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ON THE CLASSICAL SOLUTIONS

OF FIELD THEORETICAL MODELS

In this thesis we study two important aspects of clas-
sical solutions of two specific field theoretical models.The
importance of classical solutions lies in the fact that, they
constitute the first step in understanding the formal aspects
of the underlying quantum theor? and sometimes lead to results
which are not obtainable by perturbation theory. Here, two
kinds of classical solutions, monopole and meron, are under
consideration. |

In the first part we quantize a purely fermionic model

with non-polynomial conformal invariant Laérangian. Then we
present a static solution to the classical field equations

when we restrict the internal symmetry group to SU(2). The
quantized version of the model contains composite vector and
axial-vector gluon fields. The classical solution for the
vector field is precisely that of the Wu—Yang moncpole.

In the second part the stability properties of merons



~classical solutions in four dimensional Euclidean space
which are singular at origin and infinity with divergent
energy- are investigated by taking the DeAFF model as a theo-
retical laboratory. We find that in gravitational models

with Yang-Mills fields, merons are unstable. Two special
cases, conformally flat and flat space are taken under con-
sideration. At the end we outline a suitable ansatz about the
fields which in Minkowski domain gives an expression that can
be interpreted as the potential of the model. Some éraphs

of the potential are added for various values of 9@/@2.
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ALAN KURAMSAL MODELLERIN

KLASIK ¢OzUMLERI UZERINE

Bu tezde, alan kuramlarinin klasik g¢gdziimlerinin iki
onemli niteligi iki ayri alan kurami modeli ele alinarak in-
celenmigtir. Klasik gozlmlerin Onemi, kuantum alan kuramlari-
nin formel yonlerinin anlagilmasinda bir ilk adim olmasinda
ve bazen tedirgeme ydntemleriyle elde edilemeyecek sonuglar
vermesindedir. Burada sotzkonusu edilen iki tir klasik ¢dzim,
monopol ve meron gézﬁmléridir.

Birinci kisimda konform invaryant ve polinom olmayan,
yalnizca fermiyonlar igeren bir Lagranée fonksiyonunun kuan-
talagtirilmasi sunulmugtur. Ardindan i¢ simetri grubu sSU(2)
ile sinirlanarak klasik hareket denklemlerinin statik ¢ozim-
leri bulunmustur. Modelin kuantalasmis bigimi bilegik vektdr
ve eksensel-vektdr gluon alanlari igermektedir. Vektdr alanin
klasik ¢ozimi bir Wu-Yang monopolid olarak §11nmlgt1r}

Ikinci kisimda ise kiitlegekimsel modellerde meronlarin

-dért boyutlu Oklitsel uzayda, erijinde ve sonsuzda singller
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olan iraksak enerjili klasik ¢ozlmler- kararlilik problemi
DeAFF modeli ele alinarak incelenmigtir. Sonugta, Yané-Mills
alanlarini igeren kiitlegekimsel modellerde meronlarin karar-
s1z olduju bulunmustur. Iki 6zel duruﬁ, konform dliz ve duz
uzay ¢Ozimleri inceleme konusu edilmiglerdir. Son bdlimde
alanlar igin uygun bir ansatz kullanilarak, Minkowski uzayin-
da modelin potansiyeli olarak yorumlanabilecek bir ifade elde
edilmigtir. Qz/ez'nin bazi1 degerlerine kargilik gelen potan-

siyellerin grafikleri bolimiun sonuna eklenmigtir.
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PART I

MONOPOLES IN PURELY FERMIONIC MODELS



I.1. INTRODUCTION

It has been over fifty; years since zhe foundations of

1)

the theory ©f magnetic monopcles were lzic down hy Dirac™'.

2
cry”’ and subse-

3)

After the discovery ¢f non-zihzlian czuge tX

i

gquently of its classical magretic monopole solutions it was

realized that the mechanism cf spontanecus zymmetry breaking

. 4
finite energy ).

3]

can be utilized to msxke these zoluticns hsz-

grest dzzl of attention con-

5)

cerning their implication for Grand Unifies Thecorizs™'. In

These solutions have received

Al

3)

this work we present the courzerpart of trs Wo-Yang monopole
in a class ¢of recently propocs=ed purely fersionic models6'7).
These theories, when quantized, have compcsite vector fields

7)

which behave more or less like the vectcr bosons of pure
non-abelian gauge theories. These composits vector fields
essentially arise from introducing auxilizrv fields that are
necessary in putting the conformally invariant non-polynomial
fermion self-interaction intc polynomizl forrm. The auxiliary
fields have to be chosen sucrh that when the functicnal integ-
ral over them is performed, the originel non-polyncmial purely
fermionic Lagrangian is obtained. If,instead of integrating
over the auxiliary fields first, one intecrates over the fermi-
on fields, one obtains an effective Lagrargian in which a

propagating vector field appears. One can devise an algorithm
in which such a model is regularizablé.

