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CANONICAL STRUCTURE AND INTEGRABILITY OF NEW
TWO - DIMENSIONAL FIELD THEORIES

We consider two different field theories in one-space and one-
time dimension. One of these is the 0(3)-invariant nonlinear sigma model
whose integrability condition is the sine-Gordom equation. Using only the
first derivatives of the field variable, we construct the most general
conformally invariant Lagrangian for this system, the generalized sigma
model (GSM). Its integrability condition is the geheralized sine-Gordon
equation (GSG). The other model we examine is the system of equations
governing long waves on shallow water. We concentrate on the new model

obtained when the effects of dispersion are included.

In these two models we analyze the properties that are related
to the presence of soliton. solutions to find out which properties of
these systems survive when equations are modified to accomodate new
effects. For the shallow water waves with dispersion we find that it is
possible to generalize the symplectic structure and the canonical
formulation of the original model. However the infinite sequence of
conservation laws are lost., On the other hand time-independent solutions

of the GSG equation still exhibit soliton-like behavior. We show that



the GSG equation can be formulated as an imbedding and an inverse
scattering problem. The Gaussian curvature of the surface underlying the
GSM, just like that of the original 0(3) sigma model, is one. Further-

more, we find a Backlund transformation for the GSG equation.
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YENI IKI BOYUTLU ALAN TEORILERININ KANOMIK
YAPILARI VE INTEGRE EDILEBILME OZELLIKLERI

Bir uzay ve bir zaman boyutunda iki defisik alan teorisini gdz-—
dniine aldik. Bunlardan biri, integre edilebilme sarti sinﬁs—Gordon denk~
lemi olan, 0(3)-deZismez, lineer olmayaﬂ sigma modelidir. Alan degisken—
lerinin sadece birinci tiirevlerini kullanarak, en genel konform degigmez
Lagranj fonksivonunu, genellestirilmis sigma modelini (GSM) insa ettik, Bu
sistemin integre edilebilme sarti da genellegtirilmisg sinlis—Gordon (GSG)
denklemidir. Inceledigimiz diger model ise sig sulardaki uzun dalgalari
tarif edeﬁ denklemler sistemidir. Burada dzellikle dagilma etkilerinin

ilave edilmis oldugu yeni modelin iizerinde durduk.

Her iki modelde, denklemler yeni efektleri icerecek gekilde genel-
lestirildikten sonra, soliton c¢Ozimi ile ilgili Gzelliklerden hangile-
rinin kalmis oldugunu inceledik. Dagllmail s1g sularda, simplgktik ve
kanonik yapiyi genellestirebilecegimizi gdrdiik. Fakat bu durumda sistem
sonsuz sayida korunum yasasi Ozelligini kaybetmektedir. Ote yandan GSG
denkleminin zamandan bagimsiz ¢Ozimleri hala soliton gibi davranmaktadir-
lar. Ayrica GSG denkleminin gdmme ve ters sag¢ilma problemi sekline soku-

labildigini gosterdik. GSM denkleminin dayandigi yilizeyin egriligi de,
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orijinal sigma modelininki gibi, bire egittir. Sonra da GSG denklemi icin

Biacklund doniisiimi bulduk.
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I. INTRODUCTION

Wave-particle duality emerged as a revolutionary concept in the
first quarter of the 20th century. When experimental techniques developed
to the stage where atomic systems could be studied, difficulties
appeared which could not be resolved within the framework of Newtonian
Mechanics. This breakdown of classical physics finally lead to a complete

formulation of Quantum Mechanics.

In this theory, a free particle was identified with a de Broglie
plane wave, corresponding to a total absence of localization in space.
Therefore this state function was not physically admissible. A physical
state function was constructed as a superposition of these pure de
Broglie waves. This was a wave packet which initially travelled un-
distorted with a definite group velocity but eventually began to spread

out in space.,

Recently another connection between waves and particles attracted
the attention of physicists. This time the relation presented itself as
a result of the investigation of wave equations that derive not from
Quantum Mechanics but from classical physics. Unlike the wave packets of
Quantum Mechanics, solutions of these classical equations retain their
size and shape. They are nondissipative configurations such that their
energy remains localized in a finite spatial region. In fact, these
solutions are not free from dispersion. However the equations that give

rise to these solutions are nonlinear and the effects of nonlinearity and



(1)

of dispersion cancel each other exactly

(2,3)

solitons . Furthermore  when two solitons collide, they emerge

. These special solutions are

from the collision having the same shapes and velocities with which they
started out. If there is a soliton and an anti-soliton in a theory,
they are created and destroyed in pairs. Thus solitary waves do exhibit

many properties of elementary particles of physics.

The concept of a solitary wave was first introduced, by
J.S.Russell(A), to hydrodynamics. It has become a tradition to quote his
famous words describing his chase on horseback behind a solitary wave
in a channel 150 years ago. Later Korteweg and de Vries developed an
equation for shallow water waves which exhibit solitary wave

(5,6,7)

solutions . Another system which possesses soliten solutions, the
Boussinesq equation, was also first derived to describe shallow water

L . : 1) '
waves propagating in two-directions . Therefore shallow water waves have

played a significant historical role in the theory of solitons.

Nonlinear sigma model and its integrability condition, the sine-

8,9,10 .
@, ? ). These types of theories

Gordon equation also possess solitons
appear to be immediately relevant since most recent developments provide
some confirmation of the idea that baryons are solitons 1in the nonlinear
. 11) . . . . .
sigma model . Two—dimensional sigma model and four dimensional
Yang-Mills type field theories share such properties as asymptotic
. P (12)
freedom, charge confinement and an infinitely degenerate vacuum ;
furthermore pure Yang-Mills theory in four Euclidean dimensions has
instanton solutions that are static soliton solutions corresponding to
Lo 13)
the tunneling probability between two vacua - On the other hand
(4) ively th Mechanical Thirri
Coleman has shown perturbatively that Quantum Mechanlca irring

model of particles and anti-particles moving in a one-dimensional space

and the sine-Gordon equation with its solitons describe the same



phenomena. Hence, the special role played by the nonlinear sigma model
and the shallow water wave equations in the soliton theory provide the
motivation for considering generalizations of these models in two-

dimensions.

Two-dimensional theories have been very useful in physics so far

by providing insight into field theoretical possibilities which can then

be developed for physical four-dimensional models(lb). For example,

dynamical gauge symmetry breaking was first understood in two-dimensional

massless electrodynamics, the Schwinger model<16). The solution of two-—

dimensional quantum chromodynamics explained large-N behavior of non-

(17)

Abelian gauge theories . Hence it is natural to seek enlightenment in
a two-dimensional setting where complete and simple solutions can be

obtained; thereby mathematical concepts and techniques can easily be

developed.

At present, the mathematical framework necessary for determining
whether a given wave equation indeed possesses soliton- solutiouns,

without direct numerical computation, is lacking. The most useful

(12)

concept so far is "complete integrability' . The sine-Gorden,

Korteweg-de Vries, and Boussinesq equations are all examples of types

of systems that are called "completely integrable'. In addition to

having solitary wave solutions, these systems have an infinite sequence
of conservation laws. Furthermore, they each possess a Bicklund
transformation, used to generate new solutions once a solution has been

(18,19,20) (21,

found They are amenable to the inverse scattering method

22)

, through which the problem of solving a nonlinear equation reduces

to solving a coupled set of linear integral equations. Completely
integrable systems are usually invariant under a one parameter Lie group of

transformations. Therefore an invariant variable which reduces a partial
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differential equation to an ordinary one may be defined(23). These
systems can also be analyzed within the framework of differential
geometry. Then the equations governing these systems can be described

by an SL(2,R)-valued connection one-form with zero curvature; or they can
be formulated as an imbedding problem<24’25’34). Furthermore, it seems
necessary to find a Hamiltonian density corresponding to these systems.
However given a nonlinear equation, it is not known which of these
properties are necessary and sufficient to insure the existence of
solitons. Therefore, new models, even if they do not turn out to be
physically relevant, are still important for the sake of clarifying the

relation between the existence of soliton solutions and complete

integrability.

