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ABSTRACT

The validity of two methods of calcu]atﬁng effective thermal
conductivity of éomposite materials is examined by comparing the nume-
rical so}utions for the effectivé’therma1 conductivity calculated
through application of these two methods to unidirectiéna] fiber
composites.

Mathematical model and the assumptions associated wfth them
are outlined first. Then, the approach, which is referred to as phe
direct approach, on which the two methods are based, is exp]ained:.

In this appf&ach, the effective thermal cdnductivity of a composite_
materia] is simply defined as the relation between the averaged tempe-
rature gradient and the. averaged heat flux over the sma]]ést volume
representing all the characteristics of the composite material.

Both of the methods compared are based on the direct approach
and differ from each.other accofding»to the boundéry conditions imposed.
Imposed conditions are, namely, the homogeneous boundary conditions,
and the prescfibéd temperature‘and insulated surface boundary conditions
ovér.the unidirectional fiber composites in which fibers are distributed
in rectangular and'staggered érray forms. Iﬁ this work, tﬁose methods,
in'which,ﬁomogeneous boundary conditions arevincorporated aré referred

to aslhomogeneous-methods, and those in which the other boundary condi-

tions are used are referred to as flux methods.



The field equations associateﬁ with the above mentioned
boundary conditions are solved by using the finite element method
which has been proved to be an efficient method in the cases of
heterogeneous material distribution and irregular geometry. The
numerical values obtained from the two methods are also compared
with bounds derived by variational analysis for effecti?e thermal
conductivities of any.trahsyerse1y isotropic fiber composites. To
derive approximate analytic exEressions representing numerical solu-
tions obtained from the flux method, a new method, called the strip
method is introduced.

It is, finally, concluded that the flux method gives moré

reasonabie values in comparison with: the homogeneous method and the

numerical values obtained from both of the methods are in aggrgpment :

with the bounds.
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OZET

Iki, efektif 1s1 gecirgenlik katsayisi hesap]aha yontemi,
tek yonlu lifler iceren karma maTzeme1er'Uzer%nde denenerek elde
edilen sayisal efektif 1s1 gecjrgen]ik katséy1s1 dederlerinin gecer-
1111gid incé]enmistir.

1k olarak, matematik model ve bu modelle badlantili kabuller

anahatlariyla anlatilmistir. Daha sonra, bu iki yontemin dayandign
dogrudén'yak1as1m anlatilmistir. Dogrudan yakiasimda karma malzeme-
lerin efektif 181 gecirgenﬁik katsayilari, karma ma1zemeﬁin bUtﬁn ozel-
Tiklerini iceren en kiiciik birim hacim Uzerinde ortalamasi alinmis 1s1
akis1 ve sicaklik gradyani arasindaki iliski olarak tan1m1anm1st1r.

Karsilastirilan yontemler, i¢cinde tek yonli 11f1erin dikdort-
gen ve chen sekilde dag11d1g1 karma malzemeler lizerine fhomojenf tip
ile "sabit kenar sicakl1§i ve izole edilmis kenarf tipleri gibi simir
sartlari uygulayarak, dogrudan yaklasimi ku]Tanmaktad1r1ar, ‘Bu calis-
mada kullanilan yontemier, s1ras1y]a\homojen yontem ve aki yontemi
olarak adlandiriimistir.

A]anidenk]em1eri, bahsedilen sinir sartlari ile birlikte,
Homojen olmayan malzeme dagilimina ve dizensiz géometriye}sahip durum-
larda etkili oldugunu 1spaf1énm1$ olan sonlu elemanlar yontemi kulla-
:n11arak coziTmistiir. tkinci o1arak, bu iki yontemle elde edilen sayi-

sal degerler, varyasyon analizinu]1an11arak,'herhangi tip enine izotropik
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karma ma]ieme]efin efektif 1s1 gegirgenlik katsayilari icin tiiretilen
siniriar ile karsilastirilmistir. Ek olarak, aki yontemiyle elde
edilen sayisal dederieri yaklasik olarak veren denklemler elde etmek
icin bir yontem gelistirilmistir. Bu yonteme serit yontemi diyoruz.
-Sonu¢ olarak, aki yonteminin homojen yonteme kiyasla daha sag-
11k11 dederler verdigi ve her iki}yﬁntem1ede elde edilen say1sal deger-

lerin, sinirlarla uyum i¢inde oldugu goriilmiistiir.

-~
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INTRODUCTION

- A .composite material is-composed of two or more elemental
materials joined together to form a new medium which is discontinuous
in its microstructure but has combined macroscopic properties superior
to those of its individual constituents. It is fof this reason, in-
»fensive development efforts have been under way, for the past decades,
to create literally a new class of materials for application hereto-
fore deemed-un]ike]y or 1mpossib1e. The méin competit{ve characteris-
tics are, of course, 1ight'weight, high strength and dimensional
stability, to name a few.

In general, there are three commonly accepted types df compo-

site materials, which are distinguishable by their microstructures
(9, p.2].

i) Fibrous composites.consiét”of fibers in a matrix: A fiber
: is»characterized geometrical]y not only by its very hfgh
‘1ength-to-d1ameter ratio but by its near'crysté]-sized

diaméter. The well-known examb]e of.this tybe is glass

fibers within epoxy or a binding resin



i) Laminated composites consist of layers of at least two
different materials that are bonded together. Lamination
is used to combine the best aspects of the constituents

layers in order to achieve a more useful material.

iii) Particulate composites aré composed of partic]es of one
or more materials suspended in a matrix of another material.
The particles can be either metallic or nonmetallic as can
the maffix be. A goond example for this type may be gravel

concrete.

‘Pub1ished literature abounds with investigatﬁons on méchanica]
properties of cpmposites with emphasis on sfiffness, elastic moduli,
fatique limit, etc. Far‘feWer accounts, howevér, are concerned with
their thermophysical properties’which.are now beginning to receiCe |
attention'w%fh a view to extend the app]icafion of composites to
severe environments with thermal and moisture gradients, but the
generality of the methods used to analyse mechanical properties has
allowed the application of these avai]ab}e methods directly to inves-
tigate the thermophysical properties of compoéite materials.

Analytical-determination of the propertiés of composite
materials originates with some‘of thé most illustrious names in science.
‘J.C. Maxwell in 1873 and Lord Rayleigh in 1892 computed the effective
éonductivity of coﬁposites consistiﬁg of a hatrix-and certain distri-
~bﬁtions of sphericé] particlies. Until about 1960, the pfimary motiva-

. tion was scientific. With the advent of techno]ogy of composite

materials, interest in this subject was renewed.



The investigations for fibrous éomposites have beeq along two
para1]e1 but re]ated‘apprbachesi one is to model the fiber-in-matrix
orientations by simplified geometrical équivalent, and the second
.approach, which ré]ies on the results of the first for input 1nformé-
tion, is to employ a statistical technique to determine upper and
1ower bounds of the effective thermal coﬁductivity. Among those
employing thé model approach are the often-cited works of Springer
and Tsai [6], Behrens [5] and Han [11.

The publications of Hash1n and Shtrikman [4], Beran and Sil-
nutzer [71 and more recent]y Hash1n [2] can be cited w1th1n the class
of the second approach. The Tatter publication included a survey of
the methodology and é list of related references.

In this study, the effective thermal co-ductivities of parti-
cular types of composite mater1a1s are ca]cu]ated theoretically gy two
methods wh1ch originate from the same approach and the results obtained
are compared. - The approach is simply to approximate the real medium
with an equivalent homogeneous medium which gives the same averaged
temperature gradient and heat flux distributions. The distributed
properties df the original medium are thus Tumped into effective pro-
perties of an equiQalent homogeneous system. In.ordér to achijeve this
goal, the temperature distribution inside the composite material must
be calculated. |
. The'problém of finding the temperature distribution, however,
1§ rather difficﬁ]t to so]Ve,‘if not impdséib]e.v This 13 due to the
. irregularity of the microstructure and imperfect bonding, which causes

contact resistance to heat flow at the interfaces of indjvidual phases



of real composite materials. To aleviate this difficulty, idealized
forms of composite materials are used, and, it is assumed that phases
are dispersed in an ordered fashion and bonded perfectly with this
-idealization.

The problem appears to be easy to so]ve; however investigations
have shown that even forvregions haVing a simple geometry, it is im-
possible to obtain an exact analytical solution with contemporary"
mathematical aids. Thus a numerical technique needs to be used and
the Finite Element Method'(FEM) has proved to be an efficieﬁt technique

in achiéving this goal.




1. ANALYSIS OF COMPOSITE MATERTALS

1 BASIC DEFINITIONS 7

It is convenient at this point to give some commonly accepted
assumptions of the theory of composite or heterogeneous media.

Because of the(disparity between the dimensions of the overall
composite maferia] and that.df each constituent phase region, rigorous
._evafuation of the effective thermal conductivity can be obtained only
froﬁ a consideration of a representative volume element (RVE) as shown
in Figurell.]{ RVE is the smallest volume element of the composite
material. The volume outside the RVE is either a repiica or a mirror
image of the RVE. RVE, however, is 1argé cdmpared with typical phase
"region dimensions, e.g. fiber diameters and spacings. |

From the practical point of view, a necessary characteristics
of a composite material is the statistical homogeneity (SH). The
strict definition of this is giVen in terms of probability functions
[9]. For oﬁr‘purposes, it is sufficient to state that in a statis-
tically homogeneous composifeha11 global geometrical characteristics
" such as volume fractions,»geometricbdistributioh of phases,;etc.; are

the same in any RVE.



FIGURE 1.1 - Representative volume element.

In the fo]]owing analysis, the RVE and the concept of statiéticaT

homogeneify respectively stand for the differential volume element

and the concept of material homogeneity of the classical continua.
In the classical theory of heat conduction for homogénéous

materials, the thermal conductivity tensor, k.., relates the homo-

N
geneous temperature gradient, T’j’ to the homogeneous heat flux, qi»

as given below
q_i = k_ijTaJ' ] ’ . » (1.])

" In Eq. (1-.1) the indicial notation, with repeated indices implying
summation over these indices, is used. Unless otherwise stated, this

hotation will be used here on. . If the fields, j.e., temperature




- gradient and heat flux, are not homogeneous, then they are assumed
to be homogeneoﬁs Within a differential element. In a heterogeneous
body of statistically hqmogeheous phase geometry, a relation resembling
Eq. (1;1) only applies for statistically homogeneous temperature gra-
dient and heat flux fie]ds;

Statistically homogeneou$ fields aré statistica11y indistin-
gdishab]e within different RVE in a heterogeneous body [9], i.e.,
their statistical moments such as average, variance, etc. are the same
when taken over any RVE withih the héferogeneous body.‘ This imp]iés
that body averages and‘RVE'averages of statistica1iy homogeneous
fields, where the averaging concept will be discussed in the next
section; ére the same. This permits to estabTish.a re]ation,,resemb11ng
Eq. (1.1), between averaged temperature gradient and averaged heat flux
fields over. RVE by conSidering each RVE‘as the differential element of
c]éssica} continua of homerneous_materia]s,

In ordér to produce a SH field in a composite, it is necessary
tb apply boundary conditions that produce homogenéous fields in a
homogeneous body. Such boundary conditions are ca]]ed_homogeneous
boundary conditions (not to be the same as the concept of homogeneous
boundary conditions in the theory of‘differentia] equations). For

heat conductiop, such a boundary éondition is [10] given as follows.
T(S) =_P]%]>+ sz2 + P3x3 , o : | (1.2)

i=1,2,3 are conStants and S is the

s -

where T is the temperature, Pi
" surface of the material body. When homogeheousvboundary conditions

as in Eq. (1.2)'are applied, the components ofbaveraged temperature
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gradient vector are constaht énd gqua] to Pi, i=1,2,3 over compdsite
material body.

| Another important assumption, independent of the Statistica]
homogeneity, is that of statistical isotropy. Essentially, this
| assumption 1mp1ie$; that macroscopic material properties of a compo-
site body are the same in all directions or, are not effected by the
orientation of the codrdinate system to which the physical constants,
such as thermal conductivity coefficient, elastic moduli, etc., are
referred. In many cases statistical isotropy is an appropriate assump-

tion. However, in some very important cases such as fibrous compo-

sites, the macroscopic material properties are predominantly anisotropic.

