
I'

'.

THE BOTTLENECK ROUTING
OF

MILITARY CARGO AIRCRAFT

by

Murat Kasarog1 u

B.S. in I.E., Bogazici University, 1980

Bogazici University Library

111111111111111111111111111111111111111 ~
39001100315988

Submitted to the Institute for Graduate Studies in

Science and Engineerin[in, partial fu1fj11ment of

the requirements for the degree of

Master

of

Science

Bogazici University
1983

ii

We hereby recommend that the thesis entitled liThe Bottleneck

Routing of Military Cargo Aircraft ll submitted by Murat Kasaroglu

be accepted' in partial fulfillment of the requirements for the

Degree of Master of Science in Industrial Engineering in the

Institute for Graduate Studies in Science and Engineering,

Bogazici University.

EXAMINING COMMITTEE

DoC. Dr. GUndUzULUSOY
(Thesis Advisor) .

Y.DoC. Dr. Ahmet ALKAN ~-
J

Y. DoC. Dr. .~ SUleyman UZEKIC'l ' ~

Date: 2.~/4/ ".{gg3 .

iii

ACKNOWLEDGEMENTS

I am indepted'to DoC. Dr. GUndUz Ulusoy, the Chairman of

my Supervisory Committee., for his valuable guidance, help and

support throughout the course of the study.

I would like to express my sincere gratitude to-Yarbay

·,Mehme~ Tuzcu for his helpful suggestions and comments.

I would also like to thank my wife who has cheerfully and

patiently encouraged my study~

Mur.at Kasaroglu

ABSTRACT

The objective of this study is to develop an efficient

method of routing military cargo planes in war time.

iv

A model with a nonlinear objective function is developed

to determine these routes which minimizes the maximum mission

time of planes. Based on this model, a solution procedure is

introduced. Then, a heuristic procedure is suggeited to handle

various airport capacity constraints. As an extensiQn of the

study, a proposal is made on a'model which minimizes the total

mission of the planes.

Consequently a study is made on the behaviour of the model

on some special cases.

. .

U Z E T

Bu callsmanln amaCl, askeri yUk ucaklarlnln savas Slra

slndaki gUzergahlarlnl belirleyecek bir metod gelistirmektir.

v

Bu gUzergahlarl belirleyebilmek icin en uzun gorev

sUresini enkUcUkleyecek ve yaddogrusal amac islevli bir model

gel istirilmistir. .Bu modele dayandl nlarak bir cozUm yotdaml

tanltllmlstlr. Daha sonra havaalanlarlndaki cesitli klsltlarl

goz onUne alan bulgusal bir yordam sunulmustur. Callsmanln bir

uzantlsl olarak ise toplam gorev sUresini enkUcUlten bir model

one sUrUlmUstUr.

Callsma, gelistirilen model in bazl ozel sartlar a]tln

daki davranlSlnl inceleyerek sonuclandlrllmlstlr.

ASKERt UCAKLARIN tNTtKAL PLANLAMASI

Bu callsmanln·amaCl, askeri yUk ucakl~rlnln savas slra-

slndaki gUzergahlarlnl belirleyecek bir metod gelistirmektir.

Bu gUzergahlarl belirleyebilmek icin en uzun gorev sUresini

enkUcUkleyecek ve yaddogrusal amaC iSlevli bir model gelistirilmis-. , ..

tiro Bu modele dayandlrllarak bircozUm yordaml tanltllmlstlr. Daha

sonfa havaalanlarlndaki cesitli klsltlarl goz onUne alan bulgusal bir

yordam sunulmustur. Callsmanln bir uzantlsl olarak ise toplam gorev

sUresini enkUcUlten bir model one sUrUlmUstUr.

Callsma, gelistirilen modelin baZl ozel sartlar altlndaki

davranlslarlnl inceleyerek sonuclandlrllmlstlr.

/

method

THE BOTTLENECK ROUTtNG
, OF

MILITARY CARGO AIRCRAFT

The! objective of this study is to develop an ~fficient

of routing military cargo planes i·n war time.

A model with a nonlinear objective function is developed

to determine these routes which minimizes the maximum mission time

of planes. Based on this model, a solution procedure is introduced.

Then, a ·heuristic procedure is suggested to handle various airport ':

capacity constraints. As an extension of the study, a proposal is il.

made on a model which minimizes the total mission of the planes.

Consequently a study is made on the behaviour of the model

on some special cases.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

ABSTRACT

iii

iv

tJZET v

LIST OF TABLES

LIST OF FIGURES

x

xi

I. INTRODUCTION. 1

1.1 The Description of the Problem . 1
1.2 The Current State of Art in Vehicle Routing

and Scheduling· 2
1.3 Complexity of Vehicle Routing and Scheduling

Problems 11
1.4 -The Outlines of the rl1dde1 Developed for

"Routing the f4ilitary Cargo Airplanes" 15
1.5 Summary of the Work Following 17

II. r~ATHEMATICAL FORr~ULATION AND THEORETICAL BACKGROUND 18

2.1 r~athematical Formulation of the Bottleneck
Routing Problem 18

2.2 The Set Partitioning Problem 21

2.2. 1 The Problem Formulation 21
2.2.2 A Tree Search Algorithm for SPP 22

2.3 The Bottleneck Set Partitioning Problem (BSPP) 26
2.~ The Resource Constrained Set Partitioning

Problem (RCSPP)· 27

3.

2.5 The Bottleneck Resource Constrained
Set Partitioning Problem (BRCSPP)-

2.6 U1usoy's Algorithm for BRP

THE SOLUTION PROCEDURE DEVELOPED FOR THE
"BOTTLENECK ROUTING PROBLEM"

vii

28
29

33

3.1 Introduction 33
3.2 The Network Transformations Required SJ and CJ 33

..

'3.2.1 Node Transformations 34
3.2.2 Arc Transformations 36

3.2.2.1 Stage 1: Interactions Between
the Loads 36

3.2.2.2 Stage 2: Interactions Between
the Airports Which Have Planes
Initially and the Loads, 38

3.2.2.3 Stage 3: Interactions Between.
the Artificial Source Node
and the Airports Which Have
Planes Initially 39

3.2.2.4 Stage 4: Interactions Between
the Loads and the Artificial
Terminal Node ' 40

3.2·.3 An Example Network Transformations 40
3.2.4 The Network Transformation Suggested

by U1usoy 43

3.3 Computation of Sand C . 44
3.4 EnumeratioD of s~mp1e P~ths Shorter Than

a Given Length 46
3.5 Path Elimination 49
3.6 Sorting the Path~ 51
3.7 The Algorithm Developed for the Bottleneck

Routing Problem 52

3.7.1 Introduction to BRP Algorithm
3.7.2 The First Step: Initialize
3.7.3 The Second Step: Search

3.7.3.1 Blocking the Path List

3.7.3.1.1 Method A: Blocking
with Respect to Load

52
53
61

62

Frequencies 64

! IV.

V.

3.7.3.l.2Method B: Blocking
with Respect to Load

viii

Cardinalities 66

3.7.3.l.3Storage Space for
the New Path List 66

3.7.3.2 Deciding on the Limits of
the Search 67

3.7.3.3 Search for a Feasible Path 74

3.7.4 The Third Step: Enlargement 75

3.8 -The Optimality of the Solution Found at
the Search Step - 76

3.9 Generation of Alternative Optimal Solutions
to Bottleneck Routing Problem 77

3.10 The Alternative Optimum to the Bottleneck-
R~uting Problem which-Results in the Minimum_
Total Cost 78

3.11 Demonstration of the Algorithm 79

THE AIRPORT CAPACITY CONSTRAINTS 86

4.1 Introduction - 86
4.2 n-Job, m-Machine Job Shop Sched41ing Problem 88
4.3 The Relationship Between Plane Scheduling

and n-Job, m-Machine Job Shop Scheduling
Problem ,89

4.4 The Heuristic Procedure Developed for Plane
Scheduling. . 92

4.5 The Heuristic Scheduling Procedure and
Bottleneck Routing Algorithm 94

4.6 An Example to the Scheduling of Planes 96
4.7 Discussion of the Heuristic Scheduling Procedure 103

A SUGGESTION FOR FURTHER RESEARCH: THE TRAVELLING
SALESMAN APPROACH

5.1
5.2

5.3

Introduction
A Network Transformation for the Minimum
Total Time Cargo Routing
The Travellihg Salesman Problem (TSP) and Its
Extension to Multi-Travelling Salesman Case.
(MTSP)
MTSP inCase of r~u'l tip 1 e Depots (14D~1TSP)

104

104

105

108
112

VI.

ix

5.5 The Transformation of MDMTSP to an Equivalent
TSP 116

5.5.1 Introduction 116
5.5.2 An Example Transformation 117
5.5.3 Analysis of Transformation Suggested. 121
5.5.4 Number of Salesmen Utilized in MDMTSP 122

5.6 The Multi-Depot Multi-Salesmen TSP with Fixed'
Costs 123

5.6.1 The Singl~ Depot Case 123
5.6.2 The Multiple Depot Case 127

5.7 The Formulation of Minimum Total Time Routing
as an MDMTSP 129

5.8 Evaluation 131

CONCLUSIONS AND EXTENSIONS OF RESEARCH

6.1 Real Life Cases and Conclusions
6.2 General Results

133

133
148·

REFERENCES 152

159 APPENDIX A SAMPLE PROBLEMS

APPENDIX B Cm.,B I NATI ON , PERMUTATION TABLES

APPENDIX C FLOWCHARTS

APPENDIX D DETAILED OUTPUT OF EXAMPLE C

APPENDIX E SOFTWARE LISTINGS

.188

190

234

253

TABLE 1.1

TABLE 2.1

TABLE 3. 1
TABLE 3.2

TABLE 3.3

TABLE 3.4
TABLE 3.5

TABLE 4.1
TABLE 4.2
TABLE 4.3·
TABLE 4.4
TABLE 4.5
TABLE 4.6

TABLE 5.l.a
TABLE 5.l.b
TABLE 5.2

TABLE 5.3

TABLE 6. 1
TABLE 6.2

LIST OF TABLES

Comparison of different algorithms

The Initial Tableau

Flight time data of Example A
The operation time matrix obtained from the
transformed network of Example A ,
The frequency matrix after getting 72nd path
into the path list
First occurrence of loads in the new path list
First occurrence of loads cardinalities in the
new path list

,
The capacity data ~f Example G
The optimal solution to Example G
The alternative optimal solution to Example G
Optimal BRP solution to Example G·

, Optimal BRP solution alternative to Example G
The optimal'BRP solution alternative which
satisfies capacity constraints in Example G

Original distance matrix of Example 5.5.2
Equivalent distance matrix of Example 5.5.2
The cost matrix of Example 5.5.2 with. fixed
costs '
The equivalentTSP matrix of Example A

The flight time data of 6 airport problem
Increase in problem complexity

23

35

43

84
84

85

, 97
97
99

100
101

102

119
120

128
130

136
148

x

LIST OF FIGURES

FIGURE 1.1 Illustration of routes

FIGURE 2.1 The T-matrix

Page

5

22

FIGURE 3. 1
FIGURE 3.2
FIGURE 3.3
FIGURE 3.4

The original network of Example A . 35
The transform network of Example A 42
The path list . 64
The flowchart of the computation of search limits 73

FIGURE 4.1 Service mechanisms at airports

FIGURE 5. 1 The transformed network of Example A
FIGURE 5.2.a Example of a5 node, 2 salesmen MTSP tour
FIGURE 5.2.b Equivalent TSP tour
FIGURE 5.3.a Original network of Example 5.5.2
FIGURE 5.3.b Equivalent TSP network of Ex~mple 5.5.2
FIGURE 5.4 Example of a single depot, 2 salesmen problem
FIGURE 5.5.a An example of MTSPF on 5 cities
FIGURE 5.5.b The equivalent TSP formulation
FIGURE 5.6 r'1D~1TSP formulation of Ex~mple A

FIGURE 6.1 The flow pattern given in Example 6.1
FIGURE 6.2 The flow pattern given in Example 6.2

91

108
111
112 .

. 118
118
123
125

/ 126
130

137
139

xi

I, INTRODUCTION

1.1 THE DESCRIPTION OF THE PROBLEM

The airforce always needs an efficient method of defining

routes and schedules of mil itary cargo planes both in war and in

1

peace time. Several military airports are located throughout the

country with some of them being the bases of those cargo planes and

there a re several loads that have to be carri ed among those airports ..

The basic unit of shipment is one plane load. In :~eace time, the

routing and scheduling process is done periodically. That is, demands

between airports are generated within a period and these demands are

satisfied within the next period. In case of a war, we think of a

one~time operation where cargo planes located at known ba~es carry equ

ipment and military personnel in known quantities from supply points

to demand points. Without loss of generality, all demand and supply

nodes are assumed to be the airports. Since swiftness is an essential

ingredient for success in a war, the overall job should be completed

as fast,as possible. That is, the longest mission time of the planes

should be minimized. For peacetime operations, on the other hand,

the total mission time of all planes ~hould be minimized, since the

variable cost of transportation is assumed to be directly proportional

to distance'.

2

Also there are constraints on servicing planes at the airports.

Each airport has a given service capacity for loading and unloading of

the planes at any time. This handling capacity constraint should be

considered simultaneously with the queue capacity of each airport.

When the handling capacity of an airport is exceeded, then the excess

planes should join the queue at this airport. But some airpdrts can

not hold more than a given amount of queue, mainly because there are

no available parking space for these planes within that area. But a

more important reason is that, in war time it is not recommended

practice to allow for the accumulation of airplanes above a given

number at any time, since the enemy can attack anyone of these air

ports at any time. So the queue lengths at those ports should not

exceed certain prespecified levels. Therefore, a schedule satisfying

these constraints besides minimizing the mission time is required.

The problem described above falls within the class of problems

called 'the vehicle routing and scheduling problems" in literature. A

brief review of these problems will be given in the next section.

1.2 THE CURRENT STATE OF ART IN VEHICLE ROUTING AND

SCHEDULING

The routing and scheduling of vehicles and crews is an area

of both theoretical and practical importance to both operations re

searchers and transportation planners. Recently, significant progress

has been made in the problem formulations and in the design, analysis,

and implementation of solution procedures.

3

From a practical point of view, the effective r9utin9 and

scheduling of vehicles and crews can save the state and private

enterprises many millions of TLls a year. In addition, these rout

ing and scheduling procedures can increase productivity, improve

operations, aid in long-range planning, assist contract negotiations,

make the job of the scheduler or dispatcher much easier·tohandle,

and help to control the financial impact of adverse weather conditions

6n vehicle utilization.

The Vehicle Routing Problem (VRP) can be stated as follows:

Given a set of nodes (points) and/or arcs to be serviced by a fleet

of vehicles, find the. routes of each vehicle so that total time and/or

total cost of transportation is minimum. A vehicle route is a sequence

of pickup and/or delivery points· which the vehicles must traverse in

order, starting and ending at a depot or domicile.

Above statement is only one definition of vehicle routing

problem. 'The problem has many extensions to suit the practical prob

lem addressed.

Vehicle Routing Problems can be classified as node routing'

problems, art routing problems, and general routing probl~ms. The

problem of visiting all nodes in a network and returning to the

starting point {node routing) while incurring minimal cost is the

Travelling Salesman Problem (TSP). In node routing problems a collec-
. \'

tion of origin/destination pairs of nodes are given and at le~st one

vehicle must travel from each origin to its corresponding destination.

Examples of this problem are newspaper delivery and dial-a-ride or

messenger service~ The problem of covering all arcs in a network

4

while ~inimizing'total distance travell~d (arc "routing) is the Chinese

Postman Problem (CPP)~ In arc routing problems, a collection of arcs

in a network has to be covered. Examples of this problem are snow

. removal and street sweeping. The General Routing Problem is a genera

lization which includes both TSP and CPP as speCial cases. Here we

seek the minimum cost cycle which visits every prespecified node and

arc. Examples of such problems are 'school bus routing arid household

refuse collection. The" generic problems such as TSP and CPP are not

of practical interest, but of value for solving VRP and gaining inSight.

In general, node routing problems require a set of delivery

routes from a 'central depot(s) to demand points, each having known or

stochastic requirements, in order to minimize the total distance

covered by the entire fleet. Vehicles have known capacities and pos

sib1'y',maximumroute time constraints. All vehicles start and finish .

the job at specific depot(s).

A set of vehicle routes that service 10 demand points are

shown in Fig. 1.1.' Each node has demand of -unity and each vehicle

has a capacity of three units.

Bodin, Gorden, and Assad (1981) have summarized various

studies on extension of routing problems in three 'c1asses as follows,

i. "one-to-many" problems:

Such problems have a central depot- and many destinations.

Items are loaded on the vehicles at the depot and delivered to many

destinations.

Route 1:

Route 2:

Route 3:

Route 4:

Depot A-1-2-Depot A

Depot A-3-4-5-Depot A

Depot B-6-7-Depot B

Depot B-8-9-10-Depot B

FIGURE 1.1 - Illustration of Routes

ii. "many-to-one" problems:

5

Also in this case there is a central depot, and many.

pickup points. Items are collecte~ from these points and delivered

to that central depot.

iii. "many-to-many" problems:

Each item to be serviced can have a different pickup

p'oint (origin) and a different del ivery point (destination).

Most of the time authors talk about the pickup ,and delivery

locations of items being serviced in "many-to-many" problems lnd do

not explicitly worry about the garages where the vehicles are stationed.

The deadhead times to go from the depots to the garages (or ,the times

, from garages to the first stop on the routes and the times to the

6

ga"rages from the 1 ast stop on the routes) are generally added to tne

length of the routes after the-routes are formed and not considered

a par~ of the optimization. For many problems, this is a fixed time

since .there is only one garage that can hous~ the vehicles (out of

the depot); in other cases, the routes might be altered somewhat if

this distance to and from the garage were taken into account in the

optimization.

The Vehicle Scheduling Problems (VSP) can be stated as routing

problems with additional constraints on times of performing activities.

Each location may require delivery within an interval. Thus the mo"ve

ments of vehicles should be followed both in space and time. A· vehicle

schedule is a sequence of pickup and/or delivery points together with

'an associated set of arrival and departure times. The vehicle must

traverse the points in the designated order and ~t the specified time

interval s.

When arrival times at.the nodes ard/or arcs are fixed in

advance.we refer to the problem as a scheduling problem. When the
,

arrival' times "are unspecified, then the problem is a straight forward

routing problem.

When time windows and/or precedence relationship exist so that

both routing and scheduling functions need to be performed, we view

the problem as a combined routing and scheduling problem. The com

bined routing and scheduling problems often arise in practice and

representatives of manyrea':-world appl ications (~oding and Gal den,

1981) .

BGdin, Golden and Assad (1981) have described some examples

'.

7

related with this topic a~ follows,

i. school Bus Routing and Scheduling

There are a number of schools and each one has a set of

bus stops associated with it. In addition,there is a given number

of students associated with each bus stop. Each school has a fixed

starting time and a fixed e~ding time with corresponding time windows

for school bus routing. The time window before the starting time of

the school involves the time window for the delivery of students to

the school in themorning and the time window after the ending time of

the school in the afternoon is the time window associated with the

pickup of the students. The principle objective when utilizing a

leased fleet of vehicles'is. to minimize the number of buses requ'ired

while servicing all the students and satisfying al.l the time windows'.

When operating a fleet owned by the district, the objective is to

minimize a combination of transportation costs and the number of

vehicles used. .

Although most papers related with this toP)C focus primarily

on the routing component, Bodin and Berman (1979) suggested a proce

dure for formi,ng daily bus schedules as well·as methods for routing

buses. The routing component of their suggestion forms a set of

routes for each school. Each route is feaslble with respect to the

maximum available time for the students and the maximum capacity of

buses. The scheduling component'organizes the partial routes for

each of the schools into daily schedules for the buses.

8

ii. Tractor-Trailer Routing and Scheduling with Full Loads

A common commercial di'stribution problem is the routing
/

and scheduling of tractors or tractor traile~ front ends with full

loads. The term full load means that a trailer is attached to the

tractor and has to be transported from a pickup point (the origin) to

a delivery point (the destination). The load of a trailer has a unique

destination and is not to be split among different destination loca

tions. The capacity of a tractor is one trailer. Since each trailer

is transported from its origin t~ its destination, the trailer problem

obviously involves precedence constraints.

The demands are specified in terms of the number of trailer

trips between origin/destination pairs. Given this demand data, one

may address the following ~wo decision pr6blems:

a) Minimize the total distribution cost for handling all

origin-destination demans.

b) Determine the optimal fleet size required to service a

subset of the origin destination demands given that the

remaining demand is to be serviced by common carrier.

Love'(1978) suggested a model involving two submodels essen

tially for the solution of this problem. One of the submodels is the
-

tractor submodel and the other is trailer submodel.

iii. Tractor-Trailer Routing and Scheduling with Partial Loads

This problem is similar to the full load problem except

that each origin-destination pair need not to have a full trailer

load to be serviced. Consequently, the load on a trailer may be

split'among different destinations.

iv. Street Sweeper and Household Refuse Collection

Routing and Scheduling

9

The problems of scheduling street sweepers and household

'refuse collection vehicles are applications of the Chinese. Postman

Problem. For both of these problems, a set of street segments is

spec.ified as needing service. The problem is to arrange a set of

tours (each tour corresponding to a vehicle) covering all such seg

ments that minimizes the number of vehicles used. A surrogate but

highly correlated objective is to minimize the total deadhead time

of the vehicles. There are no precedence relationships on the entities

to be serviced, and the time windows correspond to the parking regula-

·tions.

Golden and Wong (1981) showed how capacitated arc routing

formulations can be applied to these problems.

v. Airplane Scheduling

The scheduling of airplanes for commercial airlines is a

very complicated procedure and is embedded within the process of

generating a time table for the airline. The generation of a time

table has to take. into account such factors as the expected n~mber

of passengers travelling between cities; frequency of service desired,

nonstop versus multiple stop service, etc. Furthermore, this scheduling

takes into account the problems of generating pairings and bid lines

for the crews. Thus, airlines may change their time table and plane

10

schedules if a pairing-can be saved. At this time, most scheduling

of airplanes for commercial airlines is carried out on a manual basis

or in an interactive computing mode and little algorithmic sophistica

tion is utilize~ in the process.

'Soumis, Ferland and Rousseau (1981) and Richardson (1975) had

given mixed integer programming formulations for both of the plane and

passenger sides of the problem.

vi. Dial-A-Ride Routing and Scheduling Problems

In recent years, the area of dial-a-ride routing and

schedul i ng has recei ved cons i derab 1 e attention. "I n the di a l-a -ri de

problem, customers call in to request service. Each customer specifies"

a distinct pickup and delivery point and, perhaps, a "desired time for

pickup or del ivery. If all customers demand imme'diate ,service, then

routing and scheduling is done in real time and"the problem is re-

ferred to as the dynamic or real time dia1-a-ride problem. If all

customers call in advance, so that a complete data base of customer

demand is known before any routing or scheduling is carried out, then

this problem is referred to as "the subscriber or static dia1-a-ride

problem. Both dynamic and static dia1-a-rideproblems have precedence

relationships since a custome"r must be pickep up before he is delivered. "

In some situations a desired time of pickup or delivery is specified

in advance and the "other service" (either delivery or pickup) must

he carried out withi!') a given number of minutes from either the

desired or the actual time of delivery or pickup. In a certain sense

this introduces a two-sided time window on the "other service".

11

-
Psaraftis (1980) and Stein, et.al (1978) have giv.en formula-

tions to various derivatives of the dial-a-ride problem.

1. 3 Cm~PLEXITY OF VEHICLE ROUTING AND SCHEDULING PROBLEMS

. All of the problems mentioned in the previous section are

NP-hard. Moreover, the complications in these problems are such that

exact al gorithmic'-approaches based on mathematical programming- formu

lations have not been successful for these problems.

The network problems are classified according to a theoretical

scheme based on the notions of '~olynomially-bounded" and "NP-hard"

as follows. The polynomially-bounded class P is composed of such

problems for which polynomially-bounded algorithms are known. An

algorithm is said to run in polynomial time if there exists an uppeF

bound on the number of operations, that is a polynomial in n, where

n is an input parameter which measures the problem size. (such as the

number of nodes). Thus the computational effort increases only poly

nomially with problem size in the worst case. The problems of this

c,lass can generally be solved quite efficiently and their order is

determined by the highest power of n-in polynomial expression.

But on the other hand, there.is a large class of network and

combinatorial problems for which no polynomially-bounded algorithm

exists. Such problems are called NP-hard (NP stands for nondetermi

nistic polynomial). The solutio'n procedures developed for 'such prob

lems require exponential run time. That is computational ·effort

increases exponentially with the problem size.

12

To emphasize the difference, assume that there are two algo

rithms available to solve a network problem with respective run times

are:

and

where n is the number of nodes. When n is small the second algorithm

will work faster than the first one. But if n is increased a little

(Let n = 20), then the second algorithm ~il1 collapse~ although the

first one still functions \'/ell. The difference between these two

algorithms grow even more as computer technology improves. If the

efficiency of a computer improves'by. a factor of 100, then the maximum

problem size soh!ab1e by first algorithm in a fixed amount of time

would increase by a factor of 10 whereas the maximum problem size

handled by second algorithm increase by no more than seven nodes.

It is obvious that, an algorithm of order n2 is preferable

to one of nq
, and exponential time algorithms are to be avoided when

ever possible (Golden, Ball and Bodin, 1981) •

. . A11 routing and scheduling problems of interest fall in the

class of NP-hard.problems. Apparently minor changes in problem

characteristics may result in radical changes in the computational

complexity of the resulting problems. For example both directed and

un.directed Chinese Postman Problem are in the class P, whereas Mixed

Chinese Postman Problem (where both directed and undirected arcs are

allowed) is NP-hard. Table 1.1 reviews some algorithms available for

network problems and compares their behaviour. This table was pre

sented at ,NSF Workshop on Large Scale Systems in Lubbock, Texas in

April, 1979.

Problem Name

Shortest Path from s to t

Shortest Path from s to all
other nodes

Shortest Paths between
all nodes

K Shortest Paths

Minimal Spanning Tree

Capacitated Minimal
Spanning Tree!

Transportatibn Problem

Max Flow

Min Cost Flow

Matching

TABLE 1.1 - Comparison of Different Algorithms

Heuristic Algorithm

Size Handled
Easi ly

NN

NN

NN

NN

NN

1000

NN

NN

NN

NN

References

Kershenbaum (1974)

Exact Algorithm

S.ize Handled
Easily

5000

,5000

I
500

500 (K 5)

. 5000

40

3000

3000

3000

500

References

Golden and Ball (1978)

Denardo and Fox (1979),
Golden (1976), Pape (1974),
Gilsinn and Witzgal1(1973),
Dial, et al. (1979).

Relton and Law (1978)

Shier (1976), Shier (1979)

Kershenbaum and Van Slyke
(1972)

Chandy and Lo (1973)

Mulvey (.1978), Bradley,
et al. (1977), Glover,
et al. (1974)

Cheung (1980), Glover,
et a 1. (1974)

Bradley, et al. (1977),
Barr, et a1. (1974)

Cunningham and Marsh(1978),
Derigs (1979), Derigs and
Kazakidis (1979)

--'
w

. I

(Table 1.1 continued)

Problem Name
Heuristic Algorithm Exact Algorithm

.......... -~;;.;-;::::r---:-~=-=~----==----- ---S-i ze Han dl ed Size Handled . References . Easily References : EasHy· . .. __

Travelling Salesman
Problem! :

, Vehicle Routing Problem!

indicates prob·1em is NP-hard.

1000

750

Webb (1971), Gold~n and
Bodin (1978), Golden;'
et al. (1980)

Golden, et al. (1977)

NN indicates heuristic or approximate algorithms are not necessary.

,/

100

30

Liliotis (1976), Miliotis
(1978), Held and Karp (1970),
Padberg and Hong (1977),
Balas and Christofides(1981)

. Christofides, et al. (1981)

.....

.;::.

1.4 THE OUTLiNES OF THE f~OOEL OEVELOPEO- FOR "ROUTING THE

f4ILITARY CARGO AIRLINES"

The model ,developed in this thesis treats the problem in

15

two stages. In the fi rst stage, the routes of the pl anes are de

termined regardless of , the airport capacities. These routes ~re

determined such that all loads are carried to appropriate locations,

and'the objective function is minimized. The objective function
"

can be stated as follows depending on the nature of the. problem:

i. Minimize the maximum job time.

ii. Minimize the total job time.

The first problem is called the IIBottleneck Routing Problem

(BRP)" and the other is called the "Minimum Total. Time Routing Problem

, (MTRP)".

At the second stage, the schedules of planes ,are determined

such that the airport capacity constraints are satisfied, with the

given routes of the pl~nes.

Nearly ina 11 the probl,ems discussed in the previous sections,

one of the major objectives is the minimization of the number of

vehicles required, besides minimization of total transportation costs.

But in military applications the number of planes that will be utilized

is al ready given in most of the cases and the major objective is the

minimization of maximum job time. So, this nature of the objective

function does not allow us to utjlize any of the s~lution techniques

yet developed for problems with linear objective functi~ns. Except

Ulusoy (l'981) there is no s,ignificant effort on such objective functions

16

in the literature yet.

The military cargo airplane routing problem can be classified

as a "many-'to-many" routing problem in which each item to be serviced
-

can have different origin and destination points. But the planes are

housed in one or more of these origin and/or destination pOints. So

the model takes eareof the initial locations of the planes (garages

of the vehicles) and all the deadhead times,are considered seperately,

since there is more than one airport to house planes initially.

Also the problem is subject to precedence constraints, since

the plane should be loaded before it is unloaded. But the load on a

plane is not splitable. The demand between any origin~destination pair

is in terms of full plane loads.

, Besides the objective function,the basic difference between

military airplane routing problem and classical vehicle routing prob

lem is the definition of demands. In vehicle routing problems, demands'

are located at 'nodes and should be supplied from a central depot, but

in our case a demand node can be the supply node of another demand node.

Hence items should be transferred among them. By this definition of

demands~ the problem can be viewed as a dial-a-ride problem, but in

dial-a-ride problems depot location is known. On the other hand, in

our case the depots have the same characteristics of other nodes of the

system except they have some pl~nes initially~

Also the problem have similarities with the tractor-~railer

routing problem with full loads.' In both cases some cargo has to be

~hipped between prespecified pOints and the cargo is not splitable

among diff,erent locations. But in case of military routing there is

no distinction s4ch as tractor and trailer.

17

1 .5 Sut4MARY OF THE WORK FOLLOWING

Chapter 2 formulates the model , summarizes the solution tech

nique suggested by U1usoy (1981) and introduces the classical Set

Partitioning Method.

Chapter 3 describes the model developed for bottleneck routing

of cargo planes.

Chapter 4 introduces an heuristic to handle airport capacity

constraints.

Chapter 5 introduces the transformations suggested for minimum

total time routing.

II. MATHEMATICAL FORMULATION AND.
THEORETICAL BACKGROUND

2.1 MATHEMATICAL FORMULATION OF THE BOTTLENECK

ROUTING PROBLEM

18

The Bottleneck Routing Problem (BRP) can be stated ai follows:

Given, L = {R'l' R,2' ••• ,R,t.1} be the set of all loads that have

to be carried between all airports. Let, y = {Si, ... ,SN}be the set

of all sets, SJ C L. Each SJ defines a set of loads that can be

carried by a plane. Let for each SJ' be an associated time figure

CJ , defining the time required to carryall. loads shown by SJ.

. Then, a IIset-partitioningll SR, of L,. is any subset ofy

obeying following rules;

m r j

(2. 1)

(2.2)

Rule i .imposes that all loads should be covered by that set-

partitioning of L, and Rule ii imposes that each load should be

covered exactly once.

Let the set s. is the set of all St (~ll set-partitiqnings

ofL) satisfying the rules given above.

Then, the Bottleneck Routing Problem is to find that set-

partitioning of L, in which the maximum CJ value is minimized.

19

That is, the maximum time required to finish each job is minimized.

Thus, (0-1) linear programming formulation of the BRP can

be given as:

where,

i = 1,2, •.. ,M

k =1,2, ... , RP

1, SJ E ~t for anY,St E S

0, otherwise

1 ,

0, if' load ti t SJ' for i = 1, .•. ,r·1
J = 1, .•. ,N

1 ,

0,

if plane covering.SJis originally at
airport k

otherwise, for J = 1 , ... ,N ,
k = 1 , .•• ,RP

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

and

Also,

P is

R is

RP: is

M : is

N : is

H
k
: . is

Note that,

20

is the time.spent by a plane which (2.9)
is originally at airport k to cover
all loads in SJ. There are many
possibilities to cover all loads in

,SJ. Therefore, CJ must correspond
to that of the shortest among such
routes.

the number of planes- .

the number of airports

the number of airports which have planes initially

the number of loads

the number of sets in Y

the initi al number of planes at airport k.

for J = 1, .•. ,N (2.10)

_and number of planes is given as:

RP
P = l Hk

k=l

Thus, the first constraint in the formulation (Eq. (2.4»

imposes the so-called IIno-overcoveringll restriction on the problem.

That is, each load should be covered exactly once. The second cons

traint (Eq. (2._5» forces the problem to use exactly the prespecified

number of planes f~om each airport.

The mathematical formulation of Minimum Total Time Routing
.

Problem (MTRP) differs in the objective function only. That is,

21

(2.12)

The constraints are (2.4), (2.5), (2.6) as in th'e previous problem.

2.2 THE SET PARTITIONING PROBLEM

The following two sections about the set partitioning problem

are adopted from Chapter 3 of Christofides (1975).

2.2.1 The Problem Formulation

The Set Partitioning Problem (SPP) owes its name to the following

set-theoretic interpretation.

Given,a set L = {t
1

, ••• ,1M} , and a set S = {Sl"",SN} of

sets SJC:: L, and a subset "S"1= {SJ~ ~ SJ2'''' 'SJ'p} of $, such that the

rules given in expressions (2:1') and (2.2)d~fine,51' then 51 is

called a IIset partitioning of LII. If the second rule is omitted,

then 51 is called a Uset-covering of LII. That is, when SJ's within

S1,are not pairwise disjoint.

To be consistent with the definition of BRP, define the set

S as the set of al151. Hence S is the set of all set-partitionings

'of L.

If a positive cost CJ ,is associated with each-SJ £ S~ the

SCP becomes the search for a set-covering of L which has a minimum , ' P
cost, the cost of 5 = {SJ1"" ,SJ } being .I CJi • The Set Partitioning

. p 1=1

Problem (SP'P)is defined correspondingly.

The SCP can be formulated as a (0-1) 1 inear program as foll ows:

22 .

(2.13)

s. t . i = 1,2, ... ,tf (2.14)

. where, YJ ~nd tiJ are as defined in (2.6) and (2.7) respectively.

For SPP the iQequa1 ities (2 .. 14) become,

i:1, .•. ,M (2.15)

-The T matrix in Fig. 2.1 shows the binary relationship bet

ween S J and .Q, i .

1

2

L
1

51

t ..
lJ

FIGURE 2.1 - The T Matrix

2.2.2 A Tree Search Algorithm For SPP

The basic difference between SPP and SCP is the existence of

no-overcoming restriction inSPP. This fact is very adventageous,

while applying a tree search method, since it enables early

23

abandonment bf potential branches of the tree.

Christofides s~ggested to reorder sets before getting in the

tree search a1gorithm~ This reordering is called ~locking. For ~ach

element £k and L, one block is created. Block k contains these sets

which do not cover any of the elements numbered £ "'~'£k .' Thus,
1 -1

each s~t SJ can be placed only in one block. For the sake of readi-

bi1 ity, these blocks are arrangE?d in tableau format shown in Table 2.'1.

Depending upon the nature of the problem, some blocks can be empty.

The tree search algorithm moves on the blocks sequentially

such that block k is not being searched unless every element £i'

1 < i :: k-1, has al.ready been covered in a partial solution.

,£
3

. '

..

TABLE 2.1 - The Initial Tableau

1111 a

1111 a'

a' or'l 1111 a

a or 1 1111 'etc .

a or 1 a or 1 ,

The sets within each block are arranged heuristically in

ascending order of their costs. During the course of the tree search

besides the sequential search upon blocks, the set,s within each block

are searched sequentially also.· Since the ,objective is to .!l1inimize

total cost, search on lower cost sets will be more promising. Then

the sets SJ are renumbered such that the set SJ will correspond to

the set a~ the J'th column of the tableau.

While applying the algorithm current best solution B and its

related costfi gure Z is kept and updated after every improvement,

where if is the set of SJI S covered vlithin that best solution. Also

Band Z are used to represent the current partial solution at hand,
,

and E shows the elements of L covered by the partial solution B.

The steps of the· tree search algorithm can be stated as follows:

Ini"tializa"tion:

Step 1 Perform blocking process to set up the initial tableau

and set the partial solution B = ~, E = ~, Z = 0, and

let Z = 00.

Augmen"ta"tion:

Step 2 : Find Q = min(ill i E E). Set a marke~ at the top, i.e.

at the lowest cost set of ~lock Q. If block Q is empty,

go to step 4; otherwise, continue.

Step 3 Beginning-at the marked position in block Q, examine

its sets S~ 'in increasing order of J.

i) If set S~ is found such that S~ n E = ~ and Z + C~ < 7

(where C~ is the' cost of S~) then put marker on set S~

and go to step 5.

24

ii) Otherwise, if block Q is exhausted or a set S~ is reached
Q -for which Z + CJ ~ Z, then remove last marker and go to

step 4.

25

Backtrack:

Step 4 : B cannot lead to a better solution. If B = ~ (i.e. block

1 has been exhausted), terminate with the optimal solution

B. Otherwise, remove the last set, S~ say, added into B,
. t

put Q = t, place a marker on set Sk+l' remove previous
, ,

marker in block t, set Z = Z - C, update E and go to

step 3.
t If Sk+l do~s not exist, then, if t = 1, terminate; else

go to step 4.

Test for a new.solution:

Step 5
QQ. Q

Update B = B U [SJ]' E = E U SJ' Z = Z + CJ . Remove last

marker~ If E = L a better solution has been found: Set

B = B, Z = Z and go to step 4. Otherwise, go to step 2.

