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ABSTRACT 

Disturbance decoupling and disturba~ce deco~pled 8stim3tlon 

proble~s in linear, time invariant, dynamical system are studied 

In a co~mon fra~ework usin~ geo~etric approach. 

The basic solvability question is investigated for disturb3nce 

docouplin~ problem by static and dyna~ic state and m9asurement 

feedback. 

Estimation of the state vector or a functio. of the state 

vector of a system in the presence of disturbances is considered. 

The concepts of observa~le, unobservable su~spaces and 

observability of a system are generalized for unkn~wn input 

systems. 

In the second part of the thesis, solvability of the above 

problems in a spe2ial kind of system which consists of separated 

dynamic and algebraic parts is ~onsidered. In general, the 

solvability range of the pro~lems is improved jy system 
, 

decomposition. 

AII.results are fully constructive a.d 3n appendix IS 

included for the nu~erical co~p~tation of the develOped design 

methods. 
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DZET 

Dogrusa1. zaman1a degigmeyen. dina~ik sistem1erde bozucu 

bastlrma ve hozucu bastlrl1mlg kestirim prob1em1eri orta~ bir 

9zr98ve i9ind3 geo~etrik_ yak1aglm1a ince1enmektedir. 

Bozucu bastlrma prob1emi i9in teme1 90zu1ebi1ir1ik sorunu, 

statik ve dinamik durum ve 019um geri bes1eme ha11erinde 

cevap1andlrl1maktadlr. 

Durum vektorunun veya duru~ vektorunun bir fonksiyonun~n 

kestirimi bozucu1arln var1lglnda e1e a1ln~akta; gozlenebi1ir. 

gozlenemez a1t uzay ve gozlenebi1ir1ik kavram1arl bi1inmeyen 

girdigi sistem1er i9in gene11egtiri1mektedir. 

Tezin ikinci klsmlnda yukarlda sozu edi1en prob1em1er dina­

mik v~ cebirse1 par9aiardan olugmug oze1 bir sistem i9in ince-

1enmekte; -90zu1ebi1ir1ik slnlr1arlnln genig1edigi gosteri1mek­

tedir. 

Varllan butun sonu91ar yaplril olup, ge1igtiri1en taaarlm 

y.o~tem1erinin saYIsa1 hesabl i9in bir ek veri1migtir. 
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I. INTRODUCTION 

Control systems us~ally operate under the presence of 

unmeasurable, unknown Inputs. Various analysis and synthesis 

techniques have been propused in li~erature to deal with such 

inputs which.may be called disturbances. These may include: 

1) To treat disturbances as random signals with known 

statistics and to apply the theory of stochastic processes to 

analyze systems subject to such inputs. 

2) To assume that the disturbances satisfy differential 

equations with known coefficients, their inifia1 conditions being 

unknown or they can be approximated by polynomial inputs of 

sufficiently high order. 

~ne common m~thod applied in these cases in to augment the 

system equations with the assumed model for the disturbances so 

that existing theory can be applied to the augmented system. 

It is clear that none of these approaches is best suited tu 

all types 0 f d istu rbances encounte red in pr·act ice 0 r to sy stems 

excited by different disturbance sources. 

In this work we tried to give a unified technique for the 

regulation and estimation of cuntrol systems by considering 

disturbances as completely unknown signals which take their values 

from a specified function class r and no existing a priori 

information about their nature can be used to aid the synthesis 

problem. The choice of the function class r is not crucial, the 

spa ceo f con tin u 0 u s val u e d fun c t ion s, {f: R+ -to R r }, can b e 

adopted for instance. 

-~.--



This selection of the disturbance modal has several advantages 

as well as disadvantages. Its generality and applicability in 

different situations, like decentralized control systems; systems 

subject to man made interference or noise governed by nature is the 

basic advantage. Besides this a lot of modeling labour is eliminated 

and systems designed using this approach have simpler structure 

compar~d with the methods stated above. 

As a disadvantage we must admit that treating disturbance 

inputs as totally unknown signals considerably reduces the 

solvability "range of the problems studied. 

Our treatment of the problems is mainly in time domain. State 

space representation of contrul systems is used as a convenient 

tool for doing this. The problems are formulated and solved in a 

geometric style as developed by Wonham and his coworkers. The 

required mathematical backgroundsuchascontrollable and obseivable 

subspaces of the state space and certain other invariant subspaces 

are reviewed in Ch.2~ This chapter provides the self containment 

of the work. 

The simplest form of regulation: The disturbance decoupling 

problem is studied in Ch.3. Disturbance decoupling by state feed­

back, constant measurement feedback and dynamic measurement feed­

back are treated in a common framework in sections (3.1), (3.2) 

and (3.3) respectively. The chapter closes by some interesting 

remarks. 

Ch.4 is devoted to estimation problems. The cltise connection 

between distu"rbance decoupling problem and disturbance decoupled 

estimation problem is pointed out in section (4.1). A completely 

new problem: The known initial state observer design problem is 

also solved in this section. The classical observer design problem 

is discussed by geometric methods in section (4.2) in its most 

general setting. The well known concepts of observable and 

unobservable subspeces of state space are generalized for 
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unknown input systems, observability of an unknown input ,system 

is defined based on these subspaces in section (4.3). Finally in 

section (4.4) it is shown how parameter variations can be 

consid~red as unknown inputs which are produced internally and 

additive tu the system. This ubservuLiull ulluws us Lu sulve Lho 

zero sensitive observer design problem. 

ITo overcome the difficulty stated as a disadvantage of the 

assumed disturbance model a special kind of system structure is 

introduced in Ch.5 which consists of the interconnection of a 

fixed algebraic sUbsystem and a variable dynamic subsystem. Some 

properties like controllability, observability and transfer 

function inveriance of decomposed system are summarized in section 

(5.,1) following the works in [23J, [24J and [25J. Disturbance 

decoupling problem in decomposed systems is studied in section 

(5.2) in all of its variations. Then in section (5".3) disturbance 

decoupled estimation problem is investigated for decomposed 

systems. 

Generic solvability conditions are obtained for both problems. 

The work is completely original' by its way of presentation 

and- some results of chapters 3,4 and 5. 

(ach prublem discussed in the work is precisely defined and 

formulated first. Necessary and sufficient cunditiuns for the 

solvability of the problem are given as theorems and corollaries. 

A constructive synthesis procedure (sometimes an algorithm) is 

given if a solution exists. 

The examples and the cumputational matrix algorithms collected 

in the appendix are also an integral part of the thesis which 

bridge the gap between theory and practice, and which make the 

study easier for future researchers in this field. 
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II. MATHEMATICAL PRELIMINARIES AND SYSTEM THEORETIC INTERPRETATIONS 

Some definitions and theorems which will be needed in the 

thesis are collected in this chapter: The aim is to provide ease 

of reference and to introduce relevant notation. Detailed proofs 

and extensions can be found. in the references cited. 

Throughout the thesis uppercase is used for linear mappings 

and their matrix representations and lowercase for vectors. Vector 

spaces and subspaces are denoted by bold face capitals. The 

dimension of a subspace 5 is denoted by dim S. 5 1+5 2 and 5 1ffiS 2 
are the sum and direct sum, respectively, of the subspaces S1 and 

52. 51 stands for the orthogonal complement of 5. The image (kernel) 

of a map A is written imA (kerA). The symbol cr(A) denotes the 

spectrum (the set of eigenvalues) of A. AI is used to denote the 

transpose of A. 

Consider the linear time invariant system described by 

x=Ax+Bu y=Cx z=Dx ( 2 • 1 ) 

As usual, x and u are the state and control vectors, y is the 

vector of measured output variables, and z is the vector of output 

variables to be regulated. Although the model (2.1) corresponds 

to a continuous time system, all results stated in this chapter 

apply equally well to the corresponding discrete time system 

model, as they are essentially algebraic properties of the 

4. tuple (A,B,C,D). 

Certain invariant subspaces of the state space X are 

fundemental for a geometric appro~ch to system theory and these 

are presented below. 
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Definition 2.1: let A: X-t- X be a linear map, a subspace sex is 

said to be A-invariant if and only if 

AS e 5 (2.2) 

The class of A-invariant subspaces of X is denoted by leA). 

Clearly the 0 subspace, the state space X itself and subspaces 

spaned by the eigenvectors of A are A-invariant subspaces. 

Let 5 be any A-invariant subspace and let R be such that 

SffiR=X. In a basis {s1 ... sk' r 1' ... r m} adopted to this decomposition 

the map A has the matrix representation: 

Mat 

r 
l

AkXk 

A = 1 
Omxk 

( 2 . 3 

The restriction of A to 5, (AIS), is characterized by the 

matrix A~Xk in this representation. It satisfies the relation: 

( 2 .4) 

where 5 is the basis matrix for the subspace 5 whose columns are the 

basis vectors (s1 ... sk). 

And A~xm is the matrix of the map, (Alx/S) induced by A in 

the factor space X/So 

The block triangular structure of A in (2.3) implies, via 

the characteristic polynomial 

O(A)=O(AIS) 0 o(A\X/S) ( 2 . 5 ) 

where 0 denotes union with any common elements repeated. 
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Let S denote a nonempty set of subs~aces, the largest or 

supremal element S* of ~, is defined to be that unique member of 

S which contains every member of ~. Thus S*ES, and if SES then 

ScS*. Similarly the smallest or infimal element S* of a set of 

subspaces S, is defined as the unique subspace which is contained 

in every member of S. Hence S*E~, and if SE~ then S*cS. 

These are summarized by writing: 

S*=sup {S: SES}=·sup Sand S*=inf{S: SES}= infS 

The following lemmas reveal under what conditions suprema 1 or 

infimal elements of a set of subspaces exists. 

Lemma 2.1a: Let ~ be a nonempty class of subspaces of X, closed 

under' subspace addition. Then ~ posseses a supremal element S* 

Lemma 2.1b: Let S be a nonempty class of subspaces of X, closed 

under subspase intersection. Then S contains an infimal element S* 

Proof These lemmas can be proven by constructing a nondecreasing 

sequence of subspaces S1' S1+S2' S1 7S 2+S 3' ... in the first case 

and a non increasing sequence S1' S1nS2' s1nS2nS3' ... in the second. 

As the subspaces are finite dimensional the chains can not be 

continued beyond, say, k terms then we can set S*=S1+ ... +Sk and 
* S*=S1n .... nS k • Clearly S (S*)E~, and contains (is contained in) 

every SES. • 
\.. 

The family of A-invariant subspaces l(A) is closed under 

subspace addition and subspace intersection. Therefore supremal 

and infimal elements of a set of A-invariant subpaces exist 

according to the above lemmas. 

For example the controllable subspace: 
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<AI1"mB> =~ ~ " L im (A
1

-
1

B) = inf{S: SEl.(A), imBeS} ( 2 . 6 ) 

is the least invarianr under the matrix A containing. imB and the 

unobservable subspace: 

r.l 

<A'limC'>J.= (l ker (CA i - 1 ) = sup{S: SEl.(A), SekerC}(2.7) 
i=l 

is the greatest invariant under A contained in kerC. 

When <AlimB>=X the pair (A,B) is called contrallable; when 

I 
.L , 

<A' imC'> =0 the pair (C,A) is called observable. 

The generalization of simple invariance is the concept of 

(A,B)-invariance 

Definition 2.2: A subspace Vex is (A,B)-invariant if and only if 

AVe V + imB 

The set of all (A,B)-invariant subspaces in a given sub$pace 

KeX is denoted by ~(A,B:K) or simply by V(K) when the matrices 

under consideration are fixed. It follows from Def.(2.2) that 

any A-invariant subspace is automatically (A,B)-invariant. 

The essential fact about an (A,B)-invariant subspace is that 

it can be made (A+BF)-invariant by a suitable choice of the matrix F. 

Lemma 2.2: Let VeX. There exists a linear state feedback map 

F:X -+ U such that 

(A+BF) V e V 

if and only if VE~(A,B,X) 

( 2 • 8 ) 

'" 



Proof: "Only if" Let {v 1 ... vk} be a basis for V. (2.8) implies 

(A+BF)v.=w. for some w.EV and for i=1, ... ,k or 
111 

A v.=w.-BF v.EV+imB. Hence VEV(A,B) 
III 
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lIifll Let VEV(A,B). By definition there exists w.EV and u.EU such that 
1 1 

A v.=w.-B u. for i=l, ... ,k. define F on V by F v.=u .• Then 
1 1 1 1 1 ~-

F will have the required property (2.8) • 

If a subspace V is (A,B)-invariant the class of F:X-+ U such 

that (A+BF)VcV is written asf(V). 

An (A,B)-invariant subspace V is characterized by the property 

that, for every point x in V a control function can be found such 
o 

that the resulting state trajectory (with x as initial point) 
. 0 

remains in V for all positive t as shown in Fig.2.1a below. Thus 

if F:X -+ U is chosen according to Lemma 2.2 and u=Fx is set in (2.1), 
o 

for the autonomous system x=(A+BF)x, x(o)EV implies x(t)EV (t~O); 

so if x(.) starts in V, it stays in V. V has been made invariant 

by· suitable state feedback. 

(a) (b) 

Fig.2.1 (a) An (A,B)-invariant subspace (b) A controllability subspace 

Another generalization of invariance which is, in a sense, the 

dual of (A,B)-invariance is given by the following definition. 

Definition 43: A subspace QCX is (C,A)-invariant if and only if 

A (QnkerC) C Q 
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The set of (C,A)-invariant subspaces containing a given subspace 

K is denoted by the symbol Q(C,A;K). 

The duality between (A,B)-invariant subspaces and (C,A)-invariant 

subspaces, is expressed in theorem 2.1 below. 

Theorem 2.1: Let QEQ(C,A;K) then Q~E!(A', C'; KL) and conversely let 

VEV(A,B;K) then V1EQ(B' ,A';KL ) 

Proof: It suffices to prove only the first part of the theorem, the 

converse follows by a simple change of symbols. Let M, NcX with 

AMcN then (AM)~~N~. Thus (n,Am)=(A'n,m)=O for every nEN and mEM 

so that A'NlcM~ repeating the same argument for subspaces N1 , 

M1cX' and map A' s~tisfying A'N1cMi it can be concluded that 

Applying this result to the situation at hand. 

Thus according to theorem 2.1, the ortogonal complement of a 

(C,A)-inva~i~nt subspace of the system I given by 2.1) plays the 

role of an (A,B)-invariant subspace for the dual system I' and 

vice versa. 

The dual of Lemma 2.2 for (C.A)-invariant subspaces is as 

follows: 

Lemma 2.3: Let QCX. There exists on output injection map G:Y ~ X 

such that 

(A+GC)QcQ ( 2.9) 

i fan don 1 y i f Q EQ ( C ,A J 
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'roof: "if" Suppose (A+GC)QcQ. Take any xEkerCnQ. By hypotheses there 

~xists qEQ such that (A+GC)x=Ax=qEQ thus A(kerCnQ)cQ. "Only if" 

~ s sum e Q EQ ( C • A ). Let {q 1 ... q j ... q k} be a bas is for Q s u c h t hat 

{q1~ .. qj} is a basis for QnkerC. Then 

Aq.=s. for i=1 ... j and Aq.=r. for i=j+1. •. k 
1 1 1 1 

wh~re si EQ by assumption. Noting that the vectors Cqj+1 ... Cqk are 

linearly ind~pendent the map G:"Y ~ X can be defined such that 

GC q.=-r. for i=j+1 ... k 
1 1 

Then (A+GC)q.=Aq.=s.EQ for i=1~ .. j and (A+GC)q.=OEQ for i=j+1 ... k 
1 1 1 1 

as desired • 

To discuss stability properties related to subspaces the 

complex plane is divided into two self conjugate parts [g and [b 

which will indicate stability and instability respectively. For 

continuous time systems the usual choice for [ is 
g 

[ = {sE[: Re(s)<O} 
g 

and for discrete time systems 

[ ={zE(t: \z\<1} 
g " 

But any other choice will not change the theory. Thus for example 

one can define [ ={sE[: Re(s)<-a for some a>O} if one want~ to 
g 

obtain a prescribed degree of stability. 

