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ABSTRACT 

In this study, the boundary integral element method is used 

for analysis of steady-state heat conduction problems. The method 

iv 

is general for two-dimensional regions with arbitrary boundary shapes. 

The development is generalized to include the first, second, and 

third kind of boundary conditions as well as nonlinear conditions. 

A variety of problems are analyzed with this method and their solu­

tions are compared to those obtained analytically. A comparison 

between the present method and the finite difference. predictions is 

also made. Moreover, two-dimensional regions with three kind of 

boundary conditions, irregular shaped boundaries and regions with 

more than one surface are used to ill ustra te the versatil i ty of the 

technique as a computational procedure. 
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tJ Z E T 

Bu cal1smada, sabit rejimde lSl iletimi problemlerini eozmek 

iein Slnlr integral elemanlarl yontemi kullan1lm1st1r. Bu yontem 

alelade Slnlr sekillerine sahip iki boyutlu bolgeler iein geneld.ir. 

Yontem birinci, ikinci ve UeUncU tUr Sln1r kosullar1 ve ayn1 zaman­

da lineer olmayan Sln1r kosullar1nda genellestirilmistir. Cesitli 

problemler bu metodla analiz edilmis ve analitik eozUmlerle karS1-

last1r1lm1st1r. Ayn1 zamanda, bu yontemle elde edilen eozUmlerle 

sonlu farklar eozUmleri aras1ndaki karSTlastlrma da yap1lm1st1r. 

Oe eesit Sln1r kosullar1na, dUzensiz· sekilli sln1rlara ve birden 

fazla yUzeye sahip iki boyutlu problemler, yontemin eok yonlU1UgUnU 

orneklemek iein kullan1lm1st1r. 
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I, INTRODUCTION 

Integral methods for formulating governing field equations have 

been a subject of interest to many investigators for several years. 

Some exact and approximate solutions for the integral equations, arising 

in the above mentioned-integral methods, were obtained. 

A fundamental method employed in the classical potential theory 

is the use of Green's functions for solving the integral equation asso­

ciated with the Laplace equation as given by Morse and Feshbach [1]. 

In spite of the generality of this method, it is limited to those prob­

lems having simple geometries. The limitations are due to the mathe­

matical complexity in the construction of the required Green's functions 

for obtaining the solution to the associated integral equation. 

A modified version of the method, which is studied by Jawson [2] 

and MacMillan [3], is based on the use of Green's functions together 

with the Green's second formula and -has peen found to be more practical 

and less complex. The basic idea of this modified version is to cast 

the field differential equation into a boundary integral equation. 

Although the major properties of differential equations were well es­

tablished by the nineteenth century, the first rigorous investigation 
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of the classical kinds of integral equations was published by Fredholm 

at 1905. Since then they have been studied intensively, particularly 

in connection with field theory. 

A major contribution to the formal understanding of integral 

equations has been made more recently by Mikhlin [4-6]. He discusses 

such equations with both scalar and vector (multidimensional) integrands 

and, in particular, those with singularities and discontinuties within 

the range of integration. Despite of the great advances that have been 

made in the classification and analysis of the properties of integral 

equations, none of the major authors who deals with applied mat~ematics 

appear to have considered the possibility that a general numerical al­

gorithm for solving a wide range of practical problems might be based 

on the integral equations. The impetus for such a development has been 

provided by the high-speed digital computers and as a result the boun­

dary integral element method has been developed. 

Applications of the boundary integral element method to heat 

conduction problems have received less attention as compared to those 

problems in solid mechanics. This is due to the limitation of the 

boundary integral element method to the problems subject to linear 

boundary conditions. Certain papers [7-10] have appeared in the 

literature which show the application of the method to the solution 

of conduction problems where both the temperature and flux at the boun­

daries are constant. 

In many aspects, the boundary integral element method for solving 

. boundary value problems proves to be advantageous over the conventional 

numerical methods of finite difference and finite elements. Since the 
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technique uses only the boundary data in the solution, this in turn 

reduces the size of numerical calculations. In addition, the solution 

at any interior point is easily obtained with a resolution and without 
, 

further involvement of the other points. Furthermore, the method does 

not require any modifications or special handling of points near the 

domain boundaries,'unlike the case of finite differences. This parti­

cular feature makes the boundary integral element method well-suited, 

as it is the case in finite element method, to those problems with 

irregular shaped boundaries. 

In this investigation, the boundary integral element numerical 

method is modified to be applied as iterative technique. This modifi­

cation enables the method to solve numerically steady-state heat con­

duction problems with no restrictions imposed on its boundary conditio.ns. 

This technique is applicable for two-dimensional problems with nonlinear 

boundary conditions resulting from radiation at the boundary. Also, the 

problems with more than one surface, such as the case of hollow cylinder, 

are investigated. 
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II. THEORY AND PRINCIPLES 

When an engineer constructs a mathematical model of almost 

any kind of a system, he usually starts by establishing the beha­

viour of an infinitesimal differential element of it. This estab­

lishment is based on assumed relationships between the major variables 

involved. This leads to a description of the system in the form of 

a set of differential equations. Once the basic model has been con­

structed and the properties of the particular differential equation 

is understood, subsequent efforts are then directed towards obtaining 

a solution of the equations within the region of interest. The re­

gions are often of very complicated shapes in where various conditions 

are specified on the boundaries. 

The numerical methods most widely used at present deal with 

the differential mathematical manipulation in one of two ways: EITHER 

by approximating the differential operators in the equations by simpler, 

localized algebraic ones valid at a series of nodes within the region 

OR by representing the region itself by noninfinitesimal (i.e., finite) 

elements which are assembled to provide an approximation to the real 

region. 
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An obvious alternative approach to solve the set of differen­

tial equations would be to attempt to integrate them analytically 

in some way before either proceeding with any discretization scheme 

or introducing any approximations. We are,of course, attempting 

to integrate the differential equations to find a solution whatever 

method we use, but the essence of boundary integral equation techniques 

is the transformation of the differential equations into equivalent 

sets of integral ones as the first step in their solution. 

However, the numerical methods are predominant over the analytic 

methods in respect of problem solving ability. It is also a fact that 

further improvements in computer technology will enhance the improve­

ment and applicability of numerical methods. 

2.1 DEFINITION OF THE PROBLEM 

In this study, the temperature distribution in simply and mul-

tiply connected regions under the influence of steady-state conduction 

heat transfer with heat generation and constant thermal conductivity 

is explored. 

The governing field equation is shown to be 

(2.1.1) 

in the domain of interest where u is the temperature, qlll is the 

volumetric heat generation and K is the thermal conductivity. 

Due to the 1 imited availabil ity of analytic solutions of the 

above equation for a given set of boundary conditions effort has 



been spent on utilizing boundary integral element method, which is 

one of the numerical approaches, to broaden the range of problems 

which can be solved. 

The boundary conditions of concern which can be grouped as 

follows. 

Boundary conditions of the first kind in which the value 

of temperature is prescribed at the boundary. 

Boundary condition of the second kind in which the value 

of flux is prescribed at the boundary. 

Boundary condition of the third kind in which convective 

heat transfer into a medium at a prescribed temperature 

occurs at the boundary. 

6 

The nonlinear boundary condition in which the formulation 

of this kind of boundary condition involves a power of 

temperature. In our study, the fourth power model of 

radiation boundary condition will be considered. 

2.2 BOUNDARY INTEGRAL FORMULATION 

The aim of an approximate solution scheme is to reduce a govern­

ing equation (or set of equations) and boundary conditions to a sys­

tem of algebraic equations. This is usually done by subdividing the 

continuum into a number of cells or elements and assuming over each 

of these a known variation of the approximating and weighting func­

tions [21, p.S]. Consider the Poisson's boundary value problem 

in D (2.2.1) 
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where Uo indicates the exact solution. The corresponding boundary 

conditions are of the following two types: 

Temperature is prescribed on the boundary, i.e., 

u = u o 

where u is its value on the boundary Sl' 

Flux is prescribed on the boundary, i.e., 

(2.2.2) 

qo = q (2.2.3) 

where, 

(2.2.4) 

which is the normal derivative of the exact solution Uo and q is its 

value on the boundary S2' 

The total boundary of the domain 0 is 

as shown in Figure 2.2.1. 

The exact solution Uo can be found only for a few and simple 

cases and, generally, the solution will have to be approximated. 

This can be done by using a set of known linearly independent func-

tions ~i and unknown coefficients Yi so as to construct the approxi­

mating function u of the exact solution uo' Hence the approximating 

function u is the linear combination of the linearly independent 

function ~i: 



n -

,..--- Sl 

Domain D 

Boundary S 

Figure 2.2.1 - Schematic diagram of the domain D and its 
boundary S. 

n 
u = l: YiWi 

i=l 

8 

Due to its nature, substitution of the approximating function u in­

stead of the exact solution Uo will not satisfy the Eq. (2.2.1) so 

that, a residual will be produced subsequently. The procedure is 

as follows: 

It is seen that this yields an inequality. However, the approximating 

function u is taken to be satisfyi_ng the boundary conditions, i.e., 
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u - u = 0 

and 

Letting 

(2.2.5) 

where R is the residual, the inequality is transformed into an equality. 

We try to minimize this residual. The residual is normalized with res­

pect to properly chosen weighting function w. 

or 

(R,w)6> = 0 , 

f RwdD = 0 
o 

where, . 

so that 

f (~2U + p)wdD = 0 . 
o 

(2.2.6) 

(2.2.7) 

We are trying to minimize the residual by distributing it allover 

the domain so as to force it to be zero in an average sense. 

The Green's second identity [11, p. 451] is given as follows; 

f (a~2b - b~2a)dD = f (a ~ - b ~)dS . o . S an an (2.2.8) 

From Eq. (2.2.7), we obtain 

f (~2u)wdD = - f pwdD • (2.2.9) 
o 0 
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Applying the Green's second identity to the left hand 'side of the 

Eq. (2.2.9), we get 

f (V 2 u)wdD = f uV 2wdD + f w ~u dS - f u ~w dS. (2.2.10) 
DDS on S on 

Hence, 

-f jl1ldD = f uV 2wdD + f w~ dS - f u --.fuL dS 
DD san S an 

. (2.2.11) 

and, rearranging the above equation, we have 

- f uv 2wdD = f w ~ dS - f u ~~ dS + f J1.lldD . 
D S an S D 

(2.2.12) 

Now, it remains to find and insert the weighting function w into 

Eq. (2.2.12)., Utilizing the reproducing property of Dirac delta 

function [12, p. 315] 

f u6dD = u 
D 

(2.2.13) 

we see that there is a possibility of simplifying the left hand side 

of the Eq. (2.2.12). 

Letting 

(2.2.14) 

so that we can write the Poisson's equation as 

Lu = -p . (2.2.15) 

Eq. (2.2.9) then takes the form 

{w,Lu)D = {w,-P)D (2.2.16) 
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Further manipulation ,on the left hand side of Eq. (2.2.l6) by intro­

ducing the adjoint L* of the operator L results in ' 

(2.2.17) 

where TI denotes the boundary integral terms appearing as surface 

integrals in Eq. (2.2.12). Since the operator L is formally self 

adjoint [13, p. 247], we have, 

L* = L . (2.2.l8) 

We use the reproducing property of Oirac delta function to simplify 

the (u, L*w)O term in the Eq. (2.2.17). Thus, letting 

or 

L*w = -0 

we obtain from Eq. (2.2.17) 

(u,o)O = -{w, Lu)O + TI 

Using Eq. {2.2.13}, 

u = -(w,Lu)O + TI 

we obtain the GREEN's Formula. 

(2.2.19) 

(2.2.20) 

(2.2.21) 

(2.2.22) 

We also note that in arriving the boundary integral equation, 

the weighting function w is defined as the solution of Eq. (2.2.19). 

This kind of weighting function is known as the unit singular solu­

tion [14, p. 58] or fundamental solution denoted by u* for an infinite 

domain and the associated flux is 



q* = au* 
an 
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Thus, choosing u* as the weighting function w enables us to simplify 

Eq. (2.2.12) as 

u = f u*qdS - f uq*dS + f pu*dD . (2.2.23) 
S S D 

Comparing with Eq. (2.2.12), it may be seen that Eq. (2.2.23) is 

the proper form of Green's formula. In this formula, it should be 

noted that the function u* is a function of two points: the Isourcel 

point ~i at which we have the singularity of delta function; and the 

'observation ' point ~ which is the variable involved in our diffe­

rential equation. The fundamental solution is a function only of 

the distance between the Isourcel point A and the 'observation ' point 

B as shown in Figure 2.2.2. We denote this distance by 

r = I~ - ~i I . (2.2.24) 

y 

'Observation ' point 

ISource l point 

Figure 2.2.2 - Schematic diagram for definition of the 
fundamental solution. 

x 



The fundamental solution u* is found to be 

u* = _l-ln{l/r) 
2rr 

13 

(2.2.25) 

for two-dimensional case, where the solution is given in Appendix A. 

Greenls Formula on the Boundary 

Equation (2.2.23) is valid for any pOint in the open domain. 

We need to find the formulation of Greenls formula on the boundary 

[15, p. 48] so as to find the u values at the boundary points. This 

is done in a simple way. Consider a semi-circle on the boundary of 

a two-dimensional domain as shown in Figure 2.2.3. 

s 

Point 
I i I 

Domain D 

Figure 2.2.3 - Illustration of the point Iii at the· 
neighbourhood of the boundary. 

i 
• I 
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The point Iii is located at the center of the semi-circle. As the 

radius lei is reduced to zero, the point becomes a boundary point. 

We take the second integral at the right hand side of Eq. (2.2.23). 

It is evaluated only near the surface 5. In order to evaluate the 

integral at the boundary, consider the surface in two partitions, i.e., 

5 = 51 + 5 e 

where 5e is the semi-circle surface and 

51 = 5 - 5 e 

is the remaining part of the whole surface. Thus, 

f uq*d5 = f uq*d5 + f uq*d5 
5 51 5e 

Now, taking the limit we get 

1imU uq*dS) = lim U u(-1/27Te)d5) 
e+O 5e e-rO 5e 

= lim (-(u/27Te)(7Te)) 
e+O 

1 
=·,--2- u • 

. (2.2. 26a) 

(2.2.26b) 

(2.2.27) 

(2.2.28) 

Note that as e goes to zero, 5e approaches zero in the limit. There-

fore, 

and 

51 + 5 

f uq*d5 
51 

in the domain is equal to 



fuq*dS . 
S 

at the boundary. Thus, 

fuq*dS 
S 

in the domain is equal to 

1 fuq*dS - -2-' u 
S 

at the boundary. 

15 

For the first integral of the right hand side of Eq. (2.2.23), 

fu*qdS 
S 

we perform a similar analysis by splitting S into two parts and 

writing the above equation as follows. 

fu*qdS = f u*qdS + f u*qdS 
S S' S e 

Substituting the expression for u* we have 

f u*qdS = f q + In(l/e)dS 
Se Se n 

Now taking the limit 

lim(f q 2~ In(l/e)ds) = 0 
e+0 Se 

and noting that as e goes to zero 

S' -+- S , 

(2.2.29) 

(2.2.30) 

(2.2.31) 



we have 

fuq*dS 
S' 

in the domain equal to 

fuq*dS 
S 

at the boundary. Thus, 

fuq*dS 
S 

in the domain is equal to 

fuq*dS 
S 

16 

at the boundary. As we take the limit as e goes to zero, the u value 

in Eq. (2.2.23) approaches the u value at the boundary point. So we 

have 

u = fu*qdS - fuq*dS + __ 1 __ u + fpu*dD . 
S S 20 

(2.2.32) 

Rearranging the Eq. (2.2.32) we. obtain 

__ 1 __ u = fu*qdS - fuq*dS + fpu*dD . 
2 S S 0 

(2.2.33) 

Equation (2.2.33) is known as the GREEN's BOUNDARY FORMULA or 

BOUNDARY INTEGRAL EQUATION [15, p.5l]. 



2.3 MATRIX. FORMULATION 

The boundary element technique can be interpreted in matrix 

form. Let us consider the boundary integral equation (2.2.33) 

17 

_1_ u = f u*qdS - f uq*dS + f pu*dD . 
2 S S D 

(2.3.1) 

Let us assume that the body is two-dimensional and its boundary 

is divided into n 'segments' or 'boundary elements', as shown in 

Figure 2.3.1. The points where the unknown values are considered 

are called 'nodes'. The elements on which u and q are constant are 

called 'constant' elements in which the nodes are in the middle of 

each element (Figure 2.3.la), The elements on which u and q vary 

linearly are called 'linear' elements and the nodes are at the inter­

section of the elements (Figure 2.3.lb). 

i. Constant Elements 

The boundary is divided into n elements. The values of u and 

q are assumed to be constant on each element and equal to the values 

at the mid-node of the element. 

Before the application of any boundary conditions, Eq. (2.3.1) 

can be discretized as given below. 

1 n n 
-fD(pu*)i dD + -2- ui + 1: (r u .q~dS) = .1: (r uiqJ,dS) . (2.3.2) 

j=l Sj J 1 J=l Sj 

It should be noted 

u* = u*(x ,x.) 
...... 1 



Node 

(a) 

Element 

(b) 

Figure 2.3.1 - Boundary elements: (a) constant, 
(b) 1 inear. 

18 
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and 

q* = q*(x,x.} __ 1 

Here, I~I is the distance to the jth element and Ix.1 is the distance 
-- -1 

I 

to the node Iii where the distances are from the origin of a prescribed 

coordinate system. 

Equation(2~3.2} applies for a particular node Iii. The u. and 
J 

qj values can be taken out of the integrals as they are assumed to be 

constant over each element. This gives 

n n 
-f(pu*} .dO + _12- u. + E (J q~dS}u. = E (J u~dS}qJ' • (2.3.3) 
o 1 1 j=l S. 1 J j=l S. 1 

J J 

The integrals fq*dS relate the Iii node with the boundary ele­

ment Ijl over which the integral is carried out. We shall call these 
A 

integrals Hij . Also, we shall denote the integrals fu*dS on the 

right hand side of Eq. (2.3.3) as Gij . Hence, we can write Eq. (2.3.3] 

as follows. 

1 n A 

-f(pu*) .dO + 2 u. + E H .. u. o 1 1 j=l lJ J 

n 
= L G .. q. 

j=l lJ J 

We can rearrange the Eq. (2.3.4). Let us now define 

! 
A 

H •. _ . lJ 
H;j - A . 1 

H .. + -2-lJ 

when itj 

when i=j 

Equation (2.3.4) can now be written as follows. 

n n 
B. + E H •• u. = E G •• q . 

1 j=l lJ J j=l lJ J 

(2.3.4) 

(2.3.5) 

(2.3.6) 
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where, 

B,. =-f(pu*).dD. 
D ' 

The whole set of equations can also be expressed in matrix 

form as given below. 

{B} + [H] {u} = [G] {q} 

nxl nxn nxl nxn nxl 

It should be noted that there are n unknowns in Eq. (2.3.7). 

Evaluation of the Integrals 

" 

(2.3.7) 

The integrals Hij and Gij can be calculated using the simple 

'Gauss quadrature rule [16, p.420] for all points, except the one 

corresponding to the node under consideration. Let us choose the new 

coordinate system (Figure 2.3.2) as follows. 

where 

We·then have 

G •• 
lJ 

+1 
= furl r 1 I d~ , 

-1 

" + 1 
H.· = f q~lr1Id~ • 
lJ -1 1 

For the element I j I, we can take 

(2.3.8) 

(2.3.9) 

(2.3.10) 

(2.3.11) 



Then the Eqs.(2.3.10) and (2.3.11) respectively reduces to 

+1 . 
Gij = f Ur(lJ/2)d~ , 

-1 

" H .. 
lJ 

+1 . 
= _{ qr(lJ/2)d~ 

By using the simple Gauss quadrature rule, we can write 

\ 
\ 
\ 
\ 1 
\ 

\ 
\ 
\ 
\ 
\ 
\ 

~ ~~~.~r I 
~ 2 

rll \ 
\ 

Figure 2.3.2 - Constant element coordinates. 
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(2.3.12) 

(2.3.13) 

(2.3.14) 

(2.3.15) 
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" H •• 
1J 

tm ~j 
= .l: Zt· q*(x

1
·,xt }· -2-

t=l --
(2.3.16) 

Here, Zt are the Gauss weighting coefficients. I~il is the distance 

to the node Iii and I~tl is the distance to the integration point It I 

where the distances are from the origin of a prescribed coordinate 

system. tm is the total number .of integration points on each Ijl ele-

ment. It should be noted that 

where, 

q* = au* 
an 

= au* cos(n,r} 
ar - -

(2.3.17) 

(2.3.18) 

d cos(n,r} = _. - (2.3.19) _ _ r 

as shown in Figure 2.3.3. Thus, 

q* = d (2.3.20) 

For the particular case of constant elements, however, the 
" " Hii and Gii integrals can be easily computed analytically. The Hii 

term, for instance, is identically zero for fundamental solutions 

with no S dependence, i.e., 

" H.· = fq~dS 
11 S .• 1 

1 

au~ 
= f (_1 . ~}dS 

S. ar an 
1 

= 0 (2.3.21) 
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This is due to the fact that D and r are orthogonal over the element. 

