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ABSTRACT 

The problem of detecting a sinusoidal signal in white noise and esti-
. 

mati on of its parameters is essentially a problem in signal processing such 

as radar, sonar, biomedical, etc. In this dissertation, various modern spec-

trum estimation approaches, Maximum Entropy Spectral Analysis (MESA) spec-

tral· moments and analytic signal techniques and their statistical character-

ization hav.e been investigated and formulated in detail. 

The development of modern spectrum estimation known as parametric 

techniques for estimating parameters of ~inusordal signals in white noise 

is important. Therefore the parameter estimation technique based on pre-

viously appeared and as well as some other newly developed modern spectrum 

estimation procedures have been presented in this dissertation. Comparative 

performances and drawbacks of most of the parametric techniques known as 

.Maximum Likelihood (ML), Maximum Entropy (ME), Pisarenko, Kumerason, Prony 

methods used in frequency· estimation have been summarized. 

The analytic signal model called as Argument method to estimate fre­

quency and bandwidth of a sinusoidal signal is studied in detail. New ex-

pressions related to the expected value , variance and probability density 

function of estimate are derived analytically. 
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The problem of the estimation of spectral moments and their· appli­

cations are also studied. Special attention is given to the case of sinuso-

ids in white noise. In fact, for this case, properties, statistics and 

asymptotic behaviour of the spectral moments are investigated. The moment 

estimates, are also used for the hypothesis testing problem where the alter­

native and null hypotheses represent the tone in noise and noise only situ­

ations, respectively. The potential use of the moments for the tone frequ­

ency estimation is also considered. 

Finally this dissertation deals with. the effectiveness of the Autoreg­

ressive method in frequency estimation problem. In this sense, the coeffi­

cient deviation and root displacement of AR polynomial are formulated for 

different structured matrices such as circulant, transformed circulant, 

complex Toeplitz and real symmetric. The frequency analysis of AR method 

based on Sakai's and Taylor series approximation methods is studied. The 

analysis establishes the relationship between frequency error and coeffi­

cient deviation. The statistical characterization of radius of signal poles 

is formulated as a final study. 

iii 



OZET<;E 

Beyaz gUrUltUye bulanml§ sinusoidal imlerin sezimi ve parametrelerinin 

kestirimi j radar, sonar, biomedical ve benzeri problemlerde esash bir sorun 

te§kil etmektedir. Bu tezde
O 

~e§itli ~agda§ izge kestirimleri, en bUyGk entropy 

izge momentleri ve analitik im teknikleri ve bunlann istatistiksel karekteristik-

leri incelenip formUlize edilmi§tir. 

Sinusoidal imlerin parametrelerinin kestirimi i~in kullamlan, parametrik 

yontemler olarak da bilinen ~agda§ izge kestirimlerindeki geli§meler onemlidir. 

Bu sebeblej daha once kullamlan yontemlerle ° birlikte, zamammlzda kullamlan 

yontemler bu tezde sunulmu§tur. <;agda§ izge kestirim yontemleri olarak bili-

nenj en bUyUk olabi!irlik,en bUyUk entropi, ° Kumerason, RfIO.I'IY gibi yontemlerin 

ba§anmlan ve sorunlan ozetlenmi§tir. 

Beyaz gUrUltUdeki sinUsoidal imin slkhk ve bant geni§liginin kestiriminde 

kullamlan ve argument yontemi oyarak da bilinen analitik im yontemi detayh 

olarak incelenmi§tir. Kestiricinin; beklenti, degi§inti ve olaslhk daglhrri islevine 

ait yeni ifadeler elde edilmi§tir. 

izge momentlerini kestirimi ve uygulamalan Uzerinde de ~ah§llml§tlr. 

Ozel olarak sorun, beyaz gUrUltU i~indeki sinUsoidal im durumu i~in irdelenmi§tir. 

Bu durum i~in izge momentlerininj ozellikleri, istatistiksel ve sonu§ur davram§~ 

Ian ara§tmlml§tlr. Kestirilen momentlerin hipotez smaVl i~in kullamlmasl ve 

" 
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diger onemli uygulamalarda ele ahnml~tlr. 

-, 

·Otoregresif modelin slkhk kestirimindeki etkinligi c;ah~mamn son 

bolUmUnU kapsamaktadlr .<;e~itli dizey yapllarma gore, otoregresif c;okterimli­

sinin katsaYl sapmasl ve kok degi~imi analitik olarak elde edHmi~tir. Slkhk 

hata analizi Sakai ve Taylor seri ac;1l1ml anlammda irdelenmi~tir. Analiz sIldlk 

hatalan ile katsaYl sapmalan ve kok degi~imleri He ilgili baglantIlar ic;ermek-

v 

tedir. Son bolUmde bu koklerin yanc;aplarmm istatistiksel davram~lan tUretilti~tir. 
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CHAPTER I INTRODUCTION 

A summary of many of the new techniques developed in the last years 

for spectrum estimation of discrete time antt1ysis is presented in this sec-
,. 

tion. 

1. 1. LITERATURE SURVEY 

Power spectrum estimation has progressed through several stages for 

at least 18th century. In evaluating spectral estimation methods, three cri-

teria are usually used. The first resolution: the ability of an estimate- to 

reveal the presence of two equal power tone (sinusoidal signal) whose frequ-

ency are close to each other. When two sinusoidal signals are resolved, 

there are two· peaks in the spectrum. If not resolved, only one peak is pre-

sent. Also for good resolution, the peaks must· Qe narrower and sharper. . No-

te that resolved peaks do not necessarily· imply that the peaks are located 

at the proper frequency. The second criterion is therefore the bias of the 

estimate. When one source is present, the bias (the error in the location 

of the spectral peak or the difference between tone frequency and the loca-

tion of the spectral peak) is rarely zero or usually non zero. These two 

criteria of the "goodness" of a spectrum m"!-y conflict: good resolution is 

often -obtained at the expense of a biased estimate. The third criterion is 

variability: the range of the frequency over which the location of a spect­

ral peak can be expected to vary. Analytic evaluation of the variability 

for a given spectral estimate is usually difficult. The Cramer Rao lower bo-

und on the variance is usually used as a benchmark to evaluat~ the measured 

performance of a given method. Therefore a major problem in the time series 



analysis is choosing an algorithm to estimate the spectrum from a finite 

observation of the process in such way .that the estimate is not dominated 

by bias, 'is consistent and statistically meaningful and maintains these 

properties in the presence of some variations of assumptions. 

Before going ahead, let us give the paragraph from [lJ which can be 

expressed originally as follows: 

Let us say a few words about the terms "spectrum" and "spectral". Sir 

Isaac Newton introduced the "scientific term "spectrum" using the Latin word 

for an image. Today in English, we have the word spectre meaning ghost or 

appariation and the corresponding adjective spectral. We also have the sci­

entific word spectru-:Jl and the dictionary list the word spectral as the cor­

responding adjective. Thus "spectral" has two mewanings. Many feel that we 

should be creful to use "spectrum"· in place of "spectral" a) whenever 

the reference is to data or physical phenomena and' b) whenever the word 

"estimation" . 

The mod·ern history of spectrum estimation begins with Blackman and Tu­

key [2] in 1949 which is actually the statistical counterpart of the class-

ical Fourier transform. Th .. ~ir method for spectrum estimation can be summar­

ized as follows: 

-Estimating the autocorrelation function from the discrete observa-

tions. 

-Windowing the autocorrelation function in an appropriate manner. 

-Fourier transforming the windowed autocorrelation function to final-

ly obtain the estimated spectrum. 

/ 
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This method made possible an active develop~ent of spectral estimation by 

researchers. However, it was computationally expensive". A significant decre­

ase in computational complexity was achieved with the publication in 1965 

of the Fast Fourier Transform (FFT) algorithr:n by Cooley and Tukey [3] and 

this method became popular and is still used today. 

Since Blackman-Tukey Spectral Estimate is the Fourier Transform of 

the windowed autocorrelation estimate, various procedures are used to esti-

mate the autocorrelation function. The objective is usually to obtain a mi-

nimum bias and minimum variance estimate of the true autocorrelation func-

tion. Similarly the estimate of the autocorrelation function is windowed to 

reduce the bias and variance of the spectral estimate thus increasing its 

statistical stability. Various window functions are used which generally un-

related to the data or random process being analysed. B~t the finite re-

cord length of the autocorrelation function esti.mate and the windowing pro-

cess applied to the autocorrelation function decrease the resolution of the 

spectrum. Another approach for reducing the variance of the estimate is 

known as segmental averaging [4]. In this case the data record is decimated 

into independent segments and the autocorrelation function of each' segment 

is estimated from which the average Is calculated. Then the power spectrum 

estimate is the Fourier transform of the average of the autocorrelation 

functions. Variations on this task include windowing each data segment pri-
" . 

or to estimating the segmental autocorrelation functions and/or windowing 

each segmental autocorrelation function. The expected value of these power 

spectral estimate is biased which is easily seen in the frequency domain. 

The expected value of the estimate is the convolution of the spectrum of 

the segmental window with the true or actual power spectntm. The bias of 

these estimates exceeds "that of the unsegmented or complete data record 

3 
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since the data segments are shorter than the complete data record, thus 

implying that the main lobe of the segmental spectral window is broader 

than the window used for the previous case. However the variance of the 

estimate is less than the variance of th~ unsegmented estimate by a factor 

equal to the number of segments which are . assumed uncorrelated. Also 

segmental averaging procedure decrease the resolution with respect to 

previous one. An alternative method used in spectrum estimation for 

reducing the variance of the estimate is the Barlett method. It is based on 

calculating the perlodogra.m of individual segments of data and averaging. 

This is similar to averaging the autocorrelation function of each segment 

and then transforming. 

Further important contribution in spectrum estimation were the intro-

duction of Maximum Entropy developed by Burg [5] and Maximum Likelihood by 

Capon [6]. The major attraction of these two methods is that they show con-

siderable promise for estimating spectrum 'when the length of available data 

is short. 

Maximum Entropy method attempts to fit, in a Least Squares sense, an 

Autoregressi ve 

ral techniques 

a . ] One first 
p . 

(AR) model to an input time series [7]. There are two gene-

for estimating . the filter coefficents La! ,a2, ... 

prop~sed by Yule [8] and by Walker [9], involves the so-

lution of the normal equations and necessarily requires explicit' knowledge 

of the autocorrelation function of the input data. The other , associated 

with B'Jrg estimates the AR parameters without prior knowledge of the auto-

correlation funtion. 

Maximum Likelihood method spectral estimate may be derived by solving 

a classical optimal filtering problem. The filter is designed to pass the 
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power in a narrow band about the signal fi-equency of interest and minimize 

the power due to undesired spectral components such as noise,· or interfer­

ance. The Maximum Likelihood. method may be considered a minimum variance 

unbiased estimator ·of the spectral compoj1ents [10]. 

Edward and Fitelson [II] formally proved Burg's observation that the 

Maximum Entropy method provides a spectrum which maximizes the entropy of a 

stationary random process consistent with the first M lags of the autocor­

relation function. The Maximum Entropy method suggests instead of appending 

zeroes to increase the length of the estimated autocorrelation function 

that they should be extrapolated or predicted beyond the data limited ran-

ge. The objective is to add no information as a result of the extrapolation 

process. In contrast to Maximum Entropy method, the Maximum Likelihood met­

hod does not provide an extension of the autocorrelation function and the 

inverse Fourier transform of the Maximum Likelihood spectral estimation 

does not in general agree with the measured autocorrelation values. 

Pusey has shown that both methods can resolve tones which- are dose 

together for any nohzero timebandwidth product if the signal to noise ratio 

is i sufficently high. This can n:>t be achieved with the conventional . Fourier 

methods unless of course, the sampling rate and the number of data are in­

creased [12]. 

The Maximum Entropy method and Maximum Likelihood method are related 

to each other. If the MEM spectrum are calculated for k= 1 ,2 .•••. ~.M and 

the average of the reciprocal of these spectrum determined then it is equal 

to the reciprocal of the Maximum Likelihood spectrum [11]. This result imp-

lies that the Maximum Likelihood spectrum is more stable statistically but 

/ 
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has less resolution than the Maximum Entropy spectrum. Lacoss [13] has com­

pared the Maximum Entropy with Maximum Likelihood and conventional Fourier 

methods and demonstrated the superiority of the Maximum Entropy spectrum in 

terms of spectral resolution. Furthermore B~rg [14] showed the superior re­

solving power of Maximum Entropy compared with the Maximum Likelihood appro­

ach. 

Burg method has the drawbacks of line splitting in low noise case and 

frequency shifting. in the high noise case. Spectral line splitting is the 

resolution of two or more closely spectral peaks when only one is truly pre-

sent. The problem of line splitting in Maximum Entropy spectru~ was first 

documented by Fougere. et. al. [15]. They noted that the spectral line split-

ting was most likely to occur when 

i. The signal to noise ratio is high 

ii. The initial p~ase of sinusoidal is some odd multiple of . 45 deg-

rees 
\ 

iii. Time duration of the data sequence is such that sinusoidal compo-

nents have an odd n~mber of quarter cycles. 

iv. Number of filter parameters estimated is a . large percentage of 

the number of data values used for estimation. 

The connection between line splitting and the number of filter parameters 

estimated i.e., model order highlights a problem area common to all of non-

linear spectrum methods how to select the model order. Akaike [16] has sug-

gested two popular criteria for order determinatIon. However this author's 

experience has shown that most order selection, including Akaike' s 

are not effective against the line splitting phenomenom. Therefore in the 

method proposed by Fougere [15], the filter coefficents are redetermined 

iteratively by starting with the Burg's filter coefficents. The iterative 

" 
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procedure involves nonlinear optimization with respect to the filter coef-

ficients with the constraint that the filter must be stable by requiring 
-

the reflection coefficents to have magnitudes les than one. The constraint 

is necessary to provide a filter (prediction error filter) which yields the 
-. 

lowest possible error power. The Fougere's method not only removes the draw-

back of the Burg's method but also provides -a much better spectral resolu­

tion. In [17], the variance of the frequency estimation of the Fougere's 

method is cO'Tlpared with the Cramer-Rao bound and the B~rg' s method. For the 

sa'l1e filter length which is 10, the Fougere's method has a threshold signal 

to noise ratio of 8.5 db which is much lower compared to threshold at 15 db 

for the Burg's method. 

A second problem with the B~rg algorithm as with Yule-Walker case is 

the bias in the position of spectrum peaks with respect to the true frequen-

cy location of those peaks. If one defines the sampling frequency f= 1 /2T 

where T is the sampling rate, then the bias changes with the true fraction-

al frequency location of the spectral peaks. The spectral peaks with frac-

tional frequencies from zero to 0.5 f tend to b·e biased more than the .spec-

tral peaks with fractional .frequencies from 0.5 f to f than their actual 

values. Swingler [18] has shown that the bias can pull the peak off frequen-

cy by as much as 16% of a resolution cell when using the Burg algorithm. 

Marple [19] has proposed a new algorithm hsa proposed a new algorithm for 

filter parameter estimation that yields the spectrum with no apparent line 

splitting and reduced spectral p·:!ak frequency estimation biases. This met-

hod has the same order of computational complexity as the burg algorithm. 

Freq"Jency bias in processing sinusoidal signals with the Burg algorith'l1 has 

been experimentally investigated by Chen [20] and Stegen for the noisy case 

and theoretically analyzed by Swingler [18] for noiseless case.· 

/ 
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Another modification to Burg algorithm is proposed by Nikias and 

Scott [21] to obtain high resolution in the persence of noise. Their ener­

gy-weighted method introduces a weight whiChis a function of the power of 

the received data in the prediction error calculations. They also analyzed 

the frequency bias of the energy-weight'ed ~l1ethod in processing sinusoidal 

signals, for the noiseless case [22]. Consequently the energy-weighted met­

hod produces frequency bias is generally less than the Burg technique bias. 

In an attempt to improve the Maximum Entropy method with respect to 

bias, Nutall [23] and ~Ulrych and Clayton [24] proposed the Least-Squares 

fitting of an AR model based on a criterion involving both forward and back-

ward prediction errors but unlike Burg method, without using a lattice f11-

ter model. Marple [25] d,erived a recursive form of the above method and 

has shown that the bias in the spectral estimates can be' reduced signifi-

cantly compared to the Burg technique. It should be noted that this is 

true o~ly. for short data lenghts, since all technique give identical re-

suIts for large data lenghts. 

Another all poles or AR spectrum estimation is the Yule-Walker (Y. W) 

or autocorrelation technique [26]. This method substitutes biased estimate 

of th,e autocorrelation lags generated form available data into the Yule-Wal-

ker' normal equations. AR spectrum estimation method sometimes termed Maxi-

mum Entropy spectrum method also has become popular alternative to the peri-

odogram as an estimate of the power spectrum for a sampled process. Fo: sig­

nal to noise ratios (SNR' s) greater than zero decibel, the AR power spec-

trum estimate has higher frequency resolution than the conventional Fourier 
-

type estimate [27]. The lower the signal to noise ratio, the more all pole ' 

assumption is violated and poorer the spectral estimate obtained [28]. Or 
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we can state simply when noise is added to the time series under analysis, 

the resolution of the spectral estimator decreases rapidly as signal to no-

ise ratio decreases. 

Since an AR process with an additive noise becomes an Autoregresive-

Movingaverage (ARMA) proc~ss; the usual approach to this problem is to ~o-

del the time series by the more proper Autoregresive-Movingaverage process 

rather th:ln AR and use standard time series analysis technique to identify 

AR parameters. This standard technique however d:>es not yield a positive de-

finite autocorrelation matrix. Also, it is ShO"Nn that the resulting sp,ec-

tral estimator may have a large variance [28]. An alternative approach term­

ed the noise co~pensa:tion tech:tique is proposed by Kay [29]. In [29] Kay 

compens:ated for the noise effects by subtracting a noise term from equation 

that contains the reflection coefficients. Cadzow [30] recognizing that the 

Autoregresive-Movingaverage model is more general aid realistic for spec-

trum estimation. He developed an algo!"ithm for comp'Jting the ARMA coeffici-

entsand showed that the ARMA model is capable of providing high resolution 

estimates. The main drawback of the ARMA model is the nonlinear equation we 

must deal. with. It is also difficult ,to determine the a,:fequate model 
I 

order 

(number of poles and zeros). Also, the use of highe~ order AR mode.ls yields 

another noise compensation technique, since it is known that an ARM A model 

can be cO!'lsidered as an .AR of infinite order. A practical problem is the li-

mited number of AR parameters that can be reliably estimated from available 

data length (A practical limit is not to use a\ model order above N/2 and be-

low N/3). 

If (M+ 1) lags of the a'Jtocorrelatiofl function for a time series are 

knO"Nn or estimated from the dHa s:amples, the M autoregressive parameters 

/ 
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are obtained by solving the Yule-Walker equations, using the Levinson-Dur­

bin algorithm (recursion algorithm). If unbiased autocorrelation estimates 

are used, one ;nay also have numerical ill-condition case during the solu-

tion of the normal equations. Biased autocorrelation estimates reduce the 

risk of ill-conditioning but at the expense of a degradation of the AR spec-

tral resolution and a shifting of spectral peaks from their true locations 

i.e., yield the frequency bias. Also it was shown that the spectral estima-

tor based on the unbiased autocorrelation estimate displays a large increa-

se in the sharpness. of the spectral estimate as compared to that based on 

the biased autocorrelation estimate [31]. Since the location of the spec-

tral peak is used as an estimate of frequency of sinusoidal signal,in order 

to o':)tain freq'Jency estimation accuracies the statistical fluctuation of a 

peak freq'Jency due to the different method must be analyzed. In [31] Sakai 

has been made such an analysis for AR spectrum estimation, by using the peri-

odogram technique and assuming that the deviation from the true tone fteq-

uency is small. He found that the variance of th·:! ;nain peak frequency is in-

versely proportional to m.\mber of data and SNR as expected. One remarkable 

p·:>int in [32] ,if the condition PM» 1 is met (M: Model order, P (.l..1 ) as 

shown in Lacoss [13], th·:! estimated spectrum has a mean peak at true freq-
! 

uency location. Hence the AR spectrum estimator becomes unbiased. Also La:lg 

[33] found the expressions for the variance of the spectral estimate peak 

p:>sition at high SNR condition. His expressio:1s are for both Covariance and 

Modified Covaria'1·::e methods. 