Given the system (2.1) consider the clused loup system formed 

by means of state feedback F and the connectiun uf a gain matrix 

G at the system input as in figure (2.2) 



1 1 

v------~ 
x 

Fig.2.2 

The controllability subspaces are defined as follows 

Definition Z4: A sub~pace ReX. is an (A,B)-controllabilitysubspace 

if there exists maps F:X ~ U and G:U ~ U such that 

R=<A+BF\im(BG» ( 2 • 1 0 ) 

Thus R is the controllable subspace of the pair (A+BF, BG) which 

is obtained as described in fig.(2.2) The notation ~(A,B;K) is 

used to denote the class of (A, B)-controllability subspaces contained 

in a given subspace K. Several facts follow easily from definition 

2.4. First, if R is an (A,B)-controllability subspace then R is 

(A,B)-invariant moreover ewery state x1ER can be reached from the 

initial state x ER along a controlled state trajectory that is 
o 

wholly contained in R. See fig.2.1b. Trivially n is a controllability 

subspace and so is <A\imB>, the controllable ~ubspace of the pair 

(A,B)~ If the system is ~ingle input these are the only controllability 

subspaces but in the multi-input case there are lots of controllability. 

subspaces of various dimensions. 

By exploiting the equivalence between controllability and 

spectral assignability the class of controllability subspaces can 

be characterized by the following basic pruperty: 

Theorem 2.2: Let ReX be a subspace with dimR=p~1. For every symmetric 

set A of p complex numbers there exists a map F:X ~ U such that 



(A+BF)ReR and a[(A+BF)\R]=A 

i fan don I y i f R E,!!. ( A , B ; X ) • 
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Itis this design property of controllability sutispaces that 

makes the concept central in applications. As a special case of 

theorem (2.2), if the pair (A,B) is controllable R=<A\imB>=X is 

a controllability subspace so thata8A+BF)\XJ=a(A+BF) can be 

assigned arbitrarily. The well known pole placement property of 

controllable pairs is recovered. 

Although the theory of controllability subspaces allows to 

place the closed loop poles at the.desired locations, in most 

practical synthesis problems it is only requireQ that the closed 

loop system map, A+BF be stable. For this reason stabilizability 

subspaces are introduced in the definition below. 

Definition 2~: VeX is called a stabilizability subspace if there 

exists F:X ~ U such that (A+BF)VeV and af(A+BF)\V]e[ . Where ~ is 
- g g 

understood in the general sense discussed above. it is a direct 

consequence of definition 2.5 and Lemma 2.2 that stabilizability 

subspaces are (A,B)-invariant'. The familiy of (A,B)-stabilizability 

subspaces contained in KeX is shown by the symbol V (K) Thus -g 

(2.11) 

If a subspace V belongs to the family V then for all x EV it is -g, 0 

possible to find a feedback map F:X ~ U such that the response 

e(A+BF)t. x ~ 0 as t~oo ~ That is, the subspace V of the state 
o 

space X is stabilized by state feedback. If the state space X is 

itself a stabilizability subspace then the pair (A,B) is said to 

be stabilizable. (ie., 3F:X ~ U such that a(A+BF)e[g) 

It follows from the above discussibn that stabilizability is 

a weaker properly than controllability. A pair (A,B) may be 

~ncontrollable although it is stabilizable. 
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The classes V, R, and V are 
- - ,-g closed under subspace addition 

and the class Q is closed under subspace intersection. Therefore 

according to Lemma 2.1a and Lemma 2.1b there exists supremal 

elements V*, R*, V~ of V, R and V respectively and infimal element g - - -g 
Q* of Q which can be computed by linear algorithms in finite 

number of iterations. Before presenting these algorithms a final 

theorem is given related to (A,B)-invariant and controllability 

subspaces, which is proved in [1J 

Theorem 2.3: Let Vf:!(A,BiX)' and let R*=sup!!.(A,BJ;V). For FE£:'<V) write _.­

AF=A+BF and ~F for the map induced in V/R* by AF · Then ~F is 

independent of FEf(V) furthermore 

where 

aF~a[(A+BF)IR*1 is freely assignable by suitable choice of FEF(V) 
b" -

and ao=a(A F ) is fixed for all FEf(V) • 

r 

The above theorem is again a generalization of the well known 

controllability canonical form The controllable poles of the system 

matrix can be arbitrarily located by state feedb~ck whereas the 

uncontrollable poles are invariant under state feedback. 

ALGORITHMS: 

I) Supremal (A,B)-invariant subspace contained'inK: V*(A,B;K) 

Define the sequence of subspaces V
k 

according to 

The sequence Vk is non increasing that 

k<dim K. V =V
k 

1=supV(A,B;K) can be usedas 
k + -

is, k k-1 V cV . For some 

a stopping rule. 
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II) Supremal (A,B)-controllability subspace contained in K: R*(K) 

Let V*=sup~(A,B;K) 

'Define the sequence 5 k according to 

50=0 5 k=V*n(A 5 k- 1+imB) 

Induction shows thnt Sk is nundecrensing and so 

k+1 k· . 
5 =5 =sup~(A,B;K) for k>dlm V* 

III) Supremal (A,B)-stabilizability subspace contained in 

Let V*=sup ~(A,B;K) and R*=sup ~(A,B;K) 

K: V*(K) g- ----

Choose F EF(V*), write A =A+BF , let P:X ~ X/R* be the canonical 
o - 0 0 

projection and let A be the map,induced in X/R* by A . Let a(A) be 
o 0 

the minimal polynomial of A IV*/R*. Factor a(A)=a (A)ab(A) where 
o g 

the zeros ofa (resp.a
b

) belong to [ (resp [b) and write g g . 

X*=(V*/R*)nkera (A ) 
g g 0 

Then 

V* (K)=P- 1X*. 
g g 

IV) Infimal (C,A)-invariant subspace containing K:Q*(C,A;K) 

Q*(K) can be calcuated by dualizing the supremal (A,B)-invariant 

sub~pace algorithm. Define the~sequence Qk as: 

Q =K, 
o 

The sequence Q
k 

is nondecreasing, Qk_1 cQ k and for some k~n-dim K 

The foregoing algorithms are very convenient for the purpose 

of formulating solvability conditions of the problems considered 

in subsequent chapters. For example an inclusion relation subh ~s: 

5cV (2.12/ 
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where 5 is a fixed subspace and V is an element of the family ~(A.B;K) 

can hold if and only if SCV*(A,B;K) . 

. Thus it is sufficient to check whether the maximal (A,B)-irlvuriunt 

subspace of K con~ains 5 or riot in order to find out if there exists 

VEV(A,B;Kl satisfying SCV. Because if (2.12) does not hold for the 

largest element V*(K) of the set V(A,B;K) then it cannot hold for 

any other VEV(A,B;K) 

On the other hand there may be .situations where it is important---­

t 0 k now the ex i s ten ceo f V E~ ( A , B ; K) 0 the r t han the m a x i mal sat i s f yin 9 '~~_ 

(2.12). For example one ~ay be interested in the minimal element of 

the set V(A,B;K) if the space so constructed somehow equals the 

state space of a system in a design problem. 

Unfortunately there does not exist any algorithms in the 

literature to calculate the elements of the sets ~, R or Q other 

than the ones given above. Any research to this aim seems to be 

a rewarding study for it opens the doors of solution of many 

longstanding system problems like minimal order compensator design, 

minimal order observer design etc. as shown in the following 

chapters. 



III. DISTURBANCE DECOUPLING IN LINEAR. TIME INVARIANT SYSTEMS 

Consider the dynamical system 

o 

x=Ax+Bu+Eq 

y=Cx 

z=Dx 

16 

(3.1a) 

(3.1b) 

(3.1c) 

with xErnn=X the state, uEmm=U the control, qErnr=Q the disturbance 

y~ mP=y the measurement and zErnl=Z the controlled output. 

Definition 3.1: The system (3.1) is disturbance decoupled (relative 

to the pair q, z) if and only if the forced response 

t 
I A ( t - T) z ( t ) = DeE q (T ) dT = 0 

o 

for all qEQ. 

, ( - 1 Thus, according to Def.3.1 the transfer function: D sI-A) E 

from q to z is identically zero for a disturbance decoupled system. 

Let ~(t;q) be, the solution of (3.1) with x(O)=O, u(t)=O. 

A statex~X is reachable from x(O)=O if there exist t and q, with 

o<t<oo and qEQ such that ~(t;q)=x. It is easily proven that. the set 

of reachable states of (3.1) under the action of all possible 

qEQ is given by the controllable subspace of the pair (A,E). That is 

{x:x=~(t;q) for some qEQ}=<AlimE>=imE+im(AE)+ ... +im(A n- 1 E) 

( 3. 2 ) 

The 'following proposition is fundAmental for the disturbance 

decoupling problem and gives the geometric condition for a system 

of thB .form(3.1) to be disturbance decoupled. 
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Proposition 3.1: The system (3.1) is disturbance decoupled if and only i 

3VEI(A) such that imE:CVckerD 

Pr 00 f: "i f" Assume the system is disturbance decoupled. F rom De f. 3.1 

and formula (3.2) it follows that <AlimE:>ckerD. By Cayley-Hamilton 

'theorem it is easy to show that <AlimE:>.EI(A) and clearly imE:c<AlimE:> 

"Only if"Let V be such that AVcV and imE:CVCkerD then 

<AlimE:>c<AIV>=VckerD 

Thus the condition of Def3.1 is satisfied and the system is 

disturbance decoupled • 
The disturbance decoupling problem applies exactly when Def.3.1 

or Prop 3.1 is not satisfied by the system (3.1) and is the problem 

of finding a feedback control law from the measurements y to the 

control u such that in the closed loop system the controlled outputs 

are not affected by the disturbances ie., the forced response 

t Ac (t- T) 
z(t)=D Ie F ( )-0 o -q T -

for all qEQ, where A =Clo~ed loop system matrix. 
c 

( 3. 3 ) 

Hence the problem can be visualized as in the following block 

diagram. 

r----------------------------------------j 
, I 
I , 

q z 
I I 

I , 
PLANT , , 

u y , 
I ,. 
I I 

I , 
I , , 

I I 
~I 

I Clost! I F ( . ) I 
I , 

~ 
d-loop system 

, I 
I I 
I I L ______________________________________ J 

Fig.3.1 DISTURBANCE: DE:COUPLING PROBLE:M (DDP) 
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1. DISTURBANCE DECbUPLING BY STATE FEEDBACK 

The above problem was originally solved by Wonham and Morse 

assuming that the whole state vector is available (ie., C=I in 

Fig.3.1). The.problem can be defined as follows: Find a feedback 

control law u=Fx such that the closed loop system 

~=(A+BF)x+Eq 

y=Cx z=Dx 
( 3.4) 

is disturbance decuupled. 

From erop.(3.1) the conditions for the existence of such a 

feedback matrix are quite obvious. 

Theorem 3.1.1.: Disturbance decoupling by state feedback is sulvable 

if and only if 

3VEV(A,B) such that imEcVckerD ( 3 • 5 ) 

Proof: "if" Assume that (3.5) is satisfied. By lemma (2.2) 3F:X + U 

such that Vf:.!.(A+BF). Hence by Prop.(3.1).the system (3.4) is 

disturbance decoupled. "Only if" Let F:X -T U be a solution of 

disturbance decoupling by state feedback. That means 3VE.!.(A+BF) 

such that imEcVckerD. Again by lemma (2.2) such a subspace 

belongs to !(A,B) • 

Condition (3.5) of Theurem (3.1.1) wuuld be useless if we· 

did not have a constructive way of checking it. Fortunately among 

the (A,B)-invariant subspaces cuntained in kerD there is a largest 

one denoted byV*(A,BjkerD) which is cumputable by Algorithm I 

of C~.2. So we have the c6rollary for the solutidn of disturbance , 

decoupling problem by state feedback: 
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Corollary 3.1.1: Disturbance decoupling by state feedback is solvable 

if and only if 

iml:: c V*(A,E3;kerD) (3.6)-

Theorem 3.1.1 and Cor.(3.1.1) provide a constructive solution to 

disturbance decoupling problem by state feedback 

1. Com put e V * ( A , B ; k e r D) by A I g 0 r i t h m I 0 f C h . 2 0 r (A 2) 0 f___ _ __ -

Appendix and check if the condition,(3.6) of Cor.(3.1.1) is satisfied 

2. Choos~ any FEf(V*) as in the proof of lemma (2.2) or by 

algorithm (A4) of Appendix. 

3. u=Fx is the desired control law. 

2. DISTURBANCI:: DI::COUPLING BY MI::ASURI::MI::NT FI::I::DBACK 

Although the theory developed in the preceeding section"gives 

an easy solution to distuibance decoupling problem, it req~ires that 

the whole state vector is accessible to direct measurement.This 

assumption is rather restrictive in practical applications and 

hence controllers should be of measurement feedback type. 

Thus the problem that we pose is to find a feedback map 

K:Y -+ U such that in the closed loop system 

~=(A+BKC)x+l::q 

y=Cx "z=Dx 
( 3 • 7 ) 

resulting from tha control law u=Ky, the disturbance actions are 

localized in kerD. 

This problem was first solved by Hamano and Furuta in ~J. 

Theorim (3.2.1) below gives their main result; We first give a 

definition and a lemma which is motivated by the form of the syste~ 

matrix in (3.7) 
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Definition 3.2.1: A subspace VeX is said to be an (A,B,C)-invariant 

subspace if there exists K such that (A+BKC)VeV· 

The set of (A,B,C)-invariant subspaces will be denoted by 

L(A,B,C) 

Lemma 3.2.1: ~(A,B,C)=!(A,B)n~(c,A) 

Proof : Take V E~ ( A , B , C ) . By De f .( 3 . 2 .1 ) there exists a mat r i x K such 

...... ~ 

that VE.!.(A+BKC). Setting G=BK and F=KC. it is seen that . -- ... 

VE.!.(A+Gc)n.!.(A+BF) Thus by Lemma (2.2) and Lemma (2.3) VEV(A,B)n~(C,A). 

For the reverse inclusion take VE!(A,B)nQ(C,A). Let 

{x
1 

•• • x
j

,X
j

+
1 
..• xk } be a basis for V such that {x 1 ... x j

} is a basis 

for VnkerC.Because VE!(A,B) there exists u.EU and v.EV such that 
l l 

Ax.=v.+Bu. (i=1 ... k) 
l 1 1 

Noting that the veptors {Cx j +1 ... Cx k} are linearly independent we 

can define K:Y -)- U such that 

KCx.=-u. 
1 1 

(i=j+1 ... k) 

Then we have (A+BKC)x.=v.EV for i=j+1 ... k but also (A+BKC)x.=Ax.EV 
. l 1 1 l 

for i=i . .. j because A(VnkerC)ev. Thus (A+BKc)veV and by Def;(3.2.1) 

VE~(A,8,C) • 

The6rem 3.2.1 The problem of disturbance decoupling by measurem~nt 

feedback is solvable if and only if 

3VE!(A,B)n~(C,A) such that imE: e ve!<erD ( 3 . 8 ) 

P r 00 f: The proof is a g a in bas e don Pro p . ( 3 . 1) w h i chi s· fun d e men tal 

for disturbance decoupling. 
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" i filL e t the c los e d 1 0 0 P s Y s t em (3. 7) 0 b t a i ned by the con t r 0 1 1 8\'1 

~=Ky be disturbance decoupled. It follows from Prop.(3.1) that 

3VEl(A+BKC) such thatimEcVckerD, The.result now follows from 

Lemma (3.2.1) 

"Only if" Assume (3 .. 8) is satisfied. V can be made (A+BKC)-invariant 

by suitable choice of K:Y ~ U as in the proof of Lemma (3.2.1). 

Hence the system (3.7) is disturbance dectiupled by Prop.(3.1) -

O'n c e a sub spa c e V sat is y fin g (3. 8) is g i v e nco m put in g a 

corresponding feedback matrix K such that (A+BKC)VCV is very easy. 

Just replace (A+BF) by (A+BKC) in algorithm (A4) of Appendix. The 

key problem therefore is to check the existence of an (A,B,C) 

invariant subspace in between imE and kerD and to construct if one 

exists. This problem is not solved in literature and is open for 

future research. 

