
ACSIM 2 A'SIMULATION SYSTEM

by

o. Levent Mollamustafaoglu

B.S. in I.E., Bogazici U~iversity, 1982

B.S.in Math~, Bqg~zici University, 1984

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

in

Industrial Engineering

Bogazici University Library

111111111111111111111111111111111111111 ~
39001100315392

Bogazici University

1984

· ACSIM 2: A SIMULATION SYSTEM

APPROVED BY

Y.Do~. Dr; M. Akif EYLER
(Thesis Supervisor)

Y.Do~. Dr. Ali Riza KAY LAN

Y.Do~. Dr. Selahattin KURU

DAlE OF APPROVAL

i i

ACKNOWLEDGEMENTS

I would like to thank numerous friends and coll~agues who have con

tributed to the development of the ACSIM si~ulation system and this thesis,

including Mrs. Yasemin Birgil, Mr. istemihan Orgeevren and Mr. Mehmet

ErentHz, who were on the original design team and carried out the initial

design phase; Mr. GUven MercankH$k,'Mr. Orner Ayzan, Mr. Turgay Ayta~ and

Mr. Hakan Sarao~lu, who helped me in overcoming problems special to Apple

microcomputers; and Miss Belgin Turgut who drew most of the figures.

Special thanks are due to my thesis advisor, Dr. Akif Eyler, who,

besides determining the initial structure and principles of ACSIM, spent

an effort at least equal to mine throughout the year, and bore with me

patiently, guiding me with his timely suggestions.

iii

ABSTRACT

In this thesis, ACSIM 2, the much-improved new version of the simu

lation language ACSIM, is being reported. ACSIM 2 ha~ some characteristics

which can not be shown in classical ~ctivity cycle diagrams, but which are

indispensable for simulation studies. Creating and discarding entities,

choosing different paths depending on various conditions, collecting con

secutive activities within a single activity, are some of these features.

Program and data has been separated and it has been made possible

to sav~ the final state of the system, thus continuing the simulation

from the same state. It is also possible to give any initial state to the

program, thus the pass i bi 1 ity of different scenari os.

One other novelty is a display facility which renders it poss-ible·

to follow the simulation on the screen and interfere with it if necessary.

iv

KISA DZET

Bu tezde, faaliyet ~izgelerini temel alan bir benzetim sistemi

olan ACSIM'in onemli ol~Ude geli$tirilerek yeniden yazllan $ekli tanltll

maktadlr. ACSIM 2, faaliyet ~izgelerinde gosterilemeyen, ancak benzetim

~all$malarlnda vazge~ilemeyecek bazl ozelliklere sahiptir. Nesnelerin

ortaya ~lklSl ve yok olmalarl, faaliyetlerde karma$lk kO$ullara gore bir

ka~ yoldan birinin secilmesi, biri digerinin devaml olan faaliyetlerin

tek bir faaliyet bUnyesi altlnda toplanmalarl, bu ozelliklerin en onemli

leridir, Program/veri ayrlml kesin ~izgilerle yapllarak, bir ACSIM 2

programlnln benzer bir~ok veri Uzerinde callsmasl saglanmlstlr. Dizgenin

son durumunun diskte saklanarak daha sonra ilk durum yerine kullanllmasl

ve boylece benzetime kallnan yerden devam edilmesi de olanakll klllnml$tlr.

Prbgrama bir gosterim olanagl da eklenerek benzetimin ekranda izlenmesi

saglanmlstlr.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

ABSTRACT

DZET ••

LIST OF FIGURES AND TABLES

I.

II.

I NTRODUCTI ON

STRUCTURE OF THE LANGUAGE

2.1 SYNTAX

2.2 SEMANTICS

2.3 DATA STRUCTURE

2.4 ALGORITHM

2.5 COMPARISON WITH EXISTING LANGUAGES

I I I. EXAMPLES ;

IV.

3.1 A MACHINE-SHOP SYSTEM

3.2 A BANKING SYSTEM

CONCLUSION ~ .

APPENDIX A - RESERVED WORDS OF ACSIM

APPENDIX B - SYNTAX DIAGRAMS

APPENDIX C - ACSIM ERROR MESSAGES

REFERENCES

. , ...

Page

i;

; i;

iv

v~

6

6

15

2.3

26

28

~O

40

46

51

52

53

61

v

LIST OF FIGURES AND TABLES

FIGURES

FIGURE r Sample Activity Diagram

FIGURE 2 Simplified Data Structure of ACSIM

FIGURE 3 Machine-Shop Cycle Diagram

FICURE 4 ACSIM Program Describing the Machine-Shop

FIGURE 5 Results of the Simulation of the Machine-Shop

FIGURE 6 Bank Cycle Diagram

FIGURE 7 ACSIM Program Describing Bank

FIGURE 8 Results of the Simulation of Bank

TABLES

TABLE Structure of Memory A~signments - Data Structures

TABLE 2 Changing the State of the Simulated World

• TABLE 3 Commands to Facilitate Subprogram Execution

TABLE 4 Programming Features-

TABLE 5 Mechanics of Use

v

I, INTRODUCTION

Discrete-time simulation systems and languages have been founded

on one of the three viewpoints in modelling

(a) Event-oriented view

(b) Activity-oriented view

(c) Process-oriented view

All of these three approaches have their virtues and vices. In

this study, an activity-oriented approach is chosen. This is mainly be

cause Activity Cycle diagrams, which are thought to reflect the structure

of complex systems better than anything else, are a means of better

modelling and easy restructuring. Since, in activity-oriented special

purpose simulation languages, changes in the model are done through

changes in only some of the activi-6e's',:upd-atin'g"model's''''are considerably

easier.[l]

A sample activity cycle diagram can be seen in Fig. 1.

There is only one activity, that is SERVE, in the cycle. Along

with the two entities of the system, namely MACHINE and PART, it forms

a closed activity cycle. While not involved in the activity SERVE, the

two entities are in their passive states, denoted by a "queue". MACHINE

has only one passive state, IDLE, and PART has only one_ passive state,

LOADED. The condition that the activity SERVE can be initiated is that

2

MACHINE SERVE PART

,

Fi g. 1 S'ample Activity l>i.grtiuu

3

there is at let::.st one MACHINE in queue IDLE and one PART in queue LOADED.

Once the two entities are involved in the activity SERVE, they can not

be involved in any other activity during SERVE. After SERVE ends, MACHINE
. .

and PART go to their respective passive states, namely queues and wait

for activation.

ACSIM 2 has been formed on ACSIM [2] , which is an activity

oriented special-purpose simulation language, after various modifications

and improvements. In doing this, various points have been considered

(A) The activity-oriented nature of the language must not be

changed.

III addition to the reasons revealed above, it can also be noted

that activity-oriented simulation languages are closer to Structured

Programming concepts and implementations.

(B) The language must be simple, but also powerful enough'to

model complex systems.

The previous version ~f AC~IM was limited, in that it only

allowed closed-cycle systems to be modelled. This of course made the
~

language simple and easy-to-model with. In order to be able to model

complex systems with the new version, some additional features have been

supplied •. Some of these are complex expressions, creation and discarding

of entities, variable conditions, conditional actions, etc.

(C) The language must be implemented on a microcomputer.

This is a feature parallel to the demand on microcomputers in

recent years. To accomplish this result under limited resources such as

memory and speed, advanced methods of Computer Science have been used.

v The language has been implemented on an Apple lie (64 KByte) and an

Apple III microcomputer and results have been satisfactory in terms of

speed and model complexity.

4

(0) The compilation and execution of the language must be short,

in terms of computer time.

It is a well-known fact that simulation runs take a lot of time

and systems are analyzed for a large amount of system time .. This is the

r'=ason for speed being a critic·al factor· ihthe:effiiierYcy of a computer

language. Since there is no time-sharing in microcomputers, this goal

has been satisfactorily reached. In fact, the simulation becomes too

quick for eye-inspection when the "display" option is used.

(E) The language must be flexible.

