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ABSTRACT

This work presents the analysis of the forced vibrational
'response of an elastic rectangular para]]e]ep1ped Norma] mode

solutions were obtained for the fo]]owing boundary conditions:

1. S1x rigid- 1ubr1cated faces,

2. Four r1g1d 1ubr1cated and two stress free faces.

In the fokced'vibrationbana]ysfs solutions wefe obtained for.an -
imbu]sive and_a»Step point load. |

" For the both cases of boundary'cbnditions, computer programs
were developed in order to calculate the disb]aéements'of a éamp]e
block. In the numerical calculations point of app11cat1on of the

force and the point at which, d1sp1acements are sensed were taken

in the rectangular block.



OzET

Bu ca11smada elastik bir prizmanin uygulanan bir kuvvete
- titresim tepkiéinin analizi yapriimistir. Normal mod c¢oziimleri

iki cesit s1nirvsart1ar1 icin elde edildi:

1. Alta rijid-yaglanm1s yiiz;

2. Dort rijid-yaglanmis ve iki gerilimsiz yiz.

Analizde impulsiv ve basamakli hokfa kuvvetler ku11an11m1$t1r;v
Her iki sinir sartlari i¢in ornek bir prizman1n deplasmania-
rinl heSap]éyan kompUter‘program1ar1 yazildi. ' Nimerik hesaplama-

prizmanin i¢inde alinmistir.
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I, INTRODUCTION

Acoustic emissions‘are‘fﬁe transient e]aéficvstress anesv‘
generated by a rapfd're1ease or rediétribufion of stéred ehergy
- that accompany many deformation and fracture procesées within a
material. »By monitoring these acoustic émissibns, it is bossib]é»
to trace fhe géowth And'propagation_of crackskor flaws such as -~
4 voids, inclusions, etq., in structures like bridgeé,'bower p]ané
components...In addition acbusffc emissioﬁé have beenbuséd for
' materia] research studies'on microstructure related mechénica]
~ ‘properties, phase transformations and fraéture., ‘

In order 'to deduce information from‘the recdrded signals ofb
acoustic emissions; it is'neéessahy to know the frequency response
of the structure. So far such analysis were done on'strhctures'
such as half spaces br infinite p]étés-[]—s]. However, many acous-
“tic emission applications involve specimens of finite dfmehéions.
In this respect, the vibration of a rectangular parallelepiped is
of interest betausé mahy real. 1ife structures can be conSideked
to Be,made up of rectangular b]ocks or pTates, the latter béing a

two-dimensional version of the former.



Due-to cdmb]exify of the mathematicsvinvo1ved, fhere are onIy
a few solutions in the literature concerning the vibrations of a

rectangular parallelepiped. Some of these papers involve plane

strain so1utions [6-8]. Fromme énd Leissa [9] tried to solve the

- free vibratiqn problem uéing associaﬁed periodicfty methbd but their
work results in‘an infinite set of a]gebkéic equations which}must be
solved in order to obtain thé natural fréqﬂencies qf the body.

The free vibration pfob]em for a reétangu]ar péra]]elepiped
with rigid;1ubkicated:boundaries was first so]ved by Ortway t10] and
then later by Nadeau [llj uéing normal mode techniqde. Then Hill and
Egle [12] solved the forced vibration pfob]em for the first time using
the free vibration solution. | | |

The free vibration solution for the case df fouf rigid-lubrica-
‘ted and two stress-free bouhdariés is the work of Kaliski [13]; but
his work is in Polish and Malecki's teit provides an English transé
lation [14]. Kaliski's free vibratioh solution was then reworked =

by Hil1 [15]. i |

It is the purpbse of this work to take Hi]]’s work as a basis

- and give free and forced vibration solutions of the rectangu]ar

‘ bara]le]epiped; Two séts of bbundary donditions‘considered_here
are (1) all six faces rigid-lubricated and (2) four rigid-]ubficatéd
and two stress-free faces. Free and forced vibfation 501utions for
these cases,ére presented 1ﬁ ChaptersIII and IV respective]yQ In
deriving the forced vibration disb]acément.expreésions; the body
force is considered to be a éhree—dimensiona] concentfated force.

In Chapter V, numerical results concerning the impulsive and step



response of the rectangular parallelepiped with all faces rigid-
Tubricated and four faces rigid-lubricated and_tWo‘faces stress
free are given. |

In the following ﬁhapter, equations of eiasticity aﬁd:the
derivatibn of seperated wave equations wi]i be given.'vAlso iﬁ this
chapter waves propagatihg in the bounded media and ref]ectioh pheno-
mena from stress-free and rigid—]ubricatéd boundariés will be |

presented. -



[1. EQUATIONS OF ELASTODYNAMICS

2.1  EQUATIONS OF ELASTICITY

The equation of motion for a linearly e]astic;'isotropic and

homogeneous material is giveh by [16,17],
WU+ (A Fu)Y(7 e u) +pf =l o (2.1)

wherevg is the displacement véctbr, p is the maés density, A and u*i
are the Lame constants of the material, and’f'fs the body force

(per unit masé)ryector used to represent the source of aéoustic

~ emissions. In_the above equation'V2;'Y-, and V are theJ]aplacian,
divergence and gradient‘operators respectively and fhe superposéd

- “"dot" represehts'differentiatiqn with'respéct to time, t. The B
constitutive equations for an isotropic elastic material éré givenA

by [18],

g = M7 - W+ 2w+ (w)'] (22
where, g and l are.the stress and the identity tensors respectively
and (Yg)T is the transpose of the tensor Vu. The‘ébové stress-
strain relations can be written in their exp]icit'form in caftesian

coordinate system as,



Bu du du du,, o
oy =AM+ —L+ —F) 4 g & : (2.3)
) X ay 9z X
au au | au au
e S At NP Y | (2.4)
y ox -8y 3z - 3y
| du du du du ' ’
g, = A X 4 Y _Z)‘+ 2u —Zz v (2.5)
X dy =~ 9z 3z
N, My e
Oy, = 0, = ul + - 2.6
Xyooow 3y X
~ au au ' o , '
Oyz = Ozy = p(—L+—% -~ o (2.7)
| 3z 9y :
u_  au ‘ S -
z X :
oov = 0u, = ul + ) . (2.8)
ZX Xz ox 5z SR .

The coordinate sysfem, geometry and sign conventibn‘of the stresses
are given in Figure 2.1. /

An alternative form of the Eq. (2.1) inVo]vingvthé wave speeds

is
2021 4 (2 - o2 . . : e
c2viu + (¢ - c2)v(y - u) + =10 | - (29
where / v
c, = [(x+ 2u)/p] /2, longitudinal wave speed
) .
Cy = [p/p] /2 -~ : transverse wave speed.

2.2 . ELASTIC WAVES IN A BOUNDED MEDIA

Within the body'of a 1iheér1y elastic, isotropic and homogeneous
.material only two types of elastic waves can propagate.'The faster of

these is called the longitudinal wave which consists of compressions
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FIGURE 2.1 - Coordinate systemgbdimensfons and stress sign convehtion.



'(pushes)}and di]atations‘(pulls) of the elastic material. In this
case, the particle.diﬁplacement is paré11e1 to the direction of pro-
’pagation. This type of wave is also knowﬁ as'dilatatfoné1'ané or
pressure wéve or P-wave in short. |
The slower of the two waves known as a transverse wave is
of a quite different nature. The e]astié body_is sheared and fwisted
as the wave travé]s through it. The particle dispTacemént lies in a 
plane normal to the direction of'prdﬁagation thus, it can de decom-
posed into two ortthon&] componeﬁ%s. The ohe thafbfs paralel tb é
given direction,(usua]Ty spéqifiedvby a surfaée in‘the.body) is known . -
as the'SH-componeht whi]e'the other 1is the Sv—componenf. Waves asso-
ciated with these diép]acements are ca11ed'the,SH-waye (horizontally
polarized) and SV-wave (vertiCa11y polarized). Transverse waves are
also called equivoluminal waves, shear waves or S-waves ih'short. ’
‘These two ané_tybes are depicted in Figure 2;2. o o
When the elastic waves propagating invthe bounded media reflect

dffithe boundafies, someAchanQes do occur in their nature,'that is
| the ref]ected'waves(s) néed not to carry the same chafacteristicsbas
the incident wave. These changés dué to a reflection depéndbon the
angle of incidence and the imposed boundary conditions.' As an example,
in the case of a stresé-free boundaryAcdndifion, an incident P—Wave
Wi]] ine rise to both a ref]eéted P-wave and a ref]ected SV-w&ve;
‘Similar]y an SV-wave Wi]] reflect as a SV-wave and a P-wave. This
phenomena where a wave of one nature ref]ects‘as a’wave_of different
- nature is known as mode-conversion. Depending on the angle of

incidence SV-waves do give rise to waves which. propagate along the
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the boundaries known as surface waves. Such waves are confined to
a small region in the heighbourhood of the surface and decay expo-
nentially inSidé the media. Fof a free surface; these waves are

often called as Rayleigh waves.

In the case of a rigid-lubricated boundary only phase changes'

occur and there is no mode conversions. Therefore, surface waves

cannot exist in a elastic body under such boundary conditions.

”~

2.3 DISPLACEMENT POTENTIALS

Since the equation of motion (2.9) is of a highly complex

nature, one needs to transform it into a simpler form. According to

.Helmho1tz Theorem [18,19], a‘veétor fie]d can be ekpressed as the sum

of the gradient of a scalar field and the curl of_a zefo-divergentéu
vector field.. The vector fields of intekest here, afe the displace-

ment and the body force; hence

= Vo + Vx P 3

1=
n

<
L]

t—h
un
[ =S

V6 +VxH V.

where ¢, G and v, ﬁ.aré‘called sca]ér énd vector»potentia]s res-
pectively. Thebzero divergence condition, Y;? pfovides thé
necesSary addftiqna] condition- to uniquely determine the fhree
components of disp]acement from four components of ¢ and . Subs-'
titution of thé Eqs,.(Z.IO) and (2.11); into the equation,of motion

leads to two seperated‘wavé»equations: '(c;f. Appendix A).

2y24 + v
CQV o + G

L ~292y, 4
cve H

= 0 T (2a00)

. o o | ) (2.12)
b L S o (2.13)

-0 S
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From the abové,equations it can be seen that while the potentials
¢, G are associated with the P-wé?e,v Y, Hare associated_with
~ S-wave. |
.ConSidefihg Eq.b(é.]O), it is possible to express the dispTace-
ments in‘terms of both the scalar and the components of the vector

potential as

5% 3 3
u = + 4 - .y
X 39X Ay ¥4

o ey, | A |
u = -z, X B (2.14)
3y  9x . 9z
o oY N,
u_ = L X
oz X oy

Thus, the Helmholtz Theorem mathematically uncouples fhe wave mdtibn
such that the disp]atehent cohpdnents due to 1ongitudinéi.and'tréns-
verse waves canvbe dealt with separately. |

When a aisturbance is produced at an fnterna] point of a bounded
elastic body, génerally both P and S-waves will originate and propagate
fﬁ all directions. A complicated nature of waves will resu]t_upoh
the reflections from the boundaries. A§ a resu]t; a'state of vibra-
tion of the’whoTe body is reached. This state of vibrétion_is a
superpositfon of.a number of ‘characteristic vibrations (normal modes)
of the finite body." These vibrations are represépted.by theif distinct
énd discréte fkequencies (natural freduen;ieé)‘at which the system is
"capab]e of‘undergoing harmoniélmotidn. For a qontinuous body'thére
fs‘an infinite ndmber of natural frequenciéé associated with infinité]

number of normal modes..