Another disadvantage of disturbance decoupling by direct 

measurement feedback is that the condition (3.8) is stronger than 

its ,state feedback counterpart (3.5) To overcome these dissiculties 

disturbance decoupling by dynamic measurement feedback has been 

propesed in [5J, [6J and [7J which is the topic of the next section. 

3. DISTURBANCE DECOUPLING BY DYNAMIC MEASUREMENT FEEDBACK 

So far the feedback structures used for disturbance decoupling 

were all linear, time invariant and memoryless. Here we will allow 

dynamic processing of the measurements before feedback. 

We consider the some model (3.1) for the plant and assume 

that the control ihput is synthesized by means of the dynamic­

compensator: 

o 

w=Nw+My 

u=Lw+Ky 

(3.9a) 

(3.9b) 
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where wEW is the state of the compensa.tor. The order of the compensator 

is dimW. Combining equations (3.1) and (3.9) gives rise to the 

closed-loop system with state space XEBW. 

[~l ; [A+BKC ~l [:] + [~] q 
MC 

(3.10a) 

z= [0 OJ I: ] 
the problem of disturbance decoupling bydynamic measurement feedback 

can now be formulated as follows: Find the compensator matrices 

(N,M,K,L) appearing in (3.9) such that the closed loop system (3.10) 

has z~ro transfer function from q to z. 

The solution to this problem is given in the references cited. 

We give below an alternative proof which yields the same result. 

First we define two mappings between extended state space 

Xe=XEBW and X. The projection P:X e 
-+- X is defined by 

P [:] =x (3.11) 

and theerilbedding S:X -+- Xe is defined by 

Sx= -[x oJ 

For a subspace Ve of Xe , we have 

vp~pve={xEXI3WEW: [:]EV
e

} 

V i ~S-1 Ve ={ xEX I [8J EVe} 

(3.12) 

(3.13) 

(3.14) 

Less precisely, V. may be viewed as the projection of V
e 

on the X 

space, and V. mayP be viewed as .the intersection of V
e 

with X space. 
1 
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Lemma 3.3.1: The clused loup system (}.10) is disturbance decoupled 

if and only if 

3 V0 I (A ) 
c 

such that im!: ffi 0 c V C WffikerD 

where A is the system matrix of (3.10) 
c 

Proof:. By noti~g im [~J = S(im(~=im( ffi 0 and 

ker rD 0] = P- (kerD)=WffikerD. The lemma is a direct consequenee of 

Prop. (3.1) • 

Lemma 3.3.2: Let VcXe be A -invariant then 
c 

V.=S-1 VEQ (C,A) and V =PVEV(~,B) with VcV 
I P - I P 

Proof: The fact V.cV folluws directly from (3.13) and (3.14) 
I P 

To prove that A(V.nkerC)cV. take xEV.nkerC: we have to show that 
I. I 1 

AxEV .. This follows upon noting that 
I 

Next, take xEV ; we have tu prove that Ax+Buf.V for some uEU. 

Take wEW such ~hat. [:] EV; then p 

[
AX+B (KCX+LW)] 

MCx+Nw 
BL l [x] 
N J w 

so that u=KCx+Lw suits our purposes. 

EV 

Now the concept of dynamic extension wIll be Intruduced: 

Definition 3.3.1: Let E be the system given by (3.1) 

The systemEe wIth Input (u,v), state space Xe=XffiW, measurement 

(Y1' Y2) and defIned by 

• 



[ ~1 

~J [:] +. [: ~1 tJ + {:] 4 
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IS called on extensiun of E. The system matrices for the extended 
e e e e system will be respectIvely denoted by A , S , ( , e . 

According to this definition the extended system is obtained· 

by incorpo~ating q=dimW integrators to the syste~ (3.') an~ takin~ 

the ~utputs of the lnteqrators as additional mgasure~ents. 

Lemma 3.3.3: Any dynamIc compensator of the form (3.9) around the 

system (3.') IS equivalent to a static measurement feedback control 
e 

applied to the extended syste~ E . 

e e e e Proof: The contrul law u =K y with K partitioned as: 

Ke=~ ~J y~elds exactly the compensated system (3.10) • 

The following lemma gets us very close to the solution by 

showing how one can produce (A,S,e)-invariant subspg~e3 by extenslon, 

Lemma 3.3.4: Let V1~~(e,A) ahd V2E~(AtS) with V,CV2. Then there 

exists an extension space W of dimension: dimW=dimV 2-dimV
1

and 

an (A e , Se, ee)-invariant subspace V of XmW, su~h that V
1

=S-1 V 

and V
2

=PV. 

Proof: Let W be a lInear spa~e of dlmensio~: dimV 2-dImV" and let 

R be a mapping of V2 onto W such thatkerR=V 1 , Introduce 
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Then it is clear· that V1=s-1 V V2=PV and we need only to show that 

VEL(Ae,Be,C
e

). But this follows by noting that AeWcW+imB e which means 
- e e e \ 

that VE'!JA ,B ) and VnkerC =(V1nkerC).ffiO so that 

Ae(VnkerCe)cV. Thus VEV(Ae,Be)nQ(Ce,Ae)=L(Ae,Be,Ce) 
- - -

by lemma (3.2.1) • 

Lemmas (3.3.2) and (3.3~4) are converses of each other in the 

( ) ) -1 sense that Lemma 3.3.2 shows for each VEI(A PVEV(A,B), 5 VEQ(C,A). 
- c - -

and (3.3.4) shows that to any pair of subspaces V
1

EQ(C,A) and 

V 2 E V ( A , B) wit h V 1 cv 2 the r e cor res p 0 n d s K e : Y e ~ U e and V E 1.. ( A c ) . 

The following theorem for the solvability of disturbance 

decoupling problem by dynamic measurement feedback should now be 

obvious. 

Theorem 3.3.1: The problem of disturbance decoupling by dynamic 

compensation is solvable if and only if there exists a subspace 

pair (V 1 'V 2 ) such that 

(3.15) 

Proof: Necessity of (3.15) follows from Lemmas (3.3.1) and (3.3.2) 

Sufficiency can be proved by constructing a subspace VEh(Ae,Be,Ce) 
e e e using Lemma (3.3.4) then a map K :Y ~ U as in the proof of 

Lemma (3.2.1) such that VElCAe+BeKeCe)=lCAc) and satisfies 

Lemma (3.3.1) • 
Of course, one wishes that condition (3.15) of Theorem (3.3.1) 

can be checked constructively (that is, by an algorithm) if the 

system parameters are known. This can be achieved by computing the 

smallest (C,A)-invariant subspace containing imE ?y algorithm IV 

of Ch.2 and the largest (A,B)-inva~iant subspace in kerD by 

algorithm I. So we arrive at the following constructive criterion. 
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Corollary (3.3.1): Disturbance decoupling by dynamic observation 

feedback is solvable iff 

(3.16) • 

Several remarks are in order here: 

Remark 1: A pair of subspaces (V
1

, V2 ) having the properties stated 

in Lemma (3.~~is called a (C,A,B) pair by Schumacher and is used 

effectively in DDP [5J DDE:P ·[11J and Regulator synthesis problems [9J. 

Remark 2: Condition (3.15) for the solvability of DDP by dynamic 

compensation is seen to be stronger than (3.5) for the solvability 

of DDP by state feedback but weaker than (3.8) for the solvability 

.by direct measurement feedback. In short, assuming that all state 

variables are accessible the following implications hold for the 

solvability of DD~ DDP by direct measurement feedback ~ DDP by 

dynamic measurement feedback ~ DDP by state feedback 

In other words (3.8) ~ (3.15) ~ (3.5) 

Remark 3: The order of the feedback compensator that can be designed 

using the subspace pair in Cor.(3.3.1) is dimW=q=dimV*(kerD)­

dimQ*(imE:). This gives an upper bound for the compensator order. 

The minimal extension order which is necessary for the solution 

of the problem is given by 

A lower bound for qis obviously zero in which case V1 coIncides 

with V
2 

so that disturbance decoupling by direct measurement 

feedback is possible. Thus static measurement feedback can be 

viewed as a compensator of order zero. The minimal compensator 

order q* is not known and is an interesting research problem. 



R em ark 4: Sup p 0 set hat all s tat e va ria b 1 e s are a v ail a b 1 e for 

measurement. In this case one wishes to know if dynamic state 

feedback in the spirit of Sec.(3.3) b~ings any improvement for 

the solvability of disturbance decoupling problem. This can be 

investigated by setting C=I or kerC=O in (3.16) so that 

Q*(C,A:im()=inF{Q: A~QnkerC)cQ, imEcQ} =imE 

Thus (3.16) reduces to imEcV*(A,B:kerD) which is identical 

to (3.6). 
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We arrive at the conclusion: There is no difference between 

static state feedback and dynamic state feedback as for as the 

solvability of DDP is concerned. Of course we prefer static state 

feedback because of its simplicitiy. 

Remark 5: As a final comment we prove that disturbance decoupling by 

dynamic measurement feedback is not solvable if kerDckerC. This 

can be justified as follows if kerDckerC, condition (3.16) becomes 
/ 

which means that the original system is already disturbance decoupled 

contrary to our basic assumption. The result just proved can be 

stated as: A system that is not' disturbance decoupled can not 

be made so by any form of observation feedback in case the observ"ation 

is a function of the variable to be regulated.(See also Lemma (4.1.3) 

A simple example will now clarify the theory developed 

EXAMPE: Let the system (3.1) be given as 

1 
o 
o 

1 1J D = [1 o OJ 
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It is readily checked that kerD is (A,B)-invariant so that 

V*(kerD)=im [! ~] im(CV*(kgrD) 

feedback is solvable. 

thus disturbance decoupling 

by state 

But we assume only the measurements yare available for feedback. 

Condition (3.16) for disturbance decoupling by dynamic compensation 

iss a tis fi e d . 

VEL ( A e , B,e , C e) is con s t rue ted as in the proof 0 f L .e m m a (3. 3.4) 

For this choose R:V 2 -+- W to be R=[O 1 OJ. Notice that kerR=Q*(imJ::). 

Then v = Ir x . J: x Ev 21 = i m [~ ~l 
llRx f 0 1 

,1 0 
,. -

made A =Ae+BeKeC e invariant by suitable Ke:ye -+- Ue (D~fining a dynamit 
c e 

feedback law) Such a K can be calculated as in Lemma 3.2.1 or by 

the procedure described in algorithm 4 of Appendix 

LJ = lro -1J N 1 -1 

The compensator (3.9) is now given by: w=-w+y, u=-w 

F(s) in Fig.(3.1) is: 
U(s) _1 

F ( s ) =YTS) = -s-+-:-1-

The closed loop system is shown in the figure below 

q -- PLANT ~ z 

--- y u , 

1 - s+1 
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IV) DISTURBANCE DECOUPLED ESTIMATION PROB~EM (DDEP) 

Consider a linear, time. invariant dynamical system represented by 

x=Ax+Bu+Eq 

y=Cx z=Dx ( 4 • 1 ) 

n m p where x~X= IR, uEU= rn , yEy= IR are the state, the input and the 

observation respectively, qEQ= rn r represents the unmeasurable 

disturbances~ zEZ= rn l denotes the to be estimated outputs. 

The disturbance decoupled e~timation problem is the problem of 

constructing a related system, an observer, driven by u(t) and yet) 

of system (4.1) and giving the output ~(t) 

w=Nw+My+Gu 

~=Lw+Ky 

such that the resul,ting estimation error 

e(t)~Z(t)-z(t) 

( 4 • 2 ) 

(4.3) 

depends only on the initial conditions x(O), w(O) and not on the 

disturbance q or on the input u. 

Thus the problem can be visualized as in the following block 

diagram. 

z 
... _-_._--- ---- .. -... -----.-.-------~ 

+ 
PLANT 

y u-r 
- --- ---.. ----.--- ... --. -. -"-- .-- -.. -.---.-... ---- '-'---_____ J 

f---... - .. -... ------

ESTIMATOR 
'" z 

Fig.4.1 
In sec.(4.1) it will be shown that this problem formulation 

allows us to design an estimator of the form (4.2) that estimates 

the function z=Dx when the initial state x(O) of (4.1) is given. 
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1. ~5TIMATION WITH GIV~N INITIAL 5TAT~5 

Combining equations (4.1), (4.2) and (4.3) the composite system 

corresponding Fig.4.1 can be describ~~ by 

(4.1.1) 

e=z-z= [KC-D LJ [:] 

It follows from the above problem definition that the composite 

system (4.1.1) must be disturbance decoupled relative to the pair 

[u, qJ ,e if (4.2) is to be an estimator for the plant (4.1). 

I f the composite system matrices are denoted by A ,B and D 
c c c 

respectively this requirement can be stated formally as: 

Lemma 4.1.1: The system (4.2) serves as an estimator for the 

system (4.1) if and only if there exists on A -invariant subspace e . c 
V of the extended state space X =xmW'such that 

imB eVe kerD ( 4 . 1 • Z) '~.--
c c 

Proof X The lemma is a direct consequence of proposition (3.1) and 

the problem statement • 
For the proof of the main theorem on disturbance decoupied 

estimator design two more lemmas are needed. The first one is 

the analog of Lemma (3.3.2). The projection P and the embedding 

5 between Xe and X ,are defined as in (3.11) and (3.12) 

Lemma 4.1.2: Let V be an Ac-invariant subspace of X+W then 

b. -1 () b. CI(A) V , :.:5 VEQ C, A and V =PV, .. 
1 P -

Proof: Take xF.V inkerC; then [8J \EV and 
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fA 01 [ox] = [OAX]E.V I~c NJ since V is Ac-invariant by assumption. 

So AxEV i which proves that A(VinkerC)cV
i

. hence V. is an (C,A)-
invariant subspace of X by definition. 1 

To prove that PV is A-invariant, take xEV then there exists 

[:] EV. and 
p 

wEW such that so' 

[~C ~J ' [~J = [MC~:NWJ EV. Thus AxEV .. 
p 

The next lemma is a standard result on linear matrix equations. 

Lemma 4.1.3: Let M and N be given matrices of arbitrary dimensions. 

There exists a matrix X of appropriate dimension such that XM=N 

if and only if kerMckerN 

Proof: II i filL e t X b e sue h t hat X M = N, uE k e r M imp 1 i est hat 

XMu=Nu=O thus uEkerN provi~g that kerMckerN 

"Only i fll Assume that kerMckerN. Choose a basis {u 1 ... u ,u 1 ... u } m m+ n 
for X such that {u 1 ... u} is a basis for kerM. Then m+ n 

Mu.=Nu.=O for i=m+1 ... n 
1 1 

Define the matrix X :imM ~ X by its action on the linearly 
o 

independent vectors Mu. (i=1 .. :m) such that 
1 

X (Mu.)=Nu. 
011 

for i=1. .. m 

and let X be any extension of X o 
equation XM=N 

from imM to X then X satisfies .the 

• 
Theorem 4.1.1: There exists a solution tu the disturbance decoupled 

estimation prublem 

if and only if 

3QEQ(C,A:imE) such that QnkerCckerD (4.1.3) 

~.--



)roof: "Necessity" Operating on both sides of (4.1.2) with S-1 

Jne ,gets: 

32 

S-1(imB )cS-1VcS- 1 (kerD) 
c . - c (4.1.4) 

5etting V.=S-1 V and using the relations imEcS- 1 (imB ), 
-1 1. c 

5 (kerD )=ker(KC-D) (4.1.4) can be simplified to c 

imE:cV. cker(KC-D) 
1 

(4.1.5) 

The fact that ViE!!(C,A) has been proven in Lemma (4.1.2) thus it 

suffices to show that V.nkerCckerD to complete the proof of the 
1 

necessity part. For this take any xEV.nkerC then 
1 

Dx=( D-KC) x=O 

Where the first equality is a result of x~kerC and the second folldw 

from xEV., V.cker(D-KC) by (4.1.5) Thus xEkerD which implies that 
1 1 

V.nkerCckerD 
1 

"Sufficiency" What needs to be shown is that: given a subspace 

QEQ(C,Aj imE) with QnkerCckerD the observer parameters (N,M,G,L,K) 

can be chosen such that there exists an A -ihvariant subspace in c 
between imB and kerD as required by Lemma (4.1.1). . c c 

Let Vz be an A-invariant subspace containing (Q+imB). Such 

a subspace can always be fourid because the state space X is 

A-invariant and (Q+imB)cX. Define the observer state space W to 

be a linear space of dimension: 

dimW=dimVZ-dimQ 

Let R be a linear mapping from Vz onto W with kerR=Q and write 
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v = {{~xJ: xEV 2} (4.1.6) 

As Q is (C,Ar-invariant G :Y-+ X can be picked such that (A+G C)QcQ. 
0' 0 

Now lemma (4.1.3.) allows us to define N such that: 

(4.1.7) 

because xEQ=kerR implies (A+G C)xEQ. Thus kerRckerR(A+G C). Set 
a 0 

M=-RG 
o 

For K we do the following construction. 