Element Ijl 

y 

o -------~x 

Figure 2.3.3 - The angle between the vectors nand r. 
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The Gii integral can be calculated analytically as follows. 

G •• = f u~dS 
11 S. 1 

1 . 

1 = --2-- f In(l/r)dS . 
1T S. 

1 

(2.3.22) 

With the use of the homogeneous coordinate ~ over an element (Figure 

2.3.2) we get 

1 <2> 
G •. = 27T f In(l/r)dS 

11 <1> 

1 <2> 
=- f In(l/r)dS 1T <0> 

On transforming the coordinate system as given below 

dS = Irl Id~ 

we get 

I r I 1 
G .. = ~1Tl In(l/Irll) + f In(l/~)d~] . 

11 a 

Noting that !the last integral is equal to 1 we have 

where, 

G .. = _1_ Irll[ln(l/Irll) + 1 ] 
11 1T 

Q,i 
Irll = -2-

(2.3.23) 

(2.3.24) 

(2.3.25) 
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ii. Linear Elements 

Let us consider a linear variation for u and q (Figure 2.3.4). 

The nodes are now considered to be at the intersection between two 

straight elements such as those shown in Figure 2.3.lb . 

Consider the Eq. (2.3.2) 

n 
B. + -t- u

1
' + E (f u.q~dS) 

1 J'=l S. J 1 J . 

n 
= E (J q.u*dS) 

j=lS.Ji 
J 

(2.3.26) 

The integrals in the above equation are now more difficult to evaluate 

than in the constant element case because u and q vary linearly over 

the element. 

The values of u and q at any point on the element can be defined 

in terms of their nodal values and two linear interpolation functions 

denoted as ¢ and ¢. Here, both ¢ and ¢ are functions of the coor-
1 2 1 2 

dinate ~ so that, 

u(~) = ¢lUl '+ ¢2u2 (2.3.27a) 

= [$1$2~~:1 (2.3.27b) 

and. 

q(~) = ¢lql + ¢2q2 (2.3.28a) 

= [M2J{::1 (2.3.28b) 

The dimensionless coordinate ~ is given as follows. 

~ = x/«1/2)R.) • 

buuALICI UNIVERSlTESI KtiTUPHANES~ 



Nodal value 
of u or q 

Nodal value 
ofu or q 

Figure 2.3.4 - Lin0ar element coordinates. 

The functions ~l and ~2 are given as stated below. 

and 

1 
,f, = -(1 - ~) 
'1'1 2 

1 
~2 = -2-(1 +~) 

26 

(2.3.29a) 

(2.3.29b) 

The integrals along an element Ijl, that appears on the left hand 

side of the Eq. (2.3.26) can be written as follows. 

(2.3.30a) 

(2.3.30b) 



Here, 
1 

h
1
•
J
· = ! cf> q~dS , 

S. 1 1 
J 
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(2.3.3la) 

(2.3.3lb) 

m The h .. are influence coefficients defining the interaction between the! 1J 

point IiI under consideration and a particular node Iml on an element 

1·1 J • 

Similarly, for the integrals on the right hand side of the 

Eq. (2.3.26), we can write 

where, 

! q(~)u~dS = ! [cf>cf> Ju~dS {ql} 
S 1 S 1 2 1 

j j q2 

= [g~. g~.J {ql.} 
1J 1J q2 

g 1
1
• J. = ! cf> u~dS 

S. 1 1 
J 

g2
1
·
J
· = ! cf> u~dS 

S. 2 1 
J 

(2.3.32a) 

(2.3.32b) 

(2.3.33a) 

(2.3.33b) 

The·g~. are influence coefficients defining the interaction between 
1J 

the point IiI under consideration and a particular node Im l on an' 

element Ijl. 

To write the equation corresponding to node IiI in discrete 

form we need to sum up the contributions from two adjoining elements, 

Ij_ll and Ijl, into one term defining the nodal coefficient. This 

will give the following equation. 
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1 A A A 

B1· + -2- u. + [H· 1H· 2···H.-] ~2 = [G G ···G -J q2 (2.3. . 1 1 1 1n i1 i2 in . 

Here, 

'" H.. = h~. + h~ (. 1) lJ lJ 1 J-

The same applies for G .. , i.e., lJ 

G.. = gl .. + g~ (. 1) lJ 1J 1 J-

q­n 

(2.3.35) 

(2.3.36) 

Hence, Eq. (2.3.34) represents the assembled equation for node Ii' 

and it can be written as follows. 

1 n '" n 
B. + -2- u. + E H .. u. =E G .. q. 

1 1 j=l lJ J j=l lJ J 

or, more simply, 

where, 

n 
B. + E H .. u. 

1 j=l lJ J 

'" H .. 1J 
H .. = 

n 
= l: G .. q. 

j=l 1J J 

when i 

lJ '" .. 1 
H .. + -2- when i 1J 

t- j 

= j 

(2.3.37} 

(2.3.38) 

(2.3.39) 

When all the nodes are taken into consideration, Eq. (2.3.38) produces 

a nxn system of equations which can be repl'esented in matrix form as 

follows. 

{B} + [H] {u} = [G] {q} • 

nxl nxn nx1 nxn nxl 
(2.3.40) 



We.can calculate the diagonal terms of [H.] by using the fact 

that when a uniform potential is applied on the whole boundary the 

values of q must be zero. Let us also assume that there is no heat 

generation, i.e., 
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{B} = {O} (2.3.41) 

Under these conditions Eq. (2.3.40) produces 

[H]{u} = {O} (2.3.42) 

Equation (2.3.42) indicates that the sum of all the elements of [H] 

in a row ought to be zero, hence, the values pf the coefficients in 

the diagonal can be easily calculated once the off-diagonal coeffi-

cients are all known, i~e., 

H •• 
11 

n 
- - L H .. 

j=l 1J 

jfl 

(2.3.43) 

The result derived above is applicable for the general case, because 

[G] and [H] do not depend on the boundary conditions or heat generation. 

In order to integrate the Bi integrals we need to discretize 

the domain D into a/series of 'cells' or 'interior elements' as shown 

in Figure 2.3.5. The procedure is similar to that of the finite ele­

ment method, but conceptually itis different because we do not deal 

with the u and q values at the interior points. 

Let's consider m interior elements. We can then write 

B. = - f(pu*}.dD 
1 D 1 

(2.3.44) 
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y 

s 

~O------------------------------------~X 

Figure 2.3.5 - Interior cell k and integration point t. 

(2.3.45) 

Over each element a numerical integration formula can then be applied 

as foll ows. 

m tn 
B. = - E (E Zt· P1·· u*(x.,xt )·det[J])k 

1 k=l t=l _1 -

(2.3.46) 

Here, t is the integration point, Zt is the weighting function, tn 

is the total number of integration points on each cell k, Ix·1 is _1 

the distance to the node Iii, and I~tl is the distance to the integ­

ration point It I where the distances are from the origin of a pre-

scribed system. 

It should be noted that 

det[JJ] = 2(Area)triangular cell 
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With the use of Eq. (2.2.23) we can calculate the u value at 

any interior point as follows. 

u = fu*qdS - fuq*dS + fPu*dD . 
S S D 

(2.3.48) 

The u values can be obtained directly from Eq. (2.3.48) by discretizing 

as follows. 

Here, 

n 
u· = E q.G .. 

1 j=l J 1J 

B. = -f(pu*).dD 
1 D 1 

n " 
E u.H .. 

j=l J 1J 

" 

B. 
1 

(2.3.49) 

and definitions for G .. and H .. are given in Eqs. (2.3.10). and (2.3.11) 1J 1J 
. respectively. 

2.4 BOUNDARY CONDITIONS 

The general matrix equation was found as given below. 

[G] {q} = [H] {u} + {B} 
nxn nxl nxn nxl nxl 

We can rearrange the equation (2.4.1) as follows. 

[A] {X} = {F} 
nxn nxl nxl 

(2.4.1) 

(2.4.2) 

Now, let us analyse the boundary conditions involved and the forms 

which the matrix [AJ and vectors {X} and {F} take, respectively. 
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1. The boundary conditions are all of the first kind, i.e., 

and 

{ul = {u} on s (2.4.3) 

Inserting the boundary ~ondition into Eq. (2.4.1) we obtain 

[G]{ q} = [H]{ u} + {B} (2.4.4) 

Here, it is easily seen that we can rearrange Eq. (2.4.4) by 

letting , 

[G] = [A] 

{q} = {X} 

[H]{u} + {B} = {F} 

Thus, the Eq. (2.4.3) becomes 

[A]{X} = {F} 

Formally, the solution is 

{X} = [Arl{F} 

(2.4.5) 

(2.4.6) 

(2.4.7) 

(2.4.8) 

(2.4.9) 

2. The boundary conditions are all of the second kind, i.e., 

the flux is known on the boundary S. We can show this as 

follows. 

{q} = {q} on S (2.4.10) 

On applying the boundarycondition to Eq. (2.4.1) we obtain 

[G]{q} = [H]{u} + {B} . (2.4.11) 



Rearranging the above equation as 

-[H]{u} = -[G]{q} + {B} 

and letting 

-[H] = [A] 

{u} = {X} 

and 

-[G]{q} + {B} = {F} 
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(2.4.12) 

(2.4.13) 

(2.4.14) 

(2.4.l5) 

we again have a simple matrix formulation of the problem as 

[A]{X} = {F} 

3. The boundary condition is of the third kind, i.e., there is 

convective heat transfer on the boundary which can be formulated 

as follows. 

{q} = [a]{{S} - {u}) on s (2.4.16) 

Here [a] is a diagonal matrix and {S} is a vector and both of 

them are known quantities. Applying this boundary condition 

to Eq. (2.4.l), we get 

[G][a] ({S} - {u}) = [H]{u} + {B} 

or 

-{[H] + [G][a]){u} = -{[G][a]){S} + {B} 

Further, if we let 

-([H] + [G][a]) = [A] 

{u} = {X} 

, 

(2.4.l7a) 

(2.4.l7b) 

(2.4.l8) 

(2.4.19) 



34 

and 

-([G][Cl]){S} + {B} = {F} (2.4.20) 

we obtain, from Eq. (2.4.17b), 

[A]{X} = {F} (2.4.21) 

We can solve the Eq. (2.4.21) for {X}, i.e., 

{u} = {X} 

= [A]-l{F} (2.4.22) 

q can then be obta i ned from Eq. ( 2.4. 1 6). . 

4. Radiation boundary conditions can be imposed by requiring that 

q = ~ (u~ - u~) K <Xl 
(2.4.23) 

on the boundary S, where (J is the Stefan-Boltzmann constant 

and Uoo is the ambient temperature. As it can be seen from 

Eq. (2.4.23), this kind of boundary condition is nonlinear. 

For simplicity, we shall try to linearize it. 

Let us consider the nonlinear function 

feu) = u~ (2.4.24) 

We can approximate this function with a linear expression 

(Figure 2.4.1), 

(2.4.25) 

with, 

I 
I 
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which is the slope of the line Pl(u). Hence, 

f(u) = Pl (u) + Rl (2.4.27) 

where Rl is the remainder arising from the above stated approx-

imation. 

f(u) 

Pl (u) 

f(u 2) f(u) 

I 
I 
I 
I 
I 
I 
I 

f(u l ) I 
I 
I 
I 
I 
I 
I 

u 
0 ul u u2 s 

Figure 2.4.1 - Linear approximation to the nonlinear function f(u) 
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Meanwhile, we can make use of the mea~-value theorem 

[17,p.13] by choosing a point Us between ul and u2 so that 

f(u 2) - f(u l ) 
f'(u s) = (2.4.28) 

u2 - ul 

By evaluating the derivative of f(u) at the point us' we get 

f I (us) = 4u~ 

= g(u l ,u2) 

Hence, the linear function Pl(u) becomes 

By substituting it into the Eq. (2.4.27) we obtain 

If we evaluate the function at the point us' we get 

or, 

Thus, 

Rl = u~ - u; + (us - ul)4u~ 

(2.4.29) 

(2.4.30) 

(2.4.31) 

(2.4.32) 

(2.4.33) 

(2.4.34) 

(2.4.35) 

Substituting the above expression for Rl into the Eq. (2.4.32), 

we get 

f(u) = 4u~.u - 3u~ (2.4.36) 

i 
. ! 
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which is the linear approximate expression for f(u). Applying 

the above approximation to Eq. (2.4.23), we obtain 

q = -!L (u4 + 3u4 - (4u3
S
)u) K 00 s (2.4.37) 

Thus, the linear form of the boundary condition can be written 

as foll ows. 

q = a (13 - u) (2.4.38) 

Here, 

13 = (2.4.39a) 

and 

3 
a = -.JL (4u ) K s (2.4.39b) 

The Eq. (2.4.38) is of the same form as the third kind of 

boundary condition except Us which is not known. In finding 

the values of u, we will use an iterative procedure [18J, 'which 

starts by taking u equal to u. After selecting the Us value s 00 

we calculate the values of a and 13 from the Eqs. (2.4.39). Then 

we find the u value using the procedure for the third kind of 

boundary condition. We denote this value of u as U(l) and 

assign it as the new value of us. The same procedure is repeatE 

and a new value of u is found and denoted as U(2). The new vall 

of Us can be chosen as U(2), and the procedure is repe~ted as 

before until a convergence criterion in the form' 
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reaches a certain value. 

The problems which have various types of nonlinear boundary 

conditions can be solved in the same way. An example is the 

case in which the convective heat transfer coefficient ho is 

the function of the temperature u, i.e., 

ho(u) 
q = --(u - u) 

K 00 

(2.4.40) 

5. The boundary conditions are 'mixed'. In this case, more than 

one kind of boundary conditions prevail on the boundary. One 

can meet various versions of this kind. An example will be 

given to show how they are treated. 

Example 

Consider a triangular plate as shown in Figure 2.4.2 on 

which the boundary conditions are imposed as follows. 

u = u on Sl , 

q = q on S2 ' 

and 

q = a(S - u) on S3 

where the boundary S is the sum of Sl' S2 and S3. The problem 

is to find the tempera~ure u on S2 and S3 and the flux on Sl 

and S3. 

We consider Sl' S2 and S3 as constant elements with nodes 

1, 2 and 3 in the middle of each of them respectively. Consi­

dering the boundary integral equation 



y 

o~--------------------~----------------------~x 

Figure 2.4.2 - An illustration for the boundary conditions of the 
Imixed I kind. 

n 
E G •. q. 

j=l lJ J 

n 
= L H .. u. + B. 

j=l lJ J 1 

where Iii and Ijl denote nodes and elements, respectively. 

We insert the boundary conditions for each node.· Thus, for 

i = 1 

39 

G11 q1 +G12
q2 + G13aa(Sa - u3) = H11U1 + H12u2 + H13u3 + 81• 

(2.4.41) 
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Rearranging the Eq. (2.4.41), we get 

Gllql - H12u2 - (H13 + Gl:P3 )u3 = Hllul - G12q2 + G13a.3fh + Bl . 

(2.4.42a) 

Similarly, for i = 2 

G21 ql - H22u2 - (H23 + G23a.3 )u3 = H21 ul - G22q2 - G23a.3f33 + B2 

(2.4.42b) 

and for i = 3 

G31 ql - H32u2 - (H33 + G33a.3 )u3 = H31 Ul -G32q2 - G33a.3f33 + B3 • 

(2.4.42c) 

If we write in matrix form, we have 

-(H13+G13a.3) .[ql _ Hllul-G12Q2-G13a.3f33+Bl 

-(H23+G23a.3) u2 - H21Ul-G22Q2-G23a.3f33+B2 

-(H33+G33a.3) u3 H31ul-G32Q2-G33a.3f33+B3 

Hence, we can solve for the unknown quantities ql' u2 and u3• 

2.5 NUMERICAL PROCEDURE 

i 

(2.4.43 

Numerical procedure for the boundary integral element method may 

be outlined as follows. 

STEP(l): Discretization of the boundary. 

STEP(2): Division of the domain into interior cells. (if piO) 

STEP(3}: Interpolation of the temperature u and the flux q 

over the boundary elements. 



STEP(4): Evaluation of the influence matrices [G] and [H]. 

STEP(5): Introduction of the boundary conditions. 

STEP(6): Decomposition of the modified influence matrix [A] 

into the triangular form by Gaussian Forward 

Elimination. 

41 

STEP(7): Evaluation of thesource.vector {B} and the right 

hand side vector in the system of algebraic equations 

[A]{X} = {F} 

STEP(8): Solution of the algebraic equations for the unknown 

values of u and q on the. boundary. 

STEP(9): Evaluation of the internal temperature values. 

(' 
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Ill. SAMPLE PROBLEMS 

In this section, 5 sample problems are solved and their results 

are given on tables. The second and third problems involve internal 

heat generation whereas the others don't have internal heat genera­

tion. The cross-section of an industrial furnace is considered in 

the problem 3. The fourth problem involves radiation boundary condi­

tion. Finally, the case of hollow cylinder is solved in problem 5. 

sample Problem 1 

Consider 'the steady-state heat conduction in a square region, 

without heat generation. The mathematical formulation of the heat 

conduction problem is 

in o < x < l, 0 ~ y ~ 1 

Find the temperature a't the internal and boundary points, and 

the flux at boundary points for each of the cases shown below. 



(a) 

(b) 

y 

• 

u = l-x 
l~----~----________ __ 

u = y 

o u = x 1 

u = l-y 

Figure 3.1 - Boundary conditions for the problem lao 

1 

Y 
1ft 

x 

o 
q = 0 C/m 

o 1 
.. x 

q = OOC/m 

Figure 3.2 - Boundary conditions 'for the problem lb. 

43 
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TABLE 3 .. 1 - Results for the Problem 1 a . 

BIEM: 20 Linear Boundary Elements (CPUt = 3.902 secJ 

COORDINATES TEMPERATURE FLUXtt 

BOUNDARY (m) u(oC) q = au/an (oC/m) 
NODES 

x Y EXACT BIEM EXACT BIEM 
(App.B) 

1 0.001 0.000 0.001 0.001 -1.000 -1.018 
I 

3 0.500 0.000 0.500 0.500 0.000 0.000 

5 0.999 0.000 0.999 0.999 1.000 1.018 

7 1.000 0.250 0.750 0.750 0.500 0.492 

9 1.000 0.750 0.250 0.250 -0.500 -0.492 

11 0.999 1.000 0.001 0.001 -1.000 -1.018 

13 0.500 1.000 0.500 0.500 0.000 0.000 

15 0.001 1.000 0.999 0.999 1.000 1.018 

17 0.000 0.750 0.750 0.750 0.500 0.492 

19 0.000 0.250 0.250 0.250 -0.500 -0.492 

COORDINATES TEMPERATURE 
INTERNAL (m) u (OC) 
POINTS 

X Y EXACT. BIEM 

1 0.250 0.250 0.375 0.375 

3 0.750 0.750 0.375 0.375 

5 0.500 0.500 0.500 0.500 

For 1 b, the convective heat transfer coefficient h , . ° 
thermal conductivity K and ambient temperature Uoo are given as follows. 

t Central Processor unit time for UNIVAC 1106. 

tt Flux is '+' when there is heat input to the region. 



ho = 20 W/m~.oC 

K = 1 W/m.oC , 

and u = 1 °c . 
00 

, 

TABLE 3.2 - Results for the Problem lb. 