Ana]ySis‘of the free and forced vibrations of a rectangular
parallelepiped with six faces rigid-]ubricated and four faces rigid-
Tubricated while other faces are stress-free will be given in the

'folTowing chapters.

11
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111, RIGID-LUBRICATED BOUNDARIES

“The ana]ysisyof the respogse of a‘rectanguiar block canlbe'
simplified by assuming rigid-lubricated boundariéé. This isbbecause
of reflections from rigid-lubricated surfacesAhave_no_mode coévef—
sionsvbut only phase changes as mentioned in the preVious chdptér{J
Although these boundary conditioﬁs are notvrepresentative of a typical
acouétic émission.experiment; solution ofbthis'problem prondes a//;
first step iq obtaining the more difficult rigid-]ubricated/sfreés—free

solution.

3.1 FREE'VIBRATION SOLUTION

.The bddy force term in Eq. (2.9) is set equal to zero in order

to obtain the eqUation of motion for the free vibration case.

szzu‘+ (c; - ¢2)V(V - u) = g : ' o (3.])

u, = 0 Oxy =0y, =0 gt x =0, a .
uy =0 ny = Gyz =0 -at y=0,b s
w=0 - o, =0, =0 at z=0;c.

z ZX A
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Considering stress- strain relationships-given in Chapter 11, boundary

conditions can be expressed in terms of d1sp1acements as

auz/ax

u, =0 du/ox = =0 at x=0,a ,
uy =0 aux/ay = auz/ay‘=-0 at y =0, b_ . | (3.2)
u, = 0 aux/az = auy/az =0 at z=0,c.

The prob1em may be solved by assuming a simple harmonic motion

of the form [10,11]

N

i AZNeosax.sinBy cosyz siant R ’ ‘ (3.3)

U = ASNcosax cosBy sinyz s1ant e

Uy T A]Ns1nax cosSy cosyz sinw, €'

u

where wy are the natural frequencies or eigenvalue of the‘system,‘ In
order to satisfy the boundary conditiohs, the wave numbers o, B, and Y
must be of the'forminﬂ/a, mm/b, and pm/c respective]y wfth n, my p
~being integersIO, 1, 2, 3, ;...' Substituting the assumed normal‘
modes, Eq.'(3.3); into the equation of hotion, Eq. (3.1), yields the

- following equatiohs,

Apy(o® + 8% #yf)ed + alhy + AgB + Ay (e = )
Ay o
%M&+Bzﬂﬂ%+swma+AB+Awﬂkz-%), (3.4)
| =‘A2N N ’

Bt A3NY)(C;'— c2

2 2, 2
A3N(a + B +Y )Ct + j((Ama t)

.4+

= A3N“’N :



These equations can be written in the matrix form as |

Qyto®  of oy
N 2 A

aB  QytB By
N* _ é AZN

ay - By  yty
N A3N

where Qy =

(e - AM»N)/(cZ - )

and A% = o2 + 82 +v2.

N

" (3.5)

This

set of equations has a nontr1v1a1 so]ut1on if and only 1f the de-

terminant of th1s matr1x is equal to zero.

is known as the character1st1c equat1on of mot1on,

(QN + AZ)QZ = 0

which has the simple root Q]N

The natural

Wiy T Coby

WaN = 93N T Cehn

Note that while Wiy is associated with the 1ongitudina1'waves, w

, and the double root Q

frequencies which correspond to these roots are

= Q3

The resu]t1ng equat1on

(3.6)

/

(3.7)
1(3;8)

2N

and w3y are associated with the two orthogpna] po]ariiations‘of the

transverse waves [16].

- Thus, each displacement component is made

up of three contribdtions, one due to 1ongitudina1 wave and the

- other two due to the two orthogonal polarizations of transverse

waves with the direction of propagation being determined by the set

of integers N(n,m,p).

are given by

Then thevdisplacement components of the modes‘

14

= 0.



Uy = sinax cospy cosyz[(A]N)i sinmth + (A]N)t‘s1ntht] s

Uy

U,y = COSax cospy c05yz[(A3N)2 sinmth + (A3N)

t

s1ntht] .

15

COSaX SinRy cosyz[(AZN) sinwth + (AZN)t sintht] , (3.9)

The amplitude relations associated with'longitudinal waves are

N

then obtained by subsituting the root Q,, = - A2 into equations (3.11),

N
yielding the relations, "

Alg = Ay - | R
CPonY T A8 | | (3.10)
Agne = Ay -
Note that by chosing one of the unknown amplitudes arbitrarily, the
other two can be,determined uniquely. A similar procedure for F,
| _ ‘ v _ y
QZN = Q3N_f 0 results jn the relation
AN ¥ AgyB * Agyy = 0
and in this case two of the three unknown amp]itudgs can be chosen
drbitrari]y. Thus the amplitude relations can be expressed as
(Aypdy = (Ayy)
(Ag)y = (B/0)(Ayy)y o (3.11)

(Agy)q = (/@) (A,

for the longitudinal waves»aﬁd as



(A,

1N)t

(), = (A

ane = (Ray)y

(A )y = =(a/v) (s 1N)t (B/v) (A )

for the transverse waves.

Hence, the normal mode displacement_components take the form

uy = sinax cosBy‘cosyz{(A]N)z simwyt + (AlN)t s1nw t}'

”~

COoSsoX s1nBy cosyz{(B/a)(A]N) s inw

Nt * (AZN)t
| A s1ntht} s (3.13)
U,y = cosax cospy sinyz{(y/a)(A g s1nw Nt - [(a/v)( 1N)t

+ (B/Y)(AZN)t]s1ntht}

The unknown amp11tudes (AlN)R’ (A 1N)t’ (AZN)t are determined from

the initial- cond1t1ons which can be expressed generally as

u(x,y52,0) = u_(X,y,2)

u(x,y,2,0) = 4 (x,y,z)

whereg0 and go are the jnitia] disp]aceﬁent and ve]qcity'fieids
respecfivé]y. Some of the charactekistic vibration shapes aSSOCiated‘
with the displacements in the z-direction are given in Figure 3.1
through‘3.4; | |
vThe.genera1'vibrationa1 motion of the body is a superboSition
of inifinite number of normal modes as waS'mentionedvpreviouély. Thus
'.the’disp]acement express1ons can simply be writtén as |

Uy (X,¥,2,t) = z uxN(x,y,;,t) s

16

(3.12)
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. FIGURE 3.1.- (001) Mode for u, (antisymmetric).
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FIGURE 3.2 - (011) Mode for u, (antisymmetric).
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© FIGURE 3.3 - (012) Mode for u (symmetric).
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" FIGURE 3.4 -

(112) Mode for uz (symmetric). |
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u (X,y,z,t)

y

ﬁ un(sy,z,t) - . (3.14)

u,(x,y,2,t) = ﬁ uzN(x,y,z,t)

with £ = g z X

N n=0 m=0 p=0
These equations represent the free vibration disp]aceménts of any
point within or on the surface of the rectangular parallelepiped .

as a fuction of time.

3.2 FORCED VIBRATION SOLUTION

We will now cons1der the forced mot1on of the para]]elep1ped
'where the govern1ng equat1on from Eq (2 9) iS‘ ”
/o

292 2 _ a2 . =1 o ’
civiu +_(c2 lct)Y(Y E) +f=u . i (3.15)

The approach taken in forced v1brat1on so1ut1on will be to rep]ace
the body force term, f by an 1mpu1s1ve point load, solve th1s |
resulting spec1a1 case to obta1n the Green's function of the prob]emQ
Thus the solutions to moré general problems can:be then obtained
through a convo]ut1on ‘type 1ntegra1 For the present three—dimen—
s1ona1 prob]em the Green s function is a tensor quant1ty [16,12],

_ denoted by

Gij = Gij(x,y,z,t)/xo,yo,zo,r) : : (3.16)

where Gij js the ith disp]acemént component at position (x,y,z) and

fime t due to an impulsive force applied at pdsition (xo,yo,zo) and
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time = and acting in jth direction. As .stated above the solution to

~ a.general Tloading, f, can be obtained through the integral

(3.17)
ocooo °
The above equation can be written explicitly as:
abct . ' ‘ »
u, = ofofof f(GXXfx + nyfy + zefz)dXOdYOdZOdT,’
0 . s v
abct ' _ » Ny
u, = S S I6f + B+ 6 F )dx dy dzdT (3.18)
000O: _ g
: abct _ ' -
u, = I rs f(GZXfx + Gzyfy + Gzzfz)dxodyodzodt
0000
Note that, the equations governing the components qf'the -
Green's | | o /-

abct ,
{ub = s 7s7s JL6I{f} dxodyodzodr .

function are:

2
ct{

392G 926 326

Xy

XZ

2 2 2 S v }

ax? dy? dz? - 9x? dydx  3zdx
8 (x - x)8(y -y )8(z - z,)8(t) = G,

2 a2 2 92G6.. 232G 82G.. ..
G e w7
ax2  ay? a8z VY ax2 dyax  3zdx

_ 926, %G 226 .

2 2 2 .

v e W (R L O e I
ax2  ay?.  3z? ox® . 3ydax  3zdx
532G - 926G 326G .

2 2 2

3 +° 8 ¥ 8 }G + (C 2){ XX + v\yX + ZX} - G

N
]
2]
‘—f-

Ayx

372 oxdy . -9y? 323y

X



some assumptions

-k . 9% 326G 326G

32 32
c2{ + + 16+ (c2 - c2){(—2L 4+ AR zy}
t
x> ayr  gzz W L axay ay?  azdy
+8(x - xg)sly - yo)elz - z,)8(t) = Sy
92 92 92 SR 2% 326G %G
2 a .
c,{ + + } G, + (c2 - c2){—2E 4+ VT4 24y = §
t P yz ‘7% t yz
X ay2 = az2 o X3y y? 923y
32 ke 52 A%, a% 3%G e
c2{— + + 36, + (c2 22— Y2, _ 2K . g
t 2 ZX- '3 t : zZX
axz ayzr 922 B . 9XdZ  dydz 0z2
_ 32 .'32» 52
C%{ + + } + (C o CZ){ ,}! + ____.Z.x + __X} = Gz
ax2 dy? - 9z2 X9z - 9yaz 9z2 y
T L 32 932G, 9%G 926G
CH——+ ——+ =} G, + (2 - AH—F+ —L2+ Zh
ax2 9y oz? axaz aysz - az; -

+l6(x - x,)8(y - ¥ )8(z - zd)G(t) =

Gzz (3f]9)

~ The solution of these equations can be obtained by making

First’ a factored solution with spéce»and time

dependency is assumed to represent the Green s function.

Then, the

spatial part of this solution is assumed to have the same form as :

the normal modes defined in the previous section and the time varying’

character of the Green's function is represented by a general function,

T (t).

as

Therefore, the solution for the Green's function can be written

23



xxN
xyN
xzN
G);zN
nyN
GyzN

szN

,GzyN

GzzN

‘where ¢xN’v¢yN3 ¢zN répresent the sﬁatia] part of the normal modes.