To this end, in this work we first construct the most general
conformal 0(3) invariant nonlinear sigma model in two-dimensions, whose
Lagrangian coutains only the first derivatives of the field variable(26>.
We find out that the integrability condition of this generalized sigﬁa
model (GSM) yields an equation which encompasses the sine-Gordon equation
in addition to some special cases which are of the same form. Then we
discover that the time-~independent solutions of this generalized sine-
Gordon equation (GSG) exhibit soliton-like behaviour. So it seems that
the sine—Gordon equation does not lose its complete integrability when
generalized. Therefore we look for other properties that are common to
most completely integrable systems. First we point out that the GSG
equation follows from the fact that the Gaussian curvature underlying the
model 1is constant(27). We further note that the GSG equation can be
described by an SL(2,R)-valued connection one-form with zero curvature,

just like the Korteweg-de Vries and the sine—Gordon equations. Also we

show that the GSG can be formulated as an imbedding and an inverse



scattering problem. Finally the invariance properties of the GSG equation

are considered.

We investigate some other conditions for complete integrability
in a hydrodynamic system, shallow water waves with dispersive effects.
For this system we look for a Hamiltonian density and for an infinite
sequence of comservation laws. Surface waves without dispersion manifest
an interesting feature within the framework of complete integrability
because even though they possess an infinite sequence of conservation

(28) (29)

laws , they have no proper solitons . They do have a Hamiltonian

(30)

density, however . For the generalized version of this model which
includes the effects of dispersion in water waves, we find out that we
can cast the system into canonical form and obtain an explicit expression

(31)

for the Hamiltonian using Dirac's theory of constraints We formulate

the symplectic structure of the system and obtain through this structure,
. . e . . (32)
the general equation to be satisfied by all integrals of motion .

Furthermore, we show that the infinite sequence of conservation laws are

lost.



I1. GENERALIZED TWO -DIMENSIONAL 0(3)-INVARIANT SIGMA MODEL

Two dimensional O(n)-invariant Lagrangian field theories whose
field functions describe a homogeneous space have received a lot of
attention in the literature. The simplest of these models is the 0(3)/

(33) . : . . . .
0(2) model whose field variable is the three-dimensional unit vector
> 0 . - -
n. The Lagrangian density of this theory consists of the scalar product
of the first derivatives of this vector. The corresponding action is
conformally invariant. It turns out that this model has a number of

interesting properties, the most important of which is that its

integrability condition is the sine-Gordon equation.

In this part, we generalize this model while maintaining its
conformal invariance. To this end, we insert into the Lagrangian an
arbitrary function of the angle between the light—-cone derivatives of ;.
Different choices of this function will lead to different conformally

invariant 0(3) models.

Starting from this generalized Lagrangian we proceed as follows.
The Euler-Lagrange equations of motion, together with the constraint
that the norm of o is equal to unity, gives us the relation between the
function f that modifies the Lagrangian and the magnitudes of the first

derivatives of a. Making use of this relation and employing the

geometrical iﬁterpretation of the field vector n and its first

derivatives, we construct the equation for the angle between the light-
b

cone derivatives of 7 This integrability condition reduces to the sine-



Gordon equation when the function f is taken to be unity.

We examine the time-independent, the space-independent and the
Euclidean—invariant versions of this integrability condition. The
equations corresponding to the first two cases reduce to the harmonic
oscillator equation., The Euclidean-invariant one is the Euclidean sinh-
Gordon equation. These three cases, together with the sine-Gordon equation

smoothly fit together with a variable transformation.

Finally we examine the time-independent version of this
integrability condition. After studying omne special case, we devise a
procedure for a systematic construction of potentials corresponding to

different choices of the function f.

2.1. The Integrability Condition of the Generalized Sigma Model

Our starting point is the 0(3)-invariant chiral theory in one-time

and one-space dimension which is described by the Lagrangian density

-~ > -2
L=n.n + xn™-1) . : (2.1.1)
u v

“ e _)._’\.
The interaction arises from the condition that n.n is equal to

one. u and v are the light-cone coordinates;

u = % (£ + x)

(2.1.2)

v = (£t - x)

o}

and subscripts denote differentiation.

- - .
Noting that the angle 0 between n and n, 1s a conformally

invariant quantity, ve propose to generalize the 0(3)-invariant theory by
, W



modifying the Lagrangian in the following way

> >
n .n

[ = LE@®) Ani-1) | (2.1.3)

"
The corresponding equation of motion is

of 9

> >
no.n 2n 2z 2):3 =-——(n f + K K of BZ)
3z > Ju 9z 7
on on
v (2.1.4)
+i(§f+§_ﬁ of 8Z)
v u u'v 3z > ’
on
v
where z is defined as
> > >
n xn .n
z:tan6=—_;——:———. (2.1.5)
n .n
u’ v

-> >
Multiplying Eq. (2.1.4) by n, and making use of the fact that o, is

> >2 . .
orthogonal to n due to n~ equalling one, we get an equation of the form
> >
oF G

u o —a—v+—aTl' =0 <2.1.6)

=2

This can be written as

>
n
u

3 > 3 - - _-> Cu
5;'(F- )+ §~( .0 ) F.—=—-G. 5 0. (2.1.7)

. ->
By elementary manipulations we derive an equatlon for the norm of o .

il

(f—— z)) =

I
O

d
~5 (Un

||&—ﬁa

) . | (2.1.8)
0z

il

N
Similarly, multiplying Eq. (2.1.4) by n, leads to



d (17 12 If
salln I - =2y =0,

a1 %Cs - %ﬁ-z) = 1% (v) (2.1.9)

Since our original action 1is form invariant under a local transfor-
mation of the form

(u,v) > (u',v") ,

du' = [Q(u)|du , (2.1.10)
dv' = |H(v)|dv
We have
> 2 2, i 2
5,17 - Cwla (2,
ESEE Hz(v)iﬁv,Jz . (2.1.11)

Making use of the above transformations we may write Egs. (2.1.8) and

(2.1.9) as

(f - %é—z) lKu,|2 =1,

£ -2Lo 7%=, O (2.1.12)
or using Eq. (2.1.5)

i;ﬁ,{z = lgv,lz = (f - %é-sin9c059)_l = v(®) . (2.1.13)

Hereafter we take the transformed coordinates as the basic
variables and omit the primes. This transformation yields a Hamiltonian
density which vanishes when the constant part 1s subtracted. This
difficulty of correctly defining the energy also arises in the

conventional G-model and can be dealt with using standard methods.
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It has been shown by Pohlmeyer< 3 that the integrability

10

condition

of the dynamical system described by Eq. (2.1.1) leads to the sine-Gordon

equation. Here we proceed along similar lines for the Lagrangian

(2.1.3)

to find a generalization of the sine-Gordon equation. First we compute

. . . - . . > -+ .
the mixed derivative nuv and the second derivatives n and n in terms
uu vv

. -> > - .
of the three basic vectors D> Do, and n which span M. Because of

R > > . .
constraint n.n equals one, these vectors are linearly independent

. % + .
provided no.n does not vanish.
Then, we note the following equalities.

