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ABSTRACT 

The validity of two methods of calculating effective thermal 

conductivity of composite materials is examined by comparing the nume-

rical solutions for the effective thermal conductivity calculated 

through. application of these two methods to unidirectional fiber 

compos ites. 

Mathematical model and the assumptions~ssociated with them 

are outlined first. Then, the approach, which is referred to as the 

direct app·roach, on which the two methods are based, is explained. 

In this approach, the effective thermal conductivity of a composite _ 

material is simply defined as the relation between the averaged tempe­

rature gradient and the averaged heat flux over the smallest volume 

representing all the characteristics of the composite material. 

Both of the methods compared are based on the direct approach 

and differ from each other according to the boundary conditions imposed. 

Imposed conditions are, namelr, the homogeneous boundary conditions, 

and the prescribed temperature and insulated surface boundary conditions 

over the unidirectional fiber composites in which fibers are distributed 

in rectangul ar and staggered ar"ray forms. In thi swork, those methods, 

in which ,homogeneous boundary conditions are incorporated are referred 

to as homogeneous-methods, and those in which the other boundarycondi-

tions are used are referred to as flux methods. 
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The field equations associated with the above mentioned 

boundary conditions are solved by.using the finite element method 

which has been proved to bean efficient method in the cases of 

heterogeneous material distribution and irregular geometry. The 

numerical values obtained from the two methods are also compared 

with bounds derived by variational analysis ,for effective thermal 

conductivities of any transversely isotropic fiber composites. To 

derive approximate analyt~c expressions representing numerical solu-

tions obtained from the flux method, a new method, called the strip 

method is introduced. 

It is, finally, concluded that the flux method gives more 

reasonab1e val~es in comparison with 'the homogeneous method and the 

numerical values obtained from both of the methods are in aggreement 
/ 

with the bounds. 
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U Z E T 

lki, efektif lSl gecirgenlik katsaY1S1 hesaplama yontemi, 

tek yonlU lifler iceren karm~ maliemeler Uzerinde denenerek elde 

edilen saY1sal efektif lSl gecirgenlik katsaYls1 degerlerinin gecer-
'" > 

liligi incelenmi~tir. 

11k olarak, matematik model ve bu modelle baglant111 kabuller 

anahatlanyla anlatllm1~t1r. Daha sonra, bLi iki yontemin dayand1g1 

dogrudan yakla.~lm anlat11m1~t1r. Dogrudan yakla~lmda karma malzeme­

lerin efektif lS1 gecirgenlik katsaY11arl, karma malzemenin bUt/Un ozel­

liklerini iceren en kUcUk birim hacim Uzerinde ortalamas1 al1nm1~ lSl 

ak1S1 ve slcakl1k gradyan1 aras1ndaki ili~ki olarak tanlmlanm1~t1r. 

Kar~11a~t1r11an yontemler, icinde tek y~nlU liflerin dikdort­

gen ve Ucgen ~ekilde dag11d1g1 karma malzemeler Uzerine Jlhomojen Jl tip 

ile Jlsabit kenar: slcakl1g1 ve izole edilmi~ kenarJl tipleri gibi Slmr 

~artlar1 uygulayarak, dogrudan yakla~lm1 kullanmaktad1rlar. Bu cal1~­

mada kullamlan yontemler, slras1yla homojen yontem ve akl yontemi 

olarak adland1r1lm1~tlr. 

Alan denklemleri, bahsedilen Sln1r ~artlarl ile birlikte, 

homojen olmayan ~alzeme dag1l1mlna ve dUzensiz geometriye sahip durum­

larda etkili oldugunu ispatlanm1~ olan sonlu elemanlar yontemi kulla­

n1larak cozUlmU~tUr. ikinci olarak, bu iki yontemle elde edilen saY1-

sal degerler, varyasyon analizi v kullan11arak, herhangi tip enine izotropik 
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karma ma1zeme1erin efektif lSl gecirgen1ik katsaYl1arl icin tUreti1en 

sln1r1ar i1e kar$11a$t1r11m1$t1r. Ek olarak, ak1 yontemiy1e e1de 

edi1en saY1sa1 deger1eri yak1a$lk olarak veren denk1em1er e1de etmek 

icin bir yontem ge1i$tiri1mi$tir. Bu yonteme $erit yontemi diyoruz. 

·Sonuc olarak, ak1 yonteminin homojen yonteme k1yas1a daha sag-

11k11 deger1er verdigi ve her iki yontem1ede e1de edi1en saY1sa1 deger-

1erin, s1n1r1ar1a uyum icinde oldugu gorU1mU$tUr. 
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INTRODUCTION 

A composite material is,composed of two or more elemental 

materials joined together to form a new'medium which is discontinuous 

in its microstructure but has combined macroscopic properties superior 

to those of its individual constituents. It is for this reason, in­

tensive development efforts have been under way, for the past decades, 

to create literally a new class of materials for application her.eto­

fore deemed· unlikely or impossible. The main competitive characteris­

tics are, of course, light weight, high strength and dimensional 

stability, to name a few. 

In general, there are three commonly accepted types of compo­

site materials, which are distinguishable by their microstructures 

[9, p. 2J . 

. ( 

i) Fibrous composi~esconsist of fibers in a matrix; A fiber 

is characterized geometrically not only by its very high 

length-to-diameter ratio but by its near crystal-sized 

diameter. The well-known example of this type is glass 

fibers within epoxy or a binding resin 
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ii} Laminated composites consisf pf layers of at least two 

different materials that are bonded together. Lamination 

is used to combine the best aspects of the constituents 

layers in order to achieve a more useful material. 

iii} Particulate composites are composed of particles of one 

or more materials suspended in a matrix of another material. 

The particles can be either metallic or nonmetallic as can 

the matrix be. A go~d example for this type may be gravel 

concrete. 

Published literature abounds with investigations on mechanical 

properties of composites with emphasis on stiffness, elastic moduli, 

fatigue .limit, etc. Far fewer accounts, however, are concerned with 
/ 

their thermophysical properties which are now beginning to receive 

attention with a view to extend the application of composites to 

severe environments with thermal and moisture gradients, but the 

generality of the methods used to analyse mechanical properties has 

allowed the application of these available methods directly to inves­

tigate the thermophysical properties of composite materials. 

Analytical determination of the properties of composite 

materials originates with some of the most illustrious names in science. 

J.e. Maxwell in 1873 and Lord Rayleigh in 1892 computed the effective 

~onductivity of composites consisting of a matrix and certain distri-

. butions of spherical partiCl es. Until about 1960, the primary motiva­

tion was scientific. With the advent of technology of composite 

ma.terials, interest in this subject was renewed. 
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-
The investigations for fibrous composites have been along two 

parallel but related approaches: one is to model the fiber-in-matrix 

orientations by simplified geometrical equivalent, and the second 

.approach, which relies on the results of the first for ~nput informa­

tion, is to employ a statistical technique to determine upper and 

lower bounds of the effective thermal conduct·ivity. Among those 

employing the model approach are the often-cited works of Springer 

and Tsai [6], Behrens [5] and Han [1]. 

The publications of Hashin and Shtrikman [4], Beran and Sil­

nutzer [7] and more recently Hashln [2] can be cited within the class 

of the second approach. The latter publication included a survey of 

the methodolog~ and a list of related references. 

In this study, the effective thermal co-ductivities of parti-
. / 

cul ar types of compos He materials are cal cul ated theoreti ca lly by two 

methods which originate from the same approach and the results obtained 

are compared .. The approach is simply to approximate the real medium 

with an eqtiivalent homogeneous medium which gives the same averaged 

temperature gradient and heat flux distributions. The distributed 

properties of the original medium are thus lumped into effective pro­

perties of an equivalent homogeneous system. In order to achieve this 

goal, the temperature distribution inside the composite material must 

be calculated. 

The probl'em of finding the temperature distribution, however, 

is rather difficult to solve; if not impossible. This is due to the 

irregul,ar,ity of the mi,crostructure and imperfect bondi ng, which causes 

contact resistance to heat flow at the interfaces of individual phases 
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of real composite materials. To aleviate this difficulty, idealized 

forms of composite materials are used, and, it is assumed that phases 

are dispersed in an ordered fashion and bonded perfectly with this 

idealization. 

The problem appears to be easy to solve, however investigations 

have shown that even for regions having a simple geometry, it is im­

possible to obtain an exact analytical solution with contemporary 

mathematical aids. Thus a nume~cal technique needs to be ~sed and 

the Finite Element Method (FEM) has proved to be an efficient technique 

in achieving this goal. 
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I. ANALYSIS OF COMPOSITE MATERIALS 

1.1 BASIC DEFINITIONS 

It is convenient at this point to give some commonly accepted 

assumptions of the theory of composite or heterogeneous media. 

Because of the di sparity between thedime,)sions of the overa 11 

composite material and that of each constituent phase region, rigorous 
I 

. evaluation ~f the effective thermal conductlvity can be obtained only 

from a consideration of a representative vo.lume element (RVE) as shown 

in Figure 1.1. RVE is the smallest volume el~ment of the composite 

material. The volume outside the RVE is ·either a replica or a mirror 

image of the RVE. RVE, however, is large compared with typical phase 

. region dimensions, .e.g. fiber diameters and spacings. 

From the practical point of view, a necessary characteristics 

of a composite material is the statistical homogeneity (SH). The 

strict definition of this is given in terms of probability functions 

[9J. For ourpu~poses, it is sufficient to state that in a statis­

tically homogeneous composite all global geometrical characteristics 

such as volume fractions, geometric distribution of phases,etc., are 

the same in any·RVE. 
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In the following analysis, the RVE and the concept of statistical 

homogeneity respectively stand for the differential volume element 

and the concept of material homogeneity of the classical continua. 

)(2 

In the classical theory of heat conduction for homogeneous 

materials, the thermal conductivity tensor, kij , relates the homo­

geneous temperature gradient, T'J.' to the homogeneous heat flux, q., 
1 . 

as given below 

q. = k .. T~. , lJ J (1 . 1 ) 

In Eq. (1~1) the indicia1 notation, with iepeated indices implying 

summation over these indices, is used. Unless otherwise stated, this 

notation will be used here 00. ,If the fie1 ds, i.e., temperature 
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gradient and heat flux, are not homogeneous, then they are assumed 

to be homogeneous within a differential element. In a heterogeneous 

body o~ statistically homogeneous phase geometry, a relation resembling 

Eq. (1.1) only applies for statistically homogeneous temperature gra­

dient and heat flux fields. 

Statistically homogeneous fields are statistically indistin­

guishable within different RVE in a heterogeneous body [9], i.e.~ 

their statistical moments such as average, variance, etc. are the same 

when taken over any RVE within the heterogeneous body. This implies 

that body averages and RVE averages of statistically homogeneous 

fields, where the averaging concept will be discussed in the next 

section, are the same. This permits to establish a relation,. resembling 

Eq. (1.1), between averaged temperature gradient and averaged heat flux 

fields ove~ RVE by considering each RVE as the differential element of 

classical continua of homogeneous materials. 

In order to produce a SH field in a composite, it is necessary 

to apply boundary conditions that produce homogeneous fields in a 

homogeneous body. Such boundary conditions are called homogeneous 

boundary conditions (not to be the same as the concept of homogeneous 

boundary conditions in the theory of .differential equations). For 

heat conductio.n, such a bounaary condition is [10] given as follows. 

(1 .2) 

where T is the temperature, P. i = 1,2,3 are constants and S is the 
1 , . 

surface of the material body. When homogeneous boundary conditions 

as' in Eq. (1.2) are applied, the components of averaged temperature 
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gradient vector are constant and equal to p. i = 1,2,3 over composite 
1 , 

material body. 

Another important assumption, independent of the statistical 

homogeneity, is that of statistical isotropy. Essentially, this 

assumption implies, that macroscopic material properties of a compo­

site body are the same in all directions or, are not effected by the 

orientation of the coordinate system to which the physical constants, 

such as thermal conductivity coefficient, elastic moduli, etc., are 

referred. In many cases statistical isotropy is an appropriate assump-. 
tion. However, in some very important cases such as fibrous compo­

sites, f~e macroscopic material properties are predominantly anisotropic. 

1.2 CLASSICAL APPROXIMATION 

In the analysis of heterogeneous materials, the general problem 

is that of-the suitable macrodescription of a heterogeneous material 

body. This problem is solved in reference [2] in analogy with to the 

solution of the same problem in the case of homogeneous continua. It 

is always assumed that such continua retain their material properties 

regardless of specimen size, thus also for infinitesimal elements. This 

permits establishment of field equations in terms of field derivatives. 

However, all real materials have microstructure. Metals, for example, 

are actually polycrystall ine aggregates and are thus heterogeneous 

materials. Therefore, the differential element, that is considered 

in the derivation uf field equations. Such as the classical elasti­

city and the heat conduction equations, is in reality a RVE which is 

composed' of a suffici ently 1 ilrge number of crysta 11 s and whose effec~. 

tive material properties are the material properties of the classical 
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field theories, e.g., thermal conductivity coefficient or elastic· 

modu 1 i . Since, the RVE is ,composed of crysta 11 s, it can not be 

considered as an infinitesimal differential element of the classical 

homogeneous continua. So; it may be concluded that the classical 

field theories are approximations that results in a macrodescription 

of a polycrystalline aggregate, i.e. heterogeneous material, when 

the RVE size is sufficiently small in relation to the body dimen­

sions which is the definition of the RVE given in Section 1.1. 

This leads to the idea to adopt the same approximation for a 

composite material body which implies that the classical field 

equations of heat conduction, elasticity, etc., are assumed valid 

for the compos:ite material body with effective material properties 

replacing the usual material properties. This idea is called .the 
/ 

classical ?pproximation [2] and the mathematical model of the problem, 

stated at the beginning of this section, is based on this idea. 

