A MULTI-TASKING EXECUTIVE

by
SEDAT YILMAZER

B.5. in E.E.., FHpgazici University, 1981

Submitted toith@ Institute for Graduate Studies in
Science and Engineering in partial fulfilment of
the recuirewents for the degree of
Master of Science

117

Computer Engineering
Bogazici University Library
-
14890

390011003
Hogazicl University

1984

A MULTI-TASKING EXECUTIVE

APPROVED RY

Doc. Dr. Tune Balwman z{.;i;;géégdﬂdadiiua“

(Thesie advisor)

Dyr. Selahattin Kuru

i o A
Dr. Akif Eyler 7 e, Qme&ﬁt@bu

1819214

pid

ACKNOWLEDGEMENTS

I womsider it a previlage to ackrnowledge those people who
helpad and encouraged yve daring wy education and specially wmy

thesis., Five

I would like to thawnk Doo. Dr. Tunc Balmaw |, wmy
thesis advisor, for his kind help and understanding throughont
wmy wndergraduste and graduate study as well as my thesis. I
would l1ike to thanmk Doc. Dr. Yorgo lstefanocpulos | my urider
graduate adviﬁor,v who encourged me on taking a wmaster thesis. 1
also would like to thank Mr, Taviguw Avgun and My, Sait Gozuwm who
let e e Vthe facilivies of the regsearch and development
laboratories of NETAS. I would like to thank Mr. Senibh Pekol who
first showed se the power of wmulti-tasking on wmicrocomputers.
Finally, I wowld like te tThank My, Selcouk Yilwmazer, wmy dear

brother for his pabtience in proofreading this manuscoript.

iv

ABSTRACT

This thesis describes the design and iwplewentation
of a real-tiwe wmulti-tasking priority-driven executive, FOX. The
name stands for "a Fast Object oriented eXecutive. FOX permits
the wmicro—computer user to enjoy the multi-tasking capabilities
of the high performance machiﬁggﬁlike minicomputers. FOX tries
to unify the concept of multi-tasking and team study of
projects. FOX uses the concept of exchange for inter task
communication and synchronization. For interrupts, FOX uses
special exchanges called flags. There is no limit on the nuwber
of tasks and number of exchanges that can be created under FOX.
There are 16 flags managed by FOX. Eigth of these flags are
assigned to eighf external interrupt sources via an interrupt
priority controller. The remwaining eight can be used by the
progfammers for fast and easy event processing. Each task
runming under FOX has an eight bit priority level, which is used
by the task dispacher. All task exchange and interrupt binding

is done dynamicaly by FOX to ease the teawm study of projects of

large code size.

QZET

Bu tez oncelikli bir gercel-zaman isletim cekirdeginin .
FOX ,tasarim ve gerceklenmesini fanimlar. FOX wmicro islemci
kullanicilarina daha buyuk islewcilerin, ornegin wini
islemcilerin, coklu kullanim imkanlarini saglar. FOX coklu
kullanim ve grup calismwasi R;vvamlarina duzenli pir yvapi
kazandirmaya calisiv. FOX islewmler arasi iletisim ve oszamanl ama
icin iletisim kutulari kavramini kullanir. FOX kesintiler icin
ozel iletisim kutulari kullawnir. Eu ozel kutulara bayrak' adi
verilir, Cekirdegin icinde bulunabilecek iletisim kutulari ve
islew sayisi uzerine bir sinirlama yoktur. FOX 16 adet bayragin
kullaﬁilmasini saglar. Bumlardan 8 adedi 8 diskaynakli hkesintiye
bip kesinti oncelik cozumleyicisi ile ilistirvilmislerdir.
Artakalan 8 adet bayrak, kulanici tarafindan hizli iletisim
amaclari dein kullanilabilinir, hizli kesinti iletisimi ornegi
gibi. FOX altinda calisan her islewin -8 dilimlik ve islemci
bolusumunde kullanilan, biv oncelik sevivesi vardir. Butun
islem, iletisim kutusu ve bayrak baglantilari , Buyuk
yazinimlarin ve grup calismasinin kolaylastirilmasi icin, FOX

tarafindan cekirdek icinde kendiliginden yapilir.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

.. iid
ABSTRACT wvvvvnn.. P e i, iv
OZET v u e wveneimmamnennns e s e ee v
I. INTRODUCTION woesrmseesnnnnn.. e, 1

1 AIM v et neeaaenns . 1

= HISTORY OF MICROCOMPUTER HW DEVELOPMENT 1

3 HISTORY OF MICROCOMPUTER SiW DEVELOPMENT =

4 APPLICATION PROGRAMMING .. nvoson... A

I1. CONCEPT OF AESTRACT MACHINE e Ceinnn. E

P DEFINITION OF THE AESTRACT MACHINE &

TIT. FOX MACHINE & oo ss e e s ese e smseeennn. e a

1 DEFINITION wvws e eeeeennnnn.. e e 8

2 USE ENVIRONMENT o ovnsnnnnnn.. e 10

3 SYSTEM REQUIREMENTS v vsnsnnnn ... cren. 1O

4 FOX AS AN ABSTRACT MACHINE ... nowooonn... .. 1z

c METHODOLOGY . .u..... e N ceeee. 14

& MODULARTITY et ae e eaeeen s e 15

7 N o b T

8 ENGINEERING FOR HARDWARE DEPENDINCIES 17

5 BLOBAL VERSUS LOCAL OPTTMIZATION ..o .o 15

10 - METHOD OF COMMUNICATION IN FOX .. 20

Iv.

vii

FOX MANAGEMENT ROUTINES =

1 FUNCTIONS OF FOX wuvwevenonnnn . cenna 22
2 TASK DISPATCHING & v h e i e v e e mmen s W w e Qj
3 EXCHANGE MANAGEMENT fa e s . 26
4 EVENT PROCESSING v uuerwwmmsonsia ke 28
1 FLAG EXCHANGE MANAGEMENT w29

& FAST EXCHANGE MANAGEMENT v v ewwesawen ISQ

FOX OBJECT DEFINITIONS “aaaa A me i ea 52
1 USE OF OBJECTS v vvweansunnnunnnnnenonneens 32
2 TASK RELATED ORJECTS S a ks me s A a ... 32
1 STATIC TASK DESCRIPTOR ana e oA

2 TASK DESCRIPTOR v.uvvwwewann “h e v 34

3 TASK LINK DESCRIPTOR 4 i wwmeswownnsnss 328

3 EXCHANGE RELATED OBJECTS Cr e ks e m e e 40
i STATIC EXCHANGE DESCRIPTOR v wvewceeuwnn. 40

b EXCHANGE DESCRIPTOR ..vuww.. e e v an a2

3 EXCHANGE LINK DESCRIPTOR “a e wm s 46

4 INTERRUPT RELATED ORJECTS . .ursneunrumennn. a8
1 STQTIC INTERRUPT DESCRIPTOR .. iwuwen. 49

& INTERRUPT DESCRIPTOR . vnvennmennn. 51

viii

VI FOX INSTRUCTIONS 4w v o e s vmnennns feae e PR 53
1 INSTRACTIONG ONM AN ABRSTRACT MACHINE a3
= CREATE GROUP ettt e et t e e e emnnenn 54

1 I]
@ CREATE EXCHANGE ..t ue e i e wen f vk w ks 56
&t CREATE INTERRUPT 4 s et e ee e mee e nmnns A, 57
3 LINK BROUP + ot tee e et cieian 56
1 LINMK TASHK e Nk nuaaaa R T
z LINK EXCHANGEu....... e ae e 60
4 UTILITY BROUP ot n e e e s A E ke &1
i SUBPEND v e i nnn e P e P waa e =91
2 e &2
3 DISPATCH v w e e s e s iein e N e e e onu £33
5 EXCHAMGE DPERATIONS L.ttt e e s e s em ee e e &4
1 SEND OPERATION . .uen s s esennn. e amm &4
& Send if free or return &6
b Perform Send and return &7
el Perform Send oy time out Lo
@ WATT OPERATION e eaaa 69
& Wait 1if free or return ..o..... 71
Iy Wailt witil veceive vouwvwswn.. 70
o Walt message or time out 73
£ - FOX FLAG OPERATIONS s s ssssm s wun 74
1 EVENT s e wwn bk e h ok m e e e akwawe T4
= S TENAL

1X

MIT. MORE ON SEND AND WAIT OPERATIONS N www e
1 SEND -~ WQiT INTERRACTION &t n s e n e w e mns
2 COMMUNTICATION &t et e i e e e asne e e wmmmmmns
5 SYNCHRONIZATION ... unu... A e e e ek
4]MUTUHL EXCLUTION o et s s s emm s R
VITI. SYSTEM START UP v s s cweeenns Mk www ok wa e

IX.

X.

ARPPENDT X
APPENDI X

APPENDIX

REFERENCES -

1 CSYSTEM INITIALIZATION v ver v s e emse e,

SAMPLE APPLICATION Wueewunn... e ;
1 SAMPLE ARPLICATION e e
ps DEFINITION ottt wm e i s ie s e mmmmnnas e e
3 INITIALIZATION ws v s e e e e e wweessn s e
4 TASK BODIES & vn i eeiin e meesmannss e

CONCLUSION ke e e s P
A FOX PROPOSAL ettt et et e e e e e e e ee e
B SOURCE LISTINGS wuwer s vmims e e
T SAMPLE APPLICATION »u.vsuunn. .. e e

81
81

-
et

I. INTRODUCTION

1.1 AIM

The aim oF this master thesis 1s to aoply the best of the

software enginesring to & realwarld oroblem. Current intere
in wmicrocowmputers and operating systews lead wus to a thesis

whevre it was possible to work with wmicrocomputers and operating

systens. The term operabting system 1s couite wide for this
design. A restricted tersm EXECUTIVE will be wore suwitable fFor

the subiect of the waster thesis.

1.2 HISTORY OF MICROCOMPUTER HARDWARE DEVELOPMENT

After the introduction of fivet wmicro-comouter 4004 Dy
ITNTEL., we have taker such a long way that it i1s hardly ovossible

to fivnd anmother bravch of technology that has orogressed this

fast in the history of wankind. I we revise the wmicro-cowmputer
history, we can see that after the introduction of these =0
called, firet generation 4 bit, multi-chin devices, we jumn to
the single chip 8 bit devices in less than 3 vears. These, 50

called, second generation chips found a wide application area in

process control applioatyrons and intel ligent instrumentation.

~y
o

Suddenly wmany of applications that were cost iﬂe%Ficient,
hecame s0 cheap that we started to see "microprocessor
controlled” ovens and washing wachines, At the sawme time,
contrel applications where we use those huge winicowmpters or

hardware logic, becave usual application areas of T he
microcomputers. Iﬁ parallel to all these, a rew area suddeﬁly
openad to the man on the 5ﬂreet, the home computers !, These 8
bit wmachines were really ideal for iﬂtelliQEHt iﬂsfrumentg and
for swmall-sized process-control applications, as well as the new
area of howe computers, Eut ivn a very short period of timwme,

about 3 vyears, wediuv-scale control applications and very-

intelligent instrumernts demanded wore powerful processors, even

more powerful than the early mini-computers. This combined with
the desire of getting the most of the market share by
introducing the first 16 bit wicrocomputer forced the

manufacturers, and firnally we got 16 bit computing power in the
wicroprocessors. OF course, the drag of the huge software
investwment on 8 bit machires and the standart communication

method of 8 bits between the computers will keep the 8 bit

microcomputers uo for & very long time, if not forever.

Lot

1.3 HISTORY OF MICROCOMPUTER SOFTWARE DEVELOPMENT

Parallel to hardware developwents 1in micro—computer
technology, wicrocomputery software has also developed rapidly.
Today we have wmost of the cowmpilers, at ieast their subsets, and
wmany of the operating systems like UNIX on the micfn~computev
systems. Also special operating Systems for microcomputers have
been written, and, today we wmay speak of a standardization in
microcomputer operating systems. CP/M and MP/M of DIGITAL
RESEARCH,. I8IS-I1 and ISIS-III of Intel have found a very large
user base in 80 series wmicro-computers, Vnamely the 18080, 780
18086, 18088, These opevating systems are desigrned for single or
multi - user developwment systems or for cownercial applications

like engineering terminals, business clasgs machines and for howe

computers., On the other hand more than half of the wicro-
computers - going into the control applications, like oprocess

control and robot control. Needs of these applications are guite
different. v suech applications the system must respond to the

completely unexpected events of the real world. 't wmust perform

different tasks of different importance concurrent ly. To answer

these requlrevents, the operating systewm of the control
applicatior should handle real-timse events, should disgatoh the

Drocessing power to the most urgent task

, and Finally should use

mivimal poassible processing power, bath in the processing wiit

4

and in the wewory. One should notice that if a user waits at his
terminal for a response of ten seconds, he Just gets angry for a
while, whereas if a process controller can not respond to an
avent in one seconds it wmight crash the whole system. Also it is
clear that control applications, usually, i1f rnot always, reqguire
very high reliability figures frow both the hardware and the

software.

1.4 APPLICATION PROGRAMMING

In a real world application , to get most out of the
hardware, usually the designer of the control application forces
the limits of the wmicro-computers. That inturn means wore
software and wore wmewmory. 0On the other hand the desigrer should
bring;hia product to the wmarket as soon as possible. That Forces
the design manager to use wmore software engivieers on the same
project. Leader of the design teaw breaks the projgect into
several parts and assigns one or wore of these parts to one or
more of the design members. Then on, the leader is responsible
for the interaction of the parts and resolving the potential or
appearing inconsistancies or contradictions. That wigth seewm to
be guite easy at the first glance. But this Jjob directly

influences the product complexity armd reliability. Many software

projects Fall behind schedule due to seewmingly very small
interface problews and bad partitioning of the project. No one
Can 'argue that he can partition the progject in the perfect
cowbination, but some can say that it migth not be the perfect
but can easily be changed when need arises. This is called
mocdularity or adaptability. To help the design leader to
generate a good project partitioning, we must supply sowe tools
for him, He should not be lost in the details of the interaction
of the partitions, these welthods %Hnuld bhe standartized, o both
the projgect leadar and the project manager can be sure that
changing any of the parvrtition, or wmere important than that,
changing any of the teaw mewbers will rot cause excessive ilwmpact
o the other parts or om the wmembers of the team.

In this thesis, we tried to design and itmplement a real-
time, priority driven executive. [t is desigrned to take wost of
the widerlying hardware, meaning, using wminimal sewory and CPU
time. It 1s desigrned to standardize the task interface, and
interrupt interface. In short, it is designed to ease the jJob of
Lihe projgect wmanagenr, projgect leader and the team wmewmbers. Qr
CoUTSsa tryivig to ease everybody’s gJob will bring SOMme
rastrictions on the systew and sowe overload to the CPU. "But
once the user maater% the system, he will see that a&all the
restrictions, except the tiwe and wewmory limits, enforces a
structured approach to the software development and the project

management.

II. THE CONCEPT OF ABSTRACT MACHINE

2.1 DEFINITION OF THE ABSTRACT MACHINE

We gevnerally iddentify a processing unit as a particular
collection of hardware that implements the instruction set of a
"machine"., This very physical definition of .a wachine dates From
mechanical processors of the past. Evern with the modern
computers, before the LBI, it was easy to physically poeint at the
processor as distinct from memories, peripherals and programs.
Contivuing integration of functions into silicon,at least, made
this physical distinction wmore difficult with single chip
computers which contains memory, peripheral and program. Ml=o
microprogramming (that is replécing the hardwired instruction
decodivg with a more elewentary programsed processor) as the
implementation strategy has blurred the distinction by one wmore
st ED. That 15 when the instruction set of a machine iteself is
implevented in ter&ﬁ of wmore primitive instructions, it 1 more
difficult to ddentify the "machine". It is coclear that fthis.
MIAarrow phy%icaly definition of the machine is ﬂotbadequate for
the current technology levels and ié-likaly to bhecowme even less

adeguate with the technologies of towmorrow.

Actual ly, we ave not using the physical "wachine"” for a
long time, in%taad we developed an alternative definition.
Curvent prograwwivng methods uwse another concept, known as

abstract wachine'. Programwers of today, regard the ‘machiﬂe
that they are prograwwing as much woere than a collection of
instructions that are defined in the reference wmanual. Indeead

the physical machive i1s of little concern to the programmers,

Viewed as above, we can identiTy any collection of hardwar@
and software that provides a well defined set of Ffunctions as
defining an "abstract machine'. In suck a wmachine, instuction
set consist of the functions provided by the hardware and
software combination. For a particular application it way be
possible to view wmultiple such abstract wmachines by taking

various pieces of the whole.

ITI. FOX MACHINE

3.1 DEFINITION

The terwms “operating system”r? "executive" | "karnel"
"mucleus”’ have been used to describe software systems of widely
different Ffunectionality. These machines generally provide
management of sowe wmachine resources such as 10 , wmewory or CPU
toime, 50 we might define an operating systew as a collection of
software modules which defines an abstract wmachine that
includes resource management functions as well as the hardware
supplied computational functions. Clearly the range of software
systews by this definition is lTarge. Rathe; than trying to
resolve this disparity, terwm "executive" will be used. That i,
this master thesis will describe a software systen which
provides a "minimal" base for the constiruction of real-time

applications.

3

The important +thing to realize from above discussion is

that any - operating s

slen functionally enlarges the processor
seer by the user. The Ffunctions that are provided becowe as wmuch
like a part of the wmachine’s functionallity as ’ADD?
instruction. Iﬁdead it 1s functiomally wunimportant to the user
desiring - to create a task whether it requires a single
instruction or a large software routine to accomplish 1t.
Ivn terms of the abstract wachine discussion in the orevious
chapter we will exemine a software package which defines an
abstract machine that includes functions regquired to coordinate

programs, and perform real-time control application.

The key overall requirement of the executive will be that
it will supply a "winimal covering set" of functions to permit
coordination of asynchronous tasks. Like the instruction set of
the base machine, the executive itself performs no work but
rather provides an environwent within whiich useful tasks can

pertormed.

Here are some of the limitatiors of the systew which

ditfers it from large-scale operating s

s G ., Fivaet, it is not

primarily ivtended for a wmulti-user @rnvirenment, because it is
addressed to control applications . Also it does not assume a
backing store from which praogram and data overlays can be loaded

(although can easily support such extentions).

3.2 USE ENVIRONMENT

In terms of }abatract machines we wmight characterize the
hardware as essentially the same wmachine at the processor level,
but different wmachines at the computer systewm level. It was
desired that the abstract machines defined by adding FOX to the
underlying computer be as wmuch the sSawe as possible. During the
design of FOX | it is assumed that its user would span the
entire Dbroad range of applications. This implies that it might
Find uses ranging from minimal single board systems that
function as single device controlers to complex wmultiboard
applications impleventing a real-time process op industrial

control funetions.

3.3 SYSTEM RERQUIREMENTS

The hardware ewnvironment and anticipated uses of FOX
defines a tight set of requirements., Foremost awong thecse are

its memnory constraints: indeed for the anticipated uses, MEWDPY

#1ze considerations domivate the exdcution speed ones over a

considerable wide. VA6, Sice applications that would res il de

entirely on a sivgle board with about Bkb of EPROM, the maximum

size of the FUOX shouwld woet go over the half of that EOACE, that

i 4kb of EPROM. Moreover, unlike the wminicowmputer systems many
apunlications of wicrocomputers would not have available ANY WMAES
storage or other program loading device. So FUOX is designed to
he ROM Cov EPROM) resident and capable of avtomatically

indtializing the system at power on.

Finmally | to define the gernsral Turictionality of FOX, W

-

shall examineg commorn charactevistics of the anticipating
applications. Real-time applicatiors cownonly need to perform a
number of tasks of different iwportance logically. in pavrallel,
with the preference always given to execdting the wost oritical
one First. While these tasks can he falatively independent they
may nesed to periodically synchrovize themselves with one oy
another distinct task or with the outside world. For the second,
interrupts are usual ly of the type of the bardware suppl ted
mechanisw. Some tasks way alseo need to covmuinicate data with one
anothar. Fimally the tasks must have the ability to control
thewselves relative to real-t e, @ither by delayirng their
execution for certain periods or by guaranteeing that they are

not indefinitely delayed by, Tor example, a faulty device.

The best software engineering techwigues are used to

wminimize the developwent effort. We feel that there was more to
gair, both in developwment effort aﬁd code space, by avoiding
optimirzred specialization of fumction in Favour of more general
designs. For thaé, most of time is gpent on defining the objects
that FOX will heavily depend on. The resulting external design,
therefore, has & single méchani%m to provide task commuricat 1on,
synchronization and tivwe referencedg. To do so, it incorporates
the operating system design approiches favoured i wmuch of the
modern cowputer litarature. Likewise, the internal structures
are highly modular and designed to be as uniform as possible so
as to aveid replicating similar, but ronidentical internal

maragemsnt routines,

3.4 FOX AS AN ABSTRACT MACHINE

The abstract wachine defined by FOX augwents the base
microprocessor by iﬂtraducing some additional computatiocnal
concepts. A task is defined as an independent executable program
segment. That 1%, a task ewbodies the concept of program in
executioﬁ on processor. FOX permits wmultiple tasks to be defined
Which can run in parallel, or in wmulti-~tasked Fashion. That ie,
FOX wmakes individual tasks TunMing on the sawe processor appeanr
to be FURMING ov saeparate processors by wanaging the dispatching

of the processor to a particular task. The registers on the

13

processor reflect the activity or state of the rumming task.
Other tasks way be rsady to execute, but for sSome reason have
not been selected to run vet, w0 have their processor states
saved elsewhere in the system. From the point of view of the
OO ran, that is a task, execution proceeds as though 1t were
the ovly one being run by the orocessaor. Only the apparent speed
of the execution is affected by the wmulti-tasking. From the
point of view of the systew, every task is always in one of the
three statesd running, ready orﬂwaitiﬂg. The task actually in
execution 1is rumming. Ay other task which could be rwiing but
for the fact that fhe systewm has selected sowme ofher task to
actually use the processor, is ready. Tasks-which are delayed onr
suspended Tor sowme reason are waiting.

Each task is assigned a priority which determines its
relative importance within tge system. Whenever a decision must

bhe wmade as to which task of those

thalt are ready should YUY
next, the one with the highest priovity 1s given preference.
Furthermore, i the spirit of the mechanism, the same priority
schawe replaces a separate machanisw for disabling interrupts.
Iinterrupts frowm external devices are logically given software
priovities. If the application systew designer wants &
particular task -as of important than responding to certain
intaerrupts, e can specify this by siwmply setting the FOX
priority of that task to be higher than the FOX priority

assonliated with that intervupt.

