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ABSTRACT

The total free energy a swollen and deformed amorphous cross-linked

polymer network is given as AE = AEm + AE nt AEC where AEm is the free

P
energy of mixing of polymer and solvent; AEph indicates thg first part of
elastic energy by representing'idea1 conditions called as ‘Phantom Case';
AEC covers the local constraints and cbmp]etes the total free energy as a
second part of elastic free energy. The explicit form of a]] free energies
are obtained from molecular theory of rubber elasticity by including their
recent developments. Expressions for stress in terms of strain and swelling
ratio are obtained ffom free energy.b Bending of a cross-linked amorphous
cuboid is formulated as a boundary value problem and the distribution of
solvent a;d stresses are numerically calculated for six distinct solvents.
The magnitude of bending moments are found for different degrees of flexures
up to 180°. Results are compared with each other and also with their linear

solutions. As swelling increases a decrease in elasticity modulus is

observed.



OZET

Diizensiz, capraz badli, polimer zincirlerden olusan malzemelerin
sismis ve sekil dedistirmis durumdaki toplam serbest enerjileri
AE = AEm + AEph + AEC ifadesi ile verilir. Burada AEm karisim serbest
enerjisidir; AEph elastik serbest enerjinin ilk kismi olup, ideal sart-
Hardan olusan ve ‘phantom' ad1 verilen durumu temsil eder, AEC ise elastik
serbest enerjinin ikinci kism1 olarak bGlgesel etkilerin toplam serbest
enerjiye katkisini belirtir. Serbest enerjinin ag¢ik denklemleri, son ge-
lismeler gﬁzﬁnﬁné alinarak molekiiler teoriden elde edilmislerdir. Uzama
orani ve sisme derecesi ile bagintili gerilme denklemleri serbest enerji-
den ¢ikarilmistir. Diizensiz capraz bagly polimer malzemeden yapilmis cu-
bugﬁn‘egiﬂmesi, sinirdeder problemi olarak formiile edilip, gerilmeler ve
solvent dagilimi nimerik olarak alti dedisik solvent dederi ic¢in hesap-
1énm1st1r.' EGilme momenti 180° edilme dederine kadar incelemmistir.
Sonuciar'birbir1eri veu1ineer1gazﬁm1eri ile, bir iliski gozlemek i¢in kar-

~s1lastirilmis ve sisme arttikca elastisite modiiliinlin azald1§1 gozlenmistir.
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I. INTRODUCTION

Rubber 1is obtained in the forﬁ of latex from the tree named "Hevea
Braziliensis". "Caouctchouc" is another and more expressive term which
means 'weeping wood' in Maya Indians' Language. As it can be easily
guessed, it is something from the new world. Europeans learned rubber
durfng the traﬁels of Christopher Colombus.

Today 75 ﬁer cent of rubber producfion is consumed by the tire

‘sector. It is also the main material of waterproof products and isola-
tion processes and the textile industry is another field where rﬁbber
threads dre commonly used to produce flexible clothes.

The term rubber is not restricted to the original natural rubber
because of the technological deve]opmenté, especia11y the progre;s achieved
during the second world wér enabled the industry to manufacture artificial

- rubber and rubber-like materials so the term is applied to any maferia]h
having mechanical propertieé similar to those of natural rubber regard-
less of its chemical constitution. |

Rubber is essentially a polymer network which is created by 1inking
individual polymer chains into solid structure. It swells when exposed

to the action of so]yent. This is not a chemical reaction, just a physical



mixing which causes isotropic swelling. The configurational entropy of
the expanding chains is decreased upon §we1]1ng. On the other hand the
mixing of polymers with solvent increases the entropy. When the two
entropies are equal, the state of equilibrium is reached. This state
~is treated by F]qry and Rehner [1]. It is possible to observe a further
change in the amount of solvent absorbed when the swollen network %s
deformed to different states. The network-solvent system shows nonhomo-
geneousbstate of stress, strain and degree of swelling at every material
point when external forces are applied in technical and biological
problems. |

In the treatment of these prob]éms, stress strain and swelling
re]ations are taken from molecular theory of rubber elasticity whfch is
reasonably in good agreement with experimental results.

In following sections the rubber elasticity is examined on the basis
of molecular and statistical theory and then a solution model is deye]oped
'fdr solving nonhomogeneous state of stress and strain by using continuum
mechanics principles. The so]utibns are found for a specific problem
which is the flexure of an amorphous polymer beam and the study is com-

- pleted with comparative discussions on results.



II. RUBBER ELASTICITY

In this section we will give a brief summary of L.R.G. Treloar*'s
study, including physical properties of rubber, internal energy and
entropy change on deformation, the elasticity of network, swelling pheno-

mena, and the recent developments related to rubber-1ike behaviour [2].

2.1  GENERAL PHYSICAL PROPERTIES OF RUBBER
2.1.1 Elastic and Thermoelastic Properties

The rubber bk rubber-1ike material has one obvious and important
physical characteristic; it shows large deformations when even small
stresses are applied. A typical force-extension curve is shown in Fig.
2.1.1. The'nonlinearity prohibits the use of a single value of elasti-
city modulus. When a point, at the origin, is considered in terms of

_quantitative values, the difference from conventional solids becomes more
clear. The slope of this curve at the origin is in the order of 1.0 N/m_m2
which.is very low compared with a typical hard solid that has a Young‘sr

Modulus in the order of 2x10° N/mm2 [2].
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Figure 2.1.1 - Typical force-extension curve for vulcanized
rubber [2]. : :

The study of thermoelastic properties.goes back to Gough (1805)

who made the following observations;

1. The stretched rubber, under a constant load contracts

(reversibly) on heating and

2. The rubber gives out heat (reversibly) when it is stretched.

These results were confirmed by Joule (1859). A more detailed

explanation of thermoelasticity will be given in Section 2.2.



2.1.2 Chemica] Constitution of Rubber

The rubber exiét in latex in the %orm of small globules having dia-
meters of microq size suspended in liquid. The rubber, usually 35 per
cent of mixture, can be obtained by drying the 1iquid parts. It is
essentially a hydrocarbon identifiéd by the chemical formula (C5H8)n.
Chemically the rubber hydrocarbon is a polymer of isoprene built ub in
the form of continuous chains. 1In a chain, double bonds exist and every
fourth carbon atom carries the méthy] (CH3) side-group. The double bonds
are important during the reactions with sulfur or with other reagents in
the vulcanization process.

Polyvinyl chloride, polystyrene, Butadiene-styrene, Polyproylene:

are some common synthetic rubbers which have very large utility fields.

2.1.3 General Conditions for Rubber-like Elasticity

Under the guidance‘of the previous works which were carried out by
Haller (1931) and Karrer (1933), the below conditions for the rubber-1like

state are stated by L.R.G. Trealoar.
1. The presence of long-chain mo]ecu1es,‘with freely rotating
Tinks;
. 2. Weak forces between the molecules;

3. An interlocking of the molecules at a few places along their

length to form a three dimensional network.



The above conditions define the rubber-like state in fact the first
two conditions not only identify the rubber state but also apply to the’
© liquid state as well. The last condition states the difference between

rubber and liquid by restricting the movement of molecules.

2.1.4 Network Formation

‘The necessary cross-1links between chains are normally introduced
by the vulcanization process. This is a simple reaction with sulfur which
was discovered by Charles Goodyear. Different reagents and methods héve
been used but the vulcanization is the main production method. to create
cross-linkages. In rubber technology articles are moulded or extruded
while they are semi-liquid or in any convenient form. Then their final

form is fixed by securing desired properties.

2.2 INTERNAL ENERGY AND ENTRQPY CHANGES ON DEFORMATION
2.2.1 Stress-Temperature Relations

When;the system of 1ong chain molecules pass from the unstrained
state to the strained state, the elasticity of rubber changes becauée of
- differences in the-configukation of chains. In fact these changes are
related to the conffgurationa] entropy of fhe system, and fhe intérna]
“energy is assumed to be constant during the deformation.v When only entropy
change %s,invo]ved, the stretching force for a given state of strain should
be proportional to absolute temperature as shown in Figure 2.2.1 which is

obtained experimenfa]]y by Antony (1942). In this figure, in order to



distinguish low and high strain regions, the 10 per cent extension is
accepted as a boundary of the so-called “thermoe]astic inversion' region.
At Tow strains, stress shows decrease for higher temperatures and at high

strains stress increases as the temperature increases.

L0 T T =T
w08 8
10 / |
%
ent
S - nmpec
5;1 13 per cent
10 -
: L € percent
—© —0 O ———— ]
° "’—*-og—pm
0.0 1 ) 3
0 20 40 60 80

Tempercture(*C)

F1gure 2.2.1 - The change in force at constant length for

d1ff§rent elongations is indicated. (Antony,
1942

2.2.2 Thermodynamic Analysis

Using first and second laws of thermodynamics it is posSib1e to
obtain a relationship between force, length and the temperature in the

following order by assuming a reversible process;

= dQ + dW

(2.1)
and TdS =dQ-



where dQ and dW are respéctive]y heat observed by the system and'work<done
on the system by external forces, T is %he absolute temperature and dS is

the entropy. The Helmholtz free energy may be defined for infinitesimal

changes as
dA = dU - Tds v | (2.2)

By using Eqs. (2.1) and (2.2) we obtain the classical results for an iso-
thermal reversible process in which Helmholtz free energy is equal to the .

work done on the system;
dA = dW , } (2.3)

Similarly the work done will be expressed in ternis of the static pressure

and tensile force, 'F',acting on a specimen. .
dW = Fd% - pdV : (2.4)

In the case of rubber elasticity, the last term may be neglected and the

force may be found as;

dW _ dA

F :-.(rql__=————-2' (2.5)
Eq. (2.5) shows that tensile force is equal to change in Helmholtz free
energy per unit 1ncréase invlength of specimen. When the force or change

in Helmholtz free energy is zero, the unstretched state is obtained;

dA__ | |
A - g | | (2.6)



On the other hand, according to Joule's observations! the heat must be
given as a response to extension. When the internal energy change is assume

to; . be izero, according to kinetic theory, the first law becomes
dW = -dQ . ) - (2.7)

Since the stretching work is positive, the heat observed should be nega-

tive which means that heat is evolved during the extension.

2.3 THE ELASTICITY OF MOLECULAR NETWORK

In order to express the mechanical properties of rubber in terms of
molecular constitution it is necessary to develop kinetic theory which

brings the quantitative side of the subject into the picture.

2.3.1 General Approach and Fundamental Assumptions of the

Theory

The following assumptions which are based on Kuhn theory have been

used by Treloar to develop a new theory [2].

1. Achain is defined as a segment of molecule between cross-

linkages and the network contains N chains per unit volume.