This provides an easy update facility for models. Using an ac

tivity oriented approach has helped in this aspect and updates are being

made on an activity-basis, not changing the unrelated proportions of the

model.

(F) The language must be structured.

The reason for this goal is that structured languages such as

Pascal or PL 1 have been commonly used in recent years and their superi

ority to traditional languages has been ascertained by studies in Computer

Science. Structurality has made the writing of the compiler-simulator

itself very easy. Another result is that the burden of modelling on the

user, and the burden of compilation on the compiler has been made lighter.

Syntax errors are easily detected during compilation.

(G) The language must be interactive.

The meaning of lIinteractive" in this context is. that the user

can interfere with the simylation, can stop it, can change the system

-.

5

state and- restart the simulation. To accomplish this a IIdisplayll facili

ty has been added to the language, though it -is optional.

Most of these goals have been achieved though there are others

which are still to be realized. In the conclusion, some of these ad

ditional goals and ways to reach them are reported.

II. STRUCTURE OF THE LANGUAGE

2.1 SYNTAX

ACSIM has been formed with regard to the general structure of

the programming language PASCAL. This characteristic shows itself not

only in the IIdeclarations li section, but also in statement separators.

6

The main building blocks of ACSIM are "activities " and, as a

subgroup of these, "statements ll
• The starting position of a statement

in an ACSIM line is irrelevant, just like Pascal. Indentation is recom

mended, but is not compulsory.

The symbols used are_reser~edwords, identifiers, arithmetical

symbols, relational symbols, separators and numbers. Reserved words of

ACSIM are given in Appendix A. Words are separated from each other by

spaces, but there is no need for a separator between words and other

symbols. Upper or lower case letters can be used in words, since the com

piler converts everything to lower case letters. All reserved words will

be shown in upper case letters within the context of this report.

There is a limited freedom in the usage of separators, but they

must general1y follow the system syntax.

The general structure of an ACSIM program can be summarized as

" fallows

Descriptions (Declarations)

Activities

- Conditions

- Time increment

- Actions

Statistics and reports

Parallel to this structure, the general syntax of ACSIM, along

with the syntax ,of the program's individual components is given in

Appendix B.

(A) Declarations

7

Among the things to be defined or declared in this section, there

are the following :

Name of the system, random seed, classes of entities, attributes

of entities if they exist, queues these entities might be in, global

variables.

The definition of the simple system in Fig. 1 can be done in

ACSIM as follows:

DEFINITION

Program name

Random seed

Classes and queues

Variables

ACSIM STATEMENTS

machineshop

3567

CLASS part: loaded;

machine: idle

VAR completed END

We must note that an entity might be allowed to enter various

queues, whereas a queue may contain only entities of a certain class. The

CLASS or VAR declaration may be missing, but not both of them at once.

8

(B) Ac t i v it i e s

The activity is the maio'building block of a ACSIM program, so

updates must be thought on ao activity basis. If the conditions of an

activity are satisfied, then the related entities are taken out of their

respective queues and activated. After a certain time, which is given in

the time increment statement(s), the entities are deactivated and they

go to their queues, though it may be the case that they go to a different

queue, any other required actions are done and activity scanning continues.

(a) Conditions

In addition to conditions checking whether there are entities

in a specified queue, optionally with a certain attribute value; complex

conditions are also allowed. Since the definition of an lIexpressionll is

highly'complex and expressions can be used in conditions, this supplies

a degree of complexity to the conditions themselves, thus rendering it

possible to build complicated models.

There are basically two kinds of conditions which are denoted

as IIqueue conditions ll and II var iable conditions ll . Queue conditions check

whether there is at least one entity in a given queue, optionally with

an attribute value satisfying a condition. Namely, in addition to an

,equality check on an attribute, there is the possibility of checking

whether the value of the attribute is in a certain relation (such as

II grea ter than ll or IIl ess than or equal toll) with a given expression. Vari

able conditions may be thought to be IIboolean variables ll since they con

sist of two eApressions linked by a relation. If that relation exists

between the two expressions, then the condition is satisfied.

The quantities that could be used in a expression are

- Numbers

- Queue contents (Called by the queue name)

- Variable values (Called by the variable name)

- Random functions (Called by the function name)

- Attribute values (Called by attribute and class name)

- Other expressions

An example for each type of expression

30/56

2xwaiting+3

x-y+l

2x UNI(10,20)

weight OF part+3

(llwaiting" is a queue name)

(llweight" is the attribute
of cl as-s "part II)

UNI(x+y,x+2xy)

2x(x+y+z-weight OF part)

(b) Time increment

Time increment can contain.any expression. Thus it may be

- Constant AFTER 5:

- Variable AFTER time OF part + 3:

- Random AFTER XPO(20):

In case the value is zero, the AFTER statement can be skipped.

(c) Actions

Actions are done at the end of the time increm~nt, if the con-

" ditions of the activity are satisfied. Again, the only action allowed

in the previous version was to put an entity to one of its queues. This

9

10

was enough, considering the fact that only closed activity cycles were

modelled. With the addition of options such as open activity cycles,

global variables, creation and destruction of entities, etc., new forms.

of actions have been added to the language. These can be summarized

as follows

- Creation of an entity

Entity entering a queue

- Variable action

- Conditional action

- Printing

- Destruction of an entity

- End of simulation

NEW part loaded

machine idle

y + 7

IF weight OF part> 150

THEN part out

ELSE part loaded

ENDIF

PRINT (x,y,z)

DtSCARD part

STOP

.An entity is created ~nd put in a given queue, denoted in the

NEW statement. If wanted, its attribute can be initialized to a value
I

different from zero by the WITH clause. The initial value is given by

an expression.

An existing entity is deactivated and enters a queue, by means

of stating its name and the name of the queue involved. No change occurs

in the attribute value.

The value of a variable is modified in a variable action state

. ment. We may add or subtract the value of an expression from the value

of the variable, or we may equate the variable to an expression. Although

there are no syntactical limitations in this operation. , as far as a

,,,
,

correct expression is given, some'semantical' limitat,bns might exist. Se-

mantical matters will be discussed in Section 3.

The conditional action is an IF statement. If the condition of

the action(s), which is given in the form of two expressions linked by a

relation, is satisfied then the actions following'the THEN clause, until

an ELSE or ENDIF is encountered, are done. If the condition is not

. satisfied, and there is an ELSE clause, then the actions following the

ELSE clause, until ENDIF is encountered, are done. ELSE is optional.

Infinite nesting in IF statements is possible, though ENDIF must be sup

plied for each IF. ENDIF has been used to avoid use of BEGIN and END as

in Pascal or PL1. An AFTER clause might be added after the THEN or ELSE

clauses, so that the conditional action may be started with a time lag.

The values of variables can be printed at any time during the

simulation. To do this a PRINT clause, with the names of the wanted

variables as parameters, is used. When this action is done, the name of
;

the variable, and its value' after an equals sign, is printed on the out-

put file (or the screen).

In contrary to the creation, entities can also be destroyed,

namely they can be thrown out of the system, by a DISCARD clause. The

class name of the entity to be discarded is given in this statement.

The end-of-simulation mark, or the STOP clause, can be put to

anywhere in the program (provided that it is among the actions of a par

ticular activity). So, complex stopping conditions can be utilised in

this way. More simply, an activity consisting only of the stopping con

ditions and as the only action, STOP, can be put at the. end of the

-activities.

Further details on actions can be got by anaiyzing the syntax

diagram for them.

12

(C) Statistics and reports

At the end of simulation, some standard information is given as

a report. This includes the final state of the system and the number of

activation of each activity. The final state is given in terms of the

queue contents, variable values and events waiting to "happen". Besides

this information, the user might want to get some statistical measures

such as waiting times and queue lengths, as an option. These figures

can be calculated by the program if a COLLECT clause is used. This clause

collects statistics about given queues and prints them at the end. The

statistical measures calculated for waiting times and queue lengths are

mean, standard deviation, maximum and minimum values. Waiting times are
!i

demanded by the DELAY clause, whereas queue lengths are demanded by the

LENGTH clause. More than one of these clauses can be used, but it is

also possible to give all queue names that are required in one clause.