BIEM: 20 Linear Boundary Elements (CPU = 5.437 s~c~ 
FDM : 81 Grid Points (CPU = 1.459 secJ 

COORDINATES TEMPERATURE FLUX 
BOUNDARY (m) u (OC) q = au/an 

NODES X Y EXACT FDM BIEM EXACT 
(APP.B) (APP.D) 

1 0.001 0.000 0.467 0.466 0.464 0.000 

3 0.500 0.000 0.339 0.339 0.338 0.000 

5 0.999 0.000 0.001 0.000 0.004 0.000 

7 1.000 0.250 0.000 0.000 0.000 -0.858 

9 1.000 0.750 0.000 0.000 0.000 -2.164 

11 0.999 1.000 • 0.018 0.000 0.216 19.640 

13 0.500 1.000 0.930 0.936 0.938 1.400 

15 0.001 1.000 0.956 0.957 0.959 0.880 

17 0.000 0.750 0.756 0.754 0.756 0.000 

19 0.000 0.250 0.500 0.499 0.496 0.000 

COORDINATES TEMPERATURE 

INTERNAL (m) u (OC) 

POINTS X Y EXACT BIEM 

1 0.250 0.250 0.467 0.465 

3 0.750 0.750 0.444· 0.437 

5 0.500 0.500 0.464 0.463 

7 0.781 0.969 0.782 0.792 

9 0.844 0.969 0.715 0.783 

11 0.781 0.781 0.439 0.427 
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(oC/m) 

BIEM 

0.000 

0.000 

0.000 

-0.771 

0.399 

15.691 

1.245 

0.821 

0.000 

0.000 



(c) 
Y 
J 

IT-____ q_=_(h~O~/K_)_(U~oo~-U_) ____ _ 

a .... x 

Figure 3.3 - Boundary conditions for the problem lc. 

In this case, the convective heat transfer coefficient ho' 
thermal conductivity K and ambient temperature u are given as 

. 00 

follows. 

and 
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TABLE 3.3 - Results for the Problem 1e. 

BIEM: 16 Constant Boundary Elements (CPU = 2.012 seeJ 
FDM : 81 Grid Points (CPU = 0.915 seeJ 

COORDINATES TEMPERATURE FLUX 
(oC/ml BOUNDARY (m u °C) q = duldn 

NODES X Y . FDM BIEM BIEM 
(APP.D) 

1 0.125 0.000 87.239 87.945 0.000 

3 0.625 0.000 40.407 40.385 0.000 

5 1.000 0.125 10.000 10.000 -83.223 

7 1.000 0.625 10.000 10.000 -59.829 

9 0.875 1.000 19.027 19.253 37.356 

11 0.375 1.000 22.221 22.040 -101.982 

13 0.000 0.875 100.000 100.000 434.079 

15 0.000 0.375 100.000 . 100.000 111.574 

INTERNAL COORDINATES TEMPERATURE 

POINTS (m) u (OC) 

X Y FDM BIEM. 

1 0.250 0.250 73.748 74.039 

3 0.750 0.750 23.442 23.359 

5 0.500 0.500 45.999 46.062 



Sample Problem 2 

Consider the steady-state heat conduction in a square region 

with heat generation. The mathematical formulation of the heat 

conduction problem is 

in a < x < 1 , O~y~l 

where qUI is the volumetric heat generation and K is the thermal 

conductivity. 

48 

Find the temperature at the internal and boundary points and 

the flux at boundary points for each of the cases shown below. 

(a) 
Y 
I 

q = (ho/K)(uoo-u) 
IT---------------~---, 

O~--------------~----~------------~ x 
q = OOC/m 1 

Figure 3.4 - Boundary conditions for the problem 2a. 
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. ' 

In this case, the convective heat transfer coefficient ho' thermal' 

conductivity K, ambient temperature u and volumetric heat generation 
00 

qUI are given as follows. 

h = 50 W/m2 .OC , 
° 

u = 20°C , 
00 

K =4 W/m.oC , and qUI = 100 000 W/m3 

TABLE 3.4 - Results for the Problem 2a. 

BIEM: 20 Linear Boundary Elements and 32 Internal Triangular 
Elements {CPU = 8.396 secJ 

FDM : 81 Grid Points (CPU =1.189 secJ 

COORDINATES TEMPERATURE FLUX 
(oC/m) BOUNDARY (m) u (OC) q = au/an 

NODES X Y , FDM BIEM BIEM 
(APP.D) 

1 0.001 0.000 100.0 165.4 0.0 
3 0.500 0.000 2246.0 2963.5 0.0 

5 0.999 0.000 10.0 76.6 0.0 
7 1.000 0.250 10.0 10.0 -11471.9 
9 1.000 0.750 10.0 10.0 - 8938.7 

11 0.999 1.000 10.0 35.1 -188.7 

13 O.SOO 1.000 634.6 64S.8 - 7823.1 
lS 0.001 1.000 100.0 111. 7 - 1146.1 

17 0.000 0.7S0 100.0 100.0 - 8847.3 
19 0.000 0.2S0 100.0 100.0 -11307.9 

INTERNAL COORDINATES TEMPERATURE 
(m) u (OC) 

POINTS 
X Y FDM BIEM 

1 0.250 0.250 2203.2 2189.0 

3 0.750 0.750 1519.0 1528.6 

S 0.500 O.SOO 2604.3 2605.5 



(b) y 

I' .' 

IT-----------------__ 

q = (h/K) (uoo-u) 

o • x 
1 

Figure 3.5 - Boundary conditions for the problem 2b. 

In this case, the convective heat transfer coefficient ho' 

thermal conductivity K, ambient temperature u and volumetric heat 
00 

generation qUI are given as follows. 

ho = 0.1 W/m2.0C 

K = 1 W/m.oC 

Uoo = 1 °c 

and qUI= 10 W/m3 
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It should be noted that linear boundary elements are used for 

boundary integral element method solution. This problem ;s solved 

for 12 different configurations as shown in Figure 3.6. The number 

at each corner in each of the configuration is located on the side 

where to the node is assumed to belong. 



i. 

ii. 

iii. 

iv. 

Internal 
Triangul ar Cell s 

8 internal cell s 

18 internal cells 

32 internal cells 

50 internal cells 

Boundary and Internal Nodes 
6 

7 t----+---_ 5 

8 4 

1 ___ .-... __ ~3 

2 

8 elements 

8 
10~-~-~-__ 7 

11 

7 6 

8 

1 2 

8 e1 ements 

10 9 8 

6 11 

12 5 12 

1 ____ _+_--..---'4 
2 3 2 3 

12 elements 12 e1 ements 

5 

3 

7 

4 

12 11 10 
131211109 

1 3t------4---+---g 

14 
8 

14 

15 7 15 

1& 6 1 & 

2 3 4 5 

16 e1 ements 16 elements 

10 

4 11 

12 

13 

6 14 

5 15 

16 

16 
8 17 

7 18 

6 1 

20 
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9 8 

123 
12 elements 

12 11 10 9 

1 2 3 4 

16 e1 ements 

15 14 13 12 11 

1 2 3 4 5 

20 elements 

15141312 16 15 14 13 12 11 18 17 16 15 14 
_-----..... 1 16 11 

17 

18 

1 9 

20 

17 
10 

9 18 

8 19 

7 20 
...... ________ ---'6 

234 

20 elements 
(a) 

5 1 2 3 4 5 6 

20 elements 
( b) 

1 

10 20 

9 21 

8 

7 

22 

23 

24 

1 2 3 4 5 6 

24 elements 
(c) 

Figure 3.6 - The alternative forms of the nodes and the internal cells 
for the problem 2b. 
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TABLE 3.5 - Results for the Problem 2b. 

COORDINATES TEMPERATURE 
NODES (m) u (DC) 

X Y EXACT 
iAPP .B1 

1 0.25 0.25 2.10 
2 0.75 0.25 4.41 
3 0.75 0.75 4.41 
4 0.25 0.75 2.10 
5 0.50 0.50 3.57 
6 0.50 0.00 3.57 
7 1.00 0.50 4.64 
8 0.50 1.00 3.57 

T E M PER A T U R E 
NODES U (DC) 

BIEM. i-a. BIEM. i-b. BIEM. i-c. 
CPU= 1.771 sec. CPU= 1.799 sec. CPU= 3.087 sec. 

1 . 3.47 1.88 2.05 
2 5.74 3.91 ·4.26 
3 5.74 3.91 4.26 
4 3.47 1.87 2.05 
5 4.81 3.15 3.41 
6 4.92 3.06 3.46 
7 5.89 4.08 4.42 
8 4.92 3.06 3.46 

T E M PER A T U R E 

NODES 
U (DC) 

BIEM. ii-a. BIEM ii-b. B I EM. i i -c. 
CPU= 4.297 sec. CPU= 4.373 sec. CPU= 5.477 sec. 

1 2.70 1.93 2.04 
2 5.02 4.12 4.32 
3 5.01 4.11 4.31 
4 2.71 1.94 2.05 
5 4.16 3.37 3.52 
6 4.11 3.16 3.38 
7 5.24 4.34 4.54 
8 4.11 3.16 3.38 
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Table 3.5 continued ... 

T E M PER A T U R E 
u (OC) 

NODES 

BrEM . .. . 
BrEM. iii-b. B r EM. iii -c. ll1-a. 

CPU= 7.032 sec. CPU= 6.331 sec. CPU= 7.797 sec. 

1 2.42 1.99 2.07 

2 4.75 4.23 4.36 

3 4.75 4.23 4.36 . 

4 2.42 1.99 2.07 

5 3.88 3.43 3.53 

6 3.93 3.42 3.54 

7 4.97 4.45 4.58 

8 3.93 3.42 3.54 

T E M PER A T U R E 
u (OC) 

NODES 
BrEM. iv-a. BrEM. iv-b. BrEM. iv-c. 

CPU= 11.890 sec. CPU= 10.543 sec. CPU= 12.112 sec. 

1 2.29 2.02 2.08 

.2 4.64 4.28 4.38 

3 4.63 4.28 4.38 

4 2.30 2.02 2.08 

5 3.78 3.48 3.55 

6 3.76 3.41 3.50 

7 4.86 4.51 4.60 

8 3.76 3.41 3.50 
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Sample Problem 3 

Consider the steady-state heat conduction with heat generation 

in part of a cross-section of an industrial furnace shown in Figure 

3.7 is considered. The mathematical formulation of the problem is 

Surfaces AB and DE are thermally insulated. There is heat exchange 

on surfaces AF and FE by convection with medium having temperature of 

Uoo = 500oK. The convective heat transfer coefficient ho' thermal con­

ductivity K and volumetric heat generation qUI are assumed to be 

constant and given as follows. 

and 

y 

8 or-------,r 
A 

q = (h/K)(uoo-u) 
u = 3000 K 

4 F 

q = OOK/m 

D C 
~------+--__ ~~~----~------~x o 4 u = 3000 K 

Figure 3.7 - Boundary conditions for the problem 3. 
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TABLE 3.6 - Results for the Problem 3. 

BIEM: 23 Linear Boundary Elements and 28 Internal Triangular 
El ements (CPU = 9.951 sec.) 

FDM : 75 Grid Points (CPU = 0.470 secJ 

COORDINATES TEMPERATURE FLUX 
(m) U (OK) q = auldn (oK/m) 

BOUNDARY 
NODES X Y FDM BIEM BIEM 

\ lAPP .DJ 

1 0.001 0.000 300.0 300.0 -433.4 

3 4.000 0.000 300.0 300.0 -2162.8 

5 8.000 0.000 300.0 300.0 -2013.6 

7 10.000 0.001 . 300.0 391.2 0.0 

9 10.000 3.999 596.5 686.0 0.0 

11 8.000 4.000 596.7 595.1 -1902.4 

13 4.000 4.000 645.7 678.4 -3568.8 

15 4.000 7.999 597.0 605.5 -2110.4 

17 2.000 8.000 2467.0 2507.6 0.0 

19 0.000 7.999 300.0 300.0 -2236.3 

21 0.000 4.000 300.0 300.0 -2168.5 

23 0.000 O. 001 300.0 300.0 - 433.4 

COORDINATES TEMPERATURE 
(m) U (OK) 

INTERNAL 
POINTS X Y FDM BIEM 

1 2.000 6.000 2491.0 2448.2 

3 2.000 2.000 2450.0 2483.2 

5 6.000 2.000 2489.0 2477 .1 
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Sample Problem·4 

Consider the steady-state heat conduction ina square region 

without heat generation. The mathematical formulation of the problem 

is 

in o < x < 1 02. Y 2. 1 

Find the temperature at the internal and boundary points and 

the flux at the boundary pOints for each of the cases as shown below. 

y 

(a) 

1 +------------"""1 

q = (a/K)(u~-u~) 

... x 
o 1 

Figure 3.8 - Boundary conditions for the problem 4a. 

In this case, Stephan-Boltzmann constant a, thermal conductivity 

K and the ambient temperature Uoo are given as follows. 

-8 W 2/oK~ a = 5.6697xlO .m" 

K = 1 W/m.oK 

and 
o u = 350 K • 

00 
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TABLE 3.7 - Results for the Problem 4a. 

BIEM: 20 Linear Boundary Element (CPU = 15.725 secJ 
Iteration Number = 4 

COORDINATES TEMPERATURE FLUX 
~OUNDARY (m) u (OK) q = au/an (oK/m) 

NODES X Y EXACT BIEM EXACT BIEM 
lAPP.B) 

1 0.001 0.000 1424.0 1418.6 0.'0 0.0 

3 0.500 0.000 925.0 924.4 0.0 0.0 

5 0.999 0.000 426.0 430.1 0.0 0.0 

7 1.000 0.250 425.0 425.1 -1000.0 -1000.7 

9 1.000 0.750 425.0 425.1 -1000.0 -1000.7 

11 0.999 1.000 426.0 430.1 0.0 0.0 

13 0.500 1.000 925.0 924.4 0.0 0.0 

15 0.001 1.000 1424.0 1418.6 0.0 0.0 

17 0.000 0.750 1425.0 1423.6 1000.0 1000.0 

. 19 0.000 0.250 1425.0 1423.6 1000.0 1000.0 

COORDINATES TEMPERATURE 
INTERNAL (m) u (OK) 
POINTS 

X Y EXACT BIEM 

• 
1 0.250 0.250 1175.0 1173.9 

3 0.750 0.750 675.0 674.8 

5 0.500 0.500 925.0 924.4 



(b) 
Y 
J~ 

IT--------------------

~~ ________ ~~------~------------~x a q = OOK/m 1 

Figure 3.9 - Boundary conditions for the problem 4b. 

In this case, Stephan-Boltzmann constant a, thermal conduc­

tivity K, convective heat transfer coefficient ho and the ambient 

temperature u are given as follows. 
00 

and 

a = 5.6697xlO-
8 

W.m 2 /oK4 

K = 1 W/m. oK 

h = 20 W/m2.oK 
o 

u = 
00 

, 

at x = 0 

at x = 1 

, 

.. 
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TABLE 3.8 - Results for the Problem 4b. 

BIEM: 20 Linear Boundary Elements (CPU = 15.573 secJ 
Iteration Number = 4 

COORDINATES TEMPERATURE FLUX 
BOUNDARY (m) u (OK) q = au/an (OK/m) 

NODES X Y EXACT BIEM EXACT BIEM 
JAPP. B) 

1 0.001 0.000 587.1 586.1 0.0 0.0 

3 0.500 0.000 461.1 461.1 0.0 0.0 

5 0.999 0.000 335.0 336.1 0.0 0.0 

7 1.000 0.250 334.8 334.8 -252.6 -253.1 

9 1.000 0.750 334.8 334.8 -252.6 -253.1 

11 0.999 1.000 335.0 336.1 0.0 0.0 

13 0.500 1.000 461.1 461.1 0.0 0.0 

15 0.001 1.000 587.1 586.1 0.0 0.0 

17 0.000 0.750 587.4 587.3 252.6 253.1 

19 0.000 0.250 587.4 587.3 252.6 253.1 

COORDINATES TEMPERATURE 
INTERNAL (m) u (OK) 

POINTS 
X Y EXACT BIEM 

1 0.250 0.250 524.2 524.2 

3 0.750 0.750 397.9 397.9 

5 0.500 0.500 461.1 461.1 



(c) 
y 

1 

o 1 

Figure 3.10 - Boundary conditions for the problem 4c. 

In this case, Stephan-Boltzmann constant a, thermal conduc­

tivity K and the ambient temperature Uoo are given as follows. 

a = 5.6697xlO- B W.m2/oK~ 

K = 1 W/m.oK , 

and 

60 



61 

-
TABLE 3.9 - Results for the Problem 4c. 

BIEM: 20 Linear Boundary Elements {CPU = 40.112 sec.} 
Iteration Number = 10 

COORDINATES TEMPERATURE FLUX 
BOUNDARY {m} u (OK) q = au/dn (oK/m) 

NODES X Y EXACT BIEH EXACT BIEM 

1 0.001 0.000 20253.0 20173.7 0.0 0.0 

3 0.500 0.000 10517.9 10521.1 0.0 0.0 

5 0.999 0.000 782.3 868.4 0.0 0.0 

7 1.000 0.250 762.8 769.4 -19510.2 -19555.0 

9 1.000 0.750 762.8 769.4 -19510.2 -19555.0 

11 0.999 1.000 782.3 868.4 0.0 0.0 

13 0.500 1.000 10517.9 10521 .1 0.0 0.0 

15 0.001 1.000 20253.0 20173.7 0.0 0.0 

17 0.000 0.750 20273.0 20273.0 19510.2 19558.0 

19 0.000 0.250 20273.0 20273.0 19510.2 19558.0 

COORDINATES TEMPERATURE 

INTERNAL (m) U (OK) 

POINTS X Y EXACT BIEM 

1 0.250 0.250 15395.4 15395.1 

3 0.750 0.750 5640.3 5647.1 

5 0.500 0.500 10517.9 10521.1 
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Sample Problem 5 

Consider the steady-state heat conduction without heat genera­

tion in a hollow cylinder as shown in Figure 3.11, where the domain 

is given as follows. 

1 < r < 2 

Find the steady~state flux at the boundaries while the boundary 

surfaces at r l = 1 m and r2 = 2 m are kept at uniform temperatures 

ul = 1000C and u2 = 200C, respectively. 

y 

·~------~------~----------~~x 

Figure 3.11 - Boundary conditions and boundary elements for 
the problem 5. 
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TABLE.3.10 - Results for the Problem 5. 

BIEM: 16 Constant Boundary Elements 
(CPU = 2.623 sec~ 

COORDINATES FLUX 
(oC/m) BOUNDARY (m) q = au/an 

NODES X Y EXACT BIEM 
(APP.B) 

1 0.707 -1. 707 -62.463 -58.352 

4 0.707 1.707 -62.463 -58.352 

7 -1. 707 -0.707 -62.463 -58.352 

10 -0.854 0.354 124.925 120.243 

13 0.854 . 0.354 124.925 120.243 

16 -0.354 -0.854 124.925 120.243 

COORDINATES TEMPERATURE 
INTERNAL (m) u (OC) 

POINTS X Y EXACT BIEM 

1 1.386 -0.574 53.203 44.888 

3 0.574 1.386 53.203 44.888 



IV. DISCUSSION OF THE RESULTS 

In formulation of the steady-state heat conduction in the 

domain, the internal heat generation is an important term, since 
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it causes to take the internal elements into consideration because 

of the domain integral which exists only in this case. However, it 

should be also remembered that the internal elements are regarded 

just because of a numerical technique that simplifies the evaluation 

of the domain integral easily. Thus, the internal heat generation 

does not create complexity. 