2. The end-to-end distance which is known as the mean square
distance is the same forall assemblies of unstrained cHains‘and

it is given by the formula;
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(o0

S rP(r)dr

r = 000 = 3 . = nLZ 3 (2.8)
, 2m?

I P(r)dr

0

where
P(r) =_(4m3/1r3/2)exp(-m2r2)'rrr2 (2.9)
m? = . 3/2 nL2 | | (2.10)

and 'r' is the end-to-end distance for a set of free chains.' P(r) indicates
the probability distribution of r and m is a constant which depends on the

number of links 'n' and the length of a link, ‘L'.
3. During the deformation no volume change occurs.

4. The junction points between chains move as if they were
imbedded in an elastic continuum. So during the deformation
every part of the chain changes in the same ratio. This case

is the so-called affine case.

5.- The total entroby of the network is équa] to the totality of

individual chain's entropy which is given as

s = k{In P(r)dvi

or when Eq. (2.9) is used, its implicit final form becomes,

s = C - km?r? (2.11)

where k is a proportiona]itybconstant obtained from Eq. (2.9)

and C is an arbitrary constant.
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2.3.2 Calculation of Entropy of Deformation

In order to obtain energy expresgions the main variable entropy
should be calculated. A specimen in the form of a unit cube 1is taken
as in Figﬁ 2.3.1 and instead of simple tension a more general case is
taken into account. The cube is strained and transformed into a rectan-

gular parallel-piped having three unequal edges As A,s A

.-
»” ‘
4 s[ - ﬁ
' ' ’tl' / “"‘ _ _’:t,
{ T '
q 1 ,ﬁxf l .
. . 'f3'
(a) (b)

Figure 2.3.1 - Unstrained and strained case for unit cube.

Since the specimen was unit cube before the deformation A'é will be equal
to stretches. Because of the third assumption i.e. no volume change

during the deformation the following equality can be stated.
MAA =1 ‘ (2.12)

If an individual chain in the specimen is considered

{s,Y0Z0)
I/
// "(XIYIZ)
4 ,//
VAL -
/ e
/ ’,/
’/ ,’/ -
/ —X
o

Figure 2.3.2 2 Affine deformation of chain.
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as in figure 2.3.2; s is the end-to-end distance before deformation and

r is the end—to-end distance after deformation. The components of r can

be expressed as

X = }\IXO
RERWA (2.13)
z= )\320

where the principal axis coincides with the coordinate system. Since the
entropy of initial state 'Sp' and the entropy of strained state'S''can be

expressed as follows

q = - 2 2 - )
SO km (x0 + yé + zg) +C | (2.14)

and

= _Lm2(12y2 2,2 2,2 ,
S km (AlxO + Azyo + Aazo) +C : (2.15)

the contribution of deformation to total entropy of network can be found

easily as
AS =S - S0 ‘ (2.16)

“Since L is completely érbitrary,,xo, Yor Z4 components can be considered
as unity and N chains can be assumed to exist in the unit cube. If we
substitute Eqs. (2.14) and (2.15) into Eq .(2.16) and multiply with N to

get the total‘entropy contribution, we will have the following equation
AS = - (1/2)Nk(A? + A2 + Ag - 3) (2.17)

where the 1/2 factor is obtained from insertion of ré which is equal to

3/(2m?).
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2.3.3 Work of Deformation

From Eq. (2.7) we already know that dW = -TdS, since there is no

change in interna] energy, Helmholtz free energy or work of deformation

can be given directly as
dW = (1/2)NKT(A2 + A2+ A2- 3) (2.18)

where the dW is the elasticly- stored free energy in unit volume. The
coefficient NkT in this equation may be expressed as G = NkT, where G is
dependent only on N at constant temperature. The expression obtained above
shows that the elastic properties of rubber is dependent on number of
chains, N, and the G may be expressed in terﬁs of the chains' average

molecular weight
G = pRT/MC . (2.19)

where p and R are density and gas constant respectively.

2.3.4 The Elastic Properties of Swollen Rubber

Although the phenomenon of swelling will be discussed in the following
- sectiqn a brief introduction to swollen rubber properties will be given
here. If we take thé previbus unit cube and expose it to solvent action,

it swells. The swelling degree may be defiried as the volume ratio of
rubber to solvent-rubber mixture and it will be equal to VO/V =V, Hence
the dimensions of unit cube after swelling can be easily found as

- -¥/3
AO = 1.v2 .
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Since there is no volume restriction in the derivation of entropy
of deformation, it can be carried out to-the swo]]en state. By following

the method used in the preceeding section and def1n1ng the final swollen

stpetch Ai as

; = 0 = -1 /3“ '
)\'i ai)\é ) o (?.20)

in which di's are rgferenced to unstrained swaollen state, the entropy of
deformation AS per unit volume can be found with the multiplication of AS
by Vo- Finally the multiplication of AS with temperature will give the

strain energy or free energy function as
. ,
di = -Tas = (1/2)NKTv /3 a2+ a2+ 62- 3) (2.21)

in which the stretches are referenced from swollen state.

2.4 SWELLING- PHENOMENON

In,swelling phenomenon the polymer and solvent mixture which strongly
depends on the nature of the Tiquid is the most important concept. Like
materials, natural and synthetic polymers can be divided into two grdups
as water-swelling polymers and organic swe]lihg po]ymérs. The first class
includes the ce]]u]ose and proteins while the second class essentially

consists of rubbers.
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2.4.1 General Thermodynamic PrincipTes and Their Significance

When the thermodynamics of the éubject is examined, the state of
equilibrium of swelling becomes important. In the case of rubber swelling;
the mixed phase is the solid and the pure phase is the Tliquid. The equi-
librium of the system has a very close relation with free energy, when
the free energy is minimum with respect to changes in composition of
mixed phase it means that the state of equilibrium is satisfied. A change
in free energy may happen if a small quantity of liquid is transferred from
the pure state to the mixed state. This transfer may be expressed with -
Gibbs free energy of dilution AE. For equilibrium condition it should

be zero
AE = 0 _ (2.22)

The Gibbs energy can be written in terms of heat AH and entropy AS of

dilution
AE = AH - TAS : (2.23)

where AH is the change in the heat content and AS fs the change in entfopy
per mole of liquid. The heat‘pontent can be given wfth H=U-+PV but
because of fundamental assumption there is no change in volume so heat
content is equal té internal energy. Since it is possible to obtain some
thermodynamic quantities experimentally, with the he1p‘qf following equa-
Tities we can calculate the Gibbs free energy.and the heat content. As
given in the following formulas they are related to the absolute tempe-

rature T, vapour pressure P and saturatjon vapour pressure P0



1 ] - 1
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Voiumz fraction of solvent ¥

Figure 2.4.1 - Free energy, heat and entropy dilution for
rubber-benzene.

AE

RT]n(P/éO)

(2.24)

AH = _RTZB[anP/PQ!]
-3[T]

16
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.The change in entropy AS may readily be found_by combining Egs. (2.23)

and (2.24). In Figure 2.4.1 for rubber-benzene case, the free energy,
heat and entropy of dilutions have been calculated from vapour pressure
and osmotic data [2]. As it is seen from Figure 2.4.1, AE is always nega-
tive and AS is positive 1ike AH which is comparatively small and has a
tendency to reduce the energy (from Eq. (2.23)). Since AH correspénds to
‘heat absorbtion of mixing, it tends to oppose swelling and the associated

entropy becomes the 'driving force' of swelling.

2.4.2 Statistical Treatment of Swelling

It is easy to notice the close thermodynamic analogy between the
elastic properties of rubber and the phenomenon of swelling. They are
the manifestation of the configurational entropy of long chain molecule
systems so the statistical treatment can be easily applied to the swelling
phenomenon as well. A model for thié.case was prepared by Flory (1942)
and further studies were done by Treloar. In this section the model and
its results are introduced briefly.
| A three dimensional lattice in which each site may be occupied either
by a liquid molecule or by a single segment of a polymer chain is formed.
Although the 1iquid molecules are free to occupy and vacant site, the
polymer molecule segments are restricted to any adjacent site. This is
illustrated in Figure 2.4.2 where individual circles represent solvent
‘molecules and the rest are po]ymer chains.
If we 1et Ny to be the total number of sites and N to be the number

of polymer molecules, each consisting of x segments, the number of liquid
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Figure 2.4.2 - Schematic presentation of Flory Model.

molecules will be no-xN.

Under the guidance of Flory's model, Treloar found that the total

conformation of N polymer molecule chain assembly is

= XN, ) (—E—)oX] ' (2.25)

where the Z is nearest neighbouring site and o is the number of sites
available. The configurational entropy AS which is essentia]]yAneeded

may be found from Boltzmann's relation
s =k InW ' (2.26)

Equatioh (2.26) ﬁbnsists of n= ny = XN terms in W and Boltzmann's cons-
tant k. When n is zero, it means that unswollen case is valid so it is
possible to‘reaéh entropy S0 of unswollen state by tak%hg this term zero.
Consequently the difference between 'S' and 'So' will give the entropy of

mixing process ASm as;
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- - _ n ‘ xN |

AS k(n In g N In ﬁ_;fjaﬂ : (2.27)
or ' ) '

AS. = -k(n 1nv] + N 1nv2) (2.28)

where the Vi and Vo are volume fractions of solvent and polymer respectively
Eq.'(2.28) can be expressed with respect to liquid component by differen-

tiating ASm'with respect to n.
AS, = -R(In(1 - v2) + (1 - (1/x))v2) (2.29)

On the other hand for free energy calculations the heat dilution AH is

given on a semi-empirical base by Flory with the following formula
AH = avé . | : (2.30)

The combination of Eqs. (2.30), (2.29) and (2.23) will give the total

mixing energy. Hence
- 2
AE = RT{In(1 - VZ) + (1 - (1/x))v2 + (q/RT)vz} | (2.31)

is obtained. The term in front of the vg may be considered as a constant
¥ and when the chains are assumed sufficiently long, L.and X will increase

“which means that the term 1/x may be neglected. Therefore we have
AE = RT(In(1 - v,) + v, + xv,} (2.32)

Flory (1953) had found a similar equation, by using Eq. (2.28). He

expressed the mixing free energy as follows;

AE = kT(n Tny, + N Tnv, + X nvz) (2.33)
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where X is the so-called interaction parameter which will be discussed in

a separate section.

