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ABSTRACT 

Discrete event dynamic systems have been analyzed by use of either 

analytical or simulation models. Both approaches have certain 

drawbacks. In this thesis a new approach which aims to reduce the 

number of computer runs required for the sensitivity analysis in 

discrete event digital simulations is studied. 

The proposed approach estimates the sensitivity coefficients of 

the system output with respect to various parameters from the 

results of a~SINGLE simulation run. It can <;lerive answer to the 

question "HOW would the total simulation time change if we repeated 

the experiment under the same conditions, except for small 

perturbations in the sample durations of one of the activities?" 

for some or all of the activities in the system while observing 

the experiment. Tqe efficiency of this approach lies in the fact 

that it has a computational advantage of }1 to 1, where M is the 

total number of activities for which the above question is asked. 

(') 



OZET 

AYr~kolayli dinamik sistemlerin ~ozUmlemesinde analitik modeller 

veyf}. benzetirn modelleri kullanilmaktad~r. Eu tezde ayr~k olayli 

sistemlerin duyarl~lik ~ozUmlemesinde benzetim Zaman~ni onemli ol~Ude 

azaltan yeni bir yakl~im sunulmu~tur. 

Onerilen yakla'pm, sistem ~~kt1s~n~n &istemdeki bazl. veya tiim 

parametrelere gore duyarl~l~g~n~ tek bir benzetim ko~umu ile kestir­

mektedir. niger bir deyi~le, "Sistemde yalnl.z bir faaliyet sliresinde 

kli~lik bir degi~iklik yaparak bu deneyi tekra:z::lasaydl.k sistem ~~kt1si 

nasil degi~irdi?" sorusuna deneyi ger~ekle~tirerek gormeye gerek 

kalmadan sistemi gozleme zamani i~inde cevap verir. Eu yakl~l.ffil.n 

verimliligi bu soruyu tek bir benzetim ko~umu i~inde sistemdeki tUm 

faaliyetler i~in ayrl. ayrl. cevaplayabilmesindedir. Yani M adet 

faaliyet igin duyarll.ll.k ~ozUmlemesi istendiginde hesaplama zamani 

bu yakl~l.mla M:l oran~nda azalacaktir. 

r 
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I. INTRODUC TION 

Discrete event dynamic systems, such as traffic flow in a canal syste~ 

material ·flow in a production system, messages in a. communication network 

and generally nonstandard queueing networks, evolve according to OCCU1'ences 

of distinct events. All state changes occur only at a countable number of 

time epochs which are referred as the event times. These events maybe an 

arrival of a. boat or a message, shutdown of a production machine, completion 

of a car-wash service and can be deterministic or stochastic. Although 

states of the system change due to an event occurence, some events may not 

actually result in a change in the state of the system. The complex 

interactions of discrete events among the entities make it difficult to 

analyze the discrete event dynamic systems. 

In general, two approaches to these problems exist. The first approach 

is analytical, typically represented by the queueing theory. The major 

drawbacks of this approach can be listed as follows: a large number of 

restrictive assumptions must be satisfied for the theorY to be valid, 

the situation may be too complex to build a mathematical formulation, and 

analytical techniques m~ not be sufficient for handling the mathematical 

formulation even if it has been achieved. 

The second approach, simulation, is used when analytical techniques 

are not applicable. Simulation is one of the most widely used techniques 

in operations research and it represents one of the major tools for brute 

force analysis of discrete event systems. Simulation models are designed 

to sample the characteristics of the system they represent by observing 
("] 

the system over time and subsequently gathering and deducing pertinent 

information. The analyst can experiment with such a system and study its 

performance while changing the syste~ parameters and decision rules at will 
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Although a discrete event simulation could conceptually be done by 

hand calculations, the amount of data to be stored and manipulated for 

most real world systems make it apparent that discrete event simulations 

should be done on a digital computer. In addition, simulation of complex 

systems would require a large amount of computer time. Therefore the main 

problem with this method is the computational burden, especially in case 

of complex systems. Alao, repeated simulation of such a system over various 

parameter ranges to see the effect of changes could be very costly or even 

infeasible. The purpose of this thesis is to outline and implement a new 

approach which significantly reduces the problem of computational time. 

The proposed approach derives the sensitivity coefficients of system 

output with respect to various parameters: from the result of a SINGLE 

simulation run. In other words, it can derive answer to the question 

"How would the. system output change if we repeated the experiment under 

exactly the same conditions, except for a small perturbation in sample 

values of one of the parameters?" while observing the experiment and 

without having to repeat any experiment for the specified perturbation. 
I 

.The efficiency of this approach lies in the fact that it has a computational 

advantage of M to 1 where 11 is the total number of parameters for which 

the above question is asked •. 

This approach has been implemented in a previous work for buffer 

storage design in production lines with successful results (1). Later, 

it was applied ~o discrete event dynamic systems using activity cycles 

world view (2). The simulation of the systems in that particular study 

was carried out using ECSL, an activity oriented simulation program (;). 

successful solutions of these problems have led to extensions to other 

nonstandard queueing networks (4-lb), and these have been collected in 

a technical report (11). 
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In the remainder of this chapter an outline of the thesis is given 

with references to the related chapters, a summary of this outline can 

be seen in Figure 1.1. with the numbers in parenthesis showing respective 

chapters. 

A basic problem faced by all practitioners of simulation is choosing 

a method for viewing complex systems in a manner that reduces the complexity 

and enables one to logically analyze the components of the system. There 

are many ways to approach this problem, including the flow of entities 

through the system, events that take plac~ in the system, and the activity 

cycl~s of the entities in the system. Event is an occurence which causes 

a change in a system entity.ln the event scheduling approach, emphasis 

is on.the occurence of individual events, each time the simulation clock 

is advanced the,. next event is determined by predetermined instructions (12). 

structured 
progr~ing (III) 

PASCAL (III) 

Discrete event 
Simula tion (I) 

lictivi ty 
Cycles (II) 

ACSDI (III) 

Implementation of 
Sample path Analysis (IV) 

Figure 1.1. Outline of the Thesis 

Sensi ti vi ty 
Theory (IV) 

I 

Propagation of 
Loc~l Gains (IV) 



Events are filed in ascending order of the scheduled occurence times. A 

significan~ amount of book keeping e£fort is required to keep the sche­

duled event in its proper sequence. TO insert a new event in the list, 
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a se~ntial search is performed until the appropriate location is found. 

As the simulated events ocur, they are removed from the head of the list 

and the simulated clock is advanced to the smallest event time and event 

is executed. One of the difficulties of this approach is its division of 

the logic of an operating system into small parts, for instance the return 

of a part from a machine is stated three times, one for ~he part~ one for 

machine and one for the server. 

Activity is the active state of an eritit,y where the state of the entity 

is being changed. It is composed of two parts: testing the conditions, 

perfo~ing the actions. Whenever a simulation time is advanced the next 

step·.;is determined by a search procedure. A cyclic scanning of activities 

insures that all possibilities are examined and necessary actions are 

performed. 'lhis method will be used because of its graphic clarity and 

logical appeal. Chapter II contains a brief explanation of the activity 

cycle approach and presents the activit,1 cycle diagram of a restaurant 

system, naLER. 
Process ~riented approach carries out the progress of an entit,y through 

the system from its arrival until its departure. A process is a set of 

events or a collection of activities related to an entity. This approach 

combines the run-time efficiency of event scheduling with the modeling 

efficiency of activity scanning. 

Digital computer is the main computing device for executing a simulation 

model. In this thesis also lots of work is overcome by use df' a digital 

computer, UNIVAC 1108 computer in Bogazi~i Universit,y, and ACSIM, a 

simulation program based on activity scanning (13). ACStM has been designed 



by applying the concepts of structured programming 'and using PASCAL as 

the programming language. Chapter III discusseS the beneficial aspects 
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of the structured programming, describes the structure of ACSIM and presen.ts 

the results of the simulation of IKILER. 

Chapter IV describes the method for sensitivity calculation in.discrete 

event dynamic systems represented by activity cycles. A formal view of the 

approach is given and the new routines included into ACSIM for this esti-
~ 

mation procedure are explained. The method is applied to IKlLER and 

comparative results of this approach and brute force analysis are stated 

in the last section of ~e chapter. 

A complete example problem, time-shared computer system is studied in 

Chapter V. Fi~st the problem is defined, then the system is modeled using 

activity cycle diagrams and finally sensitivity coefficients of the total 

simulation time ~ith ,respect to durations of each activity in the system 

are estimated all in one simulation run. The results are compared ~ith 

the results of brute force analysis and the level of perturbations up to 

~hich the deterministic similarity holds are examined. 

Chapter VI discusses the use and efficiency of the new approach. 



II. MODELING DISCRETE EVENT DYNANIC SYSTEMS 

USING ACTIVITY CYCLE DIAGRA}lli 

'lhe first task at the start of a simulation study is the choice of a 

way for viewing and modeling the system of interest. In the United States 

much of the simUlation study has been based on an event-scheduling, 

SIMSCRIPT, or process-interaction, GPSS,SlliULA, orientation. In contrast, 

England and Australia have tended to use the activity cycle approach (14). 

In the activity cycle approach, the activity is the basic unit com-

posed of two parts: checking the conditions and performing the actions. 

Whenever a simulation time is advanced, all the activities are scanned 

for possible performance. If all conditions fpr an activity are satisfied, 

state-changing and time-setting instructions are executed. A cyclic 

scanning of activities insures that all possibilities are examined and 

all necessary actions are performed. When an activity scan is not employed 

as is the case in GPSS, SIMSCRIPT, and SIMULA, all system events must be 

predetermined and scheduled. 

An activity scan is efficient for highly interactive proce~ses that 

involve a fixed number of entities~ Event-scheduling is efficient for 

less interactive processes that involve large number of entities. A 

process-oriented language reduces the number of statements a programmer 

has to write, since many event subprograms can be combined in one 

process routine. Each modeling scheme can be advantageous in some systems 

and disadvantageous in others. There are no rules for selecting one 

scheme over another for a given system. 

In this thesis activity scanning approach is chosen as th~ basis for 

modeling the systems because of its logical appeal and graphic clarity. 
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This approach has the advantage of viewing complex systems with an 

apparent ease of communication. Use of internal clocks for each entity, 

explained in sec tion 2.1 ~, makes it possible to scan the ac ti vi ties 

without need to use predetermined lists. 

2.1. Activity Cycle Approach 

. The basic elements of the activity cycle approach are the entities, 

the activities, and the queues: 

i. Entities: A system is considered to be composed of entities which 

are the elements whose behavior over time will be examined. In a restaurant 

the entities of interes t might be CUB tomers, servers, and tables. In a 

computer system the entities might be central processing unit (CPU), 

terminals, disks, tapes, and jobs. 

Entities of a system may have attributes which describe and disti~uish 

them. A customer in rest~rant might have a demand of two or three 

servings, or a job in a computer system might have a request from disk 

or tape, and those are the attributes distinguishing them from the others. 

It would be use ful to group various entities together into classes on 

some logical basis. A basis for classification could be grouping the 
. \ 

entities whose behavior follow identical protocols. For example, servers 

in a restaurant could be classified as head waiters and waiters, first 

group taking the orders from the customers and passizlg them to the 

waiters, and the second one taking the orders from head waiters and 

serving the customers. 

