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TRANSIENT RESPONSES OF A THICK-WALLED
LAYERED SPHERICAL SHELL BY THE RAY THEORY

ABSTRACT

In this work,:the transient response of a thiék—walled
layered spherical shell subjected to rédially symmetric loadings
is studied using the ray ﬁheory.‘ ﬁormal mode solution in the
Fourier transform space is expaﬁded into a series whefé each term
represents a spherical harmonic wave. The inverse transform of
these terms whiéh are called ray integrals can be obtained in
closed form. Since eaéh ray reaching a rééeiver point hasva
~unique arrival time, only a finite number oﬁfthem should be con-
sidered once the time interval‘of interést is specified. Summa-
tion of these rays up to a specific time gives the exact solution
of the trénsient response. Since the number of_fays to be con-
sidered increases geometriéally és the timé'interval increases,
‘bthe methodlloses.its advantage in galculating the long time re-
sponses of the medium; Similar problem will arise‘in those

cases where the shell is a thin one.

A computer program is developed in order to investigate
" the tfansienﬁ displacements and radial and tangential stresses,

and numerical results are given for a suddénly applied uniform
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"internal pressure case. The peak value for téngential stress is
found to be 142 per cent of applied pr;ssure in the two-layered
shéll, although this value was 165 per cent for a single'layered
shell having fhe same material properties with the first‘layer.

The réason for radial stresskchanges fromlcomﬁression to tension
due to dynamic pressufe éaﬁ be found in the result of multiple
reflection of waves. As the radial displacement'casé is inves-
tigated, it is found that the peak value of 1.31 ﬁnif of displace--
ment is reached for the two—layered shell althouéh it was 1.70

"for the single layered case.
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QfISIN TEORiSiYLE}kALIN KATMANLI KORESEL
* KABUBUN™ GECIS REJIMINDEKI DAVRANISI

OZET

Bu galigmada, 1g1in teorisi uygulanapak kalin katmanla
kiiresel bir kabuZun radyal simetrik yﬁkler.altlnda gegis rejimin-
deki davranisi incelenmigtir. Fourier donligiimi cinsinden elde
edilen normai mod ¢éziimli, her terimi kiliresel harmonik bir dalgay:
temsil eden sonsuz bir seri halinde yazilabilir. Her.terime bir
1s1n adi verilmigtir. .Bu’1§1n1ar1n ters donligiimi kapail.olarak
bulunabilir. 'szlenen’bir noktaya gélen\her lslhln ayri ve tek
varig zamani olacaglndan, g6z1emVsﬁresi be}irlendikten.sana sa-
dece sonlu sayida 1sinin incelenmesi gerekmektedir. Belli bir
sﬁfe igérisinde gelen tiim 1§1nlar1ﬁ topiaml'drtamln gegi§ rejimi
igindeki davranigini kesin olarak verir. Siire uzadikga 1s1in
"saylsi geometrik olarak artacagindan, uzun sireli davran1§}n he-
saplanmasinda metod avantailnl kaybeder. Kabugun ince olmasi

hallerinde de ayni problem ortaya g¢ikacaktir.

Gegis rejimi igindeki deplasmanlari, radyal ve tegetsel
gerilmeleri bulmak igin bir bilgisayar programi geligtirilmig ve
anidénruygﬁlahan diizgiin ig¢ basing iginnbulunan sayisal sonuglar

sunulmugtur. 1ki katmanll‘kﬁrgsél kabukta en yiiksek tegetsel
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gerilme degeri uygulanan basincin ylizde 142 si olarak bulunmugtur.
Birinci katmanla ayni malzéme 6ze11ik1erine sahip tek katli kiire-
sel kabukta ise bu deger yilizde 165 olarak elde edilmigti. Dina-
mik;yﬁklemede radyal gerilmenin sikistirmadan cekmeye donmesinin
sebebi olarak 1ginlarin karglllkll yansimalari gSsterilebilir.
Radyaludeplasman'durumu incelendiginde ise en yiksek deger 1.31
‘birim olarak bulunmugsken, bunun tek katménll kﬁrésel kabﬁkta

1.70 birim oldugu gbzlenmigtir.
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1. INTRODUCTION

Realizing the effgcts of internal explosioh or impact on
a épherical shell, an"analysis of the t?énsient response of the
shell under such dynamic loading is necessary; This work is
aimed to such an énalysis of a thick-walled 1ayeredkelastic sphe-

rical shell, subject to fadially symmetric loadiﬁgs.

. %
Even though Lamé considered the static problem in 1852(1),
the dynamic problem received attentidn only after 1955 (2). 1In

general three different methods of solution exist,

1. The Normal Mode Analysis,
2. The Method of.Characteristics,

3, The Ray Theory.

The first metﬁod was used by Baker and Allen (3) where
they studiéd the dynamic response of an elastic spherical shell
subjeét to a spherically symmetric, internally applied préssure
pulsé. Their soiution is in the fofm»of an infigite series, each

term of which is the normal mode of the shell.

Baker (4) has also studied the chatactér ;nd frequencies
of -the normalFmode vibration of a thin spherical shgil»and has
shpwn by ;xperiment_tﬁat such modes phySiqally do exist. Later,
Cinelli (S)Iusing'the finite Hankel transform arrived at the same

solution. However, the main difficulty with the normal mode analy-

* ~ ~
Parenthetical references refer to the bibliography.



sis is the slow convergence of the series especially for large

thicknesses of the shell.

As an alternaﬁive,vRéée, et al (6) applied the method of
characteristics to the same problem. Thé method‘was_first pre-
sented b? Chou and Koenig (7) in their analysis of elastic waves
with either cylindrical or spheriéal symmetry. In this.method,
the continqous domain is replaced by discrete points and the pro-
perties at eaqh grid point is calculated. A numérical procedure
involviﬁg stepwise integfation along the characteristics is em-
ployed to solve the problem for various inputs. The accuracy qf
the solution»depends on ;hg mésh size used for the numerical

integratibn.

Later, Pao-and_Ceranoglu-(S) presénted the analysis using
the Ravaheofy. They have formulated the general solution for
transient waves in a thick-walled spherical shell'geﬁerated by
uniformly applied pressures ét the~in5er and outer surfaces. In
this work, we will extend»theif method to study the pfopagation

of waves in a layered spherical shell.