2.4.3 The Swelling of Cross-linked Polymers

In the preceeding discussion the system was not cross-linked, since
the intercdnnection in polymers prevents the possibility of solution,
Eq. (2.32) or (2.33) are not sufficient for the cross-linked case. When
the total entropy of this condition is considered the total free energy of

dilution becomes
Be = OE, + AE, (2.34)

- where AEm represents the free energy of dilution for the polymer before
the cross-linking and AEe is the change of free energy per mole of liquid
observed because of the elastic expansion of the network. In order to

satisfy isotropic expansion of the network, we must have

: g,
A=Ay =y =1 v, e

L= A, . (2.35)

Aaﬁd also we know that, elasticly stored free energy W, in Gaussian net-
_work, is given by Eq. (2.18). Substituting Eqs. (2.35) and (2.19) in
.Eq. (2.18) and taking vél =1 + nVy in which V, is the molar volume of -
Tiquid and 'n' is the numbek of 1iquid molecules. Differentiation of W
with reépect to n will give the change in elastic free energy AEe,

pE, = %‘% Vv, (2.36)
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and total free energy of dilution is found as:

oV
- v;/3} (2.37)

= - 2
AE = RT{In(1 Vo) + v, + Xv5 + -

2.4.4 The Dependence of Swelling on Strain

Up to this section the’equilibrium of swelling of cross-1inked pb]y—
~mers and the strain free state were considered. Additionally in this sec-
tion the presence of stress or other mechanical constfaints will be examined.
This problem was solved by Flory and Rehner (1944) for simple tension case
and its more complicated case corfesppnding to pure homogeneous multiaxial
strain was solved by Treloar (1950). In order to give short summary of -

Treloar's work a unit cube is taken. The cube is in contact with the
+Tiquid and bounded by normal forces applied to its forces to form a rectah-
gular block with dimensions 2, &, , 2, where edges are accepted as in the

direction of principle strains as in Figure 2.4.3.

L 7 4

/L
/ l 5
t, ~ .
t3

Figure 2.4.3 - Equilibrium of swollen rubber under stress

From the conservation of mass principle we have
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Vv +V
2,88, = 1y, = L Soq4 VNV (2.38)
v P :
b ,

for which the terms were defined previously. The Eq. (2.34) 6r the total
Gibbs energy, for the‘transformation from unswollen and unstrained state
to swollen and strained state may be written in terms of partial deriva-
tives with respect to the number of moles of liquid. We have; .

an

= + (2.39)
an 3%, 3n
! 22’23

2223

where absorbtion of a small quantity &n moles of 1iquid is considered under
the condition that 2, and &, are constants while 2, is increased by 82,

because of applied stress t] so the work done by t],is obtained as,

SW = t2,2,60, = t;Vén (2.40)

On the other hand from Eq. (2.3) the change of Helmholtz free energy AR
for this displacement will be equal to work done by external forces.
Additionally this will be equal to Gibbs free energy since it is expressed

as AE = AA + PAV and volume change is assumed to be zero. Therefore we have

SW = SA = 6VE = t;V6n (2.41)
or |
_ 1 9AE
e e T | | - (2.42)

The term AE/3n is given with Eq. (2.39) which consists of two parts. First
part corresponds to Eq. (2.32). Second part of Eq. (2.39) may be found by
taking partial derivative of Eq. (2.36) and (2.38). Insertion of their
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final forms into Eq. (2.42) will give the t] expression which is referred
to swollen but unstrained case where li‘s are defined in terms of princiﬁal

stretchs as in Eq. (2.20). So the final and general form of t, stress

equation becomes [2]

P . | Ly ,
Y qu—{ln(l = Vo) + vy Fxvh (VU /MV, ALY (2.43)

2.4.5 Recent Developments

In recent years there have been further studies which have been
achieved by Flory and B. Erman in which the phantom case is defined and
the domains of constraints are concerned separately. These constraints
occur because of entanglements and steric requirements of real pd]ymer'
chains. When phantom case is taken into account, each chain fluctuates
freely about its equilibrium end-to-end vectors which are spanning the
distance between two junctions. For any deformation, only the mean end-
to-end vectors are deformed and the structure at ends are preserved then
the'phantom case' is obtained. |

- According to these new studies the elastic free energy of a polymer

network can be represented as the sum of two terms [3.4]

MEg = AEp + OE, (2.44)

where the AEph is elastic free energy of hypothetical phantom network and
AEC represents.the elastic free energy of constraints arising from the

materjal properties of real chains. Following the statistical methods and
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assuming Gaussian distribution the free ene%gy for the phantom network is

found as [4]

AEph = (1/2)£kT(k§ + A2+ 2 - 3) (2.45)

where £ is the cycle rank or the number of independent circuits of the

network, k.is the Boltzmann's constant, and the free energy of constraints

is found [4]

(kT)'AE, = (w/2)Z0(1 + 9,08, - Tn[(B, + 1)(g;B; + NI} (2.46)
1

-1

g; = M +gr; = 1] | - - | o (2.47)

B

;7 O =D -/ 4902 (2.48)

in which u is the number of junctions, x and ¢ are two new material para-
meters, k varies between zero to infinity. « = 0 case corresponds to
‘'phantom case', infinite value fepresents the affine case.

'z' shows the effect of structural inhomogeneties. In recent studies
the free energy of constraints AEC are included in total free energy to
obtain.improved stress-strain relation. The derivative of AEC may be
found as |

2
agic ) 9AE 82: | (2.49)

2
OA]

and aAEC/Bxé “can be calculated from Eq. (2.46) [6]
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oAE

52;9 = (u/2)KTK(A3) ’ | (2.50)
where ‘
K(A2) = B[B(B + 1)™" + g(gB + Bg)(g + 1)™"] (2.51)

in which the definitions

B;= B(I2, (- 17+ (1 - 2o [0 + 2y - )17 250 + @7
(2.52)

and

-1

g;= &4 Tl - (3/2)) | (2.53)

has been used.

In fhis récent approach the total free energy becomesbequaT'to;
AE = AE + AEph + BE, (2.54)

If we substitute Eq. (2.54) into Eq. (2.42) we can obtain the improved

stress-strain and swelling relation in the form given below

t; - _%{]T_[m(m- Vp) + v, + xv3] + xgvz’—%l;lu + (Wek(A))  (2.55)

as referred to swollen but unstrained case.

2.4.6 The 'y' Parameter

So far the specific difference between the swelling process of

‘various po]ymer-éo]vent systems were expressed with the aid of the

ROGALICY (AVERSITESL Rwiviv
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empirical parameter x which is related with energy of mixing. The inter-
actions between polymer and solvent molecules dépend strongly on the forces
between atoms. In order to understand the role of interactions im swelling,
the cohesive energy density concept was introduced by Gee (1942).

In further studies the solubility parameter 's' was defined as the
square root of the cohesive energy density. It was found out that poly-
mers may easily dissolve in solvents which have similar chemical structure

to the polymer. The following relation between '$' and 'x' was stated by
Shvartz (1958).

8, = 8,5 (KT/V )x - x )1 72 (2.56)

in which the entropic effects is included by (xg) and finally the parameter
X is expressed in terms of the interaction parameter X which is in good

agreement with experimental results [9]. We further have;

o a1y

where n {s the number of 1iquid molecules as before. Some y values are
givén in Table 2.4.1 [2]. Since parameter x is not constant with respect
to solvent it has been examined with respect to polymer volume fraction
for PDMS-Benzene system”at 25°¢ by Shih and Flory [9]. The results are
given in Fig. 2.4.1.

It is also possfb]e to express the x parameter in terms of x, and ¥,

parameters which are dependent on the solvent and polymer respectively.
X =X T X,V ' : . (2.58)

-where x, and x, are known empirical values.



TABLE 2.4.1 - Sample Values for ¥ Parameter

Liquid ' Natural Po]y-ch]oroprehe Butyl Silicone
Rubber (Neoprene) Rubber Rubber
Benzene 0.421 0.263 0.578 0.52
Toluene 0.393 j' 0.557 . 0.465
Hexane . 0.480 0.891 : 0.516 0.40
Dichloromethane 0.494 0.533 0.474 -
~ Carbon tetrachloride 0.307 - 0.362 0.450
0.49 LR N T ¥ T T T
- -
c.8} -
X ;
6.7 = 4
X1 .
” 3 1 | S % | S W [l »

02 C-4 0§ Y Lo
Y

Figure 2.4.4 - x versus vy for PDMS-Benzene system.
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ITT. CONTINUUM MECHANICS MODEL

In this section the flexure of amorphous swollen cuboid will be
considered. At the beginning, pure bending of an incompressible beam
will be examined under the guidance of C. Eringen's study [10] and then
the model which was formally deVe]oped,by Green and Adkins [11,12] for

compressible materials will be applied to our problem.
3.1 FLEXURE OF AN INCOMPRESSIBLE CUBOID

~3.1.1 Continuum Solution

Suppose we deform a rectangular parallel-piped in such a way that
X = constant planes become circles, Y = constant planes become radial Tines
where Z = constant planes are preserved as is shown in Figure 3.1.1. Such

a deformation may be-represented by two coordinate systems.

xY=pr X! =X

I}
-

(3.1)

X2.___e . X2

x3 =z X3 =12
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a a —X ~Jo. ‘ — X
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a
(b) D

Figure 3.1.1 - Intompressib]e block (a) undeformed, (b) deformed.

where r, 9, z are cylindrical coordinates for the deformed state having

g

the same origin with rectangular coordinates X, Y, Z and the deformation

is described by

ro=x! o= xH(XY) = £f(X)
9 = x2 = x2(X2) = g(Y) | ’ : (3.2)
z = x3 = x3(X?) = h(Z)

The metric tensors in two coordinate systems can be easily found as

1 0 O T 0 0
|16 11 =0 1 0 Hggqll =0 r O (3.3)
0 0 1 0 O 1

N
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K
L

be stated in physical components which can be obtained from the formula

- Since we are dealing with a real problem, the deformation tensor C~ should

below:

(K) _ oK =) o
C(L) CL /GEE//GLL (3.4)
where underscores are placed under the ihdices to indicate suspension of
the summation. On the other hand the deformation tensor in terms of the

derivatives of motion is given by,

- oM _ KM k 4 . |
CL G Cy = G e,k XL _ (3.5) -

If we substitute the required partial derivatives of Eq. (3.2) in Eq. (3.5).

The deformation tensor becomes;

2.0 0 |
el = Jo r2g2 0 | (3.6)
0 0 h' 2

From the values of the metric tensor, given in Eq. (3.3) and Eq. (3.4),
it will be observed that the tensor components of deformation in its diago-

nal form are identical with its physical components. i.e.,
Kl =ct | | (3.7)

It is also clear that the deformation tensor contains only diagonal terms.