(4.'1.8) 

let {v .... v., V. 1 ... \"~} be a basis 
·l J J+ '" 

for Q such that {v .... v.} is 
l J 

a basis for QnkerC. K is defined by its action an the linearly 

independent vectors Cv. (i=j+1 ... k) as l ,. 

KCv.=Dv. for i=j+1.~.k 
l l 

(4.1.9) 

Note that for i=1 . .. j this relation is automatically satisfied 

KCv.=Dv.=O for all v.EQnkerCckerD by assumption. Thus 
l' l l 

since 

(D-KC)v.=O for i=1 ... k or in other words Qcker(D-KC) has been 
l 

achieved by this construction of ~. 

Again employing lemma (4.1.3) L can be computed from 

lR=D-KC 

because kerR=Qcker(D-KC). Finally set 

(4.1.10) 

(.4.1.11) 

All parameters of the system (4.2) have been specified. Now it 

remains t~ check that the so constructed system is indeed an 

estimator for the plant (4.1). It follows from (4.1.7) and (4.1.8). 

that 
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(MC+NR)x=RAx for all xF..V 2 

so that 

~] [:J = [::J E V for all xEV 
2 

so it is seen that the subspace V defined by (4.1.6) is A -invariant. c 
Moreover it follows from (4.1.10) thatVcker[KC-D L]=kerD and c 
from the assumptions im~cQ, imBcV 2 and (4.1.11) that imBccV • 
Remark:1A distinctive property of the estimator designed by the 

method of Thm.(4.1.1) is its "dead-beat" character. The observer 

output z (t) tracks the to be estima ted output z (t) from t=O on if 

the proper initial condition w(o) is put on the system (4.2), 

that is the error e(t) defined by (4.3) is identically zero for 

all t~O. 

The largest A -invariant subspace of kerD which is defined , c ' c 
in (2.7) as the unobservable subspace of the composite system (4.1.1), 

contains the initial values [x(O), w(O)] from which the composite 

system will move in such a way that the error is zero for all time. 

It was shown in the proof of Thm(4.1.1) that the space V defined 

by (4.1.6) is A -invariant and contained in kerD therefore it is c c 
a subs~ace of the unobservable subspace of (4.1.1). Hence if the 

initial state x(O) of the plant is known the desired dead-beat 

response can be obtained by starting the estimator system with the 

initial condition 

w(O)=Rx(O) ( 4 . 1 . 1 2) 

On the other hand if the initial condition w(O) is not 

properly chosen the convergence of 2(,t) to z(t) can not be 

guaranteed because in the problem statement it is only required that 

the error be independent of the input u and the disturbance q. 

nothing has been said about the asymptotic stability of the 

composite system (4.1.1). Thus the proposed method may be viewed 

as: estimation in the presence of unknown inputs but known initial 

conditions. In the next section we will allow both the initial 

state and the input to be uhkn~wn. 
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Theorem (4:1.1) and the remark 1 abo~e, provide a constructive 

procedure for designing estimators when the initial state x(O) of 

(4.1) is known. Given a subspace QCX ?atisfiying condition (4.1.3) 

of Thm.(4.1.1) an estimator can be designed quite easily following 

the proof of sufficiency. On the other hand there is a constructive 

way of checking whether (4.1.3) holds or not for a given problem. 

R e call fro m C h . 2 t h a't a man g the (C. A) - in v a ria n t subspaces con t a i n i n g 

a given subspace there is a smallest one which can be computed 

by algo~ithm 4 of Ch:2 so (4.1.3) can be checked by computing the 

subspace Q*(C,A;im(). If (4.1.3) does not hold for this choice 

of Q E!! ( C , A ; i m ( ) then none of the m P. m her s i nil (C , A ; i m ( ) can sa t is f y 

(4.1.3) because Q*(im()cQ and Q*(imE)nkerCcQnkerC for all 

Q fQ ( C , A ; i m (.). T his res u 1 tis s tat e d a sac 0 roll a r y below. 

Corollary 4.1.1: Given the initialstate of (4.1), there exists 

an observer estimating the function z=Dx, if and only if 

(4.1.13). 

Before closing this section we would like to point out two 

important aspects of our approach that differs from classical 

observer theory which will also be discussed by geometric methods 
r 

in the next section. 

Remark 2: The system (4.2) 'is the most general linear, time 

invariant, dynamical system that can be thought as an estimator. 

No assumptions have been made about the structure of the plant or 

of the estimator. This may be compared with the usual approach 

.to observer design where it is implicitely assumed that the 

plant (4.1) is controllable and the observer (4.2) is qbservable. 

Remark 3: The common practice in observer design is to take the 

subspace V
2 

introduced in the proof of Thm(4.1.1) to be the state 

space X. In fact this is the only possible. choice for V2 if the 

system (4.1) is controllable. In this case one can design an 

observer of order (n-dimQ*(im()). Of course, this choice of V2 
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need not be optimal. For instance once the ~ubspace Q*(imE) has been 

computed V2 can be calculated by formula (2.6) to be the minimal 

A-invariant subspace containing imB+Q*(imE) to reduce the order 

of the de~igned observer. This fact is especially clear when imB 

and/or imE coincides with the zero subspace. No extra dynamics 

is required to estimate the states of a stable undisturbed system. 

This is in contrast with the classical approach to observer design 

which always predicts (n-p) for the order of a minimal order 

observer 

EXAMPLE: Let A 
1 
o 
o !] , B = [~J ' ( =[~], C = [1 1 1 J, D = [1 0 0 J 

and x(O)=x is given 
o 

Q.(C,A;im()=im(=im [~] it is easily veri fled that (4.1.13) holds 

Let V,2 = X = IR 3 the nit i s po s sib let 0 des i g non est i mat 0 r 0 r 0 r d e r t \I/O • 

R:X·~ W= m2 
is given by R = [~ o 

1 
Notice that kerR=Q*(imE) 

.§.(Q*)~ {G:Y ~ XI(A+GC)Q*cQ*} can be calculated by using Lemma (2.3) 

'or algorithm 4 of Appendix as: 

~(Q.) ={r!] where 9EIR} 

GoE~(Q.) is chosen as Go = H] then A+GoC = H -i g] 
Calculate N using (4.1.7): N=~~ -~J and M from (4.1.8): 

M [ OJ K is found from (4.1.9) as: K=O. (4.1.10) gives the value = 1 

L=[1 OJ. Finally G is calculated by (4.1.11) to be G=[~J 



Now the estimator system is given by 

z=[J OJw 

w(O)=Rx 
o 
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I ~ 6 ~ 1 
I t can b e i mm e d i ate 1 y S how nth a t V = { [~ J ' x EX} = i m 6 ~ ~ J i s 

_0 0 1 

0 1 0 o 0 
0 0 1 o 0 

A = 0 0 0 .=0.=0 invariant, contains imB c 
0 0 0 0 1 

1 1 1 -1 1 

and is contained in kerD =ker [-1 0 0 1 OJ 
c 

[i ~1 = c 

2. OBS(RV(R D(SIGN FOR LTI SYST(MS WITH UNKNOWN INPUTS AND 

M(ASUR(M(NT (RRORS 

A linear time invariant system of the furm (4.2) serves as an 

observer for the plant 

x=Ax+Bu+(q 

y=Cx+Fd 

if and only if 

z=Dx 

Lim 
t~oo 

[z ( t) - z ( t)J = 0 fur al x ,w ,q,d,u 
o 0 

(4.2.2) 

The new term d~D=IRs in the model (4.2.1) represents the 

unknown measurement errors which must be taken into account for 

a more accurate description of the physical problem. Though the 

ubserver problem has been studied extensively since the original 

w~rk uf Luenberger[9J it was not sulved in literature by taking 
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the measurement errors into consideration ~o the results below are 

new with this respect. 

Two types of observer can be defined depending on the convergence 

in (4.2.2) I) STABLE OBSERVERS: The convergence in (4.2.2) takes 

place with exponents belonging to a "good part" [g of the complex 

plane. The error poles lie in [g. 

II) FIXED POLE OBSERVERS: The exponents of convergence in (4.2.2) 

belong to a specified symmetric set, A, of complex numbers. The error· 

poles can be assigned arbitrarily. 

The choice of error dynamics is of practical importance in 

observer problem because the response of the estimator system 

must be rapid compared with the time constants of the plant if it 

will be used to implement a feedback control law. 

Defining the estimation error as in (4.3) and combining 

equations (4.2.1) and (4.2) giv.e rise to the following composite 

system (observer+plant). 

rx1 
LwJ 

r A 
LMC 

01 rx1 + rBG 
NJ LwJ L 

e= [KC-D LJ [:] + KFd 

E 
o 

o 1 r u 1 
MF J t. ~ J 

The following assumptions are made for the plant and the 

observer: 

A1. The pair (A,B) is assumed to be cuntrullable. 

A2. The pair (L,N) is assumed tu be ubservable . 

(4.2.3) 

. Assumption (A2) is by nu means restrictive. If the observer 

is not.ubservable a luwer order ubserver can be designed satisfying 

the same stability requirement (4.2.2) as the uriginal one by 

taking the observable part. Thus (A2) is a necessary condition to 

design a minimal order ubserver. Assumptiun (A1) can also be 

justified because the unwanted signals are mudeled separately as 

the disturbance term q hence it is reasonable to assume that the 
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plant is completely controllable by the control vector u which is 

at the controller's disposal. 

Necessary and sufficient conditions for (4.2) to be an observer 

for '(4.2.1) are given in the th~orem below following the works in 

[1 OJ ' [11J and [12J and making the required change to accomodate 

the presence of measurement errors d. 

Theorem 4.2.1: The necessary and sufficient conditions for (4.2) 

to be' a stable obse,rver for (4.2.1) are: 

and there exists a matrix V such that 

NV-VA+MC=O 

D-LV-KC=O 

G-VB=O 

(4.2.4b) 

(4.2.4c) 

(4.2.4d) 

VE:=O 

MF=O 

KF=O 

(4.2.4a) 

(4.2.4e) 

(4.2.4f) 

(4.2.4h) 

Proof: Sufficiency is proved by defining the estimation errors: 
6. 6.~ e1 = w - V x e = z - zan d b Y not i n g t hat e 1 i s 9 u v ern e d b y the 

differential equation: 

and 

8
1

=Ne
1

+(NV-VA+MC)x+(G-VB)u-VE:q+MFd 

e =Le
1

+(LV+KC-D) x+KFd 

It is clear from these relations that if (4a)-(4g) hold e(t)~O 

as t~oo with exponents lying in [g. 

Because of the references given if suffices to pruve the_ 

necessity of unly (4f) and (4g) which however follows by writing 

,t h e t ran s fer fun c t ion fro m d toe 0 f (4. 2 . 3) as: 

-1 
KF+L(sI-N) MF=O 
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-1 -1 
~xpanding (sI-N) into powers of s according to: 

( ) -1 -1 -2 2-3 sI-N = Is +Ns +N s + ..... . 

and equating the coefficient of s-k to zero yields 

and [tN 1 MF=O 
LN2 

. . 

which implies MF=O since 

ker 
LN 
L ·1 L~2 =0 because of the assumption that the pair (L,N) is 

_ . J 
observable. • 

The conditions (4a)-(4g) are given in matrix terms in the 

above theorem. These will be translated into subspace relations in 

the next theorem. This theorem also shows the power and economy of 

the geometric <lppfo<lch in <l ,st:rikjng wny by sluinking the seven 

conditions (4) to a single subspace inclusion relation. 

Theorem 4.2.2: There exists a stable observer for the system (4.2.1) 

if and only if 

3VgE~g(A' ,C I ;kerE') such that imD'CVg+imC ' ( 4 . 2 . 5 ) 

where C=TC~ T being a matrix such that kerT=imF 

Proof: II 0 n 1 y i f II if th e s y s t em (4. 2 ) s e r v e s a san 0 b s e r v e r for 

(4.2.1) there exists a matrix V satisfying (4a)-(4g). L~t V be a 

subspace spaned by the columns of VI ie., V=imV' and let T:Y ~ Y 

be such that kerT=imF then (4f) and (4g) hold if and only if 

there,exists matrices M, R of appropriate dimensions such that 

(4.2.6) and (4.2. 7) 
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this follows frum Lemma (4.1.3). Writin C=TC, substituting (6) and 

(7) into (4b) and (4c) and taking transposes it is seen that 

VEV(A' ,C~). Then by lemma (2.2) at least a map M'E!:..cV) exists such 

that 

(A~-C'M~)V'=V'N' ( 4 • 2 • 8 ) 

The reason is evident: assuming that (8) does not huld for all 

M'EF(V) contradicts with the fact that VE~(A' ,C'). Now comparing 

(8) with (2.4) we can conclude that 

N'=(A'-C''M')\ V (4.2.9) 

In view of (4a), (4e), (8) and the fact that a(N' )=a(N) we have 

frum definition (2.5): VE~g(A',C';kerE') and (4c) implies 

imD' C imC+V ' 

"if" Given a subspace VgE~g(A' ,C' ,kerE') with imD'cim£-'+Vg start 

by computing a suitable M'E~(Vg) satisfying 

(4.2.10) 

Let V be a matrix such that 

imV'=Vg (4.2.11) 

Calculate M from: M=VM and M from 

where T is defined as earlier: kerT=imF. Set 
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Calculate Land K satisfying 

(4.2.12) 

and K from 

K=KT 

Set 

(4.2.13) 

Then (N,M,~,L,K) are the desired observer parameters satisfying 

(4a)-(4g) 

The above theorem gives a design procedure when a subspace Vg is 

given having the properties required in the theorem statement. On 

the rither hand the existence of ~uch a subspace can he checked 

contructively by computing the supremal (A',C')-stabilizability 

subspace in ker(' by algorithm 3 of Ch.2 or (AS) of the appe~dix 

so we arrive at the following constructive corollary for the 

observer design problem for the system (4.2.1) 

Corollary 4.2.1: There exists a stable observer for the system 

(4.2.1) if and only if 

ImD'~imE'+V*(A' ,E';kerE') 
g 

where E is defined as in theorem 2. 

(4.2.14) 

• 
It is seen from the above theorems that the measurement errors d 

essentially cause the measurements which are corrupted by the 

noise to be completely discarded. An analogous situation occurs for 

the disturbance input q as well this will be shown in theorem (4.3.3) 

Next we consider the kind of error poles of the observer which 

is constructed for the subspace Vg satisfying the conditions of 

theorem 4.2.2 Theorem (2.3) plays a key role here the result is 

stated as a theorem below. 
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Theorem 4.2.3: Let VgEVg(A',C';kerl::') be a stabilizability subspace 

for which an observ~r is designed as in theorem 4.2.2 Let 

no~dimvg and n,~dimR*(A',C';vg). Then-among the n poles of the 
o 

observer n, can be freely assignable by suitable choice of FE~(Vg) 

and (no-n,) are fixed but guaranteed to be in [g. 

Proof: Be~ause of the observability of the pair (L,N) the error 

poles are identical with the observer poles and are given by the 

eigenvalues of the matrix N. From (4.2.9) and theorem (2.3) we can 
write 

where 

b.. * Now the conclusion follows since there are n,=dlmR elements in v
F VIL ' 

and dim(--R* )=dimV -dimR*=n -n, elements in a goo 

From the spectral assignability property of controllability 

subspaces (theorem (2.2» and theorem 4.2.3 above, we ca~ 

immediately obtain the solution of the fixed pole observer problem 

pdsed at the beginning of the section. 

