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TRANSVERSE VIBRATION OF BEAMS.
APPLICATION OF A MODIFIED THEORY

ABSTRACT

In the analysis of transverse vibration of beams the classical Euler-Bernoulli theory
is insufficient to describe the behaviout of the beam in the higher modes. Including the
effect of rotary inertia and shear deflection of the beam results in the so called Timoshenko
theory which extends the applicability of the theory to higher modes.

This study is based on a work by Levinson [9]. The theory developed takes warping
of the cross-section into account. In this theory the arbitrariness in the shear coefficient
appearing in the equations of motion is removed. The shear coefficient is shown to be equal
to 5/6. _ o ‘

N //'

Based on this theory, a theoretical analysis of the vibration of beams with simple and
homogeneous boundary conditions is presented. The method of separation of variables is
used to obtaih» the solutions to the Euler-Bernoulli beam theory, Timoshenko beam theory
and the modified theory. The eigenvalue problem is formulated for each theory and both
the eigenvalues (natural frequencies) and the eigenfunctions (normal modes) are determined
for the clamped-free, clamped-clamped, hinged-hinged, free-free, and clamped-hinged
boundary conditions. The results of these theories are compared.



KIRISLERDE ENINE TITRESIMLER
GELISTIRILMIS TEORININ UYGULANMASI

OZET

Kirislerin titresiminin analizinde klasik Euler-Bernoulli teorisi, kiriglerin yiiksek fre-
kanslardaki davranislarini ifade etmekte 3/'eterli‘ degildir. Kirigin donme ataletinin ve kayma
egilmesinin etkisi dahil edilince yiiksek frekanslardaki uygulanabilirligi sonucunu ortaya
¢ikarmustir ki, bu teoriye Timoshenko teorisi denir.

Bu ¢alisma Levinson'un [9] iizerinde durdugu bir teoriye dayanir. Bu teori kesitte
meydana gelen ¢arpikh@in etkisini isleme alarak gelistirilmistir. Bu teoride hareket denkle-
minde ortaya ¢ikan kayma katsayist birakilmistir ve bu deger 5/6'ya esit olarak ortaya ¢ikar.

_ /- :

Bu teoriye dayanarak, basit ve homojen sinir sarth kiriglerin titresimlerinin teorik
analizi sunulmaktadir. Degiskenlere ayirma metodu kullanilarak Euler-Bernoulli, Timoshenko.
ve gelistirilmis .t‘eoriler icin ¢oziimler elde edilmistir. Her teoriye gore tabii frekans problemi
formille edilip, ankastre-serbest, ankastre-ankastre, - mentese-mentese, serbest-serbest,
ankastre-mentese smir sarth kiriglerin tabii frekanslart ve normal sekilleri belirtilip, bu
teorilerden elde edilen sonuglar karstlastirildi.
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ASSUMPTIONS

The following assumptions are considered in deriving the equations of motion for the
. modified theory: '

1.

2.

”~

Beam is prismatical and straight.
The material is homogenous, isotropic and Hookean.
Initially, there is no deflection of the beam.

The cross-section will warp into a non-planar surface.
. . ' /
On the lateral 3urfaces of the beam the cross-section remains normal to the shear-

free surfaces.

Poisson ratio effects and stress components other than the longitudinal normal
stress and transverse shear stress are neglected.

The thickness of the beam is constant all throughout.



I. INTRODUCTION

In the vibration analysis of a large group of engineering structures their components
are idealized as beams. Accurate prediction of the natural frequencies and mode shapes of
these components is considerably important. Several theoretical approaches have been
developed in accordance with the accuracy needed.

It is a well known fact that the classical Euler-Bernoulli [1] theory of flexural vibra-
tions leads to erroneous results at hlgh frequencies. Consideration of the effects of shear and
rotary inertia is necessary for the accurate prediction of the flexural frequencres

First, improvement on the theory is due to Rayleigh [2] where he introduced the
effect of rotary inertia. A further improvement was made by Timoshenko [3,4] who present-
ed two papers in 1921 and 1922 concerning the effects of shear deformation on the bending
vibration of beams. Thus, the range of applicability of the theory of beams was extended
by taking into account the effects of trahsverse shear deformation and rotary inertia. The
equations including these effects are referred to as Timoshenko beam equations. In these
equations the effective transverse shear strain is

T
av

kG

€ =

where 7__ is the average shear stress, G is the shear modulus and « is the shear correction
_ coefficient. The shear coefficient depends on the shape of the cross-section and it is generally
defined as the ratio of the average shear strain on a section to the shear strain at the centroid.
The numerical value of the shear coefflcrents based on thrs definition are given in refer-
ence [5 ]

- The definition of shear coefficient given above is not entirely satisfactory.
Goodman [6] and Sutherland {7] have shown that the customary values of shear coefficient
lead ‘to unsatisfactory results when Timoshenko beam equations are used to calculate high-
frequency spectrum of vibrating beams. They have proposed that shear coefficient should
be adjusted arbitrarily so that better results can be obtained. According to them the un-
satisfactory results arise from using static strain dlstrlbutrons as a basis for calculating shear
coefficient instead of the strain distributions which occur in hlgh—frequency motion.

Levinson and Stephen [8] have presented a formulation of a complete second order
beam theory which takes into account shear deformation, transverse direct stress and rotary
inertia. The governing differential equation is similar in form to the Timoshenko beam equa-
tion, but consists of two coefficients. One of which depends on cross-sectional warping and
the second includes terms deépending on the transverse direct stresses.

Levinson [9] has presented a modified theory which includes the effect of warping
. of the cross-section. The theory allows the cross-section both to rotate relative to the neutral
surface and to warp into a non-planar surface. The usual assumptions of "'cross-section of
“the beam normal to the neutral surface remain normal during motion'" is abandoned. Besides
that the cross-section is.allowed to warp in such a fashion that it remains normal to the shear-
. free surfaces. |



In this thesis Levinson's theory has been used to obtain the naturual frequencies
of a beam with simple boundary conditions. Frequency spectrums have been calculated
for different boundary conditions and compared with the frequencies obtained from Euler-
Bernoulli theory and Timoshenko beam theory. The frequency spectrums are presented
graphically. In addition, normal modes have been obtained for the boundary conditions
such as clamped-free, clamped-clamped, hinged-hinged, free-free, clamped-hinged. These

are also presented in section IV.



II. EQUATIONS OF MOTION

In this section we will present the equations of motion governing the transverse
vibration of beams for the three theories namely Euler-Bernoulli, Timoshenko and Levinson
theories. '

A. EULER-BERNOULLI THEORY

The analytical determination of the transient flexural vibrations of beams gener-
ally employs the elementary or Euler-Bernoulli equation. This equation considers only the
lateral inertia and the elastic forces calised by bending deflections. The equation of motion
for free vibration based on Euler-Bernoulli theory can easily be found in the literature [10,11]
that is

*w oA 92
ax4 P ot?

El

=90 : II;l
where, w(x,t) is the transverse deflection of the neutral axis, EI the flexural rigidity\, p the
mass density, and A the cross-sectional area of the beam.

1. Boundary Conditions
The necessary and sufficient Boundary conditions for the beams are :
Clamped end: At the clamped end of a be;am the deflection and the/él/(‘)pe aré

zero, i.e.,

W(x,t) IX = 0 =-W(X,t) IX=| = O

1I-2
W,(X,t) IX=0 = W,(x,t) IX:l = 0
Hinged end: At the hinged end the deflection and the moment vanish, i.e.,
W(t) g = wlx,t) | =0
II-3

W (x,t) 1o =W (x,8) |2, = 0

A Free end: In the case of free ended beam, the moment arid the shear forces vanish
" at the boundary, i.e.,



W) Lmg = W (6,8) Lymy = 0
IL4

lII

(x,t) [ oo = W (xt) | =g =0

B. TIMOSHENKO BEAM THEORY

It is well known that the Euler-Bernoulli theory of flexural vibrations of beams

__is adequate for relatively long, slender beams at lower modes of vibration. For beams in

which higher modes are required, the Timoshenko theory [3] which considers the effect of
shear and rotary inertia gives a better approximation to the true behavior of a beam.

The free body diagram of an element dx of a beam with internal reactions is
shown in figure 2.1. The total deflection w(x,t) consists of two parts, one caused by bending
and one by shear, so the slope of the deflection curve can be written '

ow(x,t)
ox

= y(x,t)—¥(x,t) « ' I1-5

where J(x,t) is the angle of rotation due to bending y(x,t) is the angle of distortion due to

shear. B
/

The displacement of a material point in the longitudinal direction is of the form
u(x,z,t) =z ¥(x,t) II-6

Integrating the normal stress and shear stress over the area of the cross-section, the bending
moment and shear force can be found respectively - .

0 » :t . o ,t . :
- JE*—(—) ) o
. 0x oX
A _
D ) 9 :
Q=j 6 — + 2% ga=i W (x.) + Y(x,t) AG -11-8
0z 0X ox .
A

where A is the cross-sectional area, G the shear modulus K the shear correction factor de-

pending on the shape of the cross-section, and EI the bending stiffness. To determine the
equation of motion, dynamic equilibrium condition for forces and moments on a beam
element (Figure 2.1) must be considered. The dynamic. equlhbnum condition for the forces

* in z direction is



o N

dx

M(x,t)
)
Q(x,t) + ———Q dx
ox
Q(x,t)
2
PA dx
: . Q(x,t) + dx
- X
M + d
{x,t) P X
M(x,t) )'

\

Qlx,t)

dx

. Figure. 2.1 Frcé body diagram of an clement of abeam according_w Timoshenko theory,



0Q 2%w 11-9
— Q- Ddx+ pA— dx=0 :
-Q ax xTe at? X

where p is the mass density. Substituting equation (II-8) in equation (II-9) we have

2 » 32‘ . ‘
KAG(a hid + alp )._pA w =0 II-IO

ax? ax at?

