IOT “L8f . [3‘#8'»,‘.‘::@

Gt g

ACSIM 2 : A SIMULATION SYSTEM

by
0. Levent Mo]]amustafabglu
B.S. in I.E., Bodazici University, 1982

B.S.in Math., Bogazi¢i University, 1984

Submitted to tﬁe'lnétitute:for Graduate Studies 1in
Science and Engineering in partia] fulfillment of
the requirements for the degree of
Master of Science |
i
Industrial Engineering

J——

Bogazici University Library

n HIME

Bogazigi University

1984

B T ROOM }

Y i

ACSIM 2: A SIMULATION SYSTEM

APPROVED BY

Y.Dog. Dr. M. Akif EYLER
(Thesis Supervisor)

Y.Dog. Dr. Ali Riza KAYLAN

Y.Dog. Dr. Selahattin KURU

OATE OF APPROVAL d“\‘b. 19, 1984

181974

ACKNOWLEDGEMENTS

I would like to thank numerous friends and co]]éagﬁes who have con-
tributed to the development of the ACSIM simy]ation system and this thesis,
including Mrs. Yasemin Birgil, Mr. Istemihan Urgeevren and Mr. Mehmet
Erentdz, who were on the original design'team and carried out the initial
design phase; Mr. Giiven Mercankdsk, Mr. Omer Ayzan, Mr. Turgay Ayta¢ and
Mr. Hakan Saraoglu, who helped me in overcoming problems special to Apple
microcomputers; and Miss Belgin Turgut who drew most of the figures.

Special thanks are due to my thesis advisor, Dr. Akif Eyler, who,
besideé determining the initial structure and principles of ACSIM, spent
an effort at 1éast equa] td mine throughout the year, and bore with he
patiéntly, guiding me with His_timeiy suggestions;

.o

ABSTRACT

In this thesis, ACSIM 2, the much-improved new version of the simu-
lation language ACSIM, is being reported. ACSIM 2 has some characteristics
which can not be shownAih classical activity cycle diagrams, but which are
indispensable for simulation studies. Creating and discarding entities,
choosing different paths depending on various conditions, collecting con-
secufive activities within a single activity, are some of these features.

Program and data has been separated and i1t has been made possible
to save the final state of the system, thus continuing the simulation
from the same state. It is also poSsib]e to give any initial state to the
program, thus the possibility of different scenarios.

One other nove]tylis‘a_dispTay féci]ity which renders it possib]ef

to follow the simulation on the screen and interfere with it if necessary.

4

v

KISA OZET

‘Bu tezde, faa]iyet ¢izgelerini temel alan bir benzetim sistemi
olan ACSIM'in Onemli 0l¢lide gelistirilerek yeniden yazilan sekli tanitil-
maktadir. ACSIM 2, faaliyet ¢izgelerinde gosterilemeyen, ancak benzetim
calismalarinda vazgecilemeyecek bazi ozelliklere sahiptir. Nesnelerin
ortaya ¢ikis1 ve yok olmalari, faaliyetlerde karmasik kosullara gore bir-
ka¢ yoldan birinin se¢ilmesi, biri digerinin devam1 olan faaliyetlerin
tek bir faaliyet biinyesi altinda topfanma]ar1, bu ozelliklerin en onemli-
Teridir, Program/veri ayrimi kesin ¢izgilerle yapilarak, bir ACSIM 2
programinin benzer bircok veri izerinde calismasi saglanmstir. Dizgenin
son durumunun diskte saklanarak daha sonra i1k durum yerine kullanilmasi
ve boylece benzetime kalinan }erden deQam edilmesi de olanakli kilinmistir.
Programa bir gosterim olanag1r da eklenerek benzetimin ekranda izlenmesi

sadlanmistir,

TABLE OF CONTENTS

ACKNOWLEDGEMENTS « « v v v v v v v s e e v e e e e e e e
ABSTRACT v v v e e v e e e e e e e e e e e
4743
LIST OF FIGURES AND TABLES . » « . v v o v «
I. INTRODUCTION & v v v e v o e e e e e e v e

II. STRUCTURE OF THE LANGUAGE .« « « « . «

| 2.1 SYNTAX .+ .« e e e e e e e

2.2 SEMANTICS + v v v v v v v e v e vt n

2.3 DATA STRUCTURE . « e

2.4 ALGORITHM « v v v v v v v e v e v e v

2.5 COMPARISON WITH EXISTING LANGUAGES

I EXAMPLES o o v oo v oo oot .

3.1 A MACHINE-SHOP SYSTEM . « + + v v o v . .

: 3.2 ABANKING SYSTEM .+ + v o o vovoon ..
DIV CONCLUSION + e v e v te e e e e e e e
APPENDIX A - RESERVED WORDS OF ACSIN = « « « + « « « « - .

APPENDIX B - SYNTAX DIAGRAMS

APPENDIX .C - ACSIM ERROR MESSAGES -+ » -« » « . .

REFERENCES

15
23
26
28
40
40
46
51
52
53
61

- FIGURES -

FIGURE
FIGURE

FIGURE
FIGURE
- FIGURE

TABLES

TABLE
TABLE
., TABLE
TABLE -
TABLE

LIST OF FIGURES AND TABLES

Sample Activity Diagram

Simplified Data Structure of ACSIM

Machine-Shop Cycle Diagram

- ACSIM Program Describing the Machine-Shop

Results of the Simulation of the Machine-Shop

'Bank Cycle Diagram
- ACSIM Program Describing Bank

Results of the Simulation of Bank

Structure of Memory A§signments - Data Structures
Chanéing the State of the Simulated World
Commands to Facilitate Subprogram Execution
Programming Featureé" |

Mechanics of Use

I. INTRODUCTION

Discrete-time simulation system§ and Tanguaées have been founded
on one of thé three viewpoints in mbde]]jng :

(a) Event-oriented view~. | B

(b) Activity-oriented view |

(c) Process-oriented view

A1l of these three approacheé haVe their virtues and vices. In
this study, an activity-oriented approach is chosen. This is mainly be-
cause Activity Cycle diagrams,‘which are thought to reflect the structure
of complex systems better than anything else, are a means of better
modelling and easy restructur%ng. Sinéé, in activity-oriented special-
purpose simulation languages, chanéés iﬁ the mode1 éféMd6ne through
changes in only some of the activities, updating models are considerably
easier.[]] |

A sample activity cycle diagram can be seen in Fig.].

There is oh]y one activity, that is SERVE, in the cycle. Along
with the two entities of the system, namely MACHINE and PART, it forms
a closed activity cycle. While not'inv01ved in the activity SERVE, the
two entities are'in their passive states, denoted by a "queue". MACHINE
has only one passive state, IDLE, and PART has only one. passive state,

LOADED. The condition that the activity SERVE can be initiated 15 that

| ‘ R
lDLE)][' @ed

MACHINE | SERVE | pART

! I J

. Flg 1 Sample A;tivity Disgram

3
there is at jeast one MACHINE in queue IDLE and one PART in queue LOADED.
Once the two entities are involved in the acﬁivity SERVE, they can not
be involved in any other activity during SERVE. After SERVE ends, MACHINE
and'PART‘go to their respective passive states, namely queues and wait
for activation. |

ACSIM 2 has been formed on ACSIM [2] » which is an activity-
oriented specia]-burpose simulation 1anguége, affer various modifi;ations

and improvements. In doing this, various points have been considered :

(A) fhe activity-oriented nature of the language must not be
changed.
In addition to the reasons revealed above, it can also be noted
" that act1v1ty or1ented simulation languages are closer to Structured

vrogramm1ng concepts and. 1mp1ementat1ons

(B) The language must be simple, but also powerful enough to
model complex systems.

The previous versfon,of AC§IM was limited, in that it only
allowed closed-cycle systems to be modei]ed. This of course made the
1aéguage simple and easy-to-model with. .In order to be able to model
cohp1ex systems with the new version, some additional features have been
supplied. -Some of these are complex expressions, creation and diséarding

of entities, variable conditions, conditional actions, etc.

(¢) The language must be implemented on a microcomputer.

Thislis a feature paralilel ﬁo the demand on microcomputers in
recent.years. To accomplish this result under limited resources such as
memory and speed, advanced méthods of Computer Science have been used.