- .

Since the search terminates with the exhaustion of block l,~t

step 4, it would be better to arrange blocks in ascending order

according to the number of sets in each block. This can be achieved

by renumbering the elements .R.l , ••• ,.R.M in increasing order of number

of sets in S containing that element, before setting up the initial

tableau.

Christofides has suggested some dominance tests which will

improve algorithm. Some of these can be stated in short as fellows:

Keep for each value of'Z = 1,2, ... ,Z. Some (perhaps incomplete)

list of maximal Els which have been achieved for this Z, (where by
--

maximal- is·meant a set not included in another ~et which is also in

the list). These 1,ists Els can then be used to limit the search by

BOGAZiCi ONivERSiTESi KOrDpHANESI

eliminat~ng branches that later on prove fruitless.

Chrisdofides has also suggested some methods of findings a

·lower bound on the cost of the branches obtained during the course

of the algorithm. But we shall not make use of these bounds through

out this study, so we have omitted that part.

There are also some other methods proposed for solving' SPP.

Pierce and Lasky (1973) give some' modifications to the above basic

. algorithm, incl uding subsidiary use of a 1 inear program. t~ichadu

'. (1972) describes another implicit enumerati~n algorithm which is based

on a linear programming problem corresponding to SPP with the block

structure given above being used in a secondary role.

Other algorithms involving simplex-type iterations have been

proposed, both primal (Balas arid Padberg, 1972) and dual (Jensen, 1971,

and Salkin and Kencal, 1970).

Defining some derivatives of his problem will be of more

.. interest to us and thus we shall define some new probl ems.

2.3 THE BOT~LENECK SET PARTITIONING PROBLEM (BSPP)

BSPP differs from classical SPP only in the form of the
-

objective function. S~P formulation tries to minimize the total

cost of sets within S .. But BSPP formulation tries to minimize the
"'~

maximum cost within·S. Thus, the formulation in Section 2.2.1

becomes,

..

(2.16)

27

i = 1,2,.~.,M (2.17)

where YJ' tiJ and CJ are as defined in the SPP formulation in Section

2. i. 1 •

2.4. THE RESOURCE CONSTRAINED SET PARTITIONING

PR~BLEM (RCSPP)

RCSPP is essentially a generalized version of SPP, RCSPP

formulation is built upon the SPP formulation by introducing a set

of resource balance constraints.

Resource constraints are imposed as follows. Assume that

each set SJ E S consumes exactly one unit of some available resource.

Let there be several resource types and each set can consume only one

type of resource. That is,

where

and

RP -
L hJk = 1

k=l-
for J = 1, •.. ,N

1, if set J consumes resource k

0, . otherwi se

RP: is the numb.er of resource types.

Then, we can formulate RCSPP as follows:

N
Min Z = L CJYJ

.J=l

i = 1,2, ... ,M

(2.18)

(2.19)

(2.20)

(2.21)

28

k = 1 ,2, ... ,RP (2.22)

whereHk: is the available amount of resource type k, and CJ , YJ'

tiJ defined as earlier.

Depending on the value of RP, we ha~e two cases:

i. WhenRP = 1, 'it means that there exists only one type

of resource. In this case, RCSPP formulation:forces

the SPP formulation so that the solution vector 5' has

exactly Hl components. .'

ii. When RP > 1, then the solution vector~' i~ forced to
RP .

have exactly t. Hk components, and resource consump-
. k=l .

tion of the components are forced to'levels given in

the resource availability vector H.

Of course, there may be cases where the resource consumption

equation is relaxed and equality sign in the resour:ce availability

constraint is replaced by a less than or equal sign. Then, the

solution vector is forced.to have components less than or equal

to theprespecified levels.

2.5. THE BOTTLENECK RESOURCE CONSTRAINED SET

PARTITIONING PROBLEM (BRCSPP)

BRCSPP combines.the characteristics of both BSPP and RCSPP.

That is,' it '. both forces the solution 'vector have a prespecified .

amount of components and tries to minimize the maximum cost of the .

sets within the solution vector instead of minimizing the total cost

of the set-covering~

Thus, the combined formulation becomes,

29

Min Z = min [max [CJ]]
SR. ES S JE"S"JI.

(2.23)

N
s . t. L ti JY J = 1

J=l

k = 1,2, ... ,RP

where tiJ~ YJ , hJk are as defined earlier.

(2.24)

(2.25)

The formulation of BRCSPP is exactly equivalent ~o the mathe

matical programming formulation of BRP, hence if.we solve BRCSPP, we

get the solution to BRP. Also,' the formulation of RCSPP is exactly

equivalent to the mathematical programming of MCRP, hence the same

statement holds for that case.

2.6. ULUSOY I S ALGORITHr~ FOR BRP

For the so lut ion of BRP Ul usoy (1981) has suggested to modi fy

the SPP algorithm given by Christofides (1975) so that to handle both

the minimax objective function and the resource constraints.

The improvements can be summarized as follows:

i. / The modifications to handle resource constraints.

As in the classical SPP, the current partial solution

is:.kept by three variables, B, 'Z, and E. But in addition to these

a new vectrir G is introduced which keeps track of the current usage

of resources, i.e. Gk is the current amount of resource to be used.

When a new set is added to the partial solution B, the G vector is

30

.updated, i.e. the current usage of resource type of lately introduced

set is increased by one. Similarly Hhen a set is drawn out of the

partial solution, then the corresponding compo~ent of'G is decreased.

If the current usage of resource type k is equal to the availability

of that resource then the sets consuming. resource k are disregarded

at step 3(i) of the SPP algorithm, i.e. first the resource availa

bility is checked. If all available resources have been used up,

then the sets consuming this resource is disregarded at step 3(i).

ii. The modifications for minimax objective function.

The'RCSPP problem is solved by-the modified SPP algorithm

with given sets. Then~ among the feasible solutions generated during

this sol u,tion process, the one which minimizes the maximum set cost

is chosen without considering the minimum total objective function

value, i.e.,

Then, the sets in S are scanned and the ones whose cost is

greater than or equal to Z* are deleted. Thus S is reduced and the

routine is reinitiated on remaining sets. This process is repeated

until there is no feasible solution on remaining sets with the last

solution being an optimal solution to BRP.

aspects:

Ulusoy (1983) has further improved this approach in two

i. An upper bound on the length of mission time is provided

by a heuristic procedure. The heuristic procedure pro

duces a good feasible solution to BRP which results in

relatively reduced number of paths processed by the

specialized set partitioning routine.

ii. The first version of the procedure required the execu

tion of the set partitioning routine several times and

one final complete enumeration. In this version, a new

labelling routine for the paths. has been introduced

31

which produces the'exact·optimum by.only a single scan

through the first block, thus resulting in a large compu

tational saving ..

A further improvement can be introduced by the following

suggestion.

Let us suppose, there· is only one type of resource. Then

as it was mentioned earlier the SPP algorithm is forced to get a

given number of components into the solutirin set.

Now, specifically assume there are 20· rows (M = 20) and only

4 resources (RP = 4) available. Then the problem becomes: choose

4 or less sets so as to cover 20 rows. Now assume a partial sol u

tjon B, Z, and E which uses 3 sets, thus consumes 3 resources and

covers .10 rm'ls. In thi s s i tuati on, SPP rout ine looks to the unco..,.

vered rows, chooses the minimum index of uncovered rows at step 2

32

and enters that block and searches for a feasible solution at step 3.

But at this point one can decide whether a feasible solution may exist

or, not.

One can look at the remaining sets. If there is no set SJ'

where the number of rows covered by the setSJ is greater than or·

equal to 10, then, one can conclude that this branch is fruitless.

In that case, there is no possibility of reaching a feasible solution.

Since one can us~ only one more set, but there is no set which is

covering at least 10 rows. If there exists such a set, then there

is a possibility of reaching a feasibl.e solution.

Although this is ~n exaggarated example~ most of the time

similar cases decrease the efficiency of the SPP routine'.

If there are more than one resource type, then the difficulty

again arises due to t,le same reasoning.

III. THE SOLUTION PROCEDURE DEVELOPED FOR
THE "BOTTLENECK ROUT I NG PROBLEt,1"

3.1 INTRODUCTION

33

With the intent of improving upon the solution procedure based

on specialized set partitioning algorithm a new method is developed

here. The method is designed to find an exact optimum.

The method suggested approaches to the problem just in the

opposite direction as compared to the set-partitioning approach. In

stead of eliminating the sets from the set ~ gradually,. this technique

starts w~th no set at hand and gradually enlarges ~.

Before getting in the details of this new method we shall

first concentrate on the calculation of SJ and CJ values defined in

Chapter 2.

3.2 THE NETWORK TRANSFOR~~TIONS REQUIRED TO OBTAIN SJ and CJ

. The original nebJOrk of theBRP is a fully connected symmetric

network, where the nodes of this network represent the airports. This

network is symmetric since the flight time from airport i to airport J

is practically equal to the flight. time from ai~port J to airport i.

But symmetry is assumed only for the sake of simplicity. The solution

34

technique is also applicable to the assymmetric cases (See Example E).

Let 0 be the flight time matrix, where diJ is the flight time from

airport i to airport J.

From this neblOrk a transformed network is formulated in order

to generate the sets (SJ1S) and related cost figures (CJ1s), defined

in Section 2.1-

In this transformed network, each SJ will be defined by a

unique simple path, and the length of that path will correspond to

. the related CJ value .. Practically CJ indicates the time r~quired to

traverse that path (that is the time required to carry ~ll the loads

on the related path) and will be called as "path length" from now on.

Originally this network transformation is suggested by Ulusoy

(1981) and his suggestion will be introduced in Section 3.2.4. '

The transformed network is obtained in two phases. In the

first phase hodes, and in the second phase arcs of the transformed

network are generated.

3.2.1 Node Transformations

In the transformed network, there is one node for each of the

airports, which has planes initially, in the original network, and

there is one node for each of the loads that should be carried, and

there are two artificial nodes. Thus, totally there are,

Y = RP + M + 2 _ (3. 1)

nodes. Namely,

Node 1: refers to the artificial source node.

Nodes 2, ... , RP+l: correspond to the airports which have

planes initially.

Nodes RP 2, ..• , RP+M+ 1: correspond to the loads 1,2, ~ .. ,~1 .

respecti vely.

Node RP+M+2: refers to the artificial terminal node.

35

In the Example A, there are 4 airports. and 7 loads which

should be transported between these. airports. These loads are- indi

cated by arcs in the original network (See Fig. 3.1). Original loca

tions of the planes are assumed to be the airports 3 and 4.

Note: Nodes correspond to airports.

* indicates that planes are available at these airports initially.

The arcs between the airports show the loads th~t are to be carried

between these airports.

FIGURE 3.1 - Original network of Example A

1 - . 30 65 40

2 30 65 35
D =

3 65 30 20

It 40 35 20

Note: time,s taken in minutes.

TABLE 3~1 ~ Flight Time Data of Example A

36

From this original network, the transformed n~twork is obtained

. with 11 nodes, as shown in detail in Fig. 3.2. In this network nodes

represent the following.

Node 1 : The artificial source node.

Node 2: Airport 3.

Node 3: Airport 4.

Node .4: Load 1 (from airport 1 to airport 2)

Node 5: Load 2 (from airport 4 t~ airport 1)

i~ode 6: Load 3 (from airport 2 to airport 4)

Node 7: Load 4 (from airport 4 to airport 3)

Node 8: Load 5 (from airport 4 to airport 2)

Node. 9: Load 6 (from airport 3 to airport 1)

Node 10: Load 7 (from airport 3 to airport 4)

Node 11: The artificial terminal node.

3.2.2 Arc Transformations

The transformed network is assymmetric and is not fully

connected. Let the time matrix related with this network be W.

This matrix is Y byY and called the "operation time matrix".

It \"lOuld be better to consider the arc transformations in

far stages.

In this stage, the interactions between nodes representing

loads in the transformed network are considered. That is, nodes

RP+2, ... ,RP+M+l are considered. All these nodes are fully connected . .

to each other and the operation times. (wk,Q,) between these nodes are

calculated as follows:

Case a: 'If the ending airport of the initial. node (load in

this stage) coincides with the starting airport of the final node

in the transformed network, then the time required to traverse this

37

arc (from initial node to final node) is, the flight time from starting

airport to ending airport of final node, plus the loading time (TL)

plus the unloading time (TU) (See Arc A on Fig. 3.2). That is,

where,

Wk,Q, = d[L(.R.-l-RP),lJ,[L(JI.-l-RP),2] + TU + TL (3.2)

Vk,JI. ':: RP+2, ••• , RP+M+ 1) k ,JI.

and if L(k-l-RP),2 = L(JI.-l-RP),l

L.l 1 ,
is the starting airport of load i.

L. 2 is the ending airport of load i.
1,

Thus, L(JI.-l-RP),l is the airport corresponding to starting

airport of (JI.-l~RP)'th load, where the (.R.-l~RP)'th load corresponds

to the .R.'th node by the definition in Section 3.2.1.

Case b: If the ending airport of the initial node does not

coincide with the starting airport of the final node, then this

means there exists an empty flight (a flight in which the associated

plane does not carry any load) between these nodes, and the time re

quired for that flight should be added to the time required to tra

verse that arc (See Arc B on Fig. 3.2). That is,

38

+ d[. , + TU + TL (3 3)
- L(~-1-RP),1],[L(~-1-RP),2] .

V k,~ = RP+ 2, ... , RP+ Mt 1 , k r ~
. and if L(k-l-RP),2 r L(~-l-RP),l

3.2.2. 2 ~t~9!Lg:' __ !!Jt~r~£tlQ!]L~~tb'~~!Ltb!LBlrQQrt~_~bl£!L~~Y~

~l~n~~_!nltl~ll~_~nQ_tb~_bQ~Q~

In this stage the interactions between the nodes representing

airports ,which have planes initially and the nodes representing loads

are considered. There are arcs from all nodes representing.airport~

to all nodes representing loads, but there a~e no arcsin the counter

direction. The operation times are calculated as follo~s:

-Case a: If the airport at the initial node coincides with the

starting airport of the final ncide, then a case similar to Case ~ of

Stage 1 occurs (See Arc Con Fig. 3.2). That iS J

Wkn = d[] + TU + TL (3 4)
N L(~-1-RP),1],[L(~-1-RP),2 .

for k = 2, ... ,Rp·

.~ = RP+2, ... , RP+f.ft 1
.. th

and if L(~-l~RP),l = (k-l) airport which has planes

initially.

39

Case b: If the airport at the initial node does not coincide

with,the starting airport of the final node, then a case similar to

Case b of Stage 1 occurs (See Arc D bn Fig. 3.2). Tha~ is,

Wk~ = d[(k_l)~h airport which has] ,[L(~-l-RP),l]
planes initially

+ d . . . + TU + TL
[L(~-1-RP)~1],[L(~-1-RP),2]

for 'k=2, ... ,RP

and if

~ - RP+2, ... ,RP+~1+1
, .. th

L(-l-RP),l r (k-l) , airport which has planes
initiCilly

(3.5)

3.2.2.3 ~~~g~_~~_~!n~~r~£~iQn~_~~~~~~n_~n~~8r!ifi£i~1_~Q~r£~_~Qg~

8nQ_~n~_8ir~Qr~~_~ni£n_~~Y~_E~~n~~_!Di~i~11~

The artificial source node and the artificial terminal node

is introduced so that to generate a complete network for the reasons

discussed in the next sections.

All arcs between artificial source node and the nodes repre

senting airports which have initially planes are dummy and their ope

ration times are zero. There are no arcs in opposite direction (See·

Arc E on Fig. 3.2). That is,

for ~ = 2, ... ,RP+l (3.6)

3.2~2.4 ~~~9~_~~ __ !~~~r!s~iQ~~_~~~~~~~_~b~_bQ!~~_!n~_~b~

~r~ifisi!1_!~rmi~~1_~Q9~

Again, all arcs beb/een the nodes representing loads and the

terminal node are dummy and have zero operation time and no arcs in

'opposite direction (See Arc F on Fig. 3.2). That is,

40

Wk, RP+ t.ft 2 = 0 k = RP+2, . .'. , RP+M+1 (3.7')

3.2.3 An Example of Network Transformations

The node transformations of Example A is given in Section

3'.:2.1. The f1 ight time matrix Dgiven in Table 3.1, and the loading

and unloading times are taken as 10 and 5 minutes respectively. The

load numbers are indicated on Fig. 3.1.

Following example computations given to illustrate the inter

actions described in previous sections, and the complete operation

time matrix is given in Table 3.2.

a) Stage 1: Case a

since

= d . + TU + TL
[L(6-l-2),1],[L(6-l-2),2]

= d2,4 + TU + TL

= 50 minutes

This computation is related wi~h Arc A on Fig. 3.2.

41

b) Stage 1: Case b

+ d ° + TU + TL
[L(7-1-2),i],[L(7-1-2),1]

= }O minutes

c) ~tage 2: Case a

w --d] [] + TU + TL
2,9 - [L(9-1-2),1 ' L(9-1-2)~2 °

= 80 minutes

Since L6 ,1 0= 3

d) Stage 2: Case b

w = d [] + d[] []
3,10 .4, L{10-"1-2),1 °L(lO_1_2),1 ' L(10-1-2),2

+ TU + TL

= 55 minutes

Arc E

CD
Artificial

Source

0)

. (Ini tia~ node)
(4)

. LO~d 1 " .
(1,2)

Arc A

J(Final node)
Loaa 3
(2,4)

. Arc C

lr;:;; 5 (4.~)

Load 7
(3,4)

FIGURE 3.2 - Transformed network of Example

lO~
(4.1)

~ Arc F :0
~ Artificial

Load 4
(4,3)

Starting Ending
node node

Load 6
(3,1)

terminal

.t::.
N

- -~-

1

1 00

2 00

3 00

"4 00

5 00

w = 6 00

7 00

8 00

9 00

10 00

11 00

TABLE 3.2 - The Operation Time Matrix Obtained
From the Transformed Network oJ

Example A

2 3 4 5 6 7 8 9 10

0 0 00 00 00 00 00 00 00

00 00 110 75 80 55 70 80 35

00 00 85 55 85 35 50 100 ." 55

00 00 00 90 50 70 85 110 65

00 00 45 00 80 75 90 145 100

00 00 85 55 00 35 50 100 55

00 00 110 75 80 00 70 80 35

00 00 75 90 50 70 00 110 65

00 00 45 95 80 75 00 00 100

00 -00 85 55 85 35 50 100 00

00 00 00 00 00 00 00 00 00

3.2.4 The Network Transformation Suggested by Ulusoy

11

00

00

00

0

a
a
a

a

a
0

a

Ul usoy (1981) ha,s formul ated the transformed network in a

slightly different way.

According to his formul ation there are (R+M) nodes. That

is, all airports are placed in this network without caring ~hether

they have planes initially or not. He also put one node for each

of the loads as in our case.

43

44

He omitted the interactions discussed' in Stage 1 case band

Stage 2 case b. That is, the cases \'/hich enable empty flights between

airports are omitted. In order to represent empty fl ights he has

defined two set of new interactions.

i) To enable empty flights at the first leg, all nodes rep-

resenting airports are interconnected with arcs whose

operation times equal to the flight times which they

represent.

ii) To enable empty flights later in the routes, all nodes

representing loads are connected to all nodes representing

airports, except to the airport same as the ending airport

for that load and the associated flight times are assigned

. as the operation times.

3.3 Computation of SJ and CJ

Using the transformed network ,and the operation time matrix
• I

W, we shall obtain SJ and CJ by enumerating all ,"simple paths" from

the artificial source node to artificial terminal node. By a simple

path between any two nodes of a network, we mean a path with no

repeating nodes. Such an enumaration will lead to paths like:

(3.8)

where, Sand T represent artificial source and terminal 'nodes res-

pectively'.

Also,

and

P £ {2, ••• , RP+- l} i.e., p refers to one of the air
ports which has planes ini
tially

J/,. £ {RPt 2 , ••• , RPt Mr 1}
1 .

i. e. , J/, • I S refer to the loads
coveted by that path.

This sequence of nodes is guaranteed for all the simple

paths since there are no arcs directed from nodes representing

loads to nodes representing airports and to source node. Also

there are no arcs directed from nodes representing airports to

. terminal and source nodes. Node T is forced to be the terminal

node since there are no arcs leaving T, just as node S is forced

to be the source node.

Therefore, by enumerating all the simple paths between·

nodes Sand T over this transformed network, we can obtain all pos

sible combinations for SJ. That is, all possible combinations of

loading a plane with different groups of loads can be obtained.

We can differentiate between initial airports, since these simple

paths involve initial airports. By this way, these paths will

directly give us all SJ and hJk combinations and their cost figures

(CJ1s) being the time required to traverse that path. That is,

length of that path over the matrixW.

In general enumerating all the simple paths in a dense

network is practically impossible due to the tramendous number of

combinations. But in the case of the bottleneck routing we do not

requir~ all the combinations. Only the ones which are shorter than

a prespecified le.ngth, d ,are needed. max

45

There are two ways of establishing value of d .. max

. i) dmax can be decided upon a priori as a result of opera""

tional requirements and be given.

ii) If no such a priori decision exists, then the analyst

46

can estimate the latest mission c'omp1etion time by simply

oveiviewing the.situation.

3.4 ENUMERATION OF SIMPLE PATHS SHORTER THAN A GIVEN

LENGTH

For enumerating simple paths in a graph many techniques have

been developed. Solving this problem is often the first step of

important procedures like symbolic network analysis' or terminal

reliability computations in a communication network (Fratta and

Montari, 1975).

Two essentially different techniques can be extracted from

the wide literature on this problem; the routing technique and the

matrix technique ..

The routing technique (Lin and Anderson, 1969) and Kroft,

1967) is useful mainly for enumerating all paths between a single

pair of n·odes.

The matrix technique (Danielson, 1968) is based on computing

symbolic powers of the graph adjacency matrix. In fact, each ele

ment (i,J) of the mlth power of the adjacency matrix contains all

paths of,length m between nodes i and J. This technique reduces

the comqinator~al explosion since it erases nonsimp1e paths during

47

the execution of the, procedure.

Fratta and Montanari (1975) introduced a path algebra and

translated the path problem into a system of linear equations in

this algebra, which they solved by an iterative method.

In order to enumerate the simple paths in the transformed

network, I have chosen tne routing technique for the following reasons:

i) Although it is an exhaustive search procedure, it

requires very little memory. Only the adjacency matrix

needs to be stored besides some negligible control arrays.

ii) It is essentially devoted to the problem of enumerating

paths 'between given nodes. So, unnecessary effort, such

as trying to 'generate the paths between all nodes is

avoi ded.

iii) The procedure seperately traces up all nonsimp1e paths up

to the second occurrence o~ the first repeated node.

That is, forms the path by gradually adding new nodes.

This fact is advantageous while generating paths shorter

than a prespecified len'gth.

Lin and Anderson (1969) have given major steps of the

algorithm as follows:

,

Step l~ Define a, fixed orde~ing of the arcs starting from each

node. Let A be the first arc starting from S. Mark S

and T.

48

Step 2: Let V2 be the node where A terminates at if V2 is unmarked,

then, if no arcs start from V2,

else,

then, go to step 3

else, mark V2 and A

rename A with

go to step 2

if V2 = T,

then, a simple path

store it

go to step 3.

else, go to step 3.

first arc starting from V2

between Sand T is obtained.

Step 3: Let Vl be the node where A starts from. if A is the last

arc starting from Vl ,

then, if Vl = S

then, stop all paths are generated.

else, erase mark from Vl and A.

rename A with themar;ked arc terminating at Vl .

go to step 3.

else, rename A with the successor of A in the ordering

relative to Vl , go to step 2.

This algorithm is revised to generate SJ's ahd CJ'srmore

efficiently. But before describing these, we must mention another

simple transformation. As it was defined, arcs leaving the nodes

S and arc? entering the node T have zero time. At this stage a

positive time E pssigned to such arcs, since we identify an arc as

marked or unmarked by looking at its sign in the operation time

matrix W. Thus, due to the structure of the transformed network

all the path lengths will be increased by 2£. Therefore dmax is

updated as (dmax 2£) before start,ing the procedure. Also, note

when recording the path's their lengths should be decreased by 2£.

The routing algorithm suggests the use of adjacency matrix.

But by the use of weighted adjacency matrix, we can still identify

arcs, furthermore store their lengths. Also keep marks of these

arcs on this matrix, by keeping track of their signs. Therefore,

we only need an array to control mark of nodes. We do not need to

write down all the arcs starting from each node if we move sequen

tially on the weighted adjacency matrix.

Flowchart 1 illustrates the steps of ~he revised form of

the routing technique.

3.5 PATH ELIMINATION

Due to the nature of path generation algorithms they gene

rate all permutations o'f paths between gi ven nodes. As an exampl e,

assume in Example A if path 1,2,9,8,11 will also be ~enerated un

less their lengths are gr.eaterthan dmax ' But according to our

definition (See Eq. (2.9» the shorter cine should be kept and rest

should be eli~inated.

Although the number of paths does not bring any problem

during generation phase, the elimination process creates necessity

of keeping the paths in the memory. It is also possible to make

49

el imination without storing the paths. in the memory, but it will

be very time consuming .. Therefore, if the number of paths are on

the order of few thous,ands, then it \'Ioul d be faster to perform thi s

task by storing paths in the computer memory.

In order to speed up this process following ideas have

50

been developed. Assume that the paths obtained after the execution

of path generation routine stored in one of the mass storage devices

of the computer system used.

The major problem elimination process is to identify whether

any two.paths cover the same nodes or not. In order to make this

identification easier, every node is assigned a random odd integer,

as a dummy demand. Then, for each path, the sum of node demands on

that path will give the demand of that path. Thus, if any two paths

cover the same nodes, then their demands are equal.

We can sunmar.ize the el imination process as follows. Note,

Dd shows the first occurrence sequence number of a path with demand

d, in the memory.

Step 1: Set i = 0 and TId = 0 for all possible d values .

. Step 2: Read next path from mass storage. Calculate its demand d.

If TId = 0, then, go to step 4; otherwise~ go to step 3.-

Step 3: Let J = TId' Starting from J'th position in the m~mory

check whether there exists any path covering the. same nodes,

with last read one. If such a path found, then, select the

shorter, and locate to that position; otherwise, go to step 4.

51

Step 4: Set i = i+l.. Record the last read path, to the memory as

i'th path. Set Dd = i. Go to step 2.

In Flowchart 2 the detailed steps of this process is illus-

trated.

3.6 SORTING THE PATHS

Algorithms ~sed in this thesis for the bottleneck routing

of mil itary cargo ai rplanes require the paths to be sorted according

to their lengths in an ascending order. Therefore after the elimi

nation process the paths have to be sorted.

For this purpose there are a variety of methods -reported

in literature (Knuth,-1975). Depending upon ~henumber of paths

generated two methods have been used in this thesis.

If there is a reasonable number of paths, then, the well

established Heap-sort technique is used and all the paths are sorted

in one step.

If the number of paths is large, then, one should resort to

more sophisticated sorting techniques. Most common technique is to

divide data into reasonable sized groups. Then, sort each group

independently and merge these sorted groups. . Since the UNI VAC 11 06

Operating System has a SORT-MERGE package currently available no

program is developed for sorting large amounts of paths. 'But the

program listings of the first technique can be seen on Appendix F.

After the gnereation, elimination and sort operations, the

paths are stored on a sequential access data file on one of mass

52

storage devices of the computer, which will be called as "mass storage"

in short from now on.

3.7 THE ALGORITHM DEVELOP'ED FOR BOTTLENECK ROUTING'

PROBLEM

3.7.1 Introduction to BRP Algorithm

As it was explained at the beginning of this chapter, this

algorithm approaches the BRP in a different fashion. That is, we

start ,with no path at hand and enlarge S gradually. The s'et' of

paths that are currently available at hand at any stage of the

algorithm is called the "path list". Also, the term "load cardina

lity" is used to express number of loads covered by the associated

path. _

We can briefly summarize the algorithm as follows,
(.

Step 1: Initialize

Get some paths from,mass storage into the path list until

some conditions are satisfied.

Step 2: Search

Search ~ver the path list. If there exists a solution then

stop. The solution is an optimal solution to the BRP.

Otherwise continue.

Step 3: Enlarge

~nlarge the, path list by getting some more paths from mass

storag~. Go to step 2.

53

The following sections will explain each step in detail while

giving the necessary proofs.

,
3.7.2 The First Step: Initialize

At the beginning of the Initialization step, we have no paths

at hand and we begin by taking paths into the path 1is~. We sequen

tially take the paths from mass storage until a change in path

length is observed. When such a change occurs, we shall apply the

following rules in order to detect whether the paths at hand can

give rise to a feasible solution or not. If so, we shall go the

Search step to locate that solution. Otherwise we shall continue

tak~ng paths from mass storage until another length change occurs.

The Stopping Rules: .

Rule 1: Coverage Check

If fll <' M, then there cannot be solution in the given path

list, where

number of times node J occurred in a path
with load cardinality i, within given path
list; if J > 1. .

number of disjoint loads on paths with
load cardinality i; if J = 1

(3.9)

If the number of disjoint loads covered by the paths whose

load cardinality is 'one is less than the total number of loads,.

then there cannot be a solution. It is enough to check the paths

54

whose load cardinality is one in order to,detect whether all loads

covered or not by the given path list, due to the following proposi

tion .

. Proposition 3.1: The first occurrence of every load will be in a

path whose load cardinality is one, ·'if the paths

are ordered by the process defined in Sections

3.1 through 3.6 .

Proof: .The proof follows from triangular inequality which

holds, since the Euclidean metric is valid here.

Q.E.D.

The.statement of Proposition 3.1 can be generalized as

follows,

Co ro 11 a ry 3. 1 : Any load 1 E {l,.,.,M} cannot appear in a path.

whOse load cardinality is (k+1) before appearing

in a path \1hose load'cardina1ity is k, for k = 1,2, ...

Before introducing Rule 2, 3, and 4, let us first make the

following definitions.

Definition 3~1: The configuration vector is the ~ector which shows

the number of loads assigned to each plane. Let,

Q= ~. (3.10)
P

where the operation stands for integer division

and let K be the remainder of this integer division.

If Gmax = Q+l, where Gmax is the largest load cardinality

in the given path list, then the vector,

55

C = Q,Q, ... ,Q, Q+l, ... ,Q+l, K > 0 (3.11)

P-K K

is the II minimum configuration ll vector indicating that K planes carry

(Q 1) 1 oadsand (P-K) planes carry Q loads.

If K = 0, then the minimum configuration occurs when Gmax = Q

and indicates that P planes carry Q loads.

Total number of loads handled by minimu!J1 configuration is

M, i.e., all loads are carried by the minimum configuration. This

can be easily shown as follows,

(P-K)Q + K(Q+l) = PQ - KQ + KP + K

= PQ+ K

= t4

when G = Q+l, there are other configurations such as, max

C = [Q, ... ,Q, Q-l, Q+ 1 , ... ,Q+ 1]

P-K-l 1 K+l

(3.12)

But such configurations necessitates more loads to be covered by

paths of .load cardinality (Q+l) than the minimum configuration.

, 56

As an example, assume that there are'14 loads and 4 planes,

.(i.e., M = 14 and P = 4). This results in Q = 3, K = 2, and

! = [3,3,4,4]. Assume that Gmax = 4, ~hen we have to construct

a solution by utilizing paths of load cardinalities oJ at most 4,

and I is that configuration 6f solutions which minimizes the use of

paths of load cardinalities 4. For this case, the configuration

defined inEq. (3.12) will be C = [2,4,4,4]. This configuration

uti 1 izes more paths of load cardinal ity 4 than mi nimum confi guration,.

which impl ies that longer paths must be util ized and thus more paths

must be processed in the path list.

Thus, if /e resort to full enumeration, \'Ihere we generate

paths of load cardinality K only after we have generated all paths

of load cardinality (K-l), then \"/e shall first catch a solution with

minimum configuration.

Rule 2: Member Size Check

Let,

Q +' 1 , if K 'I 0

Ml = . (3.13)

Q , if K = 0

If G a < Ml, then there cannot be a solution generated from . m x
the available path list. Since, in that case total loads carried by .

P planes can never sum up to the total number of loads as can easily

be shown.

In the previo~s example, if there is no path with load car

dinality greater than 3, then there cannot be a solution with 4

planes, since the maximum number of loads that can be carried would

be 12, .whereas there are 14 loads to be carried.

Rule 3: Minimum Configuration Check

If Gmax = Ml and fM1 ,1 < (~Il x K), then, there cannot be

a solutioh generated from the available path list.

This rule is more strict form of Rule 2. In this case,

we consider the number of disjoint loads covered by the paths of

load cardinality Ml. Since no path with load cardinality (Q+2)

, have been read from mass storage (Gmax = Ml), the cond i ti on for

minimum configuration is satisfied and we need at least (Ml x K)

loads covered by paths of load cardinality Ml.

57

To illustrate this rule, consider the previous example

again. We require at least 8 loads to be covered by paths of load

cardinality 4, if no path with load cardinality 5 have yet occurred.

This means, we need at least 2 planes be allocated to paths of load

cardinality 4, with disjoint loads.

Definition 3.3: The Worst Load

Let

min {maXimUm load cardinal ity }
G = o.verall ·of the paths in which (3.14)

min loads 1 load 1 has occurred so far

Then,

W = is the load 1 for which the minimum of ex-

pression (3.16) has occurred is called the

Worst Load.

58

Rule 4: Worst Load Check

Let,

REt4 = Q - Gmin
Ml = Ml * (K+REM)

(3.15)

(3.16)

If Gmax -= ~4l and fMl , 1 < Ml, then, there cannot be a feasible

solution g~neratedfrom the available path list.

Note that, this rule does not apply when REM + O.

Since Gmax = Ml, there are no paths in the path list whose

load cardinality is (Q+2). Therefore, paths with load cardinality

Ml, should cover more loads in this case; Because at least one load

should be covered by a path whose load cardinality is less than Q

(i.e., load W should be covered in a path \'/hose load cardinality is

r, .).
1111 n

This rule says paths with load cardinality Ml should cover

Ml loads.

Ml = Ml x (K+REM)

= Ml x (K+Q-Gmin)

= Ml x K + Ml(Q -,Gmin)

Ml loads should be covered by Rule 3 and (Q - Gmin) is the gap

brought by the situation of load Wand this gap should be covered

by paths of load cardinality (Q+l)~

As an example, assume that there are 32 loads and 6 planes

(i.e., M = 32 and P = 6). ~his results Q = 5, K = 2,! = [5,5,5,5,6,6]!

and Ml :'6. Also assume G is 6 and largest cardinality of paths max

covering one of the, loads is 3. Thus, Gmin = 3; RB4: 2 and

Nl = 6(2+2) = 24. If there exists a solution, then that solution

should cover one path of load cardinal ity 3 and the configuration

will be 5,3,6,6,6,6, which implies that at least 24 loads should

be covered by paths of·1oad cardinality 6.

Rule 5: Minimum Plane Check

59

This rule applies no matter what the value of Gmax is. A

lower bound on the number of planes is-established by checking the

path list at h~nd. If this lower bound is less than the plane avai

lability, then, there cannot be any solution generated from the

path list at hand.

Essentially planes are assigned to paths without checking

any of the BRP constraints and these assignments are made on paths

whose' load cardin-a1i.ties are larger (as far as possible).

It is better to explain the principle of the minimum plane

check on an example.

Let us suppose that we have 14 loads to cover and the given

path list has the fonowing characteristics:

6 ,loads are covered by paths of load cardinality 4

4 loads are covered by paths of load cardinality 3

3 loads are covered by paths of load cardinality 2

1 loads are covered by paths of load cardinali~y)

Since the following analysis is for the minimum number of

planes necessary, let us assume_ that load and path combinations

are such that all the assignments -indicated, are possible.

60

Start by assigning one of the planes to a path with load

cardinality 4. So 4 loads are covered. No two planes can. be

assigned to paths of load cardinality 4 since this will result to

an infeasible solution to BRP anyhow. The remaining 2 of the 6

loads that should be covered paths whose load cardinality 4, in

this case will be covered by paths It/hose load cardinality 3. By

Corollary (3.1) to Proposition (3.1), there have to be paths with

load ,cardinality 3 covering these loads. Thus with the additional

2 loads, 6 of the loads are to be covered by paths with load cardi

nality 3, now. So, we make 2 plane assignments to paths with load

cardinality 3, which makes a total of 10 loads covered by 3 planes.

Similarly, one plane is assigned to path with load cardinality 2

and the remaining 2 loads are then covered by paths of load cardi

nality 1. ,Thus, a total of 6 planes are requ·ired. If the plane

availability is less than 6, then, there cannot be a solution with

in this path list.

We can summariz'e the process as follows,

Step 1: Let f J = the number of loads covered by paths of load

cardinality J, (J • 1, ... ,Gmax)'

Let J

Step 2: Let

and set

= Gmax and T = 0 and go to step 2.

f J TT =[-]
J

T = T + TT

(3.17)

(3.18)

Step 3: Let J + J-l. If J = 0, then, T is the minimum number of

planes required. Stop. Otherwise go to step 2.

None of the above rules strictly guaranties the existence

61

of a solution within a given path list. Even if a given path list

passed all of these checks, there still mayor may not be a solution

to BRP contained in that path lis~. But if one of these rules fails,

then, this implies that the given path list does not contain any

solution. The major advantage gained by using these rules is that

they are simple and are very fast in giving an idea about the size

of the path list required to achieve a solution.

3.7.3 The Second Step: Search,

At this step our objective is to "find a solution that satisfies

the constraints of BRP (if such a solution exists). As it will be

proven in Section 3.8 if there exists a solution, then, it will be

the optimal solution to the BRP.

The procedure developed here intends to find out a feasible

solution which utilizes P or less planes (i.e., paths) within given

the path list. Asa result each plane will be assigned to a path.

During this step, a partial solution is generated and paths are

included in or deleted from this partial solution iteratively until

~ complete feasible solution is obtained or, otherwise the procedure

switches to the Enlargement Step.

The search step can be briefly stated as follows,

62

Step a: Resequence the current sorted list of paths, such that the

number of iterations during the search procedure is minimized.

