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TRANSIENT RESPONSES OF A THICK-WALLED 
LAYERED SPHERICAL SHELL BY THE RAY THEORY 

ABSTRACT 

In this work, -the transient response of a thick-walled 

layered spherical shell subjected to radially symmetric loadings 

" 

is studied using the ray theory. Normal mode solut~on in the 

Fourier transform space is expanded into a series where each term 

represents a spherical harmonic wave. ~he inverse transform of 

these terms which a~e called ray integrals can be obtained in 

closed f.orm. Since each ray reaching a receiver point has a 

unique arrival time, only a finite number o~them should be con-

sidered once the time interval of interest is specified. Summa-

tion of these rays up to a specific time gives the exact solution 

of the transient respon~e. Since the number of rays to be con-

sidered increases geometrically as the time interval increases, 

the method loses its advantage in calculating the long time re-

sponses of the medium. Similar problem will arise in those 

cases where the shell is a thin one. 

A computer program is developed in o:r;der to investigate 

the transient displacements and radial and tangential stresses, 

and numeiical tesults are given for a suddenly ~pplied uniform 

v 



internal pressure case. The peak value fo~ tangential stress is 

found to be 142 per cent of applied pressure in the two-layered 

shell, although this value was 165 per cent for a single layered 

shell having the same material properties with the first layer. 

The reason for radial stress changes from compression to tension 

due to dynamic pressure can be found in the result of multiple 

reflection of waves. As the radial displacement case is inves-

vi 

tigated, it is found that the peak value of 1.31 unit of displace­

ment is reached for the two-layered shell although it was 1.70 

for the single layered case. 



ISIN TEORiSiYLE~LIN KATMANLI KORESEL 
KABUGON---GECfS---- REJ t Mt NDEKi DAVRAN IS I 

DIET 

Bu ~al~§mada, ~§~n teorisi uygulanarak kal~n katmanl~ 

vii 

kliresel bir kabugun radyal simetrik ylikler alt~nda ge~i§ rejimin-

deki davran~§~ incelenmi§tir: Fourier d6nli§limli cinsinden elde 

edilen normal mod ~ozlimli, her terimi kliresel harmonik bir dalgay~ 

temsil eden sonsuzbir seri halinde yaz~labifir. Her terime bir 

~§~n ad~ verilmi§tir .. Bu ~§~nlar~n ters d6nli§limli k~pal~ olarak 

bulunabilir. Gbzlenen bir noktaya gelen her ~§·~n~n ayr{ ve tek 

var~§ zaman~ olaca~~ndan, gBzlem sliresi belirlendikten s~nra sa-

dece sonlu say~da ~§~n~n incelenmesi gerekmektedir. Belli bir 

slire i~erisind~ gelen tlim ~§~nlar~ri toplam~ ortam~n ge~i§ rejimi 

i~indeki davran~§~n~ kesin olarak verir. 

say~s~ geometrik olarak artacag~ndan, uzun slireli davran~§~n he-

saplanmas~nda metod avantaj~n~ kaybeder. Kabugun ince olmas~ 

hallerinde qe ayn~ problem ortaya ~~kacakt~r. 

Ge~i§ rejimi i~indeki deplasmanlar~, radyal ve te~etsei 

gerilmeleri bulmak i~in bir bilgisayar program~ geli§tirilmi§ ve I 

aniden uygularian dlizglin i~ bas1n; i~in bulunan saY1sal sonu~lar 

sunulmu§tur. tki katmanl1 kliresel kabukta en yliksek te~etsel 
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geri1me degeri uygu1anan bas1nc1n yUzde 14~ S1 olarak bu1unmu§tur. 

Birinci katman1a ayn1 ma1zeme 6ze11ik1erine sahip tek kat1~ kUre­

se1 kabukta ise bu de~er yUzde 165 olarak e1de edi1mi§ti. Dina­

mikyUk1emede radya1 geri1menin s1k1§t1rmadan ~ekmeye donmesinin 

sebebi o1arak 1§1n1ar1n kar§111k11 yans1~a1ar1 g6steri1ebi1ir. 

Radya1 dep1asman durumu ince1endiginde ise en yUksek de6er 1.31 

.birim o1arak bu1unmu~ken, bunun tek katman11 kUrese1 kabukta 

1.70 birim oldulu g6z1enmi§tir. 



ix 

TABLE OF CONTENTS 
Page 

ACKNOWLEDGEMENTS iv 

ABSTRACT v 

DZET . . .. vii 

LIST OF FIGURES x 

LIST OF TABLES . xii 

LIST OF SYMBOLS . xiii 

I . INTRODUCTION 1 

II. EQUATIONS OF MOTION 5 

A. General Formulation . 5 

B. Layered Spherical Shell 8 

III. NORMAL MODE SOLUTION OF THE PROBLEM 12 

IV. RAY THEORY APPLICATION 17 

A. Introduction 17 

B. The Coefficients of Reflection and 
Transmission 18 

C. Ray Theory Solution. 24 

v . TRANSIENT SOLUTION FOR AN INTERNAL PRESSURE 31 

A. Problem and Initial Rays 31· 

B . Higher Order Rays . 34 

VI. NUMERICAL RESULTS AND DISCUSSION 41 

VII~ CONCLUSIONS . . .. 51 

'APPENDIX A 53 

APPENDIX B 55 

BIBLIOGRAPHY ".' . . . . . 57 

REFERENCES NOT CITED . . . 59 



FI GURE' 2.1. 

FIGURE 2.2 

FIGURE 4.1 

FIGURE 4.2 

FlGURE 4.3 

FIGURE 4.4 

FIGURE 5.1 

FIGURE 5.2 

FIGURE 6.1 

FIGURE 6.2 

FIGURE 6.3 

FIGURE 6.4 

FIGURE 6.5 

FIGURE 6.6' 

LIST OF FIGURES 

Dynamic loadings and a typical volume 
element of a thick~walled spherical shell 

Layered spherical shell 

Initial outgoing wave in the first shell 

Initial reflected and transmitted waves due 
to internal pressure 

Converging wave after reflected at r=l. 

Initial rays in the second layer 

Path of integration for i(l)(r,a) 
00 

Paths of the fundamental rays 

Values of individual rays at the. inner 
surface (r = 1 ., ~ =2 ., and b = 3 . ) 

Variation of tangential stress with r in 
a tw~~layered shell for locations in the 
first layer (~~2., b=3.) 

Variation of tan~ential stress ,with r in 
a two-layered shell for locations in the 
second layer (~=2., b=3.) 

Variation of radial stress in a two-layered 
shell for various locations in the first 
layer (~=2., b=3.) 

Variation of radial stress in a two-layered 
shell for various locations in the second 
layer (~=2., b=3.) 