- ¢xN( 2 Z)T

24
= by (ey,2) T, (8)
= oy (6ys2)T (1),
XZN(t) ,

= ¢yN( 3yaZ)Tny( ) ,

= oy (x352)T (1) > o | (3.20)

yn(x¥52)T ()

¢ZN(X "y’Z)TZXN('t) s

zyN

=6 N( »Y> z)TzzN

(t)»

/

Substituting'Eqs. (3.20) into the Eq. (3.19a) and performing"“

the necessary algebraic manipulations one gets the following equation:

252 2;.2
TxxN[CtA + (c? - ¢

2
Tny[(Cl

By t)uz]sinax COSBY COSYZ

c%)uB]sinax COSBY COSYZ
' (3.21)

N[(c - )ay]s1nax cosBy cosyz

+ %Xstinax cosBy cosyz =8(x - xo)a(y - yd)S(z ’_20)5(t)f'

where TXxN

(t) represents the second derivative of T (t) with respect

m tb_t1me. The next step is to multiply both sides of Eq (3.21) by

sina'x cosB y cosy'z and integrate over the spat1a1/doma1n{ Reca1]1hg ‘

the 6rthogona11ty relations of the normal modes,
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abc .
S J J sinax sina'x cosgy cosg'y cosyz cosy'zdxdydz
000

0 when o,8sy #a'sB'sy"

" v - | | (3.22)

——8—when OC,B,'Y .. aBl"Y'
with n,= (1 + 680)(] + 6#0) and V = abc is the volume of the parallele-

piped. Therefore, performing the integrations on Eq. (3.21) gives

Toen * {Tonlfa% + (c2 - c3)a?] + T\ [(c? - c3)ag]

ZxN[(c - ctloyl} = (8/n1 )smax0 cosey COSyZ (3.23)

“This expression may be solved by using method df Laplace transform.
“Assuming that the moF1on stafts from rest, (TxxN(O)_=‘TxxN(O)-=
TxxN(O) = 0) transformation yields the following expansion:

Toanls? * (e} = cfla? + cfa®] + Ty yl(c - c}lag]

o+ szN[(CZ - cZ)ay] (8/nly)s1nago cosBY, cosyz, - (a.24)

App]ication of the same procedure to the other eight equatiohs'of

the ;set (3.19) results in the fo]loWing»eight expressions,

| T?(yN'(s2 + KxxN) +.TnynyN + szkazN =0
T&zN(S% ¥ KxxN) * T-'yzNnyNT TézNKxéN =0
Tny(S? * Kyy&) * T&xNnyN * TéxNKZyN - O
T&yN(sz + Kny) + T;yNnyN'+~T%yNkzyN = (BZnZV)cos&xosihéyocosyzo
o , ~ (3.25)
TyzN(52 * Kny) * T.sznyN +‘T%2NszN =0
S

mm\t\f\)\ms“
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T (s? w7 T K=
sz(S ,KzzN) ¥ Towzxn ¥ TnyKyzN 9
T 2 + | T T ‘=
2y (8% + Ko) + TeonKoan + TypnKyzy = 0
TzzN(Sb_+ KzzN)_f TXZNszN + TyzNKyzN f»(8/n3V)c05qxocosByos1nyzo

and Eq. (3.24) can be written in the same form as

T 2
'TxxN(S xxN) nynyN

Note that,
= 2 _ ~2Y 2 3 252
Kyxn = (cg = cjla® + cia
= 2 _ 2 2 222
Kny (c2 ct)B +cih
‘ = 2 _ ~2)2 252
KzzN (Cz Ct)Y f b

and

= .(1. + 5ao)§1 + GYO) )

szNszN = (8/h1V)sinaxOQQSBydCOSYZO.

(3.26)

- c )uB

'nyN_ nyN

2
2
= = (2 - 2
i KyzN szN _ (Cz Ct)BY
’ 2
2

)
cilay

szN szN -

ny = (1+6,)(1+8

Bo) ’

After performing the hecessary a]gebraic'manipulations, these

expressions can be written in their new form as

8D [SL.

+ (K + K

+ K K ,y,Z)

= 2 _ 2 .
xxN Vn TyyN zzN)s~ “yyN“zzN KyzN]¢xN( 0’70’0
1 ) : .
Too= 20 [es2k K K- KK To (X Ly sz )
XyN Vn2 XxyN xzNyzN xyNzzN yN o’ o’ 0
T2 B0 peeg ay kLK 160 (x yz)
xzN Vn3 xzN = “xyN'yzN xzN ny zN*"0°70°%0
T - 80 [-s2K + K, _uK - KooK ndoo (X .y, z )
yxN Vn xyN xzN7yzN - “xyN“zzN-*xN*"0’’0’"0
' R . )
T = —gg—.[s“ + (K Koo )s?2 + K K., - K2 16 (X _,y .z )
yyN Vn2 - xxNTzzN XxxN zzN “xzN yN 0’70’70
T =80 [l 4K K o, (¢ oy »2.) (3.26)
_yzN Vn yzN xyN xzN ~ xxN yzN zN 0’70%%0 . :
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T = ——-s2 - :
ZxN Vn, s szN ¥ nyNKyzN VszNKny]¢xN(XO’yo’Zo)‘

= 8D ' :
T o= -9 1 g2 - '
zyN Vn, s KyzN_+-nyNszN KxxNKyzN]¢yN(xo’yo’zo) ‘

K

T 8D Vb . 2 . 2 '
[s xxNKny)s * KxxN yyN ~ nyN]¢zN(xo’Yo’Zo) .

Toan =y ts” + (K

3

Then, inverse Laplace transforms can be obtained using partial frac-

tions technique. Thus the results are

' 2ei 2 _ 2Veinn. +
. ] o s1nw2Nt . (AN o )s1ntht}8¢xN(Xo,yozo)
xxN Azl : v
N “eN 7 BN B
. o sinwg \t _4s1nthtl 8¢yN(Xo,yo,Zo)
xyN A2 L J

N YN 9N o,

. i By 1{s1nw2NtA_ s1ntht} 8¢ZN(xo;yO,zo).
xzN A2 w Ty Ve
N “eN tN Ny -

Bo. sianNtv sintht ) 8¢xN(xo,yo,Zo)

Ty = — -
yxN A2 : ‘ . :
AN oy PtN Vn, (3.27)
| 2¢1 2 _ pn2Yesd . | |
__ 1 {B simwgt ) (AN B )s1ntht} 8¢yN(x0,yo,zo)
yyN 2 ) ,
AN WeN Wiy - n,
— BY ,51"w£Nt ) s1ntht} 8¢ZN(x0,y0,zo)'
yzN 5 © I
AN wgy DN Vn,
. _ T rsinmth ) s1ntht} 8¢xN(x0,y0,zo)
zxXN ) Az t W : v :
| NoYeNn BN My
. _ YB sianNt._ s1ntht 8¢1N(xo’yo’zo)
zyN A3 Wy w "V
N N ‘ “tN 2
- 2c3 2 _ L 2V\ed -
R sinogyt (A - v )S1ntht}8¢ZN(xo,yo,zo)
zzN [ T ;

AR gy e n,
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Finally these time function expressions must be substituted in the
- Eqs. (3.20) which give the Green's function 6f the system. These in
turn are substituted into Eqsf'(3.18) to arrive at the forced vibra-

tion displacement E(x,y,z,t) for any generalized body force f(x,y,z,t).

3.3 IMPULSIVE RESPONSE

The acoustic emissions generated by matéria] flows are thought

- to be pulselike functions‘of strgss (force). Much of this type of
emission ih solids is produéed 1nferna11y and can, therefdre, be mode]Ted
as a body force phenomenon.. . Assuming a very short duration source event
within the body, the Dirac Delta function provides an extreme]y,éimb]e
mathematical épproximation of the resulting impulsive. body force. In
general, the body force is fhree-dfménsiona] and its compqhents mgy be -

expressed mathematically as

F 8(x = x )s(y - v )8(z - z)8(t)

fx % X 7o v ‘ .
fy = Fya(x.-,xo)a(y -y )slz - z)s(t) (3.28)
f, = an(x - xo)a(y - yo)s(z - z )s(t) .

0 .

Note that the impu]sive Toad is applied at the pojnt (xo,yo,zo)

and at time t = 0 and its components have magnitudes Fx’ Ey, FZ

in x, y, z directions respectively, (Figure 3.5). o
The firét step in order to determine displacement expressioné

fér the impulsive response is the substitution of the impu]éive body

force componénts‘(3.28) 1n£6 Egqs. (3.18). ;Then the norméi mode dis-

placement expressions are obtained after performing the necessary

integrals yielding
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FIGURE 3.5 - Point of application of the body for‘ce and point at wh1ch
_ d1sp1acements are sensed. -
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U = GxxNFx + nyNFy + zeNFz
uyN B nyNF,xv+ nyNFy * GyzNFz o v (3.29)
YN T szNFx * GzyNFy 4.-»G'zzNFz

These are then combined with Eqs. (3.20) to obtain the displacement
components produced by a three-dimensional impulsive force‘app]ied-

at the point (xo,yo,zo) and finally these can be written as

2.3 2 _ o 2Ves '
1.0 s1nw£Nt (AN o )s1ntht] ¢XN(xO,yo,zo)E

u (x,y,z,t) = 2 —{[ + .
X N A2 w ' : w X
N o “eN BN N
. aB[Sinszt ) sintht:I ¢yN(x0,y0,zo) -
' Yy
B e L T
sinw,,t  sinw zt o_y(X. 5y 52.) o
A ANT tN ] zN*"0’’0’ 0 Fz} :
YN PN Ny -
(8/V)9, \(Xsy,2) o (3.30)
- Csinw, t sinw,gt don(X 5y ,2)
uy(x,y,2,t) = % —lz{soc[ MLty XN 0700
_ . N. AN WoN Wi 5 n, |
. [Bz_s1nszt . (A2 ; 02) 51”tht1¢yN(xo’yo’zo) .
' w N Ty B y
N tN - n, -

sinw,yt  sinw t doy(X .y ,2.)
+ gy[ 2N" tN ] zN» 0’70’70 Fz}
WoN - YN Ny -

(8/)oy(xs352) s
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SThu oyt ) 51ptht]¢xN(xo’yo’;o’t)

uz(xa.Y3Zst) =% L {U,Y[ F
- N a3 ) w ' X
' N 2N tN. M
sinp,yt  Sinw,,t ¢ (X _,y.»2.)
+ gyl QN _ tN ] yN'*"0’7 0’70 Fy
WoN o .
' 3 (A2 - ~2Yed :
M/// : + [YZSanth + (AN’ Y )S1ntht1¢ZN(xo’yo’zo) F_}
§ 4
“oN YN n, ot
(8/V)9,y(x5y52)

with =35 X I .