Spectral line splitting event is an important problem in AR spectral 

estimate as in Burg tech.,ique. The reasolls for sp.ectral line splitting in 

the Yule-Walker techniqUi~ has been d:::>(:ume:1ted by Kay and Marple [34]. As a 

comparison, the Levinson-Durbin recursion algorithm requires a numb·er of 
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computational operations proportional to M2 whereas Burg technique re­

quires NM [35]. 

Another AR method is the High-Order Yule-Walker Equation (HOYWE) were 

discussed in [36]. The :nain advantage of "HOYWE is that their covariance mat-

rix does nn! contain the al!tocorrelation fun,::tio:1 at zero lag so that an U'1-

biased estimate of the J\R coefficients of a process can be obtained in the 

presence of the white nnise. Th,e drawb3ck is that the some covariance :nat-

rix can b,ecome singular unde.r certain conditions, whereas the normal covari-

ance matrix which contains the noise variance terms in the main diagonal is 

always nO:1singular. For this reason the Higher-Order Yule Walker Equations 

were aot considered as a promising alternative for spectru:n estimation. In 

[36], Y. T.Chang prevents the singularity by computing the matrix pseudo-in-

verse instead of the ordinary inverse whenever i11-conditioning is encount-

ered. Then an AR sp,ectrum estimator incorporating HOYWE and matrix pseud:> 

inverse is able to provide high resolution and stable estimate. Also it per-

mits the use of a high order model necessary for resolving closely spaced 

spectral peaks a'ld does not require an estimate of the noise power •. As a re-

sult two drawbacks are that we have to estimate a'Jtocorrelations until a 

lag higher than the :nodel order used a:-ld the 111-C0:1ditioned matrices to b,e 

inverted. 

Recently proposed method is Recursive Maximum Likeliho·od estimatio, 

of AR process by Kay [37]. It is closer approximation to the true Maxi:-num 

Likelihood estimator that obtained using Linear Prediction techniques. In 

fact a11 of these methods may be viewed as attemps to approximate the M.L. 

estimators of the AR para'l1eters with each method adapti~g varying degree of 

approximation. An improveme:1t in statistical accuracy is obtained for short 
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data records or sharply peaked spectrum with Recursive M.L. method. It oper-

ates in a recursive fashion in that it aJJows one to successively fit" high-

er order AR models to the data. In addition the estimated aJJ pole filter 

is guarenteed to be stable. But its performance is not good as the Forward-

Backward method for spectral peak estimation. 

Let's say a few words about the remaining techniques. In Pisarenko 

method [38], the spectral estimate is formed as the sum of line compo:lents 

in a background of noise. This technique requires an eige:l analysis of the 

covariance matrix. The smaUest eigenvalue A . is" th,= noise power. " mm 

When this smaUest eigen value has multipJicitY0:1e, the location of the 

spectral Jines can be determined by finding the zeros of a polynomial whose 

coefficients are the elements of the eige:lvectors corresponding to A . mm 
When the multiplicity of is greater than O:le the number of sp,=ctral Jines 

is reduced order problem. Variations of Pisarenko' s eigenvector method have 

b"7en p'Jblished in [39]. In [39], the technique caJJed MUSIC is formed from 

the eigenvectors of the estimated covariance matrix. Corresponding to each 

eigenvalue ( ordered by increasing magnitude) is a polynomial A.(z) 
1 

whose coefficients are the elements of the eigenvectors for Ai . I The MUSIC 

estimate is obtained by forming; 

where the number of terms L is determined by subtracting the number of si-

nusoidal signals thought to be present from the dimension of the covariance 

matrix. The location of the Jines are obtained by picking the largest p"eak 

of Eq.(l. O. 



Thompson [40] suggested a constrained gradient search procedure for 

obtaining an adaptive version of eigen analysis. HO"NeVer the main· drawback 

of this technique was that the initial convergence rate could b,e very slow 

for certain poor initial conditions. Reddy [41] derived an alternative 

Gauss-Newton type recursive algorithm which also used the second derivative 

matrix (Hessian). Their technique may also viewed as an ap;:>roximate Least 

Squares algorithm and has faster_ convergence in the b·eginning while its con-

vergence rate close to the true parameters depends on signal to noise ratio 

of the input signal. This technique also resolves the sinusoidal signals 

much faster than the Gradient version. Finally since their technique is 

adaptive implementation of Pisarenko ' s method in which the estimation can 

be updated as new data is, observed, it has the ability to track slowly time-

varying processes. One has to note that since Thompson and Reddy methods 

are Gradient technique, its performance can be seriously degraded by the 
~ 

presence of unstable stationary points 0!1 the error surface. Further simula-

tion results for the Reddy method can be found in [48]. Also if. the initial 

guess is not close to the solution, Gauss-Newton does not converge, whereas 

the method of Steepest Descent of Thompson converges for any initial guess 

[49]. Larimore [42] studied the convergence behaviour of adaptive ,Pisarenko 

method and shown that ; a) Once convergence o::curs tra::king of time-varying 

lines proceeds in much the same manner as adaptive linear prediction. b) 

Global convergence may be nonmonotonic a:ad require long windo"Ns of data to 

isolate spectral lines. c) LO"N frequency lines may present severe problems, 

at very low frequencies convergence sp.eed may be significantly slower than 

adaptive lin·ear prediction. d) Furthermore high parameter variance may like-

wise destr:oy accuracy of frequencies estimates at very low frequencies. 

13 
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. 
Durra~i [43] proposed an efficient algorithm for extracting an ortho-

gonal eigen vector-oriented spectrum directly from Maximum Entropy Spectral 

Analysis coefficients. In effect, the algorithm estimates the eigenvector 

corresponding to the smallest eigen value of the data covariance matrix and 

the oriented spectrum results are better than MESA. The main cost of this 

technique is that it requires N(N+ 1 )-1 complex operations per step and the 

convergence rate depends upon the n~ise power and the frequency difference 

between signals. Also in [44] Gueguen suggested various algorithms inclu­

ding sequential estimation procedure for determining eigen vectors of co-

variance matrix. Barabell [45] presented several methods for reducing the 

SNR required for resolution such as a)The first examining the roots of spec­

trum p~lynomia1. b) Th~ second method uses the properties of so called sig-

mil space eigen vectors to define a rational (pole-zero) spectrum function 

with improved capabilities. The statistical analysis of Pisarenko' s method 

has been investigated by Sakai in [46], using the periodogram technique as 

in [32]. Under the assumption that the input samples consist of multiple si-

nusoidal signals plus white noise ,he found the asymptotic expression of 

the error variance of the frequency estimator and showed· that the variance 

of the estimate of one frequency is independent of the SNR of the sinusoid 

for the case of two sinusoid case. He suggested also a modified Pisarenko 

method by making use of certain symmetry of t~e prediction error filter pre­

sented in [71]. This technique is computationally efficient but it does not 

gives improvements over the original method. Aktar [47] determined the va-

riance of the. spectral peak for case of a sinusoid in white noise as a func-

tion of n'Jllber of samples, S.NR and frequency of sinusoidal signal. Sarkar 

[50] suggested to use the Conjugate Gradient Method (CGM) to obtain the 

eigen vector corresponding to the minimum eigen value. The advantages of 

this technique over the method of Steepest Descent (SlJ) is that it is a 



finite step iterative method and secondly there i!:i no arbitrary constant in 

the expressioll which governs the rate of convergence. In this proposed met­

hod, the spread of the eigenvalues has no significant effect on the overall 

rate of convergence. The disadvantage is that o~e has to store a matrix of 

data instead of one row as is conventionally done. In [51] the use of the 

Inverse Power Method (IPivl) is investigated and since a single iteration of 

the IPivl requires the solving a system of linear equations, The Cholesky mo-

dification is proposed to reduce the amount of computation~ Another study 

can be found in [52]. 
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The comparison of the' Pisarenko and Prony approaches to spectral line 

analysis is presented in [5,3]. 

Kumerason and Tufts [54,55] compare their realization of ML estimate 

of multiple frequency with improved version of Owslew' s method and wi.th For-

ward-Backword Linear Prediction (FBLP) method. They had shown that no sig-

nificant bias in frequency estimates was noticable in all methods above the 

threshold points. The threshold difference between ML and LP method can be 

greater than 15 desibel. The threshold of their improved LP mett)od is moved 

mu·:h closer to that of the ML method. That is the performance.is close to 

the Cramaer Rao Lower Bound (CRLB) even for closely spaced frequencies at 

much lower values of SNR than other LP methods [56]. In [57] they have im-
- -

proved FBLP estimation of frequencies at looN SNR by using Singular Value De-

composition (SVD) of the covariance matrix. Th·e improved p.erformance at low 

SNR is also' better than Pisarenko method and its variants. They demonstra-

ted that whe:1 model order is chosen equal to . (N-L/2) where L being number 

of sinusoidal signals and N being number of data samples, the principal 

eigenvector and FBLP methods ( when the minimum norm p:-ediction filter 



coefficients are found) are the same and this situation does not require 
'" 

SVD calculations. SVD Js useful also for findin~ numb.er of sinusoids and es­

timating accurate frequency of sinusoid,· alleviating much of the ill-condi- . 

tioned nature of FBLP by removing the nQise subspace perturbation effects. 

16 

they suggest to use for a given data number N, a linear predictor of 

an order M equal to' (N-L) [58]. In this case the covariance matrix of the 

process has a rank equal to 2L. The reason for this s~ggestion is the re­

mark that eigen vectors of .the covariance matrix when its order is larger 

than 2~, can be grouped into two sets. The first on,e corresponds to 2L lar-

ge and generally well :;ep.erated (in magnitude ) eigenvalues. These eigen va-

lues are less perturbed from their noiseless directions, whereas the second 

set corresponding to the originally- (in the noiseless case) zero eigen val­

ues could chance directions abrubtly depend on the noise perturbation. On 

the basis of this remark, minimum number of sample necessary for estimating 

L real: sinusoids is 3L taking account the minimum order for predictor 

should b·e. 2L. 

They also proposed a method to find a . vector d spanning the whole 

noise subspace of the covariance matrix. The effect of using such a coeff-

icient vector [59], 

1) Frequency' estimate is accurate for low SNR. 

ii) Less spurious estimates. 

iii) Extranous zeros are uniformly distributed. 

They had shown that if on·e can estimate the covariance matrix from the data 

the property of the noise subspace eigenvectors is approximately tru€!, that 

is L zeros of the' predictor fall near their noiseless locations for mode-

rate SNR values [59]. 
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As a final remark, we present some relations about the Kumaresan and 

Pisarenko methods. Pisarenko used as data the autocorrelation values of sta-

tionary sinusoids or the asymptotic case of N-+-O) and used so'me special 

properties of the resulting Toeplitz correlation matrix. In practice since 

N is finite, the signal is deterministic and covariance matrix is not Toep-

1hz in general. For long observation times N ~oo and L=M the Kumaresan ' s 

method coincides with Pisarenko' s. 

For a more detailed description of the modern spectrum estimation, 

methods the reader is referred to reference [60]. 

1.2.' OUTLINE OF THE THESIS 

The problem in the dissertation is to investigate and analyze the use 

of the existing modern spectrum estimation methods, for frequency estima-

tion problem. The problem is complicated by tye fact that only relatively 

short discrete time samples of data are available. Actually the main struct-
, 

ure of this dissertation details the development and simulation results of ' 

applying modern spectrum techniques to the problem, defined above. 

In Chapter II, we investigate the use of an analytic signal model and 

its complex autocorrelation function for frequency estimation. Section 1 of 

Chapter II describes the methods alreadily used for frequency estimation 

problem. The formulation of the parametric methods is explained in detail 

in Section 2. Section 3 gives the background on CRLB and, ML estimation. In 

, Section 4, a statistical analysis of the proposed technique ,is carried out 

for both single tone and two tones cases and the effect of autocorrelation 
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lag on, the estimation performance is exa:'llined. In this sense the variance 

of the estimated· frequency is derived analytically in terms of. data samp-

les, SNR, and auto::orrelation lag in order to' measure the accuracy of this 

technique. Since CRLB is usually used as a benchmark to evaluate the perfor­

mance of a given method, the calcuiated variance is cO!Tlpared to the CRLB. 

In Section 5, the comparative variance of the frequency estimate behaviour 

using Modified Covariance, Covariance and the proposed Argument Methods is 

presented. 

In order to determine the detection performance of the method, it is 
A 

desirable to know the PDF of f under the tone present (H 1) and noise 

only (H ) hypotheses. In this regard, the expressions for the PDF are o . 

derived for both cases in Section 6. Fim.J study of Chapter II is the band-

width estimation with a simple formula. 

Chapter III presents the results of a study to determine the asympto­

tic behaviour and statistical properties of MESl\ moments. This chapter is 

composed of three sections. In the first section, we investigate the use of 

Maximum Entropy spectrum in the estimation of spectral moments and consider 
I 

some of their elementary properties such as filtering, windowing and shift-

ing. In the second section, the asymptotic behaviour of MESA moment tech-

nique for the case of sinusoid embedded in additive white noise.is analyzed-

The asymptotic formula for the spectral mean frequency and mean square 

bandwidth are derived by assuming known autocorrelation function. Also we 

compare the asymptotic behaviour of· the estimator with the case when only a. 

few lag terms are invqlved. As a bonus of the analysis the same moment ex-

pressions for the case of two sin~soids with equal or non-equal power are 

also determined analytically. In the last section, the analysis of stat is-

tical properties, of MESA moments is given. It is shown that the probability 



of detection and false alarm can be written as functions of the expected va-

lue and the variance of the n' th moment for tone detection problem. Final-

ly, the variance and P~F of the estimated mean frequency are derived ana-

lyticaHy in this section. 
I 

Chapter IV deals with the effectiveness of AR met~od in frequency es­

timation problem. .In Section 1, we obtain the exact solution of AR parame­

ters 'by employing standar~ Matrix Inversion Lemma for different structured 

matrices such as Complex Toeplitz and Real Symmetric matrices. It foHows 

that the solution of AR parameters is expressed for certain classes of mat-

rices as a function of SNR, frequency of sinusoid and the AR model order if 

the true autocorrelation function is known. Section 2 gives the formulation 

of coefficient deviation of AR p::>lynomial due to the noisy observation. Sec-

tion 3 deals with the effect of the inexact AR coefficient on the roots of 

the AR polynomial analytically for the case of various matrices mentioned 

above. In Section 4, as frequency estimation a~curacies, the statistical 

fluctuation of a peak frequency. is investigated since the location of a 

spectral peak is used as an estimate of tone frequency. The analysis of'the 

performance of frequency estimation is accordingly based on Sakai's and Tay­

lor series approximation methods. The analysis establishes the relationship 

between fj.'W and coefficient deviation so that one can determine the fre-

quency error for AR process using the results of Section 2 In Section 5, an 

analytical expression is derived for the probability density function of 

the radius of root of AR polynomial. Based on this observation, probability 

of error is obtained after some simple assumptions with zero (pole) method. 

AR spectrum is expressed in terms of radius of root for both Hand o 

HI cases. Final study of this section is to illustrate the several poss­

ible positions of signal zero in z-plane and give some analytic expressions 

, 
/ 
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for these cases. 

Chapter V gives a brief summary of what has been presented in this 

dissertation and suggests topics for further research. 

\ 
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. CHAPTER II : FREQUENCY ESTlMA TION PROBLEM 

2. t DESCRIPTION OF FREQUENCY ESTIMA nON METHODS. 

The estimation of frequency of a sinusoidal signal in white noise has 

many applications such as radar, sonar [6)-63], speech [66] andcommunica-

tion technology, In many cases the presence of noise troubles the estima-
I 

tiono! frequency determination. Recently many methods have been proposed 

based upon signal processing which try to overcome this difficulty. The 

most classical 'and widely used approaches; the 2ero crossing method and se-

condly involve Discrete Fourier Transform (OFT) i.e., a transformation of 

the input samples into freq"Jency d'::lmain via a DFT and searching a peak. 

Mathematically, th,e number of zero crossing is closely related to the 

phase change of, the signal during the measuring time i.e., 'if NZ d.=notes 

the n:.amber of 2ero crossing in the time interval (O,T), ,the frequency es-

timate is given by [67] 

NZ 
fe = ---

2Ti 
2,1, 

The implementatio~ of the conventional 2ero crossing technique is 

sh·own in Fig.H.I.Details are found in [68]. However the zero crossing es-

timator which can be implemented more aXi1ctly than ideal frequency demodu-

lator has a discontinuous output signal which introduces a quantization er-

ror. At short time measurement in particular this effect greatly reduces 

the accuracy of the meth,od. Also it breaks down when the 

21 
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signal to noise ratio faUs momentarily too low and gives a biased estimate 

[63]. 

L.P.F. 

cos (W"ttfil) 

sin(W"i-tf6) 

L.P.F. 

Limi ter Dif-' 

Limiter~------~ 

Fig.II.I. Pdwula' ~ implementation of freqlJen~y estimator. 

T 
1 (.) dt~~ A ; 

4T}' fe 
o 

A general model of the frequency estimation process is sh::>wn in 

Fig.JI.2 [69]. The continuo:.Js input sign.::ll x(d can be written as 

x(t)=A sin(W, t+"')+n(t) 2.2 

where A is signal amplitude, fl and % are frequency and phase of the' signal 

which are unknown with uiliform prior densities over (IT, IT) and (fow, fJw ) 

respectively. Assume that the expected value of the input frequency fo is al~ 

2-
so known exactly and n(t} is white noise with power Cfn • The inp'Jt signal 

is multiplied with unity pO'Ner inphase and quadrature local oscil1ators at 

Jrequency foand the output .of each chann·el is filtered and sa:npled and AID 

converted. A block of N complex' Z= {20 , Z I ' Z.z ••••••• 'ZN_' J is col1ected for 

/ 
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processing. Sampling occurs at a frequency fs so that k' th sa:hple is giVe;) 

by 
'\ 

2.3 

where nk is complex zero mean random variable both real and imaginary parts 
, 2-

haVe variance ern /2.. Th,~ complex sa'l1ples Z are weighted by the window func-

tion and the output is pro~essed by the Fast FO'Jrier Transform (F.F.T.) al-

gorithm. The frequen~y location of th·e largest m3gnitude sq'Jare of OFT co.-=f-

fident is taken as a frequency estimate. Recently several data windows 

were considered in addition to n~ 'Neighting [69] and it was shown that 

there was an advantage in using weighting t9 estimate the frequency of a si-

nusoidal signal [69-70]. By examining the Fig.II.2, one can con~lu.je that 

the ~FT forms the main part of the estimation procedure. Th,~refore the per-

formance of the mentioned method will d·epend on the performance of DFT comp- ' 

letely. Th·~se two meth:>ds explained so far are' known non-parametric methods , 

in frequency estimation problem. 

Several parametric freq'Jency estimators proposed recently are b3sed 

on Maximum Likelihood, Maximum Entropy, Pis::lrenko, Prony .•• etc methods. 

