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ABSTRACT

The problem of detecting a sinusoidal signal in white noise and esti-
mation of its parémeters is essentially a; problem in signal processing such
as radar, sonar, biomedical, etc. In this dissertation, various modern spec-
trum estimation approaches,. Maximurﬁ Entropy Spectral Analysis (MESA) spec-
tral’ homénts and analytic signal techniques and their statistical character-

ization have been investigated and formulated in detail.

The development. of fnodgrn spectrum estimation known as parametric
techniques for estimating parameters of sinusoidal signals in white noise
is important. Therefore the barameter estimatioh technique based" on pre-
viously appeared and as well as some other newly. developed.modern spectrum
estimation procedures have been presented in this di.;sertation. Comparative
performances and draWbacks of most of the parametric techniqués 'k/nown as ;
‘Maximum Likelihood (ML), Maximum Entropy (ME), Pisarenko, Kumerason, Prony

methods used  in frequency estimation have been summarized.

The analytic signal model called as Argument method to estimate fre-
quency and bandwidth of a sinusoidal signal is studied in detail. New ex-
pressions related to the expected value , variance and probability density

function of estimate are derived analytically.
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The problefn of the estimation of spectral moments and their appli-
cations are also studied. Special attention is given to the case of sinuso-
ids in white noise. In fact, for this case, _r_properties, statistics and
asymptotic >behaviour of _the spectral fnoments are investigated. The moment
estimates are also used for the hypothesis testing problem where the alter-
native and null HYpotheses represent the tone in noise and noise only situ-
ations, respectively. The potential use of the moments for the tone frequ-

ency estimation is also considered.

Finally this dissertation deals with the effectiveness of the Autoreg-
ressive method in frequency estimation problem. In this sense, the coeffi-
cient deviation énd root displacerhent of AR po‘lynomial are formulated for
different structured matrices such as circulant, transformed circulént,

- complex Toeplitz and real symmefric. The frequency analysis of AR method
based on Sakai’s and 4Taylor series approximation methods is studied. The
analysis establishes the relationship between frequency error and coeffi-
cient deviation. The statistica‘l characterization of radius of signal poles

is formulated as a final study.



OZETCE

Beyaz giiriiltiiye bulanmis sinusoidal im_lerin sezimi ve parametrelerinin
kestirimi ; radar, sonar, biomedical ve benzeri problemlerde esash bir sorun
tegkil etmektedir. Bu tezde ¢e§itli cagdas izge 'kestirimleri., en blytik eﬁtropy
‘izge momentleri ve analitik im teknikleri ve bunlarin istatistiksel karekteristik-

leri incelenip formiilize edilmigtir.

Sinusoidal imlerin parametrelerinin kestirimi igin kullanilan, parametrik
yontemler olarak da bilinen c¢agdas izge kestirimlerindeki gelismeler onemlidir.
Bu sebeble; daha once kullamian yontemlerle - birlikte, zamanlmlzda‘kullamlan
yontemler bu tezde sunulmustur. Cagdas izge kestirim yontemleri olarak bili-
nen; en biyilk olabilirlik, en biiyﬁk entropi, Kumerason, Bropy gibi yontemlerin

basarimlar: ve sorunlari Gzetlenmistir.

Beyaz giiriiltiideki siniisoidal imin siklik ve bant genisliginin kestiriminde
kullanilan ve argumeﬁt yontemi oyérak da bilinen analitik im ydntemi detayl
olarak incelenmistir. Kestiricinin; beklenti, degisinti ve olasilik dagilimi islevine

ait yeni ifadeler elde edilmigtir.

Izge momentlerini kestirimi ve uygulamalar: iizerinde de g¢aligiimistir.
Ozel olarak sorun, beyaz giiriiltli igindeki sinlisoidal im durumu icin irdele‘nmi§tir.
'Bu durum igin izge momentlerinin; &zellikleri, istatistiksel ve sonusur davranig-

lar1 aragtirilmigtir. Kestirilen momentlerin hipotez sinavi igin kullanilmasi ve

iv



diger dnemli uygulamalarda ele alinmistir.,

-Qtoregre§if modelin siklik kestirimindeki efkinli{;i g¢alismanin son
bolimiini vkapsamaktadlr. Gesitli dizey yapilarina géré, otoregresif gokterimli-
isinin katsay! sapmast ve kok degisimi analitik olarak elde edilmistir. Siklik
- hata analizi Sakai ve Taylor seri acilimi anlaminda irdelenmi§tir; Ahaliz sikhk -
hatalar: ile katséylisapmalan ve kok degisimleri ile ilgili bagléntllar icermek-

tedir. Son bdliimde bu kdklerin yarigaplarinin istatistiksel davranglar: tiretiltistir.
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CHAPTER I : INTRODUCTION

~

A summary of many of the new techniques developed in the last years

for spectrum estimation of discrete time analysis is presented in this sec-

- "

tion.
1. 1. LITERATURE SURVEY

Power spectrum estimation has progressed through several stages for
at least 18th century, In evaluating spectral estimation methods, three cri-
teria are usua‘lly used. The first resolution: the ability‘of an estimate to
reveal the présence. of two equal power tone (sinusoidal signal) whose frequ-
ency are close to each other. When -tWo sinusoid‘al signals are resolved,
there are two peaks in the spectrufn. If not resolved, only one peak is pre-
sent. Also .for good resolution, the peaks must-be narrower and sharper. "No- '
te that resolved peaks do not necessarily_- imply that ‘the peaks are locatedA
at the proper frequency. The second criterion is theréfﬁ);e the bias ;)f the
estimate. When one source is present, the bias (the errox; in the location
of the spectral peak or the difference between tone frequency and thev loca—
tion of the specfral peak) is ‘ra4rely zero or usually non zero. These two
criteria of the "goodness" of a spectrum may conflict: good resolution is
- often ‘obtéinec'l ;at the expense of a biased estimate, The thifd criterion is
variability: the range of the frequency over which the location of a spect-
ral peak can be expected to vary. Analytic evaluation of the variability .
for a giveﬁ spectral estimate is usually difficult. Thé Cramer Rao lower bo-
und\on the variance is usually used as a benchmark to eval'uaté the measured

performance  of a given method. Therefore a major probl'em in the time series



ahalysis is choosing an algorithm to estimate the spectrum from a finite
observation of the process in such way that the estimate is not dominated
by bias, is consistent and statistically meaningful and maintains these

propéerties in the presence of some variations of assumptions.

Before going ahead, let us give the paragraph from [1] which can be

»expressedv originally as follows:

Let us say a few words abput the terms "spectrum" and "spectral®. Sir
Isaac Newtoﬁ introduced the 'scientific term "spectrum" using the Latin word
for an image. Today in English, we have the word spectre meaning ghost of
appariation . and the corr'esponding adjective spectral. We also have the sci-
entific word spectrum and the dictionary list the word spectral as the. cor-
responding adjective, Thus "spectral" has two mewanings. Many feel that we
should be creful to use "spectrum" in place of 'spectral' a) whenever
the reference js to data or physical phenomena and'b) whenever the word

"estimation".

The modarn history of sp‘ectr.um estimation begins with Blackman and Tu-
key [2] in 1949 which is actually the statistical counterpart of the class-
ical Fourier transform. Their method for spéctrum estimation can be summar-

ized as follows:

-Estimating the autocofrelation function ffom the discrete observa_x-
tions. |

-Windowing the _autocorrelation'fu’nction in an apprqpriate manner.

-Fourieri_transforming the windowed autocorrelation function to final-

ly obtain the estimated spectrum.



This method made possible an active development of spectral estimation by
‘researchers, However, it was computationally expensive. A significant decre-
ase in compu.tational‘ complexity was achieved with the publication in 1965
of the Fast Fourier Transform (FFT) algorithm by Cooley and Tukey [3] and

this method became popular and is still used today.

Siqce Blackman-Tukey Spectral Estimate is the Fourier Transform of
the windowed autocorrélation estimate, various procedures are used to esti-
mate the autocorrelation function. The objective is usually to obtain a mi-
nimum bias and minimum variance estimate of the true aufocorrelation func-
tion. Similarly the estimafe of the autocorrelation function is windowed to
reduce the bias and variance of the spectral estimate thus increasing its
statistical stability. Various window functions are Qsed which generally un- -
related to the data or random process being analysed. But the finife re-
cord length of the autocorrelation function estimate and ‘éh}e windowing pro-
cess applied to the autocorrelation functién decrease the resolution of the
spectrum. Another approach for reducing the varignce of the estimate is
known as segmentai averaging [4]; In this case the data record is decimated
intd independent segments and the autocorrelation function\of each’ ségment
is estimated from which the average is calculated. Then the power spectrum
estimate is the Fourier transform of the average of the autocorrelation
functions. Variations on this task include windowing each data segment pri-
or to estimating the segmental autocorrelation functions and/or windowing
each segmental autocorrel'ation function. The expected value of these powef
spectral estimate is biased which is easily seen in the frequency domain.
The expected value of the estimate is the convolution of the spectrum of
the segméntal, window with the true or actual power spectrum, The bias of

these estimates éexceeds that of the  unsegmented or complete data record



since the data segments are shorter than the completé data record, thus
implying that thé main lobe of the segmental spectral window is broader
than the window used for the previous case. However the variance  of the
_estimate is less than the variance of the unsegmented estimate by a factor
“equal to the number of segments which are ‘assumed un-corre‘lated. Also
segmental éveraging procedure decrease the resolution - with respect to
previous one. An alternative method used in spectrum estimation 'for
reducing the variance of the estimate is the Barlett method. It is based on
calculating the‘p.erio‘dogra,m of individual segments of data and averaging.

: This; is similar to éveraging the autocorrelation function of each ségment

and then transforming.

Further important contrib:ution in spectrufn estimation were the intro-
duction of Maximum Entropy developed 'b)‘/ qug. [5] and Maximum Likelihood by
~ Capon [6]. The. l‘”najor attraction of these two methods is that they show con-
siderable promise for estimating spectrum when the length of aVailaBle data

is short. , -

Maximum Ent.ropy method attempts to fit, in a Least Squares sense, an
‘Autoregressive  (AR) model to an input time series [7). There are two gene-
ral techhiques for estimating  the filtér coefficents [al,az,...
ay 1 One first proposed by Yule [8] and by Walker [é], involves the so-
lution of the normal‘ equations and necessarily requires explicit = knowledge -
_ of  the autocorrelation function of the inbut data. The other , associated

with Burg estimates the AR parameters without prior knowledge of the auto-

correlation funtion.

Maximum Likelihood method spectral estimate may be derived by solving

a classical optimal filtering problem. The f{filter is designed to pass the



power in a narrow band about the signal frequency of interest and minimize
the power due to undesired spectral components such as noise, or interfer-
ance. The Maximum Likelihood method may be considered a minimum variance ,

unbiased estimator of the spectral components [10].

EdWard and Fitelson [11] formally.prOVed Burg’s observation that- ‘the
Maximum Entro;;y ”méthod provides a spectrum which maximizes the entropy of a
stationary random prdcess consistent with the first M lags of the autocor-
relation fuﬁctio‘n. .The Maximum Entropy method suggests instead of appending
z’eroes to increase the lengfch of the estimated “autocorrelation function
that they s.hould be extrapolated or predicted beyond the data limited ran-
ge. The objeétive is4to édd no informatioﬁ as a result of th.e extrapolation
process. In contrast to Maximum Entropy method, the Maximum Likelihood met-
hod does not providé an ex-tension of the autocorrelation funcﬁon aﬁd the

inverse Fourier transform of the Maximum Likelihood spectral estimation

does not in general agree with the measured autocorrelation values.

Pusey has 'shoWﬁ that both methods can resolve tones which are close‘
together fc;r any no‘nzéro' timebandwidth product if the signal to noise ratio
isisufﬁcently high; This can hot be achiévéd with the conventional.' Fourier
methods unless of course, the sambliné raté and the numbér of data are in-

creased [12].

-

The Maximum Entropy method anfi Maximum Likelihood method are related
to each other. If the MEM spectrum are calculated for k=1,2.......M and
the average of the reciprocal of tpese speCtru‘m determiﬁéd then it is '_equal
to the reciprocal of the Maximum Likelihood spectl;um [Il;l. This resuit imp-

lies that the Maximum Likelihood spectrum is more stable statistically but



has less resolution than' 'the’Maximurh Eiritropy‘ spectrum. Lacoss [13] has com-
péred the Mafcimum Entropy with Maximum Likelihood and éonvgnﬁonal Fourier
rﬁethods and 'demonstrated‘thve superiority of the Maximum Entropy spectrum in
terms of spectral resdlution. Furthermore Burg tl#] showed the superior re-
solving power of Maximum Entropy compared with the Maximum Likelihood appro-

ach.

