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ABSTRACT 

This work presents the analysis of the forced vibrational 

response of an elastic rectangular parallelepiped.· Normal mode. 
/ . 

solutions were obtained for the following boundary conditions: 

1. Six rigid-lubricated faces, 

2. Four rigid-lubricated and two stress-free faces. 

In the fo~ced vibration analysis solutions were obtained for an 

impulsive and a step point load. 
/ 

For the both cases of boundary ·conditions, computer programs 

were developed in order to calculate the displacements of a sample 

block. In the numerical calculations point of application of the 

force and the point at which, displacements are sensed were taken 

in the rectangular block. 
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5ZET 

Bu callsmada elastik bir priZmanln uygulanan bir kuvvete 

titresim tepkisinin analizi yapllm1stlr. Normal modcazUmleri 

iki cesit Slnlr sartlarl icin elde edildi: 

1. Altl rijid-yaglanmlS yUz; 

2. Dart rijid-yaglanmlS ve iki gerilimsiz yUz. 

Analizde impulsiv ve basamakll nokta kuvvetler kullanllmlstlr. 

/ 

Her iki Slnlr sartlarl icin arnek bir prizmanln deplasmanla­

rlnl hesaplayan kompUter programlarl yazlldl. NUmerik hesaplama­

lar icin kuvvetin uygulandlgl ve deplasmanlann alcUldUgU noktalar 

prizmanln icinde allnmlstlr. 
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I, INTRODUCTION 

,. 
Acoustic emissions are the transient elastic stress waves 

generated by a rapid release or redistribution of stored energy 

that accompany many deformation and fracture processes within a 

material. By monitoring these acoustic emissions, it is possible· 

to trace the growth and propagation of cracks or flaws such as 
/ 

voids, inclusions, etc., in structures like bridges, power plant 

components. In addition acoustic emissions have been used for 

material rese~rch studies on microstructure related mechanical 

properties, phase transformations and fracture. 

In order ·to deduce information from the recorded signals of 

acoustic emissions; it is necessary to know the frequency response 

of the structure. So far such analysis were done on structures 

such as half spaces or infinite plates [1-5]. However, many acous­

tic emission applications involve specimens of finite dimensions. 

In this respect, the vibration of a rectangular parallelepiped is 

of interest beca~se many real. life structures can be considered 

to be made up of rectangular blocks or plates, the latter being a 

two-dimensional version of the former. 
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Due to complexity of the mathematics involved, there are only 

a few solutions in the literature concerning the vibrations of a 

rectangular parallelepiped. Some of these papers involve plane 

strain solutions [6~8]. Fromme and Leissa [9] tried to solve the 

free vibration problem using associated periodicity method but their 

work results in an infinite set of algebraic equations which must be 

solved in order to obtain the natural frequencies of the body. 

The free vibration problem for a rectangular parallelepiped 

with rigid-lubricated boundaries- was first solved by Ortway [10] and 

then later by Nadeau [11] using normal mode technique. Then Hill and 

Egle [12] solved the forced vibration problem for the first time using 

the free vibration solution. 

The free vibration solution for the ca~e of four rigid-lubrica­

ted and two stress-free boundaries is the work of Kaliski [13];;but 

his work is"in Polish and Malecki IS text provides an English trans­

lation [14]. Kaliski's free vibration solution was then reworked· 

by Hill [15]. 

It is the purpose of this work to take Hillis. work as a basis 

and give free and forced vibration solutions of the rectangular 

parallelepiped. Two sets of boundary conditions considered here 

are (1) all six faces rigid-lubricated and (2) four rigid-lubricated 

and two stress-:-free faces. "Free and forced vibration solutions for 

these cases are presented in Chapters II I and IV respectively. In 

deriving the forced vibration displacement expressions, the body 

force is considered to be a three-dimensional concentrated force. 

In Chapt~r V, numerical results concerning the impulsive and step 

2 



response of the rectangular parallelepiped with all faces rigid­

lubricated and four faces rigid-lubricated and two faces stress 

free are given. 

In the following chapter, equations of elasticity and the 

derivation of seperated wave equations will be given. Also i~ this 

chapter waves propag~ting in the bounded media and reflection pheno­

mena from stress-free and rigid-lubricat~d boundaries will be 

presented. 

/ 

3 



II. EQUATIONS OF ELASTODYNAMICS 

2.1 EQUATIONS OF ELASTICITY 

The equation of motion for a linearly elastic, isotropic and 
I 

homogeneous material is given by [16,171, 

(2.1) 

where u is the displacement vector, p is the mass density, A and 1.1 

are the Lame constants of the material, and f is the body force 

(per unit mass) vector used to represent the source of acoustic 

emissions. In the above equation V2 , ~-, and V are the laplacian, 

divergence and gradient operators respectively and the superposed 

"dotll represents differentiation with respect to time, t. The 

constitutive equations for an isotropic elastic material are given 

by [18], 

a = A(V -u}I + 21.1[Vu + (vu}T] 
~ - - ~ . -- -- (2.2) 

where, g and £ are ·the stress a.nd the identity tensors respectively 

and (vu}T is the transpose of the tensor Vu. The above stress--- . --
strain relations can be written in their explicit form in cartesian 

coordinate system as, 

4 



(2.3) 

(2.4) 

(2.5) 

(2.6) 

auv au z cr = cr = l-l(-->L+--) ,-
yz zy az ay 

(2.7) 

(2.8) 

The coordinate system, geometry and sign convention of the stresses 

are given in Figure 2.1. / 

An alternative form of the Eq. (2.1) involving the wave speeds 

is 

where 

c = [(A+ 2l-l)/p]1/2 longitudinal wave speed 
.Q, 

c = [l-l /pJ
1

/2 transverse wave speed. 
t 

2.2. ELASTIC WAVES IN A BOUNDED MEDIA 

(2.9) 

5 

Within the body of a linearly elastic, isotropic and homogeneous 

.materia1 only two types of elastic waves can propagate. The faster of 

these is called the longitudinal wave which consists of compressions 
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FIGURE 2.1 - Coordinate system; dimensions and stress sign convention. 



. (pushes) and dilatations (pulls) of the elastic material. In this 

case, the particle displacement is parallel to the direction of pro­

pagation. This type of wave is also known as dilatational wave or 

pressure wave or P-wave in short. 

The slower of the two waves known as a transverse wave is 

of a quite different nature. The elastic body is sheared and twisted 

as the wave travels through it. The particle dis~lacement lies in a 

plane normal to the direction of propagation thus, it can de decom-
,.-

posed into two orthogonal components. The bne that is paralel to a 

given direction (usually specified by a surface in the body) is known 

as the SH-component while the other is the SV-component. Waves asso­

ciated with these displacements are called the SH-wave (horizontally 

polarized) and SV-wave (vertically polarized). Transverse waves are 
/ 

also called equivoluminal waves, shear waves or S-waves in short. 

These two wave types are depicted in Figure 2.2. 

7 

When the elastic waves propagating in the bounded media reflect 

off the boundaries, some changes do occur in their nature, that is 

the reflected waves(s) need not to carry the same characteristics as 

the incident wave. These changes due to a reflection depend on the 

angle of incidence and the imposed boundary conditions. As an example, 

in the case of a stress-free boundary condition, an incident P-wave 

will give rise to 'both a reflected P-wave and a reflected SV-wave. 

Similarly an SV-wave will reflect as a SV-wave and a P-wave. This 

phenomena where a wave of one nature reflects as a wave of different 

nature is known as mode-conversion. Depending on the angle of 

incidence SV-waves,do give rise to waves which, propagate along the 
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the boundaries known as surface waves. Such waves are confined to 

a small region in the neighbourhood of the surface and decay expo­

nentially inside the media. For a free surface, these waves are 

often called as Rayleigh waves. 

In the case of a rigid-lubricated boundary only phase changes 

occur and there is no mode conversions. Therefore, surface waves 

cannot exist in a elastic body under such boundary conditions. 