The differential equation for rotation of an element can be written

oM %y
dx +M—M— — dx + pl = II-11
Qdx dx xTh at?
Substituting equation (II.7) and equation (II-8) into equation (1I-11) we obtain -
22y 0 82
Ca Tl (X hy a0 1-12
ox~ ox ' ot :

Equation (II-10) and equation (II-12) are the coupled eqhations of motion for the
Timoshenko beam theory. If ¢ (x,t) or w(x,t) is eliminated from the coupled equations
the equation governing the transverse displacement w(x,t) and ¥ (x,t) can be obtained as

g w0 Bty e o'w o
axt P \P TP G Jaxtorr T «G af® I3

2y 22y E 2%y p*l 3%y |
El + pA — —| pl+pl LA L . 14
e TP T\P TP kG axtee | kG ot |

1. Boundary Conditions

The appropriate boundary conditions of Timoshenko beam théory are [12]

Clamped end: The deflection and_rotatioh of a point on the clamped end of a beam
must vanish. )

wix,t) | _o = wix,t) l;<=l= 0
II-15

x,t) log = Wlxt) =0

Hinged end:-When the end of a beam is hinged, the deflection w(x,t) and moment
M(x,t) are zero, that is ‘



w(x,t) mg = Wixt) [, =0

II-16

M(X,t) Ix=0 = M(X’t) Ix=l =0

Free end: If the boundary of a beam is free then the moment and shear forces should
be zero, thus, ‘

N(X,t) {XZO = M(X:t) |x=1 =0

- ' 1117

Q(x)t) ix:O = Qx,t) lx:l =0

C. MODIFIED THEORY

In the modified theory [9] for a beam of narrow rectangular cross-section Euler-
Bernoulli hypothesis completely renounced. This theory includes the effect of shear and
rotary inertia as. Timoshenko theory does. However, difference from the Timoshenko beam
theory is that the cross-section of the beam is allowed to warp with the restriction that it
remains normal to the shear-free surfaces of the beam.

An element for a beam which is allowed to warp into a non-planar surface is

shown in Figures 2.2 and 2.3 with the notations and sign conventions to be used. Here M . .

and O denote the bending moment and shear force respectively while ¢ denotes the rotation
of the cross-section of the beam at the neutral surface. Thus, the displacement of a material
point in the longitudinal direction is considered to be of the form

u(z,x,t) = Y(x,1) z + o(x,t) 23 11-18

whe_re? ¢ (x,t)is the warping function because it is a measure of the deviation of the cross-
section from a plane surface. ’

The displacement ""u'' may be chosen as an expansion of series, i.e.,

u(zx,t) =2, (x,t) z+ a,(x,t) 2+ as(x;t) vt I V ' I-19

where z is the vertical direction of the beam and a,, a,, a4, are the coefficients. The first



Q(x,t) + dx
x
S M(x,1)
L =
Figure 2.2,  Free body diagram of an element of a beam with moments and shears according to the modified
theory. .
Z
7
A /
oy
Y{x,t) + — dx
. ax
v (x1) S
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-/ .
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j L — X
w(x,t)
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Figure 2.8,
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Free body diagram of an element of a beam
modified theory,

with displacements and rotations according to the



term of the above expression corresponds to the case where plane sections normal to the
neutral surface remain normal, (Figure 2.4). Actually the cross-section does not remain
plane after deformation. Thus, the first term is inadequate. Figure 2.5 shows the contribution
of the second term of the series expansion to the deformation. However, this kind of de-
formation is not possible because there is no extension in the neutral plane, then the second
term drops. The third term deforms the cross-section into skew-symmetry as shown in
Figure 2.6. Contributions due to the rest of the terms are very small as compared to the
first two odd terms. Thus neglecting these high order terms equation II-19 becomes,

u(z,x,t) = a, (x,t) z + a, (x,t) 23 ‘ _ II-20

Comparing equations (II-18) and (II-20) we see that a, and a, correspond to y and ¢
respectively. In the classical theory and Timoshenko theory, only the first term in the power
series expansion equation (II-18) is considergd.

Since the shear stress vanishes at the shear-free surface of the beam, so does the
shear strain €, that is,

c (x,il) _ ! (.a»u a)| =0 | 11-21
xz 2 .2 ax oz h
. Ze=d —
Substituting equation (II-18) into the above equation we gét, /
4 | aw
St =— 4+ — ’ II—22
=i o022 )

One can write the one-dimensional Hooke's Law for normal stress and shear stress, as
o =Ee ’ I1.23

and

z

r=Ge, | , : 124

where E is tlil)?] modulus of elasticity, G the modulus of rigidity, €, is the normal strain
and equals to . then, '

oy s w v o -
e, =—z1——| —
* " ox  3n\ ax | ax: | | , I3

Using equaﬁon (1-23) we can write the expression for the bending moment as,



N.A. ( B —_——X
< Figure 2.4
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e
Figure 2.5
Zﬁ )
( z
N.A. i '
J P 3 |
- .

Figure 2.6
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M= Ee zdA ' II-26

where A is the area for a rectangular beam of depth h and with 1. Carrying out the integra-
tion, bending moment is obtained as a function of ¢ and w,

El oy 3w

where I is the moment of inertia of the cross-section. In a similar procedure, integrating the
shear stress over the area of the cross-section, the transverse shear force can be obtained as

Q= | Ge,dA - S | &1

A

which yields

Q= — G +-— | 11-29
= 3 \‘[/ . -

Rotary inertia is the moment of the inertial force of an element about an axis/fhrouoh
its center of mass and perpendicular to the x — z plane. Thus the rotary inertia effect can be
expressed as

9%u

p— z dA 11.30
ot? " :
A A
where p is the mass density of the beam. Integration of the above expresswn is upon in-

troducing equation (II-18) results in
h
/

2 S
Yy 4 [Py Pw ] . pl ay - 3w
_d (v, s ade=2-| 4 — 1131
o [ o | 3 (aﬁ axar ) 5 o oxar’

when the beam is vibrating transversely, the dynamlc equﬂlbnum condition for forces can be
written in z direction as

2

Q+aQ—Aazw+dA :
ax 0 e ) 32

The moment equilibrium of an element can be expressed as of the form

oM pl 2y Bw ' . ' '
dx — — dx+— [ 4 — dx =0 - 11-33
Qb TS < ot oot .




2 a¢+azw'_Aazw : : 1134
3 ax - oaxt | M Tap I

If we now substitute- equation (II-27) and equation (IL.29) into equation (II-33) we obtain

L ’s dw BL(, a2y 3w oL, 3%y 33w 3
3 _3x 5 ax? x>/ s at? axatr /| I35

Eliminating ¢ or w from the coupled equations (II-34) and II-35) respectively, yields

o*w 3w 6 pEl \ ?*w 6 I 9w ‘
El — +pA — — | pl+— = +—pP = —— =0 I1-36
ax at 5 G Joax*e* s G dt .
a* 22y 6 pEI | @8 6 1 3%y '
EI ll:+pA f— pl+— 2= LN S 1-37
T et 5 G Jax*ar 5 G ot

This equation is precisely the same equation obtained from Timoshenko beam theory with
shear coefficient 5/6. »
1. Boundary Conditions: /

The appropriate boundary conditions of the modified theory are given for the
following cases ‘

Clamped end: At the clamped end of a beam the deflection and the slope are

zero. i.e.
wixt) g = wixt)l_, =0
' 11-38
Ut o = vixtl, =0
Hinged end: When a beam is hinged ended the deflection and moment vanish
ie., :

= w(x,t) | =0

x=1

: | 1139
M) 1 g = M{xt) | = 0
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Free end: when the end of a beam is free the moment and the shear force are
zero., That is, '

M(xY) o = Mixy) | _, = O
11-40

x=1

Qxy)1, _q = Q(x,y).| =0



IIl. SOLUTIONS OF THE EQUATIONS
In this section the problem will be formulated for Euler-Bernoulli theory,
Timoshenko theory and the modified theory under simple and homogeneous boundary
conditions. The eigenfunctions and characteristic equations for different boundary con-
ditions will be presented.
A. EULER-BERNOULLI THEORY

1. Basic Equation:

Under the appropriate boundary conditions the equatlon of motion for Euler-
Bernoulli theory was given in the preceeding section.

3w

axt

0‘w
El + pA EtT =0 : HI-1

-~

The method of separation of variables may be applled to the above equatlon by
considering a solution of the form . :

w(x,t) = W(x)el®t ' ’ 111-2
and :
X
=1 _ 113
where W (x ) = Normal function of w, /
£ = non-dimensional length of beam,
w ‘= angular frequency
i == 1 '
L = Length of beam

wt

When the common factor ¢! is ommitted equation (III-1) reduces to the following form

W= b2W =0 4 ’ S 4
where
pA
b? = — L*w? 1-
El 3

and the primes on W represents différeﬁtiation with respect to &
2. EIGENVALUE PROBLEM
Equation (IIi-4) is the associated eigenvalue problem for Euler-Bernoulli theory.

- Here b? is the eigen-value and W the corresponding eigenfunction. The general solution
of this linear and homogeneous equation can be written as
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w=C, Sinh\/’5$+C2Cosh\/E§+C§Sin\/b_.§+C4 Cosvb ¢ 6

where C,, C,, C, and C, are arbitrary constants. Applying the appropriate boundary con-
ditions to the equation (III-6) will yield the eigenfunctions and characteristic equations.

a. Clamped-free beam:
1. Frequency equation (Characteristic equation):

The boundary conditions for clamped-free beam can be imposed on the equation
(111-6) yielding

Sinhv/  Coshy/b _sim/B —cosB | | ¢, ] To
Coshv/b  Sinhw/b — Cosvb Sim/b C, 0

0 1 0 T Cs 0
11-7

Lw 0 1 0 Ca 0
, J L -'l..