1.2 CLASSICAL APPROXIMATION

In the analysis of heterogeneous materials, the general p?bb]em
is that of-the suitable macrodéscriptfon of a heterogeneous material
body. This problem is solved in kéference«[Z] in analogy wfth to the
solution of tﬁe séme problem in the case of homogeneous continua. It
is always assumed that such contin&a retain their material properties
regardless of specimen size, thus also for infinitesimal elements. This
permits establishment of field equations in termé of field derivatives.
However, a]llrea1 materia]s have microstfucture. Metals, for example,
are actually po]ycrystalliné aggregates and are thus heterogeneous
"~ materials. Therefore, the differentjal.e]ement,’that is considered
| in the derivation of fie]dAeguations. Such as the classical elasti-

' city and the heat conducfion'equations, is in reality a RVE which is
composed of a suff1c1ent1y large number of crysta]]s and whose effec=

tive material properties are the material propert1es of the c]ass1ca1




field theories, e.g., thermal conducti&ity coeffitient 6r elastic
moduli. Since, the RVE is composed of crystalls, it can not be
considered as an infinitesimal differential element of the classical
homogeneous continua. So; it may be concluded that fhe classical
field theories are approximations that results %n a macrodescription
of a polycrystalline aggregate, i.e. heterogeneous materfa], when
the RVE size is sufficient]y small in re]ation.to the body dimen-
sions which is the definifioanf the RVE given in Section 1.1.

This leads to the idea to adopt the same approximation for a
composite material body which 1mp]ies.that the classical field
equations of heat conduction,.e1asticity, etc., are assumed vé]id
for the composite material body with effective material properties
replacing the usual materié] properties. This idea is cai]ed,tbé-
c]assicé1 approximation [2] and the mathematical model of the problem,
stated at the beginning of this section, is based on this idéa.

It is, first, necessary to define appropriate field variables
for the cbnstruction'of field equations, e.qg., heat»f]uﬁ, temperature
gradient, stress, etc., in terms of which a composite will. be modelied
as an equivalenf homogeneous continuum. The appropﬁiaté'choﬁCé is moving

average [2]. Moving average of a vector’function; fi’ is defined as

F.x) = —— s f%(g;g'.)dV(X') ; | (1.3)
AV. AV
where X is-the position vector of a reference point in the RVE, e.g.
the centroid,’x% is a ]ocai éoordinate system originatjng at x as
*shown in-Figure 1.1, AV is the vo]ﬁme of the RVE and the integration

is over RVE. In Eq. (1.3) overbars represent averaged values and
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primes are used to indicate the local values inside the RVE. The
moving average is simply the usual volume average associated with

a position vector originating from a g]bba] coordinate system defined
over the body that is divided into small volume elements (RVEs) over
which volume averages are taken, and each element is defined by the
position vector pointing a reference point inside the volume element.
So, a different averaged value corresponds to each position vector.
This causes the volume averages move together with the position.

-~

vector, X.

It is shown in reference [11], that moving averaging and dif—
ferentiation are commutative. This permits to establish the field
equations in terms of averaéed field variab]es. ~For example, by
replacing the function, fi'in Eqg. (1;3), with the thermal gradiep;

) /
vector, T’i’ and the heat flux vector, > We obtain the important

re]ationé
__3_]:_= __a_-.r_. s (].4)
ax! X ' _
i
and
99} 9, |
A4 =-_1=-9 , - (1.5)
1
axi, axi .

respectively, where the use of overbars and primes are as defined
in conjuction with Eq. (1.3). The Eq. (1.5) is a particular form
of the general steady state Heat conduction equation without any

source term in terms of fluxes. This 1mp6rtanf result shows that

classical field equatibns are also valid for éyeraged field variables.
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The problem now reduces to obtain a'relation between moving
averages of f1é1d variables, e.g. temperature gradient and heat flux,
when the composite body is subjected to‘arbitrary,bopndary conditions.
This problem is solved by Beran in reference [12] for heat conductioh
through heterogeneous media, as the relation between moving average
of heat flux and Tocal definition of temperature gradient as follows

a;(x) = JRE (XD T (xDAV(x") . R

The result is, however, not a practical one since the tensor, Kﬁj,.
depends on phase properties and phase geometry.in an unknown fashion
for arbitrary phase distributions over RVE. -

The more useful form of Eq. (1.6) is obtained by its series;'

expansion around 5,[]2], which is given as follows S

(R = AETo 00 + BT (0 + Oy Togyo + oo (1.7)
This is a general relation between averaged temperature gradient and
heat f]ux'f1e1ds for'composife materials.

In case of statisticé]]y homogeneous temperature‘gradient>
and heat flux fields, the moving aVerages of these fields are in-
dependent of the position vector, 5,‘because averages of the SH fields
over each’RVE‘are the same as discussed in Section 1.1.. So, for SH
fields, all derivatives of temperature grad%ent vector with respect>

to x are zero, then (1.7) reduces to the cpnveniént form,

a; = A3 . | | | v (1.8)
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which implies that averaged SH temperature gradient.and heat flux
fields are related by effective conductivity tensor, A$j, as in the
classical heat conduction relation, Eq;‘(1.1). This work 1is an

application of this relation.

1.3 ANALYTICAL TREATMENT

Generally, the analytical treatment of the problem of ca]cq-
lating the effective conductivity is divided into three catégories:
(1) direct approach, (ii)_variatioha] approach, and (iii) approxi--
mafionél In this work, we are primarily interested .in the direct
approach, but in some cases, we will apply the variational approach
as well. In the following discussion, two phase ¢omposite materia1s
are assumed for the sake of simplicity, the analysis, however, can:

be extended to multiphase composite materials.without any difficulty.

?

Xy

FIGURE 1.2 - A typical RVE for a two phase composite
material.
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The computation of the'effectiVe’properties, e.g. the effective
thermal conductivity, in terms of the averaged field variables, e.qg.
the temperature gradient and the heat fiux,.is called the direct ‘
approach. So, the direct approach is an app]icatioh of the Eq. (1.8).
In general, it, thén, requires the determinatibn of the appropriate
‘fields in the phases satisfying the appropriate field eqﬁations subject
"~ to intefface continuity conditions, and external homogeneous boundary
conditions. For heat conduction, the interface continuity conditions;

with no contact resistance at thé interface, can be posed as

L) (2 -
LR on S, | (1.9)
- '

where superscripts 1 and 2 refer to the comstituent phases, 512 is the
contact surface of two phases qs_shown in_Figure 1.2, a, is the/harMal'
component of heat f]uX on 512. Fdr real composites determination of
the field solutions is a Very difficult problem not only because of
. the mathematical difficulties, but also because of the fact that the
actual détai]s of the interface geometry are newer knbwn. So, the
app]iéation of direct approach is restriéted to types of composites
with idealized phase geometries. Laminated composites or fiber
composites with regularly dispersed fibers in a mafrix are represen-
tative examples of such 1deé]iied composites.

‘As stated at the beginning'of Section 1.3, direct‘apprbach
deals with averaged field quantities. The averaging method used in
_thfs approach involves the volume average over the total volume of

“the RVE. For example, over a two phase composite, the temperature
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gradient vector, T’i’ is averaged as

Toy === 5 18 ()av + ! T(Z)(x)dv] o (1.10)
v V] | 2 _ '
whefe 1 and 2 refer to the values of T’i in the constituent phases and
the average is takeh over the total volume, V. After calculation of
the required averages, the effective conductivify tensor, k?j, can'be
calculated from Eq. (1.8) by sett1ng A*. equal to k*

S1nce most of the eng1neer1ng materials are an1sotrop1§ the
effective thermal conductivity tensor will have six unknown components
(k;-‘j is a symmetric tensof according to Onsager's prfnciple). “Eq. (1.8),
on the other hand, provides three equations. Thus without any further
simplification, it js/impos$1b1e to determine the effective therma]
conductivity. Such a s%mplificafion»cah be achieved by asshming(that
the RVE hés a symmetric phase distribution. With the presence of .
such a geometry, the conductivity tensor can be diagonalized with respect
to a coordinate system defined in terms of the symmetry axes: With
reference to such a coordinate system, then, there remains only three
unknown components of the thermal conductivity tensor which now can
be determined withltﬁe use of Eq. (1.8). At this pofnt it should be
noted that in the case of stgtisticaTTy isotropic composites, the
thermal conducfivity tensor is given as

ks = k*S:5 . o o (1.a1)

in which only one unknown, namely k*, is involved. k* then can easily

be determined by using Eq. (1.8) alone. It then follows that, with



15

the éxception of such idealized composifess the direct approach is
restricted to composites having symmetric phase distribution over RVE.

An alternative definition of efféctive physical properties is .
g{ven in terms bf energy expreésions. This is known as the variational
approach.' Such energy expressions are bounded from above and below
by, extremum principles. The vériationa1 approach is, in a certain
sense, more powerful that the direct apprdath,.because it leads to
bounds on effective physical pfepefties when exact evaluationris pot
possible. 1In particular, it can give results for irregular phase
geometries in terms of paftia1 information. For the formulation of
the variational approach in heat conduction, references [4] and [5]
should be resontéd to. |

’Approximations are, by their nature, of uniimited,Variety/and
is beyond the scope of this work. Therefore they will not be d{scussed‘
here, buf the interested reqder may consult to reference [14] to see

a typical application.
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I, SOME APPLICATIONS

2.1 FINITE ELEMENT METHOD

‘As discussed in Section 1.3, the computation of effective
thermal conductivity in terms of averages requires determination
of the appropriafe fields within the phases. ~Thi$ in turn requires
the solution of fhe field equations subject to, interface cont1Qu1ty
conditions. aé given by e.g. Eq. (1.9), and the external homogeneous
boUndary'condifions. Even for idealjzed composites the analytic
solution of these equations is an extremely difficult problem.
Thislis pfimari]y‘due'to the necessity of satisfying the interface
continuity conditions. Thus, a numerical technique needs to be used
and the finite element method (FEM) has proved to be an efficient
tool in achieving this goal, because_FEM is a powerful technique
especially for the problems-that involve irregular geometry and non-
homogeneous material distribution over the material. |

The domain of the prob]em is discrefized by using»é]ements
of simple geometries such as?rectang]e or triangle. Over each
'e1ement,'the unknown fields are approximated by a linear combination‘

of finite nUmbér of known basis functions with unknown expansion
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coefficients which are the unknown field values at some points in the
element, namely the nodal points.

Finite element analysis requires a translation of the local
field equations, which are subjected to certain boundary conditijons,
into a global model, formulated in terms of integral laws that hold
over the entire region. The residual that results from the satis-
faction of the integral laws over each element By approximated solu-
tion, is minimized. This leads to system of linear equations in
terms of unknown coefficients over each element. By summing up thgse:
systems.of equations, the solution of the governing field equationr
reduces to the solution of system of 1linear equations. Solution of
these equations gives the unknown coefficients, i.e. the unknown field
values at each ﬁode; f

In this analysis, the governing_différentia] equation is étéady

state heat conduction equation in the form of

2 (i, 21y + 2, 21 = 0. . (2.1)
X oX oy oy :

The flowchart and computer code for the FEM solution of this equation,
subject =~ to.  boundary conditions of prescribed vafiab1e temperature
and/or insulated surface types. is gi?en in Appendix B. .This program
utilizes triangular elements with 3-nodes 6-nodes énd 10-nodes [15].
fhe input data for the computer program used 1is the mesh geometry
information and fhe thermal conductivity cdefficients’fof each phase.
The output values are temperature at each node, -temperature gradient

over each e]ément, averaged temperature gradient and heat flux over
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the domain and the effective conductivity coefficients.

2.2 SCOPE OF ANALYSIS

In this work, we mainly compare two methods of caltu]ating
effective thermal conductivity. In both methods, direct approacﬁ
is applied on a particular type of fiber composites, namely uni-
difectiona] fiber composites invwhicﬁ fibers aré aligned in one
direction. ' R

As distussed in Sectioh 1.3, direct apbroach requires deter-
mination Qf the appropriate fié]ds by applying homogeneous boundary
conditions over RVE. Thé onTy difference between these two methods
is thé types of boundary conditiongvapp1ied in thé calculation of |
the fields from the field equation. In one[mefhod, homogenéous a
« boﬁndary condition given by Eq. (1.2) is app]iéd over RVE. Therefore
this method is called the homogeneous method. The second method is |
the unidirect%ona] heat flux method. In this method, a thermal
gradient is established between two opposite faées of the RVE and.
the remainihg faces are insulated. The validity of this method is
~examined on fiber composites in reference [1] and thevresu1ts‘obtained
is in agreement with the experimental data, to some extent. FIn the
fo]]owing discussion, we will call this method as flux method for
simplicity.

The boundary condition app]ied in the f]u* method may be re-
garded as homogeneous type bdﬁndary condition. Thislis due to the
»facf that, the average temperature gradieht obtéined over RVE depends

only on the thérma1 gradient established between two opposite faces
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of the RVE for a particular geometry when such kind of boundary condi-
tion is applied over the composite material. The thermal gradient
estab]ished is, however, the same for each RVE. This is due to the
similarity of RVEs in a statistically homogeneous composite materials
(See Section 1.1). Thus, each RVE has the same'average temperature
"gfadient ya]ues. This makes Eq. (1.8) applicable. Accordingly, the
direct approach is valid to calculate the effective thermal conduc-
tivity in both methods.

