression is exactly the same as the one derived by Marucci. 

(1975), though werecched the same conclusion by making use of Eq. (3.11). 

Marucci and Ciferri's approach,' which is valid for elongational flow only, 

is based on the formulation of an expression for the moment of friction 

force exerted on the rod, while our method, provides a more powerful tool 

to deal \'1ith any type of homogeneous flow (even rotational) as will be 

shown belm'/. 

Equation (3.17) gives the potential energy associated uith,a single, 

macromolecule, oriented such that its axis makes an angle ~ with the 

nematic director. For a system of n2 macromolecules, randomly oriented, 

an 'average expression accoun~ing for the most probable orientation,should 

be used. In other terms, an expression for <sin2~> should be found. 

It is explained in Ap~endix A2, that 

(3.18) 

for random distribution. Inserting this last equality in Eq. (3.17) and 
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combining with Eq. (2.1), the full expression for the free energy becomes: 

2 1 * 2 - n2[lnxy ~ y + 1] + Xlx n2vl + --2-- G n2xy 
(3.19) 

where G* 1 rb2 
• d' . 1 t: fl . th t' = -s- kT/~ , 1S a 1menS10n ess quan 1ty re ect1ng e ra 10 

of the effect of the bulk flow to that of diffusional flow, the denominator 

(kt/~) defining the diffusion coefficient of the macromolecule (Villars, 

Benedek, 1974). 

3.2.2 Rotationa-l Flov/s 

A motion in which the vorticity vector field does not vanish is said 

to be rotational .. The vorticity vector field x, is defined as (Slattery, 

1972) : 

= 'V x v 

where £ijk is the permutation symbol. 

A rotational flow can be viewed as the superposition of two flows, 

one of them irrotational and the'other being a uniform rotation. The 

effect of rotation can be neglected, if k, the velocity gradient tensor 

. is not too large, as already explained. Then, the effect of flow can be 

described by the potential function associated \,/ith the irrotational part 

of our rotational velocity field. Hence our first task is to divide the 

flow into two parts. A practical method will be to extract the irrotational 

part by making use of Eq. (3.4). The next step will be to evaluate the 

function ~ corresponding to this irrotational flow and then to incorporate 
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this potential function within the most general expression for ~Gm; also~ 

the flow induced energy term must be averaged over the ensemble of n2 
macromolecules, by consideting their instantaneous angular displacement 

from the nematic director, \'Jhose direction is prescribed by the type of 

flow in question. 

These explanations will be made clearer, in connection 0ith the 

example of simple shear flow, the simplest and most common type of rota­

tional flow. In a volume element of sufficiently small size, the well­

known Poiseuille flow, may be approximated by simple shear flow (!:ramers, 

1946). The components of the simple shear flow in cartesian coordinate 

are 

Vl = rz 2 where r is a constant (velocity gradient) 

v2 = 0 (3.20) 

v3 - 0 
o I 

{_l_ 'i/v T 1 

o J 
Then n = Ei jk 2 --

- '!v } = -2-

-2r 

From continuum mechanics (Eringen, 1967), the angular velocity uJ for rigid 

rotation in shear flow, equals one half of the vorticity vector. Hence 

~ :: ~/2 = [0 o T -f/2] 

With these i~formations, we may apply Eq. (3.4) to find out the 

irrotational part of the flow, i.e., 

r rZ2 0 zl 

v = Vi - (~ X ~) = 0 0 x z2 -
0 -r/2 z3 

~ 

(rz2 0 . T r r T r r .,. 0) - (Tz2 -2-z1 0) :: (Tz2 --z-zl O)T 

(3.21 ) 
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Superposing to the irrotational flow given by Eq. (3.21.), a uniform 

rotation we must end up with Eq. (3.20). Clearly this rotational velocity 

field \,/i11 be given by: 

(3.22) 

V -. 0 3 -

Now, our objective is to find the potential function associated 

with the irrotational flow given by Eq. (3.21). Clearly, this will be 

done· by making use of Eq. (3.21); First k has to be determi ned 
::; \ 

kll k12 k13 zl kll zl + kl 2z2 + kl 3z 3 

v = k·r = k2l - k22 k23 z2 = k21 zl + k2222 + k23z3 

k31 k32 k33 23 k31 z, + k3222 + k3323 

"" 
but ('/2)rz2 

~ = (1/2) rZ l (3.23) 

o 

Comparison 6f the two equations above, yields 

o r/2 0 

k: r/2 0 0 

o o o 

but 

z, z,z2 21z3 

r r = z,z2 z2 22Z3 

z32, z3z2 z3 
I 



so that 

Finally 

Using the potential formalism given by Eq. (3.11), \ole obtain, for the 

contribution of the flow to ~G , . m 

x/2 
UG - 2s L 

i =1 
, per macromolecule 
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(3.24 ) 

(3.25) 

To find a more convenient expression for the flow-induced energy 

term, we have to investigate the direction of the nematic director. The 

forma 1 procedure to find out this di rection for any type of fl 01':, is 

explained in Appendix A3. For the simple case of simpe shear flow, 

Fig. 3.1, will help to visualize the situation. 

/ 

/ 

/ 

~-------~ 
2;;. 