The most efficient method known as Maximum Likelihood frequency estimator 

in 'the ,sense 'of minimum variance of the estimate consists of a parellel 

bank of narrowband filters [6]. Tne center frequency of the filter wi~h lar-

gest ouWut is the estimate that maximize the likelihood' function. Also 

with p:-esent day technology, the filter bank can b.e easily implemented di­

gitally as a FFT machine. Maximu:-n Likelihood estimate of frequency of 

/ 
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sinusoid tend to be more accurate than other methods especiaUy at low sig-' 

naJ to noise ratio (6]. This is to b·e exp.3\:ted beca'Jse th·e prior inform­

ation abo:.Jt th·e sin'Jsoi.daJ form of signal is used in' a statistically approp-

rlate way in the M~ximum Likelihood meth.od. AJthou3h the. variance of the 

Maximum LikeJih·ood estimate asymptoticaJJy . approaches to the Cramer-Rao 

Lower Bound (CRLB), it may be unattractive. in multi tone applications be-

cause of computationaHy burden. Except the Maximum Likelihood method, ot-

her techniques are cOllputationaUy attra~tive bqt they are suboptimal~ 

The MEM uses the spectral maxima andlor pole method to estimate the 

~ 
-
L.P.F. A/O 

r--

--. ~ 
sin(21ffot) 0 

Cl 
Local i-..- Z Find 

Sarple (.)2 Osc • .-' fi'D.F.T. r-. ri' .... 
fo freq. 

~ largest 

:- -< 
r- fs I- , 

<: - i+ Cl cos (2nfot) -
, 

~. loP.F. AID 

Fig.II.2. General model of discrete freq"Jeilcy estimation. 
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frequency. The spectral maxima methodls based on the estimation of the po-· 

wer spectrum density and ,:>n testing for location a:ld energy of the spectral 

p.eak: In the pole method, the angles of two poles of the prediction error 

filter (PEF) dosest to the unit circle (measured counterclockwise ) are 

found and the smaUer of the angles is taken as the estimate of the fre-

quency. Some difficulties. were encountoured in using MEM especially with 

short d:lta record length for frequency estimation due to the ~o called line 

splitting problem [3!+] a,d the phase d~peil·dence ofth.::! estimate [20]. 

Pisarenk~ 's method requires an eigen analysis of the autocorrelation 

rn~td~ of ob~eryatio.rh The smallest eigenvalue is the noise power. When 

this smallest eigenvalue has multiplicity o:le, thefrequency of sinusoid can 

b·~ d~termined by finding the zeros of a polynomial whose coefficients are 

the elements of the eigenvector corresponding to minimum eigenvalue [38]. 

If one is interested in only estimating the frequency of the sinusoid; find-

ing the spectrum estimate which requires a large of computation is super-

fluous. In this regard, we suggest a simple method to estimate frequency of 

sinusoid. 

In this chapter, a method of estimating the frequency of a sinusoid 

in white noise based on analytic signal is investigated [72]. The complex 

autocorrelation function of an analytic signal model is used to estimate 

the frequency i.e., 

1 f::;--
2lfk 

where r
k 

denotes the the k' th lag of the autocorrelation function. This 

... .-~-
/ 
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technique will be called Argullent Method. The properties of this frequency 

estimation method have been· studied. It is shown. that it is an unbiased es-

timator. Analytic e?Cpression for the variance 'of the estimate is derived to 

compare with optimum estimator. An expression for the PDF of the estimated 
",. . 

frequency f is 'derived for both the null hypothesis and the alternative. 

For the case of two sinusoids; the problem: is studic9 to arrive the reason-

abl~ situation. Bandwidth estimation problem is the final original study of 

this chapter. 

2.2. FORMULATION Of· THE PARAMETRIC METHODS 

Consider L sinusoids of amplitudes Ai' p'lase Zi and distinct frequen­

cies wi' i= 1 ,2, •••.••• L. The sum of these sinusoids at any sampling instant 

n is given by 

It was shown that a· unique real 2L-vector [61] 

aT = [ a1 ' ~, ••••• • • , •• a2LJ 
exists such that for any n 

2L L [ ] S = E a E A. sin Wk (n-~) + ~k 
n ~=l ~ k=l J. 

Expanding the sine function in (2.5) and reordering the sums gives 

S = n 

/ 
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Since (2.4) and (2.7) are equal for aU Ak 'Z'k a"ld Wk ' it foHows that for 

k= 1 ,2, ••••• L 

and 

2L 
E an cos Wk 9.. =1 

9..=1 ~ 

2L 

r a9,. sin Wk 9.. =0 
R.=~ 

which can be put in complex form as 

and 

2L 
1: 

. -t=1 

2L 

l't.9.. exp =1 

r a9,. exp jwk 9.. =1 
(.=1 

Combining (2.8) a"l3 (2.9) in matrix form yields 

F a = q 

where 

f =[. .: .. ] 

/ 
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2.12 
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Cos W l ...... , .. ., .. e: ••••• " •• Cos 2LW1 

p = 

Cos ,w
L 

•••.•.•.••••..•.••••. Cos 2LwL·-. 

Sin wI ....•..•...........•. Sin 2LW1 

u = 

Sin w
L 

.•••• ~ • • • • • • • • • • • • • • •• Sin 2LwL 

The paremetric approach to frequency estimation is to first estimate 

the a
l 

and then find the roots {exp (t jWk) J of the polynomial 

2L 

E 
R.=1 

Jl, 
a >.. =1 

R. 
2.13 

Alternatively, with >..~exp(-jw) ,solving for the roots of (2.13) is equi­

valent' to taking the Fourier Transform of the sequence [ ao ' a 1 , •••• a2L ] 

with ao~-1 and noting that the w at which the valley of the spectru:n occur. 
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With the addition of zero-mean white noise in (2.4), the data 

sequence is . 

Xn = Sn + Wn 

Substitution of (2.6) into (2.14) yields 

2L 
a X - E W 

9, n -9, J!, .; 1 aJ!, . n T"9, + W n 

2.14 

2.15 

Hence the model for the sinusoids in white noise problem contains poles and. 

zeros. This one cause of the difficulties reported [20], [72] in using all . 
p·:lle methods. 

2.3 BACKGROUND ON CRLB AND ML ESTIMATION 

The CRLB provides a useful tool for evaluating the performance of the 

parameter estimation techniques. Comparison of the error variance of a gi-

ven para~eter estimation technique to the CRLB provides a reliable measure 

of the estimation accuracy of that technique, in other words, the CRLB can 

be evaluated to determine whether the estimator has p~rformance suffident-

Jy near the optimu-n. 

T 

Let .& = [e
1

,6
2

1' .8
p

] be a set of para'lleters to b·~ estimated. It ~s 

assumed that the underlying PDF is PO~I~) where x= [ xo'x., ....... X'H ] 

is a sample of size N. Let ~ be an unbiased' estimator~, i.e., E(n]= 8 where 

E (.) 

denotes the expectation o;:>erator. Then the covariance matrix of e given by C 
~o 

satisfies the CRLB [63]. 

2.16 



where ~(6) is the fischer Information matrix whose (i,j)' th element is 

. ~ (8 )] . . ~ E t ~nn P (xl 6) 

. L~ ~J ' a 6. 
. ! ~ 

It should be noted that (2.16) implies 

Var( 8i ) ;;. ~-l (8) ] ii 

a In P(X16) ] 
a 6·, 

J 

i=l,2, ••.• p 
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2.17 

2.18 

NQ'N let Q
ML 

be the Maximum l..ikelihooq estimator. of ~, 

found from 

i.e., e is 
-ML 

2.19 

or we can state th.lt if an unbiased estimator with error. variance as small 

as the CRLB exists, it is said to be efficient [63] and it is the Maximum 

Likelihood estimator defined by 

for all e 

2.3.1. PROPERTIES OF ML ESTlMJ\ TOR:; 

The ML estimator has the following properties [63]. 

1) E [~ML]-" ~ 
2) -1 

C A --+- r (e) 
=0 .. 

NL 

3. The ML estimator 

covariance r-l(e" as N - co "" ~ 

" 
4) ~t1L- ~ 

as N_IXI . 

as N_co 

PDF is multivariate Gaussian· with 

2.20 

mean B-

The condition N .... co is termed the asymptotic case. Thus ·for sufficiently 

and 
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large data records 1 ~ML is Gaussian distrlbu,ed with a mean e and a 

covariance matrix given by the CRLB. Also ~MLis a consistent estimator. 

" " 9 (e ) 1S 
1'-L 

f '" I o e 
-ML 

where 

I ' I ",I 

5. If Q =g (Q) is a one to' one transformation, from ~ to !! ,then e l1L = 

an ML estimator of e/. Furthermore the asymptotic covariance matrix 

is 

~"'e I -ML 

ae 
j 

2.21 

L is just a linearization of the function gee) about the true parameters. 

6. The incremental sensitivity of the p (X Ie), to changes in the 

value of a is defined by 

[

_AP(X1e) ] [~e J -1 
Sa(x) =," 

p(xla) 

2.22 

and is the ratio of the resultant percentage change in P(X Ie) to the percent­

age change in a ,evah,lated at ~'e '. The limiting value as " Ae~ 0 ofS M is gi­
a 

ven by 

= lim 
A6-1"o 

a 

P (XJ e )] 
2.23' 
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FinaUy we have 

S (X) =e~ InP (xle) 
e de 

2.24 

Therefore the bound (2.18) can be characterized by the sensitivity of the 

PDF as 

Var 

This yields the 

1 ' e. ~-2' . ~ 

e. 
~ 

pJeasing interpretation 

2.25 

that the attainable mean. square ac-

32 

curacy of an unbiased estimator is lower b·:>unded by the inverse mean square 

sensitivity of the PDF. Th:JS if the sensitivity of the PDF is high, the er­

ror variance of an efficient estimator (Maximum Likelihood) is low and 

vice versa. 

2.3.2. ACCURACY OF MULTI-TONE PARAMETER ESTlMA TION: 

Let us consider the multi-toile sign:lJ in additive white noise and 

define for convenience the parameter of signal as 

2.26 

e
3k

+
2 

='Ak for k=l,2, ..•• L 

If X is the n.Jisy observation of S whose typical element is of the 

form (2.14), then PDF of X given 5 is 

p(XIS) 
IR~2 

exp [ 
1 (X-S) T R-1(X-Sl] 2.27 = --

(21T)N/2 2 

~where Rand N are the. correlation ~atrix of noise and nu;-nber of data 

samples respectively. I' I denotes the determinant of ( . ). It is also shown 



that in [70] 

[r (elJ ij -
R a S 

a 6. 
or more tractable form 

1 H 6) = - D J Q 
. a~2 . " 

I(6)=-=;DQD 
an 

where a 2is the noise power and 
n 

B -[~ 
0 n -1 

0 

[A 
0 

~J Di _ ~' 1 

0 Ai 

T2 E 
2 

n Cos an 
n 

M(w, )::: T E n Sin an 
n 

-T 

J 

E 
n 

n Sin an 'T 

E . Cos an 
n 

T E n Cos an - E· Sin an 
n n 

o(n =. nwT+~ 

Q11°" ••••••• ·QlL 

Q = 01 O •..•.. 0 

<2r.1 ' Gr.L ° = 
o 02 

J = 
·1 ill .~ ..... , r l 

I n 
. . 
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, " 

2.28 

2.29 

2.30 

r. n Cos an n 

E Sin an n 

E Cos an n 
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. , 

An interesting situation arises from the condition atF (.) I which 

becomes singular for the case of a single tone. Using (2.29), we have· 

A2 
T2 N3 (N-1) 11(6) 1= 

1 2N-1 (N-1) 
2.31 

C1 4 6 4 n 

One can easily find that the value of N ma\<es 1(e) equal to zero is minus 

o~e. which is 'impossible, Therefore I () is always non-singular. 

We nOW present a few theorems that charecterize the CRLB for multiple 

tone case [70] : 

THEOREM 1 : The CRLB to unbiased estimation of the parameters wi and ~i 

of S . are functions of A. but are independent of other levels, 
1 

A., Hi. The bO'Jnd to 
J 

pendent of aU levels. 

unbiased '. estimatio:a of a level, A. 
1 

is inde-

/ THEOREM 2 : The. bounds asso::iated with the parameters of the first 

Ll tones, when there are L 1 +L2 tones, are nqt less' than the. 

boun:::ls wh,;n th·;re· are only L 1 tones. 

THEOREM 3 : When the signal consists ()f two equal level complex tones 

(equaJ pOWer), the CRLB for the same parameters (i.e., the two frequencies) 
I 

are equal. In other words, the mutual interference is reciprocal. 

THEOREM 4 ; The bounds for two ton.;s, real or complex, are periodic 

in ¢, and ~2 with period IT This' theorem follows' from the easily 

checked fact that M( w, ¢+ 'It' )=-M( w , ¢ ) 
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THEOREM 5 : The bounds for real or complex tones are periodic in each 

frequency with period 2rr/ T. 

THEOREM 6 ; The bounds associated with complex tones depend upon the 

difference frequencies and' phases, but not upon the absolute values. 

2.4. FREQUENCY ESTIMA nON VIA ANAL ync SIGNAL MODEL 

The analytic signal formulation proceeds as follows [72] 

i. Form the analytic signal Z from the 
n. 

analytic signal is defined as 

Z ==X +jX n n n 
where denotes the Hilbert transform. 

input samples x 
n 

2.32 

The 

ii. Decrease the sampling rate by two, in order to make the 

resulting complex noise white. 

If the input samples ~onsist of a sinusoid in white noise, i.e., 

Xn == sin (w1n + 0) 2.33 

then the resulting complex data are 

2.34 

c 
where W is complex white noise,0 is its arbitrary initial phase at n=O, 

n 

and WI is its angular frequen::y normalized so that 'rr <WI < n • 

. -
" 

The frequency is estimated as follows 

1 ' (rk ) ~ 1 -1 (-L) 2.35 fl == arg tan 
411k rlrk x 

/ 



where r kdenQtes the k' th complex autocorrelation coefficient of the ana­

lytic signal model and x , y denote the r.eal and imaginqry part. of ~ respec­

tiveJy. ,An alternate form for f is obtained after expressingr
k 

in terms of 

spectral components', i.e., N-1 . 

f :::: 1 tan-1 
1 4 ' 1T.~ 

L C S· ( 211kR, ) 
R, =0 m N 

where 

N-1 
L C Cos (21Tk.l1. ) 

R,=Q R, N 

N-1 
" '-C -9,,-

1 

N 

L' Zi exp (-j 2 

i=O 

2.36 

This method can also be used to estimate' the frequency when input 

samples ,xn is a discrete complex time series, i.e., 

2 
where W: is complex white Gaussian noise with variance c:r, A is amplitude 

n 

of sinusoid, ~ is its arl?itrary initial phase at n=O and w1 is its angular 

frequency, normalized so that - rr<'v\j <1T 

2.4.2. .l:VALUA TION OF THE EXPECTED VALUE OF ESTIMATE: 

After expanding (2.36) into a series about the point [ E(x), E(y) ] 

and using second order approximation technique in [74], the expected value 

" . 

36 

of f is given 

II [ fll= 1 [f1 (x, Y) 
411,1( 

1 a2£1 
2- a2£1 J2.38 a 2 + 2Cov(x,y) () f]. + ay2 + T( 2 x 2 ax LlXLlY y 

where cr 2 and 6 2 are the 
x Y. 

variances of x and y respectively. B~th x and y 
-

are Gaussian random variables with mean and variance as [77] , 

./ 



x = E [X J = N~k CosW1k 

Y = E [yJ=~ 
N SinWJ.k 

on4 [+ a-2=- + ~ (l + ,x 
N 

,.. 4 [ . 2 Vn 1 oy = -- - + ~d1 -
N 2 

(N-2k) 

N 

(N-2k) 
N 

Sin2w1k 

~ CoS2W1k)] 

2.39 

Cov(x,y) = ~4~ (N-2k) 
N2 

where )..I -~2 is the signal to noise ratio. In (2.38), aU derivatives are eva­
n 

luated at th·e means of x and y respectively. Inserting (2.39) into (2.38) 

37 

one obtains 
". 

the exact value of fl i.e., E(f)=fl which implies that the fre-

quency estimator is unbiased. 

2.1f.3. VARIANCE OF THE FREQUENCY ESTIMATE: 

A measure of the accuracy of the frequency estimate of. the analytic 
" 

signal is given by the variance analysis. Again using second order approxi-

mation teGhllique in [74] which is formulated as in general 

2 2. 

uy2 + [ ~! j ~2 ;- 2 ( ~~ ) ( ~~ ) Cov(x,y) 2.40 

and also equivalent of the Taylor series approximation of the variance of a 

function of two random variables x and y. After some work, one can obtain 

2.41 

Eq. (2.41) gives the variance of frequency estimate based on analytic sig-

nal in terms number of data, signal to noise ratio, autocorrelation 

/ 



lag, and shows that the variance is inversely proportional to the square of 

signal to noise ratio, AC lag and (N-k). 

The CRLB for the case of single tone is given as [75] 

2.42 

38 

2 ... 
0-CR JS the lower b::>und on the variance of unbia.sed. frequency estimation 

varian!=e computed as' in [75] for given signal and n::>iseparameters. 

It is clear to see that Eq.(2.41) h3.s a broaq minimum when k is 1/3' 

the data length at which the theoretical variance is (2.25+( I /?6/",» times 

the CRLB. As a comparison Modified Covariance and Covariance method are 9/8 

and 1.5 times the CRLB respectively when the model order is 1/3 the data 

length [33]. This situation wiU be discussed later. 

I 
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Fig,}I.3. CRLB of the frequ~ncy estimation accuracy vs. SNR 
.' 
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The quantity -1 Olog( a-:R ) is plotted· in Fig.II.3 agqinst the' SNR for 

different values of N. Fig.II.4 shows the performance of the analytic sig-

nal method more quantitatively. The SNR values used in the simulation are 

. h 2 
10 t e range 0-40 dB. The quantity -IOlog( Of) is plotted by dashed lines 

in Fig.II.4 against the SNR with different values of k. The line labeled 

C.R. 
2 

bound corresponds to the plot of -10Jog( OCR)' Here we see that the 

performance of the analytic signal based frequency estimation can be great-

ly improved by using optimal value of k which is an integer number close to 

N/3 bringing the performance close to that of ML frequency estimator. In ot­

her words the variance of frequency estimate obtained by k=N/3 is a few 

decibels poorer than the C.R. bound which was attained by ML method. Note 

that the threshold occurs at about 10 dB. By the threshold we mean the 

value of SNR at which the accuracy of the frequency estimate begins to de­

part very rapidly from the C.R. bound as SNR is lowered. Fig.II.5 shows the 

variance of frequency estimate versus autocorrelation lag with different 

data' length.' Similarly, the best performance is obtained when k is approxi­

mately 1/3 data length. The same situation can be observed in Fig.n.6, 

i.e., the .autocorrelation lag at k=5 yields 'very satisfactory 'results 

(N= 16). In fact· one has, the variance of the frequency estimate. at k=5 is 

less than 5 or 6 dB Cramer-Rao bound; and can observe the threshold behavi-

our of the estimator. As SNR value is decreased, the difference b·etween the 

variance of estimate and Cramer-Rao bound is also increased. In Fig.II.5, 

the variance of estimate at k=N/3 becomes much greater than at 1<= 1, as N is 

increased. 

/ 
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2.5 THE ARGUMt:NT METHOD AND MODERN SPECTRUM ESTIMA nON METHODS 

An M' th order autoregressive process is represented by 

_ • -c. 
xn -a 1 xn_1 +a2xn_2+ .•• +a

n
_
M

+ VVn 2.43 

which yields p·:lwer spectrum estimate of the form 

2 

1- i akz-k 1

2

,. .' 
k=O Z=eJW 

S (f) 2.44 

.where {q,1,a2' .aJare the parameters of autoregressive (AR) system determined 

through various algorithms [60] and S(f) is the Discrete Fo~rier Transform 

(OFT) of the signal, In this sense it is convenient to think of x.' s as 
1 
c 

being the output of the system with gains a i s and input wi's . The 

first order AR process is then 

Xn =a 1 xn_1 + W~ 
2.45 

where I a 11< 1. It follows from [26] the .L\R parameter a 1 is given as 

2.46. 

In o:-der to estimate the frequency of a sinusoidal signal, the AR tech-

niques use the spectral maxima or pole methods. The spectral maxima method 
I 

is based on the estimation ot the pqwer spectrum and searching a p.eal< whose 

frequency location corresponds to the frequency 

• b~sed o~ searching the roots near to unit circle 

of the tone. Pole method is 
( 

of Z-transform of a.' s 
1 

p:lrameters. It is easily shown that first ord~r AR process is identical to 

the preceding method with k= 1 for pole method, i.e. 