2.3 DISPLACEMENT POTENTIALS 

Since the equation of motion (2.9) is of a highly complex 

nature, one needs to transform it into a simpler form. According to 

Helmholtz Theorem [18,19J, a vector field can be expressed as the sum 

of the gradient of a scalar field and the curl of a ze~o-divergence 

vector field., The vectOr fields of interest here, are the displace­

ment and the body force; hence 

u = 'V</> + 'V x W 

f = 'VG + 'V x H 

'V 0 W = 0 

'V 0 H = 0 

(2.10) 

(2.11) 

where </>, G and W, Hare called scalar and vector potentials res-

pectively. The zero divergence condition, 'VoW provides the 

necessary additional condition'to uniquely determine the three 

components of displacement from four components of </> and~. Subs-· 

titution of the Eq~ .. (2.10) and (2.11), into .the equation of motion 

leads to two seperated wave equations: (c~f. Appendix A) 

9 

C2 'V 2 </> + G = </> (2.12) 
9-

C 2'V 2W + H = ~ (2.13) 
t - -

, 

), 



From the above equations it can be seen that while the potentials 

¢, G are associated with the P-wave, ~,H are associated with 

. S-wave. 

Considering Eq. (2.10), it is possible to express the displace­

ments in terms of both the scalar and the components of the vector 

potential as 

(2.14) 

Thus, the Helmholtz Theorem mathematically uncouples the wave motion 

such that the displacement components due to longitudinal and trans­

verse waves can be dealt with separately. 

10 

When a disturbance is produced at an internal point of a bounded 

elastic body, generally both P and S-waves will originate and propagate 

in all directions. A complicated nature 6f waves will result upon 

the reflections from the boundaries. As a result, a state of vibra-

tion of the whole body is reached. This state of vibration is a 

super~osition of a number of "characteristic vibrations (normal modes) 

of the finite body.· These vibrations are represented by their distinct 

and discrete frequencies (natural frequencies) at which the system is 

capable of undergoing harmonic motion. For a continuous body there 

is an infi~ite number of natural frequencies associated with infinite 

nu~ber of normal modes. 



Analysis of the free and forced vibrations of a rectangular 

parallelepiped with six faces rigid-lubricated and four faces rigid­

lubricated while other faces are stress-free will be given in the 

'following chapters. 

11 



III. RIGID-LUBRICATED BOUNDARIES 

The analysis ,of the response of a rectangular block can be 

simplified by assuming rigid-lubricated boundaries. This is because 

of reflections from rigid-lubricated surfaces have no mode conver­

sions but only phase changes as mentioned in the previous chapter. 

Although these bQundary conditions are not representative of a typical 

12 

acoustic emission experiment, solution of this problem provides a / .. 

first step in obtaining the more difficult rigid-lubricated/stress-free 

solution. 

3.1 FREE VIBRATION SOLUTION 

The body force term in Eq. (2.9) is set equal to zero in order 

to obtain the equation of motion for the free vibrat~on case. 

(3.1) 

The rigid-lubricated boundary conditions are given as 

Ux = 0 crxy = crxz 
=" 0 at x = 0, a 

uy 0 cryx = cryz = 0 at y'= 0, b 

Uz = 0 crzx = crzy = 0 at z = 0, c 



Considering stress-strain relationships-given in Chapter II, boundary 

conditions can be expressed in terms of displacements as 

u = x 0 dUX/dX = dUZ/dX = 0 at x = 0, a 

U = 0 dUX/dY = dUZ/dY = 0 at Y = 0, b (3.2) 
Y 

U = 
Z 

0 dUX/dZ = dUy/dZ = 0 at Z = 0, c 

The problem may be solved by assuming a simple harmonic motion 

of the form [lO,llJ 

uxN = A1Nsinax cosSy cosyz sinwNt" 

uyN = A2Ncosax sinSy cosyz sinwNt (3.3) 

uzN = A3Ncosax cosSy sinyz sinwNt 

where wN are the natural frequenci es or ei genva lue of the system/ In 

order to sa~isfy the boundary conditions, the wave numbers a,S, and y 

must be of the form nTI/a, mTI/b, and pTI/c respectively with n, m, p 

being integers 0,1,2,3, Substituting the assumed normal 

modes, Eq. (3.3); into the equation of motion, Eq. (3.1), yields the 

following equations, 

A1N (a2 + 13 2 +y2)C~ + a(A1Na + A2NS + A3NY)(c;' -, c~) 

. A 2 
= 1 NWN ' 

A2N (a2 + 13 2 +y2)C~ + S(A1Na + A2NS + A3NY)(c~ - c~) (3.4) 
2 = A2NwN ' 

A3N(a2 + 13 2 +y2)C~ + Y(A1Na + A2NS + A3NY)(c~ - c~) 
2 = A3NwN . 

13 



These equations can be written in the matrix form as 

Q +a2 
N aB ay 

A1N 
aB Q +B2 

N . By 
A2N = 0 (3.5) 

ay By QN+y2 
A3N 

where QN = (ct - ~~N)/(c~ - c~) and ~N = a2 + B2 + y2. This 

set of equations has a nontrivial solution if arid only if the de­

terminant of this matrix is equal to zero. The resulting equation 
,. 

is known as the characteristic equation of motion, 

(3.6) 

14 

which has the si~ple root Q1N = -~N' and the double root Q2N.= Q3N = o. 
The natural frequencies which correspond to these roots are 

Wl N := c,Q,~N 

w2N = w3N = Ct~N . 

(3.7) 

(3:8 ) 

Note that while wlN is associated with the longitudinal waves, w2N 
and w3N are associated with the two orthogonal polarizations of the 

transverse waves [16]. Thus, each displacement component is made 

up of three contributions, one due to longitudinal wave and the 

other two due to the two orthogonal polarizations of transverse 

waves with the direction of propagation being determined by the set 

of' integers N(n,m,pL Then the displacement components of the modes 

are given by 



The amplitude relations asso~iated with longitudinal waves are 

then obtained by subsituting the root nlN = - AN .into equations (3.11), 

yielding the relations, 

A1Nf3 = A2Na 

A2Ny = A3Nf3 

A3Na = A1Ny 

(3.10) 

Note that by chosing one of the unknown amp1 itudes arbitrarily, the 

other two can be determined uniquely. A similar· procedure for 
/ 

n2N = n3N ~ 0 results in the relation 

and in thi·s case two of the three unknown amp1 itudes can be chosen 

arbitrarily. Thus the amplitude relations can be expressed as 

( A1 N) ~ = (Al N) ~ 

(A2N)~ = (f3/a )(A1N )£ 

(A3N)~ = (y/a)(A1N)~ 

for the longitudinal waves and as 

(3.11) 

15 



(3.12) 

for the transverse waves. 

Hence, the normal mode displacement components take the form 

uYN = COSaX sinsy cosyz{(S/a)(A1N)~ sinw~Nt + (A2N )t 

sinwtNt} (3.13) 

uzN = COSax cOSBy sinyz{(y/a)(A1N)~sinw~Nt - [(a/y)(A1N)t 

+ (S/y)(A2N )t]sinwtNt} 

The unknown amplitudes (A1N)~' (A1N)t' (A2N)t are determined from 

the initial'conditicins which can be expressed generally as 

u(x,y;z,O) = ~o(x,y,z) 

u(x,y,z,O) = ~o(x,y,z) 

where u and u are the initial displacement and velocity fields 
-0 -0 

respectively. Some of the characteristic vibration shapes associated 

with the displacements in the z-direction are given in Figure 3.1 

through 3.4. 

The general vibrational motion of the body is a superposition 

of inifinite nuinber of normal. modes as was mentioned previously . Thus 

the displacement expressions can simply be written as 

16 
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uy(x,y,z,t) = ~ uyN(x,y,z,t) 

uz(X,y,z,t) = E u N(x,y,z,t) 
N z . 

with E = E E E 
N n=O m=O p=O 

These equations represent the free vibration displacements of any 

point within or on the surface of the rectangul·ar parallelepiped 

as a fuction of time. 

3.2 FORCED VIBRATION SOLUTION 

(3.14) 

We will now consider the forced motion of the parallelepiped 

where the governing equation from Eq. (2.9) is 

/ 
(3.15) 

The approach taken in forced vibration solution will be to replace 

the body force term, f, by an impulsive point load, solve this - . 

resulting special case to obtain the Green1s function of the problem. 