Radial displacement in a two-layered shell 
at various locations in the first layer 
(~=2., b=3.) 

x 

Page 

5 

9 

19 

20 

21 

29 

32 

33 

'44 

45 

46 

47 

48 

49 



FIGURE 6.7 Radial displacement in a two-layered shell 
at various locations in the second layer 
(9-=2., b=3.) 

xi 

Page 

50 



TABLE 4.1 

TABLE 6.1 

LIST OF TABLES 

Reflection and transmission coefficients 

Material properties of the layers for 
the sample problem. 

xii 

Page 

23 

41 



a 

b 

c ij k 

d. 'k 
l.J 

h Cl) , (2) (z) 
. 0 

h' (z) 
o 

m. 
l. 

r 

R •• (a) 
l.J 

T .. (a) 
l.J 

t 

y 

a 

xiii 

LIST OF SYMBOLS 

inner radius of the spherical shell 

outer radius of the spherical shell 

dilatational wave speed of the i-th-shell 

I (A. + 211.)/P. 
l. l.. l. 

a constant aB.kh(j)(B.ka) 
l. 0 l. 

+ 4 K • h (j ) , (B . ka) 
l. 0 l. 

a constant = aB.h(j)' (B.ka) 
l. 0 l. 

zeroth-order spherical llankel functions of the 

first and second kinds, respectively = exp(±iz)/(±iz) 

derivative of the zeroth-order spherical hankel 

function wrt z = dh (z)/dz 
o 

a constant = 2K.(K~1~1)\ 
l. , 

a constant 2K. 
l. 

inner, outer pressure 'loading 

radial distance 

reflection coefficient for a spherical harmonic 

wave which is reflected at th~ interface r=j, and 

turns back to the i-th shell 

transmission coefficient of the spherical harmonic 
I 

wave travelling from i-th shell to the j-th shell. 

radial displacement 

frequency. 

dilatational wave speed ratio ~ cl/c i 

a constant = mj+inj~: 



K. 
1. 

Pi 

°r'Oe'°<jJ 

cp(i)(r,t) 

(i) 
¢>jk (r,t) 

(i) 
'l'jk (r,t) 

X(r,a) 

w 

a constant = mj - inj 

strain components 

a constant 2 2 
Pici/Plcl 

(1-2v.)/(2-2V.) 
1. 1. 

a constant 

Lame constants for i-th shell 

Poisson's ratio for i-th shell 

mass density of the i-th shell 

normal stress components 

]J . / ( A . +2]J . ) . 
1. 1. 1. 

displacement potential for i-th shell 

~aves generated by the inner pressur~ coming to 

the point in the i-th shell, j showing ray index 

and k stands for the direction (outgoing, 0, or 

incoming, 1) 

waves generated by the outer pr~ssure 

an arbitrary variable = r ~(i)(r,a) 

angular frequency 

radius of the interface 

xiv 



I I INTRODUCTION 

Realizing the effects of internal explosion or impact on 

a spherical shell, an'ana1ysis of the transient response of the 

shell under such dynamic loading is necessary. This work is 

aimed to such an analysis of a thick-walled layered elastic sphe-

rica1 shell, subject to radially symmetric loadings. 

* Even though Lam~considered the static problem in 1852(1), 

the dynamic problem received attention only after 1955 (2). In 

general three different methods of solution exist, 

1. The Normal Mode Analysis, 

2.· The Method of Characteristics, 

3. The ,Ray Theory. 

The first method was used by Baker and Allen (3) where 

they studied the dynamic response of an elastic spherical shell 

subject to a spherically symmetric, internally applied pressure 

pulse. Their solution is in the form of an infinite series, each 

term of which is the normal mode of the shell. 

Baker·(4) has also studied the cha~acter and frequencies 

of the normal-mode vibration of a thin spherical shell and has 

shown by experiment that such modes physically do exist. Later, 

Cinelli (5) u~ing the finite Hankel transform arrived at the same 

1 

solution. How~ver, the main difficti1ty with the normal mode ana1y-

* Parenthetical references refer to the bibliography. 
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sis is the slow convergence of the series especially for large 

thicknesses of the shell. 

As an alternative, Rose, et al (6) applied the method of 

characteristics to the same problem. The method was first pre-

sented by Chou and Koenig (7) in their a~alysis of elastic waves 

with either cylindrical or spherical symmetry. In this method, 

the continuous domain is replaced by discrete points and the pro-

perties at each grid point is calculated. A numerical procedure 
. , 

involving stepwise integration along the characteristics is em-

ployed to solve. the problem for various inputs. The accuracy of 
~. 

the solution depends o~ the mesh size used for the numerical 

integration. 

Later, Pao and Ceranoilu (8) presented the analysis using 

the Ray Theory. They have formulated the general solution for 

transient waves in a thick-walled spherical shell generated by 

uniformly applied pressures at the' inner and outer surfaces. In 

this work, we will extend their fuethod to study the propagation 

of waves in a ~ayered spherical shell. 

Method of the Ray Theory takes its name from the geometric 

theory of light by following the propagation of a pulse along a 

.ray-pa th. In the theory of ~eometrical optics a light ray is 

defined to be the orthogonal trajectories to the wave fronts. 

The ~ntensity of light along a ray-path may be determined fiom 

the asymptot~c solution of wave equat~on at high frequencies (9). 

This is known.as the Ray Theory of optics. 



The general solution for waves in a bounded medium can 

be sorted out into different rays by usin~ the Bromwich expansion 

or the like. Each term in such an expansion represents waves 

traveling along a given ray-path. In the literature, this ap-

proach is "also known as the ray theory, but it is different from 

the ray theory of geometrical optics. Van der Pol and Bremmer 

(10) developed such a ray theory to calculate the diffraction of 

radio waves by the earth. Pao and Gajewski (11) present a re-

view article concerning the method as applied to elastic waves 

travelling in horizontally layered medium. 

In the ray theory, it is assumed that waves propagate 

along different ray-paths formed by reflections and transmissions 

taking place at the interfaces of the shell. The Fourier trans-

formed solution of the equations of motion can be sorted out 

3 

into an infinite series when each term represents such rays. 

Inverse Fourier transform of these terms are called ray integrals. 

These integrals can either be integrated analytically in closed 

form as for the axisymmetric loadings of spherical sh~ll,or 

evaluated numerically for nonsymmetric loadings. Since the rays 

arrive at a point of observation in successive order according 

to the theory, the transient solution obtained by summing up 

these rays is exact up to the arrival time of the next ray. The 

method if) most effective for early time solutions of thick-walled· 

shells, since the number of rays to b~ considered increases as 

the. duration of observation lengthens or the thickness of the 

shell decreases. 

economical. 