! 
1 

2.47 
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Also in [33] the expressjQns fQr the variance of the spectral .estimate peak 

posit~on at high SNR are given for another techniques known as modified co­

variance (MC) and covariance (C) respectively as 

2 1 
0- = --~----~~----~---

fM:: 41T2 II (N-M) 2 M 

0- 2 = -.:...{4_M-:::-+_2..:,..} ____ _ 

fc 121T2 M(Mtl} (N-M}2 11 

These expressions h.:lve again a broad minimul1 when M (model order) is 1/3 

the data length. The comparative variance of frequency t::stimate behaviour 

using MC, C, and proposed methods is shown in Fig.II.7. The MC technique 

performs considerably . better than other techniques. It is of interest to 

note that in Fig.II.7, how fastly the performances of all three methods im­

prove by increasing the model order (M) for both MC and C and AC lag k up 
, 

. to N/3. [Both it is compulsary to find r M solving the n·:>rmal equation 

to obtain a.' s . 1 

~ . 
or use the proposed method], Although the MC is the best 

technique, b:.Jt the proposed method is much simpler frequency estimation 

technique which do·es not require the filter para'Tleter 
• 

estima te.Also 

Fig.U.8 shows the performances of three methods for k= 1 i.e., first order 

MC, C, amI .'\R process. The variance of frequency estimate; using MC tech­

nique is also identical ~: for the first· order case, Therefore the compar-

ison of the lower bound performance of the mentioned three frequency esti­

mate methods can be more easily seen from Fig.II.8. The comparative perform­

ance of the methods of frequen.cy estimators b·~comes quite p·::>or at low sig-

nal to n·::>ise ratios and is ap;:>roximately close to CRLB between 6 and 10 d3 

at high signal to noise ratios. 

;,' 
/ 
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l.6 TWO TONES CASE 

The sampled signal x(n) consisting of two complex sinu'soids in the 

presence of. additive white noise is given by 

45 

Xn = Al exp (jnw1 ) + ~ exp (jnw
2

) + w~ 2.48 

where Ak =~- eXP (j~k) is the complex amplitude of the k-th sin'usoid, ~k is 

its arbitrary initial phase at n=O and w
k 

is its angular frequency, normal­
, 

ized so that -1T<Wk <1T , for k= 1,2. J Wn is additive white noise. It is appar-

* ent that if ~;:-Al and w2=--w
1
then x(n) isa sampled real sinusoid in addi-

tive white (cQ!Tlplex) noise. 

xn = Ao exp j (nwo +~o) {o.exp j' (nllw+ll~) +0. -lexp -j (nllw+ll~)} 
Equation (2.48) can be written in a more tractable form [76] 

whereAo= AIA2 1/2is lhe geometric mean of the magnitudes of the two 

amplitudes, 0.= Al / ~ is -the arithmetic mean of the initial pl-tase,llp= (~-P2) 2 ' 

is -o~,e half the differen~e between the -two phases and lIw= (wl-w2) /2 is one 

half the difference between the two frequencies, 

The autocorrelation function r
k 

of the complex sinusoids d.efined 

by (2.48) is given as 

rk = A~ [ita -2 J[""P (jkwo)}eos kAW + j g(a) Sin kAW) 

where 

-2 -2 
0. - 0. g (0.) ;: --=:-----,,0-
2 -2 

0. +0. 

J 

2 
2.50 

2.49 
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If the input samples consist of two 'sinusoids in 'white n~ise, the 

resulting a'1alytic signal is 

2.51 

In this we are, going to try to estimate the mean value of the frequencies 

of the two tones, i.e., (f I +f2)/2 using the formula (a = 1) 

,f = 1 

4lTk 

where y=lm[r kJ and x=l~e[r k1• 

2.6.1. EVALUATION OF E[f] 

2.52 

A.gain using the second order approximation technique, the expected 

value of f is found as 

Er,i] =' 1 
,L 4klT 

(x,y) 
--I 2 2) (-2 -2) 1 2yx\.°x -cry + 2 Y -x 

+T( , 
-2 -2 2 

where 
(x ty ) , 

N 

4 
'2 =' on [-L+ II (1- '(N-2k) 

0y N 2 . N 

4 (N-2k). A c 
Cov(x,y) = °n}J J Cik - 2k 

~ = g{a) Sink, A W Cosk we + Sink ,we 'CoSkA W 

Tk = Cosk:W
e 

Cesk'il w~ (cd Sink' we SinktM 

2 2 -2 2 
u ;; Ar.. ( a +a ) /0 .... / 

/ 

Cov(x,y) 2.53 



Eq.(2.53) is used to calculate the expected value of f when the theoretical 

autocorrelation function is given. Putting this expression into a more con-

venient form, we have. 

2 2 

- 1 tan"'l ( Sc_) 
TkSc (T2k +'I'2k) + (C:k -Tk ) C2k · 2.54 

.E f , + 
41rk . Tk . 

~2(~ + Tk2) 
2 

For 0( = 1, g(o< )=0, it can be easily sh·:>wn that 
2.55 

i.e., this method correctly estimates the mean frequency of two sinusoids. 

As a deviates from unity E[f] takes the limiting values of f 1 and f2 

It means that :E[f]=f 1 as a ~CXI and g( a); 1 or E[f]=f2 ~s a -..- 0 

and g( a ) -"'-1 a,d single complex sinusoid case is approached. 

2.6.2. VARIANCE OF TI-JE ESTIMATE 

Following the previous step similarly, the variance of the estimate 

is found as 

o 2.56 

For a =1, g( a)=o 

2 N + 4 N \1 Sin2kllW + 4J.lk Cos 2kllw 
Q- = 2 
. f [12 lJ (N-k) k Cos kAW]. 

2.57 

Similarly as in the single tone case, an important question arises apart 

47 

fro'Tl the selection of the AC lag in order to 'Tlinirnize the frequency error 
. ' 

arriving the Cramer Rao 'lower bound. Certainly the number of data samples 

N, and SNR play key roles in this situation with the d<;!sirable situation 

being SNR» 1 and large N. For /N{=O, Eq(2.57) is similar: to Eq(2.41) i.e. 
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. single complex tone case. . The Eq.(2.57) is plotted parametrically in 

Fig.II.9 agqinst the AC lag k, and different values of b.W • Again it can 

b·e see,O_ 

-lO.log( ~) 

N:;25 
SNR =20 db 

70 

60 

50 

~o . 

1\ " 

1 2 3 4 5 6 7 8 9 K 

Fig.I1.9. Variance of the estimate versus autocorrelation lag. 

that, the performance of frequency estimation can be improved by . using op­

timal value of k which is different than one although it breaks down after 

AW is greater th:ln 0.10. If AW is close to zero i.e., we have two closely 

resolving sinusoidal signals, the analysis yields the proposed result. This 

situation· cal) be understood clearly if one examines Eq.(2.52). Also 

Fig.II.IO il1ustrates this behaviour versus· signal to nJise ratio with k=6. 

/. 
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2.7. P .D.F ~ f,XPRESSION OF f:STlMA TED MEAN FREQUENCY 

In order. to determine the. d,e~ection performance of' the method, it is 

. '" desirable to kn~w tt)fi! probability d,ensity function of f under the tone pre-

sen.t (HI) and ooiseonly (Ho) hypotheses. We· assume again th~ n:Jm­

ber of samples N is large en':>iJgh to use Gaussian statistics. 

- for Ho 

Thte statistical properti'es of X and Y fO~Jnd in Appendix can be 

rewritten for Ho 

4 X IV N(O, a /2N) . n 2.58 

Y IV N(O, a 4 /2N) 
n 

These expressio:1s are now used to derive the pro':labiJty d·ensity function of 
,. 
f. It is more convenient first to consider the dummy variable "6 which is 

defined 

. '6 =y/x 
A 

This is in turn used to derive the P.D.f. of f using the .formula 

2 1T kf=arctan £( 

from [74, pp.198], th,e joint P.D.F. of x and y is 

N 4 exp I-N (x
2

+y2) /°11
4 J 

1f On L 
then 

1 

Now using Eq.(2.60), we have finaUy [74] 

o <w < IT 

o > w 

I 
I 

2.59 

2.60 

2.61 

2.62 

2.63 
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Note that the probability density function under Ho does not dep,end 

. 2. upon the m)lSe p:lwer O""n • 

- F~r til 

For signal plus noise case, th,e statistical properties of X and Y 

,fOllow from Appel1dix A, as . 

a 4 n 

N 
-L T l.l (1- (N-2k) Cos2w1k 

2 N 2.64 

To d·~termine the P.D.F. expression, one can use Eq.(A-29) by substituting 

the statistics of b·:;>th X and Y to find 

A1 
N = 

(a2_b2) 1/2 20 4 
n 

222 

~ = a -b Cos 2w,k 

2 (a2_b2) 
... 

.. ' N a-b Cos2 (w-w:tJ k 
A3 ;:; 

on 4C1Js2v1t;. [a
2 
-b

2
COs

2
2wl k J 

A4 = 2 CN [b-a 1 Cos (w-w}Jk 

4 2 2 2 
an (a -b Cos 2W1 k) Cos wk 

As 
NC2 (a-b) = 422 2 

where ,a (a -b Cos 2w1k) 
n 

A2 (N-k) 1 . 
C = ...;..-~--"- I a = 2 T l.l 

N 
finaUy from (C-ll), we have 

I ,. 

and b = 11 (N-2k) 

N 
2.70 



exp t 

or 

exp , .. ( 
• 

where 

. ..,. 2 
-INc (b-a) J 

121T o. 3/2 
n r (w,w1) 

, 2 
NC (a-b) 

2 l Cos (w-w1)k _ 

20 4 (,a +b) r ( ) n W'W1 

tN c (~-a) Cos (w-w1) 

121T 0 2 r 3/2 
'n (w,w1) ] 
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2.71 

2.72 

The P .D.F. for H t is expressed· in terms. ,of the mean frequency, 

number of data s:lmples and signal to n::>ise ratio. Fig.II.11 and Fig.II.12 

show this function for some different values of SNR and number of data S:lillP­

lese Considering the P.D.F. of (W,-w.) as P( llWIH
J
) it can be concluded 

that the mean frequency estimate is effectively u'1biased since E( AW) is ze-

roo In other words, since the density of mean frequency displays arith~etic 

symmet~y around W, ' the expected value of the mean frequency equals to 

true one. Comparing Figs.IJ.II and II. J 2, o!')e can see that the maxi'mum 
A _ 

value of P.D.F. and variance of WI are related to ~oth ~ a'ld SNR as exp-ec-

ted. In these figures WI =72, N=5~ and ~= I 00 respe~tively. , 

:/ 
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Also a different approach can be used to prove that the estimate is un­

biased under a particular interpretation Which is derivative of P.D.F. with 

respect to W • The interpretation is explained as foHows 

The derivative of ~(w !H\),is'given 

d 

dw 

. [ NC
2 

exp 4 
. 20n (a+b) 

. 2 
(a-b) Cos (w-W])k 

r(w,w1) 

v'21f 0' 2 
n 

d [ NC
2 _..:...(a_-b-=)~Co...:...s...:...2-:.(w:..:..._..:..:.WJ...I.;)~k:.....·· -l~ ~ 

'dw exp {--4---
20'n (a+b). r (w,wl) 

. Since the derivatives of both Cos( w - w1)k and r (w,wl) 

] } 

with respect to 

.2.73 

evaluated at w = w
1 

are zero, the derivative of P w ( w l HI) at w =w
1 

., 

becomes zero. This result and symmetrical property of P.D.F. imply that the 

expected value of W is equ,lJ to WI • This method ca'n be seen to be a useful 

technique for estimating the frequency of sinusoidal signal according to 

this conclusion. 

2.8. BANDWIDTl1 ESTI\t\A TION 

In this section the problem we set o~rselves is that of ~e~~timating 

the spectral b:lndwidth (d3mping' factor) of the sinusoid3.1 signal by ~na­

lytic signal model. Let us assume that the N samples of the obs'erved 



observed data sequence z or analytic signal model consists of' samples n. . 
'of a, expo~l~ntial1y damped sinusoid.:ll signal in ~omplex valued white· Gauss-

ian noise W n 

Z = -j Vi. A e -an e i [ wIn + ~]+ ~f' n . n 2.74 

where (l is th·~ da'1lping factor. We set up the following equation to esti­

mate a (BW2) as 

ai ' ; [1 ~ l:k I ] 
. 0 2 -ak -jwIk 2 

. by uSing the fact eX::: 1 tX and r k =A e e t an 6(k) 

2.75 

for k=O, 1 ,2, ••• 

Therefore BW2 'can be simply estimated by a knowledge of the autocorrela-

tion function at aile particular appropriately smal1 nonzero value of k. 

Actually the validity of the approximation of series expaflsion is directly 

related to the 0( for constant I,. (It can b·~ seen that for noise o~ly case 

B',V2 becomes infinite as expected since th,;! s3'1lpling time is n,:>t chan-

ged.) In· this regard, thus there is no need for d.eterminin:s the entire po-

wer spectrum or the erltire autocorrelation function as in the frequency es-

timation problem. 

2.8.2. VARIANCE OF THE ESTIMATE 

In order to find the variance expression for bandwidth estimate, 

first of all on·e has to calculate variance of r k • Using second order 

ap?roximatio'1 technique, Var( r k ) is obtained as in the previous. part 

[
-2 2 -2 2 . -- - - ] Var Irkl = 4 x ax + y Oy + 2xy Cov (x,y) 

Th.e statistics for an exponential1y damped sinusoidal sign;!} are given by 

2.76 

.. ' 
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a 2 _ -<>21, '[ a 4 
x - e n 1 - -+ II (1 + 

. N 2 

a 2 ; e -2.kt an 
4 .. l' 

(1 -Y N - +).1 2 . 

Substituting Eq;(2.77) into Eq.(2.76) we have 

2 4 
4 CJ< an 

- _. -----
N 

where 

A2 (~-k) ~ 

~ 

[(~. +ll) 2 . 
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CoS2W
1
k)] (N-2k) 

N 

(N-2k) ] Cos2W
1
k N 

·2~ 77 

N Cos 4w1k 
lJ (N-2k) ] 

.2.78 

Finally, the variance of the bandwidth estimate is obtained by second order 

techniqu'e [74] as 

. Var [ Ell]:: Irk /
2 

4 
r 
o 

. /r I 
Var (r ) - 2 (~) 

. 0 
r3 
o 

Cov Irkl/ro] 
2.79 

Similarly this expression is a function of autocorrelation lag and it requ­

ires the simulation to determin,e estimation performance. 
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CHAPTER III ASYMPTOTIC BEHAVIOUR. AND STATISTICS OF SPECTRAL 

MOMENTS 

3.1. INTRODUCTION 

S~ectral moments have been used in applications including radar,sonar 

problems [78], tone detection [79], mean frequency estimation [80] and con­

volution, deconvolution problems [81]. As an example, in radar applications 

the first three moments correspond respectively, to the volume, mean velo­

city and range of velocities of the scatterers. Also the mean frequency is 

used to estimate the frequency of sinusoidal signal in white noise. 

In the past, spectral moments have been estimated by first estimating 

the spectrum S(f) itself and then using this estimate into the definition 

of the spectral moments. However estimation of the spectrum is a very impor­

tant problem which has led to the development of several estimation techni­

ques. By the choice of one existing methods, one can have some advantages 

depending on aim and with respect to specific conditions. One possible app­

roach to the estimation of spectral moments is to use a spectrum analyzer' 

which is often like that a filter bank or Fast Fourier Transform (FFT) pro­

cessor etc. However the specific charecteristics of this method make it im­

proper to do it. (Conventional Fourier type estimator· is known to yield 

poor resolution when applied to sh:)rt h:!ngth d.:ita records and computationai 

problem even using FFT processor.) In addition, computing the spectrum at 

every point p:-ovides more information than necessary in many applicatio_ns. 
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(For example, complete information about the spectral shape is not required 
. . 

in tone d,=tection problem [79]). However. one can estimate the spectral mo-

m.ents using time d:Jmain infonnation as weB as, i.e., by using the inphase 

and quadrature signals [79]. 

More recently a:'1 algorith'll has been p~oposed which estimates the spec­

tral moments without p.~rforming a Discrete Fourier Transform (D.F.T.) by 

using Maximum Entropy Spectral Analysis (MESA) moment matching technique 

[82]. In this method, sp·~ctra:l moments are estimated by using a series ex-

p3nsion in terms of the autocorrelation lags. Use can made of the MESA to 

extrapolate the autocorrelation lags from a few known or estimated lags. 

In this chapter some of the properties of MESA moments are investi-

gated. The MESA mome;"}t paper is composed of three section. In the first sec-

tion, we investigate the use of the Maximum Entropy spectrum ~n the estima-

tion of spectral moments and consider some of their elementary properties 

such as filtering, windowing and shifting. In the seco:1d .section, the asymp.:. 

totic behaviour of MESA moment technique for the case of sinusoid embedded 

in additive white noise is analyzed. Th·e asymptotfc formula for the spect-

ral . mean frequency a:'1dl1ean square bandwidth are derived by assuming known 

. autocorrelation function .. Also we compare the asymptotic b·~haviour of the 

estimator with the case when only a few terms are involved. As a bonus of 

the analysis the same moment expressions for the case of two sinusoids with 

eq".Jal or non-equal p::>wer' are also determined. In th~ last section the ana­

lysis of statistical properties of MES.A. mome;"}t is given. It is shown that 

the p:-obability of detection (p;) and probability of false alarm 

- (P
F

) can b.~ written as functions of the expected value and th·e variance 

/ 
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of n ~ th moment for tone detection problem. In addition to these the vari­

an::e and P.D.F. of th,~ estimated mean frequency are d~rived analyticaUy in 

this s~ctio~. 

3.2. MESA MOMENTS: 

Let us consider as an approximation the moment integrals the sum in 

(3.1) with the N-point Discrete Fourier transform: 

~1n=.2. ~ \(~) [~T ] n 
N. ~=o [N J 3. 1. 

which is valid when TIN is smal1 relative to variation in the . sp·~ctrum and 

where m and T deni:>te respectively, the n'th moment and the sampling period. 

Expanding the factor (IT IN) in terms of a cosine series [82], one obtains a 

moment expressio:l in terms of th,~ a'Jtocorrelatio;) (AC) lags, i.e., 

n 
ro .. Co ex> 

E Cn Mn;;: : +k=:=l rk 2 k 
3 .. 2. 

where 
~. 

:( 0:-1) 2 , .;. . ." _" (:l-2...:.-T. ),-,-":,,.n-,I+,\,,:,",2 r-;-;+;-l _. {( - 1 ) (n -
1 

) / 
2 

(2 nk!T) n+I 
( -1 f';E C (-1 r . n. ... -

r~o (n-2r-l )! (2 ;kT)2r+2 

o 

I n=l ,3,5, ... 

n=0,2,4, ••• 

/ 
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for k= 1,2,3, .•.•.•••• 

and 

k=O,l •.•...•••.... (N-l) 

In practice only the first M AC terms may be available; however hig­

her order lags can be found by extrapolation using the equation : 

. . .- k)M 3.3 

where the a , j= 1 ,2,3, •••. M. are the linear prediction coefficients found 

by one of the least squares (LS) techniques such as, PARCOR, sequential LS, 

lattice, covariance, autocorrelation •..•• algorithms. Because of . the poten-

tial implication of the Maximum Entropy techniques in (3.3), we will call 

the estimates in (3.1) the MESA moments. 

The usefulness of this method can be attributed to ·several factors. 