Thus the solutions to more general problems can be then obtained 

through a convolution type integral. For the present three-dimen­

sional problem, the Green1s function is a tensor quantity [16,12], 

denoted by 

G .. = G .. (x,y,z,t)/xo,yo,ZO,T) 
lJ lJ 

(3.16) 

where G .. is the ith displacement component at position (x,y,z) and 
lJ 

time t due to an impulsive force applied at position (x ,y ,z ) and 
·00 0 
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time and acting in jth direction. As ~stated above the solution to 

a general loading, f' can be obtained through the integral 

abc t 
{u} = f f f f[GJ{f} dx dy dz dT . 

o 0 0 0 ~ - 000 
(3.17) 

The above equation can be written explicitly as: 

abc t 
Ux = f f f f(G f + G f + G f )dx dy dz dT , 

o 0 0 0 xx x xy y xz zoo 0 

abc t 
u = f f f f(G f + G..-f + G f )dx dy dz dT 
Y 0 0 0 0 yx x yy y yz z ""0 0 0 

(3.18) 

abc t 
u = f f f f(G f + G f + G f )dx dy dz dT 
zoo 0 0 zx x zy y zz zoo 0 

Note thcit, the equations governing the components of the 

Green's function are: / 

.. 
+o(x - xo)o(y - yo)o(z - zo)o(t) = Gxx 

C2{~+~+~}G 
a2G a2G a2G 

+ (c2 _ C 2 ){ xy +. yy + z~} = G 
t ax2 . ay2 az2 xy 5/, t ax2 ayax azax 

a2 a2 a2 - a2G a2G a2G 
c2{--+ -- + --}G + (c2 _ c2){ XZ + yz + zz} = G t xz 5/, t ax2 ayax azax ax 2 ay2 az2 

. a2 a2 a2 a2G a2G a2G 
c2{-- +"-- + --}G + (c2 _ c2){ xx + yx + zx} = G t -yx 5/, t ay2 azay ax 2 ay2 az2 axay 

xy 

xz 

yx 



a2 a2 a2 a2G a2G a2G 
C2{-- + -- + --}G + (C 2 _ C2){ xx + yz + ZX} = 
t ax2 ay2 az2 ZX' Q, t axaz ayaz az2 

/' 

a2 a2 a2 a2G a2G a2
GZy} C2{-- + -- + --} G + (C 2 - C2){ xy + ,VY + 

t zy Q, t aXaZ ax 2 ay2 az2 ayaz az2 

.. 
+ O(X - XO)O(y - yO)O(Z - ZO)O(t) = Gzz (3.19) 

The solution of these equations can be obtained by making 

some assumptions. First~ a factored solution ~ith space and time 

dependency is assumed to represent the Green1s function. Then, the 

spatial part of this·solution is assumed to have the same form as 

the normal modes defined in the previous section and the time varying 

character of the Green1s function is represented by a general function, 

TN(t). Therefore, the solution for the Green1s function can be written 

as 

23 

.. 
GZX 

= GZy 



~ 

(3.20) 

- / 
where ~xN' ~yN! ~zN represent the spatial part of the normal modes. 

Substituting Eqs. (3.20) into the Eq. (3.19a) and performing 

the necessary algebraic manipulations one gets the following equation: 

(3.21 ) 
+ TzxN[(c~ - c,Vay]sinax cosBy cosyz 

where ~ N(t) represehts the second derivative of T N(t) with respect xx . xx 
to time. The next step is to multi ply both sides of Eq. (3.21) by 

sina'x cosB'y cosy'z and integrate over the spatial domairi. Recalling 

the, orthogonality relations of the normal modes~ 

24 



abc 
J J J sinax sina'x cosSY cosS'y COSyz cosy'zdxdydz 

000 

= 
o when.a,S,yfa',S',Y' 

nl V 
T when a,S,y = a' ,S' ,y' 

(3.22) 

with n1 = (1 + 0so)(l + Oyo) and V = abc is the volume of the parallele­

piped. Therefore, performing the integrations on Eq. (3.21) gives 

TxxN + {TxxN[Ct~2 + (c~ - ct~a2] + TYXN[(c~ - ct}as] 

+ TzxN[(c~ - ct)ay]} = (8/n1
V}sinaxo cosSyo cosyzo' (3.23) 

This expression may be solved by using method ol Laplace transform. 

Assuming that the motion starts from rest, (TxxN(O) = TxxN(O) = 
.. . 
TxxN(O} = O} transformation yields the following expansion: 

TxxN [S2 +. (c~ - ct)a2 + Ct~2] + TYXN[(c~ - cPaS] 

+ TzXN[(c~ - ct)ay] = (8/n 1
V)sinaxo cosSYo cosyzo 

Application of the same procedure to the other eight equations of 

the ;set (3.19) results in the following eight expressions, 

T (S2 + K ) + T K + T K = 0 xyN xxN· yyN xyN zyN xzN 

T (S2 + K ) + T K+ T K· = 0 xzN· xxN yzN xyN zzN xzN 

T (S2 + K ) + T K + T K. = 0 yxN yyN· xxN yxN zxN zyN 

(3.24) 

25 
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TzyN (S2 + KzzN ) + T K + f K = a xyN zxN yyN yzN 

and Eq. (3.24) can be written in the same form as 

T (S2 + K ') + T K + f K xxN xxN yxN xyN zxN xzN = (8/nlV)sinaxocosSYocosyzo· 

(3.26) 

Note that, 

KxxN = 
(c 2 _ 

~ 
C2)a2 + c 2b,.2 t t K = K = xyN yxN 

(c 2 _ 
~ 

ct )as 

KyyN = 
(c 2 _ C2)S2 + c2 b,.2 KYZN = KZYN = (c 2 _ ct)Sy ~ t t ~ 

K = (c 2'_ C2)y2 + c2b,.2 K = K = (c 2 - cVay zzN ~ t t xzN zxN ~ 

/ 
and n = (1 + 0 ) (1 + 0 ) , n3 = (1 + 0 )(1 + Os ) 

2 , ao yo ao 0 

After performing the necessary algebraic manipulations, these 

expressions can be written in their new form as 

T - 8D [2K + K 'K 
xzN - -vn- -s xzN .xyN yzN 

,3 

- - 8D [ 2 ] ( ) , 
TyxN = vn -s KXyN + KxzNKyzN ,- KxYNKzzN <P~N xo,yo,zo 

1 

-T = ~ '[ S 1! + (K K' ) S 2 + K K - K 2 ] "', (x y 'z ) yyN Vn
2 

xxN zzN xxN zzN xzN ~yN 0' 0' 0 

f '= ~ [-s2K + K K - KxxN' KyZNJ<PzN(xo,yo'zo) (3, .26) yzN Vn yzN xyN xzN 
3 



T = ~ -s2K + K K - K K J"', (x y z) zxN V1l 1 xzN xyN yzN - xzN yyN 'I'xNo' 0' 0 

f = ~r - s 2 K + K K - K K J'" (X y Z) zyN ~ yzN 'xyN xzN xxN yzN 'I'yN 0' 0' 0 
2 

Then, inverse Laplace transforms can be obtained using partial frac-

tions technique. Thus the results are 

1 a2sinw~Nt (t-,N - ( 2)sinwtNt 8<p xN (xo'yozo) 
T = --.!.-.{ + } ----:.~--=----"--=--xxN 2 

t-,N W~N ,. wtN Vtl 1 

as sinw~Nt ;sinwtNt 8<P yN (Xo,yo'zo) 
T =--{ } 

xyN t-,2 
w~N wtN V1l 2 N 

TxzN 
ey', sinw~Nt si nw tN t 8<p zN (xo,yo'zo) 

=-{ } 
t-,2 

w~N wtN Vll N 3 

Sa sinw~Nt sinwtNt 8<pxN (xo,yo'zo) 
TyXN = 7 } 

w~N lltN V1l 1 (3.27) N 

1 s2sinw~Nt (t-,2 _ (2)sinwtNt 8<p yN (xo 'Yo ,zo) N 
TYYN =-{ } 

t-,2 
N w~N 

Sy SinwQ,Nt 
TYZN = --{ 

t-,2 
w~N N 

2· t 1 Y SlnwQ,N 
T =~----

zzN , ti 2 W 
' N ~N 

wtN 

sinwtNt 
} 

8<P zN (xo'yo'zo) 

wtN V1l3 

sinwtNt 8<PxN (xo,yo'zo) 
--~~} , 

wtN V1l
1 

Vll 
2 

V1l 2 

(t-,N - y2)sinwtNt}~<PZN(xO'YO'zo) 

wtN V1l3 
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Finally these time function expressions must be substituted in the 

Eqs. (3.20) which give the Green's function of the system. These in 

turn are substituted into Eqs. (3.18) to arrive at the forced vibra­

tion displacement u(x,y,z,t) for any generalized body force f(x,y,z,t). 