In such cases, normal ~Qde solution is more 



In the following chapter, we wit! presept the general 

equations of motion for an elastic thick-walled spherical shell 

and their extensions to waves in layered spherical shells. The 

normal mode solution of the problem will be given in Chapter III, 

while Chapter IV illustrates the application of the ray theory 

to the problem. The solution due to a suddenly applied internal 

pressure will then be presented in Chapter V, with Chapter VI 

devoted to numerical results and discussion. 

4 



II. EQUATIONS OF MOTION 

A. GENERAL FORMULATION 

Considering a typical volume element, a spherical square 

(Figure 2.l.a) with radial thickness, dr; it can be shown that 

the response of an isotropic, homogeneous, elastic spherical 

shell, subject to radially symmetric loadings (Figure 2.l.b), is 

governed by the equation (12): 

where 

0r,Oe - ridial and tangential stress components. 

r - radial distance 

u r - radial displac~ment 

p - mass density 

t - time 

( Q) 

a;b inner, outer radii 

Pl,P2 = internal, external 
-pressures 

(b) 

(2.1) 

FIGURE 2.1. Dynamic loadings and a typical volume element of a 
thick-walled spherical shell. 
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For spherically symmetric loadings,all shear strains 

-
and stresses are zero and the di~placement is a purely r~dial 

one, i.e., 

u 
r 

0, u = 0 
¢ 

(2.2) 

The strain-displacement relations in spherical cpordinates are 

(12) 

where 

E: 
r 

E: , 
r 

= 
ou r· 

or 

u 
r 

r 

E:¢ are the normal str~in ~omponents. 

(2.3) 

Using the above expressions in the Hooke's law, one can show that 

the stresses are related onlj to the radial component of the 

displacement through the relations 

ou u 

° (A + 2~) 
r + 21. r = r 

or r 
(2.4) 

ou u 
A r + 2(1. + r 

°e o¢ ~)-
or r 

(2.5) 

where A and ~ are the Lame constants. Substituting the above 

expressions into Eq (2.1), we get 

o2u 
2 oil 2 1 

o2u 
r r r (2.6) + ar- - u = 

Clr 2 r r2 r c 2 ot 2 

where c = 'j (A+2p)/p is the velocity of the pressure waves tra-

veiling inside' the medium. 

6 



If tbe.shell is subjected to internal and external pres-

sures, the required boundary conditions are 

a (a,t) . r . 

a (b,t) 
r 

(2.7) 

and in the ,case where the medium is initially at rest the initial 

conditions pertinent to Eq (2.6) are 

u (r,O) 
r 

au (r,O) r 

at 
o (2.8 ) 

The solution of Eq (2.6) is simplified to a great extent 

by introducing tbe displacement ~otential ~, where 

Thus, Eq (2.6) takes the form 

a (a2~ + 2 a~ 
h 2 rar­ar 

a~ 
ur(r,t) = ar 

1 a2~) = 0 

c 2 at 2 

Integrating the above equation with respect to r, w~get 
.~.~ '. 

F (t) 

(2.9) 

(2.10) 

(2.11) 

where F(t) is an arbitrary, function of time on1~. Note that the 

particular sblution of Eq (2.11) will also be' a function of time 

7 



However, such a solution will not contribute 

to the displacement, u r ' as seen from Eq(2.9), hence, it will 

not contribute to the stresses either. Thus, we can set F(t) _ 0 

with no loss of generality and o~tain 

3 2¢ 2 3¢ .1 32¢ 
3r2 + r 3r c 2 3t2 

(2.12) 

as the equation of motion. 

The components of the stress tensor in terms of the po-

tentia1 ¢ are 

(J (r,t) p a2¢ ~!2. 
r 3t 2 r 3r (2.13) 

°e(r,t) (1 - 2K)p 3 2¢ + ~~ = 
3t 2 r dr (2.14) 

where K = U/(A + 2U) = (1-2v)/(2-2v), V is the Poisson's ratio. 

Formulation of the problem outlined in this section will 

be modified for the case of a layered shell in the following 

section. 

B. LAYERED SPHERICAL SHELL 

We will now consider a layered spherical shell with two 
~\ 

layers of different materials (Figure. 2.2), subject to both in-

terna1 and~external pressures. Stibscripts and superscripts 1 and 

2 will be used to identify those quantities related to the inner 

8 



and outer layers respectively. With this notation Eq (2.12) can 

be \.;rritten as 

i=1,2 

where it is understood that 

The Boundary conditions pertinent to the problem are then 

a~2) (~, t) 

a~2)(b,t) - P2(t) 

u(2)(~,t) 
. r 

P1,2 - mass density 

c 1 ,2 - dilatational 
speeds 

(2.15) 

(2.16) 

(2.17) 

wave 

~ - radius of the inter-
face 

FIGURE 2.2. Layered Spherical Shell. 

9 



whereas the initial conditions are 

and the stress components are given by 

where K. 
~ 

a;i) (r,t) 

(i) 
ae (r,t) 

il./(A.+2il.) 
~ ~ ~ 

= 

a 2 <l>(i) 4il. 
Pi 

~ ---
at 2 r 

a 2 <l>(i) 
(1-2K.) Pi ~ 

at 2 

(1-2v.) /(2-2v.). 
. ~ ~ 

(2.18) 

i=1,2 

a<l>(i) 

ar 
(2.19) 

2il. a<l>(i) 
+ ~ 

r ar 

i=1,2 

Since it is easier to work with non-dimensional quanti-

ties, we will introduce the following non-dimensional quantities 

(denoted by a bar below the variable). 

r 

b - b/a 9.,/a a 1 (2.2,0 ) 

t clt/a 
(i) 

= (i) / = u u a -r r 

a (i) a(i) /p c 2 p. = Pi/Plc~ 1 1 ,- ~ 

Thus, "the equations of motion in terms of the non-dimensional 

variables takes the form 

10 
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i=1,2 (2.21) 

where 

i=1,2 (2.22) 

The relation given in Eq {2.l9) becomes 

a(i) (r t) = 
-r ' 

[, ,,!(i) 
n. 8. -

1. 1. ot 2 
(4:i) ,! (i)] 

or 

a(i) (r t) 
[ ".(1) 

+ C:~ 
,!(i)] 

n. (1-2K.)8~ (2.23) -8 ' 1. 1. 1. 
ot 2 or 

i=1,2 

where 

i=1,2 (2.24)-

To simplify the writing of the equations, bars indica-

ting the non-dimensional variables will be dropped with the 

understanding that all tbe quantities that we will be working 

with are in the non-dimensional form. 

The solution of Eq (2.21) in the form of normal modes 

will be presented in the following chapter. 