Method of the Ray Theory takes its name ffqm the geoﬁetric
_theory of .1ight by following the propagation Qf a pulse along a
_ray4path._ In the theory of geometrical optics a ;ight ray is
defined to be the orthogonal trajectories to the wéve‘ffonfs.
The dintensity of lightralong a,réy¥path'may be Aetermined from
the asymptotic»solution_of wave equation‘at high‘frequencies (9).

This is knoﬁn.as the Ray Theory of optics.



The general solution for Qaves in a bounded medium can
"be sorted out into different rays by using the Bromwich expansion
or the Like. Each term in such an expansion represents waves
travelingvalong‘a givep’ray—path. In the 1iteraturé, this ap-
prbach is ralso known As the ray theory, but it is different from
" the ;a& theory of geometrical opticé. Van der Eol and Bremmer
(10)‘developed such a ray theory to calculate the diffraction of
radio waves by the earth. Pao and Gajewéki (11) present a re-
view article concerning the method as applied to elastic waves

travelling in horizontally layered medium.

In the ray theory, it is assumed that waves propagate
along different ray;paths formed by reflections and transmissions
taking pléée at the inteffaces of the shell. Thé'Fourier trans-
formed solution of the equétions of motion can be sorted out
into.an infinite series when each term represents such rays.
Inverse Fourier transform ofvthese terms are called ray infegrals.
~These integrals caﬁ‘éither be integrated analytically in closed |
form as for“the axisymmetric loadings of spherical shell, .or
evaluated numeficallybfor ﬁdnsymmetric loadings. Since the rays
arrive at a point of observation‘in successive Qrdgr according
to the theory, the_transient‘solutibn obtained by summing up
‘these rays is exact up to the arrival time of the next ray. The
method is most effective for early time solutions of fhickfwalled
shells, sinée the numbéf of rays fo be considered,increéses as
the. duration of obseryation’lengthens of the thiqkneés of the

shell decreases. In such cases, normal mode solution is more

economical.



In the following chapter, we wilivpfesept the general
eduations of motion for an elastic thick-walled spherical shell
and their extensions to waves in layered épherical’shells. The
normal mode solutiomn of the problem will be given in Chapfer 11T,
while Chapter IV illustrates the application éfvthe ray theory
to the problem. The solutidn due to a suddenly applied internal
pressure will then be presented in Chapter V, with Chapter VI

devoted to numerical results and discussion.



IT. EQUATIONS OF MOTION

A. GENERAL FORMULATION

Considering a typical volume element, absphericai,square
(Figure 2.1.a) with radial thickness, dr; it can be shown that
the response of an isotropic, hbmogeneous, elastic sphericalv
shéll, subject to radiélly symmetric loadings (Figure 2.1.b), is

governed by the equation (12):

Bcr 32ur
st T 7 (0, -0 =0 - (2.1)
4 9t
where

Or,Oe - radial and tangential stress components.
r - - radial distancé
u. —‘radial displacément
P - mass density
t - time

‘a;b = inner,outer radii
Pl,P2>= internal,external
-pressures

- e | (b)
FIGURE 2.1. Dynamic loadings and a typical volume element of a
o thick-walled spherical shell. :



For spherically symmetric loadings, all shear strains
and stresses are zero and the displacement is a purely radial

one, i.e.,

u_ = u_(x,t), Cu, =0, u, =0  (2.2)

The strain-displacement relations in spherical coordinates are

(12)

Q
[
[

(2.3)

r
€= , €. =g =;.._

¢

where Er, Ee, €¢ are the normal strain components. -

Uéing the above expressions in the Hooke's law, one can show that
the stresses are related only to the radial component of the

displacement through the relations

: _ ' Bur . u : ’
o_ = (A + 2p) —= + 22 £ (2.4)
ar - r ’
Bur u : -
o, = 0, = X\ + 2(A + p)— : (2.5)
6 q) a r
r
where A and u are the LaméAconstants. Substituting the above
" expressions into Eq (2.1), We_getk
3%u du 3%u
2 1 r
e T (2.6)
5¢2 T r2 c? §e2

whefe c = (A+2u)/p is the velocity of the pressure waves tra-

velling inside-the medium.



1f the . shell is subjected to internal and external pres-—

‘'sures, the required boundary conditions are
‘Or(a.,t) = - py(t)
o .(b,t) = -,pz(t) (2.7)

and in the case where the medium is initially at rest the initial

conditions pertinent to Eq (2.6) are

aur(r,O)‘ ,
u_(r,0) = ——g————— =0 ©(2.8)
. t .

The solution of Eq (2.6) is simplified to a great extent

by intr¥oducing the displacement potential ¢, where

a0

u_(r,t) = 3T (2.9)
Thus, Egq (2.6)'takes the form
2 2 T
%— 2z L 9% -9 (2.10)
L 9p2 r oJr 2 g2 :
‘Integrating the above equation with respect to r, w%Jgetv
2 X 2 O : ' '
979 L 230 1 370 _ ;i) - (2.11)
ar? T 9T 2 pr2 : ‘
where F(t) 1s an arbltrary functlon of time only Note that the

particular solution of Eq (2.11) will also be a function of time



‘only, say @p(t). However, such a solution will not contribute
to the displacement, u., as seen from Eq(2.9), hence, it will
not contribute to the stresses either. Thus, we can set F(t) = 0

with no loss of generality and obtain

k= SNt | (2.12)

as the equation of motion.

The components of the stress tensor in terms of the po-

tential & are

| _ o, 8%¢ _ 4u 30
,Or(r’t) =0 - - Ay (2.13)
‘ 2 ' .
O (r,t) = (L= 26)p 9°¢ . 2u 3¢ ‘ (2.14)
3¢ 2 r 9r

where K = /(A + 21) = (1-2v)/(2-2v), v is the Poisson's ratio.

_ Formulation of the problem outlined in this section will
be modified for the case of a layered shell in the following

section.

B. LAYERED SPHERICAL SHELL

We will now consider a layered spherical shell with two
) ey . .
layers of‘different materials (Figure 2.2), subject to both in-
ternal and-external pressures} SUbscriﬁts and superscripts 1 and

27will be used to identify those quantities related to the inner



and outer layers respectively. With this notation Eq (2.12) can

be written as

82¢(i)

. (i) 2 . (1) :
+ % 90 =-l— 2_2___ i=1,2  (2.15)
dr? dr c? 3t?
. i
where it is understood that
O (4)
e (2.16)

or

The Boundary conditions pertinent to the problem are then

(1) _ | (2) i}
o (a,ﬁ) = - py(t) o, "(b,t) = - p,(t)
d ey = s P, Doy = P,y (2.17)
b Y : oo or -
pl,Z;— mass density
. c - dilatational wave
1,2 :
speeds
') - radius of the inter-
: face

FIGURE 2.2. Layered Spherical Shell.



whereas the initial conditions are-

. (i)
(1)(r,0) _ 29 (r,0) _ 4 .