3.3 IMPULSIVE RESPONSE 

The acoustic emissions generated by material flows are thought 

to be pulselike functions of stress (force). Much of this type of 
--

28 

emission in solids is produced internally and can, therefore, be modelled 

as a body force phenomenon. Assuming a very short duration source event 

within the body, the Dirac Delta function provides an extremely simple 

mathemattcal approximation of the resulting impulsive body force. In 

general, the body force is three-dimensional and its components may be 

expressed mathematically as 

fx = Fxo(x - xo)o(y -,yo)o(z - zo)o(t) 

fy '= Fyo(x - xo)o(y - Yo)o(z - zo)o(t) 

fz = Fzo(x - xo)o(y - Yo)o(z - zo)o{t) 

Note that the impulsive load is applied at the point (xo,yo,zo) 

and at time t = 0 and its components have magnitudes Fx' Fy ' Fz 
in x, y, z directions respectively, (Figure 3.5). 

/ 

(3.28) 

The first step in order to determine displacement expressions 

for the impulsive.response is the substitution of the impulsive body 

force components (3.28) into E"qs. (3.18). Then the normal mode dis-' 

placement ,expressions are obtained after performing the necessary 

integrals yielding 



FLGURE 3.5 - Point of application of the body force and point at which 
displacements are sensed. 
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u = G F + G F + G F xN xxN x xyN y xzN z 
u = G F + G F + G F yN yxN x yyN Y yzN Z 

(3.29) 

u' = G F + G F + G F zN zxN x zyN y . zzN z 

These are then combined with Eqs. (3.20) to obtain the displacement 

components produced by a three-dimensional impulsive force applied 

at the point (xo,yo,zo) and finally these can be ~ritten as 

30 

1 a2sinw~Nt (~N -a 2)sinwtNt $xN(xo'Yo'zo) 
ux(x,y,z,t) = 2: ~[ > + ] Fx 

N ~N w~N wtN n1 

sinw~Nt sinwtNt $yN(xo'yo,zo) 
+ as[ -] F Y 

w~N wtN n2 

. sinw~Nt sinwtNt $zN(xo'yo'zo) 
+ aye ] F z} 

w~N wtN n3 
/ 

(3.30) 

sinwtNt $xN(xo'yo'zo) 
---] Fx 

sinw~Nt 
+ Sy[-~-'--

w~N 

wtN n1 
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sinwtNt ¢ N(x ,y ;z ,t) , J x 0 0 ,0 F 
x 

sinw£Nt sinwtNt]¢YN(xo'Yo'zo) 
+ Sy[-~:-- F y 

w£N WtN n2 

sinw£Nt (~~ - y2)sinwtNt ¢zN(xo'yo,zo) 
+ [y 2 + ---~. ---''-'-'--]~-=----=--''---''-- Fz} 

with E = E E E 
N a=O 13=0 y=O 

3.4 STEP RESPONSE 

W£N WtN 

We will now obtain the solution for the case where the time 

dependenc~ of the body force is a step function. The components off -

the body force.in this case are 

fx = Fxo(x - xo)o(y - yo)o(z - zo)H(t) 

fy = Fyo(x - xo)o(y - Yo)o(z - zo)H(t) 

f = F o(x - xo)o(y - Yo)o(z - zo)H(t) z z , 

(3.31 ) 

Note that once again, the force is assumed to be applied at the point 

(x ,y ,z ) and at time t = 0 with components having magnitudes F , F , 
o 0 0 . x Y 

Fz in x, y, z directions respectively. 

A similar procedure can be used here, in order to derive dis­

placement expression~.. Not surprisingly, these expressions have the 

same form as the impulsive response displacement expressions (3.30), 

except for the functions 



sinw~Nt 

w~N 

which are 

respectively. 

1 - coswtNt 
2 wtN 

This completes the analysi~ for the vibrational response of 

the rectangular parallelepiped with six rigid-lubricated faces. In 

the following chapter, analysis for the free and forced vibrations 

of a rectangular parallelepiped with four faces rigid-lubricated and 

two faces stress-free will be given. 

/ 

32 



IV. RIGID-LUBRICATED/STRESS-FREE BOUNDARIES 

As a next step to the analysis of the response of a rectan­

gular block, one can consider the case of a block with two stre~s­

free and four rigid-lubricated faces. This system is depicted in 

Figure 4.1. In this figure, the z-faces (cross-hatched) are stress­

free and x,y faces are rigid-lubricated. This problem is consi­

derably more involved than the previous one due to the mode conver~ 

sions on the two stress-free faces. The complexity in the wave 

propagation also holds true for the normal modes and the charac­

teristic equation as well. Where in Chapter III it was possible 

to determine by inspection the exact form of the normal modes, how­

ever, in this case it is very difficult to do so. Hence, we will 

make use of the seperated wave equations in order to obtain the 

normal modes of the system. 

4.1 FREE VIBRATION SOLUTION 

The equation of interesrfor the free vibration solution is 

the Eq. (2.9) and is repeated here for convenience. 

33 
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FIGURE 4.1 - Stress-free rigid-lubricated boundaries. 



(4.1) 

In order to solve this equation we need the boundary conditions; and, 

for a block with z-faces being stress:"free while x, y-faces are 

rigid-lubricated the boundary conditions can be expressed as 

u = x 0 aUy/ax = auz/ax = 0 at x = 0, a 

u = y 0 au/ay = au/ay = 0 at 'y = 0, b 

aux au" au au au au au 
-_ + -..L + e_z = _z + ~ = _z + ----Y = 0 

ax ay az ax az' ay az (4.2) 

at z = 0, c 

where e = 1 + (211/A). 

As explained earlier, the equation of motion can not be solved by 

inspection so we will use the separated wave equations, (2.12) an~ 

(2.13), which were derived in Chapter II. For the free vibration 

case, the body force terms in these equations are neglected and the 

seperated wave equations can be written in their new form as 

c2'i,72cp = cp 9, . 
.. 

c2'i,72ljJ = ~ 
t --

The general solutions for these equations are (See Appendix B): 

(4.3) 

(4.4) 

3S 

\ 

cp = (Cl cosax + C2sirox)(C3cOSBX + C4sinSY)(CScosy 9, z + C6siny 9, z)sinw9, t 

ljJl = (DlcOSCfX+ D2sirax)(D3cOSBY + D4sinBy)(DScosYtZ + D6sinytz)sinu t t 

(4.S) 

ljJ2= (ElcoSCtX + E2sirox)(E3COSBY + E4sin~Y)(EScosYe + E6cosYtz)sirwtt 

ljJ3= (F1Co'SCtX + F2SilUx)(F3COS(3Y + F4sinsy)(FScosYtt + F6s'inyt z)sinwt t 



By considering the rigid-lubricated part of the boundary conditions, 

some of the unknown constants can be eliminated. Then the potential 

expressions can be written as 

- ,. 
1jJ3N= sinaxsinSy(DINcosytz + D2NsinYtz)sinwNt 

and associated wave numbers are 

0.= n'IT/a ., 8 = m'IT/b , Y~ = [(w~/cV- Co. 2 + 82 )J1/ 2 
, 

Y = [( W 2 / c 2) _ ( 0.2 + 82 ) J 1/ 2 
tNt 

and n,m=O,1,2, ... 

(4.6) 

Upon substituting the assumed potentials, Eq. (4.6), into the Eq. 

(2.14), one finds the normal mode displacement components related 

to the P and S waves seperately. 

P uyN = 

P uzN = 

and 

36 

uS . = cosaxsin8Y[(YtB2N - o.DIN)cosytz - (o.D2N + YtBIN)sinYtzJsinwNt yN . . 
(4.8) 

u~N = coso.xcos8y[(o.ClN - SBIN)cosYtZ - (o.C2N - BB2N)sinYtz]sinwNt 



Then we will make use of zero divergence-condition, V-ljJ = 0, in order 

to reduce the number of unknown constants. Application of this con­

dition to the vector potential, 1jJ, leads to the result that 

°IN = -(1/Yt)(aB2N + SC2N ) 

°2N = -(1/Yt)(aB1N + SC 1N) 

These relations allow a simplification in Eq. (4.8) yielding 

U~N = sinaxcossy{-(1/Yt)[aSB2N + (S2 + Yt)C2N]cosYtZ 

+ (1/Yt)[aSB1N + (S2 + Yt)C1N]sinYtz}sinwNt 

u~N = cosaxsinsy{(1/Yt)[(a2 + Yt)B2N + aSC 2N]cosYtZ 

. + (1/Yt)[(a2 + yVB1N + aSC1N]sinYtz}sinwNt (4.9) 

u~N = cosaxcosSy{(aCl N - SBl N)cosy t Z + (aC2N - SB 2N ) / 

sinYtz}sinwNt . 

