
IMPLEMENTATION OF SENSITIVITY ANALYSIS

IN

DISCRETE EVENT DIGITAL SIHULATION

by

yasemin :Birgil

:B.S. in I.E., :Bogazi~i University,198l

(

I
Bogazici University Library

111111111111111111111111111111111111111 ~ :
39001100315848

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

in

Industrial Engineering

1983

()

We hereby recommend that the thesis entitled

·"Implementation of Sensi tivi ty Analysis in Discrete-

Event Digital Simulation" submitted by Yasemin Birgil

be accepted in partial fulfillment of the requirements

for the degree of Master of Science in Industrial

Engineering, Institute of Science and Engineering,

Bogazigi Universit.y.

Examining Committee

Dr. M. Akif EYler (Thesis AdVisor)

Dog. Dr. yorgo Istefanopulos

Dr. Ali R~za Kaylan

').3 / b/ 1.933 Date:~ • ••••••

, i~ TABLE OF CONTENTS

ACKNOWLEDGEMENTS

.ABSTRACT

QZET

LIST OF FIGURES

CHAPTER I. IN'lRODUCTION

CHAPTER II. MODELING DISCRETE EVENT DYNAMIC SYSTEMS

USING ACTIVITY CYCLE DIAGRAMS

1. Ac~ivity cycle APproach

2. Activity Cycle Diagram of a
Restaurant, IKILER

CHAPTER III. ACSIM: A SIMULATION PROGRAM :BASED ON

ACTIVITY CYCLES

1. Idea of Structured Programming

2. S truc ture of ACSIM

3. Simulation of IKILER using ACSlll

CHAPTER IV. ESTIrrlATION OF PARAMETER SENSITIVITIES

USING ACSIM

1. sensitivity Calculation for systems
Represented by Activity Cycles r

2. Addition of Routines into ACSIM to
Estimate Parameter Sensitivities

3. Experimentation with IKILER
(")

iii

v

vi

vii

viii

1

6-

1

12

16

16

19

24

21

29

35

31.

iv

CHAPTER V. IMPLEJ'f£NTATION· OF SAl'1PLE PAT'.d ANALYSIS

ON A TIME-SHARED C011PUTER SYSTEM 39

l. statement o~ the Problem 39

2. Modeling the system 41

3. Experimental Results 44

CHAPTER VI. DISCUSSION 41

REFERENCES 49

APPENDIX A DYNAVJCS OF ACSIM 51

APPENDIX B SYNTAX DIAGRAM FOR ACSIM . 55

APPENDIX C ACSIM PROGRAl'1 LISTING 58

ACKNOWLEDGEl1ENW

This study was conducted under the supervision of

Dr. M. Akif EYler to whom I wish to express my sincere

thanks for his invaluable guidance, encouragement and

support.

I am also greatful to DO~. Dr. yorgo Istefanopulos

and Dr. Ali R~za Kaylan for serving on my thesis

committee.

In particular, I would like to thank Mr. Armagan Birgil

for his support in typing and preparation of the form

of this document.

Y.B.

!j

v

ABSTRACT

Discrete event dynamic systems have been analyzed by use of either

analytical or simulation models. Both approaches have certain

drawbacks. In this thesis a new approach which aims to reduce the

number of computer runs required for the sensitivity analysis in

discrete event digital simulations is studied.

The proposed approach estimates the sensitivity coefficients of

the system output with respect to various parameters from the

results of a~SINGLE simulation run. It can <;lerive answer to the

question "HOW would the total simulation time change if we repeated

the experiment under the same conditions, except for small

perturbations in the sample durations of one of the activities?"

for some or all of the activities in the system while observing

the experiment. Tqe efficiency of this approach lies in the fact

that it has a computational advantage of }1 to 1, where M is the

total number of activities for which the above question is asked.

(')

OZET

AYr~kolayli dinamik sistemlerin ~ozUmlemesinde analitik modeller

veyf}. benzetirn modelleri kullanilmaktad~r. Eu tezde ayr~k olayli

sistemlerin duyarl~lik ~ozUmlemesinde benzetim Zaman~ni onemli ol~Ude

azaltan yeni bir yakl~im sunulmu~tur.

Onerilen yakla'pm, sistem ~~kt1s~n~n &istemdeki bazl. veya tiim

parametrelere gore duyarl~l~g~n~ tek bir benzetim ko~umu ile kestir­

mektedir. niger bir deyi~le, "Sistemde yalnl.z bir faaliyet sliresinde

kli~lik bir degi~iklik yaparak bu deneyi tekra:z::lasaydl.k sistem ~~kt1si

nasil degi~irdi?" sorusuna deneyi ger~ekle~tirerek gormeye gerek

kalmadan sistemi gozleme zamani i~inde cevap verir. Eu yakl~l.ffil.n

verimliligi bu soruyu tek bir benzetim ko~umu i~inde sistemdeki tUm

faaliyetler i~in ayrl. ayrl. cevaplayabilmesindedir. Yani M adet

faaliyet igin duyarll.ll.k ~ozUmlemesi istendiginde hesaplama zamani

bu yakl~l.mla M:l oran~nda azalacaktir.

r

vii

LIST OF FIGURES

Figure 1.1. Outline of the thesis

Figure 2.1. Activity Cycle for a new born baby

Figure 2.2. Activity cycle for a mother

Figure 2.3. Activity Cycle Diagram for the functioning

of a new born baby

Figure 2.4. Steps of Activity scanning

Figure 2·5. Activity Cycle Diagram of IKILER

Figure 3.1. Flow diagram of ACSTI-l

Figure 3.2. ACSIN input for the simulation of IKlLER

Figure 3.3. Results of simulation of IKILER, ACSll10utput

Figure 4.1. Propagation of lo.cal gains through an activity

Figure 4.2. Results of sensitivity analysis in IKILER

Figure 5·1. A time-shared computer system

Figure 5.2. Activity Cycle Diagram of the time-shared

computer system

Figure 5.3. ACSll"l input for the estimation of parameter

3

10

10

10

11

.14

20

25

26

33

38

39

42

sen~itivities in the time-shared computer system 43 . .

Figure 5.4. Comparative results of sample Path Analysjs on

the time-shared computer system

Figure 5.5. Estimated sensitivity coefficients, ACSUi output

of the time-shared computer system

45

I. INTRODUC TION

Discrete event dynamic systems, such as traffic flow in a canal syste~

material ·flow in a production system, messages in a. communication network

and generally nonstandard queueing networks, evolve according to OCCU1'ences

of distinct events. All state changes occur only at a countable number of

time epochs which are referred as the event times. These events maybe an

arrival of a. boat or a message, shutdown of a production machine, completion

of a car-wash service and can be deterministic or stochastic. Although

states of the system change due to an event occurence, some events may not

actually result in a change in the state of the system. The complex

interactions of discrete events among the entities make it difficult to

analyze the discrete event dynamic systems.

In general, two approaches to these problems exist. The first approach

is analytical, typically represented by the queueing theory. The major

drawbacks of this approach can be listed as follows: a large number of

restrictive assumptions must be satisfied for the theorY to be valid,

the situation may be too complex to build a mathematical formulation, and

analytical techniques m~ not be sufficient for handling the mathematical

formulation even if it has been achieved.

The second approach, simulation, is used when analytical techniques

are not applicable. Simulation is one of the most widely used techniques

in operations research and it represents one of the major tools for brute

force analysis of discrete event systems. Simulation models are designed

to sample the characteristics of the system they represent by observing
("]

the system over time and subsequently gathering and deducing pertinent

information. The analyst can experiment with such a system and study its

performance while changing the syste~ parameters and decision rules at will

2

Although a discrete event simulation could conceptually be done by

hand calculations, the amount of data to be stored and manipulated for

most real world systems make it apparent that discrete event simulations

should be done on a digital computer. In addition, simulation of complex

systems would require a large amount of computer time. Therefore the main

problem with this method is the computational burden, especially in case

of complex systems. Alao, repeated simulation of such a system over various

parameter ranges to see the effect of changes could be very costly or even

infeasible. The purpose of this thesis is to outline and implement a new

approach which significantly reduces the problem of computational time.

The proposed approach derives the sensitivity coefficients of system

output with respect to various parameters: from the result of a SINGLE

simulation run. In other words, it can derive answer to the question

"How would the. system output change if we repeated the experiment under

exactly the same conditions, except for a small perturbation in sample

values of one of the parameters?" while observing the experiment and

without having to repeat any experiment for the specified perturbation.
I

.The efficiency of this approach lies in the fact that it has a computational

advantage of M to 1 where 11 is the total number of parameters for which

the above question is asked •.

This approach has been implemented in a previous work for buffer

storage design in production lines with successful results (1). Later,

it was applied ~o discrete event dynamic systems using activity cycles

world view (2). The simulation of the systems in that particular study

was carried out using ECSL, an activity oriented simulation program (;).

successful solutions of these problems have led to extensions to other

nonstandard queueing networks (4-lb), and these have been collected in

a technical report (11).

3

In the remainder of this chapter an outline of the thesis is given

with references to the related chapters, a summary of this outline can

be seen in Figure 1.1. with the numbers in parenthesis showing respective

chapters.

A basic problem faced by all practitioners of simulation is choosing

a method for viewing complex systems in a manner that reduces the complexity

and enables one to logically analyze the components of the system. There

are many ways to approach this problem, including the flow of entities

through the system, events that take plac~ in the system, and the activity

cycl~s of the entities in the system. Event is an occurence which causes

a change in a system entity.ln the event scheduling approach, emphasis

is on.the occurence of individual events, each time the simulation clock

is advanced the,. next event is determined by predetermined instructions (12).

structured
progr~ing (III)

PASCAL (III)

Discrete event
Simula tion (I)

lictivi ty
Cycles (II)

ACSDI (III)

Implementation of
Sample path Analysis (IV)

Figure 1.1. Outline of the Thesis

Sensi ti vi ty
Theory (IV)

I

Propagation of
Loc~l Gains (IV)

Events are filed in ascending order of the scheduled occurence times. A

significan~ amount of book keeping e£fort is required to keep the sche­

duled event in its proper sequence. TO insert a new event in the list,

4

a se~ntial search is performed until the appropriate location is found.

As the simulated events ocur, they are removed from the head of the list

and the simulated clock is advanced to the smallest event time and event

is executed. One of the difficulties of this approach is its division of

the logic of an operating system into small parts, for instance the return

of a part from a machine is stated three times, one for ~he part~ one for

machine and one for the server.

Activity is the active state of an eritit,y where the state of the entity

is being changed. It is composed of two parts: testing the conditions,

perfo~ing the actions. Whenever a simulation time is advanced the next

step·.;is determined by a search procedure. A cyclic scanning of activities

insures that all possibilities are examined and necessary actions are

performed. 'lhis method will be used because of its graphic clarity and

logical appeal. Chapter II contains a brief explanation of the activity

cycle approach and presents the activit,1 cycle diagram of a restaurant

system, naLER.
Process ~riented approach carries out the progress of an entit,y through

the system from its arrival until its departure. A process is a set of

events or a collection of activities related to an entity. This approach

combines the run-time efficiency of event scheduling with the modeling

efficiency of activity scanning.

Digital computer is the main computing device for executing a simulation

model. In this thesis also lots of work is overcome by use df' a digital

computer, UNIVAC 1108 computer in Bogazi~i Universit,y, and ACSIM, a

simulation program based on activity scanning (13). ACStM has been designed

by applying the concepts of structured programming 'and using PASCAL as

the programming language. Chapter III discusseS the beneficial aspects

5

of the structured programming, describes the structure of ACSIM and presen.ts

the results of the simulation of IKILER.

Chapter IV describes the method for sensitivity calculation in.discrete

event dynamic systems represented by activity cycles. A formal view of the

approach is given and the new routines included into ACSIM for this esti-
~

mation procedure are explained. The method is applied to IKlLER and

comparative results of this approach and brute force analysis are stated

in the last section of ~e chapter.

A complete example problem, time-shared computer system is studied in

Chapter V. Fi~st the problem is defined, then the system is modeled using

activity cycle diagrams and finally sensitivity coefficients of the total

simulation time ~ith ,respect to durations of each activity in the system

are estimated all in one simulation run. The results are compared ~ith

the results of brute force analysis and the level of perturbations up to

~hich the deterministic similarity holds are examined.

Chapter VI discusses the use and efficiency of the new approach.