> >
n fs)

= (n_.n)_-n_.n_= —ycosB,
uv u' v u'v
- > 1 (—> —>) 1
n L = w5 \n .n =
uv  u 2 Tulu'v 7 Yy 2
> > 1 (—> —>) 1
n _.n =+ (n .n = =
vV 2 u o v'u 7 Yy o
> > (—> > > >
an=f(n.n -n.n =-
uu v u u u Yo
- - 1 (—> -\ 1
. == (n .n) ==
Taut 2 u uu 2 Yu?
-> > > > > . 1
= LT -n.n_= cosf-ysinb 6 - = ,
Mau My (nu V)u utuy o Y u 7 Yy
- - - > > >
y .n=(n .n) -n_.n_=-Y,
Pov ( viv v i
> > 1 > - 1
n==(@ .n) =% ,
Bov™ T 2 ( Vv o 2y
> - > > > . __1_
n .o =(n .n) -—-n_.n_ =Y cosO-ysinf © 5 Yy
Yvvtu u’ v'v uv’ v v v 2

Making use of the above expressions we obtain

N -+

n n

Kuv = —Ycos@ﬁ + i% (Yv - g9056> * E?AQ ’
> >

> SO EX (y - BcosH)

Dov = yn t 5?‘§ ¥ 2y YV ’
N -

- e nu_ ( - (SCOSS) + .n_V 0 s

n, - T T3y Yu 2y —

the

(2.1.14)

(2.1.15)
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—Y_cosb “2vsinS@ —
Yu Y,¢0 ) chose _Y51nu8V Yo

&= ) » B 5 » 8 = B with uerv,
sin 6 sin 8 N

Next we substitute these vectors into the identity

- -

_ 1
I —i(

> 92 > > >
n
uv uv

—>2 -5
n ) + l‘(n ) -(n.n) +n .n (2.1.16)

u ‘yv 2 v ‘uu u viuv uu’ vv

The resulting expression yields a generalized version of the sine-Gordon

equation in light—-cone coordinates.

12
e 2. .2 D
2ysin (Y51n9+6uv) + (GU +6V ZBUGVCOSG)(Y' —T)
= (0 %cosf0 Zcosh-28 8 ) (L (2.1.17)
u v u v’ 'sind o
+ (B +b - 20 cosd)Y' =0 .
uu Vv uv A

This equation is the integrability condition of the equations
of motion of the Lagrangian (2.1.3). A choice of the function Y=y (8),
through Eq. (2.1.13) determines the specific form of the Lagrangian. In
contrast to the sine-Gordon case which is given by Y=const this equation
is not Lorentz invariant in the general caée. This is expected since a
conformal transformation has already been performed in (2.1.10). It
follows that the Lorentz invariance of the integrability condition for
theistandard O-model is the result of the specific choice Y = const. In
the pext section we will show that there i1s a one parameter family of
generalized O-model Lagrangians for which Eq. (2.1.17) after a

ransformat ion of variables again leads to the sine-Gordon equation.

2.2. Special Cases Exhibiting Symmetries

In this section, we search for certain choices of ¥ which will
reduce Eq. (2.1.17 to a system with some kind of additional symmetry.

Therefore, we first look for an expression for Y which will render
3
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Eq. (2.1.17) Lorentz invariant. The only choice is readily seen to be

Y = const, which gives the sine-Gordon equation.

Next we try to make Eq. (2.1.17) Euclidean invariant. To this

end, we separate the terms that multiply the mixed derivatives 9 6
u

and O . They are
uv

2
0o Y' _ v
cosO (y STfoosd ~ ), (2.2.1)
Y'cosB-ysinf , (2.2.2)
respectively.

We note that when Y equals cz/lcosel both Eq. (2.2.1) and Eq.
(2.2.2) are zero. Substituting this value for Y in Eq. (2.1.17) we get

an Euclidean-invariant equation
2 . 2,2 -
2 ¢“sinf® + (6 “+8 Ttanb+(8 +8 ) =0 (2.2.3)
u v uu v

We multiply this equation by an integrating factor ¢'. When ¢' equals

1/cosf, Eq. (2.2.3) reduces to

IR 2¢%siang = 0, (2.2.4)
u

where the "potential’ is
= 2¢° (2.2.5)
v{($) = 2¢ cosho. .2,

Another simple case reveals itself when we impose x>x'=f(x)
symmetry. In other words, we require that the integrability condition be

x—independent. Going back to omne-space and one-time coordinates it 1s seen

that Eq. (2.1.17) can be written as

‘ 6 Y’ O -
2Ysin9+[6t(1 + XY— tan 7)L —\:GX(l - cot 7)}{ =0 (2.2.6)
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2
When Y equals c”/(l+cosB), Eq. (2.2.6) reduces to

2 6 1 26
¢’ tan 5 + &Z Ot sec” 7 | =0 (2.2.7)
Defining tan(8/2) as ¢, we get the harmonic oscillator equation
2 —_—
TP+ ¢tt =0 (2.2.8)

For this case we note that the tangent of the angle between the vectors

> > . S . . .
n, and n_ oscillates in time with a period proportional to the norm of

these vectors.

We proceed along similar lines to get the time independent

version of Eq. (2.2.6). When 7y is cz/(l—cose), Eq. (2.2.6) becomes
2 s [ 207 _ )
c” cot % [iexcsc —2—}){—0 . (2.2.9)

Letting cot(8/2) be defined as ¢ yields the harmonic oscillator equation

for ¢,
o v =0, (2.2.10)
XX
This time the oscillation is in space.

Using the Eq. (2.1.13) which shows the relation between Y and f,
we can summarize our results as follows. When the Lagrangian denmsity is
given by Eq. (2.1.1), the integrability condition is Lorentz invariant;
it yields the sine-Gordon equation, a well-known result. However, when
+(~) {; Ilg I is added to the Lagrangian density, the corresponding

u''v
integrability condition becomes time(space) independent and reduces to
the harmonic oscillator equation. Finally n .o rep ace y o iing

gives the Euclidean-invariant integrability condition, or the Euclidean

sinh-Gordon equation.
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All these four cases can be unified with a variable

transformation
as follows. Looking back at Eq. (2.2.6) we define
e Y 6
¢! = T tan + 1. (2.2.11a)
(. _Y' 08
P 1 ot . (2.2.11b)
Hence Eq. (2.2.6) can be written as
2ysinB + ¢>tt - thX =0 . (2.2.12)
The simplest relation between ¢ and Y would be
_ 2 '
¢ =avy , (2.2.13)

2 .
where a~ is a constant. In order to satisfy Eq. (2.2.13) Y and £ have to

take the special values

Yy = cz{a2 + 1 + cos@(az—l)}_1

5

(2.2.14)

2
£ = C_Z[az b1 2t }.
cosf

Disregarding an overall constant, these determine a family of Lagrangians

depending on the parameter a. Substituting this in Eq. (2.2.11a) we get

(@]

a tan 5= = tan 7 . (2.2.15)
Using this as the definition of ¢, Eq. (2.2.12) reduces to

2 . 9 _ L - (2.2.16
c’sin — + a ¢tt - @XX 0. (2.2.16)

Rescaling ¢ and our time (or x) coordinates we get the sine—-Gordon
equation for ¢. Furthermore from Eq. (2.2.14) we can see that when a” is
zero or infinity we get the sine-Gordon, the

positive, negative,

Euclidean sinh-Gordon, the time—-independent or the x-independent equations
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respectively. So all four cases are unified when we impose Eq. (2.2.13)

upon our integrability condition.

2.3. Behavior of Time-Independent Solutions

In this section we consider only the time independent solutions

of Eq. (2.2.6) which are given by

2Ysind &3 Y 0
YsinB- X(1 e cot E?}x =0 . (2.3

Before we set up a procedure for finding solutions systematically, we

consider one special case. We try Y of the form
Y = a2(1+c089)b . (2.3

Substituting this in Eq. (2.3.1) we get the following potential

-% 6'2 = —~J£——-(c2—a2(l+cose)

X (1+b)2

L4by (2.3

where'c2 is a constant of integration. We can put Eq. (2.2.3) in a

closed form for x by letting u equal tan(6/2),

tan 0/2 5 59 2 b4l

x = (1+b) J du(c (1+u™)"-a"2 (1+u2)1—b)_1/2 . (2.3

We first note that b equals minus one will make x equal zero.

This case corresponds to the x—independent case of Section 2.2. We

.1

.2)

.3)

4)

recover the sine-Gordon limit when b equals zero. So the next simple case

is given by b equals one. We get

s
i
|
mlhdl

where

a
EEVE

Fla,q)| » (2.3.