""" (r,0) = ———"—+% = 0 ..
ot

and the stress components are given by.

p2g (D) 4uy 1 (1)

Oii)(r?t) =p

i . ot? r or
(1) ; 24 (1) 21, N (1)
_ _ 3°d i 99
Oe (r’t) - (]— 2Ki) pi Btz. + r 3t
i=1,2

where Ki = ui/(ki+2ui) (l-Zvi)/(Z—Zvi).

10

(2.18)..

(2.19)

‘Since it is easier to work with non-dimensional quanti-

ties, we will introduce the following non-dimensional quantities

(denotgd by a bar belowvthé variable).

s (1) _ 5 0 r - c/a

.E = b/a 2 = 2/a o a=1
Eﬁi)'= uﬁi)/a

t = clt/a

(1) _ (i), o2 _ 2
9_ - O /plcl \P' pi/plcl

(2.20)

Thus, "the equations of motion in terms of the non-dimensional

variables takes the form
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+ = =B i=1,2 (2.21)
where
€1
Bl = E;- i=1,2 - (2i22)

The relation given in Eq €2.19) becomesz

(1) 2 p2e (P by 20 )
g, " (r,t) = ny (B NI I ir
g (r,t) = n,|(1l-2k,)BS + : (2.23)
) i R S 8£2 r |/ 3r
i=1,2
where
. pi
ni = ; i=1,2 (2.24) ~

LN

To simplify the writing of the equations, bars indica-
ting the non-dimensional variables will be dropped with the
understanding that all the quantities that we-will be working

with are in the non-dimensional form.

The soiution of Eq (2.21) in the form of normal modes

will be presented in the following chapter.
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I11. NORMAL NODE SOLUTION OF THE PROBLEM

The solution in the form of normal modes will be obtained
by first transforming the equations of motion using the complex
Fourier transform on time and then solving the resulting trans-

formed equations.

The complex Fourier transform pair of a function g(r,t)

is defined as (14),

- .
g(r,a) = I g(r,t) e™®F at (3.1.2)
0
1 iete _ -iot : !
g(r,t) = PP . g(r,o)e do . (3.1.b)
ig-o .

where € is'chasen such that the singularities of g(r,o) lie gll
below.the line of integration. ’dlappearing iﬁ the above rela-
ﬁions cép‘be viewed as both a non—diménsional frequency o = Qa/cl,
Qhere w is the anguiar f:eqdency or as the non-dimensional wave.

‘number in the radial direction,

‘Transforming the equations of motiqn'given in Eq (2.21)
according to Eq (3.1.a) and solving the resulting equations we

get

51 (r,0) = 4,08 r0) + 3,0 iP (8, ra) (3.2)

i=1,2
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where
1 2 .
hé )5 ( )(z) = exp(+iz)/(+iz) (3.3)
are the zeroth-order sphefieallHankel functions of the first and
second kinds respectively. Details of the solution given by

Eq (3.2) are shown in Appendix A.

The constants Ai and Bi.are to be determined from the
boundary conditions given by Eq (2.17). The transformed form

of the boundary conditions are

5 (1,00 = - B, (@) 5 (0 = - 5, ()

(3.4)

s M0 =3P 00 iPe,w - e,

The transformed form of the relations between the stresses:

and the displacement potential are
, 4.\ ,=(1)
_n2 2—(1) _ 1 do

' ' 2k
_ 5éi)(r,a)k= ny —(1-2Ki)Bia?5(i) + ( ri)

fgﬁi)(r,a) =eni

(3.5)

Applying the boundary conditions to the solution, Eq (3.2),

we get
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AgaBynycygy + ByaBonycy,y = Pyla) b

Brdypg T Bidigg = Apdygg + Bydyyg 3-8
Alclli ¥ B1Crag T AgBaMatara F BaBaMChay

where
cijk = aBikhéj)‘aBik) + AKihéj).(qBik)
a5 T ueih§5>'(asik) - - (3.7)
héj)‘(z) = dhéj?(zj/dz

In the above expressions, i denotes the layer, j denotes the
order of the spherical Hankel functions, while k fakes the values

of 1, £, or b for inner, interface and outer radii.

'Wfiting the equations given by Eq (3.6) in matrix form

simplifies the work in determining the unknown constants Ai’ Bi’

Thus, we can write

—

°111 %121 0 0 ML T
. p,(a)b
' ‘ » : B —_—
0 0 €21b €220 1 oB,m,
| = (3.8)
S ) | e 1. .
d119.  Y12¢ o1y doag | | %2
. M ) . _ ‘ v’ . _ 0
c114  C12¢  “F2M2fa1g CUPLTPY) By .



Using the Cramer's rule A Bl’ A2 andlB2 can be written as

l’

where

and

py (@)

a

Py (@)
2Byny

111

114%

€119

111

11¢

C119

b

121

12%

12¢

121

129

12¢%

P, (@)

pzca)b
aanz

21b
218

“BaMycaig

21b
-d

218

“BaMyCa1yg,

€21b
214 -

BaMacany

22b
229

“BaNgcoay

€220
224

“ByNaC92y

22b
22%

=Banycyoy

(3.9)

'(3.10)

(3.11)
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Py (@)
€111 €121 3 0
p,(a)b
0 0 = e
aB,.n ¢ 22b
1 22 ‘
A2 = '&— ’
By , (3.12)
d11g 412y 0 ~dy9g
119 120 0 Bymyegyy
p, (@)
©111 €121 0 3
. . p,(a)b
c —————
2 . .
1b B . a82n2 v
B, = 1 (3.13)
By
di1y d12¢ “d510 0
112 c12g  “R2M2C21y 0
The inverse transform of 5(1) and 5(2) are determined

from Eq (3.1.b) where the integrals are evaluated by the residue

theorem. The integrand has an infinite number of simple poles

at AM = 0 which are.all real. Each pole corresponds to a natural
frequency of the layered shell. The resulting infinite séries
solution is a slow conﬁerging one for small values’ofvtimé; ‘We

will obtain the solution in terms of rays travelling along dif-
ferent paths inside the medium, in the next chapter, which 1is

more effective for small values of time.
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IV, RAY THEORY APPLICATION

A. INTRODUCTION

In this section, we will derive the solution for the
transient respbnse of a layered spherical shell subjected to
both'interna} and ektérnal pressures, in the form of rays or
waves travelling along differenﬁ paths. Each ray reaching a re-
»ceiQer point has a differént and unique arrival timé, thus, only
a finite number of ‘them should be considered once the time in-
terval of»interest-is‘specified; Since the numbér of rays”to;be
considered increases geometrically as the ﬁime interval increases,
.ﬁhe method loses its advantage in Calculating the long time re-
sponses of the medium. hSimilar problem will arise in those cases

where the shell under consideration is a thin_one.