Burg méthod has the drawbacks of line splitting in low noise case and
frequency * shifting. in the high noise case. Spectral line splitting is the
resolution of two or more closely speétral peaks when only one is truly pre-
sent. The pr'oblem of line splittihg in Maximufﬁ Entropy spectrum was first
documented By Fougere et. al. [‘]5]. They noted that the spectral line split-
ting was most likely to occur when | |

i, . The signal to noise ‘ratio is high

ii.v The initial phase of sinusﬁidal is some odd multiple of - 45 deg-
rees

iii. Time vduration of the dat;; sequence \is such that sinusoidal compo-
nents have an odd number of quarter (':ycles.}'“ | |

iv. Number of filter parameters estimated is a. large percentage of
the number of data values used for estimation,
The connection betwéen line splitting and the, number of . filter parameters
estimated i.e., model order highlights a problem area common to all of non- ‘
linear spectrum methods how to select the model order. Akaike [16] has sug-
gested two. p'opular criteria for order' d'et‘ermination. However this author s
experiénce has shown that most order selection, including Akaike's
are not effective against the line splitting phenomenom. Therefore in  the
method proposed by Fougere [15], the filter coéfﬂcénts are redetermined

iteratively by starting with the Burg’'s filter coefficents. The iterative



procedure involves nonlinear optimization with respect to the filter  coei-
ficients with the constraint that the filtér must be stable by.requiring

the reflection coefficents to have magnitudes les than one. 'Thé constraint

is necessary to provide a filter (prediction error filter) which yields the
lowest possible error power. The Fougere;s method not only removes the draw-
back of the Burg’s method but also provides ’a.much better spectral resolu-
tion. In [17], the variance of the frequency estimation of the Fougere’s
method is compared with the Cramer-Rao bound and the Burg s method. Fo.r the
same filter length.which is 10, the Fougere’s method has a threshold sighal
to noise ratio of 8.5 db which is much lower compared to threshold af 15 db

for the Burg’s method.

A second problem with the Burg algorithm as with Yule-Walker case is
the bias in the position of spectrum peaks with respect to the true fréquen—
lc‘:y location of those peaks. If one defines the sampling frequency f:I/ZTA
where T>is.the_ sampling rate, then the bias changes with the true fraction-
al frequency location of the spectral peaks."TJhe spectral peaks with frac-
tional frequencies from zero to 0.5 f tend to be biased more than the .spec-
tral peaks with fractional frequencies from 0.5 f -to4 f “than th,eif actual
values. Swingler [18] has _showﬁ that the bias can pull the peak off frequen-
cy by as much as 16% of a resolution cell when using the Burg algorithm.
Marple [19] has proposed a new algorithm hsa proposed a new algorithm for
filter pafameter estimation that yields the spectrum with no apparent line
splitting and reduced spéctral p=ak frequenéy estimation biases. This met-
hod has the same order of computational complexity as the burg algorithm.
Frequenéy bias in processing sinusoidal sighals with the Burg algorithm has
been experimentally investigated by Chen [20] and Stegen for the néisy case

and theoretically analyzed by Swingler [18] for noiseless case.-



Another modification to Burg algorithm is proposed by Nikias and
Scott [21] to obtain high resolution in the persence of noise. Their ener-
gy-weighted methqd infroduces a weight whichis a func'ﬁdn of the power -of
the. re;eived data in the predic;ion error calculations. They also analyzed
the frequency bias oi the energy-weighted method in processing sinusoidal
signals, for the noiseless case [22]. Consequehtly the energy-weighted met-

hod produces frequency bias is generally less than the Burg technique bias.

In an attempt to improve the Maximum Entropy methéd' with respect to
bias, Nutall [23] and “Ulrych and Clayton [24] proposed the Least-Squares
ﬂtﬁng of'an AR model baged on a criterion involving both forward and back-
ward predictibn errors but unliké. Burg method, without using a lattice fil-
ter model. Marple [25] derive‘d a recursive form of the above method and
has Showh that the bias in thé spectral estimates can be ‘reduced signifi-
cantly compared to the Burg technique. It should be noted that this is
tru.'e only . for short data lénghts, since all technique give identic‘al re- -

sults for large data lenghts.

Another all poles or AR spectrum estimation is the Yule;'—Walker (Y.W)
or autocorrelation techniquz [26]. T‘ﬁis method sﬁbstitutes biased estimate
of the autocorrelation lagé generated form available data into the Yule-Wal-
ker ‘normal “equations. AR spectrum estimation method sometimes termed Maxi-
mum Entropy spectrum method also has become popular alternative to the peri-'.
odogram as an estimate of the power spectrum for a sampléd process. For sig-
nal to noise ratios (SNRs) greater than zero decibel, the AR power spec-
trum estimate has higher frequency resolution than the' conventional Fourier
type estimate [27]. Thé lower the signal to noisefatio‘, the more éll pole .

assumption is violated and poorer the spectral estimate obtained [28]. Or



we can state simply when noise is added to the time series under analysis,
~the resolution of the spectral estimator decreases rapidly as signal. to no-

ise ratio decreases.

Since an AR process with an additi\;é noise becomes an Autoregresive-
Movingaverage (ARMA) process; the usual ap.pl.roach to this problem is to mo-
del the time series Iby the more proper Autorégresive—Movingaverage process
rather than AR and use standard time series analysis technique to identify
AR parameters. This. standard technique however does not yield a positive de-
finite autocorrelation matrix. Al‘so, it is shown that the resulting ‘spec-
tral estimator may have a large variance [28]. An alternative approach term-
ed the noise compensation technique is proposed by Kay [29]. In [29] Kay
compensated for the noise effects by subtracting a noise term from equation
that contains the reﬂection coefficients. Cadzow [30] recognizing that the
Autqregresive—Movingaverage model is more general and realistic for spec-
trum estimation. He dsveloped an algorithm for computing the ARMA coeffici-
entsaﬁd showed that the ARMA mods! is capable of providing high resolution
estimates. Tha main drawback of the ARMA model is the nonlinear eguation we
must deal- with. It is also difficult .to determine the adequate model order |
(number of poles and zeros). Also, the use of higher order AR models yields
another noise compensation techniqué, since it is known that an ARMA model
can bz considered as an AR of infinite order. A practical problem is the li-
mited number of AR parameters that can be reliably estimated from available
data length (A practical limit is not to use a model order above N/2 and be-

low N/3).

If (M+1) lags of the autocorrelation function for a time series are

known or estimated from the data samples, the M autoregressive parameters
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are obtained i:))_/ solving the Yule-Walker equations, using the Levinson-Dur-
bin algorithm (recursion algorithm). If unbiased autocorrelation estimates

are used, one may also have numerical ill-condition case during the sqlu—
tion of the normal equations. Biased autocorrelation esti'ma_ites; reduce the
risk of ill-conditioning but at the expense of a degradationA of the AR spec-
tral resolution and a shiftihg of spectral peaks'from their true locations
i‘.e., yield the frequency bias. Alsé it was shown that the spectfal estima-
tor based on the unbiased autocorrelation estimate displays a large increa-
se in the sharpnéssvof the spectral estimate as compared to that based on
the biased autoco'rrelétion estimate [31]. Since the location of the spec-
tral peék is used as an estimate of frequency of sinusoidal signal,in 6rder

to obtain fred-.:ency estimation accuracies the statistical fluctuation of a
peak frequency due to the different method must be analyzed. In [31] Sakai
has been ;'n'ade such an analysié for AR spactrum estimation,by using the peri-
odogram technique and assuming that the deviation from the true tons freg-
uency is small. He found that the variance of thz main peak frequen-:y is in-
versely proportional to number of Vdaté and SNR as expected. One remarkable
point in [32] ,if the condition P M 3> 1 is met/ (M: Model ordér, -P LL1)  as
shown in Lacoss [13], the estimated spectrum has a mean peak/ at true freq-
uenéy location. Hence the AR spectrum estimator becomeé unbiased., Also Lang
[33] {found the expressions4 for the variance of the speciral estimate peak
position at high SNR condition. His expressions are for both Covariance and

Modified Covariance methods.

Spzctral line splitting event is an important problem in AR spesctral
estimate as in Burg technique. The reasons for spactral line splitting in
the Yule-Walker technique has bezen documented by Kay and Marple [34]. As a

comparison, the Levinson-Durbin recursion algorithm requires a number of
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computational operations proportional to M2 whereas Burg technique re-

quires NM [35].

Another AR method is the High-Order Yule-Walker Equation (HOYWE)  were
discussed in [3§]. The main advantage of 'HOYWE is that their covariance mat-
rix does not. contain the aQtocorrelation function at zero lag so that an un-
biased estimate of the AR cosfficients of a process canibe obtained in ths
presence of the white noise. Tha drawback is that the some covariance mat-
rix can bscome singular under certain conditions, whereas the normal covari-
ance matrix which contains the noise variance terms in the main diagonal is
always nonsingular. For this reasdn the Higher-Order Ytﬂe Walker Equations
were not considered as a piromising alternative.for spectrum estimation. In
[36], Y.T.Chang prevents the singularity by computing the matrix pseudé—in-
verse instead of the ordinary inverse whenever ill-conditioning is encc;unt-
ered. Then an AR spactrum estimatorv incorporating HOY,WE_ and matrix pseudd
inverse is able to provide high resolution and stable estimate. Also.it per-
mits the use of a high order model necessary for rgsolving closely spaced
spectral peaks and does not require an estimate of the noise ‘power.,, As a re-
sult two drawbacks are that wevhave to estimateﬂ autocorrelations unti.l a
lég higher than fhe modej érder used and the ill-conditioned matrices to b=

inverted.

Recently proposed- method is Recursive Maximuh Likelihood estimétio.n
of AR process by Kay [37] It is closer app’rox‘imation to the true Maximum
Likelihood estimétor that obtained using Linear. Prediction techniques. In
fact all of these methods may bz viewed a’s attemps to approximate ths M.L.
estimators of the AR parameters with each method adapting varying degree of

approximation. An improvement in statistical accuracy is obtained for short
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- data records or sharply peaked spéctrum with Recursive ML method. It oper-
étes in-a recursive fashion in that it allows one to successively fit. high-

ér order AR modzals to thé data. In addition the estimated all pole filter _

is guarenteed to be stable. But its performance is not good as the Forward-

Backward method for spectral peak estimation.

Let’s say a few words about the remaining techniques. In Pisarenko
method [38], the spectral estimate is formed as the sum of line components
in a background of noise. This technique requires an eigen analysis of the
covariance matrix. The smallest eigenvalue >\ min is* the noise power.
W.hen this smallest eigen value has multiplicity one, the location of the
spectral lines can be determined by finding the zeros of a polynomial whose
coefficients are the elements of the eigenvecfors corresponding to >\min
When the multiplicity ofris gréater than one the number of spectrai lines
is reduced order problem. Variations of Pisarenko’s eigenvector method have
bzen published in [39]. In [39], the technique called MUSIC is formed from
‘the eigenvectors of the estimated covariance matrix. C(orresbonding to each
eigenvalue  ( ‘ordered by increasing magnitude ) is a polynomial Ai(z)

whose coefficients are the elements of the eigenvectors for )‘i .’ The MUSIC

estimate is obtained by forming;

where the number of terms L is determined by subtracting the number of si-
nusoidal = signals thought to be present from the dimension of the covariance
matrix. The location of the lines are obtained by picking the largest' peak

“of Eq.(i.1).
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Thompson [40] suggested a cohstrained gradient search procedure for
obtaining an adaptive version of eigen analysis. However the main-drawback
of this technique was thatv the initial convergenc}e rate could bz very slow
for certain poor initial conditions. Reddy [41] derived an alternétive
Gauss-Newton type recursive algorithm whi;:h also used the sécond derivative |
matrix (Hessian). Their technique may also viéwed as an approximate Least
Squares algorithm and has faster. convergence in the bsginning while its con-
vergence rate close to the true parameters depends on signal to noise ratio
of the input signal.' This technique ‘also resolves the sinusoidal signals
much faster than the Gradient version. Finally since their technique is
adaptive implementation of Pisarenko’s method in which the estimation can
be updated as ﬁew data is, observed, it has the ébility to track slowly time-
varying processes. One has to note that since Thompson and Reddy methods
are Gradient technidug, its performance can be seriously de(graded by the
prese.nce of unstable stationary points on the error surface. Furfher simula-
tion results for the Reddy method can be found in [48). Also if tha initial
’ guess is not close to'the solution, Gauss-Newtép “does not converge, whereas
the method of Steepest’Descent of Thompson coﬁvergés for any initial guess
[49). Larimore [42] studied the convergence behaviour of adapti‘ve ,Pisarenko
method and shown that ; a) Onée convergencé occurs tracking of time-varying
li;nebs :proceeds in much the same manner as adaptive linear prediction‘. b)
Clobal convergence may be nonmonotonic. and rec;'uire long windows of d-ata to
isolate Vspectral lines. ¢) Low frequency lines may present severe problems, .
at very low frequencies convergence speed may be significantly slower than
adaptive linsar prediétion. d) Furthermore high parameter variance may like-

wise destroy accuracy of frequencies estimates at very low frequencies.