In an activity cycle, there are basically two groups depending on 

the state of the entities. "Activi ties" which are the active states of 

the entities form the first group, and "Queues" ~hich are th~ idle 

states of the entities form the second group. Each entr~ has an internal 



clock showing the time when it will or has become available in its 

respective queue. The internal clock of an entity is updated when the 

entity is involved in an activity. 
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ii. Activities: Entities come together for a certain activity to take 

place. For example, customer and head waiter would be present for the 

order activity to start. Activities are considered as the active states 

of the entities where the states of the entities are being changed. The 

duration of an activity is determined according to a, specified distribution, 

and all the entities involved in the activity experiences the same duration. 

customer and head waiter coming from their respective queues are activated 

while the order is taken and their internal clocks are reset to the 

completion time of the acti~ity order. 

conceptuall:}", it is useful to view each active state as having an idle 

state as its immediate predecessor. 

iii. Queues: Queues are the idle states of the entities. Each queue 

belongs to asin,gle class of entity. An entity class may have one or more 

queues in an activity cycle diagram. For example, tables in a restaurant 

might be 'in two idle states as "full" and "empty" or jobs in a computer 

system might be "waiting for disk", or "waiting for CPU", or "waiting for 

tape". In general, an entity in a queue is awaiting the availability of 

the other entities in their respective queues for the succeeding activity 

to start. The duration of an idle state for an entity can be zero or 

anything depending on the other entities coming from different active 

states, in other words waiting time in a queue changes from an entity to 

another. 

The queues and the activities form one or more closed loops in which 

the entities circulate. Many of the activities in a syst~m would require 

more than one class of entity. Therefore preceeding queues of such 
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activities ,would be more than one. An activit,r would start if and only if 

all the input enti ties are present in their respective queues. If any of 

these entities is not in its queue, the other entities are forced to remain 

in queue until that entity becomes available. 

When an entity is involved in an activity the internal clock of the 

entity is advanced to the completion time of that activity 'and its next 

state is specified. However, this entity is actually placed in this queue 

when the system clock or simulation time is equal to its internal clock. 

System clock is updated after all possible conditions are examined and 

actions are performed. It is advanced to the smallest internal clock of 

the ,active entities. The entities with internal clock values less than 

or equal to the system clock are in their idle states, waiting in queues, 

and the entities with internal clock greater 'than or equal to the system 

clock are in their active states. 

Activity cycle diagrams present the complete logic for the operation 

of the system and summarize the behavior patterns of the entities in a 

clear graphic form. In such a diagram, activities are denoted by rectangles 

the queues by circles. Each entity class has a certain closed path which 

is distinguished by use of different directed lines. 

As an il])l,stration, consider a system may be the simplest and the most 

common one for all of the human beings. This system, working for the 

functioning of a new born baby, is composed of two entities, a baby and 

a mother. At the start of life a baby has basically two activities: to 

sleep and to suck. Assume that the mother has only one activity, namely 

to feed her baby. The activity cycle diagrams of the entities in the 
r) 

sys tem is shown in Figure 2.1., and Figure 2.2., that of baby and the 

mother respectively. 
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~ ..... , 

SLEEP FEED 

"'--e--~ 
Figure 2.1. Activity Cycle for a new born baby 

.-/---
/' 

FE ~D .• 

Figure 2.2. Activity cycle for a mother 

Note that the mother and the baby have a common,activity FEED. Therefore 

the baby must be CRYING and the mother must be IDLE for the FEED activity 

to start. The operation of this system is most easily visualized by 

combining the activity cycles of the two as in Figure 2.3 • 

SLEEP 
Baby 
cycle. 

.-/ 

/ '"" '? \. 

l--___ F~E-E--c-D_--1 MO there 
'" ("'Cycle ,,/ 

'- --------- .• 

Figure- 2.3. Activity Cycle Diagram for the functioning of a new born baby. 
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Assume that SLEEP and FEED durations are deterministic with 180 and 10 

minutes, respectively. The simulation of this simple system by use of 

activity scanning could be expained as follows. Asswne that simulation 

ends when the baby is fed twice. Initially, the baby is CRYING and the 

mother is IDLE. The system clock and the internal clocks of the baby and 

the mother are set equal to zero. Since the conditions for FEED are 

satisfied, the actions are executed. Namely, next idle states are specified 

as FULL and IDLE, the internal clocks of the entities are advanced to the 

end of FEED, now they are both 10. The other activity SLEEP is tested but 

not started since the baby is not FULL yet. Now all the activities are 

scanned, it is time to update the system clock. The system clock is set 

to the smallest internal clock of the active entities. For this case it 

becomes 10. It·is time to move those entities with their internal clocks 

equal system clock to the specified idle states. Now baby is FULL and the 

mother is IDLE again. 

The activity scanning goes on until the end of simulation. The steps of 

simulation for this system is presented in Figure 2.4. 

system Internal clock Internal clock state of State of 

Clock of BABY of MOTHER BABY NOTHER 

0 0 0 CRYING IDLE 

0 10 10 FEED FEED 

10 10 10 FULL IDLE 

10 190 10 SLEEP IDLE 

190 190 10 CRYING IDLE 

190 200 200 FEED FEED 

200 200 200 FULL IDLE 
) 

Figure 2.4. Steps of Activity Scanning 
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It should be noted as an important characteristic that an activity 

cycle diagram is independent of the number. of entities in the system. The 

diagram in Figure 2.3. could be used for a mother and her baby, or for a 

mother and her twins, or for two baby-farmers and seven babies Bucking at 

feeding-bottles in a baby-farm. 

An activity cycle diagram is also independent of the time required to 

perform the activities. The same diagram could be used for any entity in 

a specific class. The diagram in Figure 2.3. could be used for any baby 

and mother considering that it is independent of SLEEP and FEED durations 

which might change from baby to baby and from a mother to another. 

TO complete the diagram for simulation purposes, the number of each 

type of entity and the distribution for the duration of each activity 

must be added,. and initial states of the entities must be specified. Then, 

this complete diagram provides the basic input for ACSIM. 

2.2. Activity cycle Diagram of a Restaurant, IKILER 

A restaurant system, IKILER, is developed as the basic sample problem 

to clarify the concepts mentioned in this thesis. It will be studied step 

by step and will be used for the illustrations of the third and fourth 

chap ters, too. 

Assume that IKILER is a res taurant having 20 tables, a head waiter, 

and 3 waiters. The arr~ving customers enter the system if a table is 

available, otherwise they leave. The interarrival times of customers are 

independent identically distributed exponential random variables with 

mean 10 minutes. The head waiter takes the orders from the customers and 
(j 

passes them to the waiters.~le duration of order taking is a uniform 

random variable be tween 2 and 4- minu tes. Tne duration it takes to pass 

the orders to waiters is again a uniform random variable between I and 
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3 minutes. ~e waiters take the orders from the head waiter and pass them 

to the kitchen, when the food is ready they serve the customers.The 

duration for the preparation of food, the cook duration, is a normal 

random variable with mean 15 and standard deviation 3 minutes. The service 

duration is a uniform random variable between 3 and 5 minutes. After 

service completion customers have their dinner. Dinner duration is; a 

normal random variable with mean 40 and standard deviation 8 minutes. 

At the end of dinner the head waiter receives the payments.The-duration 

it takes for receiving the payments is a uniform random variable between 

.3 and 7 minutes. 

The dynamics of IKILER would be well 'Jnderstood while observing its 

ac ti vi ty cycle diagram shown in Figure 2.5:. '.!he arrival process is' 

generated by an artificial generator, DOOR, which becomes OPEN according 

to the intera.r.rival distribution of~the customers. When the DOOR is OPEN­

and a CUS'lDI1ER group is OUT, the activity ARRIVE starts and the customer 

enters the system, and joins the queue PAUSE waiting for the availability 

of a table. If a TABLE is not available,in other words if there is no 

table in the idle state EMPTY, CUS'lDI1ER leaves the system. LEAVE ~s an 

activity with zero duration. If there is an Ef>1PTY TABLE, the CUS'lDl1ER is 

involved in the activity SIT with a deterministic duration of one minute 

together with that table. After the completion of SIT the TABLE is FULL, 

and the CUS'lDMER SITTING, and waiting to give the orders. ORDER activity 

starts when the HEAD WAITER is IDLE and CUS'lDl>1ER is SIT'I'ING. At the end 

of ORDER the HEAD WAITER is IDLE again and the CUS'lDMER is \'JAITING for 

the next coming activity. ORDERPASS starts when the head waiter is IDLE' 

a waiter is FREE, and customer is WAITING. After ORDERPASS ~dummy queue, 

INDUMl is introduced. This is to declare that ORDERPASS implies the next 

activity COOK. After COOK, customer is. HUNGRY while waiting for SERVICE, 
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'" -Door cYcle 

customer 
cycle 

~ 

J ~ /JI. 

~) 

SIT 

Table 
", cycle 

PAY 

.' 

\ 

Head' Waiter ~~ 
. . c,Ycle ............................................... y_.X, 
~..........." ....... .' -; 7' "" ,-,-:: ;a;a----,.---

.~ ....................... : ... / / 

0/ .. / 
~.( 

.. 

DINNER 

\ 
\ 

//'\ 
iINDUNl 
~; 

1 
Wai ter \ COOK 

Cycle I J 
\..1 / 

/'-\ \J v~ ~ .. 
;IIIDUM2rE---j SERVICE L- HUNGRy' 
~/ ( r~ 

Figure 2.5. Activity cycle Diagram of IKILER 
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and the SERVICE starts as soon as a WAITER is FREE. Since the SERVIC~ 

implies the activi tYDINNER, ag'ain a dummy idle state IN.])U}12 is 

introduced in between. After DINNER customers are READY to PAY, waiting 

for the IDLE HEAD WAITER. When the activity PAY is completed table 

becomes D1PTY, head waiter becomes IDLE, and customers go OUT to represent 

a new gL'oup. 

Table becomes FULL as soon as the activity SIT is completed and stays 

in this idle state during' the activities'ORDER, ORDERPASS, COOK, SERVICE, 

DINNER, and PAY. Instead of forming such a big cycle for the table and 

introducing dummy queues between all these activities, a single queue 

FULL is created and pr~ceded the activity PAY. It would be clear 

that with this diagram a table would have to wait as FULL during all the 

activities mentioned,above and goes into idle state ErWTY after the 

comple.tion of P Jcr • 

The elements of the activity cycle diagram could be summarized as 

follows: There 'are five entity classes in IKlLER, namely HEAD WAITER, 

WAITER, TABLE, DOOR, and CUSTOHER. '!he idle states of CUSTO}lER are 

PAUSE, SITTING, WAITING, INDUf\11, HUNGRY, INDm12, READY, and OUT, the 

idle s ta.tes of TABLE are FULL and EPWTY. For the entity classes HEAD 

WAITER, DOOR, and WAITER there are only single queues; IDLE, OPEN, and 

FREE, respectively. The activities in the system can be listed as 

ARRIVE, SIT, ORDER, ORDERPASS, COOK, SERVICE, DINNER, PAY, and LEAVE. 



III. ACSIM: A SD1ULATION PROGRAf·1 

:BASED ON ACTIVITY CYCLES 

Although a computer is not a necessary tool for carrying out a simulation 

experiment, it certainly speeds up the process, eliminates the computational 

difficulties, and reduces the probability of error. 

In this thesis lots of work.is overcome by use of a digital computer, 

UNIVAC 1108 Computer in Bogazigi University. ACSll1, a structured simulation 

program employing activity scan is used in simulation of the discrete 

event dynamic systems. '!he programming language PASCAL bas been used in 

ACSD1. 

This chapter includes a brief explanation of .the idea of structured 

programming, gives a summary of ACSIM structure, and presents the results 

of simulation of IKILER by use of ACSDI. 

3.1. Idea of structured programming 

The earliest computer programs were no more than lists of the primitive 

instructions that the computer could execute directly. until the late 

1950'S programming consisted of the detailed encoding of long sequences 

of instructior~ into numbers in binary, octal, hex~ecimal form (15). The 

programmers at this stage had to consider all details of .the machine 

including its processor organization and its instruction set. As time 

went by, more complicated programs were written and these program's 

became unmanageable. To a machine the execution of a program(~pontaining 

a few thousands instructions presented no problem. However, it was 

practically impossible for a programmer to discover the principles of 
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such a complicated program and even difficult to explain his or her 

own program. 'lhe reason was that these programs lacked structure. 'lhe 

representation of a complex program as an unstructured, linear sequence 

of commands was the most inappropriate form for the human inspector 

to comprehend and to express. 