• 

Theorem 4.2.4: There exists ~ fixed pole observer for the system (4.2.1) 

If and only if 

3RE~(A' ,C' ,kerl::') such that imD'cR+imC' (4.2.15) • 

The constructive form of theorem 4 can be given as: 

Corollary 4.2.2: There exists a fixed pole observer for the system 

(4.2.') if and only if 

imD'cimC'+R*(A' ,C' ;kerl::') (4.2.'6). 
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The above theorems can be proven by exactly the some method used 

to prove theorem 4.2.2 andCor.(4.2.1) 

Remark 1: It is obvious that theorems.2 and 4, and their corollaries 

are also applicable to the observer design problem for the special 

cases when no unknown inputs and/or measurement errors are present. _ 

The splution'for these cases can be obtained by setting [=0 and/or 

C=C respectively. Similarly the results can be specialized to full 

state observers by taking D=I. Thus the problem was considered in 

its most general formulation except from the assumption (A1) and 

(A2). It is worth investigating the constraints imposed by these 

~ssumptions on the solution of the problem. 

Remark 2: The order of the observer which is constructed by the 

method of Theorem 2 or Theorem 4 is at most equal to 

dim(kerJ::" )=n-r 

where r=rankE=Number uf disturbances. This gives an upper bound fur 

the ubserver order if a solution of ,the problem exists. 

The order of the minimal order stable observer that estimates 

the function z=Dx of the system (4.2.1) is given by dimV o where 

V ~inf{V VE~g(A' ,C 1 jker['), imD'cV+imC ' } 
o 

A subspace V satisfying the above condition is called a generalized 

stable cover for imD ' (cf. [28]. [29J). Thus the equivalance of the 

minimal stable dynamic cover problem to the minimal order observer 

design problem is seen. Though there have been a number of papers 

on the former problem its complete solution is not known yet._ 

Remark 3: Sometimes the direct feed through term K may be constrained 

to zero in the observer system (4.2) in order to prevent additive 

measurement noise frum passing unfiltered into the estimate of 

z=Dx. An observer for which K=O is called a Kalman Observer and 

the general case K~O' is ' refered tu as a Luenberger Observer. 



45 

The necessary and sufficient conditions fqr the solution of Kalman 

-Observer problem can be obtained by setting K=O in Theorem (4.2.1) 

Theorem (4.2.2) Theorem (4.2.4) The results are: 

There exists a stable Kalman Observer for the system (4.2.1) 

if and only if 

3VgE!g(A' ,[';kerE') such that imD'CVg (4.2.17) 

There exists a fixed pole Kalman Observer for the system (4.2.1) 

if and only if 

3RE!!.(A',C';kerE') such that imD'CR (4.2.18) 

From (4.2.5) and (4.2.15) it is clear that solvability of Kalman 

Observer problem implies solvability of Luenberger Observer problem 

but not vice versa. 

EXAMPLE: Let the system (4.2.1) be given as: 

l
--6 

A = 2 
o 

+1 0 
O. 1 

-1 0 
1 1 

C = [00 00 1 0 ] OJ' D =1. F=O 

To determine the type of observer that can be designed for this 

system R*(A' ,C~ ;kerE') is computed by (A3) of Appendix I as: 

R * ( A ' • C ' ; k erE ' ) = i m r ~ ~l . 5 inc e the con d i t ion 0 f Cor. 4. 2 . 2 . 

lo 0 ~ 
o 1 

is not satisfied a fixed pole observer can not be designed. Next 

we try a stable ob~erver by defiining the stability region as 

usual [9={sE[: Re(s)<O} and computing V~(A',C':kerE') by (A5) of 

Appendix I as: 
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Vg (A"C';ker(')=iml~ ~ ~1 Cor 4.2.1 is satisfied by this subspace 

hence a stable observer can be constructed with one fixed pole and 

two ~ssignable poles. Following the pruuf of sufficiency uf 

Theorem 4.2.2. 

We compute F(V*)={F:(A'-C'F)V*cV*} by· the method described in (A4) 
- 9 9 9 

of Appendix I. This gives 

are arbitrary 

-1 0 2 

:J 0 -1 1 
and A'-C'F 

I 

= -f11 1-f12 

O. 1 
The restriction uf this matrix to the 

-f13 .1-f 14 

subspace 

2.- f 21 - f 22 1-f23 -f24 J 
V* is calculated tu be: 

9 

N'=(A'-C'F)lv* = 1 0 
[

-1 0 

9 2-f
21 

-f22 

The characteristic pulynomial p(s) uf N' is 

It is seen that one of the error poles is fixed at s1=1 and the 

rem~ining pules ban be assigned by suitable choice of f 24 , f 22 · 

Letting f
21

=f
13

=0 and f24=f22=4 gives s1=s3=-2. Thus 

N' = [-~ ~ ~] and M' uf (4.2.10) is selected to be 
2 -4 -4 
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M'=F = [~ , 1 0 
4 0 ~l Continuing the cnustruction given in 

theorem ( 4 . 2 . 2 ) 

= [~ 
0 

~J vie have from (4.2.11) V' 1 
M=VM [~ :] 0 and = 

0 

Land K are calculated from (4.2.12) as: 

K -- r6~ O~1J 1_ where the free parameters 

are taken as zeros for simplicity. Finally from (4.2.13) we have 

G -- [06~ J · Thus the observer system (4.2) is given by 

n 1 

-~] + [ ! n Y +[!] ,0 0 w w = u 
1 -4 

=H 
0 

~J r ~ ~J z=x 
1 
0 

w 
+ l6 y 

0 

Notice that the ,observer dynamics is used to recover the missing 

components of the state vector x. 
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We turn back to the system descri~tion given by (4.1) Our aim 

is to generalize the concepts of observable and unobservable 

3ubspaces which are well defined for systems having only the 

:ontrol inputs u; to those systems which are subject to disturbance 

inputs q as well. This study will lead to a new definition of 

Dbservability of the system (4.1) and also some interesting results 

which do not exist in literature. 

Definition 4.3.1: The l~rgest subspace of the state space X on 

which the orthogonal projection of the state of (4.1) can be 

estimated is cal~ed the observable subspace of (4.1) and denoted 

by O. ·The orthogonal complement of 0 is defined as the unobservable 

subspace and denoted by the symbol O. 

The term "largest" is justified below by showing that the set 

of subspaces on which the projection of the state vector can be 

estimated are ordered by subspace inclusion (ci) 

The estimation method is not specified in Def.(4.3.1). If a 

fixed pole observer of the furm (4.2) is used fur estimation 

purpo~es then it can be easily verified that the ubservable subspace 

which will be denoted by 0
1 

is given by 

(4.3.1) 

To see this, let D:X -+ X be the ortogonal projection operatur 

on 0, Now, as imD'=imD=imC'+R*(A',C';kerE') the·function z=Dx 
I 

can be estimated by a fixed pol~ observer according to Cor.(4.2~2). 

Furthermore 0 is the greatest subspace having the stated property 
I 

because R*(A',C';kerE') is the largest member of the family 

B.(A',C';kerE'). 
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The expression (4.3.1) given for the observable sub~pace of 

(4.1) is completely in agreement with th~ usual definition of 

observable subspace for systems which are not subject to unknown 

in put s. I f we set E = 0, k erE' = X in (4.3. 1 ) and R * ( A' ,C ' j X) is 

calculated by the algorithm 2 of Ch.2, 0
1 

reduces to 

0I=imC'+R*(A',C'jX)=<~' limC'> 

which was defined in (2.7) as the observable subspace of (2.1). 

By similar 'reasoning it can be proved that given the initial 

condition x(O), the unobservable subspace of (4.1) which will be 

denoted by OK is given as: 

(4.3.2) 

This follows from Cor.(4.1.1) and Def.(4.3.1) 

lt is appropriate to identify 0 1 and OK as observable subspaces 

of (4.1) forobservers based on integrators, because the observer 

system (4.2) used to estimate the ortogonal projection of the 

state vector on these subspac'es can always be realized by 

n
1

=dim,R*(A' ,C' jkerE') and n 2=dimV*(A' ,C' jk.erE') integrators 

respectively. 

In [15J, Basile and Marro showed that by taking successive 

derivatives of the measurements y(t), it is possible to estimate 

the ortogonal projectino of the state on the least (E' ,A')-invariant 

subspace containing imC'. and it is not possible to find any 

greater subspace where the projection of the state can ,be observed 

because this would mean that a trajectory on the greatest 

(A,E)-invariant subspace contained in kerC could affect the 

output y(t), which is clearly a contradiction. 

The estimation procedure proposed in [1~ was as follows: 

Start from the observations 
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y(t)=Cx(t) (4.3.3) 

which in order to emphasize the iterative character of the argument. 
can be written as 

y (t)=Q x(t) 
o 0 (4.3.4) 

where y (~)=&(t) is a vector of known functions of the time and o 
Qc=C is a known constant matrix. Using solely the vector equation 

(4.3.4). that is pseudo-inverting the matrix Q • the ortogonal 
o 

projection of the vector x(t) on the image of the transpose of the 

coefficient matrix can be determined. We denote this subspace 

by the symbol Q =imQ'=imC'. 
o 0 

I~ general. more knowledge of the state can be gained by using 

also the state equation (4.'): in fact, taking the first derivatives 

of (4.3.4) and using (4.'), we have 

(4.3.5) 

Since the disturbance vector function q(t) is unknown, in order to 

deduce some information on the state from equation (4.3.5) we must 
1 

employ its projection on the subspace [imQoE] =ker(E'Q~). Letting 

P, denote the orthogonal projection operator on this subspace, 

we obtain 

P
1

; (t)=P,Q Ax(t)+P,Q (Bu(t) 
o· 0 0 

(4.3.6) 

A twofold adv~ntage is obtained by this projection; the 

unknown input is dropped and a vector equation is obtained, both 

sides of which are again differentiable. In more compact notation 

(4.3.4) and (4.3.6) can be written together as: 

y, =Q , x ( t) (4.3.7) 
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where 

In order to deduce information about the state, it is convenient 

to employ (4.3.7) instead of (4.3.4)~ because QocQ1=imQ1. 

In fact, since 

(4.3.8) 

is the set of vectors which are mapped by Q' into kerE', the subspace 
o 

im(Q'P1')=Q'imP1' is equal to imQ'nkerE'=Q nkerE' so that the image 
o 0 0 0 

of the transpose of the coefficient matrix of (4.3.7) is 

and therefore, Q cQ, 
o 

( 4 . 3 . 9 ) 

Now starting from equation (4.3.7) by means of the some procedure 

one can derive lhe equaLion 

(4.3.10) 

which make it possible to determine the projection of the state 

on the subspace 

(4.3.11) can be pro~ed by the same arguments used in the proof 

of (4.3.9) noting that A'(QonkerE')CA'(Q1nkerE'), so that we can 

have Q
o 

instead of Q
1 

in the right side of (4.3.11) 

Iterating (n-1) times, one finally obtains 

. (4. 3.12) 
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where Yn-1 is a known function of the observations y, inputs u and 

of their derivatives, and Qn-1 is a known matrix such that 

Q 1=imUI 1=Q +AI(Q 2nker~l) n- ~n- 0 n- (4.3.13) 

The sequence of subspaces Q
k 

is nondecreasing and converges 

to the minimal (EI ,AI)-invariant subspace containing imC I which 

can be seen by comparing the sequence with the algorithm 4 given in 

Ch.2 Thus the largest subspace on which the projection of the 

state can be estimated ie., the observable subspace of (4.1) for 

observers based on differentiators is 

(4.3.14) 

By taking orthogonal complements of subspaces, it follows from 

Def.(4.3.1) and Theorem (2.1) that the unobservable subspace is 

given by 

(4.3.15) 

As for the subspace 01' 0D reduces to the usual definiticin of 

observable subspace if [=0 ie., if there are no unknown inputs. 

That is for systems which are subject to only control inputs u, 

the subspaces 01 and 0D coincide and given by 

if q=O, equivalently if E=O 

The precise relation between 01 and 0D will be given after 

the following theorem 

Theorem 4.3.1: Let R*(A,B; kerC)=Largest (A,B)-controllability 

subspace contained in kerC 

V*(A,B;kerC)=Largest (A,B)-invariant subspace contained in kerC 

Q*(C,A; imB)=Minimal (C,A)-invariant subspace containing imB 

i 



then 

R*(A,B;kerC)=V*(A,B;kerC)nQ*(C,A;imB) 

Proof: Define subspace sequences Vk ' Qk and Rk according to: 

-1 Vk=kerCnA (V k_1+imB) 

Qk=imB+A(Qk_1nkerC) 

Rk=V*n(AR
k

_
1

+imB) 

v =x o 
Q =0 

o 
R '=0 

o 
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(4.3.17) 

(4.3.18) 

(4.3.19) 

(4.3.20) 

It is known that the sequencesV k , Qk and Rk converge 

respectively to V*(A,B;kerC), Q*(C,A;imB) and R*(A,B;kerC) (c.f 

algorithms 1,2.4 of Ch.2). Thus it is enough to show that 

k=1,2, ... ,n (4.3.21) 

Since R1=v*nimB and Q1=imB, (4.3.21) is true for k=1. Assuming it 

holds at k=i there follows 

(4.3.22) 

where the induction assumption R.:v*nQ. and the fact V*ckerC is 
1 1 

made use of. 

For the reverse inclusion, let xcV*nQ. that means x=At+b for .L+1 
some t~Q.nkerC and b~imB. Since xEV*, At+bEV* w,hich implies 

. 1 

AtEV*+imB or tEA- 1 (V*+imB). Therefore 

-1 tE Q . n k e r Cn A ( V * + i mB ) = Q . n V * = R . 
1 .L 1 

where the induction assumption is used in the last step. Hence 

xEARi+imB furthermore xEV*n(AR i +imB)=R i +1 which establishes 

~.-

V*nQ. 1cR . 1 .L+ 1+ 
(4. 3:23 ) 

From (22) and (23), (21) and (17) follow. • 
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corollary 4.3.1: Let 

°I~Unobservable subspace of (4; 1) for observers based on integraturs 

°D~Unobservable subspace of (4.1) for observers based on differentiators 

ij.K~Unobservable subspace of (4.1) given the initial condition x ( 0 ) . 

then 

(4.3.24a.b) 

froof:lt suffices to prove only one of expressions (24) the other 

one follows by taking orthogonal complements of subspaces and 

recalling the identity: 

(4.3.25) 

From (4.3.1) 

Applying theorem 1 to write the equivalent expression for 

rP(J\'.C'jkcr(') with J\',r.'J' plClyinf) thr. r(Jl(~;. of A.R.C 

respectively. we have 

0I=imC'+(V*(A' .C' jkerE' )nQ*(E' .A' jimC')) (4.3.26) 

Taking orthogonal complements of subspaces in (26). employing 

identity (26) and theorem (2.1) repeatedly 

O=kerCn(V*(A,EjkerC)+Q*(C,AjimE)) 
I 

(4.3.27) 

Now -the result (24a) follows by applying the distributive rule 

in (27) which holds since V*(A,EjkerC)ckerC. 

•• 
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The two types of estimation method de~cribed in this chapter 

have been devoloped seperately and independently in literature. The 

close -relationship between the two methods, given by Cor(4.3.1) 

does not seem to be appreciated before~ 

Each estimation method has its own advantages and disadvantages. 

The differentiator based observer of this section provides a une step 

estimatiun procedure and has the largest observable subspace uf 

the two types of observers but it has some practical difficulties 

in its implementation. First~ the use of differentiaturs amplifies 

noise which is inherent in any kind uf measurement scheme;. secondly 
J 

the method has some numerical problems .which stems from its one 

step character: It is very probable that the matrix seen in 

(4.3.12) is illconditioned .. Thus the method is not suitable for 

on line operation. 

The integrator based observer of saction (4.2) has no such 

p~oblems. It can provide ari asymptotic; on-line identification uf 

the to be estimated outputs at any desired rate. But these 

desirable properties are purchased at the price of increasing 

the unobservable subspace in fact, this price can be seen exactly 

in Cor.(4.3.1) 

We can also fInd out from Cor(4.3.1) why 01 and 0D coincides 

for a system that has only the control imputs. This is because 

-we have 0K=O for a known input system, which can be seen by 

setting E=O in eqn.(4.3.2) The state x(t) uf a system whose 

initial state x(O) and inputs u(t) are known, can always be 

estimated for all time t. This is not the case if some of the 

inputs, q(t) are unknuwn. 