By the choice of MESA moment technique and for a given number of data samp-

les, one can properly estimate the spectral moments by means of the extra­

polation of AC for low order autoregressive (AR) model. (Since ckcoeffi­

-2 
cients decay as k with increasing number of AC terms, the first a few terms 

are the most important. This means that only a few AR parameters are requ-

ired. ) 

/ 
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3.2.1. ELEMENTARY PROPERTIES 

Certain properties of spectral moments obtained through the expansion 

in (3.2) are listed below. 

Shifting The shifted moments 

j.1n= /"(f-fo)n S(f)df can be fO'Jnd as 
9 

Filtering : A process filtered through a system with power transfer 

function P(f) has the moments 

where 

N..;l 
r k' = 1: rO"k 0 and 

o 1 -1 
1=0 

'3.5 

Windowing : If the process is windowed with the window function wen), 

the moments take the form 

con roi 00 n 
+ '" C r'l j.1n=--.......... - t. k k 

k=l 
3.6 

2 
with 

where ' *' den,:>tes the convolution operation. 

/ 
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3.3. ASYMPTOTIC BEHAVIOUR 

It is of interest to evaluate and compare the moment estimates in 

(3.1) increasing number of AC terms. Since the cases of tones in the noise 

background is' analytically tractable, let us in. fact consider their asympto-

tic behaviour. The AC sequence for L tones in white noise is given by 

r - 2 L 2 
k -an .8(k) +.E Ai CosW·k 

1=1 1 
3 .. 7 

where a~ is the noise power,oH()is the Kronecker .delta and l-., f· are sig-n 1. 1 

nal power, frequency of i' th sinusoid respectively. 

The first step of our analysis is to determine the asymptotic behavi-

our of the MESA moment technique for the case of single tone. case. 

3.3.1. SINGLE TONE CASE 

. where 

For a single tone (L=1), the first moment can be given as 

M,= Co'ro +; C~ r
k 2 k=, 

k= 1 ,3,5, •.. 

k=2,4,6, •.• 

/ 

1 1 and C=--
a 2T 

3.8 



To obtain the mean frequency we divide the Eq.(3.8) by r . 
o 

- 1 ,2 co rk 
f= - - _. L ---=,..--

4T T k=l ---If2k2r 
k:odd 0 

1 . -
Since cRO, V k which are eve·n we .rewrite the expression as 

- 1· 2 f=----
. 4T Tn2 
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3.9 

3.10 

Now Jet us determine the second moment expression. The coefficients for k 0, 

n=2 and the second moment are given 

C2 1 2 {_l}k 
Ck 0 6T2. T2 n2k2 

3.11.a 

and 
2 k Ai co 

t12= + L 
i-1} rk 

12T2 k=l 12 n2k2 3.l1b 

respecti veJ y. 

Noise free situation 

. ·2. . 
For the noise free case (an =0) and a smgle tone (L= 1), the mean fre-

quency and normalized second moment expression are 

f= ,....L... 
4T 

2 .; Cos :2nf~(2k-1) 
-~ k= 1 (2k-l ) 

. From [83,pp39] using 

! 
I 

3.12a 

3.12b 



~ Cas(2k-1)x 
k=l (2k-1)2 

IT 
=--

4 

IT 
(- "Ixl) and 

2 

(Xl 

L (_l)k 
k=l 

Caskx 
k2 
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12 4 

1/2 2 
and considering the fact that m 1m and [.(m2-m'l')1 ma ] are estimates 

" 0.. 

respectively, of the mean frequency and mean square bandwidth (BW) one ob-
.... 

tail)s the exact values f::::f
1 

and BW=O 

Noisy situation 

By follo'Ning the' similar step as in the previous section, for the 
,2 ' ' 

case of an #0 , .the mean frequency and bandwidth become respectively, 

A l-I' 1 
f= -- .-.- + f1 

~+1 4 l-IT 
1/2 

f BH= _, _ ( f2 + 4l-1 +1 __ 1 _ ) 
~+, 1 48 l-IT2 2T 
------------------

4 

3 

2 

1 

-

-
: 

...... 

M=2,'···· 2 
.... BW / 

:'-..- / 

: ~ /1 
/ 

/ 
M=CX}/ 

/ 

/ 
I 

I 

I 
/ 

" f. tv1=2 / .. . ... ···L ... ~ 
I .' ... "" ......... ~---.""..." 

.. f -- M ..... '..J-- =co 
--I 

I 
I 

- / 
. / 

I I I 

20 10 o (dB) 

" F· III 1 Varl'ations of f and B W with 10.log Ig. .. 

3.13.a 

3.13.b 
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where 11 = Afkm2 is the signal to· noise ratio. 

In Equation {3.13-a} the term li4T is due to the white noise mass; 

this bias however be eliminated and this equation can be used as a tone fre-
. -

quency estimator. The convergence ·properties of the series in (2) is shown 

. in Fig. III. 1 where both f and BW are plotted as functions of the signal to 

noise ratio (SNR) and parametrical1y dependent upon the number of lag term 

.• M. In th~s example one has T =0.05 sec, hence the Nyquist frequency is 10Hz 

'" and the tone frequency is 1 Hz as in [20]. For SNR -0, one excepts f= 1 /4T 
. ".. 

and BW=I/2T while for SNR--oo one should have f=1 Hz. Also Equations (3.13-

a,b) can be rewritten for high SNR condition as foHows i.e., 11» I 

3.14.a 

1/2 

3.14.b 

One observes also that a good estimate of the mO'11ents can be obtained by 

using only a few AC lags, i.e., 5 M 10. The first and second moments can 

be reliably estimated using two lags, however higher order mO'11ents require 

more than two lags~ 

3~3.2. TWO TONES CASE 

In this case we are going to use the first moment for estimating the 

mean value of the frequencies of the two tones, i.e., (f1 + f2)/2. 

Noise free situation 

By using the previous expressions for the first and second moment we 

have 
3.15.a 
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3.15.b 

. ! 

Special situation which needs mentioning is the case where Ai = A2. 

The expressions become 

~ 

f = (f 1 +f2)/2 3.16.a 

2 2 
. BW = (f 1- f 2) /4 3.16.b 

One can see that from the above expressions, the depth nuU in the spectrum 

is weighted by the ratio of the. power of the tones and if two tones are 

closely spaced then B W wiU be smaUer as expected. The results of this sec-
'. . 

tion also coincide with a single tone case i.e., fz= fl' 

Noisy· situation 

~ 2 . 
Similarly, f and B',;V expressions for equal power become respectively 

11 
f=---

1 ,f1+f2 
---+--- 3:17.a 

11 + 1 411T 2 

1 3.17 .b 
2 

where 
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~.4. STATISTICAL PROPERTIES : 

In order to determine the detection performance of the moments des­

cribed . here, it is desirable to know· the probability density function of 

under the tone pre~ent (H 1) and noise only (H ) 
o hypotheses. 

We assume that the number of samples used N is large enough to assume Gauss-

ian statistics. Let us consider again a two term approximation, for the mo-

ments i.e., 

3.18 

Statistics for m 
n involving an arbitrary number of autocorrelation 

terms can be obtained in a straightforward but tedious manner. 

Since r k is normal random variables as shown in the Appendix (A), 

for both the n'Jll and alternative hypotheses, mn has a Gaussian distri­

bution with mean and variance respectively as 

a 2 
~o ,n= E (Hn:1 Ho) = n

2
a n 

~i,n= E (r·inl H1)= an 

2 
(an

2
+ Ah +bnA~ Cos wl 

"2 2 a6,n E [U1n- Ao,n] = 
a2n 4 2 4 

an + bn an 

4tl N 

2 

G 
2 bn2 2 2 an (an + -- )+bn Al 

N 2 

3.19.a 

3.19.b 

3.19.c 

2 
Cos wl 3.19.d:' 



where 

l'-~. f3=G ~ ~ + 2A~ 
'~: 

dn= 2ConC~ 

an=Cn 

° bn= en , 
and E( • ) is the expectation o~erator. 

Let us now discuss two applications 

3.4.1. TONE DETECTION 

67 

The P.D.F. expressions for both hypotheses can be used in tone detec-

tion problem. Thus we concentrate our efforts o~ evaluating the performance 

of the likelihood ratio test (L ) m 
n 

detection (PO) and probability of 

and calculating probability the 

false alarm (P~). Evaluation of 
f' 

the detection performance of the MESA mo<nent detector for the general (in-

volving M AC lags) case is a difficult task. We demonstrate here the detec-

tion performance for M=2, the result presented can be . viewed as a lower 

bound on the MESA moment detection performance. 

The sufficient statistic o,:>tained from the likelihood ratio test is 

[73] . 

[0 0 5 
, __ '_1 )t1n Ao,n -~. )] H, 

LMn =t1n C 2 G2 2 > t·, 3.20 G < t Go,n 1,n q o,~n 1 ,n 

with Ho 
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, being the threshold of the test. The approach is to cO!npute the n' th mo­

ment by the MESA method as data is obtained and then test its value against 

the foHowing hypotheses. 

m < mT H n - 0 

Using (3.19) and (3.20), p~ may be evaluated as 
f' 

QQ, 

which yields 

M .. ). , 
r Q ( T ',O~, n', )', : ',F:= ''------,,-"-''--

O'o,n 

3.21 

3.22 

where Q( • ) denotes the error function. Similarly the P; computed, fro!n 

(3.19) and (3.20) may be expressed· as 

3.23 

These expressions enable to use MESA moment technique as a signal detector. 

3.4.2. MEAN FREQUENCY ESTIMA nON 

The first moment can be used to estimate the mean frequency as fol-

lows: , 

3.24 
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Fig.III.3. Variation of the mean frequency estimation versus number 
I 

nf Ar ff'rms. / 



70 

In Fig.III.2, the estimated mean frequency is plotted versus the nu:-nber of 

known AC lags. (Extrapolation goes from 3 to 40 starting with the two known 
.' 

AC lags.) The simulated tone frequency is I Hz and sampling rate 20 Hz. One 

observes an 
~ 

oscillatory behaviour for f up to 30, however higher order AC 

terms can be obtained by extrapolation through Eq.(3.3). In Fig.III.3 for 

the estimation of tone frequency both the known and estimated AC lags are 

used. Typical situation which needs mentioning again is stated as: The fre-

quency error is not inversely proportional to the number of AC lags which 

are estimated or known in a certain limiting values of M. For example the 

minimum frequency error is obtained by estimated AC with the initial phase 

( cp ) is zero for M is between 4 and 7, and known AC for M is b,etween 12 and 

20.The phase dependency of MES./\. mean frequency estimator is shown in 

Fig.III.4. It can be observed that the frequency error depends O!1 the init-

ial phase of the tone. For example :ninimum. frequency error is attained for 

6 < M < 8 at about ¢= 180 while for M= 18, good performance is attained, at 

about cp =90 ° and '21 O.oAIso the values of the estimated frequency using the 

known AC are straight lines as shown in Fig.III.4. 

3.4.3. VARIANCE OF THE MEAN FREQUENCY 

A measure of the accuracy of the mean' frequency estimate of the MESA 
t 

method is given by the variance analysis. In the calculation of the vari­

ance of f use has b,een ~adeof the variance expressions for the AC terms as 

below: 

/ 
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The varian:e of the unbiased estimate of the i' th AC lag is [84] 

n-i 
Var r i- (N_~)2 k! -(tHi) (N-i'-Ik l ), (r.~+ r kfi r k_i )-E

2
(ri ) 3.25 

? 
1.10-'\, / .. \ 

\ I \ / 
\ I \. I 

\ / \M=18 / 
1.05- \. , \ /. 

\ , \ , 
\ I r...... \ 

1\ \ / / \ \M=18! / 
\ \ I I \, \ / , 

1.00- \ \ / , \ ,_ / I 
\ ~ ,\ I 
\ I /"".... \\ / 

\ \ 'I \ 
\ \ I I \ \ M=8 I I 

0.95- \ \ / II \, \ / ,I 
\ \ 'M8 \ l \ 1- \\ /1 

\ \ ..... / / \ \_/ 7 
\ ,M=6 \ /' . 0.90-' \./ \. I 

, I M=6 \ I 

Fig.III.4. Variation of the mean frequency estimation with the 

initial phase (N= 100). 

Using. again second order approximation technique as in [74] and assuming 

that the' error in estimating r 2k-l is 

finaUy 

- 2 -2 t1/2 Var (r2k-l) 
Var f fl;a ... = O.04T:E 2 

--: f' k=l (2k-l) 

/ 

uncorrelated with r , we have o 

-

3.26 
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where 

. 2 2 ( 1 r2k-l 2 2 
) ur +. ) ur 2k-l ) r o· 0 

r = _2k-l 
4k-l 

0:::
2 

r r---------~----------------_ 
0.9 

0.8 -

0.6 

0.4 .. 

0.2 
.. 

... 
. .. .. .. 

~I----~I~----r-I----'-----~~ N 
20 50 80 110 140 

Fig.III.9. Variation of the mean frequency estimation variance vs. N 

Let us again specialize to the case of a sinusoidal signal in white 

noise and consider two situations separately for analytical simplicity. The 

. variance of the mean frequency estimate is then expressed in terms of the 

number of data samples (N), sampling period and mean frequency. 

2 
Noise Free (un = 0 ) 

For the known AC lag Eq.(3.25) can be written as 

/ 
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Fig.II1.5. Variation of the mean frequency estimation variance versus 

number of AC terms (noise free case). 
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Fig.III.6. Of versus number of AC terms ( f1 =5). 
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1 .(N-i)2 
Var Pi =--.-2 ,;E A N-i- k (COS2kw1+COS (k+i)w1Cos(k-i)w1) 

(N-l) k=-(N-;) 

A2C 2. os l';w
1 

Since 

N-i 
E (N-i)(l+Cosiw1)=(N-i)2 1+Cos2iw1~ 

k=l 

N-i. 
'E k(l+Cos2iw

1
). 

k=l. 

one obtains as 

.(N4i)(N-i+1) 

2 

i Var r. = ---
1 (N-i) 

N-:i 
1.+ 2 ': E. (N-i-k) Cos2kw

1
) 

(N-i) k= 1 

and finally 

!3 + 2h. +. -.!l!1 (1 gjl1.) 
k Jk' N tl 

where we have used the d,efinitions : 

fr1/2 
13k= E 

k=l (N-2k+1) (2k-1)2 

h::k= r1/2 
J . E ,. 

kl 

rV2 (N-2k+1~j) 
J:1 (N-2k+1)2 

Cos2'jw] _ 

(2k-1)2 

From previous section, we· can write similarly 

.. j 
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3.27 

3.28.a 

3.28.b 

3.29 

3.30 



2 +2 

0; .10 
f 

4 

3 

2 

1 

75 

10 20 30 40 ?' 
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and 

Then 

2 o.b4T-2 p2f(k) 

f N( l+p) 4 

where 

W2 
l k= E 

k=l 
(N-4k+2)Cos (4-2~Wl 

(N-2k+l)2 (2k-l) 

and hjk ' f(k), tk' g(j) are defined previously. 

2 
13k p .+ 

3.32 

3.33 

The variation of the mean frequency estimation variance with respect 

to 'the number of AC-terms and data sa~ples as weB as with respect to the 

(signal to noise ratio) is shown in Figs.IV.5, IV.6 and IV.7-8 respectively 

It can be observed from Figs.IV.5-6 that the variance of the me,an frequen-::y 

e~timate does not decrease with increasing M, since with more AC terms, the 

'more estimation error is introduced. Also for fixed N, the AC estimation 

errors at, higher order lags account for this behaviour. The saturation in 

Fig.IV.5 and Fig.IV.6 is due to the k -2 term in Eq.(3.33)~ 

3.4.4. PDF OF THE MEAN FREQUENCY 

In here we give the expressions for, P.D.F. of the mean frequency when 

/ 
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I t AC -1 -1 / on y wo terms are used, i.e., f=0.25T -0.2T r 1 r o. dl~-

rivation of the P.D.F.' s of the mean frequency foJJows the determination of 

the distribution of the ratio r 1 /r 0 first and then finding 

P(fIHo) and P(fJH 1) respectively. ActuaJJy, sin~e derivation steps 
~. . 

used in here with obtaining both the P.D.F. of MESA moment and the P.D.F. 

of mean frequency for argument method are similar, therefore we wiU omit 

the derivation. 

For H o 

For noise only case, P.D.F. is given by 

Pf (fIHo}=-=-"-l---­

IO.2T-1Ig(f) 
[
- -JL.(1- ~.)J 3.34 

-?:' g(f) 

where 

In Fig.IV.l0, the P.D.F. for H is plotted versus frequency with vari­
o 

ous values of number of data samples. As in the previous section, the simu-

lated sampling freqllency is 20 Hz. The density of mean frequ~ncy displays 

-1 arithmetic symmetry around 0.25T =5 Hz as exp"ected. 

For Hl 

. For signal plus white noise, th·':! P.D.F. of mean frequency is 

A f" ""1'" "n . A4 ] [ " !\2
A! J p- (ftH1

) -~ - - exp -A5A2+-
f 2A3Ay2 A~/2 2Ay2. 4A3 

3.35 

where 

1 . 
A2=-'-:""'---

2( l-r2) 
/ 



2 
A - Z ,1 2rz 

3- oX2;'; 0y2 - ---a-a 
x y 

A - 2rzy + 2rx __ ' 2xz __ 2....,Y:.--._ 
4- 0 0 0 0 0 0 2 

x y x y x y 

all A., i= I,. " .,5 are evaluated at z=(f-O.25T- 1 )/(O.2T-1) and 
1 
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- -Ox , x , 0y , yare statistics, for the real part of r I and for r 0 

defined in Appendix (A), respectively. 

P(fIHDf--_________ . _____ ---. 
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Fig.IV.l1. P.D.F.of mean frequency for Hr The simulated tone 

frequency is 1 Hz. Nand T- 1 are 50 and 20 Hz, 

respectively~ 

/':1 

4.05 

Also the P.D.F for HI is shown in Fig.IV.l1 with different values 

of SNR.· If we consider the P.D.F. of mean frequency error as P (f -f 11-l1)one 

can see that the mean frequency estimate at low SNR using two AC terms does 

not yield satisfactory results. This undesired behaviour can be reduced by 

using more AC terms with extrapolation technique. By examining Fig.IV;1 and 

IV .11, for high SNR condition it can be 'seen that the frequency error takes 

the reasonable value. Another important p·::>int in Fig.IV .11, the frequency 

f 



.. 
I. 

',r 
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of tone and sampling rate. Now if we keep the sampling rate constant and 

take the frequency of sinusoid, let's say .4 Hz, the frequency error wiU 

decrease and the P.D.F. of frequency error" will shift to the left with res­

pect to the before one for constant SNR condition. 

/ 
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CHAPTER IV: PROPERTIES OF AR METHOD 

4.1. EXACT SOLUTION OF AR PARAMETERS. 

for a 

are a 

It ~s well known that for a known autocorrelation {r k, k=O,I, •. p-l } 

wide sense stationary sequence, the A~ parameters {a i·' i=I,2,... • P } 

solution to the normal equations known as Yule-Walker r 26 J 
-I 

R a = r or a = R r =x - ::0 x- 4 .• 1 

where ~x is the Toeplitz matrix of correlation with el~ments Ir (i,j) = ri_j 

i , j =0,1,. • P } and vectors ( This type of matrix is defined as the olle 

having aU t~e elements of each diagonal equ~l r: 85 J ) 

a = [ai' a2: a )- ....... ~ J T 

Employing the matrix inversion expressions , it is ~ossible to obtain exact 

solution of the AR parameters expressed by Eq. ( 4. 1 ), i. e., the analysis 

of the exact solution ,of AR parameters will accordingly be based on the 

analytical study of inversion of autocorrelation matrix , ~ven though in imp-

lemenJation one has to use the Levinson-Durbin algorithm or another sugges-, 

ted popular methods which are mentioned in the first chapter. 