'lhese shortcomings led to the development of high level programming 

languages which were designed not according to the limitations of 

current technology but according to the habits and the capabilities 

of man to express his thoughts. In the following years these develop-

ments led to an increasing interest in the art of computer programming. 

The presence and application of structure became the principle tool 

in helping the programmer to synthesize systematically and to maintain 

an overall comprehension of complicated pr~grams. All computer·programs 

could be expressed in terms of four basic structures (16). These are 

the sequence, the decision, the loop, and the procedure. The sequence 

is a group of instructions executed one after the other. The decision 

is a structure that ~nables the action of the program to be influenced 

by the data. Many languages introduce the decision s t:iu.cture with the 

word 'IF', such as: 

IF a)b THEN c:=a-b 

ELSE c:=b-a 

The loop structure ~s used to execute an instruction or a sequence 

of instructions several times. An example to one of the forms of loop 

structure can be given as follows: 

REPEAT 

c:=c+i 

UNTIL c~cmin 

enables one to replace a group of instructions by a 'lhe procedure 

t ' U of procedures. not only makes a computer single instruc ~on. se 
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program shorter and easier to write but also gives a hierarchical 

structure. Furthermore it allows a prob~am to be the product of a team-

work with each procedure written by different programmers. 

rrhe progl:amming language PASCAL uses all of these techniques of 

structuring. They are incorporated in such ~ simPle way that PASCAL is 

yery easy to learn and use, and also a well-written PASCAL program is 

easy to understand. 

'lhe layout of a program text must match the structure of the program. 

A PASCAL progr~n is structured in levels, and the level of a statement 

is indicated by indenting the statements. A simple example would 

clarify these ideas. 

PROGRAM addintegers; 

VAl/. i,sum:integer, 

:BEGIN i:=O, 

sum:=O. 

REPEAT 

i:=i+l, 

END. 

sum:=sUIn+i 

UNTIL 1=50; 

write (sUm) 

PASCAL programs start with the key word PROGRAM after which the name 

of the program is given. VAl/. is the key word employed before the' 

declaration of the variables used in the program. The main program is 

stated between the key words :BEGIN and END. 

ACSIM, the simulation program used in this thesis has been designed 

"d " all these beneficial aspects of structured programming 
cons~ er~ng ~ 

and the language PASCAL in particular. 
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3.2. structure of ACSIM 

ACSIM is a general purpose discrete event digital simulation program 

based on activity cycles. Once the activity cycle diagram of a system 

is initiated it becomes almost automated to turn it into an input for 

ACSIM. ACSIM is good for quick and little-detailed simulations without 

need to invest much time for modeling end coding. 

structured statements of the main program of ACSII1 is given belo ... , and 

the equivalent flow diagram is shown in Figure 3.1. 

BEGIN 

END. 

initialize, 

REPEAT 

move entities, 

scan ac·tivi ties, 

IF none of the activities could start 

THEN update time, 

UNTIL the end of simulation, 

report 

The dynamics of ACSIM would be quite clear after the refinements to 

explain the underlined statements above: 

initialize: 

create the given number of entities, activities, and queues, 

set system clock, 

for each entity 

set internal clock. 



I NIT I A LIZ E~ 

MOVE ENTITIES 

S CAN ACT I V I TIE S 

FALSE None of 
the ac ti vi ties 

started 

'IRUE 

UPDATE TINE 

Simulation 
ended 

~UE 

FALSE 

Figure 3.l~ Flow diagram of ACSIM 
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move entities: 

for each active entity 

if internal clock equals system clock 

then move it into its respective queue. 

scan activities: 

for each activity 

begin 

check conditions, 

if all the condi tiona are satisfied 

then perform actions 

end. 

update time: 

report: 

advance the system clock to the· smallest internal 

clock of the active entities. 

print the system clock,. 

for eac? activity 

prin t the number of times it has started, 

for each queue 

print the number of entities in the queue. 
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One more step of refinements is necessary to explain how the conditions 

are tested and if satisfied which actions are taken. 

perform actions: 

for each entity to be activated 

begin 

take entity from its queue, 

specify its next state, 

if an attribute is specified then set i~~ value, 

update thB internal clock of the entity 

end. 
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check conditions: 

if the number of entities in queue is lees than requirement 

then condition is not satisfied 

else if no attribute is specified 

then begin 

condition is satisfied; 

specify the entities to be activated 

end 

else begin 

search for an entity with desired att:iibute. , 
if found 

end. 

then begin 

condition is satisfied; 

specify the entities to be 
end 

else condition is not satisfied 

ACSIM allows the ac ti vi ty dUl.'a tions to be given according to a certain 

probability distribution functions with integer arguments as well as 

deterministic durations. 

Allowable expressions to specify the durations and corresponding 

interpretations are as follows 

CON(n) Constant integer with value n, 

XPO(t) EXponential distribution with mean t, 

UNI(a,b) uniform distribution between a and- b, 

NOR(m,s) Normal distribution with mean m and standard 

devia tion s. . 

In any of the above distributions, activity durations are generated 

so that they have integerval~es. () 

The format us~d to convert the activity cycle diagram of a system to 

an ACSlll input could easily be understood by a simple illustration since 



( 

there is an apparent correspondence between the two. 

'!he f,orma t as applied to the diagram in Figure 2.3. is shown below: 

BAEYFARM: 143 

}'EEI) BABY CRYING? HOTHER IDLE? 

AFTER UNI(12,18): 

BABY FULL, MOTI-~ IDLE, 

SLEEP BABY FULL? 

AFTER NOR(40,6): 

BABY CRYING, 

:BEDIN 4 CRYING, 3 FULL, 2 IDLE, 

END FEED 17. 
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The first line identifies the system name and the initial seed to be 

used in random number generation. '!hen activities are listed one by one 

seperated by semicolons. Each activity block contains the name of the 

activity, the conditions to be satisfied for the activity to start, the 

distribution for the duration of the activity, and the actions to be, 

taken in case the activity starts. conditions are recognized by question 

marks. After the keywo~d AFTER the distribution is specified. Finally the 

actions are stated and a comma is used as the seperator between the 

actions. After all the activities are listed in this format, the initial 

states of the entities are given after the key word :BEGIN, and the 

terminating condition of the simulation is given after the key word END. 

In the above example the name of the system is Babyfarm and initial 

seed is 143. Initially, 4 babies are CRYING, 3 babies are FULL, and 

2 baby _faxmers are IDLE. '!he firs t ac ti vi ty is FEED. The corfdi tions , 

. avail abili ty of a CRYING baby and an IDLE mother (baby-'farmer), must be 

satisfied for this activity to start. FEED duration is generated according 

to uniform distribution between 12 and 18 minutes. The actions to be taken 
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in this activity are to specify the next states for the entities involved 

and to reset their internal clocks. The internal clocks are set to the 

completion time of FEED, and next states ar,e specified as FULL and IDLE 

for the b~by and the mother, respectively. ~e second activity is SLEEP. 

SLEEP starts as soon as a baby is FULL, and takes time according to the 

normal distribution with mean 40 and standard deviation 6 minutes. After 

completion of SLEEP baby is CRYIl~G again. The simulation ends when the 

11th FEED activity is completed. 

Two extensions to this simple world view have been implemented in 

ACSIM. 

1. Each entity may carry an integer attribute that is set in some 

actions and inspected in some conditions. 

2. An ac ti vi ty may require more than one en ti ty from a queue. 

For example, a part in a job-shop may require two workers 

to be carried outside the shop. 

The program listing of ACSIM is given in APpendix C, and a complete 

syntax diagram for the ACSIH input is given in APpendix B. 

3.3. Simulation of HCILER using ACSIrl 

rrhe queueing system IKILER illustrated in Figure 2.5. is simulated 

using ACSIM. Figure 3.2. shows the ACSl}l input as applied to the activity 

cycle diagram of IKILER. Since ORDERPASS implies COOK, COOK duration. ~ 

included in ORDERPASS, and the queue INDUMl together with activity COOK 

is eliminated. The same idea applies in the case of SERVICE and DINNER. 

These activities are combined under the name DINNER. The SERVICE duration 

is considered in DINNER, and the queue INDUM2 is eliminated. In other 



words, instead of 

SERvicE CUSTOl1ER HUNGRY? WAITER FREE? 

AFTER UNI(3,5): CUSTOMER INDUM2, WAITER FREE; 

DINNER CUSTOI1ER INDll12? 

AFTER NOR(40,8): CUSTOMER READY, 

a better format 

is used. 

DINNER CUSTOMER HUNGRY? WAITER FREE? 

AFTER uNI(3, 5): WAITER FREE, 

AFTER l~OR( 40,8): CUSTOl1ER READY; 
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specifications of system parameters are given in section 2.2. Initially, 

4 customers are SITTING, 5 customers are WAITING 11 tables are EMPTY , 
, , 

,the head waiter is IDLE, and 3 waiters are FREE? Obviously 9 tables are 

FULL, occupied by"the customers in the system. 'nl;e door is OPEN to start 

IKILER: 

ARRIVE 

S11 

PAY 

UINNER 

CUSTOMER OUT? DOOR OPEN? 
~FTFR 0: CUSTO~FR PAUSF' 
At-TEl-< XpO(lO)! nOOR UPFN; 

14 

CUSTUMER PAUSE? TARLE EMPIY? 
AFTEK 1: CUSTOMFR'SITITNG' TABLE FULLJ 
CUSTO~ER HE AnY? TARLE FULL? HEADWAITER lULE? 
AFTEH UNI(3'7): CUSTOt-lER OUT, TAHLE E~pl', HEADWAITER IDLE 

CUSTOMER HUNGRY? WAITER FREE? 
~~l~~ ~~h\~~~hj~Web~~~v~~E~~ADY; 

ORDEKPASS CUSTU~ER WAITING? WAI'IEK FREE? HEAUWAIT~K IDLE? 
A~TEK UNIt1,:»: WAITtrK FREE, HFAD\aJAITER IDLE' 
At-TEK NOfH15',3)! CUS ovEK RUNGRYJ 

ORUER 

LEAVE 

HEGIN 

Et-:O 

CUSTOMER SIlTING? ~EAUwAI1EK InLE? 
AFTEK UNI(2,q>: CUSTOt-lFR \I.j~ITING' HEADWAl'TER 

CUST()tJ.EH P "USE? 
A~TEK 0: CUSTO~EH OU1; 
4 SITTING,5 WAITING,2U OUT,9 FIILL,ll E~~IY, 
1 IOLE,3 ~HEE'l OPEN' 
PAy 60. 

Figure 3.2. ACSIH input for the simulation of IKILER 
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the arrival process. Since this is a closed queueing model there would 

be enough number of customers OUT, ready to ent~r the system at each 

opening of the d~or. Simulation would terminate at the end of 60th PAY. 

The system was simulated with the given specifications and initial 

conditions. The system clock was 630 wh~n the 6oth'~AY was completed. 

The simulatio~ o~tput showing the activity counters, ~le states of the 

entities and the content of the queues are presented in Figure 3.3. 

IKILr'K 
SI~ULATION ENOt.U AT PAY 60 
SIMUI AllaN ENOEU AT CLOCK - f}30. 

g~yI0t. ~~~ ~f~~l~H ~8 ll~~~ 
PAY ~AS STAKTt.U 60 lIMES 

8INNFK HAS STAKTt.U 63 lIMES 
HUEn~A~ HAS STAKTt.U 63 rIMES 

OKUER HAS STAKTEU 59 TIMES 
LEAVr HAS SlnHTt.U 0 TI~~S 

ENTITIES AT f}30 
1 CIISTOMEH: 1 PAy 

. 19 OUT 
3 DINI\ER 
5 S I I T TNt; 

2 DO OK 1 ARKIVE 
NO DOOR IN ANY QUEUE 

1 YAY 
10 EtJ.~lY q'FULL 

4 ~FAUWAIT: N6 ~~XmJAITIN ANY (~UElJE 
5 Wl\l l~R : NO ACfIVE WAITER 

3 fRt.t. 