Several problems were solved to test the validity and perfor­

mance of our study where available exact solutions were used for 

some problems whereas the remaining problems were solved by finite 

difference technique. It may be seen that the results obtained by 

the boundary integral element method are in good agreement with the 

corresponding results obtained by exact solution and finite differ­

ence method, at the boundaries. However, this is not the case at 

interior points near the boundary. At these locations, the results 

are less accurate than the results on the boundary nodes. This is 

due to the fact that the numerical accuracy decreases as the distance 

r between the Isourcel point and the 'observation ' point goes to zero. 
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If linear boundary elements are used, unfortunately the corner 

pOints can have two values for the temperature or flux depending on 

the side under consideration as shown in Figure 4.1. 

y 

4 , 3 
,. 

, 
CD "' 2 

Element No. Node No. 

~----------------------------------------------~x 
a 
Figure 4.1 - The nodes at the corners. 

A simple way to avoid the corner problem is to assume that 

there are two points very near to each other but which belong to 

different sides as shown in Figure 4.2. The two pOints near the 

corner are joined by a line segment which is considered as one of 

the elements approximating the boundary contour. It should be noted 

that the length of the line segment is taken to be too small to let 

the nodes to 'have different results., The results obtained by this 



method show a good agreement with the exact results. 

y 

7 

8 

o 

® 
Element no. 

2 
Node no. 

G) 

Figure 4.2 - The nodes near the corners. 
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x 

For the case of radiative boundary conditions, one dimensional 

problems of simple square plate are selected in order to make a com­

parison to exact solutions. The nonl inearity of this kind of boun­

dary condition creates difficulty. However, this difficulty is over­

come by a linearizing technique. There was no problem of convergency, 

and an error of 10 percent in temperature is observed in the case of 

sample problem (5c), which is the largest error with respect to the 

errors of other two cases (5a) and (5b). 
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-
The method was also used to study problems with more than one 

surface, such as the case of hollow cylinder. The results at interior 

points are less accurate than the results at the boundary nodes. It 

should be noted that this inaccuracy is a result of the approximation 

of the actual boundary contour by finite segments. 
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VI CONCLUSIONS AND RECOMMENDATIONS 

The solutions for the examples indicate that the present boun~ 

dary integral element method is accurate and general for solving most 

of the conduction problems of practical importance. 

The iterative boundary integral element method has been shown 

to be appropriate for use in numerically solving a variety of steady­

state heat conduction problems. 

The boundary integral element method in its present fonn has 

no inherent limitations as to the geometric complexity, kind of 

boundary condition. 

The method is most suitable for calculating temperature and 

flux at the system boundaries and at a few individual interior 

points. This feature makes the method superior in this respect to 

available numerical methods, where the solution involves all interior 

points. 

As in most of the practical calculations of heat transfer, boun­

dary fluxes and temperatures are the only needed information·. However, 

complete temperature distribution is directly obtainable with minimum 

effort. 
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Another primary advantage of using the boundary integral equation 

for the numerical solutions rather than the original differential equa­

tion is the space reduction of the problem. If the problem is three­

dimensional in space, the boundary integral equation is a two-dimensional 

one which requires less effort and time for its solution. 

It should be mentioned here that temperatures calculated at 

interior points near the boundary are generally not very accurate. 

This, of course, does not represent a drawback for the method, since 

temperatures and fluxes at the boundary are obtainable directly without 

reference to the interior point. 

If linear elements are used in the boundary,the corner problem 

appears. This problem is solved by assuming that there are two points 

very near each other but which belong to different sides. 

Although the examples cited in the present work are all of a 

two-dimensional nature, the method is also suitable for three~dimen­

sional cases. 

Finally, if the present method can be extended to include the 

transient heat conduction problems and to some specific problems of 

convective heat transfer, this will in turn make the boundary integral 

element method a more competitive numerical technique over the already 

existing methods. 
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APPENDIX A 
FUNDAMENTAL SOLUTION 

The fundamental solution, u*, is the solution of the equation 

L*U*=[·O 
-0· 

1 

\'/hen 

when 

r > 0 
(A.l) 

r = 0 

where r is }he distance from the point of application of the unit 

potential to the point under consideration as shown in Fi~ure 2.2.2. 

For r > 0, taking symmetry into consideration, the Laplace 

equation in polar coordinates becomes 

__ 1 ___ d_(r du*) = 0 
r dr dr (A.2) 

or, 

d du* -(r-) = 0 dr dr (A.3) 

Integrating the Eq. (A.3) twice, we get 

u* = Clln r + C2 . (A.4) 

Now, let us seek Cl and C2 by integrating the equation 
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L*u* = -0 (A.5) 

over a disk of arbitrary small radius leI centered at (x,y) as shown 

in Figure A.1. 

y 

L-------------------------------------------------~x a 

Figure A.1 - Point surrounded by a disk. 

Then, the Eq. (A.1) can be written as follows. 

(A.6) 

for r < e. Integrating the Eq. (A.6) over De' we get 
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(A.7) 

By using Green's first identity [11, p.451J, 

[(va.vb +av2 b)dD = [ a ~ dS o ~ ~. S an (A.8) 

the right hand side of the Eq. (A.7) can be written as follows. 

Then, the left hand side of the Eq. (A.7) becomes 

-f odD = [ (du*/dr)dS 
De Se 

From the property of the Dirac delta function, 

[ odD = 1 
De 

the Eq. (A.10) becomes 

(A.9) 

(A.10) 

(A.ll) 

(A.12) 

By using the Eq. (A.4), the Eq. (A.12) can be written as follows. 

Cl [ - dS = -1 
S e 
e 

From Figure A.l, we can see that 

[ dS = 27Te 
Se 

Thus, the constant Cl is found as follows. 

(A.13) 

(A.14) 



c = __ 1_ 
1 . 27f (A.15) 

The other constant C2 remains arbitrary and therefore we can 

set it equal to 

C =-l-lnl 
227f 

= a 

Thus, the fundamental solution becomes 

u* = _1_ In(l/r) 
27f 

for two-dimensional Laplacian operator [15, p.48]. 

(A.16) 

(A.l7) 

(A.18) 
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APPENDIX B 
EXACT SOLUTIONS 

Exact soluhon of the problem (la) 

The mathematical formulation of the problem is 

a2u a2u_ 0 in o < x < 1 O~y~l (B .1) -+--
ax2 ay2 

u = y at x = 0 (B.2a) 

u = 1- y at x = 1 (B.2b) 

u = x at y = ° (B.2c) 

u = 1 - x at y = 1 (B.2d) 

For simplicity, let 

u = Clx + C2y + C3xy (B.3) 

It can be shown that the above expression for u satisfies the 

Laplace equation. 

We can use the boundary conditions to find the unknown cons-

tants. The first boundary condition was 

u(O,y) = y (B.4) 



Thus, inserting the Eq. (B.4) into Eq. (B.3) we get 

So, 

c = 1 2 

Similarly, using the second boundary condition, 

u(l,y) = 1 - y 

we get 

So, 

and 

(B.5) 

(B.6) 

(B.7) 

(B.8) 

(B.9) 

(B.10) 

Once the constants are found, one can write the complete 

expression for u, i.e., 

u = x + Y - 2xy (B.ll) 

It can be shown that the above expression for u satisfies 
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the other boundary conditions, e.g. for the third boundary condition 

u(x,O) = x (B.12) 

we have 

x = 'x + 0 - 2 ( 0) x 

= x 

Also, for the fourth boundary condition 



u (x, 1) = 1 - x 

we have 

1 - x = x + 1 - 2(x)1 

= 1 - x 

Exact solution of the problem (lb) 

The mathematical formulation of the problem is 
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(B.13) 

in o < x < 1 o~ y ~ 1 (B.14) 

u = 0 at 

au/ax = 0 at 

au/ay = 0 at 

au/ay = 20(1 - u) at 

x = 1 

x = 0 

y = 0 

y = 1 

Let us use 'Separation of Variables' method [19,p.91] 

u(x,y) = X(x)Y{y) 

then the Eq. (B.l) becomes 

X" Y" 
X-=-Y-

We can write 

and 

_Y"/Y = -1. 2 

The solution of the Eq. (B.18a) is 

X(x) = C1sinAn(x) + C2cosAn(x) • 

(B. 15a) 

(B. 15b) 

(B.15c) 

(B. 15d) 

(B.16) 

(B.l7) 

(B.18a) 

(B.18b) 

(8.19) 
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Applying the new forms of the boundary conditions {B.15a} and {B.15b}, 

X{l) = 0 

and 

XI(O} = 0 

we get 

where 

_ (2n + 1) 
A - IT 

n 2 n = 0,1,2, ... 

The solution of the Eq. {B.18b} is 

Applying the new form of the boundary condition (B.15c) , 

y 1(0) = 0 

we get 

Then, the solution of the Eq. {B.14} is 

(Xl 

u(x,y) = E AncoshAnycosAnx 
n=O 

Using the boundary condition (B.15d), we get 

40sinAn A = . 
n A (A sinhA + 20coshA }{l + (1/2An)sin2An) n n n n 

Then the exact solution of the problem is 

{B.20a} 

(B.20b) 

(B.21) 

{B.22} 

(B.23) 

(B.24) 

(B.25) 

(B.26) 
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u(x ,y) (B.27) 

Here, 

A = (2n + 1) 
n 2 n=0,1,2, •.. 

Exact solution of the problem (2b) 

The mathematical formulation of the problem is 

d2 u + 10 = 0 in o < x < 1 o < y < 1 (B.28) 
dx 2 

u = 0 at x = 0 (B.29a) 

du/dx = 0.1(1 - u) at x = 1 (B.29b) 

Let us integrate the Eq. (B.28) two times. Then, the Eq. (B.28) 

becomes 

Applying the ,boundary conditions (B.29a) and (B.29b) , we get 

and 

Cl = 106/11 . 

C = 0 2 

Then the exact solution of the problem is 

u = -5x2 + \016 x . 

(B.30) 

(B.3la) 

(B.3lb) 

(B.32) 



Exact solution of the problem (4a) -

The mathematical formulation of the problem is 

in o < x < 1 o < y < 1 - -

du/dx = 1000 at x = 0 

at x = 1 
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(B. 33) 

(B.34a) 

(B.34b) 

Let us integrate the Eq. (B.33) two times. Then, the Eq. (B.33) 

becomes 

Applying the boundary conditions (B.34a) and (B.34b), we get 

Cl = 1425 

and 

C2 = -1000 . 

Then the exact solution of the problem is 

u = 1425 - 1000x 

Exact solution of the problem (4b) 

The mathematical formulation of the problem is 

in o < x < 1 

du/dx = 20(600 - u) at x = 0 

du/dx = 5.7xlO- 8 (3004 - u4) at x = 1 

(B.35) 

(B.36a) 

(B.36b) 

(B.37) 

(B.38) 

(B.39a) 

(B.39b) 
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Let us integrate the Eq. (B.38) two times. Then, the Eq. (B.38) 

becomes 

Applying the boundary conditions (B.39a) and (B.39b), we get 

Cl = '587.37 

, and 

C2 = -252.58 

Then the exact solution of the problem is 

u = 587.37 - 252.58x 

Exact solution of the problem (4c) 

The mathematical formulation of the problem is 

in 0 < x < 1 

U = 20273 "at x = 0 

du/dx = 5.7xlO-8(273~ - u~) at x = 1 

(B.40) 

(B.41a) 

(B.41b) 

(B.42) 

(B.43) 

(B.44a) 

(B.44b) 

Let us integrate the Eq. (B.43) two times. Then, the Eq. (B.43) 

becomes 

(B.45) 

Applying the boundary conditions (B.44a) and (B.44b), we get 

Cl = 20273 (B.46a) 

and 

C2 = -19510.22 (B.46b) 



Then the exact solution of the problem is 

u = 20273 - 19510.22x 

Exact solution of the problem (5) 
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(B.47) 

The mathematical formulation of the problem [19,p.44] is 

_1_ -4--c ~]:: 0 
r dr r dr in 1 < r < 2 (B.48) 

u = 20 at r = 2 (B.49a) 

u = 100 at r = 1 (B.49b) 

Let us integrate the Eq. (B.48) two times. Then, the Eq. (B;48) 

becomes 

u = Clln r + C2 (B.50) 

Applying the boundary conditions (B.49a) and (B.49b), we get 

Cl = -80/1n 2 (B.51a) 

and 

C2 = 100 (B.51b) 

Then the exact solution of the problem is 

u = 100 - (80/1n 2)ln r (B.52) 



APPENDIX C 
COMPUTER PROGRAM FOR BOUNDARY 

INTEGRAL ELEMENT METHOD 

85 

This computer program solves the two-dimensional Poissonls 

equation (V 2 u + p = 0) using constant or linear element~. Flow-

chart for the computer program can be seen in Figure C.l. 

The main program defines the maximum dimensions of the system 

of equations which in this case is 40. It also allocates the input 

channel 5 and the output channel 6 for the Fortran statement. It 

calls the 11 following subroutines, 

INPUT 

GHCAl 
(GHCAlC) 

GHPCAl 

BCAl 

INTE 
(INTEC) 

Reads the program input. 

Computes GG and HH matrices for linear (constant) 

elements. 

Evaluates GGP and HHP matrices by reordering GG and HH 

matrices according to the type of the boundary condition 

at node Iii. 

Calculates BB(I) for the source point (XSRCE, YSRCE). 

Computes the integrals along a 1 inear (constant) el.ement 

which does not include the node under consideration. 
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For Constant El. For Linear El. 

Figure C.l - Flowchart for the computer program. 



INLO 
(INLOC) 

INTEF 
(INTEFC) 

INTER 
(INTERC) 
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Computes the integrals along a linear (constant) element 

including the node under consideration. 

Writes matrices GELEM (AH) and HELEM (BG) onto disc file 

(10) for internal points. 

Computes the temperature value at internal points for 

linear (constant) elements. 

DECaMP and. 
SOLVE . Almost any computer library has subroutines based on 

variants of Gaussian elimination with partial pivoting 

for solving systems of simultaneous linear equations. 

The details of implementation of various subroutines 

available are quite different. These details can have 

important effects on the execution time of a particular 

subroutine, but if the subroutine is properly written, 

they should have little effect on its accuracy. 

We can describe two such subroutines, DECaMP and SOLVE. DECaMP 

carries out that part of Gaussian elimination which depends only on 

the matrix. It saves the multipliers and the pivot information. 

SOLVE uses these results to obtain the solution for any right hand 

side. 

DECaMP also returns an estimate of the condition of the matrix. 

Such an estimate is a much more reliable and useful measure of near­

ness to singularity than quantities such as the determinant or the 



of n of the actual condition, and it is usually much closer. In 

other words, for almost all matrices, DECaMP returns a quantity 

COND with 

con~(A) ~ COND ~ cond(A) 

In those situations where COND < cond(A)/n, it still measures the 

sensitivity of solutions for most right hand sides. 
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Roundoff error usually prevents DECaMP, or any other Gaussian 

elimination subroutine, from determining whether or not the input 

matrix is singular. If an exact zero pivot occurs during the elimi­

nation, DECaMP sets COND to 1032 to signal that it has detected sin­

gularity. The value 1032 is between BETAT and BETAU on all current 

floating-point systems, so it is between the reciprocal of the machine 

accuracy and the overflow level. 

However, the occurrence of a zero pivot does not nec~ssarily 

mean that the matrix is singular, nor does a singular matrix neces­

sarily produce a zero pivot. In fact, the most common source of 

zero pivots is some kind of bug in the calling program. 

It should be realized that, with partial pivoting, any matrix 

has a triangular factorization. DECaMP actually works faster when 

zero pivots occur. The only difficulty with a zero pivot is that 

SOLVE will divide by it during the back substitution. So SOLVE 

should not be used whenever DECaMP has set COND to a value muc~ 

larger than BETAT. 

Some df the subroutines available in computer libraries incor-

porate a technique as iterative improvement or iterative refinement. 
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This is a process which involves computation of the residual using 

high precision arithmetic and solution of a system of equations with 

the residual as the right hand side to obtain a correction for the 

computed solution. The corrected result often has a smaller error 

but does not necessarily have a smaller residual. Furthermore, the 

size of the correction is another measure of the sensitivity of the 

solution to errors in the data and the computation. 

We decide against including an iterative improvement program 

for several reasons. First, the solution obtained without improve­

ment is satisfactory for most applications. Second, the errors in 

the input data usually affect the solution more than the round-off 

introduced during its computation. Third, our condition estimator 

supplies the same kind of information available from the size of 

the correction. Finally, and possibly most important, the availability 

and ~se of the required high precision arithmetic varies from computer 

to computer. A general linear equation solver which efficiently in­

corporates iterative improvement cannot be written in standard Fortran. 

To comment upon some details in DECaMP and SOLVE, we need to 

examine how Fortran systems store matrices. If a program contains 

statement, 

DIMENSION A(3,5) 

then 

3*5 = 15 

locations will be reserved in memory for the elements of A •. They 

will be stored in the following order, 

A(l,l) A(2,1) A(3,1) A(1,2) A(2,2) 
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In other words the elements of each column are stored together. 

The el ements of each rO\,1 are seperated from each other by a number 

of locations equal to the first subscript in the dimension statement. 

Many of the common matrix operations are most naturally des­

cribed in terms of rows. For example, in Gaussian elimination, a 

multiple of one row is subtracted from another row. When implemented 

in Fortran, such operations typically have the innermost loops varying 

the second index of arrays. This has two potentially adverse effects 

on program efficiency. Subscript calculations may be more costly 

because they involve information contained in the dimension statement. 

Operating systems which automatically move data between high speed and 

secondary memory units during computation may have to do an excessive 

amount of work .. For these reasons, we have implemented Gaussian eli­

mination in a somewhat unconventional manner with all the inner loops 

varying the first index. Such an implementation can be significantly 

more efficient. with certain types of operating systems. 

Most, but not all, Fortran dialects have provision for variable 

dimensions on arrays which are subroutine parameters. In a main. 

program, one may specify 

DIMENSION A(40,40) 

but intend to actually work with an N by N matrix where N may vary 

from problem to problem. Subroutines such as DECOMP and SOLVE need 

both N, the actual working order, and the quantity 40 used in the 

dimension statement because that is the memory increment between 

successive elements of a row. This dimension information is called 

NDIM in DECOMP and SOLVE [20, p.48]. 
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OUTPUT : , Outputs the results. 

TERMINOLOGY 

The general variables used by the program, together with their 

meaning are given below. 

M 

NC(K) 

LMICMI 

Number of different surfaces. 

Last nodes in these surfaces. 

Indicates the type of the elements. LMICM = 1 means 

that constant boundary elements are used. LMICMI = 2 

means that linear boundary elements are used. 

NONL Indicates the type of boundary conditions at the 

EPSMAX 

NST 

NLA 

THC 

N 

KODE( I) 

element nodes. NONL = 1 means that there are ,nonlinear 

boundary conditions at the element nodes. NONL = 0 

means that linear boundary conditions at the element 

nodes. 

Maximum tolerance for the iteration procedure. 

The first node which has nonlinear boundary condition. 

The 1 ast node which has nonl inear boundary condition. 

Thermal conductivity. 

Number of nodes. 

Indicates the type of boundary conditions at the element 

nodes. 

If KODE(I) = 1; then ALPHA(I) = 0, BETA(I) = value of 

I temperature I. 

If KODE(I) = 2; then ALPHA(I) = 0, BETA(I) = value of 

'flux I. 
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If KODE(I) = 3; then ALPHA(I) = value of heat transfer 

coefficient, BETA(I) = ambient temperature. Note that 

flux is '+' if there is heat input to the region. 

KODEP Check the source (heat generation) term. If KODEP = 0, 

then there is no source term. If KODEP = 1, then there 

is source term. 

KODEI 

LINT 

NPOIN 

CX, CY 

Checks if internal temperature needed. 

Number of internal points where the funtion is calculated. 

Number of points for internal elements. 

Internal point coordinates where the value of u is 

required. 

X, Y Coordinates of the extreme points of the boundary 

elements. 

NELEM Number of internal elements. 

EXISP,ETASP: Numerical integration points for internal triangles. 

