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ABSTRACT 

The objective of this study is to develop an efficient 

method of routing military cargo planes in war time. 

iv 

A model with a nonlinear objective function is developed 

to determine these routes which minimizes the maximum mission 

time of planes. Based on this model, a solution procedure is 

introduced. Then, a heuristic procedure is suggeited to handle 

various airport capacity constraints. As an extensiQn of the 

study, a proposal is made on a'model which minimizes the total 

mission of the planes. 

Consequently a study is made on the behaviour of the model 

on some special cases. 



. . 

U Z E T 

Bu callsmanln amaCl, askeri yUk ucaklarlnln savas Slra

slndaki gUzergahlarlnl belirleyecek bir metod gelistirmektir. 

v 

Bu gUzergahlarl belirleyebilmek icin en uzun gorev 

sUresini enkUcUkleyecek ve yaddogrusal amac islevli bir model 

gel istirilmistir. .Bu modele dayandl nlarak bir cozUm yotdaml 

tanltllmlstlr. Daha sonra havaalanlarlndaki cesitli klsltlarl 

goz onUne alan bulgusal bir yordam sunulmustur. Callsmanln bir 

uzantlsl olarak ise toplam gorev sUresini enkUcUlten bir model 

one sUrUlmUstUr. 

Callsma, gelistirilen model in bazl ozel sartlar a]tln

daki davranlSlnl inceleyerek sonuclandlrllmlstlr. 



ASKERt UCAKLARIN tNTtKAL PLANLAMASI 

Bu callsmanln·amaCl, askeri yUk ucakl~rlnln savas slra-

slndaki gUzergahlarlnl belirleyecek bir metod gelistirmektir. 

Bu gUzergahlarl belirleyebilmek icin en uzun gorev sUresini 

enkUcUkleyecek ve yaddogrusal amaC iSlevli bir model gelistirilmis-. , .. 

tiro Bu modele dayandlrllarak bircozUm yordaml tanltllmlstlr. Daha 

sonfa havaalanlarlndaki cesitli klsltlarl goz onUne alan bulgusal bir 

yordam sunulmustur. Callsmanln bir uzantlsl olarak ise toplam gorev 

sUresini enkUcUlten bir model one sUrUlmUstUr. 

Callsma, gelistirilen modelin baZl ozel sartlar altlndaki 

davranlslarlnl inceleyerek sonuclandlrllmlstlr. 
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MILITARY CARGO AIRCRAFT 

The! objective of this study is to develop an ~fficient 

of routing military cargo planes i·n war time. 

A model with a nonlinear objective function is developed 

to determine these routes which minimizes the maximum mission time 

of planes. Based on this model, a solution procedure is introduced. 

Then, a ·heuristic procedure is suggested to handle various airport ': 

capacity constraints. As an extension of the study, a proposal is il. 

made on a model which minimizes the total mission of the planes. 

Consequently a study is made on the behaviour of the model 

on some special cases. 
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I, INTRODUCTION 

1.1 THE DESCRIPTION OF THE PROBLEM 

The airforce always needs an efficient method of defining 

routes and schedules of mil itary cargo planes both in war and in 

1 

peace time. Several military airports are located throughout the 

country with some of them being the bases of those cargo planes and 

there a re several loads that have to be carri ed among those airports .. 

The basic unit of shipment is one plane load. In :~eace time, the 

routing and scheduling process is done periodically. That is, demands 

between airports are generated within a period and these demands are 

satisfied within the next period. In case of a war, we think of a 

one~time operation where cargo planes located at known ba~es carry equ

ipment and military personnel in known quantities from supply points 

to demand points. Without loss of generality, all demand and supply 

nodes are assumed to be the airports. Since swiftness is an essential 

ingredient for success in a war, the overall job should be completed 

as fast,as possible. That is, the longest mission time of the planes 

should be minimized. For peacetime operations, on the other hand, 

the total mission time of all planes ~hould be minimized, since the 

variable cost of transportation is assumed to be directly proportional 

to distance'. 
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Also there are constraints on servicing planes at the airports. 

Each airport has a given service capacity for loading and unloading of 

the planes at any time. This handling capacity constraint should be 

considered simultaneously with the queue capacity of each airport. 

When the handling capacity of an airport is exceeded, then the excess 

planes should join the queue at this airport. But some airpdrts can

not hold more than a given amount of queue, mainly because there are 

no available parking space for these planes within that area. But a 

more important reason is that, in war time it is not recommended 

practice to allow for the accumulation of airplanes above a given 

number at any time, since the enemy can attack anyone of these air

ports at any time. So the queue lengths at those ports should not 

exceed certain prespecified levels. Therefore, a schedule satisfying 

these constraints besides minimizing the mission time is required. 

The problem described above falls within the class of problems 

called 'the vehicle routing and scheduling problems" in literature. A 

brief review of these problems will be given in the next section. 

1.2 THE CURRENT STATE OF ART IN VEHICLE ROUTING AND 

SCHEDULING 

The routing and scheduling of vehicles and crews is an area 

of both theoretical and practical importance to both operations re

searchers and transportation planners. Recently, significant progress 

has been made in the problem formulations and in the design, analysis, 

and implementation of solution procedures. 
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From a practical point of view, the effective r9utin9 and 

scheduling of vehicles and crews can save the state and private 

enterprises many millions of TLls a year. In addition, these rout

ing and scheduling procedures can increase productivity, improve 

operations, aid in long-range planning, assist contract negotiations, 

make the job of the scheduler or dispatcher much easier·tohandle, 

and help to control the financial impact of adverse weather conditions 

6n vehicle utilization. 

The Vehicle Routing Problem (VRP) can be stated as follows: 

Given a set of nodes (points) and/or arcs to be serviced by a fleet 

of vehicles, find the. routes of each vehicle so that total time and/or 

total cost of transportation is minimum. A vehicle route is a sequence 

of pickup and/or delivery points· which the vehicles must traverse in 

order, starting and ending at a depot or domicile. 

Above statement is only one definition of vehicle routing 

problem. 'The problem has many extensions to suit the practical prob

lem addressed. 

Vehicle Routing Problems can be classified as node routing' 

problems, art routing problems, and general routing probl~ms. The 

problem of visiting all nodes in a network and returning to the 

starting point {node routing) while incurring minimal cost is the 

Travelling Salesman Problem (TSP). In node routing problems a collec-
. \' 

tion of origin/destination pairs of nodes are given and at le~st one 

vehicle must travel from each origin to its corresponding destination. 

Examples of this problem are newspaper delivery and dial-a-ride or 

messenger service~ The problem of covering all arcs in a network 
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while ~inimizing'total distance travell~d (arc "routing) is the Chinese 

Postman Problem (CPP)~ In arc routing problems, a collection of arcs 

in a network has to be covered. Examples of this problem are snow 

. removal and street sweeping. The General Routing Problem is a genera

lization which includes both TSP and CPP as speCial cases. Here we 

seek the minimum cost cycle which visits every prespecified node and 

arc. Examples of such problems are 'school bus routing arid household 

refuse collection. The" generic problems such as TSP and CPP are not 

of practical interest, but of value for solving VRP and gaining inSight. 

In general, node routing problems require a set of delivery 

routes from a 'central depot(s) to demand points, each having known or 

stochastic requirements, in order to minimize the total distance 

covered by the entire fleet. Vehicles have known capacities and pos

sib1'y',maximumroute time constraints. All vehicles start and finish . 

the job at specific depot(s). 

A set of vehicle routes that service 10 demand points are 

shown in Fig. 1.1.' Each node has demand of -unity and each vehicle 

has a capacity of three units. 

Bodin, Gorden, and Assad (1981) have summarized various 

studies on extension of routing problems in three 'c1asses as follows, 

i. "one-to-many" problems: 

Such problems have a central depot- and many destinations. 

Items are loaded on the vehicles at the depot and delivered to many 

destinations. 



Route 1: 

Route 2: 

Route 3: 

Route 4: 

Depot A-1-2-Depot A 

Depot A-3-4-5-Depot A 

Depot B-6-7-Depot B 

Depot B-8-9-10-Depot B 

FIGURE 1.1 - Illustration of Routes 

ii. "many-to-one" problems: 

5 

Also in this case there is a central depot, and many. 

pickup points. Items are collecte~ from these points and delivered 

to that central depot. 

iii. "many-to-many" problems: 

Each item to be serviced can have a different pickup 

p'oint (origin) and a different del ivery point (destination). 

Most of the time authors talk about the pickup ,and delivery 

locations of items being serviced in "many-to-many" problems lnd do 

not explicitly worry about the garages where the vehicles are stationed. 

The deadhead times to go from the depots to the garages (or ,the times 

, from garages to the first stop on the routes and the times to the 
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ga"rages from the 1 ast stop on the routes) are generally added to tne 

length of the routes after the-routes are formed and not considered 

a par~ of the optimization. For many problems, this is a fixed time 

since .there is only one garage that can hous~ the vehicles (out of 

the depot); in other cases, the routes might be altered somewhat if 

this distance to and from the garage were taken into account in the 

optimization. 

The Vehicle Scheduling Problems (VSP) can be stated as routing 

problems with additional constraints on times of performing activities. 

Each location may require delivery within an interval. Thus the mo"ve

ments of vehicles should be followed both in space and time. A· vehicle 

schedule is a sequence of pickup and/or delivery points together with 

'an associated set of arrival and departure times. The vehicle must 

traverse the points in the designated order and ~t the specified time 

interval s. 

When arrival times at.the nodes ard/or arcs are fixed in 

advance.we refer to the problem as a scheduling problem. When the 
, 

arrival' times "are unspecified, then the problem is a straight forward 

routing problem. 

When time windows and/or precedence relationship exist so that 

both routing and scheduling functions need to be performed, we view 

the problem as a combined routing and scheduling problem. The com

bined routing and scheduling problems often arise in practice and 

representatives of manyrea':-world appl ications (~oding and Gal den, 

1981) . 

BGdin, Golden and Assad (1981) have described some examples 

'. 
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related with this topic a~ follows, 

i. school Bus Routing and Scheduling 

There are a number of schools and each one has a set of 

bus stops associated with it. In addition,there is a given number 

of students associated with each bus stop. Each school has a fixed 

starting time and a fixed e~ding time with corresponding time windows 

for school bus routing. The time window before the starting time of 

the school involves the time window for the delivery of students to 

the school in themorning and the time window after the ending time of 

the school in the afternoon is the time window associated with the 

pickup of the students. The principle objective when utilizing a 

leased fleet of vehicles'is. to minimize the number of buses requ'ired 

while servicing all the students and satisfying al.l the time windows'. 

When operating a fleet owned by the district, the objective is to 

minimize a combination of transportation costs and the number of 

vehicles used. . 

Although most papers related with this toP)C focus primarily 

on the routing component, Bodin and Berman (1979) suggested a proce

dure for formi,ng daily bus schedules as well·as methods for routing 

buses. The routing component of their suggestion forms a set of 

routes for each school. Each route is feaslble with respect to the 

maximum available time for the students and the maximum capacity of 

buses. The scheduling component'organizes the partial routes for 

each of the schools into daily schedules for the buses. 
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ii. Tractor-Trailer Routing and Scheduling with Full Loads 

A common commercial di'stribution problem is the routing 
/ 

and scheduling of tractors or tractor traile~ front ends with full 

loads. The term full load means that a trailer is attached to the 

tractor and has to be transported from a pickup point (the origin) to 

a delivery point (the destination). The load of a trailer has a unique 

destination and is not to be split among different destination loca

tions. The capacity of a tractor is one trailer. Since each trailer 

is transported from its origin t~ its destination, the trailer problem 

obviously involves precedence constraints. 

The demands are specified in terms of the number of trailer 

trips between origin/destination pairs. Given this demand data, one 

may address the following ~wo decision pr6blems: 

a) Minimize the total distribution cost for handling all 

origin-destination demans. 

b) Determine the optimal fleet size required to service a 

subset of the origin destination demands given that the 

remaining demand is to be serviced by common carrier. 

Love'(1978) suggested a model involving two submodels essen

tially for the solution of this problem. One of the submodels is the 
-

tractor submodel and the other is trailer submodel. 

iii. Tractor-Trailer Routing and Scheduling with Partial Loads 

This problem is similar to the full load problem except 

that each origin-destination pair need not to have a full trailer 



load to be serviced. Consequently, the load on a trailer may be 

split'among different destinations. 

iv. Street Sweeper and Household Refuse Collection 

Routing and Scheduling 

9 

The problems of scheduling street sweepers and household 

'refuse collection vehicles are applications of the Chinese. Postman 

Problem. For both of these problems, a set of street segments is 

spec.ified as needing service. The problem is to arrange a set of 

tours (each tour corresponding to a vehicle) covering all such seg

ments that minimizes the number of vehicles used. A surrogate but 

highly correlated objective is to minimize the total deadhead time 

of the vehicles. There are no precedence relationships on the entities 

to be serviced, and the time windows correspond to the parking regula-

·tions. 

Golden and Wong (1981) showed how capacitated arc routing 

formulations can be applied to these problems. 

v. Airplane Scheduling 

The scheduling of airplanes for commercial airlines is a 

very complicated procedure and is embedded within the process of 

generating a time table for the airline. The generation of a time 

table has to take. into account such factors as the expected n~mber 

of passengers travelling between cities; frequency of service desired, 

nonstop versus multiple stop service, etc. Furthermore, this scheduling 

takes into account the problems of generating pairings and bid lines 

for the crews. Thus, airlines may change their time table and plane 
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schedules if a pairing-can be saved. At this time, most scheduling 

of airplanes for commercial airlines is carried out on a manual basis 

or in an interactive computing mode and little algorithmic sophistica

tion is utilize~ in the process. 

'Soumis, Ferland and Rousseau (1981) and Richardson (1975) had 

given mixed integer programming formulations for both of the plane and 

passenger sides of the problem. 

vi. Dial-A-Ride Routing and Scheduling Problems 

In recent years, the area of dial-a-ride routing and 

schedul i ng has recei ved cons i derab 1 e attention. "I n the di a l-a -ri de 

problem, customers call in to request service. Each customer specifies" 

a distinct pickup and delivery point and, perhaps, a "desired time for 

pickup or del ivery. If all customers demand imme'diate ,service, then 

routing and scheduling is done in real time and"the problem is re-

ferred to as the dynamic or real time dia1-a-ride problem. If all 

customers call in advance, so that a complete data base of customer 

demand is known before any routing or scheduling is carried out, then 

this problem is referred to as "the subscriber or static dia1-a-ride 

problem. Both dynamic and static dia1-a-rideproblems have precedence 

relationships since a custome"r must be pickep up before he is delivered. " 

In some situations a desired time of pickup or delivery is specified 

in advance and the "other service" (either delivery or pickup) must 

he carried out withi!') a given number of minutes from either the 

desired or the actual time of delivery or pickup. In a certain sense 

this introduces a two-sided time window on the "other service". 
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-
Psaraftis (1980) and Stein, et.al (1978) have giv.en formula-

tions to various derivatives of the dial-a-ride problem. 

1. 3 Cm~PLEXITY OF VEHICLE ROUTING AND SCHEDULING PROBLEMS 

. All of the problems mentioned in the previous section are 

NP-hard. Moreover, the complications in these problems are such that 

exact al gorithmic'-approaches based on mathematical programming- formu

lations have not been successful for these problems. 

The network problems are classified according to a theoretical 

scheme based on the notions of '~olynomially-bounded" and "NP-hard" 

as follows. The polynomially-bounded class P is composed of such 

problems for which polynomially-bounded algorithms are known. An 

algorithm is said to run in polynomial time if there exists an uppeF 

bound on the number of operations, that is a polynomial in n, where 

n is an input parameter which measures the problem size. (such as the 

number of nodes). Thus the computational effort increases only poly

nomially with problem size in the worst case. The problems of this 

c,lass can generally be solved quite efficiently and their order is 

determined by the highest power of n-in polynomial expression. 

But on the other hand, there.is a large class of network and 

combinatorial problems for which no polynomially-bounded algorithm 

exists. Such problems are called NP-hard (NP stands for nondetermi

nistic polynomial). The solutio'n procedures developed for 'such prob

lems require exponential run time. That is computational ·effort 

increases exponentially with the problem size. 
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To emphasize the difference, assume that there are two algo

rithms available to solve a network problem with respective run times 

are: 

and 

where n is the number of nodes. When n is small the second algorithm 

will work faster than the first one. But if n is increased a little 

(Let n = 20), then the second algorithm ~il1 collapse~ although the 

first one still functions \'/ell. The difference between these two 

algorithms grow even more as computer technology improves. If the 

efficiency of a computer improves'by. a factor of 100, then the maximum 

problem size soh!ab1e by first algorithm in a fixed amount of time 

would increase by a factor of 10 whereas the maximum problem size 

handled by second algorithm increase by no more than seven nodes. 

It is obvious that, an algorithm of order n2 is preferable 

to one of nq
, and exponential time algorithms are to be avoided when

ever possible (Golden, Ball and Bodin, 1981) • 

. . A11 routing and scheduling problems of interest fall in the 

class of NP-hard.problems. Apparently minor changes in problem 

characteristics may result in radical changes in the computational 

complexity of the resulting problems. For example both directed and 

un.directed Chinese Postman Problem are in the class P, whereas Mixed 

Chinese Postman Problem (where both directed and undirected arcs are 

allowed) is NP-hard. Table 1.1 reviews some algorithms available for 

network problems and compares their behaviour. This table was pre

sented at ,NSF Workshop on Large Scale Systems in Lubbock, Texas in 

April, 1979. 



Problem Name 

Shortest Path from s to t 

Shortest Path from s to all 
other nodes 

Shortest Paths between 
all nodes 

K Shortest Paths 

Minimal Spanning Tree 

Capacitated Minimal 
Spanning Tree! 

Transportatibn Problem 

Max Flow 

Min Cost Flow 

Matching 

TABLE 1.1 - Comparison of Different Algorithms 

Heuristic Algorithm 

Size Handled 
Easi ly 

NN 

NN 

NN 

NN 

NN 

1000 

NN 

NN 

NN 

NN 

References 

Kershenbaum (1974) 

Exact Algorithm 

S.ize Handled 
Easily 

5000 

,5000 

I 
500 

500 (K 5) 

. 5000 

40 

3000 

3000 

3000 

500 

References 

Golden and Ball (1978) 

Denardo and Fox (1979), 
Golden (1976), Pape (1974), 
Gilsinn and Witzgal1(1973), 
Dial, et al. (1979). 

Relton and Law (1978) 

Shier (1976), Shier (1979) 

Kershenbaum and Van Slyke 
(1972 ) 

Chandy and Lo (1973) 

Mulvey (.1978), Bradley, 
et al. (1977), Glover, 
et al. (1974) 

Cheung (1980), Glover, 
et a 1. (1974) 

Bradley, et al. (1977), 
Barr, et a1. (1974) 

Cunningham and Marsh(1978), 
Derigs (1979), Derigs and 
Kazakidis (1979) 

--' 
w 

. I 



(Table 1.1 continued) 

Problem Name 
Heuristic Algorithm Exact Algorithm 

.......... -~;;.;-;::::r---:-~=-=~----==----- ---S-i ze Han dl ed Size Handled . References . Easily References : EasHy· . .. __ 

Travelling Salesman 
Problem! : 

, Vehicle Routing Problem! 

indicates prob·1em is NP-hard. 

1000 

750 

Webb (1971), Gold~n and 
Bodin (1978), Golden;' 
et al. (1980) 

Golden, et al. (1977) 

NN indicates heuristic or approximate algorithms are not necessary. 

,/ 

100 

30 

Liliotis (1976), Miliotis 
(1978), Held and Karp (1970), 
Padberg and Hong (1977), 
Balas and Christofides(1981) 

. Christofides, et al. (1981) 

..... 

.;::. 



1.4 THE OUTLiNES OF THE f~OOEL OEVELOPEO- FOR "ROUTING THE 

f4ILITARY CARGO AIRLINES" 

The model ,developed in this thesis treats the problem in 
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two stages. In the fi rst stage, the routes of the pl anes are de

termined regardless of , the airport capacities. These routes ~re 

determined such that all loads are carried to appropriate locations, 

and'the objective function is minimized. The objective function 
" 

can be stated as follows depending on the nature of the. problem: 

i. Minimize the maximum job time. 

ii. Minimize the total job time. 

The first problem is called the IIBottleneck Routing Problem 

(BRP)" and the other is called the "Minimum Total. Time Routing Problem 

, (MTRP)". 

At the second stage, the schedules of planes ,are determined 

such that the airport capacity constraints are satisfied, with the 

given routes of the pl~nes. 

Nearly ina 11 the probl,ems discussed in the previous sections, 

one of the major objectives is the minimization of the number of 

vehicles required, besides minimization of total transportation costs. 

But in military applications the number of planes that will be utilized 

is al ready given in most of the cases and the major objective is the 

minimization of maximum job time. So, this nature of the objective 

function does not allow us to utjlize any of the s~lution techniques 

yet developed for problems with linear objective functi~ns. Except 

Ulusoy (l'981) there is no s,ignificant effort on such objective functions 
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in the literature yet. 

The military cargo airplane routing problem can be classified 

as a "many-'to-many" routing problem in which each item to be serviced 
-

can have different origin and destination points. But the planes are 

housed in one or more of these origin and/or destination pOints. So 

the model takes eareof the initial locations of the planes (garages 

of the vehicles) and all the deadhead times,are considered seperately, 

since there is more than one airport to house planes initially. 

Also the problem is subject to precedence constraints, since 

the plane should be loaded before it is unloaded. But the load on a 

plane is not splitable. The demand between any origin~destination pair 

is in terms of full plane loads. 

, Besides the objective function,the basic difference between 

military airplane routing problem and classical vehicle routing prob

lem is the definition of demands. In vehicle routing problems, demands' 

are located at 'nodes and should be supplied from a central depot, but 

in our case a demand node can be the supply node of another demand node. 

Hence items should be transferred among them. By this definition of 

demands~ the problem can be viewed as a dial-a-ride problem, but in 

dial-a-ride problems depot location is known. On the other hand, in 

our case the depots have the same characteristics of other nodes of the 

system except they have some pl~nes initially~ 

Also the problem have similarities with the tractor-~railer 

routing problem with full loads.' In both cases some cargo has to be 

~hipped between prespecified pOints and the cargo is not splitable 

among diff,erent locations. But in case of military routing there is 

no distinction s4ch as tractor and trailer. 
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1 .5 Sut4MARY OF THE WORK FOLLOWING 

Chapter 2 formulates the model , summarizes the solution tech

nique suggested by U1usoy (1981) and introduces the classical Set 

Partitioning Method. 

Chapter 3 describes the model developed for bottleneck routing 

of cargo planes. 

Chapter 4 introduces an heuristic to handle airport capacity 

constraints. 

Chapter 5 introduces the transformations suggested for minimum 

total time routing. 



II. MATHEMATICAL FORMULATION AND. 
THEORETICAL BACKGROUND 

2.1 MATHEMATICAL FORMULATION OF THE BOTTLENECK 

ROUTING PROBLEM 
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The Bottleneck Routing Problem (BRP) can be stated ai follows: 

Given, L = {R'l' R,2' ••• ,R,t.1} be the set of all loads that have 

to be carried between all airports. Let, y = {Si, ... ,SN}be the set 

of all sets, SJ C L. Each SJ defines a set of loads that can be 

carried by a plane. Let for each SJ' be an associated time figure 

CJ , defining the time required to carryall. loads shown by SJ. 

. Then, a IIset-partitioningll SR, of L,. is any subset ofy 

obeying following rules; 

m r j 

(2. 1 ) 

(2.2) 

Rule i .imposes that all loads should be covered by that set-

partitioning of L, and Rule ii imposes that each load should be 

covered exactly once. 



Let the set s. is the set of all St (~ll set-partitiqnings 

ofL) satisfying the rules given above. 

Then, the Bottleneck Routing Problem is to find that set-

partitioning of L, in which the maximum CJ value is minimized. 
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That is, the maximum time required to finish each job is minimized. 

Thus, (0-1) linear programming formulation of the BRP can 

be given as: 

where, 

i = 1,2, •.. ,M 

k =1,2, ... , RP 

1, SJ E ~t for anY,St E S 

0, otherwise 

1 , 

0, if' load ti t SJ' for i = 1, .•. ,r·1 
J = 1, .•. ,N 

1 , 

0, 

if plane covering.SJis originally at 
airport k 

otherwise, for J = 1 , ... ,N , 
k = 1 , .•• ,RP 

(2.3) 

(2.4) 

(2.5 ) 

(2.6) 

(2.7) 

(2.8) 



and 

Also, 

P is 

R is 

RP: is 

M : is 

N : is 

H
k
: . is 

Note that, 
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is the time.spent by a plane which (2.9) 
is originally at airport k to cover 
all loads in SJ. There are many 
possibilities to cover all loads in 

,SJ. Therefore, CJ must correspond 
to that of the shortest among such 
routes. 

the number of planes- . 

the number of airports 

the number of airports which have planes initially 

the number of loads 

the number of sets in Y 

the initi al number of planes at airport k. 

for J = 1, .•. ,N (2.10) 

_and number of planes is given as: 

RP 
P = l Hk 

k=l 

Thus, the first constraint in the formulation (Eq. (2.4» 

imposes the so-called IIno-overcoveringll restriction on the problem. 

That is, each load should be covered exactly once. The second cons

traint (Eq. (2._5» forces the problem to use exactly the prespecified 

number of planes f~om each airport. 

The mathematical formulation of Minimum Total Time Routing 
. 

Problem (MTRP) differs in the objective function only. That is, 
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(2.12) 

The constraints are (2.4), (2.5), (2.6) as in th'e previous problem. 

2.2 THE SET PARTITIONING PROBLEM 

The following two sections about the set partitioning problem 

are adopted from Chapter 3 of Christofides (1975). 

2.2.1 The Problem Formulation 

The Set Partitioning Problem (SPP) owes its name to the following 

set-theoretic interpretation. 

Given,a set L = {t
1

, ••• ,1M} , and a set S = {Sl"",SN} of 

sets SJC:: L, and a subset "S"1= {SJ~ ~ SJ2'''' 'SJ'p} of $, such that the 

rules given in expressions (2:1') and (2.2)d~fine,51' then 51 is 

called a IIset partitioning of LII. If the second rule is omitted, 

then 51 is called a Uset-covering of LII. That is, when SJ's within 

S1,are not pairwise disjoint. 

To be consistent with the definition of BRP, define the set 

S as the set of al151. Hence S is the set of all set-partitionings 

'of L. 

If a positive cost CJ ,is associated with each-SJ £ S~ the 

SCP becomes the search for a set-covering of L which has a minimum , ' P 
cost, the cost of 5 = {SJ1"" ,SJ } being .I CJi • The Set Partitioning 

. p 1=1 

Problem (SP'P)is defined correspondingly. 

The SCP can be formulated as a (0-1) 1 inear program as foll ows: 
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(2.13) 

s. t . i = 1,2, ... ,tf (2.14) 

. where, YJ ~nd tiJ are as defined in (2.6) and (2.7) respectively. 

For SPP the iQequa1 ities (2 .. 14) become, 

i:1, .•. ,M (2.15 ) 

-The T matrix in Fig. 2.1 shows the binary relationship bet

ween S J and .Q, i . 

1 

2 

L 
1 

51 

t .. 
lJ 

FIGURE 2.1 - The T Matrix 

2.2.2 A Tree Search Algorithm For SPP 

The basic difference between SPP and SCP is the existence of 

no-overcoming restriction inSPP. This fact is very adventageous, 

while applying a tree search method, since it enables early 
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abandonment bf potential branches of the tree. 

Christofides s~ggested to reorder sets before getting in the 

tree search a1gorithm~ This reordering is called ~locking. For ~ach 

element £k and L, one block is created. Block k contains these sets 

which do not cover any of the elements numbered £ "'~'£k .' Thus, 
1 -1 

each s~t SJ can be placed only in one block. For the sake of readi-

bi1 ity, these blocks are arrangE?d in tableau format shown in Table 2.'1. 

Depending upon the nature of the problem, some blocks can be empty. 

The tree search algorithm moves on the blocks sequentially 

such that block k is not being searched unless every element £i' 

1 < i :: k-1, has al.ready been covered in a partial solution. 

,£ 
3 

. ' 

.. 

TABLE 2.1 - The Initial Tableau 

1111 a 

1111 a' 

a' or'l 1111 a 

a or 1 1111 'etc . 

a or 1 a or 1 , 

The sets within each block are arranged heuristically in 

ascending order of their costs. During the course of the tree search 

besides the sequential search upon blocks, the set,s within each block 

are searched sequentially also.· Since the ,objective is to .!l1inimize 

total cost, search on lower cost sets will be more promising. Then 

the sets SJ are renumbered such that the set SJ will correspond to 

the set a~ the J'th column of the tableau. 



While applying the algorithm current best solution B and its 

related costfi gure Z is kept and updated after every improvement, 

where if is the set of SJI S covered vlithin that best solution. Also 

Band Z are used to represent the current partial solution at hand, 
, 

and E shows the elements of L covered by the partial solution B. 

The steps of the· tree search algorithm can be stated as follows: 

Ini"tializa"tion: 

Step 1 Perform blocking process to set up the initial tableau 

and set the partial solution B = ~, E = ~, Z = 0, and 

let Z = 00. 

Augmen"ta"tion: 

Step 2 : Find Q = min(ill i E E). Set a marke~ at the top, i.e. 

at the lowest cost set of ~lock Q. If block Q is empty, 

go to step 4; otherwise, continue. 

Step 3 Beginning-at the marked position in block Q, examine 

its sets S~ 'in increasing order of J. 

i) If set S~ is found such that S~ n E = ~ and Z + C~ < 7 

(where C~ is the' cost of S~) then put marker on set S~ 

and go to step 5. 
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ii) Otherwise, if block Q is exhausted or a set S~ is reached 
Q -for which Z + CJ ~ Z, then remove last marker and go to 

step 4. 
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Backtrack: 

Step 4 : B cannot lead to a better solution. If B = ~ (i.e. block 

1 has been exhausted), terminate with the optimal solution 

B. Otherwise, remove the last set, S~ say, added into B, 
. t 

put Q = t, place a marker on set Sk+l' remove previous 
, , 

marker in block t, set Z = Z - C, update E and go to 

step 3. 
t If Sk+l do~s not exist, then, if t = 1, terminate; else 

go to step 4. 

Test for a new.solution: 

Step 5 
QQ. Q 

Update B = B U [SJ]' E = E U SJ' Z = Z + CJ . Remove last 

marker~ If E = L a better solution has been found: Set 

B = B, Z = Z and go to step 4. Otherwise, go to step 2. 

- . 

Since the search terminates with the exhaustion of block l,~t 

step 4, it would be better to arrange blocks in ascending order 

according to the number of sets in each block. This can be achieved 

by renumbering the elements .R.l , ••• ,.R.M in increasing order of number 

of sets in S containing that element, before setting up the initial 

tableau. 

Christofides has suggested some dominance tests which will 

improve algorithm. Some of these can be stated in short as fellows: 

Keep for each value of'Z = 1,2, ... ,Z. Some (perhaps incomplete) 

list of maximal Els which have been achieved for this Z, (where by 
--

maximal- is·meant a set not included in another ~et which is also in 

the list). These 1,ists Els can then be used to limit the search by 

BOGAZiCi ONivERSiTESi KOrDpHANESI 



eliminat~ng branches that later on prove fruitless. 

Chrisdofides has also suggested some methods of findings a 

·lower bound on the cost of the branches obtained during the course 

of the algorithm. But we shall not make use of these bounds through

out this study, so we have omitted that part. 

There are also some other methods proposed for solving' SPP. 