3.5 METHODOLOGY

This section considers some details of the implementation
of the systew as an illustration of the design of such softare
products. First the wethodoloeogy applied to effort will be

discussad, and this will be followed by some samples of the

MmecChan i Sm.

To provide the abstract sachine just described, and wmeet
the other reguirements of the system, FOX is iwplewented as
a combiviation of ROM resident code and some RAM resident tables.
Just as a hardware designer uses VLSI Tar LBI devices in
preference to more elementary TTL components, we chose to use A
high level language rather than elementary assewble coding. The
systaem 1% therefore degigmed.uﬁiﬂq the PL/M, Intel”s high level
system itwmplementation language. The space constraints aﬂd a gooc
levael of dnternal maintainablity goal is achieved by maximizing
the modularity of the design. The beard independent functions of
multi~tasking | comwunication and control &re cowpletely
igolated from board dependent tiwing and intervupt handling
Ffunctions., As a result, wmovement QF the FOX to anobther board

regulres only re-—iwmplewentation of these board dependent

Funet 1 ons. In addition , data structures of the internal and
user visible objects are generalized so that single algorithm
could deal with any of thew. Individual optiwmizations could have
heen made in local design of many parts of the data structures
to improve ﬁheir space or bime costs slightly. Sueh
optimizations, however, would have cost considerably wmore in

code space and code cowplexity.

3. 6. MODULRRITY

The wodule feature of PLs/M is used to simulate the abstract

data type concept and enforce information hiding. That is

2

every data structure uwsed by the FOX is under the exclusive

control of a single module. The modules supply to each other a

restricted set of public procedures and variables. It i only

through these paths that agents ouwtside a module wmay access the

data structures wmaintained by the wmodule. The only assumption

that outside agents may wake about a wmodule and its data
structures are those specified by the definition of the public

paths. As a result, as long as these intevface specifications

are maintained, ary given data structure may be re-organized by

re-designing its controlling wodule without affecting other
parts of t he Sys5tEm. This APDYoach IMProves t e

understandability of the iwplewentation and fFacilitates the

16

debugging and maintemnance of the system.

3.7 ENTRY TO FOX

The wmethod of activation of the executive frowm the user
programs found to be very important for the control of the user
activities., Twe methods are consideved. The First method was to
define one entry for each systew procedure supported. That would
be done by a jguwp table at a fix wmemory location and tell the
wser where to call whern he needs mné of the systew procedures.
This wmethod has the following drawback. At each eYste& procedure

call parameterse shouyld be chechked, 1 the statu

ju

of "iw FOX"
need be wupdated. Also giving so wuch information to the user
violates the information hiding rule. The second method, which
is called gating, states that only orne entry should be given to
the user for an executive. User should pass the requlred
operation as parawmeter, and depending on this parameter the gate
checks the legality of +the call and wmarks all related
inFormatioﬂ onn the task descriptor and then activates the
required operation. The drawback of this method is that one wmore
parameter should be sent to the execubive, which might increase
the user code space a little bit. But, all systew procedures are
s0 designed that they reguire only oﬁe parameter, and with this

method one wore parameter of " what to do " weed be given. The

17

averload on the code space was estiwated to be wnegligable and
gate method of executive activation was selected., The standart

FUOX systewm abtivation ig defined to be as Tollows.
CALL FOX{(ACTIONS$ID, PARAMETER) &

The address of the gate is defined to be ROM start address

»

plus three. So it i Q003 for a standart FOX iwmplementation.

3.8 ENGINEERING FOR HARDWARE DEPENDENCIES

The two functions which vary most significantly across the
gingle board cowmputers (SBCY are the tiwing and interrupt
facilities. To accomodate these variations, the implevwentabtion

separates the logical and physical parts of these furctions.

The interrupt facilities are split between the module whioh

implevents cowwurication aoperations and a hardware ivtervrupt
K k F

hevdley modul e The cowmunication module provides a @ special
Tintervupt e rid * operation which performs the logical

translation of interrupt event into a Tlag message. This
facility is iwvdependent of the interrupt structure of the
wachine and remains the sawe in any version of FUOX. The hardware
dependent interrupt wodule deals divectly with the bhardwave

interrupt structure and irnvoeokes the SHigmal operation at a

logical level. Unly this wmodale rneed be redesigned when

18

generating a FOX version for a different boavd. With this
approach FOX takes TFull advantage of the hardware wvectored
priovity structure on high performance preoducts and can simulate
this desirable structure at sligthly higher ﬁoftwaré cost on low

performance products

i

The sawe sort of variations are faced in providing a sourece
of wystew timve unit; Agadlr, one module provides all of the
logical timing functions associated With providivg tiwming delays
arnd time liwmits To the user. This wmodule is independent of the
oy e, fraguency, or location of the physical source of the
timear. A severabte wmodale is responsible for clocking the logical
leval by iwvvoking it once every systes time anit. Oves again,
this permits a consistent definition of time wunit in FOX,
regardless of the sophistication of the availablé time source,
angd limits the amount of re-iwpleventation needed to support a

new product.

3.9 GLOBAL VERSUS LOCAL OPTIMIZATION

We have already discussed some aspects of globél VEPEUS
local optimization, at the overall design level in terms of
avoidance of redundant features. A good example of this trade
off in the iwpleswentation is provided by the linked list data
structures within FOX. Like many such systews, there are a
vumber of linked lists which must be waintained to reflect the
status of the systewm. Local uptim%zatian or the placement of
Links within data structures or in the forwm of the heads wsed
far the links wmulq be guaranteed to save & Tew bytes of the

data space across the various lists. Further, the 1

insartion, scanning, and deletion algorithms couwld be specially
tailoved to the individual list structures to save wmicroseconds
of execubion tive for sowme operations o some lists. Indeed, any
suckh tatlored algorithw wmight well use less code than a single
more general one.

On the otheyr hand, wany of the list operations are , in no
GENHE time oritical. Genervalizing all the structures to use a
single Form replaces yaltiple alagoritbms with just one, s
savivg code space. The particular fovrm can be chosen to favor
those operations that are freqguent, thus limiting the impact of
the genevalization on the exegcubtion time of the system. Perbaps,
most dAmportant, howavar, is that, by veducing the numberyr of
algorithms and structures used, we decrease the potential rnuwnber

of ervors and improve the wmaintainabvility of the resultant code.

3.10 METHOD OF COMMUNICATION IN FOX

Rs wmentioned before, tasks may desire to cownwunicate
information to one arnother. To do this FOX machine defines a
message to be some arbitrary data to be sent between tasks., To
meadiate the communication of messages, FOX defines an exchange
to bhe a conceptual link betheen tasks., M exchange fFfunctions
somawhat like a mallbokx in that wessages aré deposited by one
task and collected by another. Its function is commplicabed by
the fFaclt that & task way attemplt to collect a wessage From an
exchange that is ewmpty or may attempt to deposit & wmessage bto an
exchange which is full., In such cases the execubtiorn of that tashk
i delayed uwntil the exchange becowes free or depending on the
type of the exchange operation, till the defined time limit has
expired. Tasks that are so delayed are in wait state. This
indirect communication mechanism is prefered over the one which
directly addresses tasks (as in REMTEX written in NETAS by My
AYDIN KURILAY)Y, becauwse it perwmits greater flexibility in the
arrangenant of receliver and sender tashs. That is the receiving
task nead only know the interface specification for the function
to be performed. Task or tasks which implement that function
nead not be known o and thas may be convinlently changed if

ders i recl.

21

The conventional wmechanisw used by programs to communicate
with the extermnal devices 1is interrupt. Unfartunately,
interrupts are by nature unexpected events and prograwmming with
thew tends to be errvor prone. The essential characteristics of
arn interrupt is that a parallel, asynchronous activity (the
device) wishes to communicate with another activity (a
program). HSince this communication should be faster than the

viormal exchange operatiors a special exchange is managed by FOX,

vawely the FLAB., Flags are special objects to link software

pnrograws to the events. FOX machine eliminates interrupts by
changing thew inte flag messages, which indicate that an

interrupt has occured. A flag is Signaled by a parvticular

interrupt. Tasks which service the intevrupts do so wunder FOX by

arn Event systewm call on a flag. Thus priorvitized rested

interrupts are handled.

The last concept ewbodied in the FOX abstract machine is

that of time. The FOX machine defines tiwe, interms of systew
time units. It then permits tasks to delay themselves for a
given period of bime, a0 Lhat they can synchronize thevselves
with the outside world. It also guards agaivet uwniduly long
delays caused by attempting to collect a wmessage or deposit &
wassage to an ewpty or full exchange, by limiting the lewngth of
time that they are willing to 5pend‘waiting for some message to

arvive or space becowe availlable.

FOX is a wulti-tasking executive that performs task
dispatceching and systew timing. It alsoc performs excharnge
marnagevwent and flag wanagemwent. The following sections descoribe

these Ffunctions in detaill.

Qltﬁough FOX iz a wmulti-tasking executive, at any given
point iw time, only one task has access to the COPU resourpe.
Unless it is specifically written to communicate or Bynchroﬁizg
execution with other tasks, 1t rung waware that other tasks may
be comwpeting for the systewm’s resources. Eventually, the system
suspends the task frowm execution and gives another task the

ppportunity to run.

Iv. FOX MANAGEMENT ROUTINES

4.1 FUNCTIONS OF FOX

FOX i

i

a wulti-tasking executive that performs task
digpatohing and systew timing. It alse performs exchange
managemant and flag wanagement. The following sections describe

these Ffunctione 1v detail.

Although FOX i & multi-tasking executive, at any given
poivt iv bime, agnly one task has access to the CPU resource.
Unless 1t is specifically written to comvunicate or synchronize

execution with other tasks, it rums Waware that other tasks may

be competing for the syst

il

MY s rESOUPCES. Eventually, the systew
susoends the ftashk from execution and gives another task the

apcortunity to rua.

e

sy}

4.2 TASK DISPATCHING

The nrimary task of the executive ig transfering the CPU
rasource frowm one task to another. This is called DISPATCHING
arnd is performed by & part of the executive called the

dispatcher. lUnder FOX each task is associated with an object

called a TOSBK DESURIPTOR. The dispatober us this objwct Lo

save and restore the current state of a rwmming tashk., Every t

inm the systeyw resides in one of three states ' ready |, P LI LG
or suspended. A ready task is the one that is waiting for the
CRUY resource. A seuspended task dis the one that is waiting for

some other systewm resource or for a defined event. A ruyiag

task 1g the one that the CPU is curvently executing.

Digpateh opervation for a ruvnig task can be described

Followss

1-) The dispatcher suspends the task from execution
stores the current state ivw Task Descriptor.

-

task in the system, So the dispatcher selects that task

P LG

S) The dispatcher restores the state of the selected
From its Task Descriptor and gives the TPU rescurce.
4o} The task executes until it wakes a systew ©all,
an intervrupt, or a tick of the system clook oooures.

diepatching i1s repeabted.

A

ard

2=) By definition the ready queuwe head is tThe higest priocry

G

task

or

Then,

Only tasks that are placed on the Ready List are eligible

for selection during dispatch. Ry definition, a task is on the

Ready List if it is waiting for the CPU resource only.

waiting . For other system resources can not execute until

resoilree requiresents are satisfied. Under FOX, a task

blocked From execution 1f 1t i= walting for &

Tasks

their

Pl
il wd

-y A exchange message, so that it can cowplete a vead exchange

operation.

arn exchange write opesration.

S An dinterrupt flag to be set.

4-) A specific nuvber of system ticks before it can be removed

frowm the systew delay list.

Y

o Prother task to resuwe its exeoullon.

These wsituations are discussed in more detaill v thie

following sections,

FOX is a priority driven system. This means that fhe
dispatoher selects the highest priority ready task and gives the
ChU resource. Tasks with the sawe priority are round-vrobin
scheduled. That iss, they are given equal CPU time slices when
axecuting CRU bound code. With priovity dispatohing, control ig
viever passed fto a lower priority task if there 1 a higher
priovity task on the ready list. Since high priority compute
bourd tasks tend to wonopolize the CRPU resource, it is advisable
to lower theiv priovity te avoid degrading overall syshemw
pe e formance., In additian, compute béumd tasks can make FOX

dispatoh calls periodically teo promote sharvivng of the CPU

ey Space to becowe available in an exchange so it can complete

rasourea,. Whern a task wakes a dispatoh call, the call appears as
a »null operation to the task, but allows other tasks to gain

access to the CPRU resource.,

FOX requires that at least one task be ruvning . at all
times. To ensure this, FOX waintainsg the IDLE task on the ready
list so it can be dispatched if theve are no othey ltasks
available. The IDLE task runs at the lowest priority and is
viever bDloocked frowm execution. It -does not perform any useful
task, but simply gives the systew a task to run when no other

raeady baskes exist.

4.3 EXCHANGE MANAGEMENT

Exchanges perform several coritical functions for tasks

rurmiing under FOX. - They are used for comwunicating wessage

between tasks, for syrnchronizing task execution, and for mutual

exclusion. :

Exohanges are special objects, iwmplemented in FOX as wmewmory
files that covntaing roowm for a specific rnuwber of fixed length
IHE 6 65 BV 6 65 Like files, Exchanges can be oreated, read Trom and

written into with FOX systew calls. When an exchange is coreated

with the FOX create exchange comwand, 1t ls assigned a six

character name that identifies the exchange in FOX. Messages are

yeac From an exchange on Firet dn Fivst oul basis.

A task can read wessages Trom an exchange or write vessages
to an exchange in three ways ! conditionally,unconditionally or
with time-out. I nmo messages exist in the exchange when a
conditional read is performed, or the exchange is full‘wh9ﬂ a
conditional write is performed, the systewm returns an‘wrror code
to the calling task. I a task performs an unconditional read
fFrom an empby exchange . the systew suspends the task until
another task writes wessage to that exchange. A task suspended
n this marmer s placed on the exebhange’s degueue list. 2
zimilar situwation occocurs when a task makes an wiconditional
write to a full exchange. A task suspended in this wanmer is
placed on the exchange’s engueus list. If a task performe an
unconditional vead from an empty exchange with tiwe-out, t he
systen suspends the task until either a tiwe-out occurs, o
another task writes a wmessage to that exchange. A task suspended
iv thig mamner 1s placed an both the exchange’s degqueus list and
the system delay list., A sisilar situation ogccurs when a task
wmakes an unconditional write to a FTull exchenge with time-oubt., A
task suspended in this smammer iz placed on both the exchange’'s

degueue list and the

stem delay list. FOX umes the

anquena/dequede lists to synehronize task execution.

=28

4.4 EVENT PROCESSING

FOX suuports events of amy kind, ineluding the interrupts,
in two ways., Une, via flags which are special exchanges { as in

the Digital Research’s MPM-I1) where no more than one task i

o

alliowad to wait. The other wethod is like interrupt rout ines
the user service is ilwvwediately execubed at the priorvity level

of the callivng task, with interrupts wasked or disablecd.

The firet wethod converts events into messages o that a
gsbtrict priorvity scheduling can be achieved and a Togical event
mechanism can be iwmplemented at a cost of a little Dit time over
head of flag management. Where as the second wmethod is usefull
when the, overhead of flag wmanagement can not be tﬁlaret@d oue
to tight tiwming reguirements of event pracegging, such as fast

interrupt servicing.

Im the following sections, hoth of the wmethods are

discussed in detail.

4.4.1 Flag Exchange Management
This is a unified approach to event or interrupt servicing.
For this kKind of flag handlivng the type of the flag should bae

.

set as FLAGSEXCHANGe. FOX maintains 16 predefined 7§Flags, of

which 13 are user accessable, The flag 1% is reserved for future
axtentions. Each of the 19 flags (O through 135 can be used
freely by the usewr. Far flag managemeﬂt,' FOX has two siwple
system procedures, the EVENT and the SIGNAL. A task which wants
to wait ovn a flag issuwes an EVENT systewm call, and a task which

want

Lo signal an event i

a STGNAL system call. Details of

Evert and Sigrnal systew calls are desicribed at the FOX

oparations.
To avoeid flag—under/over-yruns the user is advised to Follow
the below listed rules, for his own sake.
1=y Do wot use flags if you can handle the case in sowme other
Way, sueh as normal exohangs messages, ofcourse, within
the defined 1imit5 af the problem such as the time
constraints.
23 Make sarve thalt only one task can issuse EVENT system call
an the selected flag. That guaranties that no flag-under-—
TLN AN 0Cour.

S=) Make sure that the event service ©ime

stvictly le

than the signal rate. This guaranties that there will

mever he case of flag-over—-vun,

4= Byvaid the use of Tlag 15 which is reserved.

B0

4. 4.2, Fast Event Processing

For this type of operation the flag type is defined as
FRASTHBERVICE. In ‘thiw wmade the service routine is dwvnediately
activaﬁed at the current prioricty level. In this wmode, only the
SIGNAL systew call is used. EVENT systew call has vno meaning.
SIGNAL system call appears like a normal subroutine call to the
calling task. This mode is uEEFUlighEH the event rate can not be

handled via normal EXCHANGESFLAG method.

FOX executive uses flags for signaling and synchronizing
taskes with defined events. Tasks access the flags with the FOX
systew calls EVENT and SIGNAL Internally a flag can reside in
ovne of two states 1 set or reset. The reset state is further

divided into two categoriest
1-) No task is waiting for the flag to be set.

Z2=) A task is waitimg for the flag to be set, and blocked

fraom execution until it is set.

Two tashks are not allowed fto wait on the same flag., This is
an error situation refered to as "flag under-—-run'. Similarly, a
task attewmpting to set a flag that is already set is another

error situation, called "flag over-yun".

Flags provide a logical interrupt system independent of the
physical intervupt systew of the processor. They are primarily
intended for use by FOX to support the interrupt handler., For
exawnple, when the interrupt handler receives a physical
interrupt indicating that an 1/0 operation is cowmpleted, it sets
a Tflag and branches to the dispatcher. N task suspended From
execution because it igs waiting for the flag to be aet iE
placed on the ready list, makiﬂérit eligible for selection
during dispatcoh., Once dispatohed, the task can assuwe the 170

operation is cowpleted.

e
Ad s

V. FOX OBJECTS
5.1 USE OF OBJECTS

This section containsg information on FOX objects. FOX uses
these objects to ¢
1=y Bynchronize the tasks

2 Cowmmunicate wessages between btasks

EZ-) Synohronize the events
5.2 TASK OBJECTS

Every task in FOX has at least twoe task obgects and

possibly owve or wmore task link deccoriptors to form a logical

Link to other tasks.

Following sections explain the functiorns and the details of
the task obgects, namely Task Descriptor, Btatic Task Descriptor

and Task Link Descripbor.

g

et ad

5.2.1 Static Task Descriptor

FEach task | rumiing under FOX is associated with a Static

Task Descriptor. This objgect defines all static characteristics

af the . task., FOX uses this obgect teo indtiate the actual
FCdvmamicd Task Descvriptor of the btask, The structure . of the
Btatic Task Descripbtor 1w given Dbelow in PL/M programming

Lamguagea

DECLARE STATICSTASKSDESRCRIPTOR LITERALLY *STRUDTURE (

L. PTR ZELINK TO EXCHANGE %/

i

NAME (&) CHARATT /% TABK MAME */

[BYTE, SEPRIORITY ®/

P PR, AHTMITIAL DOw/

50 PTR, SECURRENT STACK %/

EH TR AHEXCEPTION HANDLER®/

3ot

Flements of the static © sncripbtor defined above are

tdeascribed below.

ciptor link, points to

I o obhytbes, task

the dymnanie bashk oviptor of the Lask.

This descvipbtor will be used by the FOX
and bhe anabtiated From The Static Task

Desctiptoy at the LTiwme of task oreation.

B

NEYVIED & Character, task name, contains the

name of the task

& b obyte, priovity, ocontainsg the priority

of the btask

P 2 bytes, initial program gounter, points
ta the firet executable code of the

task.

5P 2 o bhytes, stack pointer, containsg the

initial stack pointer value.

ok

axception handler, peints to the

task exception bandler sbtart address,

S5.2.2. Task Descriptor

Each task running ander FOX is associated with & task
descriptor that defines all characteristics of the task. The FIOX
uses bthe task descriptor be save and restore the state of the

task., The task descriptar obgect is ghown below in PLL/M

TANGUIAD & .

The

defined

MM

NAME (6

&1

alevents of

el ow.

TAGK

i

O

STRUCTURE

TN %/
THGK NAME */
TR, JBYRTEM LTMW %/
PR, ARDELAY LINK %/

) LHEAOHANGE LU TNK%/

-
o
. i
N
-

FPRIQRITY %/

SEGTATLES

G-
4
~

A INITIOL PO®/

FCURRENT STACK %/

TION MHAMDLE

COHINT =/

p's J./'

criptor Ghown above

aligject

[G

Tink

prociovh e e

RECHEN by he us

- FO¥ Tist pointer
i Delay Dueae Link, Yaskse that ave on

the delay list are linked fhrough Thid s

g ot

e e o g e e

36

2 hytes, Exchange Pointer, used for the tasks
that are erngusueing or deguedeing on an
axchange to, indicate on which of the

exchanges the task s wailbing.

1 byte, Priority, indicates the priority of
the ftask. A high value indicates a high
priority. Priorities range frow O to U5

IR e

1 byte, Bbtatus of the Task, shows the curvent

atatus of the A task can be ivn oneg or

4

move of the Following states.

&£

i~} Ready Tashk is eligible for dispatoh.

2= Motready 1 - Task is wnob eligible For

dispatch.

) S pevicl ed 2 Task ia s e el from
sy et 1oy Aame; @ihhar 1o svetewyn wsueoesnd 1ist
erecutian and eithaey on systes suspend list

ar o on exchange engueas/deues tiat.

&) Notsusnended 0 Task is neither on sysbem

susperd list nor on an exchange engueus

o) Delayed P Task imoovn sysbew delay list

B

e

]

Matle

ayed : Pt con syseten delay

et

In FOX Y Tank rune dn FOX region

PMat Tw FOX i Tasmh s oul of FOX

VR AeRT

2 byt oes, initial grogram cowiter valus

By

Pointe tao

executanle o0 L e

baslk,
PBointer, pointa to vhe

3

towill bhe uysed

the anternal whalte

L Yime of di

Eoseeent ion Handler, FOX

e

(@ af an abviormal

stion handler iw

shoald b dnibtliated as ML,

by

the syslew

e
[T

5. 2. 3. Task Link Descriptor

To ease the dyvawmico binding of the tashks, a soscial object

is defined in FOX, Using FDY sy

IMRETOHBK, one task can

create a link to amother tash. By wsing this obgect as parameter

[t g

bo FOX systbeawm proceduras, ar REGSUME swnother
task, To link a tash to anobhber, wser orestes a task Tink obhject

and. Tills the namwe field. Activating FOX systewm procedure

LINKSETASK will supply the other neccessary pointers. Onece these

pointers are initiated, user can Resuwe or Suspend anclher

[

task.