1 l'iA IT ING 

19: 4 13 18 14 17 20 1~ 21 16 19 22 24 ~6 
o· 25 ?7 2A 29 
U 

lU 39 40 41 42 43 44 45 4647 4A 

~ 38 ~l ~2333234 3S ~6 37 3A 
U o 
U 
3 ~3 51 ~2 
1: 1 

(") 

lt f simulation of IKILER, ACSIM output 
Figure 3.3. Resu s 0 



IV. ESTIV1ATION OF PARAHETER 

SENSITIVITIES USING ACSIM 

As stated in the Introduction, the question "How would the system 

output change if we repeated the experiment under exactly the same 

conditions, except for small perturbations in sample values of one of 

the parameters?" will be answered without having to repeat- any experiments 

at all. Furthermore this question could be answered for all of the 

system parameters in one run, while simulating the system. 

The system output is the total simulation duration. It maybe a time 

value specified beforehand to terminate the simulation, or it may be the 

time required to complete given number of activations of an activity, the 

output activity. 

The system output, Ts' is a function of the system parameters,i.e. the 

activity durations. 

where 
Pjk= duration of the kth activation of activity j, 

Kj = total number of activations of activity j, 

H' = total number of activities in the system. 

If a small perturbation is created in the k-th activation of activity 

J. A then the system output in the perturbed system, Ts" will be 
, jk' 

given by: 
T'=f(p ", ,p - , •• ,p "k-tAPJ"k'" ,PJ"K , •• ,p}oc) 

S 11 J1 J j ~ 

where Ll.Pjk is the amoynt of perturbation introduced in Ajk• 

The sensitivity of the system output with respect to the duration Pjk 
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is given by 

(4.1) 

dT s . 
dPjk~S called the sensitivity of the system output to the individual 

duration Pjk. 

The sensitivity of the system output with respect to durations of all 

individual activations of a particular activity j would be 

k=l, •• ,K. 
J 

The resultant sensitivity of the total simulation time to the sample 
aT 

durations of activity j, ~, would simply be the addition of the 
C>Pj 

sensi ti vi ties wi th respect to individual durations. 'lhis is true for all 

the activities in the system. 

aT Kj ClTs (4.2 ) 
s ;E ()p. = j = .1, •• ,M c>.p jk J. 1<=1 

Here the basic assumption is that individual perturbations are so 

small not to cause nonlinear effects in the system even when they are 

applied in all the activations of a particular activity. 

The efficiency of this study is due to the fact that the sensitivity 

coefficients of the system output with respect to all the activity 

dura tions can be es tima ted in a single run. Furthermore, the CpU time 

it takes to es tima te M sensi ti vi ty coefficients is almoet the same 

with the CPU time that brute force analysis takes to estimate only one 

sensitivity coefficient. 

This estimation procedure is done by use of perturbation,Propagation 

Analysis. Perturbation Analysis can be carried out for a number of 

performance measures of interest. In this study, the sensitivity 



coefficients of the total simulation time with respect to the durations 

of Borne or all of the activities in discrete event dynamic systems are 

analyzed. 

propagation of a perturbation refers to the way in which the change 

in activity durations can propagate through the discrete event system, 

affect various activities, and eventually cause a change in the total 

simula tion duration. 

In section 4.1. first a qescriptive then a formal view of perturbation 

analysis for systems represented by activity cycles are presented. The 

procedures included into ACSD1 to estimate the sensitivity coefficients 

are explained in section 4.2. The sensitivity of total simulation time 

with respect to the durations of the activities in IKILER are estimated 

using ACSD1a.nd comparative results are also included in the last 

section of the chapter. 

4.1. senei tivi ty calculation for Systems Represented 

by Activity Cycles 

Suppose that a perturbation is introduced in some of the system 

parameters. This will cause to put on gain or loss to the entities 

involved. For example, if an activity is finished one unit early then 

the entities involved in this activity will be' available in the succeeding 

queues one unit early. As a result they all will have a local gain of 

one unit. such a perturbation will be eventually propagated through the 

other activities or will be cancelled, namely either realized or lost 

by ~e system. Once a perturbation is introduced in the system its 

. t the other entities is followed via the rules which are 
propagat~on 0 

called the Propagation Rules (2). They could be stated as follows: 



i. Gain of an entity is propag'ated either partially or as a 

whole to all other entities involved in an activity if 

this entity arrives last, namely if it is the critical 

entity for this particular activation of the activity. 

ii. Gain of an entity could only be affected at points in 

time when an activity in which the entity is involved 

occurs. 

clearly, if local gains are not eliminated through the system this 
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would be referred as realization of gain for the entire system as opposed 

to the realization of this gain for a single activity. 

The Perturbation Analysis approach could be formalized as follows. 

First of all it should be noted' that the system without any perturbations 

is called the nominal system, and the one in,which the perturbations are 

observed is called the perturbed system. All quantities pertaining to the 

nominal path are nonprimed and those pertaining to the perturbed path are 

primed. 

Assume that a perturbation is created prior to the k-th activation of 

the activity j, A
jk

, and its size is small. Gain of an entity i, Ei , 

at the start of k-th activation of this particular activity can be given 

as a function G,(A'k) as follows: 
~ J 

where 

Gi (Ajk) ~ Ti (Ajk) - Tl (Ajk) 

T, (A ok) = The arrival time of Ei to its queue Qi preceding 
~ J 

activity j, prior to its k-th activation in the 

T! (A ok) 
~ J 

nominal system, 

= The arrival time of E, to its queue Q~ preceding 
~ ~ , 

activity j, prior to its k-th activation in the 

perturbed system, 

= The set of all the entities involved in Ajk 

(Assuming they are invariant for both systems). 



Gi (Ajk) measures the difference in arrival of Ei' HS
jk 

prior to 

Ajk between the nominal path and the perturbed path. It could be positive 

negative or zero corresponding to the cases of local gain, local loss or 

no gain, respectively. 

Since an activity will start as soon as all its input entities are 

available in their respective queues, the starting time of the k-th 

activation of activity j in the nominal system, T(Ao
k

), is given by 
. J 

T(A ok) = I>1ax To (A ok) 
J iESo~ J 

Jk . 

Let Ec denote the critical entity which arrives last with 

Since it determines the starting time of Ajk' Ec is called thee critical 

entity for this partioul~ activation ~jk' 

Similarly the starting time of Ajk in the perturbed system, t'(Ajk), 

is given by 

= M~ (Ti(Ajk) - Gi(Ajk) ) , 
~E.Sjk 

and the critical entity for Ajk in the perturbed system is Ec ' ~~th 

T' (Ajk) = T~, (Ajk) = Tc I (Ajk) - Gc ' (Ajk) ° 

comparing with the nominal system it is seen that the entities, 

E iES will all have a local gain given by (T(Aok) - T'(Ajk) ) 
i' . jk' J 

at the end of A
jk

, assuming of course that no perturbation is applied 

f o 1 °ns of all the entities involved in the duration of Ajk' These ~na ga~ 
() 

C
an be written .in terms of the local gains of the critical 

in Ajk 



enti ties 

(4.3) 

where 

T(Ajk) - T'(Ajk) = Tc(Ajk) - ( Tc,(Ajk) - Gc,(A
jk

) ) 

= Gc,(Ajk) + ( Tc(Ajk) - Tc,(Ajk) ) 

= Gc,(Ajk) + Wc,(Ajk) 

Wc,(Ajk) = the waiting time of E ,for 'A 'kin the nominal 
c J 

system. 

Consider two possibilities that could occur: 

1. 1he cri tical entity remains invariant in the nominal and the 

perturbed systems. This means E =E • If we consider this case in 
c c' 

equation 4.3, final gain becomes 

In other words, the critical entity forces its gain as a whole 

to all the entities inv?lved, in Ajk• All the ~ntities coming with 

gains G. (A 'k)' ;i ~ S 'k would leave activity j with gain G (A 'k) • 
~ J J c J 

ii. The critical entity for Ajk is~ifferent in the two systems. 

This means Ec~ Ecl • In this case final gain is 

It should be noted that 

Thus the final gain is determined by the critical entities in the 

two systems with a value between their original local gains. 

T'ne summary of this formal view is shown in Figure 4.1., assuming 

that the variables are functions of a particular activation of an 

activity, although not stated explicitly. 

Up to now it is assumed that Ajk itself would have no p~~turbation. 

But there could be a small perturbation,~p'k' in the duration of 
- J 

this particular activation. In this case the duration of Ajk in 
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NOl1INAL PATH PERTURBED PATH 

T~ •••• lTi . ... 
'\V 

G • • G • • 

E~ •••• E. • ••• 
~ 

p 

1 ····1 . . . . 

ITn 
Q 

En 

I 

1 

ARRIVAL TIME 

QUEUE 

ENTITY 

ACTIVITY 

COMPLETION 
TINE 

lT~ . . lTi~i ··IT ~ ~ ~ n n 

@ . . G •• G 
E~ . ... Ei •••• En -

p 

I 

1 . . . . 1 .... 1 
T + P = Max ( T , •• , T. , •• , T ) + p 

~ ~ n 

=- T + p 
0; 

T' + P = Max ( T~-G~, •• ,Ti-Gi, •• ,Tn-Gn ) + p 

= (Te.-Ge ·) + p 

final gain = (T + p) - (T' + p) 

= To; - (Te.- Ge .) 

Figure 4.1. propagation of 10qal gains through ~ activity 
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in the perturbed system is P A h . . 
jk+~Pjk were Pjk ~s the durat~on of the 

activity in the nominal system. In general, final gains of the entities 

at the end of A' k is given by FG(A. ) where 
J Jk • . 

FG(Ajk) ~ ( T(Ajk) + P jk ) - ( T' (Ajk) + P jk + bp jk ) 
, 

= Tc(Ajk) +.'P jk - (Tc,(Ajk ) - Gc,(Ajk ) +P jk +D.pjk ) 

= Gc,(Ajk) + (Tc(Ajk) - Tc,(Ajk» -bpjk 

::; Gc,(AjJ + Wc,(Ajk) -b.Pjk 

for all E., i f s .. 
~ Jk 

b. Pjk is either positive or negative or zero corresponding to the 

cases where the activity duration is increased or decreased or 

unchanged, respectively. 

It would be clear that gain of an entity wil~ be affected only when 

it is involved in an activity. 

To be successful in the estimation of the sensitivity coefficients 

by use of perturbation Propagation Analysis, the perturbations must be 

so small that for each enti~ the sequence of activities remains invariant 

in both the nominal and the perturbed system. This is called the 

( 

Deterministic Similarity of two systems(ll). Stating it once more; the 

perturbations wolildbe small enogh not to change the order of the f'low 

. of en ti ties wi th respec t to the nominal path. For example, assume that 

A. and A. need an entity E· from the same queue and A'k starts 
J+~,l Jk ~ J 

before A. in the nominal path. A large perturbation may cause A. 1 
J+~,l J+~, 

to start earlier th~~ A. , therefore it switches E. from A' k to A. l' Jk ~ J J+~, 

and causes local gains not predictable by the propagation analysis. 
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4.2. Addition of Routines into ACSDI to Estimate Parameter Sensitivitiefj 

The sensitivity of the system output with respect to the individual 

durations is defined in section 4.1. as 

6)T 
s b T (Lop ok) 

= lim s J 
APjk~ 0 Apjk 

where b.T. (Ap ok) 
s J 

is the change in the total simulation duration of the 

nominal path. caused by the perturbation l:l p jk in Ajk• 

Assuming that this perturbation is small enough this sensitivity 

coefficient can be written as 

= 

- substituting equation 4.4 into equation 4.2 the following resu~t 

is obtained. 