For a non-trivial solution the determinant must be zero. Expansion of the determinant
yield the characteristic equation which is of the form, e ‘

1+ Coshy/b Cos/b = 0 I8

2. Normal modes (Eigenfunctions):

Three of the coefficients in equation (III-6) can be written in terms of fourth
one, then the eigenfunction will become,

W = C, [5Sinhv/bg — Coshy/bk — 8Siny/b + Cosv/bE] 1119

where

Sinhy/b + Sinv/b
Coshn/b + Cosv/b

and the bending slope may be expressed in the following form

W' = H [Coshy/bE — nSinhy/bf — Cosv/bt — nSiny/bE]. 111-10
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where
H= Cl\/E

and”

Sinh/b + Sim/b
M= Cosho/b + Cos/b

The cliéracterisrtvic‘e‘q&atrions and 7eigenfunctﬂiAons for clamped-clamiped, hinged-hinged,
free-free and clamped-hinged boundary conditions can beobtained by using a similar procedure
as outlined above. We simply present here the resulting equations.

b. Clamped-clamped beam:

1. Frequency equation:

Coshy/b Cosy/d —1=0 . ' 1II-11

1. Normal modes:

W=, [fSSinh\/EE —~ Coshy/b§ — Sinv/b + CosvbE] 1I-12
where
5= Cosm/b — Cgs\/E
Sin/6 — Sim/b
W' = C1/b [Cosh/BE — nSinhy/b — Cosv/bg — nSiny/bi] | | 1113
where

Cosi/b - Cosv/b
" Sinhvb — Sim/b

-¢.  Hinged-hinged beam:
1. Frequency équation:

Sim/b =0 : ‘ II-14



2. Normal modes:

W = C,Sim/bs
W' = C3v/b Cosv/bt

d. Free-free beam:
1. Frequency equation

Coshv/b Cosv/b— 1 =0

2. Normal modes: -

W = C, [ —8Sinhv/bt + Costn/bt — 8Sim/bt + Cosv/bt]

where
B Sinhv/b + Sim/b
Coshv/b— Cosv/b
W' = C,v/b [Cosin/bE — nSintn/B¢ + Cosv/BE + nSin/B]
where

Sinhvb + Sim/b
- Coshv/b — Cosv/b

e. Clamped-hinged beam:
1. Frequency equation:
tanlm/b — tavn\/5’= 0

" 2. Normal modes:

W = C; [5Sinha/bt — Coshy/BE — 8Simy/bE + Cosv/bE]

17

HI-15

III-16

III-17

III-18

-19

1I1-20

II.21



where

Coshx/5+ Cosv/b
Sinhw/b + Sim/b

W=C;vb [Cosh\/t?s — nSinh/bE — CosvbE — nSinv/b]

) Sinhy/b — Sim/b
where m = Coshv/b— Cosh/b.

B. TIMOSHENKO BEAM THEORY

1. BASIC EQUTAIONS

18

111-22

Differential equations (III-13) and (III-14) governing the transverse displacement

w and angular rotation y can be formulated in non-dimensional form

WY+ b2 (12 +s2)W' —b? (1—-b2r2s?)W=0
and
Y+ b2 (12 +s2) ¥ b2 (1 —b2r2s?) ¥ =0

where b? = — L%w?
El

I
~AL?

EI
"~ KAGL?

Boundary conditions in non-dimensional forms are:

Clamped end:

w(0) =w(1)=0

111-23

I11-24

III-25



Hinged end:
w(0)=w(1)=0
1II-26
V(0)=¥(1)=0
Free end:
W(0)=v'(1)=0
1-27

1l
o

<\1:+ 1—w' >' = <\p+ 1—w'/> l
L £=0 L £=1

2. EIGENVALUE PROBLEM

The corresponding eigehvalue problem for Timoshenko theory is specified by equa-
tions (III-23) and (11I-24). The general solution of linear and homogeneous equation (III-23)
and (11I-24) can be found respectively as, .

W = C, Sinhat + C,Coshat + C3SinSt + C4Cosfit _ I11-28
and

¥ = C!, Coshat + C}Sinhag + CjCospt + C,Singt : 111-29

where C,s and C',s are arbitrary constants,

az%( [(rz_s'z)zj_*_ b_t] /2 _(r2+s.2).>1/2

e [-ere ke T oven )

and

. 1 _ :
-For the range of b< —, a can be taken as of the form

rs



~ for the range of b<

20

a=ia . - HI-30

where i=+/—1

The constants of equations (III-28) and (III-29) are related as follows:

, o? + b?s?
Cy== — C . e o
Lo . . . . -
, . a?+b?s?
Ch=— —2% ¢, 1131
La :
. ﬁ2__b252
Ci=— —— (;
LB ) -
o 62_b252
C4 = -T C4

a. Clamped-free beam:

1. Characteristic equation: -

/-
The associated boundary conditions for clamped-free beam can be applied to equa-

tions (III-28) and (II1-29) yielding

[ Sinha " Cosha —{Sing —tCosf 1 T C, T [o]
Cosha Sinha - ACosf ASing C, 0 :
= : I11-32
1 0 ’ AE 0 Cs 0
0 1 0 1 c.| | o
| | Le] Lo

The corresponding characteristic equation can be obtained by expansion of the
determinant, i.e.,

2%(—{— +§‘> Coshia Cosff — (—)\— —>\>Sinha Sinf=0 - . I11.33
1 _

rs

1 1 '
2+ <—§ + §'>Cosa' Cosf — <—)\T,+ Al > Sina’ - Sing =0 I11-34
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o
A= —
B
! a,
N=—
B
ﬁ2_b2s'2
: T P +bre

2. Normal modes (Eigenfunctions):

The constants C,, C,, C, in equation III-28 must be determined in terms of fourth
one, then the eigenfunction is of the form '

”~

W = C, [At8Sinhat — Coshat — 6SinSg + Cospt] | 11-35

where

1 .
x Sinha = Sinf
tCosha + CosB . ‘ /

when p< -1—'tf1e equation III-35 becomes,
rs

W = C4 [~ N'{nSina’g — Cosa't — nSingg + Cospt] : 111-36
where

a!
N= —

B

1 S. ’ S. ﬂ

— din@@ — JIn

n =—A :

tCosa’ + Cosf

The bending slope equation is expressed by using equation III-29 as in the following form

5 ' .
¥ = H [~ Coshat + ——)\?— Sinhat + Cospt + 8SinfE] 7 HI-37

where



ASinha + Sing 1

22

5= ——— ' H= — ¢,

1
? Cosha+Cosf

1
in the case of b<— equation III-37 is,
rs -

W = H [~ Cosa' +>\1,§ Sina'% + Cost + nSinBE]

where

— \'Sina'+ Sing
=
}— Cosa’ + Cosp

111-38

The same way the frequency equations and the normal mode equations for each case of

boundary conditions may be obtained as given
presented. '

b. Clamped-clamped beam:

1. Frequency equation.

1
b> ,
rs

' 1
2 —2CoshaCosf - ()\ﬁ‘ _—>\—§_ > SinhaSing=0

1

rs

b<

1 : [P -
2 —2Cosa’Cosfl + <7\'§ + _R—'E > Sina'Sinf =0

where

=3

=]

2. Normal modes:

b> -,

above, and the resulting equations are

I11-39

111-40



where

where

W = C, [A{6Sinhat — Coshat — 8Singt + Cosp]

1

rs

b<

W = C, [-N'$58'Sina’t — Cosa't — 8'Sinfg + Cosp]

Cosha — Cosf
" A¢Sinha — Sing

Cosa’ — Cosf

 \'¢Sina'+ Sing

'

1
b> —
rs

C
W= T‘ [— Coshat +y—;1§— Sinhot + Cost + nSinBt]

1

rs

b<

!

v = % [— Cosa't + —;\?—g Sina't -+ Cospt + n'Sinpk]

n= Cosha — Cosf
T -
— Sinha + Sing
AL '
Cosa’ — Cosf
n= :

l / ! Py
)73“— Sina’ + Sing |
c. Hinged-hinged beam:

1. Frequency e(iuation:

1 .
b> , SinhaSinS =0
rs . »

b< s iSina'Sinf =0
rs '

23

111-41

111-42

1143

I1I-44

11145

I11-46
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2. Normal modes:
W = C,Singt 111-47
W = fC, Cost | | 111-48

d. Free-free beam:

1. Frequency equation:

1
b> ,
rs

| A - ,
2 —2CoshaCosfi + <% — T) SinhaSing = 0 - 149

b<

rs

. k,
2 —2Cosa'Cosp + <—i—, - __é'_> Sina'Sing =0 : . 1II-50

2. Normal modes:

b>
rs

W = C4 [—A{8Sinhat + {Coshak — {6SingE + Cosﬁé]l II-51

b<
rs

W = Ca [ N¢8'Sina’t + ¢Cosa't — t6'Singg + Cospg] - I1I-52

Cosha— Cosf
" ASinha—{Sing

—Cosa' + Cosp

A'Sing’ + {Sing

’




¢y n i
¥ = T [—Coshaf + T Sinhat — {CosfE — {nSinSE]

b<:

rs

'

Cl ' gn . 1] [P
.,\Ifz—L- [—Cosa'g + ——)7 Sina' £ — {CosfiE — ¢tn SinBE]

where
Cosha — Cosf -
n= rE
—— Sinha + Sing
A
, Cosa’' — Cosp
n=o 0

f '
—— Sina’ + Si
N ino inf
e. Clamped-hinged beam:

1. Freciuency equation:

1
b> S
rs

Atanha —tanf =0

1
b< )
rs

Ntana' + tang = 0

2. Normal modes:

' 1.
b> )
rs

. » ‘I
W = C, [A6Sinhat — Coshat s 5SinBE + Cospt]

-5
Ty
BERRRLAUS LS
,}\\\\\‘S\
- ‘\\
o

SN

4, 3’

III-53

I11-54

II-55

I11-56

IE-57
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1 .
b> ,
rs

'

8 .
W =C, [—\'8'Sina’t — Cosa't — T Singt + CosBt] I11I-58

- where )
_ Cosha + {Cosf
" ASinha + Sing

, Cosa’' + {Cosp

—\'Sina’ + Sing -
1
b>— ,
rs
Cy n .. , R
= T (— Coshat + E Sinhat + Cosfg + 1Singk] ) - II1-59
1 .
b< , p
rs .
Cl ' nl . [P .
=——[—Cosa't + IS Sina't + CosgE + n'Singt] II-60
where
_ NSinha — Sing
= Cosha — Cosf
. —\'tSina’ —Sinf
n= T L

Cosa’ — Cosf

C. MODIFIED THEORY
1. Basic Equatioﬁs:

The coupled equations (1i-36) and (II-37) for the modified theory can be expressed
in non-dimensional form. '
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W’ +s2b2W+ LY =0 I1-61

1 :
L stW''— Q-*——b’ >—— =0 I11-62

U — (1 -b2r2s?) ¥ —

where

b? PA L4 w?

El .

I

2 =

AL?
g 3 _E

2 AGL? _
o6 _m
: 5 AGL?

The appropriate boundary conditions of the modified theory are glven in non—dlmensmnal
form for the following cases:

/
Clamped end:
W(0)=W(1)=0
I11-63

T(0) = ¥(1) =0
Hinged end:
w(0)=W(1)=0

4 1 4 ., 1 -

——qf'——zw"> _ <__q,_7w>l ~o 111-64

L L g=0  \- L g=1 |

Free end:

4 1 = 4 \I/I 1 Wu 0
R Wn = . o ) —
cr T, L KR

- 11165




2. Eigenvalue Problem

28

’ The associated time indépendent eigenvalue problem for the modified theory may be
obtained by eliminating W or ¥ from the coupled equations (III-61) and (III-68) that is,

WY+ b2 (r? + 5% )W —b? (1 —b

22 2)W =0

YV b2 (r? + 2 )W —b (1 - b* 2P ) =0

I1I-66

I11-67

For each type of beam the roots of the frequency equations_bn (n = 1,2,3, ...,) give the

eigenvalue of the problem. For the corresponding eigenvalue problem the general solution
can be obtained in the following matrix form.

W 1 C, C, C,

-~

Cs [ Sinhyazg—1
Coshat

Singf

(o Cosf¢
1t ]

o® + b?s?

La

e
I
l

(-

, a? +b%s?
G=— —G
La

2 __b2s2
R
Lg '

, ﬁ2»__b2s2
C4= ‘-‘—"—_‘—_l‘_ Cq

Lg

1 i
2 +(r? +s2)> 2

The constants C,s and C' ;s are related each other as of the form.

111-68

II1-69

III-70

I1-71



Applying the boundary conditions given by equations (I1I-63), (III-64) and (III-65)

to equation (III-68) will give the eigenfunctions and characteristic equations.

a. Clamped-free beam:

1. Frequency equation:

The appropriate boundéry conditions for clamped-free beam are given by equation
(111-63) and applying equation (III-68) we get

Sinha
Cosha

-1

0

Cosha

Sinha

0

1

—¢4 Sing
—ACosf
—\¢

0

—¢,Cosp |
-~ ASinf
_ 0

T

[ ¢,]

C.

Cs

| ©

I-72

The corresponding characteristic equation can be obtained by expansion of the determinant.

€+ &)+ (1+¢¢,) Cosha CosB—'(—S} - >\§> Sinha Sinf = 0

where

a
A= —
g .
- B —b?si
o? +b2s?

1

B +4 (bt

o? + 4 (a? +b?s?

1 c s .
For the range of b<— the characteristic equation becomes

E+5)+0+ §§x),C0w'COSB—<

-where

rs

— Y
.)}' §

§1

> Sina'Sing = 0

73
/

I11-74



2. Normal modes:

.The eigenfunctions can be obtained by expressing the constants C,, C,, C; in terms
‘of C, in equation (III-68). Here the subscript "n" is omitted for W, ¥, b, «, § and the
constants. ’ '

W = C4 [\{8Sinhat — Coshat — 5SinBt + Cospt] I11-75

“where
1
—Sinha — Sinp
A

b= ——————
{Coshat Cosf
1 . .
when b<— the equation III-75 will be the following form.
rs '
W =C, [~ N'8'Sina’E — Cosa't — 5'Sing + Cospt] , 111-76
where

1
—Sina’ — Sin
3 xl B
&5 =

¢Cosa’ + Cosf
The bending slope ¥ can be expressed as:

¥ = H [ Coshat + {;— Sinhat + CosB + nSingt] . 11L-77

where

n= A¢Sinha + ¢, Sing

Cosha + ¢, Cosp
1
H= — C1
L

in case b<—1— the equation III-77 may beco}ne of the form.
rs : .

!

¥ = H [— Cosa't +‘—%E Sina'E + CosBE + n'SingE] A L78



where

,_ —N'tSine’ + ¢, Sing
Cosa’ + ¢, CospB

The frequency equations and the normal mode equations for clamped-clamped,
hinged-hinged, free-free and clamped-hinged boundaries are listed by using a similar pro-
cedure in the following form.

b. Clamped-clamped beam:

_ 1. Frequency equation:

1
b> )
rs P

1
2 — 2Cosha Cosf + < —Ti'_ >\§‘> Sinha Sinf =0

1
b< )
rs

1
2 — 2Cosa’'Cosfi + <—)_\'_§“ + )\'§> Sina'Sinf=0

1. Nofmal modes:

] ,
b> ~ )
rs

W‘= C4 [A$8Sinhat — Coshat — §Singt + Cosft]

1
b< ,
rs

W =C, [— \'t8'Sina't — Cosa't — 8'SinB + Cosf)

5= Cosha — Cosfi
A¢Sinha — Sinf

111-79

111-80

III-81

111-82



b<

where

C.

5 = Cosa’ — Cosp
—\"tSina’ — Sing

1

rs

b>

C
\Il,=,fé {— Coshat + —:T Sinhat + Cosf + 1Sinf¢]

rs

!

C , ,
¥ = —L—l [— Cosa't + ——% Sina'¢ + Cost + n'Sint]

Cosha — Cosf

n= 1—'_"—
—— Sinha + Sing
S

, Cosa’ — Cosp

n= 1—’_—'_'—
— Sina’ + Sing
X

Hinged-hinged beam:

1. Frequency equation:

1.

b> , SinhaSinf =0
rs

b< , iSina’Sing = 0
rs

Normal modes:
W = C,Sinf

W = C38-Cospt

32

I1I-83 -

I11-84

III-85

III-86

III-87

III-88



d. Free-free beam:

1. Frequency equation:

1
b>—— ,
rs
& A . . :
2 —2CoshaCosf + | ——-———} SinhaSin8 =0
A ¢,
1
b<

rs

1

)\l
2 —2Cosa’Cosg + <—i—‘ + . > Sina'Sing =0

~

2. Normal modes:

' 1
b> )
TS

W= Cs [A, 8Sinhat + ¢, Coshak — 5%, SinB + CosB]

1
b<— .,
rs

III-92 W =C, [\N'¢,8'Sina’t + §, Cosa't — 8L, Singt + Cospt]

where

Cosha — Cosf
ASinha — ¢, Sinf

, _ Cosa’ —Cosp
"~ \'Sina' + &, Sing
‘l .
b> .

rs

= %[—Cosha£+£% Sinhaf — £, Cos — £ nSingE]

1 A
bl—— )
rs

11-89

II1-90 -

II1-91

II1-92

I11-93



where

$im

C, ,
‘I’=—L [~ Cosa's +

Cosha — Cosff -
‘n = —

1
—)—\——‘ Sinha + Slnﬁ

Cosa’ — Sing

n:,

1
— Sina’ + Sing

A

‘e. Clamped-hinged beam:

1. Frequency equation:

b>

rs

{Atanha —tanf =10

b< ,
rs

tA'tane’ + tanf =0

2. Normal modes:

1
b> )
rs

W = C, [A$8Sinhat — Coshag — 6SinfE + Cosgt]

1
b< S,
rs '

. W=C4[— >\’§6 'Sina't —kCosa’g.—— 8'Sinpt + Cosft]

where

Cosha + ¢, Cosf
T \Sina ¥ ¢, Sing

N Sina' — £ CosBg — & yn'SinfE]
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II1-94

1-95 -

I11-96

111-97

II-98



Cosa’ + ¢, Cosf
—N'tSind’ + ¢, Sing

L3

1
b> ,
rs

C
= —" [~ Coshat +T"§ Sinhat + Cosf + nSing]

‘l .
b< )
rs :

!

C ' ]
V= ——l—_l [~ Cosa't + K’f_ Sina't + Cospt + 7'Sin]

where

A¢Sinha — Sing
= Cosha — Cosf3

A'¢Sina’ + Sing
Cosa’ — Cosp

!

n:

11199

111-100
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IV. NUMERICAL RESULTS AND CONCLUSIONS

In this section a group of numerical examples of free transverse vibration of beams

‘with simple end conditions will be presented. The results obtained using Euler-Bernoulli,

Timoshenko and the modified theories will be compared Frequency spectrums and normal
modes for each theory will be given.