5)
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3>

g =// Zi:c

tana = Y (c-2a)"L ¢

. 5]
an?

and F is an elliptic integral of the first kind. Still another manifestly
integrable case is b equals minus two. This yields x as a linear
combination of elliptic integrals of the first and third kinds. These
solutions can be compared to the time-independent solution of the sine-

Gordon equation which is an elliptic integral of the first kind.

In order to find out which function f in the Lagrangian would

give these solutions, we go back and solve Eq. (2.1.13) and get

2
£(0) = iz - (4 azcos@)_l - él - cos9) (2.3.6)
ba 12a"cos6(1l+cosH)

when b equals omne.

Going on to the general case, we note that when we let

:¢' = (1 ~ x%-cot %) , (2.3.7)

2ysin® term in Eq. (2.3.1) can be written as

~2 Ech (v(1+cos8)) , (2.3.8)

Identifying 2cY(l+cos®) with the potential we write Eq. (2.3.1.) as

follows
Ly 2 = (2.3.9)
) +V - «J e
2 qbx @) ¢
Going back to the Eq. (2.3.7) we note, after integration,
6 '
: Lt 2.3.
¢ =06 - J 77—cot 5 dao' . (2.3.10)

We can extract some information from this equation. We immediately

notice that the sine-Gordon 1imit, where Y is a constant gives ¢ equals 0.
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Furthermore, when Y equals ¢/(1+cosf), Eq. (2.3.1) becomes x-independent,

as we realized before. This gives ¢ equals zero as expected.

Y(8) must be an even, periodic function of 6 if the Lagrangian is
to be parity invariant. Hence, the integrand in Eq. (2.3.10) must be
even. When integrated it will, in general, give another term proportiomal
to 6 plus an odd, periodic function of 6. Therefore, by rescaling ¢ if
necessary, we>find ¢ and 6 differ by an odd, periodic function. In this
case any perilodic function of 6, when expressed as a function of ¢, is
again periodic. Hence the potential V(¢) in Eq. (2.3.9) is periodic and
the time independent solutions will exhibit soliton behaviour. In cases
where Y is chosen such that it cancels the term proportional to 6 in Eq.
(2.3.10) ¢ will be a periodic function of 8, and V(¢) is not necessarily
periodic in ¢. Then the time-independent solutions need not exhibit
soliton behaviour. The Euclidean sinh—Gprdon equation provides an example

for this case.
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11, GEOMETRICAL PROPERTIES AND INVARIANCES OF THE
GENERALIZED SIGMA MODEL

We exploit the methods that have been developed for the sine-
Gordon equation and other totally integrable systems to further
investigate the generalized sine-Gordon equation (GSG). In Section 3.1
we utilize geometrical techniques to show that just like the sine-Gordon
equation(Ba), the GSG equation can be derived from the condition ﬁhat
its underlying surface has a Gaussian curvature equal to one. We then
consider the imbedding of this surface in a three-dimensional flat space.
In Section 3.2, we formulate the GSG equation as an inverse scattering

(35) an

problem according to the general framework provided by Lax d

. ; 8
Ablowitz, Kaup, Newell, and Segur(LAKNS)( )

. Thereby we derive the
soliton connection and obtain a self-Bicklund transformation. In Section
3.3 we use the group theoretical approach to investigate the invariance
properties of the GSG equation under a transformation of the variables.
This invariance study once more singles out the special cases of the GSG

equation exhibiting extra symmetries, which in Section 2.2, have been

shown to be unified with a variable transformation.

3.1. Surface Theory and the Generalized Sigma Model

In this section we investigate the nature of the surface

underlying the generalized sigma model. To this end, we identify the

first fundamental form and the Caussian curvature of the surface. Then
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we consider the imbedding of the surface in a three-dimensional flat

space and obtain the appropriate second fundamental form.

The GSM is described by the Lagrangian density given in Eq.

(2.1.3). The action

I = J L du dv (3.1.1)

is conformally invariant. The three-dimensional unit vector n
geometrically describes the surface of a unit sphere. Since n is a
function of u and v, provided that this function is nonsingular, these
variables, or equivalently x and t may be used as the coordinates of this
two-dimensional surface. In part II it was shown that the equations of

motion and the conformal invariance of the model can be utilized to

choose coordinates such that

22 -2 p2 = Q20
u v
- (f - g—g sinfeosd) 1 (3.1.2)
= v(6) ,

where o is a function of 6 which is determined by the function f in the

Lagrangian. Thus the metric on the unit sphere is given by

- - - 2.
d32 = dn2 = (anv + nudu)
(3.1.3)
. 2
= ezu(cos2 % dt2 + 51n2 % dx™)
From this equation we immediately recognize the basis one—forms
wl = eu cos %—dt
(3.1.4)
wz = e sin %—dx
such that
2
ds2 = (wl)2 + (wz) . (3.1.5)



The connection one-form

w. = =

8] Bu
is determined from the integrability condition

dwM & oM WP

g

It
(o}

and is given by

1

2 2

The Gaussian curvature K is defined by

Letting the Gaussian curvature equal to one we get

' 6 6
((2a" cot 5 - 1)6}()X + ((2a' tan 7+ D8+

+ 2e2qsin8 =0

3] 1
W =(axcot§-—7ex) dt—(oct tang+%6t) dx .

(3.1.

(3.1.

(3.1.

(3.1.

20

6)

7)

E))

(3.1.10)

This is the integrability condition for the GSM, identical to Eq. (2.2.6).

Having identified the intrinsic geometry underlying the GSM, we

consider the imbedding of the surface S in a three-dimensional flat

space M. We define the second fundamental form of S through

—ds§=ﬂl®ﬂ1+ﬂz®wz.

The equation governing the imbedding problem is

dw' + 0t ~wl =0
ko k

where the indices range over three values. This is the Gauss—Codazzi

equation for the imbedding problem with the identification

(3.1.11)

(3.1.12)
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w13 - s
(3.1.13)
U)2 = TTZ
3
Furthermore the definition of the surface S as
3 _
W =90 (3.1.14)
imposes another condition
1 1 2
w ~ T + W AT|'2=O . (3.1.15)

We see that Egs. (3.1.12) - (3.1.15) are all satisfied when we let

(3.1.16)

3.2, The Soliton Connection and the Bidcklund Transformation

Having established the geometrical framework underlying the GSM,
we construct an SL(2,R) valued connection one-form with zero curvature.
This is the soliton connection. We perform a gauge transformation in
order to cast it into LAKNS form. Finally we find the Bicklund

transformation for the GSM. Our approach closely resembles that of

Ref. 25.

The Gauss-Codazzi equations for imbedding surfaces in-a three-
dimensional flat space form a realization of Cartan's equations for

SL(2,R)

ot + %-c.i o~ g8 =0, (3.2.1)



where

12

01 02

are the structure constants of SL(2,R), with the identification

0 i1
O =g,

@1=—%(w2+iwl)
@2 _ l_(wz N iwl)

2

For the GSM, these are

3

o i, 8
0" = > ((a co; 5
91 = - l—(ea sin 9-dx + e cos
2 2
2 1,4 . 6 Lo
© =5 (e~ sin indx le” cos =

Now we construct a connection one-form T

0 1
0 Q

r = .
o e}

with a vanishing curvature

ar + I ~TI =0 .

)
7 dt)

dt)

b

- D6 )dt - (@' tan 5

>

2

1
+ 59@t)dx s

22

(3.2.2)

(3.2.3)

(3.2.4)

(3.2.5)

(3.2.6)

This can be traced back to Gauss—Codazzi equations through Eq. (3.2.1).

Now we can briefly summarize the LARNS formalism. The

integrability conditions for the s

equations

ystems of linear partial differential
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Vig T 16V = q v

2 3
(3.2.7)
Vo TV, =V,
where the eigenfunctions V1 and V2 evolve in time according to
Vig=AV +BYV,,
(3.2.8)
V2t =C Vl - A V? s
are
AX =qC-1r8B
B, = 2iLB =q_-2q A (3.2.9)
. CX + 2iCC = r+ 2r A .