Waves traveling inéide the medium can be regarded in two
éfoups, (1) those travellingroutwards called outgoing wayes,'and
(2) those travelling inwards, called incoming waves. These can
be seen from the solution given by Eq (3.2) which has an inverse

‘Fourier transform of the form

¢ r,0) = & v,/( g @™ (Byra)e ™ aa
ig-> -
ie+o : ‘
] (2) . —iot : :
+‘§F .//f Bj(a)ho _(Bjra)e . do s=1.2 (4.1)

fe-wo



, e e 1 ' ‘ '
Noting the definition of hé ), the integrand of the first inte-

gral is of the form

; . A, (o) -io(t-B.r)
(L) -iat j
A, (a)h . ro - J .
(R 70 (B ra)e 5,7 (4.2)
j=1,2
which represents harmonic waves travelling outwards. Similarly
the integrand of the second integral
. B, (a) —ia(t+8lr)
(2) -iot ]
B.(a)h i o . .
j(@)h " (B ra)e ST (4.3)

represents harmonic waves travelling inwards.

Using this notation we will now derive the coefficients

of reflection and transmission, in the following section.

B, THE COEFFICIENTS OF REFLECTION AND TRANSMISSION

s

Let us consider the case where pressure is applied to the
‘internal surface. The wave trévelling inside the first layer
of the shell prior to any reflections (Figure ‘4.1) has the form

ﬁéi)‘(r,a) - Alhél_)(ra‘) - k.4

where superscript of the wave shows the Iayer‘of the receiver

point, first subscript>stands for the ray index, and the direc-—

‘tion of the wave (outgoing, 0, or iﬁcbming, 1) is‘deﬁoted by the

second subscfipt.. A1 is to be determined from the boundary con-

~dition

18
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FIGURE 4.1. Initial'outgoing wave in the first shell,

-(1 o - :
5 (1,0) = - 5, () (4.5)
oo . )
Thus,
' Cp, () ' » '
(1 1 .
¢§o)(r,a)’= S hél)(ra) (4.6)
: 111 ‘
where clll was defined in Eq (3.7). Inverse'Fou}ier transform

of 6§i) represents the outgoing wave travelling inside an infi-

nite medium due to a pressurized cavity.

-When this wave reaches the intermediatebsurface-at r=2, it will
give fise'to'twb new waves, oné reflected back into the first
medium, an incoming wave, whilé'the~ofher-a transmitted wave
travelling outwards in tﬁe second ﬁedium (Figure 4.2). Diéplace— |
ment potentials representing these waves can be written as

p, (@)

| “aii')(r,a) e Rlz(a)héz)(ra) S (4.7)



FIGURE 4.2. Initial reflected and transmitted waves due to

internal pressure.

Z(2) _ e (1) |
000 (r,o) = s le(a)h0 (Bzra) (4.8)
. 111
where R and T are called the reflection and transmission co-

12 12
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efficients, respectively, for those waves impinging on the inter-

face by travelling inside the first layer. Both of these coef-

ficients are to be determined by making use of the boundary con-

ditions.

My + 3V 0,0 = 12,0
r
Too 11 ; 00 '

- (1) —(1),, - (2)
o (2,0) + 0 77 (%,a) of (2,a)
rdo r11 ‘roo

Going through the analysis, we get

c1199210 ~ BaMaCo1g Y119
Bamacargdiag T C120%210

Rlz(a).=

(4.9)

(4.10)

(4.11)
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c11012¢ ~ 1299118
Bomyco1ndiog ~ 1249919

le(a)_= (4.12)

We also have to introduce the reflection coefficient, le(a), for

the waves caused by the reflection of the waves impinging on the

inner surface, (Figure 4.3). Let 5§é)-represent such a reflected
ray.
31 (x,0) = P e @n (ray 413
20 5 ~ oc 12 3Rty i, a '

111

and thé'boundary condition which will determine Rll(u) is

s (1,0 + 551)(1,u) -0 | (4.14)
T11 . 20
yielding o .
| Rll(a) o121 (4.15)
: €111

FIGURE 4.3.. Converging wave after reflected at r=1.

'*._‘.-_; )



22

Note that this reflection coefficient is exactly the same as that

given by Pao and Ceranoglu (8) for a sinéle layered shell.

In a similar manner, we can define the reflection coef-

fiéieqts R2b and Réz and the transmission coeffigient T21. Going
" through a similar procedure, we get
c
R,, (@) = - 2B (4.16)
22b
_ C12p%229 7 ByMyeyygdyag
Rzz(a) = Fn.c 3 s 3 (4.17)
27272127128 1287214
- B,n,(c,,,d = Choodyio)
T21(a) . 2272187228 2227218 (4.18)

Bamgco1pdiag ~ S12¢921¢

Noté that R2b is the reflection coefficient at the outer surface.
RZQ and T21 are thf reflection and transmission coeffiéients for
those wavés that are impinging on the interface while travelling
inside the second layer. Note that consideration of thg preséurgv

applied to the outer surface wouid yield exactly the same reflec-

tion and transmission coefficients.

A complete list of the reflection and transmission coef-

ficients is given in Table 4.1.

-8
L0



(a-y ) (a+y¥)

_ . oy
Rip(e) = (aty ) (a-v¥) - (4.19)
‘ c2iak s

ng(a) = *Z;;—{iﬂzl (l-Bzﬂz)a3 + [(B;nz—l)ﬂ2 - szﬁz]az

- iy2(82+1)a + vy} (4.20)
: —iaQ(Bz—l) ‘
T, (a) = & {21B8,23%a?%} (4.21)
12 DBer 2 I .
—iaZ(Bz—l)
T,q (@) = & - {2i85n,2%°} (4.22)
RT
—21&622
Rya (@) = S (18,07 (§yny=1)a> + [(B3n,-1)2%-y8y"]a?