" The language has been imp1eménted on an Apple //e (64 Kﬂyte) and an

Apple /// microcomputer and results have been satisfactory in terms of

speed and model complexity.

(D) The compilation and execution of the language must be short,
in terms of computer time. |
Itisa well-known fact that simulation runs take a lot of time
and systems are analyzed for a large amount of system time. This is the
reason for speed being a criti&a]vféctof'fﬁ thé*effiéf§hty of ‘a computer
language. Since there is no time-sharing in microcomputers, this goal
has been satisfactorily reached. In fact, the simulation becomes too

quick for eye-inspection when the "display" option is used.

(E) The 1ahguage must be flexible.

This provides an easy update facility for models. Using an ac-
tivity oriented approach haslhelped in this aspect and updates are being
made on an activity-basis, not changing the unrelated proportions of the

model.

(F) The language must be structured.
\ The reason for this’goa] is that structured languages such as
Pascal or PL 1 have been common]y'used in recent years and their superi-
ority'to traditiona]’]anguages has been ascertained by studies in Computer
Science. Structurality has made the writing of the compiler-simulator \
itself very easy. Another result is that the burden of modelling on the

user, and the burden of compilation on the compiler has been made lighter.

Syntax errors are easily detected during compilation.

(G) The language must be interactive.
The meaning of "interactive" in this context is.that the user

cah interfere with the simulation, can stop it, can change the system

state and- restart the simu]atidn. To accomplish this a “"display" facili-
ty has been.édded to the language, though it -is optional.

Most of these goals have been achieved though there are others
whicﬁ are still to be realized. In the conc]uﬁion, some of these ad-

ditional goals and wayé'to reach them are reported.

IT. STRUCTURE OF THE LANGUAGE

2.1 SYNTAX

ACSIM hés been formed with regakd to the general structure of
the programming]anguagé_PASCAL. This characteristic shows itself not
only in the "declarations" Section, but also in statement separators.

The main building blocks of ACSIM are "activities" and, as a
subgroup of these, “statéments“. The starting position of a statement
in an ACSIM line is dirrelevant, just 1ike Pascal. Indentation is recom-
mended, but is not compulsory. |

The symbols used areﬂreser@ed«words, identifiers, arithmetical
symbols, relational symbols, sepérators and numbers. Reserved words of
ACSIM are given in Appendix A. MWords are sepakated from each other by
spaces, but there_is no need for a éeparator between words and other
symbols. Upper or Tower case letters can be used in words, since the com-
piler converts everythiné,to lower case letters. All reserved words will
be shown in upper case Tetters within fhe context éf this report.

There is a limited freedomvin the usage of separators, buf they
must generaily follow the system syntax.

The general structure of an ACSIM program can be summarized as

follows :

Descriptiohs (Dec]aratibns)
Activities
- Conditions
- Time increment
- Actions
Statistics and reports
Parallel to this structure, the general syntax of ACSIM, along
with the syntaxfof the program's individual components is given in

Appendix B.

(A) Declarations

AAmong the things to be defined or declared in this section, there
are the following : |

Name of the system, random seed, classes of entities, attributes
of entities if they‘exist, queues these éntities might be in, g]oba]
variables.

The definition of the simple system in Fig. 1 can be done in

ACSIM as follows :

4

DEFINITION : ACSIM STATEMENTS
Prbgram name | | machineshop -

Random seed : ' 3567

Classes and queues CLASS part : loaded ;

machine : idle

Variables =~ VAR completed END

We must note that an entity might be allowed to enter various
queues, whereas a queue may contain only entitiesrof a certain class. The

CLASS or VAR declaration may be missing, but not both of them at once.

(B) Activifiesv

The activity is the maihthilding,Biock of a ACSIM program, so
updates must be thought on an activity basis.. If the conditions of an
activity are satisfied, then the reiated entities are taken out of their
Arespective queues and activated. After a certain time, which is given in
the time incfement statement(s), the ehtities are deactivated and they
go to their queues, though it may be the case that they go to a different

queue, any other required actions are done and activity scanning continues.

(a) Conditions

In addifion to conditions checking whether there are entities
in a specified queue, optionally with a certain attribute value; complex
conditions are also allowed. Since the definition of an "expression" is
highly complex and.expressions can be used in conditions, this supplies
a degree of complexity to the conditions themselves, thus rendering it
possible tovbuiid comp]icafed models.

There are basically two ki;ds of conditions which are denoted

as "queue conditions" and “variable conditions". Queue conditions check

]

whether there is at least one entity in a given queue, optionally with
an'attribute value satisfying a condition. Namely, in addition to an
-equality check on an attribute, there is the possibility of checking
whether the value of the attribute is in a certain relation (such as
‘greater than" or "less than or equal to") with a given expression. Vari-
.abie conditions may be thbught to be "boolean variables" since they con-
sist of two expressions linked by a relation. If that relation exists

between the two expressions, then the condition is satisfied.

The quantities that could be used in a expression are :

- Numbers

Queue contents (Called by the queue name)

- Variable values (Called by the variable name)

Random functions (Called by the function name)

Attribute values (Called by attribute and class name)

Other'expressions
An example for each type of expression :
30/56
2xwa1ting+3 ("waiting" is a queue name)
X=y+1
2% UNI(10,20)

weight OF part+3 ("weight" is the attribute '
of class "part")

UNT(x+y,x+2x%y)

2% (x+y+z-weight OF part)’

(b) Time increment

Time increment can contain.any expression. Thus it may be

- Constant AFTER 5:

- Variab]e .. AFTER time OF part + 3:
- Random AFTER XPO(20):

In case the value is zero, the AFTER statement can be skibped.

(c) Actions
Actions are done at the end of the time increment, if the con-
ditions of the activity are satisfied. Again, the only action allowed

in the previous version was to put an entity to one of its queues. This

10

was enough, considering the fact that on1y closed activity cycles were
modelled. With the addition of options such as open activity'cyc1es,
g]oba]-varjab]es, creation and destruction of entities, etc., new forms

of actions have been added to the language. These can be summarized

as follows :
- Creation of an entity NEW part loaded
- Entity éntering a queue’ machine idle
- Variable action y +7
- Conditional action IF weight OF part > 150

THEN part out
ELSE part loaded
ENDIF

- Printing , PRINT (x,y,2)
- Destruction of an entity DISCARD part

End of simulation _ STOP

An entity is created and put in a given queue, denoted in the
NEW statement., If wanted, its attribute can be initia]i;ed to a value
different from zero by the WITH clause. The initial value is given by

an expression.

An existing entity is deactivated and enters a queue, by means
of‘stating'its name and the name of the queue involved. No change occurs

in the attribute value. '

The value of a variable is modified in a variable action state-
.ment. We may add or subtract the value of an expression from the value
of the variable, or we‘may equéte the variable to an expression. Although

" there are no syntactical limitations in this operatidn,, as far as a

n

correct expression is given, some”éémantical'1imTﬁat%bﬁs might exist. Se~
mantical matters will be discussed in Section 3. -

The conditional action is an IF statement. If the condition of
the action(s), which is given in the form of two expressions 1inkedlby a
relation, is satisfied then the actions following the THEN clause, until
an ELSE or ENDIF is encountered, are done. If the condition is not
- satisfied, and there is an ELSE clause, then the actions following the
ELSE clause, until ENDIF is encountered, are done. ELSE is optidna].
Infinite nesting in IF statementé is possib]e, though ENDIF must be sup-
plied for each IF. ENDIF has been used’to avoid use of BEGIN and END as
in Pascal or PL1. An AFTER clause might be added after the THEN or ELSE
cléuses, so that the conditional action may be started with a time lag.

The values of variables can be printed at any time during the
simu]afion. To do this a PRINT clause, with the names of the wanted
variables as parameters, is used. When this action 15 done, the name of
the variable, and its value after an;equa1s sign, is printed on the out-
put file (or the screen).

" In'contraryAto.the creation, entitjes can also be destroyed,
namé]y they can be thrown out of the gystem, by a DISCARD'c]ause; The
class name of the entity to be discarded is given in this statement.

The end-of—simu]aiion mark, or fhe STOP clause, can be put to
anywhere in the program (provided that ii is among the actions of a par-
ticular activity). So, complex stopping conditions can be uti1ised'1n
this way. More simply, an activity consisting only of the stopping con-
ditions and as the oﬁly'action,.STOP, can be put at the,epd of.the
uactivities..