Then the displacement components due to $-waves may be expressed 

in a new form defining 

-. 

(4.10) 

and substituting these new expressions for the amplitudes into the 

Eq. (4.9) yields 
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(4.11) 

S _ 
uzN - cosaxcosSy{(1/Yt)[(aA4N + SA6N)cosytz 

- (aA3N +SA5N)sinyt z]}sinwNt 

Finally the displacement components due to P and S-waves, Eqs. (4.7) 

and (4.11), are combined to generate the normal mode displacement 

components: 

uxN = sinaxcosSy[a(A1Ncosy~z + A2Nsiny~z) + (A3NcosYtZ 

+ A4NsinYtz)]sinwNt = <pxNsinwNt 

uyN = cosaxsinSY[S(A1NcoSY~Z + A2Nsiny~z) + (A5NcoSYtz 

+ A6NsinYtz)]sinwNt = <pyNsinwNt 

uzN = cosaxcosSY[y~(A1Nsiny~z ..; A2NCOSYx,z) + (l/yt ) 

[(aA4N +SA6N)cosYtZ - (aA3N + SA5N)sinYtz]sinwNt 

= <P sinw t zN. N 

(4.12) 
I . 

The next step in the analysis of the free vibration problem 

is to determine the .natural frequencies of the system. The above 

normal modes are substituted in the boundary conditions (4.2). 

Twelve of the eighteen boundary conditions related to the rigid­

lubricated faces are satisfied exactly, while the other six stress-
/ 

free boundary con~itions yield six equations with six unknown cons-

tants AiN (i = 1,2, ... ,6): 
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(a 2 + S2 + ey~)cosy~CA1N + (a 2 +S2 + ey~)siny~cA2N 

- (e - 1)acosYtcA3N - (e - 1)asinYtcA4N - (e - 1)scosYtcA5N 

(4.13) 

-2aY~Ytsiny~cA1N + 2aY~Ytcosy~cA2N + (a 2 
- Yt)sinYtcA3N 

/ 

-2SY~Ytsiny~cA1N + 2SY~Ytcosy~cA2N + aSsinYtcA3N 

0- aScosYtcA4N + (S2 - yVsinYtcA5N - (S2 - yVcosYtcA6N/= 0 . 

These equatlons can be easily put into a matrix form, where the 

determinant of this matrix yields the frequency equation, 

(P2 + R2)sin2Ytc siny~c + 2PR(1 - cosy~c COsYtc)sinYtc = 0 

(4.14) 

and 

Relations between the amplitudes AiN°(i = 1,2, ... ,6) can be also 

obtained from the Eqs. (4.13) by using Gaussian elimination method. 

There are several combinations of frequency equations and amplitude 

relations depending on the va]ues of sinytC and the wave numbers a 

andos which are summarized in Table 4.1. 
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Modal 
Coefficients 

A1 N 

A2N 

... A3N 

A4N 

ASN 

A6N 

Frequency 
Equations 

TABLE 4.1 - Appropriate Modal Coefficients and Frequency Equations. 

sinytc = 0 

0.>0, (3)0 0.=(3=0 

o o 

o * 

- (6 /0. )ASN o 

o o 

* o 

0 0 
(4.1S) (4.17) 

wN = Ct~ wN = c,t~ 
(4.16) (4.18) 

~2 = 0.2 + (32 + y2 

siny tC f 0 

a > 0 , (3 = 0 

P(a2.~ Y~) 
- A . 

R ( 2a.Y,t Y t) 3 N 

2 a _ y2 
_ tA 

2aY,tY t 4N 

R( COSY,t c - cosY tC) 

Psiny,tc + Rsinytc 

* 

o 

o 
(4.19) 

\ 

a > 0 , (3 > 0 

P (a 2 + (32 _ y2) 
LA 

R(2a.Y,tY t ) 5N 

2 2 + (32 - Y t 
a A6N 

2(3Y,tY t 

(a/(3)ASN 

(a/(3)A6N 

.R(cosy,tC - COSYtC 
- .. A 

Psiny,tc + Rsinytc 6N 

* 
(4.20) 

(p2 + R2)sinY,tcsinyt c + 2PR(1 - COSY,tc COSYtc) = 0 
~ (4.21) 

P = 4(0.2 + (32)Y,tYt R = (0.2 + (32 - Yt)2 
~ 
o 



Sinytc in Eq. (4.14) can be factored out and setting this term 

equal to zero gives the frequency equation (4.16). In this case, the 

only possible combination of wave numbers 0.,8 and sinytc are those 

where sinytc = 0 and a. > 0, 8 > 0, because if any of the two wave 

numbers is zero then the determinant of equations (4.13) vanishes. 

The ampl itude relations associated with sinytc = 0 and a. > 0, 8 > 0 

are (4.15). Considering these relations, P and S-wave displacement 

expressions become 

P = 0 uxN 

P 
0 uyN = 

uP = 0 . 
zN 

As seen in the above equations, the combination, sinytc = 0, a. > 0, 

8 > 0 corresponds to modes in which the displacements are in x-y 

plane. Since displacements due to P-waves are zero, only shear 

waves propagate in the block. Note that, the frequency equation 

has only shear wave speed which means there are no mode conversions . 
at the stress-free boundaries; therefore the waves propagating in 

the block are SH-waves. 

Note that, Eq. (4.16) is not the only frequency equation; 

in the case where sinYtc is not zero it is possible to find which 

will cause the term given by Eq. (4.21) to vanish!, In such cases 
• 

Eq. (4.21) is the frequency equation. This is a transcendental 

equation having both of the longitudinal and shear wave speeds 

which means that mode conversions at the stress-free surfaces are 
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possible. These mode conversions are responsible for the increased 

complexity in the amplitude relations (4.19) and (4.20). The natural 

frequencies of the system can be obtained impl icitly from this equation. 

The ampl itude relations associated with the combination where sinytc i 0 

and a = 8 = 0 are given by Eq. (4.17). Now, P and S-wave displacement 

components are given as 

uS = 0 
yN 

S uzN = 0 . 

In this case the frequency equatioti.(4.18) is a very simple form of 

Eq. (4.23) since the wave numbers a and 8 are equal to zero and the 

frequencies of the system can easily be calculated. This case rEtp-

resents P~w~ves propagating in z~direction only because only P-wave 

displacement component in the z-direction is present. Since the 

P-waves are normally incident to the stress-free z-faces, there are 

no mode conversions and they reflect back and forth between these 

two faces. 

An alternative combination is the case sinYtc i 0 and a > 0, 

8 = O. In this case, the displacement components due to P and $-waves 

are 

l =0 yN 

U~N = cosax[Yt(A'NCOSYtZ - A2Nsinyt z}]sinwNt 



and 

S . ( 
uxN = slnaX A3NcosYtZ + A4NsinYtz)sinwNt 

S uYN = a 

S 
uzN = cosax((a/Yt)(A4Ncosytz - A3NsinYtc)]sinwNt 

and it can easily be seen that P and S waves prbpagate in the bl.ock. 

When sinytc i 0 and a = 0, B.:> 0, the reversed conditions exist. The 

displacement components are 

. and 

l =0 xN 

U~N = si.nBY[B(A1NcosyJ/,z + A2NsinYJ/,z)]sinwNt 

U~N = cosBY[YJ/,(A1NsinyJ/,z - A2NcosYJ/,z)]sinwNt 

USN = sinBy[A5NcosYtZ + A6NsinYtz]sinwNt Y . 

U;N = COSBY[(B/Yt) (A6NcOSYtz - ASNsinYtz)]sinwNt . 