Invariants df the deformation tensor can be found by using Eq. (3.6) as,
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I

)\f + )\z + }\z - .l:|2 + rzgiz +‘hl2

c
T = A, F A, A = F2'h'2 + r2g2(f'2 + h'2) (3.8)
IIIc = Afxgxg = fl2p'2g!2yp2

Also for the principal stretches we have

2

A= A, =rg' A, =h' | . (3.9)

In order to satisfy isotropic deformation, f(X)g(Y)h(Z) = 1 should be

satisfied so the third invariant must be equal to unity.
I = (f'rg'h")2 =1 - . (3.10)

The differential equation can be separated by letting ff' = A,g* = C,

-1 : '
h' = (AC) =D where A, C, D are constants. Integrating these equations
and then é110wing for two integration constants equal to zero in order to

center the deformed block with respect to spatial coordinates, we obtain
1 / ‘
r=f(X) = (2AX +B) ‘2 @8 =CY z=DZ (3.11)

and app]yiné‘the following boundary condijtions.

r=or X =-a
r = rz } X =a v (3.]2)
0 = 8, Y = #b

will yield the values of the constants A, B, C and D.

=
il

GO/b

4ab/(eo(r§ - r%))

i (1/4a)(r§- ?%) C

: (3.13)
(172)(r? + r3) | D

(o]
f
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3.2 FLEXURE OF A COMPRESSIBLE CUBOID '
3.2.1 Solution of a Compressible Cuboid Problem

This particu]ar problem was treated by Green and Adkins. In our
study we will follow the same prbcedure. Under the gqidance of the pre-
~ vious sectijon we can assume that the.deformation of the compressible

cuboid is similar to the incompressible one. Hence,
r = f(X) B = (eo/b)Y L =D1 (3.14)

We also knowvthat the constitutive equation for the stress-strain relation
of a compressible material can be exbressed in the form below by replacing
deformation gradients by principal stretches. This constitutive equation

is known as Neumann-Kirchoff fofm [10, p.146].

ty = (/0,0 (30E/8X;) = VoA, (BAE/3M,) (3.15)

accordingly the stress tensor becomes;

V2X1(3AE/3X1) 0 0 |
-0 0 Vol (3AE/3),)

Since the strain component and the strain energy AE = p(I,II,III) = F(})
are independent of 6 and z but depends on r (or f), the equations of

equilibrium reduce to a simple relation;

+ =0 or t, = (d/7dr)(rt;) (3.17)
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and the derivative of strain energy can be written as

C 9AE dh. 9AE i ' :
dAE o 1 R
= -+ 2 (3.18)

dr axl dr an, dr

by'substituting first Eq. (3.16) and then mass conservation pFincipTe

-1
A, =Y, | (3.19)
into Eq. (3.18) and using Eq. (3.15) we can obtain the following final

form

dAE

- Xakz(dll/dr)tz + Aaxl(dkzldr)t (3.20)

2

Here, we have dgfined the state of strain in terms of principal stretches
for the swe]]jng case. We caﬁ use the same representation of Eq. (2.20)
for |

= A (3.21)
where Ao'inq1cates equilibrium swelling stretches andcx{ comes from distor-
sion as previously used in Eq. (2.20). Now we have expressedtxi's in defor-

mation tensor so A can be given with the following matrix

f 0 0
-1 : v ' :
AL = v, /o rg 0 (3.22)
0 0 b

using Eq.. (3.22) into (3.20), we obtain

(dAE/dr) = (Vzob)'leo(rf" ty + f't,) (3.23)
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or
dAE/dr = (v,gb) T 6 [(d/dr)(rf'e)] . , c o (3.24)
Integration of Eq. (3.24) will yield,

V,nb
£ = 20

.Oorf

. (OE + AE,) : (3.25)
where AE0 is an integration constant. Since the beam is bent at both ends
the boundary conditions require that stress, 'tll’ at r = * and r = ro

. 1
should be zero. This implies that the force acting on R = (X* + Y?) /2 -

constant surface is zero or equivalently Eq. (3.25) is equal to zero. ' This

implies;
AE(r]) = AE(rz) = - AE . (3.26)

so that in the incompressible case the strain energy at the boundaries
should be constant and equal to each other.
The flexural couple M per unit depth, can be calculated from,
2
M= [ rtzdr . o _ (3.27)
r
1
In the study of pure bending of a beam we encounter Pointing effects
in the form of stress component t3 required to produce the desired pure

flexure. ' 5
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IV. SOLUTION OF PROBLEMS OF ELASTICITY
WITH SWELLING |

4.1  GENERAL APPROACHES AND FINITE BENDING OF SWOLLEN BEAM

4.1.1 General Tréatment4

At the end of Section II the stress-strain and swelling relations
are studied in detail and finalized with the most important and general
Equation (2.55). When the problem is formulated referring to principal
coordinates, there are seven unknowns to be determined as functions of
position; three of them are components of the stress tensor; the other
three are cbmponents of the strain tensor and the last one is the degree
of swelling. Three of the required seven equations may be obtained from
stress-strain and swelling relations and the fourth one from the conser-
vation of mass principle and the rest of them may be obtained from equa-
tions of equilibrium so the boundary value problem of the .nétwork with
swelling can be formulated in a consistent manner.

When the principle axés afe not used then additional three of each
stress and strain tensor components are involved in the problem. In this

case we haVe 13 unknowns. It is possible to obtain ten of these equations
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and from the conservation of mass principle, the remaining three may be
obtained from cpmpatibi]jty equations. forsion of a swollen rubber cylinder
is an example of this case.[8].
Since the problem involves non]inéérity, the general solution of
the above formuTlation ié difficult to obtain. Instead of general solutions
the inverse»method; are employed in which a suitable deformation is assumed.
Some technological problems Tike expansion and inversion of spherical
- shells are treated according to inverse methods and the presente of swelling
is only considered in the torsion of a rubber cy]indef. The existence of
the swelling agent as a second phase and the nonlinearity of the problem

necessitate the use of numerical methods in solutions.

4.1.2 Descirption of Finite Bending of a Swollen

Beam Problem

In this section we will introduce the finite bénding of a swollen
cuboid under the guidance‘of the continuum mechanics mode1 which was out-
lined in the preceeding section.

The undistorted beam is a]]erd to swell in a suitable solvent
fequilibrium swelling) and then bent by applying a flexural couple M which
is créated by the system of normal forces distrijbuted over the end surfaces.
The geometries of deformed and undeformed state i§ shown in Figure 4.1.1..

Initially undeformed and unswollen cuboid has dimensions 2a0 and 2b0.
When it is exposed to solvent dimensions become 2a and 2b. If we define
the equilibrium swelling degree as vjg which is the ratio of polymer volume

to swollen total volume, the relation between initial and final dimensions
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y{ Y“b
A b°E3k A B
a,”* q X -x
C D
: C D
(@) (b)

Figure 4.1.1 - a) Undistorted unswollen beam
b) Undistorted swollen beam
c) Distorted and swollen beam.

will be

= y-t/3 = v Y/3
= Vo 3y b = vy, by - (4.1)

We also have

v (L.)3
VS = 3 3 = 1 : . (4.2)
us (Lus) Vo

where V and L denote volume and length respectively and the subscripts 's'
ard 'us' indicate swollen and unswollen cases. In Eq. (4.1) swelling degree
is denoted by Voo which corrésponds to the initial value.

The maferia] is chosen to be amorphous polymer network, the méteria]
parameters of whiéhaheavaflab]e from previous experiments. There are

mainly four parameters X ng/Vo, k and z. The valuesof these parameters
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are taken from experiments}for a typical amorphous polymer material as [8].

EkT/V, = 0.2 Nmm2 k=8 ¢=0.12" and for interaction parameter Y,
six different values 0.0, 0.25, 0.50, 0.63, 0.75, 1.0 are used and considered
ﬁndependent of concentration of solvent in mixture. The network junction
functionaltity is assumed to be tetrahedral which requires u/g = 1. The
parameter relating solvent to molar volume V]/RT is taken 0.04 mmZN'l. All
the terms used in above parameters are same as stated before in Section |
2.4.4. When the parameters have these values the network is called 'real’
network [8].

For comparison purposes x parameter was taken to be zero which
corresponds to the phantom casé. The initial ratio of a, to b0 was taken
generally as 1/2, but for large deformations mainly 180° flexures, the

length of beam is increased while maintaining unit width.

4.1.3 Formu]ation of the Problem

The deformation of the cuboid which is shown in Fig. 4.1.1 is treated
in the same way as is explained-in.Section 3.2. The deformation tensor is
- defined with principal stretcts referring to swollen-undeformed state 1like

in Eq. (2.20) and found by substituting Eq. (3.6 ) into Eq. (3.21). Hence,

"1/-3 | . » .|. .

Voo 3 0 0 0 0

[A]] = 0 vo  3g! 0 or |Irll= v, t/3lo fg' 0
20 '9 20 g

0 0 vy 0 0

(4.3)
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Second form of the representation in Eq. (4.3) indicates more clearly
the initial eqqi]ibrium swelling from subsequent changes. For the swollen

case the determinant of deformationktensor will be

det]|x}] = 1/v,(r)
or , 7 (4.4)
ff'g'h' = v20/v2(r)

where the vz(r) denotes the local polymer fraction which js a function of
r. This implies that the swelling degree is nonlinear along the radjus
of curvature. We assume that there is no deformation along the z-direction

after free swelling. Therefore

h' =1 | , (4.5)
and the pointing effect is provided as it was mentioned at the end of
Section III. The assumption that plane sections remain plane and the
results obtained from Eq. (3.14) will give

gf = 8,/b (4.6)

Substituting Eq. (4.6) and (4.5) into Eq. (4.4) and using boundary condi-

tions (3.13); the integration of Eq. (4.4) will yield the following equation

- ‘
L2 v,(r

R e (4.7)
1 Vou Za eo

Expression (4.7) and the energy equivalence (Eq. (3.26)) at the inner and

outer boundaries are two equations sufficient to determine the two unknown
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radii. On the other hand stress t] can be found either by using Eq. (2.55)
. from molecular theory or Eq. (3.25) from continuum mechanics. - The remaining
stresses are usually found from Eq. (2.55). Finally the flexural couple M

per unit swollen width can be calculated from Eq. (3.27).

4.1.4 Numerical Calculation Method

In order fo solve the proSlem the degree of equilibrium swelling
should be calculated first. This is the case when the strain energy is
minimum_BAE/Bn = 0 or equivalently the stresses are zero at the swollen
and undeformed state. This can be obtained by dsing t] = 0, Vo'iE Vons
and A = véa/s in Eq. (2.55). As a result we will have;

e U e R e U S OEL IR,
1 0

Numerical solution of (4.8) will give the equilibrijum swelling degree
for a specific value of x parameter. This leaves three-more fundamental
variables which are rq, r, and vz(r) for the desired'fiexure degree 0.