Further details on actions can be got by analyzing the syntax

diagram for them.

12

(C) Statistics and repofts

At the end of simulation, some éfandard 1nfofmat10n is given as
a report. This includes the final state of-the system and the number of
activation of each activity. The final state is given 1n(térms of the
queue contents, variable values and events waiting to "“happen". Besides
this information, the user might want to get some statistfca] measures
such as waiting times and queue lengths, as an option. These figures
can be calculated by the program if a COLLECT clause is used. This clause
collects statistics about given queues and prints them at the end. The
statistical measures calculated for waiting times and queue lengths are
mean, standard deviation, maximum and minimum values, N?iting times are
demanded by the DELAY clause, whereas queue 1engths are demanded by the
LENGTH c]auge. More“than one of these clauses can be uéed, but it is

also possible to give all queue names that are required in one clause.

(D) Activities with no conditions

There may be some activitiés*which need no condition to be acti-
.vated, which either start at definite time,péints or start at random time
vpo}nts. An example would be the arrival of trains to a station, assuming
théy always come on time. Another would be an arrival process. with a
random arrival function, which would need no conditions to start. |

To imp1emeﬁt fhis characteristic to the language, thé EVERY
clause has been used. An activityvbeginning with‘EVERY happens after a

defined amount of times passes. This amount is calculated from the ex-

pression following the EVERY clause. For example,

arrival EVERY XPO(5):

NEW customer waiting ;

13

defines a Poisson arrival process with the interarrival times exponentially

distributed with mean 5.

arrival EVERY 30:

~ NEW train ready;

defines deterministic arrivals.

The second component of a model built in ACSIM is the "data".
The separation befween program and data.has been accomplished in ACSIM,
and this hés brought the concept of static and dynamic elements of the
model. .The program represents the static element, since, once written,l,
the program describes avparticuiar real-1ife or hypothetical system, and
unless changed by a change in the program, this representation is the same
throughout subsequent simulation runs. What changes is the "system
state". As the simulation proceeds, the system state changes with the
actions done, or it may stay the same if no significant action is done
or the executed actions have no re?1 effect .on the system, besides in-
creasing the number of times' the particu]ar activity is activated. By
iepafating program and data, we are able to simulate the same system
wifh differeht initial states, or different sets of data. No change is
required oh the program in such a case. |

The general structure of a set of ACSIM data can be summarized
as follows

| Data name (State name)
Variable Va1ues
Queue contents

Waiting events

Variables can be initialized by giving the name, putting an

equals sign and writing the value. Note that only numbers are allowed

4

here, instead of expressions such as in the variable actions syntax. This
is because, first, the data signifies a shﬁpshot of the system at a par-
ticular moment, and.thus all values are known and need not bé calculated
from an expression, and second, data exiéts-independent of the program
and thus the expression can not relate to any of the components of the
progrém itself, as it would frequently be needed in a complex expression.

Queue contents are given by a number and the name of the queue.
Class name can also be included before queue name, to increase readabili-
ty. At the beginning of the simu]ation,vor the "initialization" phase,
: the_dénoted number of entitieé will be created and put to the denoted
queue. To initialize the attributes of these queues, attribute values
may alisu be supplied. If not given, all attributes are considered to be
zero.

Waiting eventé are defined by giving the event time, name of
the acfivity creating this event, the sequence number of the action to
be done when this event occurs, entities involved infthis event and their
attributes 1f different ffom zero. An event is created at initialization
and it occurs when its time comes.- |

If a variable is not 1nitié1ized,-its value is‘taken’to be zero,

similarly, if a queue content is not initialized, it is assumed to con-

tain no entities. ‘

The data can be defined by thé user, of’if may be obtained at
thé éndlof é simulation run by takihg,a snapshot of the system. Nﬁen
the user gives the data, it ié generally to give an initial state to the
system. When automatically generated system state is recorded onto disk
and used later, it is generally to record the systém state at a particular

moment and to continue with the simulation with the same state, some time

later.

15

2.2 SEMANTICS

There are lots of semantica] checks in ACSIM, to facilitate the
usage of the language Qith‘“correct“ mode]s,\correct méaning containing -
no 1ogﬁca] errors. Some of these errors are detected during compilation
ahd some during the‘actqai simulation. Currently error-correcting
schemes are not Qsed andlthe simulation or the compilation is stopped in
case of an error, syntactic of semantic.

Acfua]]y, there is little or no need for error-correction, since
the system will be used interactively and any détected error will be -
corrected by the user himself with the help of an inte]]igent.editor
program. So, the compi]ef becomes simpler to»imp]ément and quick edit-
compile Sequences are made possibTe.'

The controls for semantical checking can be grduped into, three,

dependihg on the phase in which the control 1is done.

- Parsing (Compilation) phase
- Initialization phase /

- Simulation phase

Controls done in the parsing phase are usually complementary to

syntactical checking. An error number is given for a detected error and

'the compilation +is stopped.

Teise

vdata" is read, only syntactical check is done, sihce the program is not
known at the particular moment and semantical errors can be detected only
after both fhe program and the data are parsed. Similarly, an error
number is given and thé parsing process is stopped.

Errors occurring during simulation are related to the model it-

self, and more cbmp]ex in nature, in regard to the fact that they have

16

not been detected during syntactical and semantical checking. They might
be named "execution errors® or semantical errors, since there are errors

of both kinds that can be listed under the group name.

(A) Parsing errors
Only some of there errors will be reported here, choosing the

most important.

- Number too large.

When the syntax diagram calls for a number, there 1s a limitation
on the length or magnitude of the largest number that can be accepted.
CUrrent1y this value is 32767, because of the limitation of Apple Pascal,"
the environment in which the language is implemented. Only integeré are
accepted as numbers. Since real‘numbers use up too much storage space,
they are not used in ACSIM. Another reason is that there is always a
"truncation error" factor in real operations, which could add up tolsig—
nificant figures. ' Furthermore, real numbers can be represented by large
integers by %hrowing,out deciﬁa] places and calcu]ations can be adjusted
actordinaly.

- Undefined ﬁame.

| Any-identifier read by the parser is checked for its kind,
name]yiit must have been declared in the declarations section, and its
kind must be the one that is required at the particular statement within
the program.v Duplicate names are not allowed but this is got rid df by
the éyntactica] check.

- Incompatible class-queue or attribute—c]assz

Although passing .from syntactical.checks and the semantical checks

above, the class and queue or the attribute and class may not comply with

the original definition. .

17

- Program will not stop.

Since the only way thelﬁimu1ation stops is a STOP clause passing
in any activity, this is a matter to be checked. If there is no STOP
statement in the program, an error message is given and the simulation
can not start. Even if this check is hade, there is still a possibility
of an infinite loop, if the STOP clause 15 in a conditional action, or
an improbable or highTy jmprobab]e condition is given. Since it can not
be known at compilation time whether the condition will ever be satis-

- fied during the simulation, the compi]er can not give an error in case
of a éonditiona] STOP. It is left to the user to put a terminating
condition. One error that could frequently be encountered is a condition

involving the system clock. A condition like
CLOCK = 1000

may not be satisfied at all, since time is not incremented in unit incre-

ments. In such cases, sohéthing Tike

CLOCK > 1000

must be used.

- Nonmatching condition-acfion.

In order not to lose any entity during the simulation, each
entity used in the conditions must also be used in the actions. When an
entity is used in a condition, namely the queue 1n‘which the entity is
.current1y present is used, the entity is activated to be used in the
activity. After the activity ends, it must be put in one of its passive
states, namely queues. If this is not done by the user, then there will

bé a dangling entity not belonging to any queue and this entity will not

18

be activated by any other activation request. The following activity

will be marked as erroneous, by the compiler :

serve part loaded, machine idle?
AFTER XP0(20):

part loaded;

Here, "machine" is not used in any action, thus causing an error.
Simj]ar]y, any entity used in actions must -have passed in the
conditions. If this is not done, thén a.nonexistjng entity will be
| attempted to be used in én action. In the same example, the following

would be an erroneous usage :

serve part loaded?
AFTER XP0(20):

part loaded, machine idle;

Here, "machine" has not been activated by a satisfied condition,

so it can not be used in an action.’

