
by 

liav"dar KILI9 

B.S. ~ C.E., Bogazigi Uaiver.ity, 1981 

Submitted to the Institute for Graduate Studies ill 

Science and Engineeriftg in partial fulfillment of 

the requirelleata for the degree of 

Master of Science 

Civil Engineering 

Bogazici University Library 

111111111111111111111111111111111111111 ~ 
39001100315327 

Bogazigi University 



THE FRICTIONLESS CONTACT PROBLEM FOR 

AN ELASTIC LA.Ym RESTING ON 

!If ELASTIC HA.LF-SP ACE 

APPROVED BY 

De~.Dr. K.Ba.liar civEUx 

(Thesis Supervisor) 

Dey.Dr. Kuhsin mxGUTURx 

Dey.Dr. Erol GfJLJ:R 

;t!.~~(JrvJd 
u/t;o\ 

.7l.l.ll~ 

~;\ 
DATE OF APPROVAL :. ~3,:Z ... lr.r ~. ~ ... 

181963 

"" , . 



iii 

ACmOWLEDGEMmT 

I am deeply indepted to my thesis supervisor, Dog.Dr. K.Ba~ar 

Civelek: , who helped me throUghout my study with advice ,guidance and 

encouragement.It has been only through his fine cooperation and support 

that the investigation reported in this thesis was developed and realized. 
\ 

I am also grateful for the generous help and encouragement given 

by Colonel Se1im :tii9iikaksoy , Major Sl.tk~ Saydam and my friends in 

Technical Division throughout this stud;y'. 

Lastly I would also like to pay an affectionate tribute to . my 
I· 

parents and to my wife for generous support and encouragement they gave 

throughout my graduate work. 

July 1984 Hay-dar KILl'; 



T.(BLE OF CONTmTS 

TITLE PA.GE 

CERTIFICA.TE OF APPROVAL 

ACINOWLEroEMl!NT 

TABLE OF CONTENTS 

ABSTRACT 

oZm' 

LIST OF FIGURES 

LIST OF snmOLS 

1. INTRODUCTIOIf 

1l.GDfmn ~UATIOIfS 

111.FORMULATION 'OF THE GnimAL PROBLEM 

3.1 THE CASE OF CONTINUOUS CONTACT PROBLEM 

3.2 THE CA.SE OF DISCONTnruOUS CONTACT PROBLEM 

· ". 

3.3 lfUNElUCAL ,SOWTION OF THE SINGULAR ~INTmRAL mUATION 

IV. NUlmUCALRESULTS AlfD DISCUSSION 

V. SUGGESTIONS FUR FUTURE WOOl: 

FIGURES 

REF!RmCES 

iv 

page 

i 

ii 

iii 

iv 

v 

vi 

vii 

viii 

1 

3 

·11 

11 

17 

28 

31 

32 

33 

39 
..... 



v 

AJ3STRACT 

The frioti0Jl1.as oOlltaot problem for an ,ela.tio layer lyiJtg Oll aa 

elastio. half spaoe ia oonaidered. It is assumed that , in addi ti01\ to the 

main applied load P , the layer ia subjeoted to a uaiform vertioal body' 

foroe J'} because of the effect of gravity in the l8¥er.It is also aa-
I 

lIJUBled that tM! contact between the l~er and the half apace is frioti01l

less and that only compressive aoraal traotions caa be transmitted thr0-

ugh the interface.Thus , up to a oertain critical .a.gnitude of the app

lied load the oontact between the layer and the foundation is oontinuous. 

For the values of the load exoeeding this oritical Ya1ue , the l8\1er ia -

partially separated 'from the aubspace.The separation area increasea with 

the increasing magnitude of the load. 

First, the prob1ea of oontinuous oontact· is solved aDd the value 

Pcr is detei-mined.Then the discontinuouB contact probles ill formulated in 

t.erms of a. singular integral equation.The problem i.8 formulated as a 

mixed botmda.r;r value. problem and solved by using a treat.ent similar to 

the crack problems.The separation area along the interface is evaluated 

as a funotion of a. dimensionless load paraJIeter .A • 

The oontact stress distribution is obtained for various values of 

corresponding to both continuous and discontinuous contact along the 

interfaoe.NUlI'Ierical reaul ts for Por ,contact stress distribution, and 

separation regions are given, for various material combinations. 