II. MODELING DISCRETE EVENT DYNANIC SYSTEMS

USING ACTIVITY CYCLE DIAGRA}lli

'lhe first task at the start of a simulation study is the choice of a

way for viewing and modeling the system of interest. In the United States

much of the simUlation study has been based on an event-scheduling,

SIMSCRIPT, or process-interaction, GPSS,SlliULA, orientation. In contrast,

England and Australia have tended to use the activity cycle approach (14).

In the activity cycle approach, the activity is the basic unit com-

posed of two parts: checking the conditions and performing the actions.

Whenever a simulation time is advanced, all the activities are scanned

for possible performance. If all conditions fpr an activity are satisfied,

state-changing and time-setting instructions are executed. A cyclic

scanning of activities insures that all possibilities are examined and

all necessary actions are performed. When an activity scan is not employed

as is the case in GPSS, SIMSCRIPT, and SIMULA, all system events must be

predetermined and scheduled.

An activity scan is efficient for highly interactive proce~ses that

involve a fixed number of entities~ Event-scheduling is efficient for

less interactive processes that involve large number of entities. A

process-oriented language reduces the number of statements a programmer

has to write, since many event subprograms can be combined in one

process routine. Each modeling scheme can be advantageous in some systems

and disadvantageous in others. There are no rules for selecting one

scheme over another for a given system.

In this thesis activity scanning approach is chosen as th~ basis for

modeling the systems because of its logical appeal and graphic clarity.

7

This approach has the advantage of viewing complex systems with an

apparent ease of communication. Use of internal clocks for each entity,

explained in sec tion 2.1 ~, makes it possible to scan the ac ti vi ties

without need to use predetermined lists.

2.1. Activity Cycle Approach

. The basic elements of the activity cycle approach are the entities,

the activities, and the queues:

i. Entities: A system is considered to be composed of entities which

are the elements whose behavior over time will be examined. In a restaurant

the entities of interes t might be CUB tomers, servers, and tables. In a

computer system the entities might be central processing unit (CPU),

terminals, disks, tapes, and jobs.

Entities of a system may have attributes which describe and disti~uish

them. A customer in rest~rant might have a demand of two or three

servings, or a job in a computer system might have a request from disk

or tape, and those are the attributes distinguishing them from the others.

It would be use ful to group various entities together into classes on

some logical basis. A basis for classification could be grouping the
. \

entities whose behavior follow identical protocols. For example, servers

in a restaurant could be classified as head waiters and waiters, first

group taking the orders from the customers and passizlg them to the

waiters, and the second one taking the orders from head waiters and

serving the customers.

In an activity cycle, there are basically two groups depending on

the state of the entities. "Activi ties" which are the active states of

the entities form the first group, and "Queues" ~hich are th~ idle

states of the entities form the second group. Each entr~ has an internal

clock showing the time when it will or has become available in its

respective queue. The internal clock of an entity is updated when the

entity is involved in an activity.

8

ii. Activities: Entities come together for a certain activity to take

place. For example, customer and head waiter would be present for the

order activity to start. Activities are considered as the active states

of the entities where the states of the entities are being changed. The

duration of an activity is determined according to a, specified distribution,

and all the entities involved in the activity experiences the same duration.

customer and head waiter coming from their respective queues are activated

while the order is taken and their internal clocks are reset to the

completion time of the acti~ity order.

conceptuall:}", it is useful to view each active state as having an idle

state as its immediate predecessor.

iii. Queues: Queues are the idle states of the entities. Each queue

belongs to asin,gle class of entity. An entity class may have one or more

queues in an activity cycle diagram. For example, tables in a restaurant

might be 'in two idle states as "full" and "empty" or jobs in a computer

system might be "waiting for disk", or "waiting for CPU", or "waiting for

tape". In general, an entity in a queue is awaiting the availability of

the other entities in their respective queues for the succeeding activity

to start. The duration of an idle state for an entity can be zero or

anything depending on the other entities coming from different active

states, in other words waiting time in a queue changes from an entity to

another.

The queues and the activities form one or more closed loops in which

the entities circulate. Many of the activities in a syst~m would require

more than one class of entity. Therefore preceeding queues of such

9

activities ,would be more than one. An activit,r would start if and only if

all the input enti ties are present in their respective queues. If any of

these entities is not in its queue, the other entities are forced to remain

in queue until that entity becomes available.

When an entity is involved in an activity the internal clock of the

entity is advanced to the completion time of that activity 'and its next

state is specified. However, this entity is actually placed in this queue

when the system clock or simulation time is equal to its internal clock.

System clock is updated after all possible conditions are examined and

actions are performed. It is advanced to the smallest internal clock of

the ,active entities. The entities with internal clock values less than

or equal to the system clock are in their idle states, waiting in queues,

and the entities with internal clock greater 'than or equal to the system

clock are in their active states.

Activity cycle diagrams present the complete logic for the operation

of the system and summarize the behavior patterns of the entities in a

clear graphic form. In such a diagram, activities are denoted by rectangles

the queues by circles. Each entity class has a certain closed path which

is distinguished by use of different directed lines.

As an il])l,stration, consider a system may be the simplest and the most

common one for all of the human beings. This system, working for the

functioning of a new born baby, is composed of two entities, a baby and

a mother. At the start of life a baby has basically two activities: to

sleep and to suck. Assume that the mother has only one activity, namely

to feed her baby. The activity cycle diagrams of the entities in the
r)

sys tem is shown in Figure 2.1., and Figure 2.2., that of baby and the

mother respectively.

10

~ ,

SLEEP FEED

"'--e--~
Figure 2.1. Activity Cycle for a new born baby

.-/---
/'

FE ~D .•

Figure 2.2. Activity cycle for a mother

Note that the mother and the baby have a common,activity FEED. Therefore

the baby must be CRYING and the mother must be IDLE for the FEED activity

to start. The operation of this system is most easily visualized by

combining the activity cycles of the two as in Figure 2.3 •

SLEEP
Baby
cycle.

.-/

/ '"" '? \.

l--___ F~E-E--c-D_--1 MO there
'" ("'Cycle ,,/

'- --------- .•

Figure- 2.3. Activity Cycle Diagram for the functioning of a new born baby.

11

Assume that SLEEP and FEED durations are deterministic with 180 and 10

minutes, respectively. The simulation of this simple system by use of

activity scanning could be expained as follows. Asswne that simulation

ends when the baby is fed twice. Initially, the baby is CRYING and the

mother is IDLE. The system clock and the internal clocks of the baby and

the mother are set equal to zero. Since the conditions for FEED are

satisfied, the actions are executed. Namely, next idle states are specified

as FULL and IDLE, the internal clocks of the entities are advanced to the

end of FEED, now they are both 10. The other activity SLEEP is tested but

not started since the baby is not FULL yet. Now all the activities are

scanned, it is time to update the system clock. The system clock is set

to the smallest internal clock of the active entities. For this case it

becomes 10. It·is time to move those entities with their internal clocks

equal system clock to the specified idle states. Now baby is FULL and the

mother is IDLE again.

The activity scanning goes on until the end of simulation. The steps of

simulation for this system is presented in Figure 2.4.

system Internal clock Internal clock state of State of

Clock of BABY of MOTHER BABY NOTHER

0 0 0 CRYING IDLE

0 10 10 FEED FEED

10 10 10 FULL IDLE

10 190 10 SLEEP IDLE

190 190 10 CRYING IDLE

190 200 200 FEED FEED

200 200 200 FULL IDLE
)

Figure 2.4. Steps of Activity Scanning

12

It should be noted as an important characteristic that an activity

cycle diagram is independent of the number. of entities in the system. The

diagram in Figure 2.3. could be used for a mother and her baby, or for a

mother and her twins, or for two baby-farmers and seven babies Bucking at

feeding-bottles in a baby-farm.

An activity cycle diagram is also independent of the time required to

perform the activities. The same diagram could be used for any entity in

a specific class. The diagram in Figure 2.3. could be used for any baby

and mother considering that it is independent of SLEEP and FEED durations

which might change from baby to baby and from a mother to another.

TO complete the diagram for simulation purposes, the number of each

type of entity and the distribution for the duration of each activity

must be added,. and initial states of the entities must be specified. Then,

this complete diagram provides the basic input for ACSIM.

2.2. Activity cycle Diagram of a Restaurant, IKILER

A restaurant system, IKILER, is developed as the basic sample problem

to clarify the concepts mentioned in this thesis. It will be studied step

by step and will be used for the illustrations of the third and fourth

chap ters, too.

Assume that IKILER is a res taurant having 20 tables, a head waiter,

and 3 waiters. The arr~ving customers enter the system if a table is

available, otherwise they leave. The interarrival times of customers are

independent identically distributed exponential random variables with

mean 10 minutes. The head waiter takes the orders from the customers and
(j

passes them to the waiters.~le duration of order taking is a uniform

random variable be tween 2 and 4- minu tes. Tne duration it takes to pass

the orders to waiters is again a uniform random variable between I and

13

3 minutes. ~e waiters take the orders from the head waiter and pass them

to the kitchen, when the food is ready they serve the customers.The

duration for the preparation of food, the cook duration, is a normal

random variable with mean 15 and standard deviation 3 minutes. The service

duration is a uniform random variable between 3 and 5 minutes. After

service completion customers have their dinner. Dinner duration is; a

normal random variable with mean 40 and standard deviation 8 minutes.

At the end of dinner the head waiter receives the payments.The-duration

it takes for receiving the payments is a uniform random variable between

.3 and 7 minutes.

The dynamics of IKILER would be well 'Jnderstood while observing its

ac ti vi ty cycle diagram shown in Figure 2.5:. '.!he arrival process is'

generated by an artificial generator, DOOR, which becomes OPEN according

to the intera.r.rival distribution of~the customers. When the DOOR is OPEN­

and a CUS'lDI1ER group is OUT, the activity ARRIVE starts and the customer

enters the system, and joins the queue PAUSE waiting for the availability

of a table. If a TABLE is not available,in other words if there is no

table in the idle state EMPTY, CUS'lDI1ER leaves the system. LEAVE ~s an

activity with zero duration. If there is an Ef>1PTY TABLE, the CUS'lDl1ER is

involved in the activity SIT with a deterministic duration of one minute

together with that table. After the completion of SIT the TABLE is FULL,

and the CUS'lDMER SITTING, and waiting to give the orders. ORDER activity

starts when the HEAD WAITER is IDLE and CUS'lDl>1ER is SIT'I'ING. At the end

of ORDER the HEAD WAITER is IDLE again and the CUS'lDMER is \'JAITING for

the next coming activity. ORDERPASS starts when the head waiter is IDLE'

a waiter is FREE, and customer is WAITING. After ORDERPASS ~dummy queue,

INDUMl is introduced. This is to declare that ORDERPASS implies the next

activity COOK. After COOK, customer is. HUNGRY while waiting for SERVICE,

8
'" -Door cYcle

customer
cycle

~

J ~ /JI.

~)

SIT

Table
", cycle

PAY

.'

\

Head' Waiter ~~
. . c,Ycle ... y_.X,
~..........."' -; 7' "" ,-,-:: ;a;a----,.---

.~ : ... / /

0/ .. /
~.(

..

DINNER

\
\

//'\
iINDUNl
~;

1
Wai ter \ COOK

Cycle I J
\..1 /

/'-\ \J v~ ~ ..
;IIIDUM2rE---j SERVICE L- HUNGRy'
~/ (r~

Figure 2.5. Activity cycle Diagram of IKILER

15

and the SERVICE starts as soon as a WAITER is FREE. Since the SERVIC~

implies the activi tYDINNER, ag'ain a dummy idle state IN.])U}12 is

introduced in between. After DINNER customers are READY to PAY, waiting

for the IDLE HEAD WAITER. When the activity PAY is completed table

becomes D1PTY, head waiter becomes IDLE, and customers go OUT to represent

a new gL'oup.

Table becomes FULL as soon as the activity SIT is completed and stays

in this idle state during' the activities'ORDER, ORDERPASS, COOK, SERVICE,

DINNER, and PAY. Instead of forming such a big cycle for the table and

introducing dummy queues between all these activities, a single queue

FULL is created and pr~ceded the activity PAY. It would be clear

that with this diagram a table would have to wait as FULL during all the

activities mentioned,above and goes into idle state ErWTY after the

comple.tion of P Jcr •

The elements of the activity cycle diagram could be summarized as

follows: There 'are five entity classes in IKlLER, namely HEAD WAITER,

WAITER, TABLE, DOOR, and CUSTOHER. '!he idle states of CUSTO}lER are

PAUSE, SITTING, WAITING, INDUf\11, HUNGRY, INDm12, READY, and OUT, the

idle s ta.tes of TABLE are FULL and EPWTY. For the entity classes HEAD

WAITER, DOOR, and WAITER there are only single queues; IDLE, OPEN, and

FREE, respectively. The activities in the system can be listed as

ARRIVE, SIT, ORDER, ORDERPASS, COOK, SERVICE, DINNER, PAY, and LEAVE.