+ iyL(B,+1)a + vy} - (4.23)

(B,ba+y,) (B,ba-Y%) 2i0B.b L :
R,, (@) = 2 2’ 2 2. 2 (4.24)
(8,50-7,) (B,borky§) .

TABLE 4.1. Reflection and Transmission Coefficiénts

In Table 4.l'

&
1]

. ‘ rp2 g2 | 2|42
pp = 18,27 (1+B,n,)a’ + [(82n2-1)2 + yB,y4 ]a

+ 1y (1-B)o + v |  (4.25)

= i Y% = - B =1,2 4.26
ij = m, + ing Y? m inj k| . ( )
- . -1 _ . . 1,2 . (4.27
my 2|<j (Kj 1) ny = ZKjA i J 1,2 (‘ )




C. RAY THEORY SOLUTION
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In this section, the Fourier transformed normal mode so-

lution obtained earlier will be expanded into a series, where

each term will represent a spherical harmonic wave travelling

inside the shell.

For easiness, we will consider the case where an internal

pressure pi(t) is applied to the shell. The unknown constants

in the normal mode solution can be obtained from the matrix

equation,

L

-

111

118

112

di9g

125 “BaMaCa1g

22b

229

—BaNyc99y

A
Ay
B,y
- - e

Denoting the coefficient matrix by [M],

o

€111

112

€119

121

122

128

0
21b

218

~ByM9Ca1g

22b

229,

BT ULTPY)

P,y (@)

o

(4.28) .

(4.29)
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the solution of Eq (4.28) can be written as

[ i ]
. pl(a)
1
B : 0
1 = [M]"l : ' (4.30)
A, 0
B, -0 |
| J L i

| | RIS o
Instead of calculating the matrix |M‘ one can expand it into a

series form by writing (15)

r . 17-1 F > 7 B ! -1
N B I, 0 0! -E
. 1
W]t = |- -'- - SUR S I I I
, ] ; 1
FI!I 0, I -F ! o0
L. ! = L. . - L. ! .
) : -l "
. e o]
| , . , o
s [I] * z E B (4.31)
-F 0 ‘

where I is the -identity matrix, O is the null matrix and E and

F are the submatrices.

- It would be more convenient to write the matrix equation

given in Eq (4.28) in a slightly different form
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B T
: »pl(a)
1 . 0 - R 0 A
11 ! %111
T
0 1 - ﬁlg —U2 A2 0
12 .
T21 = (4.32)
-U - — 1 0 B 0
1 R22 1
0 —R2b ‘0 1 B2 0
where
B,n,c d - c d :
U. = 2272227118 114228 (4.33)

c1299220 = B2M2C229d12y

Ve Byn,e d - c d '
s 2'27228711% 119 2294 - (4.34)

c1109210 = B2N2%219911y

Expanding the new coefficient matrix of Eq (4.32) into a series

and solving the equation, the constants are found as

. El(a)" 2 2 3 3.
R [1 + Ry X, + RE X2 4+ RY x] 4
111 e ,
X, % ‘
+ T, R, T, R, —— —— + ... ] (4.35)
TRt 'R,
Awhere )
I ® T12T21 ’]
XK, = U, | 1+ 2 A (4.36)
1 j=1 13829
. j -
| o T..T
X, = U, | 1+ I R12R21 (4.37)
' j=1 1282¢
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, El(a) 2 "p 2 3
B, = - [xl + R X2 4R XD+
€111
| X, X, » f
+ T R T —_—m—— .. (4.38)
128721 B R, ]
p, (o) X X
_ Py 1 1
Ay = [le R, " Tiefan*e v, T
ac 18 1L
111
X2 .
1 . .
+ E—— RllTlZRZbXZ + ...]. (4.39)
18 |
p, () X X
_ -1 1 ‘2 1 :
By = ) [ T12%2p R, T TiaRop%) R, +
¢111 | | _
XZ X2 )
1 . 2 1
TR R TyaRop toees T T R Ty Ry S 7 "'}
19 R
| 19
(4.40)

The terms Xl aild'X2 appearing in series form in the above expres-—
sions are ‘equal to Rlﬂ(u) and Rzg(a)’ respectively.' These are
.given in . Appendix B.

A, and B, into the solution given in

1° 81 Ay 2
Eq (3.2), we finally obtain the - ray theory solution in thé_form

Ihserting A

3D (r,0) = Py () 1+ R,.R.. + R2.RZ_ + R3IR3 +
r,a) = T R11t1g 11718 115198

s (1)
+ T12R2bT21R11 + ... ] ho (ra)

py () . \ . s
+ _.[ Ry, + R RE, + RERE 4 L
('X.Cl 1’1 N

o 2) ..
T TioRopTyy T12R2bT21RL43L2_+"]ho (ro)

(4.41)
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_(2) py(a)
e (r,a) = [ Tio 7 TiaRopRog F vve F RygR I TIHR LR
ac .
11T - -
2 . (1)
FoooE TER,TOR ) L. ] (B, ra)
El(a) .
+ o [lesz + 12R2bR22 +
€111
. 2 :
RigRyiTioRop + oee TR0 To 1Ry

+ ....—J'héz)(Bzra) (4.42)

Note that the above expressions are only due to an internally
applied pressure. Each term in the series represents a spherical
harmonic wave, which can be seen by writing the expressions in

their complete form with eflat appended.

The complete series expressions for both internal and

external pressures can be written in the form of:

(1) oy (1) S(i), !
) (r,a) . b [ 6jk (r,a0) + ij gr,a)] (4f43)

™ 8.

3

where ¢( )(r,a) are the waves generated by the intermnal pressure

= (i

Note that i=1,2 shows the Iayervnumber, j=0,1,2,3, . is ‘the ray

) are the waves due to externallpressure Ez(u).
index,_and k=0,1 represents outgoing or 1ncom1ng ray respectively.
: The initiei'rays for an observetion point in the first

1ayer due to internal pressure were glven by Egqs (4 6) and (4 7).