-
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Bu 9S-1~l}sada elastik yarl.lll diizleme oturan bir plak:taki siirtfuune

siz temas problemi goz Online almml.§tl.r.Plagm uy-gulanan P yiikiine ek ola.

rak t plaktaki Y'er~ekiini etkisincien dolS3l olU§an kUtle kuvvetine de rna,

ruz kald.1~ varSS\1~lDu~tl.r.Ayrl.ca plak ile yarm diizlea arasmdaki tema,

sm siirtiinmesiz old.ugu ve temas yiizeyillin Ba.deoe ba.m~ gerilmeleriniak

tard.1g~ da kabul edilmi~tir.BoY'leee uygulanan kritik bir yiike kadar plak 

ile yarl.m diizlem arasmdaki temas siirekiidir.Bu kritik yUkU ~an yUk de

gerinden sonra plak diizlemden kl.Bmen 8\Yl'lll.r.Artan yiik miktarma gore 8:3'

rllma. bolgesi de artar. 

Once siirekli temas problemi ~ozUliir ve Per degeri belirlenir.Daha 

sonra siireksiz temas problemi tekil integral denklem probleJline donfu}tii

rUltir.Problem karl~l.k sml.r deger problemi olarak formule edilir va yat

lak problemlerine uygulanan Y'Onteml:ere benzer bir Y'Ontem1e ~ozUliir.Tema.s 

yiizeyindeId. S3rllma bolgesi , ~oyutBUZ yi.ik parametresi A fum bir i~levi 

olarak alde edilir. 

Siirekli ve stireksiz tema.slar i~in temas yiizeyindeki gerilme dagl.-
~ 

ll.llll. degi§ik A degerleri i9in elde 'edilir.Deg1§ik malzemeler i~in Per 

, temas gerilmesi dagl.l~ml. ve ~l.lma bolgelerinin s~l.sal ~ozUm1eri 

verilmi~tir. 
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1. DlTRODUCTIClf 

Beca.useof their important applioations instruotural engineering 

in the past , the oontaot problems in solid meohanios have been widely 

studied (see , for example III for the pioneering work in the field and 

{ 2 1 for modern dew l~mentl~:rn. earlier works the oondi tion along the 

oontaoting surfaoes was assumed to be one of either perfeot adhesion or 

It f'riotionless oontaot It and to be, oontinuous.For the friotionless 'case 

regardless of the sign of the normal stress the, oOntaot along the inter

faoe was assumed to be oontinuous.This unrealistio assumption was first 

oorreoted by introduoing ,the notion of rt "reoedin'g oontact fI oondi tion 

whioh simpl:r states that along the interfaoe the oontaot can be maintained 

only if. the 'normal traotion is oompressive (31 .Some typical applications 

of this ooncept to the oontaot problems for an elastio la:rer on a. rigid or 

an elastio foundation ma.Y" be found in t 4-91 .1. major drawback of the 

type of solutions _given in ' t 4-91 is that as soon as the load is applied 

no me. tter howsma.ll in magnitude ~ the ( infinite) l~er " bends " and the 

oontaot area. along the l~er subspaoe interfaoe diminishes to a finite 

size, remaining oonstant the~eafter as thema;gnitude of the load is inc

reased.This , of oourse , will not be, the case if the effeot of gravity is 

oonsidered.Some examples taking the effeot of gravit,r into aocount ~ be 

, fOlmd in [10-151. In referenoes , [10-141 the' layer rests on a friotionless 

horizontal , rigid fOlmdation.However in {151 the subspaoe is elastio. 

In this work the standard f'riotionless oontaot problem for an 

infinite layer (i.e., abeam or a plate) l:ring on an elastio foundation 

'is reoonsidered (Figure I).-It will, be assumed that-in addition to- the 

(oompressive) external load P , the layer is subjeoted to a lmiform bod3r 

foroe l"~-::.- f~ aot~g in the same direction as p'.The problem is identical. ' 

to that oonsidered. in t 151 .In this work a new bimateri8.l oonstant fJ is 

defined and f> takes values in a .fini'te range ( -l(~<:l ).The calcula.

tion of the infinite integrals that appear in the kernels have been. imp-
'\ 

roved by extracting some integrals which can be evaluated in olosed form. 
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In this problem when the applied load P reaches a ori tical value , due to 

the bending of the layer the separation will -begin at XaXcr on the .inter

face and the sepa.rationarea (c>-b) , (b<Xcr{c) will mcrease as the 

applied load P increases.Of oourse , in this case the separa.tion area is 

finite. 