FIGURE 3.1 - Schematic }-epresentation of a fl uid body under 
shear flow 



As can be seen clearly, the effect of the irrotational part is 

analogous to that of an elongational/ the only cifferenceresiding in 
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the shifting of the nematic director by an a"ngle of 45°. Hence, in this 

present case, for the i'th segment of the rodlike molecule, the Eq. (3.26) 

will hol d 

= b x. cos(~ + 45°) 
1 

= b ·x. s'in(~ + 45°) 
1 

(3.26) 

Inserting these relationships in Eq. (3.25), and summing over all segments, 

we obtain, the flow induced change in energy per molecules, as follows 

x/2 
UG* = 2~ I [- ---2

1 fb2x~coS(~+45)sin(~+45)] 
. 1 ' 1= 

but 

cos(~+45)sin(w+45) = (cosy cos45 - sin~ sin45)(cos~ sin45 + cos~ s 

= [12/2Y [cos 21),. - s in2~] 

Back substituting this relationship in Eq. (3.27), 

x/2 x~ ~ 
U * = -2';fb2 I [---' (COS2~ - sin2~)J 
G ; =1 2 0 

x/2 
U * = - fb 2.; I x~[-2s;n2~] 
G i=1 ' 

(3.27) 

For a system ~onsisting of n2 macromolecules, with random spatial 

orientation, the total energy contribution to ~Gm' will be given by 

(3.28 ) 

where Eq. (3.16) is inserted in Eq. (3.27). 



It was previously stated that <sin2~> ~ '(Y/X)2 

then 

where 

U * ___ G_ = __ 1 __ G*n xy2 
kT 2 2 

1 fb 2 
G* - ------

12 kT/~ 
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(3.29) 

(3.30 ) 

As expected, an expression similar to that of elongational flow is 

obtained, differing only by a proportionality constant.· Hence, Eq. (3.19) 

is valid for simple shear flO\'I, provided that G* is· defined by Eq. (3.30). 

3.3 EXTENSION OF FLORY's THEORY OF PHASE EQUILIBRIA FOR QUIESCENT 

SOLUTION TO THAT SUBJECT TO HOMOGENEOUS FLOW 

Once an expression for the free energy of mixing is obtained, the 

relative effect of the flow field can be deduced from the equation relating . 

the equilibrium compositions in the nematic phase, to their orientation .., 

parameter. This equation, analogous of Eq. (2.3), is again derived by 

differentiating ~Gm (of Eq. 3.19) \,/ith respect to y and equating to zero, 

to get: 

v' = 2 
[1 - exp{ - __ 2 __ + G*xy} ] 

x - y y 

x ( 3. 31 ) 

As explained in Chapter 2, the above equation gives the set of 

(v~, y), that minimizes ~Gm' It can easily be noticed that the volume 

fraction of the polymer in nematic phase v~, will be equal to zero, at 

* G . . 1 crl.tl.ca 
2 (3.32 ) 
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Hence, for values of G* higher than this critical value no phase 

separation occurs~ the solution is totally anisotropic. As to values 

* * G .< Gcritical' either totally isotropic or two phase system can be 

observed depending on macromolecular volume fraction. It has been 

checked (f~arucci, Ciferri, 1975) that the net effect of the flow field 

is the shifting of the phase separation interval towards smaller values 

The equilibrium volume fractions in the two phases are calculated 

by equating the chemical potentials of each component, separately in the 

two phases. The chemical potentials of the solvent ~ , and the solute ~ , 
I 2 

under anisotropic conditions are given by: 

1.1 - 1.10 
I I (3.33) 

RT 

1 G* - - xy 
2 

(3.34) 

For the isotropic solution 

1.1 - 1.10 
1 1 (3.35) 

RT y=x 

RT y=x 

(3.36) 

Equating Eq. (3.33) to Eq. (3.35) and Eq. (3.34) to Eq. (3.36) and 

considering Eq. (3.31) too, we will hav~ three equations, whose simulta-

neous solutipns will yield the three unknowns v2, v~ and y. 



A few representative results, calculated by Marucci and Ciferri 

(1975), for athermal solutions under extensional flow are sho\'m in 

Fig. 3.2. Obviously, the same graph will be valid for sim~le s~ear 

flow too, provided that G* is defined by Eq. (3.30). 

~ 
;:) . " 
l,!> 

1.5 

1.0 

6.~ 

;!Oo~roflc 
re~ IOn. 

hete t"o:rne>OIJ5 
reCjloo 

x.. :. ie-a 

a n,sofr'fic:. 
rE~~Of\. 

, J 

V.2..) ";t.. 
FIGURE 3.2 - Equilibrium concentrations in the two phases 

versus G* 
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IV. CONTRIBUTION OF STRESS-INDUCED DIFFUSION TO 
PHASE EQUILIBRIUM 
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In the preceeding chapter, the role of the fluid mechanics in the 

process of nematic phase formation in dilute solutions of rodlike parti­

cles has been analyzed, concentrating mostly on elongational and shear 

flows. Re~ently, it has been recognized (Tirre], et.al, 1977) that the 

. well-known thermodynamic driving force, entrcpic in nature, which tends 

to restore the molecules to their unperturbed dimensions, \,/i11 cause the 

macromolecules to diffuse from regions of higher stress, to regions or 
, 

lower stress, if such regi6ns ~re present, resulting in a non uniform 

spatial distribution of macromolecular concentration. 

4.1 THEORY OF STRESS INDUCED DIFFUSION 

Let us. consider a solvent-solute system, with initial concentration 

spatially uniform. The application of a stress field which is not cons­

tant over the domain occupied by the mixture, will produce a thermo­

dynamic driving force for the diffusion of the solute towards regions 

of lower stress. ~Je may express this force as the gradie_nt of a potential 

field, say V, such that 

F = -\IV (4.1) 
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On the other hand 

F = ;v = v/B (4.2) 

where B is defined to be the mobil ity and equal s D/kT, vlhere D is the 

diffusion coefficient .. 