.:;/. 
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I I I I NORr·1AL ~10DE SOLUTION OF' THE PROBLEM 

The solution in the form of normal modes will be obtained 

by first transfor~ing the equations of motion using the complex 

Fourier transform on time and then solving the resulting trans-

formed equations. 

The complex Fourier transform pair of a function g(r,t) 

is defined as (14), 

f 
o 

co 

iE+OO 

ia.t g(r,t) edt (3.l.a) 

g(r,t) 
1 - -ia.t f g(r,a.)e do. (3.l.b) 
21T 

iE-co 

where E is chosen such that the singularlties of i(r,a.) lie all 

below the line of integration. . a.' appearing in the above rela-

tions can be viewed as both a non-dimensional frequency a. = walc l , 

where w is the angular frequency or as the non-dimensional wave 

number in the radial direction. 

'Transforming the equations of motion given in Eq (2.21) 

according to Eq (3.l.a) and solving the resulting equations we 

get 

. ~(i) (r,a.) (3 .2) 

i";1,2 
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where 

h(1),(2)(z) 
o (3.3) 

are the zeroth-order spheri~alH~nkel functions of the first and 

~econd kinds respectively; Details of the solution given by 

Eq (3.2) are shown in Append{x A. 

The constants A. and B.are to be determined from the 
1. 1. 

boundary conditions given by Eq (2.17). The transformed form 

of the boundary conditions are 

cr~l)(l,a) = - PI (a) -0 ~ 2 ) (b, a) P
2

(a) 

(3.4) 

0;1) (t,a) 0(2) (t a) 
r ' 

;:;:(1) (t,a) 
r 

;:;:(2) (t,a) 
r 

The transformed form of the relations between the stresses 

and the displacement potential are 

. cr ~n (r. a) ~. 0i [-B~a2 $ (i) _ (4)) d::i)] 
(3.5) 

[ 
( ) + (

2

r

K
i) dd¢r(i)j 0e(i)(r,a) = n' -(1-2K )S2a 2¢.i iii . 

, 

i=1,2. 

Applying the boundary conditions to the solution, Eq (3.2), 

we ge·t 



where 

d. 'k 1J 

as.; kho(j) (as.; k) + 4K. h (j) r (as. k) 
... ... 1 0 - 1 

(3.6) 

(3.7) 

In the abov~ expressions, i denotes the layer, j denotes the 

14 

order of the spherical Hankel functions, while k takes the values 

of 1,1, or b for inner, interface and outer radii. 

Writing the equations given by Eq (3.6) in matrix form 

simplifies .the work in determining the unknown constants A., B .. 
1 1 

Thus, we can write 

o o 

'0 o 

A· 
2 

o 

o 

(3.8) 
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Using the Cramer's rule A1 , B1 , AZ andB
Z 

can be written as 

P1 (a) 
0 0 a c 1Z1 

pz(a)b 
0 a8 Zn Z 

c Z1b c ZZb 

A1 
1 

(3.9) 
~M 

0 d1Z~ -dZ1~ -dZZ~ 

o 

where 

o o 

o o 

llM (3.10) 

c11~ c12~ -8ZnZcZ1~ -8Zn2cZZ~ 

and P1 (a) 
0 0 c 111 a 

0 
PZ(a)b 

c Z1b c ZZb a8 Zn Z 

B1 
1 (3.11) 
~ ,oM 

d11~ 0 -dZ1~' -dZ2~ 

o 
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c 111 c 1Z1 
P1 (a) 

0 a 

0 0 
Pz(a)b 

aS z nz 
c ZZb 

1 
A2 6

M (3.12) 

d ll 9, d 1Z 9, 0 -d 2Z 9, 

c ll 9, o 

c 111 c
1Z1 0 

P
1 

(a) 

a 

0 0 
Pz(a)b 

c Z1b a8 z nz 
B2 

1 (3.13) 
I1M 

d ll 9, dlZQ, -d Z1 Q, 0 

c l:Z Q, 

.The inverse transform of i(l) and i(Z) are determined 

from Eq (3.1.b) where the integrals are evaluated by the residue 

theorem. The integrand has an infinite. number of simple poles 

at I1M = 0 which are all real. Each pole corresponds to a natural 

frequency of the layer~d shell~ The resulting infinite ~iriej 

solution is a slow converging one for small values of tim~. We 

will obtain the solution in terms of rays travelling along dif-

ferent·paths inside the medium, in the next chapte~, which is 

more effective for small values of time. 
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IV. RAY THEORY APPLICATION 

A. INTRODUCTION 

In this section, we will derive the solution for the 

transient response of a layered spherical shell subjected to 

both internal and external pressures, in the form of rays or 

waves travelling along different paths. Each ray reaching a re-

ceiver point has a different and unique arrival time, thus, only 

a finite number of them should be considered once the time~in-

ter~al of interest is specified. Since the number of rays to be 

considered increases geometrically as the time interval increa~es, 

the method loses its advantage in calculating the long time re-

sponses of the medium. Similar problem will arise in those cases 

where the shell under consideration is a thin one. 

Waves tra~eling inside the medium can be regarded in two 

groups, (1) those travelling outwards called outgoing waves, and 

(2) those travelling inwards, called incoming waves. These can 

be seen from the solution given byEq (3.2) which has an inverse 

Fourier transform of the form 

~(j)(r,t.) = 1 
2TI 

+~ 
2TI 

(4.1) 
j=1,2 



Noting the definition of h(l) 
o ' 

the integrand of the first inte-

gral is of the form 

A. (a)h(l) (S.ra)e- iat 
J 0 J 

A. (a) 
J 

is.ra 
J 

e 
-ia(t-S.r) 

J 

j=l,2 

which represents harmonic waves travelling outwards. 

the integrand of the second integral 

B.(a) -ia(t+S.r) 
J e J 

-is. ra 
J 

represents harmonic waves travelling inwards. 

(4.2) 

Similarly 

(4.3) 

Using this notation we will now derive the coefficients 

of reflection and transmission, in the following section. 

B. THE COEFFICIENTS OF REFLECTION AND TRANSMISSION 

Let us consider the case where pressure is applied to the 

internal surface. The wave travelling inside the first layer 

of the shell prior to any reflections (Figure 4.1) has the form 

~(l)(r a) 
00 ' 

A h(l)(ra) 
1 0 

(4.4) 

where superscript of the wave shows the layer of the receiver 

point, firstsubscrip~ stands for the -ray index, and the direc-

tion of the wave (outgoing, 0, or incoming, 1) is denoted by the 

~econd subscript. A1 is to be determined from the boundary con­

dition 
!'~ , •. 
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FIGURE 4.1. 

Thus, 

Initial outgoing wave in the first shell. 