X
N o=0 g=0 y=0

3.4 STEP RESPONSE

We will now obtain the solution for the case where the time:
dependency of the body force is a step function. The components of/,”

the body force in this case are

Fo(x - x )8(y -y )8(z - z )H(t)

f =

X X

£, = Fyolx = xdsly - ypls(z - zH(®)  (3.31)
f,= F8(x = x )6(y - y )8(z - z JH(t)

Note that once again, the'force is assumed to bé applied at the pbint
(Xo;yo;zo) anq at time t = 0 with components having magnitudes Fx’ Fy,
Foinx, y, 2 directions respectively.

A similar procedure can be uéed heré, in order to.derive dis-
placement expressions.. Not surprising]y, these expréssions have the
same form as the impulsive respoﬁse displacement exbressions (3.30),

"except for the functions



s1nw2Nt o sintht
3 .
“an N
. which are
1 - cosszt 1 - c05tht
b
2 2
Yo “tN
respectively.

~ This completes the analysis for the vibrational response-of
- the rectangular paralle]épiped with six rigid—]ubricated faces. In_i
the f0110wihg chapter, analysis for the free and forced vibrations

of a rectangular parallelepiped with four faces rigid-lubricated and

two faces stress-free will be given.

32
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Iv, RIGID—LUBRICATED/STRESS-FREE BOUNDARIES

As a next step to the analysis of the'response of a fectan-
gu]ar'b]ock, one can consider the case‘of a b]dck wfth two stress-
| free and four rigid-]ubricatédbfaces. This system ié depicted in
Figure 4.1. In this figure, the z-faces (cross—hatched) are §tress- 
free and x,y faces are rigid-]ubricated. This probiem is consi-
- derably more involved than the previous ohe dué to ‘the modeAconVer%;/
sions on the two stressjfrée‘faceé.' The'complexity in:the wave
propagation a]so/ho]ds true for the ndrha1 modes ahd:thé charac-
teristic‘equafion as well. bwhére.in Chapter III it Was.pbssib1e
to determine by inspectfon the exact form of thé nofmalbmédes, hoW—'.
ever, in this case it is very difficult to do so. Hence, we W111
make use of the Seperated wave equations 1n‘order to obtain the

normal modes of ‘the system.

| 4.1 FREE VIBRATION SOLUTION

The equation of 1nterést‘for the free vibration solution is

the Eq. (2.9) and is repeated here for convenience.
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FIGURE 4.1 - Stress-free r‘igid-mbricated boundaries. _ .
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tvzu + (CE - Czt)Y(Y - u) =i} - - (41)

In order to solve this equation'we'need the boundary conditions; and,
for a block with z—faces'being'stréss¥free while x, y-faces are

rigid-Tubricated the boundary conditions can be expressed as

u, =0 . _~auy/8x auzlax =0 _ at X = 0, a3

uy = 0. R aux/ay =du, /3y =0 ,gt - y=0,b ;»
au au au au au au au .
Aov Ly 2-_Z,7X__2,_ JY._g o (4.2)

where 6 =1+ (2u/)).

As explained eariier the equatioﬁ of mdtion can not bé so]véd by S
1nspect1on s0 we will use the separated wave equat1ons, (2 12) and/ﬁ |
(2.13), which were derived in Chapter II For the free v1brat1on

case, the body force terms in these equat1ons are neg]ected_and the

seperated wave equations can be written in their new form as

c2v2 T | A - (4.3)
vy = . : | N 3

The general sO]utﬁons for these equations are (See Appendix B):

¢ = (Cjcosax + Czsinxx)(c3cossx + C4s1n6y)(c Cosygz + C651"Y22)51n“2t

| ¢1=:(D]cosqx,+_Dzsin;x)(D3cosBy + Dysingy) (Dgcosy,z + Dgsiny,z )STWutt
’ | (4.5)

= (E]cbsxx + E231nxx)(E3cosBy + E4sin3y)(E cosy,z + EGCOSYtZ)Sinutt

Y, = (Flcosux + F251nux)(F3cosBy + F4S1nBy)( 5cosytz + F651nyt )s1nwtt'
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By considering‘the rigid-lubricated parf of the boundary conditions,
some of the unknown constants can be eliminated. Then the‘potentia1

expressions can be written as

oy = -cosaxcosBy(A]NcosYzz + A2NsinYzz)siant

e COSGXSJHBY(B1NcosYtz + B,ysinyz)singt

(4.6)
N

w2N= s1ngxcosBy(C]NcosYtz + C2NsinYtz)sinw t

s1nuxs1nﬁy(D]Ncosy£z + Dst1nY£z)sinuNt

and associated wave numbers are
: ' ' . ' 1 '
a=nma ., B=mi/b , v, = [(w¥cd) - (0% + 8] /2,
vy = Lluf/ed) - (a2 + 82172
and n,m = 0,1,2,.., . _
~Upon substitutjng the assumed potentials, Eq. (4.6), into the Eq."~

(2.14), onevfinds the normal mode displacemeht components related

to the P and S waves seperately.

Uyy = sinaxcqsﬁy[a(A]NcosYzz f‘A2N51nyzz)]s1ant
P '— . ) - " . ‘ . .
Uy = cosaxs1n6y[B(A]Nco§Yzz + A2N51nYZZ)]S1ant o (4,7)
P = CO§ xcosBy[y. (A, siny,z - A, cosy,z)]sinw t‘
- Uzn = COSOXCOSBYLYRRyn>TYg2 = MaN=3Yg N
and = ‘ | | | |
Uy~ sinaxcosyL (8D = v¢Coplcosysz * (BDyy * vy Cyp)sinyyzlsinuyt
ule = cos‘quiney[(_vtBZN - abyy)cosy,z - (aDyy + YtB.]N)_ST'nYtZ]ST'ant}’
- R (4.8)
uiN = cosaXCOSBy[(aC]N - BB1N)C°SY£Z - (aCZN - BBZN)sinytz]sin@Nt .
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Then we wil] make use of zero divergence'condition; vey = 0, in order

to reduce the number of unknown constants. App]ication'of this con-

dition to the vector potential, ¢, leads to the result that

D]N = ﬁ(]/Yt)(uBZN + BCZN)

Don = ~(1/vg)aByy + BCyy) -
These relations al1ow'a simpjification in Eq. (4.8) yie]ding'

Uxn T 51"“XC°SBY{'(1/Yt)[qBBZN‘+ (g% + Y%)CZN]CQSYtZ
+ (1/v)[oBByy + (B2 + v2)CqIsiny zhsingyt -

uy, = COSaxsinBy{(1/yt)[(a2 + Y%)BZN +,aBC2N]CbSYtZ

(U )da® + v})By + ofCyylsiny zdsingt  (4.9)

qu ‘_COSaXCOSBy{(aC]N - BB]N)COSYtZ + (aCZN - BBZN)

Sinytz}sin@Nt

Then the displacement components due to Séanes'may be expressed

in a new form defining -

gy = -1/ lagByy + (87 + Y0y

| . S (4.10)

Agy = (/v )00 + v3)Byy + aBCoy]

Agy = ~(1/v)L(e® + v2)Byy + aBCyy]

-and substituting these new exp;essions for the amplitudes into the

Eq. (4.9) yields
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S _ . ' .. L

UN = s1naxcosey(A3Nc05ytz + A4N51nytz)s1antv

QS = cOSaxsihBy(A cosy,z + A, siny,z)sine t (4.11)
yN BNZUSYE4 T Aenc 1Yy N .
S .

U,y = c05uxcossy{(1/yt)[(qA4N + BAGN)COSYtZ

N

- (ocA3N + BA5N)sinYtz]}sinm‘t
Finally the displacement components due to P and S-waves, Eqs. (4.7)
and (4.11), are combined to generate the ndrmal mode displacément

components:

-~ .

uxN s1naxcosBy[a(A1NcosYzz_+ A2Nsiny£z) + (A3Ncosytz

+ A4Ns1nytz)]s1nmNt = ¢ ySTnuyt

f d
"

N cosuxs1n§y[B(A]Ncqsy2g + A2Ns1nygz) + (ASNcqsytz

+ A6Nsinytz)]sinmNt>= ¢yNsinmNt' ‘ » (%,12)

N 'COSaxcosBy[yz(A]Nsinylz - AéNCOSYzZ) + (]/Yt), |
[(aA4N +'BA6N)C°SYtZ - (aA3N + BASN)sinYtz]sin@Nt
= ¢ZNsinmNt

The next step in the analysis of the free vibration prob]em
is to determine thé_natura] frequencies of the'system.l The aboVe
normal modes are substituted in the boyndary’conditiqns (4.2);
Twelve éf the eighteen boundary conditions related to the r1gid-'
lubricated faces are.sétisfied exacf]y, while the other six stress-

free boundary Canitiohs yield six equations with six unknown cons-

i=1,2,...,6):

ténts Ain (
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2 + 2. 2 - ... \ ‘—‘._ - » v:
(a® + 82 + oy2 A, - (0 Dahgy = (6 - 1)BAg = 0,

2 + p2 4 2 2 ‘n2 2 .
(02 +8 GYQ)COSY£CA]N t(a® + 8% + oyy)siny Ay

- (8 - 1)ac05ytcA3N - (g - j)asinytcA4N - (o ‘vj)BcchtCASN

- (6 - 1)BsinytcA o ,

6N -
ZaYﬁYtAZN- (a2 - Y%)A4N - aBA6N= 0, _ (4.13)

-2ay2ytsiny2cA]N + ZaYQYtCOSYQCAZN + (a? - Y%)SinYtCABN,:

- (a? - y%)costhA4N + asiny cAgy - aBcosy,CAcy = 0 ,
. (g2 - 2\a =
28Yvihoy = aBAyy - (8% - v)Ag = 0

—ZBYQYtS1nY2CA]N + ZBYQYtCOSYQCAZN + aBsinthA3N |

- ' \ 2 _ ,2Vcl o (a2 _ 2 =.' _
chqutcA4N + (B v yt)s1nytcA5N (B yt)COSthAGN/, Q .

These equations can be easily put into a matrix form, where the

determinant of this matrix yields the frequency equation,

(P% + Rz)sinzytc sinyzc + 2PR(1 - ;osY2c cOsytc)sinytc =0 _
’ (4.14)

where- P = 4(a? + sz)ygyt and R = (a® + B?‘4'Y%)2 :

Relations between the amplitudes AiN"(i =1,2,...,6) can be also
obtained from the Egs. (4.13) by using Gaussian’e1imination‘meth6d{
 There are several combinations of frequency equations and amplitude

relations depending on the values of sihytc and the wave numbers a

and B which are summarized in Table 4.1.