It is, first, necessary to define appropriate field variables 

for the construction of field equations, e.g." heat flux, temperature 

gradient, stress, etc., in terms of which a composite will be modelled 

as an equivalent homogeneous continuum; The a'ppropriate choke is moving 

average [2]. Moving average of a vector function, fi' is defined as 

f.(x) = _1_ J f!(x~x')dV(x') 
, b.V b.V ' - -

(1 .3) 

where ~ is the rosition vector of a reference point in the RVE, e.g. 

the centroid, x~ is a local coordinate system originating at x as , -
shown in' Figure 1.1, b.V is the volume of the RVE and the integration 

is over RVE. In Eq. (1.3) overbars represent averaged values and 
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primes are used to indicate the local values inside the RVE. The 

moving average is simply the usual volume average associated with 

a position vector originating from a global coordinate system defined 

over the body that is divided into small volume elements (RVEs) over 

which volume averages are taken, and each element is defined by the 

position vector pointing a reference point 'inside the volume element. 

So, a different averaged value corresponds to each position vector. 

This causes the volume averages move together with the position. 

vector, x . 

.It is shown in reference [11], that moving averaging and dif-

ferentiation are commutative. This permits to establish the field 

equations in t~rms of averaged field variables. For example, by 

replacing the function, f. in Eq. (1.3), with the thermal gradient , ~ .' 

. / 

vector, T'i' and the heat flux vector, qi' we obtain the important 

relations 

~ =..B.-. (1.4) 
ax! ax. , , 

and 

aq! aq. 
_'=_'=0 ( 1.5) 
ax! ax. , , 

.respectively, where the use of overbars and primes are as defined 

in conjuction wi·th Eq. (1.3). The Eq. (l.S) is a particular form 

of the general steady state heat conduction equation without any 

source term in terms of fluxes. This important result shows that 

classical field equations are also valid for averaged field variables. 
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The problem now reduces to obtain a relation between moving 

averages of field variables, e.g. temperature gradient and heat flux, 

when the composite body is subjected ~o arbitrary boundary conditions. 

This problem is solved by Beran in r,eference [12] for heat conduction 

through heterogeneous media, as the relation between moving average 

of heat flux and local definition of temperature gradient as follows 

q.(x) = JK-If.(x,x')T!.(x')dV(x ' ) 1 - lJ - - J - -
(1 .6) 

The resu 1 tis, however, not a practi ca lone since the tensor, K~.,. 
lJ 

depends' on phase properties and phase geometry in an unknown fashion 

for arbitrary phase distributions over RVE. 

The more useful form of Eq. (1.6) is obtained by its series 

expansion around x [12], which is given as follows -' / 

q.(x) = A~.T~.(x) + B~'kT"k(x) + C~'knf"kn + 1 - lJ J - lJ J - lJ N J N 
(1. 7) 

This is a general relation between averaged temperature gradient and 

heat flux fields forcomppsite materials. 

In case of statistically homogeneous temperature gradient 

and heat flux fields, the moving averages of these fields are in­

dependent 6f the position vector, ~'. because averages of the SH fields 

over each RVE are the same as discussed in Section 1.1. So, for SH 

fields, all derivatives of temperature gradient vector with respect 

to x are zero, ~hen (1.7) reduces to the convenient form, 

q. = A~.T,. 
1 lJ J 

(1 .8) 
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which implies that averaged SH temperat~regradientand heat flux 

fields are related by effective conductivity tensor, A~., as in the lJ 
classical heat conduction relation, Eq. (1.1). This work is an 

application of this relation. 

1.3 ANALYTICAL TREATMENT 

Genera lly, the ana 1yti ca 1 treatment of the problem of cal cu-

1ating the effective conductivity is divided into three categories: 

(i) direct approach, (ii) variational approach, and (iii) approxi-­

mations. In this work, we are primarily interested in the direct 

approach, but in some cases, we will apply the variational approach 

as well. In ttie following discussion, two phase c.:omposite materials 

are assumed for the sake of simplicity, the analysis, however, San 

be extended to mu1 tiphase composite material s without any difficu1 ty. 

x~ 

CD 
-- --

-.",.... --!-----
/1 

.",/ I 

., I /.- - - - - - -'--f--t--~ 
I / I 

/' I 
1// I ---
I I -

) ____ 1 ____ _ 

./ 1 
'" I ,/ ~ 

/ ® I 
" I 

FIGURE 1.2 - A typical RVE for a two phase composite 
material. , 
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The computation of the effective~properties, e.g. the effective 

thermal conductivity, in terms of the averaged field variables, e.g. 

the temperature gradient and.the heat flux, is called the direct 

approach. So, the direct approach is an application of the Eq. (1.8). 

In general, it, then, requires the determination of the appropriate 

fields in the phases satisfying the appropriate field equations subject 

to i:nterface continuity conditions, and external homogeneous boundary 
. 

conditions. For heat conduction, the interface continuity conditions; 
.-

with, no contact resistance at the interface, can be posed as 

T(1) = T(2) 

q(l) = q(2) 
n. n ' 

(1. 9) 

where superscripts 1 and 2 refer to the constituent phases, S12 is the 

contact surface of two phases as shown in Figure 1.2, qn is the normal 

component of heat flux on S12. For real composites determination of 

the field solutions is a very difficult problem not only because of 

the mathematical difficulties, but also because of the fact that the 

actual details of the interface geometry are newer known. So, the 

~pplication of direct approach is restricted to types of composites 

with idealized pha~e geometries. Laminated composites or fiber 

composites with regularly dispersed fibers in a matrix are represen­

tative examples of such idealized composites. 

As stated at the beginning of Section 1.3, direct·approach 

deals with averaged field quqntities. The averaging method used in 

this approach involves the volume average over the total volume of 

the RVE. For example, over a two phase composite, the temperature 



g'radi ent vector, T,., is averaged as 
1 

T'i = _1_ [ f T~~) (x)dV + f T~21') (x)dV] 
V V 1 - V -

1 2 

14 

(1.10) 

where 1 and 2 refer to the values of T'i in the constituent phases and 

the average is taken over the total volume, V. After calculation of 

the required averages, the effective conductiv;"ty tensor, k~., can be 
lJ . 

calculated from Eq. (1.8) by setting A~.equal to k~ .. 
, ~ '" lJ lJ 

Since, most of the engineering ~aterials are anisotropic, the 

effective thermal conductivity tensor will have six unknown components 

(kij is a symmetric tensor according to Onsager's principle). Eq. (1.8), 

on the other ha,nd, provides three equations. Thus without 'any further 

simplification, it is impossible to determine the' effective thermal 

conductivity. Such a simplification can be achieved by assuming that 

the RVE has a symmetric phase distribution. With the presence of 

such a geometry, the conductivity tensor can be diagonalized with respect 

to a coordinate system defined in terms of the symmetry axes-~ With 

reference to such a coordinate system, t~en, there remains only three 

unknown components of the thermal con~uctivity tensor which now can 

be determined with the use of Eq. (1.8). At this point it should be 

noted that in the case of st?-ti stica lly i sotropi c composites, the 

thermal conductivity tensor is given as 

in which Dnly one unknown, namely k*, is involved. k* then can easily 

be determined by using Eq. (1.8) alone. It then follows that, with 
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the exception of 'such idealized composites, the direct approach is 

restricted to composites having symmetric phase distribution over RVE. 

An alternative definition of effective physical properties is 

given in terms of energy expressions. This is known as the variational 

o approach. Such energy expressions are bounded from above and below 

by extremum principles. The variational approach is, in a certain 

sense, more powerful that the direct approach, because it leads to 

bounds on effective physical properties when exact evaluation is pot 
/ 

possible. In particular, it can give results for irregular phase 

geometries in terms of partial information. For the formulation of 

the variational approach in heat conduction, references [4] and [5] 

should be reso~ted to. 

Approximations are, by their nature, of unlimited ,variety and 
I 

is beyond the scope of this work. Therefore they will not be discussed 

here, but the interested reader may consult to reference [14] to see 

a typical application. 



II. SOME APPLICATIONS 

2.1 FINITE ELEMENT METHOD 

As discussed in Section 1.3, the computation of effective 

thermal conductivity in terms of averages requires determination 

16 

of the appropriate fields within the phases. This in turn requires 

the solution of the field equations subject to, interface continuity 
. / 

conditions~ as given by e.g. Eq. (1.9), and the external homogeneous 

boundary·conditions. Even for idealized composites the analytic 

solution of these equations is an extremely difficult problem. 

This is primarily due to the necessity of satisfying the interface 

continuity conditions. Thus, a numerical technique needs to be used 

and the finite element method (FEM) has proved to be an efficient 

tool in achieving this goal, because FEM is a powerful technique 

especially for the problems·that involve irregular geometry and non­

.homogeneous material distribution over the material. 

The domai.nof the problem is discretized by using. elements 
, 

of simple geometries such as rectangle or triangle. Oyer each 

el ement, . the unknO\'Jn fields are approximated by a 1 inear combination 

of finite number of known basis functions with unknown expansion 
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coefficients ~hich ar~ the unknown field-values at some points in the 

element, namely the nodal points. 

Finite element analysis requires a translation of the local 

field equations, which are subjected to certain boundary conditions, 

into a global model, formulated in terms of integral laws that hold 

over the entire region. The residual that results from the satis­

faction of the integral laws over each element by approximated solu­

tion, is minimized. This leads to system of linear equations in 

terms of unknown coefficients over each element. By summing up these 

systems,of equations, the solution of the governing field equation 

reduces to the solution of system of linear equations. Solution of 

these equations gives the unknown coefficients, i.e. the unknown field 

values at each node. 

In this analysis, the governing differential equation is steady 

state heat conduction equation in the form of 

__ 0 __ " (k ~) + __ O __ (k ~) = o. 
oX x oX oy y oy 

( 2.1) 

The flowchart and computer code for the FEM solution of this equation, 

subject to boundary conditions of prescribed variable temperature 

and/or insulated surface typ~sis given in Appendix B. This program 

uti 1 i zes triangul ar el ements with 3-nodes 6-nodes and lO-no'des [15J. 

The input data for the computer program used is the mesh geometry 

information and the thermal c'onductivity coefficients 'for each phase. 

The output values are temperature at eachnode,temperature gradient 

over each element, averaged temperature gradient and heat flux over 
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the domain and the effective conductivity coefficients. 

2.2 SCOPE OF ANALYSIS 

In this work, we mainly compare two methods of calculating 

effective thermal conductivity. In both methods, direct approach 

is applied on a particular type of fiber composites, namely uni­

directional fiber composites in which fibers are aligned in one 

direction. 

As discussed in Section 1.3, direct approach requires deter­

mination of the appropriate fields by applying homogeneous boundary 

conditions over RVE. The only difference between these two methods 

is the types of boundary conditions applied in the calculation of 

the fields from" the field equation. In one~ethod, homogeneous 

boundary condition given by Eq. (1.2) is applied over RVE. Therefore 

this method is called the homogeneous method. The second method is 

the unidirectional heat flux method". In this method, a thermal 

gradient is established between two opposite faces of the RVE and 

the remaining faces are insulated. The validity of this method is 

examined on fiber composites in reference [lJ and the results obtained 

is in agreement with the experimental data, to some extent. In the 

following discussion, we will ca.ll this method as flux method for 

simpl icity. 

The boundary condition appl ied in the flux method may be re­

garded as homogeneous type boundary condition. This is due to the 

fact that, the average temperature gradient obtained over RVE depends 

only on the thermal gradient established between two opposite faces 
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of the RVE for a particular geometry when such kind of boundary condi­

tion is applied over the" composite material. The thermal gradient 

estab 1 i shed is, however, the same for each RVE. Thi sis due to the 

similarity of RVEs in a statistically homogeneous composite materials 

(See .Section 1.1). Thus, each RVE has the same average temperature 

gradient values. This makes Eq. (l.8) applicable. Accordingly, the 

direct approach is valid to calculate the effective thermal conduc-

tivity in both methods. 

As explained in Section 1.3, in determination of the effectiye 

thermal. conductivity, the variational approach is a powerful technique 

especially for irregular phase geometries, because it leads to bounds 

on effective physical properties in terms of partial· information about 

the phase geometry. Some expressions of thi s type are derived by .. 

Hashin [10J for any tr~nsversely isotropic fiber com~osites, i.e. trans-

verse to fiber direction, as 

(2.2) 

k(+) kf vm/vT e = --+ vf/vT km km 1 + 
1 - kf/km 2kf /km 

•. 
where subscripts f and m refer to fiber and matrix, respectively, v is 

. "total volume, k is the effective thermal conductivity and (+) and (-) 
e 

refer to upper and lower bounds respectively. These bounds are compared 
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with the numerical results obtained for effective thermal conductivity 

in Section 2.3. 

In the flux method, it is customary to designate a principal 

direction of heat transfer (PDHT) and to assume that heat flux is 

unidirectional, that is, there is no flux components normal to PDHT. 

This also means that planes perpendicular to the PDHT are isothermal. 

That being the case, the effective conductivity of the RVE is simply 

the,resultant of a network of smaller resistances in series and 

parallel over each phase.. This leads us to calculate the effective 

conductivity by using simple integration. We will call this new 

method as the strip method. In the strip method, a strip of infinite­

simal width ,is t.aken along PDHT. The effective conductivity of the 

strip is the resultant of small resistances in series. Now, each strip 

has a value of effective conductivity and is connected in parallel. 

Resultant resistance; which defines effective thermal conductivity of 

RVE, is calculated by summing up the resistances of each strip by in­

tegration. 'Details are given in the Appendix A. 