Ko 

=~ 
k::l .b.p jk 

bT (Llp oJ :s J 

The perturbations b,p jk is taken to be equal for each activation 

of ° ° t A "p. JO = 1, •• , KJo. This equality. resul ts in an act~vJ. :y, . UPjk =~ j 

the following simplification: 

6T (6p 0) 
s J 

change in the total simulation time of the 
~T (~p ) is defined as the 

s j 
the perturbations applied in all the 

nominal system caused by 



activations of activity j with the srune amount of 6pj. 

ACSIM supplies the change in the system output with respect to the 

perturbations in each activity, b~ (t:.p,) 
s J 

j = l, •• ,M. at the end of 

a single simulation run by means of new routines. An array of local 

gains for each activity is kept for each entity in the system. fuis 

can be thought as a matrix of local gains, GAIN(i,j), whose entries are 

showing the gain of an entity i at any time if the perturbations are 

applied in the duration of activity j. 

The resultant system gain at the end of simulation is given by 

j = 1, •• ,1'1 

for each of the activities in the system, where'I is any active entity 

whose internal~clock is equal to the system clock at the end of 

simula tion. 

The sensitivity coefficients of the system output with respect to 

sample durations of-each activity is simply found as 

= 
GAIN(I,j) 

6p, 
J 

at the end of a single silnula tion run. 

j = 1, .. ,1'1 

Since these results are valid for this particular simulation run, 

this analysis is named as sample path Analysis( 11) • 

ACSIM keeps track of local gains with respect to each activity for 

each entity in the system. Local gains are updated when the entities 

are involved in an activity. The basic rule used in ACSIM for propagation . " 
of local gains through an activity is to pass the gain of the critical 

other ent;ties involved in the activity and ~o 
entity to all the • 



subtract the amount of perturbation from these gains in case there 

exists a perturbation in this activation. 

The critical entity is found while checking the conditions for the 

start of an activity. If all the conditions are satisfied then the 

entity whose internal clock equals the system clock is the critical 

entity. The dynamics of this estimation procedure could be followed 

in the new structure of ACSD1 given in Appendix A. 

4.3. Experimentation with IKILER 

The approach described in this chapter was applied to IKILER 

illustrated in Figure 2.5. The total simulation time was 630 minutes 

when the 60th PAY activity was completed. The sensitivity of the total 
~/ 

simulation time with respect to the durations -of ARRIVE, ORDER, paY, 

ORDERP ASS and DINNER was es tima ted, all in one run. 

The perturbations in all the activities were 0.001 minute~decrease 

in the sample durations. The highest sensitivity coefficient is 

observed with respect to the. duration of ARRIVE. It is found to be 39. 

This result was compared with that of brute force analysis. Namely, 

one more simulation run was performed in which all the activations of 

ARRIVE were actaally decreased by 0.001 minute, and the simulation was 

terminated at the end of 60th PAY again. The system clock appeared to 

be 629.961 minutes. The sensitivity coefficient was calculated as 

629.961 - 630.000 

- 0.001 
= 39. 

This is the same result with the one est.imated by ACSIM. '!hen four 

37 

more simulations were performed to compare the resul ts in case of the 

other four activities, by the same way above. A.ll the results estimated 
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by ACSIM are equal to the results of brute force analysis. It should be 

noted that ACSIM results were taken at the end of a single simulation 

run, however brute force analysis required six runs, one for the nominal 

path and five more for the perturbed paths in case of ARRIVE, DINNER, 

ORDER, ORDERP ASS, and PAY. '!hese resul ts are summarized in Figure. 4 • 2 • 

A new set of five more runs were taken with perturbation values 

increased to 0.01 minute, to see the effect of that much perturbations 

in the estimation procedure. As a result, the sensitivity coefficients 

with respect to the activities ORDER, ORDERPASS, DINNER and PAY still 

remained the same, but a small discrepancy was observed in case of 

ARRIVE. '!his is due to the nonlinearity caused by.O.Ol minute pertur-

bations which resulted in the changes in the paths of some entities. 

The results of these experiments are also included in-Figure 4.2. 

ACTIVITY SENSITIVITY COEFFICIENT 

ACSIi'1 BRUTE FORCE ANALYSIS 
! 0.001 ml.n. 0.01 ml.n. 

ARRIVE 39 39 30 

ORDER 11 11 11 

ORDERPASS 16 16 16 

DI1"NER 0 0 0 

PAY 22 22 22 

Figure 4.2. Results of sensitivity analysis in IKILER 



v. ll1PLEt>1ENTATION OF S.A1>IPLE PATH ANALYSIS 

ON A TIME-SHARED C011PUTER SYST'Ji:M 

5.1. statement of the problem 

consider a company with a time-shared computer system consisting of 

a single central processing unit(cPU), one disk drive, one tape drive, 

and twelve terminals as shown in Figure 5.1.(17). The operator of each 

terminal thinks for an amount of time which is an exponential random 

variable with mean 15 seconds and then sends a message to the CPU. The 

arriving jobs join a single queue in front of the CPU and are served 

in first in-first out manner. If the CPU is idle, the job immediately 

begins service. 

computer 

r-------------------------------------~-l 
i I 

Terminals 
, I 

I I 
I I 

00· ·0 I Disk I [J 
,r D ~.,oo .. oB 0.15 

0.05 . 

• 
0.20 0 0 . ~ 0 Tal)e 

G I 
____________________________________ . __ . ___ J 

Finished jobs 

Figure 5.1. A time-shared computer system 
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Each job occupies the CPU for an amount of time which is a uniform 

random variable between land 2 seconds. upon leaving the CPU, a job is 

either finished, with probability 0.20, independent of the system state, 

and returns to its terminal to begin another think time, or requires 

data from the disk drive, with probability 0.15, or needs some data 

stored on tape, with probability 0.05. After obtaini~g the data either 

from disk or tape the job joins the queue in front of the CPU again. 

If a job leaving the CPU is sent to the disk drive it may have to 

join a FIFO queue there until the disk drive is free. The service time at 

the disk drive is un~formly distributed between land 5 seconds. Similarly 

if it is sent to tape drive it may have to join a FIFO queue until the 

tape drive is available. The service duration of the tape drive is an 

exponential random variable with mean 14 seconds. All service times and 

think times are independent, and ,all jobs are initially in the think 

state at their terminals. 

The goal is to estimate the sensitivity of the time required to 

complete the 6-th request from the tape with respect to the service 

durations of the CPU, the disk drive, the tape drive and terminal think 

time. 

Later, this sensitivity coefficients could be used to solve the problem 

of congestions in the computer system occuring through interactions with 

secondary storage devices, such as disks and tapes. Namely, if the 

sensitivity coefficient with respect to the duration of tape drive turns 

out to be considerably high, a solution to the problem of congestion 

would be to try to decrease the service time of the tape drive. This could 

be maintained by rearrangtng the locations of the stored data,jsince the 

total service time of a request from a tape depends on the location 

addressed by the request previously served(18). 



5.2. Modeling the System 

The time-shared computer system is modeled using activity cycles. The 

activity cycle diagram of this system is shown in Figure 5.2. 

The activities of the system are, thinking time at the terminal, 

processing of the job at the CPU, requesting data from disk, and requesting 

data from tape, and these activities are named after their location as 

TERMINAL, CPU, DISK, and TAPE, respectively. The entity classes of the 

system are the jobs, the CPU, the disk drive and the tape drive, which 

are named as JOB, CPUF, DISKDRV, TAPEDRV, respectively. Two dummy activities ! 

nUMDISK and DUM"TAPE are used to take the jobs into the queues in front of 

the disk and tape. 

Initially all the jobs are in the terminal think state. At the end of 

. think duration the jobs are taken from TERl1INAL into the queue WAITING, 

in front of the CPU~· CPU would start service if CPUF is FREE and a J 013 is 

WAITING~ TO ,be able to determine the flow of jobs in the system an 

attribute for each job is created while leaving the CPU. Attribute DUNI, 

having a Discrete U1~form value'between 1 and 100 is set at the end of 
. I 

service at CPU before jonining the queue READY. A READY JOB with an 

attribute value DuNI>25 would take place in the ac~ivity DISK, since it 

is given that 15 percent of the jobs leaving CPU requests data from the 

disk drive. After taking place in the dummy action Dl&IDISK, with zero 

duration, the job is taken into the succeeding queue INQDISK, in froni 

of the activity DISK. Disk would start service if DISKDRV is IDLE and a 

JOE is in INQDISK. Similarly if 2;0 L DUNI ~ 25 then the READY JOE is 

first activated in DID1TAPE, with zero duration, then taken into the queue 

INQTAPE in front of the tape. TAPE is activated if TAPEDRV is liE:RID and 

a JOE is in INQTAPE. Finally, if DUNL f:.20 it implies that the JOB is 



Job 
Cycle 

J 

(~R''1',. P ~/, 
"\ Tapedrv\ ,. \ 

'" Cycle i " 'r-~--~~-----
'I, '-'-I 

DUNlf:2Q 

DWJ)ISK 

/~ /DiS:9 
r-----2--; ,Cycle /' 

/' 
,/ 

INQDISK 

\"'_/ 

DUM TAPE 

.J 

t·· ....... 

" Cpuf . 

'. 

CYOle~ 

.-.... _-.. 

" DUNI=UNI(l,lQO) 

Figure 5.2. Activity cycle diagram of the time-shared computer system 
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finished and the job turns back to its terminal. After the activations 

of either DISK or TAPE, the JOB joins the queue WAITING for CPU again. 

CPUF, DISKDRV, TAPEDRV would go back to their idle states FREE, IDLE, 

and HERE after each activation of CPU, 'DISK and TAPE, respectively. 

After explaining the dynamics of the model it would be very easy to 

unders~and the input for ACSIM to estimate the parameter sensitivities. 

The input format is presented in Figure 5.3. 

COMPUT~R: 15 

CPU JOH WAITING? C~UF FRE~~ 
AFTER UNI(l'2): JOH HEAr!Y ()IJNI=lJNI(l,100" CPlJF FREt:.; 

DUMUISK JOR READY DUNI)2~? 
AFTER 0: JOH INGOJSK; 

DUM1AP~ JOR R~AOY DUNI)20? 
AFTER 0: JOH INQTA~E; 

TAPE JOB INQTAPE? TAPEURV HEHE? 
AFTER XPO(14): JOH WAITTNG' TAPEORV HERE~ 

OISK JO~ !NQOISK? OISKURV InlEt 
AFTER UN!(l'S): JOR WAITING, DISKDRV IDl~; 

TER~INAL JOR READY? 
AFTER XPO(75): JOR WAIT!NG; 

BEGIN 
END 

!2 READY,! FREE,l IDlE'1 HERE. 
TAPE 6; 

~ERTURHN DISK l-,CPU l-,TF.R~INAL 1-,lAPE 1-, 
F_IN • 

. Figure 5.3. ACSIN input for the estimation of I?arameter sensitivities 

in the time-shared computer system 

(") 



5·3. Experimental Results 

'!he time-shared computer system was simulated using ACSIM. ~e 

simulation ended at the end of sixth activation of tape drive. Total 

simulation time was found to be 435" seconds. The sensi tivi ty of .this 

simula tion time with respect to the durations of CPU, TERMINAL, TAPE, 

and DISK were estimated while the system was being simulated. 
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The perturbations introduced in a~l the activities were 0.01 second. 

It was observed that the sensitivity coefficient with respect to the 

request time from disk was really significant. Then four more simulations 

were performed by actually decreasing the durations of all the activations 

for each activity. The results of these brute force runs were exactly 

the same with the ones estimated by use of ACSIM. 

Later the amount of perturbations were increased to observe the system 

behavior to larger perturbations. With "perturbations of 0.02 second, 

deterministic similarity between the nominal and the perturbed path was 

still preserved, and ACSIM sup~lied the exact results. But when the 

perturbations were increased to 0.05 second, this much decrease in DISK 

service time caused some entities to change their paths and perturbation 

propagation procedure resulted in not the exact but still a good result 

for the sensitivity with respect to.DISK durations. However this is n~t 

an unexpec ted resul t since 0.05 seconds perturbation in the duration.. . 

of CPU,shoula not be considered as a small perturbation considering that 

the mean of the distribution for" DISK durations is 3 seconds. The other 

sensitivity coefficients were still exactly the same when the perturbations 

were increased to 0.1 second. 