(D) Activities with no conditions

There may be some activities which need no condition to be acti

vated, which either start at definite time pOints or start at random time

points. An exa~ple would be the arrival of trains to a station, assuming

they always come on time. Another would be an arrival process. with a

random arrival function, which would need no conditions to start.

To implement this characteristic to the language, the EVERY

clause has been used. An activity beginning with EVERY happens after a

defined amount of times passes. This amount is calculated fr'om the ex

pression following the EVERY clause. For example,

arrival EVERY XPO(5):

NEW customer waiting;

-.

"l ",

13

defines a Poisson arrival process with the interarrival times exponentially

distributed with mean 5.

arrival EVERY 30:

,NEW train ready;

defines deterministic arrivals.

The second component of a model built in ACSIM is the "data".

The separation between program and data has been accomplished in ACSIM,

and this has brought the concept of static and dynamic elements of the

model. The program represents the static element, since, once written,

the program describes a particular real-life or hypothetical system, and

unless changed by a change in the program, this representation is the same

throughout subsequent simulation runs. What changes is the "system

state". As the simulation proceeds, the system state changes with the

actions done, or it may stay the same if no significant action is done

or the executed actions have no real effect on the system, besides in-

creasing the number of times the particular activity is activated. By

separating program and data, we are able to simulate the same system
•

with different initial states, or. different sets of data. No ~hange is

required on the program in such a case.

The general structure of a set of ACSIM data can be summarized

as fo 11 o\'!~ :

Data name (State name)

Variable values

Queue contents

Wa iti ng events

Variables can be initialized by givingth~ name, putting an

equals sign and writing the value. Note that only numbers are allowed

· (

14

h~~e, inst~ad of expressions such as in the variable actions syntax. This

is because, first, the data signifies a snapshot of the system at a par

ticular moment, and thus all values are known and need not be calculated

from an expression, and second, data exists independent of the program

and thus the expression can not relate to any of the components of the

program itself, as it would frequently be needed in a complex expression.

Queue contents are given by a number and the name of the queue.

Class name can also be included before queue name, to increase readabili

ty. At the beginning of the simulation, or the lIinitialization ll phase,

the denoted number of entities will be created and put to the denoted

queue. To initialize the attributes of these queues, attribute values

may alsu be supplied. If not given, all attributes are considered to be

zero.

Waiting events are defined by giving the event time, name of

the activity creating this event, the sequence number of the action to

be done when this event occurs, entities involved in-this event and their

attributes ,f different from zero. An event is created at initialization

ana it occurs when its time comes.~

If a variable is not initialized, ·its value is taken to be zero,

similarly, if a queue content is not initialized, it is assumed to con

tain no entities.

The data can be defined by the user, or'it may be obtained at

the end of a simulation run by taking a snapshot of the system. When

the user gives the data, it is generally to give an initial state to the

system. When automatically generated system state is recorded onto disk

and used later, it is generally to record th~ system state at a particular

moment and to continue with the simulation with the same state, some time

later.

2.2 SEMANTICS

There are lots of semantical checks in ACSIM, to facilitate the

usage of the language \Alith IIcol'rect ll models, correct meaning containing

no logical errors. Some of these errors are detected during compilation

and some during the actual simulation. Currently error-correcting

schemes are not used and the simulation or the compilation is stopped in

case of an error, syntactic or semantic.

Actually, there is little or no need for error-correction, since

the system will be used interactively and any detected error will be

corrected by the user himself with the help of an intelligent editor

program. So, the compiler becomes simpler to implement and quick edit

compile sequences are made possible.

The controls for semantical ch~cking can be grouped into,three,

depending on the phase in which the control is done.

- Parsing (tompilatio~) phase

- Initialization phase

- Simulation phase
i -

Controls done in the parsing phase are usually complementary to

syntactical checking. An errdr number is given for a detected error and

the compilation ~s stopped.

~hen initialization information, or initial state denoted as

"data ll is read, only syntactical check is done, since the program is not

known at the particular moment and semantical errors can be detected only

after both the program and the data are parsed. Similarly, an error

number is given and the parsing process is stopped.

Errors occurring during simulation are related to the model it

self, and more complex in nature, in regard to the fact that they have

16

not been detected during syntactical and semantical checking. They might

be named "execution errors" or semantical errors, since there are errors

of both kinds that can be listed under the group name.

(A) Parsing errors

. Only some of there errors will be reported here, choosing the

most important.

- Numuer too large.

When the syntax diagram calls for a number, there is a limitation

on the length or magnitude of the largest number that can be accepted.

Currently this value is 32767, because of the limitation of Apple Pascal,

the environment in which the language is implemented. Only integers are

accepted as numbers. Since real numbers use up too much storage space,

they are not used in ACSIM. Another reason is that there is always a

"truncation error ll factor in real operations, which could add up to sig

nific3nt figures .. Furthermore, real numbers can be represented by large

integers by 'throwing .out decimal places and calculations can be adjusted

actord i n'J 1 y .

- Undefined name.

Any identifier read by the parser is checked for its kind,

namely it must have been declared in the declarations section, and its

kind must be the one that is required at the particular statement within

the program. Duplicate names are not allowed but this is got rid of by

the syntactical check.

- Incompatible class-queue or attribute-class.

Although passing from syntactical checks and the semantical checks

above, the class and queue or the attribute and cla~s may not comply with

the original definition.

17

- Program will not stop~

Since the only way the simulation stops is a STOP clause passing

in any activity, this is a matter to be checked. If there is no STOP

statement in the program, an error message is given and the simulation

can not start. Even if this check is made, there is still a possibility

of an infinite loop, if the STOP clause is in a conditional action, or

an improbable or highly improbable condition is given. Since it can not

be known at compilation time whether the condition will ever be satis

fied during the simulation, the compiler can not give an error in case

of a conditional STOP. It is left to the user to put a terminating

condition. One error that could frequently be encountered is a condition

involving the system clock. A condition like

CLOCK = 1000

may not be satisfied at all, since time is not incremented in unit incre

ments. In such cases, something li~e

CLOCK > 1000

must be used.

- Nonmatching condition-action.

In order not to lose any entity during the simulation, each

entity used in the conditions must also be used in the actions. When an

entity is used in a condition, namely the queue in which the entity is

currently present is used, the entity is activated to be used in the

activity. After the activity ends, it must be put in one of its passive

states, namely queues. If this is not done by the user, then there will

" be a dangl ing entity not belonging to any queue and this entity will not

be activated by any other activation request. The following activity

will be marked as erroneous, by the compiler:

serve part loaded, machine idle?

AFTER XPO(20) :

part loaded;

18

Here, II mac hine ll is not used in any action, thus causing an error.

Similarly, any entity used in actions must have passed in the

conditions. If this is nqt done, then a nonexisting entity will be

attempted to be used in an action. In the same example; the following

would be an erroneous usage:

serve part loaded?

AFTER XPO(20) :

part loaded, machine idle;

Here, II mac hine li has not been activated by a satisfied condition,

so it can not be used in an action. ;

- Undefined attribute usage.

In dny action, if any att~ibute value is used in an expression,

the ent'ity with that attribute value must be active, namely it musl not

have entered in one of its passive states. Similarly in the conditions,

an attribute name can not be used before its corresponding class name

is used. In the examples above, if weight of the part is used as an

attribute, then the following program pieces will be erroneous

serve part loaded, machine idle?

AFTER XPO(20):

p~rt loaded,sum+weight OF part>machine idle;

/

-.

1 9

serve capacity> weight OF part,part loaded,machine idle?

AFTER XPO(20):

part loaded,machine idle;

In the first example'ithe weights of the parts are accumulated

in a global variable, "sum". But, after the action "part loaded" is

done, there will be no part active, to the expression "weight OF part"

can not be calculated. Once the entity enters a queue, it is lost, or

opaque to the eyes of an observer looking from the dynamical level, or

the simulation itself. The correct version of the activity must be as

foll ows :

serve part loaded,machine idle?