- Undefined'attribute:usagé.

In any action, if any attribute value is used in an expression,
thé entity with that attribute value must be active, namely it must not
- have entered in one of 1ts:bassive states. Similarly in the conditiong,
an éttribute name can not be used'before its corresponding class name
is used. In the examples above, if_wéight df the part is used as an
attribute,'theh the f01ldwing program pieéés will be erroneous :

éerve péft loaded, machine idle?
AFTER XPO(20):

part loaded,sum+weight OF part,machine idle;

19

serve capacity > weight OF‘part,pékt loaded,machine idle?
AFTER XP0(20):

part loaded,machine idle;

In the first example,, the weights of the parts are accumu]ated
in a global variable, "sum". But, after the action “part loaded" is
done, there will be no part active, to the expressidn "weight OF part"
can not be calculated. Once the entity enters a queue, it is lost, or
opaque to thé eyes of an observer looking from the dynamical level, or
the simulation itself. The correct version of the activity must be as
fd11oﬁs : |

serve part loaded,machine idle?
AFTER XP0(20):

sum+weight OF part,part loaded,machine idle;

In the second example, the entity'to be used 1h the actions
must have been chosen befbre "weight OF part" can be calculated. That
is only possible after the name of the entity is used. The correct
version of the activity must be as follows :

serve part loaded,capacity > weight OF part,machine idle?

AR}

AFTER XP0(20):

part loaded,machine idle;
or

servé part Joaded WITH weight < capacity,machine idle?
AFTER XP0(20):

part loaded,machine idle;

- I1legal. time increment.

| System t1me is shown by the predefined system variable CLOCK.

The value of CLOCK can be reached by the user and can be used in any

20

~

expre;§ion, but he is not allowed to changé it, since it is automatically
changed by the program when the need arises. So, in variable action

statements, the value of CLOCK can not appear on the .left-hand side.

(B) Initialization errors
Number too‘]arge, undefined name, imcompatible class-queue
“errors are detected jn‘initialjzation also. Additionally, in waiting

events, an illegal statement number may exist.

(C) Execution errors

- IT1legal time increment.

Since it is possfb]e to use expressions in time increment state-
ments, it is also pqssible to get a negative time increment value. This
fact can not be detected during compilation, since it is not known before-
hand what value the expression wf]] take at the particular momént. During
execution, if a negative value comes from such an expression,.an error

message is printed and the simulation is stopped.

. - I1legal parameter.

While random functions aré.being.eVa]uated, there are some

factors ts be'conéidered. First of all, the number of pérameters for
“each type of function must be correct. This is contro]]edbby the compiler.
Another factor is that the value of fhese parameters must be logical.

This can ﬁot be known in advance, since parameters are expressions

themselves. Control is done during execution, after the expression is

evaluated. The controls to be made are as follows :

Uniform_diétribution :
UNI(exp1,exp2)

The value of expl musti be less than the value of exp2.

21

“Exponentjal distribution :
XPO(exp1).
The value of eXp1 must be gfeater than zero;
Ndrma] diﬁtrfbution : | | !
NOR(exp1,exp2)

The value of exp2, namely the variance value.. must not be nega-
tive. (It is also meaningless to choose it zero, since it would then be

a constant distribution.).

- Nonmatchﬁng condition-action.

:'fSOmelof_thééeierrOrs'éan be detectéd by the compiler and'compi-
Tation can st;p, but some can not be detected at cdmpi1at10n time and are
1éf£ to the executiqn. For example. if an entity class is used twice in
actions butvon1y oﬁce in conditions, the compiler can not detect this
errer, Wiiie executioﬁ pfocéeds, tbere)wi]] be no entity to participate
in the second action and an efror will occur. Similarly, if an entity
ciass is used twice in conditions and only once in actions, then one of
.the entitiesvwi11 not Be used in any action and an error will occur. An

"example for each case is given below :

Excess action :
act part loaded,machine idle?
AFTER 20: |

part loaded,machine idle,machine broken;

Excess condition :
- act part loaded, machine idle,machine broken?

AFTER 20:

part loaded,machine idle;

22

It must also be noted that the sequence of the conditions need
not match that of the actions. As long as the number of conditions and

actions match, there is no problem. The following usage is legal

serve part loaded,machine idle?
AFTER 5:

machine idle,part loaded;

These limitations are not valid if an EVERY clause exists in-
stead of conditions, or actiohs consist of a STOP statement. The follow-
ing usages will besva11d :

valid EVERY XPO(20):
NEW part Toaded;

valid part loaded,x=35?

STOP;

There are also special cases for NEW and DISCARD statements. NEW
can be used for a class not passing in the conditions, since it does not
need any activated entities and will create one of its own. When DISCARD

is used, condition-action matching’js assumed to hold. The following

‘activities are legal in terms of syntax and semantic§ :
legal part loaded,x=35?
part out;NEw finishedgood inqueue,x=0;
legal part 1oaded,x%55?/
DISCARD part,x=0;
The fifst activity emphdsizes»the fact thatvidentifiers are not

Timited in length, such as finishedgood.

23

2.3 DATA STRUCTURE ‘
| In order to have the possibility of fitting the compiler- -simu-

Tator to the 11m1ted memory space of a microcomputer, data structure

‘has been formed after a thorough study and a teamwork. Pascal's strength

in comp]ex data structures has been the pushing factor and. the structure

has been'pol1shed to a very efficient degree.

The most ihportant advantage of using Pasca1 is the ability to
use tota]]y dyoamic memory. That is to say, memory a]iocation is not
done ti]i executioh time.‘ This property 1ifts many barriers in terms of
' memory usege. .There'is no a priori 11mitation on the number of entities
or even "tnat cou]d be s1mu1taneous]y present in the system. (Only en-
Vtities and,events,cause a major problem, because all other elements of

the system_are static, namely they do not change form or size after they

are decldred once.) To give a rough estimate, the program can hold

about 500 entities in a 64:KByte microcomputer and

rabout-5400 entities th a 128 KByte microcomputer.

In' the latter case, what is meant-is an additional 64 KBytes that can
tota]]y be‘a]1ocated to the prograﬁ memory. These figures give us really
rough estimates;-oecause the size of the model, lengths of names and |
similar th1ngs are factors determining the amount of free memory space.
The concept of "po1nter" is dom1nant in the data structure.

Beside names.rno-str1ng is held in the memory. All other man1pu1at1ons
are donetwith pointers. One other aspect of the data structure is that
no stat1c arrays are used. Stat%c arrays would put a 11mit on various
e]ements of - the system and it would have been 1mposs1b1e to use dynamic

| data structures. Everyth1ng is in form of “11nked Tists" and operations

24

on linked 1ists are also favorable in termé‘of execution time. A simpli-
‘vfied model of the data structure is given in Fig. 2.

'Despite all precautions, the program can fill the available
memory during simulation. This is controlled throughout the simulation
and in case of a possibility of a full memory, namely when there is an
avéi]ab]e memory 1ess’than some predefined number of bytes (currently
1 KByte), the simulation is stopped, a warning message is given and the
user may take a report reflecting that particular moment in simulation
time. The limiting memory is kept for thé reporting program.

While parsfng is done, or simu1étion is displayed on the scfeen,
names.of various elements are needed for printing or comparing. These
names, which constitute the only "string" portion of the data, are kept
in a binary tree. All searches are done on this tree and are very’quick;
5ecause of the bihary nature of the tree and the speed of pointer
operations. |

Another precaution is to use records again and again. With the
new version of ACSIM, entity creation and destruction is allowed. But,
th%s also means creation and destruction of records corresponding to these
entities. Record creation in Pascal is done by the‘NEw statement. - When
it is used, it creates a new record of the required type, and sb it use§
up someiof the available memory. The opposite'ofAthis is the DISPOSE
statement. What it does is to clear the memory areé corresponding to
that record and make it available for future use. vThis-c1earing brbcess
is called "garbage collection" in computer science, since it involves
shifting'of usefu1 data and removal of useless data. Ho@éver, a real
garbage collection, namely squéezing the memory every time a record is

destroyed, is not feasible, and is not implemented even in main-frames.