TABLE 4.1 - Appropriate Modal Coefficients and Fréquency Equations.

t

Mod@lv , sinth =0 | sinth #0 | |
Coefficients a>0, B>0 |a =8 =0 a>0, B=0 . >0, B >0
2 2 2 2 2
N - AN - - Asy
R(2§LY,LYt) D - R(2vgYy)
' ; y bz 2.
Aon - 0 g oY, | B
. Ay T Y.
Yol : 28Y,Y,
C Ay . R(cosy,c - cosy.c) \ .
3N -(8/0)Agy 0 £ t (@/B)Agy
PsinYzc f Rsinth N
, A4N 0 0 ‘* | : (a/B)AﬁN
| ASN" * 0 0 : _ _'R(COSYQC - COSY,C )
o ‘ | Psinyzc + Rsinth 6N
Aen 0 0 0 | | *

v (4.15) (4.17) (4.19) | o © (4.20)
Frequency wy = CtA wy = clA' (p? +‘R2)sinY2csinth + 2PR(1. - cosYzc costh) =0
Equations . (4.16) - (4.18) o ., - (472])

. A2 = o + B2 + y2 P = 4(a? + BZ)YSLY’C R = (o2 + B2 _ v2)2

ot
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Siny.c in Eq. (4.14) can be factored out ahd setting this term
equal to zero nges the frequency equation (4.16). In this-case, the
only possible combination of .wave numbers o, B and sinytt are those
where sinth_= 0anda > 0,8 >0, becadsevif any of the two wave
numbers is zero then the determinant‘df equations (4.13) vanishes.
The amplitude relations associated with sinytc =.0'and o>0,8>0
~are (4.15), Considering these relations, P and S-wave displacement |

expressions become

”~

uzN =0 uiN = -ASN(a/B)SinaxcosBycosyﬁzsin»Nf :
' uP =0 uS = Av c i i t
W\ R N 5N OSaxs1nByc05ytz§1nuN
P _ L. S
Uy =90 s Uy =0

s
/

~ As seen in the above equations,»the combihation, sinytc =0, o >0,
B >0 corkéﬁponds to modes in which the displacements are in k-yv
plane. Since«dﬁsplaéements due to-P-waves afe zero, on]y shear'
wéves propagate in thé block. Note that,'the‘frequency equation
has on]y shear wave speed which means there are no mode_cdnversions
at the streés-free boundaries; thefeforé the waves pfopagating in
the block are SH-waves. | |

Note that, Eq. (4.16) is notAthe'only fréqUency eqUation§
in the.case’whére sinytc is not zerobit is possible to find which
will cause the term.given by Eq. (4.21) to vanish!, In such cases
Eq. (4.21) is the frequency'équatidn. This is a transcendental
equation haVing both of the longitudinal and shear wave speeds

which means that mode conversions at the stress-free surfaces are
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possible. These mode conversions are responsible for the increaéed’-A':
complexity in fhe ahp]itudé'relations (4.19) and (4.20). The natural
frequencies'ofvthe system can be obtained implicitly from fhis equation.
The amplitude relations associated with the combination where sinyﬁc } 0
and o =B =0 are given by Eq. (4.17). Now, P and S-wave displacement

components are given as

P _ S _
uXN =0 4 uxN =0
P _ - S
uyN 0 s uyN =0
..uP = -A c . t .S 0
U = »2NY2 osaxcossycosvlzs1nmN s uy=0-

In this’case the freduency equatibn“(4.18) is‘a very simp]é'form of
Eq. (4.23) sincé the w5ve numbers o and B are équa] to zero and the
frequencies of the system can easily be ca]éu]ated. This case ré§;
‘resenfs P-waves propagéting in zfdirection dn]y betause only P-wave
disb]acement chponént in fhe z-direction is present. Since the
~ P-waves are normally incident to the stfess—frée z—faceé, there are
no mode conversions aﬁd they reflect back and fofth’between these
two féées. | |

~An a]tebhative éombihation,is the case sinytc # 0and o > O;

. B = 0. In this case, the disp]aéement components due to_P and S-waves

are
UEN = sinqx[a(A]NcosYzz + AZNSinYQZ)]Sianf ‘
P =
uyN 0
p _

= c05ax[y£(A1NcosYnz'- AZNsinYQg)]siant
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and
S _ . . .
Ul N $1nax(A3Nc05ytz + A4Ns1nytz)s1nmNt
s
uyN =0

yzN =_C°sax((a/Yt)(A4NC°SYtZ - A3Nsinytc)]sinmNt

~and it can easily be seen that P and S waves propagate in the block.
WhenAsinth # 0 and o = 0, B> 0, the reversed conditions éxist. The

displacement components are °

‘uxN =0
'“5N = sihsy[B(A]&cos§22.+ A2Nsinyzz)]sitht
UZN = cosBy[yg(A]NSiﬁyzz - A2Ncosyzz)]siant : a
- and
= 0
uiN = sinBy[AsﬁgosYtz + A6Nsinytz]§inQNt
UEN =vcosBy[(B/yt)(A6Ncosytz - A5Nsinyt2)]siant

Finally for the combination sinytc #‘0 and o > 0, B.> 0 both of the
P and S-wavés prapagate in ai] directions since none of.the‘disp1écé—
ment components dué to these waves vanishes. The amplitude relations
and. the frequenéy equation associated with'these.three case Are given
:»by fhe equatiohs (4.19), (4.20) and‘(4.21)f They repfesent the pro-
pagation ﬁf mode converted P and SV-waves. Some of the mode shépes

associated with these combinations are given in Figures (4.2) through (4.
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FIGURE 4.2 - (001) Mode for u

z

(symmetric). K
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© FIGURE 4.3 - (010) Mode for u_ (antisymmetric).
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‘FIGURE'4.4 - (110) Mode for u

z

(antisymmetric).
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FIGURE 4.5 - (121) Mode for uz'(symmetric)f
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The asterisks in Table 4.1 denote the unknown amplitudes that
must be determined from the initial conditions. The initial condi-

tions are generally in the form

‘E(Xs.ys‘zso) = l;l'o(X,_y,Z) \ , »
. . ' o : (4.22)
u(x,y,2,0) = 0 (x,y,z) , r

where u, and go are the initial disp]acement'and~ve]oéity fie]ds
respectively.
The displacement components are the infinite sum of the -

normal modes defined by the Eqs. (4.12) and they can simply be

written as
u (x,y,z,t) = ﬁ Uy (X>¥525t)
; = ) /
uy(x,y,z,t) ﬁ gyN(x,y,z,t) |

uz(x,y,z,t) ﬁ_uZN(x,y,z,t)

with the understanding that T= 3% I I » as before.. Note

N n=0 m=0 p=0 o
that n and m spec1fy the wave numbers o = nﬂ/a B = mm/b respect-
Cively and P is used to represent infinite sets of natural frequenc1es

correspond1ng to the combinations of 1ntegers n and m.

4.2 FORCED VIBRATION SOLUTION

The equation of motion for the case of forced vibration of an
“elastic media was given by Eq. (2.9) which we repeat here for conve-

nience,
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202 4 o '
Civiut (cf - vy - u) +F =0 . (4.24)

Due to its simplicity, in our analysis of the forced vibration problem,

we Will utilize the normal mode approach.

I .
t can be shown that the modal funct1ons dyN® Syn ¢ZN‘are
orthogonal over the domain of the block that is,
abec : - '
S I T oygy dx dy dz =0  if N(n,m) # M(n',m") - (4.25)
000 . |

Since the normal modes (4.12) form an orthogonal set, the disp]dcements
at any point and time may be represented by the superposition of the

modes [16], i.e.,
u(xsy,2,t) = T op(x,y,2)Ty (1) - (4.26)
- N : |
e
where
Oy = dund T oppd Tk

and TN(t) represents the time varying character of the modes. Subs-
titution of this series representation of dispTacement vector (4.26)

into the equation of‘motion yields:
ﬁ[C%VZQN +(c] - C%)Y(Z s o T(E) + f = ﬁQNTN(t).‘ | (4.27)

Recalling the free vibration displacement solution which can be’

expressed in the vector form as

u =3z ¢Nsiant : : ' (4.28)
N7 _ . :
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and substituting it into the free vibration equation of motion, (4.1),

one obtains the following relation.

~ ~

2g2 2 .2 . _ ‘ X
ciVioy * (_Cz - V(Y - 9y) = -wﬁcRN _ f (4.29)

Thus, utilizing Eq. (4.29) in (4.27) and rearranging the terms, we

get |
ﬁ on(Ty () + wfTy () = f - (4.30)

where TN(t) represents the second derivative of TN(t) with reépect

to time. Taking the scalar product of both sides of Eq. (4.32)‘w1th

¢M where M(n',m') denotes another modal function and integrating over

the volume of the block, one gets

ﬁ(TN(t) + wﬁTN(t))6 ooy AV = 6 fogyav. (4:31)

Recalling the ofthogona]ity’condition for the normal modes, Eq. (4.31)

can be written as

. 2 - V N
TN(t) + wNT (t) QN(t) , (4.32)
where
1 abc . - :
Qult) = —— /S f(x.y,z,t) ¢y(x,y,2)dx dy dz (4.33)
N by oo0o0 T- , '
“N :
and
abc . , , o 4.3
Dy = S/ [ oy gydxdydz | (4.34)
00O

(See Appendix C for details).
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In order to obtain the time dependency, TN(t), of the modes,

we will make use of Laplace transforms. ‘Taking Laplace transform of

Eq. (4.32),

+

HTy(0)] + wf Z[Ty(6)] = 2[Qy(1)]

where

Ty ()] = $2Ty(s) - S Ty(0) - T (0) ,

BTy (1)] =

1
—
=
—~
[72)
~
-

o0y ()] =
and assuming the motion starts from rest (TN(O) = TN(O) = %N(O) = Q)
yields the expression
27 2 -7 ‘ /ey
S TN(s) + wNTN(s) = QN(S) . | . (4.35)

It is possible to express the above equation in a new form as

TN(S) = VN(S)GN(S) | . . (4.36)
where . SN
T (s) = — . | O (4.37)
SZ +-w§l - )

The inverse transform of Eq. (4.36) may be taken by using the convo- -

Tution theorem [20],

Ty(t) = — "Of Q(T)sinuy(t - T)dt . | : (4.38)
N .




It is possible to determine the time varying functiOn,-TN(t), for any
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generalized body force accofding to the Eqs. (4.33), (4.34) and (4.38).

In the next two sections the time dependéncy of the normal modes for
the cases where the loading has an impulsive and step 1ike characters

will be considered.

4.3 IMPULSIVE RESPONSE
A concentrated impulsive body force can be written as
f(X,y,Z,t) = le + f‘y‘l + fZE N v - (4.39)

where the components are given by

F8(x - % )8ly - y)8(z - z,)8(t)

-
1"

—h
"

- F 80 = x )y - yg)s(z - z,)8(t) (4.40)

fo= Fuo(x - x )8y - ¥ )8(z - z)8(t)

Upon substituting Eq. (4.39) into Eq. (4.40), one obtains

Q,(t) = _ﬁt—'[Fx¢xN(xo’yo’zo) *F b (%gYgeZy)

+F0on(XaYga2)18(E)  (4.41)

Thus substituting the above equation into Eq. (4.38) yileds TN(t):

_ _—v : |
TN(t) T Dyw I:qu)xN(xo_’yo’zo) +vF ¢

(x .y ,2,)
NN oo™ O

yN

+F o, n(X oy 020 Isinu it (4.42)
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Therefore the cqmponents of the displacement vector obtained from

Eq. (4.26) are

1
NN

u, (%,y,2,t)

)

z dyn (%Y 5s2)[F 0, 0 (x 5y 52)

D

N .
FY¢yN(xo’yo’zo) * Fz¢zN(Xo’yo’zo)]sm‘*’Nt i

] .
XyYsZ, = n ..
u,(x,y,2,t) 2 Dy dyn (%552 [F 0, N (X5Y 520)
4 Fy¢yN(xo’yo’Zo) + Fz¢zN(xo,y0;zo)]sinmNt', (4.43)
| _o ]
u, (X5y,2,t) 2 Doy b N (Y2 IF 0y (0¥ 2)

by (XosYge2e) + F oo (X sy sz ) Isinayt

4.4 STEP RESPONSE

The components of a concentrated force in the case where the

time dependency is a step function can be written as

f, = FX§(x - x,)8(y -y )é(z - z JH(t) |
f, = Fy8lc - x))8ly - yo)e(z - ;O)H(t) | | (4.44)
f, = an(* ) xo)ﬁ(y ) 5‘0)6(Z ) ZO)H(t)

The procedure for the derivation of the function Ty (t) and the dis-
placement components are same as outlined in’the previous section.