Pierce and Lasky (1973) give some' modifications to the above basic 

. algorithm, incl uding subsidiary use of a 1 inear program. t~ichadu 

'. (1972) describes another implicit enumerati~n algorithm which is based 

on a linear programming problem corresponding to SPP with the block 

structure given above being used in a secondary role. 

Other algorithms involving simplex-type iterations have been 

proposed, both primal (Balas arid Padberg, 1972) and dual (Jensen, 1971, 

and Salkin and Kencal, 1970). 

Defining some derivatives of his problem will be of more 

.. interest to us and thus we shall define some new probl ems. 

2.3 THE BOT~LENECK SET PARTITIONING PROBLEM (BSPP) 

BSPP differs from classical SPP only in the form of the 
-

objective function. S~P formulation tries to minimize the total 

cost of sets within S .. But BSPP formulation tries to minimize the 
"'~ 

maximum cost within·S. Thus, the formulation in Section 2.2.1 

becomes, 

.. 

(2.16) 
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i = 1,2,.~.,M (2.17) 

where YJ' tiJ and CJ are as defined in the SPP formulation in Section 

2. i. 1 • 

2.4. THE RESOURCE CONSTRAINED SET PARTITIONING 

PR~BLEM (RCSPP) 

RCSPP is essentially a generalized version of SPP, RCSPP 

formulation is built upon the SPP formulation by introducing a set 

of resource balance constraints. 

Resource constraints are imposed as follows. Assume that 

each set SJ E S consumes exactly one unit of some available resource. 

Let there be several resource types and each set can consume only one 

type of resource. That is, 

where 

and 

RP -
L hJk = 1 

k=l-
for J = 1, •.. ,N 

1, if set J consumes resource k 

0, . otherwi se 

RP: is the numb.er of resource types. 

Then, we can formulate RCSPP as follows: 

N 
Min Z = L CJYJ 

.J=l 

i = 1,2, ... ,M 

(2.18) 

(2.19) 

(2.20) 

(2.21 ) 
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k = 1 ,2, ... ,RP (2.22) 

whereHk: is the available amount of resource type k, and CJ , YJ' 

tiJ defined as earlier. 

Depending on the value of RP, we ha~e two cases: 

i. WhenRP = 1, 'it means that there exists only one type 

of resource. In this case, RCSPP formulation:forces 

the SPP formulation so that the solution vector 5' has 

exactly Hl components. .' 

ii. When RP > 1, then the solution vector~' i~ forced to 
RP . 

have exactly t. Hk components, and resource consump-
. k=l . 

tion of the components are forced to'levels given in 

the resource availability vector H. 

Of course, there may be cases where the resource consumption 

equation is relaxed and equality sign in the resour:ce availability 

constraint is replaced by a less than or equal sign. Then, the 

solution vector is forced.to have components less than or equal 

to theprespecified levels. 

2.5. THE BOTTLENECK RESOURCE CONSTRAINED SET 

PARTITIONING PROBLEM (BRCSPP) 

BRCSPP combines.the characteristics of both BSPP and RCSPP. 

That is,' it '. both forces the solution 'vector have a prespecified . 

amount of components and tries to minimize the maximum cost of the . 



sets within the solution vector instead of minimizing the total cost 

of the set-covering~ 

Thus, the combined formulation becomes, 
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Min Z = min [ max [CJ]] 
SR. ES S JE"S"JI. 

(2.23) 

N 
s . t. L ti JY J = 1 

J=l 

k = 1,2, ... ,RP 

where tiJ~ YJ , hJk are as defined earlier. 

(2.24) 

(2.25) 

The formulation of BRCSPP is exactly equivalent ~o the mathe

matical programming formulation of BRP, hence if.we solve BRCSPP, we 

get the solution to BRP. Also,' the formulation of RCSPP is exactly 

equivalent to the mathematical programming of MCRP, hence the same 

statement holds for that case. 

2.6. ULUSOY I S ALGORITHr~ FOR BRP 

For the so lut ion of BRP Ul usoy (1981) has suggested to modi fy 

the SPP algorithm given by Christofides (1975) so that to handle both 

the minimax objective function and the resource constraints. 

The improvements can be summarized as follows: 

i. / The modifications to handle resource constraints. 

As in the classical SPP, the current partial solution 

is:.kept by three variables, B, 'Z, and E. But in addition to these 



a new vectrir G is introduced which keeps track of the current usage 

of resources, i.e. Gk is the current amount of resource to be used. 

When a new set is added to the partial solution B, the G vector is 
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.updated, i.e. the current usage of resource type of lately introduced 

set is increased by one. Similarly Hhen a set is drawn out of the 

partial solution, then the corresponding compo~ent of'G is decreased. 

If the current usage of resource type k is equal to the availability 

of that resource then the sets consuming. resource k are disregarded 

at step 3(i) of the SPP algorithm, i.e. first the resource availa

bility is checked. If all available resources have been used up, 

then the sets consuming this resource is disregarded at step 3(i). 

ii. The modifications for minimax objective function. 

The'RCSPP problem is solved by-the modified SPP algorithm 

with given sets. Then~ among the feasible solutions generated during 

this sol u,tion process, the one which minimizes the maximum set cost 

is chosen without considering the minimum total objective function 

value, i.e., 

Then, the sets in S are scanned and the ones whose cost is 

greater than or equal to Z* are deleted. Thus S is reduced and the 

routine is reinitiated on remaining sets. This process is repeated 

until there is no feasible solution on remaining sets with the last 

solution being an optimal solution to BRP. 



aspects: 

Ulusoy (1983) has further improved this approach in two 

i. An upper bound on the length of mission time is provided 

by a heuristic procedure. The heuristic procedure pro

duces a good feasible solution to BRP which results in 

relatively reduced number of paths processed by the 

specialized set partitioning routine. 

ii. The first version of the procedure required the execu

tion of the set partitioning routine several times and 

one final complete enumeration. In this version, a new 

labelling routine for the paths. has been introduced 
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which produces the'exact·optimum by.only a single scan 

through the first block, thus resulting in a large compu

tational saving .. 

A further improvement can be introduced by the following 

suggestion. 

Let us suppose, there· is only one type of resource. Then 

as it was mentioned earlier the SPP algorithm is forced to get a 

given number of components into the solutirin set. 

Now, specifically assume there are 20· rows (M = 20) and only 

4 resources (RP = 4) available. Then the problem becomes: choose 

4 or less sets so as to cover 20 rows. Now assume a partial sol u

tjon B, Z, and E which uses 3 sets, thus consumes 3 resources and 

covers .10 rm'ls. In thi s s i tuati on, SPP rout ine looks to the unco..,. 

vered rows, chooses the minimum index of uncovered rows at step 2 
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and enters that block and searches for a feasible solution at step 3. 

But at this point one can decide whether a feasible solution may exist 

or, not. 

One can look at the remaining sets. If there is no set SJ' 

where the number of rows covered by the setSJ is greater than or· 

equal to 10, then, one can conclude that this branch is fruitless. 

In that case, there is no possibility of reaching a feasible solution. 

Since one can us~ only one more set, but there is no set which is 

covering at least 10 rows. If there exists such a set, then there 

is a possibility of reaching a feasibl.e solution. 

Although this is ~n exaggarated example~ most of the time 

similar cases decrease the efficiency of the SPP routine'. 

If there are more than one resource type, then the difficulty 

again arises due to t,le same reasoning. 



III. THE SOLUTION PROCEDURE DEVELOPED FOR 
THE "BOTTLENECK ROUT I NG PROBLEt,1" 

3.1 INTRODUCTION 
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With the intent of improving upon the solution procedure based 

on specialized set partitioning algorithm a new method is developed 

here. The method is designed to find an exact optimum. 

The method suggested approaches to the problem just in the 

opposite direction as compared to the set-partitioning approach. In

stead of eliminating the sets from the set ~ gradually,. this technique 

starts w~th no set at hand and gradually enlarges ~. 

Before getting in the details of this new method we shall 

first concentrate on the calculation of SJ and CJ values defined in 

Chapter 2. 

3.2 THE NETWORK TRANSFOR~~TIONS REQUIRED TO OBTAIN SJ and CJ 

. The original nebJOrk of theBRP is a fully connected symmetric 

network, where the nodes of this network represent the airports. This 

network is symmetric since the flight time from airport i to airport J 

is practically equal to the flight. time from ai~port J to airport i. 

But symmetry is assumed only for the sake of simplicity. The solution 



34 

technique is also applicable to the assymmetric cases (See Example E). 

Let 0 be the flight time matrix, where diJ is the flight time from 

airport i to airport J. 

From this neblOrk a transformed network is formulated in order 

to generate the sets (SJ1S) and related cost figures (CJ1s), defined 

in Section 2.1-

In this transformed network, each SJ will be defined by a 

unique simple path, and the length of that path will correspond to 

. the related CJ value .. Practically CJ indicates the time r~quired to 

traverse that path (that is the time required to carry ~ll the loads 

on the related path) and will be called as "path length" from now on. 

Originally this network transformation is suggested by Ulusoy 

(1981) and his suggestion will be introduced in Section 3.2.4. ' 

The transformed network is obtained in two phases. In the

first phase hodes, and in the second phase arcs of the transformed 

network are generated. 

3.2.1 Node Transformations 

In the transformed network, there is one node for each of the 

airports, which has planes initially, in the original network, and 

there is one node for each of the loads that should be carried, and 

there are two artificial nodes. Thus, totally there are, 

Y = RP + M + 2 _ (3. 1 ) 

nodes. Namely, 



Node 1: refers to the artificial source node. 

Nodes 2, ... , RP+l: correspond to the airports which have 

planes initially. 

Nodes RP 2, ..• , RP+M+ 1: correspond to the loads 1,2, ~ .. ,~1 . 

respecti vely. 

Node RP+M+2: refers to the artificial terminal node. 

35 

In the Example A, there are 4 airports. and 7 loads which 

should be transported between these. airports. These loads are- indi

cated by arcs in the original network (See Fig. 3.1). Original loca

tions of the planes are assumed to be the airports 3 and 4. 

Note: Nodes correspond to airports. 

* indicates that planes are available at these airports initially. 

The arcs between the airports show the loads th~t are to be carried 

between these airports. 

FIGURE 3.1 - Original network of Example A 

1 - . 30 65 40 

2 30 65 35 
D = 

3 65 30 20 

It 40 35 20 

Note: time,s taken in minutes. 

TABLE 3~1 ~ Flight Time Data of Example A 
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From this original network, the transformed n~twork is obtained 

. with 11 nodes, as shown in detail in Fig. 3.2. In this network nodes 

represent the following. 

Node 1 : The artificial source node. 

Node 2: Airport 3. 

Node 3: Airport 4. 

Node .4: Load 1 (from airport 1 to airport 2) 

Node 5: Load 2 (from airport 4 t~ airport 1) 

i~ode 6: Load 3 (from airport 2 to airport 4) 

Node 7: Load 4 (from airport 4 to airport 3) 

Node 8: Load 5 (from airport 4 to airport 2) 

Node. 9: Load 6 (from airport 3 to airport 1 ) 

Node 10: Load 7 (from airport 3 to airport 4) 

Node 11: The artificial terminal node. 

3.2.2 Arc Transformations 

The transformed network is assymmetric and is not fully 

connected. Let the time matrix related with this network be W. 

This matrix is Y byY and called the "operation time matrix". 

It \"lOuld be better to consider the arc transformations in 

far stages. 

In this stage, the interactions between nodes representing 

loads in the transformed network are considered. That is, nodes 

RP+2, ... ,RP+M+l are considered. All these nodes are fully connected . . 



to each other and the operation times. (wk,Q,) between these nodes are 

calculated as follows: 

Case a: 'If the ending airport of the initial. node (load in 

this stage) coincides with the starting airport of the final node 

in the transformed network, then the time required to traverse this 
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arc (from initial node to final node) is, the flight time from starting 

airport to ending airport of final node, plus the loading time (TL) 

plus the unloading time (TU) (See Arc A on Fig. 3.2). That is, 

where, 

Wk,Q, = d[L(.R.-l-RP),lJ,[L(JI.-l-RP),2] + TU + TL (3.2) 

Vk,JI. ':: RP+2, ••• , RP+M+ 1 ) k ,JI. 

and if L(k-l-RP),2 = L(JI.-l-RP),l 

L.l 1 , 
is the starting airport of load i. 

L. 2 is the ending airport of load i. 
1, 

Thus, L(JI.-l-RP),l is the airport corresponding to starting 

airport of (JI.-l~RP)'th load, where the (.R.-l~RP)'th load corresponds 

to the .R.'th node by the definition in Section 3.2.1. 

Case b: If the ending airport of the initial node does not 

coincide with the starting airport of the final node, then this 

means there exists an empty flight (a flight in which the associated 

plane does not carry any load) between these nodes, and the time re

quired for that flight should be added to the time required to tra

verse that arc (See Arc B on Fig. 3.2). That is, 
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+ d[ . , + TU + TL (3 3) 
- L(~-1-RP),1],[L(~-1-RP),2] . 

V k,~ = RP+ 2, ... , RP+ Mt 1 , k r ~ 
. and if L(k-l-RP),2 r L(~-l-RP),l 

3.2.2. 2 ~t~9!Lg:' __ !!Jt~r~£tlQ!]L~~tb'~~!Ltb!LBlrQQrt~_~bl£!L~~Y~ 

~l~n~~_!nltl~ll~_~nQ_tb~_bQ~Q~ 

In this stage the interactions between the nodes representing 

airports ,which have planes initially and the nodes representing loads 

are considered. There are arcs from all nodes representing.airport~ 

to all nodes representing loads, but there a~e no arcsin the counter 

direction. The operation times are calculated as follo~s: 

-Case a: If the airport at the initial node coincides with the 

starting airport of the final ncide, then a case similar to Case ~ of 

Stage 1 occurs (See Arc Con Fig. 3.2). That iS J 

Wkn = d[ ] + TU + TL (3 4) 
N L(~-1-RP),1],[L(~-1-RP),2 . 

for k = 2, ... ,Rp· 

.~ = RP+2, ... , RP+f.ft 1 
.. th 

and if L(~-l~RP),l = (k-l) airport which has planes 

initially. 
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Case b: If the airport at the initial node does not coincide 

with,the starting airport of the final node, then a case similar to 

Case b of Stage 1 occurs (See Arc D bn Fig. 3.2). Tha~ is, 

Wk~ = d[(k_l)~h airport which has] ,[L(~-l-RP),l] 
planes initially 

+ d . . . + TU + TL 
[L(~-1-RP)~1],[L(~-1-RP),2] 

for 'k=2, ... ,RP 

and if 

~ - RP+2, ... ,RP+~1+1 
, .. th 

L( -l-RP),l r (k-l) , airport which has planes 
initiCilly 

(3.5) 

3.2.2.3 ~~~g~_~~_~!n~~r~£~iQn~_~~~~~~n_~n~~8r!ifi£i~1_~Q~r£~_~Qg~ 

8nQ_~n~_8ir~Qr~~_~ni£n_~~Y~_E~~n~~_!Di~i~11~ 

The artificial source node and the artificial terminal node 

is introduced so that to generate a complete network for the reasons 

discussed in the next sections. 

All arcs between artificial source node and the nodes repre

senting airports which have initially planes are dummy and their ope

ration times are zero. There are no arcs in opposite direction (See· 

Arc E on Fig. 3.2). That is, 

for ~ = 2, ... ,RP+l (3.6 ) 



3.2~2.4 ~~~9~_~~ __ !~~~r!s~iQ~~_~~~~~~~_~b~_bQ!~~_!n~_~b~ 

~r~ifisi!1_!~rmi~~1_~Q9~ 

Again, all arcs beb/een the nodes representing loads and the 

terminal node are dummy and have zero operation time and no arcs in 

'opposite direction (See Arc F on Fig. 3.2). That is, 
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Wk, RP+ t.ft 2 = 0 k = RP+2, . .'. , RP+M+1 (3.7') 

3.2.3 An Example of Network Transformations 

The node transformations of Example A is given in Section 

3'.:2.1. The f1 ight time matrix Dgiven in Table 3.1, and the loading 

and unloading times are taken as 10 and 5 minutes respectively. The 

load numbers are indicated on Fig. 3.1. 

Following example computations given to illustrate the inter

actions described in previous sections, and the complete operation 

time matrix is given in Table 3.2. 

a) Stage 1: Case a 

since 

= d . + TU + TL 
[L(6-l-2),1],[L(6-l-2),2] 

= d2,4 + TU + TL 

= 50 minutes 

This computation is related wi~h Arc A on Fig. 3.2. 
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b) Stage 1: Case b 

+ d ° + TU + TL 
[L(7-1-2),i],[L(7-1-2),1] 

= }O minutes 

c) ~tage 2: Case a 

w --d ] [ ] + TU + TL 
2,9 - [L(9-1-2),1 ' L(9-1-2)~2 ° 

= 80 minutes 

Since L6 ,1 0= 3 

d) Stage 2: Case b 

w = d [ ] + d[ ] [ ] 
3,10 .4, L{10-"1-2),1 °L(lO_1_2),1 ' L(10-1-2),2 

+ TU + TL 

= 55 minutes 
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1 00 

2 00 

3 00 

"4 00 

5 00 

w = 6 00 

7 00 

8 00 

9 00 

10 00 

11 00 

TABLE 3.2 - The Operation Time Matrix Obtained 
From the Transformed Network oJ 

Example A 

2 3 4 5 6 7 8 9 10 

0 0 00 00 00 00 00 00 00 

00 00 110 75 80 55 70 80 35 

00 00 85 55 85 35 50 100 ." 55 

00 00 00 90 50 70 85 110 65 

00 00 45 00 80 75 90 145 100 

00 00 85 55 00 35 50 100 55 

00 00 110 75 80 00 70 80 35 

00 00 75 90 50 70 00 110 65 

00 00 45 95 80 75 00 00 100 

00 -00 85 55 85 35 50 100 00 

00 00 00 00 00 00 00 00 00 

3.2.4 The Network Transformation Suggested by Ulusoy 

11 

00 

00 

00 

0 

a 
a 
a 

a 

a 
0 

a 

Ul usoy (1981) ha,s formul ated the transformed network in a 

slightly different way. 

According to his formul ation there are (R+M) nodes. That 

is, all airports are placed in this network without caring ~hether 

they have planes initially or not. He also put one node for each 

of the loads as in our case. 

43 



44 

He omitted the interactions discussed' in Stage 1 case band 

Stage 2 case b. That is, the cases \'/hich enable empty flights between 

airports are omitted. In order to represent empty fl ights he has 

defined two set of new interactions. 

i) To enable empty flights at the first leg, all nodes rep-

resenting airports are interconnected with arcs whose 

operation times equal to the flight times which they 

represent. 

ii) To enable empty flights later in the routes, all nodes 

representing loads are connected to all nodes representing 

airports, except to the airport same as the ending airport 

for that load and the associated flight times are assigned 

. as the operation times. 

3.3 Computation of SJ and CJ 

Using the transformed network ,and the operation time matrix 
• I 

W, we shall obtain SJ and CJ by enumerating all ,"simple paths" from 

the artificial source node to artificial terminal node. By a simple 

path between any two nodes of a network, we mean a path with no 

repeating nodes. Such an enumaration will lead to paths like: 

(3.8) 

where, Sand T represent artificial source and terminal 'nodes res-

pectively'. 



Also, 

and 

P £ {2, ••• , RP+- l} i.e., p refers to one of the air
ports which has planes ini
tially 

J/,. £ {RPt 2 , ••• , RPt Mr 1} 
1 . 

i. e. , J/, • I S refer to the loads 
coveted by that path. 

This sequence of nodes is guaranteed for all the simple 

paths since there are no arcs directed from nodes representing 

loads to nodes representing airports and to source node. Also 

there are no arcs directed from nodes representing airports to 

. terminal and source nodes. Node T is forced to be the terminal 

node since there are no arcs leaving T, just as node S is forced 

to be the source node. 

Therefore, by enumerating all the simple paths between· 

nodes Sand T over this transformed network, we can obtain all pos

sible combinations for SJ. That is, all possible combinations of 

loading a plane with different groups of loads can be obtained. 

We can differentiate between initial airports, since these simple 

paths involve initial airports. By this way, these paths will 

directly give us all SJ and hJk combinations and their cost figures 

(CJ1s) being the time required to traverse that path. That is, 

length of that path over the matrixW. 

In general enumerating all the simple paths in a dense 

network is practically impossible due to the tramendous number of 

combinations. But in the case of the bottleneck routing we do not 

requir~ all the combinations. Only the ones which are shorter than 

a prespecified le.ngth, d ,are needed. max 
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There are two ways of establishing value of d .. max 

. i) dmax can be decided upon a priori as a result of opera"" 

tional requirements and be given. 

ii) If no such a priori decision exists, then the analyst 
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can estimate the latest mission c'omp1etion time by simply 

oveiviewing the.situation. 

3.4 ENUMERATION OF SIMPLE PATHS SHORTER THAN A GIVEN 

LENGTH 

For enumerating simple paths in a graph many techniques have 

been developed. Solving this problem is often the first step of 

important procedures like symbolic network analysis' or terminal 

reliability computations in a communication network (Fratta and 

Montari, 1975). 

Two essentially different techniques can be extracted from 

the wide literature on this problem; the routing technique and the 

matrix technique .. 

The routing technique (Lin and Anderson, 1969) and Kroft, 

1967) is useful mainly for enumerating all paths between a single 

pair of n·odes. 

The matrix technique (Danielson, 1968) is based on computing 

symbolic powers of the graph adjacency matrix. In fact, each ele

ment (i,J) of the mlth power of the adjacency matrix contains all 

paths of,length m between nodes i and J. This technique reduces 

the comqinator~al explosion since it erases nonsimp1e paths during 
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the execution of the, procedure. 

Fratta and Montanari (1975) introduced a path algebra and 

translated the path problem into a system of linear equations in 

this algebra, which they solved by an iterative method. 

In order to enumerate the simple paths in the transformed 

network, I have chosen tne routing technique for the following reasons: 

i) Although it is an exhaustive search procedure, it 

requires very little memory. Only the adjacency matrix 

needs to be stored besides some negligible control arrays. 

ii) It is essentially devoted to the problem of enumerating 

paths 'between given nodes. So, unnecessary effort, such 

as trying to 'generate the paths between all nodes is 

avoi ded. 

iii) The procedure seperately traces up all nonsimp1e paths up 

to the second occurrence o~ the first repeated node. 

That is, forms the path by gradually adding new nodes. 

This fact is advantageous while generating paths shorter 

than a prespecified len'gth. 

Lin and Anderson (1969) have given major steps of the 

algorithm as follows: 

, 

Step l~ Define a, fixed orde~ing of the arcs starting from each 

node. Let A be the first arc starting from S. Mark S 

and T. 
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Step 2: Let V2 be the node where A terminates at if V2 is unmarked, 

then, if no arcs start from V2, 

else, 

then, go to step 3 

else, mark V2 and A 

rename A with 

go to step 2 

if V2 = T, 

then, a simple path 

store it 

go to step 3. 

else, go to step 3. 

first arc starting from V2 

between Sand T is obtained. 

Step 3: Let Vl be the node where A starts from. if A is the last 

arc starting from Vl , 

then, if Vl = S 

then, stop all paths are generated. 

else, erase mark from Vl and A. 

rename A with themar;ked arc terminating at Vl . 

go to step 3. 

else, rename A with the successor of A in the ordering 

relative to Vl , go to step 2. 

This algorithm is revised to generate SJ's ahd CJ'srmore 

efficiently. But before describing these, we must mention another 

simple transformation. As it was defined, arcs leaving the nodes 

S and arc? entering the node T have zero time. At this stage a 

positive time E pssigned to such arcs, since we identify an arc as 



marked or unmarked by looking at its sign in the operation time 

matrix W. Thus, due to the structure of the transformed network 

all the path lengths will be increased by 2£. Therefore dmax is 

updated as (dmax 2£) before start,ing the procedure. Also, note 

when recording the path's their lengths should be decreased by 2£. 

The routing algorithm suggests the use of adjacency matrix. 

But by the use of weighted adjacency matrix, we can still identify 

arcs, furthermore store their lengths. Also keep marks of these 

arcs on this matrix, by keeping track of their signs. Therefore, 

we only need an array to control mark of nodes. We do not need to 

write down all the arcs starting from each node if we move sequen

tially on the weighted adjacency matrix. 

Flowchart 1 illustrates the steps of ~he revised form of 

the routing technique. 

3.5 PATH ELIMINATION 

Due to the nature of path generation algorithms they gene

rate all permutations o'f paths between gi ven nodes. As an exampl e, 

assume in Example A if path 1,2,9,8,11 will also be ~enerated un

less their lengths are gr.eaterthan dmax ' But according to our 

definition (See Eq. (2.9» the shorter cine should be kept and rest 

should be eli~inated. 

Although the number of paths does not bring any problem 

during generation phase, the elimination process creates necessity 

of keeping the paths in the memory. It is also possible to make 
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el imination without storing the paths. in the memory, but it will 

be very time consuming .. Therefore, if the number of paths are on 

the order of few thous,ands, then it \'Ioul d be faster to perform thi s 

task by storing paths in the computer memory. 

In order to speed up this process following ideas have 
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been developed. Assume that the paths obtained after the execution 

of path generation routine stored in one of the mass storage devices 

of the computer system used. 

The major problem elimination process is to identify whether 

any two.paths cover the same nodes or not. In order to make this 

identification easier, every node is assigned a random odd integer, 

as a dummy demand. Then, for each path, the sum of node demands on 

that path will give the demand of that path. Thus, if any two paths 

cover the same nodes, then their demands are equal. 

We can sunmar.ize the el imination process as follows. Note, 

Dd shows the first occurrence sequence number of a path with demand 

d, in the memory. 

Step 1: Set i = 0 and TId = 0 for all possible d values . 

. Step 2: Read next path from mass storage. Calculate its demand d. 

If TId = 0, then, go to step 4; otherwise~ go to step 3.-

Step 3: Let J = TId' Starting from J'th position in the m~mory 

check whether there exists any path covering the. same nodes, 

with last read one. If such a path found, then, select the 

shorter, and locate to that position; otherwise, go to step 4. 
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Step 4: Set i = i+l.. Record the last read path, to the memory as 

i'th path. Set Dd = i. Go to step 2. 

In Flowchart 2 the detailed steps of this process is illus-

trated. 

3.6 SORTING THE PATHS 

Algorithms ~sed in this thesis for the bottleneck routing 

of mil itary cargo ai rplanes require the paths to be sorted according 

to their lengths in an ascending order. Therefore after the elimi

nation process the paths have to be sorted. 

For this purpose there are a variety of methods -reported 

in literature (Knuth,-1975). Depending upon ~henumber of paths 

generated two methods have been used in this thesis. 

If there is a reasonable number of paths, then, the well

established Heap-sort technique is used and all the paths are sorted 

in one step. 

If the number of paths is large, then, one should resort to 

more sophisticated sorting techniques. Most common technique is to 

divide data into reasonable sized groups. Then, sort each group 

independently and merge these sorted groups. . Since the UNI VAC 11 06 

Operating System has a SORT-MERGE package currently available no 

program is developed for sorting large amounts of paths. 'But the 

program listings of the first technique can be seen on Appendix F. 

After the gnereation, elimination and sort operations, the 

paths are stored on a sequential access data file on one of mass 
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storage devices of the computer, which will be called as "mass storage" 

in short from now on. 

3.7 THE ALGORITHM DEVELOP'ED FOR BOTTLENECK ROUTING' 

PROBLEM 

3.7.1 Introduction to BRP Algorithm 

As it was explained at the beginning of this chapter, this 

algorithm approaches the BRP in a different fashion. That is, we 

start ,with no path at hand and enlarge S gradually. The s'et' of 

paths that are currently available at hand at any stage of the 

algorithm is called the "path list". Also, the term "load cardina

lity" is used to express number of loads covered by the associated 

path. _ 

We can briefly summarize the algorithm as follows, 
( . 

Step 1: Initialize 

Get some paths from,mass storage into the path list until 

some conditions are satisfied. 

Step 2: Search 

Search ~ver the path list. If there exists a solution then 

stop. The solution is an optimal solution to the BRP. 

Otherwise continue. 

Step 3: Enlarge 

~nlarge the, path list by getting some more paths from mass 

storag~. Go to step 2. 
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The following sections will explain each step in detail while 

giving the necessary proofs. 

, 
3.7.2 The First Step: Initialize 

At the beginning of the Initialization step, we have no paths 

at hand and we begin by taking paths into the path 1is~. We sequen

tially take the paths from mass storage until a change in path 

length is observed. When such a change occurs, we shall apply the 

following rules in order to detect whether the paths at hand can 

give rise to a feasible solution or not. If so, we shall go the 

Search step to locate that solution. Otherwise we shall continue 

tak~ng paths from mass storage until another length change occurs. 

The Stopping Rules: . 

Rule 1: Coverage Check 

If fll <' M, then there cannot be solution in the given path 

list, where 

number of times node J occurred in a path 
with load cardinality i, within given path 
list; if J > 1. . 

number of disjoint loads on paths with 
load cardinality i; if J = 1 

(3.9) 

If the number of disjoint loads covered by the paths whose 

load cardinality is 'one is less than the total number of loads,. 

then there cannot be a solution. It is enough to check the paths 
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whose load cardinality is one in order to,detect whether all loads 

covered or not by the given path list, due to the following proposi

tion . 

. Proposition 3.1: The first occurrence of every load will be in a 

path whose load cardinality is one, ·'if the paths 

are ordered by the process defined in Sections 

3.1 through 3.6 . 

Proof: .The proof follows from triangular inequality which 

holds, since the Euclidean metric is valid here. 

Q.E.D. 

The.statement of Proposition 3.1 can be generalized as 

follows, 

Co ro 11 a ry 3. 1 : Any load 1 E {l,.,.,M} cannot appear in a path. 

whOse load cardinality is (k+1) before appearing 

in a path \1hose load'cardina1ity is k, for k = 1,2, ... 

Before introducing Rule 2, 3, and 4, let us first make the 

following definitions. 

Definition 3~1: The configuration vector is the ~ector which shows 

the number of loads assigned to each plane. Let, 

Q= ~. (3.10) 
P 

where the operation stands for integer division 

and let K be the remainder of this integer division. 



If Gmax = Q+l, where Gmax is the largest load cardinality 

in the given path list, then the vector, 
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C = Q,Q, ... ,Q, Q+l, ... ,Q+l, K > 0 (3.11) 

P-K K 

is the II minimum configuration ll vector indicating that K planes carry 

(Q 1) 1 oadsand (P-K) planes carry Q loads. 

If K = 0, then the minimum configuration occurs when Gmax = Q 

and indicates that P planes carry Q loads. 

Total number of loads handled by minimu!J1 configuration is 

M, i.e., all loads are carried by the minimum configuration. This 

can be easily shown as follows, 

(P-K)Q + K(Q+l) = PQ - KQ + KP + K 

= PQ+ K 

= t4 

when G = Q+l, there are other configurations such as, max 

C = [Q, ... ,Q, Q-l, Q+ 1 , ... ,Q+ 1] 

P-K-l 1 K+l 

(3.12) 

But such configurations necessitates more loads to be covered by 

paths of .load cardinality (Q+l) than the minimum configuration. 
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As an example, assume that there are'14 loads and 4 planes, 

.(i.e., M = 14 and P = 4). This results in Q = 3, K = 2, and 

! = [3,3,4,4]. Assume that Gmax = 4, ~hen we have to construct 

a solution by utilizing paths of load cardinalities oJ at most 4, 

and I is that configuration 6f solutions which minimizes the use of 

paths of load cardinalities 4. For this case, the configuration 

defined inEq. (3.12) will be C = [2,4,4,4]. This configuration 

uti 1 izes more paths of load cardinal ity 4 than mi nimum confi guration,. 

which impl ies that longer paths must be util ized and thus more paths 

must be processed in the path list. 