Encoﬁraged by the similarities of this model with non-
abelian gauge thecries, we searched for sclutions to the clas-

sical equations of motion such that the expression for the



composite vector field is of the Wu-Yang monopole type. We
considered a model with SU(2) internal symmetry and found that
we were not able to satisfy the equations of motion. Was it
possible, then, to modify the Lagrangian such that one can
find monopole type solutions? It turns out that such a sclution
existe provided that the model contains an axial vector inte-
raction as well as a vector on=.Before going into the details
we find it more appropriate to give some historical information
about monopoles and make clear what is meant by a Wu-Yang mo-
nopole in the next section.In this gection we also elaborate
on the importance of these "classical" monopcle solutions,the
gquantization of the electric charge, and the elimination of
the disturbing Dirac's string by the Wu-Yang ansatz.In section
I.3 presentation of the model, its quantization and regulari-
zation algorithm are given. The propagators of vector field
and of auxiliary field are calculated and some information
about them is extracted. After this preparation the monopole
solution is presented in section I.4. Since a SU(2) internal
symmetry is also required, some explanation about the notation
is given and the ansatz for 1P is written explicitly.Unknown
parameters are determined such that the equation of motion is
satisfied. For this purpose four-potential of the monopole
field is calculated. At the final stage a discussion on the
solution is given and its explicit form is written. The conc-

lusions are given in section I.5.
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I.2. A SUMMARY ON DIRAC AND WU-Y ANG MORNOPOQLES
If one permits the Presence of magretic charges in the
Maxwell's theory, one ends up with the following equations of

motion,

arﬁipvf=‘év

~
gr F}n7=__av (I.2.1)

Here j‘J and gy are electric and macnetic charge currents res-
. . ~

pectively and the field strength tensors Tpv and Fuv are

given by,

[ 3

0 -E, =F, - 4
« 0 -E3 By
, By 0 =By

Eg-By By O

FlrY -

Tt [T

-

r 1
0 B, B, By

~
FPY_Agrvebr
= 1&. “p

=By Es 0 -Eg (I.2.2)
L-E‘S "E,‘. E4 OJ

va , _ _ _
e A is the totally anti-symmetric tersor with g°‘12=+

Equations in (I.2.1) ere symmetric under the interchancs
of electric and magnetic quantities E «#Z, i;»gr . However
the usual Maxwell's equations do not have this symmetry. There-
fore, the inclusion of magnetic charges cr monopoles into the
theory seems to enjoy some aesthetic advintage (the nature
does not seem to exhibit this symmetry, since till now ncbhody
has been succeeded to detect a magnetic ~onopole experiment-
ally). The price for this advantage is & singularify line or =
string. This can be seen as follows. The defining equation for

the monopole four-vector potential,



5”.-.-3,‘&,,_.).,9/. ' (I.2.3)

when used in Eg. (I.2.1) leads to the result,

q,= gvrd#)r‘)“ﬂp (I.2.4)

If monopoles exists, then gv#O and this implies that,
. oxA 3.3 (1.2.5)
poulip + 9, /\A)g

Eqg. (I.2.5) is the mathematical statement that AP is singular
On any simply connected surface surrounding the monocpole, AP
need only be singular at one point on the surface. If one ima-
gines an outward succession of such surfaces, one is led to
visualize a continous line of points extending from the mono-
pole to infinity, along which the four-potential is singular.

A simple example of such a potential is,

A =0 E:-cj?g Ain8 (I.2.6)
v (4-010)

This expression describes a monopole at rest at the origin,

since

TV

(I.2.7)

It is singu'lar along the positive z-axis because when 9:0

-l
A blows up.

1)

It was Dirac who first treated the magnetic monopo-



les in the context of Maxwell's theory fifty three years ago,
in 1931, and since then the string is found toc be & disturbing
feature of the mconopcle theory. Eliminaticn of the Dirzc string
has been one of the main goals of the researches. It iz clear
that new potentials have to ke introduced to accompli=zh this

3)). But,the vresence of the strirg is the

(Wu~¥ang construction
source of an important result if cne tclerates its exiszzence

as a mathematical necessity and assumes trhat it is unpri sical.
It can be vigualized as an infinitely long, thin solencid.
Magnetic flux lines emanate in all directicns from the —cnopeols
and return from infinity through the strirg. Clearly tr= po-
sition of the string and any moticn it may experience Tust be
unphysical and undetectable.In other words, an electron or any
other particle should not exhibit unusuval behaviour in *he vi-
.cinity of a2 string. In particular, The phase of the particles’
wave function \P should change by at most some integral mul-
tiple of 27 vhen a small closed loop is traversed around the st-
ring.If the moncpole is assumed far away and no other forces
act on the particle, the ﬂP satisfies the wave equation for a
free particle. '\{/ can be written in the form Y = (;be.’F, Qf)
being & function with a definite phase at every point. Thengb
satisfies the wave equation for a particle in an electromagne-
tic potential e?s?ﬁ . This is entirely trivial if P iz an
integrable function, for there is no electromagnetic fi=sld.

However, ,6 will be non-integrable near a string. For a small

loop encleosing the string, the change inP isg,

§dj5-_-ejd§.%x'§=e(Flux)=lf1Teg=O:lTn (I.2.8)



The flux in this equation is the total magnatic flux within
the string, which is equal to the total magnetic flux é:‘}n’a

of the monopole. Dirac's famous quantization condition then

follows immediately,

efé:_!\i_ | (I.2.9)

The existence of monopoles explains why the electric charge
is guantized.

So, Eq.(I.2.9) is the condition to be obeyed if the
string is required to be an unobservable object. A straight-
forward way to demonstrate this is by showing that there is
a gauge transformation that moves the string from one place
to any other desired location by transforming the potential'i.
But there is an unpleasant feature to this argument: the gauge
transformation is necessarily singular at both the old and
new locations of the string.

Wu and Yang gave a refinement of this argument that

3}

avoids this difficulty. In the Wu-Yang construction one does
not have to deal with singular gauge transformations, nor with
singular potentials{except at the origin). The price paid for
this is the necessity of using different vector potentials in
different regions of space. But we will not go into the deta-
ils of this construction. We merely sketch the SU(2) monopole
solution of Wu and Yang, in order to present the form of the
vector potential which is used when we search for monopole so-
lution of the model given in the next section.