The structure of the object is given below in FL/M language.

DECLARE TASK$LINK$DESCRIPTOR STRUCTURE (

L PTR, /% DTR TO TRSK

NFAME (83 CHARGBCTER AREXTHEMGE DNAME %/

?

9 BYTE, A TAGH BTATUES #/
EH PTR A EXTERTOIN HONDLER %/

)3

Tlaevents of tThe 1imi defined above are
described below,
L. = aoivtaer bao the b descoripbaor
o Ul Lasio bo b L St by FOX.

1= 1 byte, Status of the task linked, at
the btime of fthe link operation. A wmero
value indicates that the desired task is

ot currently on the system.

EH 1 bytes, pointer to the exception routine

in casa of am abnormal condition.

9.3 EXCHANGE RELATED OBJECTS

An exchange is a first in firet out [FIFO1 mechaniswm that
is implemented in FOX to provide severel essential functions in
the wmulti-tasking envirovnwment. Exchanges can be used for the
covmunication of messages between the tasks, to synchronize the

tasks and to provide wmutual exclusion.

FOX is designed to simplify exchange management for both
user and the systew taskes. Exchanges are treated like files, so

they can be created, opened, written into and read From.

Exohange obgects used by FOX include the Exchange
Desoriptor, Static Exchange Descoriptor and Exchange Lank

Descriptor,

3.3.1 Static Exchange Descriptor

Each exchange in FUOX has a static exchange descriptor which
defines all of the static characteristics of the exchange. The
dynavic Exchange Descoriptor is created frow the Static Exchange

Descriptor at the creation phase.

ail

Structure of the static exchange descriptoy is givern below

in PL/M language.

DECLARE STQTIC%EXCHHNGE%DESDRIDTOH LITERALLY 7 STRUCTURE (
L. PTR, ¥ LINK TO EXCHANGE #*/
NEAME (£) CHRRACTER, /#EXCHANGE NAME */

BZ - BYTE, AHRMAX MESSAGE # */
LNG BRYTE, A¥MESAGE - LENGTH %/
EH PTR ZREXCEPTION HANDLER %/
> T
Elewents of ﬁh@ static exchange descriptor defined above are

described below.

L. 2 bhytes, Link to the exchange descriptor
NAME & characters, Neme of the exchange.

Initialized at the systew definition.

52 I byte, maximum runber of wmessages that o©can
he depesited at the exchange

LNG 1 byte, wmessage length.

E Z o bytes, pointer to exception hamndler.

5.3.2 Exchange Descriptor

Each Exchaﬁge in FOX is asgéciatad with an Exchange
Descriptor object that defines all the characteristice of the
exchange. FOX uses this object to keep track of the wessage
buffer pointers, to mave the status of the exchange and to save
the exchange engueue/deguede linksg The exchange descriptor

ohgect is given below in PL/M language.

DECLARE EXCHANGESDESCRIPTOR STRUCTURE (
L. PTR, ¥ EXCHANGE LLINK %/
NAME (&) CHARACTER, /HEXTHAMGE NAME ®/
5L BTR, JERSYSTEM LINK ®/
M PTR, ARMESBAGE HEAD PTR W/
ME PTR, JEMESBAGE TAIL PTR i/
52 BYTE, /#MAX MESSAGBE 4 %/
BSZ PTR, HDUFFER SIZE®/
C ‘ BYTE, J#CURRENT MESSAGE COUNMT®/
H BYTE, /%EXCHQNGE TYPE */

5 BYTE, e STATUS w7/

l...

BYTE, /HEMESBALBE LENGTH %/

=+ PTR AREXCERTION HANDLLER ®/

Elements

wt

of the exchange descoriptor defined above

described below.

.

NAME

2

M

ME

BGZ

2 bytes, exchange link
& ocharacters, Name of the exchange, copied

from Static Task Descriptor.

2 obytes, System Link, FOX keeps a list of all

processes and exchanges, used by FOX.

2 bytes , Message head pointer, peints to Lhe
axchangse buffer, the address of the next

message to be read, used by FOX.

2 hytes, Message tail pointer, points to the
exchangse buffer, the address of the next

message to be written, used by FOX.

I bytes, Exchange Sire, indicates the maxivum
number of wmessages that can be kept in the

gxchange wmessage buffer, set by the user

Ty

2 bytes, Exchange Buffer size, by definition,
hﬁffav. size 1s Excharge size times the
exchange wmessage length, set by FOX.

1 byte, currant nuwmber of messages v bhe
exchange buffer waiting to be read, used by

the FOX.

are

K 1 byte,

44

exchange kind, exchanges can be of

three types:t

13

Perform operation oy return type.
This type of exdchanges dol ot
suspend the calling task if there iw
o wessage in the exchange when the
task attempts to read message From
the exchange or if there is o roowm

for a rnew message when the

attempts to write into the exchange.
Instead, tﬁa exchange returns a
status to indicate that whether the
exchange operation is conpleted
successtully Sor failed to e
performed; Status 1s returned in the
status byte of the exchange 1ink

descriptor.

Wait until the exchange operation is

suncessfully completed.

H

EH

S=12 Wait either the excharnge oaperation
is successfully cowpleted or until
t e time~oul, indicated in the
exchange link descriptor, OCOCUrEsS,
Raturn ‘“success" status if exchange
took place or “"failed" status if a
time oult occured before the exohange

operatiaon.

1 byte, Status, shows the current status of
the exchange. It can take one of three

values, set by FOX.

1) exchange is ewply
Z2—) exchange is full
3-) exchange is frese [neither full
nar emptyl
1 byte, massage length, indicates the length

of each wessage of the exchange, selt by user.

2 bytes, exception handler, points to the
exception handler which will be activated if
an abrnormal condition occures during exchange

operation, selt by user.

46

5. 3. 3. Exchange Link Descriptor.

To ease the exchange operations and free user frowm absolute
exchange descriptor address manupulations, FOX ‘supports a
gpecial obgect called exchange link descriptor. As in the task
link descriptor, 1iF a task wants to send a wessage bto an
exchange, it prepares an exchange link bloock, specifies the nane
of the exchange that the wessage 1s to be sent, and calls the
FOX system praceduré LINKSEXCHAMGE. FOX provides the rnecessary
pointers so that user can invoke exchange write anr exmhaﬁg@

read operations of FOX.

The structure of the Exchange Link Descriptor is gilven

below in PL/M language.

DECLARE EXCHANGESL INK$DEGCRIPTOR STRUCTURE (
L RTR A¥OPTR TO EXCHANGE */
NAME (&) CHARACTER, /#EXCHANGE NAME #/
M PTR, Z% PTR TO MESSALBE #/
K ' BYTE, A% EXCHANGE TYPE */
b BYTE, ¥ EXCHANEBE 8TATUS */

EH BTR % EXCEPTION HAMDLLER #/
) ow

Kl

Elements of the exchange link descriptor defined above are

described below. \

I 2 bytes, exchange pointer, points

to the desired exchange, set by FOX.

NAME & characters, Name of the exchange to be

lLinked, set by user

M 2 bytes, points to tThe wessage bhuffer to be

sernt or received, set by user.

W 1 byte, desired gxchange method, if wot nil
j this parameter overrides the exchange kind
LiF nil then the wethod specified in the

exchange descriptor is assumed.

5 1 byte return status of the exchange

operation, set by FOX.

EH . 2 hytes, exception handler, points to the
gxception handler of the 1link. if rnot set to
nil thew this exception handler overrides the
exchange exception handler, if not given then
the exception handler of the exbange is

assumed.

5.4 INTERRUPT OBJECTS

A interrupt is a signal Trowm one process to another. it
can be From an iﬂfevnal DrOCEsSS, or iv general frowm an external
process to a internal process. By nature, they are randomwm
signalse at randow intervals. PRlso the swechanisw to respond Lo
those interrupts differ frow processor to processor. To hide the
actual machanisw dwplevented on a micro-computer, they are
converted to gpecial signals by FOX. This wethod can be
suwmarized as follows. M external event corgates an interrupt
gigmal indicating the cowmpletion of a certain operation. When
t he micﬁo~computer recognizes the interrupt it cowpletes its
last inmstruction and then starts interrupt ackrnowledge seguence.
At ‘the and of this sequence current state of the process is
saved on the stack - and a special part of FOX, cal led
interrupt handler is activated and depending on its level, it
generates a Signal call to FOX. At that instance the
physical interrupt gigﬂal is completely converted to a software
signal to the related interrupt sevrvice routine. To indicate FOX

whereabouts of the interrupt service routine

two special daba
structures, called an Interrupt Descriptor and Static Interrapt

Descripbtor is used.

Special care is paid to decrease the interrupt latency to

increase interrupt service rate.

49

S5.4.1 Static Interrupt Descriptor

Each interrupt, physical or software, is associated with a
Static Interrupt Descriptor object that defines all static
nature of the interrupt service. FOX uses this object to
determing the service routine, ites ainterrupt priovity level and
its service type. The Static Interrupt Descriptor objgect is

givern below in PL/M language.

DECLARE STATICH INTERRUPTHDESCRIPTOR STRUCTURE (
= PTR, ZEPOINTER TO DYMNAMIC DESCRIPTOR w«/
NAME (&) CHARACTER, /A#* INTERRUPT NAME %/
T BYTE, /¥ CINTERRUPT TYRE */

H5RV PTR, ¥ CINTERRURPT SERVICE ROUTINE */

i

EH PTR /¥ EXCEPTION HQNDLER‘ */
LVL BYTE Aw INTERRUPT LEVEL ¥/

>y

Flewents

50

of the static interrupt descriptor defined above

is given below.

NAME

SRV

EH

LVL

2 bytes, Pointer +to the dyvamic interrupt

descriptor. Initiated by user.

& characters, intervrupt name, Initiated by

LLEREr Y™,

1 byte, interrupt service type, can be
assigned as exchange type or fast type as

explained in the Signal and Event procedures.

2 bytes, if the exchange type is fast type
then contains the address of the service

routine, @lee has Mo meaning. Initiated by

HEE T,
2 bytes, pointer to the exception bandler. It

wilil e uaed 0¥ flag—over/undar-run
conditions., If o wot used then should be
initialized as nil, or else should be

initialized with the addreses of the exception

handler.

1 byte, interrupt priority level, initiated

by uzer.

5.4.2. Interrupt Descriptor

Each interrupt in FOX systew is associated with an
interrupt descriptor to define its dymawmic status. FOX uses this
obgect to locate the service routive of the interrupt and its

flag status. The structure of the intervupt descriptor is given

below in PL/M language.

DECLARE INTERRUPTSDESCRIPTOR STRUCTURE (

| L POINTER, /% RESERVED FOR COMPATIBILITY #/
NAME (&) CHARACTER, /% INTERRUPT NAME %/
Si. POIMTER, /% SYSTEM LINK */
TASHK POINTER, /% SERVICE TASK %/
SRV - pDINTER; /% SERVICE ROUTINE %/
EM POINTER, /% EXCEPTION HANDLER #/
F BYTE, /% FLAG */
T BYTE, /% TYPE ¥/

LVL BRYTE /% LEVEL */

Elewents of the interrupt descriptor defined above is

explained below.

5

e

k. 2 bytes, resarvad Ffor compatibility with the

other descriptors,
MNAME & characters, intervupt name.

=1 2 obytes, Systewm Link, used by fox to keep all

defined objects under FOX.

TRSK 2 bytes, i dwntervupt type is defined as
exchange then contains the address of the

of the

service task’s Task Descriptor addre

interrupt, otherwise has no wEaning.

SRV 2 bytes, points to the interrupt service
routine, if the btype of the interrupt service

is defined as fast service.

B 2 bytes, pointer to the exception handler.

Activated when a flag ervor occures.

B

1 byte, indicates the state of the interrupt

flag as defined at the Bignal and Event

system pr gcadures.,

T 1 byte, interrupt type, initiated by user.

VL 1 byte, interrupt priority level. initiated

by user.

VI. FOX INSTRUCTIONS

6.1 INSTRUCTIONS IN AN ABSTRACT MACHINE

The concept of abstract wmachine is realized in FOX by
introducing some new data objects and instructions. Just as the
hase processoyr can deal with such data objgects as 8 bit bytes
or wnsigned integers, FOX abstract machivne can deal directly

]

with the more complex objgects @ tasks , wessages , exchanges and

Flags. Fach of these data objects consists of & series

of byte

with a well defined structure, and wmay be operated on by cevrtain
instructlons. This is completely analogous, for example, to a
machine that permits direct operations on fleoating point data
objects which consist of a number OF bytes with & particular
internal structure to represent the fraction, exponent and the
=i0ns. In each case there are only certain instractions that can
be used correctly with the object and the interrnal structare of

the object is not of particular interest to the programmer.

The.ﬂew instructions that are provided by FOX are SEND,
WATT, CREATE TASK, CREATE _EXCHANGEZ, CREATE_INTERRUPT, LINK_TAGK |
LINK _EXUHANGE ; SUSPEND, RESUME? SIBNAL EVENT. Crgatg
instructions accept vblmcha of fres wmemory bBlock &and some
creation information to format and ivitialize the block with the

appropiate strucbure. Livk anstruactions livk a btask oy an

w148

gxchange or arn interrupt to the calling task. The remnaining
instructions are of most interest to the opervation of FOX. T
GEND and WAIT ivstructions are discussed in detail at the and of

this section and in the section entitled Send wailt interaction.

In addition to the above werntioned standart FOX syshem
instructions, there are optiomnal systew instructions. Theses
instructions are hardware dependent, so they are provided if the

2

waderlying hardware can support the instruetior. LEVELSON

LEVEL$UFF

and ENDHINT system instructions are such instractions

in the initial prototype.

6.2 CREATE GROUP

This group of FOX systew calls introduces a new object to
FOX system. LGroup contains three system procedure namely
CREATESTASK, CREATESEXCHANGE and CREATESINTERRUPT. Each of {hese

systen calls is described iv detail in the following sections.

6.2.1. “CREATE TASK" System Call

This FOX asystew call introdusces a new task inte the FOX
Byt em. The newly oreated task is inserted into the system
suspeand guaue, It will become a ready task when a raaning bask

resunes 1hte execution by a FOX RESUME systewm call.
Gate entry code of the UREATESTASK is defined to be 0O1.

To oreate a task in FOX system, weer should prepare a
static task descriptor to define all static nature of the task.
The structure of the static task descriptor is given in FOX
object definitions. I[f a task tries to create a task with a rname
with which th&P@‘iB already another entry in FOX systew, then
the exception handler of the calling task is activated | if it
has arny.

EXaMpPLE
DECLARE TICKEREFSTATICSTASKSDESCRIPTOR TASKEDESCRIPTOR
DATAC TICKERSDESCRIPTOR, /% TRASK DESCRIPTOR ADDRESS #/
TTIORERY, ,)* TAGK NAME «/
3, A TASK PRIORITY #/
» TICRER,)% TASK START ADDRESES w7/
 TICKERSSTACK, % TASK STACK ADDRESS w/
L TICRERSEXCERTION /% TAGSK EXCEPTION HANMDLER #/
)3

Gl FOX(CREATESTASK, . TICKERSTATICETASKEDESCRIPTOR) «

]

6. 2. 2. “"CREATE EXCHANGE" System Call

This FOX systewm call introduces a new exchange +to §FOX
aystaen. Then on, other tasks can link thewmselves to that
exchanga via LINKSEXCHANGE FOX system call. Then, exchange can

accept SEND and WALT operations.
Gate entry code of CREATESEXCHANGE is defivned to be 0Z.

To create a new @xchange, weer should prepare & Static
Exohange Descoriptor to define all static characteristics of the
wuﬁhaﬂgé“ The structure of the static exchange descriptor is
defined in FOX object definitions. If any tashkh tries to oreate
ar exchange whose nawe is already defived in FOX system, the
exception handler of the calling task is activated, if it has

AYIY »

EXAMPLE

DECLARE CONSOLESSTATICSEXCHANGESDESCRIPTOR STATICSEXCHANGESDESUR LT/
DATA (. CONSOLESEXCHONGESDESCRIPTOR, /% LINK. TO EXCHANGE DESCRIPTOR
» CONGSOL? /% EXCHANGE NAME #/
z, /% MAX # DF MESSABES #*

80, /% MAX MESSAGE LENGTH %/

- CONSOLESEXCEPTION /¥ EXCEPTION HANDLER #/
) "

?

CALL FOX(CREATESEXCHANGE, . CONSOLESSTATICEEXCHANGESDESCRIPTORY ¢

| ey

b

6.2.3. "CREATE INTERRUPT" System Call

This procedure int roduces an interrupt to FOX Eyétem, Thev
on the Corr@ﬁpﬁﬂdiﬂg interrupt will be served depending on the
parameters passed via the static interrupt descriptor. The cause
of the interrupt need not bed a real physical interrupt, it ocan
also be HIGNALed by another task or even by the task dtself. The
structure of the static interrupt descriptor is given in the FX

obyect definitions.

Gate code of the CREATESINTERRUPT is defined to be OF,
If a user tries to oreate an interrupt with a name which 1=
already in the systemwm, then the sxception handler of the calling

task is activated, 1if it has any.
EXAMPLE

DECLARE CONSOLESSTATICS INTERRUPTSDESCRTETOR
STATICE INTERRUDTSDESCRIPTOR
DETEA CONSOLES INTERRUPTSEDESCRIPTOR, /% POINTER TO DESCRIPTOR®/
PLONINT? /% INTERRUPT NAME =/
FRSTSSERVICE, JEOCINTERRUPT TYPE #/
LCONSULE@INTEHWUWT%SERVICE SR GERVICE ADDRESS® /
LOONSOLESEXCERT I ON A EXCEPTION HAMDLER %/

5 F ¥ CINTERRUPT LEVEL #/
yo

CALL FOX(CREATES INTERRURT, . CONSOLEEETATICE INTERRUPTEDESCRIATOR) «

6.3 LINK GROUP

This group of FOX systew ovocedures links the calling task

tt

to & Task or to an exchange or to an interrupt. To ease the

programnEr dnteraction in a design beam, ponly the nave of b he

task or the exchange or the interrupt service is needed. Tris

opens the way of dyvamic linking. Trhe teaw leader defiv all

the tasks, exchanges and the interrapts at logical wvame level,
anct the interaction baetwesn Lo Each programmer, bhen on, oan
nreoeed on Mis own way. nly the mame of the other units need be

fkmown to Pl When evervbody brings His own part of the

FOX o o will bind all interfaces dynamically. That also guarantees

that if any of the t

AW member ohian

Mig own part, he need not
inform e other teaw wmevwbers as long as the predefined

interface standarts hold.

The LINK group includes the following procedures

=) LTINS TASK ¥ oto ocreate a link betweesn U

) LT NEE XCHANGE /% to oreate a link bebtwesen a btask

>

andd an exchange %/

Fach of the above procedures ie described in details 1n the

following paragraphs.

.
fh

6.3 1. "LINK TASK" System Call

Thie FOX systew procedure oreates a link between two t@ﬁka.
This 1% rneeded when a task reeds to suspend or resume the
axecution aof another task. To oregate the link, WSET PDrEpargs a
task link descriptor where he only needs to give the name of the
task to be linked, and then activate FOX systew orocedure

L INKSETASK. FOX searches FOX systew link for an entry with the

vy the Link

same name and then, returns the descriptor addre
part of the task link descriptor. Further calls, to suspend and
to rasune other tasks, Wwill use this information to actually
locate the task descriptor, rather than searchivig the whole
aystev link every time 1t gets a bHuspend or Hesune sysbtewm call.
The sbtructure of the task link descriptor is giQ@n in FOX data
st ructures.

Gate code of LINKETASK is defired to bhe 04.
EXAMpLLE
DECLARE AFTASKSL INKERESCRIDTOR TASKELINKEDESCRIPBTOR
ITNITIAL GNTL, "ATABK P, O, L EXCEPT IONSHAMDLER) ¢

AL-L. FOXCLINRSETASK, . ASTASKELINKEDESCRISTOR) &

(518

6.3.2. "LINK EXCHANGE" System Call

This FOX systemw call oreates a link between a task and an
exchange. This i1s needed when a task wants to exchange @egaag&ﬁ
with an exchange. To create the link batween the task and the
axchange wser prepares an exchange link desceriptor and supplies
the pnawe of the exchange that he wants to use iv the rvest of the
task, After the preparation of th@réxchaﬂg@ link descriptor usep
activates FOX systew call LIMKSEXTHONGE, FOX will supply the

FHE O

sary link betweern the ftask and the exobhange. This

imFormation will be wsed latevr by &

X, when user 1ssues a DENMD
o a WAIT systew call. If a user attempts to use either of the
systen calls GEND or WEIT before the link operatiorn then, e
resu]t 14 unpredimfable and suwen a task 1g defived to be
ErronEous., The structure of the exchange link descriptor is

giver iy FOX data structures.

Gate code of LINKSEXCHANGE iz defined to be OF.

EXOMPLE

DECLARE

RILTOR EXCHANGESL INKSD

R TN T O

CALL.

FiRd
-t

6.4 UTILITY GROUP
This group of FOX systew calls are used to suspend or o
resumiz o any task in the systew. Group contains three system
procedures, ﬂémeiy , BUSPEND, RESUME and DIGPATCH. Each of these

FOX systew procedures are descoribed in details in the following

GE0L1LOVIS.

6.4.1. "SUSPEND*" System Call

eyt Ccall oremoves the designated task from {the

This FOX sys
syateyn ready gueae and puats it into the systew suspend gquens.
Tf the designated task i1s already suspended and put imnto Uhe
gelay gqueune, then it will be rewoved frow the system delay dueue

£

as well. Friy task which 18 suspended can only be resumed Dy

another task. IF there i vo other task to resume the suspended

task, then there s no ohance of reactivating the task.

e call reguires the task link descriptor as

SUSPEND sy

rput parameter. The gate code of SUSPEND 18 06,

EXAMPLE

z

DECLARE AETAOKSL INKSDESCRIPTOR TASKSL INKSDESCRIPTOR

AL MDVK(G,n(‘CONSDL’),uH$TQEN$LINH$DESCRIWTDR.NQME),

CALL LINKSTASK (LINKSTASKEOODE, . AR TASKSL INKSDESCRIPTOR) «

CALL BUSPEND (SUSEEND, . TASKSL IMKSDESCRIPDTOR) 4

6. 4.2 *RESUME"

This syt

&) sten sus [.'Z)E?‘l")d quee

tasks that are on the

the designated task

is

wffect of the ocall

priority task macde

PR

calling task looses

highest priovity ready

RESUME

systaem

address as paramabter.