As a first approximation tﬁe swelling ratio is assumed to be equal
to Vo0 which means that it is independent of r; A trial value for "
is chosen and the correspon}dinglr2 is found from Eq. (4.7) and checked
from Eq. (3.26) which implies the equality in energies at ry and ry. In
calculations the energy is taken as a total free energy including mixing
and elastic free energies.-

In order to make energy calculations the statesof strain are calcu-

lated from Eq. (4.3) and ry is changed until the Eq. (3.26) is satisfied.
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Values of AE(r.) and t;(r;) are then calculated from Eq. (2.55) and Eq. (3.25)
respectively for ten values of r; equally spaced in the region vy <y <.

By using the tf(ri) values, Eq. (2.55) is solved to find a new set of vy (rs)

values which are compared with the assumed initial Vo values. These calcu-
lations are continued from new strain, energy and stress calculations by'
using a new set of v2(r)_va1ues for ten equally spaced stations un£i1 con-
vergence is obtained between fhe last two set of vz(ri) values, this means °
that tis the stress values which are calculated from Eqs. (2.55) and (3.25)
»are the same. After this convergence the r and r, are checked again by
using the final set of vz(ri) in Eq. (4.7) which is one further back step
of calculations. | |

This new iteration Toop which is combined with the jterations on
vz(ri) is .carried out until no difference is obtained between final and
one before the final r; values. In this'way both ry and vz(r) convergences
are pkovided. A complete computer program which coniains the above calcu-
Tation steps is given in Appendix A and a sample output for 6 = 120° and

x = 0.25 value is also proyided.
4.2  THE UNIQUENESS OF PROBLEM

4.2.1 General Differences

Although the finite flexure of beam is a well-known problem, the case
. that is examined in this study differs from classical one in the way of its

description and formulation.
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The beam is exposed to solvent in order that it swells, and then is
deformed. Because of the swelling, nonhomogenity is involved in the problem.
- The results of molecular theory areapplied to this nonhomogeneous state of
stress and strain problem. According to the researcher's opinion this is
Bew app1icatién of molecular theory to the present problem. Since up to
present such studies have been carried out to include the homogeneous
state of streés énd strain only.

In the solution of our problem the solvent motion is considered and

a continuum mechanics model is developed for the swelling problem which

is another new abp]ication in swelling problems.
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V. RESULTS anp DISCUSSION

5.1  SWELLING RATIO

The following two figures may be helpful toAunderstand the problem
and the numerical solution steps. Figure’S.].l.shows that the flexure of
cuboid which is exposed to a solvent with x value of 0.50. As observed
ffom Figure 5.1.1 the radius of curvature reduces when the degfee of
flexure 60 increased. In Figure 5.1.2 the subdivision of the block into
~ten finite elements is shown. When better solvents are used which means
that x parameter is close to zero the swelling incfeases as in Figure |
5.1.3 so it is possible to follow swelling comparatively.

| In the solution of the problem the procedure starts with equi]ib-'

rium swelling degree,:vzo, calculation which is carried out to six different
x's and it is observed that when y decreases Vo0 decreases as in Figure
.5.1.4. Since the dimensions are related with reciproca]IOf swelling degree,
an increase iﬁ X 0or Voq will cause less swelling or vice-versa.

In the solution of problem var%ous densitfes of certain quantities
are defined at material points. Keeping this idea in mind in order to

examine the solvent action in rubber we again use the ratjo of polymer



" Figure 5.1.1 =

Bending of a block for different degrees
(x = 0.50)
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Figure 5.1.2 - Location of the 10 equally spaced stations in
bent. ' beam. : : ‘

a) x= 059 b) %= £25 ¢) % £ 4 x= £.75 &) x= 14 1) urswollen

Figure 5.1.3 - Equilibrium swelling of a block for distant x's.
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Equilibrium Swelling Degree 'V

Figure 5.1.4 - 'x' parameter versus degree of swelling.

volume to total polymer and solvent volume. BasicaTlytwo points are impor-

tant in solvent action.

1. Solvent quantity in rubbervcuboid‘or swelling magnitude.

2. Solvent motion in radial direction for different degree

of flexures. -

Under the quidance of the above points the solvent distrijbution, in
terms of polymer volume fractions is calculated and plotted for six different
degree of flexures up to 180°. This is repeated for every solvent which are
mentioned before with their 'x' parameters. The following figures contain
vV, versus y graphs where ¢ is nondimensionalized form of radius, defined as

Y‘-Y‘-l

u):
2~ N
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1.00 Figure 5.1.8 for

Figure 5.1.5 for X = = 0.50
Figure 5.1.6 for y = 0.75 Figure 5.1.9 for y = 0.25
Figure 5.1.7 for y = 0.63 Figure 5.1.10 for y = 0.00

If we consider each figure by itself we notice that they have similar
‘behaviour. When the flexure degree is increased, as expected, the
solvent motion increases. At the inner layers which are close to the
center of curvature, the polymer volume fraction increases and at the
outer ]ayer it decreases. This means that solvent quantity at the inner
layers reduces but at the outer fibers it increases so solvent moves
outwards. When the outer layers have more solvent, theik:swe1ling is
more than those of the inner layers. We also know that we have tension
at the outer part of the' beam and compressjon at the inner part so it
is appareht oncé again that tension has tendency to increase swelling.
When the last six figures are consideréd a decrease in polymer
fraction Vs and larger scattering can be followed as the value of
parameter X is decreased. More swe]]ing or equivalently the existance
o%%more solvent in the beam forms the reason for this behaviour.

" The following alternative curve may be used for better presenta-
tion of these solvent :distributions. The swelling ratio vz(r) can
be put in ﬁondimensiona1 form referring to its equilibrijum degree of
swelling. In Figure 5.1.11 for each case, two sample degrees of flexure,
one small value 90 = 30° and the maximum v;]ue 8o = 180° are taken.
This presentation has an advantage that it is possible to follow all

solvent actions from one figure even x changes, and also it may give a
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Figure 5.1.5 - v2(r) distribution in radial direction for x = 1.00.
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Figure 5.1.6 - v,(r) distribution in radial direction for x = 0.75.
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Figure 5.1.10 - v,(r) distribution in radial direction for x = 0.00.
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better idea for the above discussion which deals with more scattered solvent
behaviour at inner and outer layers. The distribution of'e0 equal to 30°

and 180° are given in Appendix B on a separate graph.

5.2  STRESSES
5.2.1 Stress t] in X Direction

If we continue with the solution procedure next step is the calcula-

tion of stresses in three directions. Figure 5.2.1 shows the t, distribu-

1
tion along the radial direction for X = 1.0 at different degree of flexures
up to 1800, in terms of nondimensional values of radii, y. The stress

values may be followed in two scales. The bottom one is nondimen;jona1ized
by dividing t; to the modulus EkT/V0 and the top one gives the abso1ﬁte
values in N/mm®>. These nondimensional forms are carried out for all

stresses and for all solvents. From Figure 5.2.1 it is clear that all t,
values are negative so compression is affected in X direction. This will
cause reduction in width. Some numerical examples will be given in Section
5.3 in Table 5.3.1. Stresses in X direction show a peak at the third sta-
tion which is located on-nearly one third of all widths from the inner side.
This is valid between 90° and 180° of flexures. For flexures less than

900, the peak point moves very slightly outwards while the distribution of

ti gets more scattered and the peak value drops as the degree of flexure

is reduced. t] stresses are zero at the boundaries ™ and r, as expected.

This js the general behayiour of t]. When the solyent or y changes, the t]

distribution pattern will not show much difference, as observed from solutions
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of our problem. These relations are given in the following figures.

Figure 5.2.1 for x =1.0

Figure 5.2.2 for x =0.75

Figure 5.2.3 for x = 0.63

Figure 5.2.4 for x = 0.50

Figure 5.2.5 for x = 0.25

Figure 5.2.6 for x = 0.00
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Figure 5.2.1 - Radial distribution of ty for x = 1.0 .
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Figure 5.2.4 - Radial distribution of t] for x = 0.50.
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Figure 5.2.6 - Radial distribution of t, for x = 0.00

5.2.2 Stress t, in Y Direction

Figure 5.2.7 shows the stresses in Y direction which are denoted
by t,. This gfaph also contains the absolute and nondimensional-value
of t,. It is observed that the neutral axis js at about the middle of
the beam. The upper part of beam shows increasing tensioﬁ with increasing
deg}ee of flexure and lower part shows increasing compression, and they
both reach their maximum values at ry and ro- Following figures give

general solutions for t, for different x's and flexure degrees.

1

Figure 5.2.7 for x = 1.0

Figure 5.2.8 for x = 0.75
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Figure 5.2.9 for x = 0.63
Figure 5;2.10 for X = 0.50
Figure 5.2.11 for  y = 0.25
Figure 5.2.12 for x = 0.00

In these figures there is one point that shows 1ittle differences fihom

the general characteristics mentioned above. For a large bending degree,
usually aboye 90° the t2 stress at outer fibers starting from eight sta-
tion up to the last stdtion shows different behaviour as the §o1Vent
changes. Nhen Xx-= 1.0 at specified region t, increases nonlinearly and

for x= 0.75,.1:2 increases almost linearly but for x = 0.63 and the smaller
X's it shows a small increase then a decrease towards the boundary. As y

goes down this decrease becomes sharper but less in magnitude.
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Figure 5.2.7 - Stress t, distribution for x = 1.0.
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Figure 5.2.12 - Stress t2 distribution for x = 0.00

5.2.3 Stress t, in Z Direction

The stress t3 which is known thé Pointing-effect from Section III
may be analysed with the same approach that is used for other stresses.

The distribution of t3 values are given in the fo]]owingvfigures.

Figure 5.2.13 for x = 1.0
Figure 5.2.14 for "X = 0.75
Figure 5.2.15 for x = 0.63
Figure 5.2.16 for x = 0.50
Figure 5.2.17 for x = 0.25
_ Figure 5.2.18 for x = 0.00
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‘The Pointing effect appears positive or as tension at the buter surface and
campression::atithe* inner surface. TFrom ro to ry it sharply reduces to
zero and then starts to increase in the négative direction and reaches its
final compressive value at 8 which is much langer than the maximum tension
value. The point where the effect is zero becomes close to the outer

surface as the degree of flexure increases.
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Figure 5.2.13 - Pointing effect for x = 1.0.
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Figure 5.2.17 - Pointing effect for x = 0.25.
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Figure 5.2.18 - Pointing effect for X = 0.00

5.2.4 Stresses and X Parameter

In order to examine the stress versus X parameter relation, some
numerical values which are provided by keeping flexure degree constant
while x is changed, are used. _

Figure 5.2.19 gives the stress t1 for every x at 90° flexure. It
is shown that when”x decreases, swe]ling increases and correspondingly
magnitudes of t; decreases. Durfng swelling more solvent is absorbed in
the mixture so it will be possible to bend the beam with less stress.
Therefore.the peak value of t stréss drops to a lower value, it also

shifts slightly towards the inner radius as x decreases.
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Figure 5.2.19 - t] curves for different x's at 6y = 90°.