It should be noted that s~nce a linear estimation procedure'xs used, 

the e2timates of sensitivity coefficients obtained by use of ACSIM 
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would be the same whatever the size of perturbation is. However ACSl}l 

would give exact results with that of brute force analysis in case of 

small enough perturbations. To show that ACSIM would still give good 

results in case of finite perturbations, four more simulation runs were 

performed applying I second perturbation in all the activities. The 

estimates of ACSIM for TERNINAL and TAPE were exactly the same with that 

of brute force runs, where the estimates for CPU and DISK were not the 

same but sufficient to observe the level of significance. 

All of the experimental results are presented in Figure 5.4. The 

number of activations of each activity is also included. This would help 

to analyze the percentage of the times where the local gains are realized 

as the system gain. For example, DISK started 126 times and sensitivity 

of the simulation time to the service duration of DISK was found to be 

105. This means almost 83.3 per cent of the time the local gains produced 

in DISK were realized by the system. 

ACTIVITY NUMBER SENSITIVITY COEFFICIENT 
OF ~-

~RUTE FORCE ANALYSIS S TAR 'IS - ACSl}l 
·0.01.0.02 s. 0.Q5- sec • 0.1 sec. 

TERMINAL 49 2 2 2 2 . 
TAPE 6 1 1 1 1 

CPU 170 6 6 6 6 

DISK 126 105 105 95 97 

Figure 5.4. comparative results, of Sample Path Analysis on the 

time-shared compute~ system. 

1.0 sec. 

2 

1 

9 

59 
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The average CPU time it takes ACSll1 to estimate all the sensitivity 

coefficients while simulating the system· . was observed to be 26 seconds. 

Each simulation run in which the durations of the activities were 

actually decreased by the amount of perturbation took 25 seconds of 

CPU time in average. '!his meanS all the sensi tivi ty coefficients were 

estimated in 26 seconds by ACSIM, and in 25+25+25+25+25 = 125 seconds 

by brute force analysis, the first rUn for the observation of the nominal 

path and the remaining four to calculate the sensitivity coefficients 

with respect to each activity. It should be noted that ACSIM brings a 

significant amount of decrease in computer time. 

The ACSIM output showing the estimated coefficients is given below. 

COMP\llEK . . 
SIMU(ATION ENDED AT TAPI:. n 
SIMUt- AT ION ENOEl) 1\) CLOCK = 1l3!1 
CPU - HAS STAHTI:.U 170 TIMES 
OUMOTSK HI\S STARTI:.U 127 TIMES 
OUMTI\PE HAS STAHTI:.~ 6 TIMES 
TAPE . HAS STARTED 6 TIMI:.S 
OISK . Hl\S STAHTI:.U 126 TIMES 
TER~1NAL H~S STAHTI:.U 49 TIMES 

SENSITIVITY OF CLOCK WRT PI:.RTURHATIONS: 

ArTIVITY 
CPU 
oljl'llDlSK 
~1 )I'll T I\P E 

API:. 
~TSK [HMINAL 

ENTITIES AT 
1 JnH • · 
2 crUf 

3 T!\PI:.URV 

4 OtSKIJHV t. · 

PEHTUHHATION SENSITIVITY 
-1 6 

435 

f 
NO 

1 
1 

NO 
1 

NO 

o 
o 

-1 1 
-1 10~ 
-1 2 

TAPt 1 nISK 
·INQUISK. 
AClIVE CPUF 
FRt..l:. 
TAPI:. 
lAPEORV IN ANY QUEUE 
UISK 
OISKDRV IN ANY QUEUE 

Q~E~h8 AT 43W~rfING 0: 
2 Cf"lUF FREE 1 : 13 
3 JOti HEADY U: 
4 JnH INQDISK 1 : !1 
5 Jn ti INQTAPI:. u: 
6 TI\PEUHV HEHI:. 0: 
7 OTSKURV lOLl:. U: 
.-, .. ~ . -:- . 

q TERllttNAL 

Figure 5.5. Estimated sensi tivi ty coefficients, ACSDl output of 

. the time-shared computer system 



VI. DISCUSSION 

There are many different ways in which the efficiency of computer 

simulations can be improved. Efficiency can be defined by various 

measures such as the minimization of the variances of sample means~ 

minimization of the ·time for individual computer runs, or reduction 

of the number of computer runs required. This study aims to reduce 

the number of computer run~ required for the optimization of the 

system output by a considerable amount. 

To optimize some performance measure in a sbnulation study, each 

parameter is changed and the performance measure sensitivity wi~~ 

respect to each change is computed by actually simulating the system 

after each change. This gives an estimate' of the gradient vector of 

the performance measure. After examining these coefficients, a new 

set of parameters is found and checked, in this manner the performance 

measure is optimized, iteratively. The disadvantage of this method is 

that for M parameters in the system each step requires M new simulations 

which is very demanding. This thesis brings an efficient alternative, - ) 

which has been developed rece~tly, to this brute force simulation 

analysis. 

This approach estimating the gradient vector of the system output 

in a single simulation run while observing the nominal system, gives 

a computational advantage of M to 1. It can deal with any queueing 

network, and has full accuracy in case of small enough perturbations. 

Even in the case that the -perturbations are not small enough to . 
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preserve the deterministic similarity, the gradient vector estimated 

by this approach gives an idea about the relative effectiveness of 

the perturbations applied in different activities. 

The degree of linearity of a system affects the deterministic 

similarity, and it changes from one system to another. Altoough it is 
) 

not a subject of discussion in this study, it could be addressed by 

all optimization problems. 

In summary, the new approach requires only one single observation 

history, estimates all the sensitivity coefficients supplied by 

calculations based on perturbation propagation analysis, and.it is 

simple enough to be implemente.d on any computer. 

'J 
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APPENDIX A 

DYNAMICS OF ACSIM 
"\ . 



Nain Program: 

BEGIN 

initialize; 

REPEAT 

move entities; 

scan activities, 

IF none of the activities could start 

THEN update time. 

UNTIL the end of simulation; 

report 

END. 

Ini tialize: 

create the given number of entities, activities, and queues; 

set system clock, 

FOR each entity 

BEGIN set internal clock, 

FOR each activity 

se t local gain 

END· 

Move entities: 

FOR each active entity 

IF internal clock eq~als system clock 

THEN move it into its respectiv~ queue. 

52 
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Scan activities: 

FOR each activity 

BEGIN check conditions, 

I:F' all the conditions are satisfied 

THEN BEGIN 

include the amount of perturbation into the local 
gain of the critical entity; 

perform actions 

END. 

update time: 

advance the system clock to the smallest internal clock of the 

active entities. 

Report: 

print the system clock; 

FOR each activity 

print .the number of times it started; 

FOR each activity 

print the amount of perturbation and the sensitivity coefficient; 

FOR each queue' 

print the number of entities in the queue. 

(; 



Check conditions: 

IF the number of entities in queue is less than requirement 

THEN condition is not satisfied 

ELSE IF no attribute is specified 

perform actions: 

THEN BEGIN 

condition is satisfied; 

specify the entities to be activated; 

check if the critical entity is one of them 

END 

ELSE BEGIN 

search for an entity with desired attribute; 

IF found 

THEN BEGIN 

condition is satisfied; 

check if it is the critical entity 

END 

ELSE condition is not satisfied 

END. 

FOR each entity to be activated 

BEGIN take entity from its queue, 

specify its next :state, 

IF an attribute is specified THEN set its value; 

update the internal clock; 

FOR each activity 

update the local gain 
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APPENDIX 13 

SY1~TAX DIAGRAl1 FOR ACSIM 



syst~m >~ ~ Activity I {)( 

( f-ert,;"bati-?l 
~ . )(~ 

Activity 
condition EXPr Action 

/ (')~----------

perturba tion 
PERTURl3N 

J 



Expr 

Action 
-------4~ 

ExPr" 

Key words: AFTER, BEGIN, END, CLOCK, PERTURJ3N, FIN 

Terminal Symbols: 

id:. = identifier (sequence of letters and digits) , 

num = number (sequence of digits) 

57 

) 

(0 rel =-{: (equals) apr =-{: (assign) 

. ;. XPO 

func = {UNI 
NOR 



APPENDIX C 

ACSIM PROGRAM LISTING 



RA~ ACSIM; 

INST AMAX=20; 
SHAX=90; 
CMAX=15: 
o M.A X =4 0; -

-EMAX=200;:- -- .-- .--.-... ::-':-~ .. -.-

~ t ~ ~ 6 ; o:'~- :"_, '::~_ : co- :-_-:: 
PNT ='.'; -- -
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WAFTER='AFTER ': 
WCLOCK='ClOCK ': 
WBEGIN='BEGIN 'i 

: WEND ='END 'i 
. WXPO ='XPO ': 

WUNI ='UNI 'i 
:w NOR = • NOR . • ; . _. 

- BLANK_=' - '-ic --__ -COMMA=' t'; 
-EOl ='=':-PlUS='.': 

WPERTURBN='PEQTURBN'; 
-SEMCOL=';': COLON=':'; 

MINUS ='-';GTq =')'; 
OMARK='?'; 
lSS ='('; 