That is, perform so called "Blocking" operation.

Step b: Decide on limits of the search.

Step c: Search to find a feasible path to include in the current

partial solution. If such a path is f~und, 'go to step b.

Otherwise delete last path included in the partial solution

and go to step b.

The details of these steps will be discussed in the following

sections.

This step is in principle similar to the first step of the

classical SPP algorithm suggested by Christofides; namely the

"blocking" step. That procedure was explained in detail while

introducing the algorithm. 'Since classical 5PP does not car~ how

many paths (sets) should be utilized and tries to minimize total

objective function value, it directly operates on paths which con~

tain uncovered elements of load set L. 50 the blocking process is

designed to group paths which do not cover the same loads (rows)

together. But in our case, the number of loads 'per planp. is

crucial. If we choose paths which contain more loads, then, vie

shall have more chance to obtain a feasible solution which utilizes

given or'less number of planes~ quickly. Since we do not care about

the total objective function value.

Most pf the time there is an unbalanced distribution of

load frequencies within the given path list. Although some of

the loads covered by many paths, some of them are covered by

relatively few paths. Such a situatinn results from the geog~

raphical distribution of loads and planes initially. If there

are loads far away from the initial airports of the available

planes, then too much time has to be spent to carry such loads.

While, in the mean time loads in the vicinity of the initial

airports of the planes can be covered by several combinations.

Often the maximum di stance to generate paths (d, x) is set such . rna

that these remote loads are just covered. So the blocking proce-

dure should enable the search mechanism to focus on such remote

loads first.

The foregoing discussion reveals that· there are two im

portant decision criteria in the blocking process.

i) The frequencies of ,loads.

ii) The load cardinalities of paths.

Thus, depending upon the nature of time data of the origi

nal problem and the information generated while taking the paths

from mass storage, blo alternate methods· for blocking can be

identified.

The next two sections will describe the details of these

methods. But before getting in them, note that as a result of

blocking process the sequence of paths in the current paths list

is changed, ·that is a new path llst will be generated, the search

63

64

fora path to assign a plane will start from the bottom. of this new

path list and will gradually move up (See Fig. 3.3). Therefore

critical paths should be forced to the bottom portion of the new

list.

path ~ 1 TOP OF THE LIST
no 2 ----------------------

3
--------------~-------

+ Direction of
_~ _____ P~IH~__________ the search

----------------------USET BOTTOM OF THE LIST ,-------------------
FIGURE 3.3 ~ The path list

3.7.3.1.1 Method A: Blocking with Respect to Load

Frequencies

Usually when there are remote loads to be carri~d,

there are greater deviations in the load frequencies. This type

of blocking is preferable when there are such deviations. The

paths covering loads whose frequencie~ are the least, are selected

and located to the bottommost empty positions of the new list

sequentially as follows.;

Step a: Calculate total load frequencies, i.e.,
Gmax

. TR, = I
9=1

f g,R, . (3.l9).

Note, T~ is the total number'of times load ~ is covered in

. the given path list.

Step b: Choose an unconsidered load whose frequency is the least,

Ties are broken arbitrarily.

65

Step c: Scan the path 1 i st to find out pathswh{ch cover the chosen

load and not marked yet; If any such path found, then, put

them at the bottommost available locations of tne new path

list and mark them on the old path list.

Step d: If all loads are considered, then stop. Otherwise go to

step b.

During the insertion of the paths into the new path list (in

'step' c), we have alter~ative ways to proceed; since there are in

general more than one candidate paths selected from the path list

which cover the same load. The probl'em is to choose the one which

wi 11 be located to the bottommost avai labl e pos ition fn the new path

list, so that the. chosen one will be considered first by the search

mechanism. The best approach appears to be'to locate the path whose

load cardinality is the largest to the bottommost available position.

In order to avoid the use of additional memory space, a heuristic

rule is adopted when coding the alg~rithm. According to that rule,

the longest path among the candidate paths is located at the bottom

most position, based on the generation that the longer the path, the

larger the number of loads it will cover.

66

-
3.7.3.1.2 Method B: Blocking With Respect to Load

Cardinalities

This type of blocking is preferable when there are no

great deviations· in the load frequencies. Under such circumstances

the method suggested previously would have no significant effect.

Thus, in such cases, it would be better to locate paths which cover
-more loads to the bottom portions of the new path list, so as to

avoid unnecessary iterations of the search procedure with paths

covering relatively few loads. This type of blocking can be summarized

as follows .

. Step a: Set g = Gmax

Step b: Choose paths from the path list whic~ covers g loads and

locate those paths at the b6ttommost available places of

the new path ·list.

Step c: Decrease g by one. If 9 = 0, then, stop. Otherwise go

to step b.

Also, in this type of blocking we have alternative ways to

proceed in second step. In this case, the best is to 10c~te the

path of least length at the bottommost available position.

3.7.3.1.3 Storage Space ·for The New Path List

Although a new path 1 ist is g~nerated, it is not neces

sary to store it asa new 1 ist. An imaginary path 1 ist will be

enough. Such that only a one-dimensional array can be utilized

instead of a new list. The elements of this array are pOinters

representing the paths on the new list. Each element pOints to

the position of the related path in the old path list. This array

is called the ADRES array.

67

This is an iterative step. Each time the procedure reaches

this step, we have a partial solution which utilizes 0 <. KPL < P

planes (KPL being the number of planes utilized in that partial

solution). After this step, the procedure will begin to search

for a path to assign the (KPL+l)th plane. Note, the search procedure

will move upwards from bottom search limit t? top search limit. ~et

us denote the bottom search limit by KSET and the top search limit

by KRT.

Depending on the.number planes (KPL) utiliz~d . in the current

partial solution, the search limits can be established as follows.

A) Assignment of First Plane (KPL = 0)

This means either the process achieves to this step for the

first time or one wants to change the path assignment of the first

pl ane.

a) The top search limit (KRT)

The top search limit varies by the blocking method uti

lized. Let us first consider the case for the blocking method A.

Let SFJ be the path number of the first occurrence of load

J in the new path list (i.e., load J has not been occurred in paths

indexed 1,2, ... ,(SFJ-l)) .. Then, the top search limit will be,

68

KRT = m a x (SFJ) (3.20)
JE{l , •• ,tit}

Sin'ce the load which gives rise to the value of. KRT,does not,occur

in any·of the paths 1,2, ... ,(KRT-l), it will be useless to search

these p~ths in order to assign the first plane. That is, if we

cannot as~ign the first plane to path whose index is greater than

or equal to the value of KRT, then, this implies that we cannot find

a solution to BRP. Let us now consider the case of blucking,method B.

Let YFJ be the path number of the fir~t occurrence of path

with load cardinality J, in the ne\'/ path list (i.e., load cardina-:-"

lities'9f the paths 1,2,. .. ,(YFJ -l) are less "than J). Recall that

K = (M-QxP), which is the number of planes required to assign to

paths with l?ad cardinal ity (Q+l)" ~:j'iven there is none viith load

cardinality (Q+2). Depending on the value of K, there can be two

-cases.

i.K> O. Assume that no plane assignments have been

rea 1 ized until, (YFt~l+K) th path. Then, exactly K pl anes

should be assigned to paths indexes (YFM1+K-l), (YFt4l +K-2), ..

... , YFM1 . Since all paths with load cardinalities (Q+2)

are exhausted, due to the blocking method B. Therefore

assigning the first plane to path whose index less than

(YFf~l K-l-) will not enable other (K-l) planes to be

69

located on that interval and wi-1l cause 'infeasibility.

Thus, the top search limit is determined as,

KRT = YF M1 + K - 1 (3.21)

ii. K = O. Similar to the reasoning in the previous case,

all P planes should be assigned on the interval

(YFM1+P-l),(YFM1+P-2), ... ,YFM'. if no plane assignments

has been realized up to that point. Thus, the top

search limit will be,

KRT = YFMl + P - 1 (3.22)

b) The bottom search limit (KSET)

Initially the bottom search limit for the first p.lane '.

is the bottommost path. Namely KSET = USET (USET being

the total number of paths in the path list). If the

process reaches this step again since KPL = 0, then,

the bottom search limit has to be the path which is

just above the current bottom search limit, i.e., KSET

is substituted by (KSET-.1).

Since the partial solution set is empty (KPL· = 0) at this

stage, no search is performed to assign the first plane and that

plane is assigned to (KSET)th path. Furthermore, the value of KRT

does not' change (as far as the path list is fixed) throughout the

iterations when KPL = o. Let LSET be the value of KRT when KPL· = 0

Therefore there are (USET - LSET" + 1) possible paths to assign the

70

first plane. - If (USET.- LSET.+ 1) passes over this step, result

without a feasible solution, then, the given path list cannot

contain any feasible solution. We terminate the search-over this'

path list, since block is exhausted. We move to the Enlargement

step.

B) Plane Assignments Beyond the First Assignment

(1 2. KPL < P)

a) The top search limi t ' (KRT)

If some planes have been assignep already, then there

are two candidate? for the top search limit.

i. Let; KLD: number of loa.ds covered by KPL planes.

RL = ~1 - KLD: number of uncovered Toads.

RP = P - KPL: number of unused planes ..

Then, YUK = smallest integer ~ RL/RP (3.23)

YUK is a redefinition of Ml for the reduced problem.

Then it means at least one plane should be assigned to a path whose

load cardinality is at least .YUK in order to achieve feasibil ity.

Hence, one candidate for the top search limit will be,

MRT = YFYUK
(3.24)

That is, (KPT + l)th plane cannot be assigned to p'aths 1, ... ,(MRT-l).

Assume (KPL+l)th plane has been assigned to a path KP whose index

satisfies ,1 < KP < MRT; Then, the next pl ane should be assigned

the path whose index less than KP. But load cardinalities o~ all

those paths are less than YUK. Hence, there is no way to reach

a feasible solution.

ii. The second candidate for the top search limit: S

71

LRT = m a x (SF.) (3~25)
iE[all uncovered loads] 1

The (KPL+l)th plane sho~ld cover at least one of the un

. covered loads. Specifically this plane should either

cover the load whose first occurrence is at the bottom-

most or be assigned to a path below that level so as to

enable the next plane to cove~ the load under discussion.

Note the proofs of the two candidates are complementary .
. .

Since any violation of these two candidates will cause

infeasibility, the top search limit will be "the maximum

of them. That is,

KRT= max[LRT,MRT] (3.26)

b) The bottom search limit (KSET)

i. If the last operation is a path addition. Let us first

consider the case when blocking method A is used. Let E

be the set of all loads covered by the last plane included

in the partial solution and define,

)KZ =. max (SF.)
iEE 1

(3.27)

Then~ set KSET to KZ-l. This is~ an implicit enumeration

,of all the paths between old and new KSET values. Since

these paths should necessarily contain the load which

gave rise to the value of KZ~ the search on these paths

will always be useless.

Let us now consider the case when blocking method B is

used. Let the last plane assigned t6path KP~ where

KSET ~ kp ~ KRT. Then, the new KSET values should be

(KP-l)', The search for the next plane should start just

after the path KP.

ii. If the last operation is a path deletion.

Let KR be the path number'which is deleted. Then KSET·

will be (KR-l). That is~ bottom s~arch limit is set to

the path which is just above the deleted path.

72

After the search limits are determined, we check whether

KRT < KSET. If so, then, this means the feasible region to assign

(KPL+l)th plane is collapsed and the ,current partial solution cannot

lead to a feasible solution anymore. Therefore, we must drop KPL th

plane and go back to determine the top and bottom limits of the new

search for a. feasible path. Otherwise, we can go on searching a path

to ass i gil (KPL + 1) th plane between these 1 i mi ts.

In Fig. 3.4, the computation of search limits are illustrated.

TOP SEARCH LIMIT

KPL = 0

:RT=max (SF.I)
Je:{l, .. ,M)

KPL?

1 < KPL < P

KRT=max(YFyuk,max(SF i))

ie:{unco
vered 10)

BOTTOM SEARCH LIMIT

KPL?

KPL = 0

KSET + KSET -1

KSET=max{SFi)-1
i e:E

73

tiol

KSET=KR-1

KSET=KP-l

FIGURE 3.4 - The flowchart of the computation of search limit

74

3.7.3.3 ~~~tsb_E2t_~_E~~~i~1~_e~~b

The objective of this step is to assign {KPL+l)th plane to

a path which is between predetermined limits. The search for that

path will start from the bottom search limit and move up by checking

each path individually for feasibility. First thing to check is

whether the candidate path originates from an airport whose planes

have been used already by the current partial solution. If such a

case occurs, then, that path should be omitted and the one just above

it, has to be checked .. After the initial airport constraint, we should

check whether the candidate path covers any of the loads that are al

ready covered by the current partial solution. Also, such paths should

be omitted due to so-called IIno-overcovering',re!triction of BRP. So,

the process gradually moves up to the top search limit.

~ If one of the paths satisfies the constraints given above,

then, {KPL+l)th plane can be assigned to that path, and that path

can be added to the current partial solution. Since we have made

the {KPL+l)th assignment, we can set KPL as (KPL+l) and enlarge the

partial solution at hand.-

At this stage, if the total number of loads covered by the

current partial solution equals to the total number of loads to be

covered, then, we terminate having found a feasible solution satis

fying all the constraints. This solution is the optima~ solution

to the BRP. The proof of optimal ity will be given in Section 3.,8.

However, KPL need not be ~qual to the total number of planes avail

able. We .have the possibility of reaching a solution using fewer

planes than fvailable (See Example D).

75

On the other hand.Jf the total number of loads covered is

less than the total number of loads to be covered, then we must re

define the search limits for the next plane and continue search pro

cess as defined.

While'searching for a path, if non of the pat~s satisfy

the feasibility constraints that is, paths between KSET and KRT

are exhausted,' then, we have to delete the KPL th plane from the

partial ,solution and again continue by redefining search limits .

. 3.7.4 The Third Step: Enlargement

If no feasible solution has been'found at the end of the

search step (i.e., block one is exhausted), then, .we shall take

some more paths from mass storage into the current path list so

as to enlarge the path list. Let to be the length ,of the longest

path in the path list in which no feasible solution has been'detected.

At this point we know.that the length of paths remaining in

the mass storage are greater than ~o' since we must have taken all

such path in previous steps. Let R.l b,e the length of the shortest

path in the mass storage. By the previous discussion we know tl > R-o.

Then, we should scan mass storage until we catch a path whose length

is greater than R. l , and we shall enlarge the path list by taking in

all paths of length R- l . After the enlargement, we switch back to

the beginning of Search step in order to reinitiate blocking process.

One must note that the original time data is assumed to be

integer .. So that after every enlargement operation, the number of

,

paths taken into the path 1 ist will not be equal to one most of

the time.

3.8 THE OPTIMALITY OF SOLUTION FOUND AT THE SEARCH STEP

While discussing the search step, we have claimed that if

one achieves" a feasible solution, then that solution will be the

optimal solution to the BRP. The following proposition will give

the proof of that declaration.

76

Propositon 3.6~ - The feasible solution found by applying the Bottle

neck Routing Algorithm is !he optimal solution to

the"BRP.

Proof: The search step can be achi.eved from either the'

Initialization Step or the Enlargement Step.

In both of the cases, we have a path list, and let 1 be . . 0

the length of thelongest path in this path list. In any case

guarantee that there is no feasible solution to BRP in some path

list. Then, we enlarge that path list by taking all paths of length

10+E from the mass storage. During this process we make sure that

there is no path of length 1, such that 10 < 1 < 10+~. Thus, if

we are able to find a solution in this enlarged path list, then,it"

should be the optimal solution of BRP with the optimal ¥alue being

(10+E). The optimal value of BRP cannot be reduced further. Since,

if it can be reduced, then, it should be 1
0

• But there is' no solu

tion among paths whose length is less than or equal to 1
0

•

Q.E.D.

{.

3.9 GENERATION OF ALTERNATIVE OPTIMAL SOLUTIONS TO

BOTTLENECK ROUTING PROBLEM

77

If the algorithm is not tenninated after finding the optimal

solution of BRP, then, it can generate all other alternative optimal

solutions of the problem. This can be achieved by assuming of

'feasible (optimal) solution at hand as a partial sol,ution. In

this case the algorithm will terminate at the pOint where all the

paths that first plane can be aSSigned 'are exhausted (i.e. the first

block is exhausted). In this way, the procedure will turn to be a

full enumeration process. Since bottleneck objection function value

does not change during the process. The solutions generated by this

, way will be alternative optimal solutions to the BRP.

If there· are more than one load specified between any two·

airports, then imaginary alternatives will be produced by the pro

cedure .

To illustrate this fact better, note that load 4 and 10 in

Example B refer to loads to be ca~ried from airports 4 to airport

3. The optimal solution found at the end of algorithm assigns

plane 1 to loads 7,10, and 6 ana plane 3 to loads 4, 8, 9 and 1.

Thus, if we do not terminate the proc~ss, we eventually reach a

solution identical to the prev'ious one, except that the po.sitions

of load 4 and 10. That is, plane 1 will be assigned to loads 7, 4

and 6 and plane 3 wi 11 be ass i gned to loads 10, 8, 9, and 1. When

there are many loads in this status (See Example F) the number of

imaginary alternatives will blow up.

/

3.10 THE ALTERNATIVE OPTIMUM TO'THE BOTTLENECK ROUTING

PROBLEH WHICH RESULTS IN ,THE MINmUM TOTAL COST

There are case where, besides bottleneck objective function

value, the value of the total job time is also important. That is,

the fi rst objective is to. minimize the maximum job time and the
.

second objective is to minimize the total job time.

The SPP approach applied by U1usoy, by definition catches

78

the solution defined above, since the SPP a1gor~thm tries to ~inimize

the total cost.

The algorithm developed here can be adopted in the following

manner for obtaining that solution.

Let Z be the total objective function value that corresponds

to the partial solution and I be best total objective func'tion value

yet reached among alternative optimal solutions of BRP. Initially,

I is set to infinity since there is no feasible solution yet.

While testing path KP to assign (K~L+l)th plane, first check

if Z+(length of path KP) < Z. If so, ,continue testing. Othen'lise,

omit the path KP.

Continue the process as defined in, Section 3.9 untn'the

first block is exhausted. Thus, the solution obta.ined in this way

will be alternative optimum to BRP which results in the minimum total

cost.

This process cannot implicitly enumerate some solutions for

undesirable Z values due to the nature of blocking, but computational

experience has shown that the algorithm is not so poor compared to

SPP ,in that ~espect.

79

3.11 DEMONSTRATION OF THE ALGORITHM

Example C is chosen to demonstrate the steps of the algorithm.

Most of the stopping rules are inactive in this example. But the

solution is found easily among 72 paths only.

The maximum distance criterion applied t6 the generated paths

is 150 and this resulted in a total of 163 paths after the elimination ,
process (See Appendix D).

From the data we get,

t·1 = 1 2, P = 6, RP = 2, . Q = t~ I P = 2

K = 0, therefore Ml = 2

The nodes of the transformed network represent the following

(referring to the formul ation in Section 3.1):

node 2 -+ refers to airport 3.

node 3 -+ refers to airport 4

node 4 -+ refers to load 1 (from airport 1 to airport 2)

node 5 -+ refers to load 2 (from airport 4 to airport 1)

node 6 -+ refers to load ,3 (from airport 2 to, ai rport 4)

node 7 -+ refers to load 4 (from airport 4 to ai rport 3)

node 8 -+ refers to load 5 (from airport 4 to airport 2)

node,9 -+ refers to load 6 (from airport 3 to airport 1)

node 10 -+ refers to load 7 (from 'airport 3 to airport 4)

node 11 -+ refers to load 8 (from airport 3 to airport 2)

node 12 -+ refers to load 9 (from airport 2 to airport 1)

node 13 -+ refers to load 10 (from airport 4 to airport 3)
.

node 14 -+ refers to load 11 (from airport 1 to airport 3)

node 15 -+ refers to load 12 (from airport 1 to airport 4)

BRP algorithm starts by reading the paths from mass storage

sequentially and after each length change it goes on ,the stoppping

rules.

Rather than explaining each step of the algorithm we shall
,

just,briefly summarize the situation (detailed output is available

in Appendix 0).

First note that, node 14 is not covered until 63rd path.

80

So there cannot be feasible solution up to this point. But we cannot

go on applying stopping rules just after reading 63rd path. We have

to wait until a length change occurs. Note that the length of path

72 is 120 and length of path 73 is 125. Therefore we can apply stop

ping rules ,at this point with the frequency matrix given in Table 3.3.

Since fll =,12 = total number of loads. Rule 1 is satisfied.

Since Gmax = 3. Rule 2 is also satisfied.

Rules 3 and 4 are inactive since G > ~1l. max
For minimum p.l ane check, note,

5 of loads are covered by paths of load cardinal ity 3.

/6 of loads are' covered by paths of load cardinality 2.

1 of loads are covered by paths of , load cardinality 1.

At our best, we can ass'ign a 'plane to a path of load cardina

lity 3 and 2 loads will remain to paths of load cardinality 2. Thus,

8 loads can be covered by paths of ,load cardinality 2. So, at our

best we can handle these loads by 4 planes and the last load should

. be carried alone. Therefore, we need a total of 6 planes; Since we

ilave already 6 planes, the rule is satisfied and the procedure switches

to the search routine.

The blocking step:

In accordance with the earl ier analysis IIt~ethod All for

blocking will be adopted here since there exists an unbalanced

distribution of load frequencies. So, we first should choose the

load.which is least covered. That is the load 11 (node 14), it
rd . is covered only by 63 path, therefore we should put this path

81

at the bottommost position of the new list. Namely, ADRES(72) = 63.

The next candidate load is 12 (node 15) which is covered

only 3 times. The paths covering load 12 (node 15) are:

69: 2 - 15

44: 3 ~ 5 - 15

30: 3 - 15

Therefore, starting from the bottom of both lists we shall locate

these paths. Namely,

ADRES (71) = 69

ADRES (70) = 44

ADRES (69) = 30

Indeed the generalization accept~d in Section 3.7.3.1.2 did

not hold in this case. It is preferable :to locate 44th below the

69th path since it covers more loads. But counting the number of

loads in each path and organizing ordering accordingly can be

easily done.

Then, depending upon the total frequencies the rest-'of: the add

array between two lists can be generated as listed in Appendix D.

82

The first occurrence of loads and load cardinalities. will be

obtained by the process defined in the Flowchart~3 and they are shown

in Tables 3.4 and 3.5 respectively.

The Search Step:

Since we have 72 paths, KSET is also 72 initially. Since

node 14is only covered in 72, first plane has to be assigned on

the 72nd path (namely the 63rd path in the'origina1 list). There

cannot be any solution which does not cover that path.

If path 71 had also covered node 14 then, KRT should be 71

and the first plane should be assigned, eith~r 72 or 71. But that

is not the ·case.

As a result first plane is assigned to path 72 and at this

point search limits can be established as:

KSET =
Max SFJ .

J£[loads covered - 1
in 72nd path]'

= {max [72]} - 1

'= 71

KRT = 69 That is, the point at which node 15 (load 12-)
has first occurred. That is, path 69 contains
load 12. Paths 70, 71, 72 may contain load
12 and paths 1, ... ,68 do not contain load 12.

Formally KRT calculated as follows,

RL = 12 - 1 = 11

RP = 6 - 1 = 5

which implies YUK = 3.

83

Thus, ~RT = YF3 = 12

and LRT = m a x [SFi]· . = 69
k[1,2;3,4,5,6,7,8,9,10,12]

Therefore, KRT = max[16,12] = 69.

According to this result only three paths have to be checked

for assigning the second plane. Namely, paths 71, 70, and 69. Path

71 involves nodes 2 and 15 which is feasible for the current parti~l

~olution. The algd~ithm decided to assign the second plane to the
st 71 path. It immediately follows that KSET = 68 KSET = SF15 - 1 .

Then, we have two candidates for KRT as explained previously,

RL = 12 - 2 = 10

RP = 6 - 2 .= 4·

which implies YUK = 3.

Thus, MRT =. YF3 = 12·

. and, LRT = m a x [SFi] = 65
i£[1,2,3,4,5,6,7,8,9,10]

.--
Therefore, KRT = max[65,12] = 65.

Hence, the search limits for the third plane are established

to be 68 and 65. Within th~s interval path 68 is chosen which results

KSET = 64 and KRT = 58. From this interval path 64 is chosen which

results KSET = 57 and KRT = 52. At this point path 57 is chosen and

the current partial solution become 72, 71, 68, 64, 57 .. But this

resu1 ted KSET = 51 and KRT = 72. Si nce sea.rch limits over1 ap we must

drop path 57 and move up to search for another path. Then, path 55

will be tne path which satisfies the constraints.

84

Similarly the process continues ~ntil the partial solution

contains 72, 70, 68, 64, 35, 22. At this point all loads are covered

to achieve a solution which is feasible and so optimal to the bottle

neck routing problem. The details of the process' are shown in the

computer output at Appendix D.

TABLE 3.3 - The Frequency Matrix After Getting 72nd Path
Into the Path List .

Nod e s
N r-- o::t ('f) N r-- o::t N I'": ('f) ('f)

Meanings
of nodes

Node ~.

Number~
• n:s

.~ 1
, '."'0
" : So.

~ 2

Totals

1

12

11

5

28

('f) o::t
-I-l -I-l
So. So.
0 0

0... 0...

:2 3

1 12

20 24

2 3

23 39

..
r-- o::t N

"'0 "'0 "'0
n:s n:s n:s
0 0 0

....JJJ

4 5 6

2 2 2

5 7 9

0 0 0

7 9 11

..
o::t o::t ('f) ('f) ('f) N o::t
"'0 "'0 "'0 "'0 "'0 "'0 "'0
n:s n:s n:s n:s n:s n:s n:s
0 0 0 0 0 0 0

....JJJJJJJ

7 8 9 10 11 12 13

2 2 2 2 2 2 2

12 9 t 13. 11 8 12

3 2 0 5 2 0 4

17 12 4 19 15 10 17

TABLE 3.4 - First Occurrence of Loads in The New Path List

Load First occurrence
Path No.

1 58
2 52
3 32
4 7
5 24
6 65
7 1
8 14
9 4.3

10 3
11 72
12 69

..
r--

"'0
n:s
0

....J

14

1

0

0

1

o::t ..
r--

"'0
n:s
0

....J

15

2

'1

0

3

TABLE 3.5 - First Occurrences of Load Cardinalities

in The New Path List

Load Cardinal tty First Occurrence
Path No.

1 1

, 2 5

3 12

85 .

86

IV. THE AIRPORT CAPACITY CONSTRAINTS

4.1 INTRODUCTION

Once the routes of the cargo planes have been determined,

the. longest mission time is defined by the objective function

value of the related solution of the Bottleneck Routing Problem

(BRP). At this point, the service facilities at the airports should

be .checked to see whether they are sufficient not to cause any del.ay

to any of the flights. The opti~al solution value of the BRP cons

titutes of deadline for all planes to fi~ish their job. It is ob

vious that at least one of the planes w~ll complete its job just at

the deadline. Other planes will have some slack time to complete

their jobs. The slack times can be utilized, if there is demand

for service at any airport beyond its capacity.

As it was mentioned in Chapter I there are two types of

constraints on service facilities at the mrports.

i. The number of planes that are serviced at a given

airport at any time cannot exceed some predefined

limit. Let CAP. be the maximum number of planes 1 . .

that can be serviced (loading or unloading) at any

instant at'airport i.

ii. The planes -which have enough slack times can join the

queues at some of the airports, if service facilities

are busy. But there is also a 1 imit on the size of the

queue at each airport. Let QCAP i be the maximum queue

size at airport i at any instant.

Throughout this chapter we shall try to find out a schedul e

for planes which satisfies these constraints.

87

In this study the service times of the planes at the airports

are assumed to be constant. That is,these times are independent of

both planes and airports. The service time of a plane at an airport

has two components .

. i. TL: the loading time

ii. TU: the unloading time .

.
Although these components of the service time are assumed

to be constant, this is not a strict requirement. They may vary

from airport to airport and from load to load. If such a situation

exists, .then different times can be added on arcs defined in the

network formulations. For the sake of· simplicity in notation and

for the sake of memory size requirement in the computer applications~

service times are assumed to be independent of loads and airports.

Before getting in the details of the technique developed to

handle such constraints, one must note the following. definitions.

i. MIS i is the missi.on completion time of the ith plane,

if all planes start at the same time and if no,delay

occurs during that mission times. Their values are

obtained from the given solution of BRP. Specifically,

they are the lengths of paths that the related planes

are assigned to.

ii. DUE is the 'longest mission time. That is,

88

DUE = m ,a x (MIS.) (4.1)
i£{l, ... ,P} 1

This DUE is the objective function value of the BRP

solution and corresponds to the deadline.

iii. SLACKi,t is the amount of remaining sJack time for plane

i at any-time t and is defined by the equation,

SLACK. t = DUE - MIS. - WAIT. t .
1, . 1 1, (4."2)

where WAIT. t is the total time spent at queues by plane
1 ,

i up to time t (i.e., the idle time).

4.2 n-JOB, m-MACHINE JOB SHOP SCHEDULING PROBLEM

The scheduling of planes with given fixed routes has great

similarities with the n-job, m-machine job shop scheduling problem.

So it will be better to define this problem first.

Suppose we have n jobs Jl ,.· .,In and m machines, Ml , ... ,Mm

which can ,handle at most one job at a time .. Job J i (i= 1, ... ,n)

consists of a sequence of ni operations Or' each of which corresponds

to the pr.ocessing of ~o~ J i on machine ll(Or) during an uninterrupted

processing time of P time units. We seek to find a processing order . r

on each machine such that to optjmize the' choosen measure of effec

tiveness (Conway, Miller and Maxwell, 1967).

This problem is quite formidable. Major difficulties are
I •

computational since there are (n!)m possible schedulings in general

form .. 'There are no efficient exact solution procedures known.

89

Conway, Maxwell and Miller (1967) have formulated integer programming

models but computational results are not encouraging.

Some heuristic models are used in general job shop scheduling

problem. ~10st commonly used procedures known as IIdispatching' rules ll .,

These are ~implY logical decision criteria that enable an analyst

to select next job for processing at a machine when that machine
.' ,

becomes available. Thus, scheduling decisions are made sequentially

over time instead of all at once. Such procedures always include ..

the concept of IIjob priorityll. A job priority is a numerical attri

bute of a job, ~efined in such a way that, a job with the smallest

priority is scheduled first~ . Nost of the time these priorities are

assigned heuristically, and most of time various types of informa

tion available, ~bout the status of work centers,. are incorporated·

in these decisions (Johnson and Montgomery, 1974).

4.3 THE RELATIONSHIP BETWEEN PLANE SCHEDULING AND

n-JOB, m-MACHINE JOB SHOP SCHEDULING PROBLEM

The scheduling of planes with fixed routes is a complicated

version of the n-job, m-machine scheduling problem, where the jobs

are the planes and the machines' are the airports. Since the sequence

90

of loads that should be carried by each plane is known, we can easily

extract the sequence ~f ~irports which should be visited. Thus the'

operation sequences are defined.

The operation times are defined as loading and unloading

times depending whether the plane is waiting, to 10,ad or unload res

pectively.

Each plane enters the system exactly once and should comp

leteits time at time referred to as DUE in Eq. (4.1). At the end of

scheduling process all the planes should complete their job latest at

this time. Otherwise the objective function value of BRP will be

increased by the ma~imum delay amount ..

These similarities imply that scheduling of planes is not so

easy. Furthermore, we have following differences from n-job, m-machine

scheduling problem causing additional difficulties.

j. We talk about the existence of a sequence dependent set

up time, since the planes spend time while flying between airports,

if we represent flight times 'as set-up times.

ii. Each machine can handle more than one job at any instant.

That is each airport k is capable of servicing at most CAPk planes

at any instant (See Fig. 4.1).

i~i. Queues are limited. That is, each· airport k has a queue

capacity of QLAP k.

iv. The sequence of the operations on ,a job can be altered

since the routes of planes can b~ changed if they still complete ;:

, .

91

their mission within the optimal value of problem.

Arri~al of planes

Queue at airport k

Planes are
being loaded
or unloaded
at airport k

! Departure of planes

FIGURE 4.1 - Service mechanism at airports

Formulating the plane scheduling problem as a job shop

scheduling problem, establishes that .it is very" hard to develope

an exact solution procedure in here. Hence. we must resort to heu

ristic procedures, namely dispatching rules.

Once the use of job shop scheduling- heuristic is accepted,

the problem is to decide what the priorities of planes should be, , .

if a queue occu rs ..

In plane scheduling case these priorities should take into

- account the re~aining slack times of the planes. The pla~e which

has the least slack time should be scheduled first, since the

penalty cost of not satisfying the given DUE time is very high,

namely that of the rejection of the solution.

4.4 THE HEURISTIC PROCEDURE DEVELOPED FOR

PLANE SCHEDULING

The heuristic procedure developed for plane scheduling is

a. generalization of the heuristic procedure used for job shop

sch~duling,problems.' The major steps of the algorithm can be

stated as follows:

Step 1: Initialize Clock

For each plane i (i = 1, ... ,P), if the initial airport of

plane i coincides with the starting airport of first load carried

by that plane, then put plane i to the _queue of that a.i rport and

set its job completion time to zero. Otherwise, set plane i flying

from initial airport to starting airport of first. load and set the

job completion time to the end of this flight. Go to step 5.

Step 2: Update Clock

If all planes completed their mission (i.e., all loads are

carried to appropriate airports), stop. OtherWise, set the clock

to the minimum of all the job completion times.

Step 3: Update Slack Time

92

R~duce the slack times of planes which are waiting at the

queue by the amount of time spent between previous and current clock

times. If for any plane the slack time is negat;'ve, then no feasible

solution exists, stop. Otherwise, continue.

Step 4: Update Plane Status

For each of the plane i, whose job completion time equals

to clock;

i. If plane i finished a flight, then put this plane to

the queue 6f the next airport it has arrived at and

set its job completion time to infinity.

ii. If plane i finished loading, then set plane i carrying

that load, to appropriate airport and set its job comp

letion time to end this flight.

iii. If plane i finished ~nloading and a loading will follow,

then put plane i in the queue of the related airport

and set its job completion time to 1nfinity. If plane·

i finished unloading and an empty fl ight will 'follow,

then set this plane flying to the appropriate airport

. and set its job completion time, to the end of that

fl i ght.

Step 5: Decide on Priorities

93

For each of the airport J (J = 1, ... ,R). If unused service

capacity of airport k is greater than or equal to the 'queue, then

start processing all planes waiting at that airport. Otherwise,

select the planes according to the minimum remaining slack time

priority rule. Update all job completion times either to an end

of loading or to an end of unloading, depending upon the status of

the related plane .. If the queues at any airport exceeds the queue

capacity, then no feasible solution .exists,' stop. Otherwise, go

to step 2. (Note, precessing a plane can start only if the related

job completion time equals to current clock time.)

94

In practice one would expect that a pl~ne unloaded is lDaded

without re.,..entering the queue. But this seperation of jobs is often

u'seful while scheduling. If the seperation of jobs implies some

additional time (i.e., that of pulling the plane to the queue or

vice-versa), then those times can be added to the job completion

times of the planes.

4.5 THE HEURISTIC SCHEDULI.NG PROCEDURE AND THE

BOTTLENECK ROUTING ALGORITHM

While discussing the solutions of the Bottleneck Routing

Algorithm, it has been mentioned that there are some alternative

solutions generated. These solutions are sequentially checked

by the heuristi c schedul ing procedure in order to determine

whether any of them is feasi ble, i.e., satisfy the capacity cons

traints of the airports. The heuristic scheduling procedure does

not guarantee a resul t and it can terminate without a feasibl e

solution. But, if a feasible solution is obtained, then we can

accept it as a global optimal solution to the overall problem,

since all the constraints are satisfied and the objective function

value cannot be reduced further. On the other hand, if ,scheduling

terminates without a feasible solution, other solutions for the,

bottleneck routing problem mu~t be generated and checked.

While checking the solutions of the Bottleneck Routing

Algorithm, following points must be kept in mind:
> ,

95

i. Some of the solutions of the Bottleneck Routing Algorithm

are copies of each other., because of the mul ti pl e loads

between the same airports, as discussed in Section 3.9.

ii. Some of the alternative solufions of the BRP are not

generated by the Bottleneck Routing Algorithm, because

of the path elimination process. Assume that the .path

Pl , [P'~1'~2] is of length t l , and the path P2, [p, ~2'

~l] is of length t 2, and tl < t2 < DUE. Since both

paths cover same loads and the initial airports are

the same', the one which is longer (namely the second

one) was eliminated by the path elimination procedure.

So the path P2 cannot appear in any of the alternative

optimal solutions, although it can appear in any of the

solution where path Pl appears. That is, if BRA decides

to assign a plane to path Pl , then this implies that

there exists an alternative solution in which that

plane can be assigned to path P2. Thus, the sequence

of airports that should be visited by a plane can be

altered. In case of job shop problem one can view this

phenomenon as changing the sequence of operati0ns on a

job.

iii. The possibility of reaching feasibility -increases1when

the slack times of planes increase. The solution alter

natives whose total cost is less will have more slack

time in plane routes since length of longest tour does

not change. Thus, such solutions have higher possibi

lity of having a feasible solution in sense of airport

capacity constraints.

96

By the help of these ideas the updated version of the Bottle

neck Routing Algorithm has been designed where a heuristic scheduling

procedure has been added t6 it as a s~broutine. Each time a solutibn

-is generated by the Bottleneck Routing Algorithm, that solution -is

checked by the heuristic scheduling procedure for -feasibilty or ai:

port capacity constraints. This solution cannot be a copy of the

previous one, since it has a lower objective total function value

and a higher possibility of containing a feasible solution.

Even though all the solutions are checked by this process,

still there is the possibility of not finding a feasible solution

to the scheduling problem. Then, in this case, the Bottleneck

Routing Algorithm is forced to retrieve some more paths from mass

storage and search for solutions on this enlarged list of paths

leading to an increase in the objective function value.

4.6 AN EXAMPLE TO THE SCHEDULING OF AIRPLANES

C9nsider Example G with the capacity data given in Table

4.1.

