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ABSTRACT

Y

Disturbance decoupling and disturbance decoupled estimation
problems 1in linear, time invariant, dynamical'system are studied

in a common framework using gzom=tric approach.

The basic svulvability question is investigated for disturbance
docoupling problem by static and dynamic state and m=zasuremzsnt
feedback.

Estimation of the state vector or a function of the state
.vector of a system in the presence of disturbances is consideread.
The concepts of observable, unobservéble subspacés and
observébility of a system are generalized for unknown input
‘systems. : »

In the second part of the thésis, solvability of the above
problems in a special kind of syétem which counsists of separated ~
dyhamic and algsbraic parts 1is éonsidered. In general, the
solvability ranges of the problems 1is improved by system

decomposition.

All results are fully constructive and an appendix 1s
includad for the numerical computation of the developed design

methods,
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‘ADoérusal, zamanla dedismeyen, dinamik sistemlerde bouzucu
bastirma ve bozucu bastirilmig kestirim problemleri orta% bir

gergeve 1lgindz geometrik yaklagimla incelenmektedir.

Bozucu bastirma problemi igin temel g¢ézilebilirlik sorunu,
statik ve dinamik durum ve Olgim geri besleme hallerinde

cevaplandlrllmaktadlr.

Durum vektdrinin veya durum vektdriniin bir fonksiyonunun
kestirimi bozucularin varlidinda ele alinmakta; gozlenebilir,
gozlenemez alt uzay ve gdzlenebilirlik kavramlari bilinmeyen

girdigi sistemler igin genellestirilmektedir.

Tezin 1kincl kisminda yukarlda'sﬁzﬁ edilen problemler‘dina-
mik ve cebirsel pargalardan olugmus ©bzel bir sistem igin ince-
lenm=kte; -gdziilebilirlik sinirlarinin genigledidi gosterilmek-

tedir.

Varilan biitin sonuglar yaplél oluﬁ, gsligtirilen tasaraim

yintemlerinin sayisal hesab1 igin bir ek verilmigtir.
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I. INTRODUCTION

Control systems usually operate-undér the presence of
unmeasurable, unknown inputs. Various analysis and synthesis
techniques have been propused in literature to deal with such

inputs which.may be called disturbances. These may include:

1) To treat disturbances as random signals with known
statistics and to apply the theory of stochastic processes to

analyze systems subject to such inputs.

2) To assume that the disturbances satisfy differential
equations with known coefficients, their inifial conditions being
unknown or they can be approximated by polynomial inputs of

sufficiently high order.

One common method applied in these cases in to augment the
system equations with the assumed model for the disturbances so

that existing theory can be applied to the augmented system.

It is clear that none of. these approaches is best suited to
all types of disturbances encountered in practice or to systems

excited by different disturbance sources. -

In this work we tried to give a unified technique for the
regulation and estimation of control systems by considering .
‘disturbances as completely unknown signals which take their values
from a specified function class F and no existing a priori
information about their nature can be used to aid the synthesis
problem. The choice of the function class F is not crucial, the

space of continuous valued Functions, {f: R+-+-Rr}, can be

adopted for instance.



This‘selectioh of the disturbance modal has several advantages
as well as disadvantages. Its generality and applicability in
different situations, like decentralized control systems; systems
subject to man made interference or noise governed by nature is the
‘basic advantage. Besides this a lot 0} modeling labour is eliminated
and systems designed using this approach have simpler structure

compared with the methods stated above.

_ As a disadvantage we must admit that treating disturbance
inputs as totally unknown signals considerably reduces the

solvability range of the problems studied.

Our treatment of the problems is mainly in time domain. State
space representation of control systems is used as a convenient
tool for doing this. The problems are formulated and solved in a
geometric style as déveloped by Wonham and his coworkers. The
required mathematical backgroundsud1aspontrollable and observable
subspaces of the state space and certain other invariant subspaces
are reviewed in Ch.2. This chapter provides the self containment
of the work.

The simplest form of regulation: The disturbance decoupling
problem is studied in Ch.3. Disturbance decoupling by state feed-
back, constant measurement feedback and dynamic measurement feed-
back are treated in a common framework in sections (3.1), (3.2)
and (3.3) respectively. The chapter closes by some interesting

remarks.

Ch.4 is devoted to estimation problems. The clése connection
between disturbance decoupling problem and disturbance decoupled
estimation problem is pointed out in section (4.1). A completely
new problem: The known initial state observer design problem .is
also solved in this section. The classical observer design problem
"is discussed by geometric methods in section (4.2) in its most
general setting. The well known concepts of observable and

unobservable subspaces of state space are generalized for



unknown input systems, observability of an unknown input system
is defined based on these subspacés in section (4.3). Finally in
section (4.4) it is shown how parameter variations can be
considered as unknown inputs which are produced internally and
additive Lo the system. This ubservalion alluows wus Lo soulve Lhe

zero sensitive observer design problem.

)To overcome the difficulty stated as a disadvantage of the
assumed disturbance model a special kind of system structure is
introduced in Ch.5 which consists of the interconnection of a
Fixed aigebraic‘subsystem and a variable dynamic subsystem. Some -
properties like controllability, observability and transfer
function inveriance of decomposed system are summarized in section
(5.1) following the works in [23], [24] and [25]. Disturbance
decoupling problem in decumposed systems is studied in section
(5.2) in all of its variations. Then in section (5.3) disturbance

decoupled estimation problem is investigated for decomposed

systems.
Generic solvability conditions are obtained for both problems.

* The work is completely original by its way ofipresentation

and  some results of chapters 3,4 and 5.

Each prublem discussed in the work is precisely defined and
Formulatéd first. Necessary and sufficient conditions for the
.solvability of the problem are given és theorems and corollaries.
A constructive synthesis procedure (sometimes an algorithm) is

given if a solution exists.

The examples and the computational matrix algorithms collected
in the appendix are also an integral part of the thesis which
bridge the gap between theory and practice, and which make the

study easier for future researchers in this field.



11. MATHEMATICAL PRELIMINARIES AND SYSTEM THEORETIC INTERPRETATIDNS

_ Some definitions and theorems which will be needed in the
thesis are collected in this chapter. The aim is to provide ease
of reference and to introduce relevant notation. Detailed proofs

and extensions can be found. in the references cited.

Throughout the thesis uppercase is used for linear mappings
and their matrix‘representations and lowercase for vectors. Vector
spaces and subspaces are denoted by bold face capitals. The
dimension of a subspace S is denoted by dim S. S1+S2 and S,I@S2
are the sum and direct sum, respectively, of the subspaces S1 and
52. Si stands for the orthogonal complement of S. The image (kernel)
of a map A is written imA (kerA). The symbol o(A) denotes the
spectrum (the set of eigenvalues) of A. A' is used to denote the

transpose of A.

Consider the linear time invariant system described by
x=Ax+Bu , y=Cx R z=Dx oo (2.1)

As usual, x and u'ére the state and control vectors, y is the
vector of measured output variables, and z is the vector of output
variables to be"regulated. Although the model (2.1) corresponds
to a continuous time system, all results stated in this chapter
apply equally well to the corresponding discrete time system
model, as they are essentially algebraic properties of the
4. tuple (A,B,C,D).

Certain invariant subspaces of the state space X are
fundemental for a geometric approach to system theory and these

are presented below.



Definition 2.1: let A: X+ X be a linear map, a subspace S¢X is

said to be A-invariant if and only if
ASc'S e - (2.2)

The class of A-invariant subspaces of X is denoted by I(A).
Clearly the 0 subspace, the state space X itself and subspaces

spaned by the eigenvectors of A are A-invariant subspaces.

Let S be any A-invariéht subspace and let R be such that
'S®R=X. In a basis {31..

"5 rT...rm} adopted to this decomposition
the map A has the matrix representation:

A?Xk Al;xm
Mat A = (2.3
mx k mxm
0 A
2
The restriction of A to S, (A]S), is characterized by the
matrix A?Xk in this representation. It satisfies the relation:
AS=SA o (2.4)

1

where S is the basis matrix for the subspace S5 whose columns are the

basis vectors (81...Sk).

And AZ*"™ is the matrix of the map, (A|X/S) induced by A in

the factor space X/S.

The block triangular structure of A in (2.3) implies, via

the characteristic polynomial
o(A)=c(A|S) U o(A|X/S) - (2.5)

where 0 denotes union with any common elements repeated.



. Let 5 denote a nonempty set of subspaces, the largest or
supremal element S* of S, is defined to be that unique member of
S which contains every member of S. Thus S*€S, and if SES then

ScS*. Similarly the smallest or infimal element S, of a set of-

"subspaces 5, is defined as the unique subspace which is contained

in every member of S. Hence S,€S, and if SE€S then S,cS.

These are summarized by writing:
S*=sup {S: SES}=sup S and S,=inf{S: SES}= inf$S

The following lemmas reveal under what conditions supremal or

infimal elements of a set of subspaces exists.

Lemma 2.7a: Let S be a nonempty class of subspaceé of X, closed

under subspace addition. Then S posseses a supremal element S*

Lemma 2.1b: Let S be a nonempty class of subspaces of X, closed

under subspaqe intersection. Then S contains an infimal element S

Proof These lemmas can be proven by constructing a nondecreasing
sequence of subspaces 51, S1+52, S1f52+53,... in the first case
and a nonincreasing sequence 51, S1n52, S1nSZnS3,... in the second.

As the subspaces are finite dimensional the chains can not be

continued beyond, say, k terms then we can set S*:S1+...+Sk and
’S*=S1n.{.ﬂSk. Clearly S (S,)€S, and contains (is contained in)
every SE€S. |

A
The family of A-invariant subspaces I(A) is closed under
subspace addition and subspace intersection. Therefore supremal
‘and infimal elements of a set of A-invariant subpaces exist

according to the above lemmas.

For examplé the controllable subspace:




- . .
<A|imB> & z im (A*7'B) = inf{S: SEI(A), imBcS}  (2.6)
& |

is the least invariant under the matrix A containing.imB and the

unobservable subspace:

n . .
<A'|imC'>*+= () ker (CA'™*) = sup{s: SEI(A), SckerC}(2.7)
iz '

is the greatest invariant under A contained in kerC.

When <A|imB>=X the pair (A,B) is called contrallable; when
' i '
<A'|imC'> =0 the pair (C,A) 'is called observable.

The generalization of simple invariance is the concept of

(A,B)-invariance

Definition 2.2:'A subspace VcX is (A,B)-invariant if and only if

AVCV + imB

_ The set of all (A,B)-invariant subspaces in a given subspace
KeX is denoted by V(A,B:K) or simply by V(K) when the matrices
under consideration are fixed. It follows from Def.(2.2) that

any A-invariant subspace is automatically (A,B)-invariant.

>The essential fact about an (A,B)-invariant subspace is that

it can be made (A+BF)-invariant by a suitable choice of the matrix F.

"Lemma 2.2: Let VcX. There exists a linear state feedback map
F:X > U such that ‘

(A+BF) V cV : (2.8)

if and only if VEV(A,B,X)



Proof: "Only if" Let {v1...vk} be a basis for V. (2.8) implies
(A-i-BF)vi:wi for some wiEV and for i=1,...,k or

A Vi:wi—BF viEV+imB. Hence VEV(A,B)

"if" Let VEV(A,B). By definition there exists wiEV and uiEU such that

A v,=w.-B u, for izi,...,k. define F on V by F v;=u;. Then

F will have the required propertyv(2.8) N

If a subspace V is (A,B)-invariant the class of F:X =+ U such
that (A+BF)VcV is written as\E(V).

An (A,B)-invariant subspace V is characterized by the property
that, for every point X in V a control function can be found such
that the resulting state trajectory (with x, as initial point)
remains in V for all positive t as shown in Fig.2.7a below. Thus
if F:X~+ U is chosen according tb Lemma 2.2 and u=Fx is set in (2.1),
for the autonomous system %= (A+BF)x, x(0)EV implies x(t)EV (t20);
so if x(.) starts in V, it stays in V. V has been made invariant
by suitable state feedback.

(a) (b)

Fig.2.1 (a) An (A,B)-invariant subspace (b) A controllability subspace

Another generalization of invariance which is, in a sense, the

dual of (A,B)—invariance is given by the following definition.

Definition 23: A subspace QcX is (C,A)-invariant if and only if

A(QnkerC) cQ



The set of (C,A)-invariant subspaces containing a given subspace
K is denoted by the symbol Q(C,A;K).

The duality between (A,B)-invariant subspaces and (C,A)-invariant

Vsubspaces4is expressed in theorem 2.1 below.

Theorem 2.1: Let QeQ(C,A;K) then QLE!(A', C'; k') and conversely let
VEV(A,B;K) then VY€Q(B',A';k%)

Proof: It suffices to prove only the first part of the theorem, the
converse follows by a simple change of symbols. Let M, NcX with
AMcN then (AM)lDNl. Thus (n,Am)=(A'n,m)=0 for every nEN and mEM

so that A'NicM: repeating the same argument for subspaces NE

MicX' and map A’ satisfying A'NicML it can be concluded that
AMcN if and only if A'N+*eMt.

Applying this result to the situation at_hand.

A(kerCnQ)cQ if and only if A'QYc(kerCnQ)+=QL+imC" [}

Thus according to theorem 2.1, the ortogonal complement of a
(C,A)-invariant subspace of the system I given by 2.1) plays the
role of an (A,B)-invariant subspace for the dual system X' and

vice versa.

The dual of Lemma 2.2 for (C.A)-invariant subspaces is as

follows:

Lemma 2.3: Let QSX. There exists on OUtput injection map G:Y‘f X
such that

(A+GC)Qch : , 7 (2.9)
if and only if QEQ(C,A )
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>roof: "if" Suppose (A+GC)QcQ. Take any x€kerCn@. By hypotheses there
:xists q€Q such that (A+GC)x=Ax=q€Q thus A(kerCnQ)cQ. "Only if"
yssume QEQ(C,A ). Let {q1...qj...qk} be a basis for Q such that
{q1,..qj} is a basis for QnkerC. Then ' '

Aqizsi for i=1...j and Aqizri for i=j+1...k

where siEQ‘byassumption. Notihg that the vectors qu+1;..qu are
linearly independent the map G:Y = X can be defined such that

GC q;=-T; for i=j+1...k
Then (A+GC)q;=Aq;=s €Q for i=1...j and (A+GC)q =0€Q for izj+l. ..k
as desired ‘ : | |

To discuss stability properties related to subspaces the
complex plane is divided into two self conjugate parts Eg and Eb
which will indicate stability‘and instability réspectively. Faor

continuous time systems the usual choice for @g is
€, {s€C: Re(s)<0)

and for discrete time systems
Eg:{zE@: |z[<1}

But any other choice will not change the theory. Thus for example
one can define @g:{sEE:‘Re(s)<-a for some 0>0} if one wants to

obtain a prescribed degree of stability. , -

Given the system (2.1) consider the cloused loup system formed
by means of state feedback F and the connection of a gain matrix

G at the system input as in figure (2.2)
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V————ipet G u B 1 X f X P
A
F

The controllability subspaces are defined as follows

Definition 24: A subspace RcX is an (A,B)-controllability subspace

i1f there exists maps F:X - U and G:U -+ U. such that
R=<A+BF | im(BG)> (2.10)

- Thus R is the controllable subspace of the pair (A+BF, BG) which
 is obtained as described in fig.(2.2) The notation R(A,B;K) is /
used to denote the class of (A,B)-controllability subspaces contained
in a given subspace K. Several facts follow easily from definition
2.4. First, if R is an (A,B)-controllability subspace then R is

(A,B)-invariant moreover ewery state x,ER can be reached from the

initial state xOER along a controlled ;tate trajectory that is

wholly contained in R. See fig.2.1b. Trivially 0 is a controllability
subspace. and so ‘is <A|imB>, the controllable éubspace of the pair ’
(A,B)T If the system is single input these are the only controllability
subspaces buf in the multi-input case there are lots of controllability.

subspaces of various dimensions.