The discontinuous contact problem is reduced to a singular integral 

equation which is solved numerically.The unknown funotion of the singular 

integral equation is the dislocation density of the separation area.Once 
\ 

this dislocation density is determined then the contact stress acting 

along the interface can be determined by some numerical calculations. 

liumerical results are obtained and plotted for various material oombina-

tions. 
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11. G»i1RAL EQUATIONS 

Consider an infinite elastic 1qer of thiokness h in smooth contact 

with a semi-infinite elastic foundation.The geometry and the coordinate 

system are shOlom in Figure 1.Let IS- be the body force de!lsi ty acting 

vertically dcnm in the layer and note that the boc\Y force density aoting 

in the foundation is neglected since it does not disturb the contact 

pressure.The governing equation for the elastic . layer are 

, 

, (2.1 a, b) 

where A, and)Ai are Lame constants, U, and '" are the X and Y com -

ponents of the displacement vector.Expressing the solution of (2.1) by 

, 

, (2.2 a, b) 

the particular solution of the problem corresponding to the non-homogeneous 

term fa- mavr be expressed as 

, , 



And the related stress components are 

p , 

cr~'X.-x.::: s='ca (~-h) , 

cr.;~ - 0 ( _h..) ;tL 
i~~ - J S M 2. .I\.~~J~ 

For the homogeneous solution , observing 

U,\-t (X, 'cl)== -lh.h (-'X.) ~) 

Y\ h (-:x:) ~p::: V~'n.(-'X.} ~) 

one may express 

00 

U1'c, ('X I~) = ~ 5 ¢ (~ )eI...) £;\\1 ot.. 'i..dcl 
o 
co 

'A'n C-:x:.,~)::: ~ S If C'd )ol) CO~ol~dol. 
o 

and Inverse Fourier Transformations will be defined by . 
. .,Q 

¢ (~ )ol..) == S Ui'n('X.,,<\) S\ool.:x .. dx 
o 
.,A:J 

4' ( ~ J ol)= 5 \}~n( 'X./~) Co~ot. ~ d)(. 
o 

recalling the homogeneous equations 

, 

, 

• (2.4 a-c) 

, 
, (2.5 a,b) 

" 

, (2.6 a,b) 

, . 

, (2.7 a, b) 
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multiplying ( 2.8 a) by 51f)cll"j(d~ and (2.8 b) byCo~~d!){ and 

integrating from 0 to 00 one obta.ins 

where through the integra.tion by parts the expressions 

d:J 

) a~~ s" ()c,l.::x. d tJC.. = _ oJ.. '2. ~ 
o 

were obta.ined and the conditions 

were imposed. 

, 

, 

, 

, 

, 

, (2.10 a-f) 
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Differentiating (2.9 a) twioe and. (2~9 b) once with respect 

to y gives 

, 

, (2.11 a,b) 

substituting for .0/'" from (2.11 a) and for 0/' from (2.9 a) into 

(2.11 b) one obtains 

• (2.12) 

This fourth order or·dinary differential equation has 

as the characteristic equation t4hich· has the roots 

• 

Hence one ma::! express 

, (2.14) 

then , 

and substitution in(2.6 a,b) gives 



co 

. -. 

U\h(x,~p= i 5[(~\tt:\~'j) e--'-M + (~~ +~\1)~'d 1 S\fl olxdol 
o 

7 

, 

. cO· 

"'~ ('X., \l )"'%-5\[ ll.+( -fi-T~ )RJ t:\.~~+(~- :1) ~Je""~} C.05a/.J<:d~ 
o 

Where the 1ll1known turictions (:li (oZ.) , (~c::l, ••• ,4) are to be deter

mined from the bomdary conditions ,'1{-:: '3- Ltv for plane stra.in- and 

'X. ..... ('3-'2J)/(i"'r1J) for generalized plane stress, :v being Poisson's ratio. 

Now employing Hooke's Law 

, 

, 

, (2 .1 7 a.-c) 

the stress components may· be expressed a.s 
. dO ' 

~Oi~ .. (-:q~)=i-Snol(n.Hl .. '<I)- "",-;-. ii'Ll CL~ 
o 

-+ loL(R~-tQ~~)~ ~-;.' QLtle~~J Co~:x:.clol 
, 

, 



'\ 

• ,.-

1 t, do:> - ' . 