14

Durrani ‘[43] proposed én éfficiént algo'rithm for extracting ‘an  ortho-
gonal eigen vector-oriented spectrum directly from Maximum‘ Entropy Spectral
Analysis coefficients. In effect, the algorithfn estimates the eigenvector
corresponding to the smallest eigen value of the data covariance matrix and
the oriented spectrum result$ are bette; tHan MESA. The main 'cbst of this
technique is that it requires N(N+1)-1 complex operétions per step and the
convergence rate depends upon the noise power and the frequenc_y difference
between signals. Also in [44] Gueguen suggestied various algorithms inclu-
ding sequential estimation prc;cedure for determining eigen vectors of co-
variance matrix. Barabell [45] presented several methodé for reducing the
SNR required for resolutibn such as a)The first examining the roots of spec-
trum polyﬁoﬁial. b) The second method uses the properties of so called sig-
nal space eigen vectors to define a rational (pole-zéro) spectrum function
with imprdvéd capébilities‘. The statistical analysis of Pisarenko’s method
has been investigated by Sakai in [46], using the periodogram technique as
in [32]. Under the assumptioﬁ that the input samples consist of multiple si-
nusoidal signals plus white noise ,he  found ’trhe asympf_cotic expression of
the error variance of the frequency estimator and showed' that the variance
of the estiméte of one frequency is independent of the SNR of the sinusoid
for the case of two sinuSoid case. He suggested also a modified Pisarenko
method by making use of certain symfnetfy of the prediction error filter‘ pre-
sented in t7|]. This tech.nique is computationally efficient but it does not
gives . improvements over the original method. Aktar [47] determined the va-‘
riance of the_spectral' peak for case of a sinusoid in white noise as a func-
tion of number of samples, SNR and frequency of sinusoidal signal. Safkar
[50] suggested to use the ‘ConjugateGrédient Method (CGM) to obtain the
eigen vector corresponding to the minimum 'eigen value. 'The advantéges of

this technique over the -method of Steepest Descent (SD) is that it is a
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finite step iterative method and‘ secondly there is no arbitrary constant in
the .expression which governs the rate of convergence. In this proposed met- .
hod, the spread of the eigenvalues has no signiﬁcant effect 'on‘the overall
rate of convergence. The disadvantage is that one has to store a matrix of
data instead of one row as is conventiona]ly done. In [51] the use of the
Inverse Power Method (IPi) is investigated aﬁd since a single iteration of
the IPM requires the solving a sys'tem of linear equations, The Cholesky " mo-
dification is proposed to reduce the amount of computation. Another study

can be found in [52]).

- The comparison of the Pisarenko and Prony approaches to spéctral line

analysis is presented in [53].

Kumerason a_nd Tufts [54,55] compare their realization of ML estimate
of multiple frequency with improved version of Owslew’s method and with For-.
ward-Backword Linear Prediction (FBLP) method.‘ They had shown that no sig-
nificant bias in frequéncy estimates was notica’b}re in all methods above ,'the
threshold points. Thé threshold difference befween ML," and LP method can be
greater than 15 desibel. The threshold of their improved LP method is moved
mg:h. closer to ihat of the. ML method. That is the performance is cl’ose to,
the Cramaer Rao Lower Bound (CRLB) even for closely spaced frequencies at
much lowerr values of SNR than other LP methods [56]. In [57] they have im-
proved FBLP estimétion of freguencies at low SNR by using Singulgr Value De-
composition (SVD) of the covariance matrix. The improved performance at low
SNR is also better than Pisarenko method and its variants. They demonstra-
ted that when model order is chosen equai to j(N—L/2) where L being number
of sinugoidal signals and N being niumber of dafa samp.les, the p;incipal

eigenvector and FBLP methods ( when the minimum norm prediction filter
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coefficients are found) are the same and this situation does not require
SVD calculations. SVD is useful also for finding number of sinusoids and es-
timating accurate frequency of sinusoid, alleviating much of the ill-condi- "

* tioned nature of FBLP by removing the noise subspace’ perturbation effects.

They'suggest to use for a given data number N,va linear predictor of
an order M equal to’ (N-L) t58]. In this case the covariance matrix of the
process "hes a rank equal.to 2L. The reason for this suggestion is the re-
mark t'ﬁat eigen .\'eetors of the covariance matrix when its order is larger
than 2L, can be grouped into two sets. The first one corresponds to 2L lar-
ge and' generally well 's.epex;ated (in mégpitude ) eigenvalues. These eigen va-
lues are less 'perturbed from their noiseless directions, whereas the second
set corresponding to the originall}{‘(in the noiseless case) zero eigen val-
ues could chance directions abrubtly depend on the noise perturbatien. On
the basis of this remark, minimum number of sample necessary for estimating
L real'f sinusoids is 3L taking account the minimum order for predictor

should be.2L.

They also proposed a method to find é .vector d: spannin’g the whole
noisé subspace of the co;/ariance matrix. The effect of using such a coeff-
icient »vector_[59],

i) Frequency' estimate is accurate for low SNR.V

ii) Less spurious estim‘ates-.

iii) Extranous zeros are uniforrﬁly distributed.
They had shown that if one can estimate the covariance matrix from the data
the pfeperty of the noise subspace eigenvectors is approximately true, that
is L zeros of the predictor fall near their noieeless locations for mode-

rate SNR values [59].
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As a final remark, we presént some relations about the Kumaresan and
Pisarénko methods. Pisarenko used as data the autocorrelation values of sta-
tionary sinusoids or the asymptotic case of N oo and used some special
properties of the resulting Toeplitz correl_ation matrix. In practice since
N is finite, the signal is deterministic and covariance matrix is not Toep-
litz in general.‘For long observation times N—+o0o and L=M the - Kumaresan’s

method coincides with Pisarenko’s.

For a more detailed description of the modern spectrum estimation,

methods the reader is referred to reference [60].

1.2. OUTLINE OF THE THESIS

The problem in the vdissert'ation is to investigate and analyze the use
of the existing modern spectrum estimation methods, for frequency estima-
tion problem. The problem is complicated by tye fact that only relatively
short discrete time samples of data are available. Actuéll_y the main struct-
ure of this dissertation detai}s the development and simulation results of -

applying modern spectrum techniques to the problem defined above.

In Chapter II, we ‘investigate the use of an analytic signal model and
its" complex autocérrélation function for frequency estimation. Section 1 of
Chapter II describes the:methods alreadily .used for frequency estimation
pl;oblem. The formulation of the parametric methods is explained in detail
in Section 2. Section 3 gives the background on‘ CRLB and ML estimation. In

Section &, a statistical analysis of the proposed technique is carried out

for both single tone and two tones cases and the effect of autocorrelation
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lag on the estimation performance is e’xa;nined. In this sense the variancé

of the /_ estimated * frequency is derived analytically in terms of data samp-
les, SNR, and autocorrelation lag in order to measure the accuracy of this
technique. Since CRLB is usually used as a benchmark to evaluate the perfor-
mance of a given method, the calculated variance is combared to the CRLB.
In Section 5, the comparative variance ofA the' frequency estimate behaviour

using Modified Covariance, Covariance and the proposed Argument Methods is

presented.

.In order to determine the detection performance of the method, it is
desirable- to know the PDF of ? under the tone present (H]) and noise
—only (Ho) hyp;otheses. In this regard, the expressions for the PDF are
derived for both cases in Section 6. Final study of Chapter Il is the ban_d-

width estimation with a simple formula,

Chaptei' Il presents the results of a study to determine the ~asympto-
tic behaviour and statistical properties of MESA moments. This chapter is
composed of three sections. In the first secfién, Vwe in’veStigate the use of

Maximum Entropy spectrum in the estimation of spectral mome/nts and consider
some. of their elementary properties such as filtering, windowing and shift;
ing. In the second sectioﬁ, the‘asymbtotic behaviour- of MESA moment tech-
- nique for the case of sinusoid embedded in additive white noise .is analyzed-
The asymptotic formula for the spectral mean frequency and mean squaré
bandwidth are derived by assuming known autocorrelation function. Also we
compare the asymptotic behaviour of the estimator with the case when only a
few lag terms are involved. As a- bonus of the ahalysis the same moment 'ex-
pressions for tﬁe case of two sinusoids with equal or non-equal p-:)\;'er are

also determined analytically. In the last section, the analysis of statis-

tical properties of MESA moments is given. It is shown that the probability



of detection and false alarm can be written as functions of the expected va-
lue and the variance of the n’th moment for tone detection problem. Final-
ly, the variance and PDF of the estimated mean frequency are derived ana-

lytically in this section.

Chapter IV deals with the effectiveness of AR method in frequency es-
timation problem. In Section 1, we obtain the exact solution of AR parame-

ters by employing standard Matrix Inversion Lemma for different structured
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matrices such as Complex Toeplitz and Real Symmetric matrices. It follows

that the solution of AR parameters is expressed for certain classes of mat-
rices as a function of SNR, frequency of sinusoid and the.AR mode! order if
the true auto.correlation function is known. Section 2 gives the formulation
of coefﬁcieﬁt deviation of AR polynomial due to the noisy observation. Sec-
tion 3 deals with the _effect of the inexact AR coefficient on the roots of
the AR poly-nomial anialytically for the case of various matrices mentioned
above. In Section 4, as frequency estimation accuracies, the statistical ‘
fluctuation of a peak freqhency,is investigated since the locatioh o:f a
spectral p-eak is used as an estimate of tone"fﬂréquenc’y. The analysis of' the
performance of frequency estimation is accordingly based on Sakai’s and Tay-
lor series abproximatibn methods. The analysis establishes the rela;ionship
between Aw and coefficient deviation so that one can determine the fre-
quency éfrdr for AR process using the results of'Séction 2 In Section 5, an
analytigal expreSSion is derived for the probability density function of

the radius of root of AR polynomial. Based on this obServation, probability
of error is obtained after some simple assumptions with zero (polg) method.
AR spectrum is expressed in terms of radius of root for both Ho and
H, cases. Final study of this section is to illustrate the several poss-

1
ible positions of signal zero in z-plane and give some analytic expressions

\



for these cases,
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. Chapter V gives a brief summary of what has been presented in this

dissertation and suggests topics for furthei research.



- CHAPTER II : FREQUENCY ESTIMATION PROBLEM

2.1 DESCRIPTION OF FREQUENCY ESTIMATION METHODS. '

The estimation of frequency of a sinusoi;ial signal in white noise has
mény applications * such as radar, sonar [61-63],>speech [66) and 'communiéa-
tion technology, In many cases the .presence of noise troubles the estima-
tion of frequency determiknation. Recently many methods have been proposed
based upon signal processing which try to overcome this difficulty The
most classical and widely used approaches; t he zero crossing method and se-
cohdly involve Discrete Fourier Transform (DFT)‘l.e., a transf.ormatlon of

‘the input samples into frequency domain via a DFT and searching a peak.

Mathematically, the number of zero crossing is closely related to the
p‘wase change of the signal during the 'neasurmg time 1e o if Ny d=notes
the number of zero crossing in the time interval (0 T) the frequency es;
timate is given by [67]

-~

N
Z
fe = : 2 .l.
21y .

The xmplemeﬂtauoq of the conventional zero crossing technique is

‘shown in Fig.ll.1; Details are found in [68]. However the zero crossing es-
timator which can be implemented more =xactly than ideal frequency demodu-
lator has a discontinuous output signal vhich introduces a quantiiation er;

ror, ‘At short time measurement in particular this effect greatly reduces

the accuracy of the method. Also it breaks down when the -

21
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signal to noise ratio falls momentarily too low and gives a biased estimate

[63],
L.P.F, [Limiter f| Dif-[]
. n
x(t)__' COS(U),tT¢) , _ é@ wf(.) dt - f
(W,i+9) o [ o .

L.P.F. # Limiter

Fig.IL.1, Pawula’s implementation of frequency estimator,

s

A general model of fhe frequency éstimation process is shown .in

Fig.IL2 [69]. The continuous input signal x(t) can be written as '

| x(t):A. sin(w t+fen(t) 2.2
where A is signal amplitude, f, and 4 are frequency and phase o.f the  signal
which are unknown with uniform prior densities over (W, 1) and (f;w, trw )
} respectively. Assume that the expected value of the input frequency f,is al-
so known exactly and n(t) is white noise with power ogn . The i'nput signal
is multiplied with unity power .iin;,ase and quadrature local oscillators at

frequency f;and the output .of each channsl is filtered and sampled and A/D

converted. A block of N complex’ Z= {zo,z,,z veesssnsZyyy } is collected for
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processing. Sampling occurs at a frequency fg so that k'th sample is given

by

where nkis complex ‘zéro mean random variable both‘ real and imaginary parts
“have variance‘ cf;\/z . The complex samples Z are weighted by the window func- |
- tion and the outptit i§ processed by_ the Fast Fourier Transform (F.F.T.) al-
gorithm. The frequency location of the largest mégnitude square of DFT coef-

~ ficient - is ‘faken as a frequency estimate. Recently several data windows
were considered in addition to no weighting [69] and it was shown that
there was an advantage in usingxweighting to estimate the frequency of a si-
nusoidal signal [69—770].. By examirﬁng the Fig.Il.2, one can conclude that

;che DFT forms the main part of the estimation procedure. Therefore the per-
formance of the mentioned method will depend on the performancé of DFT comp- |
letely. Thease two m.ethods explained so far are'known non-parametric methods ,

-in frequency estimation problem,

Several parémetric freqﬁenty estimators proposed recently are based

"~ on Maximum Likelihood, Maximum Entropy,' Pisarenko, Prony ...etc methdds.
The most eff‘ici_ent method known as Maximum l;ikelihood frequency estimator
in 'the .sense " of Vminimum variance of the estimate consists of a parellel
bank oi narrowbandv filtérs [6). The center frequency of the filter with lar-

gest output is the estimate that maximize the - likelihood" function. Also
with present' day technology, the filter bank i;an b= easily' implemented di-

gitally as a FFT machine. Maximum Likelihood estimate of frequency'of



sinusoid tend to be more accurate than other methods especially at low sig- -

‘nal to noise ratio [6]. This is to bz expacted bscause thes prior inform-

~ation about the sinusoidal forim of signal is used in a statistically approp-
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‘riate way in the Maximum Likelihood method. Although the variance of the

Maximum Likelihood estimate asymptotica'lly .approaches to the Cramer-Rao

- Lower Bound (CRLB), it may be unattractive in multi tone applications be-

cause of computationally burden. Except the Maximum Likelihood method, ot-

her techniques are compdtationally attractive but they are suboptimal,

(1)-#]

L.P.F.