Secondly, we will investigate the effect of geometrical arrange­

ment of the fiber? on the effective thermal conductivity of the com­

posite material, in particular, those having isotropic fibers uniformly 

dispersed in an isotropic mat~ix. Unidirectional fiber composites 

having two geometrical arrangements, namely, rectangular array and 

staggered array of fibers in a matrix, as shown in Figure 2.1, are 

~onsidered specifically~ 

There are three principal conductivities for the composites 

under consideration. The effective conductivity along the z-axis, i.e. 
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o 
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. ("a) Rectangular Array (b) Staggered Array 

FIGURE 2.1 - RVEs for two types of fibrous composites. 

parallel to the fibers, can be simply obtained by a linear combination 

of the two constituent's thermal conductivities in proportion to their 

respective .cross-sections. Hence, the only ones which need to be 

analyzed are those along the x and y directions. In order to cal~ulate 

the effectiv.e conductivity along x and y directions, we.'need to obtain 

averaged values of temperature gradient and heat flux over the RVE .. 

This requires the solution of the steady state heat conduction equation, 

Eq. (2.1), associated with boundary conditions, discussed at the be­

ginning of Section 2.2, by using the FEM .. 

2~3 PROCEDURE AND RESULTS 

2.3.1 Rectangular Array (Figure 2.l-a) 

The govern1ng heat conduction equation, Eq. (2.1), is solved 

by using FEM for the domains shown in Figure 2.2. Since the domain 

'is symmetric, the effective conductivity tensor is in the diagonal 

form with two components in the x and y directions (See Section 1.3). 
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As discussed in Section 2.2, two methods will be applied in determining 

effective thermal conductivity, namely, homogeneous method and flux 

method. 

. . . . 
'1 Y 

(a.b) (% bh) 
km 

/ 
/ 

/ 
/ 

/ 

k-F / 

,-
/ 

/. 
/ 

/ 
/ 

/ 
/ 

X X 
. (a) . ( b) 

FIGURE 2.2 - Solution domains for rectangular array. 

In the homogeneous method, the boundary condition associated 

with Eq. (2.1) is homogeneous type which is given by Eq. (1.2). Since 

we only deal with the determination of effective thermal conductivity, 

without loss of generality, we will choose .simple form of Eq. (1.2) 

as 

T(s) = x + y (2.3) 

where x and yare the coordinates of the points on s which is the 

surface of the domain shown in. Figure 2.2-a. When boundary condition, . . , 

Eq. (2.3), is applied over the ~omain, the resulting average tempera­

ture gradient vector has the components which are'equal to 1. So, we 

can ·calculate the' two components of the effective conductivity tensor, 
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which are equal to components of averaged heat flux vector, from 

Eq. (1.8). 

In the flux method, because of the symmetry of the geometry, 

we will consider Figure 2.2.-b, which is one quarter of the domain 

in Figure 2.2-a, as solution domain. As discussed in Section 2.2, 

in this method, .a thermal gradient is established between two opposite 

faces of the domain arid the remaining fa~es are insulated. Sinc~, the 

value of the effective thermal conductivity is independent of the.ther-
. '" 

mal gradient established, we will choose the following simple form of .. 

boundary conditions. By considering a one dimensional heat flow in 

the y direction, the approximate boundary conditions are 

T(x,b/2) = 1 

T(x,O) = 0 

\(O,y)' = \(a/2,y) = 0 

(2.4) 

For one dimensional heat flow in the x direction, the boundary condi-

tions are 

T(a/2,y) = 1 

T(O,y) = 0 

Ty(x,O) = Ty(x,b/2) = 0 

(2.5) 

After imposing the boundary conditions, effective conductivity tensor, 
, ' 

which has two compon.ents for this two dimensional symmetric geometries, 

is obtained from Eq. (1.8) by using computer program given in Appendix B. 

Additionally, strip method (See Section 2.2) is utilized to 

obtain an approximate analytic expression representing the numerical 
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solution obtained from flux method. The expression for rectangular 

array of fibers is given by Eq. (A.7) in Appendix A. Bounds on effec­

tive thermal conductivity are also calculated from Eq. (2.2). Since 

these bounds are for transversely isotropic fiber composites, it 

corresponds to configurations with angle, 8 = 45 deg. 

The results~;obtained are expressed as the ratio of the effec­

tive conductivity to the matrix conductivity and,- characteristically, 

this ratio depends on (i) volume ratio, vf/vT = volume of fiber/total 
", 

vol ume, (i i) conductivity ratio, kf/km = fiber conductivity/matrix 

conductivity, (iii) the angle, 8. Because of the symmetry of the 

geometries involved, the two principal conductivities can be handled 

by a complementary angle principle. In other"words, solution for the 

effective conductivities with angles, determines" the case with the 
. / 

complementarY angle, (90~8), e.g~, the value ke_y for 8 = 40 deg~ / 

corresponds the value ke-x for ~ = 50 deg., and vice versa. 

Tables 2.1-6 give tabulated numerical results for effective 

thermal conductivity obtained from appl ication of homog'eneous method 

and flux method for volume ratios, vf/vT' of 0.5, 0.6 and 0.7. The 

angle, 8, is chosen so as· to avoid fibers overlapping eachotheri 

Obviously, for 8 = 45 deg, the effective thermal conductivity tensor 

is isotropic, i.e. k = k = k. ln Figures 2.3-8, the tabulated e-y e-x. e 
numerical results and the expression given by Eq. (A.7) is plotted 

as"kf/km versus ke_x/km and kf/km versus ke_y/km. Additionally, in 

Figures 2.6-8, the bounds obtained from Eq. (2.2) are also shown. 

Figures 2.9-a and 2.9-b show the trends in numerical results obtained 

from homogeneous method and flux method, respectively, for arbitrarily 
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chosen kf/km values of 0.4,6, 80 and 800, with the angle 8 = A5 deg. 

as vf/vT versus k/km' where vf/vT ratio is bounded above by 1 imit 

value, vf/vT = 0.785. Finally,in Figure 2.10, temperature gradient ~. 

distribution at some points over the domain, represented by Figure 

2.2-b for one dimensional heat flow along y-direction is presented 

for rectangular array with volume ratio of vf/vT = 0.6 and the angle 

8 = 40 deg. case. 
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TABLE 2.1 - FEM Solutionsfor Effective Conductivity 

-
Rectangular Array: vf/vT = 0.5 e = 35 deg. 

[~esh (87,136) *Mesh (77,118) 

Flux B.C. IS Homogeneous B.C,l s 
" 

k. Ik k e-y/km k e-x/km k Ik e-x m e-y m 
0.304506 0.486725 0.409728 0.505008 

0.421273 0.551816 0.503025 0.567446 

0.612206 
,.. 

0.674741 0.657655 0.685426 

0.765241 '0.789569 0.786051 0.795909 

0.892249 0.897664 0.898375 0.900400 

1.00000 1.00000 1.00000 1.00000 

1.36552 1.44594 1.42667 1.44821 

1. 71953 2.12380 2.13911 2.21908 

1.89376 2.62691 2.79914 2.92051 

1.99762 3.01862 3.44182 3.59178 

2.06662 3.333.19 4.07662 4.24718 

2.22276 4.28741 7.21122 7.43325 

2.31162 5.06561 13.4372 13.6915 

2.34310 5.40381 19.6527 19.9190 

2.35920 5.59299 25.8655 26.1381 

2.36899 5.71387 32.0773 32.3537 

2.38885 5.97423 63.1310 ' 63.4152 

2.39892 6 .. 11469 125.233 125.522 

2.40230 6.16317 187.334 187.624 

2.40400 6.18774 249.435 249.726 

2.40501 6.20258 311.536 311.827 

*Mesh (Number of nodes, Number of elements). 

/ 
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TABLE 2.2 - FEM Solutions for Effective Conductivity 

Rectangular Array: vflvT = 0.5 e = 40 deg. 

,Mesh (99,158) Mesh (66,100) 

Flux B.C.'s Homogeneous B.C.'s 

kf/km ke_x/km k e-y/km k e-/km ',:.k Ik e-y m 
0.1 0.389031 0.457162 0.450487 0.486183 

0.2 0.495229 0.526443 
/' 

0.529183 0.553755 

0.4 0.6011 08 0.675536 0.668033 0.678836 

0.6 0.850014 0.799257 0.789506 0.793373 

0.8 0.902129 0.877983 0.899049 0.899846 

1.0 1.00000 1.00000 1.00000 1.00000 

2.0 1.29666 1.59416 1.43265 1.44102/' 

4.0 1.45880 1.97275 2.15864 2.18883 

6.0 1.48519 2.21022 2.82700 2.87200 

8.0 1.48040 , 2.35451 3.47499 3.52994 

10.0 1.46806 2.44998 4.J1344. 4.17541 

20.0 1. 41165 2.66034 7.25656 7.33562 

40.0 1. 36129 2.77354 13.4875 13.5769 

60.0 1.34022 2.81201 19.7047 19.7980 

80.0 1.32878 .2.83131 25.9184 26.0137 

100.0 1.32161 2.84291 32.1307 32.2271 

200.0 1.30656 2.86612 63.1853 63.2842 

400.0 1.29867 2.87773 125.288 125.388 

600.0' 1.29598 2.88159 187.389 187.489 

800.0 1:29462 2.88352 249.489 249.590 

000.0 1 .29381 2.88468 311.590 311 f)qn 
'. 
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TABLE 2.3 - FEM Solutions for Effective Conductivity 
-

Rectangular Array: vf/vT = 0'.6 e = 40 deg. 

Mesh (78,120) , 
Mesh (66,100) 

Fl ux B. C. • s Homogeneous B.C.'s 

k e-/km k e-y/km ke_/km ke_y/km 
0.267747 0.379708 0.333715 0.401035 

0.378200 0.459193 0.431428 0.477455 ,. 

0.568713 0.608386 0.600712 0.620939 

0.731223 0.747019 0.747218 0.754515 

0.873506 0.877101 0~878839 0.880358 

1..00000 1.00000 1.00000 1.00000 

1.47502 1 .53423 1.51951 1.53649 
/ 

2.01869 2.34615 2.39235 2.45762 

2.32436 2.95021 3.19577 3.29645 

2.52077 3.42170 3.97436 4.09993 

2.65772 3.80117 4.74123 4.88494 

2.98871 4.9571 0 8.51486 8.70445 

3.19142 5.90543 15.9932 16.2120 

3.26594 6.31919 23.4544 23.6841 

3.30465 .6.55108 30.9112 31.1466 

3.32837 6.69941 38.3661 38.6050 

3.37694 7.01933 75.6324 75.8785 

3.40182 7.19217 150.156 150.406 

3.41020 7.25187 224.678' 224.929 

3;41441 7.28212 299.200 299.452 

3.41694 7.30041 373.721 373.973 
'. 
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TABLE 2.4 - FEM Solutions for Effective Conductivity 

Rectangular Array: vf/vT = 0.5 8 = 45 deg. 

Mesh (100,160) Mesh (68,106) 

F1 ux B. C. IS Homogeneous B.C.ls 

k/km k/km 

0.416827 0.468307 

0.499072 0.541238 
,,-

0.647472 0.673184 

0.778348 0.791311 

0.895053 0.899415 

1'.00000 1.00000 

1.40044 1.43622 
/ 

/ 

1.86590 2.17096 

2 .. 12969 2.84498 

2.29982 3.49668 

2.41870 4.13770 

2.70685 7.28694 

2.88388 13.5214 

2.94905 19.7399 

2.98293 25.9543 

3.00369 32.1668 

3.04623 63.2218 

3.06803· 125.324 

3.07537 187.424 

3.07906 249.524 

3.08128 311.623 
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TABLE 2.5 - FEM Solutions for Effective Conductivity 

Rectangular Array: vi/vT = 0.6 e = 45 deg. 

Mesh (79,122) 

Fl ux B. C. • s 

k/km 

0.332465 

0.423794 
,. 

0.590178 

0.739514 

0.875346 

1.00000 

1.50214 

2.15198 

2.55948 

2.83994 

3.04497 

3.57620 

3.92929 

4.06493 

4.13671 

4.18113 

4.27321 

4.32094 . 

4.33711 

4.34525 

4.35014 

Mesh (61,92) 

HomogeneousB.C.'s 

k/km 

0.371999 

0.456754 

0.611273 

0.750878 

0.87.9578 

1.00000 

. 1.52683 

2.41822 

3.23406 

4.02096 

4.79368 

8.58148 

16.0683 

23.5326 

30.9909 

38.4467 

75.7145 ... 

150:238 

224.760 

299.280 

373.801 

/ 
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TABLE 2.6 - FEM 'S'olutions for Effective Conductivity 

Rectangular Array: vf/vT' = 0.7 e = 45 deg. 

Mesh (60,88) Mesh (61,92) 

FluxB.C.ls Homogeneous B.C.ls 

kf/km k/km k/km 

0.1 0.250086 0.278265 

0.2 0.351476 0.375022 
,,-

0.4 0.535475 0.551252 

0.6 0.702066 0.711312 

0.8 0.856023 0.859952 

1.0 '1.00000 1.00000 

2.0 1. 61486 1.62087 
/ 4.0 2.52466 2.68140 

. 
6.0 ,3.18440 3.64959 

8.0 3.68942 4.57955 

10.0' .4.08959 5.48992 

20.0 5.27480 - 9.93192 

40.0 6.21026 18.6814 

60.0 6.60837 27.3953 

80.0 6.82887 36.0995 

100.0 6.96896 44.7997 

200.0 7.26854 88.2821 

400.0 7.42897' 175.228 

600.0 7.48414 262.169 

800.0 7.51206 349.110 

1000.0 7.52892 436.050 
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2.3.2 Staggered Array (Figure 2.1-b) 

The procedure applied for staggered geometry is the same as 

for rectangular geometry. The only difference is in the solution 

domains as shown in Figure 2.11, below. 

y y 

(a,b) (%, b/:z.) 

'--_----'"--'----'-_..L--_---L __ X X / 

(a) ( b) 

FIGURE 2.11 - Solution domains for staggered array. 