The solution that is found by Wu and Yang is a pointlike

monopole without a string. The ansatz they used as a solution



to pure SU(2) Yang-Mills equation of moticn is,

Ay =ir, ale)/e* A’ .e € ginn (A=) /0 (1.2.10)

which reduces the equation of motion to tre following coupled

eguations,

r"g" = 9.32\1

r"&”_—_&(l."-'i-r%") (1,2.11)
which has nontrivial constant solution

£'l:'—o 3=c0n5'f'an1'=C (I.2.12)

Constant g and h evidently impliy unbroken loccal SU(2) gaudge
. . a | . . .
invariance, because A/, is a pointlike long-range potential

in this case.Substituting Eq.(I.2.12) intc Eg.(1.2.10) gives

- -}
A" = Czeconstant A% = gain /vt (1.2.13)

It is this form which we used with C=0. Tc see that this can
be transformed into the vector potential of a monepole with

Dirac string, consider the gauge transformation,

cos 8/2 €I¢sin 8/2

_,f¢5;“g/2 cos@/’l {I.2.14)
L o

which rotates the f:(e ,¢) direction in group space to the



z-axis z=(0,0) and is discontinous along the negative z-axis.

This gauge transformation when applied to the ansatz (I.2.13)

gives,

. A
A'ii‘:__%_;.[.“g/z ¢. (I.2.15)

With C=0 this is same with Eq. (1.2.6) hence proving that

EqQ. (I.2.13) is the vector potential of a monopole.

I.3. THE MODEL

Our starting point is the classical Lagrangian given by

L= BV (P AT, w)

t4, [(eryst "-P)('U‘l(/‘ﬁ- .(41)] (1.3.1)

where‘cd_are the group generators in the represantation to
which the fermions belong. Note that 4P carry a spinor index
as well as a group index on which the matrices T, act. It was
shown in Ref. (6) that this model can be quantized when gz=0.
We mimick the same procedure for this model and introduce two
vector and two axial vector auxiliary fields to put the Lag-

rangian into a polynomial form. The final expression reads,

?’4’ zm§ (- 2 T'(Vz)w)}g

C(M



Ao T (TuV
v oY)

C(T){T'[f/‘(y mTf(m)Hﬁ)”

——

- T (3/A ‘ .
c,(-r) Bs"A) "

where
:J%r T- (I.
ey

Vs \g,.\/’ (1.
Pp=p T (1.
ALASTS i
R'=ALA" 5.
NN o

‘Ts "=-31{P-x,-xstﬂP (T

10

3.10)

C2(T) is the second order Casimir operator of the group. Note

that all the auxiliary fields belong to the adjoint represen-

tation of the group G.

To quantize the Lagrangian given by Eq. (I.3.2) we cal-

Culate the Fadeev—Popov'determinant of the model. The functi-

onal integral reads,



11
Z - [0 D% 04,0V, 03,.Dg, Dc? e, Del, De.
. exp LJJ"KLQ_H (1.3.11)

where

Logge P (FrglrgXeg g 0)
- A T (VY TAN-Te (&) To, Al

(CalTH)? (1.3.12)
+ iahos‘l"
Here
Jﬁ oA 2Te (XYY, » 2 .
ghost = s [T GV R GV (VT T

+2F¢NF&,N+TrH2Tr(z;e.")] (I.3.13)

C)‘= q; T® are the anticommuting fields in the adjoint rep-
resentation.

At this point we would like to note that our starting
point to the quantization procedure is the expression given
by Eg.(I.3.2). However, the classical field equations of both
of the Lagrangians, given by Eq. (I.3.1) and Eq. (I.3.2) are
eguivalent. To correctly quantize the expression given by
Eq. (I.3.2) a constrained system, one has to add the Fadeev-
Popov determinant to the Lagrangian. If one integrates over
the auxiliary and the ghost fields of the latter Lagrangian,
Eg. (I.3.13), one obtains the purely fermionic Lagrangian of

Eq. (I.3.1). Although the interpretation of the fractional po-

wers in Eq.{I.3.1) is problematic, it is in this sense that
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one can give a meaning to the purely fermionic Lagrangian.

We redefine the fields as,

\ +’r\

!
,A

z>~,<\

G/‘
H +§>}‘
H

(I.3.14)

\;33

Substitute into the Lagrangian in terms of primed fields and
drop the primes for notational convenience. After integrating

over the fermion fields we obtain the effective Lagrangian

given by,

Legg= Todn (v g g 4)

czm A [T((6) Tr(@n(v- &)

+1;-(( ))Tr( ,(Flﬂ H)‘)J'*'Zghos'f' (I.3.15)
The saddle point conditions are,

V.=0 A.=0 G.=0

1]
o

H :O C :O e}“ : (I.3.16)

The tadpole condition,

EERY

-0= 2 Trjdq Y"F( (1.3.17)
N |

vac (QJT)" Pz
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and

(I.3.18)

are satisfied trivially. This is also true for the other fj-

elds and ghosts. The propagator for the V

A field is,

Seff __§MC ) A Tf[ 3 F o (+A)
a\J oV, (am* p*(p+q)2

- c,m-&—(ﬁ,-% -3 1)
. (RV\/\-thn'l'h’. P“T\

Here/\ is the cut-off,

(I.3.19)

We see that if we take

._§£..ﬂn/\=—.4 (I.3.20)
6T

we obtain the propagator of a massless vector field. Here
since we get the tadpole condition free, we could fix our cou-
pling constant at this stage. This is in contrast to the situ-

89) , where the tadpole condition alre-

ation in other models
ady fixes the coupling constant. Fixing 9, as in BEq. (I.3.20)
makes this model regularizable. Since the bare coupling goes
to zero as the cut-off /\ goes to infinity, the interaction

is asymptotically free as in the cp” ! mode1®!

and as in QCD.
Note that the regular algorithm for_renormalization,
i.e. of introducing wave function renormalization instead of

fixing the coupling constant at this stage, does not work for
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this model. Introducing such a term wbuld mean, via Egn's.
(I.3.14) a quadratic term in our original ?ﬁ and ﬁr_ fields.