X AL

DECLARE AETASKSL TNK

[

System Call

call

and puts 1t
aystban suspend
not
HamE &S
rieady
the OPU

task again.

Al d rEgul res

The gate code

$DESCRIPTOR

removes the designated task

to the

on the systemwm suspend guewe then

by The RESUME systew call then

£ e

af

TASKSLINKSDESCRIPTIOR

27y
£

From ke

raady queus. Only those

cuEwe can be VeEs e, 1

t e

af Dispatoh. IF a high

the

till 1t ke

task link descoriptor

ism O7.

PEsLLITe

-

CALL, MOVEA(GE, . CCONSDL® Y, L ASTASKSL INKSDESTRIPTOR. NAME) »

COLL LINKETASKAILINKETASKECODE, « AFTASKSL INK$DESCRIPTOR) |

COtlL RESUME (RESUMESCODE, o TASKSL INKSDESE

RIPTOARY »

6.4.3. "DISPATCH" Sytem Call

This FOX systew call has vie effect on the calling task. Tt
Just removes the calling task from the ready queue and then re-
inserts 1t to the ready guews agaiv. The ef Fect 19 that 1 Ff b here
are equal prierity ready tasks in the ready gqueue, they can gain

the CRU resource.

Dispatch systew call reguives vo pmaraneter, s0 NIL can be

userd. The gate code of DISPATCOH is defined to be DO,
EXAMPLE

CALL FOXADISPATOM, MTL) »

o
todd

6.5 FOX EXCHANGE OPERATIONS

FOX wmachine provides several operations that the user ocan
aceess with progravned calls. Two bhasic operations ave of Lhe

most dwmportance, These two operations are desocrvibed in detail.

rii

1-) BEND, Send a wmessage to an exchange.

S WATT, Waait for a om or bime interval.

These two operatiorns provide Lthe capability +to rass

messages Detween tasks n a sysbew ruwmilng under FOX,

6.5. 1. Sending a Message to an Exchange

The HBEND operation enables a task to post & message at an
exchange. When user SENDs a wessage to an exchange, FOX actual ly
nosts the whole pody of the wessage to the buffer area of the
exchange. This avoids the DVEPHE&@EIOF free epace management. If

s wants fto get vid of the overheads reguived to move the

entire wessage, he may post the addre of the actual meszage.

this wmethod 13 more FEiciant than passing the address of the

actual message. Passing the address of the actual wessage forces

the sender not to wmodify the wessage buffer uantil it 16

e

the orogramming efforts.

wived, that in turn, incred

Ivn contbrast to many executives (1RMX/780) user of FOX i

allowad to wmodify the me the SEMD ooeration

completed. The formabt of the S3END operation is as follows.

PR

SELL FOX CBEMD, EXTHEME

S LMRSBDE

CRIPTORSADDRESS)

Gate code of SEND e defined to be Q9.

SEMD has ovie paramater: the address of the exchange 1ink

descriptor. Instruction wmoves the wmessage into its cirvcular

Fivaet—1in—Ffirast—-out e e if there 13 available TOOm 1T A

exchange, or suspends the execution of the task and puts the

task into the exchange engueuws list. If a task is waiting in the

exchange degueue list thern the ingtruction removes the task From
exchange degueus list and also from the system delay Llist, if 1t

had requested a time out, and inserts into the systewm ready list
0 am bo make 1t eligible to execute on the processonr.

The oalling task wmoust be linked to the exchange via &

LIMNRKSEXCHANGE operation before any SEND operation, o

else Uhe

resullt of the SEND apsration i1s not defined.

When & task NDs & message to an exchange several

Funetions are performed dependivg on the type of the exchange

requested.

&6

6.5.1.a. SEND if exchange is free or return
1-) The designated exchange 1s checked ,to see 1T
there is roow for the incoming vesSage.

~) I¥ there is mo room Tfor a new message refurn

"Fail" status

S=) If theve 15 room for the incoming message
then move the wesage body to the exchange

buffer.

IF orne ovr wmore tasks are wairting at the

o
|

exchange, the Tfirst ftask is given the
WMEGBACE, removed Trowm the exchange's suspend
gueus and from the system deley gueus, if

inserted, and thernwmade ready.

G- IF @ bhigh priovity task is | thereby, made
ready, the sending task looses Uthe CRPU
resource until it again becomes the highest

oriority ready task.

6.5.1.b. Wait until SEND operation is completed

1) The desigrnated exchange is checked to see 1f

there is roow Tor the incoming message.

2-) IF¥ there is no roow for a new message, the
calling task 1s suspended at this point Frow
futher execution. This conditton will be
removed when space becowmes availlable. The
calling task 15 1nserted nto the suspend

gquauwe of the exchange.

I there 1s roowm Ffor the new message or room
becowas available after step &, the wvessage

bady is moved to the buffer of the exchange.

4-) IF orne or more tasks are wailting at the
@xohange, (A ST First task rs given the

1Y)

ace, removerd frowm the exchange’ s suspend
gueus and Frowm the system deley gueue, if

inserted there, and then wade ready.

Sy I¥ a high priovity task dis. thereby made
ready, the sending task leooses the CPU
resouroe urt il it again becowes the highest

priority ready tashk,.

6.5.1.c.

1)y The

5D

i
I

2=y If

SEND or wait time out

there is room for the incoming wessage.

there is no room Tor a rew message, bthen
P >

the calling task is put into the exchange’'s

suspend gueuwse and into the systew delay

gQueus, bath at the sawe time. This condition

will be removed when space becowmss avadlable

or when the tiwme limit has expired.
I the tiwme liwit has expired

then return

"Fail status.

I there is roowm for the new wessage or room
becowmes available after, step 2 the message

body is wmoved to the buffer of the exchange.

If one or wmore tasks are wailting at the

exchange, the Firet ftask ds given the
message, ravmoved From the suspend gueuse and

made ready.

If a high priority task 1s, thereby, made
reacdy, the sending task looses the CPU

resource uwntil it agaiv becowes the highest

priority ready tasik.

designated exchange is checked to see 1f

6. 5. 2. WAITing for a message at an exchange

WAIT operation causes a task to wait for a wessage to
arrive at an exchange. It is also possible to delay
execution of the task when no message is anticipated for the
exchange. The task simply waité at an exchange where no
wessage is ever sent. When a task waits for a wessage at an
exchange, ‘Sevaral operations are perforvwed depending on the
type of the exchange operation ;équeﬁt&d. ALl of the SEND
operation varieries are aleo applicable to WAIT opevation.
The only difference is that the task which has requested the
WAIT operation is suspended when the exchange is ewmpty, ie.
there is no mesaage at the time of WRIT operation.

The WAIT instruction has two parameters:; the address of
the exchange link descriptor and the WAIT systewm call gate
code. The exchange link descriptor contains the following
information.

1-) Type of the exchange operation desired
2-) Address of the buffer area to which the message
data will be moved.
3-) Status of the operation returned by FOX.
4-3) fAddress of the exception handler to be activated
ov an abrnormal conditiown.
S5-) Address of the exchange descriptor suoplied by

FOX at exchange link operation

70

6H~) Maximuw time (in systew units) for which the task
is to await the arrival of a wmessaqge, if the
exchange is enpty.
The result df the wait operation iBAthat the wmessage is
moved to the indicated wmemory blook, 1 any could be moved,

and a status indicating if the operation is successfuly

completed oy rnot. Either "success" or "failed" status is

raefturned. From the programmer’s point of view, this
instruction simply executes and returns the specified

result. Actual execution of the instruction will involve the
delaying of task execution if no wessage is available, by
gueunaing it in a first-come—-firgst-serve marnmmer gueue. Ary
such delay, however, is not visible to the prograwser. This
approach unifies the cowmurication and timing aspects of the
design. It directly provides reliability in the case of lost
everts due to hardware or software failure. Task can be
guaranteed ot to be indeterminately delayed due to such
Failures and thus, attempt recovery from Them. It also
pernits tasks ﬁo use the sawe mechaniswm to delay themselves
for a given tiwe interval by waiting at an exchanges at which
no wessage will ever arrive.

To regquest a wailt operation, user sould activate FOX as
follows:

CALi. FOX(WAIT, . ASEXCHANGESL INKGDESCRIPTOR) &

Gate code of wait is defined to be 10.

6.5.2.a.

1

-
bord

n

WAIT if exchange is full or return

=) The designated exchange i1s checked to see 1T

there is any message available.

returm "fail" status

=) IF there are one or more messages, then

the wessage body to the user buffer.

71

=) IFf there i1s no messages at the exchange

Wit Ve

=) If rewoving a message fFrow the exchange

creates free space Tor a suspended task,

firat task i1is given the free space , removec

from the exchange’s suspend gusue and

reacy.

=) If a high priority task is thereby

ready, the sending task looses the

mace

made

Cpy

resource until it again becomes the highest

priority ready task.

6. 3. 2. b. Wait until WAIT operation is completed

1~) The designated exchange is checked to see 1F

there 1s any message avallable.

2-) If there ie ro message at the excharnge the
calling task is suspended at this point from
further execution. This condition will be

removed when a wesesade becowes availlable for

the calling task. The calling task i
inserted ivito the suspend gueue of the
exchange.

3=) If there is one or wmore messages at the
aexchange or a message arvives after step 2

ia

the message body is moved to the user buffer.

4-) If one . or wmore tasks are waiting at the
exchange for space becowe availlable,, the
Firat task is given the free space, ramoved

from the exchange’s suwepend queue and made ready.

-3y IF & high priovity task dis ,thereby, made
ready, the sending task looses the CPRU
ragource until. it again becowes the bighest

priovity ready tashk.

oy

)

6.5.2.c. WAIT a message or wait time out

1)

0
i
Tt

th
i

&)

The designated exchange is checked to see i@f

there i any wmessage available at t he
exchange.

If trhnere is no message avallable at the
exchange then the calling task is put into
the exchange’®s SUSPEHd gueue and to the
systen delay queue, both at the sawme {time.
This condition will be rewmoved when a wessage
arrives the exchange or when the time liwmit
Mas explred.

If the tivwe limit has expired then return fail
status.

I there 1is one or wore wessages avallable or
a wmessage arrives after.ﬁtmp 2, the message
body is woved to the user buffer.

If one or wmore tasks are waiting at the
exchangse for space Decowe avallable, the
first task is given space, revoved from the

suspend gueuwe and made ready.

If & high priority task ids |, thereby, made
ready, the sending task looses the CPU

rasource until it again becomes the highest

priovity ready tasks.

T4

6. 6. FOX FLAG OPERATIONS

FOX wachine provides two operations on flags that the
wger can access with programwned calls. Through the use of
these two operations any wEmer can easyly write interrupt
routines, which are the the hardest to develope and debug.

Following sections describes the use of these two FUOX system

roult ines.

6&.6.1. "EVENT" system call

The EVENT systew call reguires two paramweters, the flag
number on which the task wants to waitvaﬂd the Event systemw
call gate code. A task which has issued an EVENT systew call
will be suspernded till & task issues a SIGNAL systew call on

the designated flag. IF the flag is already SIGNALed thewn

ig

the effect of EVENT systew call is the sawme ag DISPATCH

T

systew call. A task which is suspended in this wammer will
he placed ivn the systew suspend gqueue., User must wake sure
that no wore than one task could issue an EVENT call on the
gsame Tlag. Buch a case is defined as flag-over—-rum and the
exception handler of the calling taék 15 activated, I N I

has any.

6.6.2. “SIGNAL" system call

The SIGNAL systew call has two parvameters, the flag
nuvber to be SIGNALed and the Signal systew call gate code.
When a tash or intervrupt service bhas issued a signal sysbem
call, the event waiﬁiﬂg task, if there is any, is removed
from the ready guewe and made ready. If thereby & high
npriovity task ié made ready, theﬁrthe calling task looses
the CPU resource until it again becomes the highest priority
ready task. If there is no task waiting on the flag then
depending on the flag state either the Fflag is set to
indicate that 1t is signaled., IFf 1t is already selt then
this is ddentified as a flag-uwider—-run and the exception

handler of the task is activated, if it has any.

—y

.

VII. MORE ON SEND AND WAIT OPERATIONS

7-1 SEND — WAIT INTERRACTION

To & large extent the power of FOX as an abstract
machine is derived From the interaction between SEND and
WRIT. The interaction includes threes multi-tasking
operations.

1=y Communicat ior.
20 Bynehronidzaltion
3-) Mutual Exclusion :

I describing these operations, a graphic rnotation |

for diagramming btaskes, exchanges and thelr interaction ia

utilized. Here on, rectangles desigrate tesks while

triangles represent exchanges. Arrows that are directed
From tasks to exchanges are BEND operatiors. WAETT

operations are shown by avrows directed From exchanges to

the tasks.

77

7.2 COMMUNICATION

The wmost cownon interaction between tasks is that of
comnunication, the transfer of data between one task to

another via an exchange, as shown in figure below.

__________ /\ e seran et sov2n v svime i i
| task | SEND /A WATT | task |
| | ey e / e 5
- N /oex X\ B

The above Figure shows an exawple of cowmunication
hetwaern task A and task B. Tasek A SENDs message to exchange
¥ and task B waits for a wmessage at that exchange. Task A

is the wessage producer and the task B is wmessage consumer.

7.3 SYNCHRONIZATION

At times, there is a reguirement to serd a
synchronization signal from ore task to another. The signal
can take the forwm of a wessage that wmight have no data bytes
at ali.

Let us consider the implementation of a task scheduler,
wused for the purpose of synchronizing anather task that
performs a particular function at pa#ticular time intervals.
The relationship bebtweern the tasks and the exchanges s

alhown bhelow.