A/D

sin(27rfot)

_ Local

cos(;'lnfot)

L.P.F.

A/D

S'arple«
freq.

s

DATA WINDOW

The MEM uses the spectral maxima and/or pole method to estimate the

D.F.T.

y

()2

Find
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+

Fig.II.2. General model of discrete freqqency estimation.
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frequency, The SPeCtrél maxima method is based on the estimation of the po-.
wer spectrum density and on testing for lo::atidn and energy of the spectral
peakl' In the pole method, the angles of two poles of the prediction error
filter (PEF) closest to the ynit circle (measured counterclockwise ) are
~ found and the smaller of the angles js taken as fhe estimate of the fre-
quency. Some difficulties . Were encountoured in using MEM especially with
short data record length for frequency estimation due to the so called line
splitting problem [3-’+]- and the phase dependence of the estimate [20].
Pisarenkq's method requires an eigen analysis of the autocorrelation
_matri_# of observation, The smallest eig.envalge' is the noise powe‘r. When
this smallest eigenvaiue ha;multiplici’ty one, théfrequency of sinusoid can
be determined by finding the zeros of a polynomial whose coefficients are.
the eleménts of the eigenvector corfesbonding to minimum eigenvalue [38]
If one is interested in only estimating the freguency of thé sinusofd; find-
ing the spectrum estimate which requires a large of computation is super-
fluoué, In this rega}d, we suggest a simpje methbd to estimate frequency of

sinusoid,

In this chapter, a method of estimating the frequency of a sinusoid
in white noise based on analytic signal is investigated [72). The complex
autocorrelation function of an analytic signal model is used to estimate

the frequency i.e.,

F=—t a.rg[r ]
. 2mk k

where r_denotes the the k‘th lag of the autocorrelation function. This
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/

' technique will be called Argument Method. The properties of this frequency
estimation vmethod have been'studied,' It is shown .that it is an unbiased és-
timétor. Analytiq expression for the variénce ‘of the estimate is derived to
cbmpare with optimum estimator. An expression for the PDF of the estim‘ated
' frequericy ’f\’is ’dsrfived for both the null hypothesis and" the alternative,

For the case of two sinusoids; the problem: 15 studied to arrive the reason-
able situaﬁon. BandWidth estimation problem is the final original study of

this chapter.
2.2. FORMULATION OF. THE PARAMETRIC METHODS

Consider L sinusoids of amplitudes A;, phase &iand distinct  frequen-

cies Wi s i=1,2ye00e00l. The sum of these sinusoids at any sampling instant

n is given by
| S_ = % Ak"Sin [wkn + ¢k] : 2.4
kL.

It was shown that a unique real 2L-vector [61]

2 R
- alrazl-.......v..v a2L 2‘5
- exists such that for any n » )
2L L. ‘ g
"8 = ¢ a, I A, sin [ (n-2) + ] v 2.6
2L
= L a, S _
g1 ¥ nh

Expanding the sine function in (2.5) and reordering the sums gives

2L /
S = | A sin (wknr+ gk}gil a) Coswk%
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2L
X

L ' .
- I A cos wn+¢) a,sin w % ‘ C 2.7
k=1Ak (}< k2 5 % Vi~

Since (2.4) and (2.7) are equal for all A, ,e;‘ajd'ywk, it follows that for

k=1,2,ee...L
2L, .
zil a, Cos w4l =1 o 2.8
and
2L
g;il ags:in wie =0 B | ) 2.9

which can be put in complex form as

)231‘ - ' 2,10
a, exp -jw,_g =l
S 2=1 . ; k™ .
and
2L - o ( 2,11
b ay, exp jwkz =1 : :
t=1

Combining (2.8) and (2,9) in matrix form yields
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—

. - -

C?S wl ® 69 000 9089000 eV COS 2LW1

P = . :
COS.W ® 9 0 * 9 g "t 9 e OO e o0 '.‘I '. - )
__. L . . COS 2LwL_.J
Sin wl P = 5 8 o} 2Lwl

U = . :
-—Sln wL«oqotqoic.uovconQOOI' Sln 2LWL__

L
The paremetric approach. to frequency estimation is to first estimate

the 3 and then find the roots {exp (Fiwg) } of the polynomial

2L o
r oa, A* =l 2.13
2=1
Alternatively, with x:ex_p(-jw ) ,solving for the roots of (2.13) is equi-

valent ' to taking the Fourier Transform of the sequence [ao, a, ,....az,_]

with ao=-1 and noting that the w at which the valley of the spectrum occur.
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With the -addition of zero-mean white noise in (2.4), the data

sequence s

Xn =8, * W, 2.
Substitution of (2.6) into (2.14) yields
2L 2L , .
“n e % Fam T Rfl & Wneg * W, o '2.15

Hence the model for the sinusoids in white noise problem c'ontainé poles and .
zeros, This one cause of the difficulties reported [20], [72] in using all

pole methods.
2.3 BACKGROUND ON CRLB AND ML ESTIMATION

Tﬁe CRLB provides a useful tool for evaluating the performance of the
parameter estimation techniques, Comparison of the error variance of a gi-
ven parameter estimation technique to the CRLB provides a reliablve measure
of the 'éstimation accuracy of that technique, in other words, the CRLB can
be evaluated to destermine whether the estimator -has pe_r'formance sufficient-
ly near the optimu"n.

T o

Let § = [el,ez,,,gp«] be a set of parameters to bz estimated. It is
assumed that the underlying PDF is P()_(|Q) where Xz [ X )X, coeeensXyy, ]
is a sample of size N, Let 8 be an unbiased estimator 9, i;e., E[]= 0 where

EC)

denotes the expectation operator. Then the covariance matrix of § given by ¢
0
satisfies the CRLB [63].

| S e | -l - ,
C.=E {(e-e) (e-0) ]; [;(e)] ' - 2.16
7o -V '
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where 1(6) is the Fischer Information matrix whose (i,j) th element is

'[-g(e)] =g |AUnPGAO 2 In P(X10) | 2.17

- It should be noted that (2.16) implies

var(g) 3 [:__['1(9)] N Ci=1,2,., .. ' 2.18
ii _ ‘
Now let §-ML be the Maximum Likelihood estimator of '8 , i.e.,'ém__l is
four;d from '
: I
= 5 | ' 2.19
max P(x[8) = (X8, )

0 )
or we can state that if an unbiased estimator with error. variance as small
as the CRLB exists, it is said to be efficient [63] and it is the Maximum

Likelihood estimator defined by

P (x]8) pix|e) for all o - 2.20

to>

2.3.1. PROPERTIES OF ML ESTIMATOR:

The ML estimator has the following properties [63].

1) E [QML]'—'PQ as . Ne—mw .
c2) g, —1I ) as N—wo

. "e =
- ML
3, The ML estimator PDF is multivariate Gaussian’ with mean € and
covariance 1_:-]‘(9)' as N—*=
4) §I 9 as — N

1L
The condition N+« is termed the - asymptotic case. Thus .-for sufficiently
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large data records ’§ML is Gaussian distributed with a mean 6 and a

- covariance matrix given by the CRLB. Also is a consistent estimator.

A

| O
/ . ’ X ’ Al

2. lfg=g(g) is a one to -one transformation from § to ¢ ,then’eML=

A . . .
g(GML) is an ML estimator of &', Furthermore the asymptotic covariance matrix

of §' is
Cqr = LGy L 2.21
ML T 7ML T '
where
: agj (0) . :
[x] . -
ij 90

]
L is just a linearization of the function g{6) about the true parameters.
6. The incremental sensitivity of the P(X|e) to changes in the
value of ¢ is defined by |

' AP (X|6) ’ Ae: -1 o 2 20
Se(x) =, 5

P(X]6)

and is the ratio of the resultant percentage chahge in P(X[8) to the percent-
age change in © ,evéluated at:6, The limiting value as ™ 48-+0 ofseéq is gi-

Ven by

8
A
5 %) = lim P (X6 )
. A8-po 48 P(xe ) .
‘ 2.23
_|_a °
ae P(X|8)
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Finally we have

8, (X) =6 d _ 1np (X]e6) o | 2.24

de

Therefore the bound (2,18) can be characterized by the sensitivity of the

PDF as

; P R o
Var 6. > 1 E‘I:s (X):I . 2,25
9. . : .

: i
~This yields the pleasing interpretation that the attainable mean square ac-

curacy of an unbiased estimator is lower bounded by the inve"rs‘e mean square
sensitivity of the PDF, Thus if the sensitivity of the PDF is high, the er-
ror variance of an efficient estimator (Maximum Likelihood) is low and

vice versa,
2.3.2. ACCURACY OF MULTI-TONE PARAMETER ESTIMATION:

Let us consider the multi-tone signal in additive white noise and -

define for convenience the parameter of signal as

6.. = W,
3k k 2.26
O 3k+1 =‘¢k
oL =1,2,....L
e3k+2 Ay for k=1,2,

If X is the noisy observation of S whose typical element is of the

B form (2.14), then PDF of X given S is

2
IRII/ 1 T -1
P(X|S) = —§73 ©XP [T —-—2—- (Xx-8) " R '(X-'S) 2.27

(2m)

-where R and N are the correlation matrix of noise and number of data

samples respectively. l' Idenotes the determinant of ( . ). It is also shown
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that in [70]

EWJ =B _ g5 ~ 2.28
ij 90 K ej '

or more tractable form

1l .
(8 =-—1D3D 2-29
0 0"12
e)=—5 D QD 2.30
%n
where 0215 the noise power and ¢
n
Jyg = M ey, f505)
Qi === M (Wi, § B ) —M (Wy4w,, By + 0:) B
1 0 o]
B=|]0 -1
[0 0 1]
f—A_ n
D, ="
i 1 0
..0 0 Ai.J
" 2 2 : . | 7
T £ n Coson  -T I nSinon T L n Coson
. nv . . .
Mw, )= |T £ nSinan }31 "Cos an %11 Sin an
. ~ n .
P g n Cos an - %31 Sin an g Cos on
_ L , -
X, = nwl+§
Qllnonotnv'fC'Q]L
L) " — -
Q = * * i Dl 0 evenee 0
' , ' 0 D .
| Q | p=|. 2 .
. Jll o..-cqcon J]L ’ . . . .
d = . . . . .
: : / n N
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An interesting situation arises from the condition at‘I(-)lwhich

- becomes singular for the case of a single tone, Using (2.29), we have-
. - - ‘
|T(0) |= —— % Wiy AL 1) 2,31
o, 6 4

n

One can easily find that the value of N makes I(0) equal to =zero is minus

one. which is impossible, Therefore I() is always non-singular,

We now present a few theorems that charecterize the CRLB for multiple

tone case [70] :

THEOREM 1 : The CRLB to unbiased estimation of the parameters w; and ¢i
of S “are  functions of A, but are independent of other levels,
Aj, j#i. The bound to unbiased . estimation of a level, A, is inde-

pendent of all levels.

s THEOREM 2 : Tnhe .bounds associated with the parameters of the f{irst

L'l tones, when there are LI+L2 tones, are not less than the.

bounds when there-are only L1 tones.

THEOREM 3 : When the signal consists of two equal level complex tones

(equal power), the CRLB for the same parameters (i.e., the two frequencies)

are equal. In other words, the mutual interference is reciprocal.

THEOREM 4 ; The bounds for two ton‘es,.real or complex, are periodic

in ¢' and gﬁz with period T . This theorem follows - from the easily

checked fact that M(w, g+ )=-M(w,¢&)
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THEOREM 5 : The bounds for real or complex tones afe periodic in each

frequency with period 27/ T.