III. ACSIM: A SD1ULATION PROGRAf·1

:BASED ON ACTIVITY CYCLES

Although a computer is not a necessary tool for carrying out a simulation

experiment, it certainly speeds up the process, eliminates the computational

difficulties, and reduces the probability of error.

In this thesis lots of work.is overcome by use of a digital computer,

UNIVAC 1108 Computer in Bogazigi University. ACSll1, a structured simulation

program employing activity scan is used in simulation of the discrete

event dynamic systems. '!he programming language PASCAL bas been used in

ACSD1.

This chapter includes a brief explanation of .the idea of structured

programming, gives a summary of ACSIM structure, and presents the results

of simulation of IKILER by use of ACSDI.

3.1. Idea of structured programming

The earliest computer programs were no more than lists of the primitive

instructions that the computer could execute directly. until the late

1950'S programming consisted of the detailed encoding of long sequences

of instructior~ into numbers in binary, octal, hex~ecimal form (15). The

programmers at this stage had to consider all details of .the machine

including its processor organization and its instruction set. As time

went by, more complicated programs were written and these program's

became unmanageable. To a machine the execution of a program(~pontaining

a few thousands instructions presented no problem. However, it was

practically impossible for a programmer to discover the principles of

17

such a complicated program and even difficult to explain his or her

own program. 'lhe reason was that these programs lacked structure. 'lhe

representation of a complex program as an unstructured, linear sequence

of commands was the most inappropriate form for the human inspector

to comprehend and to express.

'lhese shortcomings led to the development of high level programming

languages which were designed not according to the limitations of

current technology but according to the habits and the capabilities

of man to express his thoughts. In the following years these develop-

ments led to an increasing interest in the art of computer programming.

The presence and application of structure became the principle tool

in helping the programmer to synthesize systematically and to maintain

an overall comprehension of complicated pr~grams. All computer·programs

could be expressed in terms of four basic structures (16). These are

the sequence, the decision, the loop, and the procedure. The sequence

is a group of instructions executed one after the other. The decision

is a structure that ~nables the action of the program to be influenced

by the data. Many languages introduce the decision s t:iu.cture with the

word 'IF', such as:

IF a)b THEN c:=a-b

ELSE c:=b-a

The loop structure ~s used to execute an instruction or a sequence

of instructions several times. An example to one of the forms of loop

structure can be given as follows:

REPEAT

c:=c+i

UNTIL c~cmin

enables one to replace a group of instructions by a 'lhe procedure

t ' U of procedures. not only makes a computer single instruc ~on. se

18

program shorter and easier to write but also gives a hierarchical

structure. Furthermore it allows a prob~am to be the product of a team-

work with each procedure written by different programmers.

rrhe progl:amming language PASCAL uses all of these techniques of

structuring. They are incorporated in such ~ simPle way that PASCAL is

yery easy to learn and use, and also a well-written PASCAL program is

easy to understand.

'lhe layout of a program text must match the structure of the program.

A PASCAL progr~n is structured in levels, and the level of a statement

is indicated by indenting the statements. A simple example would

clarify these ideas.

PROGRAM addintegers;

VAl/. i,sum:integer,

:BEGIN i:=O,

sum:=O.

REPEAT

i:=i+l,

END.

sum:=sUIn+i

UNTIL 1=50;

write (sUm)

PASCAL programs start with the key word PROGRAM after which the name

of the program is given. VAl/. is the key word employed before the'

declaration of the variables used in the program. The main program is

stated between the key words :BEGIN and END.

ACSIM, the simulation program used in this thesis has been designed

"d " all these beneficial aspects of structured programming
cons~ er~ng ~

and the language PASCAL in particular.

19

3.2. structure of ACSIM

ACSIM is a general purpose discrete event digital simulation program

based on activity cycles. Once the activity cycle diagram of a system

is initiated it becomes almost automated to turn it into an input for

ACSIM. ACSIM is good for quick and little-detailed simulations without

need to invest much time for modeling end coding.

structured statements of the main program of ACSII1 is given belo ... , and

the equivalent flow diagram is shown in Figure 3.1.

BEGIN

END.

initialize,

REPEAT

move entities,

scan ac·tivi ties,

IF none of the activities could start

THEN update time,

UNTIL the end of simulation,

report

The dynamics of ACSIM would be quite clear after the refinements to

explain the underlined statements above:

initialize:

create the given number of entities, activities, and queues,

set system clock,

for each entity

set internal clock.

I NIT I A LIZ E~

MOVE ENTITIES

S CAN ACT I V I TIE S

FALSE None of
the ac ti vi ties

started

'IRUE

UPDATE TINE

Simulation
ended

~UE

FALSE

Figure 3.l~ Flow diagram of ACSIM

20

(j

move entities:

for each active entity

if internal clock equals system clock

then move it into its respective queue.

scan activities:

for each activity

begin

check conditions,

if all the condi tiona are satisfied

then perform actions

end.

update time:

report:

advance the system clock to the· smallest internal

clock of the active entities.

print the system clock,.

for eac? activity

prin t the number of times it has started,

for each queue

print the number of entities in the queue.

21

One more step of refinements is necessary to explain how the conditions

are tested and if satisfied which actions are taken.

perform actions:

for each entity to be activated

begin

take entity from its queue,

specify its next state,

if an attribute is specified then set i~~ value,

update thB internal clock of the entity

end.

22

check conditions:

if the number of entities in queue is lees than requirement

then condition is not satisfied

else if no attribute is specified

then begin

condition is satisfied;

specify the entities to be activated

end

else begin

search for an entity with desired att:iibute. ,
if found

end.

then begin

condition is satisfied;

specify the entities to be
end

else condition is not satisfied

ACSIM allows the ac ti vi ty dUl.'a tions to be given according to a certain

probability distribution functions with integer arguments as well as

deterministic durations.

Allowable expressions to specify the durations and corresponding

interpretations are as follows

CON(n) Constant integer with value n,

XPO(t) EXponential distribution with mean t,

UNI(a,b) uniform distribution between a and- b,

NOR(m,s) Normal distribution with mean m and standard

devia tion s. .

In any of the above distributions, activity durations are generated

so that they have integerval~es. ()

The format us~d to convert the activity cycle diagram of a system to

an ACSlll input could easily be understood by a simple illustration since

(

there is an apparent correspondence between the two.

'!he f,orma t as applied to the diagram in Figure 2.3. is shown below:

BAEYFARM: 143

}'EEI) BABY CRYING? HOTHER IDLE?

AFTER UNI(12,18):

BABY FULL, MOTI-~ IDLE,

SLEEP BABY FULL?

AFTER NOR(40,6):

BABY CRYING,

:BEDIN 4 CRYING, 3 FULL, 2 IDLE,

END FEED 17.

23

The first line identifies the system name and the initial seed to be

used in random number generation. '!hen activities are listed one by one

seperated by semicolons. Each activity block contains the name of the

activity, the conditions to be satisfied for the activity to start, the

distribution for the duration of the activity, and the actions to be,

taken in case the activity starts. conditions are recognized by question

marks. After the keywo~d AFTER the distribution is specified. Finally the

actions are stated and a comma is used as the seperator between the

actions. After all the activities are listed in this format, the initial

states of the entities are given after the key word :BEGIN, and the

terminating condition of the simulation is given after the key word END.

In the above example the name of the system is Babyfarm and initial

seed is 143. Initially, 4 babies are CRYING, 3 babies are FULL, and

2 baby _faxmers are IDLE. '!he firs t ac ti vi ty is FEED. The corfdi tions ,

. avail abili ty of a CRYING baby and an IDLE mother (baby-'farmer), must be

satisfied for this activity to start. FEED duration is generated according

to uniform distribution between 12 and 18 minutes. The actions to be taken

24

in this activity are to specify the next states for the entities involved

and to reset their internal clocks. The internal clocks are set to the

completion time of FEED, and next states ar,e specified as FULL and IDLE

for the b~by and the mother, respectively. ~e second activity is SLEEP.

SLEEP starts as soon as a baby is FULL, and takes time according to the

normal distribution with mean 40 and standard deviation 6 minutes. After

completion of SLEEP baby is CRYIl~G again. The simulation ends when the

11th FEED activity is completed.

Two extensions to this simple world view have been implemented in

ACSIM.

1. Each entity may carry an integer attribute that is set in some

actions and inspected in some conditions.

2. An ac ti vi ty may require more than one en ti ty from a queue.

For example, a part in a job-shop may require two workers

to be carried outside the shop.

The program listing of ACSIM is given in APpendix C, and a complete

syntax diagram for the ACSIH input is given in APpendix B.

3.3. Simulation of HCILER using ACSIrl

rrhe queueing system IKILER illustrated in Figure 2.5. is simulated

using ACSIM. Figure 3.2. shows the ACSl}l input as applied to the activity

cycle diagram of IKILER. Since ORDERPASS implies COOK, COOK duration. ~

included in ORDERPASS, and the queue INDUMl together with activity COOK

is eliminated. The same idea applies in the case of SERVICE and DINNER.

These activities are combined under the name DINNER. The SERVICE duration

is considered in DINNER, and the queue INDUM2 is eliminated. In other

words, instead of

SERvicE CUSTOl1ER HUNGRY? WAITER FREE?

AFTER UNI(3,5): CUSTOMER INDUM2, WAITER FREE;

DINNER CUSTOI1ER INDll12?

AFTER NOR(40,8): CUSTOMER READY,

a better format

is used.

DINNER CUSTOMER HUNGRY? WAITER FREE?

AFTER uNI(3, 5): WAITER FREE,

AFTER l~OR(40,8): CUSTOl1ER READY;

25

specifications of system parameters are given in section 2.2. Initially,

4 customers are SITTING, 5 customers are WAITING 11 tables are EMPTY ,
, ,

,the head waiter is IDLE, and 3 waiters are FREE? Obviously 9 tables are

FULL, occupied by"the customers in the system. 'nl;e door is OPEN to start

IKILER:

ARRIVE

S11

PAY

UINNER

CUSTOMER OUT? DOOR OPEN?
~FTFR 0: CUSTO~FR PAUSF'
At-TEl-< XpO(lO)! nOOR UPFN;

14

CUSTUMER PAUSE? TARLE EMPIY?
AFTEK 1: CUSTOMFR'SITITNG' TABLE FULLJ
CUSTO~ER HE AnY? TARLE FULL? HEADWAITER lULE?
AFTEH UNI(3'7): CUSTOt-lER OUT, TAHLE E~pl', HEADWAITER IDLE

CUSTOMER HUNGRY? WAITER FREE?
~~l~~ ~~h\~~~hj~Web~~~v~~E~~ADY;

ORDEKPASS CUSTU~ER WAITING? WAI'IEK FREE? HEAUWAIT~K IDLE?
A~TEK UNIt1,:»: WAITtrK FREE, HFAD\aJAITER IDLE'
At-TEK NOfH15',3)! CUS ovEK RUNGRYJ

ORUER

LEAVE

HEGIN

Et-:O

CUSTOMER SIlTING? ~EAUwAI1EK InLE?
AFTEK UNI(2,q>: CUSTOt-lFR \I.j~ITING' HEADWAl'TER

CUST()tJ.EH P "USE?
A~TEK 0: CUSTO~EH OU1;
4 SITTING,5 WAITING,2U OUT,9 FIILL,ll E~~IY,
1 IOLE,3 ~HEE'l OPEN'
PAy 60.

Figure 3.2. ACSIH input for the simulation of IKILER

26

the arrival process. Since this is a closed queueing model there would

be enough number of customers OUT, ready to ent~r the system at each

opening of the d~or. Simulation would terminate at the end of 60th PAY.

The system was simulated with the given specifications and initial

conditions. The system clock was 630 wh~n the 6oth'~AY was completed.

The simulatio~ o~tput showing the activity counters, ~le states of the

entities and the content of the queues are presented in Figure 3.3.