Here A, B, and C are functions of x, t and g, where ¢ is a constant. If

we construct a connection one—form with the identification

o = - (A dt + icdx)
ol = - (B dt + q dx) , ©(3.2.10)
@2 = - (C dt + r dx) ,

the condition that its éurvature vanishes yields Eq. (3.2.9). We want to
identify the set described in Eq. (3.2.10) with that in Eq. (3.2.4) to
read off the LAKNS potentials for the GSM. However, as they stand, these
two sets of equations are incompatible since £ has to be a constant. To

circumvent this problem we perform a gauge transformation
-1 -1
I' = A A7+ AdA (3.2.11)

in order to cast Eq. (3.2.4) into LAKNS form described by Eq. (3.2.10).
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Here A has a determinant equal to unity. We find that for the GSM, A has

a very simple form

A= = , . (3.2.12)

Equating the transformed one-form I'' with Eq. (3.2.10) we get

o 1q S
A = i—e cos vl
C = i—eZiCX (a' cot 9. l)@
2 2 277k
_ i -2igx 6 1
B=5e (' cot 5 EJGX (3.2.13)
1 -2igx o . 8 . . ) 1
q=e (e sin.z - 1 (@' tan 7t i)et)
__1 2igx ;o . © . . 6
T 5 e (e sin 7 +1 (o' tan 5t 1)8t)

The eigenvalue T usually has a real and a imaginary part. If we

restrict its value to be real for simplicity then

r = - g% . (3.2.14)
Furthermore,
B =-C*, ‘ (3.2.15)

In the literature, it has been shown that the Gelfand-Levitan-

Marchenko integral equation associated with the inverse scattering

. L (36) . ..
problem is uniquely solvable if r = - g% . For this specific case,

there is also a general method for deriving the Bicklund transformation
(18) ..

from the equations for the inverse problem . This 1s as follows. To

conform with the notation in Ref. 18 we let C go to —¢ in Eq. (3.2.7).

_ . - ti
Then, defining a quantity U = Vl/VZ we get a system of equations
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= s 2
UX = =210 - r U~ + q
(3.2.16)
Ut =200 - ¢ U2 + B .
For the GSM we have
U = -21¢U + q* U2 +
x q q (3.2.17a)
U =2A0 + C U2 - C*
t ’ (3.2.17b)
where
21gx
1 qt e + cc
10X
e - cc
. 21
; 1 lqt e 1Lx cc
C == —) ( n ) . (3.2.18)
5 — .2,
4+ gk e 41iTx ~ eZle + ce X

Using Eq. (3.2.17a) and its complex conjugate we derive an
expression for q in terms of U, U*, UX and Ui. Substituting this
expression in Eq. (3.2.17b), we can eliminate q and thereby get a non-
linear partial differential equation for U and U*. This equation is

invariant under the transformation
(v, o) > (-u, ) (3.2.19)

The existence of this gaugelike invariance makes it possible to
find a self-Bicklund transformation since we know we have a second

solution q' such that

-2icy —q'* U2 - q' (3.2.20a)

[
i

240 - C U2 + C# (3.2.20b)

[ont
1]

o 1 1] 3
Here A and C are functions of q', qé, q. and th‘and thelr complex

Bty o .
Bliites Wi
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conjugates. Subtracting Eq. (3.2.20a) from Eq. (3.2.17a) we obtain the

following expression for U

_ 4y Jarq)
U==1 m H(X—XO+4Ct) (3.2.21)

where H 1s the Heaviside step function. In order to get the spatial part

of the Backlund transformation for the GSG equation, we add Eq. (3.2.20a)

and Eq. (3.2.17a) and then substitute for U from Eq. (3.2.21). Rearranging

terms we get

(q—q’)X = -2i%(q+q") +i(q—q") |q#q"| H(x=x,+4Ct) (3.2.22)

Similarly we add Eqs. (3.2.20b) and (3.2.17b) and substitute for U to get

the temporal part of the Bicklund transformation.

3.3. Invariances and Infinitesimal Properties

In this section we shall investigate the invariance properties of
. . - . (23)

the GSG equation under one-parameter Lie group of transformations . We
shall find the invariant variable in terms of which we can reduce the
partial differential equation with two independent variables and one

dependent variable to an ordinary differential equation. Finally we find

the explicit solution of this ODE for a special case.
Let us rewrite the GSG equation, Eq. (3.1.10).

2 2
2v()sind + 6 F (0) - 8 F)(8) + O F] + 6" F)

(3.3.1)
= ..) =0
= H(0,0_,8 (5 0)
Here
Y 9
Fl =1 + 79 tan 5 (3.3.2a)
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F2'= 1 _TCOt*z— (3.3.2b)

V= (3.3.3)

and subscripts denote partial differentiation with respect to 6. If H is

lnvariant under the one parameter (g) group of transformations obtained

from the infinitesimal transformation

x = x + ef(x,t,0)
t' =t + e1(x,t,0) (3.3.4)
' =8 + enx,t,0)

through exponentiation, then

XH =0 (3.3.5)
where X is ‘the operator
5 ) 3 3 3
X = B+ Tye + Ogp + [QXJ o+ {QXX] ey (3.3.6)
X - X XX

Here [Q ] and {Q ] are the infinitesimals for ©_ and O _ respectively
X XX x XX

whose explicit forms in terms of &, ), and T can be obtained from Eq.

(3.3.4). Furthermore if H is invariant under the transformation defined

by Eq. (3.3.4) then the following equation must hold

dx _dt _ db (3.3.7)

Using Eq. (3.3.5), we find the infinitesimals R, £ and T. Then
substituting these values in Eq. (3.3.7) we get a solution with two
arbitrary constants. One of them, B, will be the similarity variable. The

other one, f£(B8) will be the independent variable.

For Eq. (3.3.1), when we impose the condition (3.3.5) and collect

together the like-derivative terms in 6 we get
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T=1(x) +b

(3.3.8)
£ =28(t) +b
restricted by the following equations
T =
x T2 2 )
(3.3.9)
T I 1
x F2 T 5 i
Equation (3.3.9) tells us immediately that either
2
F,o=a"F,, (3.3.10)
where a is just a constant, or
T =1 =9, (3.3.11)

This equation is the same as Eq. (2.2.13) in Section II. If this
relation holds, then the integrability condition of the GSM reduces to
the sine—-Gordon, the Euclidean sinh-Gordon, the time-independent or the
space-independent eqﬁations for different values of a2. The invariance
properties of the sine-Gordon equation has been analyzed in Ref.23; the
other three cases are related to the sine-Gordon equation by a variable

transformation.

1f we do not have the special case described by Eq. (3.3.9) then

using Eqs. (3.3.11), (3.3.8) and (3.3.7) we find the invariant variables

8 and £(B)

(3.3.12)
£(B)

[}
]
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This reduces the GSG equation to a particularly simple form,

2 '
((Fz - % Fl)f'} = 2y sinf (3.3.13)
b

where primes denote differentiation with respect to B.
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IV. CANONICAL STRUCTURES FOR DISPERSIVE WAVES IN SHALLOW WATER

The equations governing long waves in shallow water consist of a
familiar pair of coupled first order partial differential equations which
can be interpreted as a Hamiltonian system in several different ways.