A. Frequency Spectrum -

- For a given beam with known E, G and h/l ratio, the characteristic values
b, (n =1, 2, 3, ..) can be found from the appropriate frequency equations given in the
previous section. In the following numerical calculations a beam of rectangular cross-section
with E = 210 GN/m?, G = 80.77 GN/m?, and h/l values equal to 0.05, 0.10, 0.15, 0.20,
0.25, 0.30 was considered. Shear coefficient in the case of Timoshenko beam theory was
taken to be 0.822 while the corresponding values in the modified theory are 2/3 and 5/6.
For every h/l ratio fifteen different b,s were obtained up to six digit accuracy. The numerical
calculations were carried on a Monroe EC 8800 machine and the results obtained are present-

ed in figures (4.1.1. to 4.1.10.).

Non-dimensional frequencies of the beam for homogenous boundary conditions
with different homogenous boundary conditions with different height to span ratios are given
in the tables (4.1.1. to 4.1.30). together with the corresponding frequencies for Euler-Bernoulli
and Timoshenko beam theories. Examination of tables (4.1.1. to 4.1.12) and (4.1.25 to
4.1.30) show that for clamped-free, clamped-clamped and clamped-hinged end conditions
the frequencies from the modified theory are slightly lower than those of Timoshenko/beam
theory with shear coefficient of 0.822. However as seen in tables (4.1.13 to 4.1.24) the
frequencies for hinged-hinged and free-free boundary conditions predicted by the modified
theory are slightly higher than Timoshenko beam theory. Using the shear coefficient value
of 5/6 the frequency equation for the case of a hinged-hinged beam is identical both in the
modified and Timoshenko theories.

For a hinged-hinged beam there are two distinct frequency spectra, b> , the
rs

the frequency equation becomes

frequency equation is SinhaSing = 0 while for b<

iSina'Sing = 0. It means that we have two independent characteristic equations, Sina’ = 0
and Sing = 0 which yield different natural frequency values. Traill-Nash and Collar [13]

. claimed the presence of a new spectrum of natural frequencies in a Timoshenko beam.

Dolph [14] has also showed the presence of the second family of frequencies. There is still
questions about this second frequency spectrum and several researches [15, 16, 17 ] do reject
them. ' ’

B. Normal Modes

The normal mode equations of beams in free vibration with different boundary con-
ditions were obtained in section IIl. The first six- modes of vibration for an h/l ratio of
0.10 are presented in figures (4.2.1 through 4.2.30).

The amplrtude for clamped-free, clamped- clamped, clamped -hinged boundary con-
ditions predicted by the modified theory are greater than those predicted by Timoshenko
and the classical theories. However, just the opposite is observed in the case of beams with
hmged-hmged and fre_e-free end conditions. : '
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C. CONCLUSION

In this thesis the frequency spectrums for beams with reétangular cross-section as
‘obtained from three different theories, namely the classical, Timoshenko and the modified
theories. The method of separation of variables was used to construct the solutions to flexural
vibrations of beams with appropriate boundary conditions.

The curves in figures (4.1.1. to 4.1.10) are characteristic frequency spectrums for

the curves are smooth while

Timoshenko and the modified theories. In the ragion b<

. . 1 . .
in the ragion b > —— are not. This is due to the fact that the effect of h/l ratio is small

is in the first ragion.

For a given beam the modified and Timoshenko theories reveal that there are more
resonances in a frequency range than are predicted by Euler-Bernoulli theory. This increase in
the number of reconances is due to the efféct of shear and rotary inertia. Besides that the
number of resonance of Timoshenko and the modified theories are equal. The forms of fre-
quency equations of the modified theory are similar to those of Timoshenko beam theory
except the case of clamped-free boundary condition. In the modified theory there are two
different shear coefficients which are 2/3 and 5/6 as opposed to that of Timoshenko theory
where the values for shear coefficient range from 2/3 to 0.870 [18].

It was observed that in the case of clamped-free, clamped-clamped and clamped-hinged
boundary conditions the frequencies as obtained from the modified theory are slightly lower
(0.5 — 1.5%) in the lower frequency range than those predicted by Timoshenko theory. This
trend is reversed in the high frequency range that is the modified theory gives frequencies that
are 0.2 — 1% higher. For hinged-hinged and free-free beams it has been shown that the fre-
quencies using the modified theory are slightly higher by 0.05 — 0.85% than the ones based
on Timoshenko theory. In the case of hinged-hinged beam there is no difference in the fre-
quency spectra between the Timoshenko theory and the modxfied theory if 5 /6 is used as the
shear coefficient in Timoshenko theory
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. Euler—Bernoulli Timoshenko Theory Modified
Mode No. ~ Theory (x = 0.822) Theory
1. 3.516412 3.509356 3.507464
2. 22.035062 21.731694 21.701703
3. 61.699344 59.741206 59.617360
4. 120.904164 114.130618 113.831578
5. 199.860282 182.958725 182.411291
C6. 298.555892 263.958712 263.115589-
7. 416.991061 355.012299 353.863541
8. 555.166336 454.244222 452.820739
9.- 713.081238 560.061864 557.348946
10. 890.736977 671.148083 669.418843
11. 1088.133526 786.429764 784.724832
12. 1305.256806 - 905.039061 903.497480
13. 1542.134549 1026.276052 1025.039855
14, 1798.737198 1149.575013 1148.782658
15. 2075.097408 1274.476163 1174.257680
Table 4.1.1. — Nondimensional Frequency for Clamped-Free Boundary
h/l1=0.05
Euler—Bernoulli Timoshenko Theory Modified
Mode No. Theory (x = 0.822) Theory
1. 3.516412 3.488219 3.482216
2. 22.035062 20.896082 20.789753
3. 61.699344 54.929842 54.547731
4. 120.904164 99.582341 98.816772
5. 199.860282 '151.509964 150.391328
6. 298.555892 208.128264 206.809763
7. 416.991061 267.753350 266.448134
8. 555.166336 329.259084 328.184283
9. 713.081238 391.872875 391.214655
10. 890.736977 455.016204 454.923919
11. - 1088.133526 518.185766 '518.781196
12. 1305.256806 580.756023 582.164416
13. 1542.134549 641.405983 643.813612
14. 1798.737198 683.006243 687.898617
15. 2075.097401 701.309306 704.032840

-

Table 4.1.2. — Nondimensional.

Frequency for Clamped—Free Boundary

h/l= 0.1
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Table 4.1.4 — Nondimensiona

h/l=0.20

, Euler—Bernoulli Timoshenko Theory Modified
Mode No. Theory (x = 0.822) Theory
1. 3.516412 3.454429 3.441428
2. 22.035062 19.701944 19.501332
3. 61.699344 49.144963 48.550614
4, 120.904164 84.770413 83.837149
5. 199.860282 123.874517 122.852938
6. 298.555892 -164.679462 163.856658
7. 416.991061 206.188857 205.782070
8. 555.166336 247.434345 247.629542
9.. 713.081238 286.970289 287.889397
10. 890.736977 308.595191 311.034076
11. 1088.133526 1326.930943 327.554427
12. 1305.256806 _ 340.242653 343.565150
13. 1542.134549 368.049679 368.002379
14. 1798.937198 383.433576 387.656617
15. 2075.097401 413.481712 412.964797
Table 4.1.3. — Nondimensional Frequency for Clamped-Free Boundary
h/1=0.15
//'4
Euler—Bernoulli Timoshenko Theory Modified
Mode No. Theory (x = 0.822) Theory
1. 3.516412 3.408812 3.386869
2. 22.035062 18.334488 18.048979
3. 61.699344 43.597432 42.912906
4, 120.904164 - 72.326807 71.512021
5. 199.860282 102.796075 102.171656
6. 298.555892 133.331636 133.188120
7. 416.991061 162.582152 162.958884 -
8. 555.166336 177.127573 178.728270
9. 713.081238 193.599449 193.518444
10. 890.736977 204.532444 206.959068
11. 1088.133526 227.056368 - 226.485660
12. "1305.256806 238.224732 241.124565
13. 1542.134549 264.060579 263.389853
14. 1798.737198 272.900985 - 275.971417
15. 2075.097401 301.897995 301.495167

1 Frequency for Clamped-Free Boundary



Euler—Bernoulli Timoshenko Theory Modified
Mode No. Theory (x = 0.822) Theory
1. 3.516412 3.353443 3.320696
2. 22.035062 '16.934734 16.589243
3. 61.699344 38.736881 38.066429
4. 120.904164 62.318650 61.750637
5. 199.860282 86.683046 86.443021
6. 298.555892 107.464777 108.201430
7. 416.991061 120.524719 120.425199
8. 555.166336 129.233367 130.911080
9. 713.081238 147.114100 146.507697
10. 890.736977 156.741841 159.191882
11. 1088.133526 174.683470 173.605392
12. 1305.256806 187.727294 191.515421
13. 1542.134549 - 202.907567 200.763476
14. 1798.737198 218.380643 222.740376
-15: 2075.097401 234.193249 231.770363
Table 4.1.5. — Nondimensional Frequency for Clamped-Free Boundary
h/1=0.25
/-
Euler—Bernoulli Timoshenko Theory Modified
Mode No. Theory (x = 0.822) Theory
1. 3.516412 3.289643 3.245293
2. 22.035062 15.588896 15.212473 .
3. 61.699344 34.618984 34.020924
4. 120.904164 54.165974 53.881180
5. 199.860282 73.506234 73.469553
6. 298.555892 82.482696 83.483305
7. 416.991061 95.917923 95.436534
8. 555.166336 103.005903 104.533413
9. 713.081238 120.742962 120.071896
10. 890.736977 126.027391 127.813737
11. 1088.133526 145.412665 144.878423
12. - 1305.256806 151.970192 154.254489
13. 1542.134549 168.076294 167.175961
14. 1798.737198 180.824457. 211.316456
15. 2075.097401 191.351101 216.252342

h/1=0.30

Table 4.6 — Nondimensional Frequency for Clamped-Free Boundary
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Euler—Bernoulli