Boundary condition given by Eq. (2.3)· is appl ied over the domain 

shown in Figure 2.1l-a. Boundary conditions given by Eqs. (2.4) and 

(2.5) are applied on the domain shown in Figure 2.11-b, which is one 

quarter of the domain shown in Figure 2.l1-a. The expressions obtained 

by strip method for this case are given by Eqs. (A.B) and (A.9) in 

Appendix A. Since, bounds given by Eq. (2.2) is independent of the 

fiber geometry over the matrix, the values that is calculated for rec­

tangular array fiber composites 'are the same for staggered array fiber 

composites with the same volume ratios, vf/Vt and vm/vT· 
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The numerical results for effective thermal conductivity obtained 

from homogeneous method and flux method is tabulated in Tables 2.7-12 

~or volume ratios, vf/vT, of 0~5, 0.6 and 0.7 with different angles, e~ 

In Figures 2.12-17 the numerical results tabulated and the expressions 

given by Eqs. (A.8) and (A.9) are plotted as kf/km versus ke_x/km and 

kf/km versus ke_y/km. Additionally, in Figures 2.15-17, bounds obtained 

from Eq. 2.2 are also shown. Figures 2.18-a and 2.l8-b show the -trends 

in the numerical results obtained from homogeneous method and flux method, . ,. 

respectively, for arbitrarily chosen kf/km values of 0.4, 6, 80 and 800 

and the-angle e = 45 deg. as vf/vT ratio is bounded above by limit value, 

vf/vT = 0.785. Finally, in Figur~ 2.19 temperature gradient distribu­

tion at some poin.ts over the domain, which is shown in Figure 2.11-b, 

for one dimensional heat flow qlongy-direction is presented for s~aggered 

array with_vo~ume ratio of vf/vT = 0.6 and the angle e = 40 deg. 
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TABLE 2.7 - FEM Solutions for Effective Conductivity 

-
Staggered Array: vf/vT = 0.5 8= 35 deg. 

Mesh (63,96) Mesh (63,96) 
Fl ux B. C. IS Homogeneous B. C. IS 

kf/km ke_/km ke_y/km ke_/km ke_y/km 
0.1 0.465194 :0.456237 0.488347 0.485576 

0.2 0.537328 0.530650 0.555459 0.553358 , ,. 
0.4 0.670519 0.667161 0.680495 0.679425 

0.6 0.790849 0.789508 0.795174 0.794747 

0.8 0.900179 0.899876 0.901232 0.901136 

1.0 1.00000 1.00000 J 1.00000 . 1.00000 

2.0 1.39277 1.38828 1.41518 1.41385 
I 

4.0 1.87105 1.84982 2.03021 , 2.02444 

6.0 2.15209 2.11578 2.51540 ·2.50604 

8.0 2.33717 2.28897 2.94057 2.92855 

10.0 2.46830 2.41077 3.33304 3.31903 

20.0 2.79239 2.70869 .5.10112 5.08188 

40.0 2.99595 2.89365 8.38559 8.36289 

60.0 3.07177 2.96212 11. 6000 11 .5760 

80.0 3.11137 2.99779 14.7948 14.7701 

100.0 3.13570 3.01969 17.9815 17.9564 

200.0 3.18571 3.96460 . 33.8768 33.8508 

400.0 3.21140 3:08765 65.6279 65.6015 

600.0 3.22007 3.09542 97·.3701 . 97.3435 

800.0 3.22443 3.09933 n 29.11 0 129.083 

1000.0 3.22705 3.10167 . n 60.849 160.822 



kf/km 

0.1 

0.2 

0.4 

'0.6 

0.8 

1.0 

2.0 

4.0 

6.0 

8.0 
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TABLE 2.8- FEM Solutions for Effective Conductivity 

Staggered Array: 'vf/vT = 0.5 e = 40 deg. 

Mesh (63,96) Mesh (63,96) 

Fl ux B. C. IS Homogeneous B.C.ls 

ke Ik -x m ke_y/km ke_/km k y/k e- m 

0.461943 0.452765 0.488370 0.485212 

0.535201 0.528334 0.555601 0.553192 
/ 

0.669690 0.666220 0.680667 0.679424 

0.790592 0.789201 0.795273 0.794770 

0.900133 0.899818 0.901259 0.901145 

1.00000 1.00000 1.00000 '1.00000 

1.39286 1.38812 1.41592 1.41423 
/ 

1.87382 1.85116 2.03452 2.02677 

2.15880 2.11973 2.52342 2.51040 

2.34764 2.29550 2.95169 2.93461 

10.0 . 2.48204 2.41956 3.34668 3.32646 

20.0 2.81653 2.72472 5.12209 5.09330 

40.0 3.02839 2.91544 8.41198 8.37726 

60.0 3.10766 2.98631 11.6286 11.5916 

80.0 3.14915 3.02329 14.8247 14.7864 

100.0 3.17466 3.04600 18.0121 ' 17.9731 

200.0 3.22717 3.09265 33.9092 33.8686 

400.0 3.25419 3.11661 65.6617 65.6203 

600.0 3.26331 3.12469 97.4048 97.3631 

800.0 3.26789 3.12875 129.149 129.104 

1000.0 3.27065 3.13119 160.885 160.843 



kf/km 

0.1 

0.2 

0.4 

n.6 

0.8 

1.0 

2.0 

4.0 

6.0 

8.0 
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TABLE 2.9. -' FEM Solutions for Effective Conductivity 

Staggered Array: vf/vT = 0.6 8 = 40 deg 

Mesh (63,96) Mesh (63,96) 

Flux B.C.ls Homogeneous B.C.ls 

k e-/km k e-y/km ke_/km k e-y/km 
0.379076 0.368329 0.405717 0.400320 

0.461347 0.453224 0.481726 0.477664 
.;- ~ 

0.613800 0.609633 0.624623 0.622568 

0.752967 0.751277 0.757544 0.756724 

0.881162 0.880775 0.882257 0.882072 

1.00000 1.00000 1.00000 1.00000 

1.48862 1.48255 1.51108 1.50839 / 

2.14138 2.11079 2.30237 2.28975 

2.56159 2.50693 2.93659 2.91498 

2~85559 2.78069 3.48978 3.46097 

3.07301 2.98146 3.99552 3.96101 

3.64617 3.50431 6.21894 6.16811 

4.03512 3.85413 10.2360 10.1732 

4.18626 3.98903 14.1238 14.0562 

4.26664 A.06054 17.9740 17 .9039 

4.31652 4.10483 21.8083 21.7355 

4.42024 A.19675 40.9037 40.8286 ; 

I 4.47418 4:24445 79.0154 78.9385 

4.49248 4.26062 117.109 117.031 

4.50170 4.26876 155.197 155. 120 

4.50725 4.27366 193.284 193.206 
. 

. 
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TABLE 2.10 -, FEM Solutions for Effective Conductivity 

Staggered Array: vf/vT = 0.5 e = 45 deg. 

Mesh (65,104) Mesh (65,104) 

Fl ux B. C. IS Homogeneous B.C.is 

kf/km k/km k/km 
0.1 0.450454 0.480326 

0.2 0.526679 0.549607 
~ 

'" 0.4 0.665428 0.677661 

0.6 0.788893 0.794077 

0.8 0.899751 0.900991 

1.0 1.00000 1.00000 

2.0 1.38698 1.41192 
/ 

4.0 1.84518 2.01590 

6.0 2.10881 :2.49183 

8.0 2.28038 2.90997 

10.0 2.40100 3.29708 

20.0 2.69589 5.05063 

40.0 2.87883 8.32513 

60.0 2.94654 11.5356 

80.0 2.98181 14.7284 

100.0 3.00345 17.9138 

200.0 3.05691 33.8061 

400.0 3.07063 " 65.5552 

600.0 3.07831 97.2963 

800.0 3.08216 l29.035 

1000. a 3.08448 160.774 



kf/km 

0.1 
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0.8 

1.0 

2.0 

4.0 

6.0 

8.0 

10.0 

20.0 

40.0 

60.0 

80.0 

100.0 

200.0 

400.0 

600.0 

800.0 

1000.0 

46 

TABLE 2. '] r - FEM Solutions. for Effective Conductivity 

Staggered Array: vf~vT = 0.6 -8 = 45 deg. 

Mesh (65,104) Mes h (65, 1 04 ) 

Flux B.C. IS Homogeneous B.C.ls 

k/km k/km 

0.365561 0.397308 , 

0.451522 0.475565 

0.609015 
,. 

0.621595 

0.751086 0.756348 

0.880738 0.881987 

1.00000 1.00000 

1 .48230 1.50713 -

2.10926 2.28298 / 

.. 
2.50349 2.90237 

2.77518 3.44328 

2.97398 3.93905 

3.48966 6.13300 

3.83287 10.1278 

3.96480 14.0066 

4.03464 17.8520 

4.07786 21.6833 

4.18593 40.7727 

4.21394 - -. 78.8820 

4.22969 116.975 

4.23761 155.065 

4.24237 193.152 

: 
1 , 
I 
I 

-I 
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TABLE 2.12 - FEM Solutions for Effective Conductivity 
~ 

Staggered Array: vflvT = 0.7 e = 45 deg. 

Mesh (125,216) Mesh (125,216) 

Fl ux B. C. 's Homogeneous B.C.'s 

kf/km k Ik e m k/km 

0.1 0.259939 0.288549 

0.2 0.359448 0.380639 ,. 
0.4 0.540581 0.551350 

0.6 0.705048 0.709470 

0.8 0.857350 0.858386 

1.0 1.00000 1.00000 

.2.0 1. 61117 1.63116 
/ 

/. 

4.0 2.52110 2.66187 

6.0 3.18554 3.51664 

8.0 3.69705 4.26604 

10.0 4.10426 4.94590 

20.0 5.32067 7.82265 

40.0 6.29228 12.6947 

60.0 6.70898 17.2501 

80.0 6.94062 21.7035 

100.0 7.08809 26.1113 

200.0 7.40403 47:9252 

400.0 7.57410 91.3091 

600.0 7.63257 134.635 

800.0 7.66217 177 .946 

. nOOO.O 7.68005 221. 251 
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array fiber composite (vf/vT = 0.5, e = 40 deg.) 
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FIGURE 2.14 - Effective conductivities for staggered 
array fiber composite (vf/vT,= 0.6, e = 40 deg.). 
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FIGURE 2.19 - Temperature gradient distribution for boundary 
conditions given by Eq. (2.4) for staggered 
array fiber composite (vf/vT = 0.6, e = 40 deg.) 
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III. DISCUSSION OF RESULTS 

As stated i·n Section2~'2, the primary concern in this analysis 

is the comparison of two methods of calculating effective thermal con­

ductivity, namely, homogeneous method and flux method .. 

Inspection of the general trends of the numerical results 

indicates that the effective thermal conductivity values, calculated 

by applying two methods, differ greatly, especially for kf/km » l~" 
f 

i.e. the fibers being much more conductive than the matrix. And; in 

the limit as kf/km ratio goes to infinity, the effective conductivity 

values seem to go infinity for homogeneous method, whereas that for 

flux method seems to approach to a definite value.. However, the 

methods give almost similar results for kf/k ratio in the range of 
·m 

0.4 to 2.0. 

Again, as discussed in Section 2.2, other than numerical cal­

culation of effective thermal conductivities, we have given some bounds 

CEq. 2.~ on transversely isotropic fiber composites which correspond 

to geometries \'lith angle, e = 45 deg. in our cases. 'These bounds 

are introduced in reference [lOJ -as best possible bounds in terms of 

phase volume fractions and properties for effective thermal conducti­

vity. The examination of the Figures 2.6::-8 and 2.15-17 indicates that, 



57 

the numerical results for effective thermal conductivity do not agree 

with these bounds for kf/km < 1. However, for kf/km > 1, the numeri­

cal results fall between these two bounds where the value obtained 

by homogeneous method are close to the upper bound and the values 

obtained by flux method are close to lower-bound. 

The analytic expressions obtained by strip method (See Appen­

dix A) are plotted in Figures 2.3-8 and 2.12-17 which are introduced 

as a supplement to the flux method. In general, the aggrement is 

good as expected especially for rectangular array fiber composites, 

but, the important point is that the expressions obtained by strip 

method reflect the trend in the numerical results obtained by flux 

method almost exactly. 

Another view to numerical results, obtained by homogeneous 

method and flux method is presented for the isotropic cases, i.e. 

the angie 6 = ~5 deg., for randomly chosen kf/km ratios ~f 0.4,6,80 

and 800 in Figures 2.9 and 2.18. Although, the curves are plotted 

based on three points, i.e. vf/vT ratios of 0.5, 0.6 and 0.7, and 

the rest is interpolated, the trend shows that effective thermal 

conductivity values obtained by flux method are independent of volume 

ratio, vf/vT, as kf/km »1. However, in the case of homogeneous 

method the values are highly dependent on the volume ratios, vf/vT. 

In Tables 2.1-6 and 2.7-12, we have tabulated numerical 

results obtained by using FEM \.,rith the mesh size information, e.g. 

Mesh (87,136); number of nodal points = 87, number of elements = 136. 

However, as can be seen, the mesh sizes are almost different for each 

'case. In order to obtain accurate numerical results by FEM, the aspect 
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ratio of the triangular elements, i.e. length ratio of height to base, 

should be of the order of one. Thus, for each geometry, a different 

mesh size is applied to keep the aspect ritio of one as close as 

possible. 
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IV. CONCLUSIONS AND RECOMMENDATIONS 

An analysis concerning effective conducti~ities of composite 

·materials has been performed for the unidirectional fiber composites, 

such that fibers, uniformly dispersed in the matrix, form rectangular 

and staggered patterns. On the basis of theoretical and numerical 

results presented, we reach the following conclusions concerning the 

applicability of the methods utilized and the effect of fiber geometry 

on the effective thermal conductivity. 