'Y-" CJ:i'X.~ ('X 1',1)= ~ ~ {- ( <>t- (t\,"\"~1.'j ) + 1(~1 A .. ] e.,(~ 
I 

from 

(2.18 a-c) 

The tow displa.cements and the total stresses can be obtamed 

u, ('X,}:\) = 1)\'0 (-:c.}~)4- \.hp ( ~, ~) 

\}, ('X.J~):::.\I\h(-X,~)+\]~~ ('X,~) 

"" p D:i~~ (::x:,'J)= Oi'd~ (cc.., ~n +Cfi,<\~ (':X., ~) 

Cl\'Xtl('X,\j)=o\~~ (':l:IM)+Cf;'~~ (r;:c,M) 

, 

, 

, 

, 

(2.19 a-e) 

:.as 00 

U,('X,,<\)=~ .s[(R,+~,-~)e-ot~ + ('I=1~-I-~ .. ~) t';\] SIOoLxdol.. 
o . 

, 

8 



CIIQ 

~,O-;-:x.!X(-:x.,~)= ~ 5Uat(I1'+~'1.~)- 5-'X, fl2.],eolci 
o ~ 

:+ (01. (i=l, + ~ ~ ~ ) '\: :--';' 1=\~1 t" "'1 O>ScI.::x.cI.l 

, -t S'~ (~-%) ~\ .. 
. . '2.1' A"t'Lj\ 

, 

tJ:) . 

~f' 0-, ~'j ( X,lj ) = ~ ) 1-101. ( fl ,T\) .. ~) ~ ~7' 11 .. 1 e-ol,<\ 
() 

, 

"" . ~ 
2.J" ,O\oc ~ ( ':It, m = t j i-( 01..(1=\,+ <;\2 ~)+ ~" <;\ .. 1 e-cI. ~ 

o . 

(2.20 a-e) 

The stress components and displacements equations for the half 

space may be expressed as follows 

9 

" 



I 10 
,~ 

00 

'\J!I.('X,\,I)~ ~) l~~\t(~ ~9 )B~ll'~CO~J.:x.d..t.~ 1~;~ fdh~ • 
o . 

c::;IO . 

~2.o-!l."'''''('X./~)-~ )n~(\),t~ ... ':1)~ ~--:\ e,,,lt ':l1 Co~xd.( 
o . 

, 

1 C'C 

-2)'~ a;~~( "'",'1) = ; J (-..l(\!'\~~2.':1)~ 1~l ~~e"'';lCo.s'''xcloc. 
o 

, 

( 2.21 a-e ) . 
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Ill. roRKULJ.TION OF THE GDll1RJ.L PROBLDt 

3.1 THE CASE OF CONTIlruOUS CONTACT (0 l.. P ~ Pcr) 

Referring to Fig.l, it is clear that for values of the 

resultant compressive force P which are 1eBB than a critical value Pcr 

the continuous contact a.long the interface yeO, 0 l: "X. LOP will 

be maintained. The 10M Pcr' corresponding to the initiation of interface 

separation wil~ depend on the thickness h and the bod;y force ~ 9- .In 

order to determine the value of Pcr ; 'assumilig that the contact bet

ween the l8iYer and the subspace is frictionless, the problem must be 

solved under the following boundar,r conditions: 

<J.;" -x~ ( 'X , h) = 0 , o ~ ':X.l.. d::J 

a:;~'j (-:x: I ~) = -l- cS (-:x.) , o~ 'X. L.. 00 

" o;'X.~ ('X 10) = 0 , o t: '.X.. '- eJIV 

o;xy ('X.,O):: 0 , o I:. 'XL cD 

.Ci1yy (?C.,O)=- o;,Y~('X/O) , o , ?c.L..oCJ 

a\f \ (~,O) - ;:)"2. (:.x.,c) 
O~?<I..00 - , 

C)?c. eX 
(3.1 a-f) 

Theunknownftmctions Fhiol) ,( i a l, ••• ,4) ,5,j(ol),(jcl,2) 

will be determined from the above boundary conditions. 

, . 



/ 

From ( 2.20 e) and ( 3.1 c ) 

;rrom (2.21 e) and ( 3.1 d ) 

from (2.20 e) and ( 3.1 a ) 

-loZ (~\+q!2.")'+ ~-\-'\ 'H~]. e-oL~ 
. ~ 

tTom (2.20 d) and ( 3~1 b ) 

i 51-[..(. (t:l,-+t:l'lh) -I- 1t-~:!. t:l~I e- ..(. ~ 
o 

1 'P \ 
-= -- - 0 (;;x:.) 

. ~i '2. 