However, such a counterterm would destroy our constraints,
Yy Y -\, =0
/ ’

E&#Ysy"‘ﬂzﬂ -0 (I.3.21)

and render the model non-rencrmalizable in this scheme. To
give a meaning to the model we had to devise the new algorithm
which is applied also by other authorslg).

One calculates the propagator of the axial vector fi-

eld in the same manner. Its propagator is given by,

5t . s, AL T (o SRRl )
A% A, @m* p*(pra)*

:.-_s“"cz(ﬂ.g;-{, CR M M
. (.QV\A -+ .ﬁiv\i'l'e PN‘"\')

(I.3.22)

This expression is finite and describes the propagator of a
massless axial vector field if and only if 9, obeys the same
relation as 9q Eq.(I.3.20}. So, in order to get a regularized
model, we have to fix =N equal to g e If the fermion field had
a mass in our Lagrangian, we see that the composite axial vec-
tor boson would be massive, although the composite vector fi-

7)

eld is still massless ', since,

_gab (1% Yl ()i s (B )
- méﬁ J (prwt) [(pra)-w]

5 [ gl (o efiite )20




Here we stick to the model with massless fermions since we
found the monopole solution only in this case.
One sees easily that with the saddle point conditions

EqQn's.(I.3.16), all the other fields and all the ghosts do not

propagate.We get,

35t . 0
BX/,DV,. (I.3.24)

where X and Y are generic fields not equal to V. and A, .
/o > d d r a
Also the mixed terms where Xf’ and Y,, are different terms,
including A/‘ and YV are zero. As far as perturbation theory
is involved all the terms with zero propagators decouple and

we are left with an effective Lagrangian which reads,

Logp=Tola(i'+ 9+ o)

{I.3.25)

I.4. THE MONOPOLE SOLUTION!?)

In this section we present the classical magnetic mono-
pole solution of the model given by the Lagrangian in Eq. (I.31}
We consider the symmetry group to be SU(2). The composite vec-

tor and axial vector fields are given in terms of the spinor

fields by,
W,«t-"wb =V /‘V

fp"g,.ys'c;’t{i.-.- A.}‘ A* (I.4.1)
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As it was stated in the previous section ql carries a group
index as well as a spinor index. Therefore the right-hand si-

des of the Egn's. (I.4.1) must be understood as,

”’x"ta‘l’ .«y xt&t °%

:Tr"q;x/“’l}?cz (I.4.2)

If '\.]/—>‘L,be where € =i € ,, the above expression takes the form

’l—.])x/"ca'l.l):—'rr'—l._})gf"qfca (1.4.3)

Similarly for axial-vector field,

’\Tg/'gs-‘ca'l’();-'—'rr’-t-];xf'xs'q/t‘ (1.4.4)

For the classical fields these relations can be also written

a - ‘ﬂ;&ktoqp
V/"' _ — /3
(q+,xﬂwc°QP 1P!¢Xt;q})

fqr ’U’3}~Xstqu’
a (P Mgt P HaksT TP

(I.4.5)

Strictly speaking one can not divide by fermion operators.
However, one obtains the same set of equations of motion by

starting from the Lagrangian as given in Eq.(I.3.1) and then
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eliminating the Légrange multipliers from ﬁhe equations of
motion obtained after varying the spinor, vector, axial-vector
fields as well as Lagrange multipliers.

The ansatz for the spinor field is taken as,

~

(iax.&+br)e

(iex-8+dr)e (1.4.6)
L. o

where r=|§| . Here a,b,c,d are real numbers. However for a ge-
ral treatment they will be considered as functions of r.
Our aim 1is to find a,b,c,d such that 1P satisfies the

equation of motion of Lagrangian Eq. (I.3.1),

?q’* 434 \ }‘X)‘ ,144 A f)’;.hlst V=0 (1.4.7)

provided that V:k is a Wu-Yang monopole, that is,

-] a
V=0 V= tam/et )

Under the above .assumptions, various terms when calculated

gives,
ai;xot%ﬁlP:zfg
’L]Jx Zo\p = —F [ (ub-—oel)rza&;a-t-tf( =&Y,
+Q.(c"—a7'+ b &z) v Si‘a] (I.4.9)
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Eq.(I.4.9) immediately gives a restriction on a,b,c,d because
of Eqn's. (I.4.8). They are,

a®=c?  ana b?=a? ‘ (1.4.10)

A convenient choice is,
a=c and b=-d (I.4.11)

which simplifies the Eqg, (I.4.9) and gives,

TR ROy

By using the EqQ.(I.4.1) one obtains,

1/3

V‘oz 0 V%22 (nb)qsmxé/r’
Vlz -4280’57!"(’ (1.4.13)
and for axial-vector part
A=0

- holr, g+ 2 (b Yr* 6 a0y

23 (2 304 314)Y3

Substitutions of the above expressions into the Eq. (I.4.7),

gives the following coupled eguations,

5/3 A3 2 31.2\}
dr, 3 _1 Gab) a. 28:(-38) =0
2 f’?(zezbi 30 353) /3

B 26,(3)a
____b 276 (ab) b =0
Bl“ + ( ) 1[3(2“152 3a%-~ 3[,“)4/3 (1.4.15)
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where Gl=4gl/3 and GZ=492/3' prime denotes differentiation
with respect to r. The importance of the following cases is
obvious.