4. 1 • 1 COMPLEX TOEPLITZ 

Considering the case of a c:omplex sinusoidal signal in white noise, 

the autocorrelation sequence for such a data may be expressed as 

/ 



= a 2 
n 
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4.2 

where ~ (k) is Kronecker delta , ~\A and WI are noise power,signal power 

and frequency of sine wave. Exact 
-I 

solution of AR parameters are given by 

~ = [~:}E 
or it can be augmented to indude 6"n2as fol1ows 

Using Eq. (C-5) into Eq. (4.3), we have final1y 

or 

and a =1 
o 

where 

.... -

at ~ exp(-j WI) 
a2 

{-¥ exp(-j2CJ,) • • • · • :: • 
t 
• 

a p l exp(-jpw,) 
I-b' 

a. = -L exp(-ji~) 
t 1- ~ . 

SNR 
and SNR = 

1 ~ (p+l) SNR 

4. 1. 2 ~EAL SYMMETRIC MATRIX 

4.3 

4.4 

=1,2, ..... p 4.5 

A 

For the case of a real sinusoidal signal in white noise , the autoco­

rrelation sequence and exact solution of AR parameters are given respectively 

and 

a JB. rl~l - l~xJ . . ;' 

4.6 

4.7 



Employing Eq. (C-ll) into (4.7) 

2~ 
Sinw1 (P+1) 

Sinw] 

83 

2 

for = 1 , 2 , •.• ~ •• p where 

Sin (2p+1)w1 

Sinw1 ' 

P" = SNR 
2 + (p+ 1) SNR 

- ~ 

Sinw1 (P+1) 

Sinw1 

A 
SNR= (j'2:" 

n 

The above expression yields the exact yalue of the AR parameters for 

certain classes of matrices as a function of SNR, frequency of sinusoid, 

WI and the AR model order, p for a sinusoidal (complex or real ) signal 

in white noise if the true autocorrelation function is known. Note that 

for the noise alone case all ai will be zero. 

4.2 DEVIATION OF AR PARAMETERS 

Our primary interest in obtaining the coefficient deviation of AR 

polynomial is to investigate the performance of AR method. In particular· 

once the deviation of the estimated AR parameters has been computed, 

then the determination of the roots displacement is immediately available. 

Assume that x is an AR process to which white noise w with n n 

variance has been added. Then 

is the observed process. The true and estimated AR parameters for this 

process are given 

and 

________ ..... !. __ I ............ _ .... £'11 • / 

4.8 

4.9 

4.10 



It was shown that [ 28 J 

..... T 
a=PBPa 

or 

a = P [A+6~I ] APT a' 

where B is a diagonal elementary matrix with ith diagonal element is 

( A;./Ai + a~), \. is the ithh eigenvalue of Rx and P is the modal matrix 

i. e., i th column of P is the i th normalized eigenvec;tor correponding to 

eigenvalue .\:, and J\. =diag ().I J)..~ , ...... >'p). 

84 

4.11 

4.12 

it is of interest 'to find the deviation of the estimated AR para-

1\ 
meters a i. e ., L\ a = a - a which is 

where 

T 
Aa=PKPa 

d. (-1 -1 ) K = lag -;-:-);';,. . ... . ., "T}\ 
1+-" 1+~ 

~'l'2. <In'.!. 

4.13 

Therefore , additive white noise causes the estimated AR' parameters de. -

viate from the true parameters. 

4.3 ROOT DISPLACEMENT DUE TO INEXACT COEFFICIENT 

When the coefficient of AR polynomial, a 1. a2, • •• . ap are 

inexact due to the white noise, corresponding roots of AR polynomial 

are in errors. If z is obtained as a root of the AR polynomial, with es-

timated a , then 

4.14 



If we denote ,the exact coefficients by a = ~ +6 a , then the true root 

( zl£ + A zk) must satisfy the equation 
1\ P ... p_1 
Ai ( Z ) = ( Zk,+AZk) + ( a,+Lla,)(zk+AZ ..,) 

'" ..••.•.•••.. • +( a + A a) = 0 
r r 

If the Eq. (4. 14) is subtracted from Eq. (4. 15) and if it is assumed that 

the relative errors are sufficiently small to permit neglect of higher-

order terms, i. e • , 

it 'follows to a first order approximation , we have 

85 

4.15 

4.16 

a 2 + ••• flap = 0 

, 4.17 

and hence (86] 

P-I 
zkAa 1 + ••••••••• A ap-l 

4.18 

or p-1 Zk fla1+ •••••••• flap_1 4.19 

I:~ I Z = Zk 

In particular if each coefficient is known to be in error by no 

more than E. , 

i=1,2, .•. p 4.20 

there follows , within the same degree of approximation the· maximum 

root displacement is 
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4.21 

or 
p 

! z". , -.IJb' . zk. -
S'\I I I 

max !A(\)!. ( I \!- 1) 
4.22 

When I zk I .~ ,1, this approximate bound becomes as 

! Z-k! :; 
PE 

:!A'( zk)! max 
4.23 

In terms of relative errors , Eq. ( 4. 19 ) yields the approximation 

LlZk 
P Lla~ 

"" 1: Ck1. "'" -
zk' i=l a~ 

p-~-l-

Ck~ ::: 
Zk a~ 

A(Zk) 
Hence , in particular if the magnitude. of the relative errors in which coef-

ficient does not exceed i • e . , 

< n i=1,2, .... p 4.25 

then 
p 

I :: I max ~ n ~ 1 I Ck 
t I 4.26 

Eq. ( 4. 19 ) and ( .<\.24 ) give the root displacement and relative root dis-

, placement due to the inexact coefficients of AR polynomial which are go-. 

ing to be used in the later section. 
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4.3. 1 CIRCULANT MATRIX CASE 

Before using circular matrix , a few key properties of these mat­

rices will be presented [85]. A circulant matrix of order M can be repre-

sented by its first row and has the form illustrated in Eq. ( 4.27 ) 

C= 

Co c j c2.......... .c 1"1-1 

CM~lcoC I············c 
M-2. 

c c ............ . 
i 2. 

c o 

It will be also useful to use Z-transform of the first row, 

.. 
Let F be the discrete Fourier transform matrix of dimension M , 

where 

1 ••••••••••• 1 

F= .. 

M-I M-2 
W w' ., ••• w 

1 

t01 

w = exp (2 1\ jiM) , j = r=r-

/ 

, , 

4.27 

4.28 

4.29 



An important), theorem is that if C is circulant it is diagonallzed by F , 
.>r 

that is C = FA F where 

A= diag {c ( 1 ), ~ (w ), ••.• C (w
M

-
1
)} 

Equivalently , the eigenvalues of a circulant matrix are simply the sca­

led DFT of the, first row of the matrix, i.e" 

t-l-1 [-2 j£k/m] 
A =' r Ce exp k· e=o k=0,1, ••• (M-1) 

and the corresponding eigenvectors are given by 

\ ~ ~ , exp(-j2nk/M), •••• exp(-2nk(M-1) 1M] ~ ~ 

for k =0 , 1 , 2 •••••••••• (M-I) 

"'t' 

It can be also shown that any matrix' expressible in the form of as F.A F 

is a circulant matrix. Details are found in [85]. 

Considering the properties of circulant matrices as we mentioned 

so far, one can immediately obtain the' deviation afAR coefficieliltsusing 

Eq. (4. t 3 ) as 

~a = 

where 

M 

E 
=1 

ll· = .J. 

a 
J/, 

a 
J/, 

2 

, 2 
Ai + an 

- .-;-.- -" 

i = 0,1, ••• (M-1) 

or for ith coefficient it can be e'xp~essed as 

/ 
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4.30 

4.31 

4.32 



" ' 

exp 
r J2irk: ] L---·-'" (-.~, -i) i=l, 2, ••• M 

M . 
-, -:.- ::..--' 

. ;~ .:.J 

After having derived the deviation of AR coefficients , the n' th root 

placement due to these coefficients can be given by using Eq. ( 4.19 ) 
M M-l M-l . 
E E 

k=l ~ =0 
E 

m=O 

R,(k-m-l) N .. 

dis-

In this representation a , z represnt estimated coefficient and root ( pole 

, or zero' ) respectively which are found for M' th order AR procees. Also , 

the root 'displacement depends on the eigenvalue seperation of autocorrela-

. tion matrix, signal to noise ratio as expected and order of AR process. 

4.3.2 TRANSFORMED CIRCULANT MATRIX CASE 

There exists a case the circulant matrix becomes a diagonal matrix. 

This can be achieve~ by using properties of discrete Fourier transform, mat­

rix i.e., F F = I • Equivalently this is in other words, the. case where 

the discrete Fourier transform matrix yields the unitary transform. 

The solution of true AR parameters for the transform dQmain is obtain-

ed as follows 

4.35 

where R is circular matrix. Similarly we have an expression. for 
x 

", the estimated AR parameters 

-I 

~ =r R;F*JF r 4.36 
/ 
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4.33 

4.34 .' 
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Now since 
4.37 

F R F =A 
x 

one can obta~n easily 

* 'Z 
F R F =A+6;,~ 

y . 4.38 

and 

A a = F*r 

Using Eq. (4.35 ) into Eq. ( 4.36 ) and considering the fact that Aa = ~ 

- a, we have 

4.39 
or 

for i=1,2, ••. 4.40 

It can be concluded that from Eq.( 4.40 ), if the autocorrelation matrix is 

of the same form Eq.( 4.37 ) in other words, if the transform domain tech-

nique is used for autocorrelation matrix, the deviation of ith AR coeffici-

ent is independent of other coefficients in contrary to case of circulant 

matrix. 

The n' th root displacement for this case can be given as 

M-l 
.E M-{-l 

Zn a i +1 
i=O 

]J. 
-1. 

~Zn = M-l M-i-l 
. E (M-i) -a. Zn 
1. =0 1. 

The difference in root displacement of circular and transformed circular 

4·41 

matrices can perhaps best be demonsrated by examining -Eg.( 4.41 ) and Eg. 

( 4.34 ). 

;' 
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4.3.3 . COMPLEX TOEPLITZ MATRIX CASE 

For the case of complex Toeplitz matrix, R is given 

2 * T 
Ry=6n I + a V V 4.42 

Since R y is Hermitian there exists a unitary transformation P which 

diagonalizes R as y , 

where 

P R P = diag [ A A •••• A ] 
Y 1 2 P 

4.43 

1 * P = .r-;. [ V , V , ........ V . 1 
v P . p-l 

i.e., ~, V2 ' •• V P_I are (p-1) mutually orthonormal vectors also 

orthogonal to V Also the associated eigenvalues are 

A =0 + p a 
1 n 

AtA 3 ..... : 0 :-

The coefficient deviation can be expressed using ( 4.43 ) and ( 4.1? ). 

4.44.a 

4.44.b 

A-

nother formulation can be made by using ( 4.9 ) and ( 4.10 ) so that we 

have 
2 -I 

Aa = -6'nR a 
!l 

The n' th root displacement is given 

z = M-i 
E (M- i) 
i=O 

,.. M-1.-1 
a.z 

1 n 

where 

••••••. 1 ] T 

/ 

4.45 

4.46 
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4.3.4 REAL SYMMETRIC MATRIX CASE 

It is well known that when a matrix is real and symmetric, it has re­

al eigenvalues and orthogonal eigenvectors. However it is not in general po­

sitive definite and therefore ~ay have positive, negative or zero eigenval­

ues. But for the real symmetric autocorrelation 'matrix case all eigenvalues 

are positive. Since the analytic expression for the eigenvalues is not ava-

Hable let us formulate the problem. using ( 4.9 ) and ( 4.10). By follow­

ing the steps in complex Toeplitz case, we have 

where 

1\ a= {I- --~~- Re[VV *T] - :~: Re[c a(~(M+ l)_l)vv'I)l a 

Sl an S1 J. 
B f 20 n + a [(M+l)-r C

l c2 J 

4.47 

For the case real symmetric matrix, the closed form expression of the root 

displacement is straightforward but it needs some tedious work. 

4.3.5 VARIANCE OF THE AR PARAMA TERS 

It was shown that .all the·common methods of estimating the AR parame-

ters produces same estimate ( i.e., in numerical value ) for N M. Hence 

we will restrict the discussion to the Yule- Walker method or autocorrela-

tion method [26]. It has been shown that asymptotically , the Yule-Walker 

method produces an MLE of the Ar parameters [87]. The asymptotic probabili­

ty density function for· the a parameters is Gaussi~n and is given by 

where 

2 

C 
an -1 

= N 
R 

a x 
/ 
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for the real symmetric Toeplitz matrix, i.e., [r ] = r • Therefore the 

'variance of the AR parameters using the closed form expression of R 

found in Appendix C, can be obtained as 

and 

1 [ Sinw1 (M+l) 
= S1-2a + 2a \l . '\N Sinw

1 

Cos (M-2j ) Wi] for j=O ,1, ••• ~ 
4.49 

M 1 
Var a2j + "2 = S1~ 

r Sinw1 (M+ 1) 'J 
r1-2a+2a~I--;S~i""'n-w-1--"" Cos (2jw1) for j=1,2, •• ~ , 4.50 

respectively. One can see easily that there is a symmetrical structure in 

variance expression by examinig the above equations'; for example ; 

Var (a ) = Var' (a ) 
M/2 M/2 +2 

Eqs. ( 4.49 ) and ( 4.50 ) are needed in the frequency error analysis sec-

tion. 

4.4. FREQUENCY ERROR FOR AR PROCESS 

If one is interested in only estimating the frequency of sinusoid 

with modern spectrum techniques there will be a problem which is the bias 
I 

in the position of spectral peaks with respect to the true frequency loca-

tion of those peaks. Frequency bias in processing sinusoidal signal with 

Burg algorithm has been experimentally investigated by Chen and Stegen, [20] 

for noisy' case and theoretically analyzed by Swingler [18] for noiseless ca-

se by considering the second order case. 

/ 



94 

In this section, as frequency measurement (estimation ) accuracies, 

the statistical fluctuation of a peak frequency is investigated by using 

Newton.' s and Sakai's methods. A major task in determinig the performance of 

frequency estimate obtainig by mode~n spec~rum techniques is to investigate 

the frequency error when the model order or data size or signal to noise ra-

tio is changed. 

4.4.1 SAKAI'S METHOD 

Let us define 
Sew) = 

A(w) A(-w) 
, 

2 
an 

S(w)= ----,---..,...--
A(w) A(-w) 

true and estimated power spectrum respectively. Let us consider the statis-

tical fluctuation of the estimator for the frequency at which S ( w ) 

has a peak value. Since S ( w ) and S ( w ) take the maximum values at w 

and w respectively it follows that 

, .. _ '" .A 

d A(w) A(-w) = i- A(w) A(-w) 
ow dw 

W=W w=w 
or 

I J 

Alw) A(-w) + A(w) A(-w) =0 
I I I I 

1\ () A(-W) + A(w) A(-w) = 0 A v.; I , , 

For large N, the frequency error can be assumed to be small so 

- I . _1/ - '" f,ew) = A(w) + A(w) /). w , , 
_ _ f. 

A(w) 
I 

= A(-w) + A(-w) /).w 
I . I 

4.S1 

4.52 

4.53.a 

4.53.b 

4.S4.a 

4.S4.b 

-. i.e., 
-, - /' A b f 
A ( WI) and A (-WI) can be approximated near WI y m.eans 0 Taylor 

series d I b defining a ~ a - t. a as the AR coefficient e,xpansion an a so y 

vector deviation, we can write 
; 
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A(w)= A(w) - b.a F (w.\ 
I I t 4.55.a 

I I T I 

A(w)= A(w) -.6a F(w ) 
1 4.55.b 

where 

. 
. Eq.( 4.55 a-b ) shows the estimated spectrum at w=w contains . two parts: 

one part which gives the exact spectral peak value, the second part 

reflects the bias term due to the coefficient deviation in AR fliter. (It 

should be noteo tnat· is interpreted as the difference between the main 
A -

peak frequency of A ( w ) and A ( w ) .in this in·vestigation.) 

By substituting these into (4.53.a) and (4.53.b) , we have 

4.56 ,-

2. 
and assuming; b. aT lJ.W =:A ° AW=O, 

T 
A a D. a = 0, we write the frequency· 

/ 

+ F(W1) A (-W1) + A(W1) 
4.57 

A"(-w) . 
1 

Since Eq. (4.57) esta'blishes the relationship between Awand f1 a, one can 
, .' , 

determine" the frequency' error for AR process using the expressions of coef-

ficient'deviation presented in the previous section. Using the result of 

the'. second order AR process when the input data is sinusoidal signal i'n 

white noise, we can show an interesting fact namely that A (w,) and A (-w, ) 

become zero. Actually for this case, the frequency error expression can be 

rewritten as 

./ 
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, I I 

, T A (WI) F (-wI H·A (-wI) pi(W1) 
!l W =Aa ] 4.58 

Also since w is directly 'related to A~, we have to calculate fj. w 

depending upon, the situation in which one can have a specific form the 

autocorrelation matrix. 

4.4.2 NEW METHOD 

Another particularly simple method which is actually associated with 

the Newton method between wand w is investigated in this section. 

In order to examine the behaviour of the frequency' error w, A(w) is 

approximated near w by its Taylor series expansion as 

2 2 
( ) 1 d A(w) 
w-wl +"2 2 

dw 

. . 2 

IA(W) 12 = IA(w ) \2 + dIA(w) I 1\, 
I 1 dw 

, W=Wl 

2 
(W-W

1
) + •••• 

w=W
1 

By neglecting higher order terms and the above expression is differentiated 

and setting the result equal to zero at w = ~l in order to find the 

frequency error in the. equivalent form 

2 
dIA(W)I 

dw 

2 2 2 
_ dIA(W) I I +.d A(W) 

- dw I ' dw 
- w=Wl w=w 

Since /A "(WI )\1isl a constant., Finally we have 

dIA(W) 121 
dw w=wI 

WI - wI = 2 2 

d I~W) I I W"W

1 
. • 

Now let us try to find the closed form expression for I A ( w ~ I and it's de-

rivatives with respect to w • Since· 

/ 

4.60 

4.61 



A(w) = 
M 
L 

k=O 

we obtain 

M _ 2 

- -jwk· 'lee 

M-l 
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L a + 2 

k=O k 
L ak~+l Cosw + •••• 2~aM CoswM 

k=O 
4.63 

or M-i M 

IA(w)2 1= 2 i:O 

From Eq. (4.63), 

Cosw
1
' L ak ~+i k=O 

4.64 

it follows that 

d I 2 - A(w) I =-2 
dw 

M M-i 
L i Sinwi L 

i=O k=O 
akak+i 

and finally ( Note that the first summation index begins from one. ) 

2 
d 2 

I A (w) I =-2 
M 

L 
i=l 

.2 
1 Coswi 

M-i 
1: 

k=O 

Using (4.65)and (4.64) into Eq.(4.6 I), the estimation error w = w 

expressed as [ ~ 
t.. M-i]' 

i Sinwi L a a I 
i=l k=O k k+i w=wl 

wI -WI = --=~-;:~;--l-' 2-c--·---::M:-:-~--;-i-_ ----J-.
1
--

t.. OSWl t.. akak+i w=w1 i=l k=O 

- w is 

Although we derived detailed expression for frequency error here so 

far using the mentioned method, exact evaluation of Eq.(4.66) requires the 

solution of AR parameters which is available in the previous section for 

the users. However, another interesting part is the determining the second 

order statistics of AR coefficients in order to obtain the expected value 

of the estimation error. Also the specific structure of autocorrelation mat-

rix plays a role infrequency error analysis as one can see easily. Final-

ly, the asymptotic statistics of AR parameter estimates permits us to eval­

uate the asymptotic behaviour of the expected value of the dif!erence be­

tween true and estimated peak frequency.location. Using. the exact solution. 

4.65 

4.66 
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of AR parameters for complex Toeplitz mat' E (4 66) nx case, q. • becomes; af-

ter some further work 

Other matrices can be found by making use of the exact solution of AR pa­

rameters in a similar fashion. 