As explained in Section {.3, in determination of the effective
thermal. conductivity, the variational approach is a powerful technique
especially for irregular phase geometries, bécause it leads to bounds
on effective physical broperties in terms of partial-information about
the phase geomefry. Some eXpressions of this type are derived by _

: Y

Hashin [10] for any transversely isotropic fiber composites, j.e. trans-

verse to fiber direction, as

(-)
ke. . vf/vT :
. v./V
km 1 4+ m T
ke/k -1 2 . .
£ m (2.2)
(+) o
ke ke i/ V1
K K A

1 - kf/km Zkf/hn

- where subscripts f and m refe} to fiber and matrix, respectively, v is
'-fota] volume, k, is the effective thermal conductivity and (+) and (-)

refer to upper and lower bounds”respective]y. These bounds areﬁcompared
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with the numerical results obtained for éffective fherma] conductivity
in Section 2.3.

In the flux method, it is customary to designate a principal
direction of heat transfer (PDHT) and to assume that heat flux is
unidirectional, that is, there is no flux componénts normal to PDHT.
This also means that planes perpendicular to the PDHT are isotherma].
That being the casé, the effective conductivity 6f the RVE is simply
the, resultant of a network of sm?iier resisfances in seriés and
paraiiei over each phase,. .This leads us to calculate the effective
conductivity by using simpie.integration. We will call this new
method as the strip method. In the strip méthod, é strip of infinite-
simal width'isAtaken along PDHT. The effectivé_éanductivity of ‘the
strip is the resultant of smél] resistances in series. Now, each/strip
has a value of effective conductivity and is connected in paral]ei.
Resultant fegistance; whiéh defines effective thermal coﬁductivity of
RVE, is calculated by summing up the resistances of each strip by in-
tegration. ‘Details are given in the Appendix A.

Secondly, we will investigate the effect of geometrical arrange-

ment of the fibers on the effective thermal conductivity of the com-
| posite material, in.particuiar, those having isotropic fibers uniformly
dispersed in an isotropic matrix. Unidirectiona] fiber composites
having two geomefricé] arrangements, namely, rectangular array and
Stéggered arﬁay of fibers in a matrix, as shown in Figure 2.1, are
considered specifically. |

There are three principal conductivities for the composites

under consideration. The effective conductivity along the z-axis, i.e.



- (a) Rectangular Array ) (b) Staggered Array
FIGURE 2.1 - RVEs for two types of fibrous composites.

parallel fo the fibers, can-be simply obtained by a linear combination
of the two constftuent's thermal conductivities in proportion to their
respectﬁve.cross—sections. Hente, the only ones which need to be |
analyzed are those along the x and y directions. .In order fo calculate
the efféctivé conductivity along x and y directions, wesneed to obtain
averaged va]des of temperature gradient and heat flux over the RVE..
This requires the solution of the steady state heat conduction equation,
Eq. (2.1),‘éssociated with boundary conditions, discussed at‘the be-

ginning of Section 2.2, by using the FEM. -

2.3 PROCEDURE AND RESULTS

2.3.1 Rectahgu]ar Array (Figure 2.1-a)

The governing heat conduction equation, Eq.‘(2.1),vjs solved
- by using FEM for the domains shown in Figure 2.2. Since the domain
‘ié symmetric, the effectﬁve conductivity tensor is in the diagonal

form with two components in the x and y directions (See Section 1.3).
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As discussed in Section 2.2, two methods will be apb]ied in determining

effective thermal conductivity, namely, homogeneous method and f]ux‘
method. ' |
\
Y4 ‘ _ \Y{l
‘ (ab) (34 B4)

1

FIGURE 2.2 - Solution domains for rectangular array.

In the homogeneous method, the boundary condition assbciated ;
with Eq. (2.1) is homogeneous type which is given by Eq. (1.2).. Sinée
we only deal with the determination of effective thermal conductivity,
without loss of generality, we will choose .simple form of Eq. (1.2)

as
T(s) =x+y " - - (2.3)

where x and y aré fhe coordinates of the points on s which 1is the

su%face of thé domain shown 1n,Figure 2.2-a. When boundary condition,
Eq. (2.3), is applied over tHe domain, the resulting average tempera-
ture gradient vector has~thé componenfs which are equal to 1; So, we

can calculate the two components of the effective cbnductivity tensor,
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" which are equal to componentS'of.averaged heat flux vector, from
Eq. (1.8).

In the flux method, because of the symmetry of the geometry,
we will consider Figufe 2.2.—b, which is one quarter of the domain
in Figure 2.2-a, as solution domain. As discussed in section 2.2,
in this method, a thermal gradient is estab]ished.between two opposite
faces of the domain and the remaining faces are in§u1ated. Since, the
vaTue of the effective therma] conductivity is independent of the ther-
mal gradient established, we will choosé the following simple form of -
boundary conditions. By considering a one dimensional heat flow in

the y direction, the approximate boundary conditions are

T(x,b/2) = 1 “
Tx,00=0 l (2.4)
T (0.y) = T,(a/2,y) = 0

For one dimensional heét flow in the x direction, the boundary condi-

tions are
T(a/2,y) =1
T(0,y) = 0 S S (2.5)
Ty(X,O) = Ty(x,b/Z) =0 '

After imposing thé boundary conditions, effective conductivity tensor,

which has two éomponents for this two dimensiona1 syﬁmetric geometries,

is obtained from Eq. (1.8) by ﬁsfng computer program given in Appendik B.
'Additionally, strip méthod (See Section 2.2) is utilized to |

_obtain an approximate analytic expression representing the numerical
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solution obtaineq from flux method. The expression for rectangular
array of fibers is given by Eq. (A.7) in Appendix A. Bounds on effec-
tive thermal conductivity are also ca]cu]éted from Eq. (2.2). Since
these bounds are fdr'transverse1y isotropic fiber composites, it
corﬁesponds to configurations with angle, 6 = 45 deg. |
v.The results.obtained are expressed as the ratio of the effec—'
tive conducfivity to the matrix conductivity and, characteristically,
this ratio depends on (i) volume ratio, vf/vT = volume of fiber/total
volume, (ii) conductivity ratio, E}/km-='fiber conductivity/matrix
conductivity, (iii) the angle, 6. Because 6f the symmetry of the
geometries invoTved, the two prihcipa] conductivities éan be handled
by a comp]ementary angle principle. In other words, solution for the
effective conductivities with angles, determinés the case with the/
complementary angle, (90-p), g.gQ, the value ke-y for 6 = 40 deg,‘/
corresponds't.he'va1ue.ke_x for ¢ = 50 deg., and vice versa.

Tab]es 2.1-6 give tabulated numerical results for effective B
thermal conductivity obtained from application of homogeneous methodv’
and flux method for volume ratios, vf/vT, qf 0.5, 0.6.and 0.7. The
angle, e; is chosen so as to avoid fibers overlapping eachother.
Obviously, fof g = 45 deg, the effective thermaT cbnducfivity tensor
is 1isotropic, i.e. ke-y = ke-x_zvke‘ In Figures 2.3-8, the tabulated
numerical results and the expression given by Eq. (A.7) is plotted
as'kf/km versus ke_x/km and ke/k yersus ke_y/km; Additionally, in
Figures 2.6-8, the bounds obtained from Eq. (2.2) are also shown.

Figures 2.9-a and 2.9-b show the trends in numerical results obtained

from homogeneous method and flux method, resbective]y, for arbitrarily
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. chosen kf/km values of 0.4, 6, 80 and 800,-ﬁith the angle 8 =45 deg.

as Ve/vy versus k. /k . where vo/v, ratio is bounded above by Timit

value, Vf/VT = 0.785. Finally, in Figure 2.10, temperature gradient L
distribution at some points over the domain, represented by Figure

2.2-b for one dimensional heat flow along y-direction is presented

for rectaﬁgu}ar array with volume ratio of Vf/vT = 0.6 and the angle

6 = 40 deg. case.

SOEAZICDNNERSITES! KUTOPHANES
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TABLE 2.1 - FEM Solutions for Effective Conductivity

Rectangular Array: vf/QT = 0.5

8 = 35 deg.

Mesh (87,136)

*Mesh (77,118)

Flux B.C.'s Homogeneous B.C,'s
L L N A Y
0.1 [ 0.304506 0.486725 0.409728  0.505008
0.2 | 0.421273 0.551816 0.503025  0.567446
0.4 | 0.612206 0.674741 - | '0.657655  0.685426
0.6 | 0.765241 -0.789569 0.786051  0.795909
0.8 | 0.892249 0.897664 0.898375  0.900400
1.0 | 1.00000 1.00000 1.00000.  1.00000
2.0 |1.36552  1.4450 1,42667 1.44821
4.0 171983 2.12380 2.13911 2.21908
6.0 |1.89376 2.62691 2.79914 2.92057
8.0 |1.99762 3.01862 3.44182 3.59178
10.0 | 2.06662 3.33319 4.07662 4.24718
20.0 | 2.22276 4.28741 7.21122 7.43325
40.0 | 2.31162 5.06561 13.4372 13.6915
60.0 |2.34310 5.40381 19.6527  19.9190
80.0 |2.35920 5.59299 25.8655 26.1381
100.0 |2.36899 5.71387 32.0773 32.3537
200.0  |2.38885 5.97423 | 63.1310.  63.4152
400.0  |2.39892 611469 125.233  125.522
600.0 |2.40230 - 6.16317 187.334. 187.624
800.0 |2.40400 ' 6.18774 249,435 249.726
0000 |2.40501 6.20258 311.536 311.827

*Mesh (Number of nodes, Number of elements).
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TABLE 2.2 - FEM Solutions for Effective Conductivity

Rectangular Array: Vf/VT = 0.5

6 = 40 deg.

Mesh (99,158)

Mesh (66,100)

Flux B.C.'s Homogeneous B.C.'s
S Komy/%s oKy Keuylk
0.1 0.389031 0.457162 0.450487  0.486183
0.2 | 0.495229 0.526443 0.529183  0.553755
0.4 | 0.601108 0.675536 0.668033  0.678836
0.6 0.850014 0.799257 0.789506  0.793373
0.8 | 0.902129 0.877983 0.899049  0.899846
1.0 | 1.00000 1.00000 1.00000 1.00000
2.0 | 1.29666 1.59416 1.43265 1.44102 o
4.0 | 1.45880 - 1.97275 2.15864 2.18883
6.0 | 1.48519 2.21022 2.82700 2.87200
8.0 | 1.48040 . 2.35451 3.47499 3.52994
10.0 | 1.46806 2.44998 4.11384 . 4.1754
20.0 | 1.41165 2.66034 7.25656 7.33562
40.0 | 1.36129 2.77354 13.4875 13.5769
60.0 | 1.34022 2.81201 19.7047 19.7980
80.0 | 1.32878 2.83131 25.9184 26.0137
100.0 1.32161 2.84291 32.1307 32.2271
200.0 | 1.30656 2.86612 63.1853 63.2842
400.0 | 1.29867 3.87773 125.288 125.388
600.0- | 1.29598 2.83159 187.389 187.489
l800.0 | 1.20862 2.88352 249.489 249.590
1000.0 1.29381 2.88468 311.590 311.690
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TABLE 2.3 - FEM Solutions for Effective Conductivity

Rectangular Array: VelVy = 0.6

8 = 40 deg.