/
/

/

|

|

/N e
|

78

/\
SEND /N WAIT
~~~~~~~~~~ o G A
/ \ "

v\ WALT | R

\ | | | o
' I |

| N\ |

I WAIT 4\ SEND i

IR 3 0 VO A P S
/ A

Task A, the scheduler, performs a vimed walt on  the
exchange X. Note that the full wait period will always occur
b@cauaa_there is no task that 1s sending message o exchange
X In this mamer a specific tiwmed wait by the task A
prececdes the passing of & synchronization wmessage From Lask
A to task B via an exchange Y and then‘returhed from Ttask B
to task A via an exchange I as a check back.

If the task B waited on the exchange X divectly rather
than using task P for scheduling, it would be schedualed n
system tiwe units From when it issues WAIT, instead of w»n
system tiwme units frowm the last time 1t was awakened. Al
somparison of these two wethods i1 shown below.

time tive

AN

Mwmw>~mmwwmm_Wm_m/mmmmw
i ¥ | B | i I B (S I n I n -
PR IR !

e o s e s et e s s 0 e s e e i e e 2 e

JEX X N =)= TASK A {~——— ===i TASK B

¥

B



7-4 MUTUAL EXCLUSION

In an environment with wmulti-tasking, FESOUPrCES, must

he shared. Exavple of shared resources include data

structures and peripberals, such as serial cowmunication

device to console. Mutual exclusion can be used to ernsure

that only one task has access to a shared resource at  a

v The diagram below shows how one can use an exchange

For wmutual excluasion.

{ ! SEND
| task A [ s e o B e o e e e
{

f e (o e

e e ot e e e £ WarTt 1|

| c BEND = i s e f
l L Qs l,‘ E( i [ ) et rbes Aencs oot s s s s et Seays Seneh 25 et benm rwre

] [ omes e e € e s s s e s s s e e

it Lemis o s o St vt P e s Pomre i w{'_\ I T e e St ot o 284 2k vt e Shon 2809 e Srbte oo o

ot e e i e o e e i |
! | SEND ||
| task ©  f=ee) mmemee |
! J o v e ( v s cores mens sattn 44020 s sapen i

et e e e e e e e et e WRIT




&80

I this example the exmhangé ¥ oie sent a4 single message
at systew initialization. Then as tasks reguire t e
PE%OUPCE,. they WAIT for a message Frowm the exchange X. When
A message i1s received, the task krnows it has sole access to
the resource because there 1is only one wmessage associabed
with the exchange. After the task finishes with resource, it
the wessage back to the exchange X. The next task
walting for the resource continues, — krowing that 1t  has

axclusive access To the resource.



81

VIII. SYSTEM START UP

8.1 SYSTEM INITIALIZATION

FOX is an ewbedded or dedicated systew executive. This

maars  that it shouwld be able to restart with miniwas,  or
even better, with mo operator intervention., FUX, at restart,
iviitializes all of its data base and creates the IDLE task.
I addition +to this FOX looks for an  initial task at
ansolute location 1000H. If this lecation contains a  JUMP
instruction (the machine code of JUMP instruction in this
prototype i OC3R) then FOX creates a second task INITEK
with the following attributes. The priority of the INITEK
MAXEPRIORITY~1. The

stack area is stack of the dumwmy Ltask

plus 20h. The task start address is 1000h.

This INITSK feature enables the systewm initiator to
write i1ts  own initial task and run it whenever a restart
prours., AL the remaining tasks, exchanges and interrupts
can be  oreated with this  INITHEK, Rt the end of the
1nitia1izatimﬂ< peried, this task should be suspended to
avoid unneccessary CPU usage. fAn altermative is to keep it

runming For & high priority task.



B

At the initialization all processor interruptes are
masked Frow both the processor via the disable interrupts
instruction avd alsa Fram the priovity interrupt

decoder(I8253) via the interrupt wmask register. Any of the 8

interrupt Tives of the intevrrupt priority decoder can

Iye
grabled or disabled with FOX extention calls LEVELSON and

LEVELSO0FF. These are non-standart FOX systewm procedures
which  are supported only when the hardware swapports  the
operation.  These two extention calls accept two paramelters
to indicate the interrupt level to be masked or opened, and
the LEVELSON or LEVELSOFF system call gate entry Caliﬁ. Fax
masks a “level whenever 1t receives an interrupt From. that
level, It dis the responsibility of the interrupt service
prograwwer to open the corvesponding level at the end of the

service routine or @lse »no wore interrupts can be sigrnalled

from this level.




83

IX. APPLICATION

9.1 SAMPLE APPLICATION

In this section, an exawple application of the usage of
FOX will be givenr. Example contains systewm initialization,
Lask, exchange and intervrupt definitions. The example is siwple

in its task but illustrates maost of the capabilities of the FOX.

The subgect dis to construct a terminal handler of  an
online debugger. The debugger is assumed to wait for input
messages at tThe exchange *CONINP? and ocutputs characters to
the exchange TCONOUT? . The actual task of the debugger is

not discussed here.

From the above definitions, we imvediately identify two

exchangas "CONINP" and the "CONOUT". Through these exchanges

ﬁ the debugger is covwnected to the outside world., There are
two  separate tasks, one for the inpuet chammel and one for
the output chanmel.

Input chamnal tashk waits on the cornsole input intervupt
flag for input characters. The type of the Flag management
is  of the exchange typs. Whernever the operator enters a
character, the console input task will be Signaled and will

read the character from the input charmmel. it will echo the




84

input  charvacter back to the console through the "CONDOUT"
exchange. When the input character indicates the end of the
Live, the input task will send the acuwwulated character to

the debugger for processing.

Dut put chammel task waits on the "CONOUTY exchange Ffor
the characters to be output Dutput chanmnel taskh receives

the oharvacters to be oubput and then Cissues an Event Gy sl em
call  on the console oubtput interrupt flag. Whern the ouabtput
channel becomes available, FOX Signals the output interrupt
flag and the outpuat charmmel task outputs the next character.
This will be repeated until all of the characters are output

to the channel.

Refering to the appendix C ,the source list of the

gsawple application, one can see that the wodule can  be

partitioned into three sections. The definition )
initialization and the task bodies. In the following

sections each of these parts will be discussed in detail.



9.2 DEFINITION

Lives one through 35 are the definition part of the module.

This part defines two external entries, the FOX entry and
DERUGE  entry.  The First one, FOX, defines the execulbive as

'd

procedure with two parameters: the gate code and the descriptor

address  on  which the defined operation will be applied.
sacond  one 1s the address of the debugager program. Tt will

created as a btaskh later in the inittialirzation section.

Rewaining part 18 the object definition part of the
mocdule., ALL of the objects are defined here. Line Z3% defines
the Static Task Descriptor of the debugger task. This
gescriptor s dinitiated with the following values.

a-) - The Task Descriptor of the debugger task is defined
to be the DERUGHTASKSDESCRIPTOR.

) Name of the debugger tashk i1s "DE]

c-) Priorvity of the debugger task is ten.
d=-) Actual body of the task starts at the address DERUG,
which is the start address of the debugger procedure.

e~) Debugger task has no exception handler.




BE

AR Line 23 the static task des

viptor of  the consols

Lot

Fivied and initialized with the followig

values.

a=) The task descriptor of the console input task is
defivned to be CI$THBR$DESCRIPTOR.

b-) Nawe of the task is defined to be "CITAGK",

o) Byriority of the CQﬂSDlE inout task is set to be 11.

WEE Corsola irput task starts at the address

CONSOLES INPUTSTASK.

@) Domwole Dnput Lack has v exoepbion handler.

at livie 23, the static task descriptor of the console
putput  task is defined and ivitialized with the following
valuas,

a—)  The tash descriptor of the conscle input tashk e
defined to be CUOSTABNSDESDRIPTOR.

B3 Name of the task 1w defined to be “"COTASK".

o) Priorvity of the console input task 18 set to be
Nive.

~

o) Console input  task starts atl t e addres

CONSOLESOUTPITSTASK,

@) Console input task has no exception handler.



At Iine

some constants

EOm the end

of vessage

address, the console

input

intevrrupt did .

allowing the constant

@xchange descyriptor

exchange and the console

cansole input xohange

ITHEXCHANGESDESCRIPTOR  and  the

exchangs is set to be COSEXCHANMG

3t Tive e

interrupt

ivipat interrunt arcl e

ired. The nawe of the

defined to be CI4I

1

oubtput interrupt descriptor

P C_

COFINTERRUPTSHDESCRIPTOR.

At line 30,  the static

console input interrupt dis de

Following values.

a-y Intervruot
-

)

Name of the interrupt is

Tyoea of the exchange ope

=) N gErvice address

Fawst

Mo esxception handler.

F~) Irtervupt level is one.

chiaracter,

eveant

definitions
definitions

output

descriptors
Torso e
congole

NTERRUPTSDESLRLPTO

interrupt

fined

descriptor is b

vrataon

are defined. These are Uhe

the ternival data port

i and  the console

. there are the

of the oconsole iviput

exchange. Name of the

1 defined to e

Mame: of the console  ouwbput

SESDESCRIPTOR.

for the conasole

ot put interrupt AV

pviout 1ntervupt  de

viptor

Roand the console

i defined tao e

vl

riptor ot  The

and initialired with the

e CTSINTERRUPTEDESBCRIPTOR

ClsInT

ls of EXCk

IANGE




At line 31 the static ivtervupt descriptor  of
console output interrupt is defined and initfialized with

following values.

8

the

t e

a-) Interrupt descriptor is the COSINTERRUPTESDESCRIPTOR

=3 Namwme of the intevvrupt is COEINT

o) Type of the exchange operation is of EXCHANGE

Geryvioce address

I~} No €
@) No exception handlier,

F-3 Iwitervupt level is bwo.

At Lime 32, the static sxcohange descoriptors  of
console  output exchange is defined and initialized with

following values

a~) FExchange descriptor of the console output

defined to be COSEXCHANGESDESCRIPTOR.

Lype.

t e

t e

exchange

By The nawe of the exchange is defined to be “CONOUT™.

o) There can be at most one wessage at the exchange.

d-) length of the exchange iz defined to be 80

characters,



i e

At lime 33, the static exchange descoriptore of  Uthe
console input exchange is defined and inittialized with the

Following values.

a=) Exchange descoriptor of the console input excharge

defived to be CisEXTCHANGESDESCRIPTOR.
3=} The name of the exchange is defined to be "CUOMINPY.
) There can be at most one wmessage al the exchange.

g-) le

gt of the exchange is defined to be B

At live 34 , a task link desoripbor 1w defived to

t e imitialization for task oreabiorn.

9.3 INITIALIZATION

This part of the module starts up the systew. It creates

MECCESHAryY @xc & &}

the cowmsole oubtput exchange. Then 1t oreates  the syosthem

mavely  the debugger task whose actual coding is not

here, e console dnmput task  anmd  the console

oubmut task. At this point the reader cehould notice Lhat

a task only inserbts 1t into t

mamely the console input exchange ang

L

Y oharacteras.

T



gueus. Baecouse of that they can not be disgatohed until they

aAvre inserted to the s

2w ready gueue. That will be done
later by RESBUME system calls,

At lives 42 and 43 the interrupts are introduced to  the
FOX  systew, wnamely the console ivput intervupt  and the

consale oubput intervupt.

At this  point  the system

for start un by

vepetelive calls o the RESUME syvestem orocedure, all of Lhe

al
three tasks are resumed. But at trhis point, again, they can
ot get the CPU resource since their oriorities are lower
then the pricotity of the initial task which is by definition

MAXSPRIORITY-1.

At the end of the initialization initial task suspends

el

itself  Ffrom Ffurther execution by a call to the BUSPEND

syatewm procedure. AL this point, since it 1 revevaed Trom
the systewn ready gueue, the revining higest priovity task,

which is the console input task, bec

MERR} ([ he

the running task.




9.4 TASK BODIES

This part of the module covbtainse the actual task hodies.
The consale input and console oubtput tasks are defined here.
The task definition of the debugger is vot incluaded here
ginee  ite Fumctbilonivg de out of the scope of this thesis.
Comsole  dnput task has two parts in it, the initialization
avicd the task loop. The iwitializatiorn parvt links the cornsole
input  task to the console output excohange and  the congole

input exchange. 1t aleo defines the bulffer addre far the

gxchanges as the CISEUF and the CHR$BUF respectively.  Then
the console input task gees into an nfinit loop  where it
Wwalts  at the console input interrupt, reads the incowmming
caharacters, sends thewn to the consele outpult exchange and

when the end of mes

age byte received, send the ounnulated

characters to the debugger task. Indeed that is the cowplete

Job of the console input ftask.

Console oubtput task has also two parts, initialization

v e Lask loop. It creates @ Link To the console oubpul

excharnge and then goes into an infinite loon where it waits

at  the console oubput exchange for a mes

age and then sends

s

them +to the console oubput chanmel as  consocle  oubout

Interruots arrived.



X. CONCLUSION

The aiw of this study was to desig and implement a
priority drivey wmultitasking execultive. The  resulting

b

system, apart frow a few miner differences ie ocuwite similar
to the original research proposal (see Appendix A).
v cowmparing the resalting systewm with the original

proposal of  FOX we see thae absence of a few system calls.

Thase are the EXIT, LINKSINTERRUPT and the complete Delete

group of calls. The veason for thelr ovnission was that they
confliected the design philosophy of FUX whicoh 18 an evbedded
systey execubtive. During the iwplementation three new system
calls were thought of in order to make irntervupt handler
writivg easier. Despite all, the spirit of the proposal

remained to be the same. At the b

Lrming 1t was estinatlted

that a language wmixture of five per cent assembly and 93 per

cent  high level language would be used. ﬂ£ the end it was
written in DL/ Thie brought the possibility of
portability, hecause today oross Compileré of  BlL/M  ig
available for various wmicroprocassors. The list containsg the
808e \BDBB and HBOE1L from Intel, with 100 per cent source
compatibility, and Z80 , &800, 68059, and &£I02 frowm the PLmX
corp., which are not 100 per cent software compatible, fut

the only rectriction dig that it does not support TIGIVIE G




Do a4l
e v}

longer than & characters for public entries, and we do  not

have wo wany of thew.

In this sbudy, I tried to approach the execubtive as an
abatrant machine and tried fto show that an exeuuti;e can  be
implemented such that wmoving the executive frow one family
of  wicrocowmputers to another does not effect the software

more than cohanging the executive to adopt t the new

-
a

hardware.

FAowmittedly there way be some buges left 3

o samewhe re
in the wsoffwarea, since testing an edecutive  wndesr every
possible  condition 1s havdly posseible. But L awm  open  to

complaints and ready to corrvect any such bugs




ARPPENDIX A FOX PROPOSAL



95

A PROPOSAL FDOR

A FAST OBJECT-ORIENTED EXECUTIVE

L FOX 1

SUEMITTED TO @ DR. TUND BALMAN
. SULMTTTED BY & SCDAT YILMAZER
GUERIEDT g MOSTER THEGE




3¢

iy DI ORos

and 1molemenit & fast obiject-oriented

@xecutlive. It will be a colliection of routines and tasks  which

supEort event driver  wmulti-btasking 0 A& misroproo

]

By ODnos

design and dmplexsent a Faslt Obgect-oriented eXecubive

CFOx “ Friret version of FOX will run on oa INTEL SRBD 8072C

ERVEE S IV Tyv ovdar Lo make 2L an porbabnie s O Ll L Ll

1

wi bl he written in o a Hi.

W Due to the avaslability end  Rhiginly

structred nature,  the INTEL PL/M

s proposed. A high portion of

the FOX  will be writben in PL/M except

a  wvery  smmall

povrtion has to be written v the a

mihly lamguage of the target

syt em., The overall system wi satisTy the A93  PL/M 400

et
[

sanibly ratio.

=X 111 Dbe a Real-Timwe Evernt-driven Obaect-oriented Mol i
FOX  will be a Real-Time Event-driven Obgect-oriented Mall

tasiking  executive, It will e Real-Time

GO the  main

ohgective of FOX is to be a contol

ceation axecutive | wherse

)

Reral-time scheduliivng is a must . Tt will be Event-driven <o

desre

LUVIFE

DAY polling a1 EXTETTIaL mErLmherales At

provide & structarsd sethod of interfacing with the havd-ware.

It will  be object orie T by

interface e

saible Fubure extentions | such as a Fille Manager, and Tinaly

it Wil l e mulbi-tea ing to incre