Thus,



u, (%,¥,2,t) 7 Oen(Ys2)IF 8\ (x Ly sz,)

L 0°v0
N Dywy

+ . - ¢
Fy¢yN(xo’yo’zo) * Fz¢zN(xo’yo’Zo)](] Coszt)

_ 1
Uy(X,.y3Z’_t) ﬁ D wz ¢yN(X,y,Z)[FX(bXN(XO,yO,ZO) v
NN | (4.45)
+ Fy¢yN(Xo,y0,Zo) + F 0 0(XY052,)1(1 - coswyt)

-~

1 .
u (x,y,2,t) =T —=-¢ v (x,y,2)[F 9\ (x sy .2 )
N Dywy -

+ Fy¢yN(Xo’yo’Zo) +,FZ¢ZN(x0?yO,zO)J(1 - coswyt).
This completes the analysis of the forced vibration prob]eﬁ

of a rectahgﬁ]ar block. In the following chapter, numerical results

for two case; first for four faces rigid-lubricated, two faces stress-

free, secondly for the case where all six faces are rigid-lubricated

will be presented.
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V. RESULTS anp CONCLUSIONS

5.1 NUMERICAL RESULTS

Numerical calculations were done for the response of a rectan-

gular parallelepiped with two sets of boundary conditiqns:

1. Six faces are rigid-Tubricated (6RL)
2. Four faces are rigid-lubricated and two faces are stres§-9

free (4RL + 2SF).

The properties of the block used in the numerical calculations are
given in Table 5.1.

TABLE 5.1 - Properties of the B]ock Used in Numer1ca1

Calculations.
Properties - = Case 1 g Case II
6RL 4RL + 2 SF
Material Aliminum Aliminum
p 2700 Kg/m® 2700 Kg/m®
c 6300 m/sec . 6300 m/sec
o 3100 m/sec 3100 m/sec
A 46.2_GPa 46.2 GPa
0 25.5 GPa 25.5 GPa
a - 0.1 m 0.1 m.
b 0.1m 0.1 m
c 0.Tm 0.1 m
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Two computerlprograms have been deve]oped¢in order to calculate the

'di§p1acemehts in z-direction due to impulsive and step point loads.
First program calculates the z-axis disp]acémehts as a function of

time for a block with six rigid-1ﬁbricated faces and the other one

does the same work for the Block»with four rigid-1ubricated/tWo stress-
free faces. These are given in Appendfx D. Note that both of the

| programs are generalized so that they can be useq for any block of

any material and dimensions. In order to decrease the CPU time used,

- the freduencies and spétia] part éf the normal modes were generated

first in a loop and the calculated values were stored. Then, by

using another loop, the spatial part of the modes were combined with

their_time'dependent parf and the resulting values of the normal modes

were added so that disp]aceménts were obtéined_for diffeﬁeht times; |

In this way, the frequencies and the spatial dependent part of thé/modes_'

were ta]culated only once instead of to Ca]cu]afe them for every time

increment. A CDC/Cyber series, type 815 computer were used to cal-

culate the numer1ca1 results.

The number 'of modes taken and the CPU times used in the runs
are Tisted below. Note that the CPU times used in the runs for the
block with'fourvrigid-]ubricated and two stress-free faces are greater
than the CPU tihes used for the b]ock,wjth SiX rigid-]ubricated faces.
Thi§ is becaﬁse in the second case of boundary conditions, the trans-
cendenté] frequeﬁcy equation is an imp1iéit function and must be |
soived iteratfvé]y‘whi1e for the first éase, we havé two simple fre-
quency eduations which can be-561ved explicitly thus a few CPU time

was required in ca]cu]atihg the frequencies.” On the other hand, the
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TABLE 5.2 ~ CPU Times and Number of Modes Taken.

Number of normal CASE 1 CASE 11

modes taken 6RL - 4RL + 2SF
1000 v 3.59 min. 5.58 min
‘4096 14.27 min -
3000 28.42 min 44.17 min
15625 55.76 min 92.76 min
21952 76.64 min  126.12 min
50653 168.17 min 276.75 min

103823 323.41 min 512.51 min

displacement expressions for fhe block with four rigid-Tlubricated
-and two stress-free faces are mofe complicated thaﬁ those for the
block with six rigid—]dbricated faces, thus,‘more CPU tihé was reJ[f
quired to calculate the'disp1acement expressioné in the second case.
In the numerical ca]cdlatiohs, the displacements were measured at
the position (6.05; 0.05; 9.075) m. The components of the body
forﬁe are acting in thé X,Y,z directions and each has a 0.577 N
magnitdde; i.e. tota1 magnitude of the force is one Newton. The
coordinates of the point of app]ication of the body fofCe was taken
as (0.05; 0.05; 0;05) m. The location. of the souce and the receiver
are the same in the both cases of the block. |
As a first step in.this ana]yéis, 1000 numbgr of terms wére
taken in the infinite series to obta%n‘displacements for bqth cases.
"“Then the number of modes were increased and the rate of convérgence

in displacement values was controlled. The numbers of normal modes




that were used in numerical computations are given in Table 5.2{‘ The

value of the displacement obtained by adding nearly 50,000 terms was
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only off by 10% from the value obtained by faking nearly 100,000 terms.

Computing with Targer numbér of terms were found to be uneconomical as
would be seén from TabTe 5.2.  Thus, the results obtained by takiﬁg
nearly 100%000 terms were considered to_be‘final results. 'Theée are
given in Figures 5.1 through 5.4. The z-direction disp]acemeht v.s.

| time histories obtained by taking 8,000 and 50,000 terms are also

given in Figures 5.5-5.8 and 5.9-5.12 respectively.

In Figures 5.1 and 5.2, the response of a block with six kigid-

lubricated faces to an impu]éive and a step point loads are shoWn
respectively. In the following two figures,'i.e, Figures 5.3 and 5.4,
these are given %or a block with four rigid-]ubrfcated and two stress-
free faces. [In these figures the first peak at nearly four micro-/
secdnds_afteﬁ the impulsive force‘is applied éorresponds to the |
arrival of P-wave to the receiver. The ripples in,the»outputs'before
this peak are due to the fact that normal mode solution converges
's1ow1y,for impulsive loads. The other peaks in théseAfigufes corres-

pond to the arrival of various reflected waves from the boundaries.

The rays associated with them are shown in Figure 5.13.

5.2 CONCLUSIONS

The normal mode solutions were presented in this thesis for
the forcéd vibrational response”of an rectangular parallelepiped

" with two sets of boundary conditions:
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1. Completely rigid-lubricated boundaries

2. Four rigid-lubricated and two stress-free bouridaries.

For these cases numerical results were obtained fof the response of |
a samp]e b]ock to an impulsive and a step point load.

In the normal mode analysis, eventhough the expressions are
exacf, in the numerical applications one needs to take Qery 1arge
number of terms (normal modes) in order to get the resu]tsvwifhin
an acceptable accuracy. |

Although rigid-lubricated Boundaries are not representativev
of a typical acoustié emission experiment, solution of the problem
for a block wfth all rigid-lubricated faces provides a first step
in obtaining more difficult solution for the stress-fkee/rigid—
1ubri¢ated case. On the other hand, the block with four rigid- )
Tubricated and two stress-free faces is a more realistic case. !
Therefore, fﬁe solution of this problem can provide a better model -

for an acoustic-emission event and can be useful in the field of

nondestructive testing.
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FIGURE 5.1 - Response of a rectangu]ar para]]e]ep1ped with six rigid- lubricated faces to an impulsive point
load (103823 normal modes were taken) '
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FIGURE 5.2 - Response of a rectangu]ar parallelepiped w1th Six r1g1d 1ubr1cated faces to a step point load.

(103823 norma] modes were taken).
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FIGURE 5.3 - Response of a rectangular paraHe]epwed with four rigid-lubricated and two stress free faces
to an impulsive point load (103823 normal modes were taken).
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faces to a step point load (103823 normal modes were taken).
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FIGURE 5.6 - Response of a rectangu]ar paral]e]ep1ped w1th six rigid-lubricated faces to a step po1nt
lToad (8000 modes were taken).
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FIGURE 5.8 - Response of a rectangular parallelepiped w?th four rigid-lubricated and two stress-frée faces
to an step point load (8000 modes wére taken). ' '
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FIGURE 5.9 - Response of a rectangu]ar narallelepiped with six rigid- 1ubr1cated faces to an 1mpuls1ve
point load (50653 normal modes were taken)
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FIGURE 5.10 - Response of a rectangular para]1e1ep1ped with six r1g1d Tubricated faces to a step po1nt
' load (50653 normal modes were taken) ' v

69




lkUz;

(x105)m

o'oln/\n/\./\f\'

‘TUUUUVU

P A T T

N

'FIGURE 5.11 - Response of a' rectangu]ar'paraHe]epi"ped with four rigid-lubricated and two stress-free

faces to an impulsive point load (50653 normal modes were taken).
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FIGURE 5. 12 - Response of a rectangular para]]e]emped with four de Tubricated and two stress- free faces
to a step point load (50653 modes were taken).
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APPENDIX A
SEPERATED WAVE EQUATIONS -

v

Derivation of the decoup]ed’wavé equations will be given in
this section. In deriving these equations, the equation of motion
in terms of wave speeds will be used. This is Eq. (2.9)

292 2
civiu + (c

- 2 .. =.. . ' v »
oepveweted . ()

Substituting the Helmholtz equations of disp]acemeht

[ =

]
1<
©-
+
<
=
=

and body force

¢ =h
i

Y -
into the equation of motion (A.1) gives

CEvR(ve + ¥ x ¢) * (ef - Q)WY - (V6 + T x ¥) |
+ (V6 + v x H) = (3270t2) (Vo + Y x v) . (A.4)



Then substituting the relations

<]
N
—
<1
-
~—
I
< .
—
<
N
©-
~—

4 21 j (A.5)

<
L]
<
-
I}
<
N
<

and

T _ : (A.6)
into the Eq. (A.6) and performing necessary algebraic manipulations,
Eq. (A.6) may be rewritten as .