Eqs. (4.1) and (4.2), yield 

v = -B~V = ____ D_. ~V 
kT -

(4.3) 

This force gives rise to a stress-induced molar flux, ~s' of the 

polymer molecules. Let ~. denatetne local solute molar concentration 

in moles/volume. Then by definition, (Silebi, 1\1cHugh, 1979): 

J = c v -s .., 

Combining Eqs. (4.3) and (4.4), \'le obtain 

J = - D~. ~V 
""s kT-

~( 4.4 ) 

(4.5) 

This stress induced flux will produce a concentration gradient i 

which, in turn will produce a flux, ~F' due to Fickian diffusion, such 

that 

~F = -D ~~ (4.6) 

Then, the net· flux in the system, will be 

J = J + JF = -D[~c + _c_\1V] 
- -s - - kT -

(4.7) 

, i 



At equilibrium, the net flux will be zerOi then assuming cylindrical 

symmetry, for a flm'l in the z-direction, Eq. (4.7) gives: 
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de +..l..~:o (4.8) 
dr kT dr 

or de 
--: -f~ 

kT c 

.1 { AV· C = PI exp - ---j 
. kT 

where AI is a constant. Upon rearrangement, we may write: 

But 

or 

LV + ln c : ln AI = constant 
kT 

c = moles of solute moles of solute volume of solute 
total volume = volume of solute x total volume 

where Vm is the molar volume of the solute, then 

ln c = ln v2 - ln Vm 

Substituting Eq. (4.11) in Eq. (4.9),. Ide obtain, 

~ + ln v2 = ln Vm + ln AI = constant 
kT 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

In our system of rodlike particles in solution, under homogeneous flow, 

~G 
~V == _m_ , given by Eq. p.19). 

n2 
Hence, for any region i 

~G 
[ m + ln v2J. = constant 
~ 1 

(4.13) 
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, 

4.2 EFFECT OF DIFFUSION ON A SYSTEM OF RODLIKE PARTICLES 

UNDER POISEUILLE FLOW 

Now, let us confine our attention to a system of rodlike ~artic1es 

under Poiseuille flow, in a narrovl cylindrical pipe. The flovl near the 

wall can be approximated by simple shear flow, if avery small region 

is considered. Hence in this region Eq. (3.19), together vlith Eq. (3.31) 

will describe the change in free energy. 

If we investigate flO\'1 near surt'aces, \'Je observe the drag caused 

completely by viscous shear forces associated \",ith the variation of 

velocity from zero at the solid surface, to ~ in,the undisturbed stream 

This region near a solid,wbere the fluid motion is affected by the solid 

boundary is called the boundary layer. Within this region, the layers of 

fluid near the surface are retarded by viscous friction or unfavoul~able 

pressure gradient, in the presence of surfaceroughnesses. These blo 

factors are enough to cause the fluid near the surface to come to rest 

and even to flmoJ in the reverse direction (Bennett, 1·1yers, 1962), as 

shown in Fig. 4il. 

FIGURE 4.1 - Separation in flow, past a solid surface 



The boundary layer, then leaves the surface. This phenomenon, 

called separation is more frequent with laminar flm'ls (Evans, 1968). 

On the basis of the above explanations, it is a good assumption 
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to accept the fluid in a thin region (denoted by subscript B), next to 

the boundaries of our conduit, as stational~y. Also, let us denote by 

~ubscript A, the region near the walls, where the Poiseuille flow is . 

approximated by simple shear flow. Following, the theory of stress 

induced diffusion, the particles in region A, will tend to diffuse 

towards region B. Since the velocity gradient is flat in the center 

of the tube and· steeper near the wall, there will be a slight diffusion 

towards the center· of conduit, too. However, as far as we are concerned~ 

we will considet only the boundaries where the stress induced diffusion 

is reiative1y intensified. 

For a s~fficiently dilute solution, the solute molecules in region 

A, will be distributed isotropically. As to the stagnant region B, 

depending on the solute 'volume fraction is:>tropic, nematic or both phases 

can be observed, according to Flory's theory of phase equilibria for 

quiescent solutions. I 

Assume both phases are isotropic. Then substitution of Eq. (3.19) 

in Eq. (4.13), gives: 

or 
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n 
.~ 1 n v + 21 n + 1 G* 3 -_ n

2A 
lA v2A - Xlx vlA '--2-- x 

(4.14) 

But 
nlA x vlA x( 1 - v2A ) 
-= --
n2A 

v
2A v2A 

nlB x( 1 - v2B ) 
.(4.15) 

= 
n2B v2B 

Inserting Eq. (4.15) in Eq. (4.14), we obtain, 

__ l __ G* x 3 + __ x_ (1 - v ) 1 n (1 - ) 21 ( 1 ) = 2 v
2A 

2A v2A + n v2A + Xl x - v2A 

(4.16) 

As can be seen from Eq. (4.16), the contribution of the flow field to 

the free energy is counterbalanced by the decrease in volume fraction 

of macromolecules, so that a diffusion towards stagnant region takes 

place. 

The concentration gradient between the two regions is higher 

as the velocity increases or consequently fOI" higher G* values. However, 

the increase in G* beyond G*. . l' wi 11 induce. ani sotropy to the pre­
crltlca 

viously disordered flowing system. So Eq. (4.16) is no longer valid 

and should be replaced by an appropriate expression relating the free 

energy of the stagnant isotropic fluid to that of the flo\'Jing fluid 
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exhibiting nematic ordering. Consequently, the diffusion in this case 

will be governed by the follm.,ting expression, \.,those derivation is quite 

similar to that of Eq. (4.16): 

V;A(l - v2A )ln(1 - v2A ) + 21n v2A - v;A(l - v2A + y v~A) 

- [In x3 
- X + 1J = 0 (4.17) 

Eq. (4.17), combined \'Jith Eq. (3.31) \'/i11 describe the behaviour of 

macromolecules in homogeneous flow. By making use of these equations, one 

can determine the solute concentration at the wall, for a given system. 