As stated in the discussion of results, the effective con­

ductivity values which are calculated by homogeneous method and flux 

method differ greatly from each other especially for large values of 

kf/km, i.e. kf/km »1. The values obtained by homogeneous method 

keep increasing, whereas that of flux method seems to approach to a 

definite value as kf/km ratio goes to infinity. At first sight, the 

trend in numeric values obtained by homogeneous method may seem to be 

reasonable, because the conductivity of one of the constituent phases 

dominates over the other one, as kf/k goes to infinity, and the value ·m 

of the larger conduct'ivity determ~nes the value of the effective ther-

mal conductivity as given by mixture theory which is defined by the' 

formula 
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k = _1 - (k v + kmvm) 
e v f f 

T 

where ke is the effective conductivity, vT is the total volume and 

subscripts f and m refer to fiber and matrix, respectively. But 

this is the case for constituent phases that are connected in paral­

lel (See Appendix A, electrical network analogy to heat transfer, 

problems) in the direction of heat flow. For our geometrical arrange­

ments, we should expect the effectjve thermal conductivity to approach 

to a definite value as kf/km ratio goes to. infinity, because, in the 

geometries that we analyzed, the fibers do· not touch each other. So, 

it may be concluded that the flux method gives reasonable values in 

comparison with homogeneous method. 

The large difference between numerical values obtained by two 

methods may be.a consequence of the RVE geometry that we have analyzed. 

The precise definition of RVE is that it should be large compared to . 

typical phase region dimension, e.g. fiber diameters and spacings, 

(See Section 1.1). But, the size of the RVEs, that are analyzed in 

this work, are almost of the same .order of m"agnitude as fiber dia­

meters. This cause violation of the assumptions on which theory of 

heterogeneous materials (See Section 1.2) is based. So, this may 

be a reason for homogeneous method, that is inferred from the theory 

of heterogeneous materials, to give unexpected results. 

For kf/km ra~io between 0.4 and 2.0 two methods give similar 

results; But, this is expected, because the methods must give 1 as 

Ke/km ratio for kf/km = 1. Thus, this makes the methods to give 
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similar results in the neighbourhood of ~f/km = 1, because of the con­

tinuity requirement, that is, a continuous curve maps the neighbour 

pOints to the points of the same order of magnitudes. 

Strip method gives good results especially for rectangular 

array fiber composites. The difference between the values comes from 

the assumption made in the derivation of the method. We assume that 

there is no flux compone~t normal to principal direction of heat-trans­

fer (PDHT). But, as seen from the Figures 2.10 and 2.19, in the flux 

method, the temperature gradient vector has non-zero components normal 

to PDHT- because of the geometry. The normal component of the tempera­

ture gradient to PDHT increases with increasing kf/k ratio just like m -
the trend in the effective conductivity ratios, k/km. calculated by 

strip method and flux method. 
/ 

The value of the effective conductivity of a composite material 

is bounded by the conductivities of each constituent phases. The loca­

tion of the effective -conductivity within this interval greatly depends 

on geometry of the fiber-matrix distribution. The effect of geometry 

on the values of effective conductivity depends on the length ratio 

of each phase in the strip which is taken along PDHT that effective 

thermal conductivity is calculated. 

As it can be seen from Figures 2:6-8 and 2.15-17, bounds given 

by Eq: 2.2 do not agree with the numerical results for effective 

thermal conductivity for values of kf/km < 1. Even though, no remark 

has been made on the 'appl icability 1 imits of these ,bounds in the 

reference [lOJ that these bounds are introduced, the explicitly defined 

upper and lower bounds are reversed for the case, kf/km < 1. So, these 
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bounds may be applicable only for the interval, kf/km > 1. 

Althaug~, the finite element method is a powerful technique 

that gives a great freedom to users to pursue. more fundamental prob­

lems, the input demanded is very difficult ,to prepare for realistic 

applications. That is why, this analysis is limited to some parti­

cular types of geometries. So, for further works on this subject, 

we recommend to utilize an automatic mesh generation scheme together 
, 

with the computer program given in Appendix B to ease ~he data pre-

paration task. 

- For engineering applications, the numerical results plotted 

in Figures 2.3-8 and Figures 2.12-17 are easy to use, because all 

variables are in the 'dimensionless form and cover a wide range of 

thermal conductivfty ratios, kf/km. The procedure to obtain effective 

conductivity values from these graphs is outlined below. 

Step 1. Evaluate the fiber volume fraction, vf/vT, fo~ the geometries 

given,in Figures 2.2 and 2.11 with a known angle 8. 

Step 2. Calculate the ratio of fiber thermal conductivity to matrix 

thermal conductivity ratio, kf/k . , m 

Step 3. Select the curve that corresponds to the geometrical arrange-

ment of the case that is of interest. 

Step 4. Obtain the ratio of effective thermal conductivity to matrix 

conductivity ratio, ke/km' from the curve being selected. 
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The idea behind this method is simply the electrical network 

analogy to heat transfer problems that may be found in any standard 

heat transfer text book. 

Ay,­

k:zA"4 

(a) 

(b) 

FIGURE A.l - Series and parallel one-~imensional heat ~ransfer through 
a compo~ite wall and electrical analogy. 
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The equivalent resistivity on effective conductivity of the networks 

given by Figure (A.l) are 

!J.x !J.x 
= !J.x

l 
+ !J.x I _1 + _2 

2 k1 k2 
(A.1a) 

(A.lb) 

respectively, where !J.x and !J.y are thicknesses of the wall along x and 

y directions. Now, let us turn to our problem of evaluating effective ,. 

conductivity for rectangular and staggered array fiber composites. 

b 

L/I 
I 
I 

1 
I 

I 
I 

r 

FIGURE A.2 - "Model for the strip method. 

strip 

I 
I , 

I 
I 

I 



66 

Consider the strip of infinitesima) width, dx, taken along a 

segment of fibrous composite material as shown in Figure A.2. The 
, 

effective conductivity of the strip along y direction as analogous to 

Eq. (A.la) is 

k = __ -....:b=--_~ 
e-y ...1L + b - 2y 

(A.2) 

kf, km 

Now, we have strips which are connected in parallel along x direction 

with conductivities k . e-y 
", 

Then, the effective conductivity of the 

system, as defined in Eq. (A.lb), is given by the integral, below. 

I = J. (b/l)dx . 
...1L.;. b - 2y 

k
f 

km · 

or in polar coordinates 

In order to derive an expression in general form, we take the limits of 

integration from TI/2 to' a particular angle, y. By nondimensionaliz;ng 

the integral, we obtain 

____ I ___ JTI
/

2 sin8d6 f ( y ,A) ---=....:.:..:.,;;.;;;-=--- (A.3) 
km, y (Asin6 + l)cosy 

where 
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By integrating [10] Eq. (A.3), we get the expression, 

f(y,A) 1. [( TI y) + 2 (arctan tan 1/2 + A = Acosy 2"-
/1 - A2 /1 - A2 

_ arctan 1 + A )] 
11 - A2 

for A2 < 1 (A.4) 

f(y,A) = 1 [(~ _ -0 + 1 (In tan 1/2+ A - IA2 --1 
Acosy 2 IA2 - 1 tan y/2 + A + IA2 - 1 

_ 1 n 1 + A - IA2 - 1)] for A2 > 1 (A.5) 
1 + A + IA2 - 1 

f(Y, A=l) = 1 [(~ - y) - tan(-2L _ ...:L)] 
cosy 2 4 2 

for A = 1 (A.6) 

. / 
For limit values, as kf/km ratio goes to infinity, Eq. (A.4) wl11 be 

applicable for' 

A = -2(r/b). 

Now, we are ready to evaluate an expression for effective conductivity 

for two types. 

Rectangular Array 

We will divide the RVE (Fig. 2.2-a) into three parts as shown 

below. 
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b 

For parts (1) and (3) 

and for'part (2') 

I 
I 
I , 
'@ , . 

I 
I 
I 

a/-___ ~~ 

FIGURE A.3 

which are all connected in parallel. Then, the effective thermal 

conductivity for whole RVE, as defined in Eq. (A.lb), is 

ke_ylkm = 2(r/a)(f(y=O,A) - 1) + 1 

Geometric parameters for rectangular array case are 

--L. =1 v tanS ! ~ =1 ---:...v_ 
a 7T b 7T tans 

(A.7) 
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wh~re v and e are defined in Section (2.3).. For effective conductivity 

- along x direction, it is enough to interchange a and b in all equations, 

above. 

Staggered Array 

We will divide the problem into two cases. 

i) Overlapping occurs within the RVE. Then, we will divide 

the RVE (Figure 2.11-a) i~to six parts, as shown in Figure A.4. 

b 

a ·1-
FIGURE A.4 

For parts (1), (3), (4) and (6) 
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But, for parts (2) and (5), the integral obtained -is very 

difficult to evaluate. Thus, we will approximate the fiber 

segment as shown in Figure -A.5. 

FIGURE A.5 

where 

p = r(tan y/4 + siny) 

we will take the line segment, CD, which is parallel to the 

line segment, EF, as interface of fi~er and matrix phases. 

Then, effective conductivity is 

ke_~/km = g(y,A) = l/A(tan y/4 + siny) + 1. 

Now, we are ready to construct an expression for effective 

conductivity for whole RVE, which is 

ke_y/km = (r/a)(4cosyf(y,A) + 2(1 - cosy)g(y,A)), (A.8) 
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where 

. a 
y = a rc cos (""""'2r"" - l) 

ii} No overlapping occurs within the RVE (Figure 2.ll-a). Again, 

'b 

we will divide region into six parts as shown below. 

I 
I 
I 
I 

CD l@ 
.. I 

I" I 
I 

. I 
I 

.\r--. --a 

FIGURE A.6 

For parts (1), (3), (4) and (6) 

and for parts (2) and (5)" 

I 
I 
I 
I I 
I I 
I I 
I 

(]I 0 
I I 
I I 
I I 
I I 
I I 

Then, effective conductivity for whole RVE is 

~I 



k Ik = 4( ria )(f{y=Q ,A) - 1) + l. e-y m ~ 

For staggered array case, geometric parameters are, 

~ =/ v tanS 
2n a 

r _/ v 
-b- - 2n tanS 
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(A.9) 

where v and S are defined in Section (2.3). Similarly, for 

effective conductivity along x direction, we will interchange 

a and b in all equations, above. 
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In this part, we will describe a Fortran program for Finite 

Element Method to solve the two dimensional anisotropic steady state 

heat conduction equation (Eq. 2.1) with prescribed temperature and/or 

insulated surface boundary conditions using triangular elements of 

3-noded, 6-noded and 10-noded types with first order continuity inter­

polation functions. CDC CYBER 110/815 CPU time of the code run with 

the associated sample data is 1.819-seconds. 

The mai~ program calls the seven following subroutines as 

shown in Figure B.1. 

DATA 

STIFF1 

, ASSEMB 

GREDUC 

BAKSUB 

FLUXES 

Reads the program input. 

Evaluates the element stiffness matrices and element 
loads by calling shape function routine SFRT, and 
jacobian and global derivatives routine JACOB. 

This routine assembles the element stiffnesses and 
applied loads to form the global stiffness matrix and 
force vector. 

This routine reduces the global stiffness equations by 
direct gaussian elimination. 

Performs the back substitution phase. 

Evaluates temperature gradient distribution over each 
element and averaged heat flux and temperature gradient 
over -the ~omain by calling SFRT and JACOB. 
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( DATA 

STIFFl 

,. 
ASSEMB 

GREDUC 

/ .. 
BAKSUB 

, 
FLUXES 

RESUL T -

. FIGURE B.l - Flowchart for the FEM program. 
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RESULT Writes the calculated results. 

Computer Code for FEM is given in the following part with 

terminology and data preparation information. 

AREAE 

ASLOD(NSVAB) 

ASTI F (MSTI F) 

BVALU(INODE) 

COORD(NPOIN,NDIME) 

CVALU(INODE) 

DERIV(NDIME,INODE) 

ESTIF(NEVAB,NEVAB) 

ETA ( LINT) 

EXI (LINT) 

FIXED(NSVAB) 

FLUX(IELEM,NDIME) 

FLUXX 

FLUXY 

GRADX 

GRADY 

ICODE(NDOFN) 

TERMINOLOGY 

The area of triangular element. 

The global vector of applied loads. 

The global stiffness matrix stored in 
vector form. 

Global .... derivative with respect to x. 

Coordinates of nodal paints. 

Global derivative with respect to y. 

Shape function derivatives. 

The element stiffness matrix: 

Coordinate of integration points. 

Coordinate of integration points. 

Prescribed temperature values. 

Temperature gradient over elements. 

Averaged temperature gradient in x-direction. 

Averaged temperature gradient in y-direction. 

Averaged heat flux in x-direction. 

Averaged heat flux in y-direction. 

Fixity code for each degree of freedom of 
a restrained load-local usage 

1 Temperature val ue corresponding to the 
degree of freedom is prescribed 

o Free degree of freedom. 



LINT 

LNODS(NELEM,NNODE) 

MATNO ( NfL EM) 

- MSTIF-

NBAND 

NBOUN 

NDIME 

NDOFN 

NELEM 

NEVAB 

NPOIN 

NPROP 

PROPS(NMATS,NPROP) 

REACT(NSVAB) 

DISP(NPOIN,NDOFN) 

TREAC(NPOIN,NDIME) 

WEIGHT (LI NT) 

CARD SET 1: 

CARD SET 2: 

Col s. 1-5 
6-10 
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Number of integration points. 
-

Element node numbers listed for each element. 

Material set number for each element. 

Total number of stiffness terms in the banded 
global stiffness matrix~ 

Maximum half-bandwidth for problem. 

Total number of boundary points, i.e. nodal 
points at which one or more degrees of 
freedom. are restrained'. 

Number of coordinate components. 

Number ~f degrees of freedom per nodal point. 

Total number of elements. 

Number of variables per element. 

Total number of nodal points. 

The number of material parameters. 

Material properties for each material s~t. 

Reactions for each degree of freedom. 

The nodal temperature values. 

The nodal reactions. 

Weights for numerical integration. 