\Z(c;v2 +G - ) + v x_(c%vzg +H - @) =0. ' ‘ (A.7)

Note that this equation is equal to zero if each of the terms in the

parantheses vanishes and this leads to two seperated wave equations:

c;v2¢+ G =¢ _ | , , (A.8)

c§v2w+ H= 9 | | (A.9)
Now the equation of motion which includes both P and S-waves is
seperated into two independent equations. The first ohe, Eq. (A.8),

defines the P-wave motion and the second one, Eq. (A.9), the trans-

verse motion.
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. APPENDIX B
| SOLUTION OF SEPERATED WAVE EQUATIONS

In this section, the 501utionvqf‘seperatéd wave equations
derived in the previous section, App. A, will be given.
For the free vibration case, the body force terms in the

wave equations are neglected, i.e.,

Ve s ——4 S B
.Cl V

2, - 1 = .

v2y = ¥ (B.2)

. -~ C%l ~

The seperatioﬁ of variables method will be used to solve the wave
eqdations} | |

Now consider the wave'Eq. (B.1). The solution of this equa-
tion can be assumed to be in the form of the product of two functions,

one with spatial dependency, the other with time dependency,

| ¢(x,‘y,2‘,t) = w(x,y,Z)T(t) . R (B.3)

~ Substitution of this eXpression'into Eq. (B.1) gives



2 T ' ,
e .. T - —wﬂ, : (84)

- where w; represents the seperation of variables constant. Thus, two

1ndependent differential eqUations are obtained fkom Eq. (B.4)
VW 4 (wp/ci M = 0 - S , (B.5) -
T + wET =0 . : | ' (B.6)
The so]ution of the second equation is simple and is of the form-

T(t) = A]COSth + Azsinwgt o : (B.7)

which represents simple harmonic motion with the frequency mz.
The first’equation, (B.5), is known as Helmholtz equation

whose solution is obtained by assuming a solution of the form R

w(x;y;z) = X(x)Y(y)Z(z) . 3 (B.8)

Hence, substituting this expression into the Eq. (B.5) yields the

following equation

. - w2 .
PR SNV S : : . ' (B.9)
' c; ' ' _
Setting,
X =t - | (8.10)
Y/v = -2 . | : (B.11)

gfves'a third relation
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L= -W/ed) - (o2 + 8] = 42 . (B.12)

These three expressions may be rearranged to give three differential

78

equations:
X + 02X = 0 (B.13)
Y + g2y = 0 (B.14)
Z+y22=0 (B.15)
Solutions of these equations are
X(x) = B,cosax + B,sinax ' (B.lsf'
Y(y) = Bycosgy + B,singy | ' (B.17)
| 2(z) = BSCOSYQZ + BGSinyzz . - (B.18)

Equations (B.7), (B.16), (B.17), (B.18) may be combined according to -
equations (B.3) and (B.8). Assuming the initial condition T(0) = O,
the unknown sonstant A, can be eliminated. Then the final result

can be written as

d(X,y>2,t) = (C]cbsax + Czsinay)(C3cosay + C4sin6y)

(C5COSYQZ + Cﬁsinyzz)sinwzt . (B.19)

This is the general solution for the free vibration scalar potential.
Now consider the transverse wave equation. It can be written

in component form as

vay, = (1/c3), - « - (B.20)
vy, = (/e | (8.21)
vy, = (1/¢2)b, - o - -~ (B.22)



These three equations are solved by performing similar algebraic work

as done for the longitudinal wave equations. The results are

wx(x,y,z;t) (D]cosax + Dzsinax)(D3cosBy + D4sin6y)

' (DSCOSYtZ + Dssinytz)sinwtt . ,(B;23)

wy(x,y,z,t) ={(E]cosax + Ezsinux)(E3cosBy + E4sin8y)

(E5cosytz + Eﬁsinytz)sinmtt. . (B.24)

wé(x,y,z,t) = (F]cosax + Fzsinax)(FscosBy + F4sin8y)

”~

(F5c05ytz + F6sinYtz)sinwtt R : (B.25)

where Yi is transverse wave number and may be expressed as

vy = [w3/ed) - (o + 69172
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'APPENDIX C

EVALUATION OF THE TERM D

”~

In this part, the term Dy which was derived in Chapter IV

will be eVa]uated. The equation

o
S by ¢ Oy dX dy dz
000 NN

may be written as

~"ab c( , é 2)
Dy = S92 + ¢2 + ¢2)dx dy dz
N 000 X y z

Since oy = ¢xN i+ ¢yN

in component form as

_ N xN yN zN
where

abc 2 dy dv d
D= S ST 9 1X a4y dZ
xN 000 xN
a.b-c L
_ 2 '
D, = [ fof ¢yN dX»dy dz

I+ o,y Ek. Equation (C.2) ;an_a]so be written

(C.3)

S (c.a)

(C.5)
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abec

Doy = S/ Jofydxdydz . - , (C.6)

00O

‘ Note that Oy ¢yN’ b,y are the modal functions that are derived 1h,
Chapter IV. Substituting the modal functions into Egs. (C.4-6) and
performing the necessary integrations and also algebraic manipulations,

one obtains the expressions:

' nlab
= 2 '
Dy p {o?(Aypa, * ZA]NAZNA + A2 )
+ 20l (Agyd,+ Agydy) + Agy(Agyd + Agy,)]
2 )
+(Ag0e * gyt * AQA)T (€.7)
-, ab
= 2
Dy =, 1B AT+ Pyt * Ayl
_ : /"
o+ 2e[Ag(Agys, * Agydg) + AanfRgd, * Agd,)]
2 A ‘
+ (AGyd, * Pgfendy * gD, T (c.8)
n, ab \
Oy = =, Talhinds * Pt * et )

+ (v /v Ay (ohgy + BRI, = Apylahgy + BAg )L,

- Agylehgy + BRgy)d, * Apylahyy * BAgy)o,]

b (2 [(afgy + BAGy) %, - 2lahgy + BRGy)

.(aA3N ¥ BA5N)A9 * (aA3N f BASN)QAIOJ}.-> (C.9)

where,

=( - 6aq)(1 + 8g.) o - ' | {c.lo)



Ny S (148,00 -6.)
ﬂa» = (1 +6&0)(] + 580’)
and
sin2y,C
A = g + L
4Y£
~ osiny,C
8y = 3
ZYQ
_ C . S‘inZ'YR’C
Ba = - .
v 4,
sin(y, - v,)C sin(y, +7v,)C
AH = 2 t + % t
20vy =) 20y, Fvy)
1= cosly, +y,)C 1 - cosly, - v)C
A5 = -
EZ(YQ + Yt) Z(YSZ, - yt) .
T - cos(y, - v,)C 1 - cos(y, + v.)C
sin(y, - v)C  sinly, +v;)
A; = -
2(vy = v 20y, * vy)
sin2y,C
by = Lo T
'44Yt
sin?y,C
Ag = t
C s1n2th
Ay o= -

Finally, these are combined according to Eq. (C.3) to‘obtain'DN.

1)
.12)

.13)
.14)
.15)

.16)

.19)

.20)
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APPERDIX D
COMPUTER PROGRAM LISTING



C }
';_ C . :
: E FeEsEALL RIGID uUdRICATED BuUMDARIES*****
. 4 c. ; - ‘
t 4 “C/\L. LIQLZ_QL39K1’&2,<39(1Xl,KZXZQK3X31NI‘D
2 REAL n121,4272494323 )
o DLMENSTUN W:(c)o),uss(zsv).rr(zsa),-w~(a2309),FNr(22390),
L l)au(aunu) nyq‘()z\mg) . ,
£ C
12 o
L3 C SPECTHEN DINENSIONS
1h [ .
i5 : Li=g.1
15 Le=0.1
L7 L3=Jd.1
fad C ) . '
Lo c
Z? c LINGTTUDTNAL AMD TRAVSVERSE WAVE SPEEDS
‘L of . ,
23 c M
<4 ¢ PATAT OF APPLICATION OF TAE FORCE
[ Ti=01472. . :
on Ze=2/7, ’
27 T 213=L372,
cR . _ L
9 E PUTNT AT wHICr DISPLACEMENTS ARE SEASED
2" c . ' ! L ’
tt s Xi=21 RN
37 X2=12 o o
32 _ X3=U.75%L3
34 c : \ ;
39 c !
36 pr=3. 14159?65361
3 =0 , -
38 V=L1RLZ¥L3 /S
39 C ‘ ) o ) -
4" " TATEGER SeT (N=031929.00) AND WAVENUMBER ALPHA
43 c : Co .
42 20 L0 Hi=0seb | =
43 _ <L=FLUAT (NL)#PI/LL
44 C - .
@5 c. INTEGER SeT (M= 0,1,2,...) AwD HqVEVJ“uF& 3ETA
45 Cc : . . .
47 N3 29 Ne=usgd
49 CA2=FLUAT(N2)*PT/LL :
ER C . i B .
20 € THTEGER SET (P=Usladaess) AND WAYENUMBER GAMMa
vl C ‘ : .
5?2 T N N3=yszB | S
51 TRINLLFdalsANDa 42,5040 AND N3 ,F24015D T 30
5% TRIEFLOATINITHFI7L3 v
»8 MAD=KL¥KL e 2¥K2+K3¥K3
54 A=SIT (N4 ‘
)AI’ "'=‘171 \
58 c '
59 ¢ FRE u!h_ lLY F:UU-\TIT_HS
o’ C
ol AL=CLta " L
v? WaT=CTxA ot . e
0?3 [ 3 : - : n ’
b4 o C . .
65 FNL ) =dNL
6% COENTIMIERNT L
o7 TF(N1.52.0.AND N2, EQ. u.AuD.va Ea. 0)00 Tl 8
©8 TF(NL.FU.0eANDoN24EQe04ANDsN34GT201G0 TI I
I IFANL FQeUAND N2, 6T UsAND N34EQ.0)60 T 11
&) TTFANL.TUe0.AND N2, GTeOeANDeN3.5T40150 T3 L2
Al TRIVL6T U AND SN2 TusUeaND NI EJ.u)un TJ 13
72 TE(HL. AT eUe AND e 20 S04 0. ANDON3 46T 0G0 TJ 14
73 TFGile nr.u.uub.Nz.Gr.u.ANo.wa.Gr,o)co Tl 15
4 TF (R la 5T UnAHD . N2e GlaUeANDaY3.EQ0)6D TD 16
A Di=0.u '
5 RPEIVINY
17 5419 47 D
79 FPAL=C, ,
\ B Efdc=d. .
39, SFA3=a,

.