1) One can hope that without axial-vector part, the monopole
solution may exist. This can be seen in Eq.(I.4.15) by putting
G2=0. If a,b are considered as constants, the only solution

is a=b=0 which is not desirable. If a,b are treated as func-

tions of r, there exists a solution,
-1/2 Al
Oz(v/r'o) exp[37\(r/r‘.)/ ]

b= (1"/r~,)?'/:l exp[-':"')«(r/r,)mJ | (I1.4.16)

Where‘ro is an integration constant and ,A=25/3G However,

1
this can not be considered as a monopole solution, because it

blows up not only at r=0 but also at r=e9. Therefore, for this
case we can safely conclude that monopole solution do not exist.

ii) Assuming 92#0 and a,b,c,d=constant, we end up with the

following equations,

5/3 I3 2
o _ 276, (ab) w_ 26 (=38 -
2 21]3(2azbz_3un_3bk)413

113 1
_§£+25/364 (qb)’ L _2G,(30'-b)a _
27 (2027~ 3a"-3p)"3 (1.4.17)

If a=kb then an equation for k,

412 (3K 2k 35 BKE K- 9 (1.4.18)
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can be found provided that 9759,- This last condition is the
regularizability condition of the model as it is explained in
the previous section, therefore it is not an additional assump-
tion. The reason to treat them as différent couplings is obvi-

ous from (i}. Eq.(I.4.18) has a root k2=3 all the others being

complex., So, the solution is,

23 (1.4.19)

and

Vesfs 712 '"

L ,l (I.4.20)

The interesting feature of this solution is that, there is an
angle between isovector and isoscalar, which is a consequence
of the regularizability of the mogel.

Our attempts to find a solution with a parity violating

interaction, given by the Lagrangian,

LTV e (Fyley Tpr¥)

+a'2('t}ax"_ﬂ[‘-t "-}/'S”y)‘__fl&‘c.'l}/) (1.4.21)

Agpnt Vi+x?

failed to give a solution unless & goes to infinity in which

case this expression reduces to the Lagrangian in Eq. (I1.3.1).
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Another interesting question is whether it is possible
to choose the parameters in the ansatz (I.4.6) so that for the
Lagrangian given in Eq. (I.3.1) one obtains a solution where the
axial-vector field rather than the vector field is of monopole

type. We have found that the answer to this question is also in

negative,

I.5. CONCLUSIOCN

In previous publications these types of models were con-
sidered for composite scalar and vector fields separately. This
work shows that composite vector and axial-vector fields can be
considered together provided that their couplings are equal.
Thisrequality is a consequence of the regularizability of the
model. In general a similar construction can be given for models
containing several kinds of bosons with consequent equalities
for their couplings provided that the fermions are masslessG).

As far as the existence of the monopole solution is con-
cerned we have discovered two important facts. An axial-vector
term is necessary, and the regularizability of the new interac-
tion requires that the angle found in Eq. (I.4.20) is 60°. 1In
general the condition for the vector field to behave as a mono-
pole is very hard to satisfy together with the spinor field
equation. It is this behaviour of these type of purely spinori-
al models which makes our solution unique. In fact requiring
that the model give a monopole.solution together with the re-

quirement of regularizability uniquely determines the form of

the 'Lagrangian with the consequent parity doubling for the

gluons.



PART II

SEMI-CLASSICAL APPROACH TO THE STABILITY
OF MERONS IN A GRAVITATIONAL MODEL AND

THE POTENTIAL OF THE MODEL

22
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II.1. INTRCDUCTION

The study of the classical solutions to field equations
has represented an interesting ground 5f investigation both for
the physical insights that such configurations can offer and
also for a deeper understanding of the formal aspects of the
theory. Much attention has also been devoted to the stability
properties of the classical solutionsl). Furthermore, semiclas-

sical stability2f3'4r5)

;, i.e. small perturbations around Eucli-
dean vacuum "bounce" soluticns has been considered as a new ap-
proach to stability of gravity. For example, instability of
flat space at finite temperature, stability of gravity with
cosmological constant in the deSitter background and instabili-
ty of Kaluza-Klein vacuum have been investigated, respectively

4) and WittenS).

by Gross and Perry3), Abbott and Deser
The aim of this work is to present a discussion of meron

solutions and the potential in the case of gravitation where

one might find a good interpretation for merons. As is well

known, merons are the classical soluticns of conformal invariant

field theories with singularity at the origin as well as at in-

finityG) and they are unstable in pure Yang-Mills theories7)

8) and in CP2 modelsg'lo)' but

1)

, . 1
they are stable 1n pure sSpinor models .

even in the presence of fermions

In order to perform our study we shall take as a theore-
tical laboratory a model which has been ‘examinéd by De Alfaro,
12 ,
Fubini and Furlan (henceforth DeAFF) ). In particular DeAFF

consiaered a model of gravitation coupled to matter fields,

which is just the effective part of N=4 Lagrangian for supergra
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vity with SU(2)XS8U(2) local invariancel3)-by effective we mean
that the odd parity and spinorial fields are ﬁot taken into ac-
count, having the corresponding classical configurations vanis-
hing-, where supersymmetry fixes uniquely the ratio between the
cosmological constant and the color charge, The DeAFF model is

14)

also complete from the cosmological point of view , and a

class of meronic solutions of this model has recently been
5)

foundl (more details are given in the next section).