DATA PREPARATION INFORMATION 
(For 3-hoded triangular elements) 

Title card (20A4)-one card. Title of the 
problem limited to 72 alphanumeric characters. 

Control Card (1615) ~ one card. 

NPOIN 
NELEM 

Total number of nodal points. 
Total number of ·elements. 
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11-15 

16-20 

21-25 

26-30 

31-35 

36-40 

41-45 

CARD SET 3: 

Col s. 1-10 

11-25 
26-40 

'CARD SET 4: 

Col s. 1-5 
6-10 

11-15 
16-20 
21-25 
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NBOUN· Total number of restrained boundary 
points at which the value of the 
degree of freedom. is prescribed. 

NMATS Total number of different materials. 

NPROP Number of independent properties. per 
material (=2). 

NNODE Number of nodal points per element 
(=3). 

NDOFN Number of degrees of freedom per node 
(=l)~ , 

NDIME Number of coordinate dimensions (=2). 

LINT Number of integration points (=1). 

Material Cards (110, 2F15.5) - one card for each 
different material. Total of NMATS cards (See 
Card Set 2.). 

JMATS Material identification number. 

PROPS(JMATS,l) Material coefficient, KX. 
PROPS(JMATS,2) Material coefficient, KY. 

Element Cards (1215) - one card for each element: 
Total of NELEM cards (See Card set 2.). 

JELEM Element number. 
LNODS(JELEM,l) 1st. Nodal connection number. 
LNODS(JELEM,2) 2nd II II II 

LNODS(JELEM,3) 3rd II II II 

MATNO(JELEM) Material Property number. 

Note: The nodal connection numbers must be listed in an anti-clockwise 
sequence starting from any node. 

CARD SET 5: 

Col s. 1-10 

11-25 
'26-40 

Nodal Coordinate Cards (I10.2F15.5) - one card 
for each node. Total of NPOIN cards (See Card 
Set 2). 

JPOIN Node number. 

COORD(JPOIN,l) 
COORD(JPOIN,2) 

The x coordinate of the node. 
The y coordinate of the node. 



CARD SET 6: 

Col s. 1-10 

11-15 

16-25 

CARD SET 7: 

Col s. 1-11 

12-22 

23-33 

78 

Restrained Node Cards (I10,I5,F10.5) - one card 
for each restrained node. Total of NBOUN cards 
(See Card Set 2). If NBOUN = 0 in Card Set 2, 
omit this card set . 

NODFX . Restrained node number. 

ICODE(l) Condition of restraint) 

o No constraint 

1 Nodal degree of freedom restrained. 

PRESC(l) The prescribed vaiue of the nodal 
variable (Temperature). 

/ 

Integration Point Cards (3Fll.6) 
Total of LINT cards (See Card Set 2) 

WEIGHT(ILINT) Weights for numerical integration. 

ETA(ILINT) Coordinate point. 

EXI(ILINT) Coordinate point. 

Note: The following numerical integration points are taken from 
reference [15]. 

Type of Element 

3-Noded 

6-Noded 

10-Noded 

Weight 

1.0 

0.333333 
0.333333 
0.333333 

-0.5625 
0.520833 
0.520833 
0.520833 

Eta Ex·, 

0.333333 0.333333 

0.5 0.5 
Q.5 0.0 
0.0 0.5 

0.333333 0.333333 
0.6 0.2 
0.2 0.6 
0.2 0.2 



C 
2 C 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
1 :::: 
14 
15 
le, 
17 
18 
19 
20 
21 

23 
24 
25 
26 
27 
28 
2'7' 

c 
C 
C 
C 
C 
C 

C 
C 
C 
C 

C 

33 C 

MAIN PROGRAM 

PROGRAM FE~l (INPUT, OUTPUT, TAPE5=INPUT, TAPEc,=OUTPUT) 
COMMON/FEMl/NPOIN,NELEM,NBOUN,NPROP,NNODE,NEVAB,NSVI'IB,NDOFN, 

+ LINT,NDIME,NBAND,NI,NO,AREA,GRADX,GRADY 

79 

COMMON/FEM2/PROPS(5,3),COORD(401,2),LNODS(250,10),IFPRE(401), 
+ WEIGHT(10),FIXED(401),ETA(10),EXIII0),MATNOI250), 
+ FLUX(250,2),XDISP(401)r~DISP(401,l),TREAC(401,1), 

+ ALAN( 250), ASTIF (25000), ASLODI 4(1), REACT< 401 ), FLUXX, 
+ FLUXY , 

FEM PROGRAI'I FOR THE SOLUTION OF TWO-DIM. 
STEADY STATE HEAT CONDUCTION EOUATION 

ASS I GN DATASET NUMBERS FOR INPUT, N I, AND OUTPLIT, NO. 

NI=5 
NO=6 

THIS SEGt1ENT CONTROLS THE CALLING, IN ORDER, 
OF ALL SUBROUTINES 

CALL DATA 
CALL STIFFI 
CALL ASSEI1E: 
CALL GREDUC 
CALL BAKSUE: 
CALL FLUXES 
CALL RES;UL T 

STOP 
END 

34 SUBROUTINE DATA 
::::5. DIMEN::;lON ICODE(2),PRESC(3),TITLEI20) 
36 COI1MON/FEMI/NPOIN,NELEM,NBOUN, NPROP,NNODE,NEVAB,NSVAB, NDOFN, 
37 + LINT,NDII1E,NBAND,NI,NO,AREA,ORADX,GRADY 
38 CU~IMON/FI::M2/PROIJ~; I 5,3) , COOHD ('1·01 ;2) , LNOLlS (;;:!t)C), 10) , 1 H'IU~ I 401 ) , 
39 + WEIGHT(10),FIXED(401),ETAI10),EXI(10),MATNO(250), 
40 + FLUX(250,2),XDISP(401),TDISP(401,1),TREAC(401,1), 
41 + ALAN(250), ASTIF( 250(0), ASLOD (4Ul), REACT (40ll, FLUXX, 
42 + FLUXY 
43 
44 
4S 
46 

,47 
48 

53 
54 
55 

57 
58 
59 
60 
61 

63 
cA 
65 
66 
67 

6'? 
70 
71 
72 
7:::: 
74 
75 
76 
77 
7€: 
n 
8') 

C 
C 
C 
C 
C 

c 
C 
r' 

C 
I-

e 

e 
C 
C 
e 

DATA I1WUT SUBROUTINE 

READ AND WRITE THE ,PROBLEM TITLE 
I 

READ(NI,915) TITLE 
~JRITEnlO, 915) TITLE' 

,;jl~5 For,"'A n-2i)A'l)' 

READ AND WRITE THE CONTROL DATA 

READ(NI,900) NPOIN,NELEM,NBOUN,NMATS,NPROP,NNODE,NDOFN,NDIME, 
+ LINT 

9')0 FOR~lAT< 1615) 
~JRITEI NO, 9(5) NPOIN, NELEM, NBOUN, NI1AT2., NPROP ,IJIKlDE, NDOFN, NDI11E, 

+ LINT ' 
905 FORI1ATIII,lX,7HNPOIN =,I5,3X,7HNELEM =,I5,3X,7HNBOUN =,I5,3X, 

+ 7HNMATS =,15,II,lX,7HNPROP =,I5,3X,7HNNODE =,15,3X,7HNDOFN ~, 
+ 15, ::::X, 7111'JOUIE =, 15, ;;:X, 6HLINT =, 15) 

950 

10 
910 

~Jc.o 

NSVAB~NPOIN.NDOFN 

NEVAB=NNODE-NDOFN 

READ AND WRITE THE MATERIAL PROPEkTIES 

~JRITE I 140, 950} 
FORI'iAT (lHO, 5X, 19HMATERIAL PROPERTIES) 
DO 10 U1ATS=l,N~IATS 
READ (NI, 910) ,J~IATS, (PROPS:;(JMAn;, I PROF' ), IPROP=l,.NPROP) 
~JR1TE(NO, 'no) ~II'lATS, (PROP!?IJ~lATS, IPROP), I PROP"; 1 ,NPROP) 
FORMATlI10,4FI5.5) : 

READ AND I~RITE THE ELEMENT NODAL 
COI'l'~ECTIONS I 

VJRITE(NO, '?60) 
FORMATl1HO,2X,2HEL,3X,5HNODES,3X,4HMAT.) 
DO 20 I ELEI1= 1 , NELEM 
READ(NI,920) JELEM, (LNODSIJELEM.INODE),INODE=l,NNODE), 



81 
82 
83 
84 
85 
8/;' 
87 

94 

9/:" 
97 

r· 
c 
C 

C 
C 
r· 
C 

+ l'IA TNO (,JELEM) 
20 I-JR ITE (NO, 920) .JELEM, (LNOI)S (.JELEI1, I NODE) , I NODE= 1 , NNODE) , 

+ MATNO(JELEM) 
920 FORMAT< 1215) 

970 

30 
930 

READ AND 14R ITE NODAL CIJORD I NA TES 

l-JRITE(NO, 970) 
FORMAT(lHO,5X,4HNODE,5X,6HCOORD.) 
DO 30 1POIN=l,NP01N 
READ(NI,930) ,JPDIN, (COORD(JPOIN.IDIME).1DIME=l.NDIME) 
WRITE(NO,930) JPOIN~(COORD(,JPOIN,IDIME).IDIME=l,NDIME) 

FORMAT(II0,2F15.5) 

READ AND WHITE BOUNDARY -C:·ONDITitiNs 
AND STORE IN.GLOBAL VECTORS 

98 DO 40 ISVAB=l,NSVAB 
99 IFPRE(1SVAB)=O 

100 40 FIXED(ISVAB)=O.O 
10 1 I-JR"ITE (NO. 9:=:0) 
102 9:::0 FORMAT< IHO. 1 X, 28HRESTRAINED NODES. FI XITY CODE. 
103 + 22H AND PHESCRIBED VALUES) 
104 IF(NBOUN.EQ.O) RETURN 
105 DO 50 IBOUN~l.NBOUN 

80 . 

lCk. READ(NI. 940) NODFX, (ICODE( IDOFN). PRESC (IDOFN), IDOFN=I, NDOFN) 
107 WRITE(NO,940) NODFX, (ICODE (IDOFN), PRESC( IDCIFN). IDOFN:=l. NDOFN) 
108 940 FORMAT(II0,2(I5.FI0.5» 
109 DO 50 IDOFN=l.NDOFN 
110 INDEX=(NODFX-l )l<NDOFN+IDOFN 
111 IFPRE(INDEX)=ICODE(IDOFN) 
112 FIXED(INDEX)=PRESC(IDOFN) 
113 50 CONTINUE 
114 C 
115 C READ AND WRITE INTEGF,ATION POINTS 
116 C AND CORRESPONDING l"EIGHTS 
117 C 
118 
119 
120 

READ(NI.925) (WEIGHT(I),ETA(I),EXI(I),I=I,LINT) 
WRITE(NO~925) (WEIGHT(I).ETA(1),EXI(I),I=I,LINT) 

925 FORMAJ(3Fll.6) 
121 C • 
1~~ RETURN 
123 END 
124 C 

'125 
12/':-
127 
12:::: 
129 
130 
131 
132 
13:::: 
1::::4 
135 
1~:6 

137 
138 
1::::9 
14(, 
141 
142 
14:::: 
144 
145 
146 
147 
14:3 
149 
150 
151 
152 
153 
1::'4 
155 
J5:S 
157" 
15::: 
159 
160 

c 
c: 
C 
C 

C 
C 
C 

c 
C 
C 

SUBROUTINE STIFFI 
DIMENSION ESTIF(10,iO),BVAL0l10),CVALU(10),EJAC(2,2),DERIV(2.10) 
CtH1MON/FEM'I/NPOIN, NELEM, NBOUN, NPROP. NNODE, NEVAB, NSVAB, NDOFN, 

+ LI NT, N,D I 1'1E ,N8AND, NI ,'NO, AREA, GRADX, GRADY 
COMMON/FEM2/PROPS(5,3),COOHD(401,2),LNODS(250,10),IFPRE(401), 

+ WEIGHT(lO),FIXED(401),ETA(10),EXI(10),MATNO(250), 
+ FLUX(250,2),XDISP(401).TDISPI401,1).TREAC(401,1), 
i· ALAN( 250), ASTIF (25000), A:3LOD 14(1), REACT(401), FLUXX, 
+ FLUXY 

EVALUATION OF ELEMENT STIFFNESS ~lATRICES 
AND ELEI1ENT LOADS 

OPEN(10,FILE='TEMP') 

LOOP OVER EACH ELErlENT 

DO 100 I ELEl-l= 1 , NELEI'l 
DO 10 IEVAB=I,NEVAB 
DO 10 dEVAB=l,NEVAB 

10 ESTIF(IEVAB,JEVAB)=O.O 
JELEM=IELEM .. 
LPROP~MATNOIIELEM) 

XCOEF=PROPSILPROP, 1) 
YCOEF=PROPS(LPROP,2) 

EW,LUATE THE ELHIENT ST.rFFt~ESSES 

DO ::::0 IEVAB=I, NEVAB I 

DO 30 JEVAB=I,NEVAB 
[II) 30 K=I. LINT 
ETASP=ETAil() 

. EX ISP=-EX I (to 
1~=I~EIGHT(I-:) 

CALL SFRT (DERIV,ETASP,EXISP,NNODE) 
CAL_L . .JACOB (NNODE, JELEI1, DERIY, COORD, LNODS, E~IAC, DET, BVALU. CVALU) 

.' 