25

class| atr ’{_ - queot , |
nome | namt ("?M / "] name [™ head es
&

] eatity /

eiﬁ'
steveture
e:‘;t ’ i}
S{‘r-/(.{,vr(/
L/ | -
: aChVHJ | S{“‘tc"‘e"* | fl‘\j structvee
qct .
amé — N,
: [/ Lo ¢\u&u€ 1o &;\‘ﬁ{:{]
l |Z eveat l\
1 | / we, [V 1T
J/ : to f’fﬁwf .
. - / | ‘ .
IF stateament / . ' , ’ | /
";S{—, : A "] €LsE '
S{rudurl’- T

JWEN ‘ gl
1'
L
/
/ ,

FIg. 2 simplitied
Data Structurs oI
ACSIM

il -
ENDIF ['
| e

yara E\“v.&“.\i\{i"‘{’)“a\ ‘Z_\\‘)\.\\’

B

26

To counteract this and to escape from the comp]icatdons of memory manipu-
fation, a simpler method has been introduced : |

| When a record.is going to be destroyed, it is put into a "free
list", namely in a Tist of records currently not in use. When a new
record of the same kind is’needed, the first thing to do is to check the
free 1ist. If the free Tist is not empty, then a record from the free
list is taken, its confents modified propek]y and it is puf to use. If
‘the free list is empty, then there is no choice but using NEW td use some
more memory. By using this method, the total memory needed by records
of a particular kind is equa1 to the maximum memory needed simu1faneous1y,'
namely to the memory usege of the maximum number of such records that

could possibly exist simultaneously.

2.4 ALGORITHM

The method used 1in the program_is activity scanning, but the
standard activity scanning afgorithm has been slightly modified, to account
ror the extended form of the]anguage. |

The first modification is an event-list, which is generally
used 1h»eventhor1ented simu]atignllanguages.‘ This does not change fhe
'boint-of—View of the general system. It only helps the job of simulation
and makes it quicker. Events are sorted with respect to increasing
occurrance time. To each event, the entities that are required to .
realize that event are linked. There is also a pointer showing the
first statement of the ACSIM program that is to be executed at the oc-
currence time of the event.. A1l statements starting with the pointed

one, until the first AFTER statement, are executed when the time for

27

that event comes. Then the vafue 6f.the expression in the AFTER statement
is calculated, added to the current value of the system clock and a new
event is created, with its time.equa11ng the value obtained by the
addition. Thié new event points to the first executable statement after:
the above deﬁoted AFTER statement. This goes on until the activity is
totally executed. So, an activity is executed in parts, if there are
more than one AFTER statements in it, the AFTER statements denoting the
different times at which the parts of the activity are to be executed.
Note_a]So that the AFTER statements are'cumuiative in effect, namely each
adds_to the value of the system clock and thé values of the previous
AFTER clauses within the same activity.
| The general algorithm of the program can be summarized as
follows : |
Compile;
Read data;
Initialize;
Repeat | » o
Execute the actidnsiof evenfs wifh_fime gqua]ing to
the system clock;
For each activity
-1f conditions are satisfied
then begin .
‘Take reqﬁired entities from their queues;
Create a new event;
- Link the entities to the event

end;

28

Aquﬁce the system clock to the time of the first event |
‘in the event 1istf

Until sj@y]ation ends;

G{ve staijstics and state report.

Statisti;s are collected every time an entity enters or Teaves
a queue. For quépé length figures, collection is done whenever time is

advanced.

2.5 COMPARISON WITH EXISTING LANGUAGES

A]thougﬁffhere are lots of special purpose simulation languages,
there are just a few fof microcomputers, and these have not been well- |
established -and tested. Because of this, a comparison can be done between
ACSIM and some other Tanguages implemented on main-frames. Doing this,
we lose the éhanc§ of comparing them on the basis of speed and capacity,
since the resourcéé of micfocomputers and macrocomputers can not be
easily matched. 'f; ﬂ |

* In tabTe$t1 through 5, various aspects of the simulation
languages GPSS »I'I"’,:":*SIMSCRIPT, GASP and ACSIM are compared. The charac-
| teristics for théiffrst‘three languages have been taken from simi]a}

‘tables given inf[éJ , and the characteristics of ACSIM have been added

as a fourth column to the tables. Some characteristics irrelevant to
ACSIM have been skjpped.

| To make £he comparison more meahingfu], different views in
languages have béén‘chosen. GPSS 1is a process-oriented language,
SIMSCRIPT and GASE are‘evént-okiented Tanguages and ACSIM is an activity-

orientedvlanguagey

29

TABLE 1 - Structure of Memory Assignments - Data Structures -

GPSS 11 SIMSCRIPT . GASP ACSIM
1. Fundamental | | o ') v “Entity"
elements "Transaction" “Individual "Element" "Queue"
"Storage" entity" . "Variable"
"Queue" ' "Activity"
2. Properties Transaction : Attributé Attribute Entity :
of objects Parameter Attribute
PrAOPMILY o e Time
Mark time ’ Queue :
Storage : Curr.contents
Capacity ‘Max.contents
Max.contents | Min.contents
Cur.contents Total entries
Utilization Variable :
time integral Value
Total entries Activity :
Facility :' Number of
Status activations
Utilization
' integral
Total entries
Queue :
Max.contents
Cur.contents
Utilization
time integral
Total entries
3. Group of "Transactions" "Entity" "Element “Class of
objects "Storage" Tist" entities"
being "Facilities" "Matrix" "Variables"
simulated "Queues"

TABLE 1 - (Continued) -

30

temporary?

Yes

GPSS 11 SIMSCRIPT GASP ACSIM
4. Data about "System "Permanent "System "Global
the en- variables" | system variables" variables"
vironment - "Savex" variable" "System clock"
| ~"Function"
"Frequency
table"

.. List of ~ "Events "Set" ﬁElement; "Event 1ist"
names of chain" 1ist" "Entity queue"
objects “Assemb]y "Queue"
with set"
certain “Service
properties chain"

"Interrupt
chain"

. Can records .
be Yes . Yes Yes

31

TABLE 2 - Changing the State of the Simulated World

GPSS 11 SIMSCRIPT GASP ACSIM
. Subprogram : Block Event ‘Event Activity scanning
agent of subroutines subroutines subprogram routine
change causing Event handling
activity _}routine
. Who provides GPSS User User ACSIM
subprogram?
. Time control Main Timing' GASP Scanning routine
routine scanning routine executive
routine
. Amount of To next To next To next To the first
time advance scheduled imminent scheduled event in the
~ future event event events 1ist
event

. Exit after

To appropri-

T

To.appropri-

To appropri-

To procedure

before time

advance.

time ate block ate event ate event PERFORM,
advance subroutine subroutine subroutine which performs
| ‘ ' current
events
. What flows Transaction Temporary Temporary Entity
~in simula- entity element
“ted world?

. What deter- System status; Tests in Tests in Clock change
mines wnen change of event _ event is automatic.
change status forces subroutine subroutine Scan before
occurs? new events.Scan time advance.

Other changes
user-defined.

TABLE 2 ~ (Continued)

GPSS 11 SIMSCRIPT | GASP ACSIM
8. Can changes Exogenous Exogenous Exogenous Simulation
be-caused events. event tape events ~can be inter-
externally? “Help" for ‘ rupted and
arbitrary v state change

modification , can occur

.