Mesh (78,120)

Mesh (66,100)

Flux B.C.'s Homogeneous B.C.'s
kel Ke-x"kn ke-y/km ke-x/km  . ké—y/k
0.1 | 0.267747 0.379708 0.333715 - 0.401035
0.2 | 0.378200 0;459193 0.431428  0.477455
0.4 | 0.568713 0.608386 0.600712  0.620939
0.6 | 0.731223 0.747019 0.747218  0.754515
0.8 | 0.873506 0.877101 0.878833  0.830358
1. 1..00000 1.00000 1.00000 1.00000
2.0 | 1.47502 ©1.53423 1.51951 - 1§53649/,}
4.0 | 2.01869 2.34615 2.39235 2.45762
6.0 | 2.30036 2.95021 3.19577 3.29645
8.0 | 2.52077 3.42170 3.97436 4.09993
10.0 | 2.65772 3.80117 4.74123  4.88494
20.0 | 2.98871 4.95710 8.51486 8.70445
40.0 | 3.19142 5.90543 15.9932  16.2120
60.0 | 3.2659 6.31919 23.4544 23.6841
80.0 | 3.30465 6.55108 30.9112 31.1466
100.0 | 3.32837 6.69941 38.3661 38.6050
200.0 | 3.37694 7.01933 75.6324 75.8785
400.0 | 3.40182 ' 7.19217 150.156. 150.406
600.0- | 3.41020 7.25187 224.678 224.929
{s00.0 | 341881 7.28212  |299.200  299.452
1000.0 | 3.41694 7.30041 373.72] 373.973
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TABLE 2.4 - FEM Solutions for Effective Conductivity

Rectangu]ar Array: Vf/VT = 0.5 8 = 45 deg.
Mesh (100,160) Mesh (68,106)
Flux B.C.'s Homogeneous B.C.'s
kf/km ke/ km | kg/ klﬁ '
0.1 0.416827 0.468307
0.2 . 0.499072 0.541238
0.4 0.647472 ~ 0.673184
0.6 0.778348 0.791311
0.8 0.895053 0.899415
1.0 1.00000 1.00000
. 2.0 1.40044 | 1.03622
2.0 1.86590 2.17096 ’
6.0 2.12969 | 2.84498
8.0 | 2.29982 3.49668
10.0 - 2.41870 4.13770
20.0 2.70685 | 7.28694
40.0 2.83388 . 13.5214
60.0 " 2.94905 19.7399
80.0 2.98293 25.9543
100.0 |~ 3.00369 32.1668
200.0  3.08623 . 63.2218
400.0 3.06803 - ol 125328
600.0 . 3.07537 | , 187.424
800.0 3.07906 | 2a9.524
1000.0 3.08128 311.623
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TABLE 2.5 - FEM Solutions for Effective Conductivity

Rectangular Array: Velvy = 0.6 & = 45 deg.
Mesh (79,122) Mesh (61,92)
Flux B.C.'s Homogeneous B.C.'s
ke/ ki Ko/ km Ko/ k.
0.1 0.332465 0.371999.
0.2 0.423794 0.456754
0.4 0.590178 ~ 0.611273
0.6 0.739514 0.750878
0.8 0.875346 0.879578
1.0 1.00000 - 1.00000
2.0 1.50214 | " 1.52683
4.0 2.15198 | 2.41822
6.0 2.55008 o 3.23406
8.0 2.83994 4.02096
10.0- 3.04497 | 4.79368
20.0 3.57620 | 8.58148
40.0 3.92929 16.0683
60.0 4.06493 23.5326
80.0 8.13671 30.9909
100.0 4.18113 38.4467
200.0 ©4.27321 | 75.7145
400.0 4.32094 . . 150.238
600.0 4.33711 ' . 224.760
800.0 4.34525 ~299.280
|- 1000.0 - 4.35014 | 373.801
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TABLE 2.6 - FEM Solutions for Effective Conductivity

Rectangular Array: v‘f/vT' = 0.7 8 = 45 deg.
Mesh (60,88) . . Mesh (61,92)
- Flux B.C.'s ~ Homogeneous B.C.'s
ke/k ke/k ke/k
0.1 0.250086 | 0.278265
0.2 0.351476 0.375022
0.4 0.535475 0.551252
0.6 0.702066 0.711312
0.8 0.856023 0.859952
1.0 | 1.00000 ~1.00000
2.0 1.61486 7 1.62087
4.0 2.52466 2.68140 '
6.0 3.18440 | 3.64959
8.0 |- 3.68942 4.57955
10.0 4.08959 5.48992
20.0 5.27480 | 9.93192
0.0 | 6.21026 18.6814
60.0  6.60837 27.3953
80.0 6.82887 B 36.0995
100.0 6.96896 44.7997
200.0 7.26854 83.2821
© 400.0 7.42897 - . 175.228
600.0 7.48414 | 262169
800.0 | . 7.51206 349,110
1000.0 7.52892 | 436.050
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FIGURE 2.3 - Effective conductivities for rectangular
array fiber compos1te (vf/v = 0.5, 8 =35 deg.)
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FIGURE 2.10 - Temperature gradient distribution for
boundary conditions given by Eq. (2.4)
for rectangular array fiber composite
'(Vf/VT = 0.6, 6 = 40 deg.)
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2.3.2 Staggerederray (Figure 2.1-b)

The procedure applied for staggered geometry is the same as
for rectangular geometry. The'only difference is in the solution

domains as shown in Figure 2.11, below.

Yi 7

‘ i (a,b)
LR
AN ]
- - » X

(a)

- (8%, b/2)

FIGURE 2.11 - Solutjon domains for staggered array.

Boundéry condition given by Eq. (2.3) is applied over the domain
shown in Figure 2.11-a. Boundary conditjons given by Eqs. (2.4) and
(2.5) are app]ied‘on:the domain shown in Figure 2511-b, which 1$ one
quarter of the domain shown in Figure 2.11-a. The expressions obtained
by strip method for this case arevgiven\by Egqs. (A.8) and (Ai9) in
Appendix A. Sinée, bounds given by Eq. (2.2) is independent of the
fiser geometry over the matrix, the values that is calculated for rec-
tangular array fiber composités”are the same for étaggeredbarray fiber

compoSTtes with the same volume ratios, Vf/VT and vm/vT,
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The numerical results for'effectivé thermal conductivity obtained
from homogeneous method and flux method is tabulated in Tables 2.7-12
for volume ratios, vf/vT, of 0.5, 0.6 and 0.7 with different angles, 6
In Figures 2.12-17 fhe numerical results tabulated and the expressions
given by Eqs. (A.8) and (A.9) are plotted as kf/km versus ke-x/km and
kf/km_versqs ke-y/km‘ Additionally, in Figures 2.15-17, boﬁnds obtained
from Eq. 2.2 are also shown. Figures 2.18-a and42.]8-b show the -trends
in the numerical results obta1ned from homogeneous method and flux method,
respectively, for arbitrarily chosen kf/k values of 0.4, 6, 80 and 800
and the-angle 6 = 45 deg. as_vf/vT ratio is bounded above by 1imit value,
v]‘_./vT'= 0.785. Finally, in Figure 2.19 témperature gradient distribu-
tion at some points over the domain, which is shown in Figure 2.11-b;

for one dimensional heat f]oqulong_y—direction is presented for s;aggered'

array with volume ratio of vf/vT = 0.6 and the angle 6 = 40 deg.
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 TABLE 2.7 - FEM Solutions for Effective Conductivity
Staggered Array: v];/vT = 0.5 0= 35 deg.
Mesh (63,96) Mesh (63,96)
Flux B.C.'s Homogeneous B.C.'s
kelky | ko /K Keoy/bn Keoy/ ko Keey/kn
0.1 0.465194 0.456237 0.488347 0.485576
0.2 | 0.537328 0.530650 0.555459 0.553358
0.4 0.670519 0.667161 0.680495 0.679425
0.6 0.790849 -~ 0.789508 0.795174  0.794747
0.8 0.900179 0.899876 0.901232 0.901136
1.0 1.00000 1.00000 ; 1.00000°  1.00000
2.0 1.39277  1.38328 1.41518 1.41385
4.0 1.87105 1.84982 | 2.03021 2.02444
6.0 2.15209 2.11578 '~ 2.51540 2.50604
8.0 | 2.33717 2.28897 2.94057  2.92855
10.0 2.46830 - 2.41077 3.33304 3.31903
20.0 2.79239 2.70869 5.10112 1 5.08188
40.0 2.99595 2.89365 8.38559 8.36289
60.0 3.01177 2.96212 | 11.6000 | 11.5760
80.0 3.11137 2.99779 14.7948 14.7701
100.0 3.13570  3.01969 | 17.9815 17.9564 -
1200.0 3.18571 3.96460 | 33.8768 33.8508
400.0 3.21140 3.08765 65.6279 65.6015
"~ 1600.0 3.22007 - 3.09542 | 97.3701 97.3435
800.0 3.22443 3.09933  [129.110 129.083
fo00.0 | 3.22705 3.10167  [160.849 160.822
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TABLE 2.8 - FEM Solutions for Effective Conductivity

'Stagger‘ed Array: "\if/vT = 0.5 g = 40 deg.
Mesh (63,96) Mesh (63,96)
Flux B.C.'s. Homogeneous B.C.'s
kelkn 1 Keoy/kn kemy/kn Keoy/ ko Kaey/Kn
0.1 | 0.461943 0.452765 0.488370  0.485212
0.2 | 0.535201 ©0.528334 0.55560] 0.553192
0.4 | 0.669690 0.666220 0.680667  0.679424
0.6 | 0.790592 0.7892071 0.795273  0.794770
0.8 | 0.900133 0.899818 0.901259  0.901145
1.0 | 1.00000 1.00000 1.00000 1.00000
2.0 | 1.39286 ©1.38812 141592 1.41423 )
4.0 | 1.87382 1.85116 2.03452 2.02677
6.0 | 2.15880 2.11973 2.52342 2.51040
8.0 | 2.34764 2.29550 2.95169 2.93461
10.0 - | 2.48204 2.41956 3.34668 3.32646
20.0 | 2.81653 2.72472 5.12209  5.00330
40.0 | 3.02839 2.91544 8.41198 8.37726
60.0 | 3.10766 2.98631 11.6286 11.5916
80.0 | 3.14915 3.02329 14.8247 14.7864
100.0 | 3.17466 3.08600 18.0121 17.9731
200.0 | 3.22717 3.09265 33.9092 33.8686
400.0 | 3.25419 ©3.11661 65.6617 65.6203
600.0 | 3.26331 3.12469 97.4048 97.3631
800.0 | 3.26789 3.12875 129.149 129.104
1000.0 | 3.27065 3.13119 160.885 160.843




TABLE 2.9. - - FEM Solutions for Effective Conductivity
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- Staggered Array: vf/vT = 0.6

6 = 40 deg

Mesh (63,96)

Mesh (63,96)

Flux B.C.'s Homogeneous B.C.'s
ke/Kn _ ke-x/km ke-y/km ke?x/km ke-y/km
0.1 | 0.379076 0.368329 0205717 0.400320
0.2 | 0.461347 o,4§3224 0.481726,  0.477664
0.4 | 0.613800 0.609633 0.624623 0.622568
0.6 | 0.752967 0.751277 0.757544 0.756724
0.8 | 0.881162 0.880775 0.882257 0.882072
1.0 | 1.00000 1.00000 1.00000 1.00000
2.0 | 1.48862 1.48255 1.51108 1.50839 -
4.0 | 2.14138 2.11079 2.30237 2.28975
6.0 | 2.56150 2.50693 2.93659 2.91498
8.0 | 2.85559 2.78069 3.48978 3.46097
10.0 | 3.07301 2.98146 3.99552  3.96101
20.0 | 3.64617 3.50431 6.21894 6.16811
40.0 | 4.03512 3.85413 io.zsso 10.1732
60.0 | 4.18626 3.98903 14.1238 14.0562
80.0 | 4.26664 4.06054 17.9740 17.9039
100.0 | 4.31652 4.10483 21.8083 21.7365
200.0 | 4.42024 4.19675 40.9037  40.8286
400.0 | 4.47418 ’4;24445 $79.0154 78.9385
600.0. | 4.49248 4.26062 | 117.109  117.031
. 800.0 |4.50170 4.26876 155.197  155.120
1000.0. | 4.50725 4.27366 193.284 193.206
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45

Staggered Array: Vf/VT = 0.5

8 = 45 deg.

Mesh (65,104)

Mesh (65,104)

Flux B.C.'s Homogeneous B.C.'s
ke/k, ke/ ko Ko/ Ko
0.1 0.450454 0.480326
0.2 0.526679 0.549607
0.4 0.665428 0.677661
0.6 0.788893 0.794077
0.8 0.899751 0.900991
1.0 1.00000 ~1.00000
2.0 . 1.38698 1.41192
4.0 ~1.84518 2.01590
6.0 2.10881 '2.49183
8.0 2.28038 2.90997
10.0 © 2.40100 3.29708
20.0 2.69589 5.05063
40.0 2.87883 8.32513
60.0 ' 2.94654 11.5356
80.0 2.98181 14,7284
100.0 3.00345 17.9138
200.0 3.05691 33.8061
400.0 3.07063 65.5552
600.0 3.07831 97.2963
800.0 3.08216 ©129.035
iooo.o 3.08448 160.774
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TABLE 2.11" - FEM Solutions for Effective Conductivity |

Staggered Array: vf/vT‘= 0.6 =45 deg.