By exploiting the equivalence between controllability and
spectral assignability the class of cbntrqllability subspaces can

be characterized by the following basic property:

Theorem 2.2: Let RcX be a subspace with dimR=p21. For‘every symmetric

set A of p complex numbers there exists a map F:X - U such ‘that
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(A+BF)RCR and o[(A+BF)|R]=A
if and only if RER(A,B;X) n

It is this design property of controllability subspaces that
makes the concept central in applications. As a special case of |
theorem (2.2), if the‘péir.(A,B) is ‘controllable R=<A|imB>=X is
a controllability subspace so thato[(A+BF)|X]=0(A+BF) can be
assigned arbitrarily. The well known pole placement property of

controllable pairs is recovered.

Although the theory of controllability subspaces allows to
place the closed loop poles at the desired locations, in most
practical synthesis problems'it is only required that the closed
loop system map, A+BF be stable. For this reason stabilizability

subspéces are introduced in the definition below.

Definition 25: VcX is called a stabilizability subspace if there
exists F:X - U such that (A+BF)VcV and o[(A+BF)|V]<l . Where € is
-understood in the general sense discussed above. It is a direct
consequencé of definition 2.5 and Lemma 2.2 that stabilizability
subspaées are (A,B)-invariant. The familiy of (A,B)-stabilizability

subspaces contained in KcX is shown by the symbol !g(K) Thus
.!gz{VE!(A,B;K): 3FE£(V),0[(A+BF)|V]CEQ} S (2.11)

If a subspace‘V belongs to the family !g then‘For all xOEV it is
possible to find a feedback map F:X =+ U such that the response
e(A+BF)t.x0 + 0 as t-w | That is, the subspace V of the state
space X is stabilized by’state feedback. If the state space X,is
itself a stabilizability subspace then the pair (A,B) is said to

be stabilizable. (ie., JF:X - U such that 0(A+BF)CEg)

It follows from the above discussion that stabilizability is
a weaker properly than controllability. A pair (A,B)rmay be

Uncontrollable although it is stabilizable.
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The classes V, R, and !g are closed under subspace addition
~and the class Q is closed under subspace intersection. Therefore
| according to Lemma 2.1a and Lemma 2.1b there exists supremal
~elements V*. R*, VS of V, R and !g respectively and infimél element
Q, of Q@ which can be computed by linear algorithms in finite
number of iterations. Before presenting these algorithms a final
theorem is given related to (A,B)-invariant and controllability
subspaces, which is proved in [1]
- J i
Theorem 2.3: Let VEV(A,B;X) and let R¥=supR(A,B§V). For FEF(V) write -

fAF=A+BF and EF for the map induced in V/R* by A.. Then KF is

independent of FEF(V) furthermore
0[(A+BF)|V]:GF000 where

A - i
OF:U[(A+BF)|R*] is freely assignable by suitable choice of F&F(V)
A\ — . ) -
and OO:G(AF) is fixed for all FEF(V) =
The above theorem is again a generalization of the well known
controllability canonical form The controllable peles of the system
~matrix can be arbitrarily located by state feedback whereas the

uncontrollable poles are invariant under state feedback.

ALGORITHMS:

1) Supremal (A,B)-invariant subspace contained inK: V*(A,B;K)

Define the sequence of subspaces Vk according to

vPak, Vk:KnK1(imB+Vk-1)
' k . : : . k_y k=1
The sequence V is nonincreasing that is, Vicy . For some
k<dim K V =V =supV(A,B;K) can be usedas a stopping rule.

k™ k+1
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11) Supremal (A,B)-controllability subspace contained in K: R*(K)

Let V*=supV(A,B;K) .
‘'Define the sequence 5K according to

k k-1

s®=0 , S%z=v*n(A S '+imB)

s ko .
Induction shows that S 1is noundecreasing and so

s * 15 _supR(A,B;K) for k>dim v

I11) Supremal (A,B)-stabilizability subspace contained in K: V*(K)
. s g -
Let V¥=sup V(A,B;K) and R*=sup R(A,B;K) "
Choose Foeﬁ(v*), write A _=A+BF , let P:X + X/R* be the canonical
projection and let Eo be the map.induced in X/R* by A, - Let a()) be

- the minimal polynomial of KO|V*/R*. Factor a(k):ag(k)ab(k) where
the zeros of‘ag (resp.ab) belong to Eg (resp Eb) and write

CX*=(V*/R*)nkero (A ) - Then
g g (¢] .

_ 1.
vx (K)=P "X*.
g (K) 9

IV) Infimal (C,A)-invariant subspace containing K:Q,(C,A3;K)

Q*(k) can be calcuated by dualizing the supremal (A,B)-invariant

‘subspace algorithm. Define thecsequence Qk/as:

QU=K,v Qk=K+A(Qk_1nkerC)‘

The sequence Qk is nondecreasing, Qk-1CQk and for some k<n-dim K

Q, =0,  ,=inf Q(C,A;K)

k+1

The foregoing algorithms are very convenient for the purpose .

of formulating solvability conditions of the problems considered

in subsequent chapters. For example an inclusion relation sutch as:

Scy I (2.12}
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where 5 is a fixed subspace and V is an element of the family V(A,B;K)
can hold if and only'if Scv*(A,B;K). -

» .Thué_it is sufficient to check whether the maximal (A,B)-invariant
subspace of K contains S or not in order to find out if there exists
VE!(A,B;K)VéatisFying SCV. Because if (2.12) does not hold for the
largest element V*(K) of the set V(A,B;K) then it cannot hold for
ahy other VEV(A,B;K) ‘

On the other hand there may be situations where it is important*w;
to know the existence of VEV(A,B;K) other than the maximal satisfying --
:(2.12); For example oneimay be interested in the minimal element of
the set V(A,B;K) if the space so constructed somehow equals the

- state space of a system in a design problem.

Unfortunately there does not exist any algorithms in the
literature to calculate the elements of the sets V, R or Q other
than.the ones given above. Any research to this aim seems to be
a rewarding study Fdr it oupens the doors of solution of many
longstanding system problems like minimal order compensator design,
minimal order observer design etc. as shown in the following

chapters.
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I1I. DISTURBANCE DECOUPLING IN LINEAR_TIME INVARIANT SYSTEMS

Consider the dynamical system

;:Ax+Bu+Eq ' (3.1a)
y:Cx . (3.1b)

z=Dx \ ' (3.1¢)

with x€R"=X the state, u€IR"=U the control, ofR"=Q the disturbance
yé]szY the measurement and zETRlzl the controulled output.

Definition 3.1: The system (3.1) is disturbance decoupled (relative

to the pair q, z) if and only if the forced response

ACE-T e (t)dr=0

t
z(t)=D[ e
0

for all q€Q.

Thus, according to Def.3.1 the transfer function: D(sI-A)-1E

from q to z is identically zero for a disturbance decoupled system.

Let ¢(t;q) be the solution of (3.1) with x(0)=0, u(t)=0.
A state XEX is reachable frbm x(U):O if there exist t and q, with
0<t<e and q€Q such that ¢(t;q)=x. It is easily proven that the set
of reachable states of (3.1) under the action of all pussible
géQ is given by the controllable subspace of the pair (A,E). That is
{x:x=9(t;q) for some qEQ}=<A|imE>=imE+im(AE)+...+im(A""" £)
(3.2)

The following proposition is fundamental for the disturbance
decoupling problem and gives the geometric condition for a system

of the form (3.1) to be disturbance decoupled.
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Proposition 3.1: The system (3.1) is disturbance decoupled if and only 1

IVEI(A)  such that  imEcVckerD

Proof: "if" Assume the system is disturbance decoupled. From Def;3.1
and formula (3.2) it follows that <A|imE>ckerD. By Cayley-Hamilton
theorem it is easy to show that <A|imE>.€ I(A) and clearly imEc<A|imE>
"Only if" Let V be such that AVcV and imEcVckerD then

<A|imE>C<A|V>:VCkerD

Thus the condition of Def.3.1 is satisfied and the system is
disturbance decoupled A : [ |

The disturbance decoupling problem applies exactly when Def.3. 1
or Prop 3.1 is not satisfied by the system (3.1) and is the problem
of finding a feedback control law from the measurements y to the
control u such that in the closedloop system the controlled outputs

are not affected by the disturbances ie., the forced response

. 4 | , .
_ Ac(t-T)
z(t)_DDfe Eq(1)=0 (3.3)

for all qeQ, where AC:ClOSed looprsystem matrix.

Hence the problem can be visualized as in the following block
diagram.

e . e e i e i

PLANT

\

ik

Closed-loop system

i > — - > v > > P b > - . - . - -

Fig.3.1 DISTURBANCE DECOUPLING .PROBLEM (DDP)
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1. DISTURBANCE DECOUPLING BY STATE FEEDBACK

The above problem was originally solved by Wonham and Morse

assuming that the whole state vector is available (ie., C=I in

Fig.3.1). The.problem can be defined as follows: Find a feedback
control law u=Fx such that the closed loop system

x=(A+BF ) x+Eq

(3.4)
y=Cx . z=Dx )

is disturbance decoupled.

From Prop.(3.1) the conditions for the existence of such a

feedback matrix are quite obvious.

Theorem 3.1.1.: Disturbance decoupling by state feedback is solvable

if and only if-

3VeV(A,B) such that imEcVckerD - (3.5)

Proof: "if" Assume that (3.5) is satisfied. By lemma (2.2) 3F:X » U
such that VEI(A+BF). Hence by Prop.(3.1).the system (3.4) is
disturbance decoupled. "Only if" Let F:X > U be a solution of
disturbénce decoupling by state feedback. That means 3VeI (A+BF)
such that imEcVckerD. Again by lemma (2.2) such a subspace

belongs to V(A,B) n

Condition (3.5) of Theorem (3.1.1) would be useless if we.
did not have a constructive way of checking it. Fortunately among
the (A;B)-invariant subspaces contained in kerD there is a lérgest
one denoted by V*¥(A,B;kerD) which is computable by Algorithm I
'of Ch.2. So we have the corollary for the solutidn of disturbance

decoupling problem by state feedback:
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Corollary 3.1.1: Disturbance decoupling by state feedback is solvable
if and only if v

imEc V¥(A,BikerD) ' (3.6)M

Theorem 3.1.1 and Cor.(3.1.1) provide a constructive solution to

disturbance decoupling problem by state feedback

1. Compute V*¥(A,B;kerD) by Algorithm I of Ch.2 or (A2) of

Appendix and check if the condition (3.6) of Cor.(3.1.1) is satisfied

2. Choose any FEE(V*) as in the proof of lemma (2.2) or by
algorithm (A4) of Appendix.

3, u=Fx 1s the desired control law.
2, DISTURBANCE DECOUPLING BY MEASUREMENT FEEDBACK

Although,the theory developed in the preceeding section gives
an easy solutidn to disturbance decoupling problem, it requires that
the whole state vector is accessible to direct measurement.This
assumption is rather restrictive in practical applications and

hence controllers should be of measurement feedback type.

" Thus the problem that We pose is to find a feedback map
K:Y - U such that in the>élused loop system

X = (A+BKC)x+Fq ‘ (3.7) v
y= CX‘ , -z=Dx ‘ ’ -

resulting from the control law u=Ky, the disturbance actions are

localized in kerD.

This problem was first solved by Hamano and Furuta in [a]
Theorem (3.2.1) below gives their main result. We first give a
definition and a lemma which is motivated by the form of the system

matrix in (3.7)
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Definition 3.2.1: A subspace VcX is said to be an (A,B,C)-invariant

spbspace_if there exists K such that (A+BKC)VcV-

The set of (A,B,C)-invariant subspaces will be denoted by
- L(A,B,C)

Lemma 3.2.1: L(A,B,C)=V(A,B)nQ(C,A)

Proof: Take VEL(A,B,C). By Déf.(B.Z,ﬂ) there exists a matrix K such
that VEI(A+BKC). Setting G=BK and F=KC. it is seen that
VEI(A+GC)NI(A+BF) Thus by Lemma (2.2) and Lemma (2.3) VEV(A,B)nQ(C,A).

For the reverse inclusion take VEV(A,B)nQ(C,A). Let
{x1...xj,xj+1. ‘
for VnkerC. Because VEV(A,B) there exists UiEU and viEV such that

..xk} be a basis for V such that {x1...xi} is a basis

Ax.:v.+Bu; (i=1...k)
i i, _

Noting that the vectors {ij+1...ka} are linearly independent we

can define K:Y » U such that

chi:fui (i=j+1...k)
Then we have (A+BKC)xi:vi€V for izj+1...k but alSO’(A+BKC)xi=AxiEV
for izi...j because A(VnkerC)cV. Thus (A+BKC)VSV and by Def.(3.2.1)

VEL(A,B,C) - ) .

Theorem 3.2.1 The problem of disturbance decoupling by measurement

feedback is solvable if and only if
IVEV(A,B)NQ(C,A) such that imf €VcxerD (3.8)

Proof: The proof is again based on Prop.(3.1) which is® fundemental

for disturbance decoupling.
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"if" Let the closed loup system (3.7) obtained by the control law
u=Ky be disturbance decoupled. It follows from Prop.(3.1) that
IVEI(A+BKC) such that imEcVckerD, The.result now follows from
Lemma (3.2.1) '

"Only if" Assume (3.8) is satisfied. V can be made (A+BKC)-invariant
by suitable choice of K:Y -+ U as in the proof of Lemma (3.2.1).
Hence the system (3.7) is disturbance decoupled by Prop.(3.1) n

’ Once a subspace V satisyfihg (3.8) is given computing a
corresponding feedback matrix K such that (A+BKC)VEV is very easy.
Just replace (A+BF) by (A+BKC) in algorithm (A4) of Appendix. The
key problem therefore is to check the existence of an (A,B,C)
invariant subspace in between imE and kerD and to construct if one
exists. This problem is not solved in literature and is open for

future research.

Another disadvantage of distufbance decoupling by direct
measurement feedback is that the condition (3.8) is stronger than
its state feedback counterport (3.5) To overcome tﬁeée dissiculties
disturbance decoupling by dynamic measurement feedback has been
propesed in [5], [ﬁ] and [7] which is the topic of the next section.

3. DISTURBANCE DECOUPLING BY DYNAMIC MEASUREMENT FEEDBACK
So far the feedback structures used for disturbance decoupling
were all linear, time invariant and memoryless. Here we will allow

dynamic processing of the measurements before feedback.

We consider the some model (3.1) for the plant and assume
that the control input is synthesized by means of the dynamic-

compensator:

w=Nw-+My | ~ (3.9a)
uzLw+Ky (3.9b)
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where wEW is the state of the compensator The order of the compensator
is dimW. Comblnlng equations (3 1) and (3.9) gives rise to the

closed-loop system with state space XoW.

o 17 | S
x| . A+BKC . BL o I L . (3.108)
W MC N W 10 ‘
. o X .
z={D 0] hW] o (3.10b) .

the problem of disturbance decoupling bydynamic measurement feedback
can now be formulated as follows: Find the compensator matrices
(N,M,K,L) appearing in (3.9) such that the closed loop system (3.10)

has zero transfer function from q to z. R

The soclution to this problem is given in the references cited.

We give below an alternative proof which yields the same result.