IKILr'K
SI~ULATION ENOt.U AT PAY 60
SIMUI AllaN ENOEU AT CLOCK - f}30.

g~yI0t. ~~~ ~f~~l~H ~8 ll~~~
PAY ~AS STAKTt.U 60 lIMES

8INNFK HAS STAKTt.U 63 lIMES
HUEn~A~ HAS STAKTt.U 63 rIMES

OKUER HAS STAKTEU 59 TIMES
LEAVr HAS SlnHTt.U 0 TI~~S

ENTITIES AT f}30
1 CIISTOMEH: 1 PAy

. 19 OUT
3 DINI\ER
5 S I I T TNt;

2 DO OK 1 ARKIVE
NO DOOR IN ANY QUEUE

1 YAY
10 EtJ.~lY q'FULL

4 ~FAUWAIT: N6 ~~XmJAITIN ANY (~UElJE
5 Wl\l l~R : NO ACfIVE WAITER

3 fRt.t.

1 l'iA IT ING

19: 4 13 18 14 17 20 1~ 21 16 19 22 24 ~6
o· 25 ?7 2A 29
U

lU 39 40 41 42 43 44 45 4647 4A

~ 38 ~l ~2333234 3S ~6 37 3A
U o
U
3 ~3 51 ~2
1: 1

(")

lt f simulation of IKILER, ACSIM output
Figure 3.3. Resu s 0

IV. ESTIV1ATION OF PARAHETER

SENSITIVITIES USING ACSIM

As stated in the Introduction, the question "How would the system

output change if we repeated the experiment under exactly the same

conditions, except for small perturbations in sample values of one of

the parameters?" will be answered without having to repeat- any experiments

at all. Furthermore this question could be answered for all of the

system parameters in one run, while simulating the system.

The system output is the total simulation duration. It maybe a time

value specified beforehand to terminate the simulation, or it may be the

time required to complete given number of activations of an activity, the

output activity.

The system output, Ts' is a function of the system parameters,i.e. the

activity durations.

where
Pjk= duration of the kth activation of activity j,

Kj = total number of activations of activity j,

H' = total number of activities in the system.

If a small perturbation is created in the k-th activation of activity

J. A then the system output in the perturbed system, Ts" will be
, jk'

given by:
T'=f(p ", ,p - , •• ,p "k-tAPJ"k'" ,PJ"K , •• ,p}oc)

S 11 J1 J j ~

where Ll.Pjk is the amoynt of perturbation introduced in Ajk•

The sensitivity of the system output with respect to the duration Pjk

28

is given by

(4.1)

dT s .
dPjk~S called the sensitivity of the system output to the individual

duration Pjk.

The sensitivity of the system output with respect to durations of all

individual activations of a particular activity j would be

k=l, •• ,K.
J

The resultant sensitivity of the total simulation time to the sample
aT

durations of activity j, ~, would simply be the addition of the
C>Pj

sensi ti vi ties wi th respect to individual durations. 'lhis is true for all

the activities in the system.

aT Kj ClTs (4.2)
s ;E ()p. = j = .1, •• ,M c>.p jk J. 1<=1

Here the basic assumption is that individual perturbations are so

small not to cause nonlinear effects in the system even when they are

applied in all the activations of a particular activity.

The efficiency of this study is due to the fact that the sensitivity

coefficients of the system output with respect to all the activity

dura tions can be es tima ted in a single run. Furthermore, the CpU time

it takes to es tima te M sensi ti vi ty coefficients is almoet the same

with the CPU time that brute force analysis takes to estimate only one

sensitivity coefficient.

This estimation procedure is done by use of perturbation,Propagation

Analysis. Perturbation Analysis can be carried out for a number of

performance measures of interest. In this study, the sensitivity

coefficients of the total simulation time with respect to the durations

of Borne or all of the activities in discrete event dynamic systems are

analyzed.

propagation of a perturbation refers to the way in which the change

in activity durations can propagate through the discrete event system,

affect various activities, and eventually cause a change in the total

simula tion duration.

In section 4.1. first a qescriptive then a formal view of perturbation

analysis for systems represented by activity cycles are presented. The

procedures included into ACSD1 to estimate the sensitivity coefficients

are explained in section 4.2. The sensitivity of total simulation time

with respect to the durations of the activities in IKILER are estimated

using ACSD1a.nd comparative results are also included in the last

section of the chapter.

4.1. senei tivi ty calculation for Systems Represented

by Activity Cycles

Suppose that a perturbation is introduced in some of the system

parameters. This will cause to put on gain or loss to the entities

involved. For example, if an activity is finished one unit early then

the entities involved in this activity will be' available in the succeeding

queues one unit early. As a result they all will have a local gain of

one unit. such a perturbation will be eventually propagated through the

other activities or will be cancelled, namely either realized or lost

by ~e system. Once a perturbation is introduced in the system its

. t the other entities is followed via the rules which are
propagat~on 0

called the Propagation Rules (2). They could be stated as follows:

i. Gain of an entity is propag'ated either partially or as a

whole to all other entities involved in an activity if

this entity arrives last, namely if it is the critical

entity for this particular activation of the activity.

ii. Gain of an entity could only be affected at points in

time when an activity in which the entity is involved

occurs.

clearly, if local gains are not eliminated through the system this

30

would be referred as realization of gain for the entire system as opposed

to the realization of this gain for a single activity.

The Perturbation Analysis approach could be formalized as follows.

First of all it should be noted' that the system without any perturbations

is called the nominal system, and the one in,which the perturbations are

observed is called the perturbed system. All quantities pertaining to the

nominal path are nonprimed and those pertaining to the perturbed path are

primed.

Assume that a perturbation is created prior to the k-th activation of

the activity j, A
jk

, and its size is small. Gain of an entity i, Ei ,

at the start of k-th activation of this particular activity can be given

as a function G,(A'k) as follows:
~ J

where

Gi (Ajk) ~ Ti (Ajk) - Tl (Ajk)

T, (A ok) = The arrival time of Ei to its queue Qi preceding
~ J

activity j, prior to its k-th activation in the

T! (A ok)
~ J

nominal system,

= The arrival time of E, to its queue Q~ preceding
~ ~ ,

activity j, prior to its k-th activation in the

perturbed system,

= The set of all the entities involved in Ajk

(Assuming they are invariant for both systems).

Gi (Ajk) measures the difference in arrival of Ei' HS
jk

prior to

Ajk between the nominal path and the perturbed path. It could be positive

negative or zero corresponding to the cases of local gain, local loss or

no gain, respectively.

Since an activity will start as soon as all its input entities are

available in their respective queues, the starting time of the k-th

activation of activity j in the nominal system, T(Ao
k

), is given by
. J

T(A ok) = I>1ax To (A ok)
J iESo~ J

Jk .

Let Ec denote the critical entity which arrives last with

Since it determines the starting time of Ajk' Ec is called thee critical

entity for this partioul~ activation ~jk'

Similarly the starting time of Ajk in the perturbed system, t'(Ajk),

is given by

= M~ (Ti(Ajk) - Gi(Ajk)) ,
~E.Sjk

and the critical entity for Ajk in the perturbed system is Ec ' ~~th

T' (Ajk) = T~, (Ajk) = Tc I (Ajk) - Gc ' (Ajk) °

comparing with the nominal system it is seen that the entities,

E iES will all have a local gain given by (T(Aok) - T'(Ajk))
i' . jk' J

at the end of A
jk

, assuming of course that no perturbation is applied

f o 1 °ns of all the entities involved in the duration of Ajk' These ~na ga~
()

C
an be written .in terms of the local gains of the critical

in Ajk

enti ties

(4.3)

where

T(Ajk) - T'(Ajk) = Tc(Ajk) - (Tc,(Ajk) - Gc,(A
jk

))

= Gc,(Ajk) + (Tc(Ajk) - Tc,(Ajk))

= Gc,(Ajk) + Wc,(Ajk)

Wc,(Ajk) = the waiting time of E ,for 'A 'kin the nominal
c J

system.

Consider two possibilities that could occur:

1. 1he cri tical entity remains invariant in the nominal and the

perturbed systems. This means E =E • If we consider this case in
c c'

equation 4.3, final gain becomes

In other words, the critical entity forces its gain as a whole

to all the entities inv?lved, in Ajk• All the ~ntities coming with

gains G. (A 'k)' ;i ~ S 'k would leave activity j with gain G (A 'k) •
~ J J c J

ii. The critical entity for Ajk is~ifferent in the two systems.

This means Ec~ Ecl • In this case final gain is

It should be noted that

Thus the final gain is determined by the critical entities in the

two systems with a value between their original local gains.

T'ne summary of this formal view is shown in Figure 4.1., assuming

that the variables are functions of a particular activation of an

activity, although not stated explicitly.

Up to now it is assumed that Ajk itself would have no p~~turbation.

But there could be a small perturbation,~p'k' in the duration of
- J

this particular activation. In this case the duration of Ajk in

32

NOl1INAL PATH PERTURBED PATH

T~ •••• lTi
'\V

G • • G • •

E~ •••• E. • •••
~

p

1 ····1

ITn
Q

En

I

1

ARRIVAL TIME

QUEUE

ENTITY

ACTIVITY

COMPLETION
TINE

lT~ . . lTi~i ··IT ~ ~ ~ n n

@ . . G •• G
E~ Ei •••• En -

p

I

1 1 1
T + P = Max (T , •• , T. , •• , T) + p

~ ~ n

=- T + p
0;

T' + P = Max (T~-G~, •• ,Ti-Gi, •• ,Tn-Gn) + p

= (Te.-Ge ·) + p

final gain = (T + p) - (T' + p)

= To; - (Te.- Ge .)

Figure 4.1. propagation of 10qal gains through ~ activity

34

in the perturbed system is P A h . .
jk+~Pjk were Pjk ~s the durat~on of the

activity in the nominal system. In general, final gains of the entities

at the end of A' k is given by FG(A.) where
J Jk • .

FG(Ajk) ~ (T(Ajk) + P jk) - (T' (Ajk) + P jk + bp jk)
,

= Tc(Ajk) +.'P jk - (Tc,(Ajk) - Gc,(Ajk) +P jk +D.pjk)

= Gc,(Ajk) + (Tc(Ajk) - Tc,(Ajk» -bpjk

::; Gc,(AjJ + Wc,(Ajk) -b.Pjk

for all E., i f s ..
~ Jk

b. Pjk is either positive or negative or zero corresponding to the

cases where the activity duration is increased or decreased or

unchanged, respectively.

It would be clear that gain of an entity wil~ be affected only when

it is involved in an activity.

To be successful in the estimation of the sensitivity coefficients

by use of perturbation Propagation Analysis, the perturbations must be

so small that for each enti~ the sequence of activities remains invariant

in both the nominal and the perturbed system. This is called the

(

Deterministic Similarity of two systems(ll). Stating it once more; the

perturbations wolildbe small enogh not to change the order of the f'low

. of en ti ties wi th respec t to the nominal path. For example, assume that

A. and A. need an entity E· from the same queue and A'k starts
J+~,l Jk ~ J

before A. in the nominal path. A large perturbation may cause A. 1
J+~,l J+~,

to start earlier th~~ A. , therefore it switches E. from A' k to A. l' Jk ~ J J+~,

and causes local gains not predictable by the propagation analysis.

35

4.2. Addition of Routines into ACSDI to Estimate Parameter Sensitivitiefj

The sensitivity of the system output with respect to the individual

durations is defined in section 4.1. as

6)T
s b T (Lop ok)

= lim s J
APjk~ 0 Apjk

where b.T. (Ap ok)
s J

is the change in the total simulation duration of the

nominal path. caused by the perturbation l:l p jk in Ajk•

Assuming that this perturbation is small enough this sensitivity

coefficient can be written as

=

- substituting equation 4.4 into equation 4.2 the following resu~t

is obtained.

Ko

=~
k::l .b.p jk

bT (Llp oJ :s J

The perturbations b,p jk is taken to be equal for each activation

of ° ° t A "p. JO = 1, •• , KJo. This equality. resul ts in an act~vJ. :y, . UPjk =~ j

the following simplification:

6T (6p 0)
s J

change in the total simulation time of the
~T (~p) is defined as the

s j
the perturbations applied in all the

nominal system caused by

activations of activity j with the srune amount of 6pj.

ACSIM supplies the change in the system output with respect to the

perturbations in each activity, b~ (t:.p,)
s J

j = l, •• ,M. at the end of

a single simulation run by means of new routines. An array of local

gains for each activity is kept for each entity in the system. fuis

can be thought as a matrix of local gains, GAIN(i,j), whose entries are

showing the gain of an entity i at any time if the perturbations are

applied in the duration of activity j.

The resultant system gain at the end of simulation is given by

j = 1, •• ,1'1

for each of the activities in the system, where'I is any active entity

whose internal~clock is equal to the system clock at the end of

simula tion.