12 

, ( 3.2 ) 

. , ( 3.3 ) 

, ( 3.4 ) 

, 

or multiplying both sides by COS«'xdx-and integratmgf'rom 0 to 000 

one obtains 
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0:> 00 

{ ) l H- (",-(~,.,~~n) -+ h~. I=l~le oln 
.0 0 

+ f - 01. (~'l + H ion ) -+ 1+:, ~ .. 1 e.,(, \) i c.o ~C<'I.d.<.lc0~ ~cI){ 
.0 

= -~~ (cS"('X) Co~ol'Xcl'X 
~J\ 2.) . , 

o 

which gives 

, 

From (2.20 d ) , (2.21 d) and ( 3.1 e) one ~ express 

, ( 3.6 ) 

, 

and from ( 2.20 b ) t ( 2.21 b) and ( 3.1 f ) 
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-

Solving ( 3.2 - 3.7) simultaneously it is possible to 

express the unknown functions 

-
Pe'3U> [ e2.LV( 1-m)(-,\ -t2.w~1(,,) -to l-1-~ )(i-1{~) -\- 'l.W (1-t1'fl'ki)] 

~1~ , 
~Y.ioL. 6.. 

"-

Pe'lW [ me2w (--l-2.W) -+e.~ e-w 
( -i -'C't')) 1 

L.y~ ~ 

~4 -=- 'Pe'4w[ m (1-2.u.7)e
W 

-\- €W_ eW 
( 1-T~}1 ' 

l.if1. fi 

p e:-w('~2.-1) [( 1-W) e~ (-1-t w) eW 1 " 
4jJ"'oJ.. \' ~ 

'P~((1-w)e-w- (~+w)et.ul 
~.r1. \' ()." 

, 

, 

, 

• (3.8 a-f') 

. ' 
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Where 

, 

From equation (2.21 d ) 

or substituting from ( 3.8 e,f) the contact stress along the inteJ:'face 

can be obta.ined as 

Q&;) 

D2.'3'! (X,o)= ~~ ~ eW[(HW)[-+ ""-11 COl> wh du>-f~h 
o , 

Defining 

, , 

1. - 1'Yl , " 
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The normalized contact pressure becomes 

C'O 

'Pc:x)=1+ 2.1 je."'[CI+W)el"'+w-l] Co~-W- dw 
1t 0 2.e4

1.U ~!lot :LW31-~)( H2.w~) ]~ _ 2..£' 
1-t~ -i-t~ -1-tp 

( o~ 'X~ 00 , - -\ b f-> ~ 1 ) ( 3.11 ) 

It is seen from (3.11) p(x) remains positive up to a certain 

value of A and the contact on ·yJJpiane remaines continuous.The 
( 

critical distance Xcr at WhiCh the intirface separation begins is 

determined as the distance of the lowest point of the contact stress 

curve.The critical value of the load factor '). 7Aer at which the 

interface separation begins can also be determined from the condition 

p(o)aO 

giving 

00 W [ 2.u.Jl C W~c.f" 
L=~( e 1-W-(~-+tO)e OS ~ dw. 
Acr- 1L) fl 

o 
( 3.12 ) 

For )'7 Ace-the foregoing solution gives fi1. negative pressure 

, 

along part of the interface. Since it is assumed that there is no ~esion 

between the l~er and the subspace , this is not possible and the l~er 

will be partially separated from the subspace.In this case the solution 

. leading to (3.10) is not valid and the problem must-be treated as _ a.

mixed boundary problem. 
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3.2 THE CASE OF DISCOJTINUOUS CONTACT - ( P '7 Pcr -) 

If the applied load P is greater than Per corresponding to 

the beginning of interface separation , the basic solutions for the layer 

( 2.20 ) and for the half space (2.21) are still valid.However , in 

this case the unknow. -funotiOns ~dol..), (l .. \, ... ,t.)) t3j (cot.) I (j-= 1.,2.) 

must be determined from the following boundary -condit-ians ( Fig.2 ) : 

cr:;'X~ ( ~,h) = 0 , OI.?C.~cO -
Oiy~ (-X, h) :: - f ~(':X-) , o~ ?C..( 00 

0i'X~ ('X, 0):::' CJ:z:x.'j ('X,o) = 0 O~ X~ 00 , 

~'d~ (-:x.,O) '5 cr~~~ ('X,O) , () f 'jC. L.. 00 . 

( 3.13 a.-f )_ 

Introducing the new unknown function 

, b,('X..£.c 

- -{-3.l4 ) 

all other unmo\ill functions ~\ (ai) 1 (\.= 1, .•. I 1.. ) 

IIIa3 be expressed in, terms of f(X) by using equations - ( 3.13 a-e ) an.d_~ 

( 3.14 ) • Since there is an interface separation along b l. x <. c to have 

single-valued displacements the function f(x) must satisfy the following 

C 

Sr('X)cl'X.:o a 
oondition : 

( 3.15 ) 
b 
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It should also be noted that the, distances b - and c determining 

the region of interface separation are Wlknown. 

f-}t(ot.) ) (\=1., ... ,~) 
in terms of f{x) as follows. 