. , (37) . . . .
First, Luke's 7 variational principle fcr these equations was cast into

(38) (39) (40)

canonical form by Zakharov , Broer , and Miles But with this

approach it was not possible to obtain an explicit expression for the
. . ' . . . (41)
exact Hamiltonlan in terms of the canonical variables. Later Manin
considered the symplectic structure of shallow water waves from a
completely different point of view. Recently a new formulation of these

(30)

equations by Nutku in terms of potentials led to the conmstruction of

the requisite Hamiltonian through the use of Dirac's theory of

(31)

constraints In addition to these Hamiltonian structures the
equations for shallow water waves admit an infinite number of conserva-
tion laws which are in involution relative to Manin's symplectic form,
or alternatively possess vanishing Poisson brackets with the

(28)

Hamiltonian

This variety of interesting structures makes the theory of
shallow water waves a prototype of two-dimensional field theories. It
will be of interest to find out which properties of this system of
equations are stable in the sense that they survive in an appropriately
generalized form when the equations are modified to accomodate new

effects. To this end we shall now consider the theory of shallow water
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waves including dispersion. We shall find that it is possible to

generalize both Manin's symplectic structure and the Hamiltonian obtained
by applying Dirac’s theory to a new variational formulation of the

equations for dispersive waves. However the infinite set of conservation

laws are lost.

The plan of this part is as follows: In Section 4.1 we consider
the equations governing dispersive waves in shallow water and their vari-
ant, the Boussinesq equations. By introducing potentials we construct new
variational principles for these equations. It is not a straight-forward
task to formulate the correct initial value problem for the Bouséinesq
equations as they possess time derivatives of an order higher than that
of the shallow water limit. We shall show in Section 4.2 that with the
help of the variational primciple the Cauchy problem for the Boussinesqg
equations can be posed correctly, and in general it entails the solution
of a constraint which is given by a differential equation. We shall con-—
sider the Hamiltonian formulation of dispersive waves in Section 4.3. The
Lagrangian is degenerate, as in the limit of no dispersion and once again
we shall use Dirac's theory in order to cast this system into canonical
form. In Section 4.4 we shall generalize Manin's symplectic structure to
allow for the effects of dispersion for both types, including the
Boussinesq equations. These are four conservation laws for dispersive
waves corresponding to the conservation of mass, linear momentum and
energy, and one further equation which follows as a comsequence of these
three. In Section 4.5 we shall construct these conserved quantities, first
obtained by Whitham(42) in the Boussinesq case, and prove that there are
no further conservation laws in either case. Finally, in Section 4.6 we

discuss the invariance properties for the shallow water wave equations

without dispersion.
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4.1. Potentials and Variational Principles

. (28)
We refer to Whitham for a complete discussion of the equa-

tions of motion for long waves in shallow water including the effects of

dispersion. In deriving these equations we are first led to

b, + (b)) =0, (4.1.1a)

u, +ouu o+ hx + Vh3x =0, (4.1.1b)

where u is the velocity and h the height of the fluid. Subscripts denote
partial derivatives with respect to time and space coordinates, t and x.
Shallow water equations without dispersion are obtained when the constant

v in Eq. (4.1.1b) is set equal to zero. In place of Eqs. (4.1.1)

Boussinesq(43) has proposed
h + (hu)_ =0, (4.1.2a)
t X
U + uu + hX + thtt =0, (4.1.2b)

for dealing with dispersive effects.

Here and in the following we shall first discuss the system of
Egs. (4.1.1) and then consider the Boussinesq case of Eqs. (4.1.2). In

this way we hope to avoid disturbing the continuity of the discussion.

We shall start with a reformulation of these equations 1in terms
of potentials. For this purpose note that Egs. (4.1.1) are the conditions

for the one-forms

L pdx - hudt (4.1.3a)

I
il

e
t

1 2
= udx - (—2— u” + h + vhxx)dt (4.1.3b)
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to be closed

1 2
dw™ =0 , dw” =0 (4.1.4)
Therefore, using Poincaré's lemma we have locally
. | ,
W =d¥Y W = do (4.1.5)

where ® and ¥ are scalar potentials. In term of components, Egqs. (4.1.5)

and (4.1.3) vield the relation

P = - _ (L

{ u , o = - (7 u” + h+vh ), (4.1.6a)
XX

¢ s (4.1.6b)

between the phenomenological fields u, h and the potentials ¢, Y. The
integrability conditions of Eqs. (4.1.6) yield the original equation of

motion, and their compatibility requires that

Yo+ oY =0 ' (4.1.7a)

+ Y+ WY = 0 (4.1.7b)
X X

which are non-linear partial differential equations satisfied by the

potentials.

These equations can be derived from an action principle
ST =0 I=J[_ldxdt

where

—
]

2 2 2 .
- VY (4.1.8)
@th + @XWt + @X Wx + Wx VY o

is the Lagrangian density.
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The introduction of potentials for the Boussinesq equations

follows along similar lines. The differences consist of substituting h

t
in place of hXX in Eqs. (4.1.3b) and (4.1.6b) which results in the

equations
\yt * (DX\{JX =0 (4.]_.98.)
¢+ l@ 2, Yoo+ =
t T Zx x TV =0 (4.1.9b)

for the potentials. Finally

. 2 2 2
L2. @tAX + ‘th + @X Wx vWXt + Wx (4.1.10)

1s the Lagrangian for the Boussinesq equations.

4.2. Cauchy Problem for the Boussinesq Equations

The difference between Egs. (4.1.1) and (4.1.2) may at first
sight appear to be slight but in fact these are two comﬁletely different
sets of equations. In particular the initial value problems for these
equations exhibit important differences. The Cauchy data for Egs. (4.1.1)
is essentially the same as that of the ordinary shallow water théory
obtained in the limit v = 0. On the other hand in Egs. (4.1.2) we find time
derivatives of an order higher than that of the dispersionless limit w0

which changes the character of these equatioms drastically.

In order to isolate the constraints and the dynamical variables
for the Boussinesq equations we shall start with a variational

formulation of these equations. For this purpose it 1s necessary to

modify the Lagrangian in Eq. (4.1.10) so that it will involve only the

first derivatives of the potentials. We shall therefore introduce

another potential T and ~7ith its help express the Lagranglan L2 in the form
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L, = 2y _ 2 2
3 = Qb oY ey T Y+ T ) = 2T ¥+ 0T+ (L+ )Y
(4.2.1)
where
1/2 .
k= [T, p o= sign (V) (4.2.2)
Variations with respect to ¢, ¥, T lead to
{Wt + @XWX} =0 (4.2.3a)
{0, - T+ 1y 2 T+ (0 +p)VY} =0 (4.2.3b)
t t 2°x SR ? U
T - p\yx -+ pK\th =0 (4.2.3¢)

respectively. Remembering that @X =u, ¥ = h we see that Eqs. (4.2.3)

reduce to Egs. (4.1.2).

We see that the time derivatives of ¢ and T appear only in the
combination ® - kT in the Lagrangian (4.2.1) and subsequently in Egs.

(4.2.3). This suggests that we define
% = o—«T ' (4.2.4)

and eliminate T in favor of I from the problem. In this case we find

Yo+ oY =0, (4.2.5a)
t X X
s o+ le? L)+ (i) v =0, (4.2.5b)
t 2°x K X ‘
L - = (4.2.5
¢ - L - pr¥, v ¥) =0 c)

where we have omitted possible arbitrary functions of time on the right

hand sides of Egs. (4.2.52,b).
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Equation (4.2.5¢) contains no time derivatives of the potentials
and is therefore a constraint equation which must be satisfied at every
slice t = const. Given the initial values of @, ¥ and subject to Eq.
(4.2.5¢) we can solve Eqs. (4.2.5a,b) to obtain the values of ¥ and I at
the next instant of time. But ¢ itself is only a constraint variable and
its time evolution will be determined by inserting the new values of V

and ¥ into Eq. (4.2.5¢) and solving this differential equation for & at

that 1nstant.

4.3. Hamiltonian

The Hamiltonian formulation of a system of equations is not very
useful if the Hamiltonian cannot be given by a local expression in terms
of the canonical variables. The existence of a constralnt which is a
differential equation such as the ome in Eq. (4.2.5c) makes it impossible
to construct a local Hamiltonian for the Boussinesq equations. So we
shall not consider the Boussinesq equations in this section. On the other
hand Eqs. (4.1.1) present a different case and we shall now use Dirac's

theory to construct the appropriate Hamiltonian for these equationms.