Calculations will show that the amount of accumulation increases with 

increasing flow rate, but i~ more strongly dependent on Xl-parameter. 

To be able to visualize,the behaviour of macromolecules under these 

conditions, and to determine the parameters that prescribe this behaviour, 

it is useful to examine more closely a solvent-solute system with known 

solute fraction, say 0.01, and study the effect of variables such as 

flow rate, axis ratio x, solvent-solute interaction parameter ~l' on 

the amount of accumulation by stress-induced diffusion, on stationary 

locations. 

4.3 CALCULATIONS 

-
As a first approach, let us consider the influence of the increase 

in flow rate to the a~ount of change in macrbmolecular concentration, 

for athermal system. 
I 

" 
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An increase in the dimensionless quantity rt is equivalent to either 

an increase in the flm" rate (or the velocity gradient :) or a decrease 

in the diffusivity coefficient (which is proportional to temperature and 

inversely proportional to friction coefficient). As expected, as rt 

increases, the stress-induced diffusion being intensified, the concen-

tration of the macromolecules in stationary regions increases too. The 

corresponding curve is shown in Fig. 4.2 (for Xl = 0). Fig. 4.2 was 

constructed for rodlike particles of axis ratio equal to 100, having a 

volume fraction of 0.01 in the flowing stream. As can be seen from the 

graph, increase in G* causes the solute concentration in the quiescent 

solution (v2B ), to reach levels of about five times that of the flowing 

stream. The procedure to obtain these curves is based on a trial-error 

method consisting of first evaluat~ng the ~isorientation parameter y from 

Eq. (3.31) and then using Eq. (4.17)to compute v2B by iterative calcu­

lations, for given Xl and G* values, keeping x = 100 fixed. 

For non atherma 1 systems, the rel ati ve effect of the energy i nter-

action parameter X" becomes more conspicious as the flow rate increases 
I " 

(or as an alternative for compounds with relatively lower diffusion co­

efficients). 

Now, before proceeding to search for the possibility of a concen-

trated nematic phase at the stagnant regions, it is instructory to revise 

b~iefly the phase transition in non athermal quiescent solutions, with 

particles of x = 20, 50, 100, for comparison. We will concentrate mainly 

on the uppermost"vortion of the plotting showing the equilibrium composi­

tions of the two phases. We will start with the one for x = 100 (See 

Fig. 2.4). As mentioned earlier, above Xl = 0.09, the identification 

of y = 1 as the limit for perfect orientation requires the use of chemical 

potential expressions for regular solutions; the equations of 
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phase equilibrium, a~cordingly, will be (2.22) and (2.23).' Simulta-

neous solution of these two equations, by iterative trial and error pro-

cedure gives. Fig. 4.3, which is nothing else than the iJppennost portion 

of Fig. 2.4'5: As can be seen a very concentrated nematic phase coexists 

with the isotropic phase. 

Similar calculations were done for solutions with x = 20 and 

x = 50.· For x = 2, it was already calculated, in Chapter 2, that Eqs. 

(2.22) and (2.23) were valid starting from Xl = 0.4825 corresponding to 

the point where y, the disorientation parameter becomes equal to unity. 
, 

So calculations were carried out for Xl> 0.4825. Same reasoning \.,ras 
'~ 

used for x = 50 too. The resulting cUrves are shown in Fig. 4.4. The 

compositions of the anisotropic phase are not sho\'m in the graph; they 

are tabulated below. 

x = 20 x = 50 x = 100 

Xl v28 
I v2B Xl v2B 

I v2B Xl v2B 
I v2B 

0.4826 0.155 0.9100 0.20 0.0825 0.9003 0.10 0.054 0.895 
, 

0.550 0.062 0.92345 0.23 0.0557 0.01478 0.11 0.0459 0.9054 

0.600 0.024 , 0.93207 0.25 0.0380 0.92265 0.125 0.0336 .0.9180 

0.650 0.0089 0.93943 0.28 0.01.69 0.93247 0.135 0.0255 0.9248 

0.700 0.00335 0.94568 0.30 0.0080 0.93979 0.145 0.0180 0.9306 

0.150 -0.0144 0.9335 

0.155 0.0115 0.9357 
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As can be seen from the above ~ata the nematic phase is highly 

concentrated and natura liy will exhi bit 1 iqui d crysta 11 ine behaviour. 

Now, let us co:ne back to Fig. 4.2. The curves in this figure 

represent the variation of the macromolecular concentration in the 

stagnant region (8), with increasing flow rate for a solution with 

v2A = 0.01. These curves may be combined by that of Fi g. 4.3 \·:h i ch 

gives the minimum concentration required for spontaneous appearance 
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of a concentrated nemati c phase, for a quiescent sol ution. By incol~po­

rating.th~ data points of Fig. 4.3 within Fig. 4.2, one can separate 

Fig. 4.2 into t\'JO parts, the upper part standing for the two phase 

equilibrium system and the lower representing points belonging to solely 

isotropic solution. Hence, dashed line in Fig. 4.2 is obtained 

directly from Fig. 4.3. From the resulting figures, one can determine the 

critical values G~, (in the sense that those which give rise to the forma­

tion of a nearly crystalline nematic phase in the stationary region) as 

a function of the solvent-solute interaction parameter Xl' from the inter­

sections of the dasred lines with the constant - Xl 1 ines: The resul ting 

curve is shown in Fig. 4.5, where G~ 's are plotted against the corres­

ponding Xl-parameters. 