0(1) (l,a) 
r 

00 
P1 (a) 

() P1(a) o 1 (r a)- h(l)(ra) 
00' aC 111 0 

(4.5) 

(4.6) 

~here c l1l was defined in Eq (3.7). Inverse Fourier transform 

of ¢(l) represents the outgoing wave travelling inside an infi-
00 

nite medium due to a pressurized cavity. 

When this wave reaches the intermediate surface at r=~, it will 

give rise to two new waves, one reflected back into the first 

medium, an incoming wave, while the other a transmitted wave 
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travelling outwards in the second medium (Figure 4.2). Disp1ace-

ment ~otentials representing these waves can be written as 

- (1) 011 (r,a.) -
P

l 
(a) 

a.c l11 
(4.7) 



FIGURE 4.2. Initial reflected and transmitted waves due to 
internal pressure. 

0(2)(r a) 
00 ' 

1'1(0.) (1) 
T12 (a)ho (f3 2 r a) aC 111 

(4 .8) 

where R1~ and T12 are called the reflection and transmission co-· 

efficients, respectively, for those waves impinging on the inter-

face by travelling inside the first layer. Both of thes~ coef-

ficients are to be determined by making use of the boundary con-

ditions. 

~(1) (~,a) + ti(l) (£,0.) ti(2)(£,a) 
r r 11 

r . 
00 00 

0(1) (£ a) + 0(1) (£,0.) = 0(2)(£ a) 
r· , r 11 ·r ' 

00 00 

Going throug,h the analysis, we get 

c 11 £d 21 £ - f32n2c21~ d 11 £ 

f32n2c21£d12~ - c12£d21~ 

(4.9) 

(4.10) 

(4.11) 

20 
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T
i2

(a) (4.12) 

We also have to introduce the reflection coefficient, R11(a), for 

the waves caused by the reflection of the waves impinging on the 

inner surface, (Figure 4.3). Let 0~~) represent such a reflected 

ray. 

-(1) 0
20 

(r,a) (4.13) 

and the boundary condition which will determine Rll (a) is 

o (4 .14) 

yielding 

(4.15) 

FIGURE 4.3. Converging wave after reflected ~t r=l . 
. ~.: 



Note that this reflection coefficient is exactly the same as that 

given'by Pao and Cerano~lu (8) for a sin~le layered shell. 

In a similar manner, we can define the reflection coef-

ficients R2b and R22 and the transmission coefficient T
21

. Going 

through a similar procedure, we get 

c 21b - ----

c122d222 - S2 n 2c 221d 122 

S2 n 2c 212 d 122 - c122d212 

S2n2(c212d222 -c222d212) 

S2 n 2 c 212d 122 - c122d212 

(4.16) 

(4.17) 

(4.18) 

Note that R2b is the reflection coefficient at the outer, surface. 

R22 and T21 are the reflection and transmission coefficients for 

those waves that are impinging on the interface while travelling 

inside the second, layer. Note that consideration of the pressure 

a~plied to the outer surface would yield exactly the same reflec-

tion and transmission coeffic~ents. 

A complete list of the reflection and transmission coef-

ficients is given in Table 4.l~ 

22 



23 

R11 (a) = 
(a-y 1) (a+yi> -2ia 

(4.19) (a+y ) (a-yi<) e 
,1 1 

2iaQ, 
R1 Q,(a) e {if3 2Q,3 (l-f3 2n2)a 3 [(j32n _1)51,2 Yf3 2Q,2Ja 2 = + 6RT 

-2 2 

- iyQ,(f3 2+1)a + y} (4.20) 

-iaQ,(j3 -1) 2 
T12 (a) e {2if3 Q,3 a 3} = (4.21) 6RT 2 

-iaQ,(f3 -1) 2 
T21 (a) = e {2ia 2n 5/,3 a 3} /), " 2 2 (4.22) 

RT 

- 2ia f3 25/, 

R2Q,(a) e 
{if32Q,3(f32n2-1)a3 [(f3~n2-1) Q,2_Yf3~2J 0.

2 = + 6RT 

+ iyQ,(j32+1 )a + Y} (4.23) 

.. 

R2b (a) = 
(j32ba+Y2)(B2ba-y~) 2ia f3 2b 

(4.24) e 
(f32ba-Y2)(f32ba+y~) 

TABLE 4.1. Reflection and Tr~nsmission Coefficients 

In Table 4.1 

/),RT = if3 25/,3 (1+f3 2n 2)a 3 + [(f3 2n -I)5/,2 2 2 + Yf3 25/,2Ja 2 

+ iy5/,(1-f3 2)a + y (4.25) 

y = 4(K l - K2n2) ,. 

Yj 
m. + in. y"': = m. in. j =1,2. (4.26) 

J J 
, 

J J J 

mj = 2Kj I (K~l -1) nj = 2Kj j =1,2 (4.27)' 
j 



C. RAY THEORY SOLUTION 

In this seciion, the Fourier transformed normal mode so-

lution obtained earlier will be expanded into a series, where 

each term will represent a spherical harmonic wave travelling 

inside the shell. 

For easiness, we will consider the case where an internal 

pressure PI(t) is applied to the shell. The unknown constants 

in the normal mode solution can be obtained from the matrix 

equation, 

o o 

o o 

Denoting the coefficient matrix by [M], 

B . 
2 

o 

o 

o 

(4.28) 

(4.29) 
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the solution of Eq (4.28) can be written as 

Al 
Pl (ex) 

ex 

Bl [M] -1 
0 

A2 0 
(4.30) 

B2 0 

Instead of calculating the matrix IMI-
l 

one can expand.it into a 

series form by writing (15) 

-1 -1 
I E I 0 0 -E 

[M]-l - - - - - - I -1 - - -

F I 
1 

0 , I -F 0 

0 -E n 

00 

[ i] + L: - - f (4.31) , 
·n=l 1 

-F I 0 

where I is the -identity matrix, 0 is the null matrix and E and 

F are the submatrices. 