The variationmal principle in Eq. (4.1.8) is not suitable for
passing to a Hamiltonian formulation because the Lagrangian contains the
second derivatives of VY. In order to obtain a variational principle where
the action functional depends only on the first derivatives, once again

we shall introduce another potential T. We can readily verify that the

Euler-Lagrange equations for

2 , 2 2
sy - -2 TY_+pT " +(1+p) V¥ (4.3.1
L, = 0¥+ 0 Y m 2T Y, TY *oT" + (L+p) ¥ )

yield Eqs. (4.1.1) together with
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T= DWX - QKWXX (4.3.2)

which serves as the definition of T.

momenta

The Lagrangian (4.3.1) is degenerate. That is, the canonical

My =¥,
My =0, (4.3.3)
n,=0 ,

cannot be inverted for the velocities and we need to use Dirac's theory

of constraints in order to cast this system into canonical form. There-

fore we

introduce

1 o) X
= — 4.
C2 HW @X s (
Cqy = 1Ip s

as primary constraints. Using the canonical Poisson brackets between

potentials and their conjugate momenta we find that

{Cl(X), CZ(X')} = =28 (x-x") , (4.

is the only non-vanishing one among the Poisson brackets of the

constraints. The primary constraints are therefore second class. The

total Hamiltonian

will be

H = dex s Ho=H_ +Hf

given by

3.4)

the

3.5)



38

g
If

I @t + I

o o lyt + I

Y e =L (4.3.6a)

H' = ACI + 0C2 + UC3 (4.3.6b)

where A, 0, and U are Lagrange multipliers. These multipliers will be

determined from the requirement that the Poisson bracket of the

Hamiltonian with each one of the constraints should vanish. But we find

that
{c3, H} = 2(pT~9 + ¥ ) (4.3.7)
X XX

cannot be set equal to zero because it is independent of the multipliers.

Therefore we introduce a secondary constraint

¥ = 2(pT - L KWXX) (4.3.8)
and modify Eq. (4.3.6b) as

H' = Acl +0C, + UC3 + Py (4.3.9)

where U is another multiplier. There are no further constraints in this

problem because with the choice
o= -0V
X X

p="T" Q\PX_ oY

XX

v =—p(®XWX)X-'pK(© v )

X X XX

1 2 - - (4.3.10)
A= -5 o} wx (%4

X XXX

the Poisson brackets of the Hamiltonian with C,, C,, C, and ¥ all vanish.

From Eqs. (4.3.6a,b), (4.3.3), (4.3.8) and (4.3.10) we find the total

Hamiltonian density
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1,2 2 2
H==0 “y+p z_ Ly 2y
7 %% Ty TY W el -2 TY +2 KTWXX-H©<5®X +-vx+-vw3x)

-3y - -

iy = @D -y ¥ ) b, (4.3.11)
where we have discarded a divergence. In terms of u, h Eq. (4.3.11) 1is,
up to a divergence, equivalent to

_1 2 1,2 1 2
H 7 u'h + E—h + vthX + E-vhx (4.3.12)

by virtue of Eqs. (4.1.6) and (4.3.3). As we shall reconfirm in the next

section, this is the energy density for dispersive waves in shallow

water.

4.4, Symplectic Structure

The symplectic geometry of the equations governing shallow water

( (29)

waves was first studied by Manin 41) (see also, Cavalcante and McKean

and the references contained therein). We shall now extend Manin's

symplectic structure to include dispersive waves.
For Egs. (4.1.1) the phase space consists of the set
{u, h; hx’ hxx} (4.4.1)

of infinitely differentiable real functions of period one and

5 8 B 3

- (2 2 4.2
vV = ( , , th » BT (4.4.2)

XX
will denote the gradient in function space. If A, B are two smooth

functions of these variables the Poisson bracket is defined to be .

1
{A,B} = ( VAJVBdx (4.4.3)

4

0

where
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o
_ D
J = ; A (4.4.4a)
-AJ
)
D=-=7> (4.4.4b)
Lol 52
1 Vv 5tox (4.4 .4c)

is the Hamiltonian operator. With this definition of Poisson bracket,

Jacobi's identity
{a, {B,c} } + {8, {Cc,A} } + {c, {a,B} } =0 (4.4.5)

is satisfied. From Eq. (4.3.12) (see also Eq. (8) in sequel) we find that

the Hamiltonian is given by

o2 1.2 1,2
H = J (G uh +5h" +vhh _+ > vh 7)) dx (4.4.6)

We can verify that with y running over the variables in (4.4.1)

Hamilton's equations

Y. = {v,H} N € ]

reduce either to Egs. (4.1.1) or identities and in fact it was this
requirement which led us to the choice of variables in (4.4.1) and the
definition of Hamiltonian operator (4.4.4), given the Hamiltonian

(4.4.6). An integral of motion P will satisfy
{p,H} =0 (4.4.8)

and this condition amounts to

_ = (4.4.9a)
Puu hPhh * quxxu 0
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h h “x (4.4.9b)

generalizing the result of Lax(44) for shallow water waves.

The Boussinesq equations (4.1.2) admit a symplectic structure
with the following modifications to the above scheme. In place of the

variables in (4.4.1) we consider the set

{u,h; b, b} (4.4.10)

where the space derivatives of h are replaced by time derivatives and

this change carries over into the definition of the gradient V. The

definition of the Poisson bracket via Eqs. (4.4.3) and (4.4.4) is the

same as before except that now

32

2 _ (4.4.11)
2

ot

==
1]
< | b

in place of Eq. (4.4.4c). The Hamiltonian for the Boussinesq equations

= + = + + — ot

differs from Eq. (4.4.6) according to the genmeral rule that space
derivatives of h are replaced by time derivatives. Similarly we find that

for P to be an integral of motion

- =0 (4.4.13a)
Puu hPhh * Puttu

p -(p, ) =0". - {(4.4.13Db)

4.5, Conservation Laws

The equations for shallow water waves admit an infinite sequence
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of conservation laws of the form

Po+Q =0 (4.5.1)

where P, Q are functions of u, h. The existence of infinitely many
integrals of motion makes it possible to construct exact solutions. We

shall now show that this property is lost when the effects of dispersion

are included.

. (42 .
Whitham ) has found that the Boussinesq equations (4.1.2) which

are already in the form of conservation laws admit two further ones
corresponding to the conservation of momentum and energy. The analogous

conservation laws for Eqs. (4.1.1) are

2 1.2 1 2

(uh)t+(uh+5h +vthX—§th)X=O
1 2 1.2 1 2 1 3 2 _ _
(fuh+7h +\)hhxx+§ \)hX )t+(7uh+uh +Vhh__ \)hhxt)X =0

(4.5.2)

respectively. We can read off P from these equations and verify that it
satisfies Eqs. (4.4.9) in each case. In particular, the conserved

quantity for the latter of Egs. (4.5.2) is the Hamiltonian (4.4.6).

There are no further conservation laws for v # 0. In order to see
this let us consider the fifth conservation law. The requirement that it

reduce to the shallow water expression leads to

1 3 1.3
(% u3h + uh2 + £) _+ (§-u h +5u h™ + §'h

. tg) =0 (4.5.3)

where f and g depend on u, h, hx’ ht, hxx’ ... and vanish in the limit
v > 0. Then we find

2 2 (4.5.4)
£ +g, =V (uh + N )hxxx
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and using Egs. (4.1.1) repeatedly this can be cast it into

the form
f +g =v(hh) +v (2 2 12
t X X t°t (u hhxx * hx (Uh)t *h hxx 2 ht >X
- Vhh h. + v h (4.5.5)
X XX xx 3x o

The first two groups of terms on the right hand side of Eq. (4.5.5) are
of the desired form but it is not possible to write either one of the
last two terms as a total divergence. It will be sufficient to prove this
only for one of them, say hhxhxx' In order to express this term as a

divergence we consider all possible divergences which can result in such

an expression. Thus we write

2

hhh  =a(hh %) + bh%h ) + c(h?h ) (4.5.6)
X XX X X XX X X XX

where a, b and ¢ are constants which must be chosen so as to make this an
identity. Note that it is unnecessary to include (h3)3X in Eq. (4.5.6)
since it reduces to the last term above. From the coefficients of all
linearly independent functions in Eq. (4.5.6) we obtain a system of
linear equations for a, b and c. This system of equations has no solution,
which makes it impossible to express hhxhXX as a total divergen;e. There-
fore there is no fifth comservation law for Egs. (4.1.1). Similarly we
can prove that the Boussinesq Eqs. (4.1.2) do not admit conservation laws

beyond those already given by Whitham.