Although x parameter is decreased in equal steps, drop in t] peak is not
evenly spaced. This is because of swelling degree. Figure 5.1.4 also
shows the relation between the-x parameter and the swelling degree Vog-

In Figure 5.2.20 we have stress t, distribution which is in Y
direction. When the x = 1.0, t2 stress has larger magnitude than other
cases where x 1is smaller fhan 1.0. Al1 the t2 values drop as x decreases
or when swelling incréases, The neutral axis move close to the outer |
radius as x increases. |

Figure 5.2.21 is plotted for nondimensional radius ¢ versus non-
dimensioha] stress t3 similar to Figure 5.2.20 and 5.2.19 and it shows
the Pointing effeét against the x parameter for 6y = 90°. 1Its behavibur

is almost the same :as tz.
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We know that as we increase the degree of flexure, the neutral axis
of t; moves outwards. It is interestiﬁg that for different y's the axis.
of t3stays at almost the same point for same degree of flexure like in
Figure 5.2.21, so neutral axis of ts is not effected by the swelling ratio

but it is affected mainly by the degree of flexure.

5.3  GENERAL RESULTS

Since the presentation of stresses and solvent actiorg in beam are
completed, we will examine the other variables, energy constant AEO whiqh
is equal to the minimum free energy level, swollen width ags swollen and
deformed width aps radii res r, in Table 5.3.1. Further.on we will examine
the dependency of these variables on each other.

Froh Tabfé 5.3.1 the following common variations are apparent.

During the deformation when the flexure is increased, the radius
of curvature is decreased which can be observed from " values.

We also know that t] stresses are compressive which cause reduction
in width. Reduced or swolien and deformed width is shown in Table 5.3.1. .
in column a,. Reduction of width, as t, increases, is apparent from co]umn§
ap and a.. In the same table, the third column gives the minimum free energ
which is equal to-negative of energy constant AE,. For every x the lowest
energy level decreaées while bending is increased. This happens because
of solvent motion and elastic effects. When the solvent is exchanged with
better soluable sd]vents,'energy values shift to higher values. From Eq.

(3.25) it is known that t] stress is proportional to the difference between

[N



TABLE 5.3.1 - General Results.

X eo Vo -AE0 aS 2y r‘] r‘z
Deg N-mm/mm? mm mm mm mm
30 [ 0.693125 |{-:5.2730 | 2.260 2.193 3.350 5.543
60 | 0.693125 |- 5.1704 | 2.260 2.044 1.362 3.406-
Q 90 .} 0.693125 [- 5.0436 [ 2.260 1.890 0.773 2.663 "
- 120 | 0.693125 |- 4.9088 | 2.260 1.753 0.509 2.262
1 150 ] 0.693125 |- 4.7720 | 2.260 1.637 0.367 2.003
180 [ 0.693125 |- 4.6361 | .2.260 1.538 0.280 1.818
30 | 0.506013 |- 7.7169 | 2.510 2.436 3.716 6.152
60- 0.506013 |- 7.6048 | 2.510 2.273 1.503 3.776
o 90 | 0.506013 }- 7.4634 | 2.510 2.101 0.848 2.948
S 120 | 0.506013 |- 7.3109 | 2.510 2.947 0.555 0.502
~{ 150- | 0.506013 |- 7.1555 | 2.510 1.815 0.397 2.212
180 0.506013 -~ 6.9994 | 2.510 1.703 0.300 2.003
30 | 0.375889 |- 9.3864 | 2.771 2.694 4,093 6.787
60 | 0.375889 {- 9.2661 2.771 2.518 1.643 4.161
3 90 | 0.375889 {- 9.1112 | 2.7 2.328 0.718 3.246
S 120 | 0.375889 {-:8.9423 | 2.7 2.154 0.595 2.749
150 | 0.375889 |- 8.7701 2.771 2.004 0.428 2.425
180 |} 0.375889 |- 8.5969 | 2.771 1.874 0.317 2.191
30- | 0.237868 | -11.6444 | 3.228 3.147 4,739 7.886
60 | 0.237868 |-11.5081 3.228 2.950 1.873 4.823
90 | 0.237868 | =11.3290 | 3.228 2.722 1.029 3.751
B | 120 | 0.237868 | -11.1338 | 3.228 2.514 0.656 3.170
o | 150 | 0.237868 | -10.9334 } 3.228 2.323 | 0.459 2.782
180 |} 0.237868 | -10.7344 } 3.228 2.163 0.341 2.504
30 | 0.118836 {-16.8833 | 4.068 3.971 5.938 9.909
60 | 0.118836 {-16.6555| 4.068 3.728 2.299 6.027
0 90 | 0.118836 |-16.4073 | 4.068 3.429 1.232 4.661
N 1120 }0.118836 |-16.1397 | 4.068 3.136 0.771 3.907
© 1150 }0.118836 | -15.8730 | 4.068 2.877 0.531 3.408
180 | 0.118836 | -15.6155| 4.068 2.653 0.390 3.043
30 } 0.082270 | -22.4643 | 4.598 4,490 6.702 1.191
60 | 0.082270 | -22.2300 ] 4.598 4.214 2.581 6.749
o 90 | 0.082270 | -21.9206 } 4.598 3.872 1.372 | 5.244
< 1120 | 0.082270 | -21.5862 | 4.598 3.540 0.850 4.390
“ 1150 {0.082270 | -21.2637 | 4.598 3.232 0.585 3.817
180 | 0.082270 {-20.9444 | 4.598 2.979 0.427 3.406
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minimum free energy and the energy at.material point considered so energy
distribution is very similar to t] disfribution except that it is not equal

to zero at the boundaries. It starts from a finite value listed at ;AEO

column for a given value of .

5.4 BENDING MOMENT M

In numerical calculations our last step is bending moment for desired
degree of flexure. In Figure 5.4.1 Moment values versus degree of flexure
are given where 8, is in degrees and Moment is in N-mm. Basicly when the
X parameter changes, moment is affected. Uhen x 1s equal to 0.75, 0.63,
or 0.50, swelling is‘smal] compared to smaller values of y parameter. From
Figure 5.4.1 it is seen that the moment curve for x = 1.0 is at the middle
and momenf curvés, for Xvequiva1ent to 0.75, 0.63 and 0.50 are generally
lower than y = 1.0 curve but for very large flexures, moment values become
nearly equal. The curves for y equals to0:0.25 and 0.0 are located above
the y = 1.0 curve. The location of curves strongly depends on elasticity
modules ‘and on the size of the beam. If we study the Figure 5.4.2, we can
follow Tocation of curves more effectively. In this figure the moment
Versus Voq is given. It is clear that when the swelling is not excessive,
the moment decreases as swelling increases for the sahe degree of flexures.
This behaviour of moment beéomes constant when the bending .is 120° or more.
On the other hand when the swelling is large or when the x s less than
'0.50, moment rapidly increases. We know that swelling strongly effects the

cross-section. When the cross-section is enlarged, larger forces or moment
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arms will be required so moment increases but for cases of 1e$s swelling,
although the cross-sections do not show much difference, moment drops .
because of the redﬁction in the elasticity modulus E. 1In Figure 5.4.2
the 'phantom case' is plotted for comparison and checking purposes. We
have convergence that is, moment values of»'phantom' case get close to
'real' case curve as swelling is increased. -

We know that stress t, and r are components of moment. The t,
stress is affected by the length of the beam if the beam is long since
it is much easier to bend it.- In Figure 5.4.3 maximum t2 value for
different beam lengths is examined at 6 = 180°. It is observed that as
X drops t, gets shal]er bécause.of ihcreasing swelling and as the length

of beam increases or a/b ratio decreases‘t2 decreases too.

14 T | v

12

>~ o =) [=}
1 T T T

Max Bending Stress t, (N/mm)

o
~
I

0oL : -
0.125 0.250 0378 03

Dimension Ratio %,
Figure 5.4.3 - Maximum t2 versus a/b ratio.
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VI, LINEAR APPROACH

When the design is considered instead of exact values, sometimes
the approximate values may be used. Most of the time it is easier and
quiéker to get results from linear theory than the nonlinear one. There-
‘fore a comparison between linear and nonlinear theory may be helpful if
their common domains of validity are found. Whenever it is possible to
find that common 1imit, then linear theory can be substituted instead of

the nonlinear one.

6.1  LINEAR THEORY

In order to understand linear theory, a specimen can be examined
under the simple tension and static pressure p. If we consider the
specimen shown in Figure 6.1.1 the net constant stress, t, acting on Y

surface can be given as

or ‘ (6.1)
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Ay
4

Figure 6.1.1 - Specimen and applied stress forl]ihear treatment.

From the Eq. (2.55) it is known that these stresses can be given in the

following forms.

t) = _SI [In(1 - v,) + v, + xv3] + A2y, F:T [+ (/) k)]
] ' 0 . (6.2)
t2 = '\F:T-[ln(‘] “Vp v, t XVE] + }\iv2 ._5_51_ [1+ (U/E)K(Xi)]

1 o

Substituting Eq. (6.2) into Eq. (6.1), t will be found as;

t=v, —E—\‘;T—{xf MK - A2+ WEN(KNT  (6.3)
0 g

-

It is advantageous to separate the displacement gradients in two parts as

distortion term o and equilibrium swelling term Vo Then the stretches
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in the X and in the Y direction can be given as

A= av§1/3

(6.4)

YA
Xz =0 2v2 3

If we substitute Eq. (6.4) into Eq. (6.3) the net stress, t, will become,

RERAAR AP LA RY

2 v o

1+ (WEK(2)) (6.5)
o |

and taking its limit as o goes to unity, the term (o - 1) goes to strain

'e'and A goes vél/a then t will be équa] to the following;

t = 3v,/° X0+ ek /o) (6.6)
v
0 -

From Eq. (6.6) the elastic modulus can be obtained as:

1 _ . .
£ = v/t 0+ ey o) (6.7)

On the other hand we know from linear theory that the moment is given

by the equation;

2 . ’
M=gr Yo (6.8)
dx? - o .

where E is the elastic modulus, I is the moment of inertia of the beam’s
cross-section and p is the radius of curvature equal to L/e0 with L being

the length of the half beam. Then the moment may be expressed as;
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_ _El ,
M % | (6.9)

The terms in front of the 60 term gives the slope of the M versus 8

curve and these terms may be denoted as the bending parameter, 'C',

defined by;
C = EI/L : | (6.10)

During the evaluation of the 'Bending parameter' the final swollen
dimensions should be considered. On the other hand the elasticity
modulus can be assumed in the following form to see the variation with

respect to Vo

E = vy f(T, K& V,sne) (6.11)
or taking'1ogarithms of both sides, we have

InE = m 1nv2 + Inf : (6.12)
This form is useful to obtain a propbrtiona]ity between E and v, as

Ea@ ' (6.13)

where m is the slope of the line whenever InE versus 1nv2 is plotted.