AFTER XPO(20): "

sum+weight OF part,part loaded,machine idle;

In the second example, the entity to be used in the actions

must have been chosen before "we ighF OF part" can be calculated. That

is only possible after the nanie of the entity is used. The correct

version of the activity must be as follows

serve part loaded,capacity > weight OF part,machine idle?
")

AFTER XPO(20):

part loaded,machine idle;

or

serve part loa"ded WITH weight < capacity,machine idle?

AFTER XPO(20):

part loaded,machine idle;

- Illegal time increment.

System time is shown by the predefined system variable CLOCK.

The value of CLOCK can be reached by the user and can be used in any

I '

20

expression, but he is not allowed to change it, since it is automatically

changed by the program when the need arises. So, in variable action

statements, the value of CLOCK can not appear-on the ,left-hand side.

(B) Initialization errors

Number too large, undefined name, imcompatible class-queue

errors are detected in initialization also. Additionally, in waiting

events, an illegal statement number may exist.

(C) Execution errors

- Illegal time increment.

Since itis possible to use expressions in time increment state

ments, it is also possible to get a negative time increment value. This

fact can not be detected during compilation, since it is not known before

hand what value the expression will take at the particular moment. During

execution, if a negative value comes from such an expression, an error

message is printed and the simulation is stopped.

- Illegal parameter.

While random functions are,being evaluated, there are some

factors t~ be considered. First of all, the number of parameters for

"each type of function must be correct. This is controlled by the compiler.

Another factor is that the value of these parameters must be logical.'

This can not be known in advance, since parameters are expressions,

themselves.

evaluated.

Control is done during execution, after the expression is

The controls to be made are as follows: '

Uniform distribution :

UNI(exp1,exp2)

The value of expl must be less than the value of exp2.

Exponential distribution:

XPO(exp1)

The value of exp1 must be greater than zero.

Normal distribution :

NOR(exp1,exp2)

21

The value of exp2, namely the variance value.· must not be nega

tive. (It is also meaningless to choose it zero, since it would then be

a constant distribution.)

- Nonmatching condition-action.

Some of these errors can be detected by the compiler and compi

lation can stop, but some can not be detected at compilation time and are

left to the execution. For example. if an entity class is used twice in

actions but only once in conditions, the compiler can not detect this

error. Wllile execution proceeds, tl)ere will be no entity to participate

in the second action and an error will occur. Similarly, if an entity

cl~ss is used twice in conditions and only once in actions, then one of

the entities will not be used in any action and an error will occur. An

. example for each case is given below

Excess action :

act part loaded,machine idle?

AFTER 20:

part loaded,machineidle,machine broken;

Excess condition :

act part loaded, machine idle,machine broken?

AFTER 20:

part loaded,machine idle;

It must also be noted that the seguence of the conditions need

not match that of the actions. As long as the number of conditions and

actions match, there is no problem. The following usage is legal :

serve part loaded,machine idle?

AFTER 5:

machine idle,part loaded;

These limitations are not valid if an EVERY clause exists in-

22

stead of conditions, or actions consist of a STOP statement.

ing usages will be valid:

The foll ow-

valid EVERY XPO(20):

NEW part loaded;

valid part loaded,x=35?

STOP;

There are also special cases for NEW and DISCARD statements. NEW

can be used for a class not passing in the conditions, since it does not

need any activated entities and will create one of its own. When DISCARD

is used, condition-action matching .is assumed to hold. The following

activities are legal in terms of syntax and semantics :

legal part loaded,x=35?

part out,NEW finishedgood inqueue,x=O;

legal part loaded,x=55?

DISCARD part,x=O;

The first activity empha~izes the fact that identifiers are not

, limited in length, such as finishedgood.

23

2.3 DATA SlRUCTURE

In order to have the possibility of fitting the compiler-simu

lator to the limited memory space of a microcomputer, data structure

has been formed after a thorough study and a teamwork. Pascal·s strength

in complex data structures has been the pushing factor and-the structure

has been polished to a very efficient degree.

The most important advantage of using Pascal is the ability to
,

use totally dynamic memory. That is to say, memory allocation is not

done till execution time. This property lifts many barriers in terms of

memory usage. There is no a priori lilnitation on the number of entities

or eVeiat~ Lhat could be simultaneously present in the system. (Only en- ;

tities .and events _cause a major problem, because all other elements of

the system are static, namely they do not change form or size aft~r they

are declared once.) To give a rough estimate, the program can hold

about 500 entities in a 64iKByte microcomputer and

about 5400 entities in a 128 KByte microcomputer.

I~ the latter case, what is meant-is an additional 64 KBytes that can

totally be allocated to the program memory. These figures give us really

rough estimates, because the size of the model, lengths of names and

similar things are factors determinin,g the amount of _free memory space.

The concept of IIpointerll is dominant in the data structure ..

Beside names. no string is held in the memory. All other manipulations

are done with pointers. One other aspect of the data structure is that
.

no static arrays are used. Static arrays would put a limit on various

elements of-the system and it would have been impossible to use dynamic

data structures. Everything is in form of IIlinked lists ll and operations

24

on linked lists are also favorable in terms of execution time. A simpli

fied model of the data structure is given in Fig. 2.

Despite all precautions, the program can fill the available

memory during simulation. This is controlled throughout the simulation

and in case of a possibility of a full memory, namely when there is an

available memory less than some predefined number of bytes (currently

1 KByte), the simulation is stopped, a warning message is given and the

user-may take a report reflecting that particular moment in simulation

time. The limiting memory is kept for the reporting program.

While parsing is done, or simulation is displayed on the screen,

names of various elements are needed for printing or comparing. These

names, which constitute the only IIstringll portion of the data, are kept

in a binary tree. All searches are done on this tree and are very,quick,

because of the binary nature of the tree and the speed of pointer

operations.

Another precaution is to use records again and again. With the

new version of ACSIM, entity creation and destruction is allowed. But,

this also means creation and destruction of records corresponding to these

entitit:!::.. Kecord creation in Pascal is done by the NEW statement. - When

.it is used, it creates a new record of the required type, and so it uses

up some.of the available memory. The opposite of this is the DISPOSE

statement. What it does is to clear the memory area corresponding to

that record and make it available for future use. This clearing process

is called "garbage collectionll in compu'ter science, since it involves

shifting of useful data and removal of useless data. However, a real

garbage collection, namely squeezing the memory every time a record is

destroyed, is not feasible, and is not implemented even in main-frames.

l C D..SS

I
,~ss o.tr • (."rs t ,
(\tV"t.. flC.,.,.L qvi.IN

j ,
rx

eis1-
s{rvc.t ... re..

Fig. 2 tiimplified

Dat. Structur~ of
ACSIM

J { ",e.ve.

• 't"~
n~M..e

•

ei~t
s·\:-r.;<..ll.lrl"

ENDIF

.4,'0 ,

r h~Jet
r---~

~ ~
-L

/ e(\~;~ _I , / c~J:tlt:~ II j /' / ., I -- "

1><1
•

•

·
I •

~ I

26

To counteract this and to escape from the complications of memory manipu-

lation, a simpler method has been introduced

When a record is going to be destroyed, it is put into a "free

list", namely in a list of records currently not in use. When a new

record of the same kind is needed, the first thing to do is tq check the

free list. If the free list is not empty, then a record from the free

list is taken, its contents modified properly and it is put to use. If

the free list is empty, then there is no choice but using NEW to use some

more memory. By using this method, the total memory needed by records

of a particular kind is equal to the maximum memory needed simultaneously,"

namely to the memory usage of the maximum number of such records that

could possibly exist simultaneously.

2.4 ALGORITHM

The method used in the program is activity scanning, but the

standard activity scanning algorithm has been slightly modified, to account

for the extended form of the language.