4.6, Invariances

We shall now point out an invariance of the equations for shallow
water waves which appears not to have been noted before. This invariance
is non—-trivial only in the 1imit v > 0 and, as in the case of infinitely

i it i i he effects of
many conservation laws, 1t 1S lost when we include the
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dispersion.

We shall use Lie's theory of one-parameter group of transforma-
tions to analyze the invariance properties of Egs. (4.1.1) with v equal
to zero. We shall find the invariant variables for this system and there-
by reduce the partial differential equations to ordinary ones(23). This

will enable us to construct an exact solution of these equations.

Let us rewrite Egs. (4.1.1) with v equal to zero in the form

It

Hl(u,h,hx,...)
(4.6.1)

Hz(u,h,hx,...) = ht + uhX + hux =0

If these equations are invariant under the following infinitesimal

transformations

x = x + €€ (x,t,u,h)

t =t + et (x,t,u,h)

(4.6.2)
u=u + en (x,t,u,h)
h =h + 6§ (%,t,u,h)
where ¢ is an infinitesimal parameter, then
XH, = XH, =0,
3 ) 3 3 9, 3 463
X =& §;~+ T§E.+ nga-+ 68h + {ﬂt} aut {dt} 3ht e (4.6.3)
with {n.}, {8} ... denoting the first order changes in the derivatives
£t t
of u , h ... . In terms of u, h, N, T, §, £ the explicit expressions

t’

for the "higher extensions" {nt}, {6t} can be obtained by using Egs.

(4.6.2) and a typical extension is

6,3 =8+ h (87T ) u (87T ) ~ &R, T g bR mEuh TR
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From Eqs. (4.6.4) we get

{nt} ot u{nx} + {8} =0
(4.6.5)

+ i
{8,.} u{éx} *du + hin } + nh, =0
into which we must substitute extensions. Eqs. (4.6.5) are algebraic
equations for the variables u, h and their derivatives. Since these
variables are linearly independent we require that their coefficients

depending on (n, &, T, §) vanish separately. This leads to

£ =at +b
n=a
(4.6.6)
T =2c¢
§ =20
_where a, b and ¢ are arbitrary constants. Then from
%§_= %§.= %$.= %? (4.6.7)
we find
cdx = (at + b) dt (4.6.8a)
adt = cdu (4.6.8b)
adx = (at + b) du (4.6.8c)
§ = const (4.6.84d)
with can be integrated readily.
Integréting Eq. (4.6.8a) we obtain the invariant variable
(it_.tp_)z _ 2ax const = B (4.6.9)

C C
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and then from Eqs. (4.6.8b,c) we find

_ t + b2
= fu- i‘z“* (4.6.10)

B - const

which suggests that we define

u - (at + b
c

g (B

i

) (4.6.11)

as an invariant function. Finally we shall take the right hand side of
Eq. (4.6.8d) as f(B) and change from the variables (u,h,x,t) to (£(B),
g(B),B). In this way we can write Eqs. (4.6.1) as a pair of coupled
ordinary differential equations for f and g

get + £' = 1/2

(4.6.12)

gf' + fg' =0
where prime denctes differentiation with respect to 8. These equations can
be integrated and we find a solution where f and g both satisfy the

algebraic equation

f3 c.” =0 v (4.6.13)

| =
pd

- (%.g +C,) £ 4

and Cl’ 02 are constants. This solution contains five arbitrary constants.

When we apply this procedure to Egs. (4.1.1) which include
effects of dispersion, we find different results. The differences stem

from the fact that when v is different from zero Eqs. (4.6.8) are

replaced by

T = a
£=b (4.6.14)
n=20
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and this leads to the standard choice

a (4.6.15)

as the invariant variable.

With the Ansatz (4.6.15) Eqs. (4.1.1) can be integrated to yield

b b [ -
x—gt=————-JUl/2hdh,
avv
where
_ o4 3 2z 2
U=h 2C,h 2C;h ¢,’h,
and
C
-tk (4.6.16)
h a

which results in elliptic functions.
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V. SUMMARY

There are still no general notions of what soliton solutions
really are, which classes of equations possess them, and how they are
related to the presence of a canonical structure and properties assumed
to be associated with complete integrability, such as Bicklund and
inverse scattering transformations, an infinite sequence of conservation
laws, and an imbedding structure. In this work, we considered two
different models that have been important in the theory of solitons; the
0(3) o-model, and the shallow water waves equation in two-dimensions. We
have analyzed generalizations of these models to find out which properties

survive modifications.

First, we have constructed a family of classical two-dimensional
0(3) o-models whose integrability condition is a generalization of the
sine-Gordon equation. Searching for special cases of this equation which
exhibit symmetries, we have found a one-parameter family of Lagrangians
whose integrability condition is again given by the sine-Gordon equation.
At special values of this parameter the integrability condition abruptly
changes from the sine-Gordon equation to the Euclidean sinh-Gordon
equation, whereas at precisely these values the equation becomes either
the time-independent or the x-independent one-dimensional harmonic
oscillator equation. Thus the physical behaviour of the system undergoes

a change at these special values of the parameter. Going back to the

general case, we have shown that the time-independent solutions
* ]
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in general, but not always, exhibit solitary waves. In some cases these
solutions, just like the solitons of the sine-Cordon equation, are

described by elliptic functions.

We have then exploited the methods that have been developed for
totally integrable systems to further investigate the generalized sine-
Gordon equation. We have utilized geometrical techniques to show that
just like the sine-Gordon equation, the GSG equation can be derived from
the condition that its underlying surface has a Gaussian curvature equal
to one. We have then considered the imbedding of this surface in a three-—
dimensional flat space. We have also formulated the GSG equation as an
inverse scattering problem according to the general framework provided by

aX(35) (36)

L (LAKNS). Thereby we

and Ablowitz, Kaup, Newell, and Segur
have derived the soliton connection and obtained a self-Bidcklund
transformation. Furthermore, we have used the group theoretical approach
to investigate the invariance properties of the GSG equation under a

transformation of variables. This invariance study has singled out, once

again, the special cases of the G5G equation exhibiting extra symmetries.

In the study of shallow water waves with dispersion we have
emphasized those aspects of complete integrability which we had not
considered in the case of the generalized O-model, namely the existence
of a canonical structure and an infinite sequence of conservation laws.
As in the case of shallow water equations, we have introduced two
potentials for long waves with dispersion. The integrability ;ondition
for these potentials has yielded the equations of motion. However, since
s of just these potentials included second

the Lagrangian in term

derivatives, we had to introduce a third potential. The ensuing Lagrangian
s

i ! constralnts to
was degenerate. Therefore, we have used Dirac's theory of

cast it into canonical form, which enabled us to express the Hamiltonian
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explicitly in terms of the three potentials and their conjugate momenta.
We have also been able to genefalize this Hamiltonian structure by
defining the Poisson brackets for the system, whereby we have cast the
system into symplectic form. Through this symplectic structure, we have
derived the general equation which all the integrals of motion satisfy.
However, we have also shown that it is not possible to write down explicit
forms of any more than four integrals. Furthermore we have analyzed the
invariance properties of shallow water waves with dispersion. In the

process we have found one explicit solution of the dispersionless case and

one for the case with dispersion in terms of elliptic functions.
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