Thus, if .... /e resort to full enumeration, \'Ihere we generate 

paths of load cardinality K only after we have generated all paths 

of load cardinality (K-l), then \"/e shall first catch a solution with 

minimum configuration. 

Rule 2: Member Size Check 

Let, 

Q +' 1 , if K 'I 0 

Ml = . ( 3.13) 

Q , if K = 0 

If G a < Ml, then there cannot be a solution generated from . m x 
the available path list. Since, in that case total loads carried by . 

P planes can never sum up to the total number of loads as can easily 

be shown. 

In the previo~s example, if there is no path with load car

dinality greater than 3, then there cannot be a solution with 4 



planes, since the maximum number of loads that can be carried would 

be 12, .whereas there are 14 loads to be carried. 

Rule 3: Minimum Configuration Check 

If Gmax = Ml and fM1 ,1 < (~Il x K), then, there cannot be 

a solutioh generated from the available path list. 

This rule is more strict form of Rule 2. In this case, 

we consider the number of disjoint loads covered by the paths of 

load cardinality Ml. Since no path with load cardinality (Q+2) 

, have been read from mass storage (Gmax = Ml), the cond i ti on for 

minimum configuration is satisfied and we need at least (Ml x K) 

loads covered by paths of load cardinality Ml. 
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To illustrate this rule, consider the previous example 

again. We require at least 8 loads to be covered by paths of load 

cardinality 4, if no path with load cardinality 5 have yet occurred. 

This means, we need at least 2 planes be allocated to paths of load 

cardinality 4, with disjoint loads. 

Definition 3.3: The Worst Load 

Let 

min {maXimUm load cardinal ity } 
G = o.verall ·of the paths in which (3.14) 

min loads 1 load 1 has occurred so far 

Then, 

W = is the load 1 for which the minimum of ex-

pression (3.16) has occurred is called the 

Worst Load. 
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Rule 4: Worst Load Check 

Let, 

REt4 = Q - Gmin 
Ml = Ml * (K+REM) 

(3.15 ) 

(3.16) 

If Gmax -= ~4l and fMl , 1 < Ml, then, there cannot be a feasible 

solution g~neratedfrom the available path list. 

Note that, this rule does not apply when REM + O. 

Since Gmax = Ml, there are no paths in the path list whose 

load cardinality is (Q+2). Therefore, paths with load cardinality 

Ml, should cover more loads in this case; Because at least one load 

should be covered by a path whose load cardinality is less than Q 

(i.e., load W should be covered in a path \'/hose load cardinality is 

r, . ). 
1111 n 

This rule says paths with load cardinality Ml should cover 

Ml loads. 

Ml = Ml x (K+REM) 

= Ml x (K+Q-Gmin ) 

= Ml x K + Ml(Q -,Gmin ) 

Ml loads should be covered by Rule 3 and (Q - Gmin ) is the gap 

brought by the situation of load Wand this gap should be covered 

by paths of load cardinality (Q+l)~ 

As an example, assume that there are 32 loads and 6 planes 

(i.e., M = 32 and P = 6). ~his results Q = 5, K = 2,! = [5,5,5,5,6,6]! 

and Ml :'6. Also assume G is 6 and largest cardinality of paths max 



covering one of the, loads is 3. Thus, Gmin = 3; RB4: 2 and 

Nl = 6(2+2) = 24. If there exists a solution, then that solution 

should cover one path of load cardinal ity 3 and the configuration 

will be 5,3,6,6,6,6, which implies that at least 24 loads should 

be covered by paths of·1oad cardinality 6. 

Rule 5: Minimum Plane Check 
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This rule applies no matter what the value of Gmax is. A 

lower bound on the number of planes is-established by checking the 

path list at h~nd. If this lower bound is less than the plane avai

lability, then, there cannot be any solution generated from the 

path list at hand. 

Essentially planes are assigned to paths without checking 

any of the BRP constraints and these assignments are made on paths 

whose' load cardin-a1i.ties are larger (as far as possible). 

It is better to explain the principle of the minimum plane 

check on an example. 

Let us suppose that we have 14 loads to cover and the given 

path list has the fonowing characteristics: 

6 ,loads are covered by paths of load cardinality 4 

4 loads are covered by paths of load cardinality 3 

3 loads are covered by paths of load cardinality 2 

1 loads are covered by paths of load cardinali~y ) 

Since the following analysis is for the minimum number of 

planes necessary, let us assume_ that load and path combinations 

are such that all the assignments -indicated, are possible. 
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Start by assigning one of the planes to a path with load 

cardinality 4. So 4 loads are covered. No two planes can. be 

assigned to paths of load cardinality 4 since this will result to 

an infeasible solution to BRP anyhow. The remaining 2 of the 6 

loads that should be covered paths whose load cardinality 4, in 

this case will be covered by paths It/hose load cardinality 3. By 

Corollary (3.1) to Proposition (3.1), there have to be paths with 

load ,cardinality 3 covering these loads. Thus with the additional 

2 loads, 6 of the loads are to be covered by paths with load cardi

nality 3, now. So, we make 2 plane assignments to paths with load 

cardinality 3, which makes a total of 10 loads covered by 3 planes. 

Similarly, one plane is assigned to path with load cardinality 2 

and the remaining 2 loads are then covered by paths of load cardi

nality 1. ,Thus, a total of 6 planes are requ·ired. If the plane 

availability is less than 6, then, there cannot be a solution with

in this path list. 

We can summariz'e the process as follows, 

Step 1: Let f J = the number of loads covered by paths of load 

cardinality J, (J • 1, ... ,Gmax )' 

Let J 

Step 2: Let 

and set 

= Gmax and T = 0 and go to step 2. 

f J TT =[-] 
J 

T = T + TT 

(3.17) 

(3.18) 



Step 3: Let J + J-l. If J = 0, then, T is the minimum number of 

planes required. Stop. Otherwise go to step 2. 

None of the above rules strictly guaranties the existence 
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of a solution within a given path list. Even if a given path list 

passed all of these checks, there still mayor may not be a solution 

to BRP contained in that path lis~. But if one of these rules fails, 

then, this implies that the given path list does not contain any 

solution. The major advantage gained by using these rules is that 

they are simple and are very fast in giving an idea about the size 

of the path list required to achieve a solution. 

3.7.3 The Second Step: Search, 

At this step our objective is to "find a solution that satisfies 

the constraints of BRP (if such a solution exists). As it will be 

proven in Section 3.8 if there exists a solution, then, it will be 

the optimal solution to the BRP. 

The procedure developed here intends to find out a feasible 

solution which utilizes P or less planes (i.e., paths) within given 

the path list. Asa result each plane will be assigned to a path. 

During this step, a partial solution is generated and paths are 

included in or deleted from this partial solution iteratively until 

~ complete feasible solution is obtained or, otherwise the procedure 

switches to the Enlargement Step. 

The search step can be briefly stated as follows, 
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Step a: Resequence the current sorted list of paths, such that the 

number of iterations during the search procedure is minimized. 

That is, perform so called "Blocking" operation. 

Step b: Decide on limits of the search. 

Step c: Search to find a feasible path to include in the current 

partial solution. If such a path is f~und, 'go to step b. 

Otherwise delete last path included in the partial solution 

and go to step b. 

The details of these steps will be discussed in the following 

sections. 

This step is in principle similar to the first step of the 

classical SPP algorithm suggested by Christofides; namely the 

"blocking" step. That procedure was explained in detail while 

introducing the algorithm. 'Since classical 5PP does not car~ how 

many paths (sets) should be utilized and tries to minimize total 

objective function value, it directly operates on paths which con~ 

tain uncovered elements of load set L. 50 the blocking process is 

designed to group paths which do not cover the same loads (rows) 

together. But in our case, the number of loads 'per planp. is 

crucial. If we choose paths which contain more loads, then, vie 

shall have more chance to obtain a feasible solution which utilizes 

given or'less number of planes~ quickly. Since we do not care about 

the total objective function value. 



Most pf the time there is an unbalanced distribution of 

load frequencies within the given path list. Although some of 

the loads covered by many paths, some of them are covered by 

relatively few paths. Such a situatinn results from the geog~ 

raphical distribution of loads and planes initially. If there 

are loads far away from the initial airports of the available 

planes, then too much time has to be spent to carry such loads. 

While, in the mean time loads in the vicinity of the initial 

airports of the planes can be covered by several combinations. 

Often the maximum di stance to generate paths (d, x) is set such . rna 

that these remote loads are just covered. So the blocking proce-

dure should enable the search mechanism to focus on such remote 

loads first. 

The foregoing discussion reveals that· there are two im

portant decision criteria in the blocking process. 

i) The frequencies of ,loads. 

ii) The load cardinalities of paths. 

Thus, depending upon the nature of time data of the origi

nal problem and the information generated while taking the paths 

from mass storage, blo alternate methods· for blocking can be 

identified. 

The next two sections will describe the details of these 

methods. But before getting in them, note that as a result of 

blocking process the sequence of paths in the current paths list 

is changed, ·that is a new path llst will be generated, the search 
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fora path to assign a plane will start from the bottom. of this new 

path list and will gradually move up (See Fig. 3.3). Therefore 

critical paths should be forced to the bottom portion of the new 

list. 

path ~ 1 TOP OF THE LIST 
no 2 ----------------------

3 
--------------~-------

+ Direction of 
_~ _____ P~IH~__________ the search 

----------------------USET BOTTOM OF THE LIST ,-------------------
FIGURE 3.3 ~ The path list 

3.7.3.1.1 Method A: Blocking with Respect to Load 

Frequencies 

Usually when there are remote loads to be carri~d, 

there are greater deviations in the load frequencies. This type 

of blocking is preferable when there are such deviations. The 

paths covering loads whose frequencie~ are the least, are selected 

and located to the bottommost empty positions of the new list 

sequentially as follows.; 

Step a: Calculate total load frequencies, i.e., 
Gmax 

. TR, = I 
9=1 

f g,R, . (3.l9). 



Note, T~ is the total number'of times load ~ is covered in 

. the given path list. 

Step b: Choose an unconsidered load whose frequency is the least, 

Ties are broken arbitrarily. 
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Step c: Scan the path 1 i st to find out pathswh{ch cover the chosen 

load and not marked yet; If any such path found, then, put 

them at the bottommost available locations of tne new path 

list and mark them on the old path list. 

Step d: If all loads are considered, then stop. Otherwise go to 

step b. 

During the insertion of the paths into the new path list (in 

'step' c), we have alter~ative ways to proceed; since there are in 

general more than one candidate paths selected from the path list 

which cover the same load. The probl'em is to choose the one which 

wi 11 be located to the bottommost avai labl e pos ition fn the new path 

list, so that the. chosen one will be considered first by the search 

mechanism. The best approach appears to be'to locate the path whose 

load cardinality is the largest to the bottommost available position. 

In order to avoid the use of additional memory space, a heuristic 

rule is adopted when coding the alg~rithm. According to that rule, 

the longest path among the candidate paths is located at the bottom

most position, based on the generation that the longer the path, the 

larger the number of loads it will cover. 
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-
3.7.3.1.2 Method B: Blocking With Respect to Load 

Cardinalities 

This type of blocking is preferable when there are no 

great deviations· in the load frequencies. Under such circumstances 

the method suggested previously would have no significant effect. 

Thus, in such cases, it would be better to locate paths which cover 
-more loads to the bottom portions of the new path list, so as to 

avoid unnecessary iterations of the search procedure with paths 

covering relatively few loads. This type of blocking can be summarized 

as follows . 

. Step a: Set g = Gmax 

Step b: Choose paths from the path list whic~ covers g loads and 

locate those paths at the b6ttommost available places of 

the new path ·list. 

Step c: Decrease g by one. If 9 = 0, then, stop. Otherwise go 

to step b. 

Also, in this type of blocking we have alternative ways to 

proceed in second step. In this case, the best is to 10c~te the 

path of least length at the bottommost available position. 

3.7.3.1.3 Storage Space ·for The New Path List 

Although a new path 1 ist is g~nerated, it is not neces

sary to store it asa new 1 ist. An imaginary path 1 ist will be 



enough. Such that only a one-dimensional array can be utilized 

instead of a new list. The elements of this array are pOinters 

representing the paths on the new list. Each element pOints to 

the position of the related path in the old path list. This array 

is called the ADRES array. 
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This is an iterative step. Each time the procedure reaches 

this step, we have a partial solution which utilizes 0 <. KPL < P 

planes (KPL being the number of planes utilized in that partial 

solution). After this step, the procedure will begin to search 

for a path to assign the (KPL+l)th plane. Note, the search procedure 

will move upwards from bottom search limit t? top search limit. ~et 

us denote the bottom search limit by KSET and the top search limit 

by KRT. 

Depending on the.number planes (KPL) utiliz~d . in the current 

partial solution, the search limits can be established as follows. 

A) Assignment of First Plane (KPL = 0) 

This means either the process achieves to this step for the 

first time or one wants to change the path assignment of the first 

pl ane. 

a) The top search limit (KRT) 

The top search limit varies by the blocking method uti

lized. Let us first consider the case for the blocking method A. 



Let SFJ be the path number of the first occurrence of load 

J in the new path list (i.e., load J has not been occurred in paths 

indexed 1,2, ... ,(SFJ-l)) .. Then, the top search limit will be, 
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KRT = m a x (SFJ ) (3.20) 
JE{l , •• ,tit} 

Sin'ce the load which gives rise to the value of. KRT,does not,occur 

in any·of the paths 1,2, ... ,(KRT-l), it will be useless to search 

these p~ths in order to assign the first plane. That is, if we 

cannot as~ign the first plane to path whose index is greater than 

or equal to the value of KRT, then, this implies that we cannot find 

a solution to BRP. Let us now consider the case of blucking,method B. 

Let YFJ be the path number of the fir~t occurrence of path 

with load cardinality J, in the ne\'/ path list (i.e., load cardina-:-" 

lities'9f the paths 1,2,. .. ,(YFJ -l) are less "than J). Recall that 

K = (M-QxP), which is the number of planes required to assign to 

paths with l?ad cardinal ity (Q+l)" ~:j'iven there is none viith load 

cardinality (Q+2). Depending on the value of K, there can be two 

-cases. 

i.K> O. Assume that no plane assignments have been 

rea 1 ized until, (YFt~l+K) th path. Then, exactly K pl anes 

should be assigned to paths indexes (YFM1+K-l), (YFt4l +K-2), .. 

... , YFM1 . Since all paths with load cardinalities (Q+2) 

are exhausted, due to the blocking method B. Therefore 

assigning the first plane to path whose index less than 

(YFf~l K-l-) will not enable other (K-l) planes to be 
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located on that interval and wi-1l cause 'infeasibility. 

Thus, the top search limit is determined as, 

KRT = YF M1 + K - 1 ( 3.21 ) 

ii. K = O. Similar to the reasoning in the previous case, 

all P planes should be assigned on the interval 

(YFM1+P-l),(YFM1+P-2), ... ,YFM'. if no plane assignments 

has been realized up to that point. Thus, the top 

search limit will be, 

KRT = YFMl + P - 1 (3.22) 

b) The bottom search limit (KSET) 

Initially the bottom search limit for the first p.lane '. 

is the bottommost path. Namely KSET = USET (USET being 

the total number of paths in the path list). If the 

process reaches this step again since KPL = 0, then, 

the bottom search limit has to be the path which is 

just above the current bottom search limit, i.e., KSET 

is substituted by (KSET-.1). 

Since the partial solution set is empty (KPL· = 0) at this 

stage, no search is performed to assign the first plane and that 

plane is assigned to (KSET)th path. Furthermore, the value of KRT 

does not' change (as far as the path list is fixed) throughout the 

iterations when KPL = o. Let LSET be the value of KRT when KPL· = 0 

Therefore there are (USET - LSET" + 1) possible paths to assign the 
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first plane. - If (USET.- LSET.+ 1) passes over this step, result 

without a feasible solution, then, the given path list cannot 

contain any feasible solution. We terminate the search-over this' 

path list, since block is exhausted. We move to the Enlargement 

step. 

B) Plane Assignments Beyond the First Assignment 

(1 2. KPL < P) 

a) The top search limi t ' (KRT) 

If some planes have been assignep already, then there 

are two candidate? for the top search limit. 

i. Let; KLD: number of loa.ds covered by KPL planes. 

RL = ~1 - KLD: number of uncovered Toads. 

RP = P - KPL: number of unused planes .. 

Then, YUK = smallest integer ~ RL/RP (3.23) 

YUK is a redefinition of Ml for the reduced problem. 

Then it means at least one plane should be assigned to a path whose 

load cardinality is at least .YUK in order to achieve feasibil ity. 

Hence, one candidate for the top search limit will be, 

MRT = YFYUK 
(3.24) 

That is, (KPT + l)th plane cannot be assigned to p'aths 1, ... ,(MRT-l). 

Assume (KPL+l)th plane has been assigned to a path KP whose index 

satisfies ,1 < KP < MRT; Then, the next pl ane should be assigned 



the path whose index less than KP. But load cardinalities o~ all 

those paths are less than YUK. Hence, there is no way to reach 

a feasible solution. 

ii. The second candidate for the top search limit: S 
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LRT = m a x (SF.) (3~25) 
iE[all uncovered loads] 1 

The (KPL+l)th plane sho~ld cover at least one of the un

. covered loads. Specifically this plane should either 

cover the load whose first occurrence is at the bottom-

most or be assigned to a path below that level so as to 

enable the next plane to cove~ the load under discussion. 

Note the proofs of the two candidates are complementary . 
. . 

Since any violation of these two candidates will cause 

infeasibility, the top search limit will be "the maximum 

of them. That is, 

KRT= max[LRT,MRT] (3.26) 

b) The bottom search limit (KSET) 

i. If the last operation is a path addition. Let us first 

consider the case when blocking method A is used. Let E 

be the set of all loads covered by the last plane included 

in the partial solution and define, 

)KZ =. max (SF.) 
iEE 1 

(3.27) 



Then~ set KSET to KZ-l. This is~ an implicit enumeration 

,of all the paths between old and new KSET values. Since 

these paths should necessarily contain the load which 

gave rise to the value of KZ~ the search on these paths 

will always be useless. 

Let us now consider the case when blocking method B is 

used. Let the last plane assigned t6path KP~ where 

KSET ~ kp ~ KRT. Then, the new KSET values should be 

(KP-l )', The search for the next plane should start just 

after the path KP. 

ii. If the last operation is a path deletion. 

Let KR be the path number'which is deleted. Then KSET· 

will be (KR-l). That is~ bottom s~arch limit is set to 

the path which is just above the deleted path. 
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After the search limits are determined, we check whether 

KRT < KSET. If so, then, this means the feasible region to assign 

(KPL+l)th plane is collapsed and the ,current partial solution cannot 

lead to a feasible solution anymore. Therefore, we must drop KPL th 

plane and go back to determine the top and bottom limits of the new 

search for a. feasible path. Otherwise, we can go on searching a path 

to ass i gil (KPL + 1) th plane between these 1 i mi ts. 

In Fig. 3.4, the computation of search limits are illustrated. 



TOP SEARCH LIMIT 

KPL = 0 

:RT=max (SF.I ) 
Je:{l, .. ,M) 

KPL? 

1 < KPL < P 

KRT=max(YFyuk,max(SF i )) 

ie:{unco
vered 10 ) 

BOTTOM SEARCH LIMIT 

KPL? 

KPL = 0 

KSET + KSET -1 

KSET=max{SFi )-1 
i e:E 
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tiol 

KSET=KR-1 

KSET=KP-l 

FIGURE 3.4 - The flowchart of the computation of search limit 
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3.7.3.3 ~~~tsb_E2t_~_E~~~i~1~_e~~b 

The objective of this step is to assign {KPL+l)th plane to 

a path which is between predetermined limits. The search for that 

path will start from the bottom search limit and move up by checking 

each path individually for feasibility. First thing to check is 

whether the candidate path originates from an airport whose planes 

have been used already by the current partial solution. If such a 

case occurs, then, that path should be omitted and the one just above 

it, has to be checked .. After the initial airport constraint, we should 

check whether the candidate path covers any of the loads that are al

ready covered by the current partial solution. Also, such paths should 

be omitted due to so-called IIno-overcovering',re!triction of BRP. So, 

the process gradually moves up to the top search limit. 

~ If one of the paths satisfies the constraints given above, 

then, {KPL+l)th plane can be assigned to that path, and that path 

can be added to the current partial solution. Since we have made 

the {KPL+l)th assignment, we can set KPL as (KPL+l) and enlarge the 

partial solution at hand.-

At this stage, if the total number of loads covered by the 

current partial solution equals to the total number of loads to be 

covered, then, we terminate having found a feasible solution satis

fying all the constraints. This solution is the optima~ solution 

to the BRP. The proof of optimal ity will be given in Section 3.,8. 

However, KPL need not be ~qual to the total number of planes avail

able. We .have the possibility of reaching a solution using fewer 

planes than fvailable (See Example D). 
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On the other hand.Jf the total number of loads covered is 

less than the total number of loads to be covered, then we must re

define the search limits for the next plane and continue search pro

cess as defined. 

While'searching for a path, if non of the pat~s satisfy 

the feasibility constraints that is, paths between KSET and KRT 

are exhausted,' then, we have to delete the KPL th plane from the 

partial ,solution and again continue by redefining search limits . 

. 3.7.4 The Third Step: Enlargement 

If no feasible solution has been'found at the end of the 

search step (i.e., block one is exhausted), then, .we shall take 

some more paths from mass storage into the current path list so 

as to enlarge the path list. Let to be the length ,of the longest 

path in the path list in which no feasible solution has been'detected. 

At this point we know.that the length of paths remaining in 

the mass storage are greater than ~o' since we must have taken all 

such path in previous steps. Let R.l b,e the length of the shortest 

path in the mass storage. By the previous discussion we know tl > R-o. 

Then, we should scan mass storage until we catch a path whose length 

is greater than R. l , and we shall enlarge the path list by taking in 

all paths of length R- l . After the enlargement, we switch back to 

the beginning of Search step in order to reinitiate blocking process. 

One must note that the original time data is assumed to be 

integer .. So that after every enlargement operation, the number of 
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paths taken into the path 1 ist will not be equal to one most of 

the time. 

3.8 THE OPTIMALITY OF SOLUTION FOUND AT THE SEARCH STEP 

While discussing the search step, we have claimed that if 

one achieves" a feasible solution, then that solution will be the 

optimal solution to the BRP. The following proposition will give 

the proof of that declaration. 
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Propositon 3.6~ - The feasible solution found by applying the Bottle

neck Routing Algorithm is !he optimal solution to 

the"BRP. 

Proof: The search step can be achi.eved from either the' 

Initialization Step or the Enlargement Step. 

In both of the cases, we have a path list, and let 1 be . . 0 

the length of thelongest path in this path list. In any case 

guarantee that there is no feasible solution to BRP in some path 

list. Then, we enlarge that path list by taking all paths of length 

10+E from the mass storage. During this process we make sure that 

there is no path of length 1, such that 10 < 1 < 10+~. Thus, if 

we are able to find a solution in this enlarged path list, then,it" 

should be the optimal solution of BRP with the optimal ¥alue being 

(10+E). The optimal value of BRP cannot be reduced further. Since, 

if it can be reduced, then, it should be 1
0

• But there is' no solu

tion among paths whose length is less than or equal to 1
0

• 

Q.E.D. 
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3.9 GENERATION OF ALTERNATIVE OPTIMAL SOLUTIONS TO 

BOTTLENECK ROUTING PROBLEM 
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If the algorithm is not tenninated after finding the optimal 

solution of BRP, then, it can generate all other alternative optimal 

solutions of the problem. This can be achieved by assuming of 

'feasible (optimal) solution at hand as a partial sol,ution. In 

this case the algorithm will terminate at the pOint where all the 

paths that first plane can be aSSigned 'are exhausted (i.e. the first 

block is exhausted). In this way, the procedure will turn to be a 

full enumeration process. Since bottleneck objection function value 

does not change during the process. The solutions generated by this 

, way will be alternative optimal solutions to the BRP. 

If there· are more than one load specified between any two· 

airports, then imaginary alternatives will be produced by the pro

cedure . 

To illustrate this fact better, note that load 4 and 10 in 

Example B refer to loads to be ca~ried from airports 4 to airport 

3. The optimal solution found at the end of algorithm assigns 

plane 1 to loads 7,10, and 6 ana plane 3 to loads 4, 8, 9 and 1. 

Thus, if we do not terminate the proc~ss, we eventually reach a 

solution identical to the prev'ious one, except that the po.sitions 

of load 4 and 10. That is, plane 1 will be assigned to loads 7, 4 

and 6 and plane 3 wi 11 be ass i gned to loads 10, 8, 9, and 1. When 

there are many loads in this status (See Example F) the number of 

imaginary alternatives will blow up. 
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3.10 THE ALTERNATIVE OPTIMUM TO'THE BOTTLENECK ROUTING 

PROBLEH WHICH RESULTS IN ,THE MINmUM TOTAL COST 

There are case where, besides bottleneck objective function 

value, the value of the total job time is also important. That is, 

the fi rst objective is to. minimize the maximum job time and the 
. 

second objective is to minimize the total job time. 

The SPP approach applied by U1usoy, by definition catches 
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the solution defined above, since the SPP a1gor~thm tries to ~inimize 

the total cost. 

The algorithm developed here can be adopted in the following 

manner for obtaining that solution. 

Let Z be the total objective function value that corresponds 

to the partial solution and I be best total objective func'tion value 

yet reached among alternative optimal solutions of BRP. Initially, 

I is set to infinity since there is no feasible solution yet. 

While testing path KP to assign (K~L+l)th plane, first check 

if Z+(length of path KP) < Z. If so, ,continue testing. Othen'lise, 

omit the path KP. 

Continue the process as defined in, Section 3.9 untn'the 

first block is exhausted. Thus, the solution obta.ined in this way 

will be alternative optimum to BRP which results in the minimum total 

cost. 

This process cannot implicitly enumerate some solutions for 

undesirable Z values due to the nature of blocking, but computational 

experience has shown that the algorithm is not so poor compared to 

SPP ,in that ~espect. 
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3.11 DEMONSTRATION OF THE ALGORITHM 

Example C is chosen to demonstrate the steps of the algorithm. 

Most of the stopping rules are inactive in this example. But the 

solution is found easily among 72 paths only. 

The maximum distance criterion applied t6 the generated paths 

is 150 and this resulted in a total of 163 paths after the elimination , 
process (See Appendix D). 

From the data we get, 

t·1 = 1 2, P = 6, RP = 2, . Q = t~ I P = 2 

K = 0, therefore Ml = 2 

The nodes of the transformed network represent the following 

(referring to the formul ation in Section 3.1): 

node 2 -+ refers to airport 3. 

node 3 -+ refers to airport 4 

node 4 -+ refers to load 1 (from airport 1 to airport 2) 

node 5 -+ refers to load 2 (from airport 4 to airport 1) 

node 6 -+ refers to load ,3 (from airport 2 to, ai rport 4) 

node 7 -+ refers to load 4 (from airport 4 to ai rport 3) 

node 8 -+ refers to load 5 (from airport 4 to airport 2) 

node,9 -+ refers to load 6 (from airport 3 to airport 1) 

node 10 -+ refers to load 7 (from 'airport 3 to airport 4) 

node 11 -+ refers to load 8 (from airport 3 to airport 2) 

node 12 -+ refers to load 9 (from airport 2 to airport 1) 

node 13 -+ refers to load 10 (from airport 4 to airport 3) 
. 

node 14 -+ refers to load 11 (from airport 1 to airport 3) 

node 15 -+ refers to load 12 (from airport 1 to airport 4) 



BRP algorithm starts by reading the paths from mass storage 

sequentially and after each length change it goes on ,the stoppping 

rules. 

Rather than explaining each step of the algorithm we shall 
, 

just,briefly summarize the situation (detailed output is available 

in Appendix 0). 

First note that, node 14 is not covered until 63rd path. 
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So there cannot be feasible solution up to this point. But we cannot 

go on applying stopping rules just after reading 63rd path. We have 

to wait until a length change occurs. Note that the length of path 

72 is 120 and length of path 73 is 125. Therefore we can apply stop

ping rules ,at this point with the frequency matrix given in Table 3.3. 

Since fll =,12 = total number of loads. Rule 1 is satisfied. 

Since Gmax = 3. Rule 2 is also satisfied. 

Rules 3 and 4 are inactive since G > ~1l. max 
For minimum p.l ane check, note, 

5 of loads are covered by paths of load cardinal ity 3. 

/6 of loads are' covered by paths of load cardinality 2. 

1 of loads are covered by paths of , load cardinality 1. 

At our best, we can ass'ign a 'plane to a path of load cardina

lity 3 and 2 loads will remain to paths of load cardinality 2. Thus, 

8 loads can be covered by paths of ,load cardinality 2. So, at our 

best we can handle these loads by 4 planes and the last load should 

. be carried alone. Therefore, we need a total of 6 planes; Since we 

ilave already 6 planes, the rule is satisfied and the procedure switches 

to the search routine. 



The blocking step: 

In accordance with the earl ier analysis IIt~ethod All for 

blocking will be adopted here since there exists an unbalanced 

distribution of load frequencies. So, we first should choose the 

load.which is least covered. That is the load 11 (node 14), it 
rd . is covered only by 63 path, therefore we should put this path 
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at the bottommost position of the new list. Namely, ADRES(72) = 63. 

The next candidate load is 12 (node 15) which is covered 

only 3 times. The paths covering load 12 (node 15) are: 

69: 2 - 15 

44: 3 ~ 5 - 15 

30: 3 - 15 

Therefore, starting from the bottom of both lists we shall locate 

these paths. Namely, 

ADRES (71) = 69 

ADRES (70) = 44 

ADRES (69) = 30 

Indeed the generalization accept~d in Section 3.7.3.1.2 did 

not hold in this case. It is preferable :to locate 44th below the 

69th path since it covers more loads. But counting the number of 

loads in each path and organizing ordering accordingly can be 

easily done. 

Then, depending upon the total frequencies the rest-'of: the add 

array between two lists can be generated as listed in Appendix D. 
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The first occurrence of loads and load cardinalities. will be 

obtained by the process defined in the Flowchart~3 and they are shown 

in Tables 3.4 and 3.5 respectively. 

The Search Step: 

Since we have 72 paths, KSET is also 72 initially. Since 

node 14is only covered in 72, first plane has to be assigned on 

the 72nd path (namely the 63rd path in the'origina1 list). There 

cannot be any solution which does not cover that path. 

If path 71 had also covered node 14 then, KRT should be 71 

and the first plane should be assigned, eith~r 72 or 71. But that 

is not the ·case. 

As a result first plane is assigned to path 72 and at this 

point search limits can be established as: 

KSET = 
Max SFJ . 

J£[loads covered - 1 
in 72nd path]' 

= {max [72]} - 1 

'= 71 

KRT = 69 That is, the point at which node 15 (load 12-) 
has first occurred. That is, path 69 contains 
load 12. Paths 70, 71, 72 may contain load 
12 and paths 1, ... ,68 do not contain load 12. 

Formally KRT calculated as follows, 

RL = 12 - 1 = 11 

RP = 6 - 1 = 5 

which implies YUK = 3. 
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Thus, ~RT = YF3 = 12 

and LRT = m a x [SFi]· . = 69 
k[1,2;3,4,5,6,7,8,9,10,12] 

Therefore, KRT = max[16,12] = 69. 

According to this result only three paths have to be checked 

for assigning the second plane. Namely, paths 71, 70, and 69. Path 

71 involves nodes 2 and 15 which is feasible for the current parti~l 

~olution. The algd~ithm decided to assign the second plane to the 
st 71 path. It immediately follows that KSET = 68 KSET = SF15 - 1 . 