Mesh (65,104) | Mesh (65,104)
Flux B.C.;s Homogeneous B.C.'s
K/ K ke/kﬁ | ke/by
0.1 0.365561 0.397308
0.2 0.451522 0475565
0.4 0.609015 - 0.621595
0.6 0.751086 0.756348
0.8 0.880738 0.881987
1.0 1.00000 1.00000
2.0 1.48230 1507137
4.0 2.10926 2.28298 ;-
6.0 2.50349 | © 2.90237
8.0 2.77518 | 3.44328
10.0 2.97398 3.93905
20.0 3.48966 - 6.13300
20.0 3.83287 | 10.1278
60.0 3.96480 14.0066
80.0 4.03464 o 17.8520
100.0 1.07786 21.6833
200.0 14.18593 | 40.7727
400.0 14.21394 - 78.8820
600.0 5.22969  116.975
800.0 4.23761 | 155.065
11000.0 4.24237 | 193,152
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TABLE 2.12 - FEM Solutions for Effective Conductivity

Staggeréd Array: vf/vT = 0.7 6 = 45 deg.
Mesh (125,216) Mesh (125,216)
Flux B.C.'s Homogeneous B.C.'s
ke/k kg/k ke/ ko
0.1 0.259939 " 0.288549
0.2 0.359448 0.380639
0.4 0.540581 0.551350
0.6 0.705048 0.709470
0.8 0.857350 0.858386
1.0 1.00000 1.00000
. 2.0 1.61117 1.63116
4.0 2.52110 2.66187
6.0 3.18554 3.51664
8.0 3.69705 4.26604
10.0 4.10426 4.94590
20.0 5.32067 7.82265
40.0 6.29228 12.6947
60.0 6.70898 17.2501
80.0 6.94062 21.7035
100.0 7.08809 26.1113
200.0 7.40403 47.9252
400.0 75710 91.3091
600.0 7.63257 134.635
800.0 7.66217 177.946
-[1000.0 7.68005 221.251
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array fiber composite (vf/VT = 0.5, 6 = 35 deg.)-
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~FIGURE 2.19 - Temperatufé gradient distribution for boundary
, conditions given by Eq. (2.4) for staggered
array fiber composite (Vf/VT = 0.6, 6 = 40 deg.)
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I11. DISCUSSION OF RESULTS

As . stated in Section:2.2, the primary concern in this analysis
is the comparison of two methods of calculating effective thermél con-
_ductivity, name]y, homogeneous method and flux method.

Inspection of the geﬁera] trends of the numerical results
indicates that the effective thermal conductivity values, calculated
by applying two méthods, differ greatly, especially for k%/kh >> 1{,
j.e. the fibers being much more conductive than the matrix. And; ;n
~ the 1imit as:k%/km ratio goes to ihfjnity, the effective conductivity
values seem to go infinity for homogeneous method, whereas that for
- flux method seems to approach to a definite value.. However, the
methods give almost similar results for kf/km ratiolfn‘the range of
0.4 to 2.0.

Again, as diséussed in Section 2.2, other than ﬁumerica1 cal-
culation of effective thermal conducti?fties, We have given some bounds
(Eq. 2.2) on transversely isotropic fiber composites which correspond
to geometries with angie, ® = 45 deg. in our cases. 'These bounds
are introduced in reference [10] -as best possfb]e bounds iﬁkterms of
_phgse vb]ume fractions and properties for effective thermal conducti-

vity. The examination of the Figures 2.6-8 and 2.15-17 indicates that,
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the numerical results for effective thermal conductivity do not agree
with these bounds for k./k < 1. However, for ke/ky > 1, the numeri-
cal réSu]ts fall between these}two bounds where the value obtained
by homogeneous method are close to the upper bound and the values
obtained by flux method are close to 1ower'bound;

'The analytic -expressions obtained by strip method (See Appen-
dix A) are plotted in Figures 2.3-8 and 2.12-17 which are introduced
as a supplement to the flux method. 1In general, the aggrement is
good as expected especially for réctangular array fiber composifes,
but, the important point is that the expressions obtained by strip
method reflect the trend in the numerical results obtained by flux
method almost exactly. |

Another v%ew to numerical results, obtaihed by homogeneous/A
method and flux method is presepted for the isotropic cases, i.e./
the angie 6 = 45 deg., for randomly chosen kf/km ratios of 0.4, 6, 80
and 800 in Figures 2.9 .and 2.18. Although, the curves are plotted
based on three points, f,e. Vf/VT ratios of 0.5, 0.6 and 0.7, and
the rest is interpolated, the trend shows that effecthe thermal
conductivity values obtained by flux method are independent of volume
ratio, vf/vT, as kf/kﬁ >> 1. However, jn the casevof hbmogeneous
method the values are highly dependenf on the volume ratios, v./vy.

In Tables 2.1-6 and 2.7-12, we have tabulated numerical .
results obtained by usfng FEM with the mesh size 1nformatidn, e.g.
Mesh (87,136); number of nodal points = 87, ndmber of e]eméhts ='136.
>‘However; as can be seen, the mesh sizes are almost-different for each

+~case. In order to pbtain accurate numerical results by FEM, the aspect
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ratio of the triangular elements, i.e. length ratio of height to base,
‘ should be of the order of one. Thus, for each geometry, a different
mesh size is applied to keep the aspect ratio of one as close as

‘possible.
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IV.- CONCLUSIONS AND RECOMMENDATIONS

An analysis concerning effective conductivities of composite
-materials haS been performed for the unidirectional fiber compooites,
such that fibers, uniformly dispersed in the matrix, form rectangular
and staggered patterns. On the basis of theoretical ahd numerical
results presented, we reach the following conc]usions.concerning the
app]icabi]ity of the methods utilized and the effect of fiber geomeﬁry
on the effective thermal conductivity. | /

As stated in the oiscussioh’of resu]ts; the effective con-
ductivity values which are calculated by homogeneous method and flux
method differ greatly from each other especially for large values of
kf/km, i.e. kf/km >> 1. The values obtainedlby homogeneous method
keep increasing, whereas that of flux method seems to approach to a
definite value as kf/kh.ratio goes to infinity. At firét sight, the
trend in numeric values obtained by homogeneous method may seem to be
»reasonab]e, because the conductioity of one of the constituént phases
dominates over the othef one, as kf/km‘ooes to infinity, and the value
of the larger conductiVity determines the'va1ué of the effecfive ther-
mal condoctivity as given by mixture théory'which is defined by the -

formula
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ke = -—V]T— (keve + kv )
where'ke is the effective conductivity, Vi is the total volume and
subscripts f and m refer to fiber and matrix, respectively. But
this is the case for constituent phaseskthat are connected in paral-
lel (See Appendix A, electrical network analogy to heat transfer
problems) in the direction of heat flow. For our geometrical arrange-
| ments, we should expect the effectjve thermal conductivity to approach
to a definite value as kf/km ratio goes to infinity, because, in the
Qeometries that we analyzed, the fibers do not touch each other. So,
it may be concluded that the flux method gives reasona51e values in
cohparison with homogeneous method. | | |

The large difference between numerical values obtained by two
“methods may beva consequence of the RVE géometry that we have analyzed.
The precise definition of RVE js that it should be large compared to
typ%ca] phase regfon dimension, e.g. fiber diameters and spacings,
(See Section T.]). But, the size of fhe RVEs, that are-ana1yzed in
this work, are almost of the same order of magnitudevas fiber dia-
meters. This cause vio]afion of the assumptions on.which theory of
heterogeneous materials (See Section 1.2) is based. So, this may
be a reason for homogeneous-method; that is inferred from the theory
of}hgterogeneous materia]s,'to give unexpected resu]ts. |

For kf/km ratio between 0.4 and 2.0 two methods give similar
results. But, this is expected, Because the methods must give 1 as

ke/kﬁ ratio for kf/km =-1. Thus, this makes fhe methods to give
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similar results in the neighbourhood of kf/km = 1, because of the con-
tinuity requirément, that is, a continuous curve maps the neighbour
points to the pdints‘of the same order of magnitudes.

Strip method gives‘good results especially for rectangular
array fiber composites. The difference between the values comes from
the assumption made in the derivation of the method. We assume that
there is no flux component normal to principal direction of heat- trans-
fer (PDHT). But, as seen frbm the Figures 2.10 and 2.19, in the flux
method, the temperafure gradient vector has noh—zero components horma]
to PDHT because of the geometry. The normal component of the tempera-
ture gradfent to PDHT increasés with increasing kf/km hatio just.]ike
the trend in the effective conductivfty rétios, ko /k,- calculated by
strip method and flux method. - |

The value of the‘efféctive conductivify of a cdmposite mété;ial
%s bounded by the conductfvities of each constituent phases. The 1oca-4
tion of the effective-conductivity within this interval greatly depends
on geometry of the fiber-matrix diétribution. The effect of geometry
on the values of effectivé conductivity depends on theilength ratio
of each phase in the strip which is taken a]éng PDHT that effective
thermal conductivity is calculated. -

As it can be seen from FiguresA2;6-8 and 2.15-17, bounds given
by Eq. 2.2 dp not agree with thé numer%ca] results for effective .
thermal conductivity for values of kf/km < 1. Even though, no remark
has been made on the app11¢ability 1Tm1ts of these bounds in the
‘referencé [10] that these bounds are introduced, the exp]icitly defined

uppér and lower bounds are reversed for the caée, 'kf/km < 1. So, these
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bounds may be app]iéab]e only for the interval, kf/km > 1.

Althaugh, the finite element method is a powerful technique
that gives a great freedom to users to pursue.more fundamental prob-
lems, the input demanded is vefy dffficu]t_ﬁo prepare for realistic
applications. That is why, this analysis is limited to some parti-
cular types of geometries. So, for further works on’this subject,
we recommend to utilize an automatic mesh generation scheme together
with the compufer program given in Appendix B to ease the data pre-
paration task. -

- For engineering applications, the numerical results plotted |
in Figures 2.3-8 and Figures'2.12-17 are easy to use, because all
variables are in the'dimension]ess.form énd covér.a_wide range of

thermal conductivity ratios, kf/km" The procedufe to obtain effective

/
7

conductivity values from these graphs 1$voutlined below.
Step 1. Evaluate the fiber volume fraction, vf/vT, for the geometries
given in Figures 2.2 and 2.11 with a known angle 6.

- Step 2. Calculate the ratio of fiber thermal conductivity to matrix

thermal conductivity ratio, kf/km'

Step 3. Select the curve that corresponds to the geometrical arrange-

ment of the case that ié of interest.

Step'4. Obtain the ratio of effective thermal conductivity to matrix

_conductivity ratio, ke/kﬁ’ from the curve being selected.
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APPENDIX A
THE STRIP METHOD

: The idea‘behind this method is simply the electrical network
ané]ogy to heat transfer problems that may be found in any standérd

heat transfer text book.

> o | ©

£

: Q1 R, .
A'X1 A’X1 : '
k1AY1 ’ sz)’g_

(b)

FIGURE A.1-- Series and para]]e] onhe- d1mens1ona1 heat ‘transfer through
a compos1te wall and electrical analogy.
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The equivalent resistivity on effective conductivity of the networks

-given by Figure (A.1) are

Ax] sz ,
k = AX, + M,/ — + —= R (A.1a) -
1 2 ‘
ke—y = Axqky + MoK, /AXg +OAX, , | (A.1b)

respectively, where Ax and Ay are thicknesses of the wall along x and
y directions. Now, let us turn to our problem of evaluating effective

conductivity for rectangular and staggered array fiber composites.

l‘_ 7 —’1 S | ' /.éfrip
/ | T
//

/

- o - . o ma - ——— e = o e e —— — e e - - —-

s

L
|
o<
[---;5
xR
le——
D

X

FIGURE A.2 - ‘Model for ‘the strip method.

a
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Consider the stkip of infinitesimal width, dx, taken along a
" segment of fibrous composite material as shown in Figure A.2. The
effectivé condUctivity of the strip along y direction aé analogous to
Eq. (A.1la) is '

K = b _—  (A.2)

e~y 2y . b -2y

kf ) km

Now, we have strips which are connected in paraliel along x direction
with conductivities ke-y' Then, the effective conductivity of the

system, as defined in Eq. (A.1b), is given by the integral, below.

(b/2)dx
2y, b -2y

kf km L : ﬁ a

or in polar coordinates

COSsY do

2r sine(km - kf) + bk

-bkfkmsine
I =
f

In order to derive an expression in general form, we take the Timits of
integration from m/2 to a particular angle, y. By nondimensionalizing

the integral, we obtain

: /2 . ' '
f(y,A) = ——= J 51n6do | (A.3)
km. Y (Asin® + 1)cosy
whebe,
T k
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By integrating [10] Eq. (A.3), we get the expression,

- T 2 tan y/2 + A
f(v,A) ﬁ35g§{( 5 y) + }?:E:ﬁg(arctan o

- arctan —l—i¥£LQ] . for A2 <] _ (A.4)
/1 - A? ‘
- JAZ -1
f(y,A) = ——{(-— -y 4+ (Injfany/2 + A - /A® -]
Acosy /AT =T |tan y/2 + A+ /AT - 1

- 2/_
T2A-V/A - 1] for A2 > 1 (A.5)
1T+A+ /A2 - 1|7

-1n

£(r, A=1) = —L{(-T- - y) - tan(-% - —X)]
cosy 2 : 4 2

For Timit values, as kf/k ratio goes to 1nf1n1ty, Eq. (A. 4) will be
app11cab1e for °

A= -2(r/b).