TABLE 4.1 - The CapaCity Data of Example G

AIRPORT NUf,mER SERVICE QUEUE·
OF PLANES CAPACITY CAPACITY

1 4 2 1

2 0 3 2

3 0 2 1

4 4 4 1

5 0 1 1

The first optimal solution alternative generated by the

Bottleneck' Routing Algorithm given in Table 4.2.

TABLE 4.2 - The Optimal Solution to Example G

t.

PLANE INITIAL LOADS CARRIED MISSION
AIRPORT TIME

-
1 4. 14 ~: 17 - 1 305

2 4 15 - 16 - 19 300

3 4 11 - 6 - 12 300

4 4 2 - 8 - 7 290

5 1 3 - 20 305

6 1 4 - 9 285

7 1 5 - 10 280

8 1 18 - 13 235

TOTAL TIME 2300 ,

97

98

If there are no constraints and all planes will start at

the same time, then the schedule of the planes will be as shown

in Table 4.3. Note that in Table 4.3 at time 129 planes 3 and 8

are in service at airport 3, and at time 130 plane 5 arrives for

unloading~ Since the service capacity of airport 3 is only 2 planes,

plane 5 has to wait for one of .the jobs to be completed. Butthe

mission time of plane 5 is alreadyequal to the length of the lon

gest mission time which is 135. So at this point scheduling ter- -

minates with no .feasib1e solution. Note that the possibility of

holding service of plane 8.is omitted due to the structure of the

heuristi c. Thus, the second alternative optimal sol ution generated

by the Bottleneck Routing Algorithm is' considered which is given

in Table 4.4.

Again for this solution the schedule' without any constraint

on airport capacity is shown in Table 4.5. Note that at time 130
,

capacity constraint of airport 3 is violated, since there are three

planes to service, namely planes 3, 5 and 8. But this problem is

solved as shown in Table 4.6 by holding operation on plane 8. In

·this schedule all constraints are satisfied and the bottleneck

objective function value is minimized. So the solution is globally

optimal for capacity constrained bottleneck routing problem. Note

that this solution is obtained in only 4.3 seconds on UNIVAC 1106

Computer.

o
20

40

60

80

100

120

140

160

180

200

220

240

260

280

300
305

320

1.
1+

1+5

105

150

.205

250

2
1+

LOAD AT4

1+5

FULL (4-2)

UNLOAD AT2
105

LOAD AT2

150

FULL (2-1)

UNLOAD ·Atr

210

LOAD ATl

255
FULL (f-2l 2 5
UNLOAD AT2

TABLE 4.3 - Optimal BRP Solution to Example G

3, 4 5 6 7
1+ 1+ 1

Et~PTY (1-2) EMPTY (1-3J
LOAD AT4 LOAD AT4 LOAD AT4 30

1+5 1+5 1+5
LOAD AT2

FULL (4-~~ FULL (4-3) F~LL (4-2) 75 LOAD AT3

UNLOAD AT3 85
UNLOAD AT2 . UNLOAD AT2 . 95

105· FULL (2-3) FULL ,(3-1)

LOAD AT2 LOAD AT3 LOAD AT213 0 125
UNLOAD ATl

11+ 5 UNLOAD AT3 15l 150 155
FULL (2-4) FULL (3-4) FULL (2-5) EMPTY 13-41 LOAD ATl 175 175

UNLOAD AT4
r.~ 185

UNLOAD AT4 UNLOADAT5
~5

LOAD AT4

LOAD AT4 LOAD AT4 LOAD ATS 230 FULL (l-S)
21+5 21+5

. FULL 14~3) FULL fS-41 FULL J4-1) ~55

FULL (4-S~ 265
75 UNLOAD AT4 UNLOAD ATS

UNLOAD ATS UNLOAD AT329 285
UNLOAD ATl

LOAD AT1

1+5

FULL Ll-:-41
85

UNLOAD AT4
E~1PTY (4-5)

1~

LOAD AT5

, 210

FULL (S-31
2 5

UNLOAD AT3

8

LOAD ATl

FULL (1-3) I

UNLOAD AT3

110

LOAD AT3

FULL (3-2)

UNLOAD AT2

1.0
1.0

TABLE 4.4 - The Alternative Optimal Solution.to

Example G

PLANE INITIAL LOADS CARRIED MISSION
AIRPORT TIME

1 4 14 - 17 - 1 305

2 4 15 - 16 - 19 300

3 4 11 - 6 - 12 300
-4 4 2 - 8 - 7 290·

5 1 3 - 20 305

6 - 1 1 - 10 275 .
7 1 5 - 13 275

8 1 18 - 4 220

TOTAL TIME 2270

100

o

20

40

, 60

80

100

120

140

160

180

200

220

240

260

280

300
305

320

1

4

45

105

150'

205

250

2

4

,

LOAD AT4

45

FULL (4-2)

UNLOAD AT2
105

LOAD AT2

150

FULL (2-1)

UNLOADATi
85

210

LOAD ATl

255

FULL (1-21,5

UNLOAD AT2

TABLE 4.S - Optimal BRP Solution Alternative to Example G
3 4 5 6 7 8

4 4 1 1 . 1

EMPTY(1-2)
LOAD AT4 LOAD AT4 LOAD AT4 30 LOAD ATl LOAD ATl LOAD ATl

45
FULL (4-3)

45 45 45
LOAD AT2

FULL (4-2) . 75 FULL (4-2) 75 FULL (l ... S) FULL (1':'4) FULL (1':'3)

.UNLOAD AT2 UNLOAD AT3 UNLOAD AT2 85
UNLOAD AT3 95

105 FULL (2-3) . UNLOAD AT41DC , 110

LOAD AT2 LOAD AT3 LOAD AT2 130 UNLOAD ATS FULL (4-3) LOAD AT3 135
145 UNLOAD AT3

LOAD ATS 150 . 150 155 155

FULL C2-4~75 FULL (3-4~ 75
FULL (2-S) EMPTY (3-4) LOAD AT3 FULL (3-1)

185 ,
UNLOAD AT4 UNLOAD ATS UNLOAD AT4 195 195

LOAD AT4 FULL (S-3) UNLOAD ATl

LOAD AT4 LOAD AT4 LOAD ATS 230 FULL (3-2)

245 FULL (S-4) FULL (4-1)250 .250

,FULL (4-S J 75 FULL(4-3}265 UNLOAD AT4 275 UNLOAD AT~75 UNLOAD AT2

UNLOAD ATS UNLOAD AT~9 0 UNLOAD ATl
' .. ~ ..

~ ~:-:.
.,.~ ,

• 1

.....
o

o

20

40
.

60

80

100

120

140

160

180

200

220

240

260

280

300
305

320

1
It

ItS

105

150 .

-2-05

250

LOAD AT4

itS

FULL (4-2)

UNLOAD AT2
105

LOAD AT2

150

FULL (2-1)
185

UNLOAD ATl
210

LOAD ATl

255
FULL (l-~)

~75

UNLOAD AT2

TABLE 4.6 - The Optimal BRP Solution Alternative Which Satisfies Capacity
Constraints in Example G . .

234 567
It It It 1 1 1

. , EMPTY (1-2)'
LOAD AT4 LOAD AT4 LOAD AT4 30 LOAD ATl LOADATl

itS itS LOAD AT2 itS itS ItS

FULL (4-2) 75 FULL (4-3) FULL (4-2) ' 75 FULL (1-5) . FULL (1-4)

UNLOAD AT2 UNLOAD AT3 UNLOAD AT2 95 ! 0
105 FULL (2-3) UNLOAD AT4 11 0

LOAD AT2 LOAD AT3 'LOAD AT2 130 UNLOAD AT5 130
UNLOAD AT3135 EMPTY (4-3)

Ilt5 150 15g WAIT AT3 11t5 155 15

. FULL (2-4)17 5 FULL (3-41 FULL A~55) , EMPTY (3-4) LOAD AT5
LOAD AT3170 75 WAIT

UNLOADAT4 185
UNLOAD AT4 UNLOAD AT5

205
LOAD AT4 FULL (5-3) 215

LOADAT4 . LOAD AT5 230
..

FULL (3-2) LOAD AT4
21t5

FULL {4-3f,0 FULL (5-4) FULL (4-1 fO 255 255
FULL {4-5~ 270 UNLOAD AT5 UNLOAD AT3 UNLOAD AT2 75 .275
UNLOAD AT5 UNLOAD.AT3 UN,LOAD ATl 295

-

8
1

WAIT ATl

LOAD ATl

FULL (1-3)

WAIT AT3

UNLOAD AT3

LOAD AT3
,

FULL (3-1)

UNLOAD ATl ;

I - " --'
o
N

4.7 DISCUSSION OF THE HEURISTIC SCHEDULING

PROCEDURE

103

The heuristic scheduling procedure can be developed further

to ha.ndle more alternative ways to scheduling the planes. First of

all~ other priority rules can be established. Secondly, one can

change the previous priorities, if the queue capacity of an air

port is violated. Also one can change overall operation sequences.

But it is very hard to impose such changes on these types of heu

ristics because of the extensive computation time and memory size

requirements. Indeed there is no serious attempt to change pre

vious priorities or to change operation sequence in literature.

But one could possibly introduce some more powerful decision rules.

The decisions can be taken by che'cking events in future more care

fully. That is, the future queues can be estimated and more

reliab'le decisions can be taken. Also, priority can be defined'

as a function of not only remaining slack time but also of the.

remaining slack time and some other status variables such as

remaining number of operations, remaining processing time,· etc.

104

V, A SUGGESTION FOR FURTHER RESEARCH:
THE TRAVELLING SALESMAN APPROACH

5. 1 I NTRODUCTI ON

In this chapter we shall change our objective while keeping
,

, the same constrain'ts. That is, we shall leave the bottleneck ob-

jective ~unction and focus on minimizing total mission time. This

objective function is given by the expressio~ (2.12) and this typ~

of routing problem is called the "Minimum Total Time Routing Prob-

lem (MTRP) ".

Rather than defining a sol ution procedure for MTRP, we shall

reformulate the problem as classical Travelling Salesman Problem and

show that MTRP can be solved by using the TSP approach. The TSP net

work obtained as a result of this formulation has (2P+M) modes. The

formulated TSP network has some specialities which can be utilized

while solving the problem. But no special algorithm has been deve

loped for this purpose. Only the well~known solution procedures'

for TSP are utilized. One can make use of this fact and- can improve

the TSP procedures to solve MTRP more efficiently.
,

The MTRP d'iffers from BRP-only in obj~ctive function. In

the case of BRP it is easy to estimate the longest path length (dmax)'

but in case of tnRP it is not so easy to make such an estimate.

If it is estimated then the estimate must be a relaxed one, that

is, it must be long enough to enable all possibilities, which will

certainly blow up the number of paths that should be considered

by our previous approach. So we shall change our approach but

still utilize essentially the same network transformation.

5.2 . A NETWORK TRANSFORMATION FOR THE MINIMUI~

TOTAL TIME CARGO ROUTING

105

In order to formulate MTRP as TSP, a network is generated

which is similar to the one generated in case of BRP. Here again, ,

some nodes represent the airports which have initially planes and

some nodes represent the loads between airports." But artificial

source and terminal nodes are omitted. Therefore, the resul ting

network has (RP+I~) nodes. The time matrix related with this net-

,work is called V from now on. In this network, nodes, 1, ... ,RP

represent the airports which have planes initially, and nodes

(RP+l), ... ,(RP+M) represent loads. Fig. 5.1 ,shows this formulation

on Example A.

Interactions between loads and interactions between the

airports and the loads are kept the same. Hence, the meanings

and the lengths (i.e. time required to traverse these arcs) of

these arcs are the same with bottleneck formulation. Interactions

on this network are as follows:

106

i. Interactions between nodes representing loads.

d[J [J + TU + TL,
L(.Q,-RP),l ' L(.Q,-RP),2

if L(k-RP),2 = L(.Q,-RP),l ;

v~ = (5.1)

+ d[+ TU + TL,
.. L(.Q,_RP),lJ,[L(.Q,_RP),2J

if L(k-RP),2 r L(.Q,-RP),l ;

Vk,.Q" k r.Q" .Q"k £ {RP+l, ... ,RP+M}, where, L, RP, M

and d defined in previous chapters.

ii. Interactions between nodes representing airports and

nodes representing.loads.

d[+ TU + TL,
L(.Q,_RP),lJ,[L(.Q,_RP),2J .

if L(.Q,-RP),l = [kth airport which has planes initiallJ

v~ = d[kth airport which J [L .Q,_ J
has initially planes' (RP),l

(5.2)

+ d + TU + TL,
[L(.Q,_RP),lJ,[L(.Q,_RP),2J

if L(.Q,_RP),1 = [kth airport which has planes initiall~

Vk , .Q, , k = {l, ... , RP}, .Q, £ {RP+ 1 , ... ,RP+~1} .

iii. Interactions between nodes representing loads and nodes

representing airports.

Previously no such interaction has been assumed, but in

this case we include these arcs and assign them zero time.

That is,

107

vk~ = 0; Vk,~, k E {RP+l , ... ,RP+M} J ~ E {l, ... ,RP}. (5.3)

iv. Interactions between nodes representing airports.

Again no meaning has been assigned to such interaction

previously. But in this case we shall connect some of the

airports among each other with arcs of zero time, and not

all airports will be connected to each other instead, de

pending upon our objective we shall select these to be

connected.

The arcs which are discussed in interactions (iii) and (iv)

have no physical meaning. The reason for their existence will be

cleared in following sections.

We shall solve the MTRP over this network by a new approach.

In order to introduce this approach we shall now define the classical

Travelling Salesman Problem and describe its relation to the vehicle

routing problem.

8
Airport 3

Ai rport 4

0
Load 1
(1 ,2)

(£)
Load 3
(2,4)

Load 5
(4,2)

Load 7
(3,4)

0
Load 2
(4,1)

0
Load 4
(4,3)

Load 6
(3,1)

FIGURE 5.1 - The transformed network of Example A

5.3 THE TRAVELLING SALEsr~AN PROBLEM (TSP) AND ITS

EXTENSION OF MULTI-TRAVELLING SALESM~N CASE (MTSP)

The Travelling Salesman problem is a well-known combinato

rial problem. It can be defined as follows: Given n cities and

a salesman, find the shortest (or least cost) tour such that the

salesman v,isits each city exactly once. That is, he starts from

city 1 and visits each of the other (n-l) cities once and only

108

once and then returns to city 1. Thus the problem can be formulated as:

'c

109

)

n n
Min Z = L I diJxiJ (5.4)

i=l J=l

n
L x' J = 1 Y J (5.5)

i=l '1

n
L XiJ = 1 Y i (5.6)

J=l

X = eXi ,J) E S (5.7)

xiJ ={ : if arc (i,J) is in the tour;
(5.8)

otherwise; Y i,J

= is the cost of (or length) going from city i to
city J; Y i,J

The set S can be the set of any restrictions to avoid solu-

tions, satisfying constraints (5.5) and (5.6). Such restrictions

are called subtour elimination constraints. Generally three defi

nitions for the set S are given in literature (Bodin, Golden and

Assad, 1981):

r

for every non-empty (5.9)
eroper subset Q of
ll, ... ,n]}

for every

non-empty subset Q
of [2,3, ... ,n]}

(5.10)

iii. S = {(xiJ}IYi - YJ + n xiJ ~ n-l for

2 < i,J < n for some real
numbers Yi}

110

(5.ll)

The Multiple Travelling Salesman Problem is the generali-

zation of TSP to the case where there are m salesmen instead of

one. Initially, all the m salesmen are in one of the cities called

lithe depot". They will visit some of the cities and will eventually

return to the depot. The assignment based formulation of ~1TSP is

a natural extension of TSP formulation.

n
s.t. r xiJ = bJ =

i=1

n

(5.l2)

M; if J = 1 (i.e. the depot~

(5.13)

1; if J T 1.

f4; if i = 1 (i.e., the depot)

l. xiJ = ai = (5.14)
J-1

x = (x. J) E S
- 1

(5.l5)

XiJ = 0,1 V i,J (5.l6)

Any MTSP problem can be converted into an equivalent TSP.

Equivalent TSP formulations of rnsp were derived by Bellmore and

111

Hong (1974), Svestka and Huckfe1dt (1973), Rao (1970), Hong and

Padberg (1977), Berenguer (1971) and others. The equivalence is

achieved by creating m copies of the depot, each connected to other

nodes exactly as the depot is in the original neblOrk and by allowing

no interactions between the [11 copies of depots (i.e. arcs between them

have assigned infinite lengths)~ Hence equivalent TSP formulation has

(n m-l) dones. As a result of this formulation, an optimal single

TSP tour in the enlarged network will never use an arc connecting

copies of the depot and this optimal tour can be decomposed into sub

tours resulting in the optimal solution for ~lTSP.

For example, in Fig. 5.2.a there are five nodes and two sales

men at node 1. Then, the expanded network will contain nodes Dl, D2,

2~ 3, 4, 5. Nodes Dl and D2 being the copies of the depot (node l}.

Each salesman is assumed to be situated in one of them. In Fig. 5.2.b
I

consider the tour {Dl-4-3-D2-2-5-Dl} and the interpretation in the
,

two salesmen problem is shown in Fig. 5.2.a. Here the subtours

{1-2-5-l} and {.1-3-4-l} represent the tours of the individual salesmen.

FIGURE 5.2.a - Example ofa 5 node, 2 salesmen MTSP tour

112

FIGURE 5.2.b - Equivalent TSP tour

5.4 MTSP IN CASE OF r~UTLIPLE DEPOTS (~1Dr~TSP)

, '

~1ultiple TSP can be generalized by assuming the existence

of more than one depot. Here again there are n cities to be visited

by m salesmen. But salesmen are located at several depots. Let

there be d depots and each depot houses prespecified number of sales

men. In the next section we shall show how this problem can be con

verted to an equivalent TSP. In order to illustrate the meaning of

MTSP in case of Multi Depot we shall now define and formulate 'the

Multi Depot Vehicle Routing Problem. One can view MTSP as a special

case of Vehicle Routing problem, where ,vehicles being the salesmen

and some/of the constraints of VRP are dropped. Also, one caD view

~1DNTSP as a special case of t4ulti Depot VRP in the same manner.

The Vehicle Routing Problem (VRP), is to obtain a set of

delivery routes from a central depot to various demand points, each

of which has known requirements, so as to minimize total, distance

covered by the entire fleet. Vehicles have capacity and maximum route

constraints. All vehicles start and finish at the central depot. The

mathematical formulation of VRP is given by Golden et ale (1977) as

follows,

-

where,.

n n NV k .
Min Z = . r r I diJxiJ i=l J=l k:1

n n
s.t. L L k xiJ = 1 (J = 2, ... ,n)

n
I

i=l

i=1 k=l

n NV k L L xiJ = 1 (i = 2, ... ,n)
J=l k=l

n k n
I Xo I

i=l 1p J=l

n n
r Q 0 (r

i=l 1 J=l

t~
n k I

1 J:1
XiJ +

n
I XO l <: 1

o 2 1 -1=

X e: S

k . x oJ = 0,1 1 .

k xpJ = 0 (k = 1, ... ,NV;

P = 1, ..• ~n)

k xiJ) 2. Pk (k = 1, ... ,NV)

n n k k
I ItoJxoJ<Tk (k = 1, ... ,NV)

i =1 J=l 1 1 .

(k=l, ... ,NV)

(k = 1, ... ,NV)

V i,J,k

n : number-of nodes

NV = number of vehicles

Pk = capacity of vehicle k

113

(5.17).

(5.18)

(5.19)

(5.20)

(5.21)

{5.22} .

(5.23)

(5.24)

(5.25)

(5.26)

Tk = maximum time allowed for a route of vehicle k

Qi = demand at node i (Q1 = 0, node 1 being the depot)

t~ = time required for vehicle k to deliver or collect
1

k' at node i (t1 = 0)

t~J = travel time for vehicle k from node i to node J
t (to 0 = (0)
11 ,

diJ = shortest distance from node i to node J.

k {,1, if arc (i,J) is traversed by vehicle k
xiJ = 0, otherwise

x = matrix with components

connections regardless

NV k
xO

J = Ix o J ,
1 k=l 1

of vehicle type.

specifying

Equations (5.18) and (5.19) ensure that each demand node

served by exactly one vehicle. Equations (5.20) represent route

continuity, that is if a vehicle enters to a demand node then it

must exit from that node. Equations (5.21) are the vehicle capa

city constraints .and Equations (5.22) are the total elapsed time

constraints. Equations (5.23 and (5.24) ensures that the vehicle

availability is not exceeded. Finally Equations (5.25) are the

subtour elimination constraints.

The mathematical programming formulation of vehicle routing

problem is altered in a minor way to incorporate multiple depots.

Let nodes 1,2, .•. ,M denote the depots. We obtain the formulation

of Multi-Depot Vehicle Routing by changing the index in constraints

(5.18) and (5.19) to (J = M+l, ... ,n) and by changing constraints

(5.23) and (5.24) as follows:

114

115

M n K I I x' J < 1
i=1 J=M 1 1 - (k. = 1, ••• ,NV) (5.27)

f4 n k I I x. < 1
P=1 i =t4 1 1P -

(k= 1, ••• ,NV) (5.28)

But in multi-depot case we must redefine choices for subtour

elimination constraints as follows,

i. S = {{x.J) II I x.J > 1
1 Je:Q J¢Q 1 -

for every proper
subset Q of V con
taining nodes

i i .

[1 , 2 , . . • , f4]}

S = {{x·J)1 I I X' J < IQI - 1
1 'QJQ l~ 1e: e: .

for every non-

empty.subset Q of
H1+l, M+2, •.• ,n}}

n x' J < n - 1 for
1 -

~~l < i1J < n for some
real-numbers y.} . 1

If we drop the capacity (5.21) and elapsed time (5.22)

constraints from the formulations of VRP and Multi-Depot VRP,

then we can obtain the mathematical programming formulation of

MTSP and ~1Dr.nsp respectively.

(5.29) .

(5.30)

(5.31)

Note that, the initial depots of vehicles are irr~levant

in this formulation, also \'1hether the vehicles to their initial

depot or not, is not controlled by this formulati·on. The only

requirement is the utilization of at most the given number of
.

vehicles. These points.will be discussed in the next sections.

116

5.5 THE TRANSFORMATION OF MDMTSP TO AN EQUIVALENT TSP

5.5.1 Introduction

In this section we shall illustrate how a given MD~1TSP is

converted into an equivalent TSP. This transformation in principle
\

similar to that of utilized in MTSP network. After this transfor-

mation an asymmetric TSP network is obtained with (2m+n) dones

where n is the number of cities and m is the number of salesmen.

The transformation is realized by generating duplicates of

the depots. In the case of NTSP for each salesmen one copy of the

depot is generated. But in this case we utilize two copies of the

related depot for each salesman. The duplicates of the depots are

called IIdummy nodes ll from now on and there are 2m dummy nodes. Each

. salesman will begin its tour from one of the dummy nodes and finish

it at another dummy node. The first dummy node is called the IIdepar-

ture node ll and the second one is called the lIarrival node ll for that

salesman. The network of ~1Dr.nsp is transformed so that, there are

no arcs entering to the departure nodes, but just arcs leaving. In

deed these arcs are the same arcs leaving the depot on the original

t·1Dr~TSP network. Similarly, just the converse is true for arrival

nodes.

This way, the salesman will leave the depot from the arrival

node. So he will make a subtour starting and ending at the depot.

In order to enable other salesman tours, an arc put from each arrival

node to next departure node with zero length which directs the TSP

tour to tMe next departure. Thus,the TSP tour is forced to cover

arcs between dummy nodes, since there is no arc leaving the arrival
,

117

nodes except the ones that are connected to departure nodes. Since

these arcs have zero length, they do not change the objective func

tion of solution obtained from the TSP tour.

5.5.2 An Example Transformation

Consider the network given in Fig. 5.3.a. There are 10

cities and 2 depots, 01 and 02. There are 2 salesmen at depot 01

(called salesman A and salesman B) and 1 salesman at depot 02

(called salesman C). The distance matrix of this network is given

at Table 5.l.a.

The equivalent TSP network is shown in Fig. 5.3.b and

related distance matrix is ,given at Table 5.l.b.

The dummy nodes are interpreted as follows:

Node 11: Departure node of Salesman A at Depot 1.

Node 12 : Arrival node of Salesman A at Depot 1.

Node 13 : Departure node of Salesman B at Depot 1.

Node 14: Arrival node of Salesman B at Depot 1.

Node 15: Departure node of Salesman C at Depot 2.

Node 16: Arrival node of Salesman C at Depot 2.

DEPOTS

Depot Dl
Salesman A,B

Depot D2
Salesman C

CD
0)
CD
0)
G)

CITIES

FIGURE 5.3.a - Original network of Example 5.5.2

DEPOTS CITIES

Depot D1

CD Salesman A CD Departure' 1

0) CD Salesman A
Arrival 12

CD CD Salesman B
Departure 13

0) CD Salesman B
Arrival 14

Depot D2

CD @ Salesman C
Depa rtu re 15

Salesman C
Arrival 16

FIGURE 5.3.b - Equivalent TSP network of Example 5.5.2

118

119

TABLE 5.1.a - Original Oistance M~trix of Example 5.5.2

01 02 1 2 3 4 5 6 7 8 9 10

Dl <Xl <Xl 3 4 2 <Xl <Xl <Xl <Xl <Xl <Xl <Xl

02 <Xl <Xl <Xl <Xl 7 <Xl 5 <Xl 8 <Xl <Xl <Xl

1 3 <Xl <Xl 20 5 10 5 8 7 3 2 1

2 4 <Xl 20 <Xl 6 9 12 16 5 13 18 13

3 2 7 5 6 <Xl 11 19 17 7 9 10 8

4 <Xl <Xl 10 9 11 <Xl 14 20 15 7 6 8

5 <Xl 5 5 12 19 14 <Xl 8 10 13 9 7

6 <Xl <Xl 8 16 17 20 8 <Xl 5 8 16 17

7 <Xl 8 7 5 7 15 10 5 <Xl 6 12 14

8 <Xl <Xl 3 13 9 7 13 8 6 <Xl 15 13

9 <Xl <Xl 2 18 10 6 9 16 12 15 <Xl 9

10 <Xl <Xl 1 13 8 8 7 17 14 13 9 <Xl

......

Now, let us consider the following tours in TSP network and

try to construct the related subtours in MOf.1TSP network.

Tour 1: Let a TSP tour be

{11-2-4-1-12-13-3-14-15-5-6-8-10-9-7-16-11}.

Then the 'corresponding subtours in MONTSP network are,

Salesman A: 01-2-4-1-01

Salesman B: 01-3-01

Salesman C: 02-5-6-8-10-9-7-02.

A
Dep

A
Arr

B
Dep

B
Arr

C
Dep

C
Arr

1

2

3

4

5

6

7

8

9

10

120

TABLE 5.1.b - Equivalent Distance Matrix of Example 5.5.2

A A
Dep Arr

o

3

4

2

B B
Dep Arr

o

3

4

2

c C
DepArr 1 2 3 4 5 6 7 8 9 10-

o

3 4 2 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00

3 4 20000 00 00 00 00

00 00 00 00 00 00 00 00 00

7 00 00 00 5 00 8 00 00

00 00 00 00 00 00 00 00 00

20 5 10 5 8 7 3 2 1

00 20 00 6 9 12 16 5 13 18 13

7 5 6 00 11 19 17 7 9 10 8

5

10 9 11 00 14 20 15 7 6

5 12 19 14 00 8 10 13 7

8

7

8 16 17 20 8 00 5 8 16 17

8 7 5 7 15 10 5 00 6 12 14

00 ·3 13 9 7 13 8 6 00 15 13

00 2 18 10 6 9 16 12 15 00 9

00 1 13 8 8 7 17 14 13 9 00

Tour 2: Let a TSP tour be,

{11-2-14-15-3-12-13-1-4-5-6-8-10~9-7-16-11}.

Then the corresponding subtours in r~DMTSP network are,

Salesman A: 01-2-D1

Salesman B: 02-3-01

Salesman C:~Dl-1-4-5-6-8-10-9-7-D2.

5.5.3 Analysis of Transformation Suggested

121

As indicated in the previous section, the initial depot of

salesman is always controllable in this suggested network transfor

mation. But we have two possibi1itles for final depot. They are;

i. The initial and final depots of salesmen are the same,

what is expected.

ii. The initial and final depots of salesman can be different,

which may be desirable or not depending upon the parti

cular application. This transformation enables such

tours, but in case of routing p1~nes, it will be shown

that there is no violating effect.

In Section 5.5.1 it has been suggested that each arrival

node should be connected to the next departure node. Without loss

of general ity we can restate this transformation as follows: each

arrival node should be connected to one or more arrival nodes by an

arc of zero length.

122

5.5.4 Number of Salesmen Utilized in MDMSTP

If we connect the departure node of a salesman to its arrival

,node by an arc of zero length, then ~e will create for the TSP tour

the possibility of not utilizing that salesman at all.

A solution which ~oe~ not utilize some of the salesman can_

'be explained as follows;

i. There are alternative optimal solutions which utilize

different number of salesmen.

ii. Utilizing extra salesmen may effect objective function

in two ways. Ifit decreases the objective function

value, then TSP algorithm automatically selects that

solution. The interesting case is the next one in which

utilizing extra salesman may increase the objective func-

tion value although extra salesmen do not incur any cost.

The major reason for this ,~s the alterati,on 6f triangular

inequality in the distance matrix. For exmaple, in Fig.

5.4, such a case for a single depot with two salesmen is'

shown. In this case optimal solution with one salesman
-

will b~ the tour {D-3-4~2-l-D} with the objective func-

tion value 35. Any solution which utilizes more than

one salesman will generate higher objective function

values.

FIGURE 5~4 - Example of a single depot two salesman
problem

5.6 THE MULTI DEPOT MULTI SALESMEN TSP WITH FIXED COSTS

5.6.1 The Single Depot Case

Although in some applications, exactly m salesmen are

required, there a-re cases where there.is a cost of each salesman

and it is desirable to utilize as few as possible. salesmen due to

that cost. That is, uSing r salesmen (where 1 ~ r ~ m).

Hong and Padberg (1977) define this problem as: II By

assigning the ith salesman to a tour, one incurs' a fixed charge

fi' which is independent of his tour. For travelling from city i

to city J, one incurs a cost ciJ that does not depend upon which

salesman makes that particular trip. The problem is to find the

,number of salesmen to be employed and their respective routes so

as to minimize total cost.1I

The MTSP subject to fixed charges is abbreviated as IvtTSPF.

Bellmore and liong (1974) and Rao (1980) and Discenza (1981) have

shown possible transformations to include fixed costs to the tnsp

formulation.

123

124

Bellmore and Hong (1974) have shown that asymmetric MTSPF

in (n+1) cities, one being the depot, with m salesmen is equivalent

to standard asymmetric TSP on (n+m-1) cities. Their transformation

is as follows:

For the sake of simplicity in notation, note that the depot

node is called node ° and the n remaining citjes are to be visited

by m salesmen.

Let nodes labelled -1, -2, ... , -(m-1) denote the additional

nodes put to convert an rnsp to a TSP.

Therefore nodes 0, -1, ... ,-(m-1) represent the copies of

the original depot.

Let D be the original distance matrix and D' be the expanded

distance matrix. Then, the element of D', d~J are expressed in terms
1 .

diJ and fi as follows:

d'(i,J) = d(i,J) i = 1, ... ,n; J = 1, ... ,n (5.32)

d'(-i,J) = d(O,J) + 0.5fi i = ° , 1 , . . . , (m-1)
(5.33)

d'(J,-i) = d(J,O) + 0.5fi J = 1,2, ... ,n

d' (-i ,""(i-1» = 0.5fi_
1

- 0.5fi i = 1,2, ... ,(m-1) (5.34)

Figure 5.5 shows an example of this transformation on a 5

cities, 3 salesmen problem. Numbers on arcs represent distance of

that arc. Now, consider the tour (0,1,4,-2,-1,2,3,0). fo is added

as one half along arc (0,1) and as one half along (3,0). 0.5f, are·

added along (-2,-1) and (-1,2). 0.5f2 are added along (4~-2) and

125

subtracted along (-2,-1)~ thus cancelling each other.

This tour can be interpreted as:

Salesman 0 visits cities 1 and 4.

Salesman 1 does not visit any city.

Salesman 2 visits cities 2 and 3.

Hong and Padberg (1977) have shown that a symmetric fnSPF

can be transformed to a standard TSP by using (n+m+4) nodes. Later

Rao (1980) has proven that this can be done by using only (n+m-l)

nodes.

Fig. 5.5.a - An example ofMTSPF on 5 cities

Following theorems will prove that these transformations

are valid.

THEOREM 5.1: (Rao, 1980) For every r tour on MTSPF network for

1 < r < m, there is a tour on equi va 1 ent TSP network

satisfying,

r r-l
Z = L Zk + L fk

k=l k=o

where Z is th~ distance matrix of the tour on TSP ~etwork, Zk is

the distance of the kth cycle in the r-tour on'HTSPF network and

fk is the cost associated with some salesman k.

o .
(J"I
("")
-'

I
o .
(J"I
("")

N

FIGURE S.S.b - The equivalent TSP formulation

THEOREM 5.2: (Rao, 1980) For every tour on TSP with distance Z,

there is an r-tour (utilizing r salesmen) on equiva

lent r~TSPF network for some r (1 .s. r .s. m) such that,

where Zk' is the distance matrix of the kth cycle in r-tour, and

f . < f1 < f2 < •••• < f _,'
0- - - - m

126

127

The proofs are easy. They are essentially proved by tracing

salesmen in both the MTSPF network and the equivalent TSP network.

5.6.2 The Multiple Depot Case,

The ideas developed for the single depot case can be applied

to multiple-depot case if there exists fixed charges of utilizing

salesman. Reader should note here that the distance matrix of the

~1D~1TSP network should be compatible with fixed costs of the salesman.

Then, introduction of fixed costs can be accomplished by adding fixed

cost fi of utilizing salesman i to all arcs leaving from departure

node of salesman i. But in this case the dunmy arcs defined in .

Section 5.5.4 should be put in the network so to enable not utilizing

salesman i.

If salesman i is utilized, then the solution should cover

exactly one of the arcs leaving from the related departure node,

thus fixed cost of utilizing salesman i is added to the objective

function value. On the other hand, if salesman i is not utilized,

then this means the arc between departure and arrival nodes of sales

man i is covered by that solution and no fixed cost related with this

salesman incurred.

Let us consider the same network as in Section 5.5.2.. Assume

that salesmen A,B,C have fixed costs fa' fb, fc respective1:, and let

their values are 10, 20, 30. The cost matrix obtained as a result of

this transformation is given at Table 5.2.

A
Oep

A
Arr

B
Oep

B
Arr

'C
Oep

C
Arr

1

2

3

4

5

6

7

8

9

10

.128

TABLE 5.2 - The Cost Matrix of Example 5.5.2 With Fixed Costs

I

A A B B C C
1 2 3 4 5 6 7 8 9 10 Oep Arr Oep Arr Oep Arr

00 o 00 00 00 00 13 14 13 00 00 00 00 00 00 00

00 00 o 00 00 00 00 00 00 00 00 00 00 00 00 00

00 .00 00 o 00 00 23 24 22 00 00 00 00 00 00 00

00

00

o

00

00

00

00

00

00

00

00

00

00

00

00

00

3

4

2

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

3

4

2

00

00

00

00

00

00

00

o 00 00 00 00 00 00 00 00 00 00 00

00 o 00 00 37 00 35 . 00 38 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 20 5: 1 0 :5 8 7 3 .2 . 1

00 20 00 6 9 12 16 5 13 18 13

00 7 5· 6 00 11 19 17 7 9 10 8

00 00 1 0 9· 11 00. 14 20 15 7 6 8

00 5 5 12 19 14 00 8 10 13 9 7

00 00 8 16 17 20 8 00 5 8 16 17

00 8 7 5 7 15 10 5 00 6 12 14

00 00 3 13 9 7 13 8 6 00 15 13

00 00 2 18 10 6 9 16 12 15 00 9.

00 00 1 13 8 8 7 17 14 13 9 00

Now, consider the tour in this network,

{1l-12-13-1-2-4-3-14-15-5-6-7-1 0-9-8-16-11}

The interpretation of this tour on original network is,

Salesman A: not utilized,

Salesman B: 01-1-2-4-3-01,

Salesman C: 02-5-6-7-10-9-8-02.

129

Since non of the arcs (11-1), (11-2) and (11-3) is covered,

the fixed cost of Salesman A is. not incurred. Fixed cost of Salesman

B is incurred on arc (13-1) and fixed cost of Salesman C is incurred

on arc (15,5).

5.7 THE FORMULATION OF MINII~m'1 TOTAL TH~E ROUTING

AS AN ["D~tTSP

After discussing how MDtnSp can be solved, we can formulate

r·1inimum Total Time Routing Problem as an ~1D~1TSP. In this section.we

shall ,utilize th~ network developed in Section 5.1 as the original

network of MO~ITSP. Within that network, assume that nodes represent

ing airports which have planes initially as depots, nodes representing

loads as cities, and planes as salesmen. Thus we have RP depots, M

cities and P planes available. Therefo~e .after transformation to

TSP network we'shall have (2P+M) nodes.

Fig. 5.6 shows the MOMTSP network of Example A. After the

transformation to TSP we shall obtain the time matrix (it was referred
. .'

to as the distance matrix in r·1DMTSP transformation, but in this case,
.-

that matrix correspond to the operation time matrix defined in Chapter

3) given at Table 5.3 .

. c'

. 1

2
3

4

5

6

~
8

9

10

11

1

00

00

00

0
00

00

00

00

00

00

00

Departure node for
the plane 1 at air
port 3

Arrival node for
the plane 2 at
airport 3

o

Departure node for
the plane 3 at air
port 4

Arrival node for
the p.l ane 4 at
airport 4

(j)

o

FIGURE 5.6 - MDMTSP formulation of Example A

TABLE 5.3- The Equivalent TSP Matrix of Example A

2 3 4 5 6 7 8 9 10 11

00 00 00 110 75 80 55 70 80 35
00 0 00 00 00 00 00 00 00 00

00 00 00 85 55 85 35 50 100 55
00 00 00 00 00 00 00 . 00 00 00

0 00 0 00 90 50 70 85 110 65

0 00 0 45 00 80 75 90 145 100

0 00 0 85 55 00 35 50 100 55

0 00 0 110 75 80 00 70 80 35

0 00 0 75 90 50 70 00 110 65

0 00 . 0 45 95 80 75 90 00 100

0 00 a 85 55 85 35 50 100 00

.