It would be more convenient to write the matrix equation 

given in Eq (4.28) in a slightly different form 



I 0 , -

0 I -

-u 
T21 

I R 2 Q, 

0 -R 2b 

where 

RII 0 Al 

T12 
-u A2 --

RIQ, 2 

= 

I 0 BI 

0 I B2 

82n2c22Q,dIIQ, - c I1 Q,d 22 Q, 

c 12 Q,d 22 Q, - 82n2c22Q,d12Q, 

82n2c22Q,d11Q, - c 11 Q,d 22 Q, 

c 11 Q,d 21 Q, - 82n2c21Q,d11Q, 

PI (a) 
aC III 

0 

(4.32) 

0 

0 

(4.3'3 ) 

(4.34) 

Expanding the new coefficient matrix of Eq (4.32) into a series 

and solving the equation, the constants are found as 

Al 
PI (a) 

[I+R U X1 + 2 2 +R 3 X3 ,+ 
aC III 

RU Xl U 1 

+ T12R2b T21Rll 
Xl X2 + ... J ----
R1Q, R 2 Q, 

(4.35) 

where 

[ 00 r 12T21 rJ Xl = Ul I + E 
j =1 R1 Q,R 2Q, 

(4.36) 

[ 1 + 
00 

C
12T21fJ X2 

= U E 2 j=l R1Q,R 2Q, 
(4.37) 
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Bl 
PI (a) 

[Xl + 2 - 2 3 
RllX l + RllX l + 

aC III 

+ T12R2b T2l 
Xl X

2 -+ 
RU , R 2 Q, ... J (4.38) 

A2 
Plea) 

[T 12 
Xl 

T12R2bX2 
Xl 

+ --+ ... 
aC lll 

RlQ, RlQ, 

X2 

.. ·1 + _1_ 
RllT12R2bXi + (4.39) 

RIQ, 

+ ... 

. .. ] 
(4.40) 

The terms Xl a~dX2 appearing in series form in the above expies-

sions are equal to RlQ,(a) and R2Q,(a), respectively. These are 

.given in Appendix B. 

Inserting AI' Bl~ A2 and B2 into the solution given in 

Eq (3.2), we finally obtain the ray theory solution in the form 

~(l) (r,a) 

h(l) (ra) 
o 
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_(2) 
'ct> (r,a) 

+ ... J 'h(2)(6 ra) 
o 2 

(4.42) 

Note that the above 'expressions are only due to an internally 

applied pressure. Each term in the series represents a spherical 

harmonic wave, which can be seen by writing the expressions in 

-iat their complete form with e appended. 

The complete series expressions for both internal and 

external pressures can be written in the form of: 

;p(i)(r,a) 
co 

E 
j=O 

[
(i) ":'(i) ] 

~jk (r,a) + ~jk (r,a) (4.43) 

-(i) 
where ~jk (r,a) are the waves generated by the internal pressure 

- -(i)' -
Plea), and ~jk are the waves due to external pressure P2(a). 

Note that i=1,2 shows the layer number, j=O,1,2,3, ... is the ray 

28 

index, and k=O,l represents outgoing or incoming rayrespe~tive1y. 

, 

The initial rays for an observation point in the first 

layer due to internal pressure were given by Eqs (4.6) and (4.7). 
,~ .. '-. 

However, if the observation ~oirit is in the second layer, then 
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some of the first few rays are (Figure 4.4) 

FIGURE 4.4. Initial rays in the second layer. 

(4 .44 ) 

-(2) . PI (a) 
011 (r,a) = (4.45) 

aC 111 

Pi (a) - (2) . 
0

20 
(r,a) = 

a c III 
(4.46) 

-(2) 0
31 

(r,a) = (4.47) 

The general expression for·a ray generated by an internal 

pressure coming to a receiver point iri the i-th layer with the 

ray index, ~, can be written in the form of 
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- (i) 0jk (r,a) 
aC 111 

(4.48) 

where m, n, p, q, r, s = 0,1,2, ... show the number of reflections 

and transmissions the ray has gone through, and k=O,lfor out-

going and incoming rays respectively. 

-(i) 
Similar terms can be written for the rays ~jk (r,a) which 

are generated by the pressure P2(a) at the surface r=b. 

Taking the inverse transform of each wave, we obtain the 

complete solution as 

<I> (i) (r, t) 
00 

1 
21T L 

j=O 

oo+iE 

f [¢~!)(~,") + Wi~)(r,")] 
...,oo+iE 

-iat 
e 

(4.49) 

Each term of the series in Eq (4.49) is called a ray-integral or 

a ray of the transient wave solution. 

The inverse transforms of the fundamental rays given in 

Eqs (4.6), (4.7), (l4.44) and (4.45) are evaluated analytically, 

whereas the higher order terms are calculated using the convolu-

tion integral as will be ~xplained in Section B of Chapter V. 



VI TRANSIENT SOLUTION FOR AN INTERNAL PRESSURE 

AI PROBLEM AND INITIAL RAYS 

Consider the case of a suddenly applied unifor~ pressure, 

p , at the internal surface, thus, 
o 

p R(t) 
o 

o (5 . I) 

where R(t) is the Reaviside's unit step function. The Fourier 

transforms of the above expressions are obtained from Eq (3.I.a) 

as, 

Since P2(a.) 

Pl(a.) 

P2 (a.) 

ip 
o 

a. 

o 

(I rna. > 0) 

0, all W}~)(r,a.) are zero. 

(5 .2) 

For a point of observation located in the first.layer, 

the first fundamental ray.is, Eq (4.6), 

~(l)(r a.) 
00 ' 

-ia.(l-r) 
ip e . 

o 

with the inverse Fourier transform 

(5.3) 
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f/J(l)(r t) 
00 ' 

ip 
o 

2nr 

oo+i£ 

f 
-oo+i£ 

-ia(t-r+1) 
e 

dO'. (5 .4) 

The above integral will be evaluated by connecting the 

path of integration by a closed contour as shown in Figure 5.1. 

Note that the above integral has three simple poles inside the 

contour of integration. These sigu1arities are 

FIGURE 5.1. 

Im(a) 

E 
Re(a) 

Path of integration for ($(1) (r a). 
00 ' 

a 
o 

o 

where Y1 and Y! were defined by Eq (4.26)'. 

Applying the residue theorem, we get 

0(1) (r t) = Po 
00' r 

2 
~ 

j =0 

- i a . (t - r+ 1 ) 
e J '. H(t-r+1) 

3a~ + 8iK l a. - 4Kl 
J . J 

(5.5) 

(5.6) 
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The step function in the form of H(t-t ), -in Eq (5.6), 
a 

defines the arrival time of the ray. Contribution from this ray 

is zero prior to its arrival time, t a 

Inverse transforms of the first incoming wave, 
-(1) 
011 (r,a) 

for the first layer, and the initial outgoing and incoming waves, 

~(2) (r a) 
00 ' 

-(2) . 
and 011 ' com1ng to the receiver point in the second 

layer ~an be obtained in a similar way. 

The ray paths of the above mentioned rays, 

and are illustrated in Figure 5.2. 

FIGURE 5.2. Paths of the furidamenta1 rays. 

d. (1) 
'11 11 ' 
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B. HIGHER ORDER RAYS 

After completing the inversions of the fundamental rays, 

the higher order terms in the series solution can be obtained by 

a convolution integral. 