/ 

Finally for the combination sinYtc i n and a > 0, B > 0 both of the 
, -

P and S-waves propagate in all directions since none of the displace­

~ent components due to these waves vanishes. The, amplitude relations 

and the frequenc~ equation associated with these three ca~e are given 
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by the equations (4.19), (4.20) and (4.21). They represent the pro­

pagation of mod~ converted P and SV-waves. Some of the mode shapes 

associated ~ith these combinations are given in Figures (4.2) through (4.5)., 
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FIGURE 4.2 - (001) Mode for Uz (symmetric). 

44 

/ 



45 

z 
! 

c 

a 
x 

FIGURE 4.3 - (010) Mode for Uz (antisymmetric). 
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FIGURE 4.4 - (110) r~ode for Uz (antisymmetric). 
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The asterisks in Table 4.1 denote the unknown amplitudes that 

must be determined from the initial conditions. The initial condi­

tions are generally in the form 

~(x,y,z,O) = ~o(x,y,z) 

~(x,y,Z,O) = ~o(x,y,z) 

. 
where u and u are the initial displacement and'velocity fields -0 -0 

respectively. 

The displacement components are the infinite sum of the 

normal modes defined by the Eqs. (4.12) and they can simply be 

written as 

ux(x,y,z,t) = E u N(x,y,z,t) 
N x , 

(4.22) 
( 

/ 

with the understanding that E = E E E , as before. Note 
, N n=o m=o p=o 

that nand m specify the wave numbers a = nn/a, B = mn/b respect~ 

ively and P is used to represent infinite sets of natural frequencies 

corresponding to the combinations of integers nand m. 

-
4.2 FORCED VIBRATION SOLUTION 

The equati~nof motion for the case of forced vibration of an 

elastic media was given by Eq.'(2.9) which we repeat here for conve-

nience, 
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(4.24) 

Due to its simplicity, in our analysis of the forced vibration problem, 

we will utilize the normal mode approach. 

It can be shown that the modal functions $xN' $yN' $zN are 

orthogona 1 . over the dQma i n of the bloc k that is, 

abc 
J J J $N$M dx dy dz = a 

000 
if N(n,m) ~ M(n',m') (4.25) 

..-
Since the normal modes (4.12) form an orthogonal set, the displacements 

at any point and time may be represented by the superposition of the 

modes [16J, i.e., 

u(x,y,z,t) = ~ 2N(x,y,z)TN(t) (4.26) 

/ 

where 

and TN(t) represents the time varying character of the modes. Subs­

titution of this series representation of displacement vector (4.26) 

into the equation of motion yields: 

Recalling the free vibration displacement solution which can be 

expressed in the vector form as 

(4.27) 

(4.28) 



and substituting it into the free vibration equation of motion, (4.1), 

one obtains the following relation. 
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(4.29) . 

Thus, utilizing Eq. (4.29) in (4.27) and rearranging the terms, we 

get 

.. 
~ 2N(TN(t) + wNTN(t)) = f (4.30) 

.. 
where TN(t) represents the second derivative of TN(t) with respect 

to time. Taking the scalar product of ·both sides of Eq. (4.32) with 

~M where M(n',m') denotes another modal function and integrating over 

the volume of th~ block, one gets 

.. 
~(TN(t) + WNTN(t))~ 2N·2M dV = ~ ! . 2M dV . (4<31) 

Recalling. the orthogonality condition for the normal modes, Eq. (4.31) 

can be written as 

where 

and 

.. 
TN(t) + wNTN(t) = QN(t) 

1 =--

abc. 

abc . 
f f f f(x,y,z,t)~2N(x,y,z)dx dy dz 

000 

D = f f f 2N • 2N dx dy dz 
N 000 

(See Appendix C for details). 

(4.32) 

(4.33) 

(4.34) 
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In order to obtain the time dependency, TN(t), of the modes, 

we will make use of Laplace transforms. Taking Laplace transform of 

Eq. (4.32), 

.. 
L[TN(t)] + w~ L[TN(t)] = L[QN(t)] 

where 
.. 

L[TN(t)] = S2TN(s) - S TN(O) - TN(O) 

and assuming the motion starts from rest (TN(O) = TN(O) = TN(O) = 0) 

yields the expr~ssion 

It is possible to express the above equation in a new form as 

(4.36) 

where 

(4.37) ° 

The inverse transform of Eq. (4.36) may be taken by using the convo­

lution theorem [20], 

t 
= __ 0 ° f QN(T)si~wN(t - T)dT 

w
N 

0 

(4.38) 
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It is possible to determine the time varying function, TN(t), for any 

generalized body force according to the Eqs. (4.33), (4.34) and (4.38). 

In the next two sections the time dependency of the normal modes for 

the cases where the loading has an impulsive and step like characters 

will be considered. 

4.3 IMPULSIVE RESPONSE 

A concentrated impulsive body force can be written as ,. 

f(x,y,z,t) = f i + f j + f k ...; x- y- z-

where the components are given by 

f = F 8(x - x )8(y - y )8(z - z )8(t) x x 0 0 0 

f = F8(x - x )8(y - y )8(z - zo)8(t) y - y 0 0 

f = FZ&(x - x )8(y - y )8(Z - Zo)8(t) zoo 

Upon substituting Eq. (4.39) into Eq. (4.40), one obtains 

QN(t) = olN [Fx<PxN(xo,yo'zo) + Fy<PyN(xo,yo,zo) 

+, Fz<PzN(xo,yo,Zo)]8(t) 

(4.39) 

(4.40 ) 

(4.41 ) 

Thus substituting the above equation into Eq. (4.38) yileds TN(t): 

+ F <P N(x ,y ,z )]sinwNt z zoo 0 
(4.42) 



Therefore the components of the displacement vector obtained from 

Eq. (4.26) are 

4.4 STEP RESPONSE 

The components of a concentrated force in the case where the 

time dependency is a step function can be written as 

f = F o(x - x )o(y - yo)o(z - z )H(t) x x 0 0 

f = F o(x - x )o(y - y )o(z - z )H(t) y y 0 0 0 
(4.44 ) 

f = F o(x - x )o(y - y.o)o(z - zo)H(t) zz 0 

The procedure for th~ derivation of the function TN(t) and the dis­

placement components are same a.s outlined in -the previous section. 

Thus, 
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(4.45) 

+ Fy¢yN(xo'Yo'zo) + Fz¢zN(xo,yo,zo)](l - coswNt) 

/ 
This completes the analysis of the forced vibration problem 

of a rectangular block. In the following chapter, numerical results 

for two case; first for four faces rigid-lubricated, two faces stress-

free, secondly for the case where all six faces are rigid-lubricated 

will be presented. 
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V, RESULTS AND CONCLUSIONS 

5.1 NUMERICAL RESULTS 

Numerical calculations were done for the response of a rectan-

gular parallelepiped vdth two sets of boundary conditions: 

1. Six faces are rigid-lubricated (6RL) 

2. Four faces are rigid-lubricated and two faces are stress-
/ 

f~ee (4RL + 2SF). 

The properties,of the block used in the numerical calculations are 

given in Table 5.1. 

TABLE 5.1 - Properties of the Block Used in Numerical 
Calculations. 

Properties Case I Case II 
6RL 4RL + 2 SF 

Material A1iminum Aliminum 
P 2700 Kg/m 3 2700 Kg/ni3 

c!/, 6300 m/sec . 6300 m/sec 
ct 3100 m/sec 3100 m/sec 
A 46.2.GPa 46.2 GPa 

11 25.5 GPa 25.5 GPa 

a 0.1 m 0.1 m 

b 0.1 m 0.1 m 

c 0.1 m 0.1 m 
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Two computer programs have been developed in order to calculate the 

displacements in z-direction due to impulsive and step point loads. 

First program calculates the z-axis displacements as a function of 

time for a block with six rigid-lubricated faces and the other one 
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does the same work for the block with four rigid-lubricated/two stress­

free faces. These are given in Appendix D. Note that both of the 

programs are generalized so that they can be used for any block of 

any material and dimensions. In order to decrease the CPU time used, 

the frequencies and spatial part of the normal modes were generated 
/' 

first in a loop and the calculated values were stored. Then, by 

using another loop, the spatial part of the modes were combined with 

their time dependent part and the resulting values of the normal modes 

were added so that displacements were obtained for different times. 

In this way, the frequencies and the spatial dependent part of the/modes 

were calcula~ed only once instead of to calculate them for every time 

increment. A CDC/Cyber series, type 815 computer were used to cal­

culate the numerical results. 