130

131

5.8 EVALUATION

Our aim in this chapter is to suggest a formulation to minimum

total ti~e cargo routing problem and to suggest a transformation on

MDMTSP network to obtain an equivalent TSP network. There are heuris

tic and exact methods available to solve TSP. Little et al. (1963),

Held and Karp (1970), ~1iliotis (1976), Crowder and Padberg (1980)

suggested exact procedures whereas Rosentkrantz et al. (1977), Clarke

and Wright (1964), Norback and Love (1977), Kim (1975), Christofides

(1976), Lin (1965) have suggested heuristic procedures. However, in

our case the final TSP matrices have some properties which can be

utilized in the solution of TSP. It is certain that all TSP tours

will cover arcs defined between arrival and departure nodes. Then

there is no need to carryon an optimization process on these arcs.

If one resorts to methods available for TSP, then one has to make un

necessary calculation on such arcs. Several authors (Russel, 1977)

have worked on such TSP cost matrices and suggested techniques to

solve them. But still there is need to define a more powerful solu

tion algorithm for the TSP matrix defined in this chapter.

Since we have expressed MTRP as a f1DMTSP a 11 a rguments about

MUMTSP hold. That is, we can connect the departure of a plane to its

arrival, so as to create the option of not utilizing that plane at

. all. This fact is applied to previous problem. Although it utilized

again two planes, the load assignments to planes have changed. Thus

we caught an alternative optimal solution to the problem.

We can also assign fixed tosts to planes and add these costs

to appropriate arcs, if we define operation time matrix in terms of

132

monetary units.

Since in' case of t·1TRP we do not care whether the planes are

returning to their initial depots or not, interactions between nodes

representing loads and nodes representing airports are put in this

formulation in order to build up a complete network without affecting

the value of the objective function.

133

. VI. CONCLUS IONS AND EXTENS IONS OF RESEAHCH

6.1 REAL LIFE CASES AND CONCLUSIONS

The relative effectiveness of the algorithms and formula

tions developed within this thesis are tested on the sample prob

lems given in Appendix A~ These problems are designed to illustrate

the principles of the suggested methods. But in this section we

shall focus on some realistic cases and discuss their cha~acteristics. . .
Most common feature of a regional war is that it will take

place through some boundary of the country at hand and the material

should be transferred to the· locations of action from other parts

of the country. In such situations, for a particul~r item some of

the pOints serve as demand points "and others as source points; and

most of the time the direction of the material flow is between

source and demand points. The source points are the bases of the

airforce throughout the country and demand points are either the

airports in the vicinity of action area or open areas~ on which'

material can be landed by some means.

We shall analyze the behaviour of the ~uggested techniques

when such a flow pattern exists and try to see the "responses when

this stri'cf flow pattern is altered in several ways on some example

problems throughout this section. While applying these ideas we

shall try to solve another strategical problem, which is where to

allocate available planes initially:

134

For each of the example 'Problems we shall discuss, the

difficulties appearing while applying the steps of the BRP Algorithm

given in Chapter 3, namely the Path Generation, Elimination, and

_ Search Steps. Before getting in depth analysis of the results

obtained it would be better to make some definitions.

Note that the ~?ximum number of paths that can be generated

with load cardinality r is limited. Let us have M loads. Then

these M loads can be permuted at most MPr ways. That is, there

can be at most MPr paths generated with load cardinality r,where,

P M!
r~ r = --- (6.1)

(M - r)!

Also, one could generate at most r1'R path; with load cardinality

"less than or equal to R, where,

(6.2)

Similar results are obtained when we consider the maximum number

of paths after the elimination process. Since the problem is then:

In how many ways one can select r loads among r~ loads? Thi s time

the number of possible combinations MCr is the inaximum nu"inber of

possible paths with load cardinality r, where,

C M!
~1 r = ---- (6.3)

r!(M - r)!

Then, the MeR is the maximum number of paths after el imination

process with load cardinality less than or equal to R. The combi

nation and permutation value of some critical M and r values are

shown in Appendix B.

If there exists more than one airport (say RP) which have

. planes initially, then the above figures should be mutliplied by

the number of available airports, in,order to get the number of

possible paths.

Now, it would be better to define the following in order

to avoid repetitions later'in the text.

Pl is the number of paths generated.

P2 is the number of paths after elimination.

LC : is the maximum load cardinality -obtained among max
generated paths

135

Pmax is the maximum number of paths that can be obtained

after the elimination process, and can be expressed

as follows:

(6.4)

P3 is the number of paths after the elimination process

whose time requirement is less than or equal to

optimal value of the given BRP.

The test network designed to apply above conditions has 6

airports with 3 of them being demand points and rest of them being

supply polnts. It is assumed that there are only 4 planes available.

• 136

The flight times between these airports given in Table 6.1 and

time of loading and unloading are taken as 10 and 5 minutes res-

pectively.

TABLE 6.1 - The Flight Time Data of the 6 Airport Problem

1 2 3 4 5 6 7

1 20 .45 55 75 90 90

2 20 25 45 75 80 50

3 45 25 65 95 95 55

4 55 45 65 40 35 30

5 75 75 95 40 40 60

6 90 80 95 35 40 40

7 70 50 55 30 60 40

-
EXAMPLE 6.1: This first problem is designed to illustrate the strict

flow pattern. That is, all the 12 loads have to be carried from

source points to demand points. In Fig. 6. 1 the~e loads are drawn

_ and it is assumed that the action takes place in the vicinity of

airports 1,2, and 3. The airports 5 and 6 are assumed to be the

bases with some planes initially and airport 4 is a base with no

planes initially. Note that in order to get quick results in the

test runs, the total number of available planes is limited rather

than limiting the number of planes at each airport.

Assuming the maximum job time is 490 minutes, the paths

generated have following characteristics.

FIGURE 6.1 -The flow pattern given in Example 6.1

Pl = 2168 P2 = 572 LCmax = 3

note, RP = 2, H = 12, and P '= 4

The maximum number of possible paths with load cardinality less

than or equal to 3 is 596 (Pmax = 596). Hence the search proce

dure should scan nearly all the possible combinations. The alter

native optimal solutions of this problem are obtained as follows.

SOLUTION 1:

137

Plane

1

2

3

4

Initial airport

6

Loads carried

7 - 12 - 3

11 - 4 - 8

5 - 1 - 2

10 - ,6 - 9

Time (in minutes)

435

6 430

6 435

6 420

TOTAL: 1720

SOLUTION 2:

Plane

1

2

3

4

SOLUTION 3:

Plane

1

2

3

4

Initial airport

6

6

6

6

Initial airport

6

6

6

6

Loads carried

7 - 6 - 12

10 - 4 - 8

. 5-1-2

11 - 3 - 9

Loads carried

7 - 6 - 12

10 - 4 - 8

5 - 1 - 2

3-9-11

138

Time (in minutes)

435

430

435

430

TOTAL: 1730

Time (in minutes)

435

430

435

435

TOTAL: 1730

Note z* = 435 minutes and P3 = 352 which means that even if we do

know the optimal value of the problem and seek the optimal solution,

we still have to scan 59.06% of all possible combinations. This

analysis illustrates us how the computational effort will grow up

as the problem size gets larger. This phenomenon is the most common

feature of NP hard class of problems. In BRP problems a factorial

function namely Pmax governs the computational effort that has to

be spent. The relationship between problem size 'and Pmax will be

analyzed later in this section.

EXAMPLE 6.2: This example is designed 'to alter the flow pattern

given in Example 6.1 by introducing two loads, one between source

points and the other between demand points. The resulting loads

shown in F~g. 6.2.

FIGURE 6.2 - The flow pattern given in Example 6.2

139

Using the same initial airports and maximum time constraints

as in Example 6.1, the generated paths resulted in

P, = 6388 P2 = 1361 LCmax = 5 and the alterna-

tive optimal solutions are obtained as follows; ,

SOLUTION 1:

Plane Initial

1 6

2 6

3 6

4 5

airport Load carried

12 - 2 - 10

5 - 1 - 8

7 - 9 - 13 - 3

6-4-14-11

Time (in minutes)

460

455 "

445

445

TOTAL: 1805

140

SOLUTION 2:

Plane Initial airport Loads carried Time (in minutes)

1 5 2 - 4 - 8 - 13 460

2 5 1 - 14- 5 - 9 460

3 6 7 - 3 - 10 460

4 5 6 ~12 - 11 455

TOTAL: 1835

SOLUTION 3:

. Plane Initial airport Loads carried Time (in minutes)

1 5 '2-4-8-13 460

2 5 1 -14 - 5 - 9 460

3 6 7 -3 - 10 460

4 5 2-6-11 450

TOTAL: 1830

SOLUTION 4:

Plane Initial airport Loads carried Time (in minutes)

1 6 5 - 6 - 9 - 13 455

2 5 14 -12 - 4 - 8 450

3 6 11 - 1 - 3 460

4 6 7 - 2 - 10 460

TOTAL: 1825

SOLUTION 5:

Plane Initial airport Loads carried Time (in minutes)

1 6 12 - 1 - 8 445

2 5 2 - 4. -14 - 5 450

3 6 7 - 3- 11 460

4 . 6 10 -13 - ~ - 9 460

TOTAL: 1815

141

SOLUTION 6:

Plane Initial airport Loads carried Time (in minutes)

1 5 14 - 7 - 4 - 9 - 13 460

2 6 12 - 2 -10 460

3 6 5 - 3 - 8 455

4 5 1 - 6 - 11 445

TOTAL: 1820

Note tha t z* = 460 mi nutes and P 3 = 1073, a 1 tho'ugh the

number of loads increased by less than 15%. The number of paths

that has to be considered during search phase is tripled. The

major reason for this explosion is the arbitrary configuration

of loads 13 and 14.

EXAMPLE 6.3: This example is designed to see the effect of the

existence of counter loads, that i~, the loads from demand pOints

to source points. To achieve this, load 15 is added between air

ports 1 and 5 and all other aspects'of the problem are kept the

same. The paths generated in this fashion yield the following

results:

Pl = 12719 P2 = 2437 LCmax = 5

and the optimal solution is obtained as follows:

Plane Initial airport Loads carried . Time (in minutes)

1 6 12 - 2 - 10 460

2 6 5 - 1 - 8 455

3 6 7 - 9 - 13 -15 - 3 460

4 5 6 - 4 - 14 - 11 445

TOTAL: 1820

142

Note z* = 460 minutes and P3 = 1909. The optimization on

this data is done on purpose to get the path requirements and one

counter load nearly doubled the number of paths that has to be con

sidered. Indeed there is no need to carryon optimization on this
\

data if we know the optimal solution of the previous problem. The
-

optimal solution of the Example 6.2 resulted in several empty flights

between airports 1 and 5so as to carry loads between 5 and 1, as

expected .. Note that, in the first alternative solution of the pre

vious problem, plane 3 has an empty flight between 1 and 5, and has

15 minutes slack time which is equal to loading plus the unloading

time of a single load. So, this plane can cover a load between these

airports without violating the optimal value of the problem.

This discussion directs us some interesti~g results. If

there exists some counter loads, then these counter loads will imme-

diately blow up the number of paths that has to be considered. In

case of their existence, the best thing to do is drop them first and

solve the reduced problem and then try to build up a solution to the

original problem utilizing the minimum total cost alternative solution

of the reduced problem. Now, assume that the worst case had happened

and after solving the reduced problem we got a unique optimal solution

in which there exists no plane with some slack time. But, if there

. are empty: flights covering counter loads, then we can still build up

a good solution to the original problem, since the objective function

value of the problem will be increased at most by Z, where,

z = [max (number of empty flights on)] x [TU + TL] (6.5)
i=l,.~,p the route of plane i

143

Under such circumstances we can make the following proposal

and claim that the solution at hand is still optimal to the original

problem.

PROPOSAL 6.1

If the empty fl ights of the r~duced problem covers all the

dropped counter loads of the original problem, then one can build

up a solution for the original problem utilizing the minimum total

cost alternative solution of the reduced problem, and this solution

will be the optimal solution for the original problem.

In order to prove this claim, assume that we have solved the

original problem and this time we dropped the same loads to get a

solution for the reduced problem. But this solution cannot be better

than the solution obtained purely for th~ reduced problem. Since if

it is so, then we should have found it while optimizing reduced prob

lem. Hence the only difference in objective function values of the

two problems can be caused from loading and unloading times which is

independent of (the routes of ,the planes, and in any case the mission

times of planes are governed by their routes .

. EXAMPLE 6.4: In order to analyze the effect of loads between the

same kinds of pointsbetter, this time we have assigned a load between

airports 2 and 1 and kept all other properties of the problem the same

as in Example 6.3.

This load exploded the number of paths in generation phase

(P
l

~ 27708 LCmax = 6) and we did not execute the further steps of

.the BRP a 1 gori thm because of thi s huge number. One of the major

144

reasons for this explosion is that airports 2 and 1 are very close

to each other with respect to the other flights. '

The existence of loads which require respectively shorter

flight time brings troubles when number of paths generated consi

dered. Let ,loads a, b, and c require more or less the same flight

time and load d require relatively less flight time. Also let d max
~ be the maximum mission time given to generate paths. Now consider'

'thefollowing case. Let time to carry loads a and b < d . max Under

such a situation it happens most of the time that time to carry

loads a, b, and c > dmax ' but on the other hand usually time to carry

loads a, b, and d ~ dmax . So, just a single load generates lots of

combinations to be considered~

Now consider just the opposite case. That is,assume tha~

load d requires relatively longer ,flight' time. This case helps in

all phases of the solution procedure. Since load d appears only on

a small number of paths, the number of ,paths that have to be generated

decreases. Also the search procedure automatically selects Method A

for blocking, due to the unbalanced distribution of load frequencies.

Thus, the number of paths in the first block decreases while computa

tional effort during search procedure decreases.

EXAMPLE 6.5: This time in order to illustrate the explosion caused

by counter loads better we have introduced another load between air

ports 1 and 5 as load 16 in addition to loads in Example 6.3. This

resulted in Pl = 21622 and LCmax = 5. By the use of the Proposal 6.1,

we can bVild up the solution for this problem. Thus we did not carry

on optimization.

145

EXAMPLE 6.6: Sinfilarly, this example is designed for the same purpose

as Example 6.5 and based on Example 6.1. Follow'ing counter loads are

added to that problem.

Load 13 from airport 3 to airport 5.

Load 14 from airport 1 to airport 5.

Load 15 from airport 1 to airport 5.

Load 16 fro~ airport 3 to airport 6.

This data resulted in Pl = 12769 and LCmax = 5. But this time we

cannot apply Proposal 6.1 since none of the empty flights of Example

6.1 covers load 16. So, we have to solve the problem without dropping

load 16'once again.

EXAMPLE 6.7: This example is designed to analyze the effect of a

central initial airport. This time all planes are assumed to be

located at airport 4 initially and ~he other airports are assumed to

be bases with no planes initially. ,This initial configuration of

planes applied to 12 loads in Example 6.1. But maximum mission time

to generate paths is increased to 4,95 minutes in this case. The

results obtained are as follows;

Pl = 1034 LCmax = 3

The alternative optimal solutions are as follows:

146

SOLUTION 1:

Plane Ini tia 1 airport Loads ca rri ed Time (in minutes)

1 4 7 - 12 - 3 470

2 4 5 - 1 - 2 470

3 4 4 - 8 - 10 460

4 4 9 - 6 - 11 455

. TOTAL: 1855

SOLUTION 2:

Plane Initial airport Loads carried Time (in minutes)

1 4 7 - 3 - 6 460

2 4 5 - 1 - 2 470

3 4 9 -12 -11 460

4 4 4 - 8 -10 460

TOTAL: 1850

SOLUTION 3:

Plane Initial airports Loads carried Time (in minutes)

1 4 4 - 8 - 10 460

2 4 5 - 1 - 2 470

3 4 9 - 3 - 11 465

4 4 7 - 6 - 12 470

TOTAL: 1865 .

·z* = 470 minutes and P3 = 198.

Although there are loads starting from central airport 4,

most of the loads start from airports 5 and 6, so planes at airport

4 should, make an empty flight at first leg of their mission which

naturally increases the .optimal value of the problem.

147

The other example problems behaved similarly under this diffe

rent initial configuration, and the increase in their objective func

tion values are parallel to the increase in this case. In real life,

there are other important factors which effect the choice of initial
,

configuration in military applications. Although these factors are

areas of interest in Operations Research, they are not related to our

topic, so we have omitted these factors.

On the other hand, I want to emphasize on another facto~

which governs the efficiency of the solution procedure developed in

this thes1is, when the times required to carry loads are close each

other.

Let there be M loads and P planes. Since times to carry each

load do not vary much, most of the time the optimal solution of su~h

problems results in minimum configuration. That is, M loads are

assigned to each plane (where M = Q + 1 and Q is defined by Definition

3.1). Since flight times are close each other, the times required to

carry each set of M loads are close to each other. Hence, nearly

all paths with load cardinality less than or equal to M have to be

enumerated to catch an optimal solution. Thus, the minimum number of

paths that have to be considered in the path list is P where,

M
P = [(L Mer) x RP] x a ,

r=l
o < a < 1 (6.6)

P is the minimum number since there may be path:; with load

cardinality> M and time .requirement ~ dmax ' a is the ratio of paths
. I

with load cardinality ~ M and whose time requirement> dmax ' As the

times required to lcarry the loads approach each other, a tends to 1.

148

But the converse is not true, i.e. increaslng range of mission times

does not imply that a + O. We are only trying to estimate the number

of paths that have to be considered during optimization under different

problem characteristics and we can simply assume a = 0.5.

In all cases the problem gets much harder as M enlarges as

compared with enlargements in M. He can follow this in Table 6.2 in

detai1.

TABLE 6.2 - Increase In Problem Complexity

M P RP M P

10 4 1 3 175a

20 4 1 5 21699a

20 6 1 4 6195a

15 5 1 3 575a

30 10 1 3 4525a

30 5 l 6 768211a

60 20 1 3 36050a

60 10 1 6 56049057a

6.2 GENERAL RESULTS

A computerized optimization for military cargo ai,rplane

routing is studied in this thesis. First the problem is formulated

. as a (O-l) 1 inear program. Then two suggestions are given for two

types of' problems. Namely, the Bottleneck Routing Problem and the

149

Minimum Total Time Routing Problem. For the first problem a complete

exact solution procedure is defined. But for the second one only a

transformation is given. Both of these approaches aided to find out

the routes of planes without taking into ac~ount the capabilities of

service facilities at airports. In order to handle such constraints

a heuristic procedure is suggested.

The algorithm developed for BRP is tested on various problems.

These problems are relatively small problems as compared with real

life problems. But the technique devel"oped necessitates extensive

computer usage. Although to obtain such facilities wide enough is

a great problem in academic life, this is not the case in military

applications. So in real life applications problems of reasonable

size (See Table 1.1) can be solved.

There are several special cases of military airplane routing

which are not explicitly discussed throughout the text. They are

summarized as follows:

Most of the time the routing process is done upon essentially

si.mi1ar networks, and the boring part of the procedure defined is the

generation, elimination and sorting of paths on th~se networks. In

order to avoid this cumbursome business, the best thing to do is to

estimate a representative network, which includes all airports and

all possible loads between these airports. If generation, elimination

and sorting processes are done on this network beforehand,and resulting

paths are stored somehow, then these paths can be utilized whenever

necessary by eliminating the ones which are not desirable. This

approach can be used while making sensitivity analysis over the solutions!
!

150

That is, one can increase or decrease number of planes available

or loads to be carried and can solve the problem just reinitiating

the Bottleneck Routing Algorithm.

There can be cases where loads have to be transferred to

points where no airports exist. In such cases, either the plane

lands on an open area or simply drops the load. In any case the

only difference is in the service times. One can assume any loading

or un'loading area as an airport, but utilize variable service times.

The manipulation necessary to handle variable service times are

explained throughout the text.

In real life applications, one important problem is, unit of

shipment is not all the time a plane load. If that is the case, one

must either develop a completely different approach or solve the prob

lem by approximating all loads to unit plane loads, then analyze the

solutions to get a solution to his original problem.

Commanders can state time windows. As ftn example, some loads

should be carried between prespecified time intervals. The procedure

in principle is not de~igned to handle such cases. But some.modifi

cations can be made ~t the search step of BRA in order to solve such

problems.

The point that we have reached in this thesis is encouraging

for further research. One can approach the problem in a totally,

different way. That is, one could develop a .formulation which does

not necessitate the generation of simple paths at all. Some tour

building techniques can be utilized instead of the set-partitioning

approach. Also improvements on the algorithms developed within this

151

study are possible. The stopping rules can be enlarged, so that one

can be more sure about the feasible region.

The most valuable extension of this research would be

designing a powerful technique which can handle splitable loads.

Also one could attack solving military BRP in one step rather than

first solving the routing problem and then satisfying the airport

capacity constraints.

152

REFERENCES

1. Balas, E. and Christofides, N. (1981). "A Restricted Lagrangean
Approach to the Travelling Salesman Prob1em", Mathematical Prog
ramming, £!.' pp .19-46.

2. Ba1~s, E. and Padberg, M.W. (1972). liOn the Set Covering Problem
II: An A1gorithm", Management Sciences Research Report No. 295,
Carneige-Me110n University.

3. Ba 1 as, E. and Padberg, M. W. (1972). liOn the Set Coveri ng Prob 1 emil ,
Ops. Res. 20, p. 1152.

4. Barr, R., Glover, F. and Klingman, D. (1974)". "An Improved Ver
sion of the Out-of-Kil1er Method and a Comparative Study of Com
puter Codes ", Mathema ti ca 1 Programmi ng, 2.(1), pp. 60-87.

5. Bellmore, M. and Hong, S. (l974). "Transformation of Multisa]es
men Problem to the Standard Travelling Salesman Problem", Journal
of the Association for Comp4ting Machinery, £l, No.3, pp. 500-504.

6. Berenguer, Y. (1979); "A Characterization of Linear Admissible
Transformations for the m-Travelling Salesmen Prob1em", European
Journal of Operational Research, l' pp. 232-238.

7. Bodin, L. (1975). "A Taxonomic Structure for Vehicle Routing and
Scheduling Problems", Computer Urban Soc., 1, pp. 11-29.

8. Bodin, L. and Berman, Lon. (1979). "Routing and Scheduling of
School Buses by Computer", Transpn. Sci., 13, No.2, pp. 113-129,
New York. -

·9. Bodin, L. and Golden, B. (1.981). IIClassification in Vehicle
Routing and Schedulingll, Networks, ll, No.2, pp. 97-108, New York.

10. Bodin, L., Golden, B., Assad, A. and Ball, M. (1981). "The State
of the Art in the Routing and Scheduling of Vehicles and Crews",
Working Paper, MS/S, No. 8l~035, Virginia.

153

11. Bradley, G., Brown, G. and Graves, G. (1977). "Design and Imp-"
lementation of Large Scale Primal Transshipment A1gorithms",
Management Sci., 24(1), pp. 1-34.

12. Chandy, K. and Lo, T. (1973). liThe Capacitated Minimum Spanning
Tree II , Networks, 3(2), pp. 173-182.

,,-,.. .

13. Cheung, T.Y. (1980). "Computationa1 Comparison of Eight Methods
for the Maximum Network Flow Prob1em", ACM Transactions on Mathe
matical Sof~ware, ~(1), pp. 1-16.

14. Christofides, N. (1975), Graph Theory "An Algorithm Approach",
London.

15. Christofides, N. (February 1976). "Worst-Case Analysis of a
New Heuristic for the Travelling Salesman Prob1em", Report 388,
Graduate School of Industrial Administration, Carneige Mellon
University.

16. Christofides, N., Mingozzi, A. and Toth, P. (1981). "Exact
Algorithms for the Vehicle Routing Problem, Based on Spanning
Tree and Shortest Path Re1axations", Mathematical Programming,
20, pp. 255-282. -

" 17. Clarke, G. and Wright, W. (1964). "ScheduJing of Vehicles from
a Central Depot to a Number of Deli very Poi nts ", Ops. Res., .J.£.,
pp. 568-581.

18. Conway, R.W., Maxwell, W.C. and Miller, L.W. (l967). "Theoryof
Schedu11ing", Addison-Wesley, Reading, Mass.

19. Crowder, H. and Padberg, M. (May 1980). "So1ving Large-Scale
Symmetric Travelling Salesman Problems to Optima1ity ", Management
Sci., 26(5), pp. 495-509.

20. Cunningham, W. and Marsh, A. (July 1978). "A Primal Algorithm
for Optimum Matching", Mathematical Programming Study, No.8:
Polyhedral Combinatorics, pp. 50-72.

21. Danie1son,G. (1968). liOn Finding the Simple Paths and Circuits
in a Graph", IEEE Trans. on Circuit Theory, pp. 294-295.

22. Denardo, E. and Fox, b. (1979). "Shortest-Route Methods: 1. Reach
ing, Pruning and Bruckets", Ops. Res., 27(1), pp. 161:-186.

23. Derigs, U. (April 1979). "A Shortest Augmenting Path Method for
Solving Minimal Perfect Matching Prob1ems", Technical Report,
University of Cologne, CQ1ogne, West Germany.

24. Derigs,U. and Kazakidis, G. (May 1979). ".on Two Methods for
Solving Minimal Perfect Matching Problems", Technical Report,
University of Cologne, Cologne, West Germany.

154

25. Dial, R."Glover, F., Karney, D. and Klingman, D. (1979). IIA
Computational Analysis of Alternative Algorithms and Lab~ling
Techniques for Finding Shortest Path Trees ll

, Networks, 9(3),
pp. 215-248. , . -.

26. Discenza, J.H., (1981). IIA More Compact Formulation of the Sym
metric Multiple Travelling Salesman Problem with Fixed Charges ll

,

, Networks, l!., pp. 73-75.

27. Ei 1 on ,S., Wa tson':'Gandy ,C. D. 1. and Chri stofi des ,N. (1971).

28.

29.

30.

31.

32.

33.

34.

Distribution Management, London.' ,

Fratta, L. and Montanari, U. (1975). IIA Vertex Elimination
Algorithm for Enumerating all Simple Paths in a Graph,lI, Networks,
~, pp. 1 51-177.

Gilsinn, J. and Witzgall, C. (1973). liA Performance Comparison
of Labeling Algorithms for Calculating Shortest Path Trees", NBS
Technical ,Note 777, National Bureau of Standards,:Washington D.C.

Glover, F., Karney, D. and Klingman, D. (l974). "Implementation
and Computational Compa.risons of Primal, Dual and Primal-Dual
Computer Codes for Minimum Cost Network Flow Problems", Networks,
~(3), pp. 191-212.

. .

Golden, B. (June 1976). IILarge Scale Vehicle Routing and Related
Combinatorial Problems", Ph.D. Thesis, Operations Research Center,
MIT.

Golden, B. and Ball, M. (1978). "Shortest Paths with Euclidean
Distances: An Explanatory Mode"', 'Networks, .!!(4),pp. 297-314.

Golden, B., Ball,'M. and Bodin, L. (1981), IICurrentand Future
Re~earchDirections in Network Optimization ll , Compo and Ops. Res.

, 8, pp. 11-81.. . '.

qolden, B. and Bodin, L. (1978). "Solving Large Scale Distribu
tion-Routing Problems Efficientlyll, Proc. of 1~78Transportation
and Logistics 'Educators Conference (R. House, ed.), pp. 11-14,
Chicago. .

35. Golden, B., Bodin, L., Doyle, '1. and Stewart, W. (May-June 1980).
IIApproximate Travelling Salesman Algorithmsll, Ops. Res. 28(3),
pp. 694-711.

36. Golden, B., Magnantl, 1.L. and Nguyen, H.Q. (1977). IIImplementing I
Vehicle Routing Algorithmsll, Networks, Z, pp. 113-148, Massachusett!

I. i

37. Golden, B. and Richard, T. (1981). IICapacitated Arc Routing Prob- !
lems,lI, Networks, ll, pp. 305-315, New York.

155

38. Held, M. and Karp, R. (1970). liThe Travelling Salesman Problem
and Minimum Spanning Trees ll

, Ops. Res.,.!.§., pp. 1138-1162.

39. Held, M. and Karp, R. (1971). liThe Travelling Salesman Problem
and Minimum Spanning Tress, Part 11 11

, Mathematical ' Programming,
l, pp. 6-25.

40. Hong, S. and Padberg, M. W. (1977). II A Note on the Symmetri c .
Multiple Travelling Salesman Problem with Fixed Charges", Ops.
Res., 25, No. 5,pp. 871-874, New York.

41. jensen, P.A. (1971). "Optimal Network Partitioning'lI, Ops. Res.,
12., p. 916.

42. Johnson, L.A. and Montgomery, D.C. (1974). 1I0perations Research
in Production Planning, Scheduling and Inventory Control II, John
Wiley and Sons., Inc.

43. Kelton, W. and Law, A.(1978). IIA Mean-Time Comparison of Algo
rithms for the All-Pairs Shortest-Path Problem with Arbitrary
Arc Lengths ", Networks, !!; pp. 97-106.

44. Kershenbaum, A. (1974). "Computing Capaci tated Minimum Spanning
Trees Efficiently", Networks, .1(4), pp. 299-310.

45. Kershenbaum, A. and Van Slyke, R. (1972)~' "Computing Minimum'
Spanning Trees Efficiently", Proceedings of ACM Annual Conference,

'pp. 518-527, Boston, Mass. '

46. Kim, C.' and Mac Donald, J. (1975). "A Minimal Spanning Tree and
Approximate Tours for a Travelling Salesman", Compo Sci. Technical
Report, University of Maryland.

47. Knuth,D.E. (March 1975). "Sorting and Searching", The Art of
Computer Programming, 3, Stanford University, Addison Wesley
Publishing Company. -

48. Kroft, D. (1967). "All Paths Through a Mazc", Proc. of IEEE,
p.88.

49.

50.

51:

Lin, S. (1965). "Computer Solutions of the Travelling Salesman
Problem", Bell System Technical Journal, 44, pp. 2245-2269. - .

Lin, P.M. and Alderson, G.E. (1969). "Symbolic Network Functions
by a Single Path-Finding Algorithm", Proc. of 7th Allerton Con
ference on Circuit and System Theory, p. 196.

I

Little, J., Murty, K., Sweeney, D. and Karel,'C. (1963). "An
Algorithm for the Travelling Salesman Problem", Ops. Res., .!.!.(6) ,
pp. ~72-989.

156

" '

52. Love, R.R. Jr. (198l). "Traffic Scheduling Via Benders Decompo
sition", Mathematical Programming Study,]2."pp. 102-124.

53. Michadu, P. (1972). "Exact Implicit Enumeration Method for
Solving the Set-Partitioning Problem", IBMJ1. of Res. and Dev.,
li, p. 573.

54. "Miliotis, P. (1976). "Integer Programming Approaches to the
Travelling Salesman Problem", Mathematical Programming, 10, .
pp. 367-378. ---

55. Miliotis, P. (1978). "Using Cutting Planes to Solve the Symmetric
Travelling Salesman Problem", Mathematical Programming, 15,
pp." 177-178. ---

56. Mulvey, J. (1978). "Testing of Large-Scale'Network Optimization
Programll , Ma themati ca 1 Programmi ng,]2.(3}, pp. 291-314.

57. Norback,J. and Love, R. (1977). IIGeometric Approaches to Solving
the Travelling Salesman Problemll , Management Sci., 23, pp. 1208-
1223. ---

58. Padberg, M. and Hong, S. (1977). "On the Symmetric Travelling
Salesman Problem: A Computational Studyll, T.J. Watson Research
Report, IBM Research, Yorktown Heights.

59. Pape, U. (1974). "Implementation and Efficiency of Moore-Algo
rithms for the Shortest Route Problem",Mathematical Programming,

.1., pp. 212-222.

60. Pierce, J.F. and Lasky, J.S. (1973). ,IIImproved Combinatorial
Programming Algorithms fora Class of all-zero-one Integer Prog
ramming Problems ll , Management Sci., ~, p. 528.

61. Psaraftis, H.N. (1980). "A Dynamic Programming Solution to the
Single Vehicle Many-to-Many Immediate Request Dial-a-Ride Prob
lem", Transpn. Sci., .!i, No.2, pp. 130-154, New York.

62. " Rao, M.R. (1980), "A Note on the Multiple Travelling Salesmen
Problemll , Ops. Res., 28, No.3, Part I, pp. 628-632, New York.

63. Richardson, R. (1976). IIAn Optimization Approach to Routing
Aircraft ll , Transpn. Sci., .lQ, No.1, pp. 52-71, New York.

64. Rosenkrantz, D., Stearns, R. and Lewis, P. (1977). ".'\n Analysis
of Several Heuristics for the Travelling Salesman Problem~, SIAM
J. Computing,~, pp. 563-581.

65. Russel, R. (1977). "An Effective Heuristic for the m-Tour TSP
wit~ Some Side Conditions", ORSA, 25, pp. 517-524.

157

66. Salkin, H.M. and Koncal, R. (1971). "A Dual Algorithm for the
Set Covering Problem", Dept. of O.R. Technical Memo., No. 250,
Case Western University.

67. Shier, D. (1976)~ "Iterative Methods for Determining the k
Shortest Paths in a Network", Networks, ~(3), pp. 205-229.

68. Shier, 'D. (1979). liOn Algorithms for Finding the k Shortest
Paths in a Network",' Networks, 2.(3)" pp. 195-214.

69. Soumis, F'., Ferland, J.A. and Rousseau, J.M. (1980). "A Model
for Large-Scale Aircraft Routing and Scheduling Prob1ems",
Transpn. Res.-B, 14B, pp. 191-201, Great Br'itain.

70. Stein, D.M. (1978). "Schedu1ing Dial-a.-Ride Transportation
Systems", Transpn. Sci., .:!i, No.3, pp. 232-249, New York.

71. Ulusoy, G. (1981). "TaSlt GUzergahl Belirleme Problemleri ve
BaZl Yeni Algoritmalar", Docentlik Tezi, Bogazici Oniversitesi
MUhendislik FakU1tesi.

72. U1usoy, G. (1983). "Routing in Strategic Airlift: A Study in
Bottleneck Routing", Dept. of Ind. Englg, Bogaz;ci University.

. , . ..

73. ,Webb, M. (1971). "Some Methods of Producing Approximate Solu
tions to Travelling of Cities"; Ops. Res. Q., 22(1), pp. 49-66.

/

A P PEN DI C E S

159

APPENDIX A

The formulations discussed in various chapters of this thesis

arE;! applied to some test problems, and these problems are solved with

the techniques suggested.

We can summarize these formulations as follows:

i. FORMULATION I:.

Set-theoretic formulation of BRP, solved,by the algorithm

suggested in Chapter 3.

ii. FORMULATION II:

Set-theoretic formul.ation of BRP with minimum total cost

requirement solved by the algorithm suggested in Chapter 3.

iii. FORMULATION III:

MDMTSP formulation of MCRP by using exactly the given number

of planes, solved by Little's Branch and Bound algorithm.

iv. FORMULATION IV:

MDMJSP formulation of MCRP by using less than or equal to the

given number of planes, solved by Little's Branch and Bound algorithm.

160

v. FORMULATION V:

MDMTSPF formulation of MCRP with fixed costs of planes, solved

by Little's Branch and Bound algorithm.

Following format is used to express results:

Plane number: Initial airport: Loads carried: Time

NOTES: i) "+" sign besides total times indicates that, that results

correspond to the one which is obtained at a reasonable

time on UNIVAC 1106. Further improvement possible if a

better TSP algorithm occupied.

ii) The unit of time is taken as minutes.

EXAMPLE A

1 30 65

2 30 30
D =

3 65 30

4 40 35 20

LOADS:

Number Starting Ending
airport airport

1 1 2

2 4 1

3 2 4

4 4 3

5 4 2

6 3 1

7 3 4

FORMULATION I

Plan~ 1 4: 4-6-1 160

Plane 2 3: 7-5-3-2 190

TOTAL 350

FORMULATION I I

Pl ane 1 : 4: 4-6-1 160

Plane 2 : J: 7-5-3-2. 190

TOTAL 350

161

40

35 Loading time . 10 .
20 Unloading time: 5

INITIAL LOCATIONS OF PLANES:

Airport Number of
planes

1 0

2 o .

3 1

4 1

Minimum Total Flight: 245

Total Load Unload 105

Minimum Total Time 350

FORMULATION I II

Plane 1 .. 3: 7-4-6-1 195 .
Plane 2 3: 5-3-2 155

TOTAL 350

FORMULATION IV

Plane 1 3: 6-1 125

Plane 2 4: 4-7-5-3-2 225

TOTAL 350

FORMULATION V

a)

b)

Given: Airport

-3

4

Fixed Cost of a plane

100

100

Plane 1: 4: 4-7-5-6_-1-3-2 : 380

Given:

TOTAL 380

Thus, Total cost: 480

Airport

3

4

Fixed Cost of a plane

200

100

Plane 1: 4: 2-1-3-4-7-5-6 : 380

TOTAL 380

Thus, Total cost: 480

162

c) Given: Airport

3

4

Fixed Cost of a plane

100

200

Plane 1: 3: 6-1-3-4-7-5-2 . ·385

TOTAL 385

Thus, Total cost: 485

DISCUSSION

163

Although formulations III and IV have the same objective func

tion values, the resulting optimal solutions assigned planes to dif

ferent set of loads, that is due to the branching nature of Little's

Branch and Bound algorithm on similar cost matrices. Also, cases a

and b of formulation V are different because of the same reason. In

deed same phenomenon is observed in most of the examples but will not

be discussed from now on.

Also n6te that, there is only one alternative optimal solution

tp BRP. So, formulation I and II yielded the same results.

164

EXAMPLE B

Same D matrix as in Example A. Load and unload times are

also the same.