Now, we are ready to evaluate an expression for effective conductivity

for two types.

Rectangular Array

We will divide the RVE (Fig. 2.2-a) into three parts as shown

below.

for A =1 (A.6)
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FIGURE A.3

For parts (1) and (3)

k. /k

e-y’ 'm f(Y=O’A) s ‘ | /

and for part (2)

I,

key/kn = 1

which are all connected in para]]e]. Then, the effective thermal

conductivity for whole RVE, as defined in Eq. (A.1b), is

ke—y/km = 2(r/a)(f(j=0,A) - 1)+ ' (A.7)

Geometric parameters for rectangular array case are

r /v tané - . S ey

boos

a m ; | b 7 tand
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where v and 6 are defined in Section (2.3). For effective conductivity
~along x direction, it is enough to interchange a and b in all equations,

above.

Staggered Array

We will divide the problem into two cases.

i) Overlapping occurs within the RVE. Then, we will divide

the RVE (Figure 2.11-a) into six parts, as shown in Figure A.4.

«/»!

- FIGURE A.4

For parts (1),i(3), (4) and (6)

ke;y/km f f(vy,A) .
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But, for parts (2) and (5), the integral obtained -is very
difficult to evé]uate. Thus, we will approximate the fiber

segment as shown in Figure 'A.5.

FIGURE A.5

where

p = r(tan v/4 + siny)

we will take the Tine segment, CD, which is parallel to the
line segment, EF, as interface of fiber and matrix phases.

Then, effective conductivity is

ke-y/km = g(yv,A) = 1/A(tan v/4 + siny) + 1.

Now, we are ready to construct an expression for effective

conductivity for whole RVE, which is

Keuy/k = (/2) (dc0sF(v,A) + 201 = cosy)g(v.R) ,  (A.8)
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where

vy = arc cos( 51 - 1)

ii) No overlapping occurs within the RVE (Figure 2.11-a). Again,

we will divide region into six parts as shown below.

FIGURE A.6
For parts (1), (3), (4) and (6)

ke_y/y = F(r=0,A) ,

and for parts (2) and (5)

ooy/lp = 1+

Then, effective conductivity for whole RVE is
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ooyt = 4(r/a) (F6=0,A) - 1) at \ (A.9)

For staggered array case, geometric parameters are,

r -y v tanb . r =J“"“V‘-‘
2m > b 2w tanbé ’

a

where v and 6 are defined ih Section (2.3). Simi]afly, for
effedtive conductivity along x direction, we will interchange

a and b in all equations, above.

”~
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~ APPENDIX B
COMPUTER CODE FOR FEM

In this part, we will describe a Fortran program for Finite
Element Method to solve the two dimensional anisotropic steady stafe
heat conauction equation (Eq. 2.1) with prescribed temperature and/or
- insulated surface bbundary conditions using triangular elements of
3-noded, 6-noded and 10-noded types with first order continuity inter--

polation functions. CDC CYBER 170/815 CPU time of the code run with

;
/

the associated sémp]e data is 1.819 seconds.
The main program calls the seven following subroutines as

shown in Figure B.1.

DATA : Reads the program input.

STIFF1 : ‘Evaluates the é1ement stiffness matrices and element
loads by calling shape function routine SFRT, and
jacobian and global derivatives routine JACOB.

" ASSEMB : This routine assembles the element stiffnesses and
applied loads to form the global stiffness matr1x and -
force vector

GREDUC : This routine. reduces the global stiffness equat1ons by
: direct gauss1an elimination.

BAKSUB : Performs the back substitution phase.

FLUXES. : Evaluates temperature gradient distribution over each

element and averaged heat flux and temperature gradient
over the domain by calling SFRT and JACOB. ‘



[/ﬁ " DATA
STIFFT
ASSEMB

!

GREDUC

!

BAKSUB . - | S

L

FLUXES

!

. RESULT.

- FIGURE B.1 - Flowchart for the_FEM program.
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RESULT : Writes the calculated results.

Computer Code for FEM is given in the following part with

terminology and data preparation information.

AREAE
ASLOD(NSVAB)
ASTIF(MSTIF)

BVALU( INODE)

COORD(NPOIN, NDIME)

‘CVALU( INODE)

DERIV (NDIME , INODE)
ESTIF(NEVAB,NEVAB)
ETA(LINT)
EXT(LINT)
FIXED(NSVAB)

FLUX ( TELEM,NDIME)
FLUXX

FLUXY

GRADX

GRADY

ICODE (NDOFN)

: Coordinate of integration points.

TERMINOLOGY

: The area of‘triangular element.
: The global vector of applied loads. .

: The global stiffness matrix stored in

vector form;

: Global "derivative with respect to X.
: Coordinates of nodal points.

: GToba1 derivative with respéct to y.
: Shape function derivatives.

: The element stiffness matrix.

: Coordinate of 1ntegration points;

: Prescribed temperature values.

:.Temperatﬁre gradient over elements.

: Averaged temperature gradiént in x-direction.
: Averaged temperature gfadient in y-direction.
: Averaged heat flux in x-direction.

: Averaged heat flux in y-direction.

: Fixity code for each degree of freedom of

a restrained load-Tocal usage

1  Temperature value corresponding to the
~ degree of freedom is prescribed

0 Free degree of freedom.
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LINT . ' : Number of integration points.
LNODS(NELEM,NNODE) : Element node numbers listed for each element.
MATNO(NELEM) 7 : Material set number for each element.
- MSTIF- ' : Total number of stiffness terms in the banded
global stiffness matrix.
NBAND : Maximum half-bandwidth for problem.
NBOUN : Total number of boundary points, i.e. nodal

points at which one or.more degrees of
freedom are restra1ned

NDIME : Number of coordinate components.

NDOFN : Number of degrees of freedom per nodal point.
NELEM ' : Total number of elements. |
NEVAB | : Number of variables per element.

NPOIN : oo Totai number of nodal points.

NPROP o : The number of material parameters.
PROPS (NMATS ,NPROP) : Material properties for each material séf;
REACT(NSVAB) - : Reactions for each degree of %reedom.
DISP(NPOIN,NDOFN) : The nodal temperature values.
TREAC(NPOIN,NDIME) | ¢ The nodal reactions.

WEIGHT(LINT) F Weights for numerical integration.

DATA PREPARATION INFORMATION
(For 3-noded triangular elements) -

CARD SET 1: - Title card (20A4)-one card. Title of the

problem 1imited to 72 alphanumeric characters.
CARD SET 2: ' - . Control Card (16I5) - one card.
Cols. 1-5 ~ NPOIN Total number of nodal points.
6 1

0 NELEM Total number of -elements.



11-15
16-20
21-25
26-30
31-35

36-40
41-45

CARD SET 3:

Cols. 1-10

11-25

26-40
CARD SET 4:

Cols. 1-5
6-10

11-15

16-20
21-25

77

NBOUN -  Total number of restrained boundary
points at which the value of the
- degree of freedom.is prescribed.

NMATS Total number of different materials.

NPROP Number of independent properties.per
material (=2).

NNODE Number of nodal points per element

(=3).
NDOFN ?um?er of degrees of freedom per node
=1). | ' |
. NDIME Number of coordinate dimensions (=2).
CLINT Number of integration points (=1).

Material Cards (I10, 2F15.5) - one card for each
different material. Total of NMATS cards (See
Card Set 2.).

JMATS Material identificatibn number.

PROPS(JMATS,1) Material coefficient, KX. = /
PROPS(JMATS,Z) Material coefficient, KY.

Element Cards (12I5) - one card for each element.
Total of NELEM cards (See Card set 2.).

JELEM Element number.

LNODS(JELEM,1)  1st. Nodal connection number.
LNODS (JELEM, 2) 2nd M " o
LNODS (JELEM, 3) 3rd o " "
MATNO(JELEM) Material Property number.

Note: The nodal connection numbers must be listed in an anti-clockwise
’ sequence starting from any node.

CARD SET 5:

Cols. 1-10

11-25
26-40

Nodal Coordinate Cards (I10.2F15.5) - one card

for each node. Total of NPOIN cards (See Card
Set 2). ‘

JPOIN Node number.

COORD(JPOIN,1)  The x coordinate of the node.
COORD(JPOIN,Z)‘ The y coordinate of the node.




CARD SET 6:

Cols. 1-10
11-15

16-25

CARD SET 7:

Cols. 1-11
12-22
23-33

78

Restrained Node Cards (110,15,F10.5) - one card
for each restrained node. Total of NBOUN cards

(See Card
omit this

NODFX
ICODE(1)

PRESC(1)

Set 2). If NBOUN = 0 in Card Set 2,
card set.

Restrained node number.

Condition of restraint)
0 No constraint
1  Nodal degree of freedom restrained.

The prescribed value of the nodal
variable (Temperature).

Integration Point Cards (3F11.6)
Total of LINT cards (See Card Set 2)

WEIGHT(ILINT) Weights for numerical integration.

ETA(ILINT)
EXI(ILINT)

Coordinate point.

Coordinate point.

Note: The following numerical integration po1nts are taken from ;-

‘ reference [15].

Type of Element Weight Eta Ex1

3-Noded 1.0 0.333333 . 0.333333

6-Noded 0.333333 0.5 0.5

: - 0.333333 0.5 0.0
0.333333 0.0 . 0.5

10-Noded 0.5625 0.333333 . 0.333333
0.520833 0.6 0.2
0.520833 0.2 0.6
0.520833 0.2 0.2
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PROGRAM FEM (INFUT, OUTPUT TAPES=INPUT, TAPES=0UTFUT)

COMMON/FEM1/NPOIN, NELEM, NEOUN, NFROP, NNODE, NEVAE, NSVAE, NDOFN,

+ LINT, NDIME, NEAND, NI, NO, AREA, GRADX, GRADY

CONMUN/FEN »/FROPS (S, 3), COORD(401, 22), LNODS(250, 10), IFPRE(401),
WEIGHT(10),FIXED(401),ETA(10),EXI(10), MATNOI(Z350),
FLUX(Z50,2), XDISP(401) ,-TDISP(401,1), TREAC(401,1),
ALAN(250), ASTIF(25000), ASLOD(401), REACT (401 ), FLUXX,
FLUXY

+ o+t o+

FEM FPROGRAM FOR THE SOLUTION OF TNU—[IIﬂ.
STEADY STATE HEAT CONDUCTION EGUATION

SZIGN DATA SET NUMBERS FOR INFUT,NI, AND CUTPUT, NO,

NI=
NO=&

THIS SEGMENT CONTROLS THE CALLINB IN ORDER,
OF ALL SUBROUTINEZS

CALL DATA

CALL STIFF1
CALL ASSEME
CALL GREDUC
CALL BAKSUE
CALL FLUXES
CALL REZULT

sTOr
END

SUBROUTINE DATA

DIMENSION ICODE(Z), PREaC(d) TITLE(JU) .