The next step will be to extend the above theoretical arguments 

to the case involving rodlike particles of_smaller length to width ratio, 

say x = 20 and x = 50. Again the solute volume fraction will be v2A = 

0.01, in the flowing stream. For molecules with x = 20, Eq. (3.32) 

implies that the solution will be totally isotropic for G* .::..2.5xlO-
4

• 

\~e \."i11 consider the stress induced diffusion under G* = 10-
4

, 10-
5 

-6 
and 10 respectively. So the diffusion in this range will be governed . 
by Eq. (4.16), which is applicable to isrtropic flo\'Jing streams only. 
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Again curvers similar to that of x = 100 (See Fig. 4.2) are obtainable; 

their com~ination with Fig. 4.4, yields the critical Xl's that \';i11 cause 

the preci?itation of a concentrated nematic phase, for different G values. 

Similar calculations were repeated for x =,50. The resulting curves 

are sho\,ln in Fig. 4.6. From these curves, one can verify that, as expected, 

the contribution of relatively s~all energy interaction will induce the 

precipitation of the longest particles under a given flow and gradually 

as the X-paramete~ increises, smaller and smaller particles will· accumulate. 

Also, nematic phase formation at stationary regions will be easier in the 

case of higher flow rate, necessitating the contribution of a relatively 

small energy interaction parameter compared to 10\oJer G*, especially in 

the case of longer rods. 
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V, DISCUSS JON~N~CONCLUS IONS 

One purpose of this work was to find an explanation to the aggre­

gation of cholesterol molecules on 'the inner walls of blood ve~sels, a 

phenomenon known as atherosclerosis. Although considerable data on ' 

cholesterol metabolism is available, their exact relationship to mecha­

nisms controlling the level of plasma cholesterol or the corresponding 

rate of deposition are not fully understood. Clinical investigators 

suggest the need for simpler methods for approaching this problem (Bencz€: 

et.al, 1975). In fact, this situation may be explained, to a certain 

extent on the basis of theoretical arguments presented in the preceeding 

chapters. 

Cho)esterol molecules possess rigid rod1ike conformation with the 

exception of a flexible tail that is neglected in the present study. 

Their volume fraction, together with cholestryl esters and some lipids 

that forms also liquid crystalline deposits, reaches about 0.01 (Lehninger, 

1975). Hence the selection of,O.Ol for initial macromolecular concentra­

tion in the flm·Jing stream was not arbitrary but follO\'/edfrom the actual 

concentration of rodlike particles susceptible in giving rise to the for-

mation of a nematic phase along the inn~r walls of the vessels. On the 
. 

other hand Poiseui11e flow is reasonable for small arteries where rela-

tively high shear rates causes the blood to approach Newtonian rather 

than Casson behaviour (Lightfoot, 1974). Also near the walls the Poiseui11e 
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flow can be approximated by simple shear f1ow,·so that Eq. (3.19) holds 

* with the dimensionless parameter G defined by Eq. (3.30). 

Now let us confine our attention to the dimensionless quantity G* 

prevailing in blood vessels. The denominator represents the diffusion 

coefficient of the solute and is in the order of 10-' cm2/sec for all 

blood lipoproteins (Lehninger, 1975). The segment length of the macro-
o 

molecule may be taken to be equal to 10 A. The only remaining unknown, 

r may be calculated from the velocity gradient at the wall. For Poiseuille 

flow the volume flow rate Q, is given by (Slattery, 1972): 

Q = - --'!!... ~ ~ = -TI ~ ~ 
8 II az. . ; L 8~ 

where R is the tube radius, II is the viscosity of the fluid, aP/az 

denotes the pressure drop in the direction of the flow and L is the 

length of the tube. Also the velocity field is given by 

~P R2 [1 r2 
v2 : --J 

411L R2. 

Then 
avz ~PR'2. 

r _ ~PR 
- = 

ar . r=R 211LR2 r=R 211L 

Eq.·(5.1) yiel ds 

~P 
: 

4Q 

2~L TIR'+ 

Substituting Eq. (5.4) in Eq. (5.3), we maY\'irite 

aV2 4Q r =-- = 
ar r:R iiR 3 

(5.1 ) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 
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Using Q = 5.3L/min, R = 0.05 cm for arterioles (Lightfoot, 1974) 

we obtain r :::: lOO:l/sec. Also average capillary radius is in the order 

of 10-4 cm and the c:.rresponding flO\·; velocity is 0.1 cm/sec C,'illars, 

1974), to obtain ascin r '" 103/sec . S:;bstituting there data in G*, 

we observe that G* "" 10-
5

, which is \'iithin our domain of calculations. 

Calculations carried out in this work indicate that there'will 

be a highly concentrated nematic phase formation in the stagnant parts 

of a system of rodl ike particles subject to homogeneous flo\'J characterized 

by a G*, in the ol'der of 10- 5
, even if the system is very dil ute (v2A = 

0.01), provided that the solvent-solute interaction ~arameter exceeds a 

critical value. As stated earlier t~e migration of macromolecules to0ards 

stagnant regions is driven by gradients in entropic potential, i.e. choles­

terol molecules have a natural tendency to diffuse to regions of lower 

stress where the fluid is stagnant due to some possible surface roughness. 

Recently it has been shown (Huang, 1978) that the growth of atherosclerotic 

plaques occurs, in fact at certain favored sites and particularly next to 

surface layers of fibrinogen which causes a surface roughness initiating 

cholesterol and other lipoproteins accumulation. 