i
B - 1
b1 ' 33 10 17
82 LY ETAL=g,
82 ETAz=4, !
g4 o ETA3=2, . ; . : : : '
85 . - GO TN 17 : ' N “ et B v
oh - -2 STAL=1, . P oL : - N
a7 . ETA2=2. i PER ‘ '
48 ' (RElA3=z, : B
49 60 T2 17 .
40 13 ETAL=a,
- oSrhz=2,
¥? . TTAs=z,
CE 53 T3 17
4 14 FrAl=z,.
25 FThe=1,
5 COTTAs=2, ; , . : i :
97 54 7317 : R . - . R e e
13 LS Tthi=t, i ) : :
9% SThe=l, i — e
Auyn ‘ TTA3=1, ;
1ol GO T 17 :
152 L5 . FiAL=g. ‘ . X
143 ?I’A<=d'
106 B ITAs=1,
145 LT CLXL=R1EXL
1ut LeX2=K 23 K2
1u7 L . B
LAV UZi=nlvZd : - -
- 149 R2T2=K7%72 . :
X : Covin {323=n3%73 ‘ .
’ 1l Dd"uﬂs(ulxl)vCﬂS(<7x’)*SIN((3X3)
Yi? . Pa=STRIRLALIFLOS(K222)%0LI5(£323)
it : P>=CW)(hllll*51!(&2[2)*CUS(&3Z3) , T
144 . Po=CASERIZLIRUNS (K222)%5TN(K323) '
118 FLl=lo.+P3 Y/ (VELTAL) . :
Yib T225(6 e P ) (VEETA2) o
117 - v F33={b.%Pp) /v ¥ Ta3) :
112 L U1 =KEEKLEFLY ..
149 i 322K 3% 2%F L2 o : L
120 UsA=K5%KI%FES3 I : _ o o ol
161 : U3R=(R1¥XL+K2¥KZ)%F33 S v o L
162 DL=(U21+U32+U34) %P 3/ (L*A) o S/
143 2= (U3R=31-U32) %P3/ (a%a) Coe B ‘
14 a7 DMLY =DL o . o . N |
15 ST I3M2{NY=D2 : SRR - ;
1es : 30 CUNTINUE ; ‘ ) |
: 127 20 CANTINUE . S ) : : o - |
, 1:% LD CUNT I o . L S . R 4
159 . ) S = - ‘ ; con
139 ¢ SUMNING. THE “0DAL DISPLACEMENTS. TO DETERMINE
131 C. 745 U3 thPLALFM?VTs S A FJVCTIDJ aF TIME - - B
132 T=0,0 o . . - v .
153, IT=L.&~7 5 ST B ‘ » SRR
154 FU=(N,5770)%(3,7037E~4) . C . e
1135 : . D2 bl M=1,250 - : RN
136 © TaT+dT T |
©137 TT(M) =T | |
139 U3N=2,0 - i
139 . J39$=0.0 | i
140 o D1 60 K=1,N | . - S . R
141 OFML=FNLIR) |- o . - : . S
142 VENT=ENTIK) - | ' S S : Dl
143 ARGL=UFNL¥T | N co
144 ARGT=uFNT&T Pl i
145 DISPL=DENLIKY | ; B
14 ' DISP2=N3H2(K) ‘ J
147 C O OPHTL=0TSPLESTNIARGLY/DENL - A
146 . PHIZ=UTSPZ*STNLARSTY/UENT . Cooo
149 P4I=PhlL+PAL2 1 ¢ ' . l
1on DHI)’—WI\HI”(1.~FJS(AnG'))/(JrNL*DCVL)
151 PHIS?= '1151-'74(L.-\.USMM:T))/(')F‘H'*L)F\JT) ) . R §
152 ° PATS=PHISL+PHISE 7 . . . o
123 J3N=J3NCEURPHT : o L
S N2 o J3N3=d3S+FUFPHIS : . el
S L 155 o0 CONTINYL i - .
156 ' U3 ir=us ; : - , ) PR
107 W3S (A =U3NS ! . : : . S :
) 158 . u) CIOMTIitVe - i
e 199 . PrRINT 1

Qon 1 FIRNAT(LHL)
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TPRINT 3

HRITT(5,40)193S(1),1=14250)
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IO D00

Lo 00
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O

[ ReNer]

g Xe Rl

39

53w

~n

14
34

'x\7-(rLuA|(l?))¥Pi/ALc o .

o7

FETEEIIK FACE RIGID-LUSRICATED AND THU FACE STRESS-FREE##&%

v

CuMAnK KLL»XLZ,XL3,CL,CT’N1’V2
UJN?N KrLerds((J7WNJ9IZ:PJ’XK19XK29XIQX29X3
DiMeNSTUY JJ()50),UJS(250),rV(°u00),)JH(?UOJ),TT(ZSJ)

ng"lTUDIWHL Aiﬂ TKANSVE&S- WAYE SPEEDS

u_—JgJO-
TT=31u0,

SPECIMEN DIMENSTUNS

PNLNT UF APPLICATION OF THE IMPULSIVE L0A4D

XC1=¥L1/2, ; o : ’ R
XC2=XL2/2., : : S
XC3=XL3/2.

-~

POLNT AT WHICH DISPLACEMENTS ARE SEMNSE)D
|

XK1=kl
X2=402 . : . )
X3=xl3 o ' - : e
PI=3,1415926536 - ' T e
NEL . T

<=9 S o o oy

NUM3TK OF ,FRTUUENCTES THAT WJILL BE DETEXMINED
FUR  THL INTEGRER STT (Ns4) :

1zPd=vey
T25RD=0

TaTEGER SET (N= Usl’lv.a;) AND WAVENUUBEZ ALPHA

‘

D3 Lh N1=0419 }

,«(1—(rLDﬂT(41))vPI/KLl

InTe5ER SET (n=u,x.4,...)ﬂAvD WAVENUMBER 3ETA
D0 LS Mg=UsL?

AN XRTEXKR+ XL 24 XK 2
{K=0)
Wa=1et
IFLaNDeGT, 7&Q3)un Td ¢
XKN3=FLOAT(K) .
TF (K, ea ZERDIGN TI 33
WEN=CL ﬂj*PI/YLB
TF(L. uT TP¥GD TD L5
oJ T3 14 . . o
FN=0.0 : ' L
1K=u.u E K . : . .
53 T2 34 | - Lo
cali FREQ(AB M)
JEN=WNECL/XLY . |
diy=aN i
Salt MOTC(REN,DR)
=441 .
ER AR B E : - » ’ ‘ ‘ .
IR =UR Lo ' N
K=X+1
TEl(adNUeE0.2eR0)569 Ta 39 -
KK=a K+l :
TElad,LLIP)GO TO 2
CuNY Tl - ) _ . . . .
CIOMTINUE 1 : i . ) -
ARITE (by %) NykXyK . : B .
}!
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‘

31 C : ST
o7 c SJMATRG TnT MUDAL DISPLACEMENTS TO JETERMIME THE J3 NDISPLACEMENTS
33 C AS & FUNCTION OF TIwr
¢4 C -
v5 T=0,9 , P .
5 3f=Ll.e=7 '
u7 FJ=(.571350‘691b°b)?(1 /27D0.)
a8 Mool Ma1,250
T 39 T=T+DY .
99 TIA) =T
91 . Ja3M=0,9 ,
32 : SN ENFETIY) P ;
33 23 60 K=14V ) R
94 DEN=ENI) : '
45 TF(OFNLEOLZERDIGH TU 69
9y - ARG=0FM&T i . . o
97 DISP=U3NIK) | S . ' e
TYB . PAT=0[SPASIN{ARG)/NEN : R
9u PHTIS=DTSP* (L, ~CUSIARG) I/ (DFNEDEN) S : e
1un : U3N=U3NFO*PHI | - i . . :
Qo1 UINS=UINS+FO%PHIS ’ '
102 6D CONTINUE .
193 ' U301 =U3N
1v4 o J3S(%)=u3NS ‘ )
1u5 TE pl CONTINUZ T ,
1ub ~h1r¢(7 101)(J3(ﬂ)9n-ly250)
a7 : AQITC(B,lul)(U3b(ﬂ),ﬂ—},’bO)
198 101 SIR1AT(4FZ0,9) -
109 STOP i
110 END .
111 c !
L2 c
113 c .
114 SUBRIUTINE MDCUAFY4DR) -
115 o SOMAON xLleXU Z,XL:),CL,»Tv“l,"IZ B
116" C COM4ON XCLexC Z,XCBydleIZcRJsXKloXKqulaXZ,x3
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122 c
122 C “DFTFRUIMATION UF MBI AL CDErFICIENT:
124 C T
129 T DIFL=(URNSUEN/ (ELECL) ) mAND 5T T E
126 - )lFT*(UFWvdFV/(CT$CT))-HVD
127 . X{L=CSART(DIFL ), - : L ) B
128 _ XAT=CONNTUIIF 1); S ’ C R
T o ' , PS=dMU-DIFT Lo B ’ e I
131 PST=24 Wi D¥ XKLEXKT o N
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132 TL=k&XL¥XLS ! :
133 CT2=AKTHXL3 |
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ETA3=2,0
A=), . | A
45=CLX(Ue D) ' . .
8a=CHPLATLes D) ¢

A3==R5TH(COL~CC2 )/ {PSTHCSL+RSTHCS2) -
2= (XKIEYKL=DLFT 1/ (2. % XK LHXALEXLT) - :

AL==2  FAK L% ’/((KL~A<1 VIFT)
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tn=1.,

Am=25TH(CCLm L"z)/(P>T*CSI+&ST*CSZ)

Aq=XKL/KK2

Ad=Aa4%49

A2=RS/ (24 wXK2% XKL*XKT)
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LA;FULATIJN dF GeNERALIZZD MaASS TERY N
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SK=XKL+KKT ’
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DL=(AL3724)+CSIE(CCL L2V XK))

S D2=CSLECS1/(2ev%KL))
D3=(%L3/2)=CS1%(CCL/(24%XKL))
CL=CSIN(DRLY/ (2.%DK) :
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C3=(1,~CCOSESKL) )}/ (24%5K)
Ca={Le~CCUS(DKL) )/ (24%DK)

D4=C1+C2 E

35=03-C4
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D9=CSeH (0827 24¥XLT))
BLNVS(AL3/201=0S2F(CL27(2e%XLT}))
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AL=RKLFRA4+XR2% 26 :
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CE2=115(ALXDH=-A2%D4)+0Q2% (A2+4D5-AL%D7) :/
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TiN=XKLEXKLFAET+2, ¥ AK1®AT2+4AE3 o
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TAMSIIELHCELHINKLACE2/XKT ) +{CE3/DIFT)
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1+A3%CLOS(TX4)Y+ A4 XCSINITXE))
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Li=All/aL3 ' - .
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L3=AL3/AL3

KCL=CL/CL
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pl= j.1415920)36

L= (=L TN Y P I/7LL
Z=(FLOATINZ) ) #PT/LZ

SANG=SONT L LECL+K2%K2)

CAVI=XCT%3dND

CUN2=XCLES D

doe=aqdeDeLTA - .
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TFGILGGTLC2)60 70 9
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AR=dL+DELTA
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A =FUL¥FAR |
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=4L+DELTA
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END
SURKIUTINE A'PHA(X,(vCXyCYy_3sWsFJ)
REAL LA,KLaKT
L= IRTLUXFE2 4 +Y 52, ) e 82, (CREE2,)
KT ORTULKFR  #Y 522, ) —d¥ 52, /CY#%20)
ARY=KL#%L13 | N
ARP2=KT%L1 !
SIHARL=SIN(ARL)
SIHWR2=STUH(AR2)
LUHARL=COSH(ARY)

CAHARZ=CSH(AR2)
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QW2 G Ve%g )
I=SIHARL*STHAR?Z
IX=C%*]

-
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L =COHARLHCIHAR2),
RETYRN

FAD

SUBROUTINE BFT\(X,Y,CXsCY,L3qH,FH)

REAL L33KL 9T o y
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AR2=KT*L3

.

SIARZ2=SIMN(AR2)

COHARLI=COSH(ARL)
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AY=STHARL¥*SIARZ

RPN
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CLY=KY#AY
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RETURN

END
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SIAR2=SIN(AR2)
CBAR1=COS{AR1}
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ZY=STARL*STAR?
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RETURN - ;
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