The first modification is an" event-list, which is generally

used in event~oriented simulation languages. This does not change the
\

point-of-view of the general system. It only helps the job of simulation

and makes it quicker. Events are sorted with respect to increasing

occurrance time. To each event, the entities that are required to

realize that event are linked. There is also a pointer showing the

first statement of the ACSIM program that isto be executed at the oc

currence time of the event. All statements starting with- the pointed

one, until the first A~TER statement, are executedwh~n the time for

27

that event comes. Then the val~e of the ~xpression in the AFTER statement

is calculated, added to the current value of the system clock and a new

eVent is created, with its time equaling the value obtained by the

addition. This new event points to the first executable statement after

the above denoted AFTER statement. This goes on until the activity is

totally executed. So, an activity is executed in parts, if there are

more than one AFTER statements in it, the AFTER statements denoting the

differerlt times at which the parts of the activity are to be executed.

Note also that the AFTER statements are cumulative in effect, namely each

adds to the value of the system clock and the values of the previous

AFTER clauses within the same activity.

follows

The general algorithm of the program can be summarized as

Compile;

Read data;

Initialize;

Repeat

Execute the actions of events with time equaling to

the system clock;

For each activity

If conditions are satisfied

then begin .

Take required entities from their queues;

Create a new event;

Link the entities to the event

end;

Advance the system clock to the time of the first event

in the event list:
I

Until simulation ends;

Give statisti~s and state report.

Statistics are collected every time an entity enters or leaves

a queue. For queue length figures, collection is done whenever time is

advanced.

2.5 COMPARISON WITH EXISTING LANGUAGES

28

Althoug~ there are lots of special purpose simulation languages, ,

there are just a few for microcomputers, and these have not been well

established and tested. Because of this, a comparison can be done between

ACSIM and some other language~ implemented on main~frames. Doing this,

we lose the chance of comparing them on the basis of speed and capacity,

since the resources of microcomputers and macrocomputers can not be

easily matched.

In tables. 1 through 5, various aspects of the simulation

languages GPSS II,SIMSCRIPT, GASP and ACSIM are compared. The charac

teristics for thifirst three languages have been taken from similar

tables given in[,3] , and the characteristics of ACSIM have been added

as a fourth column to the tables. Some characteristics irrelevant to

ACSIM have been skipped.

To make the comparison more meaningful, different views in

languages have been chosen. GPSS is a process-oriented language,

SIMSCRIPT and GASP are event-oriented languages and ACSIM is an activity-

oriented· language~

29

TABLE 1 - Structure of Memory As:signments - Data Structures

1. Fundamental
element.s

2. Properties
of objects

3. Group of
objects
being
simulated

GPSS II

IITransaction ll

IIStorage"

"Queue ll

Transaction
Parameter
Priority
Mark time

Storage .
Capacity
Max.contents
Cur.contents
Utilization

-,J.":'".

time integral
Total entries

Facility'
Status
Util ization
integra 1

Total entries

Queue
Max.contents
Cur.contents
Utilization
time integral

Total entries

IITransactions ll

"Storage"
"Facil ities"

SIMSCRIPT

"Individual
entity II

Attribute

... !,. "

, GASP

"Element ll

Attribute

." ',', '; . ~ ..•.. , ,(

IIElement
list"

IIMatrix ll

ACSIM

II Entityll

IIQueue ll

IIVariable ll

IIActivityll

Entity- :
Attribute
Time

Queue
Curr.contents
Max.contents
Min.contents
Total entries

Variable
Value

Activity
Number of
activations

IIClass of

entities ll

IIVariables ll

IIQueues ll

'I

30

TABLE 1 - (Contin\Jed)

GPSS. I I SIMSCRIPT GASP ACSIM

4~ Data about "System II Permanent "System "Global
the en- variables" system variables" variables"
vironment "Savexll variable" IISystem clock"

"Function ll

"Frequency
table"

5. List of IIEvents "Set" "Element "Event list"
names of chain ll list" IIEntity queue"
objects "Assembly IIQueue"

with set"
certa in "Service
properties chain"

II Interrupt
chain ll

6. Can records
be Yes Yes Yes Yes

temporary?

31

TABLE 2 - Changing the State of the Simulated World

GPSS II SIMSCRIPT GASP ACSIM

l. Subprogram Block Event :Event Activity scanning
agent of subroutines subroutines subprogram routine
change causing Event handling

activity routine

2. Who provides GPSS User User ACSIM
subprogram?

3. Time control Main Timing GASP Scanning routine
routine scanning routine executive

routi ne

4. Amount of To next To next To next To the first
time advance scheduled imminent scheduled event fn the

future event event events list

event

i

5. Exit after To appropri- To appropri- To appropri- To procedure !
, I

I

time ate block ate event ate event PERFORM,
I -

advance subroutine subroutine subroutine which performs
current
events

6. What flows Transaction Temporary Temporary Entity

in simula- entity element

ted world?

7. What deter- System status; Tests in Tests in Clock change

mines wn~n change of event event is automatic.

change status forces subroutine subroutine Scan before

occurs? new events.Scan time advance.

before time Other changes

advance. user-defined.

32

TABLE 2 - (Continued)

GPSS II SIMSCRIPT GASP ACSIM

8. Can changes Exogenous Exogenous Exogenous Simulation
be caused events. event tape events can be inter-
externally? IIHelpll'for rupted and

arbi trary state change

modification can occur

~.

33

TABLE 3 - Commands to Facilitate Subprogram Execution

GPSS II SIMSCRIPT GASP ACSIM

l. Create "ORIGINATE" "CREATE" . Temporary "NEW·
temporary "GENERATE" elements cre- Event records
records ated by na- created

ming,stored automatically
in queues,
cease to
exist upon
departure
from the
last queue

2. Remove "TERMINATE" "DESTROY" "DISCARD"
temporary
records

3. Place event "PRIORITY" "CAUSE" "SCHDL" Automatic

on sch;;dule "BUFFER" "CANCEL II "REMOVE"

"ADVANCP Exogenous
"HELP" events

4. Change 1 i st IISEIZP IlFILE" "FILEM" Entity taken

membership "RELEASE" "REMOVE" "FETCHW out of a queue
"INTERRUPP IIREMOVE when activity
IIHOLD II FIRSP is activated,it
IIPREEMPP enters a queue
IILEAVE II when the

"RETURN" activity is
II ENTER II performed
II STORE II

"GATP
"LINK"
IIUNLINK"
IIQUEUE"

GPSS II

5. Sequencing Current
events chain
by delay by
FIFO; future
events chain
by depa rtu re
time by
FIFO;
service by
priority by
FIFO

6. Logical Selection
commands modes:
and Both All
phrases Pick P

FN SIM
Gate con-
ditions:

NU SE SNF
U SNE LS
M NM I SF
LR
Algebraic
compare

TABLE 3 - (Continued)
'.

SIMSCRIPT

FIFO
.LIFO·
Ranked on
attribute
.va 1 ue

IIFOR EACH"
"LOOP"
"FIND MAX"
"FIND MINII
IIREPEJ.\T"

··"OR" "AND"
"WHERE"
IIIF"
IIWITW
IIIF EMPTY"
"GOTO II

: "

-GASP

·FIFO .
r .• "

.LIFO··, ,
High or low
ranking or
attribute
value

FORTRAN

34

ACSIM

FIFO
Event list by
event time

Infinitely'nested
IF ... THEN~ .. EL';t •••
ENDIF statements.
«=»= = < >

Number in queue
Attribute of
entity can be
used in
expressions

, ,

.' . '.~ " .. ~

35

TABLE4i ~. Programming Jeat'ures

GPSS II 'SIMSCRIPT GASP ACSIM

l. Basic unit Block ' Sta,tement FORTRAN . Declaration
of program Event routine statement Activity

-Statement <,.0 , . ,. " .. ~'". ,

1. Programming None FORTRAN FORTRAN None
requ i renen 1:5

3. Flowchart Yes No No ./ Yes (Activity
symbolism cycle diagrams)

4. Recursion: No No No Yes (In ex-
Infinite pressions and
nesting IF statements)

5. Arithmetic IIASSIGWI ilLEr" FORTRAN Arithmetic
commands IIHELp ll IISTORE II operations,

IITABULATE" IICOMPUTE II
l

Assignment
liSA VEX II 1100 TOil statement.