The number of modes taken and the CPU times used in the runs 

are listed below. Note that the CPU times used in the runs for the 

block with four rigid-lubricated and two stress-free faces are greater 

than the CPU times used for the block with six rigid-lubricated faces. 

This is because in the second case of boundary conditions, the trans­

cendental frequency equation is an impl icit function and must be 

solved iteratively ,while for the first case, we have two simple fre­

quency equations which can be solved explicitly thus a few CPU time 

was required in calculating the frequencies. On the other hand, the 



". 

TABLE 5~2 - CPU Times and Number of Modes Taken. 

Number of normal CASE I CASE II 
modes taken 6RL 4RL + 2SF 

1000 3.59 min. 5.58 min 

4096 14.27 min 

8000 28.42 min 44.17 min 

15625 55.76 min 92.76 min 

21952 76.64 min 126.12 min 

50653 168.f7min 276.75 min 

103823 323.41 min 512.51 min 

displacement expressions for the block v/ith four rigid-lubricated 

and two stress-free faces are more compl icated than those for the 

block with six rigid-lubricated faces, thus, more CPU time was reJ 

quired to ca·lculate the displacement expressions in the second case. 

In the numerical calculations, the displacements were measured at 

the position (0.05; 0.05; 0.075) m. The components of the body 

force are acting in the x,y,z directions and each has a 0.577 N 

magnitude; i.e. total magnitude of the for~e is one Newton. The 

coordinates of the point of application of the body force was taken 

as (0.05; 0.05; 0.05) m. The location. of the souce and the receiver 

are the same in the both cases of the block. 

As a first step in this analysis, 1000 number of terms were 

taken in the infinite series to obtain displacements for both cases. 

Then the number ·of modes were increased and the rate of convergence 

in displacement values "laS controlled. The numbers of normal modes 
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that were used in numerical computations ~re given in Table 5.2. The 

value of the displacement obtained by adding nearly 50,000 terms was 

only off by 10% from the value obtained by taking nearly 100,000 terms. 

Computing with larger number of terms were found to be uneconomical as 

would be seen from Table 5.2. Thus, the results obtained by taking 

nearly 100,000 terms were considered to be final results. These are 

given in Figures 5.1 through 5.4. The z-directidn displacement v.s. 

time histories obtained by taking 8,000 and 50,000 terms are also 

given in Figure·s 5.5-5.8 and 5.9-5.12 respectively. 

In Figures 5.1 and 5.2, the response of a block with six rigid­

)ubricated faces to an impulsive and a step point loads are shown 

respectively. In the following two figures, i.e. Figures 5.3 and 5.4, 

these are given for a block with four rigid-lubricated and two stress-
/ 

free faces. In these figures the first peak at nearly four micro-

seconds after the impulsive force is applied corresponds to the 

arrival of P-wave to the receiver. The ripples in the outputs before 

this peak are due to the fact that normal mode solution converges 

slowly for impulsive loads. The other peaks in these figures corres­

pond to the arrival of ~arious reflected waves from the boundaries. 

The rays associated with them are shown in Figure 5.13. 

5.2 CONCLUSIONS 

The normal mode solutions were presented in this thesis for 
-. 

the forced vibrational response of an rectangular parallelepiped 

with two sets of boundary conditions: 



" 

1. Completely rigid-lubricated boundaries 

2. Four rigid-lubricated and two stress-free bouridaries. 

For these cases numerical results were obtained for the response of 

a sample block to an impulsive and a step point load. 

In the normal mode analysis, eventhough the expressions are 

exact, in the numerical applications one needs to take very large 

number of terms (normal modes) in order to get the results within 

an acceptable accuracy. 

Although rigid-lubricated boundaries are not representative 

of a typical acoustic emission experiment, solution of the problem 

for a block with all rigid-lubricated faces provides a first step 

in obtaining mor~ difficult solution for the stress-free/rigid­

lubricated case. On the other hand, the block with four rigid-

lubricated and two stress-free faces is a more realistic case. 

Therefore, the solution of this problem can provide a better model 

for an acoustic'emission event and can be useful in the field of 

nondestructive testing. 

/ 
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A P PEN DIe E S 



APPENDIX A 
SEPERATED WAVE EQUATIONS 

Derivation of the decoupled wave equations will be given in 

this section. In deriving these equations, the equation of motion 

in terms of wave speeds will be used. This is Eq. (2.9) 

Substituting the Helmholtz equations of displacement 

~ = ~cp + .. ~ x ~ 

~ • ~ = 0 

and body force 

f = VG + V x H 
#v _ - -

V • H = 0 

into the equation of motion (A~l) gives 

CtV2(~cp + ~.x~) + (c~ - Ct)~~ • (~cp + ~ x ~) 

+ (VG + ~ x ~) = (o27ot2)(~cp + ~ X ~) 

(A.1) 

(A.2) 

(A.3) 

(A.4) 

74 



" 

Then substituting the relations 

V2(Vcp) = V(V2cp) 
""- .,.., (A.5) 

and 

v-v x 1jJ = 0 
(A.6) 

into the Eq. (A.6) and performing necessary algebraic manipulations, 

Eq. (A.6) may be rewritten as 

(A.7) 

Note that this equation is equal to zero if each of the terms in the 

parantheses vanishes and this leads to two seperated wave equations: 

/ 
(A.8) 

(A.9) 

Now the equation of ~otion which includes both P and S-waves is 

seperated into two independent equations. The first one, Eq. (A.8), 

defines the P-wave motion and the second one, Eq. (A.9), the trans-

verse motion. 
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APPENDIX B 
SOLUTION OF SEPERATED WAVE EQUATIONS 

;' 

In this section, the solution of seperated wave equations 

derived in the previous section, App. A, will be given. 

For the free vibration case, the body force terms in the 

wave equations are neglected, i.e., 

(B.l) 

(B. 2) . 

The seperation of variables method will be used to solve the wave 

equations. 

Now consider the wave Eq. (B.l). The solution of this equa­

tion can be assumed to be in the form of , the product of two functioris, 

one with spa ti a 1 dependency, the other with time dependency, 

~(x,y,z,t) = W(x,y,z)T(t) . (B.3) 

Substitution of this expression into Eq. (B.l) gives 
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where w~ represents the seperation of variables constant. Th~s, two 

independent differential equations are obtained from Eq. (B.4) 

The solution of the second equatio~ is simple and is of the form· 

which represents simple harmonic motion with the frequency w1 . 

The first equation, (B.5), is known as Helmholtz equation 

whose solution is obtained by assuming a solution of the form 

W(x,y,z) = X(x)Y(y)Z(z) . 

Hence, substituting this expression into the Eq. (B.5) yields the 

following equation 

x Y Z -+-+-= 
X Y ·Z 

Setting, 

.. 
X/X =_a2 

Y/Y = -13 2 

gives a third relation 

(B.5) 

(B.6) 

(B.7) 

(B.8) 

(B.9) 

(B. 1 0) 

(B.ll) 
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(B.12) 

These three expressions may be rearranged to give three differential 

equations: 

x + a 2 X = 0 

Y + S2y = 0 

Z + y 2 Z = 0 Q, 

Solutions of these equations are 

X(x) = Blcosax + B2sinax 

Y(y) = B3cossy + B4sinsy 

Z(z) = BScosyQ,z + B6sinyQ,z 

(B.13) 

(B.14) 

(B.1S) 

(B.16) 

(B.l7) 

(B.18) 

Equations (B.7), (B.16), (B.17), (B.18) may be combined according to 

equations (B.3) and (B.8)~ Assuming the initial condition T(O) = 0, 

the unknown constant Al can be eliminated. Then the final result 

can be written as 

¢(x,y,z,t) = (Clcosax + C2sinsy)(C3cosSY + C4siriSY) 

(CScosYQ,z + C6sinYQ,z)sinwQ,t . (B.19) 

This is the general solution for the free vibration scalar potential.· 

Now consider the transverse wave equation. It can be written 

in component form as 

\/21jJ = (1 /cP~x (B.20) 
x 

. \/21jJ = (1 /Ct)~y (B.21) 
Y 

\/21jJ == (l/Ct)~z (8.22) 
Z 
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" 