From ( 3.13 c) and (2.20 e) one obtaines 

from (3.13 d) ~d ( 2.21 e ) 

t (3.16) 

. , (3.17) 

, (3.18) 

. . 
from (3.13 b) and ( 2.20 d ) 

cO 

~ 51- I ~ (~\+~:th);. H: \1:>.1 eo.l.~ 
o , 

-I- [- oL( t:I~ -t 1=1,..1,) + "~" FI~ 1 ~ '" 1 COS..LX 01..( 

, 

or multiplying both sides by COSo(.:xc.\-x. and integrating from 

o to oD one rna.y express 
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t::IO t:b 

~ 51 H -'- [01-( ~,+ A<L\-]) ~ 1(~~ A~] e-.IJ1 
o 0 

which gives 

From ( 3.13 e ) , ( 2.20 d) and ( 2.21 d ) one IDS3' write 

, ( 3.20 ) 

and from ( 3.14 ) , ( 2.20 b ) and ( 2.21 b ) it is possible to express 

t;O 

- ~ ) oJ. (Il, + ~ A ... - 'H"l + ~ A .. ) ~\" OL 'f..clo(,. 

o 
• I 

ceo 

-+ ;. J oJ. (-\!,i + ~ ~2.) '::'I(\ol'X.cicl.. = r (o:x: ) • 

o 
b<?C,{ c. 
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or recalling the second of( 3.13 f } - , multiplying both sides by 

-S,,"<\ ol ?C..d-x. and integrating from 0 to ~ one obtains 
. '. 

00 COG 

-it 5\ ~.,.. ( t:\. 't ~ 1=1 .. - Q." 't !: t:\~,,) ~ '\ /) 0{ 'X clotl !:!>i tl « 'X d-.:t: 
o 0 

.OQ OC) 

+ ; ) l ) (-1&,t :,.!. 1&:1)«' 5\~"'cl a..l~itlc/.'XcI~ 
o () 

Co 

= 5 fcoc..) &\(\otX.d-x. 
'\0 -, 

or changing the d~ variable 

ol (- ~\-~ A:20 ~ B'!,":' ~'t:lt.,- 'D1+~ ~2.) 
c. 

= 5'{?Ct) ~\nol--t:dt • ( 3.21 ) . 

b 

Solving ( 3.16-3.21) one finds 

?e3W 
( e'2.VJ( -1-1"0)(-'\ ~:2.W+ ~\) ~ (-i-tl'l) ("\-~\) -\- 'J.UJ("\ +~'1(I) 1 

g)A4 oJ... A 

L~r :teW (1(-\-1) +€w(-4W+8W"2.._2.~,+-4'1<..t W+2)J 

+ 201.. (r9(,\ ;.1) II 

t:l2.:: :pe'2.W [~ew (-,,\-2.W) +~;... €w (~-«t) J 
It)!\ A -

, 
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~~= Pe"" [ e'lvJ(i+m)( -1<rl2.w-t-1) -t (1~ nl)('K1-1) -t2.W (i- m'l::1)1 
gy,ol fl 

'2oW r -w -w w ~ L '2'" (_2.W 
) 

~ : 'Pe Lme. (i-2.w)-t-e - e (i-tm)J + e .2.e -~-"w ., 
~ ~,6.. . ('~-t'\) ~ 

p e.'.2.\.O ('1(2. -1 ) 

4JA' r c;l.. ~ 

• 

, 

( 3.22 a.-f ) 

. ' 
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where , 

c. 
L= 5 (:(.t).s\'Od...tc1~ 

b ' ( 3.23 ) 

and ~ , r , and m were previOusly defined. 

From the first of ( 3.13 f ) one 1'IIa\Y' express 

• 

Substitution. for Bl. and B~ from ( 3.22 e,f) and ta.ki.ng the limit 

one obtains the Singular Integral »tua.tion of the problem as 

. c .. . 

!2.)A" (-1 +'?) l-L ((.-:L -+.-:L ) f(~) dt 
( ~ +'9<..'\) t 1( J t-t?C. t-?' 

\:, 

C· . . 