6.2 Comparison of Linear and Nonlinear Solutions

As it was explained in the previous section comparison between 1inear
and nonlinear solutions can be useful in design considerations. For this

reason in Figuré.6.2.1 Tinear and nonlinear results for x = 1.0 value are
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- plotted and it is seen from this figure that linear theory is in agreement
with the nonlinear one up to 30° of flexure. If the length of beam is.
increased by a factor of five this agreement extends up to 90° of flexure.
When the va]ue.o% X = 0.75 as given in Figure 6.2.2 where moment in Nmm
versus to degree of flexure in degrees is plotted, the equality between

the 1ine§r and nonlinear theories exists only up to 20° of flexure.

T T T / T T
05 L x=10 il
Q/b= 1/2
o . "'\¢0\'
o
()
€ S) D o
7 1 \‘\"\G
% 0al. Y S
5
£ 02, o
[
x
o
£ ,
g o1l -
0 1 ) i

. . L,
00° 30° 6Q° 90° 120° 150° 180°

Flexure angle O« (Degree)

Figure 6.2.1 - Comparison of linear and nonlinear solutions
for x = 1.0.
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Figure 6.2.2 - Comparison of linear and nonlinear solutions for
: X = 0.75.
Similarly in Figure 6.2.3 for x = 0.50 this equality is reduced further.
Figure 6.2.4 and 6.2.5 are for x = 0.25 and y = 0.00 respectively. The
curves in these figures show agreement only at the origin while in other
regions 1iné;r and nonlinear solutions diverge from each other. The
divergence_éf solutions may be explained by the help of Figure 6.2.6
where we seé that as y or Voo increases, swelling decreases meanwhile
elasticity modulus increases but the length of the beam and moment of
inertia of beam decreases more rapidly than other components of 'Bending

parameter', C, which are p16tted in logarithmic values in Figure 6.2.6.
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Figure 6.2.4 - Comparison of Tinear and nonlinear solutions for
' X = 0.25.
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Bending Moment M (Nmm?)

0 1 i i [ L
X 60 . S0 - 120 50 180
Flexure angle 8«(Degree)

Figure 6.2.5 - Comparison of linear and nonlinear solutions fbr
: - X = 0.00.

When x 1is less than 0.50, in other words, when v,, is less than 0.237

20
swelling is very effective. AAs it can be seen from Figure.6;2.6 the
moment of inertia term becomes dominant in the case of large swellings.
- Therefore in the comparison curves when the moment of inertia is large;
according to Eq. (6.10) the slope of the Tinear solution increases but
diverges from the nonlinear one.

From Figure 6.2.7 the slope 'm’ bf curve can be calculated as

0.4090 and the downshift 'In(f)' comes out as -0.30 accordingly Eq. (6.12)

will have the following form;

TnE = 0.4092 Tnv, - 0.30 o (6.14)
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Figure 6.2.6 - Swelling effect on bending parameter and components.
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and the proportionality between swelling and elasticity modulus-can be

‘expressed as

0,409
E & v,"0%0 | (6.15)

where the powef of vy is the slope of the curve in Figure 6.2.7.

InE + 04
-2 20 418 -12 -08 -0h Oh 08
% : ' F — % 0 et
| | | / V2
. 04 :
.08
| -1.2
-1.6

Figure 6.2.7 - The relation between E and Vo in nonlinear approach.
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VII, CONCLUSION

The diStributibn of stress, strain and amount of solvént are obtained
for a cuboid of an amorphous po]yﬁerfc network bent by couples applied at
its ends. Bending is assumed to take place when the cuboid is immersed
in a solvent. The effect of differeﬁt degrees of swelling is investigated
by assuming six different solvents of different swelling power. More
solvent is seen-to enter in a region above thé neutral axis. During further
'deformations solvent moves outwards. The unequal distribution of 1iqufd
in the beam diverges from équi]ibrium position parallel to degree of
flexures of the beam. An increase on divergence is observed as the
swelling is increased as larger flexure degrees are applied.

The t, stress in the radial direction is always negatijve i.e. comp-

1
ressive and causes reduction in depth of the beam. The t2 stress in the
Y direction which creates the flexural couple has an increasing magnitude
depending on the degree of bending. Its tension region implies larger
swélling than compression region. Although there is no applied force_‘

in the Z-direction, the Pointing effect, t3, becomesneceséary to compensate

the deformations which will occur in the Z-direction. Required t; distri-

butions are also calculated.
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Bending moment displays a decrease initially and then an increase '
against the increasing swelling. At tﬁe beginning, swelling is not
dominant but the drop in the elasticity modulus causes taf%réduction in
moment up to a pbint where swelling or indirectly the éross-section
becomesdominant, then an increase in moment is observed. For large defor-
mations the drop in elasticity modulus is compensated by an increaﬁé in
cross-sections until excess swelling occurs.

The comparison of linear and nonlinear solutions indicates that for
specific solvents, :upto - certain limits, two'fheories show equality. In
certain problems with suitable dimensions, material constants and fTexure
degree, the 1inear theory is more readily used than the complex nonlinear

one.
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APPENDIX A

A.1 "GENERAL DESCRIPTION OF COMPUTER PROGRAM

Basically the solution steps explained in Section IV are followed
when the computer program is considered.

The main program starts by reading the input data which inc]ude:‘
the material coqstants, initial values and tolerances. Theﬁ the.degree
of swelling Vo is calculated and it is accepted as the initial distribu-
tion of the solvent. With this constant diétribution, outer radius ro is
calculated according to assumed ry For the validity of r>va1ues, energies
at'boundaries should be equal, in order to make this comparison, the com-
puter program calculates stretches and energies at " and ro- After the
.equaiity of energies is obtained these calculations are repeated by in-
cluding the calculation of t, stress according to Eq. (3.2%) for 11 stations
~ which are located in the radial direction of the beam.: The t, values are
substituted into Eq. (2.55) to find the new set of vy values. Meanwhile

the computer program calculates the principal stresses by using final Vo

values.
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As a next step, the program compares the final Vo distribution with
the initial Vo distribution. If these(do not match (within an error bound)
the final values of v, are accepted as the initial distribution of the
sb]vent and the iteration is continued for 11 stations until the equa1ity_
is satisfied. Up to this point radii are kept constant in fact each radius
should be checked for a converged distribution of V, SO that the p}ogram
returns back to the beginning and calculates new r and ro and repeates |
iterating on Vo and compares finaT r values with preyious r values. Itera-
tion on r finishes whenever equal r values are obtained.

The computer program is completed with moment calculations, non-

dimensionalizations and output formats.
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A.2  SUBROUTINE DESCRIPTIONS

In the complete program, the main program calls subroutines meanwhile
subroutines reference to other subroutines as can be followed from the

following 'Functional Re1ationship' diagram.

MAIN
— | |
RRR  RLAM SINV ENEM PARK
H ' ‘ f
': eNPH | 1 APPR ' 5SSS DEN }
| |
- |
— YEN e e e e e e o e e e e e e e et e e e o

Figure A.,2 - Funcfiona] relationship between subroutines. "
Subroutines with brief explanations are given in the following;

SUBROUTINE PARK: This subroutine calculates the ‘K(X%)' parameter as
is given in Eq. (2.51). It receives only the material constants and
| displacement gradient then calculates energy variable of K(A%) and

itself.

SUBROUTINE RLAM: This sdbroutine calculates the displacement gradients
by making use of Eq. (4.3) and swelling degree.
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SUBROUTINE SINV: Mainly three invariants of deformation tensor are
calculated by ;he help of the principai stretches.

SUBROUTINE SSSS:  The subroutine receives material constants, v, distri-

bution, stretches and calculates principal stresses in three directions

according to Eq. (2.55).

SUBROUTINE ENEM: By making use of stretches, solvent distributions, and
invariants, it obtains mixing free energy, elastic free energy and total

free energy.

SUBROUTINE RRR: This subroutine takes the integral given in Eq. (4.7),

with extended Simpson's rule and finds the ro according to given ry

SUBROUTINE YEN: In this part of the program the stress expression (2.55)
is solved for soivent distribution ) with the help of the material cons-

tants, swelling degree, 'K' parameter and the stress in X direction.

At the beginning of this study, instead of subroutine YEN, subroufine
'DEN was used. Although subroutine DEN gives good results, it shows un-
successful convergence for some extreme y and r values. .For diverging
points subroutine APPR waé used to make an approximation. Since in this
program subroutine YEN is considered these following subroutines are not

used in ca]chlations but it is noted that these may be necessary in other

studies.

SUBROUTINE DEN: This subroutine does the same job as subroutine YEN but

differs in the solution method. In subroutine DEN successive approximation

method is used. : o |
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SUBROUTINE APPR: This subroutine gives a linear distribution of solvent

with respect to final and initial stations of the beam.

SUBROUTINE ENPH: This subroutine calculates the energy at 'phantom caée'.
This can also be done by equating x to zero or a value which is very

close to zero in the conventional program. The latter procedure is pre-

ferred in calculations.

A.4  INPUT AND OUTPUT DESCRIPTION

Input format basically includes the fo]Towingawhich are introduced

in the list of important variables. -

Material constants
Initial values

Tolerances

A sample input data card deck for x = 0.25 6 = 120° is given in Section '
A5

Output gives the resu]ts.in columns starting from radius, polymer
ratio, total free energy, principal stresses in three directions in N/mm?
and it ends up with nondimensional forms of radius and stresses. After
the pfesentation of this table the moment value in Nmm and its nondimen-
sional form are given before the degree of flexure to which is in radijans.
Results are finalized with swelling degree and tolerances. The above

explanation can be followed from the sample run given in Section A.6.
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A

BD
B

DR1
EN
EN1
ENZ
ENAD

FP

GD
GP

HP
RADII

RIND
RINV

LIST OF IMPORTANT VARIABLES

Displacement gradient vector ())
The width of beam, a,
Variable of energy expression, B

Variable of energy expression, B

The length of beam, bd

Material constant, ¢

Initial value fdr distance between two stations
Material Constant, 1/x

Total free enefgy, AE

Mixing free energy, AEm

Elastic free energy (phantom + constraints), AE n T AE

P
Enérgy constant, AE0

Radius function, f
Derivative of f, f'
Variable of energy,'g

Variable of energy, §

: - Derivative of displacement in Y direction, g'

Parameter, K(A%)

Deerativekof displacement in Z direction, h!
RT/V]'module

Non-dimensional radius, r

Difference between both side of integral equaiity

Invariants of deformation tensor

c
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RIN2
RINT
RMO
RMOM
R1
SI
SJ
SSS1
SSS2
SSS3
STR1
STR2
STR3

TOL1

TOL2
TOL3
TOL4

V2R
V20

XB

YR1

93

Increment for g (during the iteration)

2
Nondimensional moment value

Integral from‘r] tor

: Absolute moment value

Absolute radius, r

Invariant of plastic free energy,

¢ Invariants of elastic free energy,

Principle stress in X direction, t1

%
Principle stress in Z direction, t

Principle stress in Y direction,

3
t] in nondimensional “form

t2 in nondimensional form

Pty in nondimensional form

Tolerance for equilibrium equation solution
Tolerance for ihtegra] related radii
Tolerance for Vz iteration

Tolerance for new V2 solution

Material paraméter, w/E

Polymer ratio at stations

Swelling degree (equilibrium)

'Y aparametér

X parameter
EkT/V, module

New g values



YT ¢ New t] étress expression

YV2R : New po]ymer»ratid at stations

YZ. : New initial value for YV20 solution
VA ¢ New swelling degree, Voo

ZETA o eo in degrees.