Though initially the molecules are randomly distributed in these 

regions, sufficiently high G* values, associated \vith high shear rate may 

bring the macromolecular concentration in these quiescent locations to 

attain certain critical levels corresponding to isotropic-nematic equi­

librium concentration, with the assistance of a positive solvent-solute 

interaction. These results are in accordance with Copley·s hypothesis 

(1978) that atherogenesis is strongly influ'enced by high shear rates at 

the al'terial wall. In fact G* is factor responsible for the diffusion 

of macromolecules: the higher the value of G* (or implicitly r), the 

str~nger the diffusion is. 
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The newly formed anisotropic phase is so con~entrated that we may 

speak of the "pl~ecipitation" of a liquid crystalline phase \','here the 

building blocks are the cholesterol and its·~sters. An e~cessive asslo-

meration of these molecules may lead to occlusion of blood vessels. 
* _5 To be more specific, let us consider the case of G = 10 ,a 

plausible value for blood flow. Starting with a flowing stream with 1% 

solute volume fraction, at Xl = 0.135, the particles with axis ratio 

x = 100 will be forming a highly concentrated anisotropic phase (v~B = 

0.9248) as can be derived from Fig. 4.6. As the xl-parameter increases, 

gradually smaller and smaller particles will precipitate. For example 

at Xl = 0:285, particles with x = 50 will undergo phase separation and 

give rise to an ordered phase with v~B = 0.935. 

For shorter rod1ike particles (-x < 25), the variations in the flow 

rate have a negligible influence on the formation of nematic phase. Here, 

the appEarance of the concentrated ordered phase is brought about by the 

effect of a sufficiently high interaction energy solely. For example, 

for rods of x = 20 deposition occurs, if Xl exceeds -0.63, regardless of 

the flow rate. Bearing in mind that the 'precipitating molecules in the 

blood are relatively short, this property points out the i~portance of 

the solute-solvent interaction parameter in nematic phase formation. 

The theory presented in this work is app1 icable to deposits from 

suspensions or polymer solvent systems in industrial equipment, referred 

to as the "foul ing effect". The tendency of certa in fl ui ds to fom 

fouling deposits on heat transfer surfaces is a serious problem in the 

design of heat-exchange equipment. It is emphasized that some solutes 

in process streams polymerize and the resulting less soluble material is 



deposited on the surface as a film, often of considerable toughness 

(Bennett, r'1jerS, 1962) this deposit being dependent on both the flow 
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r2te c;.: tile na ture of tn:= fI ~id, in agreei.'rent ',,;i th the theory presented. 
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A,l. DERIVATION OF 6G m FOR SOLUTIONS OF 
RODLIKE PARTICLES 
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Let j solute molecules be assigned locations in the volume to 
~ . 

be occupied by the solution. The specified distribution of their orien-

tations will be assumed to be sym~etrical about an axis. We shall esti-

mate the number v j +
1 

of situations available to an additional molecule, 

j+l, oriented at an angle 1)ij+l to this axis. Each molecule will be rep­

laced by submolecules such that a molecule i inclined at an aiiole (:. to ." . 1 

the orientation axis, will be divided intoYi submolecul~s. The width 

of a s ubmo 1 ecul e is chosen to be equa 1 to 9.J x \'t'here £. is tile total 

length of the molecule and x is tne total number of ~egments in the 

molecule. 

As can be seen from the Fig. A.l {the number of submolecules 

y. per molecule i} = (1 sin $1')/(~/x) = y. or y./x. = sin ~ .. 1 . 1 1 1 1 
I 

Obviously, each submolecule contains x/yo segments and requires there-
1 

fore, x/Yi vacant lattice sites. 

The number of sites available to the first segment of the 

first submolecule of (j+l )'th molecule = (n . - xj) where n is the o 0 

total number of lattice sites. 

Considering the vacancies and the submolecules as two sets 

arranged in random 1 i near sequence, the probabil i ty that the subsequent 

segr:1ent of tne first submolecule is given by: 
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FIGURE A.l - Schematic representation of a rodlike 
macromolecule 

number of vacant sites no - xj 
-------------~----- = { } 
number of vacant sites + number of submol ecul es no - xj + i y" 
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For all the segments of the first submolecule, this probability becomes 

{ 
no - xj ( ( x / y ) - 1) 

~-} 

no - xJ" + ~ 
i." y" 

1 

(A.2) 

i =1 

(A.l ) 

since there are ((x/Yj +
1

) - 1) rem~ining sesments in the first submolecule. 

Now, let's consider the second submolecule; the probability of vacancy of 

lattice site for the first segment, equals 
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n - xj 
( 0 ) (A.3) 

no 

and tilat for all its remaining segments is given by the same expression 

as in (A.2). S4nce there are Yj+l - 1 submolecules, the, product of 

(A.2) and (A.3) should be raised to the power (y.+ - 1), so that the 
J 1 . 

final expression will be~ 

'v. = (no - xj) J+l 
( no 

no -

- xj) 

n o 
j 

xj (>'-y. ) 
j , J+l 

"" ~ y. 
i =1 

1 

Upon rearrangement and using y - r Yi/ j , we obtain, 
i =, 

{ 11 _ ')x o XJ 

(A.4) . 