‘ Timoshenko Theory Modified
Mode No. Theory (x = 0.822) Theory
1. 22.373297 21.990580 21.931120
2. 61.672828 59.317540 59.063491
3. 120.903395 113.130561 112.504505
4. 199.859462 181.016466 179.842690
5. 298.555547 260.764891 258.905937
6. 416.990857 1350.305920 347.685817
7. 555.165299 447.831179 444 446295
8. 713.078941 551.819471 547.737798
9.. 890.731904 661.021406 656.373296
10. 1088.123960 774.424560 769.387649
11. 1305.255216 891.213165 885.995265
12. 1542.125831 1010.730257 1005.552798
13. 1798.735501 - -1132.445220 1127.529526
14. 2075.084372 1255.927352 1251.484561
15. 1380.825025 1364.704787

3271.172452

Table 4.1.7. — Nondimensional Frequency of Clamped-Clamped Boundary

h/l=0.05

a

Euler—Bernoulli Timoshenko Theory Modified
Mode No. Theory (x = 0.822) Theory

1. 22.373297 20.956121 20.749920
2. 61.672828 53.667981 52.915779
3. 120.903395 96.939592 95.399636
4. 199.859462 147.120916 144.779853
5. 298.555547 201.937805 198.996871
6. 416.990857 259.882983 256.669980
7. - 555.165299 319.974093 316.846720
8. 713.078941 381.538893 - 378.821747
9. 890.731904 444.099402 442.060685
10. 1088.123960 - -507.297176 506.158351
11. 1305.255216 570.844308 570.814095
12. 1542.125831 634.393311 635.796436.
13. 1798.735501 686.218844 690.731560
14. 2075.084372 .696.550933 700.797616
15. 3271.172452 720.594725 723.376018

h/1=0.1

Table 4.1.8. — Frequency of Clamped-Clamped Boundary’
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Euler—Bernoulli Timoshenko Theory Modified
Mode No. Theory (k = 0.822) Theory
L. 22.373297 19.526420 19.150601
2. 61.672828 47.115444 45.988106
3. 120.903395 81.122378 79.250867
4. 199.859462 118.562682 116.309215
5. 298.555547 158.137149 155.961047
- 6. - .416.990857 - 198.990960 197.300578
7. 555.165299 240.601450 239.703004
8. 713.078941 282.347804 282.681134
9. 890.731904 311.337422 313.141785
10. 1088.123960 323.210797 323.869543
11. 1305.255216 343.278945 343.571078
12. 1542.125831 364.915074 369.119029
13. 1798.735501 - 387.299665 386.586339
14, 2075.084372 408.269101 412.634343
15. 3271.172452 437.266132 436.978067
Table 4.1.9. — Frequency for Clamped-Clamped Boundary
h/1=0.15
,
Euler—Bernoulli Timoshenko Theory Modified
Mode No. Theory (x = 0.822) Theory
1. 22373297 17.953760 17.433120
2. 61.672828 41.049197 39.774891
3. 120.903395 68.371369 66.646560
4. 199.859462 97.652903 96.048365
5. 298.555547 128.193092 127.132889
6. 416.990857 158.988603 159.054978
7. 555.165299 179.989409 180.816268
8. 713.078941 189.648143: 191.426130
9. 890.731904 208.896504 208.760772
10. 1088.123960 - 221.642749 223.987379
11. 1305.255216 245.883597 245.783713
12. -1542.125831 254.400993 256.571596
13. 1798.735501 286.765743 287.653601
14. 2075.084372 . 320431134 . 321.404526
15. 3271.172457 331.868921 332.319923

h/l1=0.20

Table 4.1.10. — Frequency for Clamped-Clamped Boundary



. Euler—Bernoulli ‘Timoshenko Theory Modified
Mode No. Theory (x = 0.822) Theory
1. '22.373297 16.407880 15.785280
2. 61.672828 35.894258 34.648472
3. 120.903395 58.553581 57.167857
4. 199.859462 82.374917 -81.513956
5. 298.555547 107.100666 107.048115
6. 416.990857 - 118.014358 119.191096
7. 555.165299 133.370476 133.315527
8. 713.078941 142.742361 144.431629
9.. 890.731904 160.058564 159.540759
10. - 1088.123960 173.108870 176.209726
11. 1305.255216 187.710479 185.976284
12. 1542.125831 203.860504 208.444427
13. 1798.735501 - 218.024769 215.230571
14. 2075.084372 232.252816 235.588350
IS . 2371.172457 252.310732 251.420492
Table 4.1.11. — Clamped-Clamped Boundary
h/l = 0.25
‘Euler—Bernoulli Timoshenko Theory Modified
Mode No. Theory (x = 0.822) Theory
1. 22.373297 14.976320 14.292820
2. 61.672828 31.641403 30.524868
3. 120.903395 50.985557 49.966236
4. 199.859462 70.750732 70.717599
5. 298.555547 85.716420 85.866655
6. 416.990857 91.375364 92.326581
7. 555.165299 109.269977 109.224787
8. 713.078941 113.070077 - 114.038275
9. 890.731904 135.048358 135.656898
10. 1088.123960 © . 136.914802 137.652847
11. 1305.255216 157.239830 157.191935
12. 1542.125831 165.812048 168.280055
13. 1798.735501 180.229248 178.865275
14. 2075.084372 193.086081 197.396208
15. 2371.172457 206.018181 203.368924

Table 4.1.12. — Clamped-Clamped Boundary

h/1=0.30



44

Euler—Bernoulli Timoshenko Theory Modified
Mode No. Theory (x = 0.822) Theory
1. '9.869604 9.827690 9.828139
2. 39.478417 38.823337 38.829921
3. 88.826439 85.630770 85.661940
4. 157.913670 148.294538 148.384700
5. 246.740110 224.581183 224.779527
6. 355.305758 312.252815 312.619202
7. 483.610615 409.246589 409.846894
8.~ 631.654681 - 513.762689 '514.664643
9. 799.437956 624.286616 625.556629
10. 986.960440 739.573122 741.274335
11.- 1194.222132 858.613133 860.804299
12. 1421.223033 980.595924- 983.330922
13. 1667.963144 1104.873264 1108.200891
14. 1934.442462 _ 1230.927916 1234.892100
15. 2220.660990 1358.347575 1362.987621
Table 4.1.13. — Nondimensional Frequency of Hinged-Hinged Boundary
- h/1=0.05
Euler—Bernoulli Timoshenko Theory -Modified-
Mode No. Theory (x = 0.822) Theorgl
1. 9.869604 9.705839 9.707479
2. 39.478417 37.073638 37.096174
3. 88.826439 78.063214 78.154816
4. 157.913670 128.440686 128.666164
5. 246.740110 184.813293 185.318586
6. 355.305758 245.148986 245.832732
7. 483.610615 307.731976 308.723039
8. 631.654681 371.700896 373.038609
9. 799.437956 436.457365 438.172796
10. 986.960440 501.620898 503.738244
11. 1194.222132 566.950047 569.487846
12. 1421.223033. 632.292668 635.264964
13. 1667.963144 674.745939 679.370117
14. 1934.442462 686.119255 690.715714
15. 2220.660990 697.554547 700971771

Table 4.1.14 — Nondimensional Frequency for Hinged-Hinged Boundary
" h/1=0.1



Euler—Bernoulli Timoshenko Theory Modified
‘Mode No. Theory (xk =0.822) Theory
1. 9.869604 9.514539 9.517990
2, 39.478417 34.694765 34.735480
3. 88.826439 69.365193 69.506294
4. 157913670 108.955104 109.258997
5. 246.740110 150.927516 151.443067
6. 355.305758 193981051 "194.743478
7. 483.610615 237.485981 238.489553
8. 631.654681 281.018981 282.339988
9, 799.437956 299.887446 301.944009
10. 986.960440 311.073117 313.096288
11. 1194.222132 324.505103 326.124071
12. 1421.223033 341.228994 343.170632
13. 1667.963144 367.837624 369.761058 -
14. 1934.442462 384.017290 385.870569
15. 410.886273 413.217894

2220.660990

Table 4.1.15. — Nondxmenswnal Frequency for nged nged Boundary

h/l=0.15
,//
Euler—Bernoulli Timoshenko Theory Modified
Mode No. Theory (x = 0.822) Theory

1. 79.869604 9.268420 9.274060
2. 39.478417 32.110184 32.166540
3. 88.826439 61.287246 61.458186
4. 157.913670 92.925238 93.259667
5. 246.740110 125.405230 125.934564
6. 355.305758 158.073165 158.816250
7. 483.610615 168.686521 169.842523
8. 631.654681 179.625175 180.749312
9. 799.437956 190.669806 191.637245
10. 986.960440 207.390924 208.449778
11. 11194.222132 223.101294 224.298636
12. 1421.223033 244.480787 245.475742
13. 1667.963144 255.344154 256.773819
14. - 1934.442462 286.654440 289.066525
15. 2220.660990 331.891948 '332.767481