Then, we have two candidates for KRT as explained previously, 

RL = 12 - 2 = 10 

RP = 6 - 2 .= 4· 

which implies YUK = 3. 

Thus, MRT =. YF3 = 12· 

. and, LRT = m a x [SFi] = 65 
i£[1,2,3,4,5,6,7,8,9,10] 

.--
Therefore, KRT = max[65,12] = 65. 

Hence, the search limits for the third plane are established 

to be 68 and 65. Within th~s interval path 68 is chosen which results 

KSET = 64 and KRT = 58. From this interval path 64 is chosen which 

results KSET = 57 and KRT = 52. At this point path 57 is chosen and 

the current partial solution become 72, 71, 68, 64, 57 .. But this 

resu1 ted KSET = 51 and KRT = 72. Si nce sea.rch limits over1 ap we must 

drop path 57 and move up to search for another path. Then, path 55 

will be tne path which satisfies the constraints. 



84 

Similarly the process continues ~ntil the partial solution 

contains 72, 70, 68, 64, 35, 22. At this point all loads are covered 

to achieve a solution which is feasible and so optimal to the bottle

neck routing problem. The details of the process' are shown in the 

computer output at Appendix D. 

TABLE 3.3 - The Frequency Matrix After Getting 72nd Path 
Into the Path List . 

Nod e s 
N r-- o::t ('f) N r-- o::t N I'": ('f) ('f) 

Meanings 
of nodes 

Node ~. 

Number~ 
• n:s 

.~ 1 
, '."'0 
" : So. 

~ 2 

Totals 

1 

12 

11 

5 

28 

('f) o::t 
-I-l -I-l 
So. So. 
0 0 

0... 0... 

:2 3 

1 12 

20 24 

2 3 

23 39 

.. .. .. 
r-- o::t N 

"'0 "'0 "'0 
n:s n:s n:s 
0 0 0 

....J ....J ....J 

4 5 6 

2 2 2 

5 7 9 

0 0 0 

7 9 11 

.. .. .. .. .. .. 
o::t o::t ('f) ('f) ('f) N o::t 
"'0 "'0 "'0 "'0 "'0 "'0 "'0 
n:s n:s n:s n:s n:s n:s n:s 
0 0 0 0 0 0 0 

....J ....J ....J ....J ....J ....J ....J 

7 8 9 10 11 12 13 

2 2 2 2 2 2 2 

12 9 t 13. 11 8 12 

3 2 0 5 2 0 4 

17 12 4 19 15 10 17 

TABLE 3.4 - First Occurrence of Loads in The New Path List 

Load First occurrence 
Path No. 

1 58 
2 52 
3 32 
4 7 
5 24 
6 65 
7 1 
8 14 
9 4.3 

10 3 
11 72 
12 69 

.. 
r--

"'0 
n:s 
0 

....J 

14 

1 

0 

0 

1 

o::t .. 
r--

"'0 
n:s 
0 

....J 

15 

2 

'1 

0 

3 



TABLE 3.5 - First Occurrences of Load Cardinalities 

in The New Path List 

Load Cardinal tty First Occurrence 
Path No. 

1 1 

, 2 5 

3 12 
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IV. THE AIRPORT CAPACITY CONSTRAINTS 

4.1 INTRODUCTION 

Once the routes of the cargo planes have been determined, 

the. longest mission time is defined by the objective function 

value of the related solution of the Bottleneck Routing Problem 

(BRP). At this point, the service facilities at the airports should 

be .checked to see whether they are sufficient not to cause any del.ay 

to any of the flights. The opti~al solution value of the BRP cons

titutes of deadline for all planes to fi~ish their job. It is ob

vious that at least one of the planes w~ll complete its job just at 

the deadline. Other planes will have some slack time to complete 

their jobs. The slack times can be utilized, if there is demand 

for service at any airport beyond its capacity. 

As it was mentioned in Chapter I there are two types of 

constraints on service facilities at the mrports. 

i. The number of planes that are serviced at a given 

airport at any time cannot exceed some predefined 

limit. Let CAP. be the maximum number of planes 1 . . 

that can be serviced (loading or unloading) at any 

instant at'airport i. 



ii. The planes -which have enough slack times can join the 

queues at some of the airports, if service facilities 

are busy. But there is also a 1 imit on the size of the 

queue at each airport. Let QCAP i be the maximum queue 

size at airport i at any instant. 

Throughout this chapter we shall try to find out a schedul e 

for planes which satisfies these constraints. 
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In this study the service times of the planes at the airports 

are assumed to be constant. That is,these times are independent of 

both planes and airports. The service time of a plane at an airport 

has two components . 

. i. TL: the loading time 

ii. TU: the unloading time . 

. 
Although these components of the service time are assumed 

to be constant, this is not a strict requirement. They may vary 

from airport to airport and from load to load. If such a situation 

exists, .then different times can be added on arcs defined in the 

network formulations. For the sake of· simplicity in notation and 

for the sake of memory size requirement in the computer applications~ 

service times are assumed to be independent of loads and airports. 

Before getting in the details of the technique developed to 

handle such constraints, one must note the following. definitions. 

i. MIS i is the missi.on completion time of the ith plane, 

if all planes start at the same time and if no,delay 



occurs during that mission times. Their values are 

obtained from the given solution of BRP. Specifically, 

they are the lengths of paths that the related planes 

are assigned to. 

ii. DUE is the 'longest mission time. That is, 
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DUE = m ,a x (MIS. ) (4.1 ) 
i£{l, ... ,P} 1 

This DUE is the objective function value of the BRP 

solution and corresponds to the deadline. 

iii. SLACKi,t is the amount of remaining sJack time for plane 

i at any-time t and is defined by the equation, 

SLACK. t = DUE - MIS. - WAIT. t . 
1, . 1 1, (4."2) 

where WAIT. t is the total time spent at queues by plane 
1 , 

i up to time t (i.e., the idle time). 

4.2 n-JOB, m-MACHINE JOB SHOP SCHEDULING PROBLEM 

The scheduling of planes with given fixed routes has great 

similarities with the n-job, m-machine job shop scheduling problem. 

So it will be better to define this problem first. 

Suppose we have n jobs Jl ,.· .,In and m machines, Ml , ... ,Mm 

which can ,handle at most one job at a time .. Job J i (i= 1, ... ,n) 

consists of a sequence of ni operations Or' each of which corresponds 

to the pr.ocessing of ~o~ J i on machine ll(Or) during an uninterrupted 

processing time of P time units. We seek to find a processing order . r 



on each machine such that to optjmize the' choosen measure of effec

tiveness (Conway, Miller and Maxwell, 1967). 

This problem is quite formidable. Major difficulties are 
I • 

computational since there are (n!)m possible schedulings in general 

form .. 'There are no efficient exact solution procedures known. 
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Conway, Maxwell and Miller (1967) have formulated integer programming 

models but computational results are not encouraging. 

Some heuristic models are used in general job shop scheduling 

problem. ~10st commonly used procedures known as IIdispatching' rules ll ., 

These are ~implY logical decision criteria that enable an analyst 

to select next job for processing at a machine when that machine 
.' , 

becomes available. Thus, scheduling decisions are made sequentially 

over time instead of all at once. Such procedures always include .. 

the concept of IIjob priorityll. A job priority is a numerical attri

bute of a job, ~efined in such a way that, a job with the smallest 

priority is scheduled first~ . Nost of the time these priorities are 

assigned heuristically, and most of time various types of informa

tion available, ~bout the status of work centers,. are incorporated· 

in these decisions (Johnson and Montgomery, 1974). 

4.3 THE RELATIONSHIP BETWEEN PLANE SCHEDULING AND 

n-JOB, m-MACHINE JOB SHOP SCHEDULING PROBLEM 

The scheduling of planes with fixed routes is a complicated 

version of the n-job, m-machine scheduling problem, where the jobs 

are the planes and the machines' are the airports. Since the sequence 
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of loads that should be carried by each plane is known, we can easily 

extract the sequence ~f ~irports which should be visited. Thus the' 

operation sequences are defined. 

The operation times are defined as loading and unloading 

times depending whether the plane is waiting, to 10,ad or unload res

pectively. 

Each plane enters the system exactly once and should comp

leteits time at time referred to as DUE in Eq. (4.1). At the end of 

scheduling process all the planes should complete their job latest at 

this time. Otherwise the objective function value of BRP will be 

increased by the ma~imum delay amount .. 

These similarities imply that scheduling of planes is not so 

easy. Furthermore, we have following differences from n-job, m-machine 

scheduling problem causing additional difficulties. 

j. We talk about the existence of a sequence dependent set

up time, since the planes spend time while flying between airports, 

if we represent flight times 'as set-up times. 

ii. Each machine can handle more than one job at any instant. 

That is each airport k is capable of servicing at most CAPk planes 

at any instant (See Fig. 4.1). 

i~i. Queues are limited. That is, each· airport k has a queue 

capacity of QLAP k. 

iv. The sequence of the operations on ,a job can be altered 

since the routes of planes can b~ changed if they still complete ;: 

, . 
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their mission within the optimal value of problem. 

Arri~al of planes 

Queue at airport k 

Planes are 
being loaded 
or unloaded 
at airport k 

! Departure of planes 

FIGURE 4.1 - Service mechanism at airports 

Formulating the plane scheduling problem as a job shop 

scheduling problem, establishes that .it is very" hard to develope 

an exact solution procedure in here. Hence. we must resort to heu

ristic procedures, namely dispatching rules. 

Once the use of job shop scheduling- heuristic is accepted, 

the problem is to decide what the priorities of planes should be, , . 

if a queue occu rs .. 

In plane scheduling case these priorities should take into 

- account the re~aining slack times of the planes. The pla~e which 

has the least slack time should be scheduled first, since the 

penalty cost of not satisfying the given DUE time is very high, 

namely that of the rejection of the solution. 



4.4 THE HEURISTIC PROCEDURE DEVELOPED FOR 

PLANE SCHEDULING 

The heuristic procedure developed for plane scheduling is 

a. generalization of the heuristic procedure used for job shop 

sch~duling,problems.' The major steps of the algorithm can be 

stated as follows: 

Step 1: Initialize Clock 

For each plane i (i = 1, ... ,P), if the initial airport of 

plane i coincides with the starting airport of first load carried 

by that plane, then put plane i to the _queue of that a.i rport and 

set its job completion time to zero. Otherwise, set plane i flying 

from initial airport to starting airport of first. load and set the

job completion time to the end of this flight. Go to step 5. 

Step 2: Update Clock 

If all planes completed their mission (i.e., all loads are 

carried to appropriate airports), stop. OtherWise, set the clock 

to the minimum of all the job completion times. 

Step 3: Update Slack Time 
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R~duce the slack times of planes which are waiting at the 

queue by the amount of time spent between previous and current clock 

times. If for any plane the slack time is negat;'ve, then no feasible 

solution exists, stop. Otherwise, continue. 



Step 4: Update Plane Status 

For each of the plane i, whose job completion time equals 

to clock; 

i. If plane i finished a flight, then put this plane to 

the queue 6f the next airport it has arrived at and 

set its job completion time to infinity. 

ii. If plane i finished loading, then set plane i carrying 

that load, to appropriate airport and set its job comp

letion time to end this flight. 

iii. If plane i finished ~nloading and a loading will follow, 

then put plane i in the queue of the related airport 

and set its job completion time to 1nfinity. If plane· 

i finished unloading and an empty fl ight will 'follow, 

then set this plane flying to the appropriate airport 

. and set its job completion time, to the end of that 

fl i ght. 

Step 5: Decide on Priorities 
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For each of the airport J (J = 1, ... ,R). If unused service 

capacity of airport k is greater than or equal to the 'queue, then 

start processing all planes waiting at that airport. Otherwise, 

select the planes according to the minimum remaining slack time 

priority rule. Update all job completion times either to an end 

of loading or to an end of unloading, depending upon the status of 

the related plane .. If the queues at any airport exceeds the queue 



capacity, then no feasible solution .exists,' stop. Otherwise, go 

to step 2. (Note, precessing a plane can start only if the related 

job completion time equals to current clock time.) 
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In practice one would expect that a pl~ne unloaded is lDaded 

without re.,..entering the queue. But this seperation of jobs is often 

u'seful while scheduling. If the seperation of jobs implies some 

additional time (i.e., that of pulling the plane to the queue or 

vice-versa), then those times can be added to the job completion 

times of the planes. 

4.5 THE HEURISTIC SCHEDULI.NG PROCEDURE AND THE 

BOTTLENECK ROUTING ALGORITHM 

While discussing the solutions of the Bottleneck Routing 

Algorithm, it has been mentioned that there are some alternative 

solutions generated. These solutions are sequentially checked 

by the heuristi c schedul ing procedure in order to determine 

whether any of them is feasi ble, i.e., satisfy the capacity cons

traints of the airports. The heuristic scheduling procedure does 

not guarantee a resul t and it can terminate without a feasibl e 

solution. But, if a feasible solution is obtained, then we can 

accept it as a global optimal solution to the overall problem, 

since all the constraints are satisfied and the objective function 

value cannot be reduced further. On the other hand, if ,scheduling 

terminates without a feasible solution, other solutions for the, 

bottleneck routing problem mu~t be generated and checked. 



While checking the solutions of the Bottleneck Routing 

Algorithm, following points must be kept in mind: 
> , 
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i. Some of the solutions of the Bottleneck Routing Algorithm 

are copies of each other., because of the mul ti pl e loads 

between the same airports, as discussed in Section 3.9. 

ii. Some of the alternative solufions of the BRP are not 

generated by the Bottleneck Routing Algorithm, because 

of the path elimination process. Assume that the .path 

Pl , [P'~1'~2] is of length t l , and the path P2, [p, ~2' 

~l] is of length t 2, and tl < t2 < DUE. Since both 

paths cover same loads and the initial airports are 

the same', the one which is longer (namely the second 

one) was eliminated by the path elimination procedure. 

So the path P2 cannot appear in any of the alternative 

optimal solutions, although it can appear in any of the 

solution where path Pl appears. That is, if BRA decides 

to assign a plane to path Pl , then this implies that 

there exists an alternative solution in which that 

plane can be assigned to path P2. Thus, the sequence 

of airports that should be visited by a plane can be 

altered. In case of job shop problem one can view this 

phenomenon as changing the sequence of operati0ns on a 

job. 



iii. The possibility of reaching feasibility -increases1when 

the slack times of planes increase. The solution alter

natives whose total cost is less will have more slack 

time in plane routes since length of longest tour does 

not change. Thus, such solutions have higher possibi

lity of having a feasible solution in sense of airport 

capacity constraints. 
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By the help of these ideas the updated version of the Bottle

neck Routing Algorithm has been designed where a heuristic scheduling 

procedure has been added t6 it as a s~broutine. Each time a solutibn 

-is generated by the Bottleneck Routing Algorithm, that solution -is 

checked by the heuristic scheduling procedure for -feasibilty or ai:

port capacity constraints. This solution cannot be a copy of the 

previous one, since it has a lower objective total function value 

and a higher possibility of containing a feasible solution. 

Even though all the solutions are checked by this process, 

still there is the possibility of not finding a feasible solution 

to the scheduling problem. Then, in this case, the Bottleneck 

Routing Algorithm is forced to retrieve some more paths from mass 

storage and search for solutions on this enlarged list of paths 

leading to an increase in the objective function value. 

4.6 AN EXAMPLE TO THE SCHEDULING OF AIRPLANES 

C9nsider Example G with the capacity data given in Table 

4.1. 



TABLE 4.1 - The CapaCity Data of Example G 

AIRPORT NUf,mER SERVICE QUEUE· 
OF PLANES CAPACITY CAPACITY 

1 4 2 1 

2 0 3 2 

3 0 2 1 

4 4 4 1 

5 0 1 1 

The first optimal solution alternative generated by the 

Bottleneck' Routing Algorithm given in Table 4.2. 

TABLE 4.2 - The Optimal Solution to Example G 

t. 

PLANE INITIAL LOADS CARRIED MISSION 
AIRPORT TIME 

-
1 4. 14 ~: 17 - 1 305 

2 4 15 - 16 - 19 300 

3 4 11 - 6 - 12 300 

4 4 2 - 8 - 7 290 

5 1 3 - 20 305 

6 1 4 - 9 285 

7 1 5 - 10 280 

8 1 18 - 13 235 

TOTAL TIME 2300 , 
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If there are no constraints and all planes will start at 

the same time, then the schedule of the planes will be as shown 

in Table 4.3. Note that in Table 4.3 at time 129 planes 3 and 8 

are in service at airport 3, and at time 130 plane 5 arrives for 

unloading~ Since the service capacity of airport 3 is only 2 planes, 

plane 5 has to wait for one of .the jobs to be completed. Butthe 

mission time of plane 5 is alreadyequal to the length of the lon

gest mission time which is 135. So at this point scheduling ter- -

minates with no .feasib1e solution. Note that the possibility of 

holding service of plane 8.is omitted due to the structure of the 

heuristi c. Thus, the second alternative optimal sol ution generated 

by the Bottleneck Routing Algorithm is' considered which is given 

in Table 4.4. 

Again for this solution the schedule' without any constraint 

on airport capacity is shown in Table 4.5. Note that at time 130 
, 

capacity constraint of airport 3 is violated, since there are three 

planes to service, namely planes 3, 5 and 8. But this problem is 

solved as shown in Table 4.6 by holding operation on plane 8. In 

·this schedule all constraints are satisfied and the bottleneck 

objective function value is minimized. So the solution is globally 

optimal for capacity constrained bottleneck routing problem. Note 

that this solution is obtained in only 4.3 seconds on UNIVAC 1106 

Computer. 
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UNLOAD ·Atr 
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LOAD ATl 
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FULL (f-2l 2 5 
UNLOAD AT2 

TABLE 4.3 - Optimal BRP Solution to Example G 

3, 4 5 6 7 
1+ 1+ 1 

Et~PTY (1-2) EMPTY (1-3J 
LOAD AT4 LOAD AT4 LOAD AT4 30 

1+5 1+5 1+5 
LOAD AT2 

FULL (4-~~ FULL (4-3) F~LL (4-2) 75 LOAD AT3 

UNLOAD AT3 85 
UNLOAD AT2 . UNLOAD AT2 . 95 

105· FULL (2-3) FULL ,(3-1) 

LOAD AT2 LOAD AT3 LOAD AT213 0 125 
UNLOAD ATl 

11+ 5 UNLOAD AT3 15l 150 155 
FULL (2-4) FULL (3-4) FULL (2-5) EMPTY 13-41 LOAD ATl 175 175 

UNLOAD AT4 
r.~ 185 

UNLOAD AT4 UNLOADAT5 
~5 

LOAD AT4 

LOAD AT4 LOAD AT4 LOAD ATS 230 FULL (l-S) 
21+5 21+5 

. FULL 14~3) FULL fS-41 FULL J4-1) ~55 

FULL (4-S~ 265 
75 UNLOAD AT4 UNLOAD ATS 

UNLOAD ATS UNLOAD AT329 285 
UNLOAD ATl 

LOAD AT1 

1+5 

FULL Ll-:-41 
85 

UNLOAD AT4 
E~1PTY (4-5) 

1~ 

LOAD AT5 

, 210 

FULL (S-31 
2 5 

UNLOAD AT3 

8 

LOAD ATl 

FULL (1-3) I 

UNLOAD AT3 

110 

LOAD AT3 

FULL (3-2) 

UNLOAD AT2 

1.0 
1.0 



TABLE 4.4 - The Alternative Optimal Solution.to 

Example G 

PLANE INITIAL LOADS CARRIED MISSION 
AIRPORT TIME 

1 4 14 - 17 - 1 305 

2 4 15 - 16 - 19 300 

3 4 11 - 6 - 12 300 
-4 4 2 - 8 - 7 290· 

5 1 3 - 20 305 

6 - 1 1 - 10 275 . 
7 1 5 - 13 275 

8 1 18 - 4 220 

TOTAL TIME 2270 
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TABLE 4.S - Optimal BRP Solution Alternative to Example G 
3 4 5 6 7 8 

4 4 1 1 . 1 

EMPTY(1-2) 
LOAD AT4 LOAD AT4 LOAD AT4 30 LOAD ATl LOAD ATl LOAD ATl 

45 
FULL (4-3) 

45 45 45 
LOAD AT2 

FULL (4-2) . 75 FULL (4-2) 75 FULL (l ... S) FULL (1':'4) FULL (1':'3) 

.UNLOAD AT2 UNLOAD AT3 UNLOAD AT2 85 
UNLOAD AT3 95 

105 FULL (2-3) . UNLOAD AT41DC , 110 

LOAD AT2 LOAD AT3 LOAD AT2 130 UNLOAD ATS FULL (4-3) LOAD AT3 135 
145 UNLOAD AT3 

LOAD ATS 150 . 150 155 155 

FULL C2-4~75 FULL (3-4~ 75 
FULL (2-S) EMPTY (3-4) LOAD AT3 FULL (3-1) 

185 , 
UNLOAD AT4 UNLOAD ATS UNLOAD AT4 195 195 

LOAD AT4 FULL (S-3) UNLOAD ATl 

LOAD AT4 LOAD AT4 LOAD ATS 230 FULL (3-2) 

245 FULL (S-4) FULL (4-1 )250 .250 

,FULL (4-S J 75 FULL(4-3}265 UNLOAD AT4 275 UNLOAD AT~75 UNLOAD AT2 

UNLOAD ATS UNLOAD AT~9 0 UNLOAD ATl 
' .. ~ .. 

~ ~:-:. 
.,.~ , 

• .... 1 

..... 
o ..... 
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TABLE 4.6 - The Optimal BRP Solution Alternative Which Satisfies Capacity 
Constraints in Example G . . 

234 567 
It It It 1 1 1 

. , EMPTY (1-2)' 
LOAD AT4 LOAD AT4 LOAD AT4 30 LOAD ATl LOADATl 

itS itS LOAD AT2 itS itS ItS 

FULL (4-2) 75 FULL (4-3) FULL (4-2) ' 75 FULL (1-5) . FULL (1-4) 

UNLOAD AT2 UNLOAD AT3 UNLOAD AT2 95 ! 0 
105 FULL (2-3) UNLOAD AT4 11 0 

LOAD AT2 LOAD AT3 'LOAD AT2 130 UNLOAD AT5 130 
UNLOAD AT3135 EMPTY (4-3) 

Ilt5 150 15g WAIT AT3 11t5 155 15 

. FULL (2-4 )17 5 FULL (3-41 FULL A~55) , EMPTY (3-4) LOAD AT5 
LOAD AT3170 75 WAIT 

UNLOADAT4 185 
UNLOAD AT4 UNLOAD AT5 

205 
LOAD AT4 FULL (5-3) 215 

LOADAT4 . LOAD AT5 230 
.. 

FULL (3-2) LOAD AT4 
21t5 

FULL {4-3f,0 FULL (5-4) FULL (4-1 fO 255 255 
FULL {4-5~ 270 UNLOAD AT5 UNLOAD AT3 UNLOAD AT2 75 .275 
UNLOAD AT5 UNLOAD.AT3 UN,LOAD ATl 295 

-

8 
1 

WAIT ATl 

LOAD ATl 

FULL (1-3) 

WAIT AT3 

UNLOAD AT3 

LOAD AT3 
, 

FULL (3-1) 

UNLOAD ATl ; 

I - " --' 
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4.7 DISCUSSION OF THE HEURISTIC SCHEDULING 

PROCEDURE 
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The heuristic scheduling procedure can be developed further 

to ha.ndle more alternative ways to scheduling the planes. First of 

all~ other priority rules can be established. Secondly, one can 

change the previous priorities, if the queue capacity of an air

port is violated. Also one can change overall operation sequences. 

But it is very hard to impose such changes on these types of heu

ristics because of the extensive computation time and memory size 

requirements. Indeed there is no serious attempt to change pre

vious priorities or to change operation sequence in literature. 

But one could possibly introduce some more powerful decision rules. 

The decisions can be taken by che'cking events in future more care

fully. That is, the future queues can be estimated and more 

reliab'le decisions can be taken. Also, priority can be defined' 

as a function of not only remaining slack time but also of the. 

remaining slack time and some other status variables such as 

remaining number of operations, remaining processing time,· etc. 
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V, A SUGGESTION FOR FURTHER RESEARCH: 
THE TRAVELLING SALESMAN APPROACH 

5. 1 I NTRODUCTI ON 

In this chapter we shall change our objective while keeping 
, 

, the same constrain'ts. That is, we shall leave the bottleneck ob-

jective ~unction and focus on minimizing total mission time. This 

objective function is given by the expressio~ (2.12) and this typ~ 

of routing problem is called the "Minimum Total Time Routing Prob-

lem (MTRP) ". 

Rather than defining a sol ution procedure for MTRP, we shall 

reformulate the problem as classical Travelling Salesman Problem and 

show that MTRP can be solved by using the TSP approach. The TSP net

work obtained as a result of this formulation has (2P+M) modes. The 

formulated TSP network has some specialities which can be utilized 

while solving the problem. But no special algorithm has been deve

loped for this purpose. Only the well~known solution procedures' 

for TSP are utilized. One can make use of this fact and- can improve 

the TSP procedures to solve MTRP more efficiently. 
, 

The MTRP d'iffers from BRP-only in obj~ctive function. In 

the case of BRP it is easy to estimate the longest path length (dmax )' 



but in case of tnRP it is not so easy to make such an estimate. 

If it is estimated then the estimate must be a relaxed one, that 

is, it must be long enough to enable all possibilities, which will 

certainly blow up the number of paths that should be considered 

by our previous approach. So we shall change our approach but 

still utilize essentially the same network transformation. 

5.2 . A NETWORK TRANSFORMATION FOR THE MINIMUI~ 

TOTAL TIME CARGO ROUTING 
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In order to formulate MTRP as TSP, a network is generated 

which is similar to the one generated in case of BRP. Here again, , 

some nodes represent the airports which have initially planes and 

some nodes represent the loads between airports." But artificial 

source and terminal nodes are omitted. Therefore, the resul ting 

network has (RP+I~) nodes. The time matrix related with this net-

,work is called V from now on. In this network, nodes, 1, ... ,RP 

represent the airports which have planes initially, and nodes 

(RP+l), ... ,(RP+M) represent loads. Fig. 5.1 ,shows this formulation 

on Example A. 

Interactions between loads and interactions between the 

airports and the loads are kept the same. Hence, the meanings 

and the lengths (i.e. time required to traverse these arcs) of 

these arcs are the same with bottleneck formulation. Interactions 

on this network are as follows: 
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i. Interactions between nodes representing loads. 

d[ J [ J + TU + TL, 
L(.Q,-RP),l ' L(.Q,-RP),2 

if L(k-RP),2 = L(.Q,-RP),l ; 

v~ = (5.1 ) 

+ d[ + TU + TL, 
.. L(.Q,_RP),lJ,[L(.Q,_RP),2J 

if L(k-RP),2 r L(.Q,-RP),l ; 

Vk,.Q" k r.Q" .Q"k £ {RP+l, ... ,RP+M}, where, L, RP, M 

and d defined in previous chapters. 

ii. Interactions between nodes representing airports and 

nodes representing.loads. 

d[ + TU + TL, 
L(.Q,_RP),lJ,[L(.Q,_RP),2J . 

if L(.Q,-RP),l = [kth airport which has planes initiallJ 

v~ = d[kth airport which J [L .Q,_ J 
has initially planes' ( RP),l 

(5.2) 

+ d + TU + TL, 
[L(.Q,_RP),lJ,[L(.Q,_RP),2J 

if L(.Q,_RP),1 = [kth airport which has planes initiall~ 

Vk , .Q, , k = {l, ... , RP}, .Q, £ {RP+ 1 , ... ,RP+~1} . 



iii. Interactions between nodes representing loads and nodes 

representing airports. 

Previously no such interaction has been assumed, but in 

this case we include these arcs and assign them zero time. 

That is, 
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vk~ = 0; Vk,~, k E {RP+l , ... ,RP+M} J ~ E {l, ... ,RP}. (5.3) 

iv. Interactions between nodes representing airports. 

Again no meaning has been assigned to such interaction 

previously. But in this case we shall connect some of the 

airports among each other with arcs of zero time, and not 

all airports will be connected to each other instead, de

pending upon our objective we shall select these to be 

connected. 

The arcs which are discussed in interactions (iii) and (iv) 

have no physical meaning. The reason for their existence will be 

cleared in following sections. 

We shall solve the MTRP over this network by a new approach. 

In order to introduce this approach we shall now define the classical 

Travelling Salesman Problem and describe its relation to the vehicle 

routing problem. 



8 
Airport 3 

Ai rport 4 

0 
Load 1 
(1 ,2) 

(£) 
Load 3 
(2,4) 

Load 5 
(4,2) 

Load 7 
(3,4) 

0 
Load 2 
(4,1) 

0 
Load 4 
(4,3) 

Load 6 
(3,1 ) 

FIGURE 5.1 - The transformed network of Example A 

5.3 THE TRAVELLING SALEsr~AN PROBLEM (TSP) AND ITS 

EXTENSION OF MULTI-TRAVELLING SALESM~N CASE (MTSP) 

The Travelling Salesman problem is a well-known combinato

rial problem. It can be defined as follows: Given n cities and 

a salesman, find the shortest (or least cost) tour such that the 

salesman v,isits each city exactly once. That is, he starts from 

city 1 and visits each of the other (n-l) cities once and only 
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once and then returns to city 1. Thus the problem can be formulated as: 



'c 
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) 

n n 
Min Z = L I diJxiJ (5.4) 

i=l J=l 

n 
L x' J = 1 Y J (5.5) 

i=l '1 

n 
L XiJ = 1 Y i (5.6) 

J=l 

X = eXi ,J) E S (5.7) 

xiJ ={ : if arc (i,J) is in the tour; 
(5.8) 

otherwise; Y i,J 

= is the cost of (or length) going from city i to 
city J; Y i,J 

The set S can be the set of any restrictions to avoid solu-

tions, satisfying constraints (5.5) and (5.6). Such restrictions 

are called subtour elimination constraints. Generally three defi

nitions for the set S are given in literature (Bodin, Golden and 

Assad, 1981): 

r 

for every non-empty (5.9) 
eroper subset Q of 
ll, ... ,n]} 

for every 

non-empty subset Q 
of [2,3, ... ,n]} 

(5.10) 



iii. S = {(xiJ}IYi - YJ + n xiJ ~ n-l for 

2 < i,J < n for some real 
numbers Yi} 
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(5.ll) 

The Multiple Travelling Salesman Problem is the generali-

zation of TSP to the case where there are m salesmen instead of 

one. Initially, all the m salesmen are in one of the cities called 

lithe depot". They will visit some of the cities and will eventually 

return to the depot. The assignment based formulation of ~1TSP is 

a natural extension of TSP formulation. 

n 
s.t. r xiJ = bJ = 

i=1 

n 

(5.l2) 

M; if J = 1 (i.e. the depot~ 

(5.13) 

1; if J T 1. 

f4; if i = 1 (i.e., the depot) 

l. xiJ = ai = (5.14) 
J-1 

x = (x. J ) E S 
- 1 

(5.l5) 

XiJ = 0,1 V i,J (5.l6) 

Any MTSP problem can be converted into an equivalent TSP. 

Equivalent TSP formulations of rnsp were derived by Bellmore and 
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Hong (1974), Svestka and Huckfe1dt (1973), Rao (1970), Hong and 

Padberg (1977), Berenguer (1971) and others. The equivalence is 

achieved by creating m copies of the depot, each connected to other 

nodes exactly as the depot is in the original neblOrk and by allowing 

no interactions between the [11 copies of depots (i.e. arcs between them 

have assigned infinite lengths)~ Hence equivalent TSP formulation has 

(n m-l) dones. As a result of this formulation, an optimal single 

TSP tour in the enlarged network will never use an arc connecting 

copies of the depot and this optimal tour can be decomposed into sub

tours resulting in the optimal solution for ~lTSP. 