(i) 0
jk 

(r,t) 

where 

(i) 
q(t) * 0

j
_ 2 ,k(r,t) 

(i) 
0 j _ 2 ,k(r,t) 

1 
211 

00 

f 

-00 

(5.7) 

f -(i) -iat O. 2(r,a)e da 
]-
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and q(t) is the inverse transform of the product of the reflection-

transmission coefficients which are appended to the Fourier trans-

formed expressions of the former ray used in convolution. As 

will be seen from Eqs (4.41) and (4.42), in order to determine 

the successive rays using convolution, we need to find the in-

verse Fourier ~ransforms of terms such as RIIR1~' R2bR21 and 

T12R2bT21Rll which is further obtained by convoluting the inverse 

transforms of T 12 R2b and T21 R11 . 

(1) . 
As an example, let's find the ray 020 (r,t) (Fig. 4.3), 

by convolution 

t;(1) ( ) 
'11 2'0 r,t .I 

00 

q('l)¢(l) (r,t-'l) d'l 
. ,~_oo 

(5.8) 
_00 

where 



q (t) 
1 

'2n 

oo+ie: 
'f 

-oo+ie: 

and 0~~) (r, t) is the ray found, in Eq (5.6). 

q(t) 

where 

Using Eqs (4.19) and (4.20)~ we can write 

1 
2Tr 

oo+i£ 

f 
-oo+i£ 

6 RT is the term given in Eq (4.25) 

n l3 = 4iK1[(1+f1)(8~n213-B;n212+1)+(1-f1)(Y6212-B213J 

- iyl [l+f 1 +6 2 (1-f1 ) ] 

(5.9) 

(5.10) 

The first term in the curly bracket gi~es rise to a delta func-

tion, and the second term can be evaluated by using a path of 
. ,.", ....... 
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integration similar to the one shown in Figure 5.1. Applying the 

residue theorem, we find 

q (t) 
5 -ia.(t+2-2~) 
E Ql(aj)e J H{t+2-2~) 

j=l 

(5.11) 

where 

( 02n 1)~2 + yO £2 
~2 2 - ~2 . 

The singularities of Eq (5.11) are ai = -Y I , a 2 = yr, where YI 

and Y*l were defined in Eq (4.26), and a are theroot~ of 3,4, 5 

L\RT (Eq. (4.25». 

R
2b

R
2
£(t) term, which is necessary for some higher order 

rays in convolution, can be ~btained through a similar procedure 

as 

- i 

(5.12) 
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where 

. 4 3 2 
~24aj + n 23 a j + n22aj t n 21 a j + n 20 

5d 24 aj + 4d 23aj + 3d 22aj + 2d 21 a j + d 20 

n 21 = 4iK 2Y[(1+f 2 ) (13 2b-9,13 2 ) - (1-f 2 )9,J 

n 2 2 4 K 2 9, [ ( 1 + f 2 ) (Y 13 29, - 13 2 by) - (1- f 2) (13 ~ by + 9, <. 13 ~ n 2-1 ) ] + (1- f 2 ) 13 ~ b 2 Y 

n 23 4iK2132[(1+f2)(b~2(I3~n2-1)+9,3)-(1-f2)(132by9,2+132n29,3J 

+ iy9,8~b2 [(1+f 2)b+1-f 2] 

n 2 4 4 K 2 13 ~ b 9,3 [1 - f 2 - ( 1 + f 2 ) 13 2 n 2 J + 13 ~ b 2 9, 2 [(1 ~ f 2) (13 ~ n 2 -1 ) - ( 1 + f 2 ) y 13 2 J 

The ~ingu1arities of Eq(5.12) are a 1 

and a3,4,~ are the roots of 6RT • 
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TIZRZb T 21Rll (t) term is evaluated convoluting T1ZRZb(t) 

and TZ1R11(t) and obt~ined in the form o( 

f f o(t-t ) -3 4 a 

(5.13) 

where 

f3 
Z 

.<n44.a.~ + n 43a: .. . J J 
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n32 4f3Kl[12(B~n2-l)~B212Y+Y1(1-B2)J - f 3y 

n33 = 4if3Kl[8213_12(B~n2-l)-YB212J-if3Y1(1-B2)-i(a-4f3)K1B~n 2 13 

n 34 -f3[12(8~n2-l)+YB212-4K1B213J + (8+4f3)K18~n213 

The denominator of Q3 is the same of Q1 in Eq (5.11), 

and also the singularities are the same of Eq (5.11), too. 

n 41 4if 4K2Y[1(1-8 2) + 8 2bJ 

n 42 4 f 4 K 2112 ( 8 ~ nZ -1) +8 21 2 Y,- 8 2 b 1 Y (1- 8 2 ) ] -f 4 8 ~ b 2 Y 
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n 4 3 4 i f 4 K 2 [8 ~ n 2 1 3 - 1 2 8 2 b ( 8 ~ n 2 - 1 +y 82 ) ] - i f 4 Y 1 8 ~ b 2 (1- 8 2 ) - i ( 8 - 4 f 4 ) K 28 2 1 3 

n 4 4 - f 4 [1 2 8 ~ b 2 (8 ~ n 2 -1 +y B 2 ) +4 K 2 8 ~ n 2 b 1 3] -( 8 + 4 f'4 ) K 2 8 ~ b 1 3 

The denominator of Q4' .which is equal to the denominator 

of Q2' can be seen in Eq (5.12), also the singularities of Q4 

being equal to the poles of Eq (5.12). 

For the case j=k, in Eq (5.13), the last term in the 

bracket is replaced by 

[ . 
-ia.(t-t )] 

. ( ) J a -1. t-t e 
a 

(5.14) 



. 0 2 (0) 'Y (0) 
Expressions like --- 0o~ and t- 0Jo~ which are necessary o t 2 J r 

to calculate displacements and stresses due initial rays are ob-

tairied through straightforward differentiation, whereas those 

expressions belonging to the higher order rays are obtained 

through c6nvo1ution. Thus, the displacements and stresses due 

to the first n rays are obtained from the following relations 

a(i) (r t)· 
r ' 

(i) as (r,t) 

n-1 
L 

j =0 

n-1 
L 

j=O 

o (i) at:" 0jk (r,t) 

n-1 020(i) 

+ (2:i) L ~. [(1-2 K • ) 8 ~ jk 

j=O 
~ ~ ~ 

ot 2 

. '.':.-

(5.15) 

(5.16)-

a0 i~) J 
or (5.17) 

i=1,2-

40 



VI. NUMERICAL RESULTS AND DISCUSSION 

In order to illustrate the validity and p~acticality of 

the method, a sample problem has been solved. Radial and hoop 

stresses, and radial displacement for a thick-walled two-layered 

spherical shell have been calculated for the case of a suddenly 

applied uniform pressure, Po' at the internal surface. 