A.5 SAMPLE INPUT DATA CARD
Following data card is used for
x =025 g = 120°

0.125, 0.12, 25., 0.2, 0.25, 0.90, 0.15, 1., 2.0,
2.0994, 0.001, 1., 0.0005, 1.0, 0.6, 0.62, 0.6,
0.001, 0.0001 .

- 94
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*¥

A.6 - SAMPLE OUTPUT FOR x = 0.25, 8, = 120°
2. ¢
3. C
. C .
S. C
:9. g *x  COMPUTER PROGRAM FOR
A o .
g- E PLOHHOMOGENEOUS STATE OF STRESS,STRAIM AND SWELLING

i?' ¢ PROBLEM IN AMORPHOUS POLYMER NETWORKSG

12, €

13. C

k. ¢ DIMENSTON A(3),HIZ) »B(3),6(3) ) )

. 9E ; ; 5) 06 GD(3),R0

128: ;(11).F(11).ntné(S).(gFF(i1)?Fﬁ(11?.én({{):'

17. ELYeT(2) ) YR1CIL) S YDIFF(11)/STRI(L1),STR2 (11

18, TSTR3(11)  pAGTI(2L)hY2Z{11) s YT(LL)

13. EEIER”AL RRLAMs PARK .
1. READ(Ss %) FoCoPpYoXsR1 L i ~ I
3 3”17.(1);2(2’:Zzg)'";'Ol'_S}Tl) +DR1rAC,BO,TETO,TOL2,HPsRIN2,
3, DR=DR}
he C

25. €

26. c

27 C SOLUTION FOR y20

58, C

I |

B RN A

= wx(=1,/29,

350 ADIZG(3) vk (~12730)

34, A(3):5(3)«*(-&./3.)

35 CALL PARK (LsCrAtPsYety)

384 ??f%:ﬁ¢}ﬂzbéiwu)+Z(I)+X*z(1)**3.)+2(1)*¥(1./3.)tY*(1.+U*H(I))
39 1= :

50. IF(ARS(T(T) ) LE-TOLL) GO TO 2

41, 10 ColTINnUE
u%. ANAZZ(2)

4% 2021221 = ((Z (1) =2Z(2N )/ (T(1)=T(2) 1) +T (1)

T Z(L)ZRAA
55, G0 T0 1
46 2 1=11

48, 99 ?,3 J=1,11

49: 20 vaREIEND

%,3; ¢ OFTERMINATION OF R1 AND R2

525: ¢ 3 DR1=0R '

gqys, CALL IIRR (R1sDR1°V20rV2RsAGrBOsTETOsTOL2F)

583 C :

59). ¢

60, ¢ .

o5 ¢ DETERMINATION OF EHERGY AT R1 AND R2

63. C

64, C

6é. g

87: G}ITFTO/(RO*VZO**(-l /340

68e I= .

= JVIR(IN)Z7LGP+F(
TR ° E’R&’m‘)(uo(A.FEV?mFP.quP-M
R
3" (C:;l'\\lL[L_' él‘Il I\4 (Io§ YIRINV,ArCrErUIV2RePeEN)
S I=1+10
3: }g¥%6og.1l) Go 10 8
. ‘r=ARS(EH 1)-En(11)

52 P FF{EELLE 0L G010 4

8% pytiyzngt 1)+RIH2

79: 66 T0 3
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C
g FI1MDIL6G E1IERGY 1 STRESS»YV2Z0
¢ .
4 IF(EN(L) . GT.EN(11}) EMADZ-
- IF(EH(ILS.GT.EN*})) EdAB:-Eﬁfii)
12 ?nij? 7:1'}1 )1/¢
PV =lV20/V2R ()1 /LGPHF ()
CALL RLAM (s F e V204FP L HP,GPA)
CakL SIHV (APRINVY
CALL EHEM (U Xy YPRIMVyALCrE o) V2R PIEM)

SLO = (u2Gee(2./3,) #8307/ (F(J) *TETOXFP(J))) « (FH{J) +EHAQ)
CAlL YEH (Jefr ”'F'V20'“P'GPvaC»P'Y.ssgl.x.ﬁ.y R 0
?IFF(J) AR f(YVﬂR(J)— R(J

L 5555 2R AvP'Y.x.u:Ssslas 62+5553)

4o V°R(J) =YVoaR(J)

OQOONNO

C
C .
& .COMPARESTInN OF NEW AND OLD V2R,S
&
v 91—DIFF(1)
5 EETDM LT.oIFF(J)) DM=pPIFF(J)
I {J, GT 11) G0 TO0 6
?n(¥o i %) 60 TO 7 :
i b i .
& GRTekisCRe X To 7
¢
E CoMPARESTIqNt OF MEW AND OLD R,S
¢ ' e
7 Dn_90 M=t
YnIFF(M):Rﬁé(YR1(H)-R1(N))
af Ypi(H)=Ry (M)
%QHZYulFF(l)
91 }fﬁYDH.LT YDIFF(K)}) YpM=YDIFF(K)
=531
Ir(K.GT,11)G0 70 a2
Gn 10 a1
g2 Ir(l0,01) ,GE.YUM) GO TO 93~
IriM.LE.1) RL{1)=R1(1}=,10
RI(11=P1(y)-.05
60 TO 3
HON-DIMENSTONALTZATION AtD OUTPUT FORMATS FOR STRESS ANpD RADIUS
93 Do 100 Mi=1r11
STRY (M) =SS (MN) /Y
GTRZ(MH):qGSQ(MN)/Y
STRI (N =ds53 Gatll 7y
100 RAnII(Hn):(Ré(xn)—R%(lb)/(R1(11)-R1(1))
ZC}-A:TETO*%E /3&_}_?{1
: :
79 #Xnﬁﬁi?iﬂ?,/f}f/-xoxr.«****t* SOLUTION FOR X=erFSe20rAND TETAZs ¢
2 FOlrsD seskrxntr)
WpITE(6¢21)

21 FORMATU(//7//+8 A"RADIUS'oIZXlDVZRDOLDX"ENERGYvillxv!STRESSES
It X=Y=-Z nIRECT 10 N )
3 Y (R (I) V2R(I) EH(I)0S§§1(I)15€52(I)'SSSS(I)'I 1l
32 ggéﬁi%(??;x:F9lb'7i F9. 60%XrF 9,51 7X¢3F9,.6)
10X e HONDIMENS TOLIAL FORMS v0//:31X0 tRADIUS»»

/s I
S X=-Y=2 DIRECTIONS

Ei ib ? })vﬁTRZ(I)'STR3(I)uI =1,11)

X' .

O‘ﬂﬂ\ﬂ
Y ~MN

£
1
RADII(I)'JTS

FYe6115X¢3F9,6

C
C
C . MOMENT CAi CULATION
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e pKERE SOLlJTIorl FOR X= ,25AND TETA= 120,00 ,;"*“

RADIUS VaRr EMERGY STRESSES IN X-Y-z DIRECTIONS
+ 770498 .207250 -16,13900 -.00059 -,340050 —,175758
1.084097 188250 ~16.57277 -.081719 -,232981 =,122179
1.397695 175250 -16,75015 -.106665 -,159324 =,090852
1.711294 164250 ~16,81449 . =.110474 -,096658 =.067555
2.024892 .153750 © =16.81660 =.104048 -,037504 —.047947
24338491 . 142750 =16.77926 -.091016 019868 —.030054
2.652089 +131250 ~16,71055 =.074744 074152 ~.014131
2.,965688 119250 -16,61345 -.057027 4123645 =.000422
3.279286 106250 -16.48969 -.037962 .165832 011227
5+592885 .092250 -16.33518 -.018686 .197106 020223
3.906483 . .077250 -16,13975 -.000021. .213475 .025986

NONDIMEMNSIONAL FORMS; .
RADIUS . STRESSES It X-Y-Z DIRECTIONS

,000000 , -.002969-1.700252 =,878790
100000 -.408593=1.164907 =,610897

.200000 -.533320 -.796620 =.454261

,300000 -.552369 -.483289 =.337773

400000 -.520238 -.187518 =.239735

500000 -.455080 +099342 =,150272

600000 -.373720 .370761 -.070654

,700000 -.285135 618223 ~,002109
.800000 -.189812 .829160 056135

,900000 ~,093430 .985529 .101116
1,000000 -,000106 1.067373 .129929

MOMENT: 44625l ,B08a83 TETA: 2.094400

vaoz 118836

TOLARANCE FOR v20= .00y00%
TOLARANCE FOR R INTFGRAL= 001000
TOLARANCE FOR EHFRGIES=  .001000
TOLARANCE FOR V2R S=  ,0001g0
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APPENDIX B
SOLVENT DISTRIBUTIONS

Figure 5.1.11 may'be examined in a better way with the help of

Figure B.1 and B.2 and Téb]e B.1.

o
()
T

”

§=30°

o
(2]
-1

Nondimensional Radius ¥
o .
&~
1

o
N
T

0.0 1 .
08 09 10 11 12
Nondimensional Rolymer Fraction V,/Vzo

. . 0
Figure B.1 - Solvent distribution along the X direction at 180
flexure for energy x parameter.
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In these figures radius and polymer fraction are both in nondimensional
forms. Radius is introduced in conventional presentation ¢, polymer rat%o
is nondimensionalized by dividing it into equilibrium swelling ratios V

20°
which are given in Table B.1.

Nondimensional Radius V

TABLE B.1

X Y20

1.0 0.6931

0.75 0.5060

0.63 0.3758

0.50 0.2378

0.25 0.1188

0.00 0.0822
10
08 4
06} .4
041 -
0.3 J

xX= .
0.0 1 ]
05 ) 10 15 20

" Nondimensional Polymer Fraction v/v,,

Figure B.2 - Solvent distribution along the X direction for different
solvents (x's) at 300 flexure.
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