These three equations are solved by performing similar algebraic work 

as done for the longitudinal wave equations. The results are 

1JJx(x,y,z,t) = (Dlcosax + D2sinax) (D3coSBY + D4sinBY) 

(D5cosYtZ + D6sinyt z)sinwt t , 

l/!y(x,y,z,t) =~(Elcosax + E2sinax)(E3cosBY + E4sin(3Y) 

(E5cosYtZ + E6sinYtz)sinwtt . , 

l/!z(x,y,z,t) = (Flcosax + F2sinax) (F3cos(3y + F4sin(3y) 
,.. 

where Yt is transverse wave number and may be expressed as 

(B.23) 

(B.24) 

(B.25) 
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APPENDIX C 
EVALUATION OF THE TERM DN· 

In this part, the term ON which was derived in Chapter IV 

will be evaluated. The equation 

abc 
ON = f J f 2N • 2N dx dy dz 

000 

may be written as 

. abc 
ON = f f f(¢~ + ¢2 + ¢~)dx dy dz 

000 y 

( C.l) 

/ 

(C.2) 

Since 2N = ¢xN ! + ¢yN ~ + ¢zN ~ 

in component form as 

Equation (C.2) can also be written 

where 

abc 
0xN = f f f¢~N dx dy dz 

000 

a b·c· 

° = f f f ¢y2N dx.dY dz 
yN 0 0 0 

(C.3) 

. (C.4) 

(C.5) 
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abc 

DzN = J J J ~~N dx dy dz 
000 

" 

81 

(C.6) 

Note that ~xN' ~YN' ~zN are the modal functions that are derived in 

Chapter IV. Substituting the modal functions into Eqs. (C.4-6) ~nd 

performing the necessary integrations and also algebraic manipulations, 

one obtains the expressions: 

, n
1 
ab 

DxN = -4- {a2(A1Nlll + 2A1NA2N1l2 + A2N1l 3) 

+ 2a[A1N(A3N1l4/+ A4Nll s) + A2N(A3N1l6 + A4N1l7)] 

(C.7) 

n ab 
DYN = ~ {s2(A1Nll l + 2A1NA2N1l2 + A2N1l 3) 

+ 2S[A1N(A5N1l4 + A6Nll s) + A2N(A5N1l6 + A6N1l7)] 
/ 

(C.8) 

n ab 
DzN = ~ {y~(AiN1l3 + 2A1NA2N1l2 + A2Nll 1 ) 

+ (Y~/Yt)[A1N(aA4N + SA6~)116 - A1N (aA3N + BA5N )1l7 

where, 
(C.10) 



and 

n = (1 + 0 ) (1 - 0 ) 
2 , ao 80 

n = (1 +0 ) (1 + 0 . ) 
3 ao 80 

C si n2y.Q, C 
/:'1 = -2- + 

. /:'2 = sin2y~C 

2y~ 

4y~ 

_ C si n2y ~ C 
/:'3 - -2- -

4y~ 

1 - COs(y~ - Yt)C 

2(Y~-Yt). 

sin(y~ - Yt)C' 

2(Yt - Yt) 

sin(y~ + Yt) 

2(y~ + Yt) 

C sin2YtC 
/:'·8 =-+ 

2 .4:Yt 

/:'9 = 
sin2YtC 

2Yt 

C sin2YtC 
/:'10= --

2 ·4Yt 

" 

finally, these are combined according to Eq. (C.3) td obtain ON' 

(C.11) 

(C.12) 

(C.13) 

(C.14) 

(C.15) 

(C.16) 

(C.l7) 
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(C.18) 

(C.19) 

(C.20) 

(C.21) 

(C.22) 



APPENDIX D 
COMPUTER PROGRAM LISTING 
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1" 
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i1. 
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{. -l 
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J? 
.1~ 

34 
j'i 

3b 
:,7 
3il 
j'l 
't') 

't1 

'02 

.. 3 
'0 't 
-1') 

It" 
'17 

'19 
"1 ~ ,l 

?" 
:.1 
~? 
:'1". 

~4 

:.>~ 

:," 
" 

j, 

:>fJ 
')"/ 

a'l 

01 
o? 
u 1 

b4 
iJ'i 
tJ:' 
07 

,iJ 1'\ 
o'l" 

, '. -n 
72 
i3 
l't 
lS ,<, 
n 
n 
n 

. . )0. 

c 
c 
c 
r; 
C. 

r. 
r. 
r. 
r: 

c 
c 

~~~L Ll,l2iL3,Kr,~2,~3'<lXl,K2Xi'K3X3,N~D 
R~~L hlll,(2Z<:,(3L3 
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ll=u.l 
Li~0.1 

L.l=J.l 

C LJ~~ITU~I~~l ~~D TR~IjSV~R5~ ~'VE' SP~EUS 
:"'-=b'lu'l. 
r. r ~31"JI • 

r. ?Jl.jT nl- A?PllC:'Til)ll OF TrlE FORCE 
li='-li? 

r: 
r: 
c 

c 
C 

c 

Z ~.::L ?/: • 
Zj=L'3/2. 

l(J.=ll 
X!.=l2 
X3=1I.l';"l3 

PI=3.14159Zb536 i 
'1=(\ , 
V=L1"l2;<L3 ;' 

C T:lTEG~~ SeT (N='J,1,2, ••• ) A'ID W"VENUMBER 4LPH" 
c 

c 
r:, 
c 

c 
c 
c 

r: 
,C 
C 

r: 
c 

)J if) 111=u, i6 i 
<l=FLiHT (Nll*PI/iLl 

I~TEG~Q SeT (M=U,l,2, ••• 1 '~D W4VENJ'bE~ ~ETA 

r'J '::"1 ~lL=iJ, ".~ i 
< 2=FLJL\ I (;,? PP I/ilL 

I~Tt:G~~ S~T (P=J.l.L, ••• 1 ''ID WAVENJ'IbER GAMH~ 

, 
DJ j'1 T;=v,2il i 
'J~(~1.~~.6.AIjU.~2.c~.U'''Ij~.'13.~J.D)~1 TJ 30 

7.J=rLul\i IN31')I'I~ 
~J~={1*~lT<l*~2.Kj*K3 
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',1= 'IT 1 
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I 
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;/:,T=O*I; 
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F~T()J)~~:-jT , 
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IF(Nl.F~.u.AIjD.~2.GT.U.ANp.N3.EJ.O)GO TJ'll 
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T t' ( ,'11 • q • u. ",'I[) • ;>2. <:-:J. 0 '. 41j D. N 3. G r-. U ) GOT J 14 
T~(~1.~r.1I.A~~.~?Gr.U.~Na.~3.GT~O)GO TJ 15 
1~(~1.Gr.U.A~D~N2.Gr.U.AIjD.'13.EJ.U)GO TJ 16 
) l=ll. iJ 

')"~ =1.1. i; 
~.I1 Cl ttl 
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09 
-J:l 
-iJ 
'~., 
~J ?, 
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~1.~4 
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" 
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it' T<\1=2. 
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Th3=2. 
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-12 T~,l=i. 
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Tt\j~2.. 

lJ Fl 17 
13 f<\l='t. 
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J T'J 1'1 
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r \L ~ 1.. 
f 6" =1. 
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.,.. 
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P'=Cl)(~llli·)1~(K2L2)*COS(~3Z3) 
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'I 1 = J =, " '\ i (~r- ~ '\ • ') ) 

<;'f',lt' 
r ,') 

. ;,', 



z 
:' 
I, 
'; 
h 
7 
R 
'1 

if) 
L 1, 

iZ 
13 
1'. 
1'i 
16 
L7 
1R 
19 
~(l 

Ll 
~? 

d 
t." 
t.'; 
t.h 

'c:.7 
ifl 
,,') 

3-:1 ., J1 
J~ 

33 
.:14 
j5 
3b 
.,7 
39 
39 
'tfl 
;'1. 
't? 
~1 

',4 
'i ... 

.. 6 
:;7 
't~ 

.. "I 
?() 

!I I' 
'J( 

:.< 
)4 
:"r; ,.,-
-;7 
5'3 
:.'1 
o,f) 

til 
02 
03 
0 4 

O~I 

"" iJ7 
, 08 

0'1 -, () 
71 
72 
'1'" 
74 
l'i 
"1'-. 
17 
lfl 
7'1 
vI 

c 
c 
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C; 

c 

C 

r: 

~ 
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C 
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,) 
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