(A.5 ) 

The expression for the partition function of an isotro~ic 

solution conSisting of n
1 

solvent molecules and n2 solute molecules is 

give~ by 

(A.6) 

where 01' q2 are the internal ~artition functions for molecules 1 and 2, 

and Dk whose directions occur within the solid angle 6wk. HenCE we will 

insert the ex~ression (5) into the Eq. (6). To get a more concise ex~res-

sion we use 'the approximation: 
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. ) x (no - xi)! 
(no - Xl = r n - x(i + l)J 

~ 0 

n2 
. )x 

(n )! 
.IT (no 

0 

:+ - XJ . = 
J:l (no - n2x)! 

to obtain finally, 

(A.7) 

In the above expression n2!/IT nk! corresponds to the number of orienta­
k 

tions. each solute may choose, and is equal to y21l2 (Flory, 1956) 

so that n = probabi 1 ity or number of ways of at'rangements of sol ute mol e-

cu1es within the mixture is found to be: 

(A. 8) 

Using Stirling approximation (ln n! = n ln n - n), we get, after some 

algebraic manipulations: 

\.,.here 

ln Q = nllnv, + n21nv2 - (nl + yn2)ln[1 - v2(1 - y/x)] 

- n
2
[ln( xy2) - y + lJ 

xn 2 v2 = ., nl + xn 2 
n 

1 
Vl = nl + xn2 

are the respective volume fractions. 

(A.9) 
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Inserting the expression (A.9) into the Boltzmann Equation 

(A.1G) 

\'Ie obtain the change in entropy upon mixing. This term includes only 

configurational entrop.)' change, the one associated with the entropy 

change due to interactionbetlleen unlike pairs being imjilicitly containEd 

in the Van Laar expression fOI- lIHm: consider the change in energy asso­

ciated with. breaking 1/2 pairs of solvent and polymer bonds, each, and 

joining one [1,2J bond. This may be formulated as: 

lIw 
J 2 

= W 12 
1 
2 

1 w --w 
11 2 22 

where w1s refer. to the energies associated with these respective bonds. 

This energy includes the heat of mixing and, if there is, the energy 

related v/itn interactional entropy change, i.e . .6:D 12 = .6~h - Tk·S ' 

Tne average value of the number of [1,2J contacts in a solution containing 

n2 polymer mdlecules, vMth x seg~ents each and z coordination numbe~, is 

{n2[(z - 2)x + 2]}[v,J (A.ll) 

where (z - 2)x + 2 = number of neighboring sites/molecule 

v, = mole fraction of solvent = probability that this 

neighboring site will be a molecule of a solvent. 

The quantity labelled (11) is apPl-oximately equal to 

or 

tl t H = ~total I~umber of [1,2J nt t 1{energy associated"! so ia £:, m' I co ac s., I-lith each contact' 

(A.12) 

If we define X, = ZllwJ2/~T, (A.13) 
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substituting Eq. (A.13) in Eq. (A.12) yields the well-known Van Laar 

expression: 

... kTX n" kTX xn v ,-,11 = '2 = 2 m , , " 
(A. 14 ) 

By definition, tG = l:.H -TtS m m m (A.15) 

Combining Eqs. (A.9), (A.l0), (A.14) and (11,.15), vIe get the final expres-

sion for the Gibbs free energy of mixing: 

!lG 
k ~ :: n, 1 n v, + n 2 1 n v 2 - (n, + yn 2) 1 n [1 -y v 2 (1 - y / x) J 

- n [In(xy2) --y + lJ + X xn v 
2 "' 2, 

(A.16) 
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A.2. CALCULATION OF <sin ~> AND <sin2~> 

2n \fJ 
J . J sin2~ di)! de 

Y o 0 _ '11/2 - (1/2)sinw,' COS1I, - = <sin"'> =~--:-'-'----- y y 
I':' - 2:r .1P 

x 
J J sin \fJ d1P d9 1 - cos'l)J 

o 0 

J\fJ s i n3~1 d\fJ 
< sin 2,;:> = _0-:-, ___ _ 

li' 
J s i n~1 diiJ 
o 

I
ll! 

[-(cos~ sin 2\fJ)/3 + (2/3)[-cos~JJ 0 
= 

1 - cos\fJ 

= (1/3)[-COs0J[sin2ijJ + 2J + (2/3) 
1 - cos,+, 

By making use of Eq. (A.17) and (A.18), the following table may be 

'l)J(0) <sin Q> or y/x «simp»2 or (Y/X)2 <sin2i)i> 

0 0 0 0 

15 0.173 0.030 0.034 

30 0.338 0.114 0.128 

4"5 0.487 . 0.237 0.264 

60 0.614 0.373 0.417 

75 0.712 0.507 0.558 

90(random) 0.7854 0.616 0.667 
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(A.17) 

(A.18) 

calculated: 
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For random distribution, <sin~> = <sin TI/2> or y/x = ~/4 = 0.7854. But 

Flory took y/x ::: 1, for convenience. 

f..ISO as can be seEn fro~ tt-.e a!:>ove table, tckin?<sin2:~,> ::: (y/x)'2 is an 

acceptable approximation ~ 



A,3, DERIVATiON OF THE DIRECTION OF 
. THE NEMATIC AXIS 

Let's consider k, the velocity gradient tensor 
"" 

I kll k12 k13 

k = k2l k22 k23 ::: 

I k 31 k32 k33 , 
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for irrotationa1 flm1 vie must have k syrrrnetrical or it must be diagonal 

matrice. 

To diagonalize ~, an ol"tnogonal transformation matrix P sucn 

that pT k P is diagonal, has to be found. 
':::' ~::::::: 

The procedure is as follows: 

1) Find the characteristic polynomial 6(t) of k 

2) Find the eigenvalues of k (that satisfy the characteris-

tic equation) 

3) Find the eigenvectors, substituting the eigenvalues in 

the matrix t __ l - k , where t.'s are the eigenvalues 
:::; , 

4) Normalize the eigenvectors 

5) P is the matrix whose columns are the eigenvectors. 