By an alternative line of thought the result of Cor 4.3.1 

may be interpreted interms uf separation. If 01=0 in a given 

problem, the initial state x(O) can be estimated by an observer 

based on differentiators, then a dead-beat observer can be 

designed as in theorem (4.1.1) to estimate the-state x(t) for all. 

time t. Thus the condition 01=0 expresses two seperate phases 
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,f an estimation problem: 1) Estimation of the initial state x(O) 

~) Estimation of x(t), t>O; given the initial state x(O) 

Estimators that employ differehtiators and integrators 

,imultaneously can also be tried. In this case there may be a 

:ompromise between the number of differentiators used, and the 

jimension of the observable subspace of (4.1) This possibility 
( 

is clear from the nondecreasing sequence of subspaces {Qk}. 

The above discussion naturally suggest the following definitiuns 

)f observability for the system (4.1) Two kinds of observability 

3re defined depending on whether the initial state x(O) is known 

Jr not. The first definition on known initial state observability 

is as follows. 

)efinition 4.3.2: The system (4.2) is knuwn initial state 

observable 

If and only if 

or equivalently 

(4.3.28) 

~4.3.29) 

Unknuwn initial state ubservability is simply refered tu as 

observability and defined as: 

Definitiun 4.3.3: The system (4.1) is observable 

If and unly if 

ur equivalently 

(4.3.30) 

(4.3.31) 
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The above definitions are nothing but specializations of 

Cor.(4.1.1) and Cor.(4.2.2) to full state observers. Thus a system 

is called observable whenever there exists a linear time invariant 

observer of the form (4.2) estimating-the states of the system. 

This result is a well-known theorem in (q=O) case and is the main 

reason of prefering 0I=X to DD=O as the definition of observability. 

The latter condition is l<no\'Jn as "extended observability" or 

[16J, [17J "strong observability" but does not imply the existence 

of a full state observer of the form (4.2) whereas Definition 3 

implies both Def.2 and the condition 0D=O as seen from Cor.(4.3.1) 

Theorems 2 and 3 below greatly simplify definition 2 and 3. 

Theorem 4.3.2: The system (4~1) is known initial state observable 

if and only if 

kerCnimJ::=O (4.3.32) 

Proof: The necessity of (32) follows (29) Since Q*(C,A;imJ::) is a 

subspace containing imE, its intersection with kerC can not be 

equal to the zero subspace unless imEnkerC=O 

(32) is also sufficient for known initial state observability 

because subspaces having zero intersection with kerC are (C,A)­

invariant thus (28) is satisfied by the subspace Q*(C,A;imE)=imE • 

The next lemma preapares our final theorem an observability 

of (4.1) 

Lemma 4.3.1: Let S be a subspace such that 

kerCcS and SffiimJ::=X' (4.3.33) 

Let P:X -+ X be a projection on S along imE. Then 

V(A,J::;kerC)=l(PA;kerC) (4.3.34) 
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where l(PA;kerC) denotes the set of PA-invariant subspaces contained 

in kerC. 

Proof: Let VE~(A,(;kerC). By definition (2.2) 

AVCV+im( ,VckerC (4.3.35) 

Operating on both sides of (35) with P. 

which means VCl(PA; kerC). Hence 

~(A,E;kerC)c!(PA;kerC) (4.3.36) 

For the reverse inclusion, let VE!(PA; kerC). By definiton (2.1) 

PAVcV VCkerC (4.3.37) 

Operating on (37) with p- 1 (the functional inverse of P) 

-1 () ·-1 P PAV =im(+AVcP V=V+im( 

or AVcV+imE. Thus 

l ( P A; k e r C )c ~ ( A, ( ; k e r C) ( 4 • 3 • 38) 

From (36) and (38) it follows that ~(A,(;kerC)=l(PA;kerC) • 

The only assumption required for Lemma (4.3.1) is that 

kerCnimE=O (4.3.39) 

that is, the system must be known initial state observatable. This, 

in turn impies that 

rank(=r~rankC=P or (4.3.40) 
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No. of disturbances~No. of observations 

Lemma 4.3.1 has also significance for the easy computation of 

supremal (A.E)-invariant subspace of k-erC. There have peen papers of 

Wonham and Morse [30J and Bhattacharyya [31J on this subject but 

none of them is applicable when rank E<rank C. Therefore the 

result of Lemma 1 is complementary to those of [30J and [31J. 

Formula (2.7) can be used to compute V*(A,E;kerC) as: 

n 
V*(A,E;kerC)= n 

i=1 

i-1 kerC(PA) (4.3.41 ) 

when (4.3.39) is satisfied which is genericQlly true if r~p. 

Theorem 4.3.3 The system (4.1) is observable 

if and only if kerCnimE=O and the pair (C,PA) is observable. 

where P is defined as in Lemma 4.3.1 

Proof: The theorem is an immediate consequence of Def. 4.3.3 

Thm 4.3.2 and Lemma 4.3.1 

4. ZERO SENSITIVITY OBSERVER DESIGN PROBLEM 

In the observer design problems considered so far it has 

• 

been assumed that the plant parameters (A,B,C,D) are exactly 

known. But this assumption is somehow unrealistic from a practical 

po i nt 0 f view. In prac t ice the design is carried out for a nom ina 1 

parameter set (A ,B ,C ). The actual system matrices are related 
000 

to the nominal ones by 

A=A +8A o 
B=B +8B 

o 
(4.4.1) 

h ( SA SB sC) represents a perturbation around nominal values. were u , u , u 
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If the parameters of the observer are not chosen carefully 

a nonzero perturbation causes loss of identification of the tu be 

estimated output z and may induce steady state errors as shuwn 

in [18J. 

(fforts have been made in the past for the design of su called 

"robust observers" which have low sensitivity to parameter tu 

parameter variations [19J, [2oJ. Other authurs, [21J [22J, treated 

the same problem with the ubjective of obtaining complete 

insensitivity (zero sensivitiy.) 

The theory developed in previuus sections alluws us to give 

an easy solution to this latter prublem at the same time 

generalizing some of the results of [21J, f,22J.· The problem that 

we are to sulve can be formulated as folluws: 

Zero Sensitivity Observer Design Prublem: Given the system 

(4.4.2) 

with nominal parameters (A,B ,C ) determine, if they exist, the 
. . 000 

parameters (N,M,G,L,K) uf the observer system 

such that 

~=Nw+My+Gu 

z.=Lw+Ky 

Lim [z(t)-z(t)]=o for all x(o), w(O), u and every 
t-+ 00 • 

perturbation (6A, 6B, 8C) which is assu~ed tu be cumpletely 

arbitrary~. 

(4.4.3) 
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The perturbations are assumed to be generated by the variation 

of real, scalor unknown parameters a. , 
1 

b., c. in 
1 1 

(4.4.4a) 

(4.4.4b) 

(4.4.4c) 

with Ai' 8 i , Ci being known matrices. This assumption doesnot 

restrict generality, since by taking the standard basis for the 

spaces of (nxn), (nxm) and (pxn) matrices any perturbation can be 

written in the form (4.4.4) 

Substituting equations (4.4.4) into (4.4.2) and rearranging 

result in: 

c x s 

a 1x 
a x 2 

a x 
bPu 

1 b2u 

bku 

(4.4.5a) 

(4.4.5b) 

A~ the par~metets a., b., c.Ern are arbitrary and may assume any 
1 1 1 

[ , , 'b' b ' b u 'J ' real values the vectors a 1 x. ,a 2x ... apx, 1 u, 2u ... k 

and. [c
1x

', c
2
x', ... ,csx'J' effectively act as unknown inputs 

which are produced internally through variation of system 

paral)leters. 

~liminating redundant inputs in (4.4.5) and defining new 

disturbance matrices ~ ·and F such that 
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imE=im6A+im6B= ~ imA1+ t 1mB" (4.4.6) 
i=1 i=1 s 

imF=im6C= ~ imC. 
l 

(4.4.7) 
i=1 

equations (4.4.5) take the form 

~=A x+B u+Eq o 0 

y=C x+Fd o z=Dx 

where q and d are unknown, unmeasurable signals and E, F are matrices 

defined as in (4.4.6) and (4.4.7) 

In this setting, the problem is seen to be -equivalent to the 

one, just solved in section (4.2). So we have the following theorem 

for the solution of .the zero sensitvitiy observer design problem. 

Theorem 4.4.1: There exists a zero sensitive stable observer for 

the system (4.4.2) 

if and only if 

3V EV (A' ,E', kerE') such that imD'cV +imE' 
g -g 0 0 g 0 

where E =TC . T being a matrix such that kerT=imF=im6C 
o 0 

Equations (4.4.6) and (4.4.7) and theorem 4.4.1 provide a 

constructive and conceptually clear solution of the problem 

posed in this section. ThB existence of a subspace satisyfing the 

condition of theorem 1 can be checked constructively as in Cor. 

(4 . 2 . 1 ) the n a z e r 0 sen s i ti ve 0 b s e r v e rca n bed e s i g ned folIo \'J i n g 

the proof of sufficiency of theorem (4.2~2). A fixed pole zero 

sensitive observer can be designed similarly. 

The solvability of the problem might have been Jimproved if 

there had been bounds on the magnitudes of the variations 

1\6AI\, 1\6[:1\, 1\6CI\. Although our result is also applicable to this 

situation it is an open area for future research. 

• 
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The proposed method differs from the existing ~esults, in literature in 

several ways~ 1)M(jre insight is gained by showing the equivalance of the 

problem to ~he unknown input observer desi~n problem 2) The 

presence of measurement errors d in the-model (4.2.1) allows us 

to consider variations in the observation matrix ~, which is not 

treated in [22J 3) Estimation of z=Ox has been studied rather than 
the special case z=x. 

This chapter is closed with the following table summarizing 

some impoitant results of section (4.3). 

OBSERVABLE ' UNOBSE RVABLE THE SYSTEM IS 

SUBSPACE SUBSPACE OBSERVABLE IFF' 
, 

x{O) UNKNOWN n 
ker( CA :i-1 ) 

The palr (C,A) 
o =<A' I imC'> O=n 

q=O i=1 is observable 

x(O) KNOWN . -' ~- a'K= 

q~O imC'+V*(A',C';kerf,') kerCnQ*(C,A;imE) kerCnimE=O 

0 For °1= 
'H. observers 

1) kerCnimE=O C" 

ImC'+R*(A' ,C' ;kerE') °I=OK+OO .. based on 
z ' ntegrator~ 3: 
0 
Z 
::,.::: 
z For. :::l 

, 

°0= °0= 
.......... observers i i) The pair (C,PA) 
0 based on V*(A,E;kerC) Q (E' A" imC ' ) is observable '-' 

x ( IifferentiatOI l3' * ' , 

OBS F_RVABLE,UNOBSERVABLE SUBSPAC(S AND OBSERVABILITY Table 4.4.1 
OF THE SYSTEM (4.1) 

-._--", 

" 

, 



64 

V. USE OF SYSTEM DECOMPOSITION TO IMPROVE SOLVABILITY OF DDP, DDEP 

A common drawback of the disturbance decoupling .problems and 

some of disturbance decoupled estimation 'problems studied in 

previous chapters is that, they are generically unsolvable. 1 Certain 

struc~ural constraints must be satisfied by the system matrices 

(A,B,C,D,E) for the problems .to have a solution. This unpleasant 

situ~tion is partially a conseq~ence of the model chosen for the 

disturbances as mentioned earlier. 

One possibility to circumvent this difficulty is to design 

systems having variable structure. A problem which is not solvable 

for .one realization of the system may be solved by adjusting the 

variable parameters of the system properly. 

Linear m-port systems composed of separated lossless and 

algebraic parts have been used for this purpose in DDP by state 

feedback before. [24J, [25J, [26J, [27J. The results in these 

works which will be needed later are summarized below and application 

of sy~tem decomposition to disturbance decoupling by measurement 

feedback (both static and dynamic) and to disturbance decoupled 

estimation problems are discussed in subsequent sections. 

1. SYSTEMS CONSISTING OF DYNAMIC AND ALGEBRAIC PARTS, TRANSFER 

FUNCTION INVARIANC( 

We consider linear time invariant systems composed of dynamic and 

algebr~ic p~rts as shown in Fig.(5.1.1) 

1 !; f the e 1 erne n t s 0 f the mat ric e s . A , B , C , ON' Ear e
2 

1 i s ted ina r bit r a r y 
order and regarded as a data pOlnt pEm, N=n +nm+pn+ln+nr, then . 
nontrivial algebraic equations are satisfied by ~he elements ~i. of ''':,,­
p for which the problem is solvable. Thus the p'olnts p for WhICh the 
problem is solvable lie on a hypersurface in m N in a small 
neighborhood of which the problem is unsolvable 

A random assignment of the entries of A,B,C etc. will almost 
surely result in a problem with no solution. 
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The algebraic subsystem NA is defined as 

y=Cv 
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u,y 

Fig.5.1.1 

(5.1.1) 

and is assumed to be fixed by construction. The dynamic subsystem 

ND is described with 

v=Hx 
o _ 

x=w (5.1.2) 

and can be made to vary by suitable choice of nonsingular H matrices. 

When the subsystems ND and NA are interconnected subject to the 

constraints: 

-w=-w and -v=v (5.1.3) 

they give rise to the state space description 

(5.1.4) 

y=CHx z=DHx 

or to the equivalent description 
" 

v=HF
1

v+HF 2U+HE 1q (5.1.5) 

y=Cv z=Dv 
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Since the matrices Hare nonsigngular the st~te equations (5.1.4) 

and (5.1.5) are equivalent uhder the transformation of variables 
v=Hx. 

This kind of system representation arises naturally in 

electrical networks where for example NA consists of all algebraic 

components such as resistors, controlled sources and ND consists 

of inductors, capacitors etc. In tnis case the variables (v,w) 

and (u,y) denote hybrid pairs of port voltages and port currents 

and the elements of the state vector xare flux linkage or 
charge depending on w. 

In our formulation u(;IRm=U, yErnP=y, 1 r zEIR =Z and qEIR =Q 
denote the input, observatiun, the controlled uutput and the 

unmeasurable disturbance which enters through the algebraic 

~ubsystem NA respectively. We also assume thatF
2

, E
1

, C and D 

are full rank matrices 

In [23J contrullability and ubservability uf m-port systems 

consisting of algebraic and dynami6 subsystems and the change of 

these properties with the selection of the dynamic ,part ND have· 

been investigated for the case of nu disturbance is present. These 

results are given without proof in the tables below. 

rank F 2, rank [F 1 ' F 2J CONCLUSION: The m-po rt system 

=0 arbitrary can nut be made controllable 

iO <n can nut be made controllable 

io f 

3H such that the m-port is controllable =n 

=11 =n cuntrollable fur all possible choices uf 

Table 5.1.1.A CONTROLLABILITY OF m-PORT DEPENDING ON TH~ SELECTION OF ND 

H. 
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( 

l~ 1J 

~ 

rank C rank CONCLUSION: The m-port system 

=0 arbitrary can not be made observable 
'. 

iO <n can not be made observable 

iO =n 3H such that the m-port is observable 

=n =n . observable for all possible choices of H. 

Table 5.1 .1B OBSERVABILITY OF m-PORT OEPENOING ON THE SELECTION OF NO. 

It is often desired that a system be both controllable and 

observable at the same time. For simultaneous controllability and 

observability of m-port systems composed of fixed algebraic and 

variable dynamic parts the following theorem is given in [23J. 

Theorem 5.1.1: The triple (F
1

,F 2 ,C) can be made both controllable 

and observable with the same matrix H if and only if 

• 
In the some work, algorithms to construct a matrix H that defines 

the dynamic n-port NO' which will make a given algebraic (m+n)-port 

controllable and/or observable are developed. 