COMMON/FEML/NFOIN, NELEM, NBOUN, NPROP, NNODE, NEVAE, NSVAE, NDOFN,

+ ILINT, NDIME, NEAND, NI, NG, AREA, GRADX, GRADY

CUMMON/FEMZ/PROFS (S, 3), COORD(401,'2), LNODS (250, 10), IFPRE(401),
WEIGHT(10),FIXED(401),ETA(10) ,EXI(10Q),MATND(ZS0),
FLUX(250, 2), XDISF(401), TOISP (401, 1), TREAC(401, 1),
ALAN(250) ASTIF(25000), ASLIID(401), REACT(401), FLUXX,
FLUXY

+ 4+ o+

DATA INFUT SUBROUTINE !
REAT AND URITE THE FROBLEM TITLE

READNNI, 915) TITLE
_ WRITE(HO,91%) TITLE'®
#1% FURHAT(“UA4>" -

READ AND WRITE THE CONTROL DATA

REALDI(NI, #00) NFOIN, NELEM, NEOLIN, NMATS, NPROF, NNQDE, NDOFN, NDIME,
+ LINT i -
F00 FORMAT(1&15)
WRITE(NG, 705) NFOIN, NELEM, NEOUN, NMATS, NFROP, NNODE, NDOFN, NDIME,
+ : LINT
P05 FORMAT(//, 1%, ZHNFOIN =, IS, 2X, 7HNELEM =, IS, 23X, 7HNEDILUN —,I-,;
+ 7HNMATS =, 15, //,1X, 7HNPROF =, IS, 2X, ZHNNODE ",lq,oX FHNDOFN =,
+ I5,3X, 7HNDIME =, 15, 2X, 4HLINT =, 135)
NEVAL—NFGIN?NUUFN
NEVAER=NNODE<NOCOFEN

READ AND WRITE THE HA1LhIAL FROFERT1ES

HRI1E(HU,VUU)
250 FORMAT (1HO, S5X, 19HMATERIAL FROFERTIES)
O3 10 IMATES=1, NMATS
READ(NI,Z10) IMATES ,(FRDPS(JNAT' IFROF), IFROF=1, NFROF)
10 WRITE(HQ, #10) JMATS, (PROFS (dMATﬂ,IPRHF),IFRUP 1, NFROP)
Q10 FORMAT(I10,4F15.%) ) N -

READ AND WRITE THE ELEMENT NODAL
CONNECTIGNS

WRITE(ND, %407
7&0 FORMAT (1HO, 2X, ZHEL, 3X, SHNODES, 3X, 4HMAT. )
Do 20 IELEM=1, NELEM
READ(NI 220) JELEM, (LNODS(JELEM, INODE), INGDE 1, NNGLDE),
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+ MATNO (JELEM)
20 WRITE(NG,920) JELEM, (LNODZ(JELEM, INODE), INODE=1, NNOIE),
+ MATNOC(JELEM)

720 FORMAT(121I%)
READ AMND WRITE NODAL COOROINATES

ano

WRITE(ND, 270)
970 FORMAT (1HO, SX, 4HNODE, 5X, SHCOORI. )
DO 20 IPODIN=1,NPOIN
READ(NI, 930) JPOIN, (COORO(JIFOIN, IDIME), IDIME=1, NNIME)
O WRITE(ND, 230) JPOIN, (PGDRD(JFUIN IDINME), IDIME=1,NDIME}
230 FORMAT(I10,2F15.95)

[

READ AND WRITE BOUNDARY CONDITIONS
AND STORE IN.GLOEAL VECTORS

Qoo

o0 40 ISVAE=1, NSVAE
IFPRE(ISVAR)=0
40 FIXED(ISVAE)=0.0Q
WRITE (NGO, 280) .
Y20 FORMAT(1HO, 1X, 2SHRESTRAINED NODES,FIXITY CODE,
+ 22H AND PRESCRIBED VALUES)
- IF{NEOUN.E®.0) RETURN
00 50 IROUNS1, NEOUN
READ(NI, #40) NODFX, (ICORE(IDOFN), PRESC(IDOFN), IDOFN=1, NDDFN)
WRITE(NO, 940) NODFX, (ICORDECIDOFN), FRESC(IDOFN), IDOFN=1, NDOFN)
40 FORMAT(I10,2¢(1IS,F10.5))
Do 50 IDOFN=1, NDOFN
INDEX=(NODFX-1)=NDOFN+IIDFN
IFFRECINDEX)=ICOQDE(IDOFN)
FIXED(INDEX)=PRESC(IDOFN)
CONT INUE

S0

READ AND WRITE INTEGRATION POINTS
AND CORRESFONDING WEIGHTS :

QOO0

READ(NI, #25) (WEIGHT(I),ETA(I),EXI(I), I=1,LINT)
WRITE(NG, ?25) (WEIGHT(I),ETA(I),EXI(1),I=1,LINT)
925 FORMAT(3F11.68)

[

[
RETLURN :
END C- : : S
C o ' f- /
SUBROUTINE STIFFL ;
DIMENSION ESTIF(10,10), EVALU(10) CVALUC10) , EJAC(Z, 2), DERIV(Z, 10)
- COMMON/FEML /NPCOLN, NELEM NEOUN, NFROP, NNODE, NEVAF NSVAB, NDOFN,
+ LINT,NDIME, NEAND, NI, N3, AREA, GRADX, GRADY
CDMHGN/FEMZ/PRDPS(S,S),CGDRD(401,2),LNGD¢\250,10),IFPRE(401),
+ WEIGHT(10),FIXED(401) ,ETA(1IQ),EXI(10), MATNG(2S0),
+ FLUX(2S50,2), XDISF(401), TOISF{4GL, 1), TREAC(401,1),
+ ALANCZS0), ASTIF (25000), ASLON(401) , REACT(401) , FLUXY,
IS +, FLUXY
124 e . . c
135 o EVALUATION OF ELEMENT STIFFNESS MATRICES
136 [ AND ELEMENT LOADS
137 c :
25 DPENCLO, FILE=-TEMF )
fc3) C i
140 C LDOF OVER EACH ELEMENT
141 C
142 oo 100 IELEM=1, NELEM
14z 0o 10 IEVAE=1,NEVAR
144 0o 10 JEVAE=1, NEVAE
145 10 ESTIF(IEVAE, JEVAE)=0.0
144 JELEM=IEILEM ’
147 LPROF=MATNO{IELEM)
143 XCOEF=FROFS(LFROP, 1)
149 YCOOEF=FROFS (LFRAOF, 2)
1S5S0 [ kY
151 C EVALUA1E THE ELEMENT CTJFFNES ES
152 [
153 nog o IEVAE-l,NhVAB‘
154 : DO 30 JEVAE=1, NEVAER
185 DH 30 K=1,LINT
eI : : z g
157 =
153 W=WEICGHT (K)
159 CALL. SFRT (LERIV,ETASF, EXI F, NNODE)

. 180 ) CALL JACOE (NNDDE, JELEM, DERIV; COORD, LNODS, EJAC, DET, BVALLL, CVALLD

.




141
162
143
164
145
144
157
165
1&%
170
171
172
172

174

175
17¢
177
178
172
150
121
182
153
184
125
188
137
122
159
190
171
192
193
194
125
196
197
193
19%
200
201
202
203
204
205

0&

267
208
20%
210
211
212
21z
214
215
218
217
21e
21
“:"c,

OO0

noao

20

100

Do 2o 1s1,2

e vl

D00

[N o]

0

(]

10

81

ESTIF(1EVAE, JEVAE) =ESTIF (IEVAE, JEVADR) +W& (XCOLEF sBVALU( IEVAE) s EVALLIKY
+JEVAE ) +YCOEF #CVALU(IEVAB) #CVALU(JEVAR) ) /DET
WRITE(10) ESTIF ;

CONTINUE

RETURN -
END

SUBROUTINE JAPDD(NNGDE JELEM DERIV COORD, LNODS, EJAC, DET, BVALLL,
+CVALLY

DIMENSION EVALU(10)1CVALU(10)7EJAC(912)yLNUDO(QSO,10),DERIV(2,10),
+ COORD(401,2) .

EVALUATION OF JACOBIAN AND
COMPONENTS OF GLORAL DERIVATIVE VECTCOR

no 40 I= 1,;
Lo 40 J=1, .
EJAC(I,J)=0.0 .

EVALUATE JACOEILAN

no 20 d 1,2°

DO 10 K=1, NNIDE

NODET LNDD’(JELEH K)

CEJAC(I, H=EJAC(I, J)+DERIV(I, F)*CUURD(NUDEI J3
CONTINUE - ) -

DET=EJAC(1, 1)=EJAC(Z, 2)~EJAC(1, 2)#EJACK2, 1)

IF (NNODE.E@®.3) DET=2.0%#DET

D 30 K=1,NNODE

EVALUATE COMPONENTS OF GLOBAL DERIVATIVE VECTURV

BVALU(K)=EJAE(2,Q)ﬁUERIV(I,K)DEJAC(1,2)2ﬁERIV(2,K)
CVALIUED =EJAT (1, 1) =RERIV(Z, K)~EJAT (2, 1) =LERIV (1, K)

RETURN

END

SUBROUTINE ASZEME o /
COMMON/FEML /NPQIN, NELEM, NBOUN, NFROP, NNODE, NEVAE, NSVAE, NDOFN,

+ LINT, NDIME, NEBAND, NI, NG, AREA, BRADX, SRADY

COMMON/FEMZ/PROFS(S, 37, LHORD(4H1,2) LNCODE {250, 10), IFPRE(401),
' NFIuHT(lO) FIXED(401),ETA{10),EXTI(10), MATNO(250),
FLUX (250, 2), XDISP{401), TOISF (401, 1), TREAC (401, 1),
ALAN(ZSO),ASTIF(QSOOO),AELDD(401),REACT(4OI).FLUXX,
FLUXY
DIHFNUIUN ESTIF(10,10)
DATA MSTIF/25000/

E A

THIS ROUTINE ASSENBLES THE ELEMENT
STIFFNESSES AND AND APPLIED LDADS TO FORNM
THE GLOBAL STIFFNESE MATRIX AND FORCE VECTOR

NFUNC(I, J)=(Jd-1) % (28NSVAB+1-Jd+1) /2+1
REWIND 1G

oo S ISTIF=1,M3TIF
ASTIF(ISTIF)=0.0

D0 10 I5VAB=1, NSVAE
ASLODCISVAE) =0, 0

CONTINUE

NEAND=0 .

D0 30 IELEM=1, NELEM
READC10) ESTIF

0o 20 INODE=1, NNODE
NODEI=LNODS( IELEM, INODE)

00 20 IDOFN=1, NDOFN s
NROWS=(NDDE1-1) «NDOFN+ILOFN
NROWE= { INODE~-1 ) =NDOFN+JDOFN

ASSEMELE THE ELEMENT deFFNEES MATRICES

DU 20 JINODE=1, NNODE

NODEJ=UNODS (1ELEM, JNDJDE)

oo 20 JOOFN=1, NDOFN ' :

NZOLS= (NODE .~ 1)°NDDFN+JDHFN N\
NCOLE= (JUNODE- 1) *NDOFN+JDOFN .
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IF(NCOLS.I.T.NROWS) GO TO 20
NOIFF=NCOLS~-NROIWE

IF(NDIFF.GT.NEAND) NBAND=NDIFF

NGASH=NFUNC (NROWS, NCOLS) .

STIF(NGASH)=ASTIF (NGASH)+ESTIF (NROWE, NCOLE)

20 CONTINUE

S0 CUNTINUE’

NHALF=NBAND+1

WRITE(NO, $00) NHALF e
INDEX=NSVAB~HEAND

STIF=NFUNC(INDEX, NSVAE)

IF(NSTIF.LE.MSTIF) RETURN oo
WRITE(NO, 910) '

710 FORMAT(1HQ, SX, 24HSTIFFNESS SPACE EXCEEDELD)

STOF
END

SUBROUTINE GREDUC .
COMMON/FEM1/NPOIN, NELEM, NEOQUN, NFROF, NNODE, NEVAE, NIZVAE, NDOFN,

+ LINT, NDIIME, NEAND, NI, NO, AREA, GRADX, GRADY

++ 4+ 4

COMMON/FEM2/PROPS(S, 3), COORD(401,2) , LNQDS (250, 10), IFFRE(401 ),
WEIGHT(10), FIXED(401), ETA(IO) EXI(lO) MATNO(Z50),
FLUX (250,2), XDI“P(401) TOISP(401,1), TREAC(401,1),
ALAN(ZE0), ASTIF(25000), ASLODO(401),REACT(401), FLUXX,
FLUXY ) \

THIS ROUTINE REDUCES THE GLOEBAL STIFFNESS

EQUATIONS BY DIRECT GAUSSIAN ELIMINATION

NFUNC(I,. ) =(J-1)# (Z=NSVAER+1~J+1) /2+]
NEGONS=NSVAE

DO 50 IEGNG=1, NEGNS
NLOCA=TECNS+NBANT
IF(NLOCA.GT.NEONS) NLOCA=NEGNS
IFCIFPRECIEGNS) .ER. 1) GO TO =20

REDUCE ECUATIONS

‘NSATH=NFUNC ( IEQNS, IEGNS)

PIVOT=ASTIF (NGASH) . :

IF(ABS(FPIVOT) JLT.1.0E~1¢) GO TO &0 !
IF ( IEQNS. Ef NEGNS). GU 10 50 .

1IEMNI=TEANS+]. .