First we define two mappings between extended stéte space
Xx®=X®W and X. The projection P:X® > X is defined by

P [x} =X ’ : (3.11)
and the embedding S:X~ X° is defined by
sz.[x] ‘ (3.12)

For a subspace V% of X%, we have

VpéPVe:{x€X|3w€W:[z]EVe} (3.13)

v.és"1ve={xex|[x]eve} | (3.14)
i 0

Less precisely, Vp may be viewed as the projection of v® on the X

space, and V. may be v1ewed as .the intersection of V® with X space.
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Lemma 3.3.1: The clused loup system (3.10) is disturbance decoupled

if and only if
HVQL(AC) such that imEa®e0<CV < WekerD
where AC is the system matrix of (3.10)

. :
Proof: By noting im 6] =S(imE)=imE & 0 and

ker [U [)]: P_1(kerD):W$kerD. The lemma is a direct consequence of
Prop. (3.1) ' . n

Lemma 3.3.2: Let veX® be A_-invariant then

v =5~ 'veq(c.A) and V =PVEV(A,B) with V cV
1 H —_ p - 1 p

Proof: The fact Vicvp follows directly from (3.13) and (3.14) _
To prove that A(VinkerC)CVi»take xEVinkerC: we have to show that
AxEVi. This follows upon hoting that

[ RS IR

Next, take xEV_; we have to prove that Ax+BucV_ for some u€lU.

Take weW such that {i‘EV; then

Ax+B(KCx+Lw) [A+BKC ‘ BL] X v
MCx+Nw :L MC N e )
so that u=KCx+Lw suits our.purposes. ]

Now the concept of dynamic extension will be introduced:

Definition 3.3.1: Let Z be the system given by (3.1)

The systemZe with input (u,v), state sﬁace Xe:XeW. measurement

(y1, yz) and defined by
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HR AN M RN

Ty, 1 0c o] [«
[ Y9 j [U L [WJ

1s called on extension of L. The system matrices for the extended
system will be respectively denoted by A%, 8%, £°, c®.

According to this definitlon the extended system 1s obtained
by incorporating q=dimW integrators to the system (3.1) and taking

the dutputs of the 1ntegrators as additional mzasurements.

Lemma 3.3.3: Any dynamic compensator of the form (3.9) around the

system (3.1) 1s equivalent to a static measurement feedback control -

applied to the extended system £€.

Proof: The control law ut=K%y® with k° partitioned as:

Kez[ﬁ h] y;elds exactly the compensated system (3.10) ®
The following lemma gets us very close to the solution by

showing how one can produce (A,B,C)-invariant subspaces by extension.

Lemma 3.3.4: Let YV €Q(C,A) and V,€X(A,B) with V.CV,. Then there

exists an extension space W of dimension: dimW:disz—dimV14and
an (A%, B%, c®)-invariant subspace V of XeW, such that V_= -1

S 'V
and V2=PV.

1

Proof: Let W be a linear spacze of dimension: dimVZ—dlmV1. and let

R be a mapping of V, onto W such that kerR=V, . Introduce

— x - -~ .
V’{[Rx]' xCVZ}CXQH
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Then it is clear that V, = S~1V , =PV and we need only to show that

VEL(A™,B ,C%). But this follows by notlng that A®NcN+imB® which means
that VEV(A®,B%) and VnkerC =(V1nkerC)‘@0 so that

A®(Vnkerc®)cv. Thus VEV(A®,B®)na(c®,a®)=L(A%,B%,C%)

by lemma (3.2.1) _ ' u

Lemmas (3.3.2) and (3.3:4) are converses of each other in the
sense that Lemma (3.3.2) shows for each VEI(A_) PVEV(A,B), S 'VEQ(C.A).
and (3.3.4) shows that to any pair of subspaces v EQ(C A) and
Vv EV(A B) with V,|CV2 there corresponds kK®:¥® 5 u® and Vcl(Ac).

The following theorem for the solvability of disturbance

-decoupling problem by dynamic measurement feedback should now be

obv10us

Theorem 3.3.1:»The problem of disturbance decoupling by dynamic
compensation is solvable if and only if there exists a subspace
pair (V,,V,) such that '

V1EQ(C,A), VZEX(A,B) and imE<:V1CV2CkerD (3.15)

Proof: Necessity of (3.15) follows from Lemmas (3.3.1) and (3.3.2)
Sufficiency can be proved by constructing a subspace VELﬂAe,Be,Ce)
us1ng Lemma (3.3. 4) then a map k€:¥® > U® as in the proof of

Lemma (3.2. 1) such that VEI(A 8%k °Cc®) - l(AC) and satisfies

Lemma (3.3. 1) ]

0f course, one wishes that condition (3.15) of Theorem (3.3.1)
can be checked constructively (that is, by an algorithm) if the
system parameters are known. This can be achiéved by computing the
smallest (C,A)-invariant subspace containing imE by algorithm IV
of Ch.2 and the largest (A,B)-invariant subspace in kerD by

algorithm I. So we arrive at the following constructive criterion.

_ ——
ot IVERSHES) YTUPHAN
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Corollary (3.3.1): Disturbance decoupling by dynamic observation
feedback is solvable iff

- Q,(C,A;imE) cV*(A,B;kerD) I (3.16) ®
Several remarks are in order here:

Remark 1: A pair of subspaces (V , v ) having the properties stated
“in Lemma (3.3.4) is called a (C,A, B) palr by Schumacher and is used
eFfectlvely in DDOP [5] DDEP [11] and Regulator synthesis problems [9].

Remark 2: Condition (3.15) for the solvability of DDP by dynamic
compénsation is seen to bé stronger than (3.5) for the solvability
of DDP by state feedback but weaker than (3.8) for the solvability
by direct measurement feedback. In short, assuming that all state
variables are accessible the following implications hold for the
solvability of DDR DDP by direct. measurement feedback = DDP by
dynamic measurement feedback » DDP by state feedback

In other words (3.8) = (3.15) = (3.5) .

Remark 3: The order of the feedback compensatour that can be designed
using the subspace pair in Cor.(3.3.1) is dimW=qg=dimV*(kerD) -
dimQ,(imE). This gives an upper bound for the compenéator order.
The minimal extension order which is necessary for the solution

of the problem is given by

* .
g =min{dimV

2

—dimV1|V1EQ(C,A), VZE!(A,B), imECV1CV2CkerD}

A lower bound for q.is obviously zero in which case V1 cuoincides
with V2 so that disturbance decoupling by direct measurement
feedback is possible. Thus static measurement feedback can be
_viewed as a compensator of order zerc. The minimal compensator

order g*¥ is not known and is an interesting research problem.v
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Remark 4: Suppouse that all state variables are available for

measurement. In this case one wishes to know if dynamic state
feedback in the spirit of Sec.(3.3) brings any improvement for
the solvability of disturbance decoupling problem. This can be

investigated by sefting C=I or kerC=0 in (3.16) so that
Q,(C,A:imE)=inf{Q: A(QnkerC)cQ, imEcQ } =imE

Thus (3.16) reduces to imECV*(A,B:kerD)’which’is identical
te (3.6). '

“We arrive at the conclusion: There is no difference between
static state feedback and dynamic state feedback as for as the
solvability of DDP is concerned. Of course we prefer static state

feedback because of dits simplicitiy.

Remark 5: As a final comment we prove that disturbance decoupling by
dynamic measurement feedback is not solvable if kerDckerC. This

can be justified as follows if kerDckerC, condition (3.16) becomes
Q,(C ,A;imE)=<A|imE>cV*(A,B;kerD)ckerDckerC

which means‘that the original system is already disturbance decoupled
contrary to our basic assumption. The result just proved can be
stated as: A sysfem that is not :disturbance decoupled can not

‘be made so by any form of observation feedback in case the observation

is a function of the variable to be requlated.(See also Lemma (4.1.3)

A simple example will now clarify the theory developed'

EXAMPE: Let the system (3.1) be given as

0 1 0} 1 0 . _
A={0 O 1J B=1{0 E={0 c=[1 1 1] 0= 0 0]
0 11 1 :
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It is readily checked that kerD is (A,B)-invariant so that

: 0 0
V¥(kerD)=im [1 0} imE ©V*(kerD) thus disturbance decoupling
0 1 '

by state feedback is solvable.

But we assume only the measurements y are available for feedback.

| [o]
Q*(C,A;imE):im'[OJ
: 1

Condition (3.16) for disturbance decoupling by dynamic compensation

is satisfied.

VEL(AB,BB,CG) is constructed as in the proof of Lemma (3.3.4)

For this choose R:V, + W to be R=[0 1 0]. Notice that kerR=Q,(imf).

Then V={Ix_]= =V, s
Rx f

made AC=Ae+BeKeCe invariant by suitable KE:Y

feedback law) Such a K? can be calculated as in Lemma 3.2.1 or by

X

M

<

—

!

[

3
-0 -0

0 .

ol is (Ae,Be,Ce)-invariant and can be
1

0_

¢, u® (Defining a dynamic

the procedure described in algorithm 4 of Appendix

e[k 1 _fo-1
T MoN] T

The compensator (3.9) is now given by: w=-w+y, u=-w

U(s) -1

Y(s) s+1

F(s) in Fig.<3.1) is: F{(s)=

The closed loop system is shown in the figure below

q > PLANT {— > z
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1v) DISTURBANCE DECOUPLED ESTIMATION PROBLEM (DDEP)

Consider a linear, time invariant dynamical system represented by

x=Ax+Bu+Eq
y=CX o, z=Dx ‘ (4.1)

n

where x€X= IR ._uEU:IRm, yEY= IR? are the state, the ihput and the

observation respectively, qgGQ= R" represents the unmeasurable

disturbances, zGZ= ml denotes the to be estimated outputs.

The disturbancevdecoupled estimation problem is the problem of
constructing a related systém, an observer, driven by u(t) and y(t)

of system (4.1) and giving the output 2(t)

&:Nw+My+Gu

2:Lw}Ky : (4.2)
such that the resulting estimation error
N . o
e(t)=z2(t)-z(t) (46.3)

depends only on the initial conditions x(0), w(0) and not on the

distUrbance q or on the input u.

Thus the problem can be visualized as in the following block

diagram.
. VA
q > S — e
PLANT
u Y.
ESTIMATOR z
C Fig.4.1

In sec.(4.1) it will be shown that this problem formulation
allows us to design an estimator of the form (4.2) that estimates

the function z=Dx when the initial state x(0) of (4.1) is given.
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1. ESTIMATION WITH GIVEN INITIAL STATES

Combining equations (4.1), (4.2) and (4.3) the composite system
corresponding Fig.4.1 can be described- by '

o S 1

ezz-z= [KC-D L] [Z]

Zo Xo

It follows from the above problem definition that the composite
system (4.1.1) must be disturbance decoupled relative to the pair
Tu, q] .e if (4.2) is to be an estimator for the plant (4.1).

If the composite system matrices are denoted by Ac,ch and DC

respectively this requirement can be stated formally as:

Lemma 4.1.1: The system (4.2) serves as an estimator for the

system (4.1) if and only if there exists on Ac—invariant subspace

V of the extended state space X°=X®W -such that
imB cVckerD : (4.1.2)
C c _ :

ProofX The lemma is a direct counsequence of proposition (3.1) and

the problem statement ‘ u

For the proof of the main theorem on disturbance decoupied
estimator design two more lemmas are needed. The first one is
the aﬁalog of Lemma (3.3.2). The projection P and the embedding
S between X© and X .are defined as in (3.11) and (3.12) |

Lemma 4.1.2: Let V be an Ac-invariant'subspace of X+W then
v, 2s7'vea(c,n) and VDQPVEL(A)

Proof: Take‘xEVinkerC; then [é]fw and
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[A 0] [x] _[Ax ' ,
IMC J 0 = 0 ev 81nc§ V is Ac—invariant by assumption.

So AxEV which proves that A(V. nkerC)CV

hence Vi is an (C,A)-
1nvarlant subspace of X by deflnltlon

To prove that PV is A-invariant, take XxEV_ then there exists

wEW such that [Z]EV. and so

A o] [x] [ Ax f

The next lemma is a standard result-on linear matrix equations.

Lemma 4.1.3: Let M and N be giVen matrices of arbitrary dimensions.
There exists a matrix X of appropriate dimension such that XM=N

if and only if kerMckerN
Proof: “if” Let X be such that XM=N, u€kerM implies that
XMu=Nu=0 thus u€kerN proving that kerMckerN

"Only if" Assume that kerMckerN. Choose a basis {u1...um,u
for X such that {Um+1"'un} is a basis for kerM. Then

~Mu.=Nu.=0 for i=m+1...n
i i

Define the matrlx X :imM » X by its action on the linearly

1ndependent vectors Mu (i=1...m) such that
X (Mu.)=Nu, for i=1...m
§) i i

and let X be any extension of X0 from imM to X then X satisfies the

equation XM=N | | | .

Theorem 4.1.1: There exists a solution to the disturbance decoupled

estimation problem . -

if and only if

IGEQ(C,A:imE) such that QnkerCckerD ' (4.1.3)
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>roof: "Necessity" Operating on both sides of (4.1.2) with S~1
one gets: . |

-1,. -1 -1

S (1mBC)<IS. Vecs (kerDc) (4.1.4)
Setting Vi=s"1v and using the relations imEcs“1(ich),
5—1(kerDc)=ker(KC—D) (4.1.4) can be simplified to

imEx:Vi<:ker(KC—D) : (4.1.5)

The fact that ViEQKC,A) has been proven in Lemma (4.1.2) thus it
suffices to show that VinkerCCkerD to complete the proof of the
necessity part. For this take any xEVinkerC then

Dx={(D-KC)x=0

where the first equality is a result of XerrC and the second follow
from xEVi, ViCker(D—KC) by (4.1.5) Thus x€kerD which implies that
VinkerCCkerD

"Sufficiency" What needs to be shown is that: given a subspace
QeQ(C,A; imE) with QnkerCckerD the observer parameters (N,M,G,L,K)
can be chosen such that there exists an Ac—ihvariant subspace in |
between imBC and kerDC as required by Lemma (4.1.1).

Let Vz‘be an A-invariant subspace containing (Q+imB). Such
a subspace can always be found because the state space X is
A-invariant and (Q+imB)cX. Define the observer state space W to

be a linear space of dimension:

dimW:disz—dimQ

Let R be a linear mapping from Vz onto W with kerR=Q and write .
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={igx]: xEVé} : (4.1.6)

"As Q is (C, A)-invariant G, :Y= X can be picked such that (A+G C)Qcq.
Now lemma (4.1.3. ) allows us to define N such that

NRx:R(A+GOC)x , for al xGV2 (4.1.7)
because x€Q=kerR implies (A+GUC)XEQ. Thus kerRCkerR(A+GOC). Set

M=-RG ' ' o (4.1.8)
For K we do the following construction.

Let {yi...vj, Vj+1"'vk} be a basis for Q such that {Vi"'vj} is
a basis for QnkerC. X is defined by its action an the linearly

independent vectors Cv, (i=j+1...k) as
KCVi:DVi for i=j+1.:..k . ' (4.1.9)

Note that for i=1...j this relation is automatically satisfied since
KCvi;Dvizﬂ for all viEanerCCkerD by assumption. Thus
(D-KC)vizﬂ for i=1...k or in other words Qcker(D-KC) has been

achieved by this construction of K.

e

Again employing lemmav(4.1.3) L can be computed from
LR:D;KC ‘ | (4.1.10)
because kerR=QCker(D-KC). Finally set
G=RB , »(.471.11)
All parameters of the system (4.2) have been specified. Now it
remains to check that the so constructed system is indeed an

estimator for the plant (4.1). 1t follows from (4.1.7) and (4.1. 8)
that
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(MC+NR ) x=RAx for all xEV2

so that

A 0 X Ax ‘
= €V for all x€V
MC N Rx RAx 2
so it is seen that the subspace V defined by (4.1.6) is Ac—invariant.