For example, in Fig. 5.2.a there are five nodes and two sales

men at node 1. Then, the expanded network will contain nodes Dl, D2, 

2~ 3, 4, 5. Nodes Dl and D2 being the copies of the depot (node l}. 

Each salesman is assumed to be situated in one of them. In Fig. 5.2.b 
I 

consider the tour {Dl-4-3-D2-2-5-Dl} and the interpretation in the 
, 

two salesmen problem is shown in Fig. 5.2.a. Here the subtours 

{1-2-5-l} and {.1-3-4-l} represent the tours of the individual salesmen. 

FIGURE 5.2.a - Example ofa 5 node, 2 salesmen MTSP tour 
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FIGURE 5.2.b - Equivalent TSP tour 

5.4 MTSP IN CASE OF r~UTLIPLE DEPOTS (~1Dr~TSP) 

, ' 

~1ultiple TSP can be generalized by assuming the existence 

of more than one depot. Here again there are n cities to be visited 

by m salesmen. But salesmen are located at several depots. Let 

there be d depots and each depot houses prespecified number of sales

men. In the next section we shall show how this problem can be con

verted to an equivalent TSP. In order to illustrate the meaning of 

MTSP in case of Multi Depot we shall now define and formulate 'the 

Multi Depot Vehicle Routing Problem. One can view MTSP as a special 

case of Vehicle Routing problem, where ,vehicles being the salesmen 

and some/of the constraints of VRP are dropped. Also, one caD view 

~1DNTSP as a special case of t4ulti Depot VRP in the same manner. 

The Vehicle Routing Problem (VRP), is to obtain a set of 

delivery routes from a central depot to various demand points, each 

of which has known requirements, so as to minimize total, distance 

covered by the entire fleet. Vehicles have capacity and maximum route 

constraints. All vehicles start and finish at the central depot. The 

mathematical formulation of VRP is given by Golden et ale (1977) as 

follows, 



-

where,. 

n n NV k . 
Min Z = . r r I diJxiJ i=l J=l k:1 

n n 
s.t. L L k xiJ = 1 (J = 2, ... ,n) 

n 
I 

i=l 

i=1 k=l 

n NV k L L xiJ = 1 (i = 2, ... ,n) 
J=l k=l 

n k n 
I Xo I 

i=l 1p J=l 

n n 
r Q 0 ( r 

i=l 1 J=l 

t~ 
n k I 

1 J:1 
XiJ + 

n 
I XO l <: 1 

o 2 1 -1= 

X e: S 

k . x oJ = 0,1 1 . 

k xpJ = 0 (k = 1, ... ,NV; 

P = 1, ..• ~n) 

k xiJ ) 2. Pk (k = 1, ... ,NV) 

n n k k 
I ItoJxoJ<Tk (k = 1, ... ,NV) 

i =1 J=l 1 1 . 

(k=l, ... ,NV) 

(k = 1, ... ,NV) 

V i,J,k 

n : number-of nodes 

NV = number of vehicles 

Pk = capacity of vehicle k 
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(5.17). 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

{5.22} . 

(5.23) 

(5.24) 

(5.25) 

(5.26) 



Tk = maximum time allowed for a route of vehicle k 

Qi = demand at node i (Q1 = 0, node 1 being the depot) 

t~ = time required for vehicle k to deliver or collect 
1 

k' at node i (t1 = 0) 

t~J = travel time for vehicle k from node i to node J 
t (to 0 = (0) 
11 , 

diJ = shortest distance from node i to node J. 

k {,1, if arc (i,J) is traversed by vehicle k 
xiJ = 0, otherwise 

x = matrix with components 

connections regardless 

NV k 
xO

J = Ix o J , 
1 k=l 1 

of vehicle type. 

specifying 

Equations (5.18) and (5.19) ensure that each demand node 

served by exactly one vehicle. Equations (5.20) represent route 

continuity, that is if a vehicle enters to a demand node then it 

must exit from that node. Equations (5.21) are the vehicle capa

city constraints .and Equations (5.22) are the total elapsed time 

constraints. Equations (5.23 and (5.24) ensures that the vehicle 

availability is not exceeded. Finally Equations (5.25) are the 

subtour elimination constraints. 

The mathematical programming formulation of vehicle routing 

problem is altered in a minor way to incorporate multiple depots. 

Let nodes 1,2, .•. ,M denote the depots. We obtain the formulation 

of Multi-Depot Vehicle Routing by changing the index in constraints 

(5.18) and (5.19) to (J = M+l, ... ,n) and by changing constraints 

(5.23) and (5.24) as follows: 
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M n K I I x' J < 1 
i=1 J=M 1 1 - (k. = 1, ••• ,NV) (5.27) 

f4 n k I I x. < 1 
P=1 i =t4 1 1P -

(k= 1, ••• ,NV) (5.28) 

But in multi-depot case we must redefine choices for subtour 

elimination constraints as follows, 

i. S = {{x.J ) II I x.J > 1 
1 Je:Q J¢Q 1 -

for every proper 
subset Q of V con
taining nodes 

i i . 

[1 , 2 , . . • , f4]} 

S = {{x·J)1 I I X' J < IQI - 1 
1 'QJQ l~ 1e: e: . 

for every non-

empty.subset Q of 
H1+l, M+2, •.• ,n}} 

n x' J < n - 1 for 
1 -

~~l < i1J < n for some 
real-numbers y.} . 1 

If we drop the capacity (5.21) and elapsed time (5.22) 

constraints from the formulations of VRP and Multi-Depot VRP, 

then we can obtain the mathematical programming formulation of 

MTSP and ~1Dr.nsp respectively. 

(5.29) . 

(5.30) 

(5.31 ) 

Note that, the initial depots of vehicles are irr~levant 

in this formulation, also \'1hether the vehicles to their initial 

depot or not, is not controlled by this formulati·on. The only 

requirement is the utilization of at most the given number of 
. 

vehicles. These points.will be discussed in the next sections. 
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5.5 THE TRANSFORMATION OF MDMTSP TO AN EQUIVALENT TSP 

5.5.1 Introduction 

In this section we shall illustrate how a given MD~1TSP is 

converted into an equivalent TSP. This transformation in principle 
\ 

similar to that of utilized in MTSP network. After this transfor-

mation an asymmetric TSP network is obtained with (2m+n) dones 

where n is the number of cities and m is the number of salesmen. 

The transformation is realized by generating duplicates of 

the depots. In the case of NTSP for each salesmen one copy of the 

depot is generated. But in this case we utilize two copies of the 

related depot for each salesman. The duplicates of the depots are 

called IIdummy nodes ll from now on and there are 2m dummy nodes. Each 

. salesman will begin its tour from one of the dummy nodes and finish 

it at another dummy node. The first dummy node is called the IIdepar-

ture node ll and the second one is called the lIarrival node ll for that 

salesman. The network of ~1Dr.nsp is transformed so that, there are 

no arcs entering to the departure nodes, but just arcs leaving. In

deed these arcs are the same arcs leaving the depot on the original 

t·1Dr~TSP network. Similarly, just the converse is true for arrival 

nodes. 

This way, the salesman will leave the depot from the arrival 

node. So he will make a subtour starting and ending at the depot. 

In order to enable other salesman tours, an arc put from each arrival 

node to next departure node with zero length which directs the TSP 

tour to tMe next departure. Thus,the TSP tour is forced to cover 

arcs between dummy nodes, since there is no arc leaving the arrival 
, 
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nodes except the ones that are connected to departure nodes. Since 

these arcs have zero length, they do not change the objective func

tion of solution obtained from the TSP tour. 

5.5.2 An Example Transformation 

Consider the network given in Fig. 5.3.a. There are 10 

cities and 2 depots, 01 and 02. There are 2 salesmen at depot 01 

(called salesman A and salesman B) and 1 salesman at depot 02 

(called salesman C). The distance matrix of this network is given 

at Table 5.l.a. 

The equivalent TSP network is shown in Fig. 5.3.b and 

related distance matrix is ,given at Table 5.l.b. 

The dummy nodes are interpreted as follows: 

Node 11: Departure node of Salesman A at Depot 1. 

Node 12 : Arrival node of Salesman A at Depot 1. 

Node 13 : Departure node of Salesman B at Depot 1. 

Node 14: Arrival node of Salesman B at Depot 1. 

Node 15: Departure node of Salesman C at Depot 2. 

Node 16: Arrival node of Salesman C at Depot 2. 



DEPOTS 

Depot Dl 
Salesman A,B 

Depot D2 
Salesman C 

CD 
0) 
CD 
0) 
G) 

CITIES 

FIGURE 5.3.a - Original network of Example 5.5.2 

DEPOTS CITIES 

Depot D1 

CD Salesman A CD Departure' 1 

0) CD Salesman A 
Arrival 12 

CD CD Salesman B 
Departure 13 

0) CD Salesman B 
Arrival 14 

Depot D2 

CD @ Salesman C 
Depa rtu re 15 

Salesman C 
Arrival 16 

FIGURE 5.3.b - Equivalent TSP network of Example 5.5.2 
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TABLE 5.1.a - Original Oistance M~trix of Example 5.5.2 

01 02 1 2 3 4 5 6 7 8 9 10 

Dl <Xl <Xl 3 4 2 <Xl <Xl <Xl <Xl <Xl <Xl <Xl 

02 <Xl <Xl <Xl <Xl 7 <Xl 5 <Xl 8 <Xl <Xl <Xl 

1 3 <Xl <Xl 20 5 10 5 8 7 3 2 1 

2 4 <Xl 20 <Xl 6 9 12 16 5 13 18 13 

3 2 7 5 6 <Xl 11 19 17 7 9 10 8 

4 <Xl <Xl 10 9 11 <Xl 14 20 15 7 6 8 

5 <Xl 5 5 12 19 14 <Xl 8 10 13 9 7 

6 <Xl <Xl 8 16 17 20 8 <Xl 5 8 16 17 

7 <Xl 8 7 5 7 15 10 5 <Xl 6 12 14 

8 <Xl <Xl 3 13 9 7 13 8 6 <Xl 15 13 

9 <Xl <Xl 2 18 10 6 9 16 12 15 <Xl 9 

10 <Xl <Xl 1 13 8 8 7 17 14 13 9 <Xl 

...... 

Now, let us consider the following tours in TSP network and 

try to construct the related subtours in MOf.1TSP network. 

Tour 1: Let a TSP tour be 

{11-2-4-1-12-13-3-14-15-5-6-8-10-9-7-16-11}. 

Then the 'corresponding subtours in MONTSP network are, 

Salesman A: 01-2-4-1-01 

Salesman B: 01-3-01 

Salesman C: 02-5-6-8-10-9-7-02. 



A 
Dep 

A 
Arr 

B 
Dep 

B 
Arr 

C 
Dep 

C 
Arr 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 
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TABLE 5.1.b - Equivalent Distance Matrix of Example 5.5.2 

A A 
Dep Arr 

o 

3 

4 

2 

B B 
Dep Arr 

o 

3 

4 

2 

c C 
DepArr 1 2 3 4 5 6 7 8 9 10-

o 

3 4 2 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 00 

3 4 20000 00 00 00 00 

00 00 00 00 00 00 00 00 00 

7 00 00 00 5 00 8 00 00 

00 00 00 00 00 00 00 00 00 

20 5 10 5 8 7 3 2 1 

00 20 00 6 9 12 16 5 13 18 13 

7 5 6 00 11 19 17 7 9 10 8 

5 

10 9 11 00 14 20 15 7 6 

5 12 19 14 00 8 10 13 7 

8 

7 

8 16 17 20 8 00 5 8 16 17 

8 7 5 7 15 10 5 00 6 12 14 

00 ·3 13 9 7 13 8 6 00 15 13 

00 2 18 10 6 9 16 12 15 00 9 

00 1 13 8 8 7 17 14 13 9 00 



Tour 2: Let a TSP tour be, 

{11-2-14-15-3-12-13-1-4-5-6-8-10~9-7-16-11}. 

Then the corresponding subtours in r~DMTSP network are, 

Salesman A: 01-2-D1 

Salesman B: 02-3-01 

Salesman C:~Dl-1-4-5-6-8-10-9-7-D2. 

5.5.3 Analysis of Transformation Suggested 
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As indicated in the previous section, the initial depot of 

salesman is always controllable in this suggested network transfor

mation. But we have two possibi1itles for final depot. They are; 

i. The initial and final depots of salesmen are the same, 

what is expected. 

ii. The initial and final depots of salesman can be different, 

which may be desirable or not depending upon the parti

cular application. This transformation enables such 

tours, but in case of routing p1~nes, it will be shown 

that there is no violating effect. 

In Section 5.5.1 it has been suggested that each arrival 

node should be connected to the next departure node. Without loss 

of general ity we can restate this transformation as follows: each 

arrival node should be connected to one or more arrival nodes by an 

arc of zero length. 
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5.5.4 Number of Salesmen Utilized in MDMSTP 

If we connect the departure node of a salesman to its arrival 

,node by an arc of zero length, then ~e will create for the TSP tour 

the possibility of not utilizing that salesman at all. 

A solution which ~oe~ not utilize some of the salesman can_ 

'be explained as follows; 

i. There are alternative optimal solutions which utilize 

different number of salesmen. 

ii. Utilizing extra salesmen may effect objective function 

in two ways. Ifit decreases the objective function 

value, then TSP algorithm automatically selects that 

solution. The interesting case is the next one in which 

utilizing extra salesman may increase the objective func-

tion value although extra salesmen do not incur any cost. 

The major reason for this ,~s the alterati,on 6f triangular 

inequality in the distance matrix. For exmaple, in Fig. 

5.4, such a case for a single depot with two salesmen is' 

shown. In this case optimal solution with one salesman 
-

will b~ the tour {D-3-4~2-l-D} with the objective func-

tion value 35. Any solution which utilizes more than 

one salesman will generate higher objective function 

values. 



FIGURE 5~4 - Example of a single depot two salesman 
problem 

5.6 THE MULTI DEPOT MULTI SALESMEN TSP WITH FIXED COSTS 

5.6.1 The Single Depot Case 

Although in some applications, exactly m salesmen are 

required, there a-re cases where there.is a cost of each salesman 

and it is desirable to utilize as few as possible. salesmen due to 

that cost. That is, uSing r salesmen (where 1 ~ r ~ m). 

Hong and Padberg (1977) define this problem as: II By 

assigning the ith salesman to a tour, one incurs' a fixed charge 

fi' which is independent of his tour. For travelling from city i 

to city J, one incurs a cost ciJ that does not depend upon which 

salesman makes that particular trip. The problem is to find the 

,number of salesmen to be employed and their respective routes so 

as to minimize total cost.1I 

The MTSP subject to fixed charges is abbreviated as IvtTSPF. 

Bellmore and liong (1974) and Rao (1980) and Discenza (1981) have 

shown possible transformations to include fixed costs to the tnsp 

formulation. 
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Bellmore and Hong (1974) have shown that asymmetric MTSPF 

in (n+1) cities, one being the depot, with m salesmen is equivalent 

to standard asymmetric TSP on (n+m-1) cities. Their transformation 

is as follows: 

For the sake of simplicity in notation, note that the depot 

node is called node ° and the n remaining citjes are to be visited 

by m salesmen. 

Let nodes labelled -1, -2, ... , -(m-1) denote the additional 

nodes put to convert an rnsp to a TSP. 

Therefore nodes 0, -1, ... ,-(m-1) represent the copies of 

the original depot. 

Let D be the original distance matrix and D' be the expanded 

distance matrix. Then, the element of D', d~J are expressed in terms 
1 . 

diJ and fi as follows: 

d'(i,J) = d(i,J) i = 1, ... ,n; J = 1, ... ,n (5.32 ) 

d'(-i,J) = d(O,J) + 0.5fi i = ° , 1 , . . . , ( m-1 ) 
(5.33) 

d'(J,-i) = d(J,O) + 0.5fi J = 1,2, ... ,n 

d' (-i ,""(i-1» = 0.5fi_
1 

- 0.5fi i = 1,2, ... ,(m-1) (5.34) 

Figure 5.5 shows an example of this transformation on a 5 

cities, 3 salesmen problem. Numbers on arcs represent distance of 

that arc. Now, consider the tour (0,1,4,-2,-1,2,3,0). fo is added 

as one half along arc (0,1) and as one half along (3,0). 0.5f, are· 

added along (-2,-1) and (-1,2). 0.5f2 are added along (4~-2) and 
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subtracted along (-2,-1)~ thus cancelling each other. 

This tour can be interpreted as: 

Salesman 0 visits cities 1 and 4. 

Salesman 1 does not visit any city. 

Salesman 2 visits cities 2 and 3. 

Hong and Padberg (1977) have shown that a symmetric fnSPF 

can be transformed to a standard TSP by using (n+m+4) nodes. Later 

Rao (1980) has proven that this can be done by using only (n+m-l) 

nodes. 

Fig. 5.5.a - An example ofMTSPF on 5 cities 

Following theorems will prove that these transformations 

are valid. 

THEOREM 5.1: (Rao, 1980) For every r tour on MTSPF network for 

1 < r < m, there is a tour on equi va 1 ent TSP network 

satisfying, 

r r-l 
Z = L Zk + L fk 

k=l k=o 



where Z is th~ distance matrix of the tour on TSP ~etwork, Zk is 

the distance of the kth cycle in the r-tour on'HTSPF network and 

fk is the cost associated with some salesman k. 

o . 
(J"I 
("") 
-' 

I 
o . 
(J"I 
("") 

N 

FIGURE S.S.b - The equivalent TSP formulation 

THEOREM 5.2: (Rao, 1980) For every tour on TSP with distance Z, 

there is an r-tour (utilizing r salesmen) on equiva

lent r~TSPF network for some r (1 .s. r .s. m) such that, 

where Zk' is the distance matrix of the kth cycle in r-tour, and 

f . < f1 < f2 < •••• < f _,' 
0- - - - m 
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The proofs are easy. They are essentially proved by tracing 

salesmen in both the MTSPF network and the equivalent TSP network. 

5.6.2 The Multiple Depot Case, 

The ideas developed for the single depot case can be applied 

to multiple-depot case if there exists fixed charges of utilizing 

salesman. Reader should note here that the distance matrix of the 

~1D~1TSP network should be compatible with fixed costs of the salesman. 

Then, introduction of fixed costs can be accomplished by adding fixed 

cost fi of utilizing salesman i to all arcs leaving from departure 

node of salesman i. But in this case the dunmy arcs defined in . 

Section 5.5.4 should be put in the network so to enable not utilizing 

salesman i. 

If salesman i is utilized, then the solution should cover 

exactly one of the arcs leaving from the related departure node, 

thus fixed cost of utilizing salesman i is added to the objective 

function value. On the other hand, if salesman i is not utilized, 

then this means the arc between departure and arrival nodes of sales

man i is covered by that solution and no fixed cost related with this 

salesman incurred. 

Let us consider the same network as in Section 5.5.2.. Assume 

that salesmen A,B,C have fixed costs fa' fb, fc respective1:, and let 

their values are 10, 20, 30. The cost matrix obtained as a result of 

this transformation is given at Table 5.2. 
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TABLE 5.2 - The Cost Matrix of Example 5.5.2 With Fixed Costs 

I 

A A B B C C 
1 2 3 4 5 6 7 8 9 10 Oep Arr Oep Arr Oep Arr 

00 o 00 00 00 00 13 14 13 00 00 00 00 00 00 00 

00 00 o 00 00 00 00 00 00 00 00 00 00 00 00 00 

00 .00 00 o 00 00 23 24 22 00 00 00 00 00 00 00 

00 

00 

o 

00 

00 

00 

00 

00 

00 

00 

00 

00 

00 

00 

00 

00 

3 

4 

2 

00 

00 

00 

00 

00 

00 

00 

00 

00 

00 

00 

00 

00 

00 

00 

00 

00 

00 

00 

00 

00 

00 

3 

4 

2 

00 

00 

00 

00 

00 

00 

00 

o 00 00 00 00 00 00 00 00 00 00 00 

00 o 00 00 37 00 35 . 00 38 00 00 00 

00 00 00 00 00 00 00 00 00 00 00 00 

00 00 00 20 5: 1 0 :5 8 7 3 .2 . 1 

00 20 00 6 9 12 16 5 13 18 13 

00 7 5· 6 00 11 19 17 7 9 10 8 

00 00 1 0 9· 11 00. 14 20 15 7 6 8 

00 5 5 12 19 14 00 8 10 13 9 7 

00 00 8 16 17 20 8 00 5 8 16 17 

00 8 7 5 7 15 10 5 00 6 12 14 

00 00 3 13 9 7 13 8 6 00 15 13 

00 00 2 18 10 6 9 16 12 15 00 9. 

00 00 1 13 8 8 7 17 14 13 9 00 

Now, consider the tour in this network, 

{1l-12-13-1-2-4-3-14-15-5-6-7-1 0-9-8-16-11} 

The interpretation of this tour on original network is, 



Salesman A: not utilized, 

Salesman B: 01-1-2-4-3-01, 

Salesman C: 02-5-6-7-10-9-8-02. 
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Since non of the arcs (11-1), (11-2) and (11-3) is covered, 

the fixed cost of Salesman A is. not incurred. Fixed cost of Salesman 

B is incurred on arc (13-1) and fixed cost of Salesman C is incurred 

on arc (15,5). 

5.7 THE FORMULATION OF MINII~m'1 TOTAL TH~E ROUTING 

AS AN ["D~tTSP 

After discussing how MDtnSp can be solved, we can formulate 

r·1inimum Total Time Routing Problem as an ~1D~1TSP. In this section.we 

shall ,utilize th~ network developed in Section 5.1 as the original 

network of MO~ITSP. Within that network, assume that nodes represent

ing airports which have planes initially as depots, nodes representing 

loads as cities, and planes as salesmen. Thus we have RP depots, M 

cities and P planes available. Therefo~e .after transformation to 

TSP network we'shall have (2P+M) nodes. 

Fig. 5.6 shows the MOMTSP network of Example A. After the 

transformation to TSP we shall obtain the time matrix (it was referred 
. .' 

to as the distance matrix in r·1DMTSP transformation, but in this case, 
.-

that matrix correspond to the operation time matrix defined in Chapter 

3) given at Table 5.3 . 

. c' 
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Departure node for 
the plane 1 at air
port 3 

Arrival node for 
the plane 2 at 
airport 3 

o 

Departure node for 
the plane 3 at air
port 4 

Arrival node for 
the p.l ane 4 at 
airport 4 

(j) 

o 

FIGURE 5.6 - MDMTSP formulation of Example A 

TABLE 5.3- The Equivalent TSP Matrix of Example A 

2 3 4 5 6 7 8 9 10 11 

00 00 00 110 75 80 55 70 80 35 
00 0 00 00 00 00 00 00 00 00 

00 00 00 85 55 85 35 50 100 55 
00 00 00 00 00 00 00 . 00 00 00 

0 00 0 00 90 50 70 85 110 65 

0 00 0 45 00 80 75 90 145 100 

0 00 0 85 55 00 35 50 100 55 

0 00 0 110 75 80 00 70 80 35 

0 00 0 75 90 50 70 00 110 65 

0 00 . 0 45 95 80 75 90 00 100 

0 00 a 85 55 85 35 50 100 00 

. 
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5.8 EVALUATION 

Our aim in this chapter is to suggest a formulation to minimum 

total ti~e cargo routing problem and to suggest a transformation on 

MDMTSP network to obtain an equivalent TSP network. There are heuris

tic and exact methods available to solve TSP. Little et al. (1963), 

Held and Karp (1970), ~1iliotis (1976), Crowder and Padberg (1980) 

suggested exact procedures whereas Rosentkrantz et al. (1977), Clarke 

and Wright (1964), Norback and Love (1977), Kim (1975), Christofides 

(1976), Lin (1965) have suggested heuristic procedures. However, in 

our case the final TSP matrices have some properties which can be 

utilized in the solution of TSP. It is certain that all TSP tours 

will cover arcs defined between arrival and departure nodes. Then 

there is no need to carryon an optimization process on these arcs. 

If one resorts to methods available for TSP, then one has to make un

necessary calculation on such arcs. Several authors (Russel, 1977) 

have worked on such TSP cost matrices and suggested techniques to 

solve them. But still there is need to define a more powerful solu

tion algorithm for the TSP matrix defined in this chapter. 

Since we have expressed MTRP as a f1DMTSP a 11 a rguments about 

MUMTSP hold. That is, we can connect the departure of a plane to its 

arrival, so as to create the option of not utilizing that plane at 

. all. This fact is applied to previous problem. Although it utilized 

again two planes, the load assignments to planes have changed. Thus 

we caught an alternative optimal solution to the problem. 

We can also assign fixed tosts to planes and add these costs 

to appropriate arcs, if we define operation time matrix in terms of 
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monetary units. 

Since in' case of t·1TRP we do not care whether the planes are 

returning to their initial depots or not, interactions between nodes 

representing loads and nodes representing airports are put in this 

formulation in order to build up a complete network without affecting 

the value of the objective function. 
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. VI. CONCLUS IONS AND EXTENS IONS OF RESEAHCH 

6.1 REAL LIFE CASES AND CONCLUSIONS 

The relative effectiveness of the algorithms and formula

tions developed within this thesis are tested on the sample prob

lems given in Appendix A~ These problems are designed to illustrate 

the principles of the suggested methods. But in this section we 

shall focus on some realistic cases and discuss their cha~acteristics. . . 
Most common feature of a regional war is that it will take 

place through some boundary of the country at hand and the material 

should be transferred to the· locations of action from other parts 

of the country. In such situations, for a particul~r item some of 

the pOints serve as demand points "and others as source points; and 

most of the time the direction of the material flow is between 

source and demand points. The source points are the bases of the 

airforce throughout the country and demand points are either the 

airports in the vicinity of action area or open areas~ on which' 

material can be landed by some means. 

We shall analyze the behaviour of the ~uggested techniques 

when such a flow pattern exists and try to see the "responses when 

this stri'cf flow pattern is altered in several ways on some example 



problems throughout this section. While applying these ideas we 

shall try to solve another strategical problem, which is where to 

allocate available planes initially: 
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For each of the example 'Problems we shall discuss, the 

difficulties appearing while applying the steps of the BRP Algorithm 

given in Chapter 3, namely the Path Generation, Elimination, and 

_ Search Steps. Before getting in depth analysis of the results 

obtained it would be better to make some definitions. 

Note that the ~?ximum number of paths that can be generated 

with load cardinality r is limited. Let us have M loads. Then 

these M loads can be permuted at most MPr ways. That is, there 

can be at most MPr paths generated with load cardinality r,where, 

P M! 
r~ r = --- (6.1 ) 

(M - r)! 

Also, one could generate at most r1'R path; with load cardinality 

"less than or equal to R, where, 

(6.2) 

Similar results are obtained when we consider the maximum number 

of paths after the elimination process. Since the problem is then: 

In how many ways one can select r loads among r~ loads? Thi s time 

the number of possible combinations MCr is the inaximum nu"inber of 

possible paths with load cardinality r, where, 

C M! 
~1 r = ---- (6.3) 

r!(M - r)! 



Then, the MeR is the maximum number of paths after el imination 

process with load cardinality less than or equal to R. The combi

nation and permutation value of some critical M and r values are 

shown in Appendix B. 

If there exists more than one airport (say RP) which have 

. planes initially, then the above figures should be mutliplied by 

the number of available airports, in,order to get the number of 

possible paths. 

Now, it would be better to define the following in order 

to avoid repetitions later'in the text. 

Pl is the number of paths generated. 

P2 is the number of paths after elimination. 

LC : is the maximum load cardinality -obtained among max 
generated paths 
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Pmax is the maximum number of paths that can be obtained 

after the elimination process, and can be expressed 

as follows: 

(6.4) 

P3 is the number of paths after the elimination process 

whose time requirement is less than or equal to 

optimal value of the given BRP. 

The test network designed to apply above conditions has 6 

airports with 3 of them being demand points and rest of them being 

supply polnts. It is assumed that there are only 4 planes available. 
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The flight times between these airports given in Table 6.1 and 

time of loading and unloading are taken as 10 and 5 minutes res-

pectively. 

TABLE 6.1 - The Flight Time Data of the 6 Airport Problem 

1 2 3 4 5 6 7 

1 20 .45 55 75 90 90 

2 20 25 45 75 80 50 

3 45 25 65 95 95 55 

4 55 45 65 40 35 30 

5 75 75 95 40 40 60 

6 90 80 95 35 40 40 

7 70 50 55 30 60 40 

-
EXAMPLE 6.1: This first problem is designed to illustrate the strict 

flow pattern. That is, all the 12 loads have to be carried from 

source points to demand points. In Fig. 6. 1 the~e loads are drawn 

_ and it is assumed that the action takes place in the vicinity of 

airports 1,2, and 3. The airports 5 and 6 are assumed to be the 

bases with some planes initially and airport 4 is a base with no 

planes initially. Note that in order to get quick results in the 

test runs, the total number of available planes is limited rather 

than limiting the number of planes at each airport. 

Assuming the maximum job time is 490 minutes, the paths 

generated have following characteristics. 



FIGURE 6.1 -The flow pattern given in Example 6.1 

Pl = 2168 P2 = 572 LCmax = 3 

note, RP = 2, H = 12, and P '= 4 

The maximum number of possible paths with load cardinality less 

than or equal to 3 is 596 (Pmax = 596). Hence the search proce

dure should scan nearly all the possible combinations. The alter

native optimal solutions of this problem are obtained as follows. 

SOLUTION 1: 
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Plane 

1 

2 

3 

4 

Initial airport 

6 

Loads carried 

7 - 12 - 3 

11 - 4 - 8 

5 - 1 - 2 

10 - ,6 - 9 

Time (in minutes) 

435 

6 430 

6 435 

6 420 

TOTAL: 1720 



SOLUTION 2: 

Plane 

1 

2 

3 

4 

SOLUTION 3: 

Plane 

1 

2 

3 

4 

Initial airport 

6 

6 

6 

6 

Initial airport 

6 

6 

6 

6 

Loads carried 

7 - 6 - 12 

10 - 4 - 8 

. 5-1-2 

11 - 3 - 9 

Loads carried 

7 - 6 - 12 

10 - 4 - 8 

5 - 1 - 2 

3-9-11 
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Time (in minutes) 

435 

430 

435 

430 

TOTAL: 1730 

Time (in minutes) 

435 

430 

435 

435 

TOTAL: 1730 

Note z* = 435 minutes and P3 = 352 which means that even if we do 

know the optimal value of the problem and seek the optimal solution, 

we still have to scan 59.06% of all possible combinations. This 

analysis illustrates us how the computational effort will grow up 

as the problem size gets larger. This phenomenon is the most common 

feature of NP hard class of problems. In BRP problems a factorial 

function namely Pmax governs the computational effort that has to 

be spent. The relationship between problem size 'and Pmax will be 

analyzed later in this section. 



EXAMPLE 6.2: This example is designed 'to alter the flow pattern 

given in Example 6.1 by introducing two loads, one between source 

points and the other between demand points. The resulting loads 

shown in F~g. 6.2. 