Since merons are not bounce solutions in Eucliéean space
namely they are vacuum solutions with divergent energy in Euc-
lidean space, one has to work in the Minkowski domain where the
energy of merons turns out to be real and finite. In the succe-
eding sections we shall define the stability conditions which
will help us to discuss, at least in a particular case, the
stability of merons for the considered model. In particular,the
stability properties will be investigated for both the flat and

conformally flat space backgrounds in which merons exist.

I1I.2. THE MODEL

The Lagrangian of the model is the following conformally

invariant Lagrangianlz),

ﬁ Ps e

Z=-_€Lik+%’>\’w+.——z Fera'a
% a/” 3. 3,9}

which describes the interaction among the gravitational field,

(I1.2.1)

the SU(2) gauge vector fields and a neutral scalar field with
a dimensionless cosmological constant ‘2 . The equation of mo-

tion which follow from the lLagrangian are,
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Bf‘(@ 31‘/"5;,, ¢ < \@({?"z[a-v,ﬁf]gf'f‘ | (I1.2.2a)

(V387 ¢7,0)= 8 (3w 9y
..-...-Z__F F,‘ggra ) (II.2.2b)

&gy =
Rf’"%gl“R="29/”’ (II.2.2c)
with the energy momentum tensor,
Buv = 4lP (% Fan Fod _.:_*.3/,,27;,;‘? Fp 3”'3”'

N %‘- (3999- 4 520 %¢4*)

_ 37;5_9"8)“ (I1.2.3)

The Lagrangian in Eq.(II.2.1) exhibits a simple covariance

property Jﬁ-&tflt under the rescaling of the fields,

-2
M A, A au (I1.2.4)
3}»\?’"’ 3}“’ r>ty P> uf
which leads one to the following class of meron solutionsls),
2y
o= T P

Pr).-.;..:. 6}‘,,,_’.‘.1

LP \[-CG‘L

where "a" is a normalization constant which is fixed by the

(I1.2,5)

theory, while ¢ remains an arbitrary constant.
B A LA
Buuf\bnb; -

ey iR i
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Inserting the solutions in Eq.(II.2.5) into the equati-

ons of motion (II.2.2a,b,c) we obtazin the following algebraic

constraints,

3N/ = [ Byt 3= 1] [(y-4)-EyY)
/o= By'- (1)
L}‘f,g":(?,/a‘)('i-’?\z/e") (11.2.6)

Here, one should make some remarks about the reality of solu-
tions (II.2.5) which are important for the stability criterion.
Meron solutions Eqn's. (II.2.5) take a more convenient form if
the singularities from zero and infinity are displayed in tﬁpr

b "(O'O'O'l} by a Suitable Conformal transformation followed
f

by a Wick rotation to Minkowski space x4=it,
N\ 2 (t-A) +e? , (I11.2.7
K= __.__—-} — ——e = exp(-:.'c) «2.7)
(x4 bY* (it +4)}rt
where
t:orcfan't_._-l-am'l‘aut,_ 3 t; = 't"-F'r‘ (II.2.8)

Consequently, taking into account the transformation properties

of fields one gets the following complete Minkowski solutions,

- S}w 1 exp(~-2iyT (II1.2.9a)
o= == (4+t2)(4+1t2) PE2ye)
. 2.9b)
Aps -ty Sy ”I

where
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t + t 4 =
Sy= —l —_— s{4,T 2 (II.2.9c)
and
LP.—. caexp(iyt) (1I.2.9d)

For the meron solutions Eqn's. (II.2.5) the energy momentum ten-

sor is,

9:

4 E 1 1. x
(IT,.2.10
1.)‘1{ ) +(E'%"—') = vS . )
which is conserved in the covariant sense,

(9‘}‘)5":0 (IT.2.11)

The energy momentum tensor in Eg. (II.2.10) can be improved by
means of the conformal transformation which gives finite ener-

gy in Minkowski space,

E,.,(Posifu'uconshut][:‘;ﬁ....‘.3‘..-( %;)] (I1.2.12)

18)
I1.3. DEFINITION OF STABILITY AND STABILITY OF MERONS

Before starting to investigate the stability of the me-
ron solutions Eqn's, (II.2.5) in the gravitational DeAFF model,
we shall recall the definition of stability for merons in the
Minkowski domain. By this we mean that the quantities (co-ordi-
nates, scalar, vectorial and tensorial fields) are transformed
from Euclidean space to Minkowski space by using a combined

conformal transformation, translation-inversion-translation
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(TIT), followed by a Wick rotation, i.e. improved quantities
in Minkowski spacels). As is well known, meron solutions have
finite improved energy and action, and they are invariant under
the compact O0(4)X0(2) subgroup of the 0(4,2) Minkowski confor-
mal group in Minkowski domain. These iﬁproved meron properties
allow us to study the stability of merons in the gravitational
field theories.
Now let us define the stability for merons: by making
the ansatz exp(-ik® ) with the proper time € in Eg.(II1.2.8)
for the small perturbations around the meron solutions (II.2.9a,b)
in the Minkowski domain, stability or unstability will be de-
termined by k being real or complex. On the cother hand, the small
fluctuations in the Euclidean space are also corresponding to
the small fluctuations in Minkowski domain by conformal trans-
formation (TIT}, so for the small fluctuations around Euclidean
solutions EqQn's. (II.2.5) we can take the ansatz xk which turns

out to be, as given in Eq. (II.2.7),

:Lk._-; exp(-i.kt) (IT.3.1)

in Minkowski domain which leads one to work in Euclidean space.
If one examines the stability of merons in CP2 and pure

Yang-Mills models by using the above instability definitions in

Minkowski domain, the results are same, they are unstable, as in

Refs. 7.and 910).