Moreover it follows from (4.1.10) that:-Vcker[KC-D L]=kerD_ and
from the assumptions imfcq, imBCV2 and (4.1.11) that imBCCV n - e

Remark:1A.distinctive property of the estimator designed by the
method of Thm.(4.1.1) is its "dead-beat" character. The observer
output 2(t) tracks the to be estimated output z(t) from t=0 on if
the proper initial condition w(o) is put on the systeh (4.2),
that is the error e(t) defined by (4.3) is identically zero for
all t20.

The large;t Ac—invariant subspacerof kerDC which is defined
in (2.7) as the unobservable subspace of the composite system (4.1.1),
contains the initial values [x(0), w(0)] from which the compésite
system will move in such a way that the error is zero for all time.
It was shown in the proof of Thm(4.1.1) that the space V defined
by (4.1.65 is Ac—invariant and contained in kerDC therefore it is
a subspace of the unobservable subspace of (4.1.1). Hence if the
initial state x(0) of the plant is known the desired dead-beat
resbonse can be obtained by starting the estimator system with the

initial condition

w(0)=Rx(0) (4.1.12)

On the other hand if the initial condition w(0) is not
properl y chosen the convergence of 7(t) to z(t) can not be
guaranteed because in the problem statement it is only required that
the error be independent of the input u and the disturbance q.
nothiﬁg has been said about the asymptotic stability of the
composite system (4.1.1). Thus the proposed method may be viewed
as: estimation in the presence of unknown inputs but known initial
conditions. In the next section we will allow both the initial

state and the input to be unknown.
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“Theorem (4:1.1) and the remark 1 above, provide a constructive
procedure for designing estimators when the initial state x(0) of
(4.1) is known. Given a subspace QcX satisfiying condition (4.1.3)
of Thm.(4.1.1) an estimator can be designed quite easily following .
the proof of sufficiency. On the other hand there is a constructive
way of checking whether (4.1.3) holds or not for a given problem.
Recall from Ch.2 that among the (C.A)-invariant subspaces containing
a given subspacé there is a smallest one which can be computed
by algorithm 4 of Ch.2 so (4.1.3) can be checked by computing the
subspace Q,(C,A;imE). If (4.1.3) does not hold for this choice

of QEQ(C,A;imE) then none of the members in Q(C,A;imE) can satisfy
(4.1.3) because Q_ (imE)cQ and @, (imE)nkerCc@nkerC for all
QEQ(C,A;imE). This.résult is stated as a corollafy below.

Corollary-4.1.1: Given the initialstate of (4.1), there exists

an observer estimating the function z=Dx, if and only if
kerC nQ,(C,A;imE)ckerD , (4.1.13)m

Before closing this section we would like to point out two
important aspects of our approach that differs from classical
observer theory which will also be discussed by geometric methods

in the next section.

Remark 2: The system (4.2) ‘is the most general linear, time
invariant, dynamical system that can be thought as an estimator.
No assumptions have been made about the structure of the plant or
of the estimator. This may‘be compared with the usual approach
to observer design where it is implicitely assumed that the

plant (4.1) is controllable and the observer (4.2) 1is Qbservable.

Remark 3: The common practice in observer design is to take the

subspace V., introduced in the proof of Thm(4.1.1) to be the state

2
space X. In fact this is the only possible choice for V, if the
system (4.1) is controllabhle. In this case one can design an

observer of order (n-dimQy(imE)J). Of course, this choice of V,
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need not be optimal.For instance once the subspace Q,(imE) has been
computed v2 can be calculated by formula (2.6) to be the minimal
A-invariant subspace containing imB+Q,(imE) to reduce the order

of the desfgned observer. This fact ié especially clear when imB
and/or imE coincides with the zero subspace. No extra dynamics

is required to estimate the states of a stable undisturbéd system.
This is in contrast with the classical approach to observer design

which always predicts (n-p) for the order of a minimal order

observer

EXAMPLE: Let A = [

I

and x(U):x0 is given

oo

10 1 0
0o 1/,B8=]0|.E =0, =1 11],0=0100]
0 1 :

0 _
Q,(C,A;imE)=imE=im [01 it is easily verified that (4.1.13) holds
. 1.

Let VZ:X: B?Bthen it is possible to design on estimator or order two.

1 0 0O

RiX > W= IR2 is given by R ={' } Notice that kerR=Q, (imE)

0 10
E(Q*)é {G:Y-¥ X|(A+GC)@EcA,} can be calculated by using Lemma (2.3)
‘or algorithm 4 of Appendix as:

: 0
E(Q*):{¥4 where gem}
- Yy

|0 0 1 0
G €G(Q,) is chosen as G_=|-1 then A+G C= |-1 -1 O -t
o =¥ o g ° 0 0 O

Calculate N using (4.1.7): N

L? _1] and M from (4.1.8):

M =[(J] K is found from (4.1.9) as: K=0. (4.1.10) gives the value

' 1
L=[1 0]. Finally G is calculated by (4.1.11) to be'G:[O]
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Now the estimator system is given by

. [0 1 0 1 o
" 'L1 -1} " [1] yr [0] . w(0)=Rx

z=[1 0w

| 0 1 01
) o a x _ 001
It can be immediately shown that V :{[ ] , XEX }: im {1 0 O is
1L LRx
010
t0 01
[0 10 00] 1 0
001 0O 0 O
A = 000 0.0 invariant, contains imB =1 1
c ¢ 1 0
000 01
‘ L0 0]
11 1 -1 1d

and is contained in kerDczker [-1 001 0]

2. OBSERVER DESIGN FOR LTI SYSTEMS WITH UNKNOWN INPUTS AND
MEASUREMENT ERRORS

A linear time invariant system of the form (4.2) serves as an

observer for the plant

x =Ax+Bu+fq .
y=Cx+Fd , z=Dx _ (4.2.1)

if and only if
%jﬂ [#(t)-z(t)] =0 for al x_.w_ .q.d,u | (4.2.2)

The new term d5D=IR° in the model (4.2.1) represents the
unknown measurement errors which must be taken into account for
a more accurate description of the physical problem. Though the
observer problem has been studied extensively since the original

work of Luenberger [9] it was not sulved in literature by taking
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the measurement errors into consideration so the results below are

new with this respect.

Two types of observer can be defined depending on the convergence
in (4.2.2) I) STABLE OBSERVERS: The convergence in (4.2.2) takes

place with exponéhts belonging to a "good part" Eg of the cumplex

plane. The error poles lie in {g.

I1) FIXED POLE OBSERVERS: The exponents of convergence in (4.2.2)

belong to a specified symmetric set, A, of complex numbers. The error.

pules can be assigned arbitrarily.

The choice of error dynamics is of practical importance in
observer problem because the response of the estimator system
must be rapid compared with the time constants of the plant if it

will be used to implement a feedback countrol law.

Defining the estimation error as in (4.3) and combining
equations (4.2.1) and (4.2) give rise to the following composite

system (observer+plant).

u |
3
d (4.2.3)

e=[KCc-D L] {ﬂ .+ KF d

The fbllowfng assumptions are made for the plant and the

observer:

A1. The pair (A,B) is assumed to be cuntrollable.

A2. The pair (L,N) is assumed to be ubservable.

_Assumption (A2) is by no means restrictive. If the observer
is not.observable a lower order ohserver can be designed satisfying
the same stability requirement (4.2.2) as the original one by
taking the observable part. Thus (A2) is a necessary condition to
design a minimal order observer. Assumption (A1) can also be
justified because the unwanted signals are modeled separately as

the disturbance term q hence it is reasonable to assume that the
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plant is completely controllable by the cdntrol vector u which is

at the controller's disposal.

Necessary and sufficient conditions for (4.2) to be an observer

for (4.2.1) are given in the theorem below following the works in

[10], [11] and [12] and making the required change to accomodate
the presence of measurement errors d.

Theorem 4.2.1: The necessary and sufficient conditions for (4.2)

to be a stable observer for (4.2.1) are:

Q(N)CEg 1 ) (4.2.4a)
and there exists a matrix V such that
NV-VA+MC=0 (4.2.4b) VE=0 (4.2.8e)
D-LV-KC=0 : (4.2.4¢) MF =0 (4.2.4F) .
G-VB=0 (4.2.4d) . KF=0 C(4.2.40)

Proof: Sufficiency is proved by defining the estimation errors:
e1éw—Vx -, eéi—z and by noting that €, is governed by the
differential equation:

éi=Ne1+(NV—VA+MC)x+(G—VB)u—VEq+MFd

and o e :Le1+(LV+KC—D) x+KFd

It is clear from these relations that if (4a)-(4g) hold e(t)=0

as tso with exponents lying in (g.

,Beéause of the references given if suffices to prove the .
necessity of only (4f) and (4g) which however follows by writing

the transfer function from d to e of (4.2.3) as:

KF+L(sI-N)—1MF:U
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Expanding (sI-N)-1 into powers of 8—1 accdrding to:

1

(sI-N)—1 = Is +Ns-2+N23-3+hJ..

and equating>the coefficient of s_k to zero yields

L
KF=0 and LN MF=0 which implies MF=0 since

LN2Z
L |
L ,
ker LN2 =0 because of the assumption that the pair (L,N) is

|

observable.

The conditions (4a)-(4g) are given in matrix terms in the
above theorem. These will be translated into subspace relations in
the next theorem. This theorem also shows thé/power and economy of
the geometric approach in a strikingway by shrinking the secven

conditions (4) to a single subspace inclusion relation.

THeorem 4.2.2: There exists a stable observer for the system (4.2.1)

if and only if
3VgEVg(A',T';kerE') such that imD'SVg+imC' C(4.2.5)
where C=TC, T being a matrix such that kerT=imF

Proof: "Only if" if the system (4.2) serves as an observer for
(4.2.1) there exists a matrix V satisfying (4a)-(4q). Let V be a
subspace spaned by the columns of V' je., V=imV' and let T:Y > ¥
be such that kerT=imF then (4f) and (4g) hold if and only if

there exists matrices M, K of apprupriate dimensions such that

M=MT (4.2.6) and  K=KT (4.2.7)
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this follows from Lemma (4.1.3). Writin C=TC, substituting (6) and
(7) into (4b) and (4c) and taking transposes it is seen that
VEV.(A' ,C!). Then by lemma (2.2) at least a map M'€F(V) exists such
that - '

(AT-C'MIIV'=VIN! o (4.2.8)
The reason is evident: assuming that (8) does not hold for all
M'€F (V) contradicts with the fact that VEV(A',C'). Now comparing
(8) with (2.4) we can conclude that

N'=(AT-C )|V , ‘ (4.2.9)

In view of (4a), (4e), (8) and the fact that o(N')=0(N) we have
from definition (2.5): VEVg(A',C';kerE') and (4c) implies

imD'cimCHV -

"if" Given a subspace VgEVg(A',C',kerE') with imD'cimf'+Vg start
by computing a suitable M'€F(Vg) satisfying

o[(ar-E'fi")|vglclq (4.2.10)
Let V be a matrix such that
T imV'=Vg S \ (4.2.11)_
Calculate M from: MQVﬂ and M from
M=fT | | R
where'T is defingd as earlier: kerT=imF. Set

N':(A'—E'M')‘Vg
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Calculate L and K satisfying
LV+RE=D | ' (4.2.12)

and K from

Set

G=VB ' (4.2.13)

Then (N,M,G,L,K) are the desired observer parameters satisfying
(4a)-(4g) | |

The above theorem gives a design procedure when a subspace Vg is
given having the properties required in the theorem statement. On
the other hand the existence of such a subspace can be checked
contructively by computing the sdprehal’(A',C')-stabilizability
subspace in kerE' by algorifhm 3 of Ch.2 or (A5) of the appendix
so we arrive at the following constructive corollary for the

obseryer«design problem for the system (4.2.1)

Corollary 4.2.1: There exists a stable observer for the system
(4.2.1) if and only if ’

imD'cin+VX (A, C" jkerE!) o (4.2.14)

where T is defined as in theorem 2. -
It is seen from the above theorems that the measurement errors d
essentially cause the measurements which are corrupted by the

noise to be completely discarded. An analogous situation occurs for

the disturbance input q as well this will be shown in theorem (4.3.3)

Next we consider the kind of error poles of the observer which

is constructed for the subspace Vg satisFying the conditions of
theorem 4.2.2 Theorem (2.3) plays a key role here the result is

stated as a theorem below.
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Theorem 4.2.3: Let VgeVg(A',C';kerE') be a stabilizability subspace
for'which an observer is designed as in theorem 4.2.2 Let

noéding and n1édimR*(A',E';Vg). Then among the N, poles of the
vbserver n, can be freely assignable by suitable choice of FEF(Vg)

and (no—n1) are fixed but quaranteed to be in (g.

Proof: Because of the observability of the pair (L,N) the error
po;es are identical with the observer poles and are given by the

eigenvalues of the matrix N. From (4.2.9) and theorem (2.3) we can

write
0(N')=0(N)=0[(A'—E'ﬁ‘)IVg];OFUOO where

A - .
GF:O[(A'+C'F)|R*] is freely assignable and

A -
o= QBA'+C'F)IV9/R%] is fixed for all FEF(Vg)

. o ' A
Now the conclusion follows since there are n1=dimR* elements in GF

and dim(—ﬁ%f—)=ding—dimR*:n0—n1 elements in Od o |

‘ From the spectral assignability property of controllability
subspaces (theorem (2.2)) and theorem 4.2.3 above, we can
immediately obtain the solution of the fixed pole observer problem
posed at the beginning of the section.
‘Thebrem 4.2.4: There exists a fixed pole observer for the system (4.2.1)

If and only if o .

"IRER(A',C',kerE') such that imD'CR+imC' (4.2.15) m

The constructive form of theorem 4 can be given as:

Corollary 4.2.2: There exists a fixed pole observer for the system

(4.2.1) if and only if

imD'cimC'+R*(A',C';kerE"') (4.2.16)m
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. The above theorems can be proven by exactly the some method used
to prove theorem 4.2.2 and Cor.(4.2.1)

Remark 1: It is obvious that theorems 2 and 4, and their corollaries
are also applicable to the observer design problem for the special
cases when no unknown inputs and/or measurement errors are present. ™~
. The splution*for these cases can be obtained by setting £=0 and/or
C=C respectively Similarly the results can be spe01allzed to full
state observers by taking D=I. Thus the problem was considered in
its most general formulation except from the assumption (A1) and
(A2). It is worth investigating the constraints imposed by these
assumptions on the solution of the problem.

Remark 2: The order of the observer which is c;nstructed by the

method of Theorem 2 or Theorem 4 is at most equal to
dim(kerE')=n-r

where r=rankfEzNumber of disturbances. This givee an upper bound for

the observer order if a solution of the problem exists.

The order of the minimal order stable observer that estimates

the function z=Dx of the system (4.2.1) is given by dimV0 where
Voéinf{v= VEVg(A',C';kerE"), imD'cV+imC'}
A subspace V satisfying the above condition is called a generalized

stable cover for 1mD' (cf. [28] [29]) Thus the equivalance of the

minimal stable dynamlc cover problem to the minimal order observer

: d881gn problem is seen. Though there have been a number of papers

on the former problem its complete solution is not known yet..