THEOREM 6 ; The bounds associated with complex tones depend upon the

difference frequencies and' phases, but not upon the absolute values.
2.4. FREQUENCY ESTIMATION VIA ANALYTIC SIGNAL MODEL

The analytic signal formulation proceeds as follows [72]
i. Form the analytic signal znfrom ‘the input samples X The
analytic signal is defined as
Z, =X, vt I X _ _v 2.32
where  denotes the Hilbert transform, ‘
ii. Decrease the sampling rate by two, in order to make the
resulting complex noise white.
If the input samples consist of a sinusoid in white noise, i.e.,
X, = sin (wln + ) | 2.33

then the resulting complex data are
z=-.je32‘”l“*¢+w°_ 2.34
n n

c . N i
where Wnis complex white noise, § is its arbitrary initial phase at n=0,

and wl is its angular frequency normalized so that <wl < 7.

Id

~ The frequency is estimated as follows

-~

__ 1 N |
£) = a9 () © Tk

tant (L . 2.35
x .




~ where fkdenotes the k“th complex autocorrelation coefficient of the ana-

lytic signal model and x , y denote the real and imaginary part of ?[‘ respec-

tively. An alternate form for f is obtained after expressingf‘k in terms of

spectral components, i.e.,

E =
Loy
where
L l
C = fe———
R

rN-—l
L A aing 21K
- —n C Sin( )
o™t | 220 N
> N-1 _
I CCos {2nkg )
| 5=0 * N
N-1 .y |
. . 2 2
Iz exp (-] <mi
i=0 N

2.36
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This method can also be used to estimate the frequency when input

samples x_ is a discrete complex time series, i.e.,

X =A

n

i c
ej Wf?*“ + Wn

2.37

' 2
where W_"is complex white Gaussian noise with variance ¢, A is amplitude
n

of sinusoid, ¢ is its arbitrary initial phase at n=0 and

frequency, normalized so that = T<w <

2.4.2, EVALUATION OF THE EXPECTED VALUE OF ESTIMATEL:

W]l

is its angular

After expanding (2.36) into a series about the point [ E(x), E(y) ]

and using second order approximation technique in [74], the- expected value

A

of { is given

e(f)

4nk

~ .,
£i(x, y) + =5

3°f1

92
9
X
3x2

+ 2Cov(x,y) Azl 9

X9y

y

-

Yy

2 32fl‘

2

){2.38

where 62 andG 2 are the variances of x and y respectively. Both x and vy

X

are Gaussian random variables with mean and variance as [(771.
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x1
[

= E [x]= _y;]_k__ Coswlk

y=E[y]= 2 singk
ond [ 1 - | |

o2 = = a2 o k)
N 2 N y

o2 . ot T _N-2k)

= - (1 - R CosZwlk) ‘
N E N | 2.39

et 2% L
Covix,y) = @' 4 ———— Sin2w.k
‘ nt T 1

where u-’-a:—z-ls the signal to noise ratio. In (2,38), all derivatives are eva-
n .
luated at the means of x and y respectively. Inserting (2.39) into (2.38)

one obtains the exact value of f, ib.e., E(?):f, which implies that the fre-

quency estimator is unbiased,

2.4.3. VARIANCE OF THE FREQUENCY ESTIMATE:

A measure of the accuracy of the frequency estimate of the analytic
signal is given by the variémce analysis. Again using second order abproxi-
- mation technique in [74] which is formulated as in genéral
. 2 2 .
= L Fz _ of 2 of 2 of of ’
Va;(t:) -Q:f = [—-——ayJ o} + l: ax] o 2 ™ )(——-——ay ) Cov()ﬁ,y) 2.40

and also equivalent of the Taylor series approximation of the variance of a

function of two random variables x and y. After some work, one can obtain

N+4kuy ,
0 = — 2 .. 2.2 2.41
o pe(N-k)© 817k )

Eq. (2.41) gives the variance of frequéncy estimate based on_ ahalyﬁc sig-

nal in terms number of data, signal to noise ratio, autocorrelation -
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H

lag, and shows that the variance is inversely proportional to the square of

signal to noise ratio, AC lag and (N-k).

Tne CRLB for the case of single tone is given as [751 ‘

2
g = 6

CR 472 N@-1)n - | : S 242

) 2 H B ) . .
O‘CR;S the lower bound on the variance of unbiased frequency estimation

variance computed as in [75] for given signal and noise parameters,

It is élear to see that Eq.(2.41) has a broad minimum when k is 1/3°
the data lengtl;u at which the theoreti.ca'l variahce is (2.25+(1/0.6p)) times
the CRLB. As a comparison Modified Covariance and Covariance method are 9/8
and AI.S times the - CRLB respectively ;;vhen ‘the mode! order is 1/3 the data

length [33]. This situation will be discussed later.

-10.[09(6{)

10q
100
80
80 -

-5 0 10 20 30 0
SNR(db) : ' i

Fig.11.3, CRLB of the frequency estimation accuracy vs. SNR
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The quantity -10log( O‘CQR) is plotted' in Fig.IL3 against the  SNR for
different values of N. Fig.lL4 shows the nerformance of the analytic sig-
nal method more quantitatively. The SNR values used in the simulation are
in the range 0-40 dB. The quantity -lOlog( ) 15 plotted by dashed lines |
vin Fig.lL4 against the SNR with drfferent‘“values of k. The line labeled
C.R, bound carresponds to the plot of -10log( 0523 ). Here we see that the
performance of the analy'tic signal based:frequency estimation can be great-
ly improved by using optimal \;alue of k which is an im:eger number close to
N/3 bripging the per.formance close to that of ML frequency estimator. In ot-
her words the variance"of frequency estimate obtained by k=N/3 is a few
decibels poore'r than t.he C.R. bound which was attained by ML method. Note
that the threshold occurs a’r about 10 dB. By - the threshold we mean the
value of SNR at which the accuracy of the frequency estimate begins to de-
part very rapldly from the C.R. bound as S\IR is lowered, Fig.IL.5 shows the
varrance of frequency esnmate versus autocorrelatnon lag with different
data’ length.’ Snmllarly, the best performance is obtained when k is Aapproxn—'
mately 1/3 data length. The same situation can be observed in Fig.IL6,
ib.e., the .autocorrelation lag at k=5 yields - Very satisfactory results
(N=16). In fact one has, the variance of the frequency estimate at k=5 is
less than 5 or 6 dB Cramer-Rao bound; and can observe the threshold behavi-
~our of the estimator, As SNR value is decreased, the difference between the )
. variance of estimate and Cramer-Rao bound is also increased, In Fig.lL5,

the variance of estimate at k=N/3 becomes much greater than at k=1, as N is

increased.
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2.5 THE ARGUMENT METHOD AND MODERN SPECTRUM ESTIMATION METHODS

*

An M’th order autoregressive process is represented by

- . ' ' ¢ -
xn_alxn-l+32xn-2+ v e e +an_M+ Wn ‘ . 2.43

which yields power spectrum estimate of the form

2 5 2
o .
S(f) = ——1= : ' 2.44
M 2 1 .
-k
k=0 z=eVW ' .
‘where {a‘l' az“am}are the parameters of autoregressive (AR) system determined

through various algorithms [60] and S(f) is the Discrete Fourier Transform

(DFT) of the signal, In this sense it is convenient to think of xi's as

being the output of the system with gains ai's and input w; ‘s . The
first order AR process is then
x? ax c 2.45
. ‘=31 %n-1" W | , |
where ‘lal]<]. It follows from [26] the AR parameter a, is given as
ay=r,/r, , S o ' : 2.46

In orde_r to est‘imate the fréquency of a sinu'sc;widal signal, the AR tech-
niques use the spectral‘maxima or. pole methods. The spectral/maxir'na method
is baséd on the estimation of the power spectrvum and searching a pzak whose
'freqUency lofation corresponds to thé frequency of the tone. Pole method is
based on séarching the roots near to unit circle c;f Z-transfi)rm of ai's
parameters. It is easily shown that first order AR process is identical to

the préceding_method with k=1 for pole method, i.e.

-1 tan_l(al)r I 2.47

27

N
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Also in [33] the expressions for the variance of the spectral estimate peak
position at high SNR are given for another techniques known as modified co-
variance (MC) and covariance (C) respectively as
2 1
e T g2 2
EIMC 4t pmt M

o2 _ (AM + 2)

fo ™ 1002 mowrd) (v 2 | .
These expressions have-again a broad minimun when M (model order‘)' is 1/3
“the data length. "The comparative variance of frequency e_étimate behaviour
using MC, C, and proposed methods is shown in Fig.IL7. The MC technique
performs copsiderably better than other techniques. It is of interest t.o
| note that in Fig.IL7, how fastly the performances of all thrée methods im-
prové by increasing the model order (M) for both MC and C and AC lag k up
‘~ to N/3. [Both it is compulslary to find " solving the normal eguation
to obtain 3 ‘s or. use the proposed method], Altho\ugh the' MC is the best.
- techpique, but the proposed .method> is much isimpler frequenéy estimation
' te;:hnique which does not ‘require the fil_te,r, pa;'a'neter estimate. ‘Also
‘Fig.IL.8 shows the performances of three methbds for k=1 i.e.; f"irst order
MC,. C, and AR process. The'variance of frequency estimate, usibng MC tech-
niql.ze is also identical ogi fér the fifst'order case. Therefore the compar-
ison of the lower bound' performance of the mentioned threa frequency esti-
mate ’méthdds can be more easily seen from Fig.IL8. i‘he comparative perform-
anﬁe of the mefhods of frequency estimators bacomes quite poor at low sig-

nal to noise ratios ban_d'is approximately close to CRLB between 6 and 10 d3

at high signal to noise ratios.
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2.6 TWO TONES CASE

- The sampled signal x(n) consisting of two complex sinusoids in the
presence of. additive white noise is given by
X =A exp (jnwl) + A, exp (jnwz) + wg 2,48
‘where ¢ = A ekp (i) is the complex amplitude of the k-th sinusoid, % is

its arbitrary initial phase at n=0 and is. its angular frequency, normal-

e
4
ized so that “mw <, for k=1,2.,W, is additive white noise, It is appar-
. *
‘ent that if Ay=A, " and W, =W, then x(n) is ‘a sampled real sinusoid in addi-
tive white (complex) noise. |
X, = AO exp j (nwo+¢o) aexp j (naw+ag) +a_lexp -j (nAw+A¢)} +wIC1 2.49

Equation (2.48) can be written in a more tractable form [76]

i where 2o= MAy 1/2is the geometric mean of the magnitudes of the two
amplitudes, o= 2 / A, is the arithmetic mean of the initial phase’A¢=\(¢—¢2)2"v
is onz half the difference between the two phases and &w=(wj-w,)/2 is one

" half the difference between the two frequencies, . |

]

The autocorrelation function fe of the complex sinusoids dzfined

by (2.48) is given as

n = A(ZD [az-roz-z}[exp (jkwo):l{Cos ktw + j gla) Sin kaw} + °r21 5 2.50
where ' |
-2 =2
gle) = —5——r
a +a



If the input samples consist of two

- resulting analytic 51gnal 15

1'1

-sinusoids

in

-3 A, exp (32nw]_) =3 Ay exp(j2nwy) + w

In this we are going to try to estimate the mean value

of the two tones, i.e., (fl+f2)/2 using the formula (o =1)

. £=

-~

1

J4nk

arg (fk) =

where y:im[rk] and x:Re[rk].

2.6.1.

EVALUATION OF g[f]

Again using-the second order

value' of f is found as

1
dik

tan

1y
X

approximation technique,

‘white noise,

of the frequencies

°x2 -oyz) + 2(y2 2) Cov(x,y)
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the

2.51

2.52

the expected

o 2k,
Eff] = =3 (%,3) + - ,
where
X = E [x] AO [a +0 2_] N k Tk,é‘ BTk
y = E[y] =A [a +a—2] (N-k) S
P LT 1 N2K) o o]
6.2 O , _
X = > + p(l+ N T2k)
N ' -~
| A -2%) 5
. 2 _ 1 + (l N-2k p )
o] = R 2k
¥ N 2 N
. N-2k) . A
Cov(x,y) = °n4‘."'('_—"—)—- Cox = Cx

:,;O.

e
"

=
{t

W~

gla) SinkAw Cosk wy + Sink Wy Coskaw

Cosk!w, Cosk'aw ~gla) Sirk’wp Sinkaw

-2
: AA

(a2+‘a—

2) /a'n.2

]
]

2.53
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Eq.(2.53) is used to calculate the expected value of f when the theoretical
_ autocorrelation function is given, Putting this expression into a more con-
venient form, we haye

: 2 2
N Lo (T, 4T ) +(C.~T) Cop
B P et gtk OGTacTad TG O 2.54
B 22 , 4 22
FAG + Iy

4k ' k .

For o =1, g(X)=0, it can be easily shown that 2:55

ELfJ=(£,+£,)/2. ; |
i.e., this method carrectly estimates the mean frequency of two sinusoids.
As o d=viates from unity E[f] takes the limjiting values of f] and f2

It means that “E[f]::fl as o-+o and g( a)=1 or E[f]:f2 as a =+ 0

and g(/a )=-1 and single compléx sinusoid case is approached.
2.6.2. VARIANCE OF THE ESTIMATE

Following the previous step similarly, the variance of the estimate -

is found as
0n4 -'l s 2 2 2 ) c ,
o 2 Wt G ¢GRI Ty RGOy . 256
f g2 (C}?; + 'I‘}zc)'2

For o =1, g( )=0

2 __N+4Nusinkiw + duk Cos Zkiw 2.57

E [{2‘ 1 (N-k)k Cos kAw]' ‘2

Similarly as in the single tone case, an irﬁportant question arises apart
from the sélection of the AC lag in order to minimize the frequency error
arriving the Crarﬁer Rao lower bound, Certainly the number of data sampleé
N, and SNR play key roles in this situatibn with the desirable situation

being SNR1 and large N. For 4w=0, Eq(2.57) is similar to Eq(2.41) i.e.