The advantage of considering the system decomposition is in the 

additional degree of freedom gained by the variable structure of 

the subsystem N
b

. Among the class of H matrices which realizes a 

given transfer function matrix one can choose these which makes 

the scilution of a given problem -say OOP or OOEP- possible. The 

problem of finding the class of n-ports NO when connected to NA 

yield a given transfer function matrix has been studied and solved 

in [24J, [25J, [26J and [27J with the objective of improving the 

solvability of OOP by state feedback. Theorems (5.1.3) and (5.1.4) 

below summarize some of their results. 
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We start with the obvious definition of a system matrix; 

Definition 5.1.1: Let the state equations of a linear time invariant 
system be r given as: 

o 

x=Ax+Bu 

y=Cx+Du (5.1.6) 

After taking Laplace transforms with zero initial conditions 

equation (5.1.6) can be written in the form 

rSI
-
A 

~] IX(Sl] {~(Sl] tU (s) 
= (5.1.7) -C 

The matrix P(s) _ r s I-A B1 which appears in (7) is callad a system -L -C DJ 

matrix or mure precisely a polynomial system matrix in state space form. 

System matrices are useful in control theory because they 

contain all the mathematical information about the system furthermore 

all transformations of the system equations can be expressed as 

operations on P(s). We are particularly interested in transformations 

which leave unchanged the transfer function matrix. 

Theorem 5.1.2: Consider two completely controllable, completely 

observable systems described by the system matrices in state space 

form P
1

(s) and P
2
(s). Then P

1
(s) and P2(s) give rise to the same 

transfer function matrix 

if and only if they are system similar ia there exists a constant 

nonsingular matrix T such that 

• 
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, 
Sufficiency of theorem 2 is obsvious and the necessity follows 

from the assumption of nimimality. The complete proof can be found 

for example in [24J. The above theorem will now be used to get the 

desired result. 

Theorem 5.1.3: Let L1 and L2 be two controllable and observable 

m-ports wiith the same algebraic part (F1.F2'0~ but possibly 

d iff ere n t d y n ami cpa r t s c h a r a,c t e r i zed by non sin g u 1 arm at ric e s H 1 

and HZ ,respect i vel y. L 1 and LZ have ident ical (u -+ z) trans fer 

functions if and only if there exists constant and nonsingular 

matrices M and N such that the following equations are satisfied: 

MF'1 N=F 1 

MFZ=F Z 

ON=O 

(5.1.8a) 

(5.1.8b) 

(5.1.8c) 

(5.1.8d) 

Proof: According to theorem (5.1:Z) L1 ahd LZ must be similar in 

order to yield the same transfer function matrix from state spare 

description (5.1.5) this requlrem~nt can be expressed in terms of 

system matrices as: 

[( ~] [SI-Hl 1 
-0 

:2F 2] [: ~] = 
[SI-H/1 

-0 
:/2] 

[:-1 [H20] [H;1 s-F 1 F 2] rT ~] = [:1 ~] [ -1 : 2] ~] 
H 1 s-F 1 

a 1 -0 a La -0 

[ -1 ~] [:-1 ~] [:2 ~] [ -1 62] [: ~] [ -1 :2] H1 HZ s-F 1 = H~OS-F1 
a -0 

[ 

-1 
H 1 s-F 1 

= -0 
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. M~_H-11T-1H2 ~ Definlng and N=T and equating both sides of the above 

equation the theorem follows. • 

Given an m-port L with an algebraic part (F
1

,F
2

,D) and a dynamic 

part characterized· by H1 theorem 3 provid~s a means of generating 

all other dynamic subsystems which give rise to the same transfer 

function matrix as L when connected to the algebraic subsystem 

(F
1

,F
2

,D). Just compute the M,N couples satisfying (Ba), (Bb) and 

(Bc) parametrically, the H matrices defining the dynamic subsystems 

that we looked for, canbe calculated by substituting these values 

into equation (Bd). Notice that equations (Ba,b,c) have always 

the trivial solution M=I, N=I which gives H2=H 1 • The following 

theorem taken from [24J gives necessary and sufficient conditions 

for equations (B) to have notrivial solutions. 

Theorem 5.1.4.: There exists nontrivial matrix solutions to equations 

(5.1.B) 

if and only if rank F2 <n and rank D<n 

Since most systems have input and output spaces of smaller 

dimension than their. state space the conditions of theorem 5.1.4 

• 

a~e usually satisfied and the degree of freedom gained in a certain 

problem depends on the free parameters obtained in the solution 

of 5.1.8). 

2. SOLVABILITY OF DDP IN A DECOMPOSED m-PORT SYSTEM 

Disturbance d~coupling problem have been discussed in detail 

in Chapter 3. Before presenting the application of system­

decomposition to DDP the necessary and sufficient conditions for 

the solvability of DDP by state feedback, ~tatic measurement feed­

back- dynamic measurement feedback are summarized in the following 

table for convenience. The model (3.1) is assumed for the plant 

as usual. 
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DDP Necssary and Sufficient conditiuns for solvability 

State feedback 3VE!(A,8;kerD) such that iml::cV 

Static Meas. 
feedtack· 3VEV(A,8;kerD)nQ(C,A;iml::) - -

Dynamic Meas. 
feedback 3 QEQ (C, A; im().and 3VE!(A,8;kerD) st.QcV 

Table 5.2.1 

Remark 1: It is seen from Table (5.2.1) that the necessary condition 

(5.2.1) 

must be satisfied for the solution of disturbance decoupling problem 

~n all three cases. Moreover it is known that [7J for the subclass 

of systems with DI::=O we have generic solvability for DDP 

if and ·only if 

rank B~rank D and rank C~rank I:: ( 5 . 2 . 2 ) 

Since F
2

,1::
1

, Cand D are assumed to be full rank matrices (5.2.2) 

is equivalent to: 

No. of controls ~ No. of controlled outputs 

No. of measurements ~ No. of disturbances 

for a decomposed system. 

(5.2.3) 

With these preliminary results available we are now ready to 

state the problem. 

Problem statement: Consider the decomposed system of Fig.(5.1.1) 

described by the state equatiuns 

x=H1F1x+H1F2u+H1(1q ( 5 • 2 .4) 

y=Cx z=Dx 
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Assume that disturbance decoupling problem is not solvable fo~ this 

realization of the system. The objective is to vary the dynamic 

subsystem NO in such a wPy that the input-output transfer function 

matrix of (5.2.4) is kept unchanged but the noise component E1q 

entering through NA can be decoupled from the output after a 

feedback is applied. 

Combining theorem (5.1.3) and remark 1 above the following 

th~orem is given as a necessary condition ,for the solution of this 

problem~ 

Theorem 5.2.1: Let NO be the dynamic subsys~em which solves the 

above problem then the matrix H defining NO satisfies 

wheie the nonsingular matrices M, N are the solutions of 

(iii) ON=O 

Proof: The first three condnitions follow from the requirement that 

H should yield the same transfer function as H1 does, and the last 

one is a consequence of (5.2.1) • 
In view of remark 1 the conditions (i)-(iv) of theorem (5.2.1) 

are almost sufficient for the solution of OOP, if conditions (5.2.3) 

are satisfied. The type uf feedback is specified neither in the 

problem statement nor in theorem (5,2.1), the theorem is applicable 

to all forms of decoupling listed in Table .(5.2.1) provided 

equations (i)-(iv) h~ve nonsingular solutions M and N. 

If tr~nsfer function in~ariance is not required (ie., the input­

output transfer functiun of (5.2.4) is permitted to change with 

changing dynamic part) then a more powerful result can be given by 
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Theorem 5.2.2: Given the algebraic subsystem N
A

(F
1

,F
2

,E
1

,C,D) there 

exists a dynamic subsystem ND 1a nonsingular matrix H) such that 

disturbance decoupling problem is generically solvable in (F F 
. . l' 2 

and C) for the system resulting from the interconnection of NA 

with ND 

if and only if 

rank E1+rank<D n 

rank E1~rank C 

rankD~rank F2 

are simultaneously satisfied by NA. 

(5.2.5a) 

(5.2.5b) 

(5.2.5c) 

Proof: When (5.2.1) is satisfied (5.2.5b,c) are necessary ond 

sufficient for the generic solvability of DDP [7J. Thus, assume that 

DHE 1 =O for some nonsingular matrix H, that means, im(HE1)ckerD or 

rank E1~nullD=n-rank D from which the necessity of (5.2.5a) follows. 

Next, assume that rank E1=r~null D=n-l. 

for 

and 

Let {e 1 ... e } . r 
kerD. Complete 

{d 1 •• .d n _ l } to 

\ 

be a basis for imE
1 

and {d
1 
... dn_ l} be a basis 

{e 1 ... e} to a basis for X as {e 1 ·.·e ,e 1· .·.en·} r· r r+ 
a basis for X as {d 1 ···d l' d 1 1 ... d }. Define n- n- + n 

the nonsingular matrix H characterizing ND by 

H e.=di 
1 

for i= 1 ... n 

This selection of H satisfies (5.2.1) 

Notice that (5.2.5 b,c) are not necessary for the solution of 

a particular problem they are only required for generic solvability. 

Thus if one or both of (5.2.5b,c) fail to hold one can still construct 

a dynamic n-port by the procedure described in Thm (5.2.1) or Thm(5.2.2 

then if one is lucky enough DDP is solvable for the resulting 

interconnected system. 
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Disturbance decoupling by state feedback in decomposed m-ports 

has been studied extensively in [24J, [25J, f.26J and [27J but the 

assumption that the whole state vector is accessible to direct 

measurement is rather restrictive in practical applications so the 

problem must be solved by measurement f~edback ultimately. Towards 

this aim a condition is give~ in the following theorem for disturbance 

decoupling by direct measurement feedback to be equivalent to 

disturbance decoupling by state feedback. 

, 
Theorem 5.2.3: Let kerCnkerD be A-invariant in the system (3.1) then 

DDP by static measurement feedback is solvable iff DDP by state 

feedback is solvable. ' 

Proof: That the disturbance can be decoupled by state feedback if it 

can be decoupled by measurement feedback follows from Remark(3.3.2). 

To prove the converse we need the assumption that kerCnkerDEI(A). 

Hen~e kerCnkerD is an (A,B)-invariant subspace of kerD. Thus 

kerCnkerD c V*(A,B;kerD,) 

on the other hand it is clear that kerCnkerDckerC. And so 

kerCn~erDckerCnV*(A,B;kerD) (5.2.6) 

Since by definition it holds that V*(A,B;kerD)ckerD it follows that 

kerCnV*(A,B;kerD)ckerCnkerD 

From (5.2.6) and (5.2~n we have 

kercnkerD=kerCnV*(A,B;kerD) 

Therefore 

A(keFCnV*(A,B;kerD))=A(kerCnkerDrckerCnkerD~kercnV*(A,B;kerD) 

(5.2.7) 

(5.2.8) 
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or 

A(kerCnV*(A,B;kerD))CV*(A,B;kerD) 

Thus V*(A,B;kerD)E~(C,A) by Def.(2~3). Since DDP by state 

feedback is solvable imEcV*(A,B;kerD). the conclusiun now follows 

from Theorem (3.2.1) because V*(A,B;kerD)~~(A,B;kerD)n~(C,A;im() • 

The use of Theorem (5.2.3) is several folded. First, it 

provides a constructive procedure for checking the conditiun of 

Theorem (3.2.1) for disturbance decoupling by static measurement 

feedback, Though the condition 

kerCnkerDEI(A) ( 5 . 2 .9) 

is not necessary for the solution of DDP. the solvability of DDP 

by static measurement feedback can be determined as in Cor.(3.1.1) 

by computing the largest (A,B)-invariant subspace in kerD and 

checking the condition imEcV*(A,B;ker) if (5.2.9) is satisfied in 

a given system. 

In a design problem one usually has a certain degree of freedom 

in carrying out measurements. In this case the C matrix can be 

selected to satisfy (5.2.9). A similar situation may arise when 

constructing the subsystem ND according to Theorem (5.2.1). After 

conditions (i)-(iv) have been satisfied, if there still remains 

some free parameters in the matrix H then these parameters can be 

chosen such that (5.2.9) hulds true. 

EXAMPLE: Consider the decompuseed system 

y=Cx ( 5 . 2 . 10) 

." 
~-



Frum DH u1=.:1=0 itis readily founc! that DDP is sulvable. unly if 

p~=e3=O. Frum Theurem (5.1.3) the M. N cou~les and the class of 

(iynalllic n-purls which leave lhe transfer functiun uf (5.2.10) 

invariant is found to be: 

M = [: ~: 
.0 

fI =rI~~ 
La 

o 
1 

o ~l 
1 

o 

~Ihere aEIR-{O} is arbitrary. Substltuting these values intu (iv) 

of Theurem (5.2.1) one oht.ains: 

Thus any disturbance compunent uf the furm 1=.:,= 'tlith 

wIth e,*O and e,ie2 can be generically decouple~ by suitable 

choice of cx. 
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example let e 1=1, e2=-1~ then a=1/2 

A=HF 1 

1/2 

1 
[

-1/2 -11 
B=HF 2 = 1 0 and 

o 1 1 

It is immediately verified that kerD is (A,B)-invariant and 

im(cV*(A.B;kerD)=imr~l thus DDP by state feedback is solvable. 
-. . • ~J 

On the other hand since kerDnkerC=O is A-invariant thm (5.2.3) 

predicts that DDP by static measurement feedback is also solvable. 

In fact the subspace im r~l is (A+BKC)-invadant for K= [-n. Hence 

u = [ .. ~J y is. the des ire d can t r a 1 1 a w . 

3. SOLVABILITIY OF DDEP IN A DECOMPOSED m-PORT SYSTEM 

As in disturbance decoupling problem some important results of 

Chapter 4 are summarized in the folowing table. The conclusions 

are valid for th~ system (4.1) 

I 
DDEP Necessary and Sufficient conditions for sulvability! 

I 

x (0). KNOWN ~ 

: 
-

Dead-beat observer 3QE!!(C,AiimE) such that kerCnQckerD 
i 

I 

Fi~ed pole 
---.. z Observer 3VE!!.(A' ,C' iker(') such that imD'cV+imC' 03 
'-" 0 

I XZ I 
~ Stable I 
z 3VE~g(A' ,C' iker(') such that imD'cV+imC' . ! 
::::> Observer 

Table 5.3.1 
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The results in Table (5.3.1) are given to design a Luenberger 

observer. If a Kalman ob~erver is to be des~gned (K=O in (4.2.)) 

then the conditions should be modified as in (5.2.17) and (5.2.18). 

In this case the system matrices must s,atisfy DE=O if a solution 

of the problem exists. In the previous section it was shown how 

thisconditiun can be met without changing the transfer function 

matrix, by su~table selection of, the dynamic n-port ND in a _ 

d~composed system. These results will not be repeated here. We 

will concentrate on the existence of a Luenberger observer estimating 

the state vector of a decomposed sysiem described by 

(5.3.1) 
y=Cx z=x 

with (F1~F2,t1'C) representing the fixed algebraic subsystem and 

H defining the variable dynamic subsystem. 

As the dynamic part ND is v~riable in a decomposed system the 

interconnected system given by (5.3.1) may not be ubservable for 

some choices of the nonsingular matrix H. So the following 

definition of [23J applies. 
-, 

Definition 5.3.1: The algebruic (m+n)-port NA (F 1 ,F 2 ,E 1 ,C) can be 

made observable if and only if there exists a dynamic n-port ND 

(a nonsingular matrix H) such that the m-port resulting from the 

interconnection of NA with ND as depicted by Fig.(5.1.1) is 

observable; NA is absolutely observable if and only if (5.3.1) is 

observable for all nonsingular matrices H. 

As in, (q=O) case absolute observability of NA requires that 

rankC=n. In what follows it will be assumed that rankC<n, that is 

the system is not absolutely observable, which is the only 

interesting and nontrivial case. 