81 

161 30 ESTIF( IEVAB, .JEVAB) =ESTIF( IEVAB, ,JEVAB) +Wi<i( XCOI£Fi<iBVALlJ( IEVAB) i<iE:V(,LU( 
162 +JEVAB)+YCOEF~CVALU(IEVAB)i<iCVALU(JEVAB»/DET 

163 IoIRITE( 10) ESTIF 
164 C 
165 100 CONTINUE 
166 C 
167 RETURN 
168 END 
169 C 
170 SUBROUTINE JACOB(NNODE,JELEM,DERIV,COORD,LNODS,EJAC,DET,BVALU, 
171 +CVALU) \ 
172 DIMENSION BVALU(10),CVALU(10),EJAC(2,2),LNODS(250,10),DERIV(2,10), 
173 + COORD(401,2) 
174 C 
175 ' C EVALUATION OF JACOBIAN AND 
176 C COt'WONENTS OF GLOBAL DERIVATIVE VECTOR 
177 C 
17:::: 
179 
180 
181 C 

DO 40 1=1,2 
DO 40 ,J=1,2 

40 EJAC(I,J)=O.O 

IB2 C EVALUATE JACOBIAN 
183 C 
184 DO 20 1=1,2 
1::,:5 DO 20 ,J=1, 2 . 
186 DO 10 1(=1, NNODE 
187 NODEI=LNODS(JELEM,I() 
18B 10.E.JAC(I,J)=EJAC(I,J)+DERIV(I,I()i<iCOORD(NODEI,JI 

, 189 20 CONTINUE ,; 
190 
In 
192 
193 
194 
195 
196 
1'71 
198 
19'" 
200 
201 
202 
203 
204 
205 

2_07 
208 
209 
210 
211 
212 
21~: 

214 
215 
216 
217 
218 
219 
220 
221 
222 

224 
225 
226 
227 
228 
229 
230 

232 

234 

237 

'240 

C 

C 
C 
c 

C 

C 

c 
c 
C 
r· 
c 

.c 
c 

:::0 

DET=EJAC(I,1)",EJAC(2,2)-EJAC(I,2)",EJAC(2,1) 
IF (NNtiDE.EQ.3) DET=2.0"'DET 
DO 30 K=I,NNODE 

EVALUATE COMPONENTS OF GLOBAL DERIVATIVE VECTOR 

BVAl~(KI=EJAC(2,2)MDERIV(I,K)-EJAC(I,2)RDERIV(2,1() 

CVAL U 00 "'EJAC ( 1 • 1 ) l>DEfU V (~!, f() -EJAC (2, 1 ) ",LJEf<l V ( 1 , f() 

RETURN 
END 

SUBROUTINE ASSEHB 
COr'lNON/FEMlINPOIN, NELEM', NBOUN, NPROP, NNODE, NEVAB, N:O::VAB, NDOFN, 

+ L I NT , ND I,ME, NBAND. N I , NO, AREA, GRADX, GRADY -"-'7"<""- _____ _ 
COMMON/FEM2/pr~OF'::;,(5. ::i)-,(:ciO"RtiT401. 2l;"LNCiD!3f250-;ToT~IFPRE (401), 

+ \ WEIGHT(10),FIXED(401).ETA(10).EXI(10),MATNO(2501. 
+ FLUX(2~0,2),XDISP!4011.TDISP(401.1).TREAC!401.1). 
+ ALAN( 250). ASTIF (25000) • ASLOD! 4(1). REACT< 4(1) • FLUXX. 
+ FLUXY 

DH1EN:,':ION EST !F( 10. 10) 
DATA MSTIF/250001 

THIS ROUTINE ASSE~1BLES THE ELEMENT 
STlFFNESSES AND AND APPLIED LOADS TO FORl1 
THE GLOBAL STIFFNES:;: I'IATRI x AND FORCE. VEClOR 

NFUNC!I.J'=(J-I)l>(2"'NSVAB+I-J+I)/2+I 
REl~ltm 10 
DO 5 ISTIF=1.MSTIF 

5 ASTIF(ISTIF)=O.O 
DO 10 ISVAB=l.NSVAB 
ASLOD!ISVAB)=O.O 

10 CONTINUE 
NBAND-=O 
DO 30 1ELEM=I.NELEM 
READ! 10) ESTIF 
DO 20 INODE=1.NNODE 
NODEI=LNODS(IELEM.INODE) 
DO 20 IDOFN=l.NDOFN 
NROWS=(NODEI-1)NNDOFN+ICOFN 
NROWE=(INODE-l)*NDOFN+JbOFN 

ASSE~lF:LE THE ELEMENT STIFFNESS MATRICES 

DO 20 JNODE~I.NNUDE 
NODEJ=LNODS!IELEM.JNODEI 
DO 20 ,J,DOFN= 1. NDOFN 
NCOLS=(NODEJ-l)l>NDOFN+JDOFN 
NCOLE=!JNODE-l)",NDOFN+JDOFN 



241 
242 
243 
244 
245 
246 
247 
248 
249 
250 

C 

IF(NCOl.S.LT;NnOL~S) GO TO 20 
NO I FF"'NCOLS-NROI-IS 
IF(NOIFF.GT.NBAND) NBAND=NDIFF 
NGASH=NFUNC (NROWS, NCOLS) , 
ASTIF(NGASH)=ASTIF(NGASH)+ESTIF(NROWE,NCOLE) 

20 CONTINUE 
30 CONTINUE 

NHALF=NBAND+l 
WRITE(NO,900) NHALF 

. 251--
-,c---, 
tr-...J.:.. 

- ';'00 -FORHATTiH6, 5X-; 33f:ll'lAX. - HALF:"'E:AtJDWfDTH- F---OR PRbf:::n~r'r=.~ -I ::;-f 
INDEX =N:=';VAB-NBAND 

253 
254 
255 
256 
257 C 

NSTlF=NFUNC(INDEX,NSVAB) 
IF(NSTIF.LE.MSTIF) RETURN 
WRITE(NO,91O) 

910 FORMAT(IHO,5X,24HSTIFFNESS SPACE EXCEEDED) 

258 STOP 
2::;9 END 
260 C 
261 SUBROUTINE GREDUC 

82 

262 COt-II'lON/FEMI/NPOIN, NELEM, NBOUN, NPROP, NNODE, NEVAB, N:WAB, NDOFN, 
263 + LINT,NDIME,NBAND,NI,NO,AREA,GRADX,GRADY 
264 COMMON/FEI'12/PROPS( 5, 3), COORD( 401,2), LNOD$( 250,10), IFPRE (401 j, 
26::i + WEIGtrr ( 10) , F I XED (401) , ETA ( 10), EX 1 ( 10), I'IATNO (250) , 
266 + FLUX(250,2),XDISP(401),TDISPI401,1),TREAC(401,l), 
267 ALAN (250), ASTlF (25000), ASLOD (401), REACT (401), FLUXX, 
268 + FLUXY 
269 C 
270 
271 
272 

C 
C 
C 

THIS; ROUTINE REDUCES THe: GLOBr~L :,HIFFNE:::;2, 
EGWATIONS BY DIRECT GAUSSIAN ELIMINATION 

273 NFUNC(I,J)=(J-II.(2.NSVAB+1-J+II/2+1 
274 t4EC"lNS=NSVAB 
275 DO 50 IE8NS=I.NEQNS 
276 NLOCA=IEC"!NS+NBAND 
277 IF(NLOCA.GT.NEQNS) NLOCA=NH1NS 
27::: IF(IFPRE(IEQNS)'EO.ll GO TO :;:(j 
279 C 
2:30 
281 

283 
284 
285 

287 

289 
290 
291 
292 
293 
2';'4 
295 

297 
298 
2'?9 
30(' 
::;:01 

::;:03 
;;:04 
~:05 

~:OC. 

;;:07 
·30t: 
;::09 
:;:10 
:;:11 
;::12 
;;:1;:: 
:;:14 
;::15 
;::16 
817~ . 
:313 
;;:19 
:'::20 

c 
C 

C 
C 
C 

C 

C 

1(1 

20 

:;:0 

40 

50 

60 
900 

REDUCE EC!UATIONS 

NGASH=NFUNCIIEQNS,IEQNS) 
PIVOT=ASTIF(NGASH) 
IF(ABS(PIVOTI.LT.1.0E-lG) GO TO 60 
IF(IEQNS.EQ.NEQNi) ~O TO ~O 
IEON1=IEQNS+l ' 
no 20 IROW~=iEQ~1:NLOCA 
I~GASH=NFUNC( IEQNS, !ROWS) '; 
FACTR=ASTIFINGASH)fPIVOT 
IF(FACTR.EQ.O.O) GO TO 20 
DO 10 ICOLS=IEQN1.NLOCA 
IF(IROWS.GT.ICOLS) GO'TO 10 
NGESH=NFUNC(IROWS,ICOLS) 

'NGI:::;H=NFUNC( lEONS, ICOLS) 
ASTIF(NGESH)=ASTIF(NGESH)-FACTR~ASTIF(NGISH) 

CONTINUE 
ASLODCIROWS)=ASLOD(IROWS)-FACTR-ASLODCIEQNS) 
CONTINUE 
GO TO 50 

ADJUST LOAD~; FOR PRESCR I BED D I SF'LACEMENTS 

DO 40 IROW::;=IEm~S, NLOCA 
NGASH=NFUNC(IEONS,IROWS) 
ASLOD( IRO~J::;)=AS;LOD( IROWS )-AST IFINGASH).FI XED( IEc"H~S I 
CONTINUE 
NGISH=NFUNC(IEQNS,IEQNS) 
ASTIF(NGISH)=0.0 
CONTINUE 
RETURN " 
WRITEINO,900) PIVOT,IEONS 
FORI1ATC::'X,17HINCORRECT P1VOT =, F20. ,!o, 5X, I:?HE:OUATION NO: ,15) 

STOP 
END 

,SUBROUTINE BAKSUB 
COI'U'10N/FEI"ll/NPOIN, NELEM, NBOUN, NPROP, NNODE, NEVAB, NSVAB, tJDOFN, 

+ , LINT, Nfl 1 ME, NBAND, N I, NO, ,;r;F.A, GRADX , GF\ADY 
DJI'lMON/FEM2/PROPSI5,3),COORD(4Ql,2),LNODSC250, 10), IFPRE(401), 



321 
322 
"':0-,":0 .... , .... 
324 
325 
326 
327 
32:=: 
329 
330 
331 
332 
333 
334 
3~:5 

336 
337 
338 

;:::40 
341 
342 
343 
344· 
345 

, ;::46 
347 
348 
;::49 

'350 

::::54 

~:58 

35'? 

363 

365 
:;:66 

369 
370 
371 
;;:72 
;;:73 
;::74 
:375 
376 
377 
378 
;;7'" 
:'::80 

3:=:2 

;;::::7 
~:~:8 

390 
3'7'1 

393 
394 
395_ 
39c. 

398 
3-;J9 
400 

c 
c 
c 
C 

c 

C 

C 
C 
r' 
C 
C 

c 
C 
C 

c 
C 

83 

+ 
+ 
+ 
+ 

WEIGHT(10),FIXED(401),ETA(10),EXI(10),MATNO(250), 
FLUX(250,2),XDISP(4011,TDISP(401,1),TREAC(401,1), 
ALAN(250),ASTIF(25000),ASLOD(401),REACT(401),FLUXX, 
FLUXY 

THIS ROUTINE PERFOMS THE BA(~ 
SUBSTITUTION PHASE 

NFUNC(I,J)=(J-I)~(2MNSVAB+I-J+I)/2+I 

NEQNS=NSVAB 
DO 5 IEQNS=I,NEQNS 
REACT(IEQNS)=O.O 

5 CONTINUE 
NEON 1 =NEI!!!~S+ 1 
DO 30 IEQNS=I,NEONS 
NBACK=NEONI-IEQNS 
NGASH=NFUNC (NBACI<, NBACI() 
PIVOT=ASTIF(NGASH) 
RE:3 I D=A:3LOD ( NBACK) 
IF(NBACK.EQ.NEQNS) GO TO 20 
NBAC 1 =NBAn~ + 1 
NLOCA=NBAC!(+NBAND 
IF(NLOCA.GT.NEQNSI NLOCA=NEQNS, 
DO 10 ICOLS=NBAC1,NLOCA 
NGESH=NFUNC ('I'lBACK, I COLS) 
RESID=RESID-ASTIF(NGESH)MXDISP(lCOLS) 

10 CONTINUE 
20 IF(IFPRE(NBACK).EO.O) iDISP(NBACI()=RESlD/PIVOT 

IF ( IFPRE (NBACI(). EQ. 1) "XDISP (NBACK j =FI XED (NB';CK i 
IF ( I FPRE (NBACK ) • EI7!. 1) REACT (NBACI() =-RES I [I 

30 CONTINUE 
KOUNT=O 
DO 40 IPOIN=I,NPOIN 
DO 40 IDOFN=I,NDOFN 
KOUNT=KOUNT+l 
TDISP(IPOIN,lDOFN)=XDISP(KOUNT) 

40 TREAC(IPOIN,IDOFN)=REACT(I(OUNT) 

~;I]BR(IUT fl'jE--F"CLixES -- -- . -. -. - -- ------.- - -_. -
DIMENSION BVALU(10),CVALU(10),EJAC(2,2),DERIV(2,10) 
COM~ICIN/FEMI INPOIN, NELE~t~ NBOUN, NPFlOP, NNODE, NEVAB, NSVAB, NDOFN, 

+ . LINT ,NOHlE: I~BAND, NI, NO, AREA, GRAOX, GRADY 

/ 

. COffi10N/FEM2'PROPS~5,~),COORDr401,2),LNODS(250,10),IFPRE(401), 
+ \ WEIGHT< 11), FI XED( 4(1), ETA( 10), EXl (1(1) .11ATNO(250), 
+ FLUX(250,2I,XDISP(401),TDISP(401,l),TREAC(401,1), 
+ ALAN(250) , ASTlF (25000), ASLOD( 4(1), REACT< 4(1), FLUXX, 
+ FLUXY 

EVALUATION OF TENPERATURE GF<ADIENT OVER EACH 
ELHtENT AND OF AVERAGED HEAT FLUX AND AVERAGED 
TE~tPERATURE GRADIENT OVER THE DOMAIN 

HEATX=O.O 
HEATY=O.(I 
ACiX=(I.O 
,'\GY=O.O 
AREA=O. 0' 

LOOP OVER EACH ELE~tENT 

DO 30 IELEM=l,NELEN 
.JELEI1= I ELEI1 
LPROP=MATNO( lELE~tl 
XCOCF=PROPS(LPROP,I) 
YCOEF=PROPSILPROP,2) 
AREAE=O.O 
OXSUM=O.O 
OY:3UI1=(I. (I 
DO 10 1':=1, LINT 
ETASP=ETA(J() 
EX ISP=EX I 00 
\~=\~E I GHT (I<) 

" 

CALL SFRTIDERIV,ETASP,EXISP,NNODE) 
CALL .JACOB(NNODE,.JELEM,DERIV,COORD,LNODS,EJAC,DET,BVALU,CVALU) 
AREAE,=AF,EAE +W«OET 12. (I. 