WEIGP Weights for internal triangles. 
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l~ 
12 
13 
14 
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19 
~3 
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2Lf 
25 
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~J 
2<) 
30 
31 

~~ 
~~ 
37 

~g 
40 

~~ 
43 

tt~ 
46 

~~ 
4<) 
50 
51 
52 
53 
5L~ 
55 
5G 
57 
58 
!J<) 

g~ 
g3 
G4 
65 
66 
67 
u8 
6<) 
70 
71 
72 
73 
74 
75 
76 
77 
7£11 
7q 
bO 
iH 
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~**************~***********~********.**~**********************~* 
C PROGRAM OIEM 
C 

E 
C 
C 
C 
~ C 
C 
C 
C 
C 
C 
C 

C 
C 

E 
C 

C 

8 
C 
C 
C 

E 
C 
c 
e 
C 
C 
C 
C 
C 
C 
C 
C 
C 

E 
c 

E 

c 
C 

c 
t 
c 
c 
C 

SOL VEe; 2-D IMF]'ISIONAL Po ISSON' e; EQUATION 
Oy TIlE OlE,., 

LAPLAr.r Atl ( U ) + P = 0 

LIt-lEAR OR COtJSTAtIT VARIATION 
ALONG THESE Gf.1EtITS 

COMMO~VBEM~/X(41)'Y(41)'CX(9)'CY(9)'SOL(9}'BA(40)'M'NC(5) 
cgMr.18 t11. BEM /.Gr, fLj 0,40} ,HH(L10, 40) KOOE ('W) .l.FTl4l1 , OFl (41) 
C r.lf.l ~/nEM Itln M"I'I.t.L.ItlTlNI,IJO;K6oE1r.KOOEt-'tfIPO fl,NF: EM 
CO~1r.l0tl/001'f/EXISI,( () 'FTI\SP\7) ,WEIGP(71 ,XM 40) , Yr-l(LiOJ 
CO/-1MOr· IOEM5/PTEHf.l (40) ,'UIOnS (3,50) , COORD (2,40) 
CO~IMOt l/nEt-16/wOHK (q 0) , I PVT (40) ,COND, NONL, LMI CMI 
CO~~MOII/nEM7/GGP (!f0,!f0) , IIIIP (40, Lfa) , ALPHA (40) , BrTA (40) 
COf.lr.10~I/BEMB/ErI (41) 

~~t ~~~k~:A~I2~~I~~ O~Rg~R~MEP ~~~~~~E§~ EQUA T IONS 

NOIM="O 

ASSIGN DATA SET t/UMBER FOR INPlJT,NI AND OUTPUT,NO 

~6~6 
INPUT 

CALL lr~PlJT 

CHECK NONL IF MIY tlor'ILINEAR OOUNDARY CONDIHOtl 
IS PRESOIT 

IF (NOtIL. r'IE .1 ) GO TO 7 

A I TERA T I VF Sr,HEI·1E eM·1 BE lJSEn TO SOLVE TilE PROBLOIS 
WHyCl1 pOSSeSS NONLINEAR nOllNDAHy CONDITIONS .' 

EPSMAx=MAxIMUrl TOL[RMICE 

TIlE ITERATIOtl PROCEDURE STAHTS BY TAKING 
EFr (JK) = TfV.1B (Ar.llJIEtIT TEMP.) 

NST=TI1E FIRST trOOE \~I1ICH III\S tIONLItl[AR B.C. 

NLA=TrIE LAST tr00E ~IIIICII liAS 1I0NLIflEI\R B.C. 

THC= TIIERr-1AL CONDUCTIVITY 

f{h~~ it'1{ ;?-Q ),EPSI-1A~ ~ ~A+~R ~1)IST' liLA, TI IC 
80 ~RIT~TNti, 8~J~r~AAx, M~n, I'JST, NLA, Tile . 
£Ill FORMAT(// ,5X, ,EpSMfl X=, '~5.3'5X' ,TMm=, ,FS.l ,5X, rfIST=" 

.I3,5X, ,tJLA=, 'I3,5X, ,THC-, ,F5.2,/) 

DO 11 JK=NST ItILA 
11 EFI(JK)=TMlB 

KK=NST 

NOTE Tf IA T I'/E eMI WHAI TF: 
Do 12 I<K=rrST,NL 

INSTEAD OF 
KK=NST 

ITER=n 
3 ITER=rTER+1 
, IF< KK -"IE. NST) (;0 TO 1 

IF (ITFR-ll 1, 2,1 



82 
b3 
84 
85 
u6 
07 
08 
bl) 
90 
91 
93 
2~ 
97 
98 
99 

100 
101 

!83 
104 
105 
106 

187 

l~§ 
111 
112 
113 
H~ 
119 
He 
m 
125 
126 
127 
128 
121) 
130 
131 
132 

i~~ 
13() 
1:)7 

l~e 
140 
141 
142 
11~3 
14L~ 
145 
146 
147 
14£\ 
141) 
1~0 
1~1 
1~2 
153 
1~4 
155 
1~6 
1~7 
1~£\ 
159 
160 
161 
16? 
163 

C 
C 
C 
C 
C 
C 

E 
C 

C 
C 
C 
C 
C 

E 
C 

C 
C 
C 

E 
C 

E 
C 

E 
C 
C 
C 

E 
C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 
C 

C 
C 
C 

C 
C 
C 

2 GOLD=rAMfl 
GO TO 16 

1 GOLO=FI(KK) 
16 CO~JTltIUE 

THE NE~I FORf<1S OF TilE tIO~ILI I-lEAR BoUr-lDARY CONDI TI ONS 

7 CONTInUE 

CHECK M I\I-JO LI1ICMI IF IT IS CONSTAtJT ILINEAR 
VAr.II\TION I\LOI-JG THE SEGMErHS 

IFCM-l)31,3t'32 
31 IFCLMtCMI-l 3~,32,33 

EVI\LlJI\TE GG /\flO IIH MATRICES FOH cOtJ5TI\~JT ELEMrNTS 

32 CI\LL r,IlCALC 
GO TO 34 

EVALUATE GG MID Hil MATRICES FOR LINEAR ELEMENTS 

33 CALL r,HCAL 

EVALUATE GGP AtJD HHP MATRICES CBY REARRANGING) 

34 CALL r,HPCAL 

DECOMpOSE GG MATRIX flY USING DECOMP 

CALL nECOMP CrJDH1,N,Gr,P,COf.JD, rpVT'WORK) 

PRINT TIlE CONOITIOtl NO. OF THE cOEFFICIEfn MATRIX 

~~~~~1~~8~~~1) COND 
IF (CO~jDPl.EO.CO~JD) WRITE 010,932) 
IF (CO~ OP1.Eo.corID) STOP 

CLEAf"~ THE AA vECTOH FOR TilE SOURcE TERM 

lJO 560 1=1' N 
560 Ufl(J}=O. 

CHECK KOOEP IF ANy SOURCE TERM IS PRESENT 

IF CKoDEP.EO.o) GO TO 778 
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EgN~u~~E~Hrll~nflgU~6~HyO~06~~ fg~R~8N~~~~T ILINfAR ELEMENTS 

DO 510 I=I,tl 

IFCM-l)51,5t,r;2 
51 IFCLMyCMI-t 5~,52'53 
52 CALL flCI\L XMlI),YM(I),nBCI» 

GO TO 510 

53 CALL nCI\L C XCI), yCI),AHCI» 
510 CONTItlUE 
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lu~ 
i~. 
16B 
169 
170 
171 
172 
173 
174 
175 
176 
177 

l~~ 
180 
lin 
1b2 
1b3 
lU4 
185 
186 
187 
108 
189 
190 
191 

l~~ 
l~~ 
19n 
266 
~8~ 
203 284 
2 5 

~89 
~ge 
~l~ 
212 
213 
211~ 
215 
216 
217 
21B 
21<) 
2~2 

n~ 
2t!.7 

~~~ 
230 
231 
232 
233 
231~ 
235 
~~~ 
23n 
~~~ 
241 
242 
243 
244 
24S 
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C 
C 
C 
C 
C 

EVI\UJfI TE THE OFI VECTOH 
I~T~r~ I~b~O~'r6r 1;~~llt I~RlIt~~r IH~riE °VAlU~SE8~fltl~I~N~YSTEM OF E~~}S 

C 
C 
C 
C 
C 

C 
C 
C 
C 
C 
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160 

DO 160 I=I,N . -
DFI(I)=-OS(I) . 
DO 160 J=l,N 
OFT (I ) =on C I ) +HHP C I , J) *AET A (J) 
COf'.ITltIUE 

SOLVE FOR THE UNKNOvlNS 
(By BACK-SUOSTITUTION) 

CALL SOLVE (NnIM,N,GGP,OFI,IPVT) 

REOROfR OFI VECTOR TO OBTAIN : 
F I =AOUtIDflRY POTEI'ITI I'll C TD1P.) VALUES 
DFr=nOUNOARY POTENTIAL DERIVATIVES (FLUX) 

DO 250 I=l,N 
GO TO CI0,20'30 ),KOOE(I) 

10 FICI)=OETA(I)' 
un (I ) =OF I ( I ) 
GO TO 250 

20 FICI)=OFI(I) 

30 

C 250 
C 

~?a?~~~2~;~ I) 
eblH t ~B~lrll (T) * WETA (I) -F I (I) ) 

CHECK KOOEI WHETHEH TO EVALUATE AT THE INTERNAL POINTS 
C 

C 

E 
C 
C 

C 
C 
C 

C 

C 
C 

E 
E 
C 

C 

C 

E 
C 

C 

IF (KoDEI.EO.a) GO TO 790 

41 i~l~Mtt~1~1t4~742'43 
FOR Cot,ISTM'IT ELEt~ElJTS 

FOR LINEAR ELEMENTS 

43 CALL Jt'ITEF 
CALL rtlTEH 

790 COl-ITIr-IUE 
IF( NOt,IL .tIE.1> GO TO 12 

99 P~T?3M~~=~~fUh9 
110LDT= FI(KK) 
EPS=An~ (1IOlOT -GOLD) 
IF(IT[I~.GT.no) GO TO 13 
IF(EP~-EPSMAX)13,3,3 

13 CONTItlUE 

WRITE(NO,101)r TER ,[PS 
101 FORMATC///,20X"ITEH ="I3,15X"EPS ="E15.7,/) 

PR HIT THE RESIIL T5 

12 CONTItlUf 
CALL OUTPUT 

C 931 FORMAT (2X' ,Co~JDITIO~ rJO=, ,[15.:;) 
932 FORMAT C2X',MflTRIX I~ SINGULAR TO WORKING PRECISION,) 

C 



246 
24"7 
248 
24CJ 

~g~ 
252 

·~~a 
25~ 
25(, 

~~~ 
2!:i9 
2uO 
~g~ 
263 
264 

~Z~ 
267 
~g8 
270 
271 
272 
273 
271~ 
275 
276 
277 
278 
279 
2dO 
281 
~g~ 
264 
285 

~~~ 
280 
290 

~2~ 
293 
294 
~~g 
297 
298 
29<) 
38 0 
3 1 
302 38 3 
3 4 
305 
306 
307 
30B 
309 

~l~ 
31~ 
313 
314 
315 
316 
317 
318 
31<) 
321') 
32! 

~2~ 
324 
325 
326 
327 

e 
STOP 
Efln 
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e . 
e*****~*************.********.********.*************************** 
C 

e 
C 
C 
e 
C 
e 
e 
C 
e 
e 
C 
C 
e 

C 

C 

C 

100 

SURROUTI NE ItJpUT 

COO~MMOOrJ/£3EMl IX (f 1 ) , y (It 1) , Cx (<) , e y (g) ,SOL( g) , AB (40) ,M, NC ( 5) 
C '"I tII£3D1?/.Gc; qO,(~O) ""-1(1~0,40) KO[')[(40) Fy{411 ,DF! (411 
c OMMOtJInD-13'1tln t-ll. N1.L1 tIT (NI , 1'10, K60ET , KODEP, tJPOHI, tJELftv1 
CO~H-10rJ/BElv14/F.XISI' ( t> '[TJ\SP (7) ,WEIGP (7) , XM (40) , YM (40 1 
CO~'H.l01-I/[lErv15/PTERM (40) ,LNO[,)S (3,58) , COORD (2,40) 
COo~MI.oOnllnErv16/.'I~IORrK/( 40 )0' IPVT {ttR),C I'JO, NONL tLMoICMIT ("0 
C 'VI'I tl OEM7 Gc;< ~0,4 , ,HHP ~O,qO, 'ALPHA If ) 'BE A ~ ) 

HEI\D nASIC PM~l\f..1ETEHS 
M=N MAtR OF 8IFF[RENT SURFACES 
NC (K) = AST I-J oES rn THESE SlJRFACES 

LMICMI=J,. ,COtlsTAtIT BOUr-JDARY ELEMENTS 
LMICMr=.:; ,LIIIEAR BOliNnAHY ELEMENTS 

I~ONL=l ,NOtILInEAR UOlitlDARY COtlDITIONS 
. NONL=O 'LItIEAn BOUtJDARY COIIDITIONS 

HEI\D(tU,200)M,LMICMI,NONL 

WRITE (NO,100) 
FORMAT (, "120(,*,» 

HEJ\D(tII,200) (NC(K),K=1,M) 
WRITE(NO'201)~'LMICMI'NONL ,(NC(K)'K=l,M) 

201 FORMAT (I 15X, '11=' , 11' 5X, , LMI eMI =, , I 1 , 5X, , NONL=, , 11' I 15X, 
.,NC(K):,'5(I5» 

HEJ\D(Nl,200)NKOOEI,K
1
'ODEP . 

",mITE tIO,~oo~n'KODE ,.KOR!='[? _ 
300 FORMAT /'5X"(I="I3'2 h " OOEI="Il'2X"KOOEP-,'I1) 
200 FORMAT(5IS) 

~ CHFeK IF INTERtlJ\L POTEIHIJ\LS tlEEDEn 
C 

C 
C 
C 

C 
C 
C 
C 

8 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

115 

1 
400 

IF (KoDEI.EO.o) GO TO 777 

HEI\D nO. OF ItlTERNAL POINTS ArID COORDINATES 

REJ\D (NI, 115) LnlT 
FORMAT (151) 

~~An !~}:~o~T J,CX(I',CY(I) 
FORMAT tI5,2F10.O) 

HEAD cOORDINATES OF EXTHEMC POINTS OF THE F30UtlDARy 
ELEMENTS IN ARRAY X ANO Y . 

~66 ~§~A~ (tl9i~~~'COORDIi~J\TES OF TilE EXTREME POINTS OF THE" 
. / , [16LJNDARY rLDIEtHS"114X"POIl-JI"10X,,X,,10X,,Y, 

DO 10 I=l,N 
HE 1\ D (lH, 400) J, X ( Il ' Y ( I ) 

10 vlRITE (NO,700) I,X(I
1
)'Y(1l 

700 FORMAT (5X,I3,2(5X,E 4.7» 

REAO nOLJNDARY COtJDITHllIS 

IF KOnE(I)=! '3k~~~lf~~~~liE OF TEMPERATURE 
IF KOOECI) -2 ALPHA(I)=O. 

- - 'OETA(I)=VALUE OF FLux 
I F KOnE(I,=3 ALPHA(ll=VALlJE OF HEI\T TRANSFER COEFFICIENT 

I' 'nETA(I)=VALUE OF AM[1IENT TEMPERATURE 
tWTE, Q=ALPHA* ([1ETA-U) 

800 ~§~~~T(t(19i~~?~[10LJNDAHY COtlOITIONS,I/5X, ,NOOE(!>' ,3X, 
K ODE ( I ) , , 5X , , ALPHA ( I ) , , 13X, , OET A ( I ) , , 

'00 20-I=1,tl . 3 
READ (I II, 900) J, KOOE ( T ) , ALPHA ( I ) , E ETA ( I) 

900 FriRMAT (215,2F10.0) 



328 

~~~ 
332 
333 
334 
335 
336 
337 
338 
33') 
340 
341 
342 
343 
344 
345 
346 
347 
348 
34') 
350 

3~~ 
353 
35t~ 

355 
~g9 

~g~ 
igl, 
:3o~ 
304 

~g~ 
367 
368 yC) 

~~~ 
372. 
373 
37L~ 
375 
376 
377 
378 
37C) 
380 
3tH 
382 
383 
384 
385 

~~9 
388 

~~£ 
392 
393 
394 
395 
396 
397 
398 
39') 
48' 0 4 1 
402 
403 
401~ 

48 5 
4 (I 
L~07 
40[\ 
40 C) 

C 

E 

C 
C 
C 
C 
C 

C 
C 
C 
C 
C 
C 

C 
C 

E 

C 
C 
C 
C 

~ 
C 
C 
C 

C 
C 
C 
C 
C 

C 

E 
C 

C 
C 

'"',20 "750 WRIT~ (NO,950) r,KODE(I),ALPHA(!),RETAC!) 
FORM"T (5X,!3,BX,Il,8X,El4.7,6X,El4.7) 

CHECK KODEP, 
, KOOEP=o ' NO SOURCE TEHM 

KnDEP=l ,SOURCE TeRM 

IF (KnDEr.EO.o) GO TO 999 

READ' 
, ~IPOHJ=Nn. OF POInTS Fon INTER~IAL ELEMENTS 

NELEM=NO. OF INTERNAL ELEMENTS 

97 

5
'10 READ (lU'510) tJPOH~,N[LEM 

FORMAT (415) 

511 

515 

560 

565 
570 

520 

525 

530 

535 
540 

545 

550 
555 

WRITE I'JPOltl AtlD tlELEl>l 

~iRITE (tIO, 511) 
FORMAT ( (lHO, 5x, , I NTCRtlAL SOURCE TERM DATA,) 
WRITE NO,515) NPOIN'NELEM 
FORMAT (11~0'6X',~IPO!N ="I3,5X"NELEM =,,13) 

READ AND WRITE NUMEIHCAL !IJTEGRATION POINTS 
MID WEI GilTS FOR I NTER~IAL ELEMENTS 
WRITE (NO,560) . 
FgRMl\r ClHO,7X, ,EXISP, ,lOX, ,ETASP' ,lOX, ,WEIGp,) 

~~f~~~~~ge~~~}t~k~~~I~eW§~'~ft~~~IP6W~~'W~~PG~IP6W§~) 
FORMAT (3F15.f\) 

READ AtlD WRITE TIlE THIAI"JGlJLAH INTERNAL ELEMENT 
NOOAL COt'l/JECTIONS 

WR ITE (NO, 520 ) 
FORMAT (UID,2x, ,EL, ,3X, ,~IODES,) 

~~Ab2{1 tY7sr~f 1f ~Ek~~M( U~ODS ( INODE, JCLEM) , HJODE=1 ,3) 
wR ITE (tlO, 510) JELE, (LNODS CINooE, JELEM) , INODE=1, 3) 

KEAD AtlD WRITE TIlE NOnAL COORDINATES 
FOR THE II'JTER~IAL Tn IA~IGULAR ELEMENTS 

WR ITE (NO, 530 ) 
FORMAT (lHO,C)X, ,NODE, ,6X, ,X-COORD" lOX, ,Y-COORD,) 
00 53, JPOIl1=1' NPOIN 
READ ~NI,540) IPOIN,(COORDCIOIME,JPOIN),IDIME=1,2) 
WRITE CNO,540) JPOIN' (COORDCIDIME,JPOIN),IDIME=1,2) 
FORMAT 1II0,2F15.5) 

READ AI'lD WRITe TilE INTERNAL NODAL SOURCE VALU[s,PTERM(I) 

wRITE (NO,545) , 
FORMAT<!IIO,6X, ,NODE' 'ox' ,PTERM,) 
DO 55n JPOIN=I,NPOIN 
REAn ctJI,555) IPOIN,PTERM(JPOIN) 
w~ITE (NO,555) JPOIN'~TERM(JPnIN) 
FORMAT (I10,F15 • 5 ) 