4.5. ZEROES OF THE AR POL YNOMlAL 

When the input consists of a complex sine wave in additive complex 

white noise, the ( M-J) , th order (odd) AR polynomial has one of its ( M-J) 

zeroes at exp ± j ( + ) ¢. The remaining ( M-2 ) zeroes represent the pre-

sence of complex white noise. Whereas for real sinusoidal signal case; it 

has two of its M zeros located at exp ± + j ( + ) ¢ and ( M-2 ) extra-

nous noise zeroes. In AR polynomial, the noise zeroes tend to distribute 

themselves with approximately uniform angular separation and constant radi­

'us inside the unit circle so as to account for the uniform spectrum of the 

additive white noise. For M' th order (real signal case) AR polynomial (M-2) 

zeros due to noise, 2 zeroes due to signal can be written. as follows by. as­

suming the location of zeroes shown in Fig. ( IV.1 ), and frequency error; 

and 

/ 

4.68 

4.69 

4.67 
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It is clear that also one can see 

(M-l) e n + 2 ( wI + Il w) = 2 if 4.70 
Now, from the basic polynomial propertie~ we have 

k 

= 1'~1 Zi = rs _r~-2 exp j E en + wI 
2 [ k-2 

.11.= 
+ IlwJ k=2, 3 .• M 

. 4.71 

Let us define 

rn 
/3= --

rs 
then Eq.(4.72) ·is rewritten as 

Depending upon whether k is even 

change, so 
k rk

-

2 
rs for 

~,k = Sk-2 k for r~ 

4.72 

4.73 

4.74 

or odd, the sign of ak k will , 

k even 

k odd . 4.75 

~ I m(z)-- -._-------
\ 

Re(z) 

F ' IV 1 Zeros of the AR polynomial ( ig. •• :Signal zeros, :Noise zeros) 
/ 
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Therefore ak,k is always real as expected. The abov~ equation gives the 

relationship between the reflection coefficient and radius of the signal ze-

ro. Since ~ is the ratio of the radius of the noise zero to the radius of 

the· signal zero, it is a function of both SNR and model order. To determine 

the - effect of the zeros on the reflection coefficient or directly on the AR 

spectral estimate it is necessary to examine location of these zeros as a 

function of both SNR and model order. It was shown that in [28], for high 

SNR . the signal zeros are near to the origin and noise zeros are located far 

enough wi~hin the unit circle so as not affect the spectrum and p t.< 1. 

As SNR decreases the radius of the signal zero decreases until it is 

,equal to the radii of the noise zeros which produce equiripple approxima­

tion to the flat noise spectrum. Furthermore as the model order is increas-

ed, the radius of the signal zero increases for a constant SNR resulting in 

a higher resolution spectrum estimate and ~.« 1. In a practical sense howe­

ver, model order can not be increased independently since (r k' k= 1, • • 

, ,M) must be estimated from the finite data 'samples to obtain the coeffici-

ents of AR polynomial. Ulyrch and Bishop [7] report that N/3 <. M < N/2. As 

the model order is increased beyond these limits, the radii of the noise ze-

ros approach that of the signal zeros for constant SNR, then poor spectral 

estimate is obtained. The fact that signal zeros approach the unit circle 

faster than the noise zeros accounts for the better spectral estimate. Howe-

ver, when the autocorrelation function must be estimated, estimation errors 

will give rise to zero perturbations. Thus a small perturbation of a noise 

zero may result in a spurious peak if the radius of the noise zero is near­

ly equal to that of the signal zeros. Lacoume [88] has formulated this vari­

ation of zero locations with model order analytically as follows: 

/ 
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i) Signal zero is at a distance 

d = 2 
4.76 

M(M+l) SNR 

from the unit circle and its angular position is when SNR 

ii) The (M-1) other zeros are regularly distributed inside the unit 

circle in the ri~)g 

(2M)-1/M <Izi < 1 1 
4.77 --N. 

It is noted that this limit allows us to use the radius 'of zero in carrier 

detection' problem with a threshold [88] 

I z I > 1 -
1 
M 

4.78 

Also recently Kay [77] has investigated the use of radius of zero of AR po-

lynomial for the detection of sinusoid in white noise (In fact he deter min-

ed the lower bound of AR detector). 

4.5.1. STATISTICAL ANAL YSIS OF ZEROS 

Now· let us establish the relationship bet,ween reflection coefficient and ra-

dius of zero for the noise only case. Since AR spectrum for H produces o 

approximately flat spectrum, then 
k 

k exp [j E i e ] ak,k = r n i=l n 
or' 

4.79 

=c: 
for k even 

ak,k for k odd -r . n 
4.80 
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One can easily see that this formulation contradicts the result of 

the exact solution of ARI parameters. The problem arises from the fact that 

finite observation i.e., error made during the ~ €7stimation of autocorrela­

tion function. Secondly the characteristics of the distribution of the ze-

ros satisfies with normalized Butterworth filter zeros. 

The PDF for the estimated values of the reflection coefficient is gi-

Vel1 [89] for H 
o 

where 

pHO (a) = 
a 

r (t-1/2) 
4.81 

a=aM M= Reflection coefficient estimate _ for any M' th or-, 
der model and r ( . ) denotes the Gamma Function. 

For HI' the PDF of the reflection coefficient estimate aM,M 

for any M' th model order is given if the true vah:e of reflection coeffici-

ent is b 

p~l(a) = 
a 1T (t-3) 

where I is as defined above and it reflects the effect of data samples and 

model order. By making use of Eqs.(4.81) and (4.82), the PDF of the radius 

of signal or noise zeros can be obtained as 

H, . [ p ~ (r) = 
rs J

-1 
dr 

da
s 

ivl.M 

M-2 H1 
p (a) 

a 
4-.83-

/ 
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He 

p (r) 
r 

n 
M 4.84 = r n 

for Ho respectively. Eqs.(4.83) and' (4.84) give the final expressions 

~or . the PDF of radius of root of AR polynomial. Although these expressions 

appear in complicated form, they can be used for carrier detection problem. 

4.5.2. FURTHER ASSUMPTIONS ABOUT THE STATISTICS OF ZEROS 

We know that the roots of AR polynomial are complex conjugate order. 

Suppose that the real and imaginary parts of zeros for Ho are Gaussian 

distributed both zero mean and the same variance 

b. 
Re[z.] :.: X. 

1 1 

I 

b. 
Im[z.] = y. 

1 1 

Then their joint density function is 

p (x' Y') :: XY 1., 1. 

One can obtain from [74] 

1 
21T0 2 

n 

for i = 1, 2, • 

• Let us define 

,M 

p (rl."wl.'):: 
r,w 

r i [-r~ /2 0 2] . 
----;:;2 exp 1. n 

21T0 n 
where 

2 2 2 
r. ::xl.' +Yi . 1. 

/ 

4.85 

4.86 

4.87 



Finally we have 

P (r.) = r l. __ r.;:.i_ exp ·[-r~ 1202J for r i > 0 
o 2 l. n ~ 
n 

which· is the well known Rayleigh density distribution. 

For HI we assume that for signal zeros E[x ] = f'\1 

4.88 

and where x and y denote the real and imaginary parts of 

the signal zero. Similarly' [74] 

r s 

o 4.89 

where I is the Modified Bessel Function of order zero which is written o 

as 
21f <Xl 

J excosede = E 
o n=O 

Let us determine the probability P that r s is the largest root •. 

The decision rule is given 

4.90 
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But we must note that the zeros of AR polynomial are. complex conjugate 

therefore by the defined decision rule there are two largest roots due to 

real sinusoidal signal. In order to solve this problem, we are interested 

in upper side of unit circle i.e., wi. =0,11" or 0 £:: W~ f 11" , then 

and P (r) does not change. Now 
rs s 

P = f Prall r i < r s } 

20 2 
n 

4.92 

o 

o 



or 

and 

where 

Since 

Finally 

P = 

2 

P = Pr { all ri < rs rs = rT } Pr { rs = r T} 

M 

Pr {all rs Irs Irs 
-2-

ri < = r T} = Pr {r;(r s = rT J 
rT is the threshold. Using Eqs.(4.89} and (4,.91) 

1 M 1 [ rT dr1l-2 .-P = f Prs (RT) 0 f (r1) 
0 d rT 

r T 

[1- exp (-
2 

>J f P ,(r
l

) dr
1 

1 r T 
= "2 r 1 2 

0 20' 
n 

we obtain 

I 

£!-l 2 . o 

1 
f 1 - exp (-

2 M 
r --1 

_T_) 2 r T 
20' 2 - I 

n .',0' 2 0 
n 

_1 

When this method is used, the probability of error is equal to (l-P). In 

this formulation, simulation studies are needed togain idea about the per- ' 

formance. Although the integral involving the Bessel Function cannot be, eva­

luated in closed form, there exist some cases where I (x) can be app-o 

roximated and the closed form solution can be obtained accordingly. 

4.5.3. AR SPECTRUM IN TERMS OF THE RADII OF ZEROS 

105 

4.93 

4.94 

4.95 

4.96 

~·97. 

Let us continue to analyze the role of radii of zeros in ARspectrum. 

It is of interest to formulate for the case of L sinusoidal signals with 

'. noise free known autocorrelation function. Since the zeros of AR polynomial 

are located in z-plane as 
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= r. exp(+jw.) 
1 1 for i = 1,2, ••• ,L 

depending upon the power of each sinusoid; then ohe can find. immediately 

the AR spectrum in terms of the radii of signal zeros. 

It is clear that for any i, i.e., r.= 1 and w=w. 
1 1 

. .2 

IA(e
Jw

) Ilw=w. ,;. ~1 
To illustrate the result 5f E~.(4.1 00) we let L= 1, w.=0.2 the resulting 

AR power spectrum has been numerically calculated and is shown in Fig.IV.2 

for different values of radius. Fig.IV.2 also describes the effect. of value 

of radius on the notch width. 

The presence of noise in observation destroys this formulation. Let 

us consider again L sinusoids in white noise with N-point discrete time ob-

servations. In this case, AR spectrum whose roots satisfy Fig.lV.l can be 

given 

A (Z) = 
M/2 [ 

IT 1 

i=1 

-1 2 -2 J -2ri Coswi Z + r i Z 

and 

= 

M/2 
11 

i=1 [
1-4· r. (k+r~ ) 

~ ~ 

2 2:. 2 .4J 
Cosw.Cosw+2r.Cos2w+4r.Cos w.+r; 

~ ~ ~. ~ ... 

2 
or 

[1-
2 2r . 

M/2 . 4rs ' 1 r . 

IA (e jw) I 
2 (1+~) coswi Cosw+ s,~ Cos2w , 

2 = S. ~ S i Si ~ 

i=L+1 

/ 

4.103 
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r L 4 2. 
+ r S,1. 

13.2 
1. 

2 Cos w. + . 1. 
s,i ~ 4 J 

Bi4 .{ j=l 

2 . 2 
(1-4rs ).(1+r .)Cosw.Cosw+2r .Cos2w 

, Sf).) S,) 

2 +4r . 
Sf) 

2 Cos w. 
) 

. 41 + r .) 
Sf) 

10 

8 

6 

4 

2 

o 
.2D .• 4fT .6D .8n nW 

t 

Fig.IV.2. AR spectrum for different values of radius (L= 1, noise 

free, second order model) 

/ 



Now let us return to the case where L= 1. Eq.(4.104) is written as 

2 

Cos2w + 
4r . s 

.COSWICOSW + 2rs 

where 

and 

2 Cos 

2 

2 

(1+ 

2 2 Cos2w + 4rs Cos wI 

r = r s,l s 
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4.105 

Now let us consider noise only case. Similarly the AR spectrum whose 

roots satisfy Fig.IV.l is 

M/2 
n [(1-2rn (Cosjw) z-l 

i=l 

A(Z) = 

Since w. = i2lT /M and 
~ 

2 
+ r 

n 

M-l x2M_l 
n (X 2-2X Cos kn/M +1) = 

k=l x2-1 

we have after some tedious work 
2M 

2 . 

IA(eXW
) I 

2 (l+rn +2rnCosw) (1 + rn +2r 
= 

(l.+rN 
2 - 2r Cosw) .N 

4.5.4. THE RELATIONSHIP BETWEEN !J. Z AND b. W 
, 

M 
COSWM) 

n 

Much of the useful informati0!l contained for frequency of a signal is 

obtained by locating spectral peaks or solving the roots of" AR polynomial, 

!1.106 

4.107 

4.108 

i.e., selecting a root with maximum magnitude. Now let us investigate the 

effect of deviation of signal zeros on the frequency estimation problem by 

using pole or zero method. 

/ 



Considering the worst case; the true and estimated signal zeros 

be given respectively for the case of a single tone (real or complex) 

:j:' 

109 

can 

Zl = e JW1 4.109.a 

Zl = r 1 
e+ jwl 

4.109.b 
where 

wI = wI + 6w and r 1 1-6r 1 = r 1 < 1 

The deviation of signal zero is 

-fj,Z = Zl - Zl 
4.11"0 

or 

6Z = Z + jZr r 4.111 

where 

Zr = cosw
1 - r Cos (wI +6w) 1 

Zr = Sinw
1 - r Sin (wI + 6w) 1 

Assuming that 6w is very small and ( 6r 6w) 1\10, we have 

fj,Z = 6i-1 Cosw1 + r i 6w Sinw
1 

+j 6I"1 Sinwl-r 1 <;JW Cosw
1 4.112 

and 

-./ -1 
~ 6Z = tan r Cosw + r AW Sinw . 1 1 1 Ll 1 

Now using the "limit for radius given by Eq.(4.76) 

4.113 

-1 2Sinw1 -(M M+l SNR-2) 6w, Cosw1 4.114 4- fj,Z = tan 
2CoSW1-(M M+l SNR-2 6w Sinw1 

Eq.(4.114) gives the deviation of signal zero in terms of frequency of 

signal, frequency error, SNR and order of the AR process. 

Special case:' r 1 = l' (Fig.IV. 3.d) 

liZ =[ coswI - Cos (wI +lIWl] -+j [SinWI-Sin (WI +lIWl] 4.115. a 

/ 



or again assuming w is small 

boZ ,= W sinw1-j Cosw
1 

4- boZ = 

bo z is real: (Fig:IV.3.a) 

boZ = Cosw1 = r 1 Sin (w1 +bow) 

Sinw1 = r 1 Sin (w1 +AW) 

~ boZ = 00 

r.1 = 1 
Cosw1 Cos i1w + Sinbow 
Sinwl 

For small bow 

boZ = (l-rl) Cosw1 + r1bow Sin w1 

1 

1 + bow 
COSW1 
sinwl 

boz is imaginary : (Fig.IV.3.b) 

boZ = j [Sinw1-r1 Sin (w1 + boW)] 

Cosw1 = r 1 Cos w1 +bow 

~boZ = TI /2 

1 
r = 1 

COS6W -tanw1 Sin6w 

,For small&v 
1 

1 - t\wtanw1 

6Z = j (l-~l) Sinw1 -r16w cosw1 

6Z = TI/2 

/' 

, .. 

I 
/ 
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4.115.b 

4.115.0 

4.116.a 

4.116.b 

4.'116. c 

4.116.d 

4.117.a 

4.1J.7.b 

,4.117.c 

4.11B.a 

4.11S.b 

4.11S.c 

4.11B.d 

4.119.a 

4.119.b 

4.120.c 



Im(z) 

a· 

Im(z) 

c 

111 

"Im(z) 
I . 

Re(z) b Re(z) 

Im(z) 

Re(z) 

Im(z) 

e Re(z) -
Fig. IV. 6. Signa! zero and "frequency error. 

/ 
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frz is complex :' (Fig.IV .3.c), but no frequency error 

/1Z = (Cosw1 - r
1 

Cosw1 ) + J' (S' J.nw1-r1Sinw
1

) 

= w 1 

4.120 

The equations given in, this section establish the relationship 

between ..6. z and the frequency error • 

4.5.5. THE RESULTS FOR SECOND ORDER CASE 

As stated in S~ction 4.2, 'the structure of the autocorrelation matrix 

plays an important ,role in frequency determination. In this section, we li-

mit ourselves to second order caSE: i.e., M=2 in order to give an insight 

112 

about the lower bound of the mentioned AR method. As indicated in detail in 

several papers [32, 33, 34, 46], usually the accuracy Cif the spectrum esti-

mator needs to minimize the' frequency errors to achieve good performance. 

It can be seen that the structure of the known 2x2 AC matrix of a sinusoid 

is accepted Toeplitz or circulant matrix. This implies that for the second 

order case the performances of both circulant and real symmetric (Toeplitz) 

matrices are identical. 

Sakai's Method 

For the second order AR case we have 

A(w) = 1 ~ 2 cosw1e~jW + e-2jw 

, I -jw 
A(w ) = -2e 1 Sinw1 1 . 

A" (wI) = 2e~jw1 cosw1 - 2 e- jw1 

Now let us determine the denominator and numerator of Eq.(4.66). Since 

[
' e-2 jW1J 

pT (wI) = e -Jwl~ 

/ 

4.121 ' 

2.122 



and 

and 

I I 
2 A (WI) A(-W1 ) = 4 S · 2 l.n wI 

Finally 

t::.w = 
-Sinw1 

From Eq.(4.9) one can easily obtain 

2 +311 
t::. a = 

1 . 1 2 2 S' 2 
+ II + II l.n wI 

-(1+211+ llCos2w1 ) 
t::. a2 = 2 2 

(1+2 ll+ V Sin W] 
Substituting (4.126) into \4.125), we nave 

Aw = _(1+11 !2) Cosw1 +1l/2 Cos3w1 

(1+211 + 112Sin2w1 ) Sinw1 
One can also obtain A w=O as II .-rf" co 

To illustrate the result of (4.126) and (4.127), we let several values of w 

113 

4.123 

4.124 

4.125 

4.126. 

4.126.b 

4.127 

and SNR, the resulting parameter and frequency deviations have been numeri-

cally calculated and are plotted in Figs.IV.4, IV.5 and IV.6 

New Method 

. The dosed ferm expression of I A(w) I and its derivatives can be gi-

ven for the second order AR process as 
2 

IA (w) 12 = 1 + 2a1 Cosw + 2a2Cos2w + 2a1a 2 Cosw + a 2 

d IA (w) /2 
= -2 a1sinw1 + 2a2 Sinw12 + a,a2 S-inw

1 
dw w=\V1 

d2 A (w) 
2 

a 1 posW1 
+ 4a2Cos2w1 +a,a2cosw1 . 4.128 

t'lw2 = -2 
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Substituting (4.128) into (4.66) the frequency error expression is obtained 

in terms of estimated AR para'meter and frequency of sinusoid' as 

[a1 +ala 2- + 4a2 coswJ Sin,wl 
6W = 4.129 

[ar :al a 21 cO,sw1 +4a2 Cos2w
1 

. 

From Section 4.1 the exact solution of AR parameter for tl:te second order 

case can be found 

-" 
2 

Coswl • [2 Sin 2Wl + --;- ] 
4.130 

r 

and 

~2 = 4.131 

r 

where 

1 2 2 S' 2 r = + ~ + ~ In WI 

By making use of these exact solutions the final form of the frequency 

error expression is 

g(ll,wl) Sinw1 
6W = --------------------------- 4.133 

g %,wJ-) Cosw1 - h (Ill WI) . 

where 

- ~OSW) [(1+"1 2 
Sin

2
w1 ] g(~lwl) = + 4(1+2~)Cos wl -4r 

r2 
4.134 

and 

4 [(~ 2+21l) S' 4 - ~ Sin
2

w1 ] 
, h (Il 1 WI) 

In WI = 
r 
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CHAPTER V CONCLUSIONS AND RECOMMENDA nONS 

5. 1 CONCLUSIONS 

In this dissertion , various· modern spectrum approaches to both 

frequency and spectral moments estimation and their ability ( performance 

have been investigated and formulated in detail. 