However, if. the observation point 1s in the second layer, then



some of the first few rays are (Figure 4.4)

FIGURE 4.4,

Initial rays in the second layer.
P, (o) 1
¢§§)(r,a) SEE le(a)hél)(Bzra)
‘ %111
oy py(a) .
617 (o) = " 1) @Ry (0P (B, ra)
) aclll
_ - p; (@) - :
By0) (xy0) = === T, (@R, (@R, @)k D) (B,xa)
* ¢ -
oy P (@) ] ,
357 (r0) = L— 1, @R2; ()R, ()0 2 (Byra)
| 9111 “

The general expression for .a ray genmerated by an internal

(4.44)

(4.45)

(4.46)

(4.47)

pressure coming to.a receiver point in the i-thllayer with the

ray indgx,rj, can be written in the form of
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) p, () ' :
= (1) _ Py m, .n _p .q T .S (k+1)
b (r0) R1aT12®2pR20 21 R11 Bo (B ra) (4.48)
oc
111 )
where m, n, p, q, r, s = 0,1,2,... show the number of reflections

and transmissions the ray has gone through, and k=0,l‘fof out-
going'and incoming rays respectively.
i)

k

are generated by the pressure Ez(a) at the surface r=b.

‘Similar terms can be written for the rays W§ (r,0) which

Taking the inverse transform of each wave, we obtain the

complete solution as

w+is
oD (r,0) = L Z, | 6 o) + TP ] e7HOE
- metie (4.49) -

Each term of the'series in Eq (4.49) is called a ray-integral or

a ray of the transient wave solution.

The inverse transforms of the fundamental rays given in
Eqs (4.6), (4.7), (A;44)'and (4.45) are evaluated -analytically,
whereas the higher drdef terms are dalculated hsing the convolu-

tion integral as will be explained in Section B of Chapter V.
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V. TRANSIENT SOLUTION FOR-AN INTERNAL PRESSURE

A. PROBLEM AND INITIAL RAYS

Consider the case of a suddenly applied uniform pressure,

p., at the internal surface, thus,
o .

py(t) = p H(t)

0 - (5.1)

Py (t)

where H(t) is the Heaviside's unit step function. The Fourier
transforms of the above expressions are obtained from Eq (3.1l.a)
as,

1p°

pq () (Ima > 0)

p,(a) =0 3 (5.2)
Since p, ( = g (1), '
Py a) = 0, all ij (r,0) are zero.

For a point of observation located in the first layer,

the firsf fundamental ray is, Ed-(4.6),

ip° ef;a(l_r)'

-ar(a+Yl)(a-Y§)

38 (r,0) = (5.3)

with the inverse Fourier transform

R



, o+] g :
ip ~ia(t-r+1)
¢él)(r,t) = 9 /// < da - (5.4)
o 21T »
d(d+Yi)(atYi)‘

The above integral will be evaluated by connecting the

path of‘iﬁtegration by a closed contour as shown in Figure 5.1.

Note that the above integral has three Simple pbles inside the

contour of integration. These sigularities are

Re (o)

g =0 0‘1 = Y* (12 = —Yl (5.5)

where Yy and Yi were defined by Eq (4<26).

Applying the residue theorem, we get

~ia.(t-r+l) T

e J . H{(t-r+l)
A —

0 3aj + SiKlaj 4Kl

(1) P
?Oo (r’t) - r j

(5.6)

[

32
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The step function in the form of H(t—ta),'in Eq (5.6),
defines the arrival time of the ray. Contributibn from this ray

is zero prior to its arrival time, t,

Inverse transforms of the first incoming wave, aii)(r,u)
for the first layer, and the initial outgoing and incoming waves,
=(2), . =(2) . . e e
Qoo (r,0) and ¢ll , coming to the receiver point in the second

layer van be obtained in a similar way.

¢(l) ¢(1)

The ray paths of the above mentioned rays, oo * 911 >

¢§g) and ¢£i) are illustrated in Figure 5.2.

FIGURE 5.2. Paths of the fundamental fays.
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B. HIGHER ORDER RAYS

After completing the inversions of the fundamental rays,
the higher order terms in the series solution can be obtained by

a convolution integral.

Bl (rae) = a(e) * ¢‘1; O AR (G R SR SRS
(5.7)
~where
wo+jiE
) o = L 7Bt are ™
C—eotig

.and q(t)‘is the inverse trnnsform of the product of the reflection-
transmission coefficients which are appended to the Fourier trans—
formed expressions of the former ray'osed in convolution. As

will be seen from Eqs (4. 41) and (4 42), in order to determine

the successive rays using convolutlon, we need to find the in-
‘verse Fourier transforms of terms such as RllRlé’ RZszz’and
T12R2bT21R11 which is further ootsined by convoluting the inYerse

transforms of T12R2b ond TZlRllf
As an example,‘let s f1nd the ray ¢( )(r,t) (Fig. 4.3),
by conVolution

0

sV o - s Do - 5 @i e e 65.9)

where



N =
=

q(t) =.
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w+ie _
v Rll(u)RlQ(a) e

et 4y (5.9)

—cotig

and ¢§i)(r,t) is the ray

Using Eqs (4.19)

otie
- 1 | .
a(e) - = /// (g, +
-o+ig
where
fl =

ART_ls the

njo = - (1 - £))4ky

M1 =

nyy = 4K1y282(1+fl)(2—1)
= 44 2 3_

nyg = 41K1[(1+fl)(82n22

D14

found, in Eq (5.6).
and (4.20); we can write

4 3 2
14% topq07 0, 0% ny 0+ 10, -ia(e+2-20) o

(a+Yl)(a—Y§)ART

(5.10)

1+ Byny

term given in Eq (4.25)

bik)y [(1 FEDM - 1) + (1 - fl)QBz]

- 4Kk (1-£1) (RBIn,-R+y) + (1-£,)y
2 2 2
BaN,22+1)+(1-£,) (yB,% —ezz3]

- iyl[l+fl+82(l—fi)]

= 4k 8,8 [14E -B,m, (L-£ ) |+(1-£ ) (B]n, 87 -R%) = (1+£,) Y6, 87

gnd y = 4(Kl - Kznz)