999 RETURI'I 
DID 

E***********~*******;******************************~****************: 
~URROIJT HIE GHCAL 

C 
COMMOtl/flE~H/X(tl1) ,y(41l ,CX(9) ,CyCg) ,SOU9) ,88(40) ,r~,NC(5) 
C()"'1t-l()tl/nr:M? IGr, (40,40) ,HI I( 40,40) ,KOnE (40) J.FI (41) ,OF! (41) 
CO~Ir-l0f II fl[r-13 !r'1 " I I>ttlhU flTAI'II (110, KOOF:I (KO) DEI-' f NPO! Ny' "(IELEI>I 
COMMO~l/nEM4/ExISt'( ,T'ET SP 7) '\~EIGr 7 ,Xt~ 40), M 40T 
COMMO~I/AEI>15/rTFHMC 40) , UJOOS (3,50) , COORD (2,40) 
COMr..,Ot,I/OEM6/\·IORK C4 0) , I PVT (40) , COND, NONL, Lt-1r CMI 



410 

~l~ 
ttin 
415 
416 
417 
418 
419 
420 

ft~~ 
U~~ 
tt~~ 
4~7 
428 
~~6 
431 
432 
433 
434 

tt~~ 
437 
438 
439 
440 
44~ 
44 .... 
443 
4L~~ 
44::> 
446 

m 
453 
454 
455 
450 
457 

tt~~ 
4&0 
461 
462 
403 
464 
4&~ 
4&0 
467 
4b8 
469 
47 n 
471 
472 
473 
471~ 
475 
476 
477 
478 
479 
480 
4tH 
4U2 
463 
4U~ 
4(>-) 
4d6 
487 
4d8 
4Ul) 
490 
491 

C 
C 
C 
C 

§ 
C 

C 

C 

.C 
C 

C 
C 

C 

98 
COMMON/BEM7/GGP(40,40),HHP(40,40)'ALPHA(40),BETAC40) 
DIMENSION GELEM(2),HELEM(2) 

CLEAR GG AND HH MATRICES 

DO 10 J=l,N 
DO 10' I=l,N 
GG C I , .J) =0 • 

10 HHCI'J)=O. 

9l~tH~9Hl 
COMPUTE GG Atlo Hlf ~1A Tn ICES 

DO 110 I=1,N 
NF=I+l 
t~s=r+~J-2 
00 50 JJ::NF, ~fS 
IF (JJ-N) 30,~O,20 

20 J=JJ-N - . 
GO TO 40 

30 J::JJ 

40 CALL rNTE (X(r),Y(I),X(J),Y(J),xeJ+l),Y(J+1),GELEM,HELEM) 

IF ( J- f'1 ) 42,43 , I~ 3 
42 HH CI, J+ 1l =HH (r ' J+ 1) +IIELEM e 2) 

43 

44 

50 

60 

70 

80 

82 

~~ 
90 
95 

110 

GG(I,J+l)=GG(I,J+l)+GELEM(2) 
GO TO 44 . 
HH ( r , 1) =1 II j( I , 1) +IIELEt>1 (2 ) 
GGeI'1)=GGel'1)+GELEM(2) 
HH ( I, .j ) =HIf ( I , J) +IfELEM e 1 ) 
GG ( I , J) =GG ( I, J) +GELEM ( 1 ) 
ijH e I ' 1 ) =1 II I e I , '1 ) -IIELElvI ( ) -HELD1 (2) 
5=~:l:tr1 
V (j,J~rlTN~ot,f10'60 

J=JJ-rl 
GO TO BO 
J=JJ 
CALL I MLO (X(J),Y(J),XeJ+l)'Y(J+1),GELEM) 

IF (J,j-NF) 82, B2, B3 
CH=GELEM(I) 
GELEM ( 1 ) =GELEr\ (2) 
GELEM(2)=CH . 
IF (J-N) B5tQn,90 
GG(I'J+l)=G~(I'J+l)+G[LEM(2) 
GO TO 95 
GG(I'1)=GG(I'1)+GELEM\(2) 
GG(ItJ)=GG(I'J)+GELE~ (1) 
CONTI~IUE ' 

KETLJl1n 
ENO 

C 
C****************************************************************** 

SlJAROuTI NE GHpCAL 
C 
C 
C 
C 
C 
C 

C 
C 

EVI\LlJflTES GGP AND IfHP IvlATI1ICES BY 
REORDER HfG GG fiND HIIT~"A TH ICES 
Ace. TO TilE TyPE OF HE Ii. C. "T I,IODE J 

COMt--\OtI/BEMI/X(LH) ,y(41l ,CX(9) ,Cn9) ,SOU9) ,(3(3(40) ,M,NC(5) 
COMr-l0tJ/BEM2/GG(40,40) ,1111(40,40) ,KOnE(40) .FI (41) ,DFI (41) 
C0"'1MOWf3F.M3/~lnI M, N, UtIT, NI , no, KODEr , KODEP, NPOI N, NELEM 
cm4~10tI/AF.M4/F.x I SP (7 ).)' F.TASP (7) d'/EI Gp (7) , XM (40) , YM (40) . 
COr.1MOH/AF.M5/PTFRr'~ (40 , UJOoS (3,50) , COORD (2,40) 
COM~10~l/nEM6/\,/ORK (40) , IPVT (40) , cOtlO, NONL, LMl CM I 
CQt.1MOrJ/nE:r,,7/GGP (40,40) ,HHP (40' 'lO) , ALPIIA (40) , BfTA f 40) 

DO 250 J=l,N 
GO TO (10,20'30 ),KOD[fJ) 



492 
493 
494 
495 
496 
497 
498 
49') 
500 
501 
502 
503 
SOL! 
505 
506 
507 
508 

~23 
511 
21~ 
~14 

~t6 
517 
51n 

528 
~~~ 
523 
524 
525 

~~9 
528 

~~8 
531 
532 

Bil 
535 
536 
537 

~~a 
54 ° 541 
542 
5en 
~4~ 
546 
547 
548 

~~6 

!Ii 
i~6 

l~~ 
i59 
ifJO 
;61 

t~3 
io4 
!u5 
100 
,67 
108 
,09 

:~Q 
,7~ 
73 

C 
C 

10 DO tOo f=l,N 
GGP I,J =GG(I,J) 

100 HflPCI,J)=IIHCI,J) 
GO TO 250· . 

20 00 200 1=1,N 
GGP(I,J)=-HH(I,J) 

200 HHP(I,JI=-GG(l'J) 
GO TO 250 

30 DO 300 1=1' ~l 
GGP(I,JI=-HH(r,J)-GG(Y,JI*ALPHA(JI 

300 HIIP(I,J)=-GG(I,J)*ALPHA(J)' 
250 CO~ITlnUE 

RETUR~I 
UH") 

99 

C 
C***********~*****************y**i*******************************.** SURROtllItJE ileAL (XSRCF., SRCE,IlSHCE) 
C 
C 

E 
E 
C 
C 
C 
C 

C 
C 

E 
C 
C 

E 
C 
C 
C 

C 

E 

C 
C 
C 

C 
C 
C 

C 
C 
C 

530 

LOOP OVER INTERNAL TRIANGULAR ELEMENTS 

B~R~~~OlELEM=l'NELEM 

DJACB= (XI'IODE (2) -XNOD[ (1) ) * (YNODE (3) -YNODE (1) ) - (YNODE (2)-
• nlODE ( 1) ) * ( Xt loDE (3 I -X~IODE ( 1> ) 

LOOP oVER GAUSS INTEGRATION POINTS 
QUINTIC ItJTEGRATION' I'IGAUS=7 

00 525 I GAUS=1'7 

CALCULATE SHAPE FUNCTTONS AT ItHEGRATION POINT 

St-I~Ptf2l~tXT~~~1~!SAyS)-ETASP(IGAUS) 
~HA~E(3)=ETA~~(IGAU~) 
CALCULATIO~I AT HJTEGRATION POrtH 

PGAlJS=O. 
XGI\US=O. 
YGAlJS=O. 
DO 530 INODE=1,3 
PGl\lJS=PGAUS+SHAPE ( I NOnEl *PNOoF. ( mOnE I 
XGAllS=XGAUS+SIIAPF. (I NODE I *XfJODF. (HIOOE) 
YGAlJS=YGAUS+SIIAPE (HIODE I *yr~OLJr. ( HIOOE I 

CALClJLATE OISTANCE B[T\~EEtJ I AND HJTEGRATION POItJT 

RA=SQRT«XGAlJS-XSHCE)**2+(YGAtJS-ySRCEI**2) 

CALCULATE RSRCE=IlB(II 



571~ 
575 
576 
577 
578 
579 
580 
5t31 

~S3 
5g~ 
586 

5gB 
509 
590 
591 
592 
593 
59L~ 
595 
596 
597 
598 
599 
600 
601 
602 
603 
604 
60.5 
606 
607 

g88 
610 

In 
gi9 
b1ll 
619 
620 
62~ 
62.:.. 
g~n 
&25 
(>26 
&27 
&211 
&29 
&30 
&"~ &~ ... 
g~~ 
&35 
636 

g~6 
639 
&40 
641 
&'+2 
643 
&44 
:>45 
S4f> 
f14 "? 
:;48 
:149 

~~~ 
:>52 
S53 
:.54 
:>55 

C 
C 

C 
C 

C 

C 
C 

525 CONTI /"UE 
515 CONTInUE 
999 HF.TlJRr J 

ENO 

RETURf' 
END 

100 

C 
C************************************~*****************************~ 

SUnROUTIt.JE IrlLO (Xl,Yl,X2,Y2,GELEM) 
C 
C TilTS sUnROUTItlE COMPUTES THE INTEGRALS ALONG A LINEAR ELEMENT 
C INCLUnING THE NODE UNOER CONSIDERATION 
C 

01 MENSI Otl GELEM (2) 
SEP= 'SQRT «x2 -Xl)**2+(Y2-Yl)**2) 
G~L~M(1)=SEP*(1.5-ALOC;(SEP»/2 
GcLcM(2)=SEP*(0.5-ALOB(SEP»/2 
RETURN . 
END 

C 
C***********************************J******************************~ 
C 
C 
C 
C 
C 

SURROllTINE INTEF 

FOR II',TERNAL pO HITS, 
WR I TES GCLEM MJD HELEM ONTO 0 I SC FILE (10) 

COMMO/,.J/[3EMI/X(41) ,y(L~1) ,CX(9) ,Cn 9 ) ,SOU9) ,88(40) ,'-'l,NC(5) 
cm~MON/AEM2/GG(40'40) ,HH(40,40) ,K OnE(40) ,FI (41) ,DFI (41) 
COMMON/AEM3/t'o 1M, N, LIt-In tl I, tlO, KODEr , KOnEP, NPO I N ,NELEM 
COMMO/"/BEM4/£:x I SP (7)' F.TASP (7) , WEIGp (7) , XM (LlO) , YM (40) 
COMMON/llEM5/PTEHt-l (40) , LNODS (3,50)' COORD (2,40) 



gg9 
65A 
65<) 
6&0 
661 
602 
663 
6&4 
605 
gg9 
66A 
66<) 
670 
gt~ 
673 
674 
675 
g19 
67A 
67<) 
680 
gg2 
61J3 

~~g 
687 
gSe 
g§~ 
692 
693 
694 
6')5 
696 
697 
(J9B 
69<) 
700 
701 
702 
703 
704 
705 
706 
707 
70B 
709 
710 
711 
71, 
71.:> 

m 
720 
721 
722 
723 
724 
725 
726 
727 
728 
72<) 
730 
731 
732 
733 
734 
7~6 
737 

c c 
c 
c c c 
C 
C 
C 
C 
C 
C 
C 
C 

C 
c 
E 

30 
20 

C 

101 

E8~~8N~Rf~9~~8~~43?a6f~K~~?Rb:G8~~A~aNkf4~f~~lTA(40) 
DIMENSION GELeM(2),HELEM(2) 

PREPARE DISC FOR WRITING 

HEWHlp 10 
LOOP OVER THE INTERNAL POINTS 

DO 20 K=l, LUIT 

LOOP OVER THE AOUNDARY ELEMENTS 

DO 30 J=l,N 
CALL ~ ~ITE (CX (K) , Cy (K) , X (J) , Y (J) , X (J+ 1 ) , Y (J+1 ) , GELEM, HELEM) 

WRITE ONTO DISC FILE(10) 
WRITE CI0) GELEM,HELEM 
CONTI~ILJE . 
CONT tJUE 

~N?iURtJ 
C 
C**.********~******************************************************. SUAROUTIt1E ItJTER 
E THI S SLJ£3ROlJTI t IE COMPUTeS THE POTENTI AL VALUE AT I NTERNAL PO It,n 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

C 

E 
C 
C 

C0"-1 MO rI/BEMI/X(4l> ,y(41) ,CX(<) ,CY(9) ,SOL(9) ,88(40) ,M,NC(S) 
CO"-1 M 0 fl In r-: M 2 I G G ( 40 , 4 0 ) n UH I~ 0 , 4 0 ) , K 0 n E ( 4 ° ) , F I (4 1 ) , n FI (41 ) 
COMMON/AEM3/tJbHl, N, LI NT' N I, NO, KODE I, KODEP, ~IPO IN, NELEM 

Ecg~~gn~H~~~~~~k~~ ~ 46 i~l~8b~ 11: ~E8J ~~66~6~~ ~ tt8 ~ , YM (40) 
0~1t-l0~I/OEMn/~"oRK(40)' tPVTC4o),C NO,NmJL,LMICMJ -
OMMOt.J/AH17 IGGP (ItO, 40) , III-jp (LtO, 40) , ALPIIA (110) , BETA (40) 

DIMENsION GELFM(2),HELEM(2) 

PREPARE OISC(10) FOR READING 

REWIND 10 

LOOP OVER THE .r NTEf~NAL POINTS 

DO 40 K=1,LHJT 
SOLCK)=O. 

CHFCK KODEP 

IF (KODEP.EQ.O) GO TO 998 
~8~~KY~A~R~EX(K),Cy(K)'BSRCE) 

LOOP OVER THE BOUNDARY ELEMENTS 

99A DO 30 J=l,N 
C 
C READ DISC FILE(lO) 
C 

C 
C 

C 

READ (10) GELr-:M,HELEM 



738 
739 
740 
74~ 74,_ 
743 
741~ 

745 
74E> 

t~A 
~~2 

~~~ 
751~ 
755 

~59 
750 
759 
7bO 

~g~ 
7u~ 
704 
765 
766 
767 
7bB 
769 
770 
771 
772 

rf~ 

~i& 
7~~ 
7Ul 

tH~ 
784 
785 
7136 
7137 
70B 
789 
790 
791 
792 
793 
794 
795 
796 
797 
798 
799 
ADO 
801 

~8~ 
804 
ADS 
806 
807 
80B 
809 

al£ 
812 
813 
BIL~ 
815 
816 
617 
818 
B19 

RETUR~J 
Et-Jn 

102 

C 
C****************************************************************** SURROuTItlE DECOMP (tJDIM,N,A,COND,IPVT,I'IOHK) C - . 

DrMEW;IO~/ ACNOIM,N) ,WORKCtl) 

C 
C 
C 
C 

.~ 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

~ 
C 

C 
C 
C 
C 

C 
C 
C 
C 

C 
C 
C 
C 

C 
C 
C 

1 t.JTEGFR I PVT ( r I) 
DECOMPOSES A REAL MATRIX 8Y GAUSSIAN ELIMINATION 
AND ESTIMATES THE cONOIT! tl OF TilE MATR X 

USE SOLVE TO C0f-IPUTE SOLUTI 01'15 TO Ll NEAR SYSTEMS 
·1 NPUT· 

~/DIM=DECl ARED ROI" OIMEtISION. OF THE ARRAY CONTAINING A 
t-/=OHDfR OF THE MA TR 1 X 
A=MATRIX TO BE TRIANGlJLARIZED 

OUTPUT: 
A COIJTAUJS AN UPPER THIMIGULAR MATHIX U AND A PERMUTED 

VERSION OF A LOWER THIANGULAH MATHIX I-L SO THAT 
CPERt-1UT AT! ON /1ATRI X) *A=L*U 

COND=I\N fSTIMATE OF THE CONDITION OF A 
FOR THE LItlEAR SYSTQ1

1 
A*X=H , CIfANGfS IN A AND n 

MI\Y CAUSE CHArlGES cOd) TIMES AS LARGE IN X, 
IF CONO+l,O.EQ.CONO' 1\ IS SIIIGULAH TO vlORKING PRECISION 
COND IS SET TO 1.0E+32 IF EXACT SINGULARITY IS DETECTED 

IPVT=THE pIVOT VECTOR 
IpVTCK)=THE INDEX OF THE K-TH PIVOT ROvl 
IPVT<tJ>=<_l>**CNO. OF INTERCIlAtIGES) 

WORK SPACE , . 
TifF: VECTOR WORK MUST BE OECLARED M/D H/CLUDED IN THE CALL. 
ITs INPUT CONTENTS ARE IGI-IORED, ITS OlJTPUT CONTENTS ARE 
US\JALLY UtJff'.IPORTANT 

THF R~f~~¥!Y~ijfcR~*AC~O~)ij~c2Q~.1~~9.9~,9WT~Y~)8Y 

IPVT(N):::l 
IF CN,EG.l) GO TO 130 
NM1=N-l 

COMPUTE I-NORM OF A. 

ANORM=O.O 
00 10 J=l ,~I 
T=O.O 
DO 5 r=l,N 
T=T+ I\OSCACI'J» 

5 CONTInUE 
IF (T.GT.ANORM) ANORM=T 

10 CONTINUE . 

GAlJSSIM/ ELIMINATION WITH PAHTIAL PIVOTING 

DO 35 K=l, Nt-11 
KP1=K+l 

FHID pIVOT 

M=K 
DO 15 I=KP1 ttl 
IF ( I\nS(ACI'K».GT. ABSCACM,K») M=1 

15 CONTINUE 
IPVT(K)=M 
IF (M.NE.K) IpVTCN)=-IPVTCN) 
T=ACM,K) -
A(~,K)=A(K,K) 
A(K,K)=T 

SKIP sTEP IF PIVOT IS ZERO 



820 
R~~ 
023 
824 
825 
026 
027 
820 
&36 
831 

~~3 
834 
835 
836 
837 
830 
83CJ 
040 
841 
842 
R~~ 
~~(, 
847 
048 
R~6 
851 
1352 
853 
~g~ 
~59 
858 
85CJ 
~g~ 
~62 

~~~ 
365 
1&6 
367 
368 
)u9 
170 
171 
372 
373 
374 
375 

~~9 
~78 

!I~ 
\84 
105 
106 
187 
IU8 
lUg 
~90 
~91 
',92 
i93 
i9~ 
,9:> 
96 
97 
98 
99 
00 
01 

C 

C 
C 
C 
C 

C 
C 
C 

C 

E 
E 
E 
C 
C 
C 
C 

E 

C 
C 
C 
C 

C 
C 

C 
C 

C 

IF (T.EO.O.O) GO TO 3~ 

COMPUTE MUl. TI flLI ERS 

DO 20 I=KP1,tl 
A(I,K)=-A(I,K)/T 

20 CONTI~llJE 

I NTERCHMJGE MID [L I ~1I NA TE n y COLUM~IS 

DO 30 .J=KP1,tJ 
T=A(M,.J) 
A ( /'>1 , .J ) = A ( K , .J ) 
ACK,.J)=r 
IF (T.EO.O.O) GO TO 30 
DO 25 I=KP1,N 
ACI,.J)=A(I,.J)+A(I,K)*T 

25 CONTI rIllE _ 
30 CONTItJUE 
35 CONTINUE 
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~~X~~~~&t· 1~9Htll~~XtJ~~c~!:J15~I ~f~~'~~[~f~~~3~~~~~E~~6tg~~~~~~~~fE of? EOlIA 185, (A-THAN_)~OSE)*Y-EM~I) A*Z=T WHfPE t. I~ 
A VECTOH OF +1 OR -1 CHOSE!! To CAUSE GROWTH Itl Y. 
ESTIMATE=(1-tloRM OF Z)/(1-fWH~~ OF y) 

SOL VE (A-TRMJSPOSE) * Y =E 

DO 50 K=1,N 
I~OrR.Eo.1) Go TO 45 
KM1=K-l 
DO 40 I=l,KMI 
T=T+ACI,K)*WORK(I) 

40 CONTI tJUE 
45 ~~=lt?LT.O.O) EK=-1. 0 

IF(A(K,K).EO.O.O) GO TO 90 
WORK(K):-CEK+T)/A(K,K) 

50 CONTINUE 
DO 60 KO=1'NMl 
K=N-Kn 
T=O.O 
KPl=K+l 
DO 55 I=KP1,tl 
T=T+A(I,K)*WORK(K) 

55 CONTItllJE ' 
WORK(K)=T 
M=IPVT(K) 
IF (M.[Q.K) Go TO 60 
T=WORK (ton 
wgRK (~n =WORK (K) 
W RK(K)=T 

60 CONTI tJUE 

YNORM=O.O 
DO 65 I=l,N -. 