FIGURE 6.2 - The flow pattern given in Example 6.2 
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Using the same initial airports and maximum time constraints 

as in Example 6.1, the generated paths resulted in 

P, = 6388 P2 = 1361 LCmax = 5 and the alterna-

tive optimal solutions are obtained as follows; , 

SOLUTION 1: 

Plane Initial 

1 6 

2 6 

3 6 

4 5 

airport Load carried 

12 - 2 - 10 

5 - 1 - 8 

7 - 9 - 13 - 3 

6-4-14-11 

Time (in minutes) 

460 

455 " 

445 

445 

TOTAL: 1805 
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SOLUTION 2: 

Plane Initial airport Loads carried Time (in minutes) 

1 5 2 - 4 - 8 - 13 460 

2 5 1 - 14- 5 - 9 460 

3 6 7 - 3 - 10 460 

4 5 6 ~12 - 11 455 

TOTAL: 1835 

SOLUTION 3: 

. Plane Initial airport Loads carried Time (in minutes) 

1 5 '2-4-8-13 460 

2 5 1 -14 - 5 - 9 460 

3 6 7 -3 - 10 460 

4 5 2-6-11 450 

TOTAL: 1830 

SOLUTION 4: 

Plane Initial airport Loads carried Time (in minutes) 

1 6 5 - 6 - 9 - 13 455 

2 5 14 -12 - 4 - 8 450 

3 6 11 - 1 - 3 460 

4 6 7 - 2 - 10 460 

TOTAL: 1825 

SOLUTION 5: 

Plane Initial airport Loads carried Time (in minutes) 

1 6 12 - 1 - 8 445 

2 5 2 - 4. -14 - 5 450 

3 6 7 - 3- 11 460 

4 . 6 10 -13 - ~ - 9 460 

TOTAL: 1815 
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SOLUTION 6: 

Plane Initial airport Loads carried Time (in minutes) 

1 5 14 - 7 - 4 - 9 - 13 460 

2 6 12 - 2 -10 460 

3 6 5 - 3 - 8 455 

4 5 1 - 6 - 11 445 

TOTAL: 1820 

Note tha t z* = 460 mi nutes and P 3 = 1073, a 1 tho'ugh the 

number of loads increased by less than 15%. The number of paths 

that has to be considered during search phase is tripled. The 

major reason for this explosion is the arbitrary configuration 

of loads 13 and 14. 

EXAMPLE 6.3: This example is designed to see the effect of the 

existence of counter loads, that i~, the loads from demand pOints 

to source points. To achieve this, load 15 is added between air

ports 1 and 5 and all other aspects'of the problem are kept the 

same. The paths generated in this fashion yield the following 

results: 

Pl = 12719 P2 = 2437 LCmax = 5 

and the optimal solution is obtained as follows: 

Plane Initial airport Loads carried . Time (in minutes) 

1 6 12 - 2 - 10 460 

2 6 5 - 1 - 8 455 

3 6 7 - 9 - 13 -15 - 3 460 

4 5 6 - 4 - 14 - 11 445 

TOTAL: 1820 
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Note z* = 460 minutes and P3 = 1909. The optimization on 

this data is done on purpose to get the path requirements and one 

counter load nearly doubled the number of paths that has to be con

sidered. Indeed there is no need to carryon optimization on this 
\ 

data if we know the optimal solution of the previous problem. The 
-

optimal solution of the Example 6.2 resulted in several empty flights 

between airports 1 and 5so as to carry loads between 5 and 1, as 

expected .. Note that, in the first alternative solution of the pre

vious problem, plane 3 has an empty flight between 1 and 5, and has 

15 minutes slack time which is equal to loading plus the unloading 

time of a single load. So, this plane can cover a load between these 

airports without violating the optimal value of the problem. 

This discussion directs us some interesti~g results. If 

there exists some counter loads, then these counter loads will imme-

diately blow up the number of paths that has to be considered. In 

case of their existence, the best thing to do is drop them first and 

solve the reduced problem and then try to build up a solution to the 

original problem utilizing the minimum total cost alternative solution 

of the reduced problem. Now, assume that the worst case had happened 

and after solving the reduced problem we got a unique optimal solution 

in which there exists no plane with some slack time. But, if there 

. are empty: flights covering counter loads, then we can still build up 

a good solution to the original problem, since the objective function 

value of the problem will be increased at most by Z, where, 

z = [max (number of empty flights on)] x [TU + TL] (6.5) 
i=l,.~,p the route of plane i 
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Under such circumstances we can make the following proposal 

and claim that the solution at hand is still optimal to the original 

problem. 

PROPOSAL 6.1 

If the empty fl ights of the r~duced problem covers all the 

dropped counter loads of the original problem, then one can build 

up a solution for the original problem utilizing the minimum total 

cost alternative solution of the reduced problem, and this solution 

will be the optimal solution for the original problem. 

In order to prove this claim, assume that we have solved the 

original problem and this time we dropped the same loads to get a 

solution for the reduced problem. But this solution cannot be better 

than the solution obtained purely for th~ reduced problem. Since if 

it is so, then we should have found it while optimizing reduced prob

lem. Hence the only difference in objective function values of the 

two problems can be caused from loading and unloading times which is 

independent of (the routes of ,the planes, and in any case the mission 

times of planes are governed by their routes . 

. EXAMPLE 6.4: In order to analyze the effect of loads between the 

same kinds of pointsbetter, this time we have assigned a load between 

airports 2 and 1 and kept all other properties of the problem the same 

as in Example 6.3. 

This load exploded the number of paths in generation phase 

(P
l 

~ 27708 LCmax = 6) and we did not execute the further steps of 

.the BRP a 1 gori thm because of thi s huge number. One of the major 
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reasons for this explosion is that airports 2 and 1 are very close 

to each other with respect to the other flights. ' 

The existence of loads which require respectively shorter 

flight time brings troubles when number of paths generated consi

dered. Let ,loads a, b, and c require more or less the same flight 

time and load d require relatively less flight time. Also let d max 
~ be the maximum mission time given to generate paths. Now consider' 

'thefollowing case. Let time to carry loads a and b < d . max Under 

such a situation it happens most of the time that time to carry 

loads a, b, and c > dmax ' but on the other hand usually time to carry 

loads a, b, and d ~ dmax . So, just a single load generates lots of 

combinations to be considered~ 

Now consider just the opposite case. That is,assume tha~ 

load d requires relatively longer ,flight' time. This case helps in 

all phases of the solution procedure. Since load d appears only on 

a small number of paths, the number of ,paths that have to be generated 

decreases. Also the search procedure automatically selects Method A 

for blocking, due to the unbalanced distribution of load frequencies. 

Thus, the number of paths in the first block decreases while computa

tional effort during search procedure decreases. 

EXAMPLE 6.5: This time in order to illustrate the explosion caused 

by counter loads better we have introduced another load between air

ports 1 and 5 as load 16 in addition to loads in Example 6.3. This 

resulted in Pl = 21622 and LCmax = 5. By the use of the Proposal 6.1, 

we can bVild up the solution for this problem. Thus we did not carry 

on optimization. 
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EXAMPLE 6.6: Sinfilarly, this example is designed for the same purpose 

as Example 6.5 and based on Example 6.1. Follow'ing counter loads are 

added to that problem. 

Load 13 from airport 3 to airport 5. 

Load 14 from airport 1 to airport 5. 

Load 15 from airport 1 to airport 5. 

Load 16 fro~ airport 3 to airport 6. 

This data resulted in Pl = 12769 and LCmax = 5. But this time we 

cannot apply Proposal 6.1 since none of the empty flights of Example 

6.1 covers load 16. So, we have to solve the problem without dropping 

load 16'once again. 

EXAMPLE 6.7: This example is designed to analyze the effect of a 

central initial airport. This time all planes are assumed to be 

located at airport 4 initially and ~he other airports are assumed to 

be bases with no planes initially. ,This initial configuration of 

planes applied to 12 loads in Example 6.1. But maximum mission time 

to generate paths is increased to 4,95 minutes in this case. The 

results obtained are as follows; 

Pl = 1034 LCmax = 3 

The alternative optimal solutions are as follows: 
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SOLUTION 1: 

Plane Ini tia 1 airport Loads ca rri ed Time (in minutes) 

1 4 7 - 12 - 3 470 

2 4 5 - 1 - 2 470 

3 4 4 - 8 - 10 460 

4 4 9 - 6 - 11 455 

. TOTAL: 1855 

SOLUTION 2: 

Plane Initial airport Loads carried Time (in minutes) 

1 4 7 - 3 - 6 460 

2 4 5 - 1 - 2 470 

3 4 9 -12 -11 460 

4 4 4 - 8 -10 460 

TOTAL: 1850 

SOLUTION 3: 

Plane Initial airports Loads carried Time (in minutes) 

1 4 4 - 8 - 10 460 

2 4 5 - 1 - 2 470 

3 4 9 - 3 - 11 465 

4 4 7 - 6 - 12 470 

TOTAL: 1865 . 

·z* = 470 minutes and P3 = 198. 

Although there are loads starting from central airport 4, 

most of the loads start from airports 5 and 6, so planes at airport 

4 should, make an empty flight at first leg of their mission which 

naturally increases the .optimal value of the problem. 
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The other example problems behaved similarly under this diffe

rent initial configuration, and the increase in their objective func

tion values are parallel to the increase in this case. In real life, 

there are other important factors which effect the choice of initial 
, 

configuration in military applications. Although these factors are 

areas of interest in Operations Research, they are not related to our 

topic, so we have omitted these factors. 

On the other hand, I want to emphasize on another facto~ 

which governs the efficiency of the solution procedure developed in 

this thes1is, when the times required to carry loads are close each 

other. 

Let there be M loads and P planes. Since times to carry each 

load do not vary much, most of the time the optimal solution of su~h 

problems results in minimum configuration. That is, M loads are 

assigned to each plane (where M = Q + 1 and Q is defined by Definition 

3.1). Since flight times are close each other, the times required to 

carry each set of M loads are close to each other. Hence, nearly 

all paths with load cardinality less than or equal to M have to be 

enumerated to catch an optimal solution. Thus, the minimum number of 

paths that have to be considered in the path list is P where, 

M 
P = [( L Mer) x RP] x a , 

r=l 
o < a < 1 (6.6) 

P is the minimum number since there may be path:; with load 

cardinality> M and time .requirement ~ dmax ' a is the ratio of paths 
. I 

with load cardinality ~ M and whose time requirement> dmax ' As the 

times required to lcarry the loads approach each other, a tends to 1. 
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But the converse is not true, i.e. increaslng range of mission times 

does not imply that a + O. We are only trying to estimate the number 

of paths that have to be considered during optimization under different 

problem characteristics and we can simply assume a = 0.5. 

In all cases the problem gets much harder as M enlarges as 

compared with enlargements in M. He can follow this in Table 6.2 in 

detai1. 

TABLE 6.2 - Increase In Problem Complexity 

M P RP M P 

10 4 1 3 175a 

20 4 1 5 21699a 

20 6 1 4 6195a 

15 5 1 3 575a 

30 10 1 3 4525a 

30 5 l 6 768211a 

60 20 1 3 36050a 

60 10 1 6 56049057a 

6.2 GENERAL RESULTS 

A computerized optimization for military cargo ai,rplane 

routing is studied in this thesis. First the problem is formulated 

. as a (O-l) 1 inear program. Then two suggestions are given for two 

types of' problems. Namely, the Bottleneck Routing Problem and the 
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Minimum Total Time Routing Problem. For the first problem a complete 

exact solution procedure is defined. But for the second one only a 

transformation is given. Both of these approaches aided to find out 

the routes of planes without taking into ac~ount the capabilities of 

service facilities at airports. In order to handle such constraints 

a heuristic procedure is suggested. 

The algorithm developed for BRP is tested on various problems. 

These problems are relatively small problems as compared with real 

life problems. But the technique devel"oped necessitates extensive 

computer usage. Although to obtain such facilities wide enough is 

a great problem in academic life, this is not the case in military 

applications. So in real life applications problems of reasonable 

size (See Table 1.1) can be solved. 

There are several special cases of military airplane routing 

which are not explicitly discussed throughout the text. They are 

summarized as follows: 

Most of the time the routing process is done upon essentially 

si.mi1ar networks, and the boring part of the procedure defined is the 

generation, elimination and sorting of paths on th~se networks. In 

order to avoid this cumbursome business, the best thing to do is to 

estimate a representative network, which includes all airports and 

all possible loads between these airports. If generation, elimination 

and sorting processes are done on this network beforehand,and resulting 

paths are stored somehow, then these paths can be utilized whenever 

necessary by eliminating the ones which are not desirable. This 

approach can be used while making sensitivity analysis over the solutions! 
! 
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That is, one can increase or decrease number of planes available 

or loads to be carried and can solve the problem just reinitiating 

the Bottleneck Routing Algorithm. 

There can be cases where loads have to be transferred to 

points where no airports exist. In such cases, either the plane 

lands on an open area or simply drops the load. In any case the 

only difference is in the service times. One can assume any loading 

or un'loading area as an airport, but utilize variable service times. 

The manipulation necessary to handle variable service times are 

explained throughout the text. 

In real life applications, one important problem is, unit of 

shipment is not all the time a plane load. If that is the case, one 

must either develop a completely different approach or solve the prob

lem by approximating all loads to unit plane loads, then analyze the 

solutions to get a solution to his original problem. 

Commanders can state time windows. As ftn example, some loads 

should be carried between prespecified time intervals. The procedure 

in principle is not de~igned to handle such cases. But some.modifi

cations can be made ~t the search step of BRA in order to solve such 

problems. 

The point that we have reached in this thesis is encouraging 

for further research. One can approach the problem in a totally, 

different way. That is, one could develop a .formulation which does 

not necessitate the generation of simple paths at all. Some tour 

building techniques can be utilized instead of the set-partitioning 

approach. Also improvements on the algorithms developed within this 
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study are possible. The stopping rules can be enlarged, so that one 

can be more sure about the feasible region. 

The most valuable extension of this research would be 

designing a powerful technique which can handle splitable loads. 

Also one could attack solving military BRP in one step rather than 

first solving the routing problem and then satisfying the airport 

capacity constraints. 
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APPENDIX A 

The formulations discussed in various chapters of this thesis 

arE;! applied to some test problems, and these problems are solved with 

the techniques suggested. 

We can summarize these formulations as follows: 

i. FORMULATION I:. 

Set-theoretic formulation of BRP, solved,by the algorithm 

suggested in Chapter 3. 

ii. FORMULATION II: 

Set-theoretic formul.ation of BRP with minimum total cost

requirement solved by the algorithm suggested in Chapter 3. 

iii. FORMULATION III: 

MDMTSP formulation of MCRP by using exactly the given number 

of planes, solved by Little's Branch and Bound algorithm. 

iv. FORMULATION IV: 

MDMJSP formulation of MCRP by using less than or equal to the 

given number of planes, solved by Little's Branch and Bound algorithm. 
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v. FORMULATION V: 

MDMTSPF formulation of MCRP with fixed costs of planes, solved 

by Little's Branch and Bound algorithm. 

Following format is used to express results: 

Plane number: Initial airport: Loads carried: Time 

NOTES: i) "+" sign besides total times indicates that, that results 

correspond to the one which is obtained at a reasonable 

time on UNIVAC 1106. Further improvement possible if a 

better TSP algorithm occupied. 

ii) The unit of time is taken as minutes. 



EXAMPLE A 

1 30 65 

2 30 30 
D = 

3 65 30 

4 40 35 20 

LOADS: 

Number Starting Ending 
airport airport 

1 1 2 

2 4 1 

3 2 4 

4 4 3 

5 4 2 

6 3 1 

7 3 4 

FORMULATION I 

Plan~ 1 4: 4-6-1 160 

Plane 2 3: 7-5-3-2 190 

TOTAL 350 

FORMULATION I I 

Pl ane 1 : 4: 4-6-1 160 

Plane 2 : J: 7-5-3-2. 190 

TOTAL 350 

161 

40 

35 Loading time . 10 . 
20 Unloading time: 5 

INITIAL LOCATIONS OF PLANES: 

Airport Number of 
planes 

1 0 

2 o . 

3 1 

4 1 

Minimum Total Flight: 245 

Total Load Unload 105 

Minimum Total Time 350 



FORMULATION I II 

Plane 1 .. 3: 7-4-6-1 195 . 
Plane 2 3: 5-3-2 155 

TOTAL 350 

FORMULATION IV 

Plane 1 3: 6-1 125 

Plane 2 4: 4-7-5-3-2 225 

TOTAL 350 

FORMULATION V 

a) 

b) 

Given: Airport 

-3 

4 

Fixed Cost of a plane 

100 

100 

Plane 1: 4: 4-7-5-6_-1-3-2 : 380 

Given: 

TOTAL 380 

Thus, Total cost: 480 

Airport 

3 

4 

Fixed Cost of a plane 

200 

100 

Plane 1: 4: 2-1-3-4-7-5-6 : 380 

TOTAL 380 

Thus, Total cost: 480 

162 



c) Given: Airport 

3 

4 

Fixed Cost of a plane 

100 

200 

Plane 1: 3: 6-1-3-4-7-5-2 . ·385 

TOTAL 385 

Thus, Total cost: 485 

DISCUSSION 
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Although formulations III and IV have the same objective func

tion values, the resulting optimal solutions assigned planes to dif

ferent set of loads, that is due to the branching nature of Little's 

Branch and Bound algorithm on similar cost matrices. Also, cases a 

and b of formulation V are different because of the same reason. In

deed same phenomenon is observed in most of the examples but will not 

be discussed from now on. 

Also n6te that, there is only one alternative optimal solution 

tp BRP. So, formulation I and II yielded the same results. 
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EXAMPLE B 

Same D matrix as in Example A. Load and unload times are 

also the same. 

LOADS: INITIAL LOCATIONS OF PLANES: 

Number Starting Ending Airport Number of 
airport airport planes 

1 1 2 1 0 

2. 4 1 2 0 

3 2 4 Same as 3 0 

4 4 3 Example 4 3 A 
5 4 2 

6 3 1 Minimum Total Flight: 325 

7 3 4 Total Load Unload 150 

8 3 2 Minimum Total Time 475 

9 2 1 

10 4 3 

FORMULATION I 

Plane 1: 4: 7-10-6 170 

Plane 2: 4: 5- 3-2 155 

Plane 3: 4: 4- 8-9-1 170 

-TOTAL 495 



FORMULATION I I 

Plane 1: 4: 7-10-6 .. 170 

Plane 2: 4: 5- 3-2 . 155 .. 
Plane 3: 4: 4- 8-9-1 170 

TOTAL 495 

FORMULATION III 

Pl ane 1: 4: 2 55 

Plane 2: 4: 4-8-9-1-6 280 

Plane 3: 4: 5-3-7-10 190 _ 

TOTAL 525 + 

FORMULATION IV 

Plane 1: 4: 4-7-10-8-9-1 240 

Plane 2: 4: 2 55 

Plane 3: 4: 5-3-6 200 

TOTAL 495 

FORMULATION V 

Given fixed .cost of plane at port 4 is 100. 

Plane 1: 4: 2-4-7-10-8-9-1-3-5-6: 545 

Thus, Total Cost: 645+ 

DISCUSSION 
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Although the opti.mal solution to formulation IV is found with 3 

planes, formulation III failed in achieving this result in a reasonable 



time. If run had not been terminated then, formulation III would 

eventually reach that solution also. In several examples such a 

case occurred, which indicates that Little1s Branch and Bound 

algorithm functioning better on formulation IV. 

EXAMPLE C 

Same D matrix as in Example A and B. Load and unload times 

are also the same. 

LOADS: INITIAL LOCATIONS OF PLANES: 

Number Starting Ending Airport Number of 
air~ort air~ort Qlanes 

1 1 2 1 0 

2 4 1 2 0 

3 2 4 3 2 

4 4 3 4 4 

5 4 2 Same as 
Example 

6 3 1 B 

7 3 4 Minimum Total Flight: 430 

8 3 2 Total Load Unload 180 

9 2 1 Minimum Total Time 610 

10~ 4 3 

11 1 3 

12, 1 4 

166 
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FORMULATION I 

Plane 1: 4: 11 120 

Plane 2: 4: 2-12 110 

Plane 3: 4: 10- 6 115 

Plane 4: 3: 9- 1 120 

Plane 5: 4: 5- 3 100 

Plane 6: 3: 7- 4-8 115 --
TOTAL· 680 

FORMULATION I I 

Plane 1: 4: 11 120 

Plane 2: 4: -2-12 110 

Plane 3: 4: 10- 6 115 

Plane 4: 3: 9- 1 120 

Plane 5: 4: 5- 3 100 

Plane 6: 3: 7- 4-8 115 

TOTAL 680 

FORMULATION I I I 

Plane 1: 3: 8-3-10 130 

Plane 2: 4: 6-11 180 

Plane 3: 4: 5 50 

Plane 4: 4: 4-7 70 

Plane 5: 4: 2-1 100 

Plane 6: 3: 9.,.12 130 
/ 

I 

660+ 
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FORMULATION IV 

Plane 1: 4: 4-6-11-8-9-12-10-7-5-3-2-1 : 610 

Thus, Total Cost: 610 

FORMULATION V 

a) Given cost of a plane at airport 3 is 100. 

Given cost of a plane at airport 4 is 100. 

Plane 1: 3: 6-11-8-9-12-10-7-4-5-3-2-1: 630 

Thus, Total Cost: 730 + 

b) Given cost of a plane at airport 3 is 100. 

Given cost of a plane at airport"4 is 200. 

Plane 1: 3: 6-11-8-9-12-10-7-4-5-3-2-1: 630 

Thus, Total Cost: 730 + 

c) Given cost of a plane at airport 3 is 200. 

Given cost of a plane at airport 4 is 100. 

Plane 1: 4: 4-6-11-8-9-12-10-7-5-3-2-1: 610 

Thus, Total Cost: 710 

d) Given fixed cost of a plane at airport 3 is 5. 

Given fixed cost of a plane at airport 4 is 10. 

" . . ':'. . ~. .' : ~ . 

" .1. .. ' ~ ~! ' J • ;.l '; '.' . j' '", ••• ", 

, ~. 

; 



e) Given fixed cost of a plane at airport 3 is 2. 

Given fixed cost of a p~ane at airport 4 is 2. 

Plane 1: 3: 6-11-8-9-12-10-7-4-5-3-2-1: 630 

Thus, Total Cost : 635 + 

DISCUSSION 
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In this case, formulation IV resulted with an optimal solution 

of value 610 and using only one plane. But again formulation III 

failed in achieving the optimal solution in a reasonable time. The 

optimal solution to formulation III has to have a value greater than 

or equal to 610 as discussed in Chapter 5. In this case we can built 

up the optimal solution to formulation III by simply splitting the 

route obtained as a result of formulation IV as 'follows: 

Plane 1 : 4: 4 35 

Plane 2: 3: 6-11 160 

Plane 3: 3: 8-9-12 145 

Plane 4: 4: 10-7 70 

Plane 5: 4: 5-3 100 

Plane 6: 4: 2-1 100 

TOTAL 610 

By this way the optimal solution to formulation III has been 

obtained with optimal value 610. In the following example sjmilar 

decomposition are applicable. 
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EXAMPLE D 

Same D matrix as Examples A, B, and C. Load and unload 

times are the same. 

LOADS: 

Number Starting 
. a irQort 

1 1 

2 4 

3 2 

4 4 

5 4 

6 3 

7 3 

8 3 

9 2 

10 4 

11 1 

12 1 

13 3 

14 3 

15 3 

Ending 
ciirEort 

2 

1 

4 

3 

2 

1 Same as 
4 Example 

C 
2 

1 

3 

3 

4 

2 

2 

4 

INITIAL LOCATIONS OF PLANES: 

Airport Number of 
E1anes 

1 0 

2 0 

3 3 

4 4 

Minimum Total Flight: 510 

Total Load Unload 225 

Minimum Total Time : 735 
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FORMULATION I 

Plane' 1: ,4: 2-11 135 

Plane 2: 3: 10-6 135 

. Plane 3: 4: 5-12 135 

Plane 4: 3: 13-9-1 135 

Plane 5: 3: 8-3-4 . : 1 ~if) 

Plane 6: 4: 7-14 120 

Plane 7: 4: 15 55 

TOTAL 845 

FORMULATION I I 

Plane 1: 4: 2-11 135 

Plane 2: 3: 6-12 135 

Plane 3: 3:, 13-9-1 135 

Plane 4: 3: 15-5-3 135 

Pl'ane 5: 4: 7-10-8 135 

Pl ane 6: 4: 4-14 80 

TOTAL' 755 

FORMUTAlON III 

Plane 1: 3: 7 35 

P1,9.ne 2: 3: 6-1-11 235 

Plane 3: 4: 13 85 

Plane 4: 4: 2-5-3-10: 220 

Plane 5: 3: 8-9-12 145 

Plane 6: 4: 14 65 

P,lane 7: 4: 4-15 70 

TOTAL 845+ 



FORMULATION IV 

Plane 1~ 3: 6-11-15-10-14-9-12-5: 425 

Plane 2: 4: 2-1 100 

Plane 3: 3: 7-4-13-3 165 

Plane 4: 3: 8 45 

TOTAL 735 

FORMULATION V 

a) Fixed cost of a plane at airport 3 is 100. 

Fixed cost of a plane at airport 4 is 100. 

Plane 1: 3: 6-11-15-10-14-9-12-5-13-3-2-1-7-4-8: 795 

Thus~ Total Cost 895+ 

b) .Fixed cost of a plane at airport 3is 200: 

Fixed cost of a plane at airport 4 is 100. 

Plane 1: 4: 6-11-15-10-14-9-12-5-13-3-2-1-7-4-8: 815 

Thus, Total Cost : 915+ 

DISCUSSION 

Note that the optimal solution to formulation II utilizes 
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only 6 planes, although we have 7 available. This case is mentioned 

in Chapter 3. That is, we can reach to the optimal solution to BRP 

by using less than the given number of planes while applying the 

algorithm developed in this thesis. 
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EXAMPLE D WITH THE PLANE AVAILABILITY AS FOLLOWS: 

Airport Number of 
elanes 

1 0 

2 0 

3 2 

4 4 

FORMULATION I 

Plane 1: 4: 2-11 135 

Plane 2: 3: 6-12 135 

Plane 3: 3: 13-9-1 135 

Plane 4: 4: 5-3-10 135 

Plane 5: 4:4-15-8 135 

. Plane 6: 4: 7-14 120 

TOTAL 795 

FORMULATION I II 

Plane 1: 3: 14-9-12 145 

Plane 2: 4: 6-11 ,180 

Plane 3: 4: 4-13-3-7-10 220 

Plane 4: 4: 2-1-8 175 

Plane 5: 4: 5 50 

Plane 6: 3: 15 35 

TOTAL 805+ 



FORMULATION IV 

Plane 1: 3: 6-11-15-10-14-9-12-5: 425 

Plane 2: 4: 2-1 

Plane 3: 3: 7-4-13-3~8 

FORMULATION V 

: 100 

: 230 

TOTAL 755+ 

a) Fixed cost of a plane at airport 3 is 100. 

Fixed cost of a plane at airport 4 is 100. 

Plane 1: 3: 6-11-15-12-14-9-12-5-13-3-2-1-7-4-8: 795 

Thus. Total Cost 895+ 

b) Fixed cost of a plane at air'port 3 is 200 . 

. Fixed cost of a plane at airport 4 is 100. 

Plane 1: 4: 6-11-15-10-14-9-12-5-13-3-2-1-7-4-8: 815 

Thus, Total Cost : 915 

EXAMPLE 0 WITH THE PLANE AVAILABILITY AS FOLLOWS: 

Airport Number of 
e1anes 

l 0 

2 a 

3 1 

4 5 
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FORMULATION I 

Plane 1: 4: 2-11 135 

Plane 2: 3: 6-12 135 

Plane 3: 4: 5-9-1 135 

Plane 4: 4: 10-8-3 130 

Plane 5: 4: 13-14 140 

Plane 6: 4: 4-7-15 125 

TOTAL 800 

EXAMPLE D WITH THE PLANE AVAILABILITY AS FOLLOWS: 

FORMULATION I 

Plane 1: 4: 2-11 

Plane 2: 3: 6-12 

Plane 3: 3: 13-9-1 

Plane 4: 4: 5-3-10 

. Plane 5: 4: 4-15-8 

Plane 6: 3: 7-14 

TOTAL 

Airport 

1 

2 

3 

4 

135 

135 

135 

135 

135 

100 

775 

Number of 
planes 

o 

o 

3 

3 

175 



EXAMPLE E 

1 

2 30 

D = 3 65 

4 40 

5 30 

30 

30 

35 

60 

65 

30 

20 

20 

40 

35 

20 

35 

90 

60 

20 

35 

Loading time : 10 

Unloading time: 5 

176 

Actually airport 5 is added to Example A. 

LOADS: INITIAL LOCATIONS OF PLANES: 

Number Starting Ending Airport Number of 
a ireort airport e1anes 

1 1 2 1 0 

2 4 1 2 ·0 

3 2 4 3 0 

4 4 3 4 5 

5 4 2 5 2 

6 3 1 Same as 
Example 

7 3 4 
·C 

Minimum Total Flight: 560 

8 3 2 Total Load Unload : 255 

9 2 1 Minimum Total Time : 815 

10 4 3 

11 1 3 

12 1 4 

13 3 2 

14 3 2 

15 3 4 

16 5 1-

17 5 3 



177 

FORMULATION I 

Plane 1: 4: 2-11 135 

Plane 2: 4: 10-6 115 

Plane 3: 5: 16-1--9 135 

Plane 4: 4: 5-12 135 

Plane 5: 4: 4-13-3 130 

-Plane 6: 5: 17-7-8 135 

Plane 7: 4: 15-14 120 

TOTAL 905 

FORMULATION II 

Plane 1: 4: 2-11 135 

Plane 2: 4: 10-6 115 

Plane 3: 5: 16-1-9 135 

Plane 4: 4: 5-12 135 

Plane 5: 4: 4-13-4 130 

Plane 6: 5: 17-7-8 135 

Plane 7: 4: 15-14 120 

TOTAL 905 



FORMULATION II I 

Plane 1: 4: 4-13-3-10 

Plane 2: 4: 6-1-11 

Plane 3: 4: 7 

Plane 4: 4: 2-5-14-9-12 

Plane 5: 4: 8-1S 

Plane 6: 5: 16 

Plane 7: 5: 17 

TOTAL 

FORMULATION IV 

P1 ane 1: 4: 2 

Plane 2: 5: 16-12-5 

165 

255 

55 

320 

130 

45 

35 

1005+ 

55 

150 

Plane 3: 5: 17-15-10-13-3-7-6-11-14-9-1: 570 

Plane 4: 4: 4-8 80 

TOTAL 855+ 

FORMULATION .v 

a} Given: Airport 

4 

5 

Fixed cost of a plane 

100 

100 

Plane 1: 5: 17-16-12-S-13-3-6-11-15-12-14-9-1-7-2~4-8: 955 

Thus, Total Cost :1055+ 
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-
b) Given: Ai q~ort Fixed cost of a ~lane 

4 200 

5 100 

Plane 1: 5: 17-16-12-5-13-3-6-11-15-10-14-9-1-7-2-4-8: 955 

Thus, Total Cost 1055+ 

c) Given: Airport Fixed cost of a plane 

-4 100 

5 _200 

Plane 1: 4: 6-1-7-2-4-15-10-14-9-11-17-16-12-5-13-3-8: 995 

Thus, Total Cost 1095+ 

d) Given: Airport Fixed'costof a ~lane 

-4 10 

5 5 

Plane 1: 5: 16-12-5-6-11-14-9-1 475 

Plane 2: 5: 17-15-10-13-3-7-4-8-2 425 

TOTAL 900 

Thus, Total Cost: 910+ 
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EXAMPLE F. 