33

- TABLE 3 - Commands to Facilitate Subprogram Execution

GASP

IIQUEUEII

GPSS 11 SIMSCRIPT ACSIM
1. Create “"ORIGINATE" “CREATE" . Temporary "NEW"
temporary "GENERATE" elements cre- Event records
records _ated by na- created
ming,stored automatically
in queues,
cease to
exist upon
departure
from the
last queue
2. Remove "TERMINATE" “DESTROY" "DISCARD"
temporary ’
recoras
3. Place event "PRIORITY" "CAUSE" "SCHOL™ Automatic
on schedule "BUFFER “CANCEL"- REMOVET
"ADVANCE" Exogenous
"HELP" events
4, Change list- “SEIZE" "FILE" "FILEM" Entity taken
membership "RELEASE" "REMOVE" "FETCHM" out of a queue
"INTERRUPT" "REMOVE | when activity
"HOLD" FIRST" is activated,it
"PREEMPT" enters a queue
"LEAVE" when the
"RETURN" ~activity is
~ "ENTER" performed
"STORE"
"GATE"
"LINK™
BUNLINK"

TABLE 3 - (Coqtinued)

. GASP

34

compare

GPSS 11 SIMSCRIPT ACSIM
5. Sequencing Current . FIFO «FIFQ . - FIFO
' © events chain . LIFO - . LIFQ-oo. . Event 1ist by
by delay by Ranked on High or low event time
FIFO; future attribute rankihg or
events chain . value ‘attribute
by departure | - value -
time by | ‘
FIFO;
service by
priority by
FIFO
. Logical .. Selection - - -"FOR EACH" - FORTRAN Infinitely nested
commands - modes: “LOOP" | IF...THEN:..ELSE...
and Both A1l “FIND MAX" ENDIF statements.
phrases Pick P "FIND MIN" << =>>= =<>
FN SIM "REPEAT" . Number in queue
Gate con- -"OR" "AND™ Attribute of
ditions: "WHERE" | entity can be
, NU SE SNF MIF used in
- U SNE LS "WITH" - expressions
M NM I SF "IF EMPTY" ‘
LR "GOTO"
Algebraic

TABLE‘K':ﬁPkdgkammihd'FéaquéS'f"

35

| GPSS 1T CSIMSCRIPT "~ GASP - ACSIM
. Basic unit Block. ‘Statement - - - FORTRAN. - Declaration
of program _Event routine statement Activity
' A o ~Statement
. Programming None - FORTRAN FORTRAN None
requirements o :
. Flowchart Yes No No Yes (Activity
symbolism cycle diagrams)
. Recursion: No No No Yes (In ex-
Infinite pressions and
nesting IF statements)
. Arithmetic "ASSIGN" “LET" FORTRAN ArithmEtié
~commands "HELP" "STORE" operations,
"TABULATE" "COMPUIE“ Assignment
"SAVEX" *DO TO" statement.
.‘Commands to "TABULATE" "ACCUMULATE" "COLLECT" Requested once
‘cpllect » “QUEUE" '"COMPUTE“ “HISTOG" by COLLECT ,
statistics "SAVEX" Number statement,then
"HOLD" Sum collected
"HELP" Mean automatically.
"STORE" Sumsquares
WSETZE" Meansquare
“RELEASE" ~ Variance ‘
"ENTER" Standard '
"LEAVE" deviation

TABLE 4 - (Continued)

_ GPSS 11

36

| o SIMSCRIPT - GASP ACSIM
7. Functions, Any standard Uniform Option-random UNIform
distributions, system _Non-Uniform 'operatioh,or NORma1
~ random variable continuous random - XPOnential
numbers ~ or discrete decision.
probability = Erlang
distribution Normal
Poisson
Uniform
Random num-
bers from
probability
list,
Regression
equation
8. Input-output Built-in “SAVE" - Subroutines Input from
fixed I/0 "ENDFILE" DATAIN and = disk, output
SAVES trans- . "READ" OUTPUT. to disk or
fers model “READFROM" Summary screen,

; to tape. LOAD" report 1/0 is not
READS re- “RECORD ENDRUN. part of the
stores model MEMORY" ' | language, but
from tape. "WRITE ON" is handled
WRITE places "RESTORE by menus.
transactions STATUS" Program,
on tape. "ADVANCE" report or
JOBTAPE re- "BACKSPACE" final state
covers trans- "REWIND" may be saved

actions from
tape. '

on disk.

TABLE 4 - (Continued)

37

GPSS 11 SIMSCRIPT GASP ACSIM
9. Report PRINT Report GASP summary Value of
" output normal output generator Contents of variables,
' -Model 1listing - all queues, queue contents,

-Clock time ‘max. and activity actiQ

-Block counts ~ average vations are

-Savexes queue length. standard.

-Facility Schedu1ed{ Optioha11y:
statistics but unexée- For waiting times:

-Storage cuted events. Mean wai.time
statistics ' St.dev.
-Queue Max.wai.time
statistics Min.wai.time
-Frequency For queue lengths:

tables Mean dueue 1.
-Summary St.dev.
statistics Max.queue 1,
-Error Min.queue 1.
conditions

10. Use for No : A general Imbedded No
non-simu- purpose in
lation language FORTRAN

purposes?

1. Compilation
“and running

procedure

TABLE 5 - Mechanics. of Use

~ GASP

38

GPSS 11 SIMSCRIPT ACSIM
Model deck is FORTRAN FORTRAN Main routine
interpreted. compiler does it all

SIMSCRIPT
source is

converted to
FORTRAN

source.

Some versions
have SIMSCRIPT
to machine

code conversion

2. Debugging and Dynamic error

diagnostics

indications
terminate
run and
print system

| status and

accumulated

‘statistics.

Trace allowed,
Limited syn-
tactical error
checking.

FORTRAN
diagnostics

FORTRAN
diagnostics
Monitor
program
optional.

Full syntax
checking

and error
reporting at
compile-time.
Execution
errorérter-
minate run

"~ and give a

complete
account of -
the error.
Display of
simulation
on the
screen is
allowed.

3. Memory |

TABLE 5 - (Continued)

© GASP

39

External Tape

memory

GPSS 11 SIMSCRIPT ACSIM
At load time Load time As 1in Dynamic
Dynamic for Dynamic for FORTRAN.
~ transactions. temporary
records. .
Tape Tape None
(FORTRAN
capability)

40

ITT., EXAMPLES

3.1 A MACHINE-SHOP SYSTEM

The first system to be analyzed is a machine shop. The entities
of the system are parts which are to be'processed, workers to load these
parts, a material handling system to carry these parts to the machines .
and the machines which w111 process these parts. Each part has to be
processed twice, before 1ts job is finished. For simplicity, all machines
~are. considered to‘be of the:saﬁe kind and all process times, arrival |
times and moving or 1oading times are constant, name]y deterministic.

Fig. 3 shows the c]osed act1v1ty cyc]e diagram describing this

system. Part, mach1ne mhs (mater1a] hand11ng system) have cycles of
their own, whereas worker has two cyc]es, since he does two JObS, that
of loading and that of unloading. If there is a part in pool and a
worker is free, then the loading activity begins and part comes to outq,
whereas worker goes back to its free state. If the material hahd]ing_
.. system.is avai]ab]e,'it'takes'the_part in outq and carries it:to ﬁnq.
If there 55 an idle machine, then it processes the part in inq. This
processing continues until the part is processed twice. Then a free
worker unloads the part from the machine , and part goes to the pool,

representing a new part coming to be processed..

WORKER " 5'

o ®)

S)

MHS o . [

< F

L 3

¥

\ X
. Lo Ee PﬂOCESS-; : F
' K - M "{2*4 / w ::

v | WORKER

Fig. 3 Machine-shop Cycle Diagram

a

et
H—2¢

PO
L SRR

Pt

42

This model shows most of the properties of a closed activity
cycle. There is no entrance from outside and no entity leaves the -
system. The crucial point is to put enough amount of parts to pool at

the beginning of the simulation, If this is not done, then the arrival

process can not be simulated properly and limitation not existing in the

original system might Occur'infphe simulated-system.
Fig; 4 shows the ACSIM program andﬂdata deﬁcribing this system.
Classes and queues are"defined'in:the declarations section
~ starting with the keyword CLASS. A’variab1é, UNL fs defined to store
information.

Activity LOAD starts if there is at least one part in the pool
and’ohe wbrker free. After 4 units of time, part goes to outq with its
attribute ntp=0. Here, nfb means “number of times pkocessed". It must
be known for each entity, sa 1fv§s aecTafed'ésman.éftkibute. Worker

“goes back to its passive state, ~TCT T :

Activify MOVE starts if there ‘is at least one part in outq and
the material handling system is available. After 7 units of time,
pért‘goes to ing, mhs is again avai]gb]e. |

Activity PROCESS starts if there is a part in ing with number

.of times processed Tess thaﬁ two and any idle machine. After 15 time
units, machine is again idle, part goes to outq with its attribute
increased by one. | |

Activity UNLOAD starts if there is a part.in ing and a free wor-

ker. Here, there is a trick to simp11fy'the simulation. Actually the

condition of UNLOAD must have been in the form
part ing WITH ntp > = 2

so that only parts which have been processed twice are unloaded. But,

- machineshop 4256
class part.with ntp pool,an outqs;
wor ker : free;
machines: :Tuls;

hs.anllable R S '
var unl L L ' ’
end’ ' S : »
"~ load purL paal, wor} ar Free?~
after 4: :

part outg. with ntp=0,warker free:
move part outg,mhs: avallwbleﬂ
atter 7: :
part ing,ahs dvallable, .
process part ing with ntp< ,nachlnw idle?
after 1%9: ~ '
_ mdthnP idle spart outg with nip*ntp of partt+l;
unload part ing,worker free?
after 43 -
part popl,wnrker +rpe,un1+1,
endact clm'_"} ¥ 100007
stop
'collect delay idle,free,outg;

: length 1dle free outq.