The sensitivity coefficients of the system output with respect to

sample durations of-each activity is simply found as

=
GAIN(I,j)

6p,
J

at the end of a single silnula tion run.

j = 1, .. ,1'1

Since these results are valid for this particular simulation run,

this analysis is named as sample path Analysis(11) •

ACSIM keeps track of local gains with respect to each activity for

each entity in the system. Local gains are updated when the entities

are involved in an activity. The basic rule used in ACSIM for propagation . "
of local gains through an activity is to pass the gain of the critical

other ent;ties involved in the activity and ~o
entity to all the •

subtract the amount of perturbation from these gains in case there

exists a perturbation in this activation.

The critical entity is found while checking the conditions for the

start of an activity. If all the conditions are satisfied then the

entity whose internal clock equals the system clock is the critical

entity. The dynamics of this estimation procedure could be followed

in the new structure of ACSD1 given in Appendix A.

4.3. Experimentation with IKILER

The approach described in this chapter was applied to IKILER

illustrated in Figure 2.5. The total simulation time was 630 minutes

when the 60th PAY activity was completed. The sensitivity of the total
~/

simulation time with respect to the durations -of ARRIVE, ORDER, paY,

ORDERP ASS and DINNER was es tima ted, all in one run.

The perturbations in all the activities were 0.001 minute~decrease

in the sample durations. The highest sensitivity coefficient is

observed with respect to the. duration of ARRIVE. It is found to be 39.

This result was compared with that of brute force analysis. Namely,

one more simulation run was performed in which all the activations of

ARRIVE were actaally decreased by 0.001 minute, and the simulation was

terminated at the end of 60th PAY again. The system clock appeared to

be 629.961 minutes. The sensitivity coefficient was calculated as

629.961 - 630.000

- 0.001
= 39.

This is the same result with the one est.imated by ACSIM. '!hen four

37

more simulations were performed to compare the resul ts in case of the

other four activities, by the same way above. A.ll the results estimated

38

by ACSIM are equal to the results of brute force analysis. It should be

noted that ACSIM results were taken at the end of a single simulation

run, however brute force analysis required six runs, one for the nominal

path and five more for the perturbed paths in case of ARRIVE, DINNER,

ORDER, ORDERP ASS, and PAY. '!hese resul ts are summarized in Figure. 4 • 2 •

A new set of five more runs were taken with perturbation values

increased to 0.01 minute, to see the effect of that much perturbations

in the estimation procedure. As a result, the sensitivity coefficients

with respect to the activities ORDER, ORDERPASS, DINNER and PAY still

remained the same, but a small discrepancy was observed in case of

ARRIVE. '!his is due to the nonlinearity caused by.O.Ol minute pertur-

bations which resulted in the changes in the paths of some entities.

The results of these experiments are also included in-Figure 4.2.

ACTIVITY SENSITIVITY COEFFICIENT

ACSIi'1 BRUTE FORCE ANALYSIS
! 0.001 ml.n. 0.01 ml.n.

ARRIVE 39 39 30

ORDER 11 11 11

ORDERPASS 16 16 16

DI1"NER 0 0 0

PAY 22 22 22

Figure 4.2. Results of sensitivity analysis in IKILER

v. ll1PLEt>1ENTATION OF S.A1>IPLE PATH ANALYSIS

ON A TIME-SHARED C011PUTER SYST'Ji:M

5.1. statement of the problem

consider a company with a time-shared computer system consisting of

a single central processing unit(cPU), one disk drive, one tape drive,

and twelve terminals as shown in Figure 5.1.(17). The operator of each

terminal thinks for an amount of time which is an exponential random

variable with mean 15 seconds and then sends a message to the CPU. The

arriving jobs join a single queue in front of the CPU and are served

in first in-first out manner. If the CPU is idle, the job immediately

begins service.

computer

r-------------------------------------~-l
i I

Terminals
, I

I I
I I

00· ·0 I Disk I [J
,r D ~.,oo .. oB 0.15

0.05 .

•
0.20 0 0 . ~ 0 Tal)e

G I
____________________________________ . __ . ___ J

Finished jobs

Figure 5.1. A time-shared computer system

40

Each job occupies the CPU for an amount of time which is a uniform

random variable between land 2 seconds. upon leaving the CPU, a job is

either finished, with probability 0.20, independent of the system state,

and returns to its terminal to begin another think time, or requires

data from the disk drive, with probability 0.15, or needs some data

stored on tape, with probability 0.05. After obtaini~g the data either

from disk or tape the job joins the queue in front of the CPU again.

If a job leaving the CPU is sent to the disk drive it may have to

join a FIFO queue there until the disk drive is free. The service time at

the disk drive is un~formly distributed between land 5 seconds. Similarly

if it is sent to tape drive it may have to join a FIFO queue until the

tape drive is available. The service duration of the tape drive is an

exponential random variable with mean 14 seconds. All service times and

think times are independent, and ,all jobs are initially in the think

state at their terminals.

The goal is to estimate the sensitivity of the time required to

complete the 6-th request from the tape with respect to the service

durations of the CPU, the disk drive, the tape drive and terminal think

time.

Later, this sensitivity coefficients could be used to solve the problem

of congestions in the computer system occuring through interactions with

secondary storage devices, such as disks and tapes. Namely, if the

sensitivity coefficient with respect to the duration of tape drive turns

out to be considerably high, a solution to the problem of congestion

would be to try to decrease the service time of the tape drive. This could

be maintained by rearrangtng the locations of the stored data,jsince the

total service time of a request from a tape depends on the location

addressed by the request previously served(18).

5.2. Modeling the System

The time-shared computer system is modeled using activity cycles. The

activity cycle diagram of this system is shown in Figure 5.2.

The activities of the system are, thinking time at the terminal,

processing of the job at the CPU, requesting data from disk, and requesting

data from tape, and these activities are named after their location as

TERMINAL, CPU, DISK, and TAPE, respectively. The entity classes of the

system are the jobs, the CPU, the disk drive and the tape drive, which

are named as JOB, CPUF, DISKDRV, TAPEDRV, respectively. Two dummy activities !

nUMDISK and DUM"TAPE are used to take the jobs into the queues in front of

the disk and tape.

Initially all the jobs are in the terminal think state. At the end of

. think duration the jobs are taken from TERl1INAL into the queue WAITING,

in front of the CPU~· CPU would start service if CPUF is FREE and a J 013 is

WAITING~ TO ,be able to determine the flow of jobs in the system an

attribute for each job is created while leaving the CPU. Attribute DUNI,

having a Discrete U1~form value'between 1 and 100 is set at the end of
. I

service at CPU before jonining the queue READY. A READY JOB with an

attribute value DuNI>25 would take place in the ac~ivity DISK, since it

is given that 15 percent of the jobs leaving CPU requests data from the

disk drive. After taking place in the dummy action Dl&IDISK, with zero

duration, the job is taken into the succeeding queue INQDISK, in froni

of the activity DISK. Disk would start service if DISKDRV is IDLE and a

JOE is in INQDISK. Similarly if 2;0 L DUNI ~ 25 then the READY JOE is

first activated in DID1TAPE, with zero duration, then taken into the queue

INQTAPE in front of the tape. TAPE is activated if TAPEDRV is liE:RID and

a JOE is in INQTAPE. Finally, if DUNL f:.20 it implies that the JOB is

Job
Cycle

J

(~R''1',. P ~/,
"\ Tapedrv\ ,. \

'" Cycle i " 'r-~--~~-----
'I, '-'-I

DUNlf:2Q

DWJ)ISK

/~ /DiS:9
r-----2--; ,Cycle /'

/'
,/

INQDISK

\"'_/

DUM TAPE

.J

t··

" Cpuf .

'.

CYOle~

.-.... _-..

" DUNI=UNI(l,lQO)

Figure 5.2. Activity cycle diagram of the time-shared computer system

43

finished and the job turns back to its terminal. After the activations

of either DISK or TAPE, the JOB joins the queue WAITING for CPU again.

CPUF, DISKDRV, TAPEDRV would go back to their idle states FREE, IDLE,

and HERE after each activation of CPU, 'DISK and TAPE, respectively.

After explaining the dynamics of the model it would be very easy to

unders~and the input for ACSIM to estimate the parameter sensitivities.

The input format is presented in Figure 5.3.

COMPUT~R: 15

CPU JOH WAITING? C~UF FRE~~
AFTER UNI(l'2): JOH HEAr!Y ()IJNI=lJNI(l,100" CPlJF FREt:.;

DUMUISK JOR READY DUNI)2~?
AFTER 0: JOH INGOJSK;

DUM1AP~ JOR R~AOY DUNI)20?
AFTER 0: JOH INQTA~E;

TAPE JOB INQTAPE? TAPEURV HEHE?
AFTER XPO(14): JOH WAITTNG' TAPEORV HERE~

OISK JO~ !NQOISK? OISKURV InlEt
AFTER UN!(l'S): JOR WAITING, DISKDRV IDl~;

TER~INAL JOR READY?
AFTER XPO(75): JOR WAIT!NG;

BEGIN
END

!2 READY,! FREE,l IDlE'1 HERE.
TAPE 6;

~ERTURHN DISK l-,CPU l-,TF.R~INAL 1-,lAPE 1-,
F_IN •

. Figure 5.3. ACSIN input for the estimation of I?arameter sensitivities

in the time-shared computer system

(")

5·3. Experimental Results

'!he time-shared computer system was simulated using ACSIM. ~e

simulation ended at the end of sixth activation of tape drive. Total

simulation time was found to be 435" seconds. The sensi tivi ty of .this

simula tion time with respect to the durations of CPU, TERMINAL, TAPE,

and DISK were estimated while the system was being simulated.

44

The perturbations introduced in a~l the activities were 0.01 second.

It was observed that the sensitivity coefficient with respect to the

request time from disk was really significant. Then four more simulations

were performed by actually decreasing the durations of all the activations

for each activity. The results of these brute force runs were exactly

the same with the ones estimated by use of ACSIM.

Later the amount of perturbations were increased to observe the system

behavior to larger perturbations. With "perturbations of 0.02 second,

deterministic similarity between the nominal and the perturbed path was

still preserved, and ACSIM sup~lied the exact results. But when the

perturbations were increased to 0.05 second, this much decrease in DISK

service time caused some entities to change their paths and perturbation

propagation procedure resulted in not the exact but still a good result

for the sensitivity with respect to.DISK durations. However this is n~t

an unexpec ted resul t since 0.05 seconds perturbation in the duration.. .

of CPU,shoula not be considered as a small perturbation considering that

the mean of the distribution for" DISK durations is 3 seconds. The other

sensitivity coefficients were still exactly the same when the perturbations

were increased to 0.1 second.

It should be noted that s~nce a linear estimation procedure'xs used,

the e2timates of sensitivity coefficients obtained by use of ACSIM

45

would be the same whatever the size of perturbation is. However ACSl}l

would give exact results with that of brute force analysis in case of

small enough perturbations. To show that ACSIM would still give good

results in case of finite perturbations, four more simulation runs were

performed applying I second perturbation in all the activities. The

estimates of ACSIM for TERNINAL and TAPE were exactly the same with that

of brute force runs, where the estimates for CPU and DISK were not the

same but sufficient to observe the level of significance.

All of the experimental results are presented in Figure 5.4. The

number of activations of each activity is also included. This would help

to analyze the percentage of the times where the local gains are realized

as the system gain. For example, DISK started 126 times and sensitivity

of the simulation time to the service duration of DISK was found to be

105. This means almost 83.3 per cent of the time the local gains produced

in DISK were realized by the system.

ACTIVITY NUMBER SENSITIVITY COEFFICIENT
OF ~-

~RUTE FORCE ANALYSIS S TAR 'IS - ACSl}l
·0.01.0.02 s. 0.Q5- sec • 0.1 sec.

TERMINAL 49 2 2 2 2 .
TAPE 6 1 1 1 1

CPU 170 6 6 6 6

DISK 126 105 105 95 97

Figure 5.4. comparative results, of Sample Path Analysis on the

time-shared compute~ system.

1.0 sec.

2

1

9

59

4b

The average CPU time it takes ACSll1 to estimate all the sensitivity

coefficients while simulating the system· . was observed to be 26 seconds.