The main result on "known initial state observability" of 

decomposed systems is given in the theorem below. 
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Theorem 5.3.': Suppo~e that the initial state x(O) of (5.3.') is 

given then the following statements are equivalent 

(i) The algebroic (m+n)-port (F"F2,E~,C) can be made observable 

(ii) There exists a nonsingular matrix H such that 

(5.3.2a,b) 

(5.3.3) 

~roof: According to theorem (4.3.2) the system (5.3.') is observable 

with known initial state if and only if kerCnim(HE,)=O which is 

exactly the restatement of (5.3.2a) Next, let xEkerCnim(HE,) and 

xio then cx=o and x=HE,q for some qf:Q= rn r hence CHE,q=O implying 

ker(CHE,iO which contradicts rank(CHE,)=r. Conversely if CHE,q=O 

then x can be defined such that x=H(,q and CX=O, therefore x=O 

by (2a) which implies q=O because [, is assumed to be full column 

rank and H is nonsingular. This establish~s the equivalence of 

(1) and (ii) 

To prove the equivalence of (ii) to (iii) recall that r=rank 

(CHE, ).:::;min(p,r) which shows that r~p. And if, r~p is given we can 

always wind r linearly indeendent vectors {x, ... xr } in the 

complement of kerC. Form a matrix M whose columns are the vectors 

{x, . .. x r } Since E, and M have the some rank r, ,E, can be 

transformed to M by elemantary row operations. Let H be the 

nonsingular matrix representing these operations. This construction 

Of H sati,sfies (5.3.2a) and (5.3.,2b) • 

It is seen from (ii) of the above theorem that the problem of 

disturbance decoupled estimator design with given initial state 

is generically solvable in a decomposed system if and only if 

No. of disturbance~No. of measurements (5.3.4) 
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because (5.3.2b) fails only if all rxr minors of CH(1 vanish which 
N 2 obviously represents a hypersurface in ill , N=n +pn+rn. (See the 

footnote on pp. 64) 

Because of this large freedom in the choice .of H matrices, 

satis~ing theorem 5.3.1 one suspects that the matrix, which will 

make the (m+n)-port observable may even be found among the class 

of matrices which leaves the transfer function of (5.3.1) invariant. 

This possibility is shown by an example below. 

The following lemma is given as a necessary condition for the 

observability of (5~3.1) with unknown initial state. 

Lemma 5.3.1: The algebraic subsystem (F 1 ,F 2 '(1'C) can be made 

observable only if 

(i) rank(1=r<rankC=p and 

Proof: Assume that the algebraic sVbsystem can be made observable 

with the matrix H. then the condition 

(5.3.5) 

must be satisfied, otherwise there exists a ~ontrivial (HF 1 ,H(1)­

invariant subspace in kerC which contradicts the condition given in 

Oe[.(4.3.3) From (5) it. follows that 

by noting that kerCnim(H(1)=0 there follows: nuIIC+rank(1<n or r<p. 

On ~he other hand the condition V*(HF 1 ,H(1;kerC)=O implies that 

,. 

" --
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Thus it is Seen that the p~ir (C,F 1+E1 L) can be made observable 

by the matrix H for all L:X-+- Q. Now in view of the condition given 

in Table (5.1r1B) we can conclude that 

th t · [F1+cE1L1J x--O a IS, implies x=O. Writing q=Lx, it follows that 

Therefore 

x = 0, . q = a i s r e qui red for [F 1 +C E 1 L] x - [F 1 E 1] lr x] - a - C a q - ~ 

[
F . 

ker c1 or . [F rank _C 1 • 
As expected, the cunditions of Lemma 5.3.1 strenghten those 

given in Thm. 5.3.1 for known initial state observability and those 

'of Table (5.1.1B) for known input observability. Formulation of 

necessary and sufficient conditions for unknown initial state, 

unknownlnput observability of decomposed systems is under 

investigation. Neverthless when Lemma 5.3.1 is satisfied, the 

algorithm of [23J can be applied to the pair (C,F 1+E 1L) by writing 

the mat r i xLi n t e r m s 0 fit s e 1 em e nl s {1. .} and e a c h tim e c h e c kin g 
IJ 

condition (5.3.2) after finding a matrix H. But this essentially 

becomes a trial and error :':procedure. 

EXAMPLE: The decomposed system of example (5. 2 . 1 ) is considered which 

rewritten for convenience: 

Ho; l~ 
1 

-~] F 1; [: a 

~] · Fz;l~ ~] r1 a ~]. E1{:] 1 1 , 
c= La a 

a a 

One more measurement is added to satisfy (i) of Lemma 5.3.1 

. ~ 
1. 
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Hence the .system is not observable with this selection of the dynamic. 

part even if the initial state is given. 

T a ki n g H = [3 ~ 
2 

1 ~ 2 -~] i tis e a s i I Y v e r i fie d t hat (5. 3 . 2) i s 

001 
satisfied thus the composite system is known initial state 

observable. Moreover it was shown in example (5.2.1) that this 

~hoice of the matrix H does n at cha~ge the u to z transfer function 

of (5.3.1) 

The dynamic subsystem defined by H 

system observable. l1 0 1] 
= 0 1 0 

1 1 0 

, makes the 

'.-
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APPENDIX I 

SUBSPACE ALGORITHMS AND THEIR MATRIX EQUIVALENTS 

It is prefered to delay computational algorithms and to collect 

them in an appendix in order not to interrupt the theoretical 

developement of the work. Matrix algorithms will be given below for 

the basic operations involving subspaces such as subspace addition, 

subspace intersection etc. and for the computation of supremal 

( A , B ) - i n v a ria nt, con t roll a b i 1 i t y, s't a b i 1 i z a b i 1 i t Y sub spa c e san d 

infimal (C,A)-invari~nt subspace. 

Some of these algorithms may be found in the exercises of 

[1J, some have been collected by a literature survey and a few of 

them like minimal (C,A)-invariant subspace algorithm, supremal 

stabilizability subspace algorithm are believed to be new. The 

algorithms are not claimed to be optimal with respect to numerical 

behaviour, neverthless they provide mechanized procedures for the 

solution of synthesis problems discussed in previous chapters. Much 

work still remains to be done in order to implement the algorithms 

on a digital computer. 

A1. BASIC OPERATIONS ON SUBSPACES: 

A subspace 5 is represented by a matrix S whose columns span 

the subspace~, .that 'is S=imS.· It is assumed that the matrix S has 

linearly independent columns and is named to be the basis matrix of 

S. It is clear that the basis matrix of a subspace is not unique 

and depends on the particular coordination chosen for the subspace. 

Conversely from any matrix M a basis matrix can be obtained by 

eliminating redundant columns of M. 

If M,X,Y are matrices, with M given, a maximal solution of -

the equation MX=O (resp. YM=O) is a solution X (resp. Y) of 

maximal rank, having linearly independent columns (resp. rows) and 

written as X=M~ (res Y=M~). Thus X is a basis matrix for kerM 

and Y' is a basis matrix for kerM'. 
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Basic operations on subspaces and their'matrix counterparts 

summarized in Table A1 beluw. Rand 5 denote subspaces of X 

A is an abritrary 

A defined by 

-1 ' 
map and A denotes the functional inverse of 

-1 { A 5= xEX: AxES} 

Subspace Operation Matrix Equivalent 

1 5 or R 5 or R 

2 51. SJ. 

3 dim 5 rank S 

4 S+R [S, RJ 

5 SnR [~~J r 
6 ReS rank S= rank [R, SJ 

7 R=S rank R=rank [R, S] =rankS 

8 AS AS 
I-

9 A- 1S ( SJ.A) r 

TABLE A1 

In the above table the matrix equivalents of the operations 

are given in-terms of the image of the matrix un the right. The 

symbol im(-) is not written explicitely, the matrix is understood 

tu be a basis ~atrix of the subspace cunsidered after the 

eliminativn of linearly dependent columns. The only exception of 

this rule is for the orthogonal complement of a subspace in which 

case the equivalence is given as (Sl=row space SJ.) since sJ.ex' 

The formula for snR fulluws from the well known identity: 

( 2 ) 

, . 
~-
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3nd the matrix equivalent of A-1~ is a consequence of the rela~ion­
,hip: 

( 3 ) 

The basic relations in Table A1 ~an be used to convert more 

complicated subspace algorithms to .their matrix equivalents. 

~2. COMPUTATION OF V*(A,B;K)=sup{V:AVcV+imB, VCK} 

\'/riting algorithm (1) of Ch.2 in matrices one has: 

stee 1 : Set 

stee 2 : Let 

k=O 

Vk be a basis matrix for K. (ie imV =K) 
o 

step 3 :\ Calculate Wk+1 from: Wk+1=[B, VkJ..L 

stee 4: Let \+th:~r 
stee 5: If rank Vk+1=rank Vk set V*(K)=imV k and stop. (lse 

step 6: Increment k by one and return to step 3 

TAe sequence imV k converges to the maximal (A,B)-invariant subspace 

of K in at most k*=dim K iterations. 

A3. CO~PUTATION OF R*(A,B;K)=sup~(A,B;K) 

(Algorithm II in Ch.2) 

stee 1: Calculate V*(A,B;K)~ifflV* using algorithm (2) above. 
.L 

stee 2: Let W* be a maximal solution of w*v*=o. That is W*=V* 

step 3: Set k=1 and 5 k_1=0 

stee 4: Calculate Tk as Tk=[A5 k_1, BJ.L. 

stee 5: Let 
rw*l I-

5 k = l T kJ 

step 6: If rank 5 =rank 5 1 set R*(K)=im5 1 and stop. (lse - k k- < 
stee 7: Increment k by une and return to step 4. 

The sequence im5
k 

converges to the maximal contrullability subspace of 

K in ~t most n=dimX iterations. 



A4. COMPUTATION OF f,,<V*)={F:X-~ UI(A+BF)VtV*} 

step 1 Let V* be a basis matrix of the subspace V* 

step 2: Calculate the maximal solution W* of W*V*=O 
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step 3: Write the matrix F in terms of its elements .[f .. J 
step 4: Determine [f ij] i=1, .. ~,m j=i, ... ,n from the ~~uation: 

. \~* (A+BF) V*=O or W*BFV*=-W*AV* 

AS. COMPUTATION OF Vg(K)=sup{VE~(A,B;K), 3FE~(V),a[(A+BF)IVJC[g} 

(Algorithm III of Ch.2) 

step 1: Compute V*(K), R*(K) and their basis matrices V*,R* using 

algorithms (2) ~nd (3). 

step 2: Let S . be a complement of R* in X and 51 be a complement uf 
--'--. 0 

R* in V* with basis matrices So and 51 respectively. In short 

X=R*+S 5 =imS 
0 0 0 

V*=R*+5 1 51=imS 1 

step 3 : Let P and P1 be such that 
0 

P o[R*,SJ = [0, IaJ where a =dim 5 
0 

P1[R*,5J = [0, Ipl where p=dim S1 

step 4: Choose any map F 0 from the class F(V*) and write Ao~A+BF u 

step 5: Calculate the map induced by Ao in X/R* and its restriction 

to V*/R* as: 

A I X/R*::P A 5 
o 0 0 0 

Aol V*/R*:::P 1A oS1 

step 6: Let a{A) be the minimal polynomial of Aolv*/R*=P1AoS. 

Factor a(A)=a (A)ab(A) where the zeros of ag(A) (resp. ab(A)) 
g 

belong to [ (resp. [b) 
I g . t. (P V*) uf V*/R* and form the step 7: Calculate the baSIS ma rlX 0 

matrix 

... ~ 
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step 8: The supremal stabilizability su~space V*(K) in K is given by: 
9 

V*(K)=imV* 
9 9 

where V*= (MP ) I-
9 0 

A6. COMPUTATION OF Q*(C,A;K)=inf{Q:A(kerCnQ)cQ, KCQ} 

(Algorithm IV in Ch.Z). 

step 1 : Let K be a basis matrix for the subspace K. 

step Z : Set k=O and Qk=K 

step 3 : Calculate Tk from T k={~kJ.J r 

s t e p 4: Let Q k + 1 = [K , A T kJ 
step S': If rank Qk=rank Qk+ 1 set Q*(K)=imQk and stop. E:lse 

step 6: Increment k by one and return to step 3. 

The sequence of subspaces imQk convergees to the minimal C,A)-invariant 

subspace containing K. in at most n-dim K steps. 
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IV. CONCLUSION 

Dist~rbance decoupling and disturbance decoupled estimation 

problems in linear time invariant dynamical systems have been 

studied in a common framework using geomet~ic approach. When 

concluding we would like to emphasize some contributions of the 

work - and suggest some open areas for future research. 

It has be~n assumed'throijghout the thesis that the disturbance 

signals are totally unknown and ~ay take any real values. One of 

the extensions of the results is to examine the same problems 

and others under the conditi~~ that the disturbance are again 

arbitrary but bounded signals. This point is a practical and 

largely unexplored field. 

Another general comment is that the problems have beentreated in 

time domain using state space rep~esentations wh~reas it may be 

true that a reformulation of the results in frequency domain 

through polynomial system matrices will be more effective in some 

cases. 

The disturbance decoupling problem has been solved in Ch.3 

starting from the simplest form of decoupling. Disturbance decoupling 

by. state feadback followed by more advanced forms of decoupling. 

by static and'dynamic measur~ment feedback. The problem of 

disturbance decoupling by dynamic measurement feedback has been 

solved by showing that any dynamic co~pensation around a system 

is equiValent to a direct uutput feedback applied to a properiy 

aug~ented system. This observation may found application in other 

problems where dynamic compensation is employed. Constructive 

so~vability criteria have been given for both disturbance decoupling 

by 'state feedback and dynamic measurement feedback. Thoug, 

theorem. 3 of sec.(5.2) gives a verifiable condition for the 

solyability of disturbancedecoupling by static measurement feed­

back which can be used in some cases the general case remains 

unsolved. It has been also proven in sec.(3.3) that disturbance 
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decoupling by dynamic state feedback is equivalent to disturbance 

decoupling by constant state feedback. Thus, dynamic state feedback 

bilngs n6 improvement on the disturbance decoupling problem as far 

as solvability is concerned. 

In Ch.4 the disturbance decoupled estimation problem or what 

amounts to the same thing, the unknown input observer design problem 

has been solved in its up to date most general form by taking the 

measurement errors into consideration as well. The problem has been 

studied for two different observer structures, one based on 

integrators and the other based or differentiators. Advantages and 

drawbacks of each approach have been discussed in sec.{4.3) and 

the close relationship between the two methods has been pointed 

out in Cor.(4.3.1). This result which has important consequences 

is totally new and ties two theories together which have been 

developed separately and independently in literature. Then a new 

condition has been given for the observability of an unknown input 

system ~~sed on the new definitions of observable and unobservable 

subspaces. 

The result of Lemma (4.3.1) can be used in conjunction w(th 

tho se 0 f [30J and [31J to character ize (A, B) -invar iant subspaces 

and for the easy co~putation of supremal (A,B)-invariant subspace 

of kerC. 

Minimal order observer and minimal order co~pensator synthesis 

problems have not been solved in the thesis but their equivalance 

to generalize'd dynnamic cover problem [28J [29J has been shown 

and so~e hints have been given at the end of Ch.2 for the 

solution of this problem. 

Solvability of disturbance decoupling problem and disturbance 

decoupled estimation prublemin a decum~osed system which consists 

of algebraic and dynamic subsystems has been investigated in Ch.S. 

Th~ use bf ~ecompused systems to improve the solvability of 

disturbance decoupling proble~ by state feedback has'been originall~. 
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- proposed in [24J, [25J, and [26J. The results of these works have 

been extended to disturbance decoupling by static and dynamic 

measurement feedback in sec.(5.2). Necessary and generically 

su~ficient conditions have been given for the existence of dynamic 

subsystems which, when connected to the algebraic subsystem yield 

a given transfer function matrix and at the some timem3king it 

possible to decouple a noise component after some form of feedback 

is applied. 

Of course, there is room for future research here. Our results 

have bee~ given in terms of genericity. One may go about to give 

sufficient conditions for disturbance decoupling to be exactly 

p~ssible by suitable selection of the dynamic subsystem ND· 

Knowh initial state observability of decomposed systems has 

been completely solved by Theorem 1 of sec.(5.3). The result of 

this theorem clearly reveals the advantage of considering system 

de6o~position. Some necessary conditions have been obtained for 

unknown input, unknown initial state 'bb~ervability of deco~posed 

systems which strenghtenes th~~e given in [23J for the case where 

all inputs are known. 

Finally some computational algorithms have been collected in 

the a~pendix to translate the relatively a~stract synthesis m9th~ds 

developed in the work to everyday matrix arithmetic suitable for 

computer implementatio~. Some of these algorithms are believed 

to be!!new but much work remains to be done in order to obtain 

good, nu~erically stable algorithms. 
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