Table 4.1.16. — Nondimensional Frequency for nged-nged Boundary
h/l=0.20
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Euler—Bernoulli Timoshenko Theory Modified
Mode No. Theory (x =0.822) Theory
1. 9.869604 8.983260 8.991190
2. 39.478417 29.582932 29.650992
3. 88.826439 54.833921 54.519521
4. 157913670 80.259361 80.598137
5. 246.740110 106.390074 - 106.901058
6. 355305758 107.925745 108.699215
7. © 483.610615 118.609355 119.318849
8. 631.654681 132.421549 133.113977
9. 799.437956 144.069224 144.726077
10. 986.960440 158.272694 - 159.150438
1. 1194.222132 176.491543 177.099102
12. 1421.223033 183.938519 185.002593
13. 1667.963144 _ 209.437964 210.687959
14. 1934.442462 212410836 212971179
15. 2220.660990 234.795272 236.230110
Table 4.1.17. — Nondimensional Frequency for Hinged-Hinged Boundary
h/1=0.25
Euler—Bernoulli Timoshenko Theory Modified
Mode No. Theory (xk = 0.822) Theory
1. 9.869604 8.673699 8.633879
2. 39.478417 27.238777 27.314758
3. 88.826439 48.495264 48.685866
4. 157913670 70.254757 70.585005
5. 246.740110 74971814 75.485570
6. . 355.305758 85.307264 85.792655
- 7. 483.610615 91.959417 92.440261
8. 1631.654681 108.658131 109.100344
9. 799.437956 113.486293 114.121707
10. 986.960440 134.831196 1 135.621844
11. 1194.222132 ©-137.319748 137.721863
12. 1421.223033 156.019365 156.964541
13. 1667.963144 168.513299 168.877147
14. 1934.442462 177.079321 178.177858
15. 2220.660990 198.036286 199.286717

Table 4.1.18.’— Nondimensional Frequency for Hinged-Hinged Bbundary
: . h/l1=0.30
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Euler—Bernoulli Timoshenko Theory Modified
Mode No. Theory (k = 0.822) Theory
1. 0.00 0.00 0.00
2. 22.373297 - 22170938 22.172434
3. 61.672828 60.113529 60.125322
4, 120.903395 115.656884 115.202175
5. 199.859462 184.950533 185.067996
- = 6. 298.555547 267.244398 - 267.485876
7. 416.990857 359.863342 360.289535
8. 555.165299 460.860016 461.530231
9. 713.078941 568.565056 569.556993
10. 890.731904 681.587627 682.959303
11. 1088.123960 798.789163 800.611156
12. 1305.255216 919.246594 - 921.555568
13. 1542.125831 7 1042.214740 1045.072124
14. 1798.735501 1167.091768 1170.544645
15. 2075.084372 1293.389465 1297.480291
Table 4.1.19. — Nondimensional Frequency for Free-Free Boundary
h/1=0.05 '
Euler—Bernoulli Timoshenko Theory Modified
Mode No. Theory (x = 0.822) Theory
1. 0.00 0.00 0.00
2. 22.373297 21.604220 21.608600
3. 61.672828 56.171242 56.207886
4, 120.903395 102.404394 102.525746
5. 199.859462 156.171718 156.441222
6. 298.555542 '214.677595 215.156834
7. 416.990857 276.005851 - 276.749003
8. - 555.165299 338.888410 339.491293
9. 713,078941 402.446854 403.847106
10. 890.731904 466.005742 467.785777
11. 1088.123960 - 528.892980 531.084634
12. 1305.255216 590.140730 592.786401
13. 1542.125831 647.043177 © 650.283746
14. 1798.735501 687.080469 691.549983
15. .2075.084372 693.951293 698.565683

h/l=0.1

Table 4.1.20. — Nondimensional Frequency for Free-Free Boundary
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Euler—Bernoulli

Timoshenko Theory Modified
Mode No. Theory (x =0.822) Theory
1. 0.00 0.00 0.00
2. 22.373297 20.771923 20.780200
3. 61.672828 51.213839 51.274402
4. 120.903950 88.790117 88.463146
5. 199.859462 129.534838 129.877377
T 6. 298.555542 171.517147 172.073351
7. 416.990857 213.387238 214.194684
8. 555.165299 254.009611 255.102631
9: 713.078941 289.440447 290.967057
10. 890.731904 313.474731 315371128
11. 1088.123960 - 318.271238 320.091639
12. 1305.255216 352.241051 .354.058356
13. 1542.125831 355.763481 357.599139
14. 1798.735501 444.888836 447.057131
15. 2075.084372 449.337744 451.527902
Table 4.1.21. — Nondimensional Frequency for Free-Free Boundary
h/l=0.15
Euler—Bernoulli . Timoshenko Theory Modified
Mode No. Theory (k = 0.822) Theory
1. 0.00 0.00 0.00
2. 22.373297 19.786681 19.798800
3. 61.672828 46.197146 46.275188
4. 120.903395 76.765118 - 76.963339
5. 199.859462 - 107.988449 108.355773
6. 298.555542 138.536673 139.102531
7. 416.990857 163.362340 - 164.258756
8. - 555.165299 182.595624 183.611543
9. 713.073190 185.591420 186.649439
10. 890.731904 215.097974 216.136353
11. 1088.123960 217.248974 218.297917
12. 1305.255216 250.238619 255.632412
13. 1542.125831 290.741005 1 291.246119
" 14, 1798,735501 323.558417 325.167980
15. . 2075.084372 326.794001 328.419.860

Table 4.1.22. — Nondimensional Frequency for Free-Free Boundary

h/l =0.20
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Euler—Bernoulli Timoshenko Theory Modified
Mode No. Theory (x = 0.822) - Theory
L. 0.00 0.00 0.00
2. 22.373297 18.741940 18.757402
3. 61.672828 41.529019 41.618374
4. 120.903395 66.642209 66.849357
S. 199.859462 89.986151 90.372651
6. 298.555547 111.107633 111.660977
=7 ~416.990857 - 115.326809 116.041987 -
8. 555.165299 165.595157 166.449007
9. 713.078941 167.251129 168.133697
10.: 890.731904 194.309280 195.364834
11. 1088.123960 196.935303 197.786082
12. 1305.255216 224.259416 225.318713
13. 1542.125831 227.252270 .228.272131
14. 1798.735501  ~ 255.330513 256.430452
15. 2075.084372 257.883838 258.994495
Table 4.1.23. — Nondimensional Frequency for Free-Free Boundary
h/l1=0.25
' : Euler—Bernoulli Timoshenko Theory Moadified
- Mode No. Theory ' (k. = 0.822) Theory
1. 0.00 0.00 0.00
2. 22.373297 17.701481 17.719581
3. 61.672828 37.296734 37.395594
4. 120.903395 58.117882 58.324329
‘5. 199.859462 72.809020 - 73.223973
6. 298.555547 110.998123 - 111.795012
7. 416.990857 111.454211 112913163
8. 555.165299 160.112011 160.905894 .
9. 713.078941 161.941931 162.617353
10. 890.731904 184.908690 185.799727
11. 1088.123960 188.027197 188.827324
12. 1305.255216 . 210.562569 211.595597
13. 1542.125831 213.524476 214.506753
14. 1798.735501 237.276420 238.220021
'15. 2075.084372 - 239.649205 240.604441

Table 4.1 24 — Nondimensional Frequency for Free-Free Boixhdary
‘ h/l=0.30



Euler—-Bernoulli Timoshenko Theory Modified

Mode No. Theory (x = 0.822) Theory
L. 15418211 - 15.263940 15.246640
2. 49.964865 48.632879 48.541586
3. 104.247693 99.074888 98.831502
4. 178.269735 164.492597 164.021657
S. 272.030990 242.635723 241.883814
- 6, 385.531418 331.340940 -330.289412
7. 518.771093 428.669989 427.340566
8. 671.749929 - 532.964609 531.418851
9.. 844.468023 642.847635 641.181260
10. 1036.925331 757.195792 755.529793
11. 1249.121782 875.101870 873.572491
12. 1481.057514 995.836488 994.585515
13. 1732.732450 - 1118.813593 1117.980611
14. 2004.146605 1243.561729 1243.278370
15. 2295.299876 1369.700573 1370.087210

Table 4.1.25. — Nondimensional Frequency for Clamped-Hinged Boundary
h/t = 0.05
/

Euler—Bernoulli Timoshenko Theory Modified

Mode No. Theory (x = 0.822) Theory
1. 15418211 14.829400 14.765880
2, 49.964865 45.254114 44.960679
3. 104.247693 87.576495 86.921465
4, 178.269735 137.954880 136.934460
5. 272.030990 193.606149 192.346925
6. 385.531418 252.682570 251.388214
7. 518.771093 313.981836 312.871156
8. 671.749929 376.712394 375.979348
9, 844.468023 440.341298 440.142201
10. 1036.925331 504.341298 504.960223
11, 1249.121782 568.922716 570.155525
12. 1481.057514 633.365643 635.533461
13. 1732.732450 674.733939 679.369455
14. 2004.146605 681.481299 - 686.163170
15. 2295.299876 695.919240 700.660698

- Table 4.1.26. — Nondimensionz;l Frequency for Clamped-Hinged Boundary

h/1=0.1
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Table 4.1.28. — Nondimensional

h/l=0.20

: Euler—Bernoulli Timoshenko Theory fodified
Mode No. Theory (x = 0.822) Theory
1. 15418211 . 14.185620 14.060440
2. 49.964865 41.012816 40.532044
3. 104.247693 75.423984 - 74.572365
4. 178.269735 113.921244 112.916308
5. 272.030990 - 154.636636 153.764551
6. 385.531418 196.544143 196.047837
7. 518.771093 239.056294 234.102235
8. - 671.749929 281.728297 282.518398
9. 844.468023 299.881760 301.941982
10. 1036.925331 302.880598 304.961421
11. 1249.121782 P 321.815164 325.043296
12. 1481.057514 327.054195 328.293749
13. 1732.732450 359.776277 362.932786
14. 2004.146605 369.582160 370.147194
15. 2295.299876 408.560361 410.370868
Table 4.1.27. — Nondimensional Frequency for Clamped-Hinged Boundary
- ‘hf1=0.15 ’
/