Remark 3: Sometimes the direct feedthrough term K may be constrained
‘;o zero in the observer system (4.2) in order to prevent additive
measurement noise from passing unfiltered into the estimate of
z=Dx. An observer for which K=0 is called a Kalman Observer and

the general case K#0 is - refered to as a Luenberger Observer.
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The necessary and sufficient conditions fér thesolution of Kalman

Observer problem can be obtained by setting K=0 in Theorem (4.2.1)
Theorem (4.2.2) Theorem (4.2.4) The results are:

There exists a stable Kalman Observer for the system (4.2.1)

if and only if
3Vg€!g(A',E';kerE') such that imD'cvVg (4.2.17)

There exists a. fixed pole Kalman Observer for the system (4.2.1)

if and only if ‘ e
JRER(A',C';kerE') such that imD'cR (4.2.18)

From (4.2.5) and (4.2.15) it is clear that solvability of Kalman

Observer problem implies solvability of Luenberger Observer problem

but not vice versa.

EXAMPLE: Let the system (4.2.1) be given as:

7 +1 0 2 0 of
0 0 1 0O 1 0
A=z-1o1,Bzo,E=1,C=[ggg?].o=1.r=o
: 0 1 1 0 0 0 - ;

To determine the type of observer that can be designed for this
system R*(A',C';kerE) is computed by (A3) of Appendix I as:
00 :
R*¥(A'",C';kerE')=im|1 0Of . Since the condition of Cor. 4.2.2.
: 00 . :
Lo 1
is not satisfied a fixed pole observer can not be designed. Next
we try a Stable observer by aefiining the stability region as
usual € g={sel: Re(s)<0} and computing VS(AF,C':kerE') by (AS) of
Appendix I as: : :
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VS (A',C's;kerE')=im Cor 4.2.1 is satisfied by this subspace

‘oo o-=
oo -0
Y Y=Y =)

hence a stable observer can be constructed with one fixed pole and

two assignable poles. Following the proof of sufficiency of
Theorem 4.2.2.

We compute i(VS):{F:(A'-C'F)V;Cvs} by the method described in (A4)

of Appendix I. This gives

0 1 f 1 -
F = 13 {where f, o, fo,ofnnsfoasf,, EIR
» [F21 f22 F23 fzq] 13721722723 24

-1 0 2 0.
1 0 -1 1
and A'-C'F =| _ The restriction of this matrix to the
Fia 1=F12 ~Fas 17y
2-Faq =Fap 123 ~Fay |

subspace Va is calculated to be:

-1 0 0

N'=(A'-C'F)|v* =| 1 0 1
9 l2-f f

21 =Fa0 ~Fay

The characteristic polynomial p(s) of N' is
' (s)-det(sI—N')—(s+1)(sz+F s+f,.)
piss= =48 24°%" 22

It is seen that one of the error poles is fixed at s1=1 and the
remaining poules can be assigned by suitable choice of f24' FZZ'

Letting f :F1 =0 and f,,=f,_,=4 gives S1=83=—2. Thus

24 22

21 3

-1 0 0
N' = [ 1 0 1} and M' of (4.2.10) is selected to be
2 -4 -4
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theorem (4.2.2) .

1 0 0 _

0 1 0O N 0 0
We have from (4.2.11) V' = o o gl @nd M=vM = |1 &

0 0 1 T4

L and K are calculated from (4.2.12) as:

where the free parameters

cooo
=
1t
o-00
000

oco -
OO0 -0

i
[}

are taken as zeros for simplicity. Finally from (4.2.13) we have

of - .
G = |1 5 Thus the observer system (4.2) is given by
0 .
-1 1 2 [0 0] 0
w=1]0 “4lw+ |1 4]y +[1]u
g 1 -4 1 4 0
[1 0 o [0 0]
.. o 1 0 0 O
22X =1'g o ol "1 oy ¥
0 0 0 (0 1]

Notice that the observer dynamics is used to recover the missing

components of the state vector x.
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5. OBSERVABLE AND ,UNOBSERVABLE SUBSPACES FOR SYSTEMS SUBJECT T0
UNKNOWN INPUTS

We turn back to the system description given by (4.1) Our aim
is to generalize the concepts of ubservable and unobservable |
subspaces which are well defined for systems having only the
~ontrol inputs u; to those systems which are subject to disturbance
inputs q és well. This study will lead to a new definition of
observability of the system (4.1) and also some interesting results

vhich do not exist in literature.

Definition 4.3.1: The largest subspace of the state space X on

which the orthogonal projection of the state of (4.1)>can be
estimated is called the observable subspace of (4.1) and denoted
by 8. The orthogonal complement of 0 is defined as the unoubservable '

subspacevand denoted by the symbol O.

The term "largest" is justified below by showing that the set
of subspéces on which the projection of the state vector can be

estimated are ordered by subspace inclusion (é)_

The estimation method is not specified in Def.(4.3.1). If a
fixed‘pole observer of the form (4.2) is used for estimation
purposes then it can be easily verified that the observable subspace

which will be denoted by UI is given by

UI:imC'+R*(A',C';kerE') _ (4.3.1)
To see this, let D:X + X be the ortogonal projection operator

on UI' Now, as imD'=imD=imC*+R*(A',C';kerE') the -function z=Dx

can be estimated by a fixed pole vbserver according to Cor.(4.2:2).

Furthermore UI is the greatest subspace having the stated property;

because R*(A',C';kerE') is the largest member of the family

R(A'",C';kerE").
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" The expression (4.3.1) given for the ubservable subspace of
»)(a.1) is completely in agreement with thé.usual definition of
observable subspace for systems which are not'subject to unknown
inputs. If we set E=0, kerE'=X in (4.3.1) and R*(A',C';X) is

calculated by the algorithm 2 of Ch.2, 0, reduces to

1

0,=imC'+R*(A',C';X)=<A"|imC'>

which was defined in (2.7) as the observable subspace of (2.1).

By similar Teasoning it can be proved that given the initial
condition x(0), the unobservable subspace of (4.1) which will be

denoted by 0, is given as:

K

ﬁkzkerCnQ*(C,A;imE) . (4.3.2)

This follows from Cor.(4.1.1) and Def.(4.3.1)

It is appropriate to identify OI and UK as observable subspaces
of (4.1) forobservers based on integrators, because the observer
system (4.2) used to estimate the ortogonal projectidn of the
stafe vector on these subspaces can always be realized by |
1=dimR*(A',C,’;kerE')'aridAn =dimV*(A',C';kerE') integrators

respectively.

n 2

In [15], Basile and Marrou showed that by taking successive
derivatiVes of the measurements y(t), it is possible to estimate
the ortogonal projectino of the state on the least (E',A')-invariant
subspace containing imC'. and it is not possible to Find'any
gréater subspace where the projection of the state can be observed
because this would mean that a'trajectory on the greatest
(A,E)-invariant subspace contained in kerC could affect the

output y(t), which is clearly a contradiction.

The estimation procedure proposed in [1ﬂ was as foullows:

Start from the observations
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Cy(t)=Cx(t) , (43,3

which in order to emphasize the iterative character of the argument,
can be written as

‘ YO(E>:Q0x(t) - (4.}.4)

where.yo(f)=&(t) is a vector of known functions of the time and
QC:Cvis a known constant matrix. Using solely the vector equation
(4.3.4), that is pseudu-inverting the matrix QO, the ortogonal
projection of the vector x(t) on the image of the transpose of the

coefficient matrix can be determined. We denote this subspace

by the symbol QozimQé:imC'.

In general, more knowledge of the state can be gained by using
also the state equation (4.1): in fact, taking the first derivatives

of (4.3.4) and using (4.1), we have
,;0:(t)=QUAx(t)+QOBu(t)+QUEq(t) - (4.3.5)

Since the disturbance yectof function q(t) is unknown, in order to
deduce some information on the state from equation (4.3.5) we must
employ its projection on the subspace [imQOE] =ker(E'Qé). Letting
P1_denote the orthogonal projection operator on this subspace,

we obtain
?1y0(t):P1QOAx(t)+P1QO(Bu(t) v » (4.3.6)
A twofold advantage is obtained by this prqjection{ the
unknown input is dropped and a vector equation is obtained, both

sides of which are again differentiable. In more compact notation

(4.3.4) and (4.3.6) can be written together as:

y =8, x(t) ‘ o (4.3.7)
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where

Q
Q = (8] , y = o yo
! %IQOA] T %1YO_P1Q084

In order to deduce information about the state, it is convenient
to employ (4.3.7) instead of (4.3.4), because Q €Q=imQ;.
o
In fact, since . .

imP1=imP%:{y: E‘Qéy:O} (4.3.8)

is the set of vectors which are mapped by Qé into kerE', the subspace
im(QéP%):QéimP% is equal to imQkaerE'zﬂkaerE"so that the image

of the transpouse of the coefficient matrix of (4.3.7) is

u1=1mQ5:q0+A'(udnkerE') | (4.3.9)

and therefore, roﬂo

Now starting from equation (4.3.7) by means of the some procedure

one can derive Lthe équaLiun
y2=Q2x(t) (4.3.10)

which make it possible to determine the projection of the state

on the subspace
=i ' = A F! e D
02 1mQ2 QO+A (Q1nker_ ) | (4.3.11)

(4.3.11) can be proved by the same arguments used in the proof
of (4.3.9) noting that A'(QonkerE')CA'(Q1ﬂkerE'), so that we can
have QO instead of Q1 in the right side of (4.3.11)

Iterating (n-1) times, one finally obtains

‘ _ . : C(4.3.12)
yn_1-Qn_1x(t) | o
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where Yr-1 is a known function of the observations y, inputs u and
of their derivatives, and Qn—1 is a known matrix such that
S Q_q=in@' =0 kAT (Q ) nkerE ) (4.3.13)
‘The sequence of subspaces Qk is nondecreasing and converges
to the minimal (E',A')-invariant subspace containing imC' which
can be seen by comparing the sequence with the algorithm 4 given in ™
Ch.2 Thus the largest subspace on which the projection of the '

state can be estimated ie., the observable subspace of (4.1) for

observers based oun differentiators 1is
0,=Q,(E',A'5inC") (4.3.14)

By taking ofthogonalvcomplements of subspaces, it follows from
" Def.(4.3.1) and Theorem (2.1) that the unobservable subspace is
given by '

6,=V*(A,E;kerC) / - (4.3.15)

As for the subspace OI' UD reduces to the usual definition of
observable subspace if E=0 ie., if there are no unknown inputs.
That is for systems which are subject to only control inputs u,

the subspaces OI and UD coincide and given by'

01=005<A'|1mc'> if q=0, equivalently if E=0 (4.3.16)

The precise relation between 0I and UD will be given after

the following theorem

Theorem 4.3.1: Let R¥(A,B; kerC)=Largest (A,B)-controllability

subspace contained in kerC

Vﬁ(A,B;kerC):Largest (A,B)-invariant subspace contained in kerC

Q,(C,A; imB)=Minimal (C,A)-invariant subspace containing imB
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then

R*(A,B;kerC)=V*(A,B;kerC)nQ,(C,A;imB) (4.3.17)

- .

Proof: Define subspace sequences Vk’ Qk and Rk according to:

V, =kerCoA™ (V. . +imB)

K K1 , VO=X (4.3.18)
Q =imB+A(Q _,NkerC) =, Q_=0 (4.3.19)
-\ * i : -
Rk..V n(/—\Rk_1+1mB) . RO_U (4.3.20)
It is known that the sequences_Vk, Qk and Rk converge

respectively to V¥(A,BskerC), @,(C,A;imB) and R*(A,BjkerC) (c.f
algorithms 1,2.4 of Ch.2). Thus it is enough to show that

R, =V*nQ, k=1,2,...,n (4.3.21)

Since R1=V*ﬂimB and Q1=imB, (4.3.21) is true for k=1. Assuming it
holds at k=i there follows '

: Ri+1=M*n(ARi+1mB)=v*n(A(V*nni)+1m8) (4.3.22)
- 1 - n
CV*ﬂ(A(kerCnQi)+1mB)_V* Qi+1

where the induction assumption Ri:V*nQi and the fact V*CkerC is

made use of.

For the reverse inclusion, let xEV*nQi+1 that means x=At+b for
some teQ.nkerC and bfimB. Since xEV*, At+b&V* which implies
Q ;

AtEV*¥+imB or tEA_1(V*+imB). Therefore
tGQinkerCn A_1 (V*+imB)=Qinv*:Ri

where the induction assumption is used in the last step. Hence

xEAR.+imB furthermore xEV*n(ARi+imB)=Rl+1 which establishes
i ,

(4.3.23)
V¥aQ; “R;.q

From (22) and (23), (21) and (17) follow. |
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Corollary 4.3.1: Let

Unobservable subspace of (4.1) for observers based on integraturs‘

nobservable subspace of (4.1) for observers based on differentiators

U
Unobservable subspace of (4.1) given the initial condition x(0).

dl O Ot
O =
ne> we> ub>

then . c s

0L290+0K " and OI:ODnUK : (4.3.24a.b)

Proof: It suffices to prove only one of expressions (24) the other

one follows by taking orthogonal complements of subspaces and

recalling the identity:
. ) el el

From (4.3.1)

QI:imC'+R*(A',C';kerE')
Applying theorem 1 to write the equivalent expression for
R¥(A',C';kerf') wilh A',C',T" playing the roles of A,B,C
respectively, we have
_0.:imC'+(V*(A',C';kerE')nQ*(E',A';imC')) (4.3.26)

I

Taking orthogoﬁal complements of subspaces in (26), employing
identity (26) and theorem (2.1) repeatedly
ﬁi:kerCn(V*(A,E;kerC)+Q*(C,A§imE)) (4.3.27)

Now the result (24a) follows by applying the distributive rule
~in (27) which holds since V*¥(A,E;kerC)ckerC.

ﬁI=v*(A,E§kerC)+[kerCna*(c,A;1mE)] om



55

‘.The'twb types of estimation method described in this chapter
have been devoloped seperately and independently in literature. The
close -relationship between the two methods, given by Cor(4.3.1)

does not seem to be appreciated before-

Fach estimation method has its own advantages and disadvantages.'
The differentiator based observer of this section provides a one step
estimétion procedure and has the largest observable subspace of
the two types of observers but it has some practical difficulties
in its implementation. First, the use of differentiators amplifies
noise which is inherent in any kind of measurement scheme; secondly
the method has some numerical problems which stemstrom its one
step character: It is very probable that the matrix seen in
(4.3.12) is illconditioned. .Thus the method is not suitable for

on line operation.

The integrator based observer of section (4.2) has no such
problems. It can provide an asymptotic; on-line identification of

the to be estimated outputs at any desired rate. But these

desirable properties are purbhaéed at the price of increasing
the unobservable subspace in fact, this price can be seen exabtly
in Cor.(4.3.1)

We can also find out from Cor(4.3.1) why 0I and OD coincides
for a system that has only the control imputs. This is because
“we have ﬁKzo for a known input system, which can be seen by
setting E=0 in eqn.(4.3.2) The state x(t) of a system whose
initial state x(0) and inputs u(t) are known, can always be
estimated for all time t. This is not the case if some of the

inputs, q(t) are unknown.

By an alternative line of thought the result of Cor 4.3.1" e
may be interpreted interms of separation. If ﬁI=0 in a given
problem, the initial state x{(0) can be estimated by an observer
based on differentiators, then a de?d—beat observer can be
designed as in theorem (4.1.1) to estimate the-state x(t) for all.

time t. Thus the condition ﬁlzo expresses two seperate phases
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f an estimation problem: 1) Estimation of the initial state x(0)

) Estimation of x(t), t>0; given the initial state x(0)

Estimators that employ'differehtiators and integrators
simultaneously can also be tried. In this case there may be a
ompromise between the number of differentiators used, and the
iiﬂensidn of the observable subspace of (4.1) This possibility

s clear from the nondecreasing sequence of subspaces {Qk}.