1 30 65 40 90 85 

2 30 30 . 35 60 95 Loading time . 10 . 
3 65 30 20 20 100 Unloading time: 5 

D = 
4 40 35 20 35 75 

5 90 60 20 35 - 110 

6 85 95 100 65 110 

LOADS: INITIAL LOCATIONS OF PLANES: 

Number Starting Ending Airport Number of 
aiq~ort a ireort . elanes 

1 1 2 1 0 

2 4 1 2 0 

3 2 4 3 3 

4 4 3 4. 2 

5 4 2 .5 2 

6 3 1 6 0 

7 . 3 4 

8 3 3 Minimum Total Flight: 705 

9 2 1 Total Load Unload : 270 

10 4 3 Minimum Total Time : 975 

11 1 3 

12 1 4 

13 3 2 
,/ 

14 3 2 

15 3 4 

16 5 1 

17 5 3 

18 6 1 
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FORMULATION I 

Plane 1: 4: 18 175 

Plane 2: 3: 15-16 175 

Plane 3: 5: 14-11 175 

Plane 4: 3: 6-2 175 

Plane 5': 4: 5-12-4 170 

Plane 6: 5: 17-8-9-1 170 

Plane 7: 3: 7-10-13-3 165 

TOTAL 1205 

FORMULATION I I 

Plane 1: 4: 18 : 175 

Plane 2: 3: 15-16 175 

Plane 3: 5: 14-11 175 

Plane 4: 3: 6-2 175 

Plane 5: 4: 5-12-4 170 

Plane 6: 5: 17-8-9-1 170 

Plane 7: 3: 7-10-13-3 165 

TOTAL 1205 



FORMULATION III 

Plane 1: 3: 6-2-4-14 

Plane 2: 5: 16-11 

Plane 3: 3: 8-9-1-3-13 

Plane 4: 4: 18-12 

Plane 5: 4: -10 

Plane 6: 3: 7-5-15 

Plane 7: 5: 17 

TOTAL 

FORMULATION IV 

Plane 1: 3: 7-5 

Plane 2: 5: 16-11-14-9-1 

Plane 3: 4: 2 

Plane 4: 3: 6 

295 

185 

250 

230 

35 

150 

35 

1180+ 

85 

320 

55 

80 

Plane 5: 5: 17.;.15-18-12-10':13-3-4-8: 510 

TOTAL 1050 

FORMULATION V 

a) Given: Airport 

3 

4 

5 

Fixed cost of a plane 

100 

100 

100 
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Plane: 1: 5: 17-16-11-15-18-12-10-14-9-1-7-5-13-3-6-2-4-8: 1230 

Thus, Total Cost 1330+ 



b) 

c) 
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G;'ven: Airport Fixed cost of a plane 

3 100 

4 200 

5 100 

Plahel:5: 17-16-11-15-18-12-10-14-9-1-7-5-13-3-6-2-4-8: 1230 

Thus, Total Cost : 1330+ 

Given: Airport. Fixed cost of a plane 

3 100 

4 100 

5 200 

.. 
Plane 1: 3: 7-4-13-3-17-16-11-15-18-12-10-14-9-1-6-2-4-8: 1245 

Tbus, Total Cost: 1345+ 

Fixed cost of a plane 

o 

5 

10 

75 

85 

320 

80 

Plane 5: 5: 17-15-18-12-10-13-3-4-8: 510 

TOTAL 1070 

Thus, Total Cost: 1090+ 
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EXAMPLE G 

1 30 40 50 65 

2 30 55 35 25 Loading time : 45 

,0 = 3 40 55 30 70 Unloading time: 25 

4 50 35 30 20 

5 65 25 70 20 

LOADS: INITIAL LOCATIONS OF PLANES: 

Number Starting Ending ,Airport Number of , 
aiq~ort airEort Elanes 

1 1 2 1 4 
2 4 2 2 0 

3 2 3 3 0 

4 3 1 4 4 

5 1 4 5 0 

6 3 4 
7 5 4 
8 2 5 Minimum Total Flight: 780 

9 1 5 Total Load Unload 1400 

10 5 3 Minimum Total Time : 2980 

11 4 3 
12 4 3 
13 3 2 
14 4 2 

15 4 2 
16 2 4' 

17 2 1 

18 1 3 

19 4 5 

20 4 1 
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FORMULATION I 

Plane 1: 4: 14-17-1 305 

Plane 2: 4: 15-16-19 300 

P1 ane 3: 4: 11-6-12 300 

Plane 4: 4: 2-8-7 290 
. 

Plane 5: 1 : 3-20 305 

Plane 6: 1: 4-9 285 

Plane 7: 1 : 5-10 280 

Plane 8: 1 : 18-13 235 

TOTAL 2300 

FORMULATION II 

Plane 1: 4: 14-17-1 305 

Plane 2: 4: 15-16-19 300 

Plane 3: 4: 11-6-12 300 

Plane 4: 4: 11-6-12 290 

P1 ane 5: 1: 3-13 280 

Plane 6: 1 : 9-10 275 

Plane 7: 1: 5-20 240 

Plane 8: 1: 18-4 220 

TOTAL 2210 



FORMULATION III 

Plane 1: 1 : 5-16 

Plane 2: 1 : 18 

Plane 3: 4: 12-13-17 

Plane 4: 4: 11-6-19 

Plane 5: 4: 14 

Plane 6: 1: 9-10-4 

Plane 7: 1 :1-3-16 

Plane 8: 4: 2-8-7-20 

TOTAL 

FORMULATION IV 

P1 ane 1: 1: 1 

Plane 2: 4: 2-3 

225 

110 

325 

290 

105 

385 

385 

410 

2235+ 

100 

230 

Plane 3: 4: 11-4-5-14-16-20-18-13-8: 990 

Plane 4: 4: 12-6-15-17-9-7-19-10 : 860 

TOTAL 2180 

FORMULATION V 

a) Given: Airport' Fixed cost of a plane 

1 

4 

100 

100 

186 

Plane 1: 1: 1-3-19-10:15-17-9-7-14-16-20-18-13-8-12-6-11-4-5-2:2260 

Thus, Total Cost 



b) Given: Airport 

1 

4 

Fixed cost of a plane 

200 

100 

187 

Plane 1: 4: 2-1-3-11-4-5-12-6-15-17-9-7-14-16-20-18-13-8-19-10: 2260 

Thus, Total Cost 2360+ 
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APPENDIX B 

Combination Values of M'and r 

M/r 1 2 3 4 5 6 

10 10 45 120 210 252 210 

11 11 55 165 330 462 462 

12 12 66 220 495 792 924 

13 13 78 286 715 1287 1716 

14 14 91 364 1001 . 2002 3003 

15 15 105 455, 1365 3003 5005 

16 16 120 560 1820 4368 8008 

17 17 136 680 2380 6188 12376 

18 18 153 816 3060 8568 . 18564 

19 19 171 . 969 3876 . 11628 27132 

20 20 190 1140 4845 15504 38760 

21 21 210 1330 5985 20349 54264 

22 22 231 1540 7315 26334 74613 

23 23 253 1771 8855 33649 100947 

24 24 276 2024 10626 42504 134596 

25 25 300 2300 12650 53130 177100 

26 26 325 2600 14950 65780 230230 

27 27 351 2925 17550 80730 296010 

28 28 378 3276 20475 98280 376740 

29 . 29 406 3654 23751 118755 475020 

30 30 435 4060 27405 142506 593775 

31 31 465 4495 31465 169911 736281 

32 32 496 4960 35960 201376 906192 

33 33 528 5456 40920 237336 1107568 
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Permutation Values of M and r 

M/r 1 2 3 4 5 6 

10 10 90 720 5040 30240 151200 
11 11 110 990 7920 55440 332640 
12 12 132 1320 11880 95040 665280 
13 13 156 1716 17160 154440 1235520 
14 14 182 2184 24024 240240 2162160 
15 15 210 2730 32760 360360 3603600 
16 16 240 3360 43680 524160 5765760 

17 17 272 4080 57120 742560 8910720 

18 18 306 4896 73440 1028160 13366080 

19 19 342 5814 93024 1395360 19535040 

20 20 380 6840 116280 1860480 27907200 

21 . 21 420 7980 . 143640 2441880 39070080 

22 22 462 9240 175560 3160080 53721360 

23 23 506 10626 212520 4037880 72681840 

24 24 552 12144 255024 5100480 96909120 

25 25 600 13800 303600 6375600 127512000 
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APPENDIX C 

C.l SIMPLE PATH GENERATION 

C.l.l Definitons 

a) NN,:' number of nodes 

b) S: the source node 

c) T: the terminal node 

.' d) 

W(I,J) = 

length of arc (I,J); if dones I and J are 
directly connected by an' arc. 

00 ; otherwise. 

e) 1; if node I is unmarked. 

MARK(I) = 

0; if node I is marked. 

f) KTH : Current path counter shows the number of simple paths 
yet generated. 

g) DMAX: Maximum distance to generate paths. 

h) LEN : Leng~h of current partial path. 

i) PATH: Array that contains current partial path. 
/ 

j) LBOY: Number of elements on current partial path. 

k) ~(1): Starting node of current arc. 

1) A(2): Ending node of current arc~ 



C.1.2 Flowchart 1 

. STEP 1 
Get the input data 
READ; NN,DMAX 
READ; ((N(1,J),J=l,NN),1=l,NN) 

Set: LEN=O 

KTH=O 

MARK(1)=' for 1=l, ... ,NN 

FOR 1:1 to NN 
(avera 11 nodes) 

<Check if there is an a~ext I ) 
W(S,1) < 00 

Set A(l)=S 

A(2 ):1 

MARK(S),MARK{T)=-l 

LBOY=l 

PATH(LBOY)=S 

LEN=LENtW(S,1) 

ELEN=LEN 

. r}., 
·{~l . ,,. .. 
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STEP 2 

,--------~ Set V2:A(2) 

/" 

MARKeV2)= 1 

Y 

FOR 1=1 toNN 
(o,{era11 nodes) 

N 

Check if there is an arc 

"" ______ a_b_S(~W~(V~2~,~I)~)-<-OO--~ 
Iv 

Check dmax ~ -y- ) 
abs(W(V2,1})+LEN> DMAy. Y ~Next I 

N 

Set: ELEN=LEN 

LEN:abs(W(V2,I»)+LEN 

MARK(V2 )=-1 

W(A(1),A(2)=-W(A(1},A(2}} 

LBOY=LBOY+1 

PATH(LBOY}=V2 

A(l )=V2 

A(2):1 

C. Ne.xt, I' ) 

(£) 
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Check if a simple 
path obtained 

V2=T 

I Y 

LBOY=LBOY+l 

~ PATH(LBOY)=T. 

KTH=KTH+l 

record path KTH as another 
simple path 

LBOY=LBOY-l 

LEN=LEN-W(PATH(LBOY),T) 

• 

193 



STEP 3 

Set Vl=A(l) 

N 

FOR I=A{2J+l to NN! 

W(Vl,I)·~ 0 AND W(Vl,I) < 00 

y 

ELEN+W(Vl,I) > DMAX 

N 

Set LEN=ELEN+W(Vl,I) 

A(l)=Vl 

A(2)=I 
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PRINT 

< Vl=S "Path generation 
c.>----::;;t completed" 

.-~-. ----r-I-N' 

W(I,Vl) ? _00 AND W(I,Vl) ~ 0 

Y 

Set: A(l)=I 

A(2)=Vl 

MARK(Vl)=l 

W(A(1),A(2))=abs(W(A(1),A(2)) 

LBOY < 1 

Y 
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LEN=O 

ELEN=O 

LEN=LEN+abs(W~bs(PATH(J~l),PATH(J))) 

ELEN=LEN 
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C.2 ELIMINATION 

C.2.1 Definitions 

a) MC :'Counter of paths eliminated. 

b) PATH Path currently read. 

c) LBOY Number of elements on current path (the load cardinality) 

d) LEN Length of current path. 

e) NAIR Initial airport of current path. 

f) SUM Demand of current path. 

g) TDMAX: Maximum path demand. 

h) ADJ Array containing paths which are eliminated and 
stored in memory. 

i) KLEM Array containing number of elements of paths in ADJ. 

j) DIS Array containing lengths of path in ADJ. 

k) AIR Array containing the initial airports of paths in ADJ. 

1) POEM Array containing demand of paths in ADJ. 

m) CONT Occurrence of path demand control array. 



C.2.2 Flowchart 2. Elimination of Paths 

FOR P = 1 to KTH 
(overall simple paths generated) 

Get Path P from mass storage 

READ; LBOY, LEN, NAIR, (PATH(J , J=l,LBOY 

C~lculate demand of Path 

SUM: Sum of demands of nodes on path P 
and demand of airport 

SSUM = SUM· 

SUM > TDMAX ~Y--=;,t SUM = TDMAX 

CONT(SUM)= 0 CONT(SUM)= MC+l 

N 
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FOR PP=CONT(SUM) to MC 

Check demands 
POEM PP =SSUM 

y 

I 

N 

Check initial airports 
'" AIR(PP)=NAIR 
"'--~..,---

Y 

CONU(J)=O, J=l,NN 

CONU(PATH (J))=l, J=l,LBOY 

FOR J=l, to LBOY 
(overall nodes on Path P) 

CONU(AOJ(PP,J))=l 
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LEN > DIS{PP) 

N 

ADJ{PP,J)=PATH{J),J=l,LBOY 

DIS(PP)=LEN 

Path P is not repeated, record it 

Set MC=MC+l 

ADJ{MC,J)=PATH{J), J=l,LBOY 

DISC(MC)=LEN 

AIR(MC)=MAIN 

KLEM{MC)=LBOY 

PDEM{MC)=SSUM 

Record all paths in ADJ 
MC is the number of paths 

after removal 
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C.3 BRP ALGORITHM 

C. 3. 1 Definitions 

a) R 

b) M 

c) P 

d) RP 

e) MAIR 

f) TOTAL 

g) GMAX 

h) USET 

i) LSET 

j) KSET 

k) KRT 

1 ) KPL 

m) KLD 

0) D 

the number of airports. 

the number of loads. 

the number of planes. 

the number of airports with planes initially. 

Plane availability at airports initially 
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MAIR(I): number of planes at airport I initially. 

Total frequency array 

TOTAL(I): total frequency of load I in path list. 

Maximum number of members per path for the paths 
within the path list. 

Number of paths in the path list. 

Top search limit for the first plane. 

Bottom search limit. 

Top search limit. 

Current number of planes used in partial solution OPT. 

Current number of loads covered by partial solution OPT. 

Airport-to-airport flight time matrix. 

D(I,J): Time required for a non-stop flight from 
airport I to airport J. 

The following variables and arrays are express~d in terms of 

the nodes in the transformed network: 

a) AIRMAX Plane availability at airports initially 

AIRMAX(I): number of planes at airport I initially. 



( 
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b) AIRMED Current plane usage from each airport. 

c} PATH 

d} LBOY 

e) LEN 

f} NAIR 

rg} ADJ 

h} KLEM 

i} DIS 

j} AIR 

k} ADRES 

1 } FRE 

m} FIRST 

\ 

AIRMED(I): number of planes used from airport I. 
/ 

Ith path taken from mass storage. 

Number of loads on Ith path (member size). 

Length of Ith path. 

Initial port of Ith path. 

The sorted path list. 

Array containing number of loads on paths within 
the path list. 

Array containing length of path within the path list. 

Array containing starting airports of paths within 
the path list. 

The address table between the path lists. 

The frequency matrix 

FRE (I,J) = number of times node J occurred on 
paths with load cardinality i in 
the path list; if J > 1. 

number of disjoint loads on paths 
with load cardinality i within the 
path list; if J = 1. 

The first occurrence matrix. 

FIRST (I,J) = Path number of first occurrence of 
node J occurred on paths with load 
cardinality i in the path list; if J > 1. 

Path number of first occurrence of a 
path with load cardinality i within 
the path list; if J = 1. 

n} YFIRST Firs occurrence of members in the new list. 

YFIRST(I} = first occurrence path number of a path 
with load cardinality i in the new list. 

0) SFIRST First occurrence of loads in the new list. 
SFIRST(I} = First occurrence path number of load 

I in the new list. 



p) COVER 

q) OPT 

Indicates whether loads are covered by current 

partial solution or not. 

COVER(I) = 1 if load I is covered. 

a otherwise. 

Current partial solution. 
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OPT(I) : shows the number of paths in old list 
assigned to Ith plane in current partial 
solution. 

r) I membered path J: The path J (i.e. set SJ) which covers 

I loads (I rows). 

s) node J The meaning of nodes are kept the same as in the 

network formulation in Section 3.1~ Except, 

source node (node 1) and terminal node (node T) 

have no meaning furthermore. 



C.3.2 Flowchart 3 

Get the Input Data 

Read, R 

Read, MAIR(I), 1= 1,R 

Read, M 

Read, LOAD(I,1),LOAD(I,2), I = 1,M 

Calculate: 
R 

P = L MAIR(I) and RP 
1=1 

Q = M/P 

K = M-Q*P 

I Q+l ,.i f K > a 
Ml = 

IQ , if K - a 
Set: AIRMAX(I) to maximum plane availability 

in airport I 

Set: GMAX = a 

ELEN = a 
LS = 2+RP 

LB = HRP M 

FRE(I,J), FIRST(I,J) = 0, I = 1,MMAX 

J = 1 ,HRP+M 

I = a 

II 

A 

203 



204 

1=1+1 
. PRINT 

Y 'There cannot,be 
Is the end of mass storage >----.:71 any sol ution 

achieved? among paths in 
the mass-storage" 

N 

Get a new path from mass 
storage and related para
meters 
READ; LBOY,LEN,NAIR, 

(PATH(J)),J=l,LBOY) 

Check for a length change 
LEN > ELEN 

Y 

N 

,/can there be a solution? 

Y 

y~ 

N 
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IGO SUB: BLOCKING 

GO SUB: SEARCH 

Is there a sol uti on? rl· y II~~!N~~~~~~~ --
_____ ---: ___ .....J!/ solution to 

BRP LanlJ..I;..-1 --

STOP 

GO SUB: RECORD 



SUBROUTINE: RECORD 

IIRecord the 11th path 
read from mass storage 
to path list ll 

LBOY > GMAX 

Y 

GMAX=LBOY 
FIRST(LBOY,l)=I 

1 

N 

FRE(LBOY ,NAIR)=FRE(LBOY ,NAIR·)+ 1 I 

FIRST (LBOY,NAIR)=O N 

Y 

FIRST(LBOY,NAIR)=I 
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FOR J=l, LBOY 
(overall loads o~ 

path 1) 

NOD=PATH(J) 
FRE(LBOY,NOD)=FRE(LBOY,NOD)+l 

FIRST (LBOY,NOD)=O 

FIRST(LBOY,NOD)=I 
FRE(LBOY,l)=FRE(LBOY,l)+l 

NEXT J 

RETURN 
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Calculate Total 
Load Frequencies: 

Choose Method A 

SUBROUTINE: BLOCK 

FOR J=l,M 
(Overall loads) 

FOR G=l, GMAX 
(Overall member sizes) 

TOTAL(J)=TOTAL(J)+FRE(G.J+l+RP) 

Next J 

TCOUNT=USET 

there an unbalanced distribution· 
of load frequencies? 

~ .. , 

Choose Method B 
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Blocking with 
Method A: 

FOR KKK=l ,~1 
(Overall loads) 

Choose the unconsidered load with 
least frequency: 

TOTMIN= min [TOTAL(KK)] 
KK=[l ,. ~ ,M] 

TOTL: the load KK where TOTMIN 
occurred 

FOR J=USET, FIRST(l~TOTL+l+RP),-l 
(Over paths covering TOTL) 

t .. 
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Check Path J ever 10cate~~~> ___ Y ..... >~( Next J J 
AIR(J) < 0 / . _ 

FOR KK=l, KLEM(J) 
(Overall loads on path J) 

, 
A~eck .the pa th J covers load TOTL 
~J(J,KK)=TOTL+l+RP 

, vJ 
I 

N 
Next KK 

Locate path J in the new list 
AIR(J)J= -AIR(J) I---->~ Next J 
ADRES (TCOUNT) =J 
TCOUNT=TCOUNT-l 
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Next KK 

TOTAL(TOTL)= 00 

Next KKK 

AIR(J)=-AIR(J), J=l,USET 

• I 



Blocking with 
Method B: 

FOR G=GMAX, 1, -1 
(Overall member sizes) 

FOR J=USET, 1, -1 
(Overall ·paths) 

<Check if path J covers G loads 
KLEM(J)=G 

. .--.;-----

y 

Locate Path J in the new list 
ADRES (TCOUNT)=J 
TCOUNT=TCOUNT-l 

Next G 
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N 



Calculate First 
Occurrance Arrays 
on new Path List: 

YFIRST(G)=O, G=l,GMAX 
SFIRST(J)=O, J=l,l+RP+M 

<:MAX=MMAX 

Y 

/ 

N 

YFIRST(G)=USET, G=GMAX+l,MMAX 

FOR J=l, USET 
(Overall paths) 

KK=ADRES(J) 
KM=KLEM(KK) 

Check number size KM yet occurred 
YFIRST( KM)=O 

Y 

YFIRST(KM)=J 
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N 



~eck if path J has only one mem~ N 
~ KM=l 

y 

<Check the load c~vered by Path J 
yet occurred 

SFIRST(ADJ KK 1 =0 

y 

SFIRST(ADJ(KK,l))=J 

Next J 

RETURN 

N 
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Initialize for 
Search: 

Method A 

SUBROUTINE: SEARCH 

CRT(J)=SFIRST(J), J=l,M 

Blocking Method Used? 

LSET= max [SFIRST(J)] 
J=2+RP, .. ,1+RP+M 

NNN=USET-LSET+l 
r·1MM=O, KPL=O, KLD=O 
COVER(J)=O, J=l, l+RP+M 
AIRMED(J)=O, J=l,P 
KKSET=USET 
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Method B 



Determine Search 
Limits: 

, KPL=O 

I MMM1MM+l 1 
1 

PRINT 
"There cannot be 
any solution in 
the given path list" 

~ 
KSET=KKSET 
KKSET=KKSET -1 
KRT=LSET 

Y Check inconsistency 
KSET > KRT 

REML=M-KLD 
REMP=P-KPL 
YUK=REM/REMP 

N 

MRT=YFIRST(YUK) 
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Y 

LRT= max [CRT(J)] 
J=l , .. ,M 

KRT=max[MRT,LRT] 

N 



Search for a 
Feasible path: 

FOR J=KSET ,KRT":l 
(Overall paths between 

search limits) 

KADR=ADRES(J) 
PORT=AIR(KADR) 

Chec k number of planes used from PORT >----'-~ 
AIRMED(PORT)=AIRMAX(PORT) 

N 

FOR LL=l, KLEM(KADR) 
(Overall loads covered by path J) 

NOD=ADJ(KADR,LL) 

Check load NOD covered by partial 
solution 

COVER(NOD)=l 

N 

Next LL 

, 

216 



Include path J 
to partial solution: 

KPL=KPL+l 
OPT(KPL}=J 
AIRMED(PORT}=AIRMEO(PORT}+l 
KZ=O 

FOR LL=l,KLEM(KADR} 
(Overall loads or path J) 

KLD=KLD+l 
NOD=ADJ(KADR,LL} 
CRT(NOD}=O 
COVER{NOD}=l 

y. 
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~~ KZ=SFIRST(NOD} 

N 

Next LL 

Check if all loads. covered >-~ 
KLD.EQ.M 

N 

PRINT 
"Optimal 
solution to 
BRP Land 



Method A 

Delete the last 
path added to 
partial solution:. 

Method B 
Blocking Method Used? 

Next J 

KK=OPT(KPL) 
KADR=ADRES(KK) 
PORT=AIR(KADR) 
AIRMED(PORT)=AIRMED(PORT)-l 
KPL=KPL-l 

FOR LL=l, KLEM(KADR) , I 
(overall loads on deleted path) 

KLD=KLD-l 
NOD=ADJ(KADR,LL) 
CRT(NOD)=SFIRST(NOD) 
COVER(NOD)=O 

218 

KSET=K-l 



< 

Select WORST 
Load: 

SUBROUTINE: FEASIBILITY CHECK 

Check Coverage > Y 

FRE(1,l) < M 

Check member size Y 

GMAX < Ml 

GMAX=Ml 

Minimum Configuration check 
FRE(Ml,l) < Ml*K 

Set GMIN= co 

FOR J=l ,M 
(Overall loads) 

FOR G=l,GMAX 
(Overall member sizes) 

Next G 
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~0 



Calculate 
minimum plane 
requirement: 

y 
GG < GMIN GMIN=GG 

N 

REM=Q-GMIN 

Worst Load Check y 
FRE(Ml,1) < Ml*(K+REM) 

N 

TPLANE=O 
CON(J)=O, J=l,M 
LEFT=Q 

220 



FOR G=GMAX,l,-l 
(Overall member/sizes) 

LLEFT=O 

FOR J=l,M 
(Overall loads) 

FRE(G,J+l+RP)=O 

N 

Next J 

",--_CO_N_(_J )_=..,l~ ___ ';>-{ Next J ) 

N 

CON(J) = 1 
LLEFT = LLEFT+ 1 

LEFT=LEFT+LLEFT 
TT=LEFT/G 
TPLANE=TPALEN+TT 
LEFT=LEFT-TT*G 
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I 
~ 



Check Minimum Plane Requirement 
TPLANE 2. P 

y 

PRINT 
'All feasibility checks 
passed, there may be 

.a feasible solution" 

RETURN 

PRINT 
"Th ere cannot be any 
solution in the given 
path 1 ist ': 

222 

N 



C.4 SCHEDULING 

C.4.1 Definitions 

a) USE(I) 

b) QUSE(I) 

c) QUE(I,J) 

d) Cor·1PT (I) 
( 

e) POINT(I) 

. 223 

number of planes serviced at Ith airport at 

given time. 

number of planes waiting at Ith airport at 

given time. 

indicating Jth plane waiting at Ith airport. 

completion time of current job of plane I. 

indicates the sequence number of load that 

plane I currently deals. 

f) STATUS(I) status of plane I. ' 

g) KPL 

h) RUT(I) 

i) TAIR 

.. 
m 1; if plane I flying empty. 

= 2; if plane I flying full. 

= 3; if plane I loading. 

= 4; if plane I unloading. 

= 5; if plane I waiting for loading. 

= 6; if plane I waiting for unloading. 

= 7; if plane I finished the job.' 

number of planes used in given BRP. 

indicates the path with Ith plane assigned. 

array to transform meaning of airpo'rts. 



C.4.2 Flowchart 4 

INITIALIZE 

For K = 1 KPL 

(Overall planes) 

Set: POINT(K) = 1 

,N 

, 
STATUS(K) = 1 

ORIG = TAIR(AIR(RUT(K») 
DES = LOAD(ADJ(RUT(K),l),l) 

ORIG = DES 
y 

COMPT(K) = D(ORIG,DES) 
QUSE{ORIG)=QUSE(ORIG)+l 
QUE(ORIG,QUSE(ORIG)=K 
STATUS(K) = 5 
Cor~PT (K) = 00 

, 
Next K 

\ 

B 
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UPDATE CLOCK 

FOR K=l,KPL 

y 

PRINT 
liThe feasible 
solution found' 

STOP 

a CLOCK=CLOCK 
CLOCK= min GCOMPT(K)] 

K=l,KPL 
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N 



UPDATE SLACKS OF PLANES 

WAIT=CLOCK-OCLOCK 

FOR K=l,NPORT 
(Overall airports) 

N 

FOR KK=l,QUSE(K) 
(Over planes in queue of 

port K) 

LPL = QUE(K,KK) 
SLACK(LPL) = SLACK(LPL)-WAIT 

226 

Next K 

PRINT 

SLACK{LPL) 
y "Plane LPL cannot 

>-----.:~ finish job due 

N 

Next KK 

to que at airpor 
k" 

STOP 



UPDATE PLANE STATUS 

FOR K = 1, KPL 
(Ove~all planes) 

Check if job completion 
time of plane K equals 

I clock 
COMPT(K) = CLOCK 

POS = POINT(K) 
LPOS = AD"J(RUT(K) ,POS) 

Is it end of a full flight 
STATUS(K) = 2 

y 

DES = LOAD(LPOS,2) 
QUSE(DES) = QUSE(DES)+l 
QUE(DES,QUSE(DES))=K 
COMPT(K) = 00 

STATUS(K) = 6 

Next K 

\. 
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Next K 



. ~ Is it end of loading 
STATUS(K) = 3 

y 

; ORIG = LOAD(LPOS,l) 
: USE(ORIG) = USE(ORIG)-l 
. DES = LOAD(LPOS,2) 
I COMP(K)= CLOCK+D(ORIG,DES) 

, Is it end of unloading 
STATUS(K) = 4 

ORIG = LOAD(ADJ(RUT(K),POS),2) 
USE(ORIG) = USE(ORIG-l 

"POS = Mr~AX 

N 

LLPOS = ADJ(RUT(K),POS+l) 

y 

228 

~--y--~ STATUS(K) = 7 

N 



( 

DES = LOAD(ADJ(RUT(K).POS+l},l} 
POINT(K} = POS+l 

y N 

229 

QUSE(DES} = QUSE(DES}+l 
QUE(DES,QUSE(DES}} = K 
COMPT(K} = 00 

COMPT(K} = CLOCK+D(ORIG,DES} 
STATUS(K} = 1 . 

. STATUS ( K} = 5 

( . 

DES(LOAD(LPOS,l} 
QUE(DES,(DES}) = K 
COMT(K) = 00 

STATUS(K} = 5 

Next K 

I--~>C Next K ) 



DECIDE ON PRIORITY 

FOR K = 1,NPORT 
(Overall airports) 

~--y-")~( (Next K ) 

Is capacity enough to handle queue?/---~ 
"" CAP(K) - USE(K) ~ QUSE(K) 

FOR KK = 1,QUSE(K) 

LPL = QUE(K,KK) 
QUE(K,KK) = 0 
USE(K) = USE(K)+l 
QUE(K) = QUE(K)-l 

Y.'r--< Is the plane KPL waiting for loading?.7-----.N 
STATUS(KPL) = 5 

230 

I

TT = TL 
STATUS(LPL) = 3 

TT = TU 
STATUS(LPL) = 4 

..... COMPT(LPL) = CLOCK+TT 'iE-------' '-----.......,. 



Next K 

N 

MIN = 00 

I 

. FOR KK = 1,QUSE(K) 

LPL = QUE(K.KK) 

N 

Next KK 

LPL = QUE(K,CK) 
QUE(K,CK) = 0 

y 
>---~ MIN = SLACK(LPL) 

CK = KK 

231 



y 
>-----:~ FOR KK = CK+l,QUSE(K) 

N 

QUSE(K) = QUSE(K)-l 
USE(K) = USE(K)+l 

Is the plane KPL 
waiting for loading 
STATUS K = 5 

TT=tL ,. 
STATUS(LPL)=3 

QUE(K,KK-l)= QUE(K,KK) 

N 

I TT=TU 
STATUS(LPL)=4 
. I 

COMPT(LPL) = CLOCK+TT 

232 



FOR K = 1,NPORT 
(Overall airports) 

Check if the que capacity 
is violated 

QUSE(K) > QCAP(K) 

233 

PRINT 
IIQueue capacity 
of airport K 
is violated ll 
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==::==?~~~,:==-~-,-=--7: -:. '.-:-:::.- '='::-:-~-:-'::?--::::';":-:.::.-.- ~.-:::--:::::-:-.:::_ 
~. - - ., -'. -

, " - . . 
_... ..- -, .. . . - . 

..• ------- .... , .. 

- NJMBER OF.' PORTS - : ~ -
-N.J,M.8ER ?F. LOI\PS_:.:,~:-h~cl~ 

.-. ---- --- --. -'- .. - ' 

-. - -'- ----- ... _------_. - - .. ,-----_ ... -. _____ .• _____ . ___ • ____ ·~~_··_R 

LO,ADING PI..USUNLOADING TI '.1E : .15: 
. _. ,. • I:.... . -=:=: -:. _ ~_~. _ . -:' 

~~XIMU~D~STANCE. PE~~ITTE9'TO G[NtRATt PATH~:-~5~ 
- -,-' . . _.'" ._. - _. -'- .' ._. - - --

. __ . -- .. _- --.' -

. _ .. - ... ' -- _ .... - -- - ._. .-.-. ....::::.--...:=..:.......::.::.=:.:.:.:::...:.-.::: .. -.:: .:=::";:.-::":: ~=..::..=.=.:::.. 