-I- ~h ~ \::.\ (:x:.,t) H t)dt 1- f~'n ~ 1.- -{-~~('X~::: a 
b 

( b <,X '- c) (3.25) 
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where, 

, 

( 3.27 ) 

- In the oaloulation of the kernel ~(x, t) and the bounded 

function koz.(x} which are in the form of infinite integrals, to improve 

the convergence the following procedure will be. used. 

For example if k1(x,t) is considered, it is possible to express 

oP 

- ~ ( 1-'t~ )(-H '2.~ .p .. w' ) e'2.UI l 5.1 {) ~ ( t -:0<. ) t SI/'I ~ ( {-Y->: 1] dw . 
o 

( 3.28 ) 

. , 
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As one can observe when the. two terms in the curly brackets are 
• J 

combined. the degree of the leading term which a.ppear in the denomina.tor 
~ 

gets much larger than the degree of the ),eading t..erm in the numerator 

and it is possible to evaluate the last integral in closed form. 

Recalling, 

o ( 3.29 ) 

and 

eO 00 

5te"".5; ... o.~cH: = - ~!l.)est~H,o.tclt 
o 0 

or 

o 

( 3.30 ) 

Similarly , 

~ -. 
~ {:'l.. e"'-I:.~\(,c.t·dt -=- _ ~ '" )t e:S.\.'<'Io.h\-l 
o 0 



henoe 

Now substituting from ( 3.29-3.31) one obta.ins 
cP 

S (H2.W -'<2.",,,.1. )€<l.W ~\,,~ (Io-:x:)dw 
t:) 

and 

Henoe , 

00 

k~ ('X ,~) = J ~2.r1- (~-+~IAJ1"2.w")rl 
o 

+ ( -\ -t ~) ( 1 .... 2. w + 2. w oz.) e:z.w 1-
1. [~\~~(t--X) -\- ~\~ ~ (-t:+'"X.)1 dw 

25 

( 3.31 ) 

( 3.32 ) 

( 3.33 ) 

nOGAI\C\ UNlVERSIT5\ KU1UPHMlESl 



. 
Similarly it is possible to express k~(x) as 

• .... 

( 3.34 ) 

D'Q 

k~(~) K)i ~ U: [1-UJ
- (-I:~~ e2."'l ~... ~ 

. 0 - e -+'l.( 'l.W.- . (1+2w'l.)le-~ 
.' . 1:t(!» '. 1 ... ~ '1 .(-t~ 

. + (Hfo)(Htu)eW1 c.o'!.~'Jc.dw 
00 

_ 5(1-t~)(1-tW)€\AJCo~ ~-xc!w 
o 

• 

• 

( 3.35 ) . 

Reoallmg , 

o ( 3.36 ) 

and' 

26 
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or 

clIO 

)-te"\cos,Cl.tc\\. =_L( ~ )=~_~'1.._o..'l. 
o d~ S>'1.ttx'l. (~'l..+o.'l..)'l. 

( 3.37 ) 

Substi tuting from ( 3.36) and ( 3.31 ) one gets 

flO 

(( . ) _w OJ, 2-
) 1+w e CO~\1'XC>tU:. ------

o ' . \ ".-+ (~Yl1. 
( 3.38 ) 

Renee, 

QO 

K2. (o:lC) = 51 !I.e'" [1-W~ (Hu»e"''''] 
o 

( 3.39 ) 

It should be remembered that the singular integral equation of 

the problem ( 3.25)' will be solved by imposing the single-valuedness 

. condition 

( 3.40 ) 

The 'conta.ct stress may also be evaluated from' 

C. 

~'j('X,O)= ~)l .. (-t+'i:) S..L ((...L~ 1 )f(tld-l 
. (1 + ~1) l 1{ ) 4:-'X 04:-\-':)(. 

b . 
c . 

+ ~h ~k1('Xi\JHt)dt 1- f31, l1-1-k ... c'X)1 
b . 

. . ( 3.41 ) 
(o<:x.~ b) c.~'X.(-o) 
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3.3 1WHIiRICAL SOLUTION OF THE SINGULAR IBTEXmAL ~UATIctl 

it the 

The index of the singular integral equation is -1 and to solve 

Gauss-Chebyshev integration formulas given in (161 have 

been used. First the ~tiOns (3.25) and ( 3.40) have been norma.

. lized by defining the following dimensionless quantities 

2..t 
~=

c.-'o 

c.~\::' 

c..-b 
. !l.-:c 

, r- 0:=. -------c.-b 

After normalizing one obtains 

"1 
+ -------------------

~~r -t 2. (C.~b) I (c.-b) 

c.-tb 
c.-\:' , 

• ( 3.42 a-c ) 

( -t .( f'" <."\. ) ( 3.43 ) 

and 

( 3.« ) 



Then writing 

¢(~)-= F(~) 

( 1- S'l.)'1'2- , 

• ",-. 