The above discussion naturally suggest the following definitiouns
) f obsérvability for the system (4.1) Two kinds of observability
sre defined depending on whether the initial state x(0) is known
Jf not. The first definition on known initial state observability

is as follows.

definition 4.3.2: The system (4.2) is known initial state

ybservable
I1f and only if

0, 2kercna, (C,A;inE)=0 (4.3.28)

or equivalently
0 A me ',C's )= €4.3.29)
UK_lmC +V*¥(A',C';kerE"')=X 3.

Unknown initial state observability is simply refered to as

observability and defined as:

Definition 4.3.3: The system (4.1) is observable
If and only if

UléimC'+R*(A',C‘;kerEf):X ' | | (4(3.30?

or equivalently

ﬁI:V*(A,E;kerC)+[kerCﬂQ*(C,A;imE)] =0 (4.3.31)
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‘The above definitions are nothing but specializations of
Cor.(4.1.1) and Cor.(4.2.2) to full state“observers. Thus a éystem
is called observable whenever there exists a linear time invariant
observer of the form (4.2) estimating-the states of the system.

This result is a well-known theorem in (q=0) case and is the main
reason of prefering UI=X to ﬁD:O as the definition of observability.
The latter condition is known as "extended observability" or

[16], [17] "strong observability" but does not imply the existence
of a full state observer of the form (4.2) whereas Definition 3

implies both Def.2 and the condition ﬁD:U as seen from Cor.(4.3.1)

Theorems 2 and 3 below greatly simplify definition 2 and 3.

Theorem 4.3.2: The system (4.1) is known initial state observable

if and only if
kerCnimE=0 (4.3.32)

Proof: The necessity of (32) Ffollows (29) Since Q,(C,A;imE) is a
subspaée containing imk, its intersection with kerC can not be
équal to the zero subspace unless imkEnkerC=0

(32) is-also sufficienf for known initial state observability
because subspaces having zero intersection with kerC are (C,A)-

invariant thus (28) is satisfied by the subspace Q. (C,A;imE)=imE =

The next lemma preapares our final theorem an observability ~-
of (4.1)

Lemma 4.3.1: Let S be a subspace such that

kerC<S and S@®imE=X’ (4.3.33)
Let P:X >+ X be a projection on S along imk. Then

!(A,E;kerC)zl(PA;kerC) A (4.}.342
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where I(PA;kerC) denotes the set of PA-invariant subspaces contained

in kerC.
Proof: Let‘VE!(A,E;kefC). By definition (2.2)
AVEV+imE , VckerC - | (4.3.35)
Operating on both sides of (35) with P.
PAVCPV=VckerC
which means VCI(PA; kerC). Hence
!(A,E;kert)él(PA;kerC) | , (4.3.36)
for the reverse ihclus}on, let VEL(PA; kerC). By definiton (2.1)
PAVCY . VckerC : ;. (4.3.37)
Operating on (37) with P! (the functional inver;e of P)
p=T(PAV) = inE+AVEP™ 'V inE
or AVEV+imE. Thus
-l(PA; kerc)cl(A,E;kerc) (4.3.38)
From (36) and (38) it follows that V(A,Ej;kerC)=I(PA;kerC) =
The only assumption required for Lemma (4.3.1) is that
kerCNimE=0 | (4.3.39)

that is, the system must be known initial state observatable. This,

in turn impies that

rankE=rgrankC=P _ or (4.3.40)
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No. of disturbancesg¢No. of observations

Lemma 4.3.1 has also significance for the easy computation of
supremal (A.E)-invariant subspace of kerC. There have been papers of
Wonham and Morse [30] and Bhattacharyya [31] on this subject but
none of them is applicable when rank E<rank C. Therefore the
result of Lemma 1 is complementary to those of [30] and [31].
Formula (2.7) can be used to compute V¥(A,E;kerC) as:

n N . .
V¥(A,EskerC)= () kerC(PA)' ™1 . (4.3.41)
’ i=1 -

vhen (Q.3,39) is satisfied which is generically true if r<p.

Theorem 4.3.3 The system (4.1) is observable

if and only if kerCnimE=0 and the pair (C,PA) is observable.

where P is defined as in Lemma 4.3.1

Proof: The theorem is an immediate consequence of Def.'4.3.3
Thm 4.3.2 and Lemma 4.3.1 ’ ’ =

4. ZERO SENSITIVITY OBSERVER DESIGN PROBLEM

In the obéerver design problems considered so far it has
been assumed that the plant parameters (A,B,C,D) are exactly
known. But this assumption is somehow unrealistic from a practical
point of view. In practice the design is carried out for a nominal
paramefer set (AO,BO,CO). The actual system matrices are related

to the nominal ones by
A=A +8A . B=B +68B R C=C +6C (4.4.1)
(0] 8] O

where (§A, 8B, &C) representé a perturbation around nominal values.
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If the parameters of the observer are not chosen carefully
a nonzero perturbation causes loss of identification of the to be

estimated output z and may induce steady state errors as shown

in [18].

Efforts have been made in the past for the design of so called
"robust observers" which have low sensitivity to parameter to
parameter variations [19], [20]. Other authors, [21][22], treated
the same problem with the objective of obtaining complete

insensitivity (zero sensivitiy.)

_ The theory developed in previous sections allows us to give
an easy solution to this latter problem at the same time
generalizing some of the results of [21], [22].'The problem that

we are to solve can be formulated as follows:

Zero. Sensitivity Observer Design Problem: Given the system

x=(A_+8A)x+(B_+88)u )
y:(C0+5C)x , z=Dx - g (4.4.2)

with nominal parameters,(Ao,Bo,CU) determine, 1f they exist, the

parameters (N,M,G,L,K) of the observer system

&:Nw+My+Gu
z2zLw+Ky , (4.4.3)

such that
Lim [2(t)-z(t)]=0 for all x(0), w(0), u and every
t+o0 b

perturbation (8A, 8B, &C) which is assumed to be completely

arbitrary.
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The perturbations are assumed to be generated by the variation

of real, scalor unknown parameters a., b., c. in
. i i i

6A:a1A1+aZA2+...+apAp - (4.4.48a)
,SB=P1B14bZBZ+"'+kak (a.4.4b)
6C=C1C1+c2C2+.;.+cSCS _ (4.4.4¢)

with Ai’ Bi' Ci being known matrices. This assumption doesnot
restrict generality, since by taking the standard basis for the

spaces of (nxn), (nxm) and (pxn) matrices any perturbation can be
written in the form (4.4.4)

Substituting equations (&4.4.4) into (4.4.2) and rearranging

result in:

o ' ... A —a1xj
x=A_x+B_u+[A [A ] "] p|B1|BZ[.;lBk] a,x (4.4.5a)

a.x

bPu

b1u

2

(o, x | LbkU

) clx -
y:COx+[C1|C2|...|CS] : . (4.4.5b)

LCSX

As the parameters a;s bi’ ciem are arbitrary and may assume any
real values the vectors [a1x1,82x'...apx', b1u', bzu'...bku']'
and.[c1x,’ czx',...,§sx']' effectively a?t ?s unknown inputs
which are produced internally through variation of system

parameters.

Fliminating redundant inputs in (4.4.5) and defining new

disturbance matrices E and F such that
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k
imE:im5A+imGB:.§ imAi+ z imBj (4.4.6)
s i=1 i=1 ( .
imF=zim8C= Z‘imCi | ' (4.4.7)
i=1 ‘

" equations (4.4.5) take the form

x=A x+B u+Eq
. (6] (8] .

.y:C0X+Fd o, z=Dx

where q and d are unknown, unmeasurable signals and E, F are matrices
defined as in (4.4.6) and (4.4.7)

‘In this setting, the problem is seen to be -equivalent to the
one, just solved in section (4.2). So we have the following theorem

for the solution of the zero sensitvitiy observer design problem.

'Theorem 4.4.1: There exists a zerou sensitive stable observer for

the system (4.4.2)

if and only if

v ey (A',C', kerE') such that imD'GV +imC!
g-—-g o0 o0 v , g o

where EO=TCO. T being a matrix such that kerT=imfF=im8C B

Fquations (4.4.6) and (4.4.7) and theorem 4.4.1 provide a
constructive and conceptually clear solution of the problem
pused in this section. The existence of a subspace éatisyfing the
condltién of theorem 1 can be checked constructively as in Cor.
(4.2.1) then a zero sensitive ubserver can be designed following
thé‘proof of sufficiency of theorem (4.2.2). A fixed pole zero

sensitive observer can be designed similarly.

The solvability of the problem might have been ,improved if
there had been bounds on the magnitudes of the variations
lsall, llst]l. liscll. Although our result is also applicable to this

situation it is an open area for future research.
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The proposed method differs from the ekisfing fesﬁlts in literatufe in
~several ways: 1) More insight is gained by show1ng the equivalance of the

problem to the unknown input observer de51gn problem 2) The

presence of measurement errors d in the -model (4.2.1) allows us

to consider variations in the observation matrix C,

which is not

treated in [22] 3) Estimation of z=Dx has been studied rather than
the special case z=x. ’

Tﬁis chapter is closed with the following table summérizihg

some important results of section (4.3).

N

OBSERVABLE. - UNOBSERVABLE THE SYSTEM IS
SUBSPACE SUBSPACE OBSERVABLE IFF-
x(0) UNKNOWN. | - n £ The pair (C,A)
K © 0@ =<A'|imC'> - 0=() ker(CA™ ")
'q=0 S i=1 is observable
x(0) KNOWN | Q= 0y = o |
Q0 imC'4V*(A*',C'skerE') | kerCnQ, (C,A;imE)  kerCnimE=0
o 0. -
E °bszg§efs o N, i) kerCnimE=0
. | based on.| imC'+R*(A',C';kerE") (]I=UK+UD ‘ A e
£ lintegratorg «
B :
=z
x -
% ' FOI‘, 0 ‘:' UD= i
5 observers , D | . ii) The pair (C,PA)
:Zciggi;iéig? Q*(E"A';lmc') V¥(A,EskerC) is observable

ol
N

Table 4.4.1

0BSERVABLE,
OF THE SYSTEM (4.1)

UNOBSERVABLE SUBSPACES AND OBSERVABILITY
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V. USE OF SYSTEM DECOMPOSITION TO IMPROVE SOLVABILITY OF DDP, DDEP

A common drawback of the disturbance decoupling problems and
some of disturbance decoupled estimation -problems studied in
previous chapters is that, they are generically unsolvable. Certain
structural constraints must be satiéfied by the system matrices
(A,B,C,D,E) for the problems .to have a:solution. This unpleasant

situation is partially a consequence of the model chosen for the
disturbances as mentioned earlier.

One possibility to circumvent this difficulty is to design
systems having variable structure. A problem which is not solvable
for .one realization of the system may be solved by adjusting the

variable parameters of the system properly.

Linear m-port systems coumposed of separated lossless and
algebraic parts have been used for this purpuse in DDP by state
feedback before. [za], [25], [26], [27]. The results in these
works which will be needed later are summarized below and application
of system decomposition to disturbance decoupling by measurement
feedback (both static and dynamic) and to disturbance deéoupled‘

estimation problems are discussed in subsequent sections.
1. SYSTEMS CONSISTING OF DYNAMIC AND ALGEBRAIC PARTS, TRANSFER

FUNCTION INVARIANCE

We conSLder]4neart1m81nvar1mﬁ:systems composed of dynamic and

_algebralc parts as shown in Fig.(5.1.1)

1 if the elements of the matrlces A,B,C, D E are listed in arbitrary
order and regarded as a data point pem N= n2+nm+pn+ln+nr, then
nontrivial algebraic equatlons are satlsfled by the elements P; of ™
p for which the problem is solvable. Thus the points p for whith the
problem is solvable lie on a hypersurface in IR" in a small
neighborhood of which the problem is unsolvable

A random assignment of the entries of A,B,C etc. will almost
surely result in a problem with no solution.
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Fig.5.1.1
The algebraic subsystem NA is defined as
w:—F1v—F2u—E1q :
(5.1.1)

and is assumed to be fixed by construction. The dynamic subsystem
ND is described with

v=Hx , X=W : " (5.1.2)

and,can be made to vary by suitable choice df nonsingular H matrices.

When the subsystems ND and NA are interconnected subject to the
constraints:
w=-w and v=v (5.1.3)

they give rise to the state space description

x=HF , x+F  u+E q
oz (5.1.4)
y=CHx , z=DHx

‘or to the equivalent description

° £ ) -
v_HF1v+HF2u+H_1q (5.1.5)
y=Cv , z=Dv :
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Since the matrlces H are non31gngular the state equations (5.1.4)

and (5.1.5) are equivalent under the transformation of variables

v=Hx.

This kind of system representation arises naturally in

electrical networks where for example NA consists of all algebraic

compdnentsvsuch as resistors,
of inductors,
and (u,y) denote hybrid pairs

and the elements of the state

capacitors etc.

charge depending on w.

- In our formulation u€

denote the input,

m'.:U ’

observation, the controlled output and the

controlled sources and ND consists

In this case the variables (v,w)

of port voitages and port currents

vector x are  flux linkage or

yERP=Y , 2€R'=z and q€m’-q

unmeasurable disturbance which enters through the algebraic

We also assume that F_, E C and D

subsystem NA respectively.

are full rank matrices

27 1

In [23] controllability and observability of m-port systems

consisting of algebraic and dynamic subsystems and the change of

these properties with the selection of the dynamlc part ND have

been lnvestlgated for the case of no disturbance is present. These

results are given without proof in the tables below.

rank rank [F1, F2] CONCLUSION: The m-port system

=0 arbitrary | can not be made controllable

#0 - <n can not be made controllable

#0 =n " 3H such that the m-port is controllable

=r | =n - controllable for all possible choices of H.

Table 5.1.1.A CUNTROLLABILITY OF m-PORT DEPENDING ON THE SELECTION OF ND
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rank C rank [E1] CONCLUSION: The m;port system
=0 arbitrary . can not be made observable
£0 <n \ can not be mads observable
#0 =n JH such that the m-port is observable
=n =n . . observable for all pbssible choices of H.

Table 5.1.1B OBSERVABILITY OF m-PORT DEPENDING ON THE SELECTION OF ND.

It is often desired that a system be both controllable and
observable at the same time. For simultaneous controllability and
observability of m-port systems composed of fixed algebraic and

variable dynamic parts the following theorem is given in [23].

Theorem 5.1.1: The triple (F1,F2,C) can be made both controllable

and observable with the same matrix H if and only if

1

. . ‘ F
(i)F1£0, rank[F1,F2]=n and (ii)C#0 rank[c1] n. a
In the some work, algorlthms to construct a matrix H that defines
the dynamic n-port ND’ which will make a given algebralc (m+n)-port

controllable and/or observable are developed.

The advantage of considering the system decomposition is in the

additional degree of freedom gained by the variable structure of

the subsystem ND' Among the class of H matrices which reallzes a’
given transfer function matrix one can choose these which makes

the solution of a given problem -say DDP or DDEP- possible. The
problem of finding the class of n-ports ND when connected to Np
yield a given‘transfer function matrix has been studied and solved
in [24]; [25], [26] and [27] with the objective of improving the
solvability of DDP by state feedback. Theorems (5.1.3) and (5.1.4).

below summarize some of their results.
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We start with the obvious definition of a system matrix.