The first term in the Curly‘bracket gives rise to a delta func-

tion, and the second term can be evaluated by using a path of



integratiod similar to the one shown in Figure 5.1. Applying the

residue theorem, we find

5 —io, (£4+2-22)
q(t) = £.6(t+2-22) - i I Q,(a.)e 3 H(t+2-22)
1 j=1 173
(5.11)
where
' n,,a +n,,a +n,,02 +n Va. + n
Q. (0,) = 1475 1375 12735 1173 10
1] y : 3 2
5d14ocj + 4d13aj + 3d12qj + 2dllocj + d10
d10 = AiKly (L - 2 + 822)
| - _ _ a2 _ 2 2
d;, = 4Kl[yz(1152) + (B2n, - 1)¢ + 78,0 ] + y
o R . 2. - 2 g 3 "
d12 iy (1 82) + 14Kl(62n2 1)2 41K1822 (l+82n2)
= 2 _ 2 ' 2 - 3 J
dyg = (anz 1)2° + szz , 4K1822 (1 + 82”2>,
- ip 03 :
d1g = 1827 (1 + Byny)
. P . : - = - '='*
The singularities of Eq.(S.ll) are oy Yis O Yl’ where Yq

and Yi were defined in Eq (4.26), and a3.4 5 are the roots of
. ) . - b} 3 - . . . B

ART (Eq. (4.25)).

szRzg(t) term, which is necessary for some higher order
rays iﬁ-convolution, can be bbtaided through a similar procedure

as
RébRZSL(t) = fch(t—-z»sz + 2822)

~ia (£-2B,b+28,8)
Q,(azde 7 , H(t-28,b+28,%)

|
[ N
It~ w,

1
- (5.12)
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where

=]
[

]

oy

Q.
]

20

21

[a 9
|

22

~
|

23

[a N
|

24

| Thevs

and o

3,4,5

. ! “ + 3 2
@) = Doty * myg0s T omgo0l tomy 0, n,,
h| 4 3 2
+
.5d24aj 4d23aj + 3d22uj7+ Zleuj + d20
Byny, - 1
£, = —=
82n2 + 1

(fzj— 1) 4k2y
41K2y[;1+f2)(82b-232) -.(1-f2)2]

4y 2 [ (146,) (7B,8-8,by) - (1-£,) (BZby+L(B3n,-1) | +(1-£,) B3b%y

= iy By [ (1+8,) (522 (B3n,=1)+2%) - (1-£,) (B,byR?+8,m, 1 |

+ iyZngz[(l+f2)b+l—f2}A

Kzsgbﬁ[i-fz-(1+f2)32n2]+e;b222B17f2)(egnz-l)-(1+f2)ysé]

-4iK2Y(32b + % - 282)

N 2 . 2 2
- 4K22[32by§1-32) - BRI, - 1% yBp| + 83b%y
--4iK282[b2 (B3n,- 1+y32)+z3(1+32n2)]+iy£33b2(1-82)
 02p21.2/p2 2, 03

2 sz (82n2—1+y82) + 4K282b2 (1+62n2)

= 1B3b*2°(1 + B,n,)

ingularities of Eq (5.12) are al’= YZ/BZb’ a, = —YZ[BZb:

are.the roots of ART'

B



TlZRZbTZIRII(t) term is evaluated convoluting T12R2b(t)

and TilRli(t) and obtained in the form of

j=1 37 k=1
'i@‘(t—t )
. —e k a)jl H(t-ta) (5.13)
whére
£, = 2B,(b-2) + 2(&-1)
2 28,1y
f3 - ) ‘ f4 = .
n G.’* + n (er + n (12 + n o + n
Q.(a ) = 347k 337k 327k 317k 30
3k R R N 7 |
5d14ukv+ bd g0l + 3d,,08 + 2d 0 + dyo
.ot 4+ n, .0 + 0,02 +n,.0. +n
Q, (0,) = R4 4373 42790 4173 40
4 j - b 3 2 )
5d24aj + 4d23qj + 3d22aj + 2dy0, F ds0

R3g = 4fgKyy

‘“3¥= 4if351y{i(1v'525"'1]
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: 202 2
ng, 4f3Kl[2 (anz—l)fszl y+y£(l—82)} - f3y

s 3 02,02 _194_ 2| s _ ' i (a_ 2 '3
-'4lf3Kl[$22 L (anz 1) yBZQ ] 1f3yQ(l Bz) i(8 4f3)Klen22

_e lo2¢p2, _ 2 _ 3 2 3
f3[2 (82n2 l)+y822. b B,y% J + (8+4f3)K162n22,

The denominator'of‘Q3 is the same of Q1 in Eq (5.11),

and also the singularities are the same of Eq (5.11), too.

nuo T 4E4KpY.

n,; = 4if4K2y{£(l—82) + sz}

_ : 2 2 _ 2., _ _ - 212
B4a T 4f4K2[Q (Bany=1)+B, 27y -Byb Ry (1 82)] Fafab Y

. 2 3_o2pn. 2. _ PO 212 01_ Iy ' 3
n, 3 41f4K2[82n22 2 sz(an2 1+y82)J 1f4y282b (1 82) i(8 4f4)K2822

- 2021202 _ _ 3. 103 _ 2,03
N, f4[2 82b (82n2 1+y82)+4K282n2bQ ] (8f4f4)K282b2
The denominator of QA,_which is equal to the.denominator’

of'Qz, can be seen in Eq (5.12), also the singularities of Q4

being equal to the poles of Eq (5.12).

For the case j=k, in Eq (5.13), the last term in the

bracket is replaced by
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Expressions like ¢Fl) and'é— ¢§1) which are necessary
jk ar " jk

at?
to calculate displacements and stresses due initial rays are ob-
tained through straightforward differentiation, whereas those
expressions belonging to the higher order rays are obtained

through convolution. Thus, the displacements and stresses due

to the first n rays are obtained from the following relations

sy n-1 . v -
o (0 - Z, FoP (5.15)
. a1 329$1) rae ) apld)

(i) 0 . : 2 __ ik _ i jk .
o) (r,6) = o M B - > L (5.16)

| -1 a2g (1) 2.\ ag ()

(1) _ " ' 2 ik ik
ge (r,t) = jzo n (l—ZKi)Bi s L Py (5.17)
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VI. NUMERICAL RESULTS AND DISCUSSION

In order to illustrate the validity and practicality of
the method, a sample problem has been solved. . Radial and hoop
stresses, and radial diéplacement for a thick-walled two-layered
spherical shell have been calculated for the case of a suddenly

applied uniform pressure, Py at the internal surface.

Eqs (5.15) - {(5.17) have been used throughout the stress’
and displacement calculations of the shell whose material pro-

perties are tabulated in Table 6.1.