the {hroughiout foy

ety matld For the nardware.



97

Firat version of FOX will run on callted mETR 1T

NETAS, Tt isoa sub-unit of a

viatiarnal

center under the

developmaent of RED departwment. It wnas

all the neocessary bards

ware nesded for an execubive , and so For FOX.

It consts

procassoer board (8BC 8075

=43 with akb o of RAm Bb of EPROM

arvy RS 232 cowvmuniication interface a

y prograwnable interrupt

clecoddenr S oprogramable Uiwers and some pavallel 170 and wult

faides irbey Fac

logie. It also encapsulabe an 170 v

extention board (LR 118).

Lo the covplete systewm he 2k

poards  20RKD of ROM and upto 40Rb of

. almost more tranm

grnough for & simple control




Al

m
[os

owill try o g the FOX as flexible as po

Lhle  wo it

will be sasily custowized for any contrel application. I will

ke the  INTEL DRMX-80 TNTEL GRmMX-B8E NETAS  MTEX NET A8

b

REMTEX and the DIGITAL RESEREH M

to FOX, (1 dawn’t

want to dnvent i

Loagain b0,

P . T wouwid tike to Ffollow the rules

& o } Thare will

two design reviews one  after  the

ance of this propo

. avid o

atter one month after {he

Firet design review., D fir taing the Firet level definition

t owme

of the FOX will

froe

abjec wWill be

scheduling wethodes will  be defined. in  the

Fugute

[

review, the dificulbl

and pog contradictions

iv bhe Fir

e

Fiviitions will

cimeused and solved.

o

) - ) The design wmethode will be  Top-down

PO T aan

cdaevelopment and Bottow-up object definition. First the obhiecbs

Lhat the execubtive will heavily depend on such  as process

descriptors  and guesue structures

,Will be define

ioar N Lhen o i,

the prograw development and coding will s [

o ) TF wot strickly neccoe Ary machine depend

Featbures will not wsed neither in H

Wovior 1 SW ineluding

the waching langua af the target wmachina.




f.‘,'; C';]

FOX  will be

a nueleus bto be costuwized Tor any specific

multi-tasking

systaen. It will bave a winiwal and sufficient ue

e v

interface routines  to handle the tasks and tha— comvunication

betwaeen than. The unit of executable cod

ey
i

collections wder the

FOX ism o oa TALK. There can be any nuamber of tasks competing o

the TP and for the

riplerals at any inetance of bime. X

will suoply sufficient mechanizms to synochronize the activilties

of  all of the peripherals. Messages between The tasks will byes

Fravrcd L edl in the EXCHANGEs

toth the tasks and the exchang

be created and deleted with sivnole s)

stew calls, FOX will alsa

support a umified interrupt structure

e can @ither ask the

“

FOX  to susgpend it witil a specific interrupt arrives or define

his oW interrupt service routine for faster ivberrupt

SErviciig.

FUX will wuse _linked gueues to schedule the tasks and

varnupulate the exchanges. Faor task scheduling , there will he

three system cqueuas

a = ) Bystew ready task guewe ¥ For the tasks that can

immadiatly gasp the CPU and execute. This cuedwe will bhe seld in

High priarity Tiv arid round-rouhin

retween the egqual  oriority

~

taskes.,

B =)

dormant task gueus For T

A ot
[ -

which are

neither waiting for

merals nor For the O

Yo T e Lk

exchange operations and mnor For a tive-ouwl condition (bhey are



1010

meraly 1 o bthe syetew bul volb worhing at all for the time Dbeing)

ey

only be activated via a create aystenw  ocall. (e

coudene has no implied structure but

K

iy ltast owt one seens

Lo e wore converlent.

o o~ ) Systew tiwe-walt gqueus

ke wWhickh  are
ivtentionally wailtivng for a time-oult condition or waiting fas

the exchange aoparation, whean th

¢ & time—out in the

@xohanges willl be held in bthis o

LEyE, Sivice there oan be many

im this gueans Uhe

ructare of the gueus showld wminiwmize

thie Job of the delay wanager so thalt 1t ot have to

S

all bime-wailt cuews at sach s

e clock tiok.

v oadddition . Tasks © Can DE CuEued AT t

e aig

desoriptors For

gr receive ooeratlons. LF an exchangse has

I s

it ” 1P the excohange

Mo roam For oo Nl wessage when a te

O, Lhe task

he gueued at bhe sxohange desoriptor.

SVe Can

arty nuwmbey of

Ke waiting at an exchange either for receive operation or for

pperation  mixture of

e walting and

ive wailting

alt  any exohe

e gueue iz , of course , iwmpossible ).

nobe guewed at the exchage dquauwe and at bhe sy s U e

Time wail gueus at the samne Tl 1f the wser had asked fFor a

i

time  ouwt  at the exchang@. Tvr such a

wWill e

BV

Fram both of the oueuss whaen the time oul condition

met or when {he

exchange opevation i1s completed.



101

The Following sections desicribe +the proposed systeamn

routinegs Foar the above mentioned ubilities.

a — ) CREATE_TASK

CREATE_TASK (TASK_DESCRIPTOR)

oy

This orocedure will  dnsert the designated tasks

process descriptor into the systewm ready task cueuwes. Then on the

tashk competes for the TPU and the pervipherale as obtheyr tasks do.

This procedure revoves the designated task From all
of  the Following guedes and puts dnto the systew dormant  Lask

Gl ey

Lo ) GHystew ready task queue

e Lime wall gqueus

ild o~ Y Exchange wallt gueues



- ) EXIT

EXIT

This  procedure  revoves the calling task frowm  the aystem

ready task gueue.

d ~ ) LINK_TASK

LINK_ TASK (TABK _LIMK_DESURIPTOR) ;

Toie  procedurs  links the desigrated task to the calling

g~ ) CREATE EXCHANGE

L e Y4 i et 1o St s s A b oo Peiem ocoew St

CREATE EXCHANGE (EXCHANGE _DESCRIPTORY

7
This procedure  insets the designated exchange desoriptor
into the systew exchage link.

f - ) DELETE_EXCHANGE

DELETE EXUHANGE (EXCHANGE _DESCRIRBTIONY o
Thie procedure revmoves  the designated exchange frowm the

systen exchangs link

g~ ) LINK_EXCHANGE

P

LINHWEXCHHNGEfEXCHQNbmeENH_DESDRIDTDR) s

This procedure links the designated axchange to the calling

task For Ffurther exchange operabions



103 |

Thi = procedure cends  the desigrnated message  to t e

designated exchange. Task can ask for a tiwe out Ffacility wunder
abrnovrmal conditions and or define an exception handlev., Also the
FROX  defines a duwmmy exchange For task wait operations which is
almost a wmust in. an evert drivern systew.

I
i o~ ) REQUEST"

REQUEST (EXCHAMGE_LINK_DESCRIFBTIR) &

This procedure asks Ffor

a  message alt bhe designated \

exchange. User can define tiwe out and or exception handler for \

abrormal conditiors , as in the BEND case.

4o~ ) DREFINE_ INTERRUPT

DEFINE _INTERRUPT (INTERRUPT _DESCRIPTOR)

This procedurs defines an interrupt at specified level arcl

DELE

iMINTERRU?T(INTERRUDT"DESCHIDTDR)

This procedure deletes the interrunt defined before .

~



104

1 - ) LINK_INTERRUPT
LINK_INTERRUPT CINTERRUPT _LINK_DESCRIPTOR)

This procedure links the task to designated interrvupt

descriptor for further references. -

vmo— ) WAIT _INTERRUPT

WRIT_INTERRUPT CINTERRUPT _LINK_ DESCRIBTOR)
Thie procedure puts the task into time wait cueuwe until the

designated interruapt ( or event ) ocoures.

o ) CREATE _INTERRUPT

This procedure selts the desigrated intevrupt  or event ).



ARPPENDIX R

SOURCE LISTINGS



I5-1T PL/M-80 V3.0 COMPILATION OF MODULE INITIALIZATION
BJECT MODULE PLACED IN START.OBJ
JMPILER INVOKED BY: PLMBO START PRINT(:LBD)

16
17

18

20
pdi

Z

$DEBUG WORKFILES(:F0Q:. tF0)
/**i***********************************i********}***/

pres FOX INIVIALIZATION MODULE */
/% ' i/
/% THIS WODULE INITIATES AL POINTERS AND ¥/
/¥ CREATES THE INITIAL AND IDLE TASKS #*/
/¥ #/
/¥ mODULE NAME + INITIALIZATION %/
/%% FILE  WAWE + START **/
/4% AUTHOR 1 SEDAT YILMAZER ¥/
/%% DATE Y 19,12, 1983 *h/
JE¥ ##/

SRR SRR R R
INITIALIZATION: ’
Do

$NOLIST
DECLARE Jump LITERALLY TOC3H!
DECLARE INT$VECTOR BYTE  EXTERNAL:

DECULARE (CREATESTASA. CRERTESEXCHRNGE. CREATESINTERRUPT.
LINASTASK. LINKSEXCHANGE.
RILL. RZSUME. GISPATCH.
SEND$EXCHANGE . WAT TSEXCHANGE.
EVENT. GIGNAL.
LEVELSON. LEVeLSOFF . ENDFINT.
ERROR ) ADDRESS EXTERNAL:

DECLARE INI$STACK(20) BYTE:
DECLARE INI$TASKSDESCRIPTOR TASKEDESCRIFTOR:
DECLARE IDLE$TASK$DESCRIPIOR  TRSKSDESCRIPTOR:

DECLARE INISG$TASK$DESCRIPTOR  STATICSTASKEDESCRIPTOR
DATAC, INISTROKSDESCRIPTOR. ’
PINITSR .
250.
1000H.
« INI$STRCK+20.
NIL):

JRekkannsnr FOX GATE CODE DEFINITIONS #iaihkdirdsin/

/*DECLARE  CREATE$TASK LITERALLY 7017,
CREATE $EXCHANGE LITERALLY 027,
CREATESINVERRUPT  LITERALLY 103",

LINKSTASK LITERALLY  "047.
LINKSEXCHANGE LITERALLY ’O?ﬂ
SUSPEND LITERALLY  T067.

RESUHE LITERRLLY 707,



*/

DISPATCH
SEND
WAIT
EVENT
BIGNAL

"LEVEL$ON

LEVELSOFF
ENDSINT

LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY
LITERALLY

TIMERSINTERRURT ¢ PROCEDURE EXTERNAL:

END:

/%

T08'.
09,
.
1t
12
T
2.

*/



pi

27
28
Vo]
30
31

—

[SSCN SV G VR S L]

$EJECT
JREEERR R R H O
Aok INITIALIZE THEZ QUEUE POINTERS AND CURRENT %/

/h¥ TRSK POINYER */
7 ¥% *x/
/%% PROCEDURE ¢ SWSINITIALIZATION **/
/#% FUNCTION & INITIALIZE VHE FOX POINTERS ¥/
/% CALL t CALL SWSINITIRLIZATION */
/%% HISTORY ¢ CREATED AT 12,25.1984 ¥4/
[ %/

FHHH P R R R R
SWSINITIALIZATION: PROCEDURE »

RO$HEAD=. [ DLESTASK$DESCRIPTOR:
SR$HEAD=NIL :
DESHEAD=NIL -
FLSHERD=NIL «
CP=RA$HEAD:
END-

Ll



pL/M-80 COMPILER

3

[ 2]

LA NI I NI 2]

$EJECT
FHHREHRHER RO

J#k
J%%
/%%
Jh%
[4%
/4%
/4%

INITIALIZE THE FOX HARDWARE

PROCEDURE @ HW$INITIALIZATION

FUNCTION : INITIALIZE THE FOX HARDNWARE
CALL tCALL KW INITIALIZATION
HISTORY ¢ CREATED AT 1Z.25.1984

**/
**/
%/
*/
3/
1%/
¥/

RO R
MW INITIALIZATION: PROCEDURE :

DECLARE TINMERSCONTROL$PORT

EnD:

LITERALLY  "ODFH'.

TIMERSCOUNTSPORT LITERALLY  7GODK.
PICSRODRESSSPORT LITERALLY  "ODEH'.
COuNT _ LITERALLY 7250007 .
INITIRLIZESTIMER LITERALLY  "O3BH':

DUTRUT (TIMCRSCONTROL$PORY) =INITIALIZESTIMER:
LTRUT (TIMERSCOUNT$PORT ) =L0W [COLNT) =

QUTPUT (TIMcR$COUNT $PORT ) =HIGH (COUNT) =

DUTRUT{PIC$ADDRESSSPART ) =10W (. INTSVECTOR) +16H:

GUTPUT (PICSRDDRESSSPORT ) =HIGH (. INTSVECTIR) «



fL/M-80 LUNMPILER

40
41

44

45
4b
47
4
49
30
Bl
32

[

[N SV R YR AU S S

$EJECT

JEREERRRERO OO R R
/¥ FOX ENTRY PROCEDURE *f
] %% tx/
/% PROCEDURE + FOX : e/
/#% FUNCTION s DISPATCH FOX SYSTEw CALL */
J¥+  [ALL i CALL FOX(FUNCTIONSID. PARRMETER) i/
/¢ RISTORY ¢ CREATED AT 25.12.1983 e/
/%¥ ]

/******************************************************l

FOX: PROCEDURE (GATESVALUE. PARAMETER) PUBLIC REENTRANT:
DECLARE GATESVALUE BYTE.
PARAMETER  ADDRESS:

DECLARE CRLL$ADR  ADDRESS:

DECLARE FUNCTION () POINTER DATA(.ERROR.
.CREATESTASK.
. CREATESEXCHANGE.
.CREATESINTERRUMT.
LINKETASK.
LINKSEXCHANGE.
LKILL.
. RESUKE.
. DISPATCH.
. SEND$EXCHANGE.
« WATTSEXCHANGE.
. EVENT.
. SIGNAL.
. ERROR.
L ERROR.
. ERROR.
. ERROR.
. ERROR.
. ERROR.
. ERROR.
LLEVELEON.
. LEVELSIFF.
LEND$INT

DECLARE MAX$GATESVALUE LITERALLY '22':

DISABLE:
IF  GATESVALUE (= MAX$GATESVALLE THEN
bG:
COLLSADR=FUNCT 10N (GATESVALLE) =
CALL  CALL$ADR{PRRAMETER) *

END:

ENABLE:
END:
SR O SRR
fax INTERRUAT SERVICE ROUTINES ¥/
/%% CURRENTLY 8 INTERRUPT LEVELS ARE HOAWDLED */
/#% ]

/*********************************************%**i***i*/

EVENTO: PROCEDURE  INTERRUPT Q:

PhGE



pL/¥~80 COmPILER

54
85

il
57
58

a9
&0
bl

62
63
b4

63
66
&7

bl
69

. NE N N b (RN SR L SR N B e o b

L8

J N0

CALL  FOX(12.00:
END:

EVENT1: PROCEDURE  INTERRUPT i:

CALL  FOX(12.1) -
enp:

EVENTZ: PROCEDURE  INTERRUPT 2:

CALL  FOX(12.2):
END:

EVENT3: PROCEDURE  INTERRUPT 3:

CALL  FOX(12.3)-
END:

EVENT4: PROCEDURE  INTERRURT 4:

CALL  FOX{12.8):
END+

EVENTS: PROCEDURE  INTERRUPT 5e

CALL  FDXi12.9)+
END:

EVENTE: PROCEDURE  INTERRUAT 6

CALL  FDX(i12.8):
END:

EVENT7: PROCEDURE INTERRUPY 7:
CALL  TIMER$INTERRUPT:
END:

PRGE



pL/A—O LURHILER

78
79

80
81
g2
A3

83
8b
87
08
89
40
91

92
93

9%

-

[ AN ]

R RS RS ORT RA G Ead BOORRO R R

[ 42

$EJECT

/******************!****************ii****&***********&*/
/4% INITIALIZATION PROCEDURE AND #¥/
/%% IDLE TASK **
/¥ e/
/%% DPROCEDURE : SVART ¥/
/% FUNCTION ¢ INITIATE SOFTWARE AND HARDWARE e/
/4% CRLL 1 RN/A . #/
/%% HISTORY & CREATED 12.29.1984 /
J#k ¥/

FHHEER RO RO R
START: PROCEDURE  PUBLIC:

DECLARE I$TRGK$LINK$DESCRIFTOR TRSW$LINK$DESCRIPIOR:
DECLARE STARTSJUMP BYTE AT(1003)

DISRBLE:

CRLL  SWSINITIALIZATION: /# IDLE TASK IS INITIATED #/

CALL  HW$INITIALIZATION:
Ir STARTSJumP=JURP THEN
hitH
CALL  FOX(CRERTE$TAGA.. INI$GHTRSKSDESCRIPTOR) »
END:
ENABLE:

CALL  MDVEL (" INITSK').. [$TASKSLINKSDESCRIPTOR, NANE, 6) ¢

CALL  FUX(LINKSTASK. . [$TASKSLINKSDESCRIATOR) «
CALL FOX (RESUME. . T$TASKSLINKSDESCRIPTOR) «
D0 WHILE 1i-
/% IDLE TRSK #/
ExD:
ExD:

JERREERREREREEEE END OF MODULE #emidesimbibtitttits/

END:

MODULE INFORWATION:

CODE AREA SIZE = 0183 387D
VARIABLE ARER SIIE = Q0RBH 107D
MAXIMUM STACK SIZE = 000FH 13D
d01 LINES RERD

0 PROGRAM ERROR(S)

END OF PL/M-80 COMPILATION

PAGE



pL/#-80 COMPILER

1815-11 PL/K-80 V3.0 COMPILATION OF MODULE USERINTERFACE
N0 OBJECT WODULE REGUESTED
COMPILER INVOKED By:

PLMB0 USER PRINT(:LP:) NOOBJECT

$WORKF ILEG(:FO:_1F0t) DEBUG :
/**************************ii********}*********i******l

[#%
/%
fHx
/4%
/%%
/¥%
[&#
/#%
/*¥

THIS WODULE DEFINES ALL USER INTERFACE GOF FOX

WASTER THERIS CODE SECTION

MODULE NAWE ¢ USER$ INTERFACE
FILE  WAME @ USER

RUTHOR
DATE

¢ BEDRT YILMAIER
{5.29.1983

**
*
**
**
*¥
**
%
¥
¥

B HHRHOEAEEHHHREEHEEEEHEOH R R O

i USER$ INTERFRCE: DO:
EROLIST

PRGE



pL/M-80 COMPILER

37

98

H
B0
61
b2
63
b4

b6

67

68
69
0
)

f a3

[N L S SUNE e B R N I ]

[CRE C

$EJECT
JHHHEHH O R OB/

/%
/%
/%
/%
/%
¥

CREATE A TASK DESCRIPTOR IN SYSTEM LINK

PROCEDURE + CREATE$TASK

FUNCTION ¢ INITATE THSK DESCRIPTOR AND INSERT SYSTEM

CALL  CNEATESTASK(5$T$D)
RISTORY @ CREATED AT 06.11.1983

*/
*/
*/
¥/
%/
*/

FHRRERER RO RO O RO R R e/

CREATESTASK: PROCEDURE (S$T$D) BUBLIC ¢

DECLARE S$T4D  PDINTER.

END:

S$TASK BAGED S$T$D STATIC$TRSKSDESCRIPTOR.
T4D POINTER.
TASK  BASED  T¢D TASKSDESCRIPTOR:

T¢D=6$TASK. L®

CALL  WOVE(E. . SSTASK.NAME(0) . . TRGK. NARE (0)) -

TASK. P=54$TASK, P

TRSK. SP=5$TASK, 50+

TASK. EH=5$TASK, EX:
TASK. L. TASK. D=NIL:

TASK. 5T=1DLE:

TAGK, C=01

RAM (TRSK, 5P-9)=L0W (. S$TASK, 2C) »
RAM{TASK. 5P-10)=HIGH{. S$TASK, AC) *
CRLL  INSERTSSYSTEMSLINK(T$D)
CALL  INSERT$QUELE (T$D. SRSHEAD) :

PAGE



L/M-80 COMPILER

72

73

%
75
6
i
78
PE|
B0
b1
Bz

[ N SV G VS e

R RS

$EJECT

J AR RO
L CREATE EXCHANGE IN SYTEM LINK ¥/
/* +/
/%  DROCEDURE & CREATESEXCHANGE ¥/
/%  FUNCTION : INTRODUCE AN EXCHANGE INTO SYSTEM #/
/+ CRLL ¢ CREATESEXCHANGE (S$ESD) - */
/%  HIGTORY @ CREATED AT 06.11.1983 &/

SRR R O R RO
CREATESEXCHANGE: PROCEDURE (S$ESD) PUBLIC :

DECLARE S$E40  POINTER.
S$EXCHANGE  BAGED  S$E$D  STATICSEXCHANGESDESCRIPTUR.
£$D PODINTER.
EXCAANGE ~ BRSED  E%D EXCHANGESDESCRIPTOR:

E$0=54EXCHANGE. L:
CALL mOVE (6. . S$EXCHANGE. NRME{0). . EXCHANGE. NRRE L0} )
EXCHANGE ., LNG=5%£ XCHANGE. LNG:
EXCHANGE, 52=54EXCHANGE. 57 ¢
EYCHANGE . BSZ=F XCHANGE. SZ¥EXCHANGE. LiNG:
EXCHANGE, EH=NIL:
EXCHANGE. MF. EXCHANGE, mB=0:
CALL  INSERTSSYSTEMSLINA(ESD) ¢
£ND:

PRGE



st OV LURFLLER

83
B4

83
B6
a7
88
83
90
91
92
93

oy

L]

PO RS B ORI RE R RS R R

$EJECT

/ *H—*************I**************HHHH*H*H FREREARES
/¥ CRERTE INTERRURT SERVILCE ¥/
/%+ PROCEDURE & CRERTESINTERRUPT rf
Je FUNCTION ¢ INTRODUCE AN INTERRUPT SERVICE #
J#% INDUTS & INTERAUPT DESCRIFTOR POINTER */
F DUTRUTS @ NONE *%/
/% CRLL  USER TRSK */
J#% HISTGRY  + CREATED AT 11.12.1983 ¥/
[**H-*****************H******H-******H**********i**l

CREATESINTERAUPT: PROCEDURE (5$1$D$P} PUBLIC:

DECLARE

G$14D$P PTR.

SbI$D  BASED  GH1$D$P STATIC$INTERRUPTSDESCRIPTOR.

I$Dsp PR
I$D BASED  I$D4P  INTERRUATSDEGCRIPTUR:

1$D$P=551¢D. L+

CALL MOVE(&..5%14D. NAME(0). I$D. NANE 10))
1§D, T=6¢180. T2

18D, F=ENPTY

IsD LVL=5%14D. LVL:

14D, EH=5$ 140, €h:
INTERRUPTSVECTOR{I$D. LVL) =T ¥D$R:

[ALL INSERTHSYSTEMSLINK(I$D$P)



PL/N-80 COMPILER

9%

93

9%
97
%
99
100
101
102
103
104
105
ik
108

[

[SCRTCRR SUSS SR RPNy F S JVIE FU S S

$EJECT

F RO R O R O
/% LINK TASK OR EXCHANGE TO THE CALLING TASK %/
/* #/
/%  PROCEDURE : LINK$SYSTEM ' %/
/% FUNCTION ¢ LINK TASK OR EXCHANGE TO CALLER +/
/% CALL v LINKESYSTEM(LSR) « x/
/% HISTORY ¢ CREATED AT 0h.1i. 1963 ¥/
/¢ NOTICE ¢ IF THE DESIGNATED ENTRY IS NOT IN THE */
/% SYSTEM THEN THE EXCEPTION HANDLER OF THE  #/
/% TASK WItL BE EXECUTED #/

P T R e s sy

LINK$GYSTEM: PROCEDURE (L$P) PUBLIC -

DECLARE L$p POINTER . /% LINK POINTER #/
LINK BASED  L$P DESCRIPTOR. /% LINK DESCRIPTOR #/
50 FOINTER. /¥ GYETEM LINK POINTER */
SsL BASED  5sP DEGCRIPTOR. /% SYSTEM LINK DESCRIFTOR #/
TASK BRSED  CeP TRSK$DESCRIATOR:

85P=FL$KEAD:

LINK. L=NIL: /# INITIALIZE FOR NO SUCCESS #/

DO WHILE S$P O WNIL:
1F COWPARE (. S%L. NAME (0} . ,LINK.NAME(0) .6) THEN
Da .
LINK. L=540-
S$h=nIL:
END:
ELBE  5%P=0%L.5L:
end:
IF (LINK.L=NIL) AND (TASK.EHONIL) THEN CALL TRSK. Er:
END:

PAGE



PL/ AoV LUMHILER

109
110

111
112
113
114

[yy

[N

[N R S e

$EJECT

JHEHHREEHE R HH R R HHOHE R R
/% : */
/% *f
/%  PROCEDURE : KILL ¥/
/% FUNCTION ¢ KILL [SUSPENDI DESIGNATED TASK */
/+  CALL ¢ CALL KILL(TsLsD) : */
/% HISTORY = CREATED AT 06.0S. 1983 */

SRR RO R RO/
KILLs PROCEDURE (T$L$D) PUBLIC : '
DECLARE TeL$D POINTER . ) :

TASKSLINK BASED T$L$D TRSKSLINKSDESCRIPTUR:

CALL  REMDVESREADY$OUEUE (TRSKSLINK.L) ¢
CALL  INGERT$QUELE (. SR$HEAD. TRASKSLINK. L)
CALL  DISPATCH:

END:

PRGE

f



PEYRR YAT AR VI ¥\ | o § W ¢ 1 1

17
118
119
120

R SR S

$EJECT

PR 2 R Y Y

i*

/%

/% PROCEDURE : RESUNE

/%  FUNCTION & RESGWE A SUSPENDED TRSK
* CRL + CALL RESUME(T$L$D)

/¢ RISTORY ¢« CREATED AT 0h.05. 1963

*/
*#/
*/
*/
*f
*/

J R RO R R Rk R

REBUME: PROCEDURE (T$L$D) PUBLIC -

DECLARE T$L$D PDINTER.

TASK$LINK BASED THL$D TRERSLINX$DESCRIPTOR:

CALL - REMOVESOQUEUE(. SUSHEAD. TREKSLINK. L)

CALL  INSERTSRERDVSQUELE (TASKSLINK.L):
CALL  DISPATCH:
EnD:

PRGE

7



mov LumriLE

™

[ R & o

I

i

Ef CF B3 e

L
<

3 i

FIRRN RN SR SUNY JSQN SV RN SR SU RN SURE SCRN SU

2

o

$EJECT

R O SRR R4
/4% INTERRUPT FLAG WAIT i/
f#% i/
/4% PROCEDURE + EVENT #/
/#% FUNCTIDN ¢ WRIT FOR AN INTERRURT OR EVENT  *#/
/4% INPUTS : INTERRUPT LINK DESCRIPTOR ¥/
Je% QUTRUTS 3 BONE %/
/% CALL : USER TASKS . ¥/
Jex AISTDRY ¢ CRERTED AT 11.12.1983 ¥/
e NOTICE ¢ %/

JERRREEREHEHEO R RO R R
EVENT: PROCEDURE (LEVEL) PUBLIC REENTRANT:

DECLARE LEVEL  BYTE. /% PRINTER TD INTERRUPT LINK DESCRIPTOR #/
IsD$0  PTR.
1%D BASED  I$0sP  INTERRUNTSDESCRIPTOR:

I$D$P=INTERRUBTSVECTOR(LEVEL) »
IF I$D.F = EMPTY THEN
Da:
140, F=FlLL:
10, TASK=C$R:
DIGABLE:
CALL REMOVE$READYSGUEUE (CsP) -
CALL INGERT$RUEUEC (. GR$HEAD. CsP) =
enpd:
ELSE DQ:
IF 1$D.F=FREE THEN 1%0.F=EmPTY:
ELSE IF I$D.EM O NIL THEN CALL 1%D.EH:
END:
CALL  DISAATCR:
END:



ju-80 COMPILER

40
141
142

143

144
145
146
147
148
149
150
151
152
153

136

161

L B B B L Bt U P RDRD b

OIS

ot

$EJECT

/************************§***********************i***/
/% SIGNAL EVENT i/
/#% PROCEDURE = SIGNAL , ¥/
/4% FUNCTION ¢ RELEASE ANY TASK WAITING FOR THE  ##/
E2 EVENT LEVEL SPECIFIED. OR ACTIVE 4/
AL THE INTERRUPT SERVICE ROUTINE i/
Fe% INGUTS ¢ EVENT LEVEL ¥/
/¢ QUTRUTR 5 NONE #/
/% HIGTORY ¢ CREATED 11.12.1983 ¥t/
e NOTICE ¢ ‘ : 5/

SRR R OO R R/

SIGNAL: PROCEDURE (LEVEL) PUBLIC:
DECLARE LzVEL  BYTE:
DECLARE I$D$P  PTR. .
I$0 BASED  IsD$F-  INTERRUPTSDESCRIPTOR:
DECLARE TEMP  PTR:

{$0$0=INTERRUPTSVECTOR (LEVEL) /¥ GET INTERRUPT DESCRIPTUR ADDRESS #/
IF 1%D.F = FULL THEN
po:
1$D.F= EnoTY:
IF I$D.T = EX THEN
0o
CALL  REMOVESQUELE (. SB$READ_1$D. TRASK)
CALL  INSERT$READY$AUZUE (1$D. TABK) +
END:
ELSE  IF I$D.GRV () NIL THEN CALL I$D.SRv:
END-
ELSE IF I$D.F= EmATY THEN I$D.F=FREE:
ELSE  IF I$D.EH ) Wil THEN CALL I$D.ER:
CALL  DISPATCH:
END:

PRGE



v-80 LUMPILER

$a

[T oM

$EJECT

FEHHEEE R ORI RO RO R R R R
/%% GET HEAD OF ANY EXCHANGE e/
14¥ ’ **/
/% PROCEDURE + GETSENCHANGESHEAD , o/
Je% FUNCTION s GETV HERD OF ONY EXCHANGE *t/
/a5 CRLL ¢ CALL GET$EXCHANDESHEADAESD. WHERE) */
J#%  HISTORY ¢ CREATED AT Q6. 11,1983 **/
[#% ¥/

FHHHEHEE RO HOH RO R R

BET$EXCHANGESHEAD: PROCEDURE (E$D. WHERE) PUBLIC:
DECLARE {E$D. WAERE) POINTER .
DD BASED  WeERE POINTER.
1D BASED E$D DESCRIFTOR:
DMD=1%D. L2
END:

PABE 10



PL/M-80 LOMPILER

166

168
169
17
i72
{74
175
176
7
178
79
180
181
183

LS W]

LS S A5 Y YR N S SRR N [l SO S

)

$eJdelT

/*********H!-****H******%**H*H**H******i****************i/
/% AUT MESSARE INTD EXCHANGE BUFFER */
/% t/
7+ DROCEDURE « AUTSEXCHANGE $MESRARE */
/% FUNCTION ¢ PUT MESSAGE INTO EXCHANBE BUFkER 7
/% CALL PUT$hXCHQmuE$mchRGE(E$L$D)- */
M HISTORY. @ CREATED AT 06.05. 1983 +/

/***************************i%****i*********4*******!********[

PUTSEXCHANGE SMESSAGE « PROCEDURE (E$L$D) PUBLIC -

DECLARE (t$L$D A4POINTER TO EXCHANGE LINK DESCRID
£4D. /¥POINTER TO EXCHANGE DESCRIFTOR #
D$D /% DUMRY TRSK DESCRISTOR #/
) POINTER.
E$LINK  BASED EsL¢D EXCHANGE$LINKSDESTRIDTOR.
E EBRSED E$D  EXCHANGESDESCR PTG

E$D=E$LINK, L+

E.C=E. 41

Ir ELLNBOO0 THEN  CALL MOVE (E.LNG..E. BUF(E BF).ESLINK, M) o
16 (B WF=(E.NF+E.L) ) =5, BB THEN E.8F

IF CHECK$EXCHANGE (E5D) IS EmdTY THE]

CALL bET$EXEHmeE$nkQD(E$D iANE
CALL ¥ JCM{)VL%DULUE( v el Dfib)'
CALL RLVD\(C'{vDEuQVﬁQUCUC (DgD) -
CALL INSERTSREADYSTUEUE( (D$D)
EXD:
CLSE IF E.C=E.51  THEN  CALL SETSEXCHANGE (£3D. FULL) -
ELSE CALL SETSEXCHANGE (£4D, FREE) »

EXND:

OR#/



L/n-80 COmPILER

183

186

187
168
189
191
153
194
153
1%
197
198
15
200
&z

03

o

Tl Eed Lol B B3 PO PO RS B

[ S SN Ry %

[a84]

$EJECT
ERREEEREO RO R RO R 1/

/4
/%
/%
/%
/*
/¥

GET MESSAGE FROM EXCHANGE BUFFER

PROCEDURE @ GETS$EXCHANGE$MESSAGE

FUNCTION * PUT SESSAGE INTD EXCHANGE BUFFER
CALL ¢ GETSEXCHANGESMESSAGE (E5L3D) «
RISTORY ¢ CRCATED AT OR. 11,1983

*/
3/
¥/
#/
*/
+/

SRR OO ORI RO
BEYSEXCHANGESMEGSAGE: PROCEDURE(E$LSD) PUBLIC -

DzCLARE (E$L$D.

thD:

DsD /% DUMY TRSK DESCRIPTOR
) POINTER.

E$LING 8 ED E$L$D EXCRANGESLINASDESCRIPTOR.
E 52D £$D  EXCHANGESDESCAIPTOR:

$D

)

m
L e 1

FLINALLY
LL-1e

i F'l

£

{E, sle=(E, AE+E, L)) =E, BRI THen E. mb=0:

CHECK$EXCHANGE (E$DY 1S FULL ThEN

i ] ﬂl
“ry vy

=]
E:D

CHLL BETSEXCHANGESHEAD (E$D. . DsD) »
CALL REMOVESEUEDE (L E. L. DsD) -
CALL REmOVESDELAYSALELS (DsD) :
CALL INSERTSREADYSUUEUE (DD)
END:
ELSE IF F.0=0  THEN CALL SET$CXCHANGE (E$D.EMPTY):
ELSE CRLL SET$EXCHANGE(E$D.FREE) :

F%POINTER TO EXCHANBE LINK DESCRIPTOR/
E$D. J*POINTER 7O EXCHANGE DES NIPTDR ¥/

E.LNG €} O THEN CALL MOVE(E.L.ESLINK. M. .E BUF(E.MB)):

PACE 1.



i/m-80 COMPILER

204

il
21
il
2
2

a3
i
5
&
a
&

a4

<4

&
&
&
35
&

ris

oL O e U oo 8 Ly

[N S =SS U )

[N 98]

P N -

£ £ B EX oy

$TJECT

/**i********************************%******f******}**/

V)
Vii}
[#%
/%%
/%%
JEY S

EXCHANGE BEND  SERVICE

PROCEDURE ¢+ SEND$GET$EXCHANGE

FUNCTION  SERVICE TD SEND & WAIT REQUESTS
CALL * CALL SEND$GETSEXCHANGE (E.56.F)
HISTORY' & CREATED AT 05,31, 1983

¥/
¥/
¥*/
£37
¥4/
/]

/******l**********#***i*&*****l**I****l***i****l*i*fi/

SENDSGETSEXCHANGE: PROCEDURE (ESLSD. SENDSGET. EMPTYSFULL) PUBLIC -

DECLARE ESLED  POINVER .

---------- WAIT TIFE-OUT OR SEND

EXCHANGESLINK BASED ESL$D EXCHANGESLINKSDESCRIPTOR.

£D PDINTER.
EXCHANGE
T$D POINTER .

I$T BASED T$D TASK$DESCRIPTOR.
SENDSBET POINTER.

EMPTYSFULL BYTE:

ESD=CXCHANGESL INK. L
b0 CAGE EXCHANGESLINK.K AND 3 -

............. WALT UNTIL SEND

BASED E$D EXCHANGE$DESCRIPTOR.

IF CHECK$EXCHANGE (E9D) IS EMPTYSFULL THEN

0o:
CALL REMOVESREADYSQUELE (C98)

CRLL INSERTSHUELE (. EXCHANGE. L. C$p) «

CALL DISPATCH:
END
CALL SENDSGET(ESL$D):
END

*

---------- DO ADT WAIT IF NOT GERD ~--mmmmmmmmmmmt/

AF CHECKS$EXCRANGE(ESD) 15 ExPTYSFULL THEN EXCHANGESLINK. S=FAIL:

ELSE DD :
CALL SEND$GET(ESLSD) -
EXCAANGE$LINK. S=GUCCESS:
END: '

IF CHRECKSEXCHANGE(ESD) 15 EMPTY$FULL THEN
oo -
CALL RESOVESREADYSRUELE (CSP) 2
~ CALL INSERT$HQUELE (. EXCHANGE, L. Csh) :
CALL INSERTSDELAY$OUELE (CeP) -
CALL DISPATCH:
IF CHECKSEXCHANGE (E$D) IS EMPTY$rULL
THEN DO-

IF EXCHANGESLINK.EH ) RIL TdtN CALL EXCHANGESLINK, Ex-

£nD:

ELSE CALL SENDSGET(E$LSD):
END:
ELSE CALL SENDSGET(EsL3D):

PHGE

T

19



pL/M~80 COMPILER

27

29

240
241

2462

23

[2]

[ #)

o o o

{280

[ RESERVED ACTION */
END:

END:

JEEREEE RO R
/% SEND EXCHANGE MESSAGE ¥/
/% */
/%  PROCEDUAE + SENDSEXCHANGE +/
/% FUNCTION @ SEND EXCGANGE MESSARE TO  EXCHANGE */
/% CALL + CALL SENDSEXCHANGE (E$LS$D) » +/
/% HISTORY @ CREATED AT 05,06, 1983 */

FREEHHRH R A RO AR RO RO
SEND$EXCHANGE: PRUCEDURE (c3LsD) PUBLIC:
DECLARE E$LsD POINTER:

DAL GENDSBETSEXCHANGE (ESLSD. . PUT$EXCHANGESMESSABE  FULL)
END:

PAGE



pig OV LUAHLLEKN

244
243

246
47

P

ST N

$EJECT
JHHEEHEERROHHH B O EH O R R R R
/* WAIT EXCHANGE MESSAGE

ik

/% DROCEDURE  WAIT$EXCHANGE v

/% FUNCTION ¢ GET EXCGANGE WESSRGE FROM EXCHANGE
/¥ CALL ¢+ CALL WRITSENCHANGE (ESLED):

/¥ HISTORY & CREATED AT 05.06.1983

¥/
+/
*f
.74
*/
+/

PR R sy st

WAITSEXCHANGE: PROCEDURE (E$L$D) BUBLIC -
DECLARE E$L$D ROINTER -

CALL  SENDSGET$EXCHANGE (E$LSD. . GETSEXCAANGE$MESSAGE. EMPTY) ¢

END

PRGE



L/a-B0 COMPILER

48
243
230

25t

[

QSIS

$EJECT

/%%%%::%:X::::::::%:::%K%:::H%:::::::%&:ﬁ2:*:£:§5::==§§%%%/
/#% REMDVE INTERRUPT WASK OF A GIVEN LEVEL +/
[¥¥ ¥/
/%% PROCEDURE + LEVELSON e/
/%% FUNCTION @ REWOVE INTERRUPT MASK OF 8 LEVEL ¥/
/# DAL ¢ CALL FOX(LEVELSON. LEVEL) ¥+/
/4 RISTORY @ CREATED 12.25.1983 +/
/%% i/

/*****************&*******************i**ﬂ***i**********i/

LEVELSON: PROCEDURE(LEVEL) PUBLIC REENTRANT:
DECLARE LEVEL  BYTE:

DUTPUT (WASK$RORT) =INPUT (KASKSPORT) AND NOT BITS{LEVEL) :
END»



L/M-80 COmPILER PAGE

]

$EJECT

/****************************************i***i*******i***I
/4% WASK INTERRUDTS OF A GIVEN LEVEL *¥/
/%% %/
/¥ PROCEDURE ¢ LEVELSOFF : ##/
/% FUNCTION ¢ RASK INTERRUPTS UF R GIVEN LEVEL %/
/4% CALL ¢ CALL FOX(LEVELSOFF. LEVEL) #*/
/4% HISTORY & CREATED AT 12,75, 1963 ¥t/
/4% ¥/

/*******i*******************l****************************/

21 CEVEL$OFF: PROCEDURE(LEVEL) PUBLIC REENTRANT: .
x 2 DECLARE LEVEL  BYIE:
VT OUTPUT (RASKSAORT) =INBUT (HASKSPORT) OR BITS{LEVEL) -

ety - -
255 2 END:



a./m-80 COmPILER

26
257
28

(RN

$EJECT
SR O R R R R R

I IGSUE END OF INTERRUPT TO INTERRUPT DECODER  +#/

/%% ¥%/
J#%  DROCEDURE @ ENDSINT , ¥/
/4 FUNCTION ¢ ISSUE AND OF INTERRUPT TO. RIC (82391 #+/
/4% QAL + CALL FOX(END$INT.NIL) ¥/
fex RISTORY @ CREATED AT 12.29.1983 i/
/¥ *%/

FERERRRRHEHHEHOHEHEREEHHHEHEDERHEHOH S HHRHOH R/

END$INT: PROCEDURE PUBLIC:
OUTPUT {PICSCONTROLSPORT) =€01
END*

PRGE

18



L

239

260
6!

Y.V
63
264
265
it
67
it
&3
0
m
a2
a3
274

80 ComPICER

$EJECT

T ST T T PR PO
/% TIMER INTERRUAY SERVICE ¥/
[#% i/
/%% PROCEDURE + TIMER$INTERRUPT : ¥/
/4% FUNCTION @ SERVICE TO. TIMER INTERRUDTS £/
/¥ CALL ¢ VIR TIMER INTERRUPY ¥/
/% RISTORY @ CREATED AT 05. 29,1983 4/

/*******************%******H**i*********************/

—

TIMERSINTERRUPT : PROCEDURE INTERRUDT 7 -

DECLARE DST BASED DGSHEAD TASK$DESCRIPTOR:
DECLARE T$D POINTER:

[ RS )

IF DOSHEAD ) NIL THEN
g
D#7. C=D4T.C-1:
DO WHILE (D$T.C = 0) AND (DOSHEAD O NiL ):
CALL REMOVESGUELE (D$T. £. DOSHEAD) «
CALL INSERTSRCADY$RUEUE (DOSHEAD) «
CALL REROVESDELAYSGUEUE (DR$HERD) »
END»
END
(R REMDVESREADY$OUELS (L3 « FHREMOVE CURRENT TASK/
CALL  INSERTSREADYSOUEUE (Twp) » /#REINGSERT #/
CALL  DISPATCH:
END:

[N S SO S PN I S N S S R U SCI

/**l*******%*******************i*%***************%**i***i******/
Fexaranieenrans END OF USER mODULE FEHE R RO/
/********i***********************i***%******************&******/

i END:

MLE INFORWATIONS

LODE AREA SIZE = 0850k 2128D
VARIRBLE AREA S1ZE = 0048H 72D
YAKIRUR STACK SIZE = 000CH 120
820 LINES READ

0 PROGRAM ERROR(S)

W OF pL/v-go COMPILATION



40 COMPILER

-1 PL/M-80 V3,0 COMPILATION OF WODULE OBJECTDEFINITIONS
RJECT MODULE REBUESTED

ILER INVOKED BY: PLmBO OBJECT WORKFILES(:FO:. tFO3) PRINT(:LP:) NOOBJECT

SRR RO HOEOEEOOHHEHOH O

/# MASTER THESIS CODE SECTION Lid
[k #¥
/%  THIS WODULE DEFINES ALL OF THE FOX OBJECTS *k
fh4 **
/% mODULE NAME @ DBJECT$DEFINITIONS L
/¢ FILE  NAWE @ OBJECT L
7% AUTHOR ¢t SEDAYT YILMAZER L
/%% DATE ! 5,12.1985 L
/%% **

JEH RO R R
OBJECTSDEFINITIONS:

pu -
$NOLIST

1 DECLARE BITS(#) BYTE PUBLIC DRTA{OIH.OZH. 04H. OBH. 1OH. 20H. 40H. BOH) :

PAGE



60 COMPILER

L]

[ S )

[

$EJECT

/******************i*******{*&****i****************i**/
[¥% DISPATCH CPU BETWEEN TASKS ¥/
/x% *€/
/#% PROCEDURE = DISPATDH **/
/4% FUNCTION + GIVE THE COU T THE HIGHEST PRIORITYw»/
/¥ READY TASK. WHICH IS BY DEFINITION  #/
/¥¥ THE HEAD OF READY GUEUE ¥t/
7% CALL ¢ DISPATCH /
/#% HIGTORY % 09, 20,1983 e/
/&% *#/

/**I***************i**************l**************l****/

DISPATCH: PROCEDURE PUBLIC

DECLARE CURRENTSTASK  BRSED C¥9 TASK$DESCRIPTOR.
NEWSTASK  BASED RASHEAD  TASKSDESCRIPTOR:
CURRENTS$TASK. BP=5TACK$ATR:

STACK$PTR=NCW$TASK, P+
END:

PAGE

2



v

fLN-B0 CUMPILER

e

[y

23

| SNCHE SR SRS S I O]

$CJELT
SRR RO

/¥
/%
i#
/%
/*
/%
/%

CUMPARE TWD STRINGS

PROCEDURE  : COMPARE

FUNCTION ¢ COMPARE TWO STRINGS
Chl : COMPARE (. 51..52. LENGTH)
ALSTORY ¢ CREATED AT 0S. 14. 1983

*/
¥/
*/
¥/
*/
*/
*/

/***********l’*******************i*******i********i*****[

COMPARE: PROCEDURE (SPTRI. SPTRZ.LNGTH) BOOLEAN PUBLIC REENTRANT «

DECLARE (SPTRI.SPTRZ)  POINTER .

LNGTH BYTE .
I BYTE |

(51 BASED SPTRI) (1) BYTE .
{52 BASED SPTRZ2)L1) BYTE -

DO =0 70 LNGTH-1

Ir SiI) O S2{I) THEN RETURN FALSE -
END ¢
RETURN TRUE




N80 COMPILER

|

.

%
&
b

[ 2%

[N SRR SN S

$EJECT

- /***H****i**************H****Hft**********H**HH**/
/% SET PROCESS 5TATUS */
/# ¥/
/% DROCEDURE ¢ SET$STATUS : */
/% FUNCTION ¢ SET THE STATUS OF THE CURRENT TASK %/
/% 10 InuﬁmemGETATUS */
/% [CALL v SET$STATUS(STATUS) */
/% RHISTORY ; EQT:D AT 05.14.1963 */
/¥ ¥/

/****i*********************************************i*i*[
SET$GTRTUS: PROCEDURE{TSD.STAT) BUBLIC REENTRANT:

DECLARE (STATE. STAT) BYTE.
T$D POINTER .
19T BASED T$D TASKSDESCRIPTOR -

STRTE=STAT AND 1: -

STAT=BITS(SHR(STAT. 1))

IF STATE  THEN 1$T.5T=I$7.5T OR STAT -
ELSE I$T.ST=I$T.ST AND (NOT STAT) :

PRGE

&



n-80 COMPILER

f

Pt R

P P B

$EJECT

JEERERRFFEEFRREE RN DR R ER PR RN EARERF RN/
i+ CHECK PROCESSOR STATLS */
/¥ 7
/% PROCEDURE : CHECK$STATLS %/
/% FUNCTION ¢ CHECK PROCESS STATULS OF THE CURRENT #/
/* TASK */
/% CALL ! CHECKSSTRTUS(STATUR) ¥/
/%  HISTORY : CREATED AT 05.14.13983 */
/¥ */

F RO RO R
CHECR$STATUS: PROCEDURE (T$A.STAT) BYTE PUBLIC REENTRANT:

DECLARE (STRTE.STAYT) BYTE .
T$9 PRINTER.
1$7T BASED T$P TASK$DESCRIAIOR :

STATe=STAT AND 1 ¢
STAT={BITS(SHA(STAT. 13} AND I$T.5TY 00!
IF STRIE THEN RETURN STAT:
ELBE RETURN NDT STAT:
END :



/080 COMPILER

if

49

= o
= e

e en
o~

b

[N

[ AR et

$JECT

FHEHER R RO O F R/
/% SET EXCHANGE STATUS */
/¥ */
/% PROCEDURE & SET$EXCHANGE ' */
/% FUNCTION ¢ BET THE STATUS DF THE EXCHANGE */
/% 70 INCORMINGSTATUS . */
/* CRLL  SETSEXCAHANGE (E$D. TATUS) */
/% HIBTORY : CRERTED AT 05, 14.1983 */
/¥ #/

FERERER RO R
SET$cXCHANGE . PROCEDURE {E$2. STATUS) PUBLIC RCENTRANT:
DECLARE E$P PYR.

STATUS  BYTE:

EXCHANGE ~ BRGED  E$7 EXCHANGESDESCRIPTOR:

EXCHANGE. 5=5TATUS:

END:

DRERRE RO R OO R R R R R R R R/

/¥ CHECK £XCHANGE STATUS */
/¥ 174
/% PROCEDURE ¢ CHECK$EXCHANGE */
/% FUNCTION @ CHECK THE STRTUS OF THE EXCHANGE ¥/
/% CALL + THECK$EXCHANGE (E3R) *f
/% AISTORY ¢ CRERTED AT 05,14, 1983 #/
/% */

JEEE R R RO 8
CHECR$EXCHANGE : PROCEDURE (E$P) BYTE PUBLIC REENTRANT:
DECLARE E$P PTR.

 EXCHANGE ~ BASED  E$P EXCHANGC®DESCRIPTOR:

RETURN  EXCHANGE. 5:

PRGE

b



#-80 COMPILER

[

RaOba

o

[aSGR S8

$EJECT

/*********i***HH**HH***H&****H****H*H***H*}***/
/%% INSERT A DESCRIPROR INTG ANY OF THE QUEUES  #%/
/¥ 127
/#%  DROCEDURE : INSERTSQUELE : #x/
/¥ FUNCTION ¢ INSERT A DESCRIPTOR IN 7O A BUEUE  *w/
/¢ INPUTS & QUEUE HERDER AND THE DESCRIATOR ADR #%/
%% QUTRUTR ¢ DESCRIPTOR INSERTTED TO THE BUEUE  #+/
%6 PLm CALL & CALL INSENTSQUEUE(,QUEUESHEAD.D):  ##/

/% HIGTORY ¢ CREATED AT 11,06, 1983 ¥t/
Jé#x NOTICE ¢ CURARENTLY ONLY SUSPERD BUElE ¥/
fE¥ EXCHANGE BUEUE *#/
/%% ARE SUBPORTED *x/

JHEREERRH OO R O R
TWBERT$QUEUE: PROCEDURE (B8P I$P) PUBLIC REENTRANT:

DECLARE (D7 /% POINTER 7O QUEUE DESCRIPTOR #/

1$F /% POINTER TO INCOMMING DESCRIPTOR #/

} POINTER:

DECLARE Q¢D BASED  @$P DESCRIPTOR: /+ QUEUE DESCRIPTON +/
DECLARE 180 BASED  1$P DESCRIPTOR: /+ INCOWMInG DESCRIPTOR #/

CALL  SET$STATUS{ItM. SUSPENDED) :

18D, L=0%D. L :

OsD. L=1%0:

END INSERT$UUEUE:

PHGE

7



g

- Rin-80 CORPILER

$EJECT

/***********§******************************}******&i***l
/ex REMOVE A DESCRIPROR FROM ANY OF THE QUEUES %%/
/%% **/
/%% PROCEDURE : REMOVESQUELE ' ¥/
ek FUNCTION @ REMOVE A DESCRIPTOR FROM A GUEUE  ww/
/¥ IRPUTS ¢ QUEUE HEADER AND THE DESCRIPTOR ADR #%/
/e QUTBUTS ¢ DESCRIPTOR REMOVED 7O THE QUELE  ##/
/v Diw CALL s CALL REMOVESQUELE (. BUFUESHEAD. D) « ¥/

/4% HISTORY @ CREATED AT 11.06. 1963 4/
/% NOTICE & CURRENTLY ONLY READY DUELE. +/
/¥ SUSPEND QUELE. ¥ -
4% EXCHANGE QUELE. ¥/
[#¥ ARE SUPPORTED ¥4/
%%%HHK{.‘(XHHHHH%H:.‘(H:H::HXHH:{:H.H:"%%*/
62 1 REMOVESGUELE: PROCEDURE (B$P. 1$P) PUBLIC REENTRANT
83 2 DECLARE (3P, /% DIONTER TO GUELE DESCRIPTOR %/
19 /% POINTER TO INCOMMING DESCTRIPTOR #/

) POINTER:

B 2 DECLARE 6D BASED (6P DESCNIATOR: /& BUELE DESCRIATOR #/
bz DECLARE 1D BHSED 1$0 DESURIRTUR: /% INCOMRING DESCRIPIOR #/
b6 2 DO WHILE (D$PONIL) AND (@$D.L () 1$9) -

& 3 Q$P=0$D. L«

M3 END:

88z IF Q%P0 NIL THew

0oz b

no:z O¢D. L=1$D.L:

3 CALL SETSSTATUS(1$P. NDTSUSPENDED) -

AT END:+ .

2z END REMDVE$RUELE -




f#-80 COmPLLER

-
oA

T8

I
18

SN ]

[

$EJECT

JHRHEEHEHEEHH O R R R O
/4 INGERT INTO- SYBTEM LINK -owf
/4 */
/% PROCEDURE ¢ INSERTSSYSTEMSLINK */