LOADS: INITIAL LOCATIONS OF PLANES:

Number Starting Ending Airport Number of
airport airport planes

1 1 2 1 0

2. 4 1 2 0

3 2 4 Same as 3 0

4 4 3 Example 4 3 A
5 4 2

6 3 1 Minimum Total Flight: 325

7 3 4 Total Load Unload 150

8 3 2 Minimum Total Time 475

9 2 1

10 4 3

FORMULATION I

Plane 1: 4: 7-10-6 170

Plane 2: 4: 5- 3-2 155

Plane 3: 4: 4- 8-9-1 170

-TOTAL 495

FORMULATION I I

Plane 1: 4: 7-10-6 .. 170

Plane 2: 4: 5- 3-2 . 155 ..
Plane 3: 4: 4- 8-9-1 170

TOTAL 495

FORMULATION III

Pl ane 1: 4: 2 55

Plane 2: 4: 4-8-9-1-6 280

Plane 3: 4: 5-3-7-10 190 _

TOTAL 525 +

FORMULATION IV

Plane 1: 4: 4-7-10-8-9-1 240

Plane 2: 4: 2 55

Plane 3: 4: 5-3-6 200

TOTAL 495

FORMULATION V

Given fixed .cost of plane at port 4 is 100.

Plane 1: 4: 2-4-7-10-8-9-1-3-5-6: 545

Thus, Total Cost: 645+

DISCUSSION

165

Although the opti.mal solution to formulation IV is found with 3

planes, formulation III failed in achieving this result in a reasonable

time. If run had not been terminated then, formulation III would

eventually reach that solution also. In several examples such a

case occurred, which indicates that Little1s Branch and Bound

algorithm functioning better on formulation IV.

EXAMPLE C

Same D matrix as in Example A and B. Load and unload times

are also the same.

LOADS: INITIAL LOCATIONS OF PLANES:

Number Starting Ending Airport Number of
air~ort air~ort Qlanes

1 1 2 1 0

2 4 1 2 0

3 2 4 3 2

4 4 3 4 4

5 4 2 Same as
Example

6 3 1 B

7 3 4 Minimum Total Flight: 430

8 3 2 Total Load Unload 180

9 2 1 Minimum Total Time 610

10~ 4 3

11 1 3

12, 1 4

166

167

FORMULATION I

Plane 1: 4: 11 120

Plane 2: 4: 2-12 110

Plane 3: 4: 10- 6 115

Plane 4: 3: 9- 1 120

Plane 5: 4: 5- 3 100

Plane 6: 3: 7- 4-8 115 --
TOTAL· 680

FORMULATION I I

Plane 1: 4: 11 120

Plane 2: 4: -2-12 110

Plane 3: 4: 10- 6 115

Plane 4: 3: 9- 1 120

Plane 5: 4: 5- 3 100

Plane 6: 3: 7- 4-8 115

TOTAL 680

FORMULATION I I I

Plane 1: 3: 8-3-10 130

Plane 2: 4: 6-11 180

Plane 3: 4: 5 50

Plane 4: 4: 4-7 70

Plane 5: 4: 2-1 100

Plane 6: 3: 9.,.12 130
/

I

660+

168

FORMULATION IV

Plane 1: 4: 4-6-11-8-9-12-10-7-5-3-2-1 : 610

Thus, Total Cost: 610

FORMULATION V

a) Given cost of a plane at airport 3 is 100.

Given cost of a plane at airport 4 is 100.

Plane 1: 3: 6-11-8-9-12-10-7-4-5-3-2-1: 630

Thus, Total Cost: 730 +

b) Given cost of a plane at airport 3 is 100.

Given cost of a plane at airport"4 is 200.

Plane 1: 3: 6-11-8-9-12-10-7-4-5-3-2-1: 630

Thus, Total Cost: 730 +

c) Given cost of a plane at airport 3 is 200.

Given cost of a plane at airport 4 is 100.

Plane 1: 4: 4-6-11-8-9-12-10-7-5-3-2-1: 610

Thus, Total Cost: 710

d) Given fixed cost of a plane at airport 3 is 5.

Given fixed cost of a plane at airport 4 is 10.

" . . ':'. . ~. .' : ~ .

" .1. .. ' ~ ~! ' J • ;.l '; '.' . j' '", ••• ",

, ~.

;

e) Given fixed cost of a plane at airport 3 is 2.

Given fixed cost of a p~ane at airport 4 is 2.

Plane 1: 3: 6-11-8-9-12-10-7-4-5-3-2-1: 630

Thus, Total Cost : 635 +

DISCUSSION

169

In this case, formulation IV resulted with an optimal solution

of value 610 and using only one plane. But again formulation III

failed in achieving the optimal solution in a reasonable time. The

optimal solution to formulation III has to have a value greater than

or equal to 610 as discussed in Chapter 5. In this case we can built

up the optimal solution to formulation III by simply splitting the

route obtained as a result of formulation IV as 'follows:

Plane 1 : 4: 4 35

Plane 2: 3: 6-11 160

Plane 3: 3: 8-9-12 145

Plane 4: 4: 10-7 70

Plane 5: 4: 5-3 100

Plane 6: 4: 2-1 100

TOTAL 610

By this way the optimal solution to formulation III has been

obtained with optimal value 610. In the following example sjmilar

decomposition are applicable.

170

EXAMPLE D

Same D matrix as Examples A, B, and C. Load and unload

times are the same.

LOADS:

Number Starting
. a irQort

1 1

2 4

3 2

4 4

5 4

6 3

7 3

8 3

9 2

10 4

11 1

12 1

13 3

14 3

15 3

Ending
ciirEort

2

1

4

3

2

1 Same as
4 Example

C
2

1

3

3

4

2

2

4

INITIAL LOCATIONS OF PLANES:

Airport Number of
E1anes

1 0

2 0

3 3

4 4

Minimum Total Flight: 510

Total Load Unload 225

Minimum Total Time : 735

171

FORMULATION I

Plane' 1: ,4: 2-11 135

Plane 2: 3: 10-6 135

. Plane 3: 4: 5-12 135

Plane 4: 3: 13-9-1 135

Plane 5: 3: 8-3-4 . : 1 ~if)

Plane 6: 4: 7-14 120

Plane 7: 4: 15 55

TOTAL 845

FORMULATION I I

Plane 1: 4: 2-11 135

Plane 2: 3: 6-12 135

Plane 3: 3:, 13-9-1 135

Plane 4: 3: 15-5-3 135

Pl'ane 5: 4: 7-10-8 135

Pl ane 6: 4: 4-14 80

TOTAL' 755

FORMUTAlON III

Plane 1: 3: 7 35

P1,9.ne 2: 3: 6-1-11 235

Plane 3: 4: 13 85

Plane 4: 4: 2-5-3-10: 220

Plane 5: 3: 8-9-12 145

Plane 6: 4: 14 65

P,lane 7: 4: 4-15 70

TOTAL 845+

FORMULATION IV

Plane 1~ 3: 6-11-15-10-14-9-12-5: 425

Plane 2: 4: 2-1 100

Plane 3: 3: 7-4-13-3 165

Plane 4: 3: 8 45

TOTAL 735

FORMULATION V

a) Fixed cost of a plane at airport 3 is 100.

Fixed cost of a plane at airport 4 is 100.

Plane 1: 3: 6-11-15-10-14-9-12-5-13-3-2-1-7-4-8: 795

Thus~ Total Cost 895+

b) .Fixed cost of a plane at airport 3is 200:

Fixed cost of a plane at airport 4 is 100.

Plane 1: 4: 6-11-15-10-14-9-12-5-13-3-2-1-7-4-8: 815

Thus, Total Cost : 915+

DISCUSSION

Note that the optimal solution to formulation II utilizes

172

only 6 planes, although we have 7 available. This case is mentioned

in Chapter 3. That is, we can reach to the optimal solution to BRP

by using less than the given number of planes while applying the

algorithm developed in this thesis.

173

EXAMPLE D WITH THE PLANE AVAILABILITY AS FOLLOWS:

Airport Number of
elanes

1 0

2 0

3 2

4 4

FORMULATION I

Plane 1: 4: 2-11 135

Plane 2: 3: 6-12 135

Plane 3: 3: 13-9-1 135

Plane 4: 4: 5-3-10 135

Plane 5: 4:4-15-8 135

. Plane 6: 4: 7-14 120

TOTAL 795

FORMULATION I II

Plane 1: 3: 14-9-12 145

Plane 2: 4: 6-11 ,180

Plane 3: 4: 4-13-3-7-10 220

Plane 4: 4: 2-1-8 175

Plane 5: 4: 5 50

Plane 6: 3: 15 35

TOTAL 805+

FORMULATION IV

Plane 1: 3: 6-11-15-10-14-9-12-5: 425

Plane 2: 4: 2-1

Plane 3: 3: 7-4-13-3~8

FORMULATION V

: 100

: 230

TOTAL 755+

a) Fixed cost of a plane at airport 3 is 100.

Fixed cost of a plane at airport 4 is 100.

Plane 1: 3: 6-11-15-12-14-9-12-5-13-3-2-1-7-4-8: 795

Thus. Total Cost 895+

b) Fixed cost of a plane at air'port 3 is 200 .

. Fixed cost of a plane at airport 4 is 100.

Plane 1: 4: 6-11-15-10-14-9-12-5-13-3-2-1-7-4-8: 815

Thus, Total Cost : 915

EXAMPLE 0 WITH THE PLANE AVAILABILITY AS FOLLOWS:

Airport Number of
e1anes

l 0

2 a

3 1

4 5

174

FORMULATION I

Plane 1: 4: 2-11 135

Plane 2: 3: 6-12 135

Plane 3: 4: 5-9-1 135

Plane 4: 4: 10-8-3 130

Plane 5: 4: 13-14 140

Plane 6: 4: 4-7-15 125

TOTAL 800

EXAMPLE D WITH THE PLANE AVAILABILITY AS FOLLOWS:

FORMULATION I

Plane 1: 4: 2-11

Plane 2: 3: 6-12

Plane 3: 3: 13-9-1

Plane 4: 4: 5-3-10

. Plane 5: 4: 4-15-8

Plane 6: 3: 7-14

TOTAL

Airport

1

2

3

4

135

135

135

135

135

100

775

Number of
planes

o

o

3

3

175

EXAMPLE E

1

2 30

D = 3 65

4 40

5 30

30

30

35

60

65

30

20

20

40

35

20

35

90

60

20

35

Loading time : 10

Unloading time: 5

176

Actually airport 5 is added to Example A.

LOADS: INITIAL LOCATIONS OF PLANES:

Number Starting Ending Airport Number of
a ireort airport e1anes

1 1 2 1 0

2 4 1 2 ·0

3 2 4 3 0

4 4 3 4 5

5 4 2 5 2

6 3 1 Same as
Example

7 3 4
·C

Minimum Total Flight: 560

8 3 2 Total Load Unload : 255

9 2 1 Minimum Total Time : 815

10 4 3

11 1 3

12 1 4

13 3 2

14 3 2

15 3 4

16 5 1-

17 5 3

177

FORMULATION I

Plane 1: 4: 2-11 135

Plane 2: 4: 10-6 115

Plane 3: 5: 16-1--9 135

Plane 4: 4: 5-12 135

Plane 5: 4: 4-13-3 130

-Plane 6: 5: 17-7-8 135

Plane 7: 4: 15-14 120

TOTAL 905

FORMULATION II

Plane 1: 4: 2-11 135

Plane 2: 4: 10-6 115

Plane 3: 5: 16-1-9 135

Plane 4: 4: 5-12 135

Plane 5: 4: 4-13-4 130

Plane 6: 5: 17-7-8 135

Plane 7: 4: 15-14 120

TOTAL 905

FORMULATION II I

Plane 1: 4: 4-13-3-10

Plane 2: 4: 6-1-11

Plane 3: 4: 7

Plane 4: 4: 2-5-14-9-12

Plane 5: 4: 8-1S

Plane 6: 5: 16

Plane 7: 5: 17

TOTAL

FORMULATION IV

P1 ane 1: 4: 2

Plane 2: 5: 16-12-5

165

255

55

320

130

45

35

1005+

55

150

Plane 3: 5: 17-15-10-13-3-7-6-11-14-9-1: 570

Plane 4: 4: 4-8 80

TOTAL 855+

FORMULATION .v

a} Given: Airport

4

5

Fixed cost of a plane

100

100

Plane 1: 5: 17-16-12-S-13-3-6-11-15-12-14-9-1-7-2~4-8: 955

Thus, Total Cost :1055+

178

179

-
b) Given: Ai q~ort Fixed cost of a ~lane

4 200

5 100

Plane 1: 5: 17-16-12-5-13-3-6-11-15-10-14-9-1-7-2-4-8: 955

Thus, Total Cost 1055+

c) Given: Airport Fixed cost of a plane

-4 100

5 _200

Plane 1: 4: 6-1-7-2-4-15-10-14-9-11-17-16-12-5-13-3-8: 995

Thus, Total Cost 1095+

d) Given: Airport Fixed'costof a ~lane

-4 10

5 5

Plane 1: 5: 16-12-5-6-11-14-9-1 475

Plane 2: 5: 17-15-10-13-3-7-4-8-2 425

TOTAL 900

Thus, Total Cost: 910+

180

EXAMPLE F.

1 30 65 40 90 85

2 30 30 . 35 60 95 Loading time . 10 .
3 65 30 20 20 100 Unloading time: 5

D =
4 40 35 20 35 75

5 90 60 20 35 - 110

6 85 95 100 65 110

LOADS: INITIAL LOCATIONS OF PLANES:

Number Starting Ending Airport Number of
aiq~ort a ireort . elanes

1 1 2 1 0

2 4 1 2 0

3 2 4 3 3

4 4 3 4. 2

5 4 2 .5 2

6 3 1 6 0

7 . 3 4

8 3 3 Minimum Total Flight: 705

9 2 1 Total Load Unload : 270

10 4 3 Minimum Total Time : 975

11 1 3

12 1 4

13 3 2
,/

14 3 2

15 3 4

16 5 1

17 5 3

18 6 1

181

FORMULATION I

Plane 1: 4: 18 175

Plane 2: 3: 15-16 175

Plane 3: 5: 14-11 175

Plane 4: 3: 6-2 175

Plane 5': 4: 5-12-4 170

Plane 6: 5: 17-8-9-1 170

Plane 7: 3: 7-10-13-3 165

TOTAL 1205

FORMULATION I I

Plane 1: 4: 18 : 175

Plane 2: 3: 15-16 175

Plane 3: 5: 14-11 175

Plane 4: 3: 6-2 175

Plane 5: 4: 5-12-4 170

Plane 6: 5: 17-8-9-1 170

Plane 7: 3: 7-10-13-3 165

TOTAL 1205

FORMULATION III

Plane 1: 3: 6-2-4-14

Plane 2: 5: 16-11

Plane 3: 3: 8-9-1-3-13

Plane 4: 4: 18-12

Plane 5: 4: -10

Plane 6: 3: 7-5-15

Plane 7: 5: 17

TOTAL

FORMULATION IV

Plane 1: 3: 7-5

Plane 2: 5: 16-11-14-9-1

Plane 3: 4: 2

Plane 4: 3: 6

295

185

250

230

35

150

35

1180+

85

320

55

80

Plane 5: 5: 17.;.15-18-12-10':13-3-4-8: 510

TOTAL 1050

FORMULATION V

a) Given: Airport

3

4

5

Fixed cost of a plane

100

100

100

182

Plane: 1: 5: 17-16-11-15-18-12-10-14-9-1-7-5-13-3-6-2-4-8: 1230

Thus, Total Cost 1330+

b)

c)

183

G;'ven: Airport Fixed cost of a plane

3 100

4 200

5 100

Plahel:5: 17-16-11-15-18-12-10-14-9-1-7-5-13-3-6-2-4-8: 1230

Thus, Total Cost : 1330+

Given: Airport. Fixed cost of a plane

3 100

4 100

5 200

..
Plane 1: 3: 7-4-13-3-17-16-11-15-18-12-10-14-9-1-6-2-4-8: 1245

Tbus, Total Cost: 1345+

Fixed cost of a plane

o

5

10

75

85

320

80

Plane 5: 5: 17-15-18-12-10-13-3-4-8: 510

TOTAL 1070

Thus, Total Cost: 1090+

184

EXAMPLE G

1 30 40 50 65

2 30 55 35 25 Loading time : 45

,0 = 3 40 55 30 70 Unloading time: 25

4 50 35 30 20

5 65 25 70 20

LOADS: INITIAL LOCATIONS OF PLANES:

Number Starting Ending ,Airport Number of ,
aiq~ort airEort Elanes

1 1 2 1 4
2 4 2 2 0

3 2 3 3 0

4 3 1 4 4

5 1 4 5 0

6 3 4
7 5 4
8 2 5 Minimum Total Flight: 780

9 1 5 Total Load Unload 1400

10 5 3 Minimum Total Time : 2980

11 4 3
12 4 3
13 3 2
14 4 2

15 4 2
16 2 4'

17 2 1

18 1 3

19 4 5

20 4 1

185

FORMULATION I

Plane 1: 4: 14-17-1 305

Plane 2: 4: 15-16-19 300

P1 ane 3: 4: 11-6-12 300

Plane 4: 4: 2-8-7 290
.

Plane 5: 1 : 3-20 305

Plane 6: 1: 4-9 285

Plane 7: 1 : 5-10 280

Plane 8: 1 : 18-13 235

TOTAL 2300

FORMULATION II

Plane 1: 4: 14-17-1 305

Plane 2: 4: 15-16-19 300

Plane 3: 4: 11-6-12 300

Plane 4: 4: 11-6-12 290

P1 ane 5: 1: 3-13 280

Plane 6: 1 : 9-10 275

Plane 7: 1: 5-20 240

Plane 8: 1: 18-4 220

TOTAL 2210

FORMULATION III

Plane 1: 1 : 5-16

Plane 2: 1 : 18

Plane 3: 4: 12-13-17

Plane 4: 4: 11-6-19

Plane 5: 4: 14

Plane 6: 1: 9-10-4

Plane 7: 1 :1-3-16

Plane 8: 4: 2-8-7-20

TOTAL

FORMULATION IV

P1 ane 1: 1: 1

Plane 2: 4: 2-3

225

110

325

290

105

385

385

410

2235+

100

230

Plane 3: 4: 11-4-5-14-16-20-18-13-8: 990

Plane 4: 4: 12-6-15-17-9-7-19-10 : 860

TOTAL 2180

FORMULATION V

a) Given: Airport' Fixed cost of a plane

1

4

100

100

186

Plane 1: 1: 1-3-19-10:15-17-9-7-14-16-20-18-13-8-12-6-11-4-5-2:2260

Thus, Total Cost

b) Given: Airport

1

4

Fixed cost of a plane

200

100

187

Plane 1: 4: 2-1-3-11-4-5-12-6-15-17-9-7-14-16-20-18-13-8-19-10: 2260

Thus, Total Cost 2360+

188

APPENDIX B

Combination Values of M'and r

M/r 1 2 3 4 5 6

10 10 45 120 210 252 210

11 11 55 165 330 462 462

12 12 66 220 495 792 924

13 13 78 286 715 1287 1716

14 14 91 364 1001 . 2002 3003

15 15 105 455, 1365 3003 5005

16 16 120 560 1820 4368 8008

17 17 136 680 2380 6188 12376

18 18 153 816 3060 8568 . 18564

19 19 171 . 969 3876 . 11628 27132

20 20 190 1140 4845 15504 38760

21 21 210 1330 5985 20349 54264

22 22 231 1540 7315 26334 74613

23 23 253 1771 8855 33649 100947

24 24 276 2024 10626 42504 134596

25 25 300 2300 12650 53130 177100

26 26 325 2600 14950 65780 230230

27 27 351 2925 17550 80730 296010

28 28 378 3276 20475 98280 376740

29 . 29 406 3654 23751 118755 475020

30 30 435 4060 27405 142506 593775

31 31 465 4495 31465 169911 736281

32 32 496 4960 35960 201376 906192

33 33 528 5456 40920 237336 1107568

189

Permutation Values of M and r

M/r 1 2 3 4 5 6

10 10 90 720 5040 30240 151200
11 11 110 990 7920 55440 332640
12 12 132 1320 11880 95040 665280
13 13 156 1716 17160 154440 1235520
14 14 182 2184 24024 240240 2162160
15 15 210 2730 32760 360360 3603600
16 16 240 3360 43680 524160 5765760

17 17 272 4080 57120 742560 8910720

18 18 306 4896 73440 1028160 13366080

19 19 342 5814 93024 1395360 19535040

20 20 380 6840 116280 1860480 27907200

21 . 21 420 7980 . 143640 2441880 39070080

22 22 462 9240 175560 3160080 53721360

23 23 506 10626 212520 4037880 72681840

24 24 552 12144 255024 5100480 96909120

25 25 600 13800 303600 6375600 127512000

190

APPENDIX C

C.l SIMPLE PATH GENERATION

C.l.l Definitons

a) NN,:' number of nodes

b) S: the source node

c) T: the terminal node

.' d)

W(I,J) =

length of arc (I,J); if dones I and J are
directly connected by an' arc.

00 ; otherwise.

e) 1; if node I is unmarked.

MARK(I) =

0; if node I is marked.

f) KTH : Current path counter shows the number of simple paths
yet generated.

g) DMAX: Maximum distance to generate paths.

h) LEN : Leng~h of current partial path.

i) PATH: Array that contains current partial path.
/

j) LBOY: Number of elements on current partial path.

k) ~(1): Starting node of current arc.

1) A(2): Ending node of current arc~

C.1.2 Flowchart 1

. STEP 1
Get the input data
READ; NN,DMAX
READ; ((N(1,J),J=l,NN),1=l,NN)

Set: LEN=O

KTH=O

MARK(1)=' for 1=l, ... ,NN

FOR 1:1 to NN
(avera 11 nodes)

<Check if there is an a~ext I)
W(S,1) < 00

Set A(l)=S

A(2):1

MARK(S),MARK{T)=-l

LBOY=l

PATH(LBOY)=S

LEN=LENtW(S,1)

ELEN=LEN

. r}.,
·{~l . ,,. ..

191

STEP 2

,--------~ Set V2:A(2)

/"

MARKeV2)= 1

Y

FOR 1=1 toNN
(o,{era11 nodes)

N

Check if there is an arc

"" ______ a_b_S(~W~(V~2~,~I)~)-<-OO--~
Iv

Check dmax ~ -y-)
abs(W(V2,1})+LEN> DMAy. Y ~Next I

N

Set: ELEN=LEN

LEN:abs(W(V2,I»)+LEN

MARK(V2)=-1

W(A(1),A(2)=-W(A(1},A(2}}

LBOY=LBOY+1

PATH(LBOY}=V2

A(l)=V2

A(2):1

C. Ne.xt, I')

(£)

192

Check if a simple
path obtained

V2=T

I Y

LBOY=LBOY+l

~ PATH(LBOY)=T.

KTH=KTH+l

record path KTH as another
simple path

LBOY=LBOY-l

LEN=LEN-W(PATH(LBOY),T)

•

193

STEP 3

Set Vl=A(l)

N

FOR I=A{2J+l to NN!

W(Vl,I)·~ 0 AND W(Vl,I) < 00

y

ELEN+W(Vl,I) > DMAX

N

Set LEN=ELEN+W(Vl,I)

A(l)=Vl

A(2)=I

194

PRINT

< Vl=S "Path generation
c.>----::;;t completed"

.-~-. ----r-I-N'

W(I,Vl) ? _00 AND W(I,Vl) ~ 0

Y

Set: A(l)=I

A(2)=Vl

MARK(Vl)=l

W(A(1),A(2))=abs(W(A(1),A(2))

LBOY < 1

Y

195

LEN=O

ELEN=O

LEN=LEN+abs(W~bs(PATH(J~l),PATH(J)))

ELEN=LEN

196

C.2 ELIMINATION

C.2.1 Definitions

a) MC :'Counter of paths eliminated.

b) PATH Path currently read.

c) LBOY Number of elements on current path (the load cardinality)

d) LEN Length of current path.

e) NAIR Initial airport of current path.

f) SUM Demand of current path.

g) TDMAX: Maximum path demand.

h) ADJ Array containing paths which are eliminated and
stored in memory.

i) KLEM Array containing number of elements of paths in ADJ.

j) DIS Array containing lengths of path in ADJ.

k) AIR Array containing the initial airports of paths in ADJ.

1) POEM Array containing demand of paths in ADJ.

m) CONT Occurrence of path demand control array.

C.2.2 Flowchart 2. Elimination of Paths

FOR P = 1 to KTH
(overall simple paths generated)

Get Path P from mass storage

READ; LBOY, LEN, NAIR, (PATH(J , J=l,LBOY

C~lculate demand of Path

SUM: Sum of demands of nodes on path P
and demand of airport

SSUM = SUM·

SUM > TDMAX ~Y--=;,t SUM = TDMAX

CONT(SUM)= 0 CONT(SUM)= MC+l

N

197

FOR PP=CONT(SUM) to MC

Check demands
POEM PP =SSUM

y

I

N

Check initial airports
'" AIR(PP)=NAIR
"'--~..,---

Y

CONU(J)=O, J=l,NN

CONU(PATH (J))=l, J=l,LBOY

FOR J=l, to LBOY
(overall nodes on Path P)

CONU(AOJ(PP,J))=l

198

LEN > DIS{PP)

N

ADJ{PP,J)=PATH{J),J=l,LBOY

DIS(PP)=LEN

Path P is not repeated, record it

Set MC=MC+l

ADJ{MC,J)=PATH{J), J=l,LBOY

DISC(MC)=LEN

AIR(MC)=MAIN

KLEM{MC)=LBOY

PDEM{MC)=SSUM

Record all paths in ADJ
MC is the number of paths

after removal

199

C.3 BRP ALGORITHM

C. 3. 1 Definitions

a) R

b) M

c) P

d) RP

e) MAIR

f) TOTAL

g) GMAX

h) USET

i) LSET

j) KSET

k) KRT

1) KPL

m) KLD

0) D

the number of airports.

the number of loads.

the number of planes.

the number of airports with planes initially.

Plane availability at airports initially

200

MAIR(I): number of planes at airport I initially.

Total frequency array

TOTAL(I): total frequency of load I in path list.

Maximum number of members per path for the paths
within the path list.

Number of paths in the path list.

Top search limit for the first plane.

Bottom search limit.

Top search limit.

Current number of planes used in partial solution OPT.

Current number of loads covered by partial solution OPT.

Airport-to-airport flight time matrix.

D(I,J): Time required for a non-stop flight from
airport I to airport J.

The following variables and arrays are express~d in terms of

the nodes in the transformed network:

a) AIRMAX Plane availability at airports initially

AIRMAX(I): number of planes at airport I initially.

(

201

b) AIRMED Current plane usage from each airport.

c} PATH

d} LBOY

e) LEN

f} NAIR

rg} ADJ

h} KLEM

i} DIS

j} AIR

k} ADRES

1 } FRE

m} FIRST

\

AIRMED(I): number of planes used from airport I.
/

Ith path taken from mass storage.

Number of loads on Ith path (member size).

Length of Ith path.

Initial port of Ith path.

The sorted path list.

Array containing number of loads on paths within
the path list.

Array containing length of path within the path list.

Array containing starting airports of paths within
the path list.

The address table between the path lists.

The frequency matrix

FRE (I,J) = number of times node J occurred on
paths with load cardinality i in
the path list; if J > 1.

number of disjoint loads on paths
with load cardinality i within the
path list; if J = 1.

The first occurrence matrix.

FIRST (I,J) = Path number of first occurrence of
node J occurred on paths with load
cardinality i in the path list; if J > 1.

Path number of first occurrence of a
path with load cardinality i within
the path list; if J = 1.

n} YFIRST Firs occurrence of members in the new list.

YFIRST(I} = first occurrence path number of a path
with load cardinality i in the new list.

0) SFIRST First occurrence of loads in the new list.
SFIRST(I} = First occurrence path number of load

I in the new list.

p) COVER

q) OPT

Indicates whether loads are covered by current

partial solution or not.

COVER(I) = 1 if load I is covered.

a otherwise.

Current partial solution.

202

OPT(I) : shows the number of paths in old list
assigned to Ith plane in current partial
solution.

r) I membered path J: The path J (i.e. set SJ) which covers

I loads (I rows).

s) node J The meaning of nodes are kept the same as in the

network formulation in Section 3.1~ Except,

source node (node 1) and terminal node (node T)

have no meaning furthermore.

C.3.2 Flowchart 3

Get the Input Data

Read, R

Read, MAIR(I), 1= 1,R

Read, M

Read, LOAD(I,1),LOAD(I,2), I = 1,M

Calculate:
R

P = L MAIR(I) and RP
1=1

Q = M/P

K = M-Q*P

I Q+l ,.i f K > a
Ml =

IQ , if K - a
Set: AIRMAX(I) to maximum plane availability

in airport I

Set: GMAX = a

ELEN = a
LS = 2+RP

LB = HRP M

FRE(I,J), FIRST(I,J) = 0, I = 1,MMAX

J = 1 ,HRP+M

I = a

II

A

203

204

1=1+1
. PRINT

Y 'There cannot,be
Is the end of mass storage >----.:71 any sol ution

achieved? among paths in
the mass-storage"

N

Get a new path from mass
storage and related para
meters
READ; LBOY,LEN,NAIR,

(PATH(J)),J=l,LBOY)

Check for a length change
LEN > ELEN

Y

N

,/can there be a solution?

Y

y~

N

205

IGO SUB: BLOCKING

GO SUB: SEARCH

Is there a sol uti on? rl· y II~~!N~~~~~~~ --
_____ ---: ___J!/ solution to

BRP LanlJ..I;..-1 --

STOP

GO SUB: RECORD

SUBROUTINE: RECORD

IIRecord the 11th path
read from mass storage
to path list ll

LBOY > GMAX

Y

GMAX=LBOY
FIRST(LBOY,l)=I

1

N

FRE(LBOY ,NAIR)=FRE(LBOY ,NAIR·)+ 1 I

FIRST (LBOY,NAIR)=O N

Y

FIRST(LBOY,NAIR)=I

206

FOR J=l, LBOY
(overall loads o~

path 1)

NOD=PATH(J)
FRE(LBOY,NOD)=FRE(LBOY,NOD)+l

FIRST (LBOY,NOD)=O

FIRST(LBOY,NOD)=I
FRE(LBOY,l)=FRE(LBOY,l)+l

NEXT J

RETURN

207

Calculate Total
Load Frequencies:

Choose Method A

SUBROUTINE: BLOCK

FOR J=l,M
(Overall loads)

FOR G=l, GMAX
(Overall member sizes)

TOTAL(J)=TOTAL(J)+FRE(G.J+l+RP)

Next J

TCOUNT=USET

there an unbalanced distribution·
of load frequencies?

~ .. ,

Choose Method B

208

Blocking with
Method A:

FOR KKK=l ,~1
(Overall loads)

Choose the unconsidered load with
least frequency:

TOTMIN= min [TOTAL(KK)]
KK=[l ,. ~ ,M]

TOTL: the load KK where TOTMIN
occurred

FOR J=USET, FIRST(l~TOTL+l+RP),-l
(Over paths covering TOTL)

t ..

209

Check Path J ever 10cate~~~> ___ Y >~(Next J J
AIR(J) < 0 / . _

FOR KK=l, KLEM(J)
(Overall loads on path J)

,
A~eck .the pa th J covers load TOTL
~J(J,KK)=TOTL+l+RP

, vJ
I

N
Next KK

Locate path J in the new list
AIR(J)J= -AIR(J) I---->~ Next J
ADRES (TCOUNT) =J
TCOUNT=TCOUNT-l

210

Next KK

TOTAL(TOTL)= 00

Next KKK

AIR(J)=-AIR(J), J=l,USET

• I

Blocking with
Method B:

FOR G=GMAX, 1, -1
(Overall member sizes)

FOR J=USET, 1, -1
(Overall ·paths)

<Check if path J covers G loads
KLEM(J)=G

. .--.;-----

y

Locate Path J in the new list
ADRES (TCOUNT)=J
TCOUNT=TCOUNT-l

Next G

211

N

Calculate First
Occurrance Arrays
on new Path List:

YFIRST(G)=O, G=l,GMAX
SFIRST(J)=O, J=l,l+RP+M

<:MAX=MMAX

Y

/

N

YFIRST(G)=USET, G=GMAX+l,MMAX

FOR J=l, USET
(Overall paths)

KK=ADRES(J)
KM=KLEM(KK)

Check number size KM yet occurred
YFIRST(KM)=O

Y

YFIRST(KM)=J

212

N

~eck if path J has only one mem~ N
~ KM=l

y

<Check the load c~vered by Path J
yet occurred

SFIRST(ADJ KK 1 =0

y

SFIRST(ADJ(KK,l))=J

Next J

RETURN

N

213

Initialize for
Search:

Method A

SUBROUTINE: SEARCH

CRT(J)=SFIRST(J), J=l,M

Blocking Method Used?

LSET= max [SFIRST(J)]
J=2+RP, .. ,1+RP+M

NNN=USET-LSET+l
r·1MM=O, KPL=O, KLD=O
COVER(J)=O, J=l, l+RP+M
AIRMED(J)=O, J=l,P
KKSET=USET

214

Method B

Determine Search
Limits:

, KPL=O

I MMM1MM+l 1
1

PRINT
"There cannot be
any solution in
the given path list"

~
KSET=KKSET
KKSET=KKSET -1
KRT=LSET

Y Check inconsistency
KSET > KRT

REML=M-KLD
REMP=P-KPL
YUK=REM/REMP

N

MRT=YFIRST(YUK)

215

Y

LRT= max [CRT(J)]
J=l , .. ,M

KRT=max[MRT,LRT]

N

Search for a
Feasible path:

FOR J=KSET ,KRT":l
(Overall paths between

search limits)

KADR=ADRES(J)
PORT=AIR(KADR)

Chec k number of planes used from PORT >----'-~
AIRMED(PORT)=AIRMAX(PORT)

N

FOR LL=l, KLEM(KADR)
(Overall loads covered by path J)

NOD=ADJ(KADR,LL)

Check load NOD covered by partial
solution

COVER(NOD)=l

N

Next LL

,

216

Include path J
to partial solution:

KPL=KPL+l
OPT(KPL}=J
AIRMED(PORT}=AIRMEO(PORT}+l
KZ=O

FOR LL=l,KLEM(KADR}
(Overall loads or path J)

KLD=KLD+l
NOD=ADJ(KADR,LL}
CRT(NOD}=O
COVER{NOD}=l

y.

217

~~ KZ=SFIRST(NOD}

N

Next LL

Check if all loads. covered >-~
KLD.EQ.M

N

PRINT
"Optimal
solution to
BRP Land

Method A

Delete the last
path added to
partial solution:.

Method B
Blocking Method Used?

Next J

KK=OPT(KPL)
KADR=ADRES(KK)
PORT=AIR(KADR)
AIRMED(PORT)=AIRMED(PORT)-l
KPL=KPL-l

FOR LL=l, KLEM(KADR) , I
(overall loads on deleted path)

KLD=KLD-l
NOD=ADJ(KADR,LL)
CRT(NOD)=SFIRST(NOD)
COVER(NOD)=O

218

KSET=K-l

<

Select WORST
Load:

SUBROUTINE: FEASIBILITY CHECK

Check Coverage > Y

FRE(1,l) < M

Check member size Y

GMAX < Ml

GMAX=Ml

Minimum Configuration check
FRE(Ml,l) < Ml*K

Set GMIN= co

FOR J=l ,M
(Overall loads)

FOR G=l,GMAX
(Overall member sizes)

Next G

219

~0

Calculate
minimum plane
requirement:

y
GG < GMIN GMIN=GG

N

REM=Q-GMIN

Worst Load Check y
FRE(Ml,1) < Ml*(K+REM)

N

TPLANE=O
CON(J)=O, J=l,M
LEFT=Q

220

FOR G=GMAX,l,-l
(Overall member/sizes)

LLEFT=O

FOR J=l,M
(Overall loads)

FRE(G,J+l+RP)=O

N

Next J

",--_CO_N_(_J)_=..,l~ ___ ';>-{ Next J)

N

CON(J) = 1
LLEFT = LLEFT+ 1

LEFT=LEFT+LLEFT
TT=LEFT/G
TPLANE=TPALEN+TT
LEFT=LEFT-TT*G

221

I
~

Check Minimum Plane Requirement
TPLANE 2. P

y

PRINT
'All feasibility checks
passed, there may be

.a feasible solution"

RETURN

PRINT
"Th ere cannot be any
solution in the given
path 1 ist ':

222

N

C.4 SCHEDULING

C.4.1 Definitions

a) USE(I)

b) QUSE(I)

c) QUE(I,J)

d) Cor·1PT (I)
(

e) POINT(I)

. 223

number of planes serviced at Ith airport at

given time.

number of planes waiting at Ith airport at

given time.

indicating Jth plane waiting at Ith airport.

completion time of current job of plane I.

indicates the sequence number of load that

plane I currently deals.

f) STATUS(I) status of plane I. '

g) KPL

h) RUT(I)

i) TAIR

..
m 1; if plane I flying empty.

= 2; if plane I flying full.

= 3; if plane I loading.

= 4; if plane I unloading.

= 5; if plane I waiting for loading.

= 6; if plane I waiting for unloading.

= 7; if plane I finished the job.'

number of planes used in given BRP.

indicates the path with Ith plane assigned.

array to transform meaning of airpo'rts.