{’,
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single complex tone case. .The Eq.2.57) is plotted parametrically in
Fig.IL9 agalnst the AC lag k, and different values of AW . Again it can

be seen i

| -10. log(a? )
' | N=25
SNR =20 db -
70 - ' '
60 -
' 50-
40 1

Fig.IL9. Variance of the estimate versus autocorrelation lag.

that, the performance of frequency estimation can be improved by' -using  op-
. |

timal .value of k which is different than one although it breaks down after
AW is greater than 0.10, If Aw is close to zero ji.e., we have two closely
resolvmg smusoxdal signals, the analysis yxelds the proposed result. This
situation- can be understood clearly if ones examines Eq.(2.52). Also

Fig.l1.10 illustrates this behaviour versus signal to noise ratio with k=6.
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2.7. P,D.F,‘ EXPRESSION OF ESTIMATED MEAN FREQUENCY

In order to determine the dztection performance of-the method, it |is
desirable to kpow the praobability density ﬂfﬁnction of If\und‘er‘ ‘the tone pre-
sent (Hl) and n;aise' only (Ho) hypotheses, We assume .again the num-
ber of samples N is iarge endugh to use Gaussian statistics, -

— For Ho | |

The statistical properties of X and Y found in Appendix , can be
rewritten for H_ |

X« N(O, o */2N) o 2.58

Y AN, o # /2N)

These expressions are now used to darive the probabilty dansity function of

f. It is more convenient first to consider the dummy variable ¥ which is

defined
‘ 2.59
¥=y/x
A
This is in turn used to derive the P.D,F. of f using the formula .
2 gki=arctan ¥ | 2.60
From [7#%, pp.198], the joint P.D.F, of x and y is
_ N . 2.2y 10,4 ' ,
ny(xoy) =T exp I}N (x"+y") /90 | 2.61
T n .
then .
1
Py ¥) = ———— _ 2.62
. (y +1)
Now using Eq.(2.60), we have finally [74]
P-(w) = A ocwerm - 2.63
w " ‘ . i

0 0>w
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‘Note that the probability density funciion under H0 does not. dspend

“upon the noise power 0‘,]2

——FQrH]‘ S -
For s.ignal plus.nrjise case, the statistical properties of X and Y

‘follow from Appendix A, as .

4 -
2 (Nk) % 1 (N-2k)
XuvN (A N Coswlk N SRl S CosZwllf)
- (Az S T (N-2k). 2
N Sinwk, 5=+ ul(l- Cos2w, k 2.64

To determine the P.D.F, expréssion, one can use Eq.(A-29) by substituting

the statistics of both X and Y to find

N

A, = ’
177 4 (@2p2) 172
A, = 2—b2 Cos 2wk
2(a’~b?)
A3 _ N a-b Cos2 (w—wi)k
on4Coszwk [az-b2C0322wlkJ
A = 2 CN fb—a] Cos (w-wq)k
4 4 2.2 2.
(a -b* Cos 2wlk) Cos wk
: _ (a—b)
where % '°n4 (a 2 12 cos? 2wy k)
A2mek) . . 1 (N-2k)
C=-——-, a=—5~+y and b= N 2.70
'N ) -

finally from (C-11), we have
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21?2 AN e (b
T T (w,w,) V21 o - r
My . n’ (W',wl)
exp ; ; : :
2 o (a+h) ~
n . 2on4 (ath) T (w,w) |
or B(w) = (a2-p2) 172 _ N c(b-a) Cos (w-w)
W ——7
LI (W:W ) )/2'"' o r
! n (wlwl)
2 . Lo
NC (a—b)qosz(w-wl) k. |
— - — 1) | 2.7
‘20n4 (a+b) LT (ww) '

Tt

where |
r (w,'wl) = a-b Cos Z(W;wl)k

The P.D.F. for H] is expressed -in terms of the mean frequency,
numb'er of - d.ata'. samples and signal to noise ratio. Fig.ll.1] and Fig.ll.12
~show this function for some different values of SNR and number of data saiﬁp-
les. Considering the P,D.F. of (\?V‘-'v;/l) as P( Aw Hl) it can be concluded |
that the mean /frequen'cy estimate is effecfively unbiased since E(AW) is ze-
ro. In orher’words, since the density of mean frequency displays arithmetic
symmetry around W, , the e#pected value of the wmean {requency equals to
true one, Comparing Figs.ll.ll and 1112, ‘one can see that the maximum
value of P.D.F. and variance of v’:/,.a(e related to both N and SNR as expec-

ted. In these figures Wiz'/;z', N=59 and N=100 respectively.



52

Also a different approach can be used te prove that the estimate is un-
piased - under a'particular interpretation which is: derivative of P.D.F. with
respect to W . The interpretation is explained as follows :

The deriyaﬁve of I;](w Hl) is’ given

: __égl___ P;,(WiHl) - |_4 (az-bz) __ N c(b-a) Cos (w-w1)x
W ' ) aw ‘ o o 2 p3/2
r .
o 7 T lwy) . Yan o T Wl)
ex'p Nlcl:2 ' ( (a-b) 'CO52 (w=w] ) k --l) . (a2-b2)l/2 ;"/N_.c (b-a)Cos (w—wl)k
b) . | 2 3/2
X g " (a+b) - T (w,wy) :_r!‘(w,wl) /21r o r ()
a I ch 5 (a—b)Coé?‘ (= )k
i exp { ( . -1)} 2.73
L (a+b) T (w,w) ' '

~Since the derlvanves of both Cos( wo- Wy %k and I'(w /W) with’ respe&:t to

evaluated at w =wl

~ becomes zero. This result and symmetrncal property of P.D.F. imply that the

are zero, the derivative of P (w H)at W =Wy

exo°cted valu° of QU is equal to W, . Tms method can bes seen to be a useful
" technique for estimating the frequency of sinusoidal signal according to

!

this conclusion,

~ 2.8. BANDWIDTH ESTIMATION

In this section the problem we set ourselves is ' that of ~estimating

the soectral bandwidth (damping' factor) of thz sinusoidal signal by ana-

- lytic signal mode], Let us assume that the N samples of the observed



observed data sequence Zy.or analytic signal model consists of ~samples
‘of an exponentially damped sinusoidal signal in t;o.mplex valued white Gauss-

ian noise W n

Y P il + gl e | 2.74

where o is the damping factor. We set up the following equation to esti-

mate o (BW?) as

sz - 1 [ _ |rk' } : . 2.75
2k . ro' 2

2 =-ak -jwik
. by using the fact e¥ =1+x and rk=A e e L + UnS(k) for k=0,1,2,...

Therefore BW2 can pe Simply estimated by a knowledge of the autocorrela-
tion function at one particular appropriately small nonzero value of k.
Actually the validity of the approximation of servies expansion is directly
related to the & for constant k, (It can b= seen that for noise only case
E&‘-’V2 bzcomes infinite as expected since ths sampling time is ndot chan-
ged.) In - this regard, thus there is no need for destermining the gntire po-
wer spectrum or the entire autocorrelation fun.ctio'n as in the frequency es-

timation problem.

2.8.2. VARIANCE OF THE ESTIMATE

In order to find the variance expression for bandwidth estimate,
first of all one has to calculate variance of L Using second order

approximation technique, Var( rk ) is obtained as in the previous. part

Var |rk| =4 [3-(2 ox® + )72 ‘«"y2 + 2xy Cov (>_{,§):] 2.76

The statistics for an exponentially dampedvsinusoidal signal are given by

53
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b

= a2 gk _(Nk) :
= A" e —R) .
N Cqswlk

o]
]

- a2 ok (k) -

2 _ ~2%| o4 . ' | -
a e n l
X —_— 1 (N-2k) ,
+ AN=Zk)
, e ot MU+ == Cos2w k) ]
4 :
2 _ _—2ak| 9 L1 : ]
a“ = ~n_ . -
y T¢I row - gy
- - . —
Co =g 4 -2 k N-2k : :
vy = °n e w A2 2) Sinw, k 2,77

Substituting Eq,(2.77) into Eq.(2.76) we have

_ . 2 4
40 0O o
Var [r | =- n (L M (N-2k)
, 5=t} - ——
k N [ 2 " N Cos 4wlk 2.78
where
2= A (N—k) e_de-

N

Finally, the variance of the bandwidth estimate is obtained by second order

techniquz [74] as

Var |x| |x, |
, _ 1 k k! 7l
var [ 5] =2 =t Ve (xr)-2 =) v |5 |.xg
, o o r
‘ e 2.79

Similarly this expression is a function of autocorrelation lag and it requ-

ires the simulation to determine estimation perforimance.
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: CHAPTER Il ASYMPTOTIC BEHAVIOUR AND STATISTICS OF SPECTRAL

MOMENTS

3.1. INTRODUCTION

Soectral momehts have been used in applications including radar,sonar
problems [78], tone detection [79], mean frequency estimation [80] and con-
volution, deconvolution problems [81]. As an example, in radar applications
the first three moments correspond respectively, to the volume, mean velo-
city and range of velocities of the scatterers. Also the mean frequency is

used to estimate the frequency of sinusoidal signal in white noise.

In the past, spectral moments have been estimated by first estimating
the spectrum S(f) itself and then u'sing this estimate into the definition
of the spectral moments. However '.estimation of the spectrum is a very impor-‘
tant problem whicﬁ has led to the development of-several estimation ~ techni-
ques. By ‘the choice of éne existing methods, one can have some advantages
depending on aim and with respect to specific conditions, One pdssible app-
roach to the estirﬁation of spectral moments is to use a spectrum analyzer"
which is often like that a filter bank or Fast Fourier Transform (FFT) pro-
cessor etc. However the specific charecteristics of this method rﬁake it im-
proper to do it; (Conventipnal Fourier type e‘stimator\' is known to vyield
bpoor resolution when applied to short length data records and computational
problem even using FFT processor.) In addition, computing the spectrum at

evéry point provides more information than nscessary in many applications.
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(For example, complete information about the spectral shape is not required
in tohe detection problem [79]). However one can estimate the spectral mo-
ments using time domain information as well as, i.e., by using the inphase

and quadrature signals [79].

More recently an algorithm has been pfoposed which estimates the spec-
tral moments without performing a Discrete Fourier Transform (D.F.T.) by
using Maximum Entropy Spectral bAnalysis (MESA) moment matching technique
[82]. In this method, spectral moments are estimated by using a series ex-
pansion in terms of the autocorrelation lags. Use can made of the MESA to

_ extrapolate the autocorrelation lags from a few known or estimated lags.

~In this chapter some of the properties of MESA moments are investi-

gated. The MESA moment paper is composed of three section. In the first sec- .
tion, -we investigate the‘ use of the Maximum Entropy spectrum in the estima-
tidn 6f spectral moments and consider sbm'e of their elementary propertie;'
such as f{iltering, windoWing and S;Iifting. In the second section, the asymp-
totic behaviour of MESA mément technique for the case of sinusoid embedded
in additive white noise is analyzed. The asymptotic formula for the spect-

ral .mean fréquency and mean square bandwidth are derived by assuming known
'autocéirrelat‘ign funcAti‘on.lAlso we compare the asymptotig bzhaviour of the
estimator with the case when only a few terms are involved. As a bonus bf
the analysis the same moment expressions for the case of two sinusoids with
equal or non-equal po'\;/er»are also determihed. In" tha last section the ana-
ly;sis of statistical properties of MESA moment is given. It is. shown ‘that
the  probability of detection (PD) andr probabi]ity of false a}arm

: (PF) can be written as functions of the expected value and thz variance
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of n'th moment for tone detection problem. In addition to these the vari-

ance. and P.D.F, of the estimated mean fEequen.:y are derived analytically in

this section.

3.2. MESA MOMENTS :

Let us consider as an approximation the moment integrals the sum in

(3.1) with the N-point Discrete Fourier transform:

o N1 [0
Mn=-2 % S(® [—@—} | 3.1,
‘H. 2=0 N

which is valid when T/N is small relative to variation in the spasctrum and

where m and T denote respectively, the n'th moment and the sampling period.

Expanding the factor (IT/N) in terms of a cosine series [82], one obtains a

moment expression in terms of thz autocorrelation (AC) lags, i.e.,

n
C. r @ ’ .
0 0 7 n
Mn's——— ; +k’.= " rk | | - 3.2.

wheje

()2 g (-1t ) n=laSe
(1 () e ML (2 ¥1)

r=o . (=2r-1)! (2:kT) '

o n=0,2,4,...
—

-—
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for k=1,2,3,eeevueun.
and
2 M- 21 ke, ’
r=—r— I §(2) Cos(&XK2y . -
SRR ,(' ). k=0,1,...ceunnnn. (N-1)

N
In practice only the first M AC terms may be available; however hig-

her order lags can be found by extrapolation ‘using the equation :

" | a] Tt = 0 = Ay CLe-M k7M ‘ 3
where the a , j=1,2,3,....M are the linear prediction coefficients found
by one of the least squares (LS) techniques such as, PARCOR, sequential LS,
lattice, 'covar'iance, autocorrelation.....algorithms. Because of . the poten-

tial implication of the Maximum Entropy techniques in (3.3), we will call

the estimates in (3.1) the MESA moments.