rPE ATYP=O;'·"AMAXi.-
STY P = 0" Ii SMA X i -- -
CTYP=O ... ,CMAX: 
OTYP=O •• OMAXi --
ETYP=O"~'lEM"X i-- -- -
WORD=PA~KEO ARRAY[l.;~lJOF CHAR; 

~~~~~~~Ig~~A~~g~gNI~~~~)iNC:FUNCTN OF 
____ .. _______ CON,XPO: (N:INTEGER): __ 

--- .-- - ----- -UNI,NOR: (P,O:INTEGER) END; 

__ . ___ ACTIVITY -~~~:~::O-~P:_-::k~~6;g~u~~;~~f~ ii~ft~E~~STENT :ETYP; 

AR 

- - GOON: BOOLEAN· NAME: WORD· - END; 
S T ~ TEMENT =RECORDPO S: QTYP '-REO: ETYP' - ·-:-=,,~ .. -,:::: .. ----:OPR-CHAR·---:XPR·EXPRI-SSION '-- - END-.. __ ." _~"_ " .. _ •... ,.... • t.. , 
E N TIT Y _. = R E,S 0 R D__ l 0 C : ~ T Y PiT I M f:. , A T R B : I ~ T E G E R i: _ 

- .. - ...- -G Al N _ A R R A V C 1 •• A M A X J O· I NT E 0 E q , 

.. 
QUEUE 

NA:ATYP: -
N5:STVP; 

.. - N C : cry P ;' 
NO:OTYP; 

. .. - - -- -- ',::;: -:-- CAS E· ACT I V E : BOO LEA N OF 
TRUE:CACTNUM:ATYP'; 

'- .. --: .. - FALSE:(SUC,PRE:ETY:P) END; 
=RECORDHEADiTAIL,NUM:ETYP; CLASS:CTVP END: 

t l.. 0 C K , END V , I NIT I A L SEE D , E R C 0 U NT: IN T E G E R: i 
ENOC:ATYP-

. _ ' .. _=-:: =_SENS_, MOVE SC AN, ENDS 1M _: B O~LEA N: 

NE: ETYP; - _. .- :___ .._ _ 
-, SYSNAME :PACKEO-:ARRAY[l-•• SLJ OF CHAR ;_. ' 

ACT:ARRAV[l t,;.AMAXJ -OF "ACTIVITY· , 
., '- .. ::_": S TA:ARRA V[ l:e .SMAXJ.-OF ~s T A TEMENt;: 
'-"OUE:ARRAYCl;';QMAXJ'OFOUEUE;' .. , 

ENT:ARRAVCl;;EMAXJ OE ENTITY- . 
" ACTN: ARRAY[l.·.CMA)(i-li.~AMAXJ ·bE-·ETYP; ,,--.,-_ 

--. .. C N A ME, A N A ME: A R RAY [ • 'C M A X J -OF WORD::" 
ON AME:. ..._ .. :-:A~:~AY[~~~'~:Mf~ 3. _:O_~~ORD.; 

UNCTION RNO-(VAR S:iNTEGERf:'REALr 
B E-G 1 N 5 : = ( 2 517 3 * 5.,. 13849 L MOD . 6 5 53? _: R ~ 0 : =S I b 5 5 3 6 _ END; 

-- .. 

. --- . -- - -.:--:~ -- =.----- -
. -. -- ---
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PR9~~DUR5:By~~?U~i[TYP: 
BEGIN WRITELN:WRITELN('OUEUES AT '!CLOCK,CDLDN): 

FOR 0:=1 TO NO DO WITH OUE[o] DO 
BEGIN­

WnITE(O:2,BLANK,CNAME(CLASSJ,3LANK,ONAME(O],NUM:4,COLO 
.E:=HEAO: .. '.,. , . : .. 

-WHILE '£>0"00 BEGIN WRITE(BLANK,E): E:=ENT[E].SUC ENO: 
WRITELN .... 

. .. .... END .. ·. ~ .::::. _ .. : c.·.: .- : .: •.• 
END: (* 0 U M P 0 U E··* ,. . .:' .. : .. 

PROCEDURE DUMPENT:~' .. 
VAR E:ETYP: 
BEGIN WRITELN('ENTITIES AT ',CLOCK,COLON); 

FOR E:=l TONE 00 . WITH ENTCE] DO 
WRITfLN(E:2,SUC:4,PRE:4,LOC:4,~IME:8,ATRB:8) 

.. END: (* OUMPENT *J ... .. . . . .. . 

.PROCEDURE OUHPSTA: . . 
.... V A R A : AT Y P :S : STY P: C: C T Y P: Q: Q T Y P : 

P.RDCEOURE p.UTEXP(E)(:EXP.R.ES.SIPN):· 
BEGIN WITH EX DO :0.':'-::::.:':.::' .• :" .. : 

CASE FNC OF 
.. . :CON:WRITE(N) ic",;:- .. 

XPO:WRITE('XPO(',N,')'): 
U !Ill: W RITE ( , UN I ( , , p , COM M A, 0 , ' ) , ) : . 

. :. NOR:W R.IT £ ( :' NOR ( , , P , COM H A, 0 , ' ) , ) .' 
END 

EN 0 : ,_ . ( * PUT E X P * ) 
BEGIN (*OUMPSTA*) 

S: =0' ,. . 
FOR 1:=1' TbNA Db WITH ACTCA] DO 

BEGIN WRITELN(NAME); 
.. REPEAT S:=S+l: WRITE(BLANK:S): 

.... . .. . WITH S T A( S] .00 
'C::::: ... ',: : .. ::.:~:::. ·c.:.'-. IF·.P 0 S > O:c . 

. '--.' ...... :. :-=. .... 1H ENB E GIN 

.··oc=.,···: ·c=:::{+j~~::t.:.:-.:~~::·>J~:~:~~5~ iOi~ E~Le ~ i tE (R EQ ,el A NKJ : 
... -.. . . .. .. - P U HJOR 0 ( eN A M E ( C ] ). W R IT E ( 9 l A N K )": 

: ....._ . .. _ PUT W OR 0 ( C N A M E ( P 0 S j ) ; _ :". . .'. . . 
... . .. ' .. ~. '-co .'.: .... :::'.··-tF'f-·o P R < > B LAN K ::0.. .._. - ..~ . -- . 

THEN BEGIN PUTWDRO(ANAME[C]): 
. .....- :.:. .' --'~~'. .0' .. .- :: :.:': W R I T E ( 0 P R ) ; PUT E X P ( x P R ) 

... ~:' .. ::-:~"'" .. END: - . ., .. 
IF S=LASTACT 

THEN WRITElN(SEMCOL) 
ELSE IF S)LASTCON THEN WRITELN(COMHAI 

ELSE WRITELN(OMARKI 
.: ... :.': ·ENO· 

ELSE BEGIN 
. - ~~:' .. ~:_.: _=: .. , -.'. W R ITEJW A FTER:)-: P U TE X P (X P ~ ) : W RI TEL N ( CO LON I 

c' •. -.·,:'· •. 0 .. -:.C'.-:·:O:.-;.. -..• ' -.:.: •.. END· 

=~,,~.~~-:~:;~==-=c:~:t No: .. ~ ~ ~~~J::~.p~~.~,~~~.::~_!:~,C_T: .:~: .= . : . .- - ... 
'... WRITE( WBEGIN)""; . . ..... .. . 

·c FOR.,Q::.=l.:.TO·:NO·OO··WITH·:OUE[OJ DO. .... , . 
--·:·:·:··~;·tF.:·:NUMjO :':THE W:WR1. TE (NUM; B LAN K',Q N AM E[ Q] t CO "I I'U ); \oJ RITE LN : 

WRITE(WENO) ; 
.... -.:.::! F:-ENOC=O· ~THEN-:cla!R ITE (W CLOCK) 

- .... "_-:::::;0 .... ELSE:'WRI1E'( ACT[ ENOe] .NAME:) ; 
WRITELN (ENOV, PNT) ; .. WRIJELN; WRI'TELN 

END," (*,::·nUMPSTA ~-) •. :C:. --.-.::.':. . 

PRO CEO U R E . I NIT I A LIZ E: . .... .. 
. V AR: . ill : W 0 R 0: . C H : C H A R ;V , I : 1 N T E G E R: N U MER A L , LAS T : BOO LEA Wi 

.E: ETYP:Q: OTYP; 
" .. _ ... - ---- ----._ ....... - .--



PROCEPURE GETWORD; 
(* READS NEXT IDfNTIFIER INTO W AND THE FOLLOWING SY~BOL lNTO CH • 
(* IF ID[NTIFIER IS NUMERAL THEN V CONTAINS ITS VALUE,OTH[RWISE 0 I 

VAR I:O.;WL; C:ARRAY[l.;WLJ OF CHAR: 
BEGIN . -

W~ILE NOT(CH IN ['A'.;·Z','O·;.'9'J) DO READ(CH): 
V:=O: 1:=0; NUMERAL::TRUE: . 

REPEAT 1F r<WL THEN 
BEGIN 1:=1+1: C[IJ:=CH-

IF NUMERAL AND (CH iN ['0',;'9'J) 
THEN V;=10*V+ORO(CH)PORO('O') 
ELSE NUMERAL:=FALSE 

- END: -_ . 
REA D ( C H) _ .. _ -:. _ . _._.-: . _ . 

UNTIL NOT(CH IN ['A'.;·Z','O';.'9'J): 
W H I LEI < W L·· 00::- BEG I IQ - •.• I : = 1 + 1: .. C [ I J : = S LAN KEN 0 : 

C~i~lCt~!~liNK 00.· READ(CH) . 
---._END: (* G£TWORO_:*) . 

PROCEDUREGETOU_E( VARO_:QTYP:J: . 
V A R. C : C T Y P ;0 ,::~c__ _ : =- :_ 
BEGI~ . 

- .• C N A MEr N C+ 1J : = W_:- _ 
-- . - C: = 0 - REP EAT: C : = C + 1 UN TIL C N A M E ( C J = W ; 

.GETWORO: ONAM[[NQ+1J:=W: IF C)NC· ... . .. ~ 

THEN BEGIN NC~=C:O:=NO+l END 
ELSE. BEGIN, Q:=O: REPEAT Q:=O+1 UNTILQNA~E(QJ=W END: 

-'·IF O>NO·,--- - - .. 
THEN BEGIN NO:=O: WITH QUECOJ DO 

- _,-<c._. __ ~,BEGIN.-HE.AD:=O; TAIL:=O; NUM:=O: CLASS:=C· END END - , ., . ... 
~NO; (* GET9U£*).:._,__ _ 

... - _. - .... -- . 

PRO CEO U REG E T EX P ( V--A R EX: EX P R t S S-1 0 -N) ; 
BEG I N - . -- . ,. .:- • . .. -. • GETWORO:- . -0_' - , - , 

WITH EX DO 
IF NUMERAL THEN 

BEGIN FNC:=CON: N:=VENO 
ELSE IFW=WXPO THEN 

BEGIN FNC·:=XPO: GETWORO iN: =V--- END 
ELSE IF W=WUNI THEN 

,-- .- BEGIN'fNC:=UN_I:~.~GETWORD: P:=V: GETWORO: ··Q:=V-ENO 
... ELSE- IF'W=WNOR---THEN'---:--

'_.:: [[ SE=--::--~~~5~ t ~~c::~J-_~ORLGETWORD: P: =V ; __ G_ET W DBO: 9: =v ENO 
EN'O; (* G E TE XP .* j' -- --~-,--- --co":.· . -- .. --: c- -

:,. p·R-o-c ElfliR E·. C 0 N·DiTtoN;-':.:'':t~''-~~:':~::~~:c::-~X::::·~o':~--:: 
BEGIN wITH STA[NSJ DO 

·.IF -NUMERAL··'::_:·,: .. - ,.:- -,:'_c- ---__ ,-:,:-'.. '::-, __ ,.- . ,_ 

-THEN" BEGIN:-RE·ti:=\r:~GETWORb; 'GETQUE(POSl: OPR:=BLANK END 
ELSE BEGIN .. , " 

- REO : = 1; GET 0 U E( PO S , : 
IF CH=QMARK 
_ ,THEN OPR:=BLANK 

- '-ELSLBEGIN . (*ATTRIBUTE OPEQATION EXPRESSION.' 
SETWORO; ANAHE[OUECPOSJ;CLASSJ:=W: 

,... ._:c-:,:.,,-::-::~~:.~::-::-oP R:=CH :GETEXP (X P R t' .. . 
_ ,__ ·:_C .--. '-" .c,. ----: - .-.c. '.ENO· . 

_ __ .. _ END :_ . -. . .. 
:." :':.·-~:,:":'-::-::wHl LE. -CHC>OM AR K'no ':.: :'-REAO (CH)· 

END: (* CONDITION*) - -
-- ~- - .- - - . - -

::::·PROCEOURf·A'cr:ioN;~o,:~c-=,-->:-c:~{ ::.:':: - --- .-.. , 
BEGIN WITH STA[NSJ DO 

'IF W-WAFTER . . 
. ":THEN-:BEGINc~:7.: (~":-A·FTER- CLAUSE*' 