The above procedure is illustrated by the exam~le of sk;Jle 

shear flo\'/: 
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f 0 r/2 o I 
r . 

: J 
k = !i' !2 0 
:;: 

0 0 
\ 

(1 ) 
r t 

r/2 

.6 (t) = I t~ - ~I = I 1/2 t - -
l 0 0 

:1 
t I 

I 

(2) tl = -(1/2)r 

t2 = +( 1/2)r 

t3 = 0 

(3) tl = -1/2r -1/2r 1/2r 0 ! I x o I 
I 1/2r -1/2r 0 y = 0 

0 0 -1/2r z 0 
1 

-1/2r x + 1/2 ry = 0 
(x,y,z)l = ( 1 , 1 , 0) 

~ 1/2 rz = 0 

t2 =+1/2r 1/2r 1 !2r 
01 

x 0 

1/2r 1/2r 0 y = 0 

1/2r I I 0 0 z 2 0 

1/2(fX + ry) = 0 

fz· = 0 
(x,y,z)2 = (1 , -1 , 0) 



4) 
. 

5) 

(x,y,z)l = u -1 
(x,y,z)2 = ~2 

1/2 fy = 0 

1/2 fx = 0 

0=0 

- (1//2 , -
= (-1/1Z, 

(x,y,z)", = U'" = 
. ,j-,j 

(0 

p = 

1/ i'Z 

1/ i'Z 

o 

-l//Z 

+1//'Z 

o 

~X'Y'~)3 = (O,O,constant) 

1//2, 

1 ill, 

o 

o 

1 

0 , 

0) 

0) 

1 ) 

Compari~on of the last two equalities yields $ = ~/4.(=450). 
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A.4. SAf"1PLE CALCULATION FOR FIGURE 4.2 

Figure 4.2 was dr~wn by simultaneous solution of Eq. (j.31) 

and Eq. (4.17), by making use of a progtarrrnable calculatol~. 

The ptogram includes the following steps. 

1) Give x, Xl' v2.B' G 

2) Assume y 

3) Sub~titute y in Eq. (3.33). Evaluate the ri~hthandside 

(RHS) of the equation and co~~are with the lefthandside 

(LHS) (v2A ) 

4) If%etrot (6(y)) is high go to (2). If 6(y) < 10 
-4 

continue. 

5) Calculate LHS of Eq. (4.17). 

6) Assume v2B 
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7) Substitute RHS of Eq. (4.17) If ((RHS - LHS)/RHS) x 100 

(~ ;{o(v2B )), exceeds 0.01, go to (6) 

8) Stop. 

With the above sequence one can easily compute, v2B , cottes­

ponding to any x, Xl' v2A , G, 

An example is shm·m belm'J: 



+-- Selected data points-+ Assumption 

G x ~l 

10 100 0 

_Il 

Hence forG = 10 

x = 100 

v2A 

0.01 

Y 

14 

13.8 

i 3. 7 

13.74 

13.71 

13.72 

13.715 

V2E = 0.0424 

C(y) LHS 
-3 

-6.68x10 (4. i 7) 
_3 

-1.99x10 
-I, 

3.65xl0 
-Il 

-5.7 x10 

1. 29xl 0 
-Il 

-4 
. -1. 06xl 0 

-5 
1 . OOxl 0 . 

-18.98 

Xl = 0 

v21-.= 0.01 

(with y = 13.715 in the A region) 
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.F.ssu;nption 
y 

\/2E RHS 

(4.17) 

0.04 -19.22 

0.045 -18.73 

0.0422 -13.88 

o . 04 2 3 -1 8 . 99 

0.0424 -18.98 

error 

1.27 

-1.32 

0.1 

0.05 

0.0) 


	KTEZ089001
	KTEZ089002
	KTEZ089003
	KTEZ089004
	KTEZ089005
	KTEZ089006
	KTEZ089007
	KTEZ089008
	KTEZ090001
	KTEZ090002
	KTEZ090003
	KTEZ090004
	KTEZ090005
	KTEZ090006
	KTEZ090007
	KTEZ090008
	KTEZ090009
	KTEZ090010
	KTEZ090011
	KTEZ090012
	KTEZ090013
	KTEZ090014
	KTEZ090015
	KTEZ090016
	KTEZ090017
	KTEZ090018
	KTEZ090019
	KTEZ090020
	KTEZ090021
	KTEZ090022
	KTEZ090023
	KTEZ090024
	KTEZ090025
	KTEZ090026
	KTEZ090027
	KTEZ090028
	KTEZ090029
	KTEZ090030
	KTEZ090031
	KTEZ090032
	KTEZ090033
	KTEZ090034
	KTEZ090035
	KTEZ090036
	KTEZ090037
	KTEZ090038
	KTEZ090039
	KTEZ090040
	KTEZ090041
	KTEZ090042
	KTEZ090043
	KTEZ090044
	KTEZ090045
	KTEZ090046
	KTEZ090047
	KTEZ090048
	KTEZ090049
	KTEZ090050
	KTEZ090051
	KTEZ090052
	KTEZ090053
	KTEZ090054
	KTEZ090055
	KTEZ090056
	KTEZ090057
	KTEZ090058
	KTEZ090059
	KTEZ090060
	KTEZ090061
	KTEZ090062
	KTEZ090063
	KTEZ090064
	KTEZ090065
	KTEZ090066
	KTEZ090067
	KTEZ090068
	KTEZ090069
	KTEZ090070
	KTEZ090071
	KTEZ090072
	KTEZ090073