The usefulness of th_is method can be attribufed to -several factors.
By the choice c;f MESA moment technique and for a given ‘number\of data samp-
les, oﬁe can properly_estimate the spectral m&ﬁents By means of the extra-
polation of AC for low order autoregressive (AR) model. (Since ckcoeffi-
cients decay as k-zwith increésing number of AC terms, the firs; a few terms

are the most important. This means that only a few AR parameters are requ-

ired, )
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Certain properties of spectral moments obtained through the expansion

in (3.2) are listed below.
Shifting : The shifted moments

pn=f°°(f-f0)n S(f)df' ‘ can be found as
o :

un—Z (1) ()“
i=0

Filtering T A process filtered throughva system = with power

function P(f) has the moments

L 0'0 n oo
= S(f)P(f)df= =— r' +12 ch
un Of fS(f)P(f)df= ” ro I G k
where ‘
N—i] N -1 2Tk
rf( =.-§ it and NS T P(z) exp (4. )
=0 v 2=0

3.4

transfer

3.5

Windowing : If the process is windowed with the w’inddw function W(n),

the moments take the form

T

un—-g——-——Q—-—-i-ZC

Y\
k k
9 k=1

with

rkz[w‘(k)*w(k)]rk

where  “*’ denotes the convolution operation.

3.6
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3.3. ASYMPTOTIC BEHAVIOUR

It is of interest to evaluate and compare the moment estimates in
‘ (_3.]) increasing number of AC terms. Since the cases of tones in the noise
background is' analytically tractable, let us in. fact consider their asympto-

tic behaviour. The AC sequence for L tones in white noise is given by

_ L
"k Zof s(k) + 1 A% CosH.k 3.7
. s 1 1
v i=1
where,oiz{ is the noise power, §(k)is the Kronecker delta and AZ]-, f; are sig-

nal power, frequency of i’th sinusoid _respectively.

The first step of our analysis is to determine the asymptotic behavi-

our of the MESA moment technique for the case of single tone case.

3.3.1. SINGLE TONE CASE

For a single tone (L=1), the first moment can be given as

1 o ‘
Co ro 1
M= ————+ £ C,.r :
1 ) o1 k Tk . 3.8
“where
1 S

Ck = R 2 k=1,3,5,...

. (Tk) 1
and C = ——

‘ ° ot

0 k=2,4,64... .
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To obtain the mean frequency we divide the Eq.(3.8) by ro'

- ® r
R B B 3.9
6T T k=l “TRK%r
k:odd 0
Since CEO,’Vk which are even we rewrite the expression as
- L : © Py
f=d .2 g 2kl 3.10

a4t T (210,

Now let us determine the second moment expression.The coefficients for k O,

n=2 and the second moment are given

C2 1 . c2 (-1)
0 6T2. k 2 22 3.11.a
Tk ,
and
A.z’ @ k 77
tym e+ 3 T 3.11b
1212 k=1 T2 n2ks :
respéctively. '

Noise free situation :

For the noise freebcas.e, (0n2=0) and a single tone (L:i), the mean fre-

quency and normalized second moment expression are

- 2 ®  Cos :20fq(2k-1
f,= -~ ] T - - 2 2 ;2 % l 3.]2&
47 TS0 k&1 (2k-1)
S k Cosn2 fyTk | 3.12b
My S > (-1) ’I‘I‘Z’T‘gkz 7
ro  ypr2 K1 L

. From [83,pp39] using
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2

© ‘ I il 4 © | I 2
2k=1)x = -
o Cos( . )X - (— -|x]) and 1 (_])k Co;kx= | X
k=1 (2k-1) 4 2 - k=1 k 12 4 -
2 1/2
and considering the fact that m] /m0 and [ _(mz-m-] )/ my ]l are estimates

respectively, of the mean frequency and mean square bandwidth (BW) one ob-

tains the exact values'/f\z‘f1 and BW=0

Noisy situation
By following the similar step as in the previous section, for the

case of 'onZ#O ,.‘the mean frequency and bandwidth become respectively,

I Y 3.3
] 4 T ‘ '
| s 1/2 |
Bt —— ( fAe FL 1 3.13.b
utl 1 48T 2T
5]
4_ M:2 2 A
S — /
/
- /
L
3 v /
=
/
2 / /f\\
] / ..4'.'...;"/,,-
.-"”,//"// M:CO
\ 1257 |
/
/
1/
b ] i .
20 10 - 0 (dB)

Fig.lIL1. Variations of f and BW with 10.log
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2 2 . . - - - .
v where I —A]éjn is the signal to noise ratio.

In Equation (3.13-3) the term 1/4T is due to the white noise mass;
this bias however be eliminated and this equation can be uﬁed as a tone fre-
quency estimator. The convergence 'proiierties of the series in (2) is shown
-in Fig.lll.1 where both f and BW are plotted aé functiohs of the signal to
noise ratio (SNR) and parametrically dependent upon the number of lag term
M. In this éxample one has T=0.05 sec, hence the Nyquist frequency Ais' 10 Hz
and the tone frequency is I Hz as in [20]. For SNR—~0, oﬁe excepts f:l/l,tT
and BW=1/2T while for SNR—oo one should have f=1 Hz. Also Equations (3.13-

a,b) can be rewritten for high SNR condition as follows Le., ¥>>|

f= f]+——] ‘ ‘ | 3.]4.3
S 4T :

1/2

1 .2 1 f
o= (f2 LTy ._
bV et v 3.14.b

One observes also that a good estimate of the moments bcan be obtained by
using on‘ly a few AC lags, i.e., 5 M '10. The first and second moments can
be reliably estimated using two lags, however higher order moments require

more than two lags.
3.3.2. TWO TONES CASE

In this case we are going to use the first moment for estimating the

mean value of the frequencies of the two tones, i.e., (f] + f2)/2.

Noise free situation

By using the previous expressions for the first and second moment we

have 2 2
- Ay Ay : 3.15.a

f=
2. 42

A]+ A2

MR
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ASA 2. ’ ' | 3.15.b
Bi’- ——— (1 f)" S
AR
Special situation which h’eeds menﬁoning is the case where Ay = Ag.

The expressions become
=gz, A 3.16.a
| 2 2 .o
BWT= (f- 1)/ 3.16.b
One can see that from the above expressions, the depth null in the spectrufn

_is  weighted by the ratio of the power of the tones and if two tones are

closely spaced, then BW will be smaller as expected. The results of thié sec-

tion also coincide with a single tone case i.e., £ 1, .
Noisy situation

| N - o .
- Similarly, f and B¥ expressions for equal power become respectively

_ .o : : ‘ 3.17.a
u+ T 4T 2 '
| )2 20 ] k¥ |

BNZ 1 > H(gﬂ-ll (2+U_)(f]+f2) -,__2—— (f.'f2+ T (f.l+f2)) 3.17.b
(Tvu)= | 487 4 ) :
where -
, -2A2
2
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3.4, STATISTICAL PROPERTIES :

In order to determine the detectionvperformance of the moments des-
cribed here, it is desirable to know the probability dehsity function of
m. under the tone pfes,ent '(Hl) and noise only (HO) hypotheses.
We assume that the number of samples used N is large enough to assume Gauss-

ian statistics. Let us consider again a two term approximation, for the mo-

ments i.e.,

‘n
C r
Mn = 0

en n
> #Cp i+ Gy 3.18

Statistics for m involving an arbitrary number of autocorrelation

terms can be obtained in a straightforwafd_ but tedious manner.

Since e is normal random variables as shown in the Appendix (A),
for both the null and alternative hypotheses, m. has a Gaussian distri- .

bution with mean and variance respectively as

o a2 e . o
*o,n= £ (Mn}| Ho)= -—"_20_5___ 3.19.a
A ol a ‘ L
“an= E (] H])=-__[1__(0n2+ A%)‘ +bnA% Cos wy . 3.19.b
2 ! .
, 2 4 2 4
of = E[(tn- 2, Jeanen, bni_on 3.19.c
’ a N
2 2 2 .
2 2 2 .19.d’
02= =E[(Mn->\ )]=-——°—n———— g (an +——bﬂ— )+bn2A] Cos “ 3.19.d.
»],n . ]3” N ) 2

2
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wh‘ere
. B=o';r_!2+ 2/\?
dn= 20"c]
_eh
an Co
=ch
bn= C]

and E( . ) is the expectation operator.

Let us now discuss two applications

3.4.1. TONE DETECTION

The P.D.F. expressions<for_ both hypotheses can be used in tone detec-
tion problem. Thus we concentrate our effofts on evaluating the performance
‘of the likelihood ratio test (Lrn ) and calculating probability the
detection (PD) and probability ol} false alarm (PF)’ Evaluation .ovf -
the detection performance of théAMESA moment detector for the general (in-
volving M AC lagé) case is a difficult task./Wre demonstrate here the detec-

tion performance for M=2, the result presented can be viewed as a lower

bound on the MESA moment d=tection performance.

The sufficient statistic obtained from the likelihood ra_tio test is

{731,
. _ H
11 Xo,i _ Mon L ,
Ly, =Mn [0.5( > -t (= - ):Iz M, 3.20
oa,n T,n 90,n 1,n
with / Ho
2 2.
A] Ag '
T .05“ +an - gn (o)
2 02 2 0’0’.n Uo,n
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" being the threshold of the test. The approach is to compute the n’th mo-
ment by the MESA method as data is obtained and then test ifs‘value against
the following hypotheses,

m_ < .
n mT "o

m_>m
n- T

jan

Using (3.19) and (3.20), P may be evaluated as

.
p=s e
F ’VIT P(Mn'lHo) dMn : . 3.21
which yields
M- .
_Q (__.T__O__"_) - - 3.22
6,n
where Q( . ) denotes the error function. Simvilarly the P;) computed . from
(3.19) and (3.20) may be expressed: as ‘
P.= Q (ﬂT__-__)]\_’L ) | ' 3.23
D o A oo
1sn '

These expressions enable to use MESA moment technique as a signal detector.

3.4.2. MEAN FREQUENCY ESTIMATION

The first moment can be used to estimate the mean frequency as fol-

lows:

~

0.5 022 T | 3.24
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Fig.lll.2 Estimation tone frequency plotted parametrically versus

number of AC lags.
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Fig.III.'B. Variation of‘the' mean frequency estimation versus number
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In Fig.llL2, the estimated mean frequency is plotted versus the number of
known AC lags. (Extrapolation goes from 3 to 40 starting with the two known
AC lags.) The simulated toneﬂ frequency is | (Hz and sampling rate 20 Hz. One‘
observes an oscillatory behaviour for ; up to 30, however higher order AC
terms can be obtained by extrapolation tchrdugh Eq.(3.3), In Fig.dlL.3 for

the estimation of tone frequency both the 'known and estimated AC lags are
used. Typical situation which needs mentioning again is stated as: The fre-
quency error is not iﬁversely proportional to the number of AC lags which
~are estimated or known in a certain limiting values of M. For example the
minimum frequency error is obtained by estimated AC with the initial phase

(¢ ) is zero for M is between 4 and 7, and known AC for M is bstween 12 and

20.The phasé depandency of .MESA mean frequency estimator is shown in |
Fig.lll.4. It can be observed that the frequency error depends on the init-

ial ph‘as’e of the fone. For example minimum_ freéuency error is attained for
6< M <8 at abouf $=180 while for M=18, good performance is attéained, at
about ?:900 and " 210.%°Also the values of the estimated frequency using the

known AC are straight lines as shown in Fig.lIL4,

3.4.3. VARIANCE OF THE MEAN FREQUENCY

A measure of the accuracy of the mean frequency estimate of the MESA
method is given by the variance analysis. In the calculation of the vari-

ance of f use has been made of the variance expressions for the AC terms as

below:
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The variance of the unbiased estimate of the i“th AC lag is [84]

n-1'

Va ' :
r r ——T(NU & (N )(N1 lkl +rk Fei)” E( ) | 3.95

N\
f N
1104 \\ //\\\ /
\ / \ /
\ / \ } //
| \ [\M=18
1.0597 \ [ \ /-
o \ j
\ / r / :

’ : 1.004 \\ \_,/' I/ \\ N/ /

0.357 \ I u [

0804 \ \

Fig.llL4. Variation of the mean ~frequency- estimation with the

initial phase (N=100).