~ha 2o IRUHS-IEuleNLGCA

0

NGASH=NFUNC ¢ TEGNS, IROWS) hr
FACTR=ASTIF (NGASH) APIVOT
IF(FACTR.EG.0.Q) G0 TO 20

00 10 ICOLS=IEGNI, NLOCA
IFCIROMS. GT. TOOLS) G2 TO 10
NGESH=NFUNC ( IROWS, ICOLS)

"NGITZH=NFUNC( TEQNS, ICOLE)

ASTIF(NGESH)=ASTIF (NGESH)~FACTR®ASTIF (NGISH)
CONTINUE
ASLODO(IROWS) =ASLODC IROWS) —~FACTREASLOD( LEEINS)
CONTINUE
GO TO S0

ADJUST  LOADS FOR PRESCRIBED DISFLACEMENTS

DO 40 IROWS=IEGNS, NLOCA
NDA"H NFUNC (TERNS, IROWS)
ASLODCIROWES) =AS LUU(IRUN Y=ASTIF(NGASH) sFIXED(IERNS)
“ﬂNTINUE
NGISH=NFUNC(IEQNS, IEGNS)
ASTIF(NGISH)=0. G
CONTINUE
RETURN

0 WRITE(NG,200) PIVOT, IEDNu

FORMAT (55X, 17HINCORRECT PIVOT =,F20.4&, 5%, LZHEGUATION NO. , IS)

STOR :
END _ :

CSUEROUTINE BAKSUR

+

COMMON/FEML/NFOIN, NELEM, NEQUN, NFROP, NNUDE NEVAER, NSVALE, NDOFN,
LINT, NDIME, NEAND, NI, NU.nRFA GRADX, GRADY
LUHMHN/IhH_/FRUP-(S,?) COORD(4G1, 2)  LNODE (250, 10), IFFRE(401),
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BUEROUTINE FLUXEZ
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WEIGHT(1Q),FIXED(401),ETAC10),EXI(10), MATNO(250]),
FLUX (2 50,2) XDISF(401),TDISP(401,1), TREAC(401,1),
ALAN(ZS0), ASTIF(25000),ASL0OD(401),REACT (401), FLUXYX,
FLUXY

THIS ROUTINE FPERFUMS THE BACK
SUBSTITUTION FHASE ’
NFUNC (I, J)={d-1) = (2ENSVAB+1-d+ 1) /7241
NEGNS=NSVAE

D0 S IEGNS=1, NEGNS

REACT(IEQGNS)=0,0

CONTINUE

NEGNI=NEBNS+1

00 20 IEGNS=1, NEXNS

NEACK=NEGN1~-IEQNS
NGASH=NFUNC{NEACI, NBACK)

FPIVOT=ASTIF (NGASH)

RESID=AZLOL (NEACK)

IF(NBACK.ER.NEQNS) GO TO 20

NEAC1=NEACK+1

NLOCA=NEACK+NEAND

IFCNLOCAL T NEGNS) NLOCA=NEGNS .

00 10 ICOLS=NEBACL, NLOCA

NGESH=NFLUNC CNBACK, 1COLS)

RESID=RESIL- AC1IF(NGESH)#XDISP(ICULS)
CONTINUE i

IF(IFFRE(NEACK) .ER. 0) XDISF (NBACK)=RESID/PIVOT
IF(IFPRE(NEACK) . EC. 1) “XDISF (NEACK ) =F IXED(NEALCE)
IF(IFFRE(NEBACK) .ELRL. 1) REACT (NBACK)=-RESID
CONTINUE

FEOUNT=0

o 40 IFOIN=1,NFOIN

0o 40 IDOFN=1, NDOFN

FKOUNT=EOUNT +1

TOISF(IFOIN, IDOFN)=XDISF {KOUNT)
TREACCIFOIN, TDOFN) =REACT (KKOLINT)

RETURN i ’ -
END’ :

DIMENZION LVALU(IO).DVALU(IO) EJAC(Z, 2, DERIV(Z, 10) /
LDMNGN/FEMI/NPUIN NELEM NEOLIN, NPROP, NNODE, NEVAE, NSVAE, NDIOFN,
"LINT, NDIME; NEAND, NI, NO, AREA, GRADX, GRADY

© COMMON/FEM2/PROPS(S, 3), COORD 401, 2), LNODS (250, 10),IFFRE(4UI),

4+

+ v WEIGHT(10) ,FIXED(401),ETA(10),EXI(10), MATNO(250),
FLUX (250, 2), XDISP(401), TDISP(401,1), TREAC(401, 1),
ALAN(Z JU) ASTIF (25000), A-LUD(401) REACT (401), FLLIXX,
FLUXY

EVALUATION OF TEMFERATURE GRADIENT OVER EACH
ELEMENT AND- OF AVERAGED HEAT FLUX AND AVERAGED
TEMPERATURE GRADIENT OVER THE DOMAIN

HEATX=0,0
HEATY=0.0
AGX=0.0
AGY=0, Q
AREA=Q, O

LOOF OVER EACH ELEMENT

Do 30 IELEM=1, NELEN

JELEM=IELEN

LPRUP"NATNU(IELEN)
XCOEF=FROFS(LPROFP, 17

YCOEF=FROFS (LFROP, 2)

AREAE=0.0

@XEUM=0.0 kY

HYSUM=0.0 . \

0O 10 K=1,LINT . v
ETASP=ETA(K)

EXISF=EXI(K) ) i -
W=WEIGHT (k) !

CALL. SFRT(DERIV, ETASF, EXISF, NNODE)
CALL JACOER(NNODE, JELEM, DERIV, COORD, LNHDa,ElmL,DtT BVALU, CVALLY
AREAE=AREAE+W=DET/2.0 -

EVALUATE TEMFERATURE GRADINT OVER EACH ELEMENT
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00 10 INODE=1, NNODE

NODE £=L.NODS ( IELEM, INQDE)
GXSUM=0XSUM+W=EVALUC(TNODE) = TRISP (NODET, 1)
QYSUM=GYSLIM+W=CVALUCINODE ) s TDISF (NODEL, 1)
IF(NNODE.NE.3Z) G0 TO 40
AREAE=AREAE/Z2.0 )
GXSUM=BXSUM/Z.0
QYSUM=QYSUM/2.0
FLUX(IELEM, 1)=aX5UM/AREAE
FLUX CIELEM, 2)=0YSUM/AREAE

EVALUATE AVERAGED TEMPERATURE GRADIENT AND
HEAT FLUX OVER THE DOMAIN

AREA=AREA+AREAE
ALAN(IELEM)=AREAE :
HEATX=HEAT X+ XICOEF <G1XSUM
HEATY=HEATY+YCOEF=QYSUM
AGX=AGX+XSUM
AGY=AGY+EYSLIM
FLUXX=HEATX/AREA
FLUXY=HEATY/AREA
GRADX=AGX/AREA
GRADY=AGY/AREA

RETURN
END
-~
SUBROUTINE SFRT(DERIV, ETASP, EXISP, NNODE)
DIMENSION LDERIV(Z, 10)

THIS ROUTINE CONTAINS DERIVATIVES OF SHAPE
FUNCTIONS FIOR- Z-NODED, 6-NODED AND 10-NODELD
TRIANGULAR ELEMENTS

S=EXISF

T=ETASP

F=1.0-5-T
IF(RNODE.NE.3) GO TO 10

FUR ETNDDED TRIANGULAR ELEMENTS
DERIV(1,1)=-1.0 .
DERIV(1,2)=1.0 -

*DERIV(1,Z)=0.0

DERIV(Z,1)=-1,0
DERIV(Z, 2)=0.0
DERIV(Z,3)=1.0
IF(NNODE.NE. 2) GO TO 20

FOR &-NODED TRIANGULAR ELEMENTE

OERIV(1, 13=-4,0=F+1.0
DERIV(Z, 1)=-4.08F41.0
DERIV(1, 2i=4, Q=(F-5)
DERIV(Z, 2)=~4.0=&
DERIVI1, 2)=-1,0+4, 083
DERIV(Z,Z2)=0.0

DERIV(1, 4)=4. 0T
OERIV(Z, 4)=4.0%5
DERIV(1,S53=0.0
DERIV(Z,S)=~1.0+4.0=T
DERIV(1,4)==4,0=T )
DERIV{Z, ¢)=q,0~4, 0x5~&, OKT
1F (NNODE.NE. 10) RETURN

FOR 10-NOIDED TRIANGULAR ELEMENTS

DERIVL, 1)=(=27. 0sFacd+18. 08P-2,0) /2.0
DERIV(Z, 1) =(-27.0sFae241&. OsF-2,.0) /2.0
DERIV(1, 2)=%,0&{3. 0sfxRP-P~&, Q83=P+3) /2,0
DERIV(Z, 2)=%., 0858 (~&, 08P +1.0) 72,0
DERIV(1,3)=%, 08{&, O8S=PrRF—3, OsSusE+3) /2.0
DERIV(Z, 3)=-2.0%(3. O3 2-5)/2.0

DERIV(L, 4)=(27.0=5=82-12, Ox5+2,0) /2.0
DERIV(2, 3)=0.0 -
DERIV(1,S)=%,0sT#{4.085-1.0) /2.0

LERIV(Z, 5) 0s(3.0 2-5)/72.0
DERIV(L, 31 =%, 08 (3. 0=T=u2-T) /2.0

1

84
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431 DERIV(Z, 6)=, 0585 (6. 05T-1.0) /2
a3z DERIV(1,73=0.0
423 DERIV(Z, 7)= (27 . 05 THEZ-16. OHT+Z. 03 /2.0
4z4 DERIV(1,&)=-%.0%(3. 05 Tax2-T) /2,0
485 DERIV(Z,8)=9. 08 (4. OsTeP~P~3, 0xTex24+T) /2
a6 DERIV(L, 9)=%, 0sT5(~6. O8F+1.0) /2.0
427 DERIV(Z, )=, 0% (3. OsFsa2~P=i. O£PET+T) /2
483 DERIV(1,10)=27.0%T#(P=-S)
azw DERIV(Z, 10)=27. OuGx (F=T)
490 I <
491 RETURN .
a2 END
49z s
av4 SUBROUTINE RESULT
] COMMON/FEM1 /NEOIN, NELEM, NEQUN, NFROF, NNODE, NEVAE, NSVAE, NDOFN,
aze + LINT, NDIME, NBAND, NI, NO, AREA, GRATIX , GRADIY
497 COMMON/FEM2/PROFS(S, 2) , COORD (401, 2), LNODS (250, 10), IFFRE(401),
49g + WEIGHT(19),FIXED{401),ETAC10),EXI(10), MATNO(2S0),
499 + FLUX(250,2), XDISP(401), TOHISF(401,1), TREAC(401, 1),
500 + ALAN(ZS50), ASTIF (25000), ASLOD(401), REACT(401) FLUXX,
S01 + FLUXY ,
502 C
503 C OUTFUT OF RESULTS
504 c
S0S o YWRITE THE NODAL TEMPERATURE AND REACTIONS
504 C
507 WRITE (NO, 2007
08 200 FORMAT (1HO, 5X, 4HNODE, 1X, 13HDISFLACEMENTS, 3X, YHREACTIONS)
50% N0 10 IFDIN=1,NFOIN -
C 810 10 WRITE(NG, 910) IFQIN, (TDISP(IPOIN, IDOFN), IDOFN=1, NDOFN),

+ (TREACCIFOIN, IDOFN) , IDOFN=1, NODOFN)
10 FORMAT(I10,3E14.8) .

WRITE COMPONENTS OF TEMFERATURE GRADINENT VECTOR
OVER EACH ELEMENT AND AREA 0OF EACH ELEMENT

QO o00

HRITE(ND,?EO)

D 20 IELEM=1, NELEM
20 WRITE(NG,210) IELEN,( FLUY (IELEM, IDIME), IDIME=1, NDIME), ALANCIELEM)

WRITE COMPONENTS OF AVERAGED HEAT FLLX AND AVERAGED
TEMPERATHRE bRAUIENT AND AREA OVER THE DOMAIN

oD

HRITE(NU B0 FLUXX FLUXY GRADX, GRADY, AREA

230 FORMAT (1HO,.1X, 19HAVERAGE FLUX IN X =,E14.&,/,2X, 1PHAVERAGE FLUX IN
+ Y =,E14.6y, /7, 2X, 1PHAVERAGE GRAD IN X =,E14.&,/,2X, V'PHAVERAGE GRAL
+IN Y =,E14.é,(,2x,ﬁHAREA,14X.1H=,E14.&)

EVALUATE AND WRITE THE COMFONENTE OF EFFECTIVE
CONDUMCTIVITY TENZOR IN THE FRINCIPAL DIRECTIONS

ByXxRsXu]

" IF (GRADX.E&.0.0) GO TO 13
EKX=FLUXX/GRADX
WRITE (NG, #40) EKX
P40 FORMAT (22X, ZHIKX, 14X, 1H=,E14.¢&)
11 IF(GRADY.ER.0,0) GO TO 12
EKY=FLUXY/GRADY
WRITE (N, 250)  EKY
250 FORMAT (2X, ZHKY, 16X, 1H=,E14. &)

’

= RETURN
END
RETURN -
ENI
C
C SAMPLE DATA
I
[ 1 2 * ] q S é
C 1234SE7890132245 075»D123453739012345&739012345 L 7ET01 234547570
C !
HEAT CONDUCTION HVER Thi PHA&E COMPOSITE
s oI 14 e 2 1 1
1 100000 K 1000u0
. bed 200000 . 200000
< 1 1 el 7 1
553 e 1 7 é 1
S5y 3 P ] = 1
SED 4 2 o 7 1 .

@20 FORMAT (1HO, 2X, 7ZHELEMENT , SX,2HGRAT IN X, 65X, PHGRAD "INTY, SX, SHAREAE) ~ ~
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