Each simulation run in which the durations of the activities were

actually decreased by the amount of perturbation took 25 seconds of

CPU time in average. '!his meanS all the sensi tivi ty coefficients were

estimated in 26 seconds by ACSIM, and in 25+25+25+25+25 = 125 seconds

by brute force analysis, the first rUn for the observation of the nominal

path and the remaining four to calculate the sensitivity coefficients

with respect to each activity. It should be noted that ACSIM brings a

significant amount of decrease in computer time.

The ACSIM output showing the estimated coefficients is given below.

COMP\llEK . .
SIMU(ATION ENDED AT TAPI:. n
SIMUt- AT ION ENOEl) 1\) CLOCK = 1l3!1
CPU - HAS STAHTI:.U 170 TIMES
OUMOTSK HI\S STARTI:.U 127 TIMES
OUMTI\PE HAS STAHTI:.~ 6 TIMES
TAPE . HAS STARTED 6 TIMI:.S
OISK . Hl\S STAHTI:.U 126 TIMES
TER~1NAL H~S STAHTI:.U 49 TIMES

SENSITIVITY OF CLOCK WRT PI:.RTURHATIONS:

ArTIVITY
CPU
oljl'llDlSK
~1)I'll T I\P E

API:.
~TSK [HMINAL

ENTITIES AT
1 JnH • ·
2 crUf

3 T!\PI:.URV

4 OtSKIJHV t. ·

PEHTUHHATION SENSITIVITY
-1 6

435

f
NO

1
1

NO
1

NO

o
o

-1 1
-1 10~
-1 2

TAPt 1 nISK
·INQUISK.
AClIVE CPUF
FRt..l:.
TAPI:.
lAPEORV IN ANY QUEUE
UISK
OISKDRV IN ANY QUEUE

Q~E~h8 AT 43W~rfING 0:
2 Cf"lUF FREE 1 : 13
3 JOti HEADY U:
4 JnH INQDISK 1 : !1
5 Jn ti INQTAPI:. u:
6 TI\PEUHV HEHI:. 0:
7 OTSKURV lOLl:. U:
.-, .. ~ . -:- .

q TERllttNAL

Figure 5.5. Estimated sensi tivi ty coefficients, ACSDl output of

. the time-shared computer system

VI. DISCUSSION

There are many different ways in which the efficiency of computer

simulations can be improved. Efficiency can be defined by various

measures such as the minimization of the variances of sample means~

minimization of the ·time for individual computer runs, or reduction

of the number of computer runs required. This study aims to reduce

the number of computer run~ required for the optimization of the

system output by a considerable amount.

To optimize some performance measure in a sbnulation study, each

parameter is changed and the performance measure sensitivity wi~~

respect to each change is computed by actually simulating the system

after each change. This gives an estimate' of the gradient vector of

the performance measure. After examining these coefficients, a new

set of parameters is found and checked, in this manner the performance

measure is optimized, iteratively. The disadvantage of this method is

that for M parameters in the system each step requires M new simulations

which is very demanding. This thesis brings an efficient alternative, -)

which has been developed rece~tly, to this brute force simulation

analysis.

This approach estimating the gradient vector of the system output

in a single simulation run while observing the nominal system, gives

a computational advantage of M to 1. It can deal with any queueing

network, and has full accuracy in case of small enough perturbations.

Even in the case that the -perturbations are not small enough to .

48

preserve the deterministic similarity, the gradient vector estimated

by this approach gives an idea about the relative effectiveness of

the perturbations applied in different activities.

The degree of linearity of a system affects the deterministic

similarity, and it changes from one system to another. Altoough it is
)

not a subject of discussion in this study, it could be addressed by

all optimization problems.

In summary, the new approach requires only one single observation

history, estimates all the sensitivity coefficients supplied by

calculations based on perturbation propagation analysis, and.it is

simple enough to be implemente.d on any computer.

'J

REFERENCES

1. Y. C. Ho, M. A. EYler, T. T. Chien, "A. Graiient Technique for General

Buffer storage Design in a Serial Production Line", Lnternational

Journal on Production Research, Vol. 17, No.6, pp. 557~580, 1979.

2. Y. C. Ho, M. A. EYler, "Analysis of Large Scale Discrete Event Dynamical

Systems, proc. IEEE Int. Coni. on Circuits and Computers, 1980.
- .

;. A. T. Clementson, CAPS/ECSL Reference Manual, .Univ. of Birmingham, 1918.

4. Y. c. Ho, M. A. EYler, T.T. Chien, "A New Approach to Determine

Parameter Sensitivities of Transfer Lines, Management Science, to

appear 198;.

5. Y. C. Ho, X. Cao, "Perturbation Analysis and Optimization of Queueing

Networks, Journal of Optimization Theory and Applications, to appear 198;

6. Y. C. Ho, X. Cao, C. cassandraS, "Infinitesimal and Finite Perturbation

Analysis for Queueing Networks, AU'rol""lATICA, to appear 198;.

1. Y. C. Ho, C. Cassandras, "A New Approach. to the Analysis of Discrete

EVent Dynamic Systems, AU'roMATICA, to appear 198;.

8. R. suri, "Implementation of Sensitivity Calculations on a Monte Carlo

Experiment, Journal of optimization Theory and Applications, to appear

1983.

9. R. suri, X. Cao, "'!he Phantom Customer and }1arked Customer Nethods

for optimization of Closed Queueing Networks with Blocking and General

service Times."

10. Y. C. Ho, C. cassandras, R. suri, "Stochastic Similarity and Statis­

tical Linearity."
I'j

11. Y. C. Ho,' "SPEEDS: A New Technique for the Analysis and Optimization

of Queueing Network ",Technical Report, No. 675, Harvard University, 1983

50

12. P. J. Kiviat, Simulation Languages, Appendix C in Computer Simulation

Experiments with Models of Economic systems by T. H. Naylor,

John Wiley and Sons, INC., 1971.

13. M. A. Eyler, "ACSn'l: A Simulation Program Based on Activity Cycles",

Bogazi~i University, 1982.

14. G. K. Hutchinson, "Activity Cycles: A Basis for Manufacturing Systems

and Control", ASME Winter Annual Meeting, Dynamic Systems Control

Division, 1979.

15. N. Wirth, Systematic Programming: An Introduction, Prentice-Hall,1973.

16. P. Grogono, Programming in PASCAL·, Addison-"\:lesley Pub. Company, 1980.

17. A. M. Law, W. D. Ke;Lton, Simulation Modeling and Analysis", McGraw­

Hill Book Company, 1982.

18." E. G. coffman, M. Hofri, "A Class of FIFO Queues Arising in" Computer

Systems", operations Research, Vol. 26, No.5, 1978.

APPENDIX A

DYNAMICS OF ACSIM
"\ .

Nain Program:

BEGIN

initialize;

REPEAT

move entities;

scan activities,

IF none of the activities could start

THEN update time.

UNTIL the end of simulation;

report

END.

Ini tialize:

create the given number of entities, activities, and queues;

set system clock,

FOR each entity

BEGIN set internal clock,

FOR each activity

se t local gain

END·

Move entities:

FOR each active entity

IF internal clock eq~als system clock

THEN move it into its respectiv~ queue.

52

53

Scan activities:

FOR each activity

BEGIN check conditions,

I:F' all the conditions are satisfied

THEN BEGIN

include the amount of perturbation into the local
gain of the critical entity;

perform actions

END.

update time:

advance the system clock to the smallest internal clock of the

active entities.

Report:

print the system clock;

FOR each activity

print .the number of times it started;

FOR each activity

print the amount of perturbation and the sensitivity coefficient;

FOR each queue'

print the number of entities in the queue.

(;

Check conditions:

IF the number of entities in queue is less than requirement

THEN condition is not satisfied

ELSE IF no attribute is specified

perform actions:

THEN BEGIN

condition is satisfied;

specify the entities to be activated;

check if the critical entity is one of them

END

ELSE BEGIN

search for an entity with desired attribute;

IF found

THEN BEGIN

condition is satisfied;

check if it is the critical entity

END

ELSE condition is not satisfied

END.

FOR each entity to be activated

BEGIN take entity from its queue,

specify its next :state,

IF an attribute is specified THEN set its value;

update the internal clock;

FOR each activity

update the local gain

54

APPENDIX 13

SY1~TAX DIAGRAl1 FOR ACSIM

syst~m >~ ~ Activity I {)(

(f-ert,;"bati-?l
~ .)(~

Activity
condition EXPr Action

/ (')~----------

perturba tion
PERTURl3N

J

Expr

Action
-------4~

ExPr"

Key words: AFTER, BEGIN, END, CLOCK, PERTURJ3N, FIN

Terminal Symbols:

id:. = identifier (sequence of letters and digits) ,

num = number (sequence of digits)

57

)

(0 rel =-{: (equals) apr =-{: (assign)

. ;. XPO

func = {UNI
NOR

APPENDIX C

ACSIM PROGRAM LISTING

RA~ ACSIM;

INST AMAX=20;
SHAX=90;
CMAX=15:
o M.A X =4 0; -

-EMAX=200;:- -- .-- .--.-... ::-':-~ .. -.-

~ t ~ ~ 6 ; o:'~- :"_, '::~_ : co- :-_-::
PNT ='.'; -- -

59

WAFTER='AFTER ':
WCLOCK='ClOCK ':
WBEGIN='BEGIN 'i

: WEND ='END 'i
. WXPO ='XPO ':

WUNI ='UNI 'i
:w NOR = • NOR . • ; . _.

- BLANK_=' - '-ic --__ -COMMA=' t';
-EOl ='=':-PlUS='.':

WPERTURBN='PEQTURBN';
-SEMCOL=';': COLON=':';

MINUS ='-';GTq =')';
OMARK='?';
lSS ='(';