6. Commands to "TABULATE II IIACCUMULATE II IICOLLECT II Req,uested once

cpll ect IIQUEUE II "COMPUTE" "HISTOG II by COLLECT
e

·statistics IISAVEX" Number statement,then

"HOLD II Sum collected

"HELP" Mean automatically.

"STORE" Sumsquares

"SEIZE" Meansquare

"RELEASE" Variance

"ENTER" Standard

"LEAVE" deviation

36

TABLE 4 (Continued)

GPSS II SIMSCRIPT GASP ACSIM

7. Funcfi ons, Any standard Uniform Option-random UNIform
distributions, system Non-uniform . operation or NORmal
random variable continuous random XPOnential
numbers or discrete decision.

probability Erlang
distribution Normal

Poisson
Uniform
Random num-
bers from
probabil ity
list,

Regression
equation

8. Input-output Built-in "SAVE" Subroutines Input from
fixed I/O "ENDFILEII DATAIN and disk, output
SAVES trans- .. IIREADII OUTPUT. to disk or
fers model "READFROM II Summary screen.
to tape. IILOAD II report I/O is not
READS re- HRECORD ENDRUN. part of the
stores model MEMORY" 1 angu~age, but

from tape. IIWRITE OWl is handled

WRITE places IIRESTORE by menus.

transactions STATUS II Program,

on tape. IIADVANCE II repor~ or
JOBTAPE re- "BACKSPACE II final state

covers trans- IIREWIND" may be saved

actions from on disk.

tape.

9. Report
output

4

10. Use for
non-simu-
1 at-ion
purposes?

GPSS II

PRINT
normal output
-Model listing
-Clock time
-Block counts
-Savexes
-Faci 1 ity
statistics

-Storage
statistics

-Queue
statistics

-Frequency
tables

-Summary
sta ti s ti cs

-Error
conditions

No

TABLE 4 - (Continu~d)

SIMSCRIPT GASP

Report GASP summary
generator Contents of

all queues,
max. and
average

A general
purpose
language

queue length.
Scheduled
but unexe
cuted events.

Imbedded
in
FORTRAN

37

ACSIM

Value of
variables,
queue contents,
activity acti
vations are
standard.
Optionally:
For waiting times:

Mean wai.time
St.dev.
Max.wai.time
Min.wai.time

For queue lengths:

No

Mean queue 1.
St.dev.
Max.queue 1.
Min.queue 1.

38

TABLE 5 - Mechanics-of Use

GPSS II

1. Compilation Model deck is
and running interpreted.
procedure

2. Debugging and Dynamic error
diagnostics indications

terminate
run and
print system
status and
accumulated
stati$tics.
Trace allowed,
Limited syn-
tactical error
checking.

SIMSCRIPT

FORTRAN
compiler

SIMSCRIPT
source is ,

converted to
FORTRAN
source.
Some versions
have SIMSCRIPT
to machine
code conversion

FORTRAN
diagnostics

GASP

FORTRAN

ACSIM

Main routine
does it all

FORTRAN Full syntax
diagnostics checking
Monitor and error
program reporting at
optional. compile-time.

Execution
errors ter
minate run
and give a
complete
account of
the error.
Display of
simulation
on the
screen is
allowed.

39 .

TABLE 5 - (Continued)

GPSS II SIMSCRIPT GASP ACSIM

3. Memory At load time Load time As in Dynamic
Dynamic for Dynamic for FORTRAN.
transactions. temporary

records.
External Tape Tape Tape None
memory (FORTRAN

capability)

40

.J

III. EXAMPLES

3.1 A MACHINE-SHOP SYSTEM

The first system to be analyzed is a machine shop. The entities

of the system are parts whiSh are to be'processed, workers to load these

parts, a material handlin'g system to carry these parts to the machines
r

and the machines which will process these parts. Each part has to be

processed twice, before its job is finished. For simplicity; all machines

are considered to be of the same kind and all process times, arrival

times and moving or loading times are constant, namely deterministic.

Fig. 3 shows the closed activity-cycle diagram describing this
'. ... ',''. ,". '-

system. Part, machine, mhs (m~terjal handling system) have cycles of
" •..•. :1- "'.,. .. •. , •••.••. " •. "". wf" ., •• ~ .. ~._, .. '_."': ••••• ,~ ,.,-

their own, whereas worker has two cycles, since he does two jobs, that

of loading and that of unloading. If there is a part in pool and a

worker is free, then the loading activity begins and part comes to outq,

whereas worker goes back to its free state. If the material handling

system is available, it takes the part in outq and carries it·to inq.

If there is an idle machine, then it processes the part in inq. This

processing continues until the part is processed twice. Then a free.

worker unloads the part from the machine, and part goes to the pool,

representing a new part coming to be processed.

. 41

PART

§LoRDJ WORKER-
'-___________ J . ·~If I' II I' l< "." ~ ICo >C .. OJ I(II If If If It/

Fig. 3

42

This model shows most ~f the properties of a closed activity

cycle. There is no entrance from outside and no entity leaves the·

system. The crucial point is to put enough amount of parts to pool at

the beginning of the simulation. If this is not done, then the arrival

process can not be simulated properly and limitation not existing in the

original system might occur in'~he simulated··system.'

Fig. 4 shows the ACSIM progrp.m and.data describin'g this system.

Classes and queues are 'defined in the declarations section

starting with the keyword CLASS. A variable, UNL is defined to store

information.

Activity LOAD starts if there is at least one part in the pool

and one worker free. After 4 units of time, part goes to outq with its

attribute ntp=O. Here, ntp means "number of times processed". It.must
'-,

be known for each entity, so it is dec1ar~d as an attribute. Worker

goes back to its passive st~i~:
• , ... '.~. ~, " .~ , -!' • , , .• ,. ":_, . ,(d ,," ;

Activity MOVE starts if there :i's at least one part in outq and

the material handling system is available. After 7 units of time,

" part goes to inq, mhs is again available.

Activity PROCESS starts if there is a part in inq with number

of times processed less than two and any idle machine. After 15 time

units, machine is again idle, part goes to outq with its attribute

increased by one.

Activity UNLOAD starts if there is a part in inq and a free wor-

ker. Here, there is a trick to simplify the simulation. Actually the

condition of UNLOAD must have been in the form

part inq WITH ntp > = 2

so that only parts which have been processed twice are unloaded. But,

machine5~op 4256
class partwit~ ntp:pool,inq,Dutqi

~lClrker:: /n~e;

machine: full?;
mhs:available

\far unl
end
load part pool,worker free?

after 4: .
part o~tq with ntp=O,worker free;

move part outq,mhs available1
aH.ar 7: .
part inq,o~s available;

process part inq with ntp<2,machine idle?
after 15:
machine idla,part outq with ntp=ntp of partil;

unload part inq,work~r free?
after 4:
part ppgl~WDrker free,unl+l;

endactc:!~,::'f:)- 100007
stop

collect delay idle,free,Dutq;
length idle,fl~ee,outq .

.......

, .
;'

.. !

.. _",_, iFig• 4 ACSIM program for maclliRu-shop

_ ~ J

44

this condition is got rid of by putting activity UNLOAD below activity

PROCESS in the program. If 'any part has an ntp value less than two, it
f"

will be sent to outq by the 'activity PROCESS, so there can not be a

part with ntp 2 in inq when activity UNLOAD is being scanned. Thus no

need for the above condition. After unloading is done" namely after

4 time units, part goes to pool, worker becomes free again and the

variable un1, which counts the number of parts unloaded is incremented

. by 1.

4 ~

Activity ENDACT is put to end simulation. If system clock

exceeds 10000, then the simulation is STOPped.