Euler—Bernoulli Timoshenko Theory Modified

Mode No. Theory {k = 0.822) Theory
1. 15418211 13.417600 13.228940
2. 49.964865 36.780230 36.194959
- 3. 104.247693 64.970752 64.167499
4, 178.269735 95.384740 94.705434
5. 272.030990 126.824307 126.539588
6. 385.531418 158.598330 158.949104
7. 518.771093 168.683493 169.842365
8. 671.749929 171.554648 172.682399
9. 844.468023 188.:892695 191.477522
10. 1036.925331 . 193.885262 193.392308
11. - 1249.121782 220.681005 257.091501
12. 1481.057514 227.609225 265.737516
13. 1732.732450 254.248698 - 289.107771
14, 2004.146605 266.023105 310.216149
2295.299876 260.033406 261.651831

Frequency for Clamped-Hingéd Boundary



52

Euler—Bernoulli Timoshenko Theory Modified
Mode No. Theory (x = 0.822) Theory
L. 15.418211 12.597140 12.355210
2. 49.964865 32.954371 32.350092
3. 104.247693 56.516295 55.886563
4, 178.269735 81.386138 81.079648
5. 272.030990 110.967859 111.539287
6. 385.531418 128.757038 . 130.843270
7. 518.771093 133.896148 133.012953
8. 671.749929 155.952990 156.421402
9, 844.468023 162.069700 162.839250
10, 1036.925331 183.213117 185.278343
11. -1249.121782 194.548908 194.505526
12. 1481.057514 209.703097 210.605651
13. 1732.732450 ~ 229.129648 230.384568
14, 2004.146605 237.025224 238.218342
15. 2295.299876 260.033406 261.651831

Table 4.1.29. — Nondimensional Frequency for Clamped-Hinged Boundary

h/l=0.25

Modified

Euler—Bernoulli Timoshenko Theory
Mode No. Theory (x = 0.822) Theory

1. 15.418211 11.778860 11.497030
2. 49.964865 29.640688 29.077310
3. 104.247693 - 49.747755 49.325143
4. 178.269735 70.586953 . 70.670284
5. 272.030990 74.970442 75.485497
6. 385.531418 ©77.834207 78.282592
7. 518.771093 91.230229 92.479328
8. 671.749929 96.823291 96.383150
9. 844.468023 113.051564 114.236073
10. 1036.925331 122.796540 122.896884
11. 1249.121782 135.046985 135.555463
12. 1481.057514 151.131655 ' 154.459907
13. 1732.732450 157.725271 156.004516

. 14. 2004.146605 176.160524 178.831221
15. 2295.299876 184.694231 185.039934

Table 4.1.30. — Nondimensional Frequency for Clamped-Hinged Boundary

" h/1=0.30
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- _Figure 4.2.1. Deflection curve of the first mode for clamped-free beam, ( — for the modified theory, .. for

Timoshenko theory, — for Euler-Bernoulli theory)
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igure 4,2.2, Déflection  curve of the second mode for clamped-free beam ( — for the modified th
cory, .. for

Timoshenko theory, — for Euler-Bernoulli theory)
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Figure 4.2.3. Deflection curve of the third mode for clumped-tree beam, ( — tor the modified theory, . for
Timoshenko theory, —— for Euler-Bernoulli theory)

Figure 4.2.4. Deflection curve of the fourth mode for clamped-free beam, ( — for the modified theory, ... for
Timoshenko theory, —- for Euler-Bernoulli theory)
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Figure 4.2.5.
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Deflection curve of the fifth mode for clamped-free beam, ( —— for the modlflcd theory,
Timoshenko theory, — for Euler-Bernoulli theory)
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Deflection curve of t
Timoshenko theory, — for Euler- Bcrnoulh theory)

he cnght mode for clamped-free beam, { — for the modified theory,

. for

. for



20

-10 -

Figure 4.2.7. Deflection curve of the first mode for clamped-clamped beam, ( — for the modified theory, ... for
Timoshenko theory, — for Euler-Bernoulli theory)
/
W
201
e T NS
= ; N
i D
\\
10- N
o , .
o 02 03 04
-101 .
-201
fFigurc 5.8, Deflection curve of the sccond mode for clamped-clamped beam, { — for the modified theory, ... for

Timoshenko theory, — for Euler-Bernoulli theory)
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Figure 4.2.9. Deflection curve of the third mode for clamped-clamped beam, { — for the modified theory for
Timoshenko theory, — for Euler-Bernoulli theory) (e
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Figure 4.2.10. Deflection curve of the fourth mode for clampcd-clam;;cd beam, ( — for the modified theory, .., for
Timoshenko theory, — for Euler-Bernoulli theory)
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Deflection curve of the fifth mode for clamped-clamped beam, ( = for the modified theory, ... for
Timoushenko theory, — for Euler-Bernoulli theory) :

"Figurc 4.2.12.

Deflection curve of the seventh mode for clamped-clamped beam, ( —— for the modified theory, ... for

Timoshenko theory, — for Euler-Bernoulli theory)
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Figure 4.2.18.  Deflection curve of the first mode for hinged-hinged beam, (

— for the modified theory, ... for
Timoshenko theory, — for Euler-Bernoulli theory)
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Fi 4.2.14. Deflection curve of the second mode for hinged-hinged beam, ( ~ for the modified theory, ... for
igure 4.2.14. k i
’ Timoshenko theory, — for Euler-Bernoulli theory)
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Figure-4.2.15  Deflection curve of the third mode for hinged-hinged beam, ( — for the modified theory, ... f

or
Timoshenko theory, — for Euler-Bernoulli theory)
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' Figure 4.2.16. Deflection curve of the fourth mode for hingcd-hing;d beam, ( — for the modificd theory, ... for
) - Timoshenko theory, — for Euler-Bernoulli theory) ]
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Figure 4.2.17.  Deflection curve of the fifth mode for hinged-hinged beam, { — for the modified theory, ... for
Timoshenko theory, — for Euler-Bernoulli theory) )
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(!" Figure 4.2.18. Dcﬂcgtion curve of sixth modc>for hinged-hinged beam, ( = for the modificd theory, ... for
Timoshenko theory, — for Euler-Bernoulli theory)
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7 .
. Figure 4.2.19. Deflection curve of the first mode for free-free beam, ( = for the modified theory, .. for
Timoshenko theory, — for Euler-Bernoulii theory)
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ﬂgurcﬁ.2.20. Deflection curve of the second mode for free-free beam, ( — for the modified theory, .. for
- Timoshenko theory, — for Euler-Bernoulli theory)
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Figure 4.2.21.  Deflection curve of the third mode for free-free beam, { — for the modified theory, ... for
Timoshenko theory, — for Euler-Bernoulli theory)
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“Figure 42,22, Deflection curve of the fourth mode for free-free beam, (= for the modified thcory, ... far
s *"+ Timoshenko theory, — for Euler-Bernoulli theory) i &
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Figure 4.2.23.  Deflection, curve of the fifth mode for free-free beam, (— for the modified theory, ... for
Timoshenko theory, — for Euler-Bernoulli theory)
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Figure 4.2.24, Deflection curve of the cight rﬁodc for frec-free beam ( — for the modified theory for S
- ’ Timoshenko theory, — for Euler-Bernoulli theory) .
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Figure 4.2,25.

2D

Deflection curve of the first mode for clamped-hinged bcah, { — for the modified theory, ... for
Timoshenko theory, — for Euler-Bernoulli theory)
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Figure 4.2.26.

e

Deflection curve of the second mode for clamped-hinged beam, { = for the modified theory, ... for
Timoshenko theory, — for Euler-Bernoulli theory)



Figure 4.2.27. Deflection curve of thc third mode for clamped-hinged beam ( — for the modified theory, ... for
Timoshenko theory, — for Euler-Bernoulli theory) )

Figure 4.2.28. Deflection curve of the fourth mode for clamped-hinged beam, ( — for the modified theory, ... for
' Timoshenko theory, — for Euler-Bernoulli theory) '



’.-\

1 Figure 4.2.30.
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Figure 4.2.29. Deflection curve of the fifth mode for clamped-hinged beam, ( — for the modified theory, ... for
Timoshenko theory, — for Euler-Bernoulli theory) :

Deflection curve of the sixth mode for clamped-hinged beam, { — for the modificd theory, ... for
Timoshenko theory, —- for Euler-Bernoulli theory) ’
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section.

It has been shown that Timoshenko beam theory is equivalent to the modified
__theory provided that Timoshenko shear coefficient has the value of 5/6. Unlike Timoshenko

beam theory there is no need for additional calculations to get the shear coefficient in the
modified theory. Since shear coefficient was directly determined in the derivation of the
equations. Usually the values for the shear coefficients are obtained either by matching the
spectrum of the approximate theory by a few known exact results [8] or
making use of certain approximations within the theory of elasticity [18]. A'sample of the

high frequency

APPENDIX

SHEAR COEFFICIENT

The shear coefficient is a non-dimensional quantity depending on the shape of cross-

values of shear coefficient for rectangular beam are presented in Table (A.1.1.)

R W=

AUTHORS SHEAR COEFFICIENT
Timoshenko 2/8
Midlin - 0.822
Roark : _ 0.833
Goodman (v = 1/3) , 0.870
Cowper (v = 0.3) ) 0.850
Stephen (v=0.3) ‘ 0.866

Table A.1.1. Comparison of thc shear coefficients for becams of rectangular cross-section
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