rPE ATYP=O;'·"AMAXi.-
STY P = 0" Ii SMA X i -- -
CTYP=O ... ,CMAX:
OTYP=O •• OMAXi --
ETYP=O"~'lEM"X i-- -- -
WORD=PA~KEO ARRAY[l.;~lJOF CHAR;

~~~~~~~Ig~~A~~g~gNI~~~~)iNC:FUNCTN OF 
____ .. _______ CON,XPO: (N:INTEGER): __ 

--- .-- - ----- -UNI,NOR: (P,O:INTEGER) END; 

__ . ___ ACTIVITY -~~~:~::O-~P:_-::k~~6;g~u~~;~~f~ ii~ft~E~~STENT :ETYP; 

AR 

- - GOON: BOOLEAN· NAME: WORD· - END; 
S T ~ TEMENT =RECORDPO S: QTYP '-REO: ETYP' - ·-:-=,,~ .. -,:::: .. ----:OPR-CHAR·---:XPR·EXPRI-SSION '-- - END-.. __ ." _~"_ " .. _ •... ,.... • t.. , 
E N TIT Y _. = R E,S 0 R D__ l 0 C : ~ T Y PiT I M f:. , A T R B : I ~ T E G E R i: _ 

- .. - ...- -G Al N _ A R R A V C 1 •• A M A X J O· I NT E 0 E q , 

.. 
QUEUE 

NA:ATYP: -
N5:STVP; 

.. - N C : cry P ;' 
NO:OTYP; 

. .. - - -- -- ',::;: -:-- CAS E· ACT I V E : BOO LEA N OF 
TRUE:CACTNUM:ATYP'; 

'- .. --: .. - FALSE:(SUC,PRE:ETY:P) END; 
=RECORDHEADiTAIL,NUM:ETYP; CLASS:CTVP END: 

t l.. 0 C K , END V , I NIT I A L SEE D , E R C 0 U NT: IN T E G E R: i 
ENOC:ATYP-

. _ ' .. _=-:: =_SENS_, MOVE SC AN, ENDS 1M _: B O~LEA N: 

NE: ETYP; - _. .- :___ .._ _ 
-, SYSNAME :PACKEO-:ARRAY[l-•• SLJ OF CHAR ;_. ' 

ACT:ARRAV[l t,;.AMAXJ -OF "ACTIVITY· , 
., '- .. ::_": S TA:ARRA V[ l:e .SMAXJ.-OF ~s T A TEMENt;: 
'-"OUE:ARRAYCl;';QMAXJ'OFOUEUE;' .. , 

ENT:ARRAVCl;;EMAXJ OE ENTITY- . 
" ACTN: ARRAY[l.·.CMA)(i-li.~AMAXJ ·bE-·ETYP; ,,--.,-_ 

--. .. C N A ME, A N A ME: A R RAY [ • 'C M A X J -OF WORD::" 
ON AME:. ..._ .. :-:A~:~AY[~~~'~:Mf~ 3. _:O_~~ORD.; 

UNCTION RNO-(VAR S:iNTEGERf:'REALr 
B E-G 1 N 5 : = ( 2 517 3 * 5.,. 13849 L MOD . 6 5 53? _: R ~ 0 : =S I b 5 5 3 6 _ END; 

-- .. 

. --- . -- - -.:--:~ -- =.----- -
. -. -- ---



60 

PR9~~DUR5:By~~?U~i[TYP: 
BEGIN WRITELN:WRITELN('OUEUES AT '!CLOCK,CDLDN): 

FOR 0:=1 TO NO DO WITH OUE[o] DO 
BEGIN­

WnITE(O:2,BLANK,CNAME(CLASSJ,3LANK,ONAME(O],NUM:4,COLO 
.E:=HEAO: .. '.,. , . : .. 

-WHILE '£>0"00 BEGIN WRITE(BLANK,E): E:=ENT[E].SUC ENO: 
WRITELN .... 

. .. .... END .. ·. ~ .::::. _ .. : c.·.: .- : .: •.• 
END: (* 0 U M P 0 U E··* ,. . .:' .. : .. 

PROCEDURE DUMPENT:~' .. 
VAR E:ETYP: 
BEGIN WRITELN('ENTITIES AT ',CLOCK,COLON); 

FOR E:=l TONE 00 . WITH ENTCE] DO 
WRITfLN(E:2,SUC:4,PRE:4,LOC:4,~IME:8,ATRB:8) 

.. END: (* OUMPENT *J ... .. . . . .. . 

.PROCEDURE OUHPSTA: . . 
.... V A R A : AT Y P :S : STY P: C: C T Y P: Q: Q T Y P : 

P.RDCEOURE p.UTEXP(E)(:EXP.R.ES.SIPN):· 
BEGIN WITH EX DO :0.':'-::::.:':.::' .• :" .. : 

CASE FNC OF 
.. . :CON:WRITE(N) ic",;:- .. 

XPO:WRITE('XPO(',N,')'): 
U !Ill: W RITE ( , UN I ( , , p , COM M A, 0 , ' ) , ) : . 

. :. NOR:W R.IT £ ( :' NOR ( , , P , COM H A, 0 , ' ) , ) .' 
END 

EN 0 : ,_ . ( * PUT E X P * ) 
BEGIN (*OUMPSTA*) 

S: =0' ,. . 
FOR 1:=1' TbNA Db WITH ACTCA] DO 

BEGIN WRITELN(NAME); 
.. REPEAT S:=S+l: WRITE(BLANK:S): 

.... . .. . WITH S T A( S] .00 
'C::::: ... ',: : .. ::.:~:::. ·c.:.'-. IF·.P 0 S > O:c . 

. '--.' ...... :. :-=. .... 1H ENB E GIN 

.··oc=.,···: ·c=:::{+j~~::t.:.:-.:~~::·>J~:~:~~5~ iOi~ E~Le ~ i tE (R EQ ,el A NKJ : 
... -.. . . .. .. - P U HJOR 0 ( eN A M E ( C ] ). W R IT E ( 9 l A N K )": 

: ....._ . .. _ PUT W OR 0 ( C N A M E ( P 0 S j ) ; _ :". . .'. . . 
... . .. ' .. ~. '-co .'.: .... :::'.··-tF'f-·o P R < > B LAN K ::0.. .._. - ..~ . -- . 

THEN BEGIN PUTWDRO(ANAME[C]): 
. .....- :.:. .' --'~~'. .0' .. .- :: :.:': W R I T E ( 0 P R ) ; PUT E X P ( x P R ) 

... ~:' .. ::-:~"'" .. END: - . ., .. 
IF S=LASTACT 

THEN WRITElN(SEMCOL) 
ELSE IF S)LASTCON THEN WRITELN(COMHAI 

ELSE WRITELN(OMARKI 
.: ... :.': ·ENO· 

ELSE BEGIN 
. - ~~:' .. ~:_.: _=: .. , -.'. W R ITEJW A FTER:)-: P U TE X P (X P ~ ) : W RI TEL N ( CO LON I 

c' •. -.·,:'· •. 0 .. -:.C'.-:·:O:.-;.. -..• ' -.:.: •.. END· 

=~,,~.~~-:~:;~==-=c:~:t No: .. ~ ~ ~~~J::~.p~~.~,~~~.::~_!:~,C_T: .:~: .= . : . .- - ... 
'... WRITE( WBEGIN)""; . . ..... .. . 

·c FOR.,Q::.=l.:.TO·:NO·OO··WITH·:OUE[OJ DO. .... , . 
--·:·:·:··~;·tF.:·:NUMjO :':THE W:WR1. TE (NUM; B LAN K',Q N AM E[ Q] t CO "I I'U ); \oJ RITE LN : 

WRITE(WENO) ; 
.... -.:.::! F:-ENOC=O· ~THEN-:cla!R ITE (W CLOCK) 

- .... "_-:::::;0 .... ELSE:'WRI1E'( ACT[ ENOe] .NAME:) ; 
WRITELN (ENOV, PNT) ; .. WRIJELN; WRI'TELN 

END," (*,::·nUMPSTA ~-) •. :C:. --.-.::.':. . 

PRO CEO U R E . I NIT I A LIZ E: . .... .. 
. V AR: . ill : W 0 R 0: . C H : C H A R ;V , I : 1 N T E G E R: N U MER A L , LAS T : BOO LEA Wi 

.E: ETYP:Q: OTYP; 
" .. _ ... - ---- ----._ ....... - .--



PROCEPURE GETWORD; 
(* READS NEXT IDfNTIFIER INTO W AND THE FOLLOWING SY~BOL lNTO CH • 
(* IF ID[NTIFIER IS NUMERAL THEN V CONTAINS ITS VALUE,OTH[RWISE 0 I 

VAR I:O.;WL; C:ARRAY[l.;WLJ OF CHAR: 
BEGIN . -

W~ILE NOT(CH IN ['A'.;·Z','O·;.'9'J) DO READ(CH): 
V:=O: 1:=0; NUMERAL::TRUE: . 

REPEAT 1F r<WL THEN 
BEGIN 1:=1+1: C[IJ:=CH-

IF NUMERAL AND (CH iN ['0',;'9'J) 
THEN V;=10*V+ORO(CH)PORO('O') 
ELSE NUMERAL:=FALSE 

- END: -_ . 
REA D ( C H) _ .. _ -:. _ . _._.-: . _ . 

UNTIL NOT(CH IN ['A'.;·Z','O';.'9'J): 
W H I LEI < W L·· 00::- BEG I IQ - •.• I : = 1 + 1: .. C [ I J : = S LAN KEN 0 : 

C~i~lCt~!~liNK 00.· READ(CH) . 
---._END: (* G£TWORO_:*) . 

PROCEDUREGETOU_E( VARO_:QTYP:J: . 
V A R. C : C T Y P ;0 ,::~c__ _ : =- :_ 
BEGI~ . 

- .• C N A MEr N C+ 1J : = W_:- _ 
-- . - C: = 0 - REP EAT: C : = C + 1 UN TIL C N A M E ( C J = W ; 

.GETWORO: ONAM[[NQ+1J:=W: IF C)NC· ... . .. ~ 

THEN BEGIN NC~=C:O:=NO+l END 
ELSE. BEGIN, Q:=O: REPEAT Q:=O+1 UNTILQNA~E(QJ=W END: 

-'·IF O>NO·,--- - - .. 
THEN BEGIN NO:=O: WITH QUECOJ DO 

- _,-<c._. __ ~,BEGIN.-HE.AD:=O; TAIL:=O; NUM:=O: CLASS:=C· END END - , ., . ... 
~NO; (* GET9U£*).:._,__ _ 

... - _. - .... -- . 

PRO CEO U REG E T EX P ( V--A R EX: EX P R t S S-1 0 -N) ; 
BEG I N - . -- . ,. .:- • . .. -. • GETWORO:- . -0_' - , - , 

WITH EX DO 
IF NUMERAL THEN 

BEGIN FNC:=CON: N:=VENO 
ELSE IFW=WXPO THEN 

BEGIN FNC·:=XPO: GETWORO iN: =V--- END 
ELSE IF W=WUNI THEN 

,-- .- BEGIN'fNC:=UN_I:~.~GETWORD: P:=V: GETWORO: ··Q:=V-ENO 
... ELSE- IF'W=WNOR---THEN'---:--

'_.:: [[ SE=--::--~~~5~ t ~~c::~J-_~ORLGETWORD: P: =V ; __ G_ET W DBO: 9: =v ENO 
EN'O; (* G E TE XP .* j' -- --~-,--- --co":.· . -- .. --: c- -

:,. p·R-o-c ElfliR E·. C 0 N·DiTtoN;-':.:'':t~''-~~:':~::~~:c::-~X::::·~o':~--:: 
BEGIN wITH STA[NSJ DO 

·.IF -NUMERAL··'::_:·,: .. - ,.:- -,:'_c- ---__ ,-:,:-'.. '::-, __ ,.- . ,_ 

-THEN" BEGIN:-RE·ti:=\r:~GETWORb; 'GETQUE(POSl: OPR:=BLANK END 
ELSE BEGIN .. , " 

- REO : = 1; GET 0 U E( PO S , : 
IF CH=QMARK 
_ ,THEN OPR:=BLANK 

- '-ELSLBEGIN . (*ATTRIBUTE OPEQATION EXPRESSION.' 
SETWORO; ANAHE[OUECPOSJ;CLASSJ:=W: 

,... ._:c-:,:.,,-::-::~~:.~::-::-oP R:=CH :GETEXP (X P R t' .. . 
_ ,__ ·:_C .--. '-" .c,. ----: - .-.c. '.ENO· . 

_ __ .. _ END :_ . -. . .. 
:." :':.·-~:,:":'-::-::wHl LE. -CHC>OM AR K'no ':.: :'-REAO (CH)· 

END: (* CONDITION*) - -
-- ~- - .- - - . - -

::::·PROCEOURf·A'cr:ioN;~o,:~c-=,-->:-c:~{ ::.:':: - --- .-.. , 
BEGIN WITH STA[NSJ DO 

'IF W-WAFTER . . 
. ":THEN-:BEGINc~:7.: (~":-A·FTER- CLAUSE*' 

REO:=O: .POs:=o; OPR:=BLANK; GETEXP(XPR!: 
_ ., :'::-: -- .. -CC-:: WHILE CH< )COLON ·00 READ (CH) 

END· . 
ELSE BEG IN _ (* -,PROPER ACTION ~). 

-.- REO:=O-:GETQUECPOS) - . 
IF CH iN [COMHA,SEMCOLJ 

--:c. :--::--::':"::::::..:THEN:-OPR :=BLANK 

(i 

- -- - --.-=: ··-"ELSE-:Bt-Gr"N:- (*ATTRIBUTE OPERATION EXPRESSION*' 
.. .. GETWORD: ANAME[OUE[POSJ;CLASSJ:=W: 

:~~-' '- ,- --- -: ::._::_-::-:::,c,.:~::.:_:,-o,-':-::.~OP R:=CH: GETEXP (X P R 1 :.. . 