Material
Properties Laygr L 7 Layer 2
cy : 8000 m/sec.‘ : 4000 m/sec
C | - 5 gr/em’ 6 gr/cm’
v 0. o
1 9.3 B 0.25
B, . | 1. | 2.
n, : 1. - 0.3
i : ; » _ | s
Ki 0.2857143 0.333333
thickness, i. _ 1.
i=1,2

TABLE 6.1. Materialg?roperties of the layers for the- sample
problem.. ' - : , »
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The initial rays (Q(i), ¢(i)'

0o 11 3 i=1,2) were calculated

exactly whereas the higher order rays were evaluated numerically
using the convolution integrals as explained in Section B of

Chapter V.,

In order to calculate the dispiacements and the stresses
Fhree_computer programs have been develbped. - The first program
calcuiates the number of rays existiﬁg in a given time and the
nuﬁber of reflecfion and transmission coefficients and the arri-
val times of eacﬁ ray. The second-progrém generates the data
files céntaining the values éf initial rayé and reflectioﬁ and
transmission coefficients. These data files are uséd in the
third program which generates the values for the radial displage—
ments, radial and tangential stresses using numerical convolution
integration, |

The diéplacements_and stresses due to total rays as well
as for each single ray can be shpwn by graphs. The stresses were
normalized By the applied pressure, Py thap is the quantities
shown iﬁ the;figqres are the actual stresses. The time, t, is 
a dimensionléss-quantity, oﬁe unit of t being the time required

for the ray to travel a distance equal to the inner radius.

.The=oe/p0 vélues of the first four>individual rays at
the inner éurface can be seen in Figure 6.1. It is obvious thaﬁ
the first ray coming to a receiver point in thé first shell is |
the. same for bofh a:layered spherical sﬁell and a single léyered

one. Except the first ray, in Figure 6.1, each of the other rays
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is individually diverging in time t. This is due to the exponen-
tially growing terms in the expressioné for each ray. However,

when all rays are combined, the sum is convergent.

Figure 6;2 and 6.3 show the change of Oy at various 
radial locations in the first and sSecond layers respectively.
In the sample proBlem,.the peak value for tangeqtial stress was
found to be 142 per ceht of‘ the applied internal pressure. For
a single layered shell having the same méterial properties with
the first layer, the peak value reached was i65Iper cent of the
applied pressure. (Figure 5 of (8)) The peak value occurred at

the time unit of 6.8 in our sample problem whereas it had occur-

"red at 2.8 in the single layered case.

Variation in radiai stresses can be seen in Figufes 6.4
and 6.5 for the locations in the first and the second shells.
Note that due té a djﬁamic.pressure radial stress changes from
compiession to tension as a result of multiple reflection of

waves.

Figures 6.6 and 6.7 show thé radial displacements in the
first‘and sécond shells respectively. The peak value for radial
displacement in §ur ﬁroblem’is gvaluated as-1.31 unit of dis-
placement,‘although for the single.layered case this value was

1.70 (Figure 7 of (8)).
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VIT. CONCLUSION

We have shown the r;y theory éives us the exact solution
for transient waves in a thick-walled layered épherical‘shell up
to-a‘given time of observation. The method is most effective for -
early time.solutidns-of thick-walled sﬁells because if the time
of observation ié large or the thickness of the shell is small:
the number of rays increase; géometrically and the method becomes

~uneconomical.

In the normal mode'analysis, the solution seems to be
exact, but in numerical appiiéation,rwe need infinite number of
roots in order to get the results exactly. On the other hand,

our method gives the exact solution up to a giVen time by consi-

dering only a finite number of rays.

Practical application of layefed spherical shell can be
found in the design of pressure véssels; nuclear vessels, etc,
Space capsules can be given as ;he exémplés for intefnal pressure
. épplications, and submafiﬁes for extérnal pressure applications.

The result of this work can be also‘used as a refe;ence
guide for.fhé design.bf:different shaﬁedVStructurgs, e.g.; layeredr

éllipsoid shell..



Finally, we can conclude that the ray theory used in
thick-walled spherical shells is an efficient method for early

time solutions where exact solutions are searched.
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APPENDIX A

DERIVATION OF EQUATION (3.2)

- The equations of motion in terms of non-dimensional

‘variables were given in Eq (2.21). Taking the Fourier transform

of this equation, we get

22508 5 4549

drz r dr

"Assuming an arbitrary function

X(r,a) = r 5(1)(r,u)

and inéerting in Eq (A.1), we obtain

which has a solution of the form

_ iB.ar
X = A e ] + B e

+ ngzé(j) =0

-if.ar
J

it

1,2

j=1,2-

In terms of displacemént potential the solution is.

(A.1)

(A.2)

(A.3)

(A.4)
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(A.5)
Introducing the zeroth-order spherical Hankeél functions of the
first and sebond kinds, given in Eq (3.3), we have the final

form of the Fourier transformed solution:

= (3) LW (2) g oy
9] (r,a) = Ajho (sjra) + thq (Bjrq) (A.6)

j=1,2.
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APPENDIX B

SIGNIFICANCE OF X; AND X, IN A;, By, A, AND B,

- The terms Xl and leappearing‘in the constants A

. ‘ 1’ABI’
Az_and B2 of the solution were gi#en in terms of U1 and U2
(Eqs (4.33) and.(4;34)) as the foilowing
3
L o To T
X, = U, [1+ 1 (—ll—;ll ) (4.36)
i=1,2
Writing the series in Eq (4.36) in the following form
: Ul
X, = _ (B.1)
SR ¥ e s W .

Rip R
and inserting the values of the above variables in terms of cijk

and dijk whose definitions were given in Eq (3.7), we have

BaNaca299119 ~ 1129220

©1099909 = BoMyCy90dy0g
Bangle 19d1097%1209110) (C219%92207%2229219)
(e11992197B9M2%210%110) (12092207B2M2%220%12¢)

(B.2)
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Evaluating the above term gives

X (5.3)

o C11p%210 7 BaMacyypdygy
L BaMpcaigdiag = C12p21y

which is exactly the same expression as the reflection coefficient

Rll(a)' The same bfocedpre can be applied to X2 and can be found
that X2 ='R2£(a).
Thus, U1 and;UZ, appéaring in the matrix equation (4.32),

> [Ty Ipy ' -
with the series term | 1 + I —_— appended to each
- Rig Rag |

3=1
represent the teflection coefficients Rlz(a) and Rzg(“)’

respectively.
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