J# FUNCTION ¢ INGERT INCOMMING TASK OR EXCAHANGE  /
/* DESCRIPTOR INTD THE SYSTEm LINK ¥/
/% ALl  INSERTSSYSTEMSL INK (. DESCRIPTOR) */
/% HISTORY ¢ CREATED AT 035, 14,1583 */
1 ¥/

£ R OO
INSERTSSYSTENSLINK: PROCEDURE(P)  PUBLIC REENTRANT :

DECLARE P POINTER . /% DERCRINTOR POINTER #/
I$D BASEL P DESCRIFTOR -

1$D. 5L=FL$HERD:
FL$HERD=P"

enD »

PAGE

E]



s
:
[
:
|
E
:
i,
i
%
:
!
i
E

80

8

2
B

14
N

B
87

X
X
!

%

[SSI FRNE < N K B SR L N

b

WL/M-BO COmPILER

$TJECT .

/****************H******l-******I*!***************ii***/
/% REMOVE FROM SYSTEM LINK 7
/¥ ¥/
/% PROCEDURE @ REMOVE$SYSTEMSLINK ' *f
/% FUNCTION @ REWOVE INCOMMING DESCRIPTOR ¥/
/¥ FROX THE SYSTEM LINK %/
/% CALL ¢ REROVESSYSTEMSLINK (. DESCRIPTOR) ¥/
/% RISTORY & CREATED AT 06, 14. 1383 */
/¥ #/
/%::::%ﬁﬁ%:%%ﬁ::%:#::::#::;::.:%i%:%::ﬁﬁu:’;n:%=:¥:%%%*/

REMOVESSYSTEM$L INK: PROCEDURE ( 1$P) PUBLIC REENTRANT:

DECLARE ($7.P) POINTER .
18D BASED 139 DESCALATOR |
Psh BASED P DESCRIPTOR -

IF FLSHERD = I$P THEN FL$HEAD=I$D,SL -
ELSE DO -
P=FL$HEAD
DO WHILE (P$D.SL O P ) AND (PED.SL O NIL ) os
P=P$h, 5L

END -
Ir PONIC THEN  P$D. SL=18D.SL:
END -

END -

FRGE

10



n-80 COMPILER

| 2%

[NCRE RN FERN PURS F* R S < S L B o

$EJECT

/************************i******************i&*********l
/% INSERT INTO READY QUELE */
23 , */
/# PROCEDURE ¢ INBERTSREADY$EUELE */
J% FUNCTION ¢ INSERT INCOmmING THRSK DESCRIPTOR #/
/¥ © INTO THE SYSTEm READY THSK QUELE &/
/¥ CALL + INSEATSREADYSCUELE (. TREK$DESCRIPTOR) +/
/% RKISTORY i CREATED AT 05, 141383 */
/¥ #/

R Ry e el

INSERT$READYSQUEUE: -PROCEDURE{T$P) PUBLIC REENTRANT:

DECLARE (T$R. J#INCOMMING TASA DESCRIPTOR POINTER#/
D$p. J#DueY TASK DESLRIPTOR LTEMPI POINTER #/
PeR /% PREVIOUS TASK POINTER #/
) PDINTER:

DECLARE 18T BASED T$A  TASK$DZSCRIGTOR .
[$7T BASED D$F  TASK$DESCRIFTOR .
P$T BASED P$? TARKSDESCRIPTOR:
IF CHECKSSTATUS (TSP NOTREADY) THEN
Lo
[$6. Pgp= RD$HEQD
DU Htht I$l (‘ D$|

/*STQRT AT THE BEGINING #/
F¥WHILE DUsKY P IS RIGHER #/

Ped=DspP:
DsP=D3$T.Le J%BET THE NEXT TASK #/
EnD:
I$T. L=F$T. L /% ADJUST FORFARD LiNg #/
PgT. L=T40:
CALL BETSSTATUS(TSP. READY)
D

IR

PAGE

i1



/80 COMPILER

E
]
:

|

L I e L I 2 B~ S S PR SN ro

[

$EJECT
/****&********§****************%*********&***********i*/
/% _ REMOVE FROM READY QUEUE */
/% #/
/% OROCEDURE REMOVESREADY$QUELE */
/% FLNCTION ¢ REWOVE INCOMMING TASK DESCRIPTOR ¥/
/% PROM THE SYSTEM READY TASK BUELE *f
/% CALL i OVESREADYSQUELE {, TRSKSDESCRIPTOR) #/
/% wISTORY & CREATED a7 05, 14,1983 */
/¥

*/
/**************H‘***i*************************i**H&***/

REMOVESREADYSAUEUE: PROCEDURE(T$P) PUBLIC -

DECLARE (T$P.  /#INCOWMING TASK DESCRIPTOR POINTER*/
D$p /¥DUNMY TRSK DESCRIPTOR (TEMPI#/
} PGINTER

DECLARE 18T BASED T$P TASK$DESCAIPTOR
D$T BASED D$P TASK$DESCRIPTOR «

IF CHECKSSTATUS (Y$P. READY) THEN
Do
0§ P=, ROSHEAD -
DO WHILE DR NIL AND D3T.L () Téps
- D$d=DeT.L:
END-
IF D8P O NIL THEN
IR
D$T. L=]8T.L:
CALL SETSSTATUS (T$P. NOTREADY) -
END:
EnND:
END REMOVESREADYSQUELE »

PRGE

12



LY L & & P Lef L O R PO

SR AL A SO SR S~ R O R A SN N

§i/n-80 COMPILER

$EJECT

/******************i***i********************************l
/* INSERT INTO DELAY QUELE */
/% */
/% PROCEDURE : INSERT$DELAYSQUEUE : ¥/
/% FUNCTION  : INSERT INCOMMING TASK DESCRIPTOR +/
/* INTO THE GYSTEM DELAYED TASK QUEUE  #/
A+ CRLL ¢ INSERTSDELAYSOUEUE (. TASKSDESCRIFTOR)  #/
/% HISTORY  : CREATED AT 05.15. 1983 */
/% 7

FHEEREEER R, Rk **i************H************!**** k)

INSERTSDELAYSQUEUEs PROCEDURE(TSD) PUBLIC P

DECLARE (T$D. /*INCOMNING TASK DESCRIFTOR #/
PsD. /PREVIOUS TASK DESCRIPTOR #/
NgD /¥NEXT TABK DESCRIPTOR #/
) PDINTER .

TOTAL  INTEBER .

I$T BASED T$D TASKSDESCRIPYOR .
PST BASED P$D TRSKSDESCRIPTOR .
N$T BASED N$D TASKSDESCRIPTOR .

IF CHECK$STATUS (T$0. NOTDELRYED) THEN
Do -
TOTAL=0:
NED. PED=DRFHEAD : -
DO WHILE (TOTAL ( I$7.C ) AND (N$D © NIL }:
TOTAL=TOTAL+N$T. C:
PED=NgD:
N$D=N$T.D:
END-
IF NED O NIL  THEN TOTAL=TOTAL-NST.C:
IF P$D = DEs$HEAD
TrEN DO:
I$7. D=DR$HEAD:
DE$HEAD=T$D:
END:
ELSE DO -
I31.D=P$7.D:
P57, D=I47.D:
EnD:
I$T.C=1$T,C-TOTAL
CALL SETSSTATUS{T$D. DELAYED) »
END: '
END INSERTSDELAY$QUELE -

PAGE 13



A~60 COMRILER

132
3
154

136
137
196
15
160
{61
182
163
1hd
165
187

169
i
n
0
3

i

$EJECT

J RO P
/* REMOVE FROX DELAY QUEUE +/
/* t/
/% PROCEDURE + REMOVESDELAVSRBUELE : x/
/% FUNCTION @ REMDVE INCOMMING TRSK DESCRIPTOR +/
/% FROM THE 5YSTEm DELAYED TRASK QUEUE  #/
/% CALL ! REMOVESDELAYSGUEUE (, TRSKSDESCRIPTOR)  #/
/% RISTORY & CREATED AT 05.15.1983 */
/% */

R HHHOHHR RO R
1 REMOVESDELAYSQUEUE: PROCEDURE(T$D) PUBLIC

2 DECLARE (T$D. /#INCOMMING TASK DESCRIPTOR #/
[ 1V J*PREVIBUS TRSK DESCRIPTOR */
} POINTER.
I$7 BASED 73D TASKSDESCRIPTOR .
- P$T BASED P$D TASK$DESCRIPTOR :

IF CHECK$STATUS{T$D. DELAYED) THEN
po:
If TeD=DEHEAD
THEN DO :
DRSHEAD=14T.D :
PsD=DOSHEAD :
PeT. C=p$T.C+I$T.L:
END »
ELSE DO+
P$D=NASHEARD :
DO WHILE (P$Y.D ( TeD) AND (7.0 O WNIL ):
PsD=P$T.D -
END:
IF P$D = NIL THEN RETURN -
P&T. D=1$T.D:
P§D=P47, D!
PeT, C=p$T. C4187.Cx

[ PRI O

EnD:
CALL SET$STATUS{TSD. NDT$DELRYED) «
END:
END REMOVESDELAY$GUELE:

PAREE FORE Y P N SN N S N (R R S 2 B R

FREEFER O OOEHEHHEHEHRR RO /

i END :

WiLE InFORMATION:

CODE AREA SIZE = 03384  1368D
VARTABLE AREA SIZE = 0020H 3z
WAXIMM SYACK SIZE = 0010H 16D
693 LINES READ

O PROGRAM ERROR(S)

%0F p/m-g0 CoMPILATION

PRbE 14



APRPENDIX C

SAMPLE APPLICATION




TR A L)

i
g

T W%II PL/K-80 V3.0 COMPILATION OF MODULE INITIALIZATION

BT MODULE PLACED IN :F13THESIS. OBJ
FIPILER INVOKED BY: P sFL:THESIS.EXP

i

| !
j 2

iz

[N S S

P

[

FRREHEERERRHEHEHHHR R R R R O R

[®¥ SYSTeEM INITIALIZATION
/i

/%% PROCEDURE + INITSK

/%% FUNCTION & INITIRLIZE THE SAMPL

/#¢ QUTHOR  * SEDAT YILWAZER

¥#%/
*#/
¥/
£ SYSTEM *+#/
**/

JHERRRH O HOOOEEHEHEOHDHR ORI e/

INITIALIZATION: DQ:

$NOLIST

FOX: PROCEDURE (GATESCODE. DESCRIPTOR$ADR) EXTERNAL:

DECLARE  DESCRIPTOR$ADR ADDRESS:
DECLARE  BATESCODE BYTE:
END:

DECLARE (DEBUBSTASKSDESCRIPTOR.
CISTASKSDESCRIPTORN.
CO%TASKSDESCRIPTOR

/% FUR DEBLGGER TASK #/
/# FOR CONSDLE INPUT THSK #/
/% FOR CONSOLE OUTPUT TASK #/

) TRSK$DESCRIATOR:

DECLARE C#P ADDRESS EXTERNAL:

DEBUG: PROCEDURE EXTERNAL:
EnD:

DECLARE DEBUGSSSTASKSDESCRIPTOR STATICSTASKSDESCRIPTOR

DATA(, DEBUGHTRSK$DESCRIMTOR,
TOEBUG .
10.
. DEBUG.
NIL

DECLARE CI$S$TASKSDESCRIPTOR
DRTAL. CISTASKSDESCRIPTUR.

/% PRINTER TO RCTUAL TASK DESCRIPTOR #/

/% NARE OF THE TASK */
/% DEBUGER TASK PRIGRITY x/
/% ADIRESS UF THE TRSK START */

/% EXCEPTION HANDLER IS NOT AVRILABLEw/

STRTICSTASKIDESCRIPTOR
/% POINTER ¥0 ACTURL TASK DESCRIPTOR */

T CITRSKT .
11.
. CONSOLESINPUTSTAGK.
NIL
):

DECLARE CO$S$TASKEDESCRIPTOR
DATA(. CO$TASKSDESCRIPTOR.

/# NAME OF THE TRSK
/% C1 TRSK PRIORITY
/% ADDRESS OF THE TASK START

*/
x/
x/

/% EXCEPTION HANDLER I5 NOT AVRILABLE®/

STATIC$TRSH$DESCRIPTOR
/% POINTER 7O ACTUAL TASK DEBCRIPTOR #/

{

4



» COTRSK’ . /% NAKE OF THE TASK

Fhbt

.74
03. . /% CO TASK PRIORITY */
. CONSOLESOUTRUT. /% ADDAESS OF THE TASK START ®/
NIt 4% EXCEPTION HANDLER IS NOT AVAILABLE®/

):

1 DECLARE £0m LITERALLY " ODH'.
TERMINALSDATASPORTSADDRESS LITERALLY ' OCCH'.
CONSOLESINPUTSEVENTS 1D LITERALLY 1007
CONINT LITERALLY  *01':

1 DECLARE COSEXCHANGE$DESCRIFTOR EXCHANGE$DESCRIPTOR: )
i DECLARE CI$EXCHANGESDESCRIFTOR EXCHANGESDESCRIPTOR:
Bl DECLARE (CISINTERRUFTSDESCRIATOR. /% FOR CONSOLE INUT INTERRUPTS #/
COSINTERRUPTSOESCRIPTOR  /+ FOR CONSOLE OUTEUT INTERRUPTS®/
y INTERRUPTSDESCRIFTOR:
0 i DECLARE CISGSINTERRUFTSDESCRIFTOR  STATICSINTERRUPTSDESCRIFTOR
DATAL, CI$ INTERRUPTSDESCRIPTOR. /% LINK TO INTERRUPT DESCRIPTOR #/
RISINT . /% NAWE OF THE INTERRUAT ¥/
EXCHANBES TYPE. /% TYPE OF THE INTERRUST SERVICE#/
NIL. -/ SINCE NOT R FRST TYPE INTERRUPT®/
Nk, /% NO EXCEPTION HANDLER #/
{ /% INTERRUAT LEVEL ¥/
|
o DECLARE CO$SSINTERRUPTSDESCRIPTOR  STATICSINTERRUDTSDESCRIPTOR
DRTAL. CO% INTERRUPTSDESCRIPTOR. /% LINK TO INTERRUPT DESCRIPTOR #/
' COSINT . /% NANE OF THE INTERRUPT %/
EXCHANGESTYRE. /¢ TYPE OF THE INTERRUPT SERVICE®/
NIL. /% SINCE NOT A FAST TYPE INTERRUPTH/
ML, /% NI EXCEPTION HANDLER ¥/
z ‘ /+ INTERRUPT LEVEL ¥/
be

2o DECLARE CO$SSEXCHANGESDESCRIPTOR STATICSEXCHANGESDESCRIPTOR
DATA(. COSEXCHANGESDESCRIPTOR. * CONDUT? . 1. 60) «

I DECLARE CIS$S$EXCHANGCSDESCRIPTOR STATICSEXCHANGESDESCRIFTOR
DATA(, CISECHANGE SOESCRIFTOR. ' CONINP' . 1. 80) «

4oy DECLARE X$TASKSLINKSDESCRIATOR  TASKSLINKSDESCRIPTOR:

0 DECLARE I BYTE:

l INITASK: PROCEDURE PUBLIC:

(CRERTESEXCHANGE. . CT$5$EXCHANGE $DESCRIPTOR) »

2 CALL FOX
¢ (CREATESEXCHANGE. . CO¥SSEXCHANGESDESCRIPTOR) «

CALL +OX




| QSO SO A

B B2 RS L3 N

LR N N

[ SO Y

[0

R R

[ ]

Lrd Bd Bl L RO RS B B R R R RO B

CALL FOX  (CRERTESTASK. . DEBUG$G$TASKSDESTRIPTOR) »
CALL FOX  (CRERTESTASK..CISS$TASKSDESCRIAOR) »
CALL FOX  (CRERTE$TASK. . CO$G$TRSKSDESCRIPTOR) «

CALL FOX (CREHTE$INTERRUPT..CI$S$INTERRUPT$DESCRI?TURi:
CALL FOX  (CREATESINTERRUPT..CO$S5% INTERRUPTSDESCRIPTOR) «

CALL ®OVE (. ('CITASK’).. X$TASKSLINKSDEGCRIPTOR, NAKE. 6) ¢
CALL FOX  (LINK$TASK. . X$TASKSLINKSDESCRIPTOR) »
CALL FOX  (RESUME. . X$TRSKSL INKSDESCRIATOR »

CALL mOVE  (, ("COTASK' ). . X$TASK$L INK$DESCRIPTOR, NAME. 6) »
CALL FOX  (LINKSTASK. . X$TRGKSLINKSDESCRIOTOR) «
CALL FOX  (RESUISE. . X$TASK$L INK$DESCRIPTOR) »

CALL WOVE (. CDEBUG ").. X$TREKSLINKSDESCRIPTOR. NAE. 6) :
CALL FOY  (LINKSTASK. . X$TASK$LINKSDESCRIPTOR) :
CALL FOX.  (RESUME. . X$TRSK$LINKSDESCRIPTOR) «

CALL FOX  (SUSPEND.CHR .

END»

/*************H***********************§*H*****H*i****l
/%% CONGOLE INPUT TASK BODY *e/
%k %/
/%t PROCEDURE = CONSOLE$INPUT$TASK *k/
f FUNCTION ¢ COLLECT CHORRCTERS FROM THE CONSOLE e/
/%% DEVICE AND AT THE AND SEND TO THE  #%/
/%% DEBUGGER TRSK FOR FURTHER PROCESSING ##/
Fee INPUTS & NONE ¥/
Fe QUTRUTS ¢ NONE e/

FHEREHHHR O HEHHHHEHEEHOHOHEE R R

CONSOLES INPUT$TRSK: PROCEDURE PUBLIC:

DECLARE  CONDUTSEXCHANGESLINK - EXCHANGESLINK$DESCRIPTOR:
DECLARE  CHR$BUF (2) BYTE:

DECLARE  CISEXCHANGESLINK  EXCHANGESLINKSDEGCRIPTOR:
DECLARE  CISBUF{80) EYTE:

CALL MOVE (6. . (" CONDUT? ) . CONDUTSEXCHANGESLINK. NAKE (0) ) :
CONDUTSE XCHANGE SLINS. b=, CHRSBUF (1) » /% FMESGAGE ADDRESS */
CHREBUF (0)=1:
CALL FOX  (LINKSEXCHANGE. . CONDUTSEXCHANGESLINK) ¢
CALL MOVELG. . ' CONIND" )., CISEXCHANGESLINK, NAME (0)) ¢
CALL FOX  (LINKSEXCHANGE. . CYSEXCHANGESL INK) -
CI$EXCHANGESLINK, M=, CISBUF:
CI%BUF (0)=0: /% USE AS CHARACTER COUNT */
DO WHILE 1:

CALL FOX  (EVENT.CONSOLESINPUTSEVENT$ID) :

CHA$BUF (1) CI$BUF (CISBUF (0)) =INPUT (TERMINALSDATARPORTSADDRESS) «

CALL FOX  {(GEND. . CONOUT$EXCHANGESLINK) ¢
IF CHR$BUF (1)=EOM THEN

RLEL



[ S SN

[ oN)

|G R Y LS

[ NG S

[N N

P

r b

[

f Nl

(o)

[ SR N I O R SN

[N SY R U B SUR (R SO SR N

CALL FOX  (CREATESTASK. . DERUG$SS TASKSDESCRIPTOR) «
CALL FOX  (CREATESTASK. . CISS$TASKSDESTRIPTOR) »
CALL FOX  (CREATESTASK. . COSSSTASKSDESCRIFTOR) «

CRL FOx (CREQTE$INTERRUPT..CI$S$INTERRUPT$DESERI?TURi:
CALL FOX  (CREATESINTERRUPT. . COS5$ INTERRUPTSDESCRIPTOR) =

CALL HOVE (. (' CITRSK').. X$TASKSLINKSDESCRIPTOR. NARE. 6) :
CALL FOX  (LINK$TASK.. X6TASK$LINKSDESCRIPTOR) »
CALL FOX  (RESUME. . X$TASKSL INKSDESCRIPTOR) «

CALL mOVE (.('COTRSK')..XiTQSKiLINK$DESCRIpTUR.NﬁME.6):
CALL FDX  (LINKSTASK. , X$TRSKSLINKSDESCRIPTOR) »
CALL FOX  (RESUISE. . X$TASKSLINKSDESCRIPTOR) »

CALL WOVE (. CDEBUG *).. X$TASK$LINKSDESCRIPTOR. NAWIE. 6) -
CALL FOX  (LINKSTRSK.. X$TASKSLINKSDESCRIPTOR) :
CALL FDX.  (RESUME. . X$TASKSLINKSDESCRIPTOR) «

CALL FOX  (SUSPEND.C$P) -«

END+

/****************i****************************i*********/
/¥ CONGOLE INPUT TASK BODY */
JH# *x/
J#%  PROCEDURE + CONSDLES$INPUT$TASK e/
J#% FUNCTION ¢ COLLECT CHARRCTERS FROM THE CONSOLE  #w/
/%% DEVICE AND AT THE AND SEND TO THE e/
14 DEBUGGER TASK FOR FURTHER PROCESSING #%/
f#k INPUTS & NONE *x/
fex QUTAUTS @ NONE %/

/****i**************************************i******!****/

CONSOLESINPUTSTASK: PROCEDURE PUBLIC:

DECLARE  CONDUTSEXCHANGESLINK - EXCHANGE$LINK$DESCRIPTOR:
DECLARE  CHR®BUF (2) BYTE:

DECLARE  CISEXCHANGESLINK  EXCHANGESLINK$DESCRIPTOR:
DECLARE  CIsBuUF (80) BYTE:

CALL MOVE (B. . ("CONDUT ). CONGUTSEXCHANGE$SLINK. NAKE (0) ) 2
CONDUTSEXCHANGE SLINK, ¥i=, CHRSBUF (1) « /% BESSAGE ADDRESS ¥/
CHREBUF (0)=1: :
CALL FOX  {LINNSEXCHANGE. . CONDUTSEXCHANGESLINK) «
CALL mOVELG. . (' CONIND™ )., CISEXCHANGESLINA. NAKE (01) «
CALL FOX  {LINKSEXCHANGE. . CISEXCHANGESLINK) »
CI$EXCHANGESLINA, =, C1$BUF -
L18BUF €0)=0: /% USE AS CHARACTER COUNT #/
DO WHILE 1:

CALL FOX  (EVENT.CONSOLESINPUTSEVENTSID) :

CHR$BUF (1), CISBUF (CISBUF (0))=INPUT (TERMINRLSDATA$PORTSADDAESS) «

CALL FOX  (SEND. . CONOUT$EXCHANGESLINK) &
IF CHR$BUF (1)=E0% THEN

Ragis =




iL/M-80 COMPILER . ‘

PRBE
73 3 na:
% 4 CALL  FOX (SEND..CISEXCHANGESLINK) = /% GENT TO DEBUBGER %/
75 4 CISBUF(0)=0:  /# AFTER GEND DPERATION BUFFER CAN BE MODIFIED #/
7 4 END»
- 7703 ELSE CI$BUF(0)=CI$BUF(0)+1+
B3 END:
H 2 END:
/**************************************************i*i**/
/% CONSOLE QUTPUT TASK BODY ¥4/
JHE *%/
/%% PROCEDURE @ CONSOLESOUTPUTS$TASK ¥/ B
/% FUNCTION ¢ SENDS CHARACTERS TO THE CONSOLE ¥/
T DEVILE . **/
J%6 INPUTS  t NOME */
Fex QUTRITS ¢ NONE *t/

FERRFEE O HGHEGHHEE RO R O R

80 1 CONSOLE$OUTRUT: BROCEDURE PUBLIC:

i1 2 DECLARE  COSEXCHANGESLINK  EXCHANGESLINK$DESCRIPTOR:

gz 2 DECLARE  COSBUF (80) BYTE:

85 2 CALL MOVE(A. . CCCONDUT? )., COSEXCHANGE$LINK, NAME (0} ) =
G4 2 CALL FOX  (LINKSEXCHANGE. . CO$EXCHANGESL INK) *

8 0z COBEXCHANGESL INK. M=, COSBUF:

& 2 DO WRILE 1:

&7 3 CALL FDX  (WAIT..COSEXCHANGESLINK) »

& 3 IF COSEXCHANGE$LINK. 5=GUCCESS THEN

85 3 b0 I=0 70 COsBuF (0) -

W o4 CALL FOX  (EVENT.CONINT):

o4 CUTRUT CTERMINALSDAT ASPORTSADDRESS) =COSBUF (1+1)
2 4 END:

B3 END:

%z END:

E I END: /% OF DEMOSTRATION MODULE #/

HIDULE INFORMATION:

CODE ARER SIZE = A1 339D
VARIABLE AREA SIZE = 020EH  SZ6D
MAXImUm STACK SIZE = 000ZH i
463 LINES READ

0 PROGRAM ERROR(S)

B0 OF PL/M-80 COMPILATION




REFERENCES

Erinch, Hansen. Uperating System Principles.

Herry, Katzan. Operating Systemwms.

Faeter, Wagnar. Introduction to Hystewm Programming.
Wayrne, Blaclk. Decsign of Real Time Applications.
Dionysios, . T%imhritixia. Operating Systew Privciples.
Semih Pekol, Sedat Yilmazer. MTEX user guide.

Intel. PLAM Progravmwar User Manual.

Intel. SRC BI/720 and SBC 8G/720-4 Single Board Computers
Hardware Reforence Manuwal.

Intel, Intellec SHoeries

IT Microcomputer Developwent System
Hardware Interface Manual.

Ivitel., Intellec Seriss 11 Microcomputer Development

Bystern Hardware Reference Manual.

Iintel. | PL/M-80 Prograwming Manual.

Intel. (BI8~11 PL/M Comwmpiler Upervator’s Manual.

Intell Comporent Data Catalog.

Digital Research. MP/M-TT Systewm prograwer guide.




	KTEZ173001
	KTEZ173002
	KTEZ173003
	KTEZ173004
	KTEZ173005
	KTEZ173006
	KTEZ173007
	KTEZ173008
	KTEZ173009
	KTEZ174001
	KTEZ174002
	KTEZ174003
	KTEZ174004
	KTEZ174005
	KTEZ174006
	KTEZ174007
	KTEZ174008
	KTEZ174009
	KTEZ174010
	KTEZ174011
	KTEZ174012
	KTEZ174013
	KTEZ174014
	KTEZ174015
	KTEZ174016
	KTEZ174017
	KTEZ174018
	KTEZ174019
	KTEZ174020
	KTEZ174021
	KTEZ174022.01
	KTEZ174022
	KTEZ174023
	KTEZ174024
	KTEZ174025
	KTEZ174026
	KTEZ174027
	KTEZ174028
	KTEZ174029
	KTEZ174030
	KTEZ174031
	KTEZ174032
	KTEZ174033
	KTEZ174034
	KTEZ174035
	KTEZ174036
	KTEZ174037
	KTEZ174038
	KTEZ174039
	KTEZ174040
	KTEZ174041
	KTEZ174042
	KTEZ174043
	KTEZ174044
	KTEZ174045
	KTEZ174046
	KTEZ174047
	KTEZ174048
	KTEZ174049
	KTEZ174050
	KTEZ174051
	KTEZ174052
	KTEZ174053
	KTEZ174054
	KTEZ174055
	KTEZ174056
	KTEZ174057
	KTEZ174058
	KTEZ174059
	KTEZ174060
	KTEZ174061
	KTEZ174062
	KTEZ174063
	KTEZ174064
	KTEZ174065
	KTEZ174066
	KTEZ174067
	KTEZ174068
	KTEZ174069
	KTEZ174070
	KTEZ174071
	KTEZ174072
	KTEZ174073
	KTEZ174074
	KTEZ174075
	KTEZ174076
	KTEZ174077
	KTEZ174078
	KTEZ174079
	KTEZ174080
	KTEZ174081
	KTEZ174082
	KTEZ174083
	KTEZ174084
	KTEZ174085
	KTEZ174086
	KTEZ174087
	KTEZ174088
	KTEZ174089
	KTEZ174090
	KTEZ174091
	KTEZ174092
	KTEZ174093
	KTEZ174094
	KTEZ174095
	KTEZ174096
	KTEZ174097
	KTEZ174098
	KTEZ174099
	KTEZ174100
	KTEZ174101
	KTEZ174102
	KTEZ174103
	KTEZ174104
	KTEZ174105
	KTEZ174106
	KTEZ174107
	KTEZ174108
	KTEZ174109
	KTEZ174110
	KTEZ174111
	KTEZ174112
	KTEZ174113
	KTEZ174114
	KTEZ174115
	KTEZ174116
	KTEZ174117
	KTEZ174118
	KTEZ174119
	KTEZ174120
	KTEZ174121
	KTEZ174122
	KTEZ174123
	KTEZ174124
	KTEZ174125
	KTEZ174126
	KTEZ174127
	KTEZ174128
	KTEZ174129
	KTEZ174130
	KTEZ174131
	KTEZ174132
	KTEZ174133
	KTEZ174134
	KTEZ174135
	KTEZ174136
	KTEZ174137
	KTEZ174138
	KTEZ174139
	KTEZ174140
	KTEZ174141
	KTEZ174142
	KTEZ174143
	KTEZ174144
	KTEZ174145
	KTEZ174146
	KTEZ174147
	KTEZ174148
	KTEZ174149
	KTEZ174150
	KTEZ174151
	KTEZ174152