,Fig. 4 AcSIM ﬁrog;’ém fpr macninc-}‘shop. |

44

this condition is got rid of by puttiqg activity UNLOAD below activity
PROCESS in the program. Ifégny part has an ntp value less than two, it
will be sent to outq by the ‘activity PROCESS, so there cén not be a-
part with ntp 2 in ing when activity UNLOAD is being scanned. Thus no
need for the above condition. After unloading is done, namely after
4 time units, part goes to pool, worker becomes free again and the
variable unl, which counts the number of parts unloaded is incremented
by 1. |

Activity ENDACT is put to ehd simulation. 1If system clock

exceeds 10000, then the simulation is STOPped.

Fig. 5 shows the outpuf obtained at the end of the simulation
of this machine-shop system. Simulation has been stopped premature]y;
by the intervention of the user. Thusvthe ending time 4372. ‘The initial
staté of the system was given by the DATA portion in Fig. 3. Initia]]y'
there are 15‘parts 1n'pbo], 1 machine idle, 1 material handling system
available, and 3 free workers. It must be noted that, by choosing
appropriate names for queues, the progrém's readability is grossly in-
rcreased and conditions such as "part outq, mhs ava11ab1e” can be used,
to the user's and others' ré{1ef “

At the end of simulation, the system state has been changed.
Pool and inqg are empty, whereas 13 parts are waiting in outq, 2 workers
are free, 1 machine is idle, and the mhs is éurrent]y in use. System
clock is 4372 and 422’parts have been processed and unloaded up to this
time. _

Number of act1vat1ons for each. act1v1ty is also given. -The

number 422 can be obta1ned a]so from the act1vat1on number of the activity

:.UNLOAD but th1s is on1y so because the act1v1ty is s1mp1e In complex

. move

Simulation started at time 0....
Simulation éndédvat time 4372

S U FINAL STATE

1 L e e s e i = o it e 1 . o s P i 0 et

Entities in gueues

- pool 1 empty
Cing P Lk enpty
Looutgoo 0 s 1T part,
'_:free_‘f Lo 2 worker
idle’ : A 1. machine
available, - ook Brpty

Global vafiables

elzalN T = 437

cumloc = 422

WNumber of activations ' L

load 437 . ,
. &24 ’
process . ety 201
~unload ; o , 422
endact R not activated

L T

STATISTICAL ANALYSIS

“ 3 Queue” o *_* p “Haiting times . Gueue lengths -

MEAML - MEANZ - ST.DEV. MAX MIN MEAN ST.DEY . MAX MIN

Coutgr 0 B5.9 84,0 10.5 90 4 12.5 - 30.4 13
~ofree . L0 11,50 U LLLT7 R0 14 K 2.2 4.7 3
Cidle 6.7 0 6.7 2.1 13 4 0.3 1.5 1 |
! E
.?f i

= r‘fig. "5 Besults of the simulation of macvhine-shvop

‘ 46

act1v1t1es, name]y 1n act1v1t1es w1th d1fferent act1ons with t1me lags
-between the activation number w11] not mean duéﬁ'“ o

Statistics requests were done by the COLLECT statement in the
' program. Only three queues are included in the analysis, again by the
choice of the user.

when the f1na1 state and stat1st1ca1 figures are analyzed, it
is clear that the bottleneck of the system is the material handling
system.. The 1afge waiting time figures for outq supports this result.

0f the 15 parts in the system, 12.5 parts on the average are waiting for

the mhs at any given moment, and this is a big figure.

3.2 A BANKING SYSTEM

In thfs model, a single-teller bank is simulated. The bank is
open between 9 a.m. and 5 p.m. The server takes a Tunch break the first
time after noon that he/she,stays 1d1e.’ Lunch break is 30 minutes and
fhe server posts a note telling the retarn‘time. Customers arriving
during this break check the return time with the current time and decide
to wait or leave according to a complex probabilistic analysis., The de-
cision is done as follows :

If the time left (to the return of the server) is less than 10
m1nutes, then the customer waits or leaves with equal probab111ty If
‘the time left 1s_greater than 20 minutes, then he stays with probability
.25 and 1eaves with probability .75. If time left is between 10 and 20
minutes,”then he stays with .40 probability and leaves with .60 probabi-
1ity. The]eav1ng is ca]]ed “balking".

| After the server returns, he continues serving until 5 p.m. At

5 p.m., doors of the bank are closed. but the server serves all customers

waitihg there.

47

Fig. 6 shows the(banking system {nvan activity cycle diagram
and Fig. 7 gives the ACSIM program and data corresponding to this sysfem.

The arrival process is given by the activity ARRIVE, and it is
a Poisson process with interarrival times exponentially distributed with
mean 8. Checks are put tdﬁclose the door before 9 a.m. and after 5 p.m.
Customers start Coming after 8 a.m. |

Activity LUNCH regu]ateévthe lunch-break of the server. If the
server is idle anytime after noon , and provided that he has not gone to
lunch within that day (checked by the 0-1.vér1ab1e EATEN) then he goes
out for Tunch and the return time is set for 30 minutes after.

Activity COMEBACK regulates theiserver's coming back froh lunch.
After 30 minutes have passed, server comes back, having eaten.

Activity BALKING is the decision_prbcess. A customer who has
not given'a‘decision yet (decision = 0), seeing that the server is at
lunch (at lunch = 1 is used in order not to activate server, instead of
"server at lunch", which would activate him) looks at the time left
(return-clock) and by the complex IF statements, decides to stay (custom;
e; waiting WITH decision = 1) or to leave (DISCARD customer).

| Activity SERVE is the regular service aCtivity, which is done

only after 9 a.m. Service time is uniformly distributed between 5 and
10 minutes. | |

““Activity ENDACT ends simulation after checking whether itlis
after 5 p.m. and nobody is waiting for service (waiting = 0).

- Statistics are required for queués waiting and idle.

| Fig. 8 gives the resu1t1ng report. A total of 66 customers have
beci served; but none has ba]ked. Server is idle most of the time, as seen
from the statistics. Activity ARRIVE has started'137lfimes, but some of

fhese are before 8 a.m. and haVe not created customers because of that reason.

A
| o -
customer
> fbalkj
service sefver (dle } ~\
customer o SERVER
lunch comeback

Flg . 6 Bank Cycle liagram .

ngle 2578 , : : : | 49

ssg customer with decision:waiting ‘
serveriidle, atlunch A

Var ‘return,timeleft,random,balked,Serv@d,eaten

si
«l

_end
v » t
arrive every <po{(8): - ¢
if clack » 480 then :
If clock < 1020 then new customer waiting
- endif
endif;

lunch server idle,clock =720,saten=07
sarver atlunch, retuwrn=clock+30;

comegback server atlunch?
after &40:
server 1dle,eaten=1;
+
balking customer waiting with decizion = 0,atlunch=17,
Limeleft=retwn-clock, ' ' '
rancdam=uni {1, 100),
it timeleft < 10 .
thzi i random <=75 then discard customer,balkedt]
‘ else customer wailbing with deciszion=1
- endif 5
plee if timeleft » 20 , '
then 1f random <=560 then discard custoner,balked+!
else customer waiting with decision=i

endi f ! . |
else it random <=350 then discard customer,balked+l

: v glse custaomor waiting with decision=1 :

endif N - ' ;

endif .
endif;

service clack »540,server idle,custoner waiting?
after uni(5,10):discard custoner,server ldle,served+l;

\ :
endact clock »1020,waiting=07

stop)
collect delay waiting,idle; oo - ;
length waiting,idle = . |
display. - : ‘ ;
data 1 idle. . . . ' s _

R I R L) :-.1\.‘,(‘bvb'~.“N" RSAYION T g WA,

S Fig. 7’ ACSIM program describirg bank

{

CoroeGimulation started at time O.00.. ‘ : S S g

Lo Simul ation ended atitime EgT i e

:’fﬁ""fF INAL STATE

oo Entities in queues

e e et st Stk it it s e ot b

7yhémptyi
coemply
empty

*ffDWaifihQ7“jﬂ¥ffv5f
1dle . t o
Ciratluneh i

TR

©. . . Blobal variables
©oobalked {0
_VCIDCR\H) e
Y&}?atén{;J A
. random . .
Coivreturnoo b
coooserved o
U timeleft

"_: 0
= 1163
T

sy

“Number of activationg

Carrive
“lunch
Ly comehack
. . balking .