C.4.2 Flowchart 4

INITIALIZE

For K = 1 KPL

(Overall planes)

Set: POINT(K) = 1

,N

,
STATUS(K) = 1

ORIG = TAIR(AIR(RUT(K»)
DES = LOAD(ADJ(RUT(K),l),l)

ORIG = DES
y

COMPT(K) = D(ORIG,DES)
QUSE{ORIG)=QUSE(ORIG)+l
QUE(ORIG,QUSE(ORIG)=K
STATUS(K) = 5
Cor~PT (K) = 00

,
Next K

\

B

224

UPDATE CLOCK

FOR K=l,KPL

y

PRINT
liThe feasible
solution found'

STOP

a CLOCK=CLOCK
CLOCK= min GCOMPT(K)]

K=l,KPL

225

N

UPDATE SLACKS OF PLANES

WAIT=CLOCK-OCLOCK

FOR K=l,NPORT
(Overall airports)

N

FOR KK=l,QUSE(K)
(Over planes in queue of

port K)

LPL = QUE(K,KK)
SLACK(LPL) = SLACK(LPL)-WAIT

226

Next K

PRINT

SLACK{LPL)
y "Plane LPL cannot

>-----.:~ finish job due

N

Next KK

to que at airpor
k"

STOP

UPDATE PLANE STATUS

FOR K = 1, KPL
(Ove~all planes)

Check if job completion
time of plane K equals

I clock
COMPT(K) = CLOCK

POS = POINT(K)
LPOS = AD"J(RUT(K) ,POS)

Is it end of a full flight
STATUS(K) = 2

y

DES = LOAD(LPOS,2)
QUSE(DES) = QUSE(DES)+l
QUE(DES,QUSE(DES))=K
COMPT(K) = 00

STATUS(K) = 6

Next K

\.

227

Next K

. ~ Is it end of loading
STATUS(K) = 3

y

; ORIG = LOAD(LPOS,l)
: USE(ORIG) = USE(ORIG)-l
. DES = LOAD(LPOS,2)
I COMP(K)= CLOCK+D(ORIG,DES)

, Is it end of unloading
STATUS(K) = 4

ORIG = LOAD(ADJ(RUT(K),POS),2)
USE(ORIG) = USE(ORIG-l

"POS = Mr~AX

N

LLPOS = ADJ(RUT(K),POS+l)

y

228

~--y--~ STATUS(K) = 7

N

(

DES = LOAD(ADJ(RUT(K).POS+l},l}
POINT(K} = POS+l

y N

229

QUSE(DES} = QUSE(DES}+l
QUE(DES,QUSE(DES}} = K
COMPT(K} = 00

COMPT(K} = CLOCK+D(ORIG,DES}
STATUS(K} = 1 .

. STATUS (K} = 5

(.

DES(LOAD(LPOS,l}
QUE(DES,(DES}) = K
COMT(K) = 00

STATUS(K} = 5

Next K

I--~>C Next K)

DECIDE ON PRIORITY

FOR K = 1,NPORT
(Overall airports)

~--y-")~((Next K)

Is capacity enough to handle queue?/---~
"" CAP(K) - USE(K) ~ QUSE(K)

FOR KK = 1,QUSE(K)

LPL = QUE(K,KK)
QUE(K,KK) = 0
USE(K) = USE(K)+l
QUE(K) = QUE(K)-l

Y.'r--< Is the plane KPL waiting for loading?.7-----.N
STATUS(KPL) = 5

230

I

TT = TL
STATUS(LPL) = 3

TT = TU
STATUS(LPL) = 4

..... COMPT(LPL) = CLOCK+TT 'iE-------' '-----.......,.

Next K

N

MIN = 00

I

. FOR KK = 1,QUSE(K)

LPL = QUE(K.KK)

N

Next KK

LPL = QUE(K,CK)
QUE(K,CK) = 0

y
>---~ MIN = SLACK(LPL)

CK = KK

231

y
>-----:~ FOR KK = CK+l,QUSE(K)

N

QUSE(K) = QUSE(K)-l
USE(K) = USE(K)+l

Is the plane KPL
waiting for loading
STATUS K = 5

TT=tL ,.
STATUS(LPL)=3

QUE(K,KK-l)= QUE(K,KK)

N

I TT=TU
STATUS(LPL)=4
. I

COMPT(LPL) = CLOCK+TT

232

FOR K = 1,NPORT
(Overall airports)

Check if the que capacity
is violated

QUSE(K) > QCAP(K)

233

PRINT
IIQueue capacity
of airport K
is violated ll

APPENDIX D

==::==?~~~,:==-~-,-=--7: -:. '.-:-:::.- '='::-:-~-:-'::?--::::';":-:.::.-.- ~.-:::--:::::-:-.:::_
~. - - ., -'. -

, " - . .
_... ..- -, - .

..• ------- , ..

- NJMBER OF.' PORTS - : ~ -
-N.J,M.8ER ?F. LOI\PS_:.:,~:-h~cl~

.-. ---- --- --. -'- .. - '

-. - -'- ----- ... _------_. - - .. ,-----_ ... -. _____ .• _____ . ___ • ____ ·~~_··_R

LO,ADING PI..USUNLOADING TI '.1E : .15:
. _. ,. • I:.... . -=:=: -:. _ ~_~. _ . -:'

~~XIMU~D~STANCE. PE~~ITTE9'TO G[NtRATt PATH~:-~5~
- -,-' . . _.'" ._. - _. -'- .' ._. - - --

. __ . -- .. _- --.' -

. _ .. - ... ' -- _ - -- - ._. .-.-.::::.--...:=..:.......::.::.=:.:.:.:::...:.-.::: .. -.:: .:=::";:.-::":: ~=..::..=.=.:::..

._--._. - --.---.----.-------------.-.-- " .. -.-..

_.- '.-- -- ' .. - --.-~-- -. .:.....:.:..:: .. _-, - _.=.:.::.::.:..=:...:::.::.:::

--- -_.- - .. -~-- --._--------_._--._._----_ ... - -- .---- '-------
~.- .• =-:-:._. ___ =..:.:~:-.:...·._::. __ •·· __ ._·_:··:..::..:::.:..:_...:::.-=:.-..:::_~;:_::_-e -:-.:-.. -:'.' .. :..:-..:._:.: .. ~..:::::.:..-:: __ ._.:-_-:-_-'
::.. ~-- ::.::.::-~:~==:::--=-==~--.::.:. - ':'~'':.::-:--==----;:--~--'.'= -"~::':~=::~-=.:::=~...:-:.~~

~~~- ':;~{liJ~f~kr:~I~~4~N~A-~PIRcI~~~~I~Iti·~.y··.ct1f.T:~:·f4 i:fJi~ft~ _ ~~fI~~~'~~~~=-==~=-;~5J 
- -. -·NUMBER· :-n.F.----:t ·OADS COV='RED'::lc :: 0 :'. ..-..:..::::--::::.~::->:':::.::::::-:-::::-.. :=.:=.:~----===-:.::=~=--=-.~:..--~==::::_~I 
- .::- -=::='::::WHICrl' is·:LES5·TrlENT-{)iAC;L'OAJS-12c,=;:-,.::.::;:,~-=-=--=:,::=--====,::~-===~--:::=,::::,c::=:::-~ 

~::c~~::4;:;:J~~tJU RN"~ .~~.~ ~." f:f~_§t~, I b J _J:'f:-- _C ~ E:K -·:.c.'-'::::~: ~:f~?:f:2.5~j:~~;~-.:l~i~~~f-~~l 
f~~~~1!~-=¥~~f.~:::~~OY.:~;:l'. tE~t : -::::~3/:;}:NITIAL :e9~:r-::.:,:~-'-c:hB~~&-~~~tt~P"'-~:i-b~j 
==-_==-~~ __ ~E~~T .~~-~q~R~~.~{~~F~- A -I-= ~.~·\1~E~E_b. ~?_ATJ! ..... '._~._~~ _______ ._. __ =~~_--~_~~==--=~~--=~ 
:.. =tt~:I~~i~f:t;~ O-y:~:.;::i~i ,-:tb J ~:: ::::~:3~5:'~~i~lT I CA 8- p O~:T:~ :-:~?-, '~t=o:A'Ds:f:j~cfoVE~E-O=-fw 

~~Q~i;1~~:3:If[-'J;pQ.~:i=::Y:!~~;;-:bf:1L_; :~:.', 3?~E:{lNJ IJA ~:e:B-QHJo.::,-t~~.:!:~L~:fult{rJEg-£:n:~=§ 

~j:.,:;~~:;~:: .. ;<::-F'I~~~\ -HEC:~~'E·;..O\lI·RATFH. LENGtHS A={E ..~.:::-::::~~~.-.: :::.~=_'-"~~ii~~:-~:::.:=-::~:::-::~-~=-~i~ 
~,-' :.-.--. 5HRT--. 1E.y-K·NG .-.OR~-EA51alLITY· -.---------- ... -------:------ ----::---- ===-=0 

=~-==:c=::-:::::: NJMBER-OF'~' LOADS COV::RED:'.I s 3· -::. ..: :'·:::;:i:.~::~:.~=-=:.~H,,~:?~:~?:j:~IZ=~+i-l 
=--,,-~--,,::.: wHICH'IS-L.ESS- rHENTOTAL L'o/.\DS12' ... ------.-- -----~---

~~i';::;.:;:-:=~-~.:::,.==:Rt!yRN:5:~g:~ .. F~AS~~Bl L.!t~J=:~Sri~:~:~-:::,: .:,-::'::.:_::~:::~,;:.~~~::::~:;.::.. _ -:~::.:7.~~:::i"-"--C'~~~=J 
==---=::...=..:=-.......=:...=.:.;..:.==-.:..-::..:....:::.:-. -:;:.:~ ~.=:.: .. --=--':":::':':":''': -~..::..=--:.::: ...:. --::::':'-::::.:"::'::::::::':::-. -:':':-=:':'::.--.~.--:-::,::'.:-=-'::.-..::=.::.:.'=-=:--::: =-::::':--=.-:~: .:.::.=:---=.::::.=..=-==---.:..:-~==-=-:==== 

- -- - - - ----

~{-.~~:·NO-c:~6,.··LJ30Y ::L,:.t::E~.I': .55,-:INITIAL.PORT:- 3i ·LOAt)S-CO"EREO-:::==-5 

W!;~:J~'~:.~7 f·~Lf30Y-=-:.::- .~. '~:.LEtL ~t.,,:~.§:~-, __ -lNtrlAL. PO~I:L2-,:.. J~~.9AQ~~~9:\lJ;~';:L~1~-::~ 
::-:--=~O::-:.;- ,. B' LOOY ; . .1, LEt:I-~'_: 55, -1 "lIT 1 A~ 8Q~T :-3 'LP~-~=-=~c:Q.~~.R;~:8~Lj:~~~ 
:2::~~;--'~b--~i~9,LBOY : -l,:::L'b,J'-: --5S;::INITIAL PO;.{T :' 2, LOAJ-5--CO"EFfEb-·--'T~ 
~L ::t.'Z:~E5~~~·'·. FR 0 MH E:fE 0 ~':- PI\TH' L..EN G H-T 5 - A" E ___ __:. ~ ~o5 -. :.':_,C:: ;:~-==-=-=.C~i_t':'c{'~~~~~i::~~~~ 
___ .. _. ST.ART C;E~:KI NG F.qR I='~A~l3ILl TY .', 
-- NJ.MBER~F L~ADS COV::REDIS 0 

',:-::::-c::WH_ICi-l I;i · ... E55 THEN' TOTAl. LO~JS 12,. 
...... -f1~:rURN~- ~p,"1-FEAS.IB I l..JT't -C;.tE v K, 

. ----- --"-------
:~~._:.~_~~~i.~.:--=:~=~~: ~'=:j"~~~~~~':=--~ 

NO:::..:- -10'· LeOY,-:-l; /L~N -::~65 ,·1 NI T I Al. 

--..FRO\<1 HE,~E. 'O'lPA TH \.;.::N§.HT5 A~E 
~.-:.-~:~=-:-~- ... ~.~-. --- S!-!\-R T- ·C~E.Ct<rNG---FPR· -. Fe:"SI aI-ll TY 

---- -_.- -------, 

PORT': 3,L6ADSC:fC-h"EREb=~0ii 
, 

.: :'. :7Q •. :. -,..: ,,:,cc: ::-'':-:::~::.::::·,-:-·::~-=:·:·:'-c:: -:.c::.:::~:=· .~'~ 
.. ~,::: ~ .:-:":':' -:--:- ::-:-:-- ::::-::::=:.:::-:::..:: _. ::::-"'::---:.~=: :.::---= :::;:;'" "-~.::--' -+-.,; 

~t~..:,_~_·:':~;f,: .. _.:: NUMaER ~I:LOADS COV=:REDds .. 6 . ---.-e-_, =.-:_'c.:~--::.---::::-,:=::c~~~_:.-.::::.:~~~.::::..-'-_:-::' _ _' 
----------~---wHICH-I5- LESS T"iEN T.~TAL l..:OI\DS 12 
;;-.::l.:-::.~,:_z¥==_~:2~~r~RN, ~,R'OM::fFA~~I::~~lhf~~r tC!"iE CJ<.c:: 



46'~F:-f4-F:L.80Y-:- 2,LE!'J: 70, I'JrTrA(,. PO~T 

~()_:',:--:::l;>,LaOY : 1, LEt·j70, I'lJTIAL. PO;n 

FROM rlE~E O'J PATH L~NG~TS A~E 75 
START C~E~KI~G FP~ FEASI3ILiTY 

cN~MBER ~~ L~ADS CO~~~EJ IS 6 
WHICH IS ~ESS TrlEN TOTAL LOADS 12 
RfJJRN F~?~ FEAslaI~ITY_ CrlE:K 

-10: 16,L.B0Y : 1, LEn: 75,INITIA(,. 

'J::> : 1 7' L.f3 0 Y : 1, L E fJ: 7 5 , I NIT I A L., 

F~O~1 HE~E O'l P I\TH, L::'JGHT5 A~E 
START C~E~KING FOR ~EASI3ILITY 

PO=<T 

PO~T 

NJMBER ~F L~ADs COV::RED Is' 7 
WHICrl I~ ~ESS T~EN TOTAL ~OADS 12-
R~!~RN ~R?~ FEl\s;aILITY C~E:K 

.. 

L.s0Y 1, ~(). --:~- 1:.8 , LEH • SO, PIITIA(,. PO::(T • 

\1.Q~;~J9' L,BOY • 1, . LEt" · 9t), I'HIl Ai.._ PO~T • • - .-_ ... 

'W • 20' .LpOY • 2, ~Etl '30, I \II TIAI.. PO~T ~:; · 
'iD :- 21, LuOY • 2, LEr-J '30, I'llTIAL. PO~T · 
1·10",: 22' L,BOY -': 1, Ltr'J 90, .INt"TIAL. PO~T 

· • 

· • 
80 

FROM HE~E O'l Pj\TH L::NGHTS A~E 
-_. - ·START C~E:CKT~JG FO'R ::'EASI31LITY 

£)5 

N~MBER O~ LOADs COV::~En Is 9 
W~Icrl I~ ~ESS ~rlEN TOTAL LbADS 
.R~}URN .. R,v~ FEAS,IB ILl TY CH_E~K 

-- -- .--- - --- -~. -

~I 0 -: 23' LSOY. 1, LE~J 

~o : -24' L~OY 1, LEN 

95, INITIAL 

B5,. INITIAl.. 

Ito .: 25,ILsOY : 2, LE~J B5, INITIAL 

-c FROM HE~E O~ PATH L~~GHTS A~E 
ST~RT C~E;KrNG FPR ~EASI3ILITY 

12 

PO~T 

PO:tT 

PORT 

NJMSER ~F LOADS COV~RCD IS 10 
_.-:-:-WHICrl IS '5ESS rHnl TOTAL LOADS 12 '. 
~_.:~ ~. __ Rf,:;rURN =-,R.,"1 FEAS.H3IL.ITY CrlEC-K 

90 

.... - _.. - . -

2, LOAOSC:OV~~:::":':':;: 10·",-"=-:07-. 

?, LOA:)5_~COilE:~t:[Ld:8 

2, 

2, 

3, 

2, 

3' 
3, 

2, 

3, 

3, 

2, 

LOADS 

~OADS 

/ 

:OvEREJ 

:O'"ERED 

5 

12 

L'OAJS :OvEREb-:·~-l 2 

LOAJS:OVER.EP. -;-~-"9 
- ~ - - - - ". - - - . ,-

LOADS :Ol/EREJ.~-~.: 7 -11 
LOAJS :OvERED- _. 1'3 11 

'LOADS COvERED 6 

. -_. --~.-~-- .-

LOADS :OvEREQ_"'· 4: ~. 

LOA)S COI/_E:~E~.:.: .. __ .6 

LOADS :OVERED 10 ~ 

.. ' .. - - .. . ".. . ---_.. --,.----._-- ------- - .-' ----

~JO_'O":-26' -La-OY : 2, LEN . 90, I\jITIA(,.PO~T:?'-LOAJ5c-Co.vERED-'-·--'·1 0-·· ·5---·· , 
~lO :·27' L:B 0Y : 2, LE~I ~O, I'HTIAL PO~T 

~O : 2s,LaOY : 2, LEN ~O, INITIAL PO~T : 

. --_.... FRO"l HERE 0'1 P i\ TH L::"JGr-ITS A.~E 9S 
ST~RT C~ECKING FP~ :"EI\SI3ILITY 

"lUMBER OF LOADc COV::REJ'1s1 0 
.' -WHICH 15 ~ES~ ¥~EN TOTAL LbADS 12 
··R~luRN -ROM FCASlhILITY CHEcK 

\10 -: 29' LBOY 2, LEtl: :l5, I'JITIAL po:n : 
~o : 30' L~OY 1, LEN 95, INITIAL PORT: 

~o 31' La OY : 2, LEN 95, I'JrTrAL., PO~T 

. . _ _ FRO 'vI H E ~ EO" P 1\ T H L:: N G rl T :; A ~ E / 1 a 0 
.::::..:c ___ :::_,~ START C~E.cKI~G F,oR .~EAS·I3IlITY 

. NUMB~R JF, LOADS. COV::~ED IS 11 , 
:.---...... -.:-.~= vJ,rilCrl ·15- ... E55 THE,N TOTAL :.:,OADS 12 

2, LOADS COVERED 

3' LOADS COVEREJ 
. -- - . -- ~- _ .. ---- -' -

- : 

2, LOADS :O~EREJ 

3, LOADS :O\,lEREJ· 

3, LOA)S -=OvERE~ 

--

11 1? 

7 1~ 

-11· 6 

15 

f3 12 
- .. I 

... _ .. -- - - - . -



~,~O~=:-=~~~~.~L~l!&M~:.F'S~:;,~~.~I~lIl:~£.~;_~~j-~~ ..... ; .~:~-=t:;-=:~:::::j;::~:~:,)::I*=-:=-=::-:=::,=-=:-:~~i¥~~j;:-:=~ 
f~~tf~-5~?7lC~~Jl~r:5t:-,-~ ; .. LEr:J ·t:lOQ,·: J\!:[:LfA~~: po~r:.·.3,'·[9AOS~~P~~J~:t--D-:L~~~~fr--=C~~~6~~~ 
,NP;::::·~3t~f30'(~: ~L·L.Etl : 100, .I:~r:J1AL POR. T .. :2 '.·L-9AO~.~;.~9cl/~gEQ"c::-=·:::=:=1:=.=--=!L~:.::j 
~~ NO:": ':31+' LaDY:" 1, LErJ : '100,' I'JI riAL. po~ T :'3, L 0/\ ;5:-:0'JER::-~:'6-::::::::·-~..C:::=:=··~:=1 

[o~~(c53~L,1O¥ : 2; l£.J :fll 0; .•• I~IrtA~ p~<r ·~3;iLbAJ~h~O'VE~i9=?~=5~.c=!t:~-~ 
~~g.~6i;=~~ppr:.: :.:~2:, J-EN5<JO 0 !:·.I~lIIJ.\Lo._PO~ T. ' .. ~~~_ ::b.Q~c>~::~g .. \rER§o-:':.'::::¥3..::,:c!.'!:::::':1 

~?-~=_~~~ .~por : 2, LEN': 100, I;-.JIT-~A1.. P9~T:>2, l,.9P,)SfR:~'§?~,d:::-:::-,:.JQ,::,:::J.Ld 
::--=-=':='.::.:- . . ....... -.-- --.-.. -.- .. _ ... --.,- .. , .--j 

------ -'FRO~l HE;~'E O'J P'I\TH, L~~GrlT5 A~E' 105 .. -------.. -- .. --', 
--==-=o~-'T~~~~~i~:C~I~G .. ~9B::.FSA§}8.!k4.I'(ic·'::~:~I::.·::~~~:~·~·~~~f~=;~):~~~~~~~=~;'=~~}:fit~{~~~~~.:=:~ 
=:=~ ... -==N~. !-1

1
BEg,Of, .. LOADc.J ; COV::~E9 .. IS: 11 .. _ ..... _ ... ~.'... ~" ... _. __ ._ .. _._ ... ___ . ____ ... _. __ J 

~.c~:-~~~JB~N'!~~?~S~EIg~~I [jl~Lc~~~~S:~:1·Z-:~· .. =:: ,.;~.~jJi:~~- . "='='~~c~it:c~~~~~j 
. .;'. . ~..: ,::::=-::. ·:·,>·~,:~X: :~?':=-:~~~:;E::0~~~:-'>="~ .. :':.·~:~=j 

~~~!§:~l:}~2-_9~O~~.~7C:2, LE~I: 105, I_:'J~JI.AL. PO,<T :3,.LOADS ~<?Y.E..B~2. __ .. J __ f}. j 
'--Nd~Lf:: ;3'9' LeOY ;: .. ~3' L.E~J :. 105, {~IViAC PORT :'3'~{'bADS 'C-:OvERl:-5~~~·r;~·"7·10-!

=~-:{,"~~i;:::¥~:tf[I~.s!_J~QCUj~A~.cE OF A.···3\\r"13EREJ.) ?ATH:.:·:·::::c::c,::·=:--::~::.:.: .. --:. .. :::::.: .. ::::··j

:~~r~~1~s~~t~ -i: ~!.~. :t; :: •.. ~~~;::F:~~~.·· :j;. t~~~~~~tili!~:~;3::t
:.---- - .. -. -·FROMri t. ~E O?-,J P 1\ TH· L!.. ·\JG H T::, A ~ E . 110· -------.----.----- .-- '''1

~~~{F~£}~=':~;~:~~i~~:;~::~~~~f-"·~!~~~~~.Ii!t}~X .... ,, __ . _ . ...-~ 
~=..:;::o::~~;c=: .. ?wrl IC H 1 ~.~ E SST H E N·T 0 T A~t OA.P~~c 12 . '';:. ;::::':.=;:;:~===~:.·==:c:.===:c~:.:.:.~-~-:.:::-l 

.-_:;~ .. = .. ,,,~-~:RF;ruRN~ ~~~M FE 1\ S,IB IL:ITY=' \;~ECK--:::. -:'. _.. .:-.-~.c::: ,:::--~~:-::-:~~~~:~~~-.-: . 
. ~O·:~:·!+i,;· .. LJ30Y·: 2, LEn: 'flO, !'JITIAL"PO~T': 3, L.OA\)S·C{)\fEREJ·:c:"~;:~·:7:·=: r?::=~ 

~NQ~{.~,L·~~·':· l;,80Y~;-2' LEN.: It 0 P. iNr 11 AL.~· PO;,: T-;·3, LOJ\D5:'CQ\,.e:F(~~{·~~~::~to'~·~~5:'·· 

=~.9.:=~: .. ::i~:f::=.kb1q)'~~}, J_Er-J}_~}:lO!::,)~.~r.,~,~L. PO~T ,:.:.~,.-LQAJS:?~~~~:;?~:=;.~~=~¥~~trtffi:.;:o 
-NO-:-'!fs-,-tpOY-:"-l, Lt~/ 110" I \JI TI AI... PO~T 2, L'OAD5 CO'vERE'9-:'-' 4 

, . 

. ~)IJO-~;;-'X.4.6 J~; LBOy::.:.:c.2, ·LEN:·110, . I ~ITI AL.. PO~T 

::J~:Q!::;_~~~7 t L.BO~~ .. r 2,. ~EH .. :,Al0! I NIIl~L., PO=< T 

3, LOA)S CO"-ERt:):':':;~-=:':"-1:3:"':"';-5 . 

: 3_' _ I.;OAOS.·.~Q_V.E:REP __ , :~: \'.1 _ ~:t~2 __ . .. . .. -------. -. ~-'- - .... -..... -..... -- "--'1 

::~~4{L--i:-==11V·~.~.90Y. ;:,.2,,> I..,EtL:.110, INl Tr;AL. . p.O~r 3 'L9Ao~~~)~-£J!~~8~~~;:::c-..::!.~s~~.:}) ! 
=--~o'-: ~-::~--LBOY'::-'2;:::CEN' :.ct't(f~--T:\J"iTIM .. · PO~ T' ·2, ··COJ\~f5 tOvER-ED--· -. -7"'- 1"3 1 

.::= •. ::::=:::.:.:.,- ::.-... -", .- ..... ',- ,-.. ,:. -. ,,·c·:::,· ·'C·.: c. ..1 ..... ''' .... ~. :·-·.:?:::: ....... :.--o:.::::.=:o:::: .. ::::=.:::·;·~·~ -::.j 
~~::::.5{)-,:~L:6-0Y.-:..·:-:..~+=-:CEH:::c.·:l1(l·,·:~:..P..,1:..T'I.;AL-P.O~T-·::-3,·--LOA-DS-C-O-\l-€;R£{);;··· ::13'·'· .. r-2c:~ 

~~:Ef::::~'¥,::.t~t=:~,FROM HEF~'E O'J PATH; L:::NGH'PSo"ARE . ' .. 1·15 -.' 
·-------S'TARr--e,E'CKING 'FOR' F'EASI 8rLTTY~ . . , . 
~~·~,~lt~-:t::::'=:=NJMBER~~6F LOADs COV::QED.is -11" 

~HICH Is LESS trlEN TOTAL L~ADS 12 _. 
~.=~·?·~~::~-.. ~-.~c'R..tlY.B~N~~~?M_-~~1\S!lB-~~J T'(~~E0f~.J( ... _- --- .-----_ ... -.- .. . ------- --- ._.- --_. 

: __ ~9.:~~L~?J..l'.:itf38:~~_L3'_~:E~1 ~)=-=-lJ.?L:-,:b'itllP.k. PO?T.:: ... :3}-c ,L.,OAq=~)~;:9:.vE~-gf:?:~:<~;Z ..... ::'9· 
·NQ;·:-:;??·~.-·L..a Oy.; .. ,2 'L..EN :11.5 ':.:::J~IL~~~ PO~ T. :.2:, L9A D ~c :';.P:..v.c&.R.~J.-:.: ·:·1()-,,::12. _ 

;::~.O~:=~_~:~:~~~:-:L~O~-:f~2 i.' LE~J ;·t~ .. :115~':_::{~'ITJ;~.~ .:PO~T-·:-):-~~:~A.·9.~:i~~!-~~~:;~~-~};~~ __ ~-:6-j 
~N-O='::::';:O:·:54;·:LeOY:.:", •. 2,' LEt·/ • ::'115 ,·.I\lITfAL.- -PO~T .3, LOAiJ~::: ... Ov:gR~c-=-:·-l~t::-·:& :;i 

.~~.~~(f;~E~5:?,. ::~q3 9~:; -.:. .... 2' .. 'Lf. t:f: :-"tt5 ':Xo.~~~+JIA:k PO~T·. :.i_3 :(~~9A:g~?.::~f:9:.it~R~-?~:tt~~~~~P:~ 
:.:-~Q= .. : -56,_:=L.sOY~: _2, LEN ;11-5, _I~lTIAi. .. P.O~T; 2'.LOAJ5·:;:Q\l.ERE~J~: ...... .:;:6·.:-_·.::::7-=--:j 
~~~_-=-:=:-:-~ _ :::-- ~ -- ~ --~-: -- -.:.---' .-. -..... ::=-:=::-:=-=-::-:~::::.-.-:~.:=_:~--.:- :-..... :~~:.-- .. =-~-_.~-.~ .. ~-=¥.:-: .. :.~~~~-:-_:~::::~~..::::?-~~::::::=~;~:·:~~~~~~=~.::·.::=--::1 
". NO--:-57-i~·LBOY.-:" 3, 'L'EI'I =-_:f15·'_-,I~~fTI·AL.-PO~T:: ?',-LOt\J5 COV.ERED.; 10 ,./3.1
: '-N'o':' 58,..o::L,BOY·: '2, . LEN' :115,.-.:INITIAL...·PO~T :,3,-' LOADS' COVERED-'13-'-"Q--1

. . !

~~M~~oe4ic-::~i-3,:~tgr,Cf~!:1:r5-~-01~-I4l'A~~::~PO~--T--:'~=:2 t=tOAD5~@~~~'¥~~~11/-~~:1~~-~i.

~g]:-~~E~:tfJD_Y~=.r:?'. LEN u: 115'_~JNII:~~~~~po~ I:: 2-':.~bo~g~{~Q"~~Rt1lt~i:~3@J7::r0_~::~:E

NO.c::;:=col-' LaDY :2, LEN: ·115,VJrTrAL.. PORT: 2,_ L9AD5.::;X~:l{E.R~_q~~:=:,.:,~,,-,=11:,:,:-,-t2c.:--
----- .. FRO..., HE~t 0\1 p/\ TH L::NGr;TS: A~E 120: ,_c_, ---': .. -"..;-::::-==:.=_==.::.c-=_=::-:.:._-.:.·::-:-=.:.::._

ST!\RT C1E:CKING F.,oR FEASI3r·LITY-- __ _

'JO:-o2; LBOY

~O :: 63' -L.Bor:

2, LEN :

1, L.Ef\I:

LEN· • •

LEt·J

LEN

LE~J · •

LE~I • ·
LEt~ • ·
LE"'J
LEr.J

120, I'JITIAL PORT

120,I'JIlIAL PO~T

2, LOA]S· :Ol/ERE:> -- 1)-

: 3;L'OAJS COvEREb~---':~1l}

--- . -- .

-3 , LqA)S

2, LOAJS

3, LOl\L)S :O\lERE;.:L..: __ -=::lD. __ .1_1 c_-:----,

.. 2, LOAJ5 • :OvERt-D A S
. -.~

3' LOAJ5 COVEREO:--1-3· 1 0-- -~'
,

_L.O A L) S -CR'l: E:g~?=,-:i~-~~t~f ; __ -.:: : _ ~_ i

(.. 0 A J $. -C o,v,WQ-::::::::-:J:9..::::-:::::-~=-- :-~

- .. --.---.--.--~ _ .. -- ----------. _ .. _. -----...... :----- ... ------ -- - ---- -_.-

-_. - ----.--- ----... --~ ---, - ---~ -- --~ _. --- ------.-~--~- -_ ..• _._-_.- .-- ._----._ --
~ .. --. -.. ---_._- - _ _--- -- - - - >._

. ~:~~:...: .. -.-:.--:.-::- .. - -::.::--:-..:..':--~-==--::.:...=:..:---=--.-~===.::::.:.==- .:.....:

-".

--- --- --- _. -! _. '".-_ ... - - .'- --... '- -- -. . ,
-: . :'._::: .. '::':.:.:.::''';:_': .. ':'', .• ,".~:=-'.==':":::':":'=----::::'::':",-::::_-:,-:: J

c.:: -=:.:c:::-::_::c .. =.=-==.,.··.:..-=- -.-:-=-==--=-=--==1

. . .. - ... :. :.---::"'~ .• --::."::~ - . .:..: :==-=." . . '- _ ... _._--_. --'
......

·~~~;~l;.:~~=-T0I~?i;1
.. - ::.:~

•• _ •• + +-

=-.-=--=-=""--..~-::.:-.: .

... _. . '. -_._._._---

:- . -- - -.::.

-_. ----_ __ .-

..... -'--_.- - .. -_ ... _--- ... ----.---.- - _... --_ .. - -' .• _-

- _. . -
. ---.-~ - -- ---

FIRST OCCJR~ANCES O~ LOADS IN THE NE~J ;:lAT; LIst.:::i~::~.
****************~************.***~*************

FIRST ·OC:JRRANCE
FIRST OC:JRRANCE
~IRST OCCURRANrE :
FIRST OCCJRRAN~E ! -
FIRST OCCJRRANCE :
FIRST OCCJRRANr~ •
FIR'T OCCURRA'J~E
EIR~T OCCJRRANCE
l- IRST-OCCURRANCE- :- ...
~IRST OC:URRANC~
FIRST·OCCURRAN"E
FIRST OCCJRR:ANCE

----_.-----_. _ .. - --_.< ... -,

- .0 ._

:..: .. - . ..:....::_::._. ~ . .:. -- _.'. --_. _.

- ---.,.-.----,~~.---.. -.~,

. . _. ~

-" "----"._--_ . . -----

'~:' .. --... ~.-.-:--:----:--. - --_ .. _-_ -.- -
,~ .-- -

- .~--~.-.--... --.:-~--.--.--.---- -- -- - ,,,-

- ---~- -----.---~. -_. - - -- -
_ .. ~ - - -- - - - - - - --- - ---

. -- ._- - - -- ---_.- -- ".- --------;. ------ ~ --_._--

. _."_._' .. _'. - _ ... _-_ .. _--"._._-_. -."_._--_._----"_ .. _-

-". --.&_. -; .. " -- .:..-~-.------ .. ----------"-"---1
!

- _._ .. _.- -- .-- .. ~.---. -" .-
'-

- '.. .. -." __ • __ ._._._-••••• __ .' • ____ ._ •• _, __ •• _. '~_'"4' _._. ____ •. ______ ~ __

_ .• -.~-_ _:__:__~.::_ . .:=_=_=_T"_ .. ___ • ____ ::"'""7 .• -::-:;- -:':. __ '."':-:'~;::: _:'::_-=:::'==:::':.'._-_~::~ ___ =_._==== _ -==::=::_':~ :.-,,_._.
... - ... -.-. -.--.- . _ .. - .- ."_. ---- - - . -::--:=.::--.:.~ ."-:==-:-:-':':::::::: .. :"::-''::::::':======-=:--==':'':~-.='':.::: ... :":'- •. :-:::

• .-.• j

. _ .. :-- -. - '-.' '.~ ~. ';."":". ~-', ..

."~~ "_" :"_-.:.. ~:"-._- ._" r'~ -:':"::::7..:~='':=--=::'::::~=:~~~--.=-::~~"7::-:"~:':::::~ -.-~.
--.~ --.---... --.--- - - -

-.. -..-.,....._. .~."'_, r _ ••••• _ .' __ "~"

· --~- ------ - -- ----- ._-- -- - ---+ -- - -- - .. --- --~--'-----------'--- ----.-.----~ .----

~ .-.. ~----""_ -. -_-_ --- - -.7-:----':- -.=-. :... --- ' .: - -~-- _. - - . - '-.-:::-~:-'.

-.- ..• -"---------~"-.- ... _ .. --- -- _ .. -.- ... -.. ---- ._-------_._-_ - -' ""-._" __ . _0_._._.·. ~ __ _ e____ ... __ ,. _________ .. _._ ..

· ... -- -------- ...•.. -- .. '--

11

I;';'
II "

< <
, I

;;1
II ,

, t

o '0
'(\1,

,I,

0" 0
(\1 0

;'i'~

I- "I ..t ,I,

J' '
hI
rYJ'I')

J,!i:
ld'i
CY..::t

: 'I'

i 1<1
I:!

,I
, <

<,I ,; ,

i: :

. 'I'

1:'

;i

,I: ;
I ::

!, ,

!

ii
, ,

,j

; \ I:'
, ,

;{'J
:::,'1

"

"

, 'I
i ~ t· •

iip:\'
, "

1 ':

Ii!
,
n.
:~

rY
!1l
<I

I ;

t: .
·.1,
'I'

I,: ,.

"
<,

: ,I

l·.
I

"

! :

"

" i
;';11

i' ,II ' .. :
~ {," 1.:·:

i;' I
,i: i

,
'I

""I

i
I":'

i,

: ,

i

APPENDIX E

" ..

-~~***********.***********.**********.**********~***************
+= *
* * * PROGRA~S *
* * *- OF - -_*
* * * ~OUTINf.j A:'-ID ::,CriEJJLH.jG 0;' ~I; ITtd~y' CARSO AIRCRAFT *

-* -. - - -- .. - *
* * *** *:t:* * *t** *~; *''' *:t. *. *+ **:t****~:t'!.+,**_******* t·* ****~_>t: **_~***** ***. **

PRE~A~t) 3Y : M J R A -T ~A 5 A ~ 0 G L U
**********t*******.*****.~************.*********

- . \

....

- -- -.~ -

?R~GRA~S O~. 'BOTTL~~ECK ~OUTIN~: O~~I(lTAR~ CARGOAIRCRAFT~-

-----------------------------------~----------------------~

~REPARED BY' : ~JRAT ~ASA~OGLJ

)EFINITIONS OFPRO~~A"1 Ll\1ITS ------------------------------
=MAxI"1U"1 NJ"1JE~ OF PORTS

. "

= t'-1 A X I "1U"1. NJ~3ER OF PLANES >~

:Uv1 1\ X

~L"1AX

;;F"1AX

\JBTN

VI"1AX

r:'''1AX

~~AX

='-1AX I "1U"1 NJ"1jER OF PI-\Trl5TQ -BE GENERATE9
.. -' .. _ ..

=~AXI"1U"1 \JJ~3~R' OF PATrlS-TrlAr~OJTING P~OaLE"'S CAN CiANDLE

~MAXI~U"" ~J~3ER OF ELE"1ENT~-PE~ °AT~

="lAxI "'U\1 .51 Z:: OF W

:::"1l\xI"1U"': \lJ~3ER OF LOAJ5~ _:.-

)EFItHT~ON5, OF VI\KIA3LES USEJIN-PROGRAM5 AND- 1t..J?UT DATA
-~--~--------~----~-~---------~----~-----~--~-----~----~
)\1AX '=MAX I "1U"1 L.EN:JrlT OF PATrl5}9_ BEGENERA,TED--

~PORT::;NUVl3ER OF P:>~TS ------_- _ - -

\lCbAb =NU~3ER OF LJAD~

\lPLANE=NU"13ER OF P_ANE5

':,-::,,-_:--__ ._. __ .. ~..;;.-:.....::.._.______ ;" - _=-..: .. _ - .. 0._-

_\lPO _ =Nl)M3ER OF P:>RTS W.ITH PI..ANe:~~~JNITII\LLV ____ c"

\IN _=NPptNLOAJ

\jN~DE=Ni'J+2
. - -- --.. --..