Definition 5.1.1: Let the state equations of a iinear time invariant

system be: given as:

;:Ax+Bu

y=Cx+Du (5.1.6)

After taklng Laplace transforms with zero initial conditions

equation (5.1.6) can be written in the form

sI-A  B] [Xx(s) 0 | .
-C D %U(S) = Y(s) (5.1.7)

The matrix P(s) :{Sl:é g} which appears in (7) is callad a system

matrix or more precisely a polynomial system matrix in state space form.

: System matrices are useful in control theory because they
contain all the mathematical information ébout the system furthermore
all transformations of the system equatiohs can be expressed as
Upérations on P(s). We are particularly interested in transformations

which - leave unchanged the transfer function matrix.

Theorem 5.1.2: Consider two completely controllable, completely

bbservableASystems described by the system matrices in state space
form P1(s) and‘Pz(s). Then P1(s) and Pz(s) give rise to the same
transfer function matrix

if and-only if they are sysfem similar ie. there exists a constant

nonsingular matrix T such that

-1 |
{T U‘ P, (s) {T U] = P, (s) "
0 1 01
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Sufficiency of theorem 2 is obsvious énd the necessity follows
from the assumption of nimimality. The complete proof can be found
for e&mmle ih_[Z&]. The above theorem will now be used to get the

desired result.

- Theorem 5.1.3: Let 21 and 22 be two controllable and obéervable

m-ports wiith the same algebraic part (F1,F2,D) but possibly
different dynamic parts characterized by nonsingular matrices H1
and H2 1

functions if and only if there exists constant and nonsingular

respectively. X, and Zz‘haye identical (u~+ z) transfer

matrices M and N such that the FolloWing equations are satisfied:

MF.1N=F1 (5.1.8a)
MF2=F2 (5.1.8b)
‘DN=D (5.1.8c)

Proof: According to theorem (5.1.2) 21 and I, must be similar in
order to yield the same transfer function matrix from state spare
descfiption (5.1.5) this requirement can be expressed in terms of
system matrices és: |

| sI—H2F1 HF T0] sI—H1F1 H1F27
0 1] L -D 0 0 1 -D . 0

- =1 A r ’ |
T | 0 HZ’U H2 S-F1 FZ
0o Ij [ -D 0

K 0} _ [ﬁ1 0] W s-F Fz}
{0 I o I] |-D 0
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L MéH_1T—1H LA . /
pefining M=H, 2 and N=T and equating botb sides of the above
equation the theorem follows. i’ n

Gives an m-port ¥ with an algebraic part (F1,F2,D)‘and a dynamic

part characterized by H1 theorem 3 provides a means of generating

all other dynamic subsystems which give rise to the same transfer
function matrix'as Z when connected to the algebraic subsystem
(F1,.F2,D). Just compute the M,N couples satisfying (8a), (85) and
(8c) parametrically, the H matrices defining the dynamic subsystems
that we looked for, canbe calculated by substituting thess'values
into équation (8d). Notice that équations (B8a,b, c) have always

the trivial solution M=I, N=I which gives H2_H1 The following
theorem taken from [24] gives necessary and sufficient conditions

for equations (8) to have notrivial solutions.

1heorem 5.1.4.: There exists nontrivial matrix solutions to equations
(5.1.8)

if and only if rank F,<n and rank D<n : |

Since most systems have input and output spaces of smaller
dlmen81on than their state space the conditions of theorem 5.1. 4
are usually satisfied and the degree of freedom gained in a certain
problem depends on the free parameters obtained in the solution
of 5.1.8).

2. SOLVABILITY OF DDP IN A DECOMPDOSED m-PORT SYSTEM

Disturbance dscsupling problem have been discussed in detail
in Chapter 3. Before presenting the application of system-
decomposition to DDP the necessary and sufficient conditions for’
the solvability of DDP by state feedback, static measurement feed—
back- dynamic measurement feedback are summarized in the followxng,
table for convehience. The model (3.1) is assumed for the plant

as usual.
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DDP ‘ Necssary and Sufficient conditions for solvability

State feedback JVEV(A,B;kerD) such that imEcCV

Static Meas.
feedtack: IVEV(A,B;kerD)nQ(C,A; ifE)

Dynamic Meas. e
feedback. 3Q€eQ(C,A;imE) and 3VEV(A,B;kerD) st.QcV

Table 5.2.1

Remark 1: It is seen from Table (5.2.1) that the necessary condition

DE=0 (5.2.1)

in all three cases. Moreover it is known that [7] for the subclass

must be satisfied for the solution of disturbance decoupling problem
of systems with DE=0 we have generic solvability for DDP

if and only if

‘rank B2rank D and rank C2rank E ' + o (5.2.2)
17
is equivalent to: o,

Since F2' E C and D are assumed to be full rank matrices (5.2.2)
|

No. of controlsjaNo. of controlled outputs

No. of measurementsiaNo. of disturbances (5.2.3)

for a decomposed system.

With these preliminary results available we are now ready to

state the problem. .

Problem statement: Consider the decomposed system of Fig.(5.1.1)

described by the state equations ;

x:H1F1x+H1F2u+H1E1q \ (5.2.4)

y=Cx . z=Dx
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Assume that disturbance decoupling problem is not solvable for this
realization of the system. The objective is to vary the dynamic
:subsystem ND in such a way that the input-output transfer function
matrix of (5.2.4) is kept unchanged but the noise component £,q

| ) 1
entering through NA can be decoupled from the output after a
feedback is applied.

Combining theorem (5.1.3) and remark 1 above the following

theorem is given as a necessary condltlon for the solution of this

problem

Theorem 5.2.1: Let ND be the dynamic subsystem which solves the

above problem then the matrix H defining ND satisflies

H=N H1M

where. the nonsingular matrices M, N are the solutions of

(i) MF,IN:F1 (ii) MF2=F2 (iii) DN=D (iv) DH1M 17 =0
Proof: The first three condnitions follow from the requirement that
H should yield the same transfer function as H1 does, and the last

one is a consequence of (5.2.1) ' n

In view of remark 1 the conditions (i)-(iv) of theorem (5.2.1)
are almost sufficient for the solution of DDP if conditions (5.2.3)
are satlsfled The type of feedback is specified neither in the
problem statement nor in theorem (5,2.1), the theorem is appllcable
" to all forms of decoupling listed in Table (5.2. 1) provided

equations (i)-(iv) have nonsingular solutions M and N.

If trdnsfer function invariance is not required (ie., the input-
vutput transfer function of (5.2.4) is permittedAto change with

changing dYnamic part) then a more powerful result can be given by
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Theorem:5.2.2: Given the algebralc subsystem N (F 2,E1,C,D)4there

exists a dynamic subsystem N (a non51ngular matrix H) such that

'dlsturbance decoupling problem is generically solvable in (F

1’ 2
and C) for the system resulting from the interconnection of N

* N A
with D
if and only if
rank E1+rank<D n- - (5.2.5a)
rank E1<rank C (5.2.5b)
rank D<rank Fz (5.2.5c)

are simultaneously satisfied by NA'
Proof: When (5.2.1) is satisfied (5.2.5b,c) are necessary ond
sufficient for the generic solvability of DDP [7]. Thus, assume that
DHF1_0 for some nonsingular matrix H, that means, im(HE1)CkerD or
rank E1SndllaD:n—rank D from which the necessity of (5.2.5a) follows.

Next, assume that rank E1=rsnull D=n-1.

Let {e .er} be a basis for imE1 and {d1...dn;l} be a basis
For kerD. Complete {e1...er} to a basis for X as {e1...er,er+1..;en}
and {d,...d_ _;} to a basis fos X as {d1"’dn-l’»dn—l+1'°'dn}' Define
the nonsingular matrix H characterizing ND by
H ei=d1 for i=1 n
This selection of H satisfies (5.2.1) o B

. Notice that (5;2.5 b,c) are not necessary for the solution of
a particular problem they are only required for generic solvability.
Thus if one or both of (5.2.5b,c) fail to hold one can still construct
a dynamic n-port by the procedure described in Thm (5.2.1) or Thm(5.2.2
then if one is lucky enough DDP is solvable for the resulting 1

interconnected system.
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Disturbance decoupling by state feedback‘in decumposed m;purts
has been studied extensively in [24], [25], [26] and [27] but the
assumption that the whole state vector is accessible to direct
measurement -is rather restrictive in practical applications so the
problem must be solved by measqrement feedback ultimately. Towards
this aim a condition is given in the following theorem for disturbance
decoupling by direct measurement feedback to be equivalent to

disturbanée decoupling by state feedback.

Theorem 5.2.3: Let kerCnkerD be A-invariant in the system (3.1) then

DDP by static measurement feedback is solvable iff DDP by state

feedback is solvable.

Proof: That the disturbance can be decoupled by state feedback if it

can be decoupled by measurement feedback follows from Remark(3.3.2).

To prove the converse we need the assumption that kerCnkerDEI(A).

Hence kerCnkerD is an (A,B)-invariant subspace of kerD. Thus
kerCnkerD c V¥(A,B;kerD)

on the other hand it is clear that kerCnkerDckerC. And so

.keranerDckerCnV*(A,B;kerD) : (5.2.6)

Since by definition it holds that V*(A,B;kerD)ckerD it follows that
kerCnV*(A,B;kerD)ckerCnkerD (5.2.7)

From (5.2.6) and (5.2.7) we have

kerCnkerD=kerCnNV*(A,B;kerD) (5.2.8)

Therefore

A(kendV*(A,B;kerD))=A(kerCﬂkerD7CkerCﬂkerD:kerCnv*(A'B;kerD)
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or
A(kerCnV*(A,BskerD))SV*(A,B;kerD)

Thus V*(A,B; kerD)CQ(C A) by Def.(2.3). Since DDP by state
feedback is solvable imEcV*(A, B ;kerD). the conclusion now follows
from Theorem (3.2.1) because V*(A,B,kerD)E!(A.B;kerD)nQ(C,A;imE) [

The use of Theorem (5.2.3) is several folded. First, it
prov1des a constructive procedure for checking the condition of
Theorem (3.2.1) for disturbance decoupllng by static measurement

feedback, Though the condition
kerCnkerDEI(A) - (5.2.9)

is not necessary for the solutibn of DDP. the solvability of DDP
- by static measurement feedback can be determined as in Cor.(3.1.1)
by computlng the largest (A,B)-invariant subspace in kerD and
hecklng the condition 1mFCV*(A Bsker) if (5.2, 9) is satisfied in

a glven system

In a désigh problem one usuélly has a certain degree of freedom
in carryihg out measurements. In this case the C matrix can be
selected to satisfy (5.2.9). A similar situation may arise Qhen
‘constructing the subsystem ND according to Theorem (5.2.1). After

~conditions (i)-(iv) have been satisfied, if there still remains
some free parameters in the matrix H then these parameters can be

chosen such that (5.2.9) holds true.
EXAMPLE : Consider the decompuseed system

= 3
x-H0F1x+HUF2u+HO_1q

(5.2.10)
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wherg . "1 1 _1] 1 0 1] 0

H - = -

o 0o 1 of , Fl 1‘ 1 o , F2 =1 0
0 0O 1J 10 © OJ 11
81] 0 0 1

F‘ - - -

- 1 e, » D = [0 1 ] v C =1 0 0]
° 3J

From DH £ =0 it is readily found that DDP is solvahle only if
07;8510. From Theorem (5.1.3) the M, N couples and the class of
dynamic n-ports which leave Lhe transfer function of (5.2.10)

invariant is found to be:

/0 0 0 | @ 0 a-1
M =l1-« .1 O ' N =10 1 ¢

o

.0 0 1 0 0 1

H

where of€R-{0} is arbitrary. Substituting these values into (iv)

of Theorem (5.2.1) one ohtains:

2 e
: 1
Thus any disturbance compunent of the form E1: e, with
‘ |
0 -

with e1¢0 and e1£e2 can be generically decoupled by suitable

choice of a.



As a numarical examble let e

3/2 1/2
H={ 1 1
0 0
1
A
ESHE, =
F2HE = {0
0.
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171+ e,=-1 then a=1/2
-1 [2 1/2 3/2 -1/2 -1
0 /-\:HF,] ={2 1 1 B:HF2 = 1 0| and
1] 0 0 O 1 1]

It is immediately verified that kerD is (A,B)—invariént and

b

1

lmECV*(A,B;kerD):im[O thus DDP byjstate feedback is solvable.

lo]

On the other hand since kerDnkerC=0 is A-invariant thm (5.2.3)

predicts that DDP by static measurement feedback is also solvable.

1
2

In fact the subspace im{0| is (A+BKC)-invariant for K:[—Z]. Hence

01

u:["g]y is .the desired control law.

3. SOLVABILITIY OF DDEP IN A DECOMPOSED m-PORT SYSTEM »

As in disturbance decoupling problem some important results of |

Chapter 4 afe summarized in the folowing table. The conclusions \ﬂ

are valid for the system (4.1) : J

DDEP

Necessary and Sufficient conditions ﬁn‘sulvability§

x(0) KNOWN
Dead-beat observer

JQEQ(C,A;imE) such that kerCnQckerD |

Fixed pole ' _ A : . .
S Z |Observer GVER(A',C';kerE') such that imD'cV+imC'
*Z |stable - _ . |
% | Observer BVE!Q(A',C';kerE') such that imD'cV+imC"

Table 5.3.1
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The results in Table (5.3.1) are given to design a Luenberger
observer. If a Kalman observer is to be designed (K=0 in (4.2.))
then the conditions should be modified as in (5.2.17) and (5.2.&8).
In thlS case the system matrices must satlsfy DE=0 if a solution
of the problem exists. In the previous section it was shown how
this’ condltlon can be met without changing the transfer function
‘mattix; by su%table selection of the dynamic n-port Np in a
-décomposed system. These results will not be repeated here. We
will concentrate on the existence of a Luenberger observer estimating
the state vector of a decompused system described by

x=HF | x+HF u+HE q
(5.3.1)

y=Cx . Z=X
with (F1,F2,E1,C) représenting the fixed algebraic subsystem and

H defining the variable dynamic subsystem.

As the dynamic part ND is variable in a decompused system the
-+interconnected system given by (?.3.1) may not be observable for
some choices of the nonsingular matrix H. So the following
definition of [23] applies.

P}

. Definition 5.3.1: The algebroic (m+n) port N (F

2,_1.C) can be

‘made observable if and only if there exists a dynamlc n-port ND

(@ nonsingular matrix H) such that the m-port resultlng from the
interconnection of Ny with ND as depicted by Fig.(5.1.1) is

observable; NA is absolutely observable if and only if (5.3.1) is

observable for all nonsingular matrices H.

As in (q=0) case absolute observébility of N, requires that
tankC=n. In what follows it will be assumed that rankC<n, that is
the system is not absolutely observable, which is the only

interesting and nontrivial case.

The main result on "known initial state observability" of

decomposed systems is'given in the theorem below.
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Theorem 5.3.1: Suppose that the initial state x(0) of (5.3.1) is

given then the following statements are equivalent

(1) The algebroic (m+n)-port (F1,F2,Ei,C) can be made observable

(ii) There exists a nonsingular matrix H such that

kerCﬂlm(HF )=0  -and rénk(CHF )=rankf, =r - (5.3.2a,b)

1

(lll) rankE, =rsrankC=p | (5.3.3)

1
EEQEE’ According to theorem (4.3.2) the system (5.3.1) is observable
Hwith known initial state if and only if kerCnim(HF Y=0 which is
exactly the restatement of (5.3.2a) Next, let x‘kerCnlm(HF ) and

- x#0 then Cx=0 and x:HE1q for some qGQQ RT hence CHE1q 0 1mply1ng
ker(CHE1£O which contradicts rank(CHE1)=r Conversely if CHE 19=0
then x can be defined such that x:HE1q and Cx=0, therefore x=0

by (2a) which implies q=D because E1 is assumed to be full column
rank and H is nonsingular. This establishes the equivalence of

(i) and (ii)

o prove the equivalence of (ii) to (iii)'recall that r=rank
(CHE1)<min(p,r) which showé that r¢p. And if. rgp is given we can
always wind r linearly indeendent vectors {x1 WX } in the
complement of kerC. Form a matrix M whose columns are the vectors
{x1...xr} Since"E,| and M have the some rank r..E1 can be
transformed to M by elemantary row operations. Let H be the
nonsingular matrix representing these operations. This.construction

of H satisfies (5.3.2a) and (5.3.2b) .