Fig. 5 shows the output obtained at the end of the simulation

of this machine-shop system. Simulation has been stopped prematurely,

by the intervention of the user. Thus the ending time 4372. 'The initial

state of the system was given by the DATA portion in Fig. 3. Initially

there are 15 parts in pool, 1 machine idle, 1 material handling system

available, and 3 free workers. It must be noted that, by choosing

appropriate names for queues, the program's readability is grossly in-

creased and conditions such as'lIpart outq, mhs available" can be used,
,.~

to the user's and others' relief;

At the end of simulation, the system state has been changed.

Pool and inq are empty, whereas 13 parts are waiting in outq, 2 workers

are free, 1 machine is idle, and the mhs' is currently in use. System

clock is 4372 and 422 parts have been processed and unloaded up to this

time.

Number of activations for each activity is also given. ,The

number 422 can be obtained a:lso from theac,tivation number of the activity

UNLOAD, but this is only so because the activity is simple. In complex

, "

-,

Simulation started af time 0

Simulation pnded at time 4372'~ ,.;."

pool
, inq
outq
free
idle
avai 1 abl e,

,-1._.-- ~ , .. --- __ ,,,
unl

load
move
process
unload
end act

• Queue'

oljtq
fr-ee
idle

~lEAtH

85.9
11.5
·6.7

FIN A,~, ST,A T,E

Entities in queues

empty' ,
empty "

n pad
2 ,'Jot- kat-
1, machine"

, empty

Global variables

= 4372
= 422

Number of activations

4::::7
624
201
422

.' not activated

STATISTICAL ANriLYSIS

~lai ti ng timEs

MEAN2 ST.DEV. ~lAX NIN

8cl.0 10.~ 90 6
11.7 -: 3.0 1 '1 "";~

~,

6.7 2.1 13 6

Queue lenqths

11EAN ST.DEV ~1{~X

12.5 30.6 13
2.:::: 4.7 ~.

,-'

0.3 1.5 1

,b'ig • . ~ lIIle anIts of' the simul~tion o'f machine-Bhop

- -'--

MIN

46

activities, namely in activities with diff~rent actions with time lags
..... • ' .. I ·, , •• ~~ r' ...- ~ •. "" ""'" .. ' .'. ,;~"",..:n , : ,,_ . • ,..

between, the activation number will not mean much.
. ,,~ I ., '. ~.', •...•• , .' •••.• '~ ,~"\ .

Statistics requests were done by the COLLECT statement in the

program. Only three queues are included in the analysis, again by the

choice of the user.

When the final state and statistical figures are analyzed, it

is clear that the bottleneck of the system is the material handling

system. The large waiting time figures for outq supports this result.

Of the 15 parts in the system, 12.5 parts on the average are waiting for

the mhs at any given moment, and this is a big figure.

3.2 A BANKING SYSTEM

In this model, a single-teller bank is simulated. The bank is

open between 9 a.m. and 5 p.m. The server takes a lunch break the first

time after noon that he/she stays idle. Lunch break is 30 minutes and

the server posts a note telling the return time. Customers arriving

during this break check the r~turn time with the current time and decide

to wait or leave according to a complex probabilistic analysis. The de-

cision is done as follows

If the time left (to the return of the server) is less than 10

minutes) then the customer waits or leaves with equal probability. If

the time left is 9reater than 20 minutes, then he stays with probability

.25 and leaves with probability .75. If time left is between 10 and 20

minutes,Lhen he stays with .40 probability and leaves with .60 probabi

lity. The leaving is called IIbalkingll.

After the server returns, he continues serving until 5 p.m. At

5 p.m., doors of the bank are Closed. but the server serves all customers

waiting there.

47

Fig. 6 shows the banking system in an activity cycle diagram

and Fig. 7 gives the ACSIM program and data corresponding to this system.

The arrival process is given by the activity ARRIVE, and it is

a Poisson process with interarrival times exponentially distributed with

mean 8. Checks are put to close the door before 9 a.m. and after 5 p.m.

Customers start coming after 8 a.m.

Activity LUNCH regulates the lunch-break of the server. If the

server is idle anytime after noon, and provided that he has not gone to

lunch within that day (checked by the 0-1 variable EATEN) then he goes

out for lunch and the return time is set for 30 minutes after.

Activity COMEBAcK regulates the. server's coming back from lunch ..

After 30 minutes have passed, server comes back, having eaten.

Activity BALKING is the decision process. A customer who has

not given a decision yet (decision = 0), seeing that the server is at

lunch (at lunch = 1 is used in order not to activate server, instead of

"server at lunch", whic~ would activate him) looks at the time left

(return-clock) and by the complex IF statements, decides to stay (custom-
• er waiting WITH decision = 1) ~r to leave (DISCARD customer).

Activi ty SERVE is th.e regul ar service activity, which is done

~nly after 9 a.m. Service time is uniformly distrib~ted between 5 and

10 minutes.

"Activity ENDACT ends simu1ation after checking whether it is

after 5 p.m. and nobody is waiting for service (waiting = 0).

Statistics are required for queues waiting ahd idle.

Fig. 8 gives the resulting report. A total of 66 customers have

neGo served, but none has balked. Server is idle most of the time, as seen
. . .

from the statistics. Activity ARRIVE has started 137 times, but some of

these are before 8 a.m. and have not created customers because of that reason.

customer

,-_....:oJ ,balk'

servi ce server

customer SERVER

lunch comeback

Fig. 6 Billk Cycle Uiigrillll

"'If i :::

si ng le ~!'578

Cl21SS CLlstollil?r ~-Ji tli df~ci sion: ~-Jai ti ("lU;
serVEI'-: i dIe, ';'It 1 unch,

var return, ti lilEl ef t.,)'- i'1I'1 ri 0111 , b a 1 kt~~J, sErved, 8,,\tefl

end

arrive eV~~i ~po(8):
if clnck > 480 then

i-f c 1. oel: < 1020 then nI2~"1 cLlstoilH:r ~"lai b ng
endi-f

endif;

lunch server idle,clock>=720,eaten=O?
server atlunch,retLlrn=clock'~30;

comeback server atlunch?
after 60:
server idle,eaten=l;

balking cLlstonlt;'r- ~jaiting \-Jith deci,;ion -- O,i:\tlLlnclF~l?,

timeleft=return-clock,
random=uni (1, 100),
if timp-left < 10
t~=n if random <=75 then discard customer,balked+l

else customer \'Jail:in~l I-lith decision=1
endif

~lse if timEleft > 20
tlu:m i'f r'andool <=60 thl~n dir-;cani cLlstolllet-,balkecJ+l

el~~ customer waiting with decision=!
f:nd i f

else if random <=50 then discard cLlstomer,balked+1

r:ndif
endi f;

end 11:
else custom~r waiting with decision=l

<.

servjce clock >540~set-ver idle~CI\':5tCJIlIC?r I'Jaitilll]?
C(,ft er un i (51 10) : d i (.;r:ard CUStOilH2I", ;,et-ver- j die, served+ 1 ;

i

endact clock>1020~waiting=O?
stop

collect delay waiting,idle;
length waiting,idle

display.
data 1 i d.1 e •

.Fig. 7 ACSIM progr.w de scri bing b4llnk

49

, i

I,

S:imulation startedattimt? 0 •• : •.

i

1
i

b~iT;d_--_]· ,
clock ;--'

. ,_-eaten I

random
: 'return

served .
c, ti~el eft i "

.arri ve
" 1 Linch

FIN A L 5T ATE
~-------------------

Entities in queues
(: , . ------------------

.,
o

empty'
empty
empty

Global va~iabls5 . '

-~--:-"":"'-~--...;---.:.....-.:.-

:= (l

=: 1163
=.1
- (I

= 751'
=: ~.6

'::: 0

Number of activations
'.: ',' ," .

----~----~----~------

comeback:: ,1

~:~~::LL,;;.~~: , •. not ~Fv"t"d
:~~p~;:~~ , I

,I

i
I ,

-~~,-;~~;T- ,
QU8!-1e- ,.!