Most of the previously appeared popular estimation techniques used 

in frequency estimation, their performance and drawbacks are summarized 

in Chapter I. 
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In Chapter II , we suggest a· reasonably accurate and computatiOnally 

simple technique for. estimating the frequency of a sinusoidal signal. Two 

points are emphasized. The first one deals with the great simplicity of the 

. frequency determination by the proposed method and second one with the 

accuracy of the obtained results. This technique does not require the compu-

tation of the entire spectrum or autocorrelation function which implies that 

from the point of view of data· processing- complexity , the Argument met­

. hod is obviously lTluch simpler. Additionally it is shown: tnat. it is an unbi': 

ased estimator. 

A statistical analysis of the argument method is m<lge for both a 

a single tone and two tone ~~~e and examined the effect of autocorrelation 

lag on the estimation. performance to obtain optimal result. Then the variance 

of estimated frequency is derived analytically as functions SNR - nlJlmber of 

data and autocorrelation lag. This expression gives a hint that the optimal 

performance can be obtained .v.:ith proper choice of the autocorrelation lag. 

Ithas been observeo that the estimation performance of the suboptimum fre­

quency estimator is comparabl~ to· that of the corresponding optimum estima­

tor known as ML when 'autocorr~},ation lag is 1/3 the data length. In other 



words it can be concluded that the parformance of the proposed method 

can be greatly improved by using optimal value of autocorrelation lag. which 

is an integer number close to N/3 bringing the performance close to that of 

ML frequency estimator. Another importa~t conclusion is that the thres-

occurs at about 1 0 decibel. Therefore only /3'th autocorrelation fun­

is needed to determine the frequency of a single tone optimally. 

This situation is also valid for another popular methods such as Modified 

Covariance, Covariance, MEM etc, but they do need certainly some additional 

complex processing. Also this technique yields estimate which is independent 

of initi phase of sinusoid as demonstreted in [34J • 

Final study of the Chapter II is the derivation of PDF of estimated 

frequency for both Hoand H1 cases. In a short, this techniq~e gives the e?,­

pected result for noise only case ( Ho> ,like that uniformly distributed pro­

bability density function. The PDF for H1,:isexpressed in terms of the freq-

uency of sinusoid, number of data samp autocorrelation lag and SNR. 

Also it displays arithmetic symmetry around the true frequency which implies 
/ 

again ; the estimator is' unbiased. 

Remarkable points which are still open for further research are 

to determine the receiver operation charecteristics of this tecnnique using 

the PDF expressions obtained in Chapter II and the optimal performance 

. for ba~dwidth estimation problem. 

The chapter III gives the results of a study to determine the asymp­

totic behaviour and statistical properties of MESA spectral moments. The 

elementary properties of MESA moments, such as filter~ng, windowing and 

118 
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shifting are formulated. A good estimate of the moments can be obtained 

by using only .a few autocorrelatIOn lags i. e., 5 < M < 10 • The first and 

second moments can be reliably estimated using two lags. 

The analysis of statistlcal properties reveals th·at probability of 

detection and probability of false alarm can be written as functions of the 

expected value and variance of n'th moment for the tone detection problem. 

It . will be interest to compute the hypothesis tests on the n'th moment 

( n= 1, 2 •••.• ) based on their asymptotic relative efficiency. 

Simulation studies have shown that after a certain value of M (typ­

ically 10 to 20 ) there is a little improvement in the tone frequency esti 

mate. In other words it is observed that from the derived analytical exp 

ression, the variance of the mean ·frequency estimate does not decrease 

with increasing the number of autocorrelation terms. For fixed number 

of data samples, the autocorrelation estimation errors at higher order lags 

and k term in the formulation account for this behaviour. 

Finally; the derived expression for PDF using only two autocorr­

elation terms with signal plus noise case does not yield satisfactory re -

suIt at low SNR condition. However for noise only case, it displays arith­

metic symmetry around 0.25 T as expected. 

Chapter IV deals with the effectiveness of AR method in frequ­

ency estimation problem. The fidst step of our analysis is to obtain the 

exact solution of AR parameters by employing standard matrix inversion 

lemma for different structured matrices such as complex Toeplitz and real 

symmetric matrices. In the second section the coefficient deviCl.tion of 

AR polynomial is formulated in order to investigate the performance of 

AR method. It is shown that the presence of white noise causes the esti­

mated AR parameters deviate from the true parameters. Actually the main 
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thrust of this formulation is to determine analytically the root displace­

ment of AR polynomial whose coefficients similarly obtained by various mat­

rices such as ; circular, complex Toeplitz·, real symmetric and transformed 

circular. For circular matrix case 6a and ~z are expressed in terms of SNR, 

eigenvalue seperation of autocorrelation· matrix and order of AR polynomial. 

It is shown that if the circular matrix is transformed via OFT, the deviation 

of ith AR coefficient is independent of other coefficients in contrary to 

case of circular matrix. 

In Section 4 , as frequency estimation accuracy the statistIcal fluctu­

ation of a spectral peak is investigated by using Sakai's and Taylor series 

approximation methods. It is demonstrated that one can determine the frequency 

error for AR process using the expressions of coefficients deviation menti-

oned above in Sakai's method. In Taylor series approximation method the 

exact evaluation of frequency error expression requires the solution of AR 

parameters which is available. Another interesting point is the determinig 

the second order statistics of AR parameters in order to obtain the expected 

value of estimation error. Also the spesific structure of autocorrelation _ matrix 

plays a role in frequency analysis. 

FinaUy the statistical properties of roots of AR polynomial are inves­

tigated. The PDF of roots are derived for the cases Hoand Hi respectively .• 

Although this expressions appear in comlicated form, they can be used for 

carrier detection problem. It is demonstrated that the probability of error 

for (pole -zero) method can be obtained with reasonable assumption an.d ma­

king use of structure of roots. Another important result established in the 

remainig part of this Section is to iUustrate the several possible positions 

of signal zero in Z-plane and give some analytic- expressions for those cases 

/ 



:1.21 

related to the frequency estimation problem. Also second order case makes 

use of the deri ved expressions in Section 4. 

5.2 RECOMMENDATIONS FOR FURTHER RESEARCHES 

This dissertation suggests topics of further research can be outli­

ned as follows 

i. The performance of bandwidth estimation can be optimized by 

examining autocorrelation lag or selecting the optimal value of autocorrela­

tion lag in obtained variance. expression of bandwidth estimate. 

ii. Computational {:omplexity-variance of frequency estimate product 

can be taken as a basis to illustrat.e the attractivity of the analytic signal 

model and modern spectrum estimation methods. 

iii. Signal detection statistics of 

- Frequency estimation via analytic signal method 

- Bandwidth estimation via analytic signal method 

- MESA spectral moments method 

- AR method by making use of the statistics of roots 

can be found by using the expressions in the dissertation and compared 

to each others. 

iv. The comparative performance of maximum root and spectral 

decision rule can be obtained by ·using the result of the statistics of roots 

and spectrq) coefficients ior frequency estimation problem. 

v. ·Simulation studies are needed in order to understand and analyze 

the results of Section 3, i.e., the upper and lower limits of the roots and '. . 

coefficients displacement varying with the matrix structure. This investigation 

/ 



also gives an oppurtunity to evaluate performance of frequency estimation 

by making use of the expressions derived in last section of chapter IV. 
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vi. It will be of interest to compute the efficacies of the MESA 

spectral moment test and to compare the hypothesis tests on the n'th mo­

ment ( n= 1 ,2, .•.. ) based on their aSYl)1ptotic relative efficiency (ARE) figures. 

,.---

;' 



APPENDIX A 

-" 
The purpose of this appendix is to obtain the statistics of the real 

and imaginary parts of the autocorrelation function of a complex sinusoidal 

signal in white noise. 

where 

Let us assume that the sample vector is 

/ 

for H o 

x = .[ .xo ,xl' .• x J . . . . . . . . . . . . .. H-l 

y= [YO IY1' '~""~""""'YN-1] 

(A.I) 

Ho and Ht mean the null, alternative hypotheses, i.e.,. the noise 

-only case and signal plus noise tcn=Sn1-jS [I and Yil=Wn+jWn and ' ~ , denotes 

the Hilbert Transform. Also y is a ,complex Gaussian vector and 

E[;n]=O, Var[v.h]= e:r2/2, E[;w]=O. 

Define the circular autocorrelation function estimate as in [77]. 

(A. 2) 

(Some of the steps of derivation follow that of [77]) where the unobserved 

data points ZN,ZN+l'" .ZN1-k-1 are defined as ZN=ZO,ZN1-1=Zl' ~ ~ • Thus 

Z i can be viewed as a periodic sequence with period N. 

:\ 

/ 

12.3 . 
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For N» p where k=l, • , P 

(A. 3) 

since the added terms in the sum are small compared to the rest of the sum. 

Now define the permuta.t·ion matrix J with NxN 

° 1 o -' •..•.• ° 
° ° 1 '0 ... ° 

J = 
(A. 4) 

1 

1 ° ......... ° Then 

" H 
rl= Z J Z (A. 5) 

where H denotes conjugate transpose and Z=I ZQ'Zl' •••• ZN_1 IT 

Let 

(A. 6) 

where M is the modal matrix of J which is a circular matrix, then 

. Ii ,21Tik 
[M] ik := If exp [J-N- ] . k,i =0,1, •••• (N-1) (A.?) 

and the eigenvalues of J are given 

.21TR. 
AR.= exp IJ-ir-I" R.= 0,1, •••• (N-1) (A.B) 

Rewriting Eq.(A.5) we have 

~i= .[( M Z'fJ ( M z')] IN (A.9) 
-1 H 

Since M is a unitary transform a tion so that M = M and 

H ~ . , A 1~ 
M J M = diag {AoA1.···· N-1J - A (A.10) 

, 2 
_ ,·fl" N-1 Ai ·IZil = ~; N (A.11) r

1
=ZAZ 

i=O 

/ 



For any lag it can be shown that 1771 

For H 
a 

- '" 1 N-l 1 z ',' 1 2 j 2 1T ik tk = N~ 1. exp 1 N 
, 1.:0 

We proceed to consider the noise only case. 

(A.12 ) 

IH 
Since Z = M Z 
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and 
H 2-

E[Z]=O, E[ZZ]= cS'n I then it is clear that 
I 

E[Z]=O (A.l3) 

and 
I , ? 

E[ZZ]= ern I (A .14 ) 

which has the same statistical properties as Z. 

2 
From [74, pp.194] we have E Iz ,I 1., 

2 2 4 2 2 
=0 nand Var I Z1.' I = 0 Cov I z ,I ' liz.! = 

n ' 1. J 

for all i. The statistics for can be summarized as follows: 

E 

E r o = 0 n 

= 0 

2 
I 

Cov Re(rk ), Im(rk ) 

Var Re(rk ) 

Var Im(rk ) 

Var r = 
0 

= 0 Cov I 

0 
4 

n 
= 

2N 

0 .4 
n 

= 

2N 

4 
0 n (A .15) 

N 

Im(rk ) I ro = 0 

C
ov 

Im(rk ), ro = 0 (A.16) 

We can say that r o ' Re r k ' 1m r k are independent random variables. 

Although probabilty density function for is exponential for large N, 

the densities become Gaussian by means of the central limit theorem. Hence 

0 
4 

Re r k '" N (0, 
n 

2N 
, '4 

1m N (0, 
on 

r k '" 2N 4 

N 
2 ch 

(A.17) 
ro '" n ,I N 

i 
o 4' 

ij . n 



where 

and 

E 

E 

N denotes normal random variable 

For H
t 

For signal plus noise case, the input sample is 

E 

_2 2 2 _ 2 
= s. + s. + w. + w. . ~ ~ ~ ~ 

2 
== (5.)2 + (5.) 

~ ~ 
+ (J 

n 

2 

Now let us determine 

1 
N 

N-1 
E 

i==O· 

2 21Tki 
E I z. I Cos (-N-) 

~ 

N 

N .... 1 

N-1 
_ 1 E 
-~ 

i==O 

2 N-1 
== 1 E E Iz. I 5in(2N1Tik)== ~ E 
~ i==O ~ . N i==O 

N-1 
E 

i==O 

2 
== 1 

N 

N-1 2 _ 2 
E (5 i ) +(Si) 

i==O 
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(A .18) 

(A .19) 

(S ) 2+(S- )2 5;n(21Tik) . . ... N 
~ ~ 

+ (J 
n 

2 

If we define the circular signal autocorrelation function as 

where 

where 

1 N-1 
* -c r == E 5i 5 i +k sk N i==O 

etc. Since 

N-1 
E MH S jSR, 

11 1 
S. + j5. == + 
~. ~, R,==O i1 IN 

is the DFT coefficient of and thus 

-c 1 
r sk == N 

N-1 2 
E ( 5 R,) 2 + ( 5 R, ) exp 

R,==O 

~ Rearranging the expected value of the previous term as 

(A.20) 

C. 
~ 

(A.21) 



E Re(r
k

) = 'Re -c r 
sk 

E rm (rk ) = rm -c r 
sk 

E ro 
2 

r C = a + n so 

Now let us find the variance of 

2 2 

where 
Var( Iz ·1 ) = E I Zil -I ~ 

2 2 

i l = lSi + jS. 1 
~ 

, After some tedious' work, we have 
2 

i 

, Var (I Z i I ) :;: E (l3i + 2 ui 
where 

u. = w. S. + w. S. 
~ ~ ~ ~ ~ 
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(A.22) 

2 
2 2 

0 
n (A.23) 

(A.24) 

By using the moment feature of normal random variables stated in [74] 

= 

where E X = 0 

Then 
2 

Var IZ i I 
and 

2 
Cov I Z~. 1 t' 

~ 

1 Var, Re(r
k

) = 7 

n 
1 t 2 t • • •• ,( n -1) a 

o 

2 2 
) = 20 i l + 0 

n 

2 2 
IZ. I = Var Iz. I 

J ~ 

N-1 
( IZ i I2 ) E Var 

i=O 

n - even 
(A.25) 

n odd 

4 

n (A. 26) 

. i ~ j i ij i 

o 4 2 I 
Cos 21Tik 0 I 

= it +~ -0 (-c ~ N 2N N r +Re r 2 I 
so S 

1 

I 



N-l 4 2 
E 2 

21Tik an an Var lm(rk ) 1 Var IZil Sin = 
N2 

= + --i=O N 2N N 

N-l 4 ~ c -1 E 2 an ') r Var r ( I Zi I - ... = Var ) +20- . so 0 
N2 = 

i=O N n N 

2 
an -c Cov Re(rk ), Im(rk ) = 1m r s2k I N 

2a 2 
Cov Re(rk ), ro = n Re -c r sk N 

20 2 
Cov lm (rk ), = n lm -c ro r sk N 

In a summary 

4 2 _c a an C 
R (Re n 

(r~2k) e r k '\J N r sk I + r + Re 
2N N so 

4 2 

rm '\J N (lm -c an an -c -c r rsk ( + rso-R~(rs2k) k 2N N 

2 2-
c 4 

(..:c 2 an rso an 
r '\J N + an + 

0 rso , 
N N 

c 
Por known signal autocorrelation function case i.e r sk = 

128 

0 c 
rso+Re(rs2k) 

(A. 27) 

(A.28) 

A2 (N-k) 

N 

'\J N 
N 

_1_+ l.l (1 + 
2 

(N-2k) 
....,.-'---'-- .Co 5 2 w 1 k ) 

N 



2 

A2 (N-k) 

N 

+ a 
n 

2 
, 

4 
n 

Sinw1k , i ---

N 

2 2 
2A an 

N 
+ 

N 
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1 (N-2k) 
-2- + )J (1 - Cos2wlk) 

N 

4 

(A.29) 

where A , )J are signal power, SNR respectively 



APPENDIX - B 

In this Appendix, we now study certain properties of two jointly 

random variables (x,y) and the probability. density function of their ratio • 

The joint densi ty of x and y is given [ 74 J . 
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1 
p (x,y) = ------=-x,y ~ 

21fa a v l-r­
xy . 

exp[(_-.:-l~_) { (x-x) 2 2r (x-x) (y-y) +' (y-y) lJ-
2 (l-i) a 2 a a a 2 

xx y Y 

B.l 

for x>0, pO 

Let us find the distribution of the ratio Z= x /y. From [74, pp 196 ] 

we write 

Define 

Then 

where 

Now 

where 

00 

PZ{Z) = J y Px (yz,y) dy 
o 

T2 - -

T3 = 

fz{Z) 

Al = 

- 2 (yz-x) 

a 2 x 

2 2 - -2 = Y z - 2x zy + x 

2 
ax 

2r (x-x) (y-y) '2r . = -
a a °xOy xy 

(y-y) 
2 - -2 

= (y -2yy + Y 
a y2 2 ay 

00 

= Al 0 J yexp -~ (T1 +T2tT3) 

1 
and ~ 

Q 21f ax ay 
l-r 

... 

b. 2 
Tl + T2 + T3 = A:3 y + A

4
y +.A5 

Z2 
1 2rZ 

.A
3 = +---

a 2 a 2 a ·0 
x y xy 

2 --Zy - Zyy - xy + xy 

dy 

1 
= 

2 (1-r2) 

B.2 

B.3 

(B.il) . 

B.5 



(J (J 
x y 

2rX 
+~:;;:..:....-

2xZ 
(J 2 . 
x 

2y 
(J 2 

Y 
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By collecting these terms, Eq. ( B. 4 ) becomes· as 

2 

(-Ah ~ + ~J ) dy 

Define 

then 

B.6 

B.7 

fZ(Z) = Ai exp tAsAz + ~:42 I/ -~-A_12- §e-§2d§ _/00 ~\h e-§2 <%} B.8 

Since 

00 

J § 

0 

/ 
o 

_§2 
1 

e d§ =-

2 . 
e-§ d = 

§ 

2 

fIT 

2 

and 

we have finally 

2A A 1/2 
3 2 

\ 1 . L ~/~ -

B.9 

B.I0 
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APPENDIX C 

i.COMPLEX TOEPLITZ· 

For the signal which is a sinusoidal (complex) with power II a II and 

frequency w," the autocorrelatlOn matrix can be written as follows :. 

2 *T 
R =. :an 1+ q V V 

2 
where an is ,the power of the white nOise and T 

V= [1, exp( j WI) , ...... exp( j w,M )] 
and ' * , , , T ' denote complex conjugate transpose respectively. 

'By using the 

we have 

or more clearly 

where 

Finally 

Matrix Inversion Lemma (MIL) 

[ A + a V*VT]-~ i'- a~' yW/ A-' .. 
. I + a VTA-'V'" 

I 
7 n 

I a V V 
[ 

* T ] 

. - a;+ a vT V* 

SNR 
o = I + ( M+I ) SNR 

and SNR 
a 

= ---cYi n 

1- 0 ~ exp ( j w, ) . • • . 

'" ~ exp H lLl) 

~ exp ( jW,M) 

• 

• 

exp(-j ~) 1- ~ 



ii. REAL SYMMETRIC-

Real symmetric matrix can be written as 

Let us define 

A = 

r 
R-

)( = 
and 

where 

then 

Observe that 

2. 
(1n I 

2. ~T 

(J"n I a 
+yV V 

~ T 
A +~V V 

2. 

* T 
A +iV V = 

-I 

A -

-I i( j -I 

A V V A 
T -I If 

1+ ~ V A V 

SNR 

2 + ( M+I ) SNR 

i M 

C to V V =.E exp ( j2i <ll) 
1 1.=0 

= 
sin ( M+l) WI 

sin WI 

~i "* 
V V =C2 = 

r ~ 
V V= Mtl 

After some tedious work, 

;' 
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*T W :. 

T 

VV= 

~1 = ,-'2f1n
2 

+ a ,r(M+1) - \-IC C 'J C ,'1 2 

l' ,z-' .............. . 

·M M-1 
Z Z 

.~ 
.".' •••••••• Z 

z .•....... " .. 

ZM M+1 '~.:. 2M 
Z ••.••• • !'f •• Z 

-M Z 

·-1 
Z 

1 

Or, another representation is 

[

r __ 2a_Re_[ w_*_'l' J + 2a \-I Re. [w
T

C2 J J 
~1 ~1 

;' 
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