._--._. - --.---.----.-------------.-.-- " .. -.-.. 

_.- '.-- -- ' .. - --.-~-- -. .:.....:.:..:: .. _-, - _.=.:.::.::.:..=:...:::.::.::: 



--- -_.- - .. -~-- --._--------_._--._._----_ ... - -- .---- '-------
~.- .• =-:-:._. ___ =..:.:~:-.:...·._::. __ •·· __ ._·_:··:..::..:::.:..:_...:::.-=:.-..:::_~;:_::_-e -:-.:-.. -:'.' .. :..:-..:._:.: .. ~..:::::.:..-:: __ ._.:-_-:-_-' 
::.. ~-- ::.::.::-~:~==:::--=-==~--.::.:. - ':'~'':.::-:--==----;:--~--'.'= -"~::':~=::~-=.:::=~...:-:.~~ 

~~~- ':;~{liJ~f~kr:~I~~4~N~A-~PIRcI~~~~I~Iti·~.y··.ct1f.T:~:·f4 i:fJi~ft~ _ ~~fI~~~'~~~~=-==~=-;~5J 
- -. -·NUMBER· :-n.F.----:t ·OADS COV='RED'::lc :: 0 :'. ..-..:..::::--::::.~::->:':::.::::::-:-::::-.. :=.:=.:~----===-:.::=~=--=-.~:..--~==::::_~I 
- .::- -=::='::::WHICrl' is·:LES5·TrlENT-{)iAC;L'OAJS-12c,=;:-,.::.::;:,~-=-=--=:,::=--====,::~-===~--:::=,::::,c::=:::-~ 

~::c~~::4;:;:J~~tJU RN"~ .~~.~ ~." f:f~_§t~, I b J _J:'f:-- _C ~ E:K -·:.c.'-'::::~: ~:f~?:f:2.5~j:~~;~-.:l~i~~~f-~~l 
f~~~~1!~-=¥~~f.~:::~~OY.:~;:l'. tE~t : -::::~3/:;}:NITIAL :e9~:r-::.:,:~-'-c:hB~~&-~~~tt~P"'-~:i-b~j 
==-_==-~~ __ ~E~~T .~~-~q~R~~.~{~~F~- A -I-= ~.~·\1~E~E_b. ~?_ATJ! ..... '._~._~~ _______ ._. __ =~~_--~_~~==--=~~--=~ 
:.. =tt~:I~~i~f:t;~ O-y:~:.;::i~i ,-:tb J ~:: ::::~:3~5:'~~i~lT I CA 8- p O~:T:~ :-:~?-, '~t=o:A'Ds:f:j~cfoVE~E-O=-fw 

~~Q~i;1~~:3:If[-'J;pQ.~:i=::Y:!~~;;-:bf:1L_; :~:.', 3?~E:{lNJ IJA ~:e:B-QHJo.::,-t~~.:!:~L~:fult{rJEg-£:n:~=§ 

~j:.,:;~~:;~:: .. ;<::-F'I~~~\ -HEC:~~'E·;..O\lI·RATFH. LENGtHS A={E ..~.:::-::::~~~.-.: :::.~=_'-"~~ii~~:-~:::.:=-::~:::-::~-~=-~i~ 
~,-' :.-.--. 5HRT--. 1E.y-K·NG .-.OR~-EA51alLITY· -.---------- ... -------:------ ----::---- ===-=0 

=~-==:c=::-:::::: NJMBER-OF'~' LOADS COV::RED:'.I s 3· -::. ..: :'·:::;:i:.~::~:.~=-=:.~H,,~:?~:~?:j:~IZ=~+i-l 
=--,,-~--,,::.: wHICH'IS-L.ESS- rHENTOTAL L'o/.\DS12' ... ------.-- -----~---

~~i';::;.:;:-:=~-~.:::,.==:Rt!yRN:5:~g:~ .. F~AS~~Bl L.!t~J=:~Sri~:~:~-:::,: .:,-::'::.:_::~:::~,;:.~~~::::~:;.::.. _ -:~::.:7.~~:::i"-"--C'~~~=J 
==---=::...=..:=-.......=:...=.:.;..:.==-.:..-::..:....:::.:-. -:;:.:~ ~.=:.: .. --=--':":::':':":''': -~..::..=--:.::: ...:. --::::':'-::::.:"::'::::::::':::-. -:':':-=:':'::.--.~.--:-::,::'.:-=-'::.-..::=.::.:.'=-=:--::: =-::::':--=.-:~: .:.::.=:---=.::::.=..=-==---.:..:-~==-=-:==== 

- -- - - - ----

~{-.~~:·NO-c:~6,.··LJ30Y ::L,:.t::E~.I': .55,-:INITIAL.PORT:- 3i ·LOAt)S-CO"EREO-:::==-5 

W!;~:J~'~:.~7 f·~Lf30Y-=-:.::- .~. '~:.LEtL ~t.,,:~.§:~-, __ -lNtrlAL. PO~I:L2-,:.. J~~.9AQ~~~9:\lJ;~';:L~1~-::~ 
::-:--=~O::-:.;- ,. B' LOOY ; . .1, LEt:I-~'_: 55, -1 "lIT 1 A~ 8Q~T :-3 'LP~-~=-=~c:Q.~~.R;~:8~Lj:~~~ 
:2::~~;--'~b--~i~9,LBOY : -l,:::L'b,J'-: --5S;::INITIAL PO;.{T :' 2, LOAJ-5--CO"EFfEb-·--'T~ 
~L ::t.'Z:~E5~~~·'·. FR 0 MH E:fE 0 ~':- PI\TH' L..EN G H-T 5 - A" E ___ __:. ~ ~o5 -. :.':_,C:: ;:~-==-=-=.C~i_t':'c{'~~~~~i::~~~~ 
___ .. _. ST.ART C;E~:KI NG F.qR I='~A~l3ILl TY .', 
-- NJ.MBER~F L~ADS COV::REDIS 0 

',:-::::-c::WH_ICi-l I;i · ... E55 THEN' TOTAl. LO~JS 12,. 
...... -f1~:rURN~- ~p,"1-FEAS.IB I l..JT't -C;.tE v K, 

. ----- --"-------
:~~._:.~_~~~i.~.:--=:~=~~: ~'=:j"~~~~~~':=--~ 

NO:::..:- -10'· LeOY,-:-l; /L~N -::~65 ,·1 NI T I Al. 

--..FRO\<1 HE,~E. 'O'lPA TH \.;.::N§.HT5 A~E 
~.-:.-~:~=-:-~- ... ~.~-. --- S!-!\-R T- ·C~E.Ct<rNG---FPR· -. Fe:"SI aI-ll TY 

---- -_.- -------, 

PORT': 3,L6ADSC:fC-h"EREb=~0ii 
, 

.: :'. :7Q •. :. -,..: ,,:,cc: ::-'':-:::~::.::::·,-:-·::~-=:·:·:'-c:: -:.c::.:::~:=· .~'~ 
.. ~,::: ~ .:-:":':' -:--:- ::-:-:-- ::::-::::=:.:::-:::..:: _. ::::-"'::---:.~=: :.::---= :::;:;'" "-~.::--' -+-.,; 

~t~..:,_~_·:':~;f,: .. _.:: NUMaER ~I:LOADS COV=:REDds .. 6 . ---.-e-_, =.-:_'c.:~--::.---::::-,:=::c~~~_:.-.::::.:~~~.::::..-'-_:-::' _ _' 
----------~---wHICH-I5- LESS T"iEN T.~TAL l..:OI\DS 12 
;;-.::l.:-::.~,:_z¥==_~:2~~r~RN, ~,R'OM::fFA~~I::~~lhf~~r tC!"iE CJ<.c:: 



46'~F:-f4-F:L.80Y-:- 2,LE!'J: 70, I'JrTrA(,. PO~T 

~()_:',:--:::l;>,LaOY : 1, LEt·j70, I'lJTIAL. PO;n 

FROM rlE~E O'J PATH L~NG~TS A~E 75 
START C~E~KI~G FP~ FEASI3ILiTY 

cN~MBER ~~ L~ADS CO~~~EJ IS 6 
WHICH IS ~ESS TrlEN TOTAL LOADS 12 
RfJJRN F~?~ FEAslaI~ITY_ CrlE:K 

-10: 16,L.B0Y : 1, LEn: 75,INITIA(,. 

'J::> : 1 7' L.f3 0 Y : 1, L E fJ: 7 5 , I NIT I A L., 

F~O~1 HE~E O'l P I\TH, L::'JGHT5 A~E 
START C~E~KING FOR ~EASI3ILITY 

PO=<T 

PO~T 

NJMBER ~F L~ADs COV::RED Is' 7 
WHICrl I~ ~ESS T~EN TOTAL ~OADS 12-
R~!~RN ~R?~ FEl\s;aILITY C~E:K 

.. 

L.s0Y 1, ~(). --:~- 1:.8 , LEH • SO, PIITIA(,. PO::(T • 

\1.Q~;~J9' L,BOY • 1, . LEt" · 9t), I'HIl Ai.._ PO~T • • - .-_ ... 

'W • 20' .LpOY • 2, ~Etl '30, I \II TIAI.. PO~T ~:; · 
'iD :- 21, LuOY • 2, LEr-J '30, I'llTIAL. PO~T · 
1·10",: 22' L,BOY -': 1, Ltr'J 90, .INt"TIAL. PO~T 

· • 

· • 
80 

FROM HE~E O'l Pj\TH L::NGHTS A~E 
-_. - ·START C~E:CKT~JG FO'R ::'EASI31LITY 

£)5 

N~MBER O~ LOADs COV::~En Is 9 
W~Icrl I~ ~ESS ~rlEN TOTAL LbADS 
.R~}URN .. R,v~ FEAS,IB ILl TY CH_E~K 

-- -- .--- - --- -~. -

~I 0 -: 23' LSOY. 1, LE~J 

~o : -24' L~OY 1, LEN 

95, INITIAL 

B5,. INITIAl.. 

Ito .: 25,ILsOY : 2, LE~J B5, INITIAL 

-c FROM HE~E O~ PATH L~~GHTS A~E 
ST~RT C~E;KrNG FPR ~EASI3ILITY 

12 

PO~T 

PO:tT 

PORT 

NJMSER ~F LOADS COV~RCD IS 10 
_.-:-:-WHICrl IS '5ESS rHnl TOTAL LOADS 12 '. 
~_.:~ ~. __ Rf,:;rURN =-,R.,"1 FEAS.H3IL.ITY CrlEC-K 

90 

.... - _.. - . -

2, LOAOSC:OV~~:::":':':;: 10·",-"=-:07-. 

?, LOA:)5_~COilE:~t:[Ld:8 

2, 

2, 

3, 

2, 

3' 
3, 

2, 

3, 

3, 

2, 

LOADS 

~OADS 

/ 

:OvEREJ 

:O'"ERED 

5 

12 

L'OAJS :OvEREb-:·~-l 2 

LOAJS:OVER.EP. -;-~-"9 
- ~ - - - - ". - - - . ,-

LOADS :Ol/EREJ.~-~.: 7 -11 
LOAJS :OvERED- _. 1'3 11 

'LOADS COvERED 6 

. -_. --~.-~-- .-

LOADS :OvEREQ_"'· 4: ~. 

LOA)S COI/_E:~E~.:.: .. __ .6 

LOADS :OVERED 10 ~ 

.. ' .. - - .. . ".. . ---_.. --,.----._-- ------- - .-' ----

~JO_'O":-26' -La-OY : 2, LEN . 90, I\jITIA(,.PO~T:?'-LOAJ5c-Co.vERED-'-·--'·1 0-·· ·5---·· , 
~lO :·27' L:B 0Y : 2, LE~I ~O, I'HTIAL PO~T 

~O : 2s,LaOY : 2, LEN ~O, INITIAL PO~T : 

. --_.... FRO"l HERE 0'1 P i\ TH L::"JGr-ITS A.~E 9S 
ST~RT C~ECKING FP~ :"EI\SI3ILITY 

"lUMBER OF LOADc COV::REJ'1s1 0 
.' -WHICH 15 ~ES~ ¥~EN TOTAL LbADS 12 
··R~luRN -ROM FCASlhILITY CHEcK 

\10 -: 29' LBOY 2, LEtl: :l5, I'JITIAL po:n : 
~o : 30' L~OY 1, LEN 95, INITIAL PORT: 

~o 31' La OY : 2, LEN 95, I'JrTrAL., PO~T 

. . _ _ FRO 'vI H E ~ EO" P 1\ T H L:: N G rl T :; A ~ E / 1 a 0 
.::::..:c ___ :::_,~ START C~E.cKI~G F,oR .~EAS·I3IlITY 

. NUMB~R JF, LOADS. COV::~ED IS 11 , 
:.---...... -.:-.~= vJ,rilCrl ·15- ... E55 THE,N TOTAL :.:,OADS 12 

2, LOADS COVERED 

3' LOADS COVEREJ 
. -- - . -- ~- _ .. ---- -' -

- : 

2, LOADS :O~EREJ 

3, LOADS :O\,lEREJ· 

3, LOA)S -=OvERE~ 

--

11 1? 

7 1~ 

-11· 6 

15 

f3 12 
- .. I 

... _ .. -- - - - . -



~,~O~=:-=~~~~.~L~l!&M~:.F'S~:;,~~.~I~lIl:~£.~;_~~j-~~ ..... ; .~:~-=t:;-=:~:::::j;::~:~:,)::I*=-:=-=::-:=::,=-=:-:~~i¥~~j;:-:=~ 
f~~tf~-5~?7lC~~Jl~r:5t:-,-~ ; .. LEr:J ·t:lOQ,·: J\!:[:LfA~~: po~r:.·.3,'·[9AOS~~P~~J~:t--D-:L~~~~fr--=C~~~6~~~ 
,NP;::::·~3t~f30'(~: ~L·L.Etl : 100, .I:~r:J1AL POR. T .. :2 '.·L-9AO~.~;.~9cl/~gEQ"c::-=·:::=:=1:=.=--=!L~:.::j 
~~ NO:": ':31+' LaDY:" 1, LErJ : '100,' I'JI riAL. po~ T :'3, L 0/\ ;5:-:0'JER::-~:'6-::::::::·-~..C:::=:=··~:=1 

[o~~(c53~L,1O¥ : 2; l£.J :fll 0; .•• I~IrtA~ p~<r ·~3;iLbAJ~h~O'VE~i9=?~=5~.c=!t:~-~ 
~~g.~6i;=~~ppr:.: :.:~2:, J-EN5<JO 0 !:·.I~lIIJ.\Lo._PO~ T. ' .. ~~~_ ::b.Q~c>~::~g .. \rER§o-:':.'::::¥3..::,:c!.'!:::::':1 

~?-~=_~~~ .~por : 2, LEN': 100, I;-.JIT-~A1.. P9~T:>2, l,.9P,)SfR:~'§?~,d:::-:::-,:.JQ,::,:::J.Ld 
::--=-=':='.::.:- . . ....... -.-- --.-.. -.- .. _ ... --.,- .. , .--j 

------ -'FRO~l HE;~'E O'J P'I\TH, L~~GrlT5 A~E' 105 .. -------.. -- .. --', 
--==-=o~-'T~~~~~i~:C~I~G .. ~9B::.FSA§}8.!k4.I'(ic·'::~:~I::.·::~~~:~·~·~~~f~=;~):~~~~~~~=~;'=~~}:fit~{~~~~~.:=:~ 
=:=~ ... -==N~. !-1

1
BEg,Of, .. LOADc.J ; COV::~E9 .. IS: 11 .. _ ..... _ ... ~.'... ~" ... _. __ ._ .. _._ ... ___ . ____ ... _. __ J 

~.c~:-~~~JB~N'!~~?~S~EIg~~I [jl~Lc~~~~S:~:1·Z-:~· .. =:: ,.;~.~jJi:~~- . "='='~~c~it:c~~~~~j 
. .;'. . ~..: ,::::=-::. ·:·,>·~,:~X: :~?':=-:~~~:;E::0~~~:-'>="~ .. :':.·~:~=j 

~~~!§:~l:}~2-_9~O~~.~7C:2, LE~I: 105, I_:'J~JI.AL. PO,<T :3,.LOADS ~<?Y.E..B~2. __ .. J __ f}. j 
'--Nd~Lf:: ;3'9' LeOY ;: .. ~3' L.E~J :. 105, {~IViAC PORT :'3'~{'bADS 'C-:OvERl:-5~~~·r;~·"7·10-! 

=~-:{,"~~i;:::¥~:tf[I~.s!_J~QCUj~A~.cE OF A.···3\\r"13EREJ.) ?ATH:.:·:·::::c::c,::·=:--::~::.:.: .. --:. .. :::::.: .. ::::··j 

:~~r~~1~s~~t~ -i: ~!.~. :t; :: •.. ~~~;::F:~~~.·· :j;. t~~~~~~tili!~:~;3::t 
:.---- - .. -. -·FROMri t. ~E O?-,J P 1\ TH· L!.. ·\JG H T::, A ~ E . 110· -------.----.----- .-- '''1 

~~~{F~£}~=':~;~:~~i~~:;~::~~~~f-"·~!~~~~~.Ii!t}~X .... ,, __ . _ . ...-~ 
~=..:;::o::~~;c=: .. ?wrl IC H 1 ~.~ E SST H E N·T 0 T A~t OA.P~~c 12 . '';:. ;::::':.=;:;:~===~:.·==:c:.===:c~:.:.:.~-~-:.:::-l 

.-_:;~ .. = .. ,,,~-~:RF;ruRN~ ~~~M FE 1\ S,IB IL:ITY=' \;~ECK--:::. -:'. _.. .:-.-~.c::: ,:::--~~:-::-:~~~~:~~~-.-: . 
. ~O·:~:·!+i,;· .. LJ30Y·: 2, LEn: 'flO, !'JITIAL"PO~T': 3, L.OA\)S·C{)\fEREJ·:c:"~;:~·:7:·=: r?::=~ 

~NQ~{.~,L·~~·':· l;,80Y~;-2' LEN.: It 0 P. iNr 11 AL.~· PO;,: T-;·3, LOJ\D5:'CQ\,.e:F(~~{·~~~::~to'~·~~5:'·· 

=~.9.:=~: .. ::i~:f::=.kb1q)'~~}, J_Er-J}_~}:lO!::,)~.~r.,~,~L. PO~T ,:.:.~,.-LQAJS:?~~~~:;?~:=;.~~=~¥~~trtffi:.;:o 
-NO-:-'!fs-,-tpOY-:"-l, Lt~/ 110" I \JI TI AI... PO~T 2, L'OAD5 CO'vERE'9-:'-' 4 

, . 

. ~)IJO-~;;-'X.4.6 J~; LBOy::.:.:c.2, ·LEN:·110, . I ~ITI AL.. PO~T 

::J~:Q!::;_~~~7 t L.BO~~ .. r 2,. ~EH .. :,Al0! I NIIl~L., PO=< T 

3, LOA)S CO"-ERt:):':':;~-=:':"-1:3:"':"';-5 . 

: 3_' _ I.;OAOS.·.~Q_V.E:REP __ , :~: \'.1 _ ~:t~2 __ . .. . .. -------. -. ~-'- - .... -..... -..... -- "--'1 

::~~4{L--i:-==11V·~.~.90Y. ;:,.2,,> I..,EtL:.110, INl Tr;AL. . p.O~r 3 'L9Ao~~~)~-£J!~~8~~~;:::c-..::!.~s~~.:}) ! 
=--~o'-: ~-::~--LBOY'::-'2;:::CEN' :.ct't(f~--T:\J"iTIM .. · PO~ T' ·2, ··COJ\~f5 tOvER-ED--· -. -7"'- 1"3 1 

.::= •. ::::=:::.:.:.,- ::.-... -", .- ..... ',- ,-.. ,:. -. ,,·c·:::,· ·'C·.: c. ..1 ..... ''' .... ~. :·-·.:?:::: ....... :.--o:.::::.=:o:::: .. ::::=.:::·;·~·~ -::.j 
~~::::.5{)-,:~L:6-0Y.-:..·:-:..~+=-:CEH:::c.·:l1(l·,·:~:..P..,1:..T'I.;AL-P.O~T-·::-3,·--LOA-DS-C-O-\l-€;R£{);;··· ::13'·'· .. r-2c:~ 

~~:Ef::::~'¥,::.t~t=:~,FROM HEF~'E O'J PATH; L:::NGH'PSo"ARE . ' .. 1·15 -.' 
·-------S'TARr--e,E'CKING 'FOR' F'EASI 8rLTTY~ . . , . 
~~·~,~lt~-:t::::'=:=NJMBER~~6F LOADs COV::QED.is -11" 

~HICH Is LESS trlEN TOTAL L~ADS 12 _. 
~.=~·?·~~::~-.. ~-.~c'R..tlY.B~N~~~?M_-~~1\S!lB-~~J T'(~~E0f~.J( ... _- --- .-----_ ... -.- .. . ------- --- ._.- --_. 

: __ ~9.:~~L~?J..l'.:itf38:~~_L3'_~:E~1 ~)=-=-lJ.?L:-,:b'itllP.k. PO?T.:: ... :3}-c ,L.,OAq=~)~;:9:.vE~-gf:?:~:<~;Z ..... ::'9· 
·NQ;·:-:;??·~.-·L..a Oy.; .. ,2 'L..EN :11.5 ':.:::J~IL~~~ PO~ T. :.2:, L9A D ~c :';.P:..v.c&.R.~J.-:.: ·:·1()-,,::12. _ 

;::~.O~:=~_~:~:~~~:-:L~O~-:f~2 i.' LE~J ;·t~ .. :115~':_::{~'ITJ;~.~ .:PO~T-·:-):-~~:~A.·9.~:i~~!-~~~:;~~-~};~~ __ ~-:6-j 
~N-O='::::';:O:·:54;·:LeOY:.:", •. 2,' LEt·/ • ::'115 ,·.I\lITfAL.- -PO~T .3, LOAiJ~::: ... Ov:gR~c-=-:·-l~t::-·:& :;i 

.~~.~~(f;~E~5:?,. ::~q3 9~:; -.:. .... 2' .. 'Lf. t:f: :-"tt5 ':Xo.~~~+JIA:k PO~T·. :.i_3 :(~~9A:g~?.::~f:9:.it~R~-?~:tt~~~~~P:~ 
:.:-~Q= .. : -56,_:=L.sOY~: _2, LEN ;11-5, _I~lTIAi. .. P.O~T; 2'.LOAJ5·:;:Q\l.ERE~J~: ...... .:;:6·.:-_·.::::7-=--:j 
~~~_-=-:=:-:-~ _ :::-- ~ -- ~ --~-: -- -.:.---' .-. -..... ::=-:=::-:=-=-::-:~::::.-.-:~.:=_:~--.:- :-..... :~~:.-- .. =-~-_.~-.~ .. ~-=¥.:-: .. :.~~~~-:-_:~::::~~..::::?-~~::::::=~;~:·:~~~~~~=~.::·.::=--::1 
". NO--:-57-i~·LBOY.-:" 3, 'L'EI'I =-_:f15·'_-,I~~fTI·AL.-PO~T:: ?',-LOt\J5 COV.ERED.; 10 ,./3.1 
: '-N'o':' 58,..o::L,BOY·: '2, . LEN' :115,.-.:INITIAL...·PO~T :,3,-' LOADS' COVERED-'13-'-"Q--1 

. . ! 



~~M~~oe4ic-::~i-3,:~tgr,Cf~!:1:r5-~-01~-I4l'A~~::~PO~--T--:'~=:2 t=tOAD5~@~~~'¥~~~11/-~~:1~~-~i. 

~g]:-~~E~:tfJD_Y~=.r:?'. LEN u: 115'_~JNII:~~~~~po~ I:: 2-':.~bo~g~{~Q"~~Rt1lt~i:~3@J7::r0_~::~:E 

NO.c::;:=col-' LaDY :2, LEN: ·115,VJrTrAL.. PORT: 2,_ L9AD5.::;X~:l{E.R~_q~~:=:,.:,~,,-,=11:,:,:-,-t2c.:--
----- .. FRO..., HE~t 0\1 p/\ TH L::NGr;TS: A~E 120: ,_c_, ---': .. -"..;-::::-==:.=_==.::.c-=_=::-:.:._-.:.·::-:-=.:.::._ 

ST!\RT C1E:CKING F.,oR FEASI3r·LITY-- __ _ 

'JO:-o2; LBOY 

~O :: 63' -L.Bor: 

2, LEN : 

1, L.Ef\I: 

LEN· • • 

LEt·J 

LEN 

LE~J · • 

LE~I • · 
LEt~ • · 
LE"'J 
LEr.J 

120, I'JITIAL PORT 

120,I'JIlIAL PO~T 

2, LOA]S· :Ol/ERE:> -- 1)-

: 3;L'OAJS COvEREb~---':~1l} 

--- . -- . 

-3 , LqA)S 

2, LOAJS 

3, LOl\L)S :O\lERE;.:L..: __ -=::lD. __ .1_1 c_-:----, 

.. 2, LOAJ5 • :OvERt-D A S 
. -.~ 

3' LOAJ5 COVEREO:--1-3· 1 0-- -~' 
, 

_L.O A L) S -CR'l: E:g~?=,-:i~-~~t~f ; __ -.:: : _ ~_ i 

(.. 0 A J $. -C o,v,WQ-::::::::-:J:9..::::-:::::-~=-- :-~ 

- .. --.---.--.--~ _ .. -- ----------. _ .. _. -----...... :----- ... ------ -- - ---- -_.-

-_. - ----.--- ----... --~ ---, - ---~ -- --~ _. --- ------.-~--~- -_ ..• _._-_.- .-- ._----._ ..... --
~ .. --. -.. ---_._- - _ .... _--- -- - - - >._ .... 

. ~:~~:...: .. -.-:.--:.-::- .. - -::.::--:-..:..':--~-==--::.:...=:..:---=--.-~===.::::.:.==- .:.....: 



-". 

--- --- --- _. -! _. '".-_ ... - .. .... - .'- --... '- -- -. . , 
-: . :'._::: .. '::':.:.:.::''';:_': .. ':'', .• ,".~:=-'.==':":::':":'=----::::'::':",-::::_-:,-:: J 

c.:: -=:.:c:::-::_::c .. =.=-==.,.··.:..-=- -.-:-=-==--=-=--==1 

. . .. - ... :. :.---::"'~ .• --::."::~ - . .:..: :==-=." . . '- _ ... _._--_. --' 
...... 

·~~~;~l;.:~~=-T0I~?i;1 
.. - ::.:~ 



•• _ •• + +-

=-.-=--=-=""--..~-::.:-.: . 

... _. . '. -_._._._---

:- . -- - -.::. 

-_. ----_ .... __ .-

..... -'--_.- - .. -_ ... _--- ... ----.---.- - _... --_ .. - -' .• _-

- _. . -
. ---.-~ - -- ---

FIRST OCCJR~ANCES O~ LOADS IN THE NE~J ;:lAT; LIst.:::i~::~.
****************~************.***~************* 

FIRST ·OC:JRRANCE 
FIRST OC:JRRANCE 
~IRST OCCURRANrE : 
FIRST OCCJRRAN~E ! -
FIRST OCCJRRANCE : 
FIRST OCCJRRANr~ • 
FIR'T OCCURRA'J~E 
EIR~T OCCJRRANCE 
l- IRST-OCCURRANCE- :- ... 
~IRST OC:URRANC~ 
FIRST·OCCURRAN"E 
FIRST OCCJRR:ANCE 

----_.-----_. _ .. - --_.< ... -, 

- .0 ._ 

:..: .. - . ..:....::_::._. ~ . .:. -- _.'. --_. _. 

- ---.,.-.----,~~.---.. -.~, 

. . _. ~ 



-" "----"._--_ . . -----



'~:' .. --... ~.-.-:--:----:--. - --_ .. _-_ ...... -.- -
,~ .-- -

- .~--~.-.--... --.:-~--.--.--.---- -- -- - ,,,-





- ---~- -----.---~. -_. - - -- -
_ .. ~ - - -- - - - - - - --- - ---

. -- ._- - - -- ---_.- -- ".- --------;. ------ ~ --_._--



. _."_._' .. _'. - _ ... _-_ .. _--"._._-_. -."_._--_._----"_ .. _-

-". --.&_. - .. ..; .. " -- .:..-~-.------ .. ----------"-"---1 
! 



- _._ .. _.- -- .-- .. ~.---. -" .-
'-



- '.. .. -." __ • __ ._._._-••••• __ .' • ____ ._ •• _, __ •• _. '~_'"4' _._. ____ •. ______ ~ __ 

_ .• -.~-_ _:__:__~.::_ . .:=_=_=_T"_ .. ___ • ____ ::"'""7 .• -::-:;- -:':. __ '."':-:'~;::: _:'::_-=:::'==:::':.'._-_~::~ ___ =_._==== _ -==::=::_':~ :.-,,_._. 
... - ... -.-. -.--.- . _ .. - .- ."_. ---- - - . -::--:=.::--.:.~ ."-:==-:-:-':':::::::: .. :"::-''::::::':======-=:--==':'':~-.='':.::: ... :":'- •. :-::: 

• .-.• j 

. _ .. :-- -. - '-.' '.~ ~. ';."":". ~-', .. 



."~~ "_" :"_-.:.. ~:"-._- ._" r'~ -:':"::::7..:~='':=--=::'::::~=:~~~--.=-::~~"7::-:"~:':::::~ -.-~. 
--.~ .... --.---... --.--- - - -

-.. -..-.,....._. .~."'_, r _ ••••• _ .' __ "~" 



· --~- ------ - -- ----- ._-- -- - ---+ -- - -- - .. --- --~--'-----------'--- ----.-.----~ .----

~ .-.. ~----""_ -. -_-_ --- - -.7-:----':- -.=-. :... --- ' .: - -~-- _. - - . - '-.-:::-~:-'. 



-.- ..• -"---------~"-.- ... _ .. --- -- _ .. -.- ... -.. ---- ._-------_._-_ .... - -' ""-._" . .. . __ . _0_._._.·. ~ __ _ e____ ... __ ,. _________ .. _._ .. 



· ... -- -------- ...•.. -- .. '--



11 

I;';' 
II " 

< < 
, I 

;;1 
II , 

, t 

o '0 
'(\1, ..... 

,I, 

0" 0 
(\1 0 

;'i'~ 

I- "I ..t ,I, 

J' ' 
hI 
rYJ'I') 

J,!i: 
ld'i 
CY..::t 

: 'I' 

i 1<1 
I:! 

,I 
, < 

<,I ,; , 

i: : 

. 'I' 

1:' 

;i 

,I: ; 
I :: 

!, , 

! 

ii 
, , 

,j 

; \ I:' 
, , 

;{'J 
:::,'1 

" 

" 

, 'I 
i ~ t· • 

iip:\' 
, " 

1 ': 

Ii! 
,
n. 
:~ 

rY 
!1l 
<I 

I ; 

t: . 
·.1, 
'I' 

I,: ,. 

" 
<, 

: ,I 

l·. 
I 

" 

! : 

" 

" i 
;';11 

i' ,II ' .. : 
~ {," 1.:·: 

i;' I 
,i: i 

, 
'I 

""I 

i 
I":' 

i, 

: , 

i 



APPENDIX E 



" .. 

-~~***********.***********.**********.**********~*************** 
+= * 
* * * PROGRA~S * 
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