Now let us investigate the stability of merons in the
DeAFF model. For this study we should like to investigate two
special caseé of the solutions (II.2.5). The first one is the
conformally flat space, which by substituting x =0 leads to the

constraint °§=e2. Consequences of this constraint have been
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. 14
discussed by Cervero ). The second one is the flat space (which

corresponds to 3=1 in the solutions {IT1.2.5)) with the const-

. 2 2 2 . .
raint 1==-qu /3 which coincides with the prediction of exten-
ded N=4 supergravity on the cosmological constant'ﬂl7).

i) Conformally flat space:

. Substituting ¥=O, the solutions (II.2.5) take the form,

ar,z.c%._&,(m)gv A}""‘:"}"Bv‘e"& LP’J%;CG (1II1.3.2)

where h(x)=1/x and the solution (II.3.2) has finite improved
enerdgy in Minkowski space which is positive for a4'> e2.
Let us now take small fluctuations arcund the solution

(II.3.2).

%}”-’3/“‘4'83/“’ Aj,._yAf.+gAf LQ.;L?..-S(Q (I1.3.3)

Owing to the mathematical difficulties of a general treatment

we shall limit ourselves for a very preliminary indication for
the particular simple case where the fluctuations in grv and %V
are assumed to be generated as a result of a variation in

hix)=1/% of the form,

*\__, A+ 84 (11.3.4)

Namely, our fluctuations are still in the flat or conformally

flat space. Then, according to the above assumption, we find,

Sarv-.:Q&Sa S/“’ | (I1.3.5)

SF/N:'LQQ&(-;L.'&)S&&}N—B,Mo}‘i-rB,‘ra;ﬂ} (11.3.6)

where,
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. (s,.s,-s,,s,.) | (11.3.7)
with

Sr:(",i.i" '-'sr:(zi,-.-,a‘) (I1.3.8)

and

B'M: xax,3‘3££+2ﬁ£ 3,3&.,. Qxy'ﬁ aaih —:IL_ bvé)‘S& (I1.3.9)

Here Fuy  1s given by,

F}.-,-.-.B).H,,-b\,ﬂ/‘-g-e[lq ,A,] (11.3.10)

where e is the colour charge. We shall also use the result,
{F).v, SF, g}= 2&]]8&—2&3(1.3)7‘8& —4&3(:(.5)2& (1I.3.11)

Substituting the results above in the eqguation of motion in

EqQ. (I1.2.2b) with ¥=1,c=1,a=(2/e2)2/2 (tnis value of "a" is a

15)

consequence of having meron solutions } and taking the vari-

ation of the resulting equations with respect to h and lP we get

&"DSLV—QH\H(‘X?)S(?: 6&3(%;_4) 82‘ + % z\'-i(j;*_ 3) SLP
+28 O8h U3 .2) Sk
483 2)8h+ 648 (11.3.12)

Similarly, Eq.(II.2.2c), beccmes,

DS&+3&28&+4.§2‘38Q=O (11.3.13)
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According to the stability definition of merons, as given
at the beginning of this section, we can take the following an-

satz for the fluctuation part,

g&; ﬁ,kY£ . (I7.3.14)

where Y1 depends on the three polar angles in four dimensions.

By using the identities,

%DS&%(MQ’_(QH)‘]S& (I1.3.15)

and

(%) 8% = k84 . (II1.3.16)

Eg. (I1.3.13) becomes,

Lf%_: §Q = [-[k+4)1+(£+4)1—3]mk+4Y£ (I1.3.17)

Substituting this and ‘)2/e2=1 (this is because of constraint
Eqn's. (11.2.6)), we get for the 1=0 ground state the following

quartic equation,

K+ 41 k3+ 22k +25k+18=0 | (11.3.18)

This equation has two real and two complex roots. To ensure
stability, all four roots for k must be real. Thus there are no
absolutely stable sclutions.

Before going into the investigation of stability proper-
ties of flat space, we would like to check another ansatz, which
wili be used in the following section in order to find the pot-

ential of the model. This is again a conformally flat ansatz,
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which differs from the former in the Af.'s form, that is,

3,.,:: &‘(x)gf.v A,.:-és;‘,ﬂb,«. (P,J.?: (1I1.3,19)

Following the same steps as above one finds,

(ked)*_ 4 (k#4) 4920 (11.3.20)

All the four roots are complex, so no stability for this ansatz

too.

ii) Flat space

Substituting X=l, the solutions (II.2.5}) take the form,

%f"’:% v Rf':'bb}v),ﬂ“g\ (,p._:\E_;ca& (I1.3.21)

where again h({x)=1/x. This solution has also finite improved

2 u
energy in Minkowski space which is positive for 2:;.. ..&I'.‘_%_-
a" e

Let us again take a small fluctuation around the solution

BEq. (IT.3.21).

ﬁ)‘“’ -‘»3,«1-*93,.\; A/‘-;A,.+SH}. L?..;(P.a.Sgp (I1.3.22)

i\

where the fluctuations in A, and LP are also assumed to be ge-
nerated as a variation (II.3.11) and gg%v==ggs%4. BEg. (I1.3.6),

Eq. (I1.3.9) and Eq. (II.3.1l) again hold in this case too. Only

the variation of LP differs,

8(?.:@ A (11.3.23)

Following the same steps as done in the conformally flat case,
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we arrive to the coupled eqdations given below,
3412 2)89Q - $30+ 4584 -2 2)84 _Q(-.L.a)’*Sh;_z O8%-0 (11.3.24)
% Ds&.,.ig.g&no&“&cp-sas&_q&(x.*a)s&.-.o (I1.3.25)