Eqs (5.15) - (5.l7) have been used throughout the stress 

and displa~ement calculations of the shell whose material pro-

perties are tabulated in Table 6.1. 

Material Layer 1 Layer 2 Properties 

c . 8000 m/ s ec . 4000 m/ sec 
~ 

P. 5 gr/cUl 
3 6 gr / cm 3 

~ 

V 0.3 0.25 
i 

Si l. 2 . 

n. 1. 0.3 
~ 

K 0.2857143 0.333333 
i 

thickness, 1. l. 

" 
i=1,2 

TABLE 6.1. MateriaLvfroperties of the layers for th;e" sample 
problem.· 
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The initial rays (0(i) 
00 ' 

rl. (i) . 
'Pll ' i=1,2) were calculated 

exactly whereas the higher order rays were evaluated numerically 

using the convolution integrals as explained in Section B of 

Chapter V. 

In order to calculate th~ displacements and the stresses 

three computer programs have been developed. The first program 

calculates the number of rays existing in a given time and the 

number of reflection and transmission coefficients and the arri-

val times of each ray. The second-program generates the data 

files containing the values of initial rays and reflection and 

transmission coefficients. These data files are used in the 
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third program which generates the values for the radial displace-

ments, radial and tangen~ial stresses using numerical convolution 

integration. 

The displacements and stresses due to total rays as well 

as for each single ray can be shown by graphs. The stresses were 

normalized by the applied pressure, p , that is the quantities 
o . 

shown in the figures are the actual stresses. The time, t, is 

a dimensionless quantity, one unit bf t being the time required 

for the ray to travel a distance equal to the inner raditis . 

. Theoe/po values of the first four individual rays at 

the inner surface can be seen in Figure 6.1. It is obvious that 

the first ray coming to a receiver point in the first shell is 

the same for both a layered spherical shell and a single layered 

one. Except the first ray, in Figure 6.1, each of the other rays 
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is individually diverging in time ~. This is due to the exponen-

tially growing terms in the expressions for each ray. 

when all rays are combined, the sum is convergent. 

However, 

Figure 6.2 and 6.3 show the change of 0e at various 

radial locations in the first and second layers respectively. 

In the sample problem, the peak value for tange~tial stress was 

found to be 142 per cent of the applied internal pressure. For 

a single layered shell having the same materi~l properties with 

the first layer, the peak value reached was 165 per cent of the 

applied pressure. (Figure 5 of (8)) The peak value occurred at 

the time unit of 6.8 in our sample problem whereas it had occur­

red at 2.8 in the iingle layered case. 

Variation in radial stresses can be seen in Figures 6.4 

and 6.5 for the locat~ons in the first and the second shells. 

Note that due to a dynamic pressure radial stress changes from 

compression to tension as a result of multiple reflection of 

waves. 

Figures 6.6 and 6~7 show the radial displacements in the 

first and second shells respectively. The peak value for radial 

displacement in our problem is evaluated as· 1.31 unit of dis­

placement, although for the single layered casa this value was 

1. 70 (Figure 7 of (8)). 
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VII, CONCLUSION 

We have shown the ray theory gives us the exact solution 

for transient waves in a thick-walled layered spherical shell up 

51 

toa given time of observation. The method is most effective for 

early time solutions of thick-walled shells because if the time 

o! observation is large or the thickness of the shell is small 

the number of rays increases geometrically and the method becomes 

uneconomical. 

In the normal mode analysis, the solution seems to be 

exact, but in numerical appli~ation, we need i~finite number of 

roots in arder to get the results exactly. On the other hand, 

our method gives the exact solution up to a given time by consi­

dering only a finite number of rays. 

Practical application of layered spherical shell can be 

found in the design of pressure vessels, nuclear vessels, etc. 

Space capsules can be given as the examples for internal pressure 

applications, and submarines for external pressure applications. 

The result of this work can be also used as a reference 

guide fo~ the design of different shaped structures, e.g., layered 

~llipsoid shell. 



Finally, we can conclude that the ray theory used in 

thick-walled spherical shells is an efficient method for early 

time solutions where exact solutions are searched. 
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APPENDIX A 

DERIVATION OF EQUATION (3.2) 

The equations of motion in terms of non-dimensional 

variables were given i~ Eq (2.21). Taking the Fourier transform 

of this equation, we get 

o (A.l ) 

j=1,2 

Assuming an arbitrary function 

X(r,a) r<ii(j)(r,a) (A. 2) 

and inserting in Eq (A.l), we obtain 

(A. 3) 

which has a solution of th~ form 

is.ar -is.ar 
X = A e J + B e J (A .,4) 

j~1,2 

In terms of displacem~nt potential th~· solution'is 



A 
r e 

is.ar -is.ar 
J + ~ e J 

r 
(A. 5) 

j=1,2 

Introducing the zeroth-order spherical Hank~l functions of the 

first and se~ond kinds, given in Eq (3.3), we have the finai 

form of the Fourier transformed solution: 

A.h(l)(S.ra) + B.h(2)(S.ra) 
J 0 J J 0 J 

(A.6) 

j =1, 2 . 
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APPENDIX B 

SIGNIFICANCE OF Xl AND X2 IN AI~ BI~ A2 AND B2 

The terms Xl and X2 appearing in th~ constants AI' B
i

, 

A2 andB 2 of the salution were given in terms of U
I 

and U
2 

(Eqs (4.33) and (4.34)) as the following 

[1 
00 e12 T21 r ] x. = U. + E 

~ ~ 
j =1 RIQ, R 2 Q, 

i=1,2 

Writing the series in Eq (4.36) in the following form 

UI 
Xl = 

Tl2 T21 
1-

RIQ, R 2 Q, 

(4.36 ) 
(4.37) 

(B .1) 

and inserting the values of the above variables in terms of c
ijk 

and d" k whose definitions were given in Eq (3.7), we have 
~J 

= 
1 -

S2n2c22Q,dllQ, - c I1 Q,d 22 Q, 

c I2 Q,d 22 Q, - S2 n 2c 22Q,d I2 Q, 

(B .2) 
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Evaluating the above term gives 

c11~d21~ ~ ~2n2c21~d11~ 
~2n2c21~d12~ - c121d211 
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(B. 3) 

which is exactly the same expression as the reflection coefficient 

R11 (a). The same proced~re can be applied to X2 and can be found 

that X2 = Ril(a) . 

Thus, U1 and U2 , appearing in the matrix equation (4.32), 

II ( fJ 00 T12 T21 
appended to each with the series term + j~l R11 R21 

represent the reflection coefficients R11 (a) and R21 (a), 

respectively. 
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