- ~.c...:=-:?=-:::-: TOTAL ~JVl3E~

-5<: . =DUMVI\(SOJR'C::

OF NODES~ON~FO~~JL~TEbw

NODE T, 0 GENERATE T.~E PAT.-tS . - .. - . - _. - 0._--.- _ ... _" _. _._

T =DUM~Y TE~~I~AL NO)E TO GE\lERATE T.-tE PATHS

J " =POHT -T~ ?~Hr rLIG'IT TI'1E "'ATrHX
:D(I,J)=FllG~T TIM~ U[T~EEN PO~T I ANU pO~T J

~OAD~LOA)5 BET~E~~ PORTS
-~-~ ---Ttg~5 ~ I : ~.~ ~~ ~~1~~N:;- ~8~t-- g~-1!f~-c3~g -"----- __ -c __ , __ -~ --~---

"'AIR. '=NUM3ER OF P_ANES AT EACH PORi
':~AI~(I)=NJ"1JER OF PLh~~S AT ?ORT I

TLOAD =TI"'~ OF lOA)ING A\lD U~LOADING

(oJ =FqRMJLATED v1A TR I X ON tJi-llc:H PATHS A~E GENERATED _:

-< T --I . ,,=TOTAL NJ\JjElE~ OF P ~ HIS GENER_ATED

VlC- --=rOTAL NJ~3E~ OF PA TrlS I\FTE~ RE..,OVAL OF' REPETITIONS

- ;lATH'---=CONTAI N5 TH~ PI\ TH CURRENTLV-,:cREAJ

_~ ,?~.E:N:,j~:=rl"':: LE.NGHT OF A ?A TH

L._BOY =' ::NUM3ER DFE_E"1ENT5 ON 1\ PATH
.•. _.:". _0·'· ". _ • __ _

FRE - ---=-T~IE FR[~J;: J:1 '1AT::.IX ,
-.;FH[(h J) =~Jv13E.R 0;:: TBES \IODE J O~CURq::-D - ,.~.'

--- --- ---- 0:'-1 A T M~~t3ERED GROJ:> (J >-~T ----~
:FRE(I,J)=~J\Jj3ER OF TIMES I "'E"'E3E~ED ~~OJP OCCU~REJ(J :: 1)

F"IRST =THE FIRST O;::CJRf{A\lCE "1ATRIX

: FI RS T (J , J) =;:>A TH NJMBER--OF -FI RS T~OCCURl\NCE-"-i')F.:~~OflE-J

-: ~:IRST (I, J) f~~t~~~~~g~~~85~~:~~~y~?~~y~~~t~~;i~~;~~~~~~--
t\DRES =THE -AORES A~KAY FQR: HANOl,.lNG3~~C<JNG<--_

.. --- -. -.

'fFIRST=FIRST OC~JR~I\NCE OF LO~OS AFTER Bl-OCKI~G_-_
: YFI~ST (J) =Fr ~ST OCCURRt\NCE ~OF Lz,AJ J AFTE~_~L;OcCKING

5FIRST=FIRST OCCJR~ANCE OF GROUPS AFTE~ 3LOCKING-· . C
_-- . :SFlqST(I)=FI~ST OCCURRANCE OF G~OJP I-A~TEa BLQ~I~G

OPT
AOJ
)1<:;

<L.EM

AiR

=CUR~ENT PARTIAL SOLUTION GENERATE)
-~ .. -.. - - -" ---- - ---.

=I\RRI\Y T~1AT

=I\RRAY THAT :;TORES THE LEN8HTS o=- -:.lATHS ----- -- -

=ARRt\Y T';AT S TORESTrtE~NUM3ER ::>F ELE'-1£NTSOF~_~PAI~S

=I\RRI\Y T';AT STORES THE ORIGINAL ;:>O~H~ -OF PATHS _ - -
'.- - -- - .- .

-~ - -. -----.. --- ._-

~--------_--_-_-~-_---_-M_-_~-~-
-.---- ...:.:.::.. ... -----=~.:.... .. -- '-

- '-1T t\PE

~TI\PE

=ST~RE5 ALL THE PATHSGENERATEO
(RI\NOOV1 ACCESS) -..- .

=ST::>RES THE ?ATHS THAT ARE PASS~D REMOVA~
(S~QUE~TIA~ I\CCESS)

-- .,

- -

IIITAPE =STORES ?AT~S THAT I\RE SORTED A:CORoING TO INCREASING
T~~~dt"J~r A[O A~EE~~yC=:SsE) BY ROUThJG ~~p~:~~:~S

?R::>GRAIIIS RSLATE) ~ITH BOTTLE~ECK ROJTI~G:-

---------------------------------~-------~
_.

T~ESlS-l : GENE~I\T~ AND/OR RE~OVE PATHS ON HA~b DISK

THESIS-3 : REV10V~ ~ATHS ON M~~ORY
- -. .'

THESIS-4
TH::-SIS-5
THEsIS-6
TH:::SIS-7
THESIS-8

SORT PAT~S ON MEMD~Y .
SORT pATrlS ON HARO-'DISK'

, '

ROJTE PLANES JSING -, METHO)-t\, FOR- 9L-OC~tNG

RDUTE ? _ANES J?!;NQ~!...~E_T_H0.J-3' F_OR_J~~q~,~!.~G_; __
SCHEJJLSPLAN=:S SJCM THAT T';E PORT CAPACllY cO~STRAINT5 D

THESIS-12: ROJTE P_ANES JSIN~ ,SPP ALG::>RIT~M'

"rlESIS-l

?~g~§~~\1 TO GENE~[,T::· .~ ... - ... ::.

}o RE':1 0VE =>/\ Ti-tS D~'J Hfi~iJ~)1 SK

* • * * * '" * * * * *' :t * * * * ~: * " * * * * * **'* . . . _. '-- -.- , -' ..

·)EFITT~NS nF P~~~R~\1 VI\Rll\~LES
~*·**r****·****¥**··****~*~***·
_..." - , -
)E"1/\Nn=D~\1f\"IJS ~F \jODES T ~L OR)ER . TO~ELP RE'40.vI~~ .. ,~.l\THS

:, d4)'

.. - ,--- _ .. -- --, --- "- - .

".-.-.. ' ---~-.-----.--'-------,- -

-- -- .". --- ------------ ---_.- .

·. ' .. --- . -: - .. _-,. . .. _. -- --_ .. -.--

-- - -+ - -----. - • - ~- - -----------.--- --._-_.-- +-------- - --- .----

-- ----- -_._- --- ---
- - --

-.-- ------- _ .. --_._-- .. -- ... ----

-._" -_.. . - ----- - -----"---. -

·_.-- _._. ---_ .. -_._-
. -----_.-. - .. -----.. ~

-.~ .. - --- .- ._---- ...• _. -_ .. -.-------- .. -"--.-- -~---~---.---.---. -- -.-

: -----~-.-IJj:.~----- - .. -. _._--- -

c

. - .. ._- -- _. - .. -.-- ------------.----.-

=<EVlOVr RrDJ!'.iOf· ... n· ;;>l\THS·O'j·V1E'40RY·
********.t** t< ... ***,. ***:;'*1 :t:4<.t*.~*:t:

; - _~:t·~)EFITTQNS ~F PRQ:.;!~~i:.V1 V/\RJA8LES:
;' ***~**********.*~*~*~***.******

-- - .. :)E\o1P;fJn=D[\1A~JJ5 ~k'~ODES 1 N ORl)'ER TO ,;ELP' REf40V1 ~G'~fiATHS

. . ?DEM =DE\1~~DS J~~ATHS c .

:SJ~)~\1A~)s·OF N01ES' O~ 'EACH~ATH

~':~=:.:.~~O~!T. ~g§~~~J.?) ~~i.~~¥~ot~~~~ANC{:)F· t\oAT,;' vJiY~:7')E~"ANS~:OF'1

.. . ---_ ..• -_._-- . --_._---- --- .-.. --

... --- --_.- ---- .. -"-"-"----'--

-_. __ .. _--- ..
__ '.. ._ _ __ 0 ___ - •••• __ • _ _

- _ _. _ ..
. -

. _ ...
. . -,- -- --~--"--'-----~-'-

. __ .. __ . __ . __ .. - ... -
- _ .. - ----

_ .. - ----- _. __ .--- - - ---_._--_ .. _. _ .. - - -- - .-.,

". -_ .. --

.. .. - .. ".---' - - --- --" --~.

- . - -_._' .. _ .. -. -- - --. _. ----_.----

· .. - - .-

(.
c·
.r
.",

C
L'

·C

SORT THE PI\T·jS J'i -jAiW DT SK
***********t~**~~t.*~*.*+**

-.".-. - ... _-. --- .- ----

..•..•.• c __ ::.:·._·.-".:. . ..=.c .. : ... c

-.

- •... 1/

,..
... c
c.

,.. .

l.. "

C

:, , I 4)

• i -.

3 lU
<:
c. SOl

I

I

.... --~--- . .. - --.-.-- . ---- -_._-

. ~-. -~-- _.-----.. - - . -- .- ----_. -- ._- ---- - . - -

RELATIVE =I~Sr OCCJR~nNCE :.,15)

. ,

:,,15)

- -",- -~. --_ . . - - - -- ---. --- '- --- _

. _-- --.--- ----_ .. - .--- -- _ ... - . .. _ .. _.- ------- .. _"-- - .-
- --- _ .. _- -- --. ---- ------------------- ----- .---- -

;;~-.-.---.. -....

\. '

C'.*** :t*** *:+: ** ** *:+: *:t.;. *' ** ***Jb*.t~;~t~**-*:* .
C ,-_,":c..: -- .- --. .. •. ----.-.----. . - ----- _ ... __ .- -. ' - -~ --- ------------ - ----

~ ~·c:".~>SEACH FOR, Ti-l[30T,T~E~fCK; OPTI.'1AL' ',. --- -- - -::::-~~:=::::.:::::_=_;:;:;~-:.::c':.:::c--
t·--- -'~F THF ROUTI'lS ?~OJL["1-'" ... -.--.- --.--.------.".
C-3Y. USr>IG ,1.1::TH:»)-3, FOr< ;.,LOC,-\ING C ' AND ,.
CTRY TO OBTAIN A FEASIALE SCHE~ULE
C Jf\t2ER THIS "11 NI VlI',X :)PTr MAL POINT
C ' .. --.. . - ..
C
C."

C
C

~******** *-t **-t **,,;* ******.:t:*'**f******

.. - ----._----------- -_. --- ---_.- .. _-------"--- ------, .. _.

_... .. ---•... _._------.-- ---- -._ .. _- . -_._. --" .

L.
C700r
Esooo

---_ ... _. __ .. _-- .. - . _ .. _----. __ .- --_ .. _---

) ..

' .. - ----- ---- -.- -- ---- -----_.-

'. -... _. - - ---~------ ..

,..
'"
E
c c .
C7707

c
C 751
C
C C .
C1505

.. _------ ---,
., .. _------ --" _."---. -- .---.--~---------

--.~-------- _- - - -- .. ------- ----------- -0-- _ •• _ •• _________ • ____ • _ ,._ •••

OLJ COJE -:', IS)

..

" ~. ~ ~

~ ~-------, ---- - ... --~

.... ~ -·----------r·---.. - . _ ... _----_._- - --.--- .

. - - -.. -- .- ._- ---- .. '- . ------ - ---- --
-' _. -.---' - --_. --. ---- - _.-- _. -- --

. _-- --'_."- ---- --_.--._--- . __ .- - _ .

. .. _._. _._<. -_. -- ~-- - -
.--~ ... ~ .. -.-.--.- ------- --.- --~ .. -.-- .. - '--'-

•
- --_.----_. -------- -

- - - ----- ---------------- --.. - - - - -- ----- --------- --- -- --------- --

... . - . . - _ .. _._-.. ---_ .. _--_.

· '~'- .~- .. - -'-'.
'-~-"-'- --- . .. ~ -. -'- .~---.--. .-

--.- .-.. --~-'-------_ .. - - -

.

(.

. .

-------------_. - - -- ----------

****t**~********~.·**+*.************~t***.*.**
:'C-~E'D!JLE P",-,I\'JES c,J;:rl THAI PORT CAPACITIES
)0 NOT VIOLI\TEJ ,
CH::-CK AIRPJqT CAo/,,:ITY C:-J~JSTRI\INTS

.**i************~*.*****~********************
CAP(I) =
JS:'(I) --
SlCI\P(T) --
:ilJSE(T) --
SLACK(J) =

C~PACIT(OF P~RT 1

CURqE'~r JSAGE QFP~RT I

QUE C~~ACITY ~F PO~T I
CUKq2:"~T ~UEU~AGE~<)F PORT I

CUK~E~r SLACK OF PLANE J
. .-

CO"1PT(J) -- CO\1°L.;::TI~fi lI\~~_ Of cU~RENT STATUS ~'F_.~L'ANE J

-JOTNT(J) --- C:JRRE'J l JOBP~jtNTE~ OF Pi.. A "J::: J :·=-_=-:=-=-C.:;- -
. - ------ ---------------

c:._?.:_~lATU(~ (J) = CJRRE··.IT ST ATU:;OL2LA\lE_ J_ .c::.:::.:::i:~~~~::-i==._:~ __

- ~ : ~jL~ Y·F{~~~YT._.. .
- 3 • LOA)ING ..
- 4- J 'J LJ A DIG

5 • ~AlrING FOR LOADING
- 6 • WAIrING FOR UNLOADING
- 7 FINrSrlEDJOB

--- ------_. _. __ ._--

******************~******************************* .

- .- -. - ------.- ------- --

. - - - - - -' ~

c c

. ----.-.-.- ----_ ... _--... ---- ------ - ...
-- -- -.---- .---~. -----------_._----------------- ._---_ ... _- -- --'---'-'---~-'--'" .- - --_. --- - ------------ _. --- - .-~.

-- --_ .. _--._-- --- .. ---.--.-----.-
- . -.----------- --" - ----------_.-.- _._--- -

-- ----- .-- .--. _._---- ------ -, '.-.. _---_ ... _---- -

,._--- ----- ---- -- - _.'
- - ..:...:.:::..-===:::::::::...-::==::::-...:-:--. : - ..

-.--- - --"- .. -. '---' - .- --- -------- --~ -- -.

VALUE, ,-

,.'--- -..
_ .. ~ ------.- "- - --• _____ • _'0 ._.r ______ ~ __ ~ __ _ .. -- ---- ."--._"-------- .. _-_ .. _-_ .. - - --'- ._-------_._---_.-

-.-,---=---~ -''':'.-

. - .
". -_. -_.- - .-

----_ .•... '-----

.-.-: .. - "":..... .. - .. .:...:.

:.---~=----.-.. -.-",:,'-- - ... - -.--

- -_ ..• - ... _--._ .. - --
;.- :_-=:--=.=-.-=:..:- .. - •. - .. - --::::.:.:; ::_-:-:-'.--::":'::...---=:"=:'-=-:-":::::=::-::"-:::-==",-:::-_:- --- ..

--.-:--~-=:.; .. :..:=~:=.:=~.::..~.-:-.:...- . _. - .~.~:-.::.:.-::~=:.-~-:.::-~--=..:-:::.:.:.~==--- ... _ ... -

.. - - -. - - -~ ... -.-- ._- .-_._-- .-.--- --
----- -"--"-" .. -

.. -- - - -.- - .. -- _. --.--.-.-.-~ .. -
'-- ------_._--._- .. -.-.----.--- . . -~-::--.:.::...--=~.:-==- .~:.:::::.==--.:....::.:...:-.- - .

--'~-- --~-.- .. --. :. .. --~.---.--- .. ~ '.-- - -"'.-

- - . -._- - .- -- - -----_ ... _--.------_. -

. -- .. -.---
-', .' -- --:---:::'.--::-:'--=::-::::-:':-'-'. - - -

-. -~- .. -. -.--- ',:'- -

.. - - "" .-. -

: ---".
. ~. --. - - -

----_._------ --- ----------_. __ ._-,- . - '. - -.-.

... ' .. _-- -' .. - .. -- - ----_. - _._---

-.-- _.-_.- .. -. __ .--_. -_ ... ---.----.-- .. -~----. - -----------_ .. - ------ --- -- -'.'. -,-

- \

.:.....:.: '':: - .

- ----- --- -_.-_.-- --- .-._-- _.- ----------.

-- --
:'::'--....:-..:.:...:-

.. -.-- -----_. _ .. - - . ---- .~.'-- ._ ... - --------_._- _.-'-". ---_. __ . --.. - ----_.--. ._-- --- .-- '-- . .. _-----_ .. __ ._------_._--- ._. -_._--- =.:=~-~.: .. -.-=.=::..:..=::=..::-====~-=--. .:.. .. -::--;.-.~-.: "".:'.:.- - - -~--"j

'. -.- . --- --- ------ -'--'---'._-- -------- -

' .. :".-=- .. ____ ::.. ________ __ ... _ :._:;. ___ 4_:.:..~_-_-"_-_"_...::..:.-______ "_

. .. _-- ---- -- ~

--------.-~-.. ----
-------.--- .. - ._-------- -- -_ .

. --.--~----- .. - _. '---~---- ---- . .. -.... ----------.--------_._-------_ ... _-- ."-- -_._-

- -,
I

-c
c

- . : - :......:--:.:..::--:- .:-£-= . .:-~-:-,
- ---- .-- --- ----------.--_._-

- - ---- -
- - ----------- ---_.-

" ...
C8 30 o·

95

t840C)

... -_.-_ .. __ ._. ---- - - .------. - --- ..

--- _ _. , -.--.--------- .- .- - --.---....:..-.~-----~ --- ~

--_ .. -- - - --.- -- --"--. - --.......•. - _ .. _-_ _ .. __ ._- ._-_ •. _-_ .. - .. -_. __ . -

. .. __ .. __ .. -_ .. -_.--_.-

... -_ ... _-_ -_. - -
--- .-- -_. - .. '-_. -

-- - - _. -_. __ .- ----------- -- _ .. - ._.- .. _------- •. _-----_.- -----
-----_. __ ._---_ .. - .

-- _. ..- ~-_ .. -._- _ _ ..
- . _. -----_ .. _-

-.--.- ... ---~- -.. ._ .. -- _. - -- ... ~.- -._- - - .'

-'-'--.--- ---.~ ... _-- _.-- ----_. __ . --- _._._. - --- -- ._------- - - -. --'-

(' ... c.·· -
c -- - .
c
c c
c .. c ..
c
c
E
c
E

c
c
E
c;
c

c
c c c

--"-"---

. ~---.- - -_.
-'-::-- ."':--=-:-:-:-'::.' ..

..... ,-"-.=::=-,--.

-=-.-:..- .. "-----
___ .0- ___ . _._

- --- --' --.--- ---------- .. _------- - -.--

- _.----_._--- -_.--- -- _._ _-._--- ._---- - -

- -----_ .. _._.- --- --_ .. _---_ .. _" .. - .. __ .. -

----~.-'----,----- ---- --- - -- .

. ---'---'-- --.----.- - --_ .. _----_ .. _--_.-.----. __ .-

.-

r;OLLH tQN . PAT;p:'I5:'Id.o,~_':.EJj!~:[=rrl~ ,. ,.:.
~-.-- - --- _. - .. -------

. _- -- .' .--,:. . -- . .:..:....=-":.:..:.-.------- -----. - -.

_ .. -- --.-.- .---.- ----- ._--._-.-_ .. "- -~-----------.. -

-- - .. ----.. --.--" .------~-.-----.. ---------- . - ---<> - ----

- .- _ .. - . - - - ---- .. -

\..

. . " - -
. - --. -_ .. _---=-- - --.:-.:"- - -+ •• ~'-•• '-.

- ." -_. ~- .-- -- - -_. -------- .'--. . - -_. - ... - - - . -.- -. __ . --- -. -- .
•• - _. - +-- ---- --.-

----_. ----"-_. __ .. ----

/

. . _ ... -- .. --- - ._- - --_.----"--_._------. - -. _.------._--._-... -- -~-

-- ?R:)GH-A ~S -0;:-- ,'41 \11 \tL)VlT OT i.l COST R.-OtJTI NS-3S;:-:-H L'rr-/\R¥~:-CAFlGOAI RCRAFI,

~---------------------------~-----~----~~---~~~-------------~------

- - -._._-.-.- "--------.---.
-~ . "" .-------~.-.---

---JEFH1TTIONS_OF ?~O::iRA\-1 LrMIT5-:

-----------------------------~
- -- ---- -,(\1/\ X =Mr,XI VI~JVl· \JJ'J1:3E~ uF PORTS ,

p\;ANES :- ?t)1AX ;:M_AXI "1J"1 ;\J .J \'13 E R OF

\I"1AX =MAXI "10\11 51Z~ OF ill
- ---

~Vll\X =~J'.XI"1U\1 --J.J'-i3ER uF
---"

JEC" HI TTl DNS OF V ... R 1 A3L'[S US[J IN PRO:;,q AVIS A;~D l'PUT DATA
--~-----------------~-----~~~--------------~-~---~------. . . - - - - . - .--- . -". ". -

JMA~ ="1AXIV1J"1 ~E~~rlT uF PATH5:JO BE GEN~RATEJ~-~
. ---.-- ----" - . ._.-

\lPr>;H =tlU."1~Ef{ OF PORTS.

\jLOAD =NLlM3tR OF LJADS

_\lAIR =NLlVl3'Er, OF p ... Ai-~E5==

~DJM =TOTALNJVl~E~ OF ~~MIES-

=f'U"13::R OF Pj~TS vi] TH_ ?l,-AN::S I \II T 1 I\L:~Y___ _ _____ :-

=NPP+'-lLOAJ - (SIZE 0;:: Fl'N~L~ -"1ATRIX: \.j)'-::.~~~~~-~.-'.:.:--

- ---"--" .. - -
+-." .-_.--" •

___ : TOTI\L \IJ\1>:)E=< OF NnoES ON FOR"1JU\ T=:!).W-': ._·~:c=-~~~-C_-;--C=7

____ ~,:~_,~=·_='-__ ~:~=;b1;;J r gF L?~; T F_f f ~~TBkt~~E~~~§kf~:I~L~~b.0'981~;~~cECf::_'-
"i:::;_R~~t --;L,OAJS BET~~:;N PvRl_S- _ .. _,_--C- -,,,:.-,-_,-

~ ____ ;.= __ c:,=-;c .. __ -l-oAJ (1,1> _.:>1 AtnINr".bORT_Or-I, T':-I LOAD_: __ _____ .=-_c::_;_

:LQAJ(I,2)=E'J9PIG rORT Or 1,TH L~A[)

,~-::c,-Y1A!R =N~J~1tR OF P'.-ANE5 -l4T EACH;:>OR-T'
:\.1I\I~rI)=\I)V1JE~ OF lL..AN,E:S AT ?O~rl

c-Tt,OAD =TI"1::' of LOA)HJG A'.jO'U~LOAJ~f\1G :-:;-. :

______ . ____ !L~_____:::EQR."lJ.L I\.l'_~) 'vIA TR lx'.ON~j;idIC;:LPJ\J~_~_J\H.CGE}1ERATED: ..

.

~?R~Gr~I\"1S R~LI\TEJ ,iITH ljOTTLE:-.lECK ROJTl\lG :: - - _. --- ._-_. __ -- .
- --
THESIS-l~: FO~"1JLATE ~D~TSP so T·tAT TO ~INT~I7E TO~AL FLIGHT TIM:::'

.·5f:tES I s-15; FOR"1JL'!', rE "1lJM1 SP. SO T ,-jAT TOMINI~17E--ThrA~L~-=:FLIGH'r TIME"-
BY T~y I 'JG T0 JSE: I...:::~S ?LI\\jES "_. _ _. .

- ---=-TH€SIc~ ""16: FOR"1J L 'p, TE MuMrSp:Lso.cr -IAT' TOMT'IT MI7Ec;~TOr-Ae-;F"LIGHTTI M{
I\~ JD V1l ~ 1"11 Z[THE:;~SE of ;:>:,.1\ \IE5 = .: _ . _.-:: __ .- .:

- ... fHESI c; -17 : SOUlE T~AVELL 1 NG -5/\LES~A\J P~03LE~I- 3 Y J51 NS BRA \lCI-t A \10 Be

'TriESrS-14

-_. __ .- . __ .----------.- -_.

-- '.- _ ... - _.- .. __ .. _-- -

. !* i:** ** **:t: 4= *·t *.f:" ,..*.f: ** * * *,..****-t:t ***** *.J: >t*.******,.*-*,***~***,** •..
. r(l~\1lJII\TE 1\\);) SJLV':: A "1LJLTI J:::POT "1JL.TI SI\LES~A'J . .

I ~l\g~~}~~I¥J s~b['~~!·A~I ri¥~~~~lCAqGO' "T ~:qI\Fr ROLJT~I'J~ P-ROBLEMS
:,CI Tilr.T TO "r!~)I"11Z= TOTAL ;IIl1S510\l T1"1F" -
3Y USiNG EXI\CTLY GrVENNJ~BEROF PLA\J~S . _

c~ *.~_~:;<* .f:** * * ** ***~. ** ** *******.t:****** >t.* *+-* * **** ** ~~**.***~** *

CJ\~t..· TI~ER(AA)
S T'-'P
::r-.O IF

." - - --

.**************.~*.********.*.
rOq\llU,_ ATE THE \1JLl I DEpOiMT5;:l-:>~.

: ********"'*******",.t:.f ***+*".***** ..

" ."-,-,-.

.-._._---, -- _.---·-0 __ -- _____ ~+ ______ " ____ •

. - . -------_._-_. _.-._----_._
-------------~------~--~ .. -.-- ---

I. ,- - ~, .

,

•• • 0- ___ ••

-- - --

'- - -. ' .. _- - --.
~-.---- ~-

-'.'-- - -'-- - _ - --- -- .

-- .----~ ----=----=-~~:..:.. ,- :....:-:~--.-. - _ _-_ ...

.. ,'

-_. - --- ---
-_. ..:::. __ .- =-=---:: .-:::-....:=.:-.....:---::..-:..::....:.-. --:.:.::':"'" -..:....:.-=-:::~-:....--.:..: -..:.. .. +

. ~-- ~ ---- - -- _.- - -
. ** * ** * *' *" * ** * *ot * *' ;;'1; *",* * >I<;t. **:t *,**' :t'* *****'-i*+**** * **=.-,*~~** *~*-
:FO~"'JLA T[A "Ii) S::>L V:: f\ ,vlUL.T1·OEI?O.T MJ:":JL·5AL1:S\1A\l~/~~~~.'.~:.·'c-.: ...
. I ~ l\ ~~h~ ~N~ J

5 ~ b t ~ t~ ~ I Ei 9~~~M C AK G 0 -'f\ rR:R l\ F i,:qO~I t.~~G~_i~OB~EMS .
. ::>0 TrlT TO\t1-~II\t1 Z;:- TOTA MIS~IO\lTI·\1I='··: ·:-···:·:·':··'-·'::::':-:'::"~=":'''~'::'C ... : .. '.
3YJS~\JG G!vt'J J~' :ESS N~~1BER~)OF"PU\\lES -....... -.---.- - ... -.

c
C· .

..-- ---_._. - ." _._--... - -~- -~ ---".-----_ ..

. _. --..
. "'--.. ..c ..

.j

i
!

I
I

c-_: 4_3:_ ~.oc.\j 1" I ~! J E
:---------1 FCW'I -ST".\j\1I\X) T-I;-\J
- - -_-_~-_- -_ ::I\LL i-IMEiH l\l\)

- STOP
==r-D IF

.. ",,--_ .•.. _ - ._------ . . - --_ .. --

__ 0 ••• ____ ••

.... - -.--.~---.-. ::.--~::::....::::::=::=..:.--: ...•.

.. -- .---. ------.. - . . ----- ... _-- .~.----------

. -_ ... _. "--- "-- -~ --- ---~ ----------- -

· .
-.-----.---~--------.- -_ ...

c
C.

c

--" ------ ---_._. -.- - -. --- -'-"- ----------- -,.. -

~~: ••..... -"'--"'."-c ... _.c ._ •.. '.'

--------::-:::.-.:::-- .-~---=-- -:::=.--=-~-=- ',::-::: ... :

.. - -.-- ---

: ~-=::=-~.=~=-'~-':. ~

- .. - --", --- - ._---_._-----.. ---_ .. -
'·0-_.-- _. - ---_._._------_._--.. _.- .-.-- .. -- . - .

-'-'. - '._-- - ._-"._.- - --- --•. _-- --_. -----.- .-. --- ._ .. -.--------- -- .--- -'

- • ___ w. ___ _ w_' _____ _ --_. __ . ----_ .. --_ .. _-_._--- .. - - -'
- -- - -- -- -- .--_.- - .. ---------. -'--- .. - ._- .

- '. - - .-- .-.- ...
. .::-- ._-_; .~~---:.-.::......:.::;...-:~~"--

'.- _. -- .. - _ . . -_ ... -- .-- ._-_ .. _._---- -. - -

--. . .--- --- - .- .-_.-.. • '. • __ .0' _. ____ • ___ ._._,_

.. ---- --. -.. -----~ .. -- .. . -- - ~- _._ .. ----_ ...• -'---------------

. i
I

. ~ I

. . i
)~i

' .•

---. -.... -....... -~---' L." .:. --- -. . '.:':'. :-.~':: .. -:-_'.:.-.. -..... -. - ., _ ... _~-::-'::_::.: -', .. - -.
=='""---"5J3ROl,T I N('TSP3 (I C \;1' I ROY ,fAAAI\;'1 TOU~, I Te OST,I DRTNT-)-------

:* *:t.**" ** **** ** ***** * ** * *' ** ********.****** ** *+:* ***********'+***** ** **.
:***** f:************* '" *:t* +-**********-***** *.***.**** *******.*'****** ** ** ,***********t** - - ... -.. ---.--.--~. "--'-~:':' ----~-·::-·::..-:·::·:·_~-=--7_~.::-:::-:~=:--:---:·:_-_:------ .

- - -.~ .-.- ..
~. --.. - -- -' -- -~----- ---_ .. _.-- -._---------~ .. ---.---.-

. _.- .. ---"--- . -' ... _. ---- - .- _._--- ---- "_._----_._. --..:...:...::...- -- --.---~-.-;- -

. .
- _. - - - ... --- - ._-... _. _.

~.- . -- ----.. --.- .
~.- '.---.. ~~ --------- ~- .•. --.- - .. ~---.

- ._.____________ _ .• ___ ·0 __ '_

-- .-- . .-:.--....:......-. -'-;---.--':.-~--.----~.-

-\.. .

- .'- ... -... _ .. - ._---- ..

- -'- . __ . - ---- -- -•• _____ .• _ •• ____ • - - .' _. ~ __ •• _ .' ••••• __ ._._. __________ '0

-... -- -_. __ ... __ . --_. ---_._.---- _-- -."----. ---_. --_.-.-- ----. -------*----.. _ .. -- ' ..• -- --- .. _._-_. *------- -.-.--- .. ---.. - - ---. __ . - .

-_._----_.-. -_ .. - -. -- - . - - .. _--.- -.- _-

:_..::::.:::=-::c.-,c-"=-____ _ _ • ___ ._ .

. -:"._-- .. _-; :: .:::-:: .. -- :.

... ---. -- ...
.. _. _. -_. ------

w
~

~ ** * +: * t: * * ,. * • * :+: * +: '" * * *' * .. ~ .. t' .. * *' * ... *

92 IFCU3r=IX(lJ3) .GE.I<.:)THCN
IF<IUR,!.GE. (IROY-2))THEi'j
! U}=I .:~ .
~L~E'
1\15=1· ,:'l .

-_ .. _---. ---_ _ _-...... _._ ... _-_. __ .. --. __ . -.---- - ... -- '-.

.- --_.-". - -. -- ... --_ ..

_. ___ . __ . ______ .. '.:C:::.c.-.CC·

-:.V _

__ . _ ::-', ... c::;.o.,-':_C.::::':=-.C~ .. '"_ " .. _

- ------~-".---~-- "---.

;".--. - . . -- _.... - - -_."--- --- ~--- ---" ...

	Tez5746001
	Tez5746002
	Tez5746003
	Tez5746004
	Tez5746005
	Tez5746006
	Tez5746007
	Tez5746008
	Tez5746009
	Tez5746010
	Tez5746011
	Tez5746012
	Tez5746013
	Tez5747001
	Tez5747002
	Tez5747003
	Tez5747004
	Tez5747005
	Tez5747006
	Tez5747007
	Tez5747008
	Tez5747009
	Tez5747010
	Tez5747011
	Tez5747012
	Tez5747013
	Tez5747014
	Tez5747015
	Tez5747016
	Tez5747017
	Tez5747018
	Tez5747019
	Tez5747020
	Tez5747021
	Tez5747022
	Tez5747023
	Tez5747024
	Tez5747025
	Tez5747026
	Tez5747027
	Tez5747028
	Tez5747029
	Tez5747030
	Tez5747031
	Tez5747032
	Tez5747033
	Tez5747034
	Tez5747035
	Tez5747036
	Tez5747037
	Tez5747038
	Tez5747039
	Tez5747040
	Tez5747041
	Tez5747042
	Tez5747043
	Tez5747044
	Tez5747045
	Tez5747046
	Tez5747047
	Tez5747048
	Tez5747049
	Tez5747050
	Tez5747051
	Tez5747052
	Tez5747053
	Tez5747054
	Tez5747055
	Tez5747056
	Tez5747057
	Tez5747058
	Tez5747059
	Tez5747060
	Tez5747061
	Tez5747062
	Tez5747063
	Tez5747064
	Tez5747065
	Tez5747066
	Tez5747067
	Tez5747068
	Tez5747069
	Tez5747070
	Tez5747071
	Tez5747072
	Tez5747073
	Tez5747074
	Tez5747075
	Tez5747076
	Tez5747077
	Tez5747078
	Tez5747079
	Tez5747080
	Tez5747081
	Tez5747082
	Tez5747083
	Tez5747084
	Tez5747085
	Tez5747086
	Tez5747087
	Tez5747088
	Tez5747089
	Tez5747090
	Tez5747091
	Tez5747092
	Tez5747093
	Tez5747094
	Tez5747095
	Tez5747096
	Tez5747097
	Tez5747098
	Tez5747099
	Tez5747100
	Tez5747101
	Tez5747102
	Tez5747103
	Tez5747104
	Tez5747105
	Tez5747106
	Tez5747107
	Tez5747108
	Tez5747109
	Tez5747110
	Tez5747111
	Tez5747112
	Tez5747113
	Tez5747114
	Tez5747115
	Tez5747116
	Tez5747117
	Tez5747118
	Tez5747119
	Tez5747120
	Tez5747121
	Tez5747122
	Tez5747123
	Tez5747124
	Tez5747125
	Tez5747126
	Tez5747127
	Tez5747128
	Tez5747129
	Tez5747130
	Tez5747131
	Tez5747132
	Tez5747133
	Tez5747134
	Tez5747135
	Tez5747136
	Tez5747137
	Tez5747138
	Tez5747139
	Tez5747140
	Tez5747141
	Tez5747142
	Tez5747143
	Tez5747144
	Tez5747145
	Tez5747146
	Tez5747147
	Tez5747148
	Tez5747149
	Tez5747150
	Tez5747151
	Tez5747152
	Tez5747153
	Tez5747154
	Tez5747155
	Tez5747156
	Tez5747157
	Tez5747158
	Tez5747159
	Tez5747160
	Tez5747161
	Tez5747162
	Tez5747163
	Tez5747164
	Tez5747165
	Tez5747166
	Tez5747167
	Tez5747168
	Tez5747169
	Tez5747170
	Tez5747171
	Tez5747172
	Tez5747173
	Tez5747174
	Tez5747175
	Tez5747176
	Tez5747177
	Tez5747178
	Tez5747179
	Tez5747180
	Tez5747181
	Tez5747182
	Tez5747183
	Tez5747184
	Tez5747185
	Tez5747186
	Tez5747187
	Tez5747188
	Tez5747189
	Tez5747190
	Tez5747191
	Tez5747192
	Tez5747193
	Tez5747194
	Tez5747195
	Tez5747196
	Tez5747197
	Tez5747198
	Tez5747199
	Tez5747200
	Tez5747201
	Tez5747202
	Tez5747203
	Tez5747204
	Tez5747205
	Tez5747206
	Tez5747207
	Tez5747208
	Tez5747209
	Tez5747210
	Tez5747211
	Tez5747212
	Tez5747213
	Tez5747214
	Tez5747215
	Tez5747216
	Tez5747217
	Tez5747218
	Tez5747219
	Tez5747220
	Tez5747221
	Tez5747222
	Tez5747223
	Tez5747224
	Tez5747225
	Tez5747226
	Tez5747227
	Tez5747228
	Tez5747229
	Tez5747230
	Tez5747231
	Tez5747232
	Tez5747233
	Tez5747234
	Tez5747235
	Tez5747236
	Tez5747237
	Tez5747238
	Tez5747239
	Tez5747240
	Tez5747241
	Tez5747242
	Tez5747243
	Tez5747244
	Tez5747245
	Tez5747246
	Tez5747247
	Tez5747248
	Tez5747249
	Tez5747250
	Tez5747251
	Tez5747252
	Tez5747253
	Tez5747254
	Tez5747255
	Tez5747256
	Tez5747257
	Tez5747258
	Tez5747259
	Tez5747260
	Tez5747261
	Tez5747262
	Tez5747263
	Tez5747264
	Tez5747265
	Tez5747266
	Tez5747267
	Tez5747268
	Tez5747269
	Tez5747270
	Tez5747271
	Tez5747272
	Tez5747273
	Tez5747274
	Tez5747275
	Tez5747276
	Tez5747277
	Tez5747278
	Tez5747279
	Tez5747280
	Tez5747281
	Tez5747282
	Tez5747283
	Tez5747284
	Tez5747285
	Tez5747286
	Tez5747287
	Tez5747288
	Tez5747289
	Tez5747290
	Tez5747291
	Tez5747292
	Tez5747293
	Tez5747294
	Tez5747295
	Tez5747296
	Tez5747297
	Tez5747298
	Tez5747299
	Tez5747300
	Tez5747301
	Tez5747302
	Tez5747303
	Tez5747304
	Tez5747305
	Tez5747306
	Tez5747307
	Tez5747308
	Tez5747309
	Tez5747310
	Tez5747311
	Tez5747312
	Tez5747313