-1 <. s I.. 1 

and applying the quadrature formula. to ( 3.43 ) and ( 3.44 ) one 

obtains 

and 

where 

f. Wit. t"F(51\)( 1. 

S\r,- ft ~.1 

n 
~ W~ Fts,~)= 0 
~:r1 

1. 
-t 

..5",,,,, r\ -T 2 (C-\-'6 ) 
c.-b 

, icl, ••• ,n-l (3.45) 

, WL::L, k=2, ••• ,n-l (3.41) 
1\ o-'\. 

C· ( '2.\.-1) r:l = o~ 1(--- , 
2.(\-'2. 

ial, ••• ,n-l ( 3.49 ) 
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To insure the smooth contact at the end points'of the separation 

. area the following oondi tions 

, F(-+t)=O ( 3.50 a,b ) 

"will be imposed. 

The equations (3.45), ( 3.46) and ( 3.50 at b) form a 

system of n+2 algebraio equations to determine n+2l.Ulkno'Wlls F( s],), • 

•• , F\Sk) , ••• , F(Bn) ,bjh and c/h Where SJc=COS\lC(k-l)/(n-l)1, 

k-l, ••• ,n. 

The equations are linear in F\sk) but very highly nonlinear in 

b/h and c/h.Therefore, an interpolation and iteration scheme had to be 

used to 'obtain these two unknows.With the critical values of Ace- and 

Xor known , increasing ).. gradually it was not diffi~ t to. make good 

initial guesses for. b/h and c/h.Thus f determination of suffioiently 

accurate values for these mUmO.Wl1S did not require extensive numerical 

work.After determining the ftmction 1"( s) and the distanoes b, c the 

oontaot stress I!la\Y be easily be evaluated from ( 3.41 ) by applying 

the quadrature formula again. 
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IV. NUMERICAL RESULTS AND DISCUSSION 

Fig. 3 displ~s the variation of the separation initiation distance 

Xcr with the bima.teri~l constant Ft and ,Fig.4 shows the variation of 

the ori tical load factor' ic:.r with ~ .As it can be seen from these 

figures bothXcr and Ac.t'"" increase wen 13 decreases. It· should also 

be noted that for ,p. <:. ~ O.it the subspace gets very soft and Xcr." 

values will get very large and for this reason it was't possible to obtain 

accurate values and the convergence of the integrals was observed to be 

very slow. 

Fig.5 shows the important results giving the distances b and c 

which define the separation' zone.It appears that for a fixed value of ~ 

. increasing load factor A ,b/h approaches a constant asymptotic value 

which is equal to the extent of the contact zone in the receding contact 

problem.However , c/h keeps increasing with increasing A • 

Fig.6 shows some sample results for the pressure distribution 

along the contact area.For A='30 <. ACt'~4lt.U.it is seen that the 

contact as well as the pressure distribution is continuous.For A"7 Acr 
the figure shows the discontinuous nature of the contact area and the 

pressure distribution. 

The following major conclusions can be drawn from this stu~. 

1. The definition of the bielastic material constant f!» has 

proved to be very. appropriate_ since it takes value~ in a- fini~e range ' ... 

unlike m (the constant used in Ref .(15 ) which varies from 0 to 00 • 

2. It has been experienced that . by-extracting some closed form 

expressions from the infinite integrals , the convergence in the numerical 

evaluation of these infinite integrals has been improved to a great extent. 

3. This solution could be used in engineering practice and can 

replace various beam models used for beams on elastic foundations. 
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V. SUGGESTIONS PUR Wl'URE WORK 

The representation of the subspace as a linear elastic continuum 

is the major obstacle which prevents one to apply these results directly 
• to beams lying on soil subspace.It is believed that a better model to 

represent the soil should be used. for the better underst~ding of the 

contact phenomenon .. This can be achieved either by assuming that the soil 

is viscoelastic or poroelastic or elastio with a reduced modulus , etc. 

Of course , these models require different math~tical approaChes 

involving the Laplace transform or finite elements and extensive numerical 

ca.lcu1atiom should. be carried out. 

Sinoe there is no oorrelation between the Young's Modulus and 

the spring constant k of the spring model for the soil subspace , it 

was not possible to oompare the results with the results of the spring 

model.This should be done in the future if the correlation can be 

established. 

:'",,': 
.':;" 
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