It is seen from (ii) of the above theorem that the problem of
disturbance decoupled estimator design with given initial state‘

is geherically solvable in a decompused system if and only if

No. of disturbance<No. of measurements (5.3.4)
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because (5.3.2b) fails only if all rxr minors of CHE1 vanish which

obviously'represents a hypersurface. in mN
footnote on pp. 64)

,N=n2+pn+rn. (See the

Because of this large freedom in the choice .of H matrices,
‘satisfying theorem 5.3.1 one suspects that the matrix, which will
make the (m+n)-port observable may even be found among the cléss
of matrices which leaves the transfer function of (5.3.1) invariant.

This possibility is shown by an example below.

_ ‘The following lemma is given as a necessary condition for the
observability of (5.3.1) with unknown initial state.

Lemma 5.3.1: The algebraic subsystem (F1,F2,E1,C) can be made
observable only if

(1) rankE1:r<rankC:p and (ii) rank[g1 1]= n+r

Proof: Assume that the algebraic subsystem can be made observable

with the matrix H. then the condition

kerC+im(HE )cX (5.3.5)
must be satisfied, otherwisé there exists a nontrivial (HF1,HE1)—
invariant,subspace in kerC which contradicts the condition given in
Def.(4.3.3) From (5) it follows that

dim(kerC+im(HE1))<dimX=n
by noting that kerCnim(HE1)=O there follows: nullC+rankE1<n or T<p.

On Ehe other hand the condition V*(HF1,HE1;kerC):0 implies that

sup{V: (HF1+HE1L)VCVCkerC}=0 for all L:X -~ Q.



Thus it is seen that the palr (C,F 1+E
by the matrix H for all L:X~> Q.

in Table (5.1.1B) we can conclude that
. F . -
rank[ 1EE1L]=n or ker[F1EE1L]

. - - E
that is, [F1E 1L] x=0 implies x=0.

Writing g=Lx,

81

L) can be made 6bservable

Now in view of the condition given

=0 vL:X-> Q

it follows that

. : F,+E,L F, E.](x
x=0, = =
.q=0 is required for [ 1C 1 ] X [C1 01][q}_0,
Therefore
Foo K - . B
ker [C1 01]=0‘ or rank[E1 ’61]=n+r- ]

As expectéd,‘the conditions of Lemma
:giyen in Thm.
“of Table (5.1
hecessary and
unknown input

investigation. Neverthless

algorithm of [23] can be applied to the pair (C,F

the matrix L in terms of its elements {li

condition (5.3.2) after finding a matrix H.

becomes a trial and error :‘procedure.

.1B) for known input observability.

when Lemma 5.3.

5.3.1 strenghten those

5.3.1 for known initial state observability and those

Formulation of

sufficient conditions for unknown initial state,

observability of decomposed systems is under

the
1L) by writing

1 is satisfied,

+E

1

.} and each time checking

But this essentially

EXAMPLE: The decumposed system of exmwﬂe‘(5.2.1) is considered which s

rewritten for convenience:

11 -1 10 0
= = N F.=
Ho=[0 1 of . Fi=i1 1 0 2|1

0 0 1 0 0 1

One more measurement is added to satisfy (

[1
CzLU

i) of Lemma 5.3.1
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0

kerCnim(H0E1)=im 11#0.
0

Hence the .system is not observable with thlS selectlon of the dynamic .

fpart even if the initial state is given.

3/2 1/2 -1

Taking H=| 1 1 0| it is easily verified that (5.3.2) is
0 0 1 '

satisfied thus the composite system is known initial state
observable. Moreover it was shown in example (5.2. 1) that this

,ch01ce of the matrix H does n ot change the u to z transfer function
or(531)

. The dynamic subsystem defined by H = |0 1 0] , makes the

‘system observable. T 1 0
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APPENDIX I

SUBSPACE ALGORITHMS AND THEIR MATRIX EQUIVALENTS

It is prefered to delay computatlonal algorithms and to collect

them in an appendlx in order not to interrupt the theoretical
developement of the work. Matrlx algorithms will be given below for
the basic operatlons 1nvolv1ng subspaces such as subspace addition,
»subspace 1ntersect10n etec. and for the computatlon of supremal
(A,B)-invariant, controllablllty, stabilizability subspaces’ and

infimal (C,A)-invariant subspace.

v Some of these élgorithms may be found in the exercises of
[1], some have been collected by a literature survey and a few of
them like minimal (C,A)-invariant subspace algorithm, supremal
stabilizability subspace algorithm are believed to be new. The
algorithms are not claimed to be optimal with respect to numerical
‘behaviour, neverthless théy-provide méchanized procedures for the
solution of synthesis problems discussed in previous chapters. Much
work still remains to be done in order to implement the algorithms

on a digital computer.

A1. BASIC OPERATIONS ON SUBSPACES:

A subspace S is representéd>by a matrix S whose columns span
the subsbace, that is S=imS. ‘It .is assumed that the matrix S has

llnearly independent columns and is named to be the basis matrix of

S. It is clear that the basis matrix of a subspace is not unique
and depends on the particular coordination chosen for the subspace.
Conversely from any matrix M a basis matrix can be obtained by

eliminating redundant columns of M.

If M,X,Y are matrices, with M given, a maximal solution of -
the equation MX=0 (resp. YM=0) is a solution X (resp. Y) of |
maximal rank, having linearly independent columns (resp. rows) and

written as X=MF (res Y:ML). Thus X is a basis matrix for kerM

and Y' is a basis matrix for kerM'.
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- Basic operations on subspaces and their -matrix counterparts

are summarized in Table A1 below. R and S denote subspaces of X,

A is an abritrary map and A7

A defined by

A" 's={xex: AxEs}

denotes the functional inverse of

(1)

Subspace Operation Matrix Equivalent
11  SorR S or R
2 st 5L
3 - dim S rank S
4 | SR [s. R]
5 |  SoR [sl] k
: R+
6 1 RcS rank S=rank|R,S]
7 R=S rank R=rank[R,S]=ranks
8 AS " AS
e A ls (sta)k

TABLE A1

In the above table the matrix equivalents of the operations

are given in-terms of the image of the matrix on the right. The

symbol im(-) is not written explicitely, the matrix is understood

‘to be a basis matrix of the subspace considered after ‘the

elimination of linearly dependent columns. The only exception of

‘this rule is for the orthogonal complement of a subspace in which

case the equivalence is given as (sl=row space S!) since slex' .

The formula for SNR follows from the well known identity:

(snR)L=SL+RL

(2)
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’l ‘

ind the matrix equivalent of A~ S is a COnsequence of the relation-

ship:
o 1 .
(A 15)'L:A'S'L v ’ (3)

The basic relations in Table A1 can be used to convert more
complicated subspace algorithms to their matrix equivalents.

’

L2. COMPUTATION OF V*(A,B;K)=sup{V:AVcV+imB, VcK}

Writing algorithm (I) of Ch.2 in matrices one has:
step 1: Set k=0 7
step 2: Let V, be a basis matrix for K. (ie imV =K)

‘ . ' O e - i
step 3.\C?lculate W, q from: Wk+1_[B, Vk] |

vEF
step 4: Let %G4:[Wk+?%]

k+1

step 5: If rank V =rank Vk set V*(K):imVk and g?op. Else.
step 6: Increment k by one and return to step 3

The sequence ika

of K in at most k*=dim K iterations.

A3. COMPUTATION OF R*(A,B;K)=supR(A,B;K)
(Algorithm II in Ch.2)

step 1: Calculate V*(A,B;K)éimv* using algorithm (2) above.
‘ L
step 2: Let W* be a maximal solution of W*V¥=0. That is W*=V¥

1

2
step 3: Set k;1 and Sk—1=0 .
step 4: Calculate T as Tkz[ASk—i' B]

step 5: Let sk=[¥*}k
K

step 6: If rank § =rank S._q set R*(K)=imS, and stop. Else
step 7: Increment k by one and return to step 4.

The sequence imSk converges to the maximal controllability subspapé of

K in at most n=dimX iterations.

converges to the maximal (A,B)-invariant subspace
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A4. COMPUTATION OF F(V¥)={F:X - U|(A+BF)Viy*}

step 1 Let V¥ be a basis matrix of the subspace V*
step 2: Calculate the maximal solution W¥ of WxV¥=Q

step 3: Write the matrix F in terms of its elements [f ]
step 4: Determine [f ] i= 1 . j=i,...,n from the equation:

W*(A+BF)V*=0  or W*BFV*=-WxAV*

AS. COMPUTATION OF VS(K) sup{VEV(A B;K), 3FEF(V), c[(A+BF)|V]cE }
(Algorlthm 111 of Ch.2)

step 1: Compute V*(K), R*(K) and their basis matrices V*,R¥ using.
~algorithms (2) and (3).
step 2: Let Sd be a complement of R* in X and S1 be a complement of

R* in V* with basis matrices S0 and S, respectively. In short

1
X=R*+5 - S =im$
(8] 8] 8}
R * -1
V*_R'+.S1 . 51-1m51
step ?: Let P0 and P1 be such that
p [R*,S&] = [o,1 ] where o=dim S_
P [R*,S,] = [U 1] where p=dim S,

stéé 4: Choose any map F_ from the class F(V¥*) and write A;%A+BFU
. . : N . o

steE 5: Calculate the map induced by A0 in X/R* and its restriction
to V*/R* as: :

AOIX/R*:PoAnSo

* * =

A V*/R*=P A S,
step 6: Let a’A) be the minimal polynomial of A |V*/R*—P1AOS.
Factor a(k) ag(k)a (M) where the zeros of a (A) (resp. b()\))
belong to @ (resp. €,)
. steE Calculate the baSlS matrix (P V¥) of V*¥/R* and form the

matrix



87
L
M = d (POV*)
9(PoAgSe) |
step 8: The supremal stabilizability subspace V;(K) in K is given by:
VE(K)=inV where v;:(MPU)*

A6. COMPUTATION OF Q,(C,A;K)=inf{Q:A(kerCnQ)cQ, KcQ}
(Algorithm IV in Ch.2). ' ‘ ’

step 1: Let K be a basis matrix for the subspace K.
step 2:‘Se§'k=0 and kaK

step 3: Calculate Tv from T, =] k|

S5:2p 2 'k k{C

step 4: Let Qk+1=[K,ATk] o N
step 5% If rank karank Qk+1 set Q*(K):imQk and stop. Else
step 6: Increment k by one and return to step 3.

The sequence of subspaces ika convergees to the minimal C,A)-invariant

subspace containing K. in at most n-dim K steps.
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IV. CONCLUSION

Dlsturbance decoupling and disturbance decoupled estimation
problems in linear time invariant dynamical systems have been
studled in a common framework using geometric approach. When
concluding we would like to emphasize some contributions of the

work - and suggest some open areas for future research.

It has been assumed'throughout the thesis that the disturbance
signalé ere totally unknown and mnay take any real values. One of
the extensions of the results is to examine the same problems .
and others under the condition that the disturbance are égain
arbitrary but bounded signals. This point is a practical and

largely unexpldred field.

Another general comment is that the problems have beentreated in .

vtlme domaln us1ng state space representatlons whereas it may. be
true- that a reformulation of the results in frequency domain
through polynomlal system matrices will be more effective in some

cases.

The disturbance deeoupling problem has been solved in Ch.3
starting from the simplest form of decoupling. Disturbance decoupling
by.state feadback followed by more advanced forms of decoupling,
by static and‘dynamie measurement feedback. The prohlem of
disturbance decoupling by dynamic measurement feedback has been
solved by showing that any dynamic compensation around a system
is equivalent to a direct output feedback applied to a properlx
augmented system. This observation may found application in other
problems where dynamic compensation is employed. Constructive
solvablllty criteria have been given for both disturbance decoupllng
by ‘state feedback and dynamic measurement feedback. Though

thenrem.B of sec.(5.2) gives a verifiable condition for the
| solvability of disturbance»decoupling by static measurement feed-
back Wthh can be used in somz cases the general case remains . .

unsolved. It has been also proven in sec.(3.3) that dlsturbance
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decoupling by dynamic state feedback is equivalent to disturbance
decoupling by constant state feedback. Thus, dynamic state feedback
brings no improvement on the disturbance decoupling problem as far

as solvability is concerned.

In Chf4 the disturbance decoupled estimation problem or what
amounts to the same thing, the unknown input observer'design problem
has been solved in its up to date most general form by taking the
'measurement errors into consideration as well. The problem has been
studied for two different observer structures, one based on
integrators_and the other based or diFferentiators. Advantages and
drawbacks of each approach have been discussed in sec.(4.3) and
the closelrelationship between the two methods has been pointed
out in Cor.(4.3.1). This result which has important consequences
is totaliy»new and ties two theories together which have been
developed separately and independently in literature. Then a new
eonditioh has been given for the observability of an unknown input

‘system based on the new definitions of observable and unobservable

subspaces.

The result of Lemma (4.3.1) can be used in conjunction with
those of [30] and [31]'to characterize (A,B)-invariant subspaces
and for the easy computation of supremal (A,B)-invariant subspace

of kerC.

Minimal order obsarver and minimal order compensator synthesis
problems have not been solved in the thesis but their equ1valance
to generalized dynnamlc cover problem [28] [29] ‘has been shown
and some hints have been given at the end of Ch.2 for the

solution of this problem.

Solvablllty of dlsturbance decoupllng problem and disturbance

decoupled estlmatlon problem in a decoumposed system which COﬂSlStS

of algebralc and dynamic subsystems has been investigated in Ch.5.

‘The use of decompoused systems to improve the solvability-of

disturbance decoupling

problem by state feedback has ‘been originally.
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“proposed in [24], [25], and [26]. The results of these works have
been extended to disturbance découpling by static and dynamic
measuremznt feedback in sec.(5.2). Necessary and generically
sufficient conditions have been given fer the existence of dynamic
sqbsystems which, when connected to the algebraic subsystem yield
a given transfer function matrix and at the some time making it

pqssible‘to decouple 'a noise compqnent after some form of feedback

is applied.

0f coursz, there is room for future research here. Our results
have been given in terms of genericity. One may go about to give
sufficient conditions for disturbance decoupling to be exactly

possible by suitable selection of the dynamic subsystem ND.

Known initial state‘observability of decomposed systems has
been completely solved by Theorem 1 of sec.(5.3). The result of
this theorem clearly reveals the advantage of considering system
dééomposition. Some necessary conditions have been obtained for
unknown inpUt, unknown initial state :observability of dzcomposed
systems which strenghtenes those given in [23] for the case where

all inputs‘are known.

Finally some computational algorifhms have been collected in
the appendix to translate the relatively absﬁract synthesis m=zthods
developed in the work to everyday matrix arithmetic suitable for
computer implementation. Some of these algorithms are believed
to bennew but much work remains to be done in order to obtain

good, nﬁnericaliy‘stable algorithms.
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