WHILE NOT(CH IN(COMMA,SEMCOLJ) DO REAO(CI 

END . ____ _ 



3EG IN 
(* INITIALIZE SCALARS *) 
NA:'=O; NS:=O; NC:=O; NO:=U; N£:=O; ERCOUNT:=O; 
CLOC~:=O: ENOSIM:=FALSE: MOVESCAN:=TRUE: 

A~Agf~~c~I~T~~p~I'E ~~RDf~~JIAbN'~fDC~~>BLANK; 
FOR 1:=1 TOSL DO . ". . 

IF CH=COLON 
. THEN SYSNAMECIJ:=ALANK 

(LSE ~EGIN SYSNAME[IJ:=CH; RfAD(CH) E~D; 
WHILE C H < > COLON . 0 OR E A 0 ( C H ) :. '. 

-.GETWORO: ·lFNUMERAl·THEN, BEGIN INITIALSEED:=V; 5ETWORD END 
ELSE INITIALSEED:=O: 

~·~~AGE;~WRITELN(SYSNAME,~OlON,INITIAlSEED:I0': 
:.(* ACTIVITIES' AND' STATEMENTS *,. . 
c.REPEAT.NA:=NA~l;WITH :ACT[NAJ DO . 

:-., ... .... .. ':BEG IN' .. ::::::'::.,.,',:.': ..... :::. . 
NAME:~Wi GETWnRD; . 

. ' .REPEAT .,NS!::NS+J;:CONDITION; GETWORD 
. ,. UN TIL :-c w= WAF T E R; ,: .. .-;:. -:.' 

62 

lASTCON:=NS; 
REPEAT NS:=NS+l; . ACTION: LAST:=(CH=SEMCOL); 'GETWORO 
UNTIL'·· LAST; ..' .. 

LAS T ACT.: =N S; CO U NT: = 0: . 
SEED:=TRUNC(RNO(INI1IALSEEO)*bS33b)' 

END . 
::':.UNTIL-W=WBEGIN: .- ... c . 

. ,~« * ENTITIES· lOCATEO'=*') ~.'~-= ·c·· . 

GEHJDRO' 
:::-:J~EPEAT iF ·NoT.NUMERAl :~THE~~:,ERRQR( 9) ; 
.'. I:=V: GETWOP.D: .. '. . . 

QNAME(NO+IJ.:-=W; 0:=0; :REPEAT 0:=Q+1 UNTIL ONAME[QJ=W; 
- _. . .. '. ':. '1 F'C") NC·:··~c··: ~:.:".:.:: 'C· ... :::.:'::;'·.: :.::' •. ::.- .C·: . . •.• . 

. T H EN t R' R'O R Lf) . . ... - -.' . 
. :.ElSEREPEAL:...I:=I=l;NE:=NE+.1: wITH ENT[NEJ DO 

.... - -.. ---. . .:::. ··":,··:::-:'-BEGIN·· ACTIVE: =TRUE: lOC: =Q; TIME: =0; ATRB: =0 END 
. .. UNTIL 1=0;... .. 

r: ····.GETWO RD' . ',.~:'~.:. 
UN T IL W = WEN 0 ; .. .. . ..-

. (* END CONOl TION*) __ ·,,:c" . 

. GETWORO: c'ENOC :=0; '::- .. <,'.:.' 
IF W<>WClOCK THEN 

::. : .... BEG'IN fOR···I:=l· TO .NA ... OO =:'--:':=.:':' .. :". c: .. ' . -::. 
: ........... '-IF'W=ACT[!J';NAME THEN:'ENOC:=I;" 
. ..' I FEN 0 C = 0 . THE N ER R 0 R (q ) . .. .. ... . ... 
. .- .-:c. :::':::'EN 0 ;': :; ' .. c c .,< .:<~. -.c:' ·-c·',:., ;.. ... ::: .,:....... ."_' . '.~' .' '.: .. -:. .. . ':. .. _ 

'GETWOROi IF NOT NUMERAL THEN ERROR(9); ENDV:=V; SENS:=FAlSEi 
. c .. IF CH=SEMCOLTHEN .·c,:.. . ...... '. . .. _ ..... _ .. 

'-'BEGIN .GEnI0RDi~ IFW<>WPER·fuRBt·( 'THENERROR (3) 'ELSE SENS':=TRUE~ . 
FOR 1:= TO NA DO . 

.- 'BEGIN'ACT[l"] .P-RTV.: =0;' . . 
. '--F ORE: :: r TON E 0 0 

ENT[EJ.GAIN[IJ:=O; 
END;c. "-" .c·.: .:. . 

REPEAT GETWORD; 
FOR 1:=1 TO NA DO WITH ACT[IJ DO 

IFI'J=NflME THEN 
_BEGIN .. GETWO~Df·IF NOT NUI1.EqA~_i~.EN ERROR(9); 

........ ~"IF CH-M ~US THE~ PRTV.-(~l)",V '. 
: ...... _.. ELSE PRTV:=V . . 

. .:;.:;:::."-.:::.··:= ..... · .. c~UNTIL cCH·=P.NT~, .. :ENO '. .. 
END;···· ...... " -

·IF '·A'·::IN··OPTIONS .THEN . _ . .... . 
:""B'EGIN: WRITElN1·WRITE (9. CLOCK ACTIVITY DUR ENT '); 

FOR 1:= TO NA DO WITH ACT[IJ DO (j 

IF.. P R TV < > 0 THE N .. W R IT E ( N A ME, P R TV: 2 ) ; . W R IT E l t4 : 
END .' . 

.. END; .... (~INI.TI}.~IZ~*) ." .. : 



PROCEDURE MOVEENTITIES: 
, VAR E:ETVP: A:ATVP: H:BOOLEAN~ 

BEGIN M:=FALSE: . 
FOR E:=l TO NE 00 WITH ENTCEJ 00 

TFACTIVE AND CTIME=CLOCK> THEN WITH QUErLOCJ DO 
BEGIN IF HEAO=U THEN HEAO:=E . 

ELSE ENT[TAILJ.SUC:=E· 
ACTIVE:=FALS£: NUM:=NUH+l: ~:=TRUE: 
SUC:=O; PRE:=TAIL; TAIL:=E 

END: - , 
IF H THEN FOR A:=l'TO~NA 00 ACTCAJ, •. GOON:=TRUE 

END; (*MOVEENTITIES*>' 
-- .' -. - . . - ..." - .. - . 

" P R'O CEO U R E' SCAN ACT I V I TIE S 'f' .- ,C:- - --- - - --

_.": .~-~ R,::~~V~; ~~~ ~~[~ ~~;t~~ k,J C~rT ~~~b~6V~: N~~~~ ~ ~ T5~ 5 i~ p M ~ ~~g7E AN; 

END: _ 
IF CON THEN BEGI~ N:=l:C:=POS: 

IF SENS AND-(TIHE=CLOCK 
THEN CRITICE:=E ENI 

',' , :~- fND ELSE E:=SUC 

UNTIL CON OR (E=O): 
CONDl-IION: =CON_ (':) 

'END' .... 
,END: (*CONDITION*) 



'ROCEOURE ACTION: 
VAR V:INTEGER: AN:ATYP: 
BEGIN WITH STA[SJ DO 

IF POS=O 
THEN OUR:=OUR+VALUEOF(XPR) 
ELSE BEGIN (* PROPER ACTION .) 

IF OPR<>BLANK THEN V:=VALUEOF(XPR): 
WITH HOVE[OUE[POSJ;CLASSJ DO WITH QUE(QJ DO 

REPEAT '\oJITH ENT[E] DO 
BEGIN (* TAKE ENTITY £ FRO~ OUEUf 0 *) 

IF E=HEAO THEN HEA~:=SUC 

, . - - ~ -

ELSE ENTCPREJ.SUC:=SUC; 
. IF E=TAIL THEN TAIL:=PRE 

ELSE ENTCSUCJ.PRE:=PRE; 
NUH:=NUM~l· -

'(. ACTIVATE ENTITY E IN NEW POS *) 
LOC:=POS; TIME:=CLDCK+DUR' 
CASE aPR OF, ' 

BLANK:· , 
PLUS: ATRB:=ATRB+V: 
MINUS: ATRB:=ATRB=V; 
EQL : ATRB:=V 

END~ _, 
ACTLAJ~LASTENT:=E: 
IF SENS AND fE<>CRITICE) THEN 
_ FOR AN:=lTO NA DO ' . 
" ,. ,.'. " G A IN [ A N J : = E N n~ C R 1 TIC E J • G A I N( AN] : 

E:=SUC: ACTIVE:=TRUE: ACTNUM:=A 
END;,.;. ,. ' ' ,0 

, '-N: =N"'l 
UNTIL N=O 

, END ',-' , '..:.''.':':.' ' __ 
""::ENO: ' (*A CT ION':." '- , 

END 
.ELSE G~ON~=FALSE 

END; 
GETACTN' 

'A:=l: WHILE NOT ACTCAJ;GOON DO A:=A+1: 
IF A>NA THEN MOVESCAN:=FALSE 

END; ,'( * S CAN ACT I V I TIE S * ), 



:EOURE UPDATETIME; 
~RTMIN:INTEGER: E:ETYP; 
::GIN 

TMIN:=MAXINT: MOVESCAN:=TRUE: 
FOR E:=l TO NE 00 WITH ENT[EJ DO 

IF ACTIVE AND (TIME<TMIN) THEN TMIN:=TIME; 
IF TMIN<MAXINT THEN CLOCK:=TMIN: 
IF (ENOC=O) AND (ENOV<=TMINl THEN ENDSIM:=TRUE 

NO: (4rUPDATETIME.' 

CEDURE REPORT; 
AR A:ATYP: E:ETYP; 
EGIN 
~RITELN('SIMULATION ENDED AT CLOCK = ',CLOCK': 
FOR A:=l TO -NA DO WITH- ACT[AJ DO 

WRITELN(NAME,' HAS-STARTED ',COUNT,' TIMES":~~ITELN: 
,IF_ SENS THEN , , :,' '" ' _; 

--'----BEGIN Eo-f]. "- '-=- '" - - ----: ,-" ,-, '- " 
-REPEAT E:=EtJ.:uNTIL dJT[EJ.ACTIVE AND (ENT[EJ;TIME=CLOCK): 

,,: :::' WR,I TELN ('.SENSITIVITY OF, CLOCKWRTPERTURBATIONS:' 1 ; 
'-WRITELN-i"WRITELN('~' ACTIVITY -PERTU~BATION SENSITIVITY'): 

FOR A:= TO NA DO WITH ACTCAJ DO WITH ENTCEJ DO 
IFPRTV<>O - , __ ' 

-THENWRITELN(NAME:l1~PRTV:14, - ' 
ROUND«~l'*SAIN[AJ/PRTV):11' 

ELSE~WRITEL~(NAME:l1,PRTV:l~) , 
END 

N_D; ': (*REPORT*), 

CEDURE STOP; 
E;-G~:N ~RIT~LN_rE~COQN_T~i..· __ :}~liRORS IN',SY~N~}"El :HALT END) 

~I.N ,_INITIALIZE °MOVEENJITIES·.-
'_-'-'~:-:::--IF,,-'S'~ ,- :IN-OP_cT..lONS .-THEN (lUMP STAt' 
,- -IF ERCOUNT>O'THEN STOP; -

- RE?:E,AT, MOV-_EENlITIES;,.:-:-:~:-':_:: __ .' - '. , ' --.--.- - _." ... -- - .. 
- - - -- --~ IF-,:· Q ."'.1 N -:-OPT-ION S=-THEN:' OUMPO UE;---
'_~ . .:c, .. _: ___ ,_IF 'E' IN _OPTI~NS_ 1-~c~-,~-,--pU~~E~_T) _ _ _ ______ , 
:_:=-_:-.--., .:. -,- :.' '" S C ANA CT I VITI ES ,',: ': '. ~,=.-- ::,_::_,- -== ',,-,-:-:_::. =-=.::. ,: = -, c:.-- :c.:: - :::.:~:- - ,_, __ 
---. . ':' IF ",NOT::-MOVESCA NTHE-N-:-.uPDA-TETIME:-: ,-:C-_-=- ,----- - ---Co C - --:-

:._ . .: UNTIL _:ENDSIM ;_---"-c_--_ ,'. _ 
::----REP_ORT ;,-:DUMPClS;-'_DUMPQUE:·- -,-
). ' (. A CS I M-. ) -' -- ,- - , 

.- .. ~. _ ..... -,. , - .. - - .. ---- -- . .... -


	Tez5752001
	Tez5752002
	Tez5752003
	Tez5752004
	Tez5752005
	Tez5752006
	Tez5752007
	Tez5752008
	Tez5753001
	Tez5753002
	Tez5753003
	Tez5753004
	Tez5753005
	Tez5753006
	Tez5753007
	Tez5753008
	Tez5753009
	Tez5753010
	Tez5753011
	Tez5753012
	Tez5753013
	Tez5753014
	Tez5753015
	Tez5753016
	Tez5753017
	Tez5753018
	Tez5753019
	Tez5753020
	Tez5753021
	Tez5753022
	Tez5753023
	Tez5753024
	Tez5753025
	Tez5753026
	Tez5753027
	Tez5753028
	Tez5753029
	Tez5753030
	Tez5753031
	Tez5753032
	Tez5753033
	Tez5753034
	Tez5753035
	Tez5753036
	Tez5753037
	Tez5753038
	Tez5753039
	Tez5753040
	Tez5753041
	Tez5753042
	Tez5753043
	Tez5753044
	Tez5753045
	Tez5753046
	Tez5753047
	Tez5753048
	Tez5753049
	Tez5753050
	Tez5753051
	Tez5753052
	Tez5753053
	Tez5753054
	Tez5753055
	Tez5753056
	Tez5753057
	Tez5753058
	Tez5753059
	Tez5753060
	Tez5753061
	Tez5753062
	Tez5753063
	Tez5753064
	Tez5753065