Taking the same ansatz as in EQ.(I1.3.14) and using the identi-

ties Eq. (II.3.15}) and Eq. (IT1.3.16) one obtains,
5@ 4 Uakmx"’”‘l ~B (kY- (L )Ry ] (I1.3.26)
_g_—' ‘q ) + z v 3

Substituting this into Eq.(II.3.24) one finds, with 1=0,
L2 (2ket)(ieed) - 2% 4 gy k=240 (hat)} ]

(I1.3.2
+ --g—-(k+4)"(k+3)—%(k+3)+ %(k+4)2+%11k+2= 0 11.3.27)

The coefficients of xk and xk+2-must then be equal to zero,
I2+16k+83 =0
(K-+2k+3)(3X+8)=0 (11.3.28)

This again gives solutions with complex k, hence the soluticns
are not stable for this case as well,

II.4. THE POTENTIAL OF THE MODEng)

As it is known, in models with gravity it is not possible
to express the potential separately. In such cases, the conven-
tional method to obtain the potential is tie the different fields
by a new field with a redefinition of the kinetic term.

We will use the above approach and investigate the poten-

tial of the Lagrangian in Eq.(II.2.1l) in the Minkowski domain
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witich will also provide us with a way of defining a new kinetic
term via a new variable and field. For this purpose we wish to
use a suitable ansatz which is already given in the last section
in Eq. (II.3.19). Inserting this ansatz in the Lagrangian in

Eq. (IT.2.1) we get the action in the spherical coordinates,

T or” (s ) g - 8 )0
+ 2 () (4= 2]

(IT.4.1)

1Ad
where A=0'A ' E2=a12e2 and LP=constant=a. From section two
and from Eq. (II.2.7) we can change the variable x to T &hich

may be called as cosmological time in the modell4) by,

fn-x._.)_.:.th (II.4.2)

Since the invariant quantity is the action its invariance

is achieved by the following change of the h(x) as,
& 1 {(I1.4.3)
x — n
(<) — £()
Then, the action in Eq. (II.4.1) becomes,
4
1. 3m (4T [ 1-4.) )
) (4 E’£ (II.4.4)

+ 24 +(“--§a32‘]

Now, we can interpret f{T) as the position of a particle and T

as a proper time and Eq. (II.4.4) &s tha mechanical equ\atiOn for

a particle in a. potential,

V({)- 311[ )72— £ -5 ")gl] ‘ (I1.4.5)
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In order to get a correct kinetic term one should fix the coeff-

icient of kinetic term as,

(II1.4.6)

-4 -4
€ 2

kS

E*= 2 G:'..\I.z_. (I1.4.7)
e"l-

This is also a very convenient choice in finding the place of

or

meron on the potential which we shall discuss in the following
paragraph.
. 2 2
For various values of ‘)/b ; some graphs of the poten-
tial may be found at the end of this section.
. . s 2 2
The potential is unbinding when ’A/e3'<-‘f , and for 'B/€>5/2
it has only one minimum at £=0, which is not well defined physi-
cally. The only physical interval therefore is —1(‘)\2/e2/\ 5/2
where there exist another ground state for £#0 which may allow
transition between two ground states.
The place of meron in the potential is the point where
2
A/ =1, £=1 ana v=o0.
22 ‘
In figure 2 the intersection with 'A/f- =1 plane is presen-
ted and it is seen that the meron is on the minimum. Therefore
it can be interpreted as a vacuum solution. This solution can

A
decay only when ’A/ez is allowed to change even if the change

is very small.

IT.5. CONCLUSION

In the sections (II.1), (II.2) and (II.3) we have inves-
tigated the stability of the improved meron solutions in the
conformally flat space and flat space. Our results indicate that

particular forms of this solutions are unstable and thus cannot
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be interpreted as a possible candidates for a vacuum state.Since
the fluctuations .for metrics were still in the flat space, i.e.
g,w =Sf"’ (h+ sh) our results are very particular.

In the last secticon (II.4) we presented a suitable ansatz
which provides us an expression which can‘ be interpreted as the
potential of the model in the Minkowski domain., We have shown
that the model is physically meaningful when ?lt/ez is limited

to the interval -1 (’)\‘/J( 5/2.
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SUMMARY

In the first part we are concerned with.monopole solu-
tions in a model which contains massless composite vector and
axial—vector'gluons. We first present the quantization and
regularization of the model and look for its monopole solu-
tioﬁs. Axial-vector interaction is necessary if one requi-
res to satisfy the equation of motion when vector part is
restricted to be a Wu-Yang monopole. We also imposed the
condition that the internal symmetry to be SU(2). It is
found that there exists an angle TI/3 between vector and
isovector parts which stems from the regularizakility of the
model. We also observed that vector part itself has a so-
lution, though it is not interpreted as a monopcle. This
solution may have a topological interpretation, since for
negative coupling constant, the angle between the isovector
and the isoscalar parﬁs change from zeroc to T/2 as r goes
from zero to infinity. When an axial-vector interaction is
added to the Lagrangian this angle becomes constant and the

solution takes the form of a Wu-Yang monopole.

In the second part we investigated stability properties
of a field theoretic model which contains gravitational,Yang
-Mills and scalar interactions. For this purpose we used the
semi-classical approach, that is, we perturbed the eguations
of motion of the model around a field which is taken to be
common to the original fields. Two special cases are taken
under consideration, conformally flat and flat spaces. We
found that meron solutions are not stable‘in both cases, Af-

ter this we found an ansatz which when used in the action of
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the model gave an expression which is very similar to a
classical action with its kinetic and potential terms. We
observed that this is possible in Minkowski space where the
variable is no longer four-dimensional Euclidean radial dis-

tance but a proper time which is also interpreted as cosmo-

logical time by other authors.
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