65 ~~2~~~~~ORM+ ABS~WORK(I» 

SOLVE A*7.=Y 

CALL SOLVE (NDIM,N,A,WOHK,IPVT)I 

lNORM=O.O 
Do 70 I=1,N 
ZNORM=ZNORM+ AOS(WORK(I» 

70 CONTHIOE 

ESTIMATE CONDITION 

C 0'-10= ,\tIORM* Zt lOR M/ Y!JOH~ 
IF (CoND.LT.l.0) COND=1.0 



~8~ 
904 
905 
906 
907 

~8~ 
910 
~t~ 
913 

~i~ 
9i7 
918 
91<) 
920 
921 

~~~ 
924 
925 
926 
<)27 
928 
92<) 
930 
931 
<)32 
933 
934 
935 
<)36 
937 
938 
939 

~i~ 
'94h 
'<)45 
946 
947 
948 
949 
950 
9~1 
952 
~g~ 
955 
956 
957 
958 
g5<) 
960 
961 
962 
963 
964 
965 
966 
967 
968 
909 
970 
971 
972 
973 
9"(4 
97;> 
97h 
':)77 
H8 
H9 
~80 
JUl 
~B2 
Hn 

C 
C 
C 
C 

RETURtJ 

l-AY-l 
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80 COND=1.0 . 
C IF CA(l'l).NE.O.O) RETURN 

C 
C 

EXACT SItIGULARI TY 

90 ~OND=1.0E+32 
~~6URN 

E.******~***~************~*******~**s.!*.***** •• ******************* SUHROlJlIl'IE SOLVE (NDH1,N,Arli, I1Jvr> c . 

C 
C 
C 
C 

E 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

DIMENsION ACNDIM,N),O(N) 
INTEGr:R IpVTCrJ) 

SOLUTION OF LINEAR SySTEM, A*X=B 
nO nOT USE IF DECOt'1P HAS DETEcTEn SINGULARITY 

InPUT, 
~Q~~~~~Cb~R~RT"?~ DIMENSION OF ARRAY CONTAINING A 
A=TrHANGLJLARIZED MA\TRIX OBTAINED FROM DECOf'.1P 
I1=RIGHT HANn SIDE 'EcTOR 
IPVT=PIVOT vECTOH OI1TAINED FROM DECOMP 

OUTPUT' 
I1=SoLUTION vECTOR' X 

FORWARD ELIMINATION 

C 
c******************************************************************~ 

SUf3ROuT WE OUTPUT. I 
C0Iv1MOtI/I1ErU/X(41 ,yC41> ,CXCg) ,Cn9) ,SOUg) ,88(40) ,M,NC(S) 
C0Iv1MOtI/I1E'-I2/Gc;C40,40) ,IHH40,40) ,KOnE(L~O) ,FI (41) ,DFI (41) 
C 01v1Jvl0r.J/I1EM3 INn I ,-I, N, LI NT, N I, NO, KonEI , KODEP, ~IPOHI, NELEM 
C0Iv1MON/f3Et-lL~/ExISP(7) '[TASP(?) ,WEIGP(7) ,XM(40) ,Yl-1CL~of 
COMMON/OCM5/PTERM(40),LNOQSC3,50),COORO(2,40) 
COf>lMOt//REM6/WORK C 40) , TPVT C 1~0) , COI~D, NONL, LMI OIT 
CO~1MOH/A[l.17/GGP(40,40) ,IlHP(Ij.O,40) ,ALPIIA(qO) ,BF.TA(40) 
COMJ.'OtI/1101lVEFI (Ill) .. 
WRITE CNO,IOO) 

100 FORI-1ArC, ,r120(,*,)111X',RESULTS,I/2X,,£30lJNDARY NODES'//2x 
• , , NODe, , lOX, , X, , 1 7X , , Y, , 12X , , APP. POT." 6 X, 
.1X, ,APP. POT. nERIV.,) 



981~ 

985 
9Uf> 
91H 
900 
9E.lt) 
9'.10 
C)'J1 
9'.12 
993 

~~tt 
C)96 
9'n 
990 
99() 

1000 
001 

1002 
1003 
1 001~ 
100~) 
1006 
1007 
1000 
1009 

f8t~ 
!8l~ 
~R~~ to ttl 
1017 

18t~ 
!8~~ 
18~~ 
1024 

~8~(, 
1027 
1020 
1029 

OJO 
iOj1 
1032 
1033 
1034 

18~~ 
1030 
1039 
1040 
1041 
1042 

!~tl~ 1047 
18~8 
1050 
1051 
10~2 
10::>3 
1054 
1055 
105() 
10~7 
l(l~O 
lOSt) 
lOGO 
1061 
10tJ2 
10u3 
1 Oul~ 
1065 

C 
C 

C 

C 

C 
C 
C 

C 

E 
C 
C 

C 
C 
C 

C 
C 

00201I=I,N 

IF C r"-l ) 31 , 3 t' 10 
31 IFCLMICMI-! 33'10'33 

10 

33 
201 
200 

WRITEctIO'200) I,XMCI),yr·1CI),FrCI),OFICI) 
GO TO 201 
WIH TE C tlO, 2 00) I, X C r> ' Y C Il , F rc Il , OF r cr ) 
~ONTI tlUE . 
~. OR ~'\A T ( 1 X, 13, I~ X, E 14 • 7, 3 C LI X, E 1'~, -, ) ) 

CHFCK KOOO 

IF CKoDEI.EQ,n) GO TO 777 

XCN+l,=X(I> 
YCN+l>=YCl) 
DO It I=I,f'l 

11 Xr~ff)§'~lflt~'ItlJI~~: 
FCM-l)15,15'1 2 

12 XMCNC(1»::.CXCnCC1»+XC1»/2. 
Y"" C NC C 1 ) ) = C Y C I,C C 1 ) ) + Y C 1 ) ) 12 • 
DO 13 K=2,M 
XMCNCCK) J=CXCtlCCK) )+XCNCCK-I)+l) )/;:>. 

13 Yl'ICNCcK) )=CYCrlCCK) )+YCNCCK-1J+ll )/2. 
15 uo 11n l=l,N 

DO 110 ...1=1,,·1 

17 
10 

19 
21 

22 
16 

105 

23 IFCI-J)?0,25'2 0 
20 CALL I'lTr.C CXr,C I) ,y'-1CI) ,XCJ) ,Y(..J) ,XCKKI<l ,YCKKK) ,HHC 1'...1) ,GGC I 

GO TO 110 / 
25 CflLL rtlLOC CXc·J),YCJ),X(KKK),yCKKI<),GGCI,J» 

Ilil C I , ,I) =3 .1'11 'i')26 
110 CONTItIU[ 



1006 
1067 
1000 
106') 

i8+£ 
107~ 

l 07~ 074 
1075 
1076 
1077 

i8~e 
188~ 
1002 
10U3 
1084 
1085 
10U6 
1087 
10u8 
~089 

t8~~ 
1092 

18~~ 
1095 
1096 
1097 
1098 
109') 

li8~ 

un 
ti~g 
iH~ 
1113 
1114 

ili~ 
1117 

IH~ 
1120 
112~ 

U~4 
ll~~ 
1127 
1120 
112') 
1130 
1131 
1132 
1133 
1134 
1135 

il~9 
1138 
11.39 
1140 
1141 

1142 
143 

114l~ 
1145 
1146 
1147 

C 
C 
C 
C 

RETURtl 
END 

C 

t***********:t:*******1:********************************************* SURROuTINE INTEFC 

E THIS SUBRoUTINE IS FOR THE COtJSTANT BOUNDARY ELEMENTS 
C FOR INTERNAL pOINTS' . 
C WRITES AH MID £lG ONTO DISC FILE(10) 
C 

C 
C 
C 
C 
C 

C 
C 
C 
C 

C 
C 
C 
C 

C 
C 

CO~1MOrI/BEM1/X(41) ,y(l~1) ,CX(9) ,CY(9) ,SOl(9)fBB(40) ,M,NC(5) 
cm1MON/n[/Vl2/Gc;( 40' 40) 'IIH(40 ,40) ,KODE (40), F -(41), DFI(41) 
COMMOtl/£lEM3/rJnI M, N, LItIT' Nr , NO, KODEr , KODEP, NPOI N, NELEM 
Cm-1MOrI/AEM4/ExI sr (7) , ET I\SP (7) , v/EIGr (7) , XM (40 l , YM (40) 
COMMON/UEM5/PTERtH40) , UIOOS (.3,50 l , COORD (2,40) 
CO~~MOtll AEM6/vloR K (40 l , I PVT (L~ 0) , COND, NONL , LM 101 I 
COMMOrl/£lEM7/GGP(40,40) ,HHP(40,40l 'ALPHA(40) ,BETA(40) 

PREPARE DISC FOR WRITING 

REWIN[) 10 

LOOP OVER TilE INTERNAL POINTS 

00 20 K=I,LINT 

LOOP OVER THE BOUNDARy ELEMENTS 

DO 30 J=l,N 



fl~~ 
H~£ 
1152 
1153 

1
15L~ 
15 1~() 

1157 
1158 
11~9 
1160 
HE~ 
1103 
116/~ 
1105 
1166 
1167 
1168 
I1b9 
1170 
1171 
1172 
1173 
117/J 

tl~~ 
1177 

un 
HH~ 
1186 
tIg~ 
t lllCJ 
1190 

li~~ 
1194 
1195 
1196 
1197 
1198 
1199 
1200 
1201 
1202 
1203 
1204 
1205 

un 
l~t~ 
1213 
1214 
1215 
1216 
1:>17 
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C 
C 

23 CALL INTEC CCXCK),CyCK),X(J),yCJ),X(KKK),y(KKK),AH,BG) 
C 
C wRITE ONTO DIsC FILE(10} 
C 

WRITE(10) AH'OG 
30 CONThJUE 
20 CONTItJUE 

C 
C 

RETURrJ 
END 

C 
~*****************.**********************************************~I 

C 

E 
C 

C 
C 
C 
C 
C 
C 

C 
C 
C 

C 
C 

C 
C 
C 

998 

~ 
C 

30 
40 

C 
C 

surmOuTItJE INTERC 

ntIs SlTJBROUTIt,JF: ~OMPUTTES THE POTENTIAL VAllIE AT INTERNAL 
ELEMEN S FOR CON~TAN BOUNOARY ELEMENTS . 

E~~~§~IJ~H~~~~@~ 1 ~~~~~ 1 ~¥~~~1 ~~ ~ ~~~g~~~~e~~~ ~~~ i ~ ~~~~~~r f 5) 
EOMMOt/AEM5/~TEhM(40)iLN6DS(~'581'C08RD(2'40) OMMOt.JI 'c.Mh/\'IO K (40)' PVT 0, c ND, J NL, [M 01 EOMMOtJ/~F.M7/GG~(40'40f 'HH~(4 '40)'A~PHA(40J ,Bt.TA(40) 

PREPARE OISC(1 0 ) FOR READING 
HEW INn 10 
LOOP OVER THE INTERNAL POINTS 
DO 40 K=1,LINT 
SOLCK)=O. . 

CHECK KOOEP 

IF (KoDEP.EO.o) GO TO 998 

CALL RCAL CCXCK),CyCK),BSRCE) 
SOLCK)=OSRCE 

LOOP OVER THE BOUNDARY ELEMENTS 

DO 30 J=1,tl 
READ oISC FILE(10) 
READ C 10) AI'J, OG 
SOLCK)=SOLCK)+DFIeJ)*RG-FICJ)*AH 
SOLCK)=SOLCK)/C2.*3. 1415926) 

RETURtl 
END 



DATA AND RESULTS FOR PROBLEM (lc) 
M=1 LMICMI=1 NONL=O 

NC(K)t 16 

N= 16 KODEI=1 KODEP=O 

COOKDINATES OF nlE EXTREME POI t"ITS OF THE BOLJN()AKY ELEMENTS 

POIIH 
1 
2 
S 
4 
5 
u 
7 
u 

16 
r~ 
13 
14 
1:" 
1b 

X 
.0000000 
.2500000+000 
.5000000+000 
.7500000+000 
'1°00000+0°1 
• 000000+00 
.1000000+001 
.100UOOO+001 
.1008000+11111 
.750 000+000 
.50000110+000 
.25 00000+000 
.0000000 
.0000000 
.0000000 
.0000000 

OOUNDARY CO~IDITIONS 

Y 
.0000000 
.0000000 
.0000000 
.0000000 

:2g888g8+000 
.5000000+000 
.7500000+000 

:1888888t881 
.1000000+001 
.1000000+001 
.1g000r)0+00t 
.7 00000+000 
.5000000+000 
.2500000+000 

j"WUE ( I ) KODE ( I ) ALPHA ( I ) 
1 2 .0000000 
2 2 .0000000 
3 2 , .0000000 
4 2 .0000nOO 
!.:l 1 .0000000 
b
7
" 1 • 0000000 

1 .0000000 
!; 1 • goooooo 
~ 3 • 000000+002 

10 3 .5000000+002 
11 3 .5000000+002 
12 3 .5000000+002 

11~ 1 .0000000 
~ 1 .0000000 

1!:> 1 .0000000 
1u 1 .0000nOO 

CONDITION NO= .30337+003 

I1ETA(I) 
.0000000 
.0000000 
.0000000 
.0000000 
.1000000+002 
.1000000+002 
.1000000+-002 
.1000000+002 
.2000000+002 
.2000000+002 
• ?0000000+002 
.2000 00+002 
.1000000+003 
.1000000+003 
.1000000+003 
.1000000+003 
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******************************************************************************1 
RESULTS 

OOUNDAHY NODES 

NODE X 
1 .1250000~000 
2 .37~0000+000 
3 .6250000+000 
~ .87S0000+000 
J .1000000+001 
o .1000000+001 
7 .1000000+00 1 

e :~9gggg8!88~ 
1t~ .625 0000+000 

.375 0000+000 

.12~0000+ooo 
13 .0000000 
14 .0000000 
15 .0000000 
10 .0000000 

INTERNAL POINTS 

NOQE • 2500800+000 
~ • 7500000+000 
3 .7500000+00U 
~. .2500000+00U 
J .5000000+000 

y 
.0000000 
.0000000 
.0000000 
.~QQOOOO 

'". c~·)O 0 00+ 000 
•. 75()000+OOO 
.625noootooO 
•B750000+000 
.1000000+00 1 
.1000000+00 1 
.1000000 t o01 
.t9P'(l00a+o0 1 
.B -)0000+000 
• 62511000+000 
• 3750000+000 
.1 25 0000+000 

Y" 
.2~OOOOO+000 
.2·)00000+000 
.7500f)OO+ooo 
.7500000+8°0 
.50001100+ 00 

APr. POT. (u) 
• f)7945L!n

3
+002 

.630747 +002 " 

.40384f) ta002 

.1 qt~~775+002 

.100UOOO+00 2 

.1000000+002 

.1000000+002 

.10~ROOO+002 

.lC) :)28 [H002 

.20 6315+002 

.2?0390 4+002 
J2f106613+002 
.1000000+003 
.100000.0+00 3 
.1000000+00 3 
.1000000+00 3 

APP. POT. DERIV.~ 
,0000000 
.0000000 
.0000000 

-:Rg~~~g9+002 
-,7182383+002 
-.598290 3 +002 
-,6924791+002 

.3735592+002 
-.3815775+002 
-.101982g+003 
-.40339f) +003 

,4340 Qo+003 
.137111 4 +003 
.1115742+003 
.108 35 07 +00 3 



DATA AND RESULTS FOR PROBLEM (3) 

NC (K) : 23 

N= 23 KODEl=1 KOOEP=1 

COOR.Dlt JATES OF THE EXTREME POHITS 0F THE nOutJr)ARY ELEMENTS 

POINT 
1 
2 
3 
4 
5 
u 
7 
U 
9 

i~ 
/"12 

13 
14 

r~ 

n 
2 ~' .c;. 

2.3 

X 
.1000000-002 
.2000000+001 
.4000000+001 
.6000000+001 
.8000000+001 
.9999000+001 
.100001)0+002 
.1000000+002 
.1000000+002 
.9999000+°81 
.8000000+0 
.6000000+001 
.4000000+001 
.4000000+001 

:~~~~888tR81 
.2000000+001 
:aR8888S-002 

:8888888 
·0000000 
·0000000 

Y 
.0000 000 
.0000000 
.OOQOOOO 
.0000000 
.0000000 
.0000000 
.1000000-002 
.2000000+001 
.3999000+001 
.llgo0088+ 081 .4 000 +0 
.llOO 00 00+001 
.4000000+001 
.6000000+001 
.7999808+8°1 .£1000 () + 01 
.AOOOOOO+001 

:988~8R8!88r 
:~888888t881 
.2000000+001 
.1000000-002 

BOUNDARY COflDlTIONS 

NOUE(l) 
1 
2 
j 
4 
5 
b 
7 
U 
9 

10 
11 

i~ 
fg 
17 
1U 
19 

~~ 
22 
2.3 

KODE(l) 
1 
1 
1 
1 
1 
1 
2 
2 
2 
3 
3 
3 
3 
3 
3 
2 
2 
2 
1 
1 
1 
1 
1 

I\LPHACl) 
.0000000 
.0000000 
.0000000 
.0000000 
.0000000 
.0000000 
.0000000 
.0000000 
.0000000 
.2000000+002 
.2000nOO+00 2 
.2000000+002 
.2000000+00 2 
• 2008000+0°22 .200 000+00 

.• 0000000 
.0000000 
.0000000 
.0000000 
.0000000 
.0000000 
.0000000 
.0000000 

INTERNAL SOURCE TERM DATA 
l~pOIN = 24 NELEM = 2£1 

EXl~P ETI\SP 
• .3333 333 .33333333 
.1012 651 .1012.8651 
.79742699 .10128651 
.10128651 .797426Q9 
.47014206 .47 014206 
.05971587 .47014206 . 
• 47014206 .05~71587 

nETA <I ) 
.3000000+003 
.3000000+003 
.3000000+003 
.3000000+003 
.3000000+003 
.3000000+003 
.0000000 
.0000000 
.0000000 
.5000000+003 
.5000000+003 
.5000000+003 
.5000000+003 
.5000000+003 
.500000Q+003 
.0000000· 
.0000000 
.0000000 
.3000000+003 
.3000000+00 3 
.3000000+00 3 
.3000000+00 3 
.3000 000+00 3 
I 
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EL NOOES 
1 1 8 7 
2 1 2 8 
3 .2 9 t3 
4 2 3 9 
5 3 10 9 
6 3 4 10 
A ~ ~~ U. 16 5 6 

i~ 7 14 fa 7 8 
13 8 15 14 

n ~ 16 p~ 
~ 

i8 l£ 19 
19 11 17 
20 11 12 18 

~~ 13 20 ~6 13 14 
23 1'+ f~ 20 
24 14 21 
~~. l~ 23 22 

20 23 
27 . 20 24 23 
28 20 21 24 

NoDE X-COORD Y-COORD 
1 .00000 .00000 
2 2.00000 .00000 
3 4.00001) .00000 
4 6.00000 .ooogo 
5 8.00000 .000 0 
6 10.00000 .00000 
7 .00000 2.00000 
8 2.00000 2.00000 
9 4.0000n 2.00000 

10 6.0000Q 2.00000 
11 8.00000 2.00000 
12 10.0000r) 2.00000 

IJ .00000 4.00000 
2.00000 (~.ooooo 

15 IL.OOOOO I~. 0000 0 
16 6.00000 4.00000 
17 8.0000r) 4.00000 
18 10.0000n 4.00000 
19 .00000 6.0000 0 
20 2.00000 6.00000 
21 4.00000 6.00000 
22 .00000 8.00000 
23 2.00000 8.00000 
24 4.00000 8.00000 

NoDE PTE'RM 
1 fOOO.ooooo 
2 000.00000 
3 1000.0000r) 
4 1000.00000 
5 1888:88888 6 
7 1000.0000n 
8 1000.00000 
9 1000.0fJOOO 

10 1000.00000 
11 1000.0000n 
12 1000.0000n 
13 1000.00000 
14 1000.00000 
15 1000.0000n 
16 1000.00000 
1? ~OOO.OOOOO 
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IB 1000.onooo 
19 1000.0000n 
20 1000.00000 
21 1000.00000 
22 1000.0000~ 
23 1000.00000 
24 1000.onooo 

CONDITION NO= .102?3+005 
****************************************************************************** 
RESULTS , -

1:30UNDARY NODES 
NODE 

~. 

~ 
9 e 

10 

t2 
13 
1 L~ 
15 

19 
18 
~9 

~~ 
23 

x 
.~000000-00? 

:ti888888!88t 
:8888888!881 

!mmmn 
:Q888888!88f 
.4000000+001 
.4000000+00l 
.4000000+001 
.3999000+001 
.2000000+001 
.1000000-002 
.oooooo~ .QOOOOO 
:tl88888 
.0000000 

HITERl~I\L POINTS 

X 
2000000+001 

~~~~§~§§!§§l 
.68000000+001 
• 000000~001 

Y 
.0000000 
:8888888 
:88gg8S8 
.0000000 

: ~ij§ft 8 ~8i8811 
.400 0808+88 

:tt~~g~~~!~gt 
.6000000+00 1 
.79<)0000+001 
• AooooOO+001 . 
.8000000+00 1 
.Ronoooo+ool 

:~66d888!881 
:~888888tB81 
.1000000-002 

Y 
.6000000+001 

:~§§§§~§t§§I 
.2000000+001 

_ .2000000+00 1 . 