REO:=O: .POs:=o; OPR:=BLANK; GETEXP(XPR!: 
_ ., :'::-: -- .. -CC-:: WHILE CH< )COLON ·00 READ (CH) 

END· . 
ELSE BEG IN _ (* -,PROPER ACTION ~). 

-.- REO:=O-:GETQUECPOS) - . 
IF CH iN [COMHA,SEMCOLJ 

--:c. :--::--::':"::::::..:THEN:-OPR :=BLANK 

(i 

- -- - --.-=: ··-"ELSE-:Bt-Gr"N:- (*ATTRIBUTE OPERATION EXPRESSION*' 
.. .. GETWORD: ANAME[OUE[POSJ;CLASSJ:=W: 

:~~-' '- ,- --- -: ::._::_-::-:::,c,.:~::.:_:,-o,-':-::.~OP R:=CH: GETEXP (X P R 1 :.. . 
WHILE NOT(CH IN(COMMA,SEMCOLJ) DO REAO(CI 

END . ____ _ 



3EG IN 
(* INITIALIZE SCALARS *) 
NA:'=O; NS:=O; NC:=O; NO:=U; N£:=O; ERCOUNT:=O; 
CLOC~:=O: ENOSIM:=FALSE: MOVESCAN:=TRUE: 

A~Agf~~c~I~T~~p~I'E ~~RDf~~JIAbN'~fDC~~>BLANK; 
FOR 1:=1 TOSL DO . ". . 

IF CH=COLON 
. THEN SYSNAMECIJ:=ALANK 

(LSE ~EGIN SYSNAME[IJ:=CH; RfAD(CH) E~D; 
WHILE C H < > COLON . 0 OR E A 0 ( C H ) :. '. 

-.GETWORO: ·lFNUMERAl·THEN, BEGIN INITIALSEED:=V; 5ETWORD END 
ELSE INITIALSEED:=O: 

~·~~AGE;~WRITELN(SYSNAME,~OlON,INITIAlSEED:I0': 
:.(* ACTIVITIES' AND' STATEMENTS *,. . 
c.REPEAT.NA:=NA~l;WITH :ACT[NAJ DO . 

:-., ... .... .. ':BEG IN' .. ::::::'::.,.,',:.': ..... :::. . 
NAME:~Wi GETWnRD; . 

. ' .REPEAT .,NS!::NS+J;:CONDITION; GETWORD 
. ,. UN TIL :-c w= WAF T E R; ,: .. .-;:. -:.' 

62 

lASTCON:=NS; 
REPEAT NS:=NS+l; . ACTION: LAST:=(CH=SEMCOL); 'GETWORO 
UNTIL'·· LAST; ..' .. 

LAS T ACT.: =N S; CO U NT: = 0: . 
SEED:=TRUNC(RNO(INI1IALSEEO)*bS33b)' 

END . 
::':.UNTIL-W=WBEGIN: .- ... c . 

. ,~« * ENTITIES· lOCATEO'=*') ~.'~-= ·c·· . 

GEHJDRO' 
:::-:J~EPEAT iF ·NoT.NUMERAl :~THE~~:,ERRQR( 9) ; 
.'. I:=V: GETWOP.D: .. '. . . 

QNAME(NO+IJ.:-=W; 0:=0; :REPEAT 0:=Q+1 UNTIL ONAME[QJ=W; 
- _. . .. '. ':. '1 F'C") NC·:··~c··: ~:.:".:.:: 'C· ... :::.:'::;'·.: :.::' •. ::.- .C·: . . •.• . 

. T H EN t R' R'O R Lf) . . ... - -.' . 
. :.ElSEREPEAL:...I:=I=l;NE:=NE+.1: wITH ENT[NEJ DO 

.... - -.. ---. . .:::. ··":,··:::-:'-BEGIN·· ACTIVE: =TRUE: lOC: =Q; TIME: =0; ATRB: =0 END 
. .. UNTIL 1=0;... .. 

r: ····.GETWO RD' . ',.~:'~.:. 
UN T IL W = WEN 0 ; .. .. . ..-

. (* END CONOl TION*) __ ·,,:c" . 

. GETWORO: c'ENOC :=0; '::- .. <,'.:.' 
IF W<>WClOCK THEN 

::. : .... BEG'IN fOR···I:=l· TO .NA ... OO =:'--:':=.:':' .. :". c: .. ' . -::. 
: ........... '-IF'W=ACT[!J';NAME THEN:'ENOC:=I;" 
. ..' I FEN 0 C = 0 . THE N ER R 0 R (q ) . .. .. ... . ... 
. .- .-:c. :::':::'EN 0 ;': :; ' .. c c .,< .:<~. -.c:' ·-c·',:., ;.. ... ::: .,:....... ."_' . '.~' .' '.: .. -:. .. . ':. .. _ 

'GETWOROi IF NOT NUMERAL THEN ERROR(9); ENDV:=V; SENS:=FAlSEi 
. c .. IF CH=SEMCOLTHEN .·c,:.. . ...... '. . .. _ ..... _ .. 

'-'BEGIN .GEnI0RDi~ IFW<>WPER·fuRBt·( 'THENERROR (3) 'ELSE SENS':=TRUE~ . 
FOR 1:= TO NA DO . 

.- 'BEGIN'ACT[l"] .P-RTV.: =0;' . . 
. '--F ORE: :: r TON E 0 0 

ENT[EJ.GAIN[IJ:=O; 
END;c. "-" .c·.: .:. . 

REPEAT GETWORD; 
FOR 1:=1 TO NA DO WITH ACT[IJ DO 

IFI'J=NflME THEN 
_BEGIN .. GETWO~Df·IF NOT NUI1.EqA~_i~.EN ERROR(9); 

........ ~"IF CH-M ~US THE~ PRTV.-(~l)",V '. 
: ...... _.. ELSE PRTV:=V . . 

. .:;.:;:::."-.:::.··:= ..... · .. c~UNTIL cCH·=P.NT~, .. :ENO '. .. 
END;···· ...... " -

·IF '·A'·::IN··OPTIONS .THEN . _ . .... . 
:""B'EGIN: WRITElN1·WRITE (9. CLOCK ACTIVITY DUR ENT '); 

FOR 1:= TO NA DO WITH ACT[IJ DO (j 

IF.. P R TV < > 0 THE N .. W R IT E ( N A ME, P R TV: 2 ) ; . W R IT E l t4 : 
END .' . 

.. END; .... (~INI.TI}.~IZ~*) ." .. : 



PROCEDURE MOVEENTITIES: 
, VAR E:ETVP: A:ATVP: H:BOOLEAN~ 

BEGIN M:=FALSE: . 
FOR E:=l TO NE 00 WITH ENTCEJ 00 

TFACTIVE AND CTIME=CLOCK> THEN WITH QUErLOCJ DO 
BEGIN IF HEAO=U THEN HEAO:=E . 

ELSE ENT[TAILJ.SUC:=E· 
ACTIVE:=FALS£: NUM:=NUH+l: ~:=TRUE: 
SUC:=O; PRE:=TAIL; TAIL:=E 

END: - , 
IF H THEN FOR A:=l'TO~NA 00 ACTCAJ, •. GOON:=TRUE 

END; (*MOVEENTITIES*>' 
-- .' -. - . . - ..." - .. - . 

" P R'O CEO U R E' SCAN ACT I V I TIE S 'f' .- ,C:- - --- - - --

_.": .~-~ R,::~~V~; ~~~ ~~[~ ~~;t~~ k,J C~rT ~~~b~6V~: N~~~~ ~ ~ T5~ 5 i~ p M ~ ~~g7E AN; 

END: _ 
IF CON THEN BEGI~ N:=l:C:=POS: 

IF SENS AND-(TIHE=CLOCK 
THEN CRITICE:=E ENI 

',' , :~- fND ELSE E:=SUC 

UNTIL CON OR (E=O): 
CONDl-IION: =CON_ (':) 

'END' .... 
,END: (*CONDITION*) 



'ROCEOURE ACTION: 
VAR V:INTEGER: AN:ATYP: 
BEGIN WITH STA[SJ DO 

IF POS=O 
THEN OUR:=OUR+VALUEOF(XPR) 
ELSE BEGIN (* PROPER ACTION .) 

IF OPR<>BLANK THEN V:=VALUEOF(XPR): 
WITH HOVE[OUE[POSJ;CLASSJ DO WITH QUE(QJ DO 

REPEAT '\oJITH ENT[E] DO 
BEGIN (* TAKE ENTITY £ FRO~ OUEUf 0 *) 

IF E=HEAO THEN HEA~:=SUC 

, . - - ~ -

ELSE ENTCPREJ.SUC:=SUC; 
. IF E=TAIL THEN TAIL:=PRE 

ELSE ENTCSUCJ.PRE:=PRE; 
NUH:=NUM~l· -

'(. ACTIVATE ENTITY E IN NEW POS *) 
LOC:=POS; TIME:=CLDCK+DUR' 
CASE aPR OF, ' 

BLANK:· , 
PLUS: ATRB:=ATRB+V: 
MINUS: ATRB:=ATRB=V; 
EQL : ATRB:=V 

END~ _, 
ACTLAJ~LASTENT:=E: 
IF SENS AND fE<>CRITICE) THEN 
_ FOR AN:=lTO NA DO ' . 
" ,. ,.'. " G A IN [ A N J : = E N n~ C R 1 TIC E J • G A I N( AN] : 

E:=SUC: ACTIVE:=TRUE: ACTNUM:=A 
END;,.;. ,. ' ' ,0 

, '-N: =N"'l 
UNTIL N=O 

, END ',-' , '..:.''.':':.' ' __ 
""::ENO: ' (*A CT ION':." '- , 

END 
.ELSE G~ON~=FALSE 

END; 
GETACTN' 

'A:=l: WHILE NOT ACTCAJ;GOON DO A:=A+1: 
IF A>NA THEN MOVESCAN:=FALSE 

END; ,'( * S CAN ACT I V I TIE S * ), 



:EOURE UPDATETIME; 
~RTMIN:INTEGER: E:ETYP; 
::GIN 

TMIN:=MAXINT: MOVESCAN:=TRUE: 
FOR E:=l TO NE 00 WITH ENT[EJ DO 

IF ACTIVE AND (TIME<TMIN) THEN TMIN:=TIME; 
IF TMIN<MAXINT THEN CLOCK:=TMIN: 
IF (ENOC=O) AND (ENOV<=TMINl THEN ENDSIM:=TRUE 

NO: (4rUPDATETIME.' 

CEDURE REPORT; 
AR A:ATYP: E:ETYP; 
EGIN 
~RITELN('SIMULATION ENDED AT CLOCK = ',CLOCK': 
FOR A:=l TO -NA DO WITH- ACT[AJ DO 

WRITELN(NAME,' HAS-STARTED ',COUNT,' TIMES":~~ITELN: 
,IF_ SENS THEN , , :,' '" ' _; 

--'----BEGIN Eo-f]. "- '-=- '" - - ----: ,-" ,-, '- " 
-REPEAT E:=EtJ.:uNTIL dJT[EJ.ACTIVE AND (ENT[EJ;TIME=CLOCK): 

,,: :::' WR,I TELN ('.SENSITIVITY OF, CLOCKWRTPERTURBATIONS:' 1 ; 
'-WRITELN-i"WRITELN('~' ACTIVITY -PERTU~BATION SENSITIVITY'): 

FOR A:= TO NA DO WITH ACTCAJ DO WITH ENTCEJ DO 
IFPRTV<>O - , __ ' 

-THENWRITELN(NAME:l1~PRTV:14, - ' 
ROUND«~l'*SAIN[AJ/PRTV):11' 

ELSE~WRITEL~(NAME:l1,PRTV:l~) , 
END 

N_D; ': (*REPORT*), 

CEDURE STOP; 
E;-G~:N ~RIT~LN_rE~COQN_T~i..· __ :}~liRORS IN',SY~N~}"El :HALT END) 

~I.N ,_INITIALIZE °MOVEENJITIES·.-
'_-'-'~:-:::--IF,,-'S'~ ,- :IN-OP_cT..lONS .-THEN (lUMP STAt' 
,- -IF ERCOUNT>O'THEN STOP; -

- RE?:E,AT, MOV-_EENlITIES;,.:-:-:~:-':_:: __ .' - '. , ' --.--.- - _." ... -- - .. 
- - - -- --~ IF-,:· Q ."'.1 N -:-OPT-ION S=-THEN:' OUMPO UE;---
'_~ . .:c, .. _: ___ ,_IF 'E' IN _OPTI~NS_ 1-~c~-,~-,--pU~~E~_T) _ _ _ ______ , 
:_:=-_:-.--., .:. -,- :.' '" S C ANA CT I VITI ES ,',: ': '. ~,=.-- ::,_::_,- -== ',,-,-:-:_::. =-=.::. ,: = -, c:.-- :c.:: - :::.:~:- - ,_, __ 
---. . ':' IF ",NOT::-MOVESCA NTHE-N-:-.uPDA-TETIME:-: ,-:C-_-=- ,----- - ---Co C - --:-

:._ . .: UNTIL _:ENDSIM ;_---"-c_--_ ,'. _ 
::----REP_ORT ;,-:DUMPClS;-'_DUMPQUE:·- -,-
). ' (. A CS I M-. ) -' -- ,- - , 

.- .. ~. _ ..... -,. , - .. - - .. ---- -- . .... -
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