R R S 0 A0 T T | DU
i »
:

Lo iEre
R

i not activated

e Y '

S

;

; :H§itihg‘time5

ot

MEANZ . ST.DEV. MAX MIN

20,4 141 87
vw¥ i72:4 ‘ - 57657

.-

| ‘*‘ﬁSTATIsTICAL ANALYSIS-

simulation

[ueue lengths4:
MEAN 8

&.
0.9

51

IV, CONCLUSION

ACSIM arises as one of the tools to analyze complex systems,
discrete and possibly probab111st1c in nature.. The present form of the
language contains most of the features of prev1ous]y implemented computer
simulation lanquages. The ed1t1ng and d1sp1ay fac111t1es_1ncreases the
user's parficipatioh, thus fokming‘the Concebt(ofv"interactiVe simulation®,
| It is also an indication of the fact that simuléfion_can be dqne equally
successfully in microcomputers and main-frames. The advantage of the
microcomputer is apparent in the fact that there is no‘time-sharing,

which is a hindrance when long simulation runs are considered in main-

frames.

b I

T EPRL IV

‘The next stage in the deve]opmee% of the]anguage system is to
form an "intelligent"editor, name]y one wh1ch makes a 11m1ted syntaxn
checking at the time of entry. A further improvement may be an inter-
active program generator which woqu be even more &ser-frjend]y.

| The concept of ”interveﬁt{on"_wi11>a1so be extended, in that.
the user might change the system state or the program itself at any mo-
ment he wishes. External stimuli might be given in this way.

The final extension will be the implementation of the results

of "Sample Path Analysis", to prov1de for the first t1me a simulation

language with in-built sensitivity ca]cu]at1on p0551b111ty Details of

Sample Path Analysis might be found in [4].

52

APPENDIX A

RESERVED WORDS OF ACSIM

(In alphabetical order)

AFTER
AT
CLASS

COLLECT

DELAY-

DISCARD

DISPLAY
ELSE
END
ENDIF
EVERY
IF

LENGTH
NEW
NOR
OF
PRINT

STOP

THEN
UNI
VAR .
WITH
XPO

APPENDIX B

53

Syntax of ACSIM

Declarations ‘END

declarations

| Stat in-{o

AN

Condiﬂon

Expr "@\

Aect

fon

54

L]

condition

A

1 Expr

atr

Expr

Boolean

55

Aion \ %
\ {

Action |

\—h@—{ Boolean ‘ Expr

\ f;as _ \ i

56

e*f;//,@\ .
— —» Term

Y

| jihﬂh

term

FA&(OI

| Factor

r_e(l

A Cetter) >
Aum k /d,igc'{\ -
' boolean

o Expr rel Expr

Y-

bo

(o
U<
n
()
que
()
N\

‘E%Pr

5y

. 60

cls

Spec

(1)
(2)
(3)

(4) .

(5
(5)
(7).
(8)
(9)
(10)
(11)
(12
(13) .
(14)
(15)
(1&)

7R

(18)
(19)
(20)
(21)
(22)
(23
(24)
(25)

(28)

27,

)
(29).

(30)

(1)
(Z2)

(ET)

o (34)

39)
(3&6)
S A3T)

(38)

(39) "

€40)

Tot41)

(42)

(43).;

a4)

(45)

(44)

(57)

48

(49

(50)
(51)
(52)
(53)
(54)
{59)

(58)

Number too large (At most 5 d191t=

‘Etdtemant number mqu be 11 least 17

APEEIDIX €

61
ACSIM 2.0 ERROR HESbAutC

Undefined symbol in input file
Program name enpocted :
"END? =“pacth
?COLLECT®,? DISFLAY? o {ullstnp ex pec.ed
Fullstop e\pELthd o .
JCLASS? or VAR® expected >r}_';”
Variable name. expected ‘
NamB—ue11ned more than once
Class name expected
Attribute name expected
Colon expected '
flueue nwjg e pectpd
Art1v1Lv name expected
Name used more than ance
Question mark expected
zlation expected -
Llass and _queue are not cnmpntxble
Left parpn(hecxs e"pectcd -
At most 4 variables are: allowed in & FRINT statement
Right parenthesis expected o -
Attribute not of this class
Equal 51gn E’pECth : .
Class or varlable name @ xpected
7 THEN? E‘pected _ ' ‘
TELSE? or ENDIF?;;/PELde

PENDIF? e“pacted

Class,variable,queue or atiribute name ewpected

End of file reached in input file ' :

Data name expected- ,

Number of entities of denoted class must be at least |
Class or gueug name ex pecth

Number. ex pmcted

A number a »ar1ahle name ‘ar AT’ expected
Havement ‘of entity not in conditions
CDnd1t1on not: EdLlS:IEd by actians -
Invalid {actor in. elprequunm
Variable,gueue or atti ibute name e pected
TOF? e,pocted o ‘ -
Comma expected © 0 7 o0 ; "
Ferturbation can nat be zero
Nopewietirasclage name; 1n'1n;tia1»5tate
Noneuistiﬁg queue name in initial state
Nonexisting variable name in initial state
Nonexlctlng activity name in lnitinI state
Tunekisting attribute pame in initial state
Too hig number for statements in initial state
Qandom =eed e pectpd»»mv<.“
TBY CanLtEd :
Clock can not ‘he updated by the user
Prngram muet have ab least 1 activity
Illegal: symbol in-activity initialization
InapproprxatL starting statement in initial state
*DELAY? or LENGTH® esxpected
Blanl act1nnb not 41lode

62

REFERENCES

Crookes, J.G., "Simulation in 1981", European Journal of Oberations
Research, 9 (1982), pp. 1-7.

Eyler. M.A. "ACSIM : A Simulation Program Based on Activity Cycles", '
Research Report Bogaz1c1 University, 1982. '

Teichroew, D. and Lubin, J.F., "Computer Simulation - Discussions
of the Technique and Comparison of Languages", Communications of the
ACM, Vol. 9, No. 10, pp. 723-741, October 1966.

Ho, ¥.C., Eyler, M.A. and Chien, T.T., "A New Approach to Determine
Parameter Sensitivities of Transfer L1nes", Management Science,
Vo] 29, No. 6, pp 700-714, June 1983.

	Tez5821001
	Tez5821002
	Tez5821003
	Tez5821004
	Tez5821005
	Tez5821006
	Tez5821007
	Tez5821008
	Tez5821009
	Tez5821010
	Tez5821011
	Tez5821012
	Tez5821013
	Tez5821014
	Tez5821015
	Tez5821016
	Tez5821017
	Tez5821018
	Tez5821019
	Tez5821020
	Tez5821021
	Tez5821022
	Tez5821023
	Tez5821024
	Tez5821025
	Tez5821026
	Tez5821027
	Tez5821028
	Tez5821029
	Tez5821030
	Tez5821031
	Tez5821032
	Tez5821033
	Tez5821034
	Tez5821035
	Tez5821036
	Tez5821037
	Tez5821038
	Tez5821039
	Tez5821040
	Tez5821041
	Tez5821042
	Tez5821043
	Tez5821044
	Tez5821045
	Tez5821046
	Tez5821047
	Tez5821048
	Tez5821049
	Tez5821050
	Tez5821051
	Tez5821052
	Tez5821053
	Tez5821054
	Tez5821055
	Tez5821056
	Tez5821057
	Tez5821058
	Tez5821059
	Tez5821060
	Tez5821061
	Tez5821062
	Tez5821063
	Tez5821064
	Tez5821065
	Tez5821066
	Tez5821067
	Tez5821068
	Tez5821069