,': .1-
r1EAN1,

106.5
"

576·0'

STATISTIC?-)L ANALYSIS-

H,ai ting ti mes
,',"

' \'1EA~j2 ST. OF-V. rlAX MIN

106.5 21.4 141 LW;f
w~,

"
'J 5,72.4 576 576 ~.r~:- ..

1

"".;:

, ~,

Queue 1 (:!ngths

r'IEAI\j ST.DEV

6.1 1")-= "';!'
,.;..,J. oj

0'" ...1 La

I;tesl,llts of the simul~tion of, b~nk

I:'
:.r'>

'- 5G

, ';

rlAX MIN

18 1i
1 :11

I
:i

" ,"

, .
51

IV. CONCLUSION

ACSIM arises as one of the tools to analyze complex systems,

discrete and possibly probabilistic in nature. The,present form of the

language contains most of tha features of pr~vio~sly implemented computer

simulation languages. The editing and display facilities increases the

user's participation, thus forming the concept ,of Ui,nteractive simulation".
"" ,

It is also an indication of, the fact that simulation can be done equally

successfully in microcomputers and main-fraflles. The advantage of the

microcomputer is apparent in the fact that there is no time-sharing,

which is a hindrance when long simulation runs are considered in main-

frames.
. .~~··,"I " " .• \ ; ~ ... , .• ,,~.,:: .• , ~ O,.t.:, "r

The next ~tage in th~ dev~lopment of the ~anguage-system is to

form an "intelligent"editor, namely one which makes' a limited syntax

checking at the time of entry. A further improvement may be an inter

active program generator which would be even more user-friendly.

The concept of "intervention" will also be extended, in that

the user might change the system state or the program itself at any mo

ment he wishes. External stimuli might be given in this way~

The final extension will be the implementation of ~he results

of "Sampl e Path Analysis", to provide for the first time a simulation

language with in-built sensitivity calculation possibility. Details of

Sample Path Analysis might be found in [4].

52

APPENDIX A

RESERVED WORDS OF ACSIM (.

(In alphabetical order)

AFTER LENGTH
AT NEW
CLASS NOR
COLLECT OF
DELAY- PRINT
DISCARD STOP "

DISPLAY THEN " ;.

ELSE UNI
.~ ~'.(,

END VAR
ENDIF WITH
EVERY XPO ~ :'

IF
, .'

r'

! .' ,.\,p' , , •• ' . ~ ~ •• ,oJ., _,

·t

APPENDIX B
'Syntax of ACSIM

dtc (a r4 fiol\S

ac ~;vi+,
d

,;

-t'.
> .

-,,' '

-----~ gooltCtIl

.'

. , " ,
• ,-: •• ':""''''~ •. ..; ', .. P4 .• " •. :, .•. ~'.'"f'.I' ~,....t".-t .. (*4

dio"

vr\'

~~.-------------------~~

55

56

\

·bootu" ----+1.1 E '1-, r

• ··;1·

... '--'," " .. ' ; ~ ... ,.,. ,.' ".

"'1

5y

·60

. -. ..-----

s

..

APPENDIX C

, . ACSIM 2;0 ERROR MESSAGES

(II Number too large (At most 5 digits)
(2) Undefined symbol in inpLlt file
(3) Program nanls eKpected
(4) 'END' expected
(5) 'COLLECT',)DISPLAY' orfullstop expected
(6) Fullstop expected
(7) 'CLASS' or 'VAR' expected
(8) Vari ab':':.:f1an.iEL f;;!>:pecter:l
(9) Na.mE+--:::=·!"ined mont t.hanonC:l:? .• ;
(10) Cl ass name e>:pec:ted
(11) Attribute name expected
(i2) Colon expected .
(13) . Queue name. e>:pectec:l
(14) Aci:.l'vTCY· ~ame e}:pe~t:E?d
(15) No\lne used' iIlare than once
(16) QUEstion mark expe~ted .
(1 ?L_R::=l aU on e:·:per:ts:Li·
(18) Class and, q~eue are not compatible
(19) Left ca~enthesis expected

~n , , (

(20) At most 4 variables areid ImJsct'in a F'FiII\lT statEment
(21) Right parenthesi~ expected
(221 Attribute not of this class
(23) Equal s1 gp e:{pected
(24) Cla~s or variable name expected
(25) 'THEN' expected
(26) 'ELSE' oro: ' END IF'. E>:pected
(27) 'ENDIP e;:pected
(28) Class,var~able,queue or attribute name expected
(29) End of file Teached in inpLlt file
(30) Data name expected •
(31) Number of entities of denoted class must be at least 1
(32) Class or queue name expected
(33) Number .e:-:pected . .
(34)'Statement' nu~ber must be at least
(35) A .number ;i.,vari able nil/lIe9~ ~ AT' e::pected
(36) ~ovementbf eritity not in conditions
(37) Canditionin6t~satisfied bv actions
(38) Invalid f~ctor in e:,:pl"~ssionm
(39). Vah able, queue or aUd buteo naillp. e::pf2cted
(40~ 'OF' expected
(41) Comma e~p$cted
(42) Perturbation can nat b~ zero '. .,
(43)._Noru: -.~t:f~):lass name in' in~tial state
(44) None>:isting qUE,ue nalll!? in initi.:-tl st';:itc~

. (45) None:·:isti~g v;;u-iable n~lfie 'in init:ial stat:::;
(46) Nonexisting activity name in initial state
(47; j,luilt?;·;i:;i"tir.g-,\ttribLita name in initial state
!4~) Too big number fOI~ statements in ini tial St.iitt?

(49)Rando~ se~d expec~ed
SSO) 'BY' expected
(St) Clock can:not be updated by the user
(57) Program must have at least 1 activity
(53)· Illegal symbol in activity initi<di:::·~\tiCln
(54) Inappropriate starting statemeGt in initial state
(55) 'DEL~Y~ o~ 'LENGTH" expected
(56) Blank actions not allowed

61

.:':

. '.
'I:

I .
• ~ !

',!

;62

REFERENCES

1. Crookes, J.G., "Simulation in 1981", European Journal of Operations
Research, 9 (1982), pp. 1-7.

2. Eyler. ,M.A., "ACSIM : A Simulation Program Based on Activity Cycles",
Research Report, Bo~azi~i Univ~rsity, ,1982.

3. Teichroew, D. and Lubin, J.F., "Computer Simulation - Discussions
of the Technique and Comparison of Languages", Communications of the
ACM, Vol. 9, No. 10, pp. 723-741, October 1966. '

4. :io, 'i.C., Eyler, M.A. and Chien, T.T., "A New Approach to Determine
Parameter Sensitivities of Transfer Lines ", Management Science,
Vol. 29, No.6, pp. 700-714, June 1983.

" .
I

	Tez5821001
	Tez5821002
	Tez5821003
	Tez5821004
	Tez5821005
	Tez5821006
	Tez5821007
	Tez5821008
	Tez5821009
	Tez5821010
	Tez5821011
	Tez5821012
	Tez5821013
	Tez5821014
	Tez5821015
	Tez5821016
	Tez5821017
	Tez5821018
	Tez5821019
	Tez5821020
	Tez5821021
	Tez5821022
	Tez5821023
	Tez5821024
	Tez5821025
	Tez5821026
	Tez5821027
	Tez5821028
	Tez5821029
	Tez5821030
	Tez5821031
	Tez5821032
	Tez5821033
	Tez5821034
	Tez5821035
	Tez5821036
	Tez5821037
	Tez5821038
	Tez5821039
	Tez5821040
	Tez5821041
	Tez5821042
	Tez5821043
	Tez5821044
	Tez5821045
	Tez5821046
	Tez5821047
	Tez5821048
	Tez5821049
	Tez5821050
	Tez5821051
	Tez5821052
	Tez5821053
	Tez5821054
	Tez5821055
	Tez5821056
	Tez5821057
	Tez5821058
	Tez5821059
	Tez5821060
	Tez5821061
	Tez5821062
	Tez5821063
	Tez5821064
	Tez5821065
	Tez5821066
	Tez5821067
	Tez5821068
	Tez5821069