APP. POT. 
.3000000+003 
:~888888t88~ 
• 3 °8888°+8 0:'\ .30 0+ 03 
'3no~09R+003 
:~~9 ~24i~~~ 
• bO~ 9t:;.(l+003 
,~q5121CH803 
'~93775q+ 83 
.6 8440~+ 3 
.5Rg3632+003 
.60 5205+003 
.6022326+003 
.2:'0761.3+004 
.3Q15403+003 

:~888888!8g~ 
:~888888t88~ 
.3000000+003 

APP. POT. OERIV. 
-.4333732+003 
::~~~~11~t88a 
-.2109500+884 
--.2013638+ 4 

Juun:::: -'129&438+0 04 
::3§6~~b~t88~ 
-,1607264+00 LJ 
-.2110411+004 

.OOODOOO 

.0000000 

::g2§fi~~~t88tt 
::~~~~gg6t88a 
-.4333830+003 



DATA AND RESULTS FOR PROBLEM (4a) 
M=l LMICMI=2 tlONL=l 

rIC (K) : 20 

N= 20 KOOEI=l KODF.P=O 

eOOHOHJATES of THE FXTREME POInTS OF TilE nOUNOARY ELEMENTS 

POINT 
1 
G 
~ 
4 

Z 
9 

i~ 
12 
13 
14 
15 
16 
17 
Itl 

~6 

X 
.1000000-002 
.2500000+000 
.5000000+000 
.7500000+000 

~m~~mm 
.7500000+000 
.5000000+000 
.2500000+000 
.1000000-002 
.0000000 
.0000000 
.0000000 
.0000000 
.0000000 

BOUlmAHY COfJDITlONS 

NOUE(I) KOOE(I) 
1 2 
2 2 
J 2 
4 2 
t.> 2 
o 3 
7 3 
u 3 
9 3 

10 3 
11 2 
12 2 
I.> 2 
14 2 
It.> 2 
lu 2 
17 2 
18 2 
19 2 
20 2 

Y 
.0000 000 
.ooooono 
.0000000 
.ooooono 

~mmlma .1000000+00~ 
.1000000+001 
.1000000+001 
.1000000+001 
.1000000+001 
.9990 000+000 
.7500000+000 
.50000no+ooo 
.2500000+000 
.1000000-002 

ALPIt!q I ) 
.onooooo 
.0000000 
.0000000 
.0000000 
.0000000 
.0000nOO 
.0000000 
.0000000 
.0000000 
.0000000 
.0000000 
.0000000 
.0000000 
.0000000 
• 0000000 
.0000000 
.0000000 
.0000000 
.0000000 
.0000000 

ErSMAX= .100 

eOIJD I TI ON tlO= 
CONBITIOt~ NO= 
CON ITION NO= 
eOllOITIOr'J NO= 

T Ar",O=350 • a 
.30235+002 

I 
NsT= 6 

• 51157+002 
."4,,(,0+002 
.Q3857+002 

RETA(I) 
.0000000 
.0000000 
.0000000 
.0000000 
.0000000 
.0000000 
.0000000 
.0000000 
.0000000 
.0000000 
.0000000 
.0000000 
.0000000 
.0000000 
• 0000000 . 
.1000000+004 
.1000000+004 
.1000000+004 
.1000000+004 
.1000000+004 

r'ILA= 10 

112 

T"IC= 1.00 

ITER = 4 EPS = .209CJ609-001 

/ 
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RESULT~ 

BOUNDARY NODES 

NODE X Y APPPOT. APP. POT • DERIV. 
1 .1000000-002 • 0000000 • 1t11l3607+004 .0000000 
2 .2500000+000 .0000000 .117409 5+0011 .0000000 
3 .5000000+000 .0000000 .9243633+003 .0000000 
4 .7580000+000 .0000000 .6746285+003 ,0000000 
~ .99 og08+00~ 

:2288R88-002 :~~g6~1~t88~ -:ij~ag~g~+003 .1000 0 +00 
7 .1000000+001 .2·>00000+ 0 00 .1~25102 +003 -.1000745+004 
8 .1000000+001 .5000000+000 .424998£3+003 -.9989309+003 
C) .1000000+001 .7500000+000 .4251029+003 -.1000745+004 

H .1080000+001 .c)CJC)boOO+Oo~ .4?'52~7~+00~ -.9995959+003 
.99 0000+000 .1000000+00

1 
.43g 5 +00, .0000000 

12 .7500000+000 .1000000+00 .67 6285+003 .0000000 
13 .5~00000+000 .10 00 000+ 00t :la~~g~~t88a ., °8°~000 19 :i' 88~B~:889. :1§~B88~t88 ~~8~0~~~!88~ It:' .0000 0 • C) . nOO +000 .1LI 3~ 11+804 
lZ .0000000 .750()OOO+OOO .1423.77+ 011 

.0000000 .5gonooo+oo o .1423027+00 11 .10 000 0 0+00tt 
~ C) .0000000 .2.00000+00~ '14235~7+004 

:1888888t884 '-a .0000000 .1000000-00 • 4236 8+004 

HJTt.:RNAL PO I NT5 

NODE X Y APP. rOT, 
1 .2500000+8 08 .2500oR8+goo • 1173CJ., 7+084 2 .~500000+ 0 .?500ri + 00 .67481 0+0 3 
3 • 500000+000 .7500000+000 .6748 7~+003 
4 .2500000+000 .7500000+000 .117391 +004 
5 .5000000+000 .5000000+000 .924366£\+003 



APPENDIX D 
FINITE DIFFERENCE METHOD 

In the finite difference approach the partial differential 

equation of the heat conduction is approximated by a set of algeb-

raic equations for temperature at a number of grid points over the 
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region. Therefore, the first in the analysis is the finite differ­

ence representation or the transformation into a set of algebraic 

equations of the differential equation of heat conduction [19, p.128]. 

The second in the analysis is the solution of a system of simulta­

neous equations with the temperatures as the unknowns. The Gauss­

Seidel iterative process is one method frequently used [17, p. 486]. 

To start, a temperature is assumed everywhere at the plate. The 

process of iteration through all grid point is repeated until 

further iterations would produce, it is hoped, very little change 

in the computed temperatures. The following programs stop if the 
I 

sum EPS, over all grid points, of the absolute values of the devia-

tions of the temperatures from their previously computed values, falls 

below a small quantity EPSMAX. Computations will also be discontinued 

if the number of complete iterations, ITER, exceeds an upper limit, 

ITMAX. 
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27. 
211. 
29. 
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31. 
32. 
33. 

~~: 
36. 
37. 
3H. 
39. 
40. 
41.· 
42. 
43. 
4L~ • 
45. 
116. 
47. 
4B. 
49. 
50. 
51. 
52. 
53. 
54. 
55. 
56. 
57. 
SA. 
59. 
60. 
61. 
63· 
64. 
65· 
bl1. 
67. 
68. 
69. 
70. 
~~: 
l~: 
7r,: 
77. 
711. 

63: 
81. 
02. 
83. 
£\4. 
85. 
86. 
U7. 
88. 
89. 
90. 
91. 
92. 
93. 
91~ • 

8 
C 
C 

C 
C 
C 
C 
C 
C 
C 

C 

E 
E 

C 
C 
C 

C 
C 
C 

c 
C 
C 

C 
C 

E c 

c 
c c 
C 

c 
r. 
C 
C 

FfNITF. 0fFFEHENCF METllOo 
g"FJ~~!5f. ;AtE y~~~ 5~tJ~gE!Jt~~tJI tJ A PLATE 

FOR PROBLEM (lb) 
OI~IEtlsIon T(30,30) 
/-It' flO. OF r,Rro POlt/TS III X- M,IO Y-OrRECTIONS 
I fvlJ\X=fI.,J\X I rAUI·1 110. OF ITEHA TI Of'IS 
Er>Sr--1A X=I'1J\ X I IvlLJrvl DEV I AT 1011 OF TilE TF.r..1PER 1\ TURES 

N-q 
I rr--1J\X=1 000 
EpSMJ\X=O.oOl 

rl'IITIAL GUESSES FOR TOIP. 

Do 1 I=l'~1 
DO 1 .J=11/1 

1 T(1,.J)=O.o 
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CJ\LCULJ\TF. SUCCESSIVELY UETTER J\PPROXIMJ\TIONS FO.R TEMP. 
/\ T fill Pol NTS rI TEH/\ 11 IJG lINTI l SATISFACTORY 
CONVERGE/ICE IS ACHIEVED 

ITER=O 
3 ITER=ITER+l 

Ep5=0. 

G=(VOl" IIfAT GEtJERATIOIJ)*tMESH SIZF**;»/THERMAL CONDo 
Jl=2.*ClJrJVrCTIV[ II.T.c.*rv1ct,1I SIZE/THERMAL COtJO. 
1If1=H*AMBlcNTTEMP. 

G=O.*(~1~5**2)/I. 
lI=g.*2 u .*.125/1. 
IIA-II*1. 

ALONG TIIC X-AXIS 

DO 5 1=2, f 1-t . 
IIOLOT=T (1,1 
T(I'1)=(T(r+l'1)+T(I-1'1)+2.0~T(I,2)+G)/4. 

<) EPS=EPS+/\nS <T II, 1 )-/tOLon 

ALONG THE Y-AXIS 

on £> .J=2'f.J-l 
HnLOT=T(I,.J) 
TCl,J)=(T(1,J+l)+T(1,J-l)+2.0*T(2,..)+G)/4. 

o EPS=F.PS+flnS(TCl,.J)-HOl.OT) , 

ALar IG TilE Y= 1 L HIE 

On 7 I = 2 , r ,-t 
HnLDT=T ( I , t I 
T C I ,r I) = (2. a *T ( I' r 1-1) + T ( 1-1' N)+T( 1+1, N) +G+HA) / 01+4. ) 

7 [PS=EPS+AnS(T(I,I-J)-HOLOT) 
FOR CoRNER PoINTS 

H7LDT=T(1,1) 
T ~, 1> = (:> *T (2,1) +2 • *T ( +' 2) +G) /4 • 
EP.:>=F.PS+,\(\S <T (1,1) -IIOLO )­
HnLOT=T(l,fl) 
T ( 1 rf J) = (~ • * T (2, N) + 2. *T { 1'11-1) +GHI/\) / (H+4. ) 
EPS=F.PS+J\nS (T(l,N)-HOLOT) 

FOR I tlTERI oR poINTS 

On 8 1=2'11-1 
On A ..)=2, t 1-1 
1I0LnT=T ( I ,..) . 
T(I~.J)=(T(I'..)+1)+T(I''')-1)+T(I+l'..)+T(I-l'J)+G)/4. 

11 [PS=EP5+AnS (T (I'.J -IIOun) 

sTOP ITF.p/\TIOnS IF CO/..1PUTEl> VALUFS SHOW UTTLE FURTHER 
CJlANGE,OR IF T/-IE IJO. OF ITEHATIOrJS IS TOO LARGE 

IF(ITER.Gr.ITMAX)<70 TO 14 
IF(EPs-EpSMAX)14'~'3 

pr~It'T NO. OF ITEHArrONS(JTER) ,TIlE LAST OEVIATION(EPS) 
MID TilE TEMPEHA TI IHES . 

14 W~ I TE (n, 20 1> I ~CR' fPS 
00 11 ..)=11,1,-1 

11 Wr.ITE(o,202) (T(I'..)'I=lrrr) -
20t FnRMAT(1111,///,30X,rITCH ="I5,///,30X,'EPS =',E14.9) 
202 FORMAT(//,2X,9E1 3 .7) 

STOP 



RESULTS: 

ITeR = 188 

ErS =.991735607-003 

.9~74618+000 .~503752+000 .9529 376 +000 .9465047+000 .9355642+000 .9162731+000 .8753595+000 .7422733+000 .0000000 

.e~22030+000 .R484Q8 0+000 .83h7870+00~ .8150270+000 .7786557+000 .7177713+000 .6098476+000 .4025513+000 .0000000 

.75437 12+000 .748 6338 +000 .7306913+000 .698 1658+000 .646 26 42+000 .566 3 114 +000 .4437095+000 .2580844+000 .0000000 

.608 U469+ 00 0 .6609Q 36 +000 .6391956+000 .6006954+000 .5419 356+000 .4575090+000 .3405995+000 .1860780+000 .0000000 

.5958773+000 .5881268+000 .5644280+000 .5235068+ 000 .4632914+000 .3812023.000 .2751092+000 .1456304+060 '0000000 

.5392708+000 .531~463~OOO .5069168+000 .4656418+000 .4065446+000 03289167 +000 02330146+000 '1213375+000 '0000000 

.4987879+ 000 .4907160+000 .46639 25 +000 .4256348+0 00 .368 3569+000 .2949261+000 .2067075+000 .1067088 +000 .0000000 

.4745323+000 .4664°25 +000 .4423495+OOQ .4021888+000 .34 635 49+000 .2757473+000 .19219 49 +000 .9879492-001 .0000000 

.46648n 9+nno .45H4?94+00n .4343763+000 .3944609+000 03391627+000 .2695397+ n OO 01875457+000 .9628 111-001 00000000 

...... ...... 
en 



1. 
2. 
3. 
4. 
5. 
n. 
7. 
B. 
9. 

fOe 
I • 

12. 
13. 
14. 
15 • 

J~~ 
~O. 
21. 
22. 
23. 
24. 
25. 
26. 
27. 
2B. 
29. 
30. 
31. 
32. 
33. 
3q. 
35. 
36. 
37. 
3A. 
39. 
40. 
41. 
42. 
43. 
44. 
45. 
46. 
47. 
4A. 
49. 
50. 
51. 
52. 
53. 
54. 
55. 
56. 
57. 
5B. 
59. 
60. 
6!. 
62. 

63. 
64. 
65. 
66. 
67. 
68. 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

FINITE DIFFERENCE METHOD FOR PROBLEM (3) 
DlrvlE~/SI0t'J T(90,9U} 
N=l1 
M=9 
1TMAX=1000 
ErS'vlAX=O.oOl 

00 1 r=I'11 
DO 1 J=I"1 

1 TC I , J) =300. 

1TER=0 
3 IT[H=ITER+l 

ErS=o. 
G~ 2000.*1.*1./2. 
11=2. *l~O. * 1. 12. 
HI\=500.*1I 

RRLRT=~n~ : ~) 
T (t / , J ) = (Y ( N , J +l ) + T ( N , J-1 ) + 2 • * T (11-1 , J) + G ) 14 • 

6 ErS=EPS+AnS (T (I J, J) -HOLDT> 
00 In 1=2,4 
HOLDT=T(r,M) 
T ( ! , ~1) = (T ( 1+1 , ",I> + T ( 1-1 , t-1) +2. * T ( I , M-l ) +G) 14. 

16 EpS=EPS+AnS CT (I' M) -1I0LlH) 

00 7I=~'IJ-t HoLOT=T I,r. 
T ( r , 5 ),= T ( r -1 , 5) + T ( 1+1 ,5) + 2. * T ( I ,4) + IIA+ G) I ( 4 • +11 ) 

7 ErS=EPS+l\nS (T ( I ,5) -HOLfJT) 

Do 17 J=6, "'1-1 
1I0LOT=T(5,J) 
T (5, J) = (T (5, J-l ) + TC 5, J+ 1 ) +2. *T ( 4, J) +IIA+G) I C 4. +H) 

17 ErS=r:rS+AnS CT (5' J )-1I0LlH) 

HoLDT=T(5,M) . 
T(5,M)=C2.*T(4,M)+2.*T(5,M-l)+G+.1A)/(4.+H) 
ErS=EPS+AnS(T(5,M)-HOLDT) 

HOLDT=T (t" 5) 
T (I J, 5) = (2 *T (t·/-l ,5) +2 • *T (1·,,4) +G+Hfll I C 4. +H) 
ErS=EPS+Ar3S (T (IJ, 5) -I fOun) 

DO B 1=2",-1 
DO f\ J=2 rl~ 
Y7~~~f!fffi~J+l)+T(I'J~1)+T(I+l'J)+T(I-1'J)+G)/4. 

p. EpS=EPS+AnS(T(!,J)-HOLOT) 

Do In 1=2,4 
Dn lA ,1=5, M-1 
IfOLDT=T(I,J) 
T(I,J)=(T(I,J+l)+T(I,J-l)+T(I+l,J)+T(I-1,J)+G)/4. 

11'\ ErS=ErS+AnS CT <I, J) -HOLDT> 

IF(ITER.GC.ITMAX)GO TO 14 
IF(Ers-ErsMAX)14'3,3 

14 WnlrE(6'201)IT[R'EPS . 
00 11 J=~1, 6 ,-1 

11 WRITE(6'?'02)(T(I'J) '1=1,5) 

201 
202 

111 

FORMAT ( 1111' I II, 20X, , I TEH=, , 15' I I I' 20X, , EPS=, , E14. 9) 
FORMAT(III,2X'IIEI0.41 
DO llt J=c:;' t'-t WRITE 6,2b2 (T I'J),I=I,N) 
STOP . 
Et./O 
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RESULTS: 

ITER= 60 

EPS=.0621215n2-003 

.3000+003 .1 8 R7+004 .~467+004 .2037+004 .5970+003 

.3000+003 .IR89+004 .2472+004 .2042+004 .5973+003 

.300U+003 .IR99+004 .2491+004 .2062+004 ~5902+003 

.3000+003 .19 15+004 .2531+004 .2116+004 .6017+003 

.3000+003 .1 931+004 •. 2600+004 .2271+004 .6457+003 .601 7 +003 .5982+003 .5971+003 .5967+00 3 .5965+003 05965+003 

.3000+003 01 9 08 +00 4 .267 0+004 .2720+004 02270+004 .2116+004 .206 0+00 4 .203Q +00 4 .20 30+00 4 .2026+004 02025+00 4 

.3000+003 01731+004 '2450+004 '2669+004 026 00+00 4 .2530+004 '2489+004 .2468+004 .2458 +00 4 ~2454+004 i2452+004 

03000+003 01265+004 .1731+004 01908+004 '1931+004 01914+004 '1897+004 '1887+004 .1 881+004 .1878+004 '1877+00 4 

.3000+003 .300n+oo~ .3000+003 .3000+003 .3000+00 3 .3000+003 .3000+00 3 .3000+00 3 ,3000+00 3 ,3000+00 3 .3000+00 3 

..... ..... 
00 
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