EVALUATE TEMPERATURE GRADINT OVER EACH ELENENT 



401 
402 
403 
404 
405 
406 
407-
40::: 
409 
410 
411 
412 
413 
414 
415 
41c. 
417 
41::: 
419 
420 
421 
4':'':' 
423 
424 
425 
426 
427 
428 
4 ":J':'/ 

430 
431 

c 

c 
c 
C 
C 

C 

c 

C 

DO 10 INODE=I,NNODE 
NODEl=LNODS(IELEM,INODEI 
QXSUM=QXSUM+W*BVALU(INODE)NTDISP(NODEI,11 

10 QYSUMcQYSUM+W.CVALU(INODEI~TDISPCNODEl,11 
IF(NNODE.NE.31GO TO 40 _______ _ 
AREAE=AREAE/2.0 

40 QXSUM=QXSUM/2.0 
(!,YSUM:.QYSUM/2. (I 
FLUXCIELEM,II=QXSUM/AREAE 
FLUX ( I ELEM, 2) =(!.YSUMI AREAE 

EVALUATE AVERAGED TEMPERr~TURE GRADIENT AND 
HEAT FLUX OVER THE' DOr1AIN 

AREA=AREA+AHEAE 
ALANCIELEMI=AREAE 
HEATX=HEA TX + XCOEF *(iXSUM 
HEATY=HEATY+YCOEFl>:OYSUM 
AGX=AGX+(!XSUM 

~:O AGY=AGY+QYSU"l 
FLUXX=HEATX/AREA 
FLUXY=HEATY/AREA 
GRADX=AGX/Af\EA 
GRADY=AGY/AREA 

RETURN 
END 

SUDROUT I NE :3FRT C DER I V, ET ASP, E X I SP, NNODE I 
DIMENSION DERIVC2,10) 

THIS ROUTINE CONTAINS DERIVATIVES OF SHAPE 
FUr~CTIONS FOR 3-NODED, 6-NODED AND 10-NODED 
TRIANGULAR ELEMENTS 

S"'EXH:;P 
T=ET.'l:3P 
f.·=1.0-::;-T 
IFC~NODE.NE.31 GO TO 10 

436 
437 
4:::8 
4·39 
440 
441 
442 
443 
444 
445 
446 
447 
448 
449 
45(1 
451 
452 

C FOR 3-NODED TRIANGULAR ELEMENTS 
C 

C 

DERIVCl,I)=-1.0 -
DERIV(I,21=1.O 

. DER I V C 1 • ~: I =0. (i 
DER I V C 2, 1 i' =- i . 0 
DERIVC2.21=O.O 
DERIVC2,3i>=I.0 

10 IFINNODE.NE.6) GO TO 20 

C FOR 6-NODED TR I ANGULAR ELEMENT::; 
453 
4~.4 

455 
45'::-
457 
458 

C 
DERIVCl,l)=-4.0.P+l.0 
DERIVC2,l):.-4.0MP+l.0 
DERIVIl,2)=4.0MCP-Si 
DERIVC2.21=-4.0MS 
OERIVll.3)=-1.0+4.0RS 

459 DERIVC2,31=0.0 
460 DERIV(I,4)=4.0MT 
461 DERIV(2,41=4.0MS 
462 DERIV(l,51=0.O 
463 DERIVC2,51=-1.0+4.0MT 
464 DERIV(I.61=-4.0RT 
465 DERIV(2,6)=4.0-4.0.S-B.OMT 
466 20 IFINNODE.NE.IOI RETURN 
467 C 
4".::: C FOR IO-NODED lRIANGULI"R El.EMEtH2. 
469 C 
470 
471 
472 
47~: 

474 
475. 
476 
477 
47::: . 
479 
4:=:0 

DERIV(l,I)=C-27.0*P •• ~+18.0*P-2.0'/2.0 
DERIVC2,l'=C-27.0.PMM2~18.0*P-2.0'/2;O 
DERIV ( I, 21 =9. (1M I::::. OMF'-"::<I2-P-6. Oi<:::;*P+S) 12. (, 
DERIVC2.2'=9.0MSM(-6.0MP+l.01/2.0 
DERIV(I.31=9.0·(6.0.S*PrP-3.0*S.*2+S1/2.0 
DERIVC2,3'=-9.0*(3.0MSMM2-S1/2.0 
DERIV(I,4)=C27.0MSM.2-18.0*S+2.0)/2.0 
DERIV(2.4'=0.O _ 
DERIVI1,51=9.0.TM(6.0MS-I.01/2.0 
lIEnI V (2,5 I =-$'.0*1 3. O',~:<:;:2--S) 12. (I 
DERIVCI,61=9.0.C::::.0.T •• 2-TI/1.0 

- . 
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481 
482 
483 
484 
485 
486 
487 
488 
489 
490 
491 
492 
493 
494 
495 
4;'6 
497 
49E: 
499 
500 
501 
502 
503 
504 
505 
506 
507 
508 
509 
510 
511 
512 
513 
514 
515 

c 

c 

c 
C 
C 
C. 
C 

900 

10 

910 
C 
C 
C 
C 

DERIVC2,6)=9.0MSMC6.0MT-l.0l/2.0 
DERIVC1,7)=O.0 
DERIVC2,7)=C27.0MTM.2-18.0MT+2.01/2.0 
DERIVC1,8)=-9.0M(3.0MT •• 2-T)/2.0 
DERIVC2,8)=9.0MC6.0*T*P-P-3.0*TM.2+T)/2.0 
DERIVC1,9)=9.0.T.C-6.0.P+l.0)/2.0 
DERIVC2, 9) =9. O. (~:. OMPMM2-P-6. o.rpMT+T) 12. 0 
DERIVI1,10)=27.0.TNCP-S) 
DERIV(2,10)=27.0.SM(P-TI 

RETURN 
END 

SUBROUTINE RESULT 
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COl11'10N/FEM I/NPO I N, NELEM, NBOUN, I~PROP, NNODE, NEVAB, NSVAB, NDOFN, 
+ LINT,NDIME,NBAND,NI,NO,AREA,GRADX.GRADV 

COMMON/FEM2/PROPSC5,3).COORDI401,2),LNODSC250,10),IFPRE(401), 
+ WEIGHTII0),FIXED(401),ETAII0),EXI(10),MATNOC250), 
+ FLUX(250.2),XDISPC401),TDISPC401,l),TREACC401,l), 
+ ALAN(250) , ASTIF C250(0) , ASLOD( 4(1), F(EACTC401 ), FLUXX, 
+ FLUXY 

OUTPUT OF RESULTS 

~JRITE THE NODAL TEMPERATURE AND REACTION:=; 

I·JRITE 1 NO, 9(0) 
FORMAT (IHO, 5X, 4HNODE, IX, 131IDISPLACEMENTS, :::X, 9HF(EACTION~;) 
DO 10 IPOIN=I.NPOIN ' 
WRITECNO,910) IPOIN, CTDISP(IPOIN,IDOFNI,IDOFN=l,NDOFN)i 

+ (TREACCIPOIN,IDOFNI,IDOFN=I.NDOFNI 
FORMATCI10,3EI4.6) 

WRITE COMPONENTS OF TEMPERATURE GnADINENT VECTOR 
OVER EACH ELEMENT AND AREA OF EACH ELEMENT 

517 WRITE(NO,920) 
920 51;:;:' FQRI1AT (IHO, 2X, 7HELEMENT;'~:X;-9FlG-F\An-IriI X, 5X, 9HGRAD -Itey ;5X; 5HARE'AF.. )-'- -

519 DO 20 IELEM=l,NELEM ' 
20 520 WRITECNO,910) IELEM, C FLUXCIELEM,IDIME),IDIME=I,NDIME),ALANCIELF..M) 

521 C 
522 
523 
524 
525 
526 
527 
52:=: 
529 
5:::::0 
531 
532 
533 
534 
C'-Ie:' 
--1';",-' 

~1:37 

538 
5~:'? 

540 
541 
542 
54:~: 

544 
·545 

54'~ 

550 
551 

554 
!:I55 

55:':: 
559 
560 

c 
c 
c 

C 
C 
C 
C 

c 

c 
c 
c 
C 
C 
C 

WnITE COMPONENTS OF AVERAGED IIEAT FLUX AND AVERAGED 
TEMPERA ~!JRE GRAD I ENT AND AREA OVER THE DOl1A I N 

WRITE(NO;~30) FLUXX,F~0XY,GRADX,GRADY.AREA 
;'30 'FORI"IAT !lHO,.l X, 19l-jAVEHAGE FLUX IN X =, E14. C:" I, 2X, 19HAVEI~AGE FLUX IN 

+ Y =,EI4.6~/,2X,19HAVERAGE GRAD IN X =,E14.6,I,2X, 19HAVERAGE GRAD 
+IN Y ~,EI4.6,~,2X,~HAREA,14X,IH~,E14.6) 

EVALUATE AND WRITE THE COMPONENTS OF EFFECTIVE 
CONDUCTIVITY TENSOR IN THE PRINCIPAL DIRECTION:=; 

IF CGRADX.EQ.O.O) GO TO 11 
, EI<X=FLUXX/GRADX 

WRITECNO,9401 EKX 
940 FORMAT(2X,2HKX,16X,IH=,E14.6) 

11 IFCGRADY.E8.0:0) GO TO 12 
[KY=FLUXY/GRADY 
~JR I TE (NO, ',:;'50) EI(Y 

950 FORMATC2X,2HKY,16X,lH=,E14.6) 

12 RETURN 
END 

RETURN 
END 

SMIPLE DATA 

2 "" 3 4 5 Co 
12:::45E.7E~901234~,67:=:·?O 1 ~3456~890 12:34567890 1 '23.4~,:'::,78·;/l) 12:34567:3'~(J 

HEAT CONDUCTION OVE~ TWO P!-lA:=;E COI'lPO'; I TE 
-,<= 
.:,. ..... 1 :::2 16 2 2 ~~ 1 2 1 

100000 1000(1(1 
2 200000 200000 
1 '2 7 1 

2 1 7 6 1 
:3 2 3 E: 1 
4 -, 

". ::; 7 1 



... 
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561 5 ::: .q 9 1 
562 6 3 9 8 1 
ti63 I 4- ~ 

~, 10 1 
5/~·4 :::: 4 10 9 1 
565 9 t';' 7 1':' 1 
566 10 6 12 11 1 
567 11 7 8 1'" ~. 1 
56::: 12 7 13 1-' ~ 1 
569 13 8 '? 14 1 
570 14 .-. 

0::. 14 I'" ~. 1 
571 15 5' 10 15 1 
572 ItS 9 15 14 1 
573 17 11 12 17 ~, 

~ 

574 1::: 11 17 16 2 • 575 1 ';! 12 13 1:3 2 
~57c. 20 12 1::: 17 2 
577 21 13 1'1 19 2 
578 22 1'" ~. 19 1':' 'J 2 
579 23 14 15 20 2 
5:30 24 14 20 19 2 
581 25 ItS 17 22 2 
582 26 16 22 21 2 
583 27 17 18 23 ~, 

'" 5r::4 28 17 23 '-,--, 
~.:.. 2 

585 29 Ie. 
~. 19 24 :2 

586 30 1:3 24 2:;: 2 
587 ::::1 19 20 ~,,,, 

.:,.. ... 1 
~, 

'" 5::::::: 32 19 '")'" ,,:,--1 24 ~. 

'" 
589 1 000000 ", (100000 
5';'() 2 025000 000000 
591 3 050000 000000 
592 4 075000 000000 
59::: r 

~, 100000 000000 
j'::~4 6 000000 025000 
59~ 7 025000 025000 
5'?6 !;: 05~IOOO 025000 
597 ~I 075000 025000 
5'~8 'I .) 1000(11) O~·!f.)OOO 
5;/';1 11 (100000 O::~OO(lO 

600 12 025000 050000 
601 I'" '-' (,5000(1 050000 
602 14 075000 05(11)00 
60~: 15 100000 ... 050000 
604 16 0000(11)' .;". 0750.00 
t.(J5 17 '025000 075000 
o'.E.06 1::: 050000 075000 
607 19 07:5000 075000 
60::: 20 10000(' 0750i)C, 
609 21 000000 1000(11) 
1;'10 22 0;'25000 1000(1(. 
611 23 050000 100000 
'~12 24 075000 100000 
613 ',r ",oJ 100000 100000 
614 1 000000 
615 .2 1 025000 
61e. 3 1 050000 
617 4 1 075000 
c.1::: 5 1 100000 
619 10 1 125000 
620 15 r 150000 
,::'21 20 1 ,17~;OOO 

tS22 25 1 200000 
"':.2:::: 24 1 17~;OOO 

624 2~: 1 15000(. 
c.25 22 1 125000 
626 ~!l 1 10000(' 
627 1 ,,:. 1 075000 
62:=: 11 1 050000 

-----"E.29 -...---- c· 1 025000 
O~:1:3:::~33 c.:;a) 100000(. (J33:3~::~:3 
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