Using. again second order approximation technique as in [7#] and assuming

that the " error in ‘estimating rék—l is uncorrelated- with ryy we have

finally
2 -2 ”/2 Vaf (r2k-1) o .
Var f A ;0= = 0.04T - > ' 3.26
e - (2k-1) . |



72

where
3To_ 2
Var (Tp q)= (- 2k-1_y2 o2 (221" 2
? Tok-1 21 3w ‘o
S R — i
Tok-1=——
Y‘O 2.
Ox
f
09 -

M=8

i

0.4 -

0.2 -

! T T T T N
20 50 80 110 140

Fig.lIL.9. Variation of the mean frequency estimation variance vs. N
"Let us again specialize to the case of a sinusoidal signal in white
noise and consider two situations separately for analytical simplicity. The

‘variance of the mean frequency estimate is then expressed in terms of the

number of data samples (N), sampling period and mean frequency.
. 2
Noise Free (on= 0)

For the known AC lag Eq.(3.25) can be written as
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Fig.lIL5. Variation of the mean frequency estimation variance
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(N=1)

Var T, =

i T

(=107 e (-1)

A200521' £

Since .
N=i
z (N-1)(14Cosiay )=(N-1)? 14Cos2io,
K=
N-1, | L
T k(MCosziny)  ANDMRT) g 0004,y
k=1. 2 4 1

one obtains as

B , M

Var T, = 1+ 20 (N-1-k) Coska])

(N~1) (N-1) k=1
and finally

012?,.-:0.04 Bk 2yt _ﬂﬁ (1 _Ml )

where we have used the dafinitions :

B~ L
' 2
k=1 (N-2k+1)(2k-1)

Jk “/2 “42 (N-2k+1<§) Cos2jwq
k_l j=1. (N—2k+1)2 ' (2k'1)2

Noisy case'(cnz-f 0)

From previous section, we can write similarly

o 2 A N-i- k (Coszkw]+Cos (k+1’)m]Cos(k—1')w]) -

- 3.27

3.28.a

3.28.b

3.30
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() =Var(r) |0n2=0:+ T [(N-] )°n"+2(N-1)A%n+2(N-21 )A°n2C0521w]] 3.31

and
i (ro=ar (rg) 1o+ — | Nnsann?a +2NAUn21 3.32
_ nso 2 : - . - .
N~ i
Then
a2 2 2 =2 :
) 0.04 f(k 2 . ,
: 0.047 4“ (k) i +—-—'\2—“‘—- g(J)+ (1+4y) + 0.04T = By p2_+ ' P
() , | (1+)°
2u hjk+ek+2 u(sk+g'-‘k) | . 3.33
where . -

£ M2 (N-0k+2)Cos (4-2)uy

k=1 (N-2k+1)% (2k-1)°

and hjk , T(k), B g(j) are defined previously.

Tﬁe variation of the mean frequency estimation variance" with respect
to Wt‘he number of AC “terms and data samples as well as with respect to the
(signal to hoise ratio) is shown in Figs.IV.5, 1V.6 and IV.7-8 respecfively
It can be observed from FigS.IV.5;6 that the variance of the mean frequency
estiméte does not decrease with increasing M, since with more AC termé, the

' moré est’imavtion‘ error is ' introduced. Also for fixed N, the‘ AC estimation
errors at, higher order lags account for this behaviour. ‘_The saturaﬂon in

Fig.IV.5 and Fig.IV.6 is due to the k2 term in Eq.(3.33).

3.4.4. PDF OF THE MEAN FREQUENCY

In here we give the expressions for P.D.F. of the ‘mean frequency when
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only two AC term§ are used, i.e., f=0.25T']—O.2T_]r]/ro. .de~ )
rivation of the P.D.F.’s of the: mean frequency follows the détermination of
thg “distribution of "the‘ ratio rI/fO first and  then finding
F?(fIHO) and P(ﬂHI) respectively. Actually, since derivation steps

used in here with obtaining both the P.D.F. of MESA moment and the P.D.F.

of mean frequency for argument method are similar, therefore we will omit

the derivation.

For H
0

For noise only case, P.D.F. is given by

P (FIH o 1 e e [— - —l_)} 3.34
f 0 . P . - .
| IO.ZT-]Ig(f) ﬁ?Z[g(f)]]/z o 2. g(f)
wh"ere _ ‘ |
. ¢ ..'I'
-0.21"]

In Fig.Iv.10, the P.D.F, for Ho is plotted versus frequency with vari-
ous values of number of data samples. As in the previous section, the simu-
lated sampling frequency is 20 Hz. The density of mean frequency displays

arithmetic symmetry around 0.25Tf1=5 Hz as expected.

For H,

_For signal plus white noise, the P.D.F. of mean frequency is

_ , 2
T, \ " .
Pz (Fif) ?/2[_ :/2 ) 2A”g 17 _A5A2*~Z§—&— -
2Azhy [.Az 3
where : :
L 2ToX 9 W—Y‘Z
1 -
A=

2(1fr2)‘
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AR 2rz
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A X v
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all A, i=l,. . .5 are evaluated at z:(f—0.25T_])/(0.2T-|) and

oy o X R S'/ are statistics ~for the real part of rl and for Ty

’ Uy v |
defined in Appendix (A), respectively..

P(ﬂHo

—_ S
. o,

05 { iN=50

04 |

f(hz)
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Fig.IV.11. P.D.F. of mean frequency for H]. The simulated tone o

frequency is | Hz. N and 1 are 50 and 20 Hz,

respectively.

Also the P.D.F forH] is shown in  Fig.IV.11 with different values
f mean frequency error as P(f—FIH)one

of SNR. If we consnder the P.D.F. o
can see that the mean frequency estimate at low SNR using two AC terms does
s. This undesxred behaviour can be reduced by

not yleld satlsfactory result

using more AC terms with extrapolation technique. By e
tion it can be .seen that the frequency error takes

xamining Fig.IV.1 and

V.11, for high SNR condi
ig.IV.11, the frequency

the reasonable value. Another important paint in Fi
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of tone and sampling rate. Now if we keep the sampling rate constant and
take the frequency of sinusoid, let’s say 4 Hz, the frequency error will
decrease and the P.D.F. of frequency error will shift to the left with res-

pect to the before one for constant SNR condition.
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CHAPTER 1v: PROPERTIES OF AR METHOD

4.l.  EXACT SOLUTION OF AR PARAMETERS.

~ where Ry is the Toeplitz matrix of correlation with elements {_r L) = ry_

It i‘s well known that for a known autocorrelation {r ks k=0,l,..p-1 }

for a wide sense stationary sequence, the AR parameters {ai- y 1=,2,...  .p }

are a solution to the normal equations known as Yule-Walker T 26 1

~,

a=r o " a-= r
X - -~ J—— X~ . 4.1

Ul

j

by g =000 . .p} and vectors‘( This type of matrix is defined as the one

C hav'ing all the elements of each diagonal equal £857 )

] . -
g.;[al, 82,8 3 cevnons ap]

T
E = ‘[rl :,', l‘2,I‘3, seee o,’ [‘-p]

Employing the matrix inversion expressions , it is possible to obtain exact

” solution of the AR parameters expressed by Eq. ( 4.1 ), i.e., thé analysis

of the exact solution of AR parameters will accordingly be based on the
analytical study of inversion of autocorrelation matrix , even though in imp-
lementation one has to use the Levinson-Durbin algorithm or another sugges-

ted popular methods which are mentioned in the first chapter.

4.1.1 COMPLEX TOEPLITZ

Considering the case of a complex sinusoidal signal in white noise,

the autocorrelation sequence for such a data may be expressed as
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r, = o (}‘{)+Ae3wlk' : - 4.2

where & (k) is Kronecker delta , 6;:',/\ and w, are noise power ,signal power
and ffequency of sine wave. Exact solution of AR parameters are given by
-1 - o
c
3:[545 . . 4.3

or it can be augmented to include Snzas follows

Using Eg. (C-5) into Eq. (4.3), we have finally

BRI T
a, | |[-X exp(-jw.)
3, | |7 exp(-j2w) 4.4
i aﬂ —'Z_)} exp(-jpw;)
or
a :3}3 exp(ﬂiﬂ%) 1=1,2 0000, P 4.5
- and a =1
. (o]
where ,
Y = SNR - = - and SNR = Az_

1 =+ (p+l)SNR‘ 9

412 REAL SYMMETRIC MATRIX

" For the case of a real sinusoidal signal in white noise , the autoco-

rrelation sequence and exact solution of AR parameters are given respectively -

. [ m0h80) + A cos (wk) 4.6

and

ia_:{g’;lr ' 4.7
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Employing Eq. (C-11) into (4.7)
' ' Sinw, (P+1)

. 2u u STowy 'Coswl(p—i)—Cosiwl
i ' - 2
Sin (2p+l)w Sinw, (P+1)
2
(1-u) "+ uz L_ U 1
Sinw, - Sinw
fori=t,2,...... p where 1 1
__SNR | SNR= —2
M (p+1) SNR e

The above expression yiélds the exact value of the AR parameters fo‘r |
certain classes of matrices as a function of SNR , frequency of sinusoid,
w, and the AR model order,p for a sinusoidal ( complex or real ) signal
in white noise if the trué autocorrelation function is known. Note that

for the noise alone case all a; will be zero.

4.2 DEVIATION OF AR PARAMETERS .

Our primary interest in obtaining the coefficient deviation of AR

polynomial is to investigate the performance of AR method. In particular

once the deviation of the estimated AR parameters has been computed,

then the determination of the roots. displacement is immediately available.

Assume that xnis an AR process to which white noise wnwith

variance has been added.Then
Yn= Xp+ Wp
is the observed process. The true and estimated AR parameters for this

process are given

[
i
;ljc
o]

i

and

o>
il .

¥~}

ol
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2
Ry = Ry+ql

It was s‘hown‘ that [ 28 ]

A T
a=PBPa . 4.11

or

2 .
P[Am,,l ]APTa' 4.12

A
a

fl

where B is a diagonal elementary matrix with ith diagonal element is

( X/ + ar), \is the ithh eigenvalue of R, and P is the modal matrix
i.e., ith column of P is the ith nérmalized eigenvector correponding to
eigenvalue ;, and A-=diag (), ,'5\2 g oreene R

It is of interest \t.o find the deviation of the estimated AR para-

. A Co
meters a i.e., Aa = a - a which is

Aa=PKPa - 4.13

where A
K—diag(-:l;- , =1
= e
1+'a-—2 1+E§z

n

Therefore , additive white noise causes the estimated AR ‘parameters de. -

viate from the true parameters.
4.3 ROOT DISPLACEMENT ,DUE TO INEXACT COEFFICIENT

When the coefficient of AR polynomial, aj. a2, ... "ap are

inexact due to the white noise, corresponding roots of AR polynomial

are in errors. I1f z is obtained as a root of the AR polynomial -with es-

timated a , then

A(z)= zlz+ a)ze+ _.......Qp:o _4.14
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If we denote .the exact coefficients by a = a +Aa , then the true root
( Zk+Azk) must satisfy the equation

n - ! P A P~
Al(_ z)=( zk+Azk) + ( a'+Aa|)(zk+Azk)

R 4.15
..... caeaeses Aa) =
- _ +( apt aP) 0 '
If the Eq. (4.14) is subtracted from Eq. (4.15) and if it is assumed that
the relative errors are sufficiently small to permit neglect of higher-
order terms, i.e.,
' [ i-1 .
( Zk+Azk) =z i (A zk) z, Q=1 , 2,...p ‘ 4.16
it follows to a first order approximation , we have
o1 B-2  p-1 p-2
P2y + (p-—l) Zy )a1+""'ap-l AZy + 2y Aa1+Zk : a2+...Aap =
‘ . 4.17
and hence [86]
p-t
v ZKAAt ceenenann Aap-|
AZk = - r-‘ P.’l\ g ~ 4 .18
p zp+ (p-1) Z@p+eeennn ap.|
or p—l .
Z hast ceeees.eba g
7 = - K 1 — el : 4.19
k l an ’ PR |
T - %
dz v
In par.tic:ular' if each coefficient is known to be in error by no
more than & ,
lAamKE ' i= l;2,..~.p ‘ 4.20

Kthere follows , within the same degree of approximation , the .maximum

root displacement is




»*

a2 - - -1 .
]Azklg (1 +l Zkl'+]2kl+ .......... veoo +h{]p: ) e

or : | p
e _zk‘-l"

Z B = -
ezl (gl 1)

max

When I zkI '5'41,' this approximate bound becomes as

Pe

1% | =
¥ e PO

max

In terms of relative errors , Eq. ( 4.19 ) yields the approximation

: , P
AZk . ‘ _ Aax
S -
where Zk' =1 ‘ L
P21
a
. 2
ke )
A(Zk)

Hence , in particular if the magnitude of the relative errors in which coef-

ficient does not exceed i.e.,

~Lai g ©i=1,2,....p "
then e ' |
p
Deloanono gl
Zk max =1

Eq. ( 4.19 ) and ( 4.24 ) give the root displacement and relative root dis-

'placement due to the inexact coefficients of AR polynomial which are go-

ing to be used in the later section.

86

4.22

4.23

4.24 .

4.25




4.3.1 CIRCULANT MATRIX CASE

87

Before using circular matrix , a few key properties of these mat-

rices will be presented [85]. A circulant matrix of order M can be repre-

sented by its first row and has the form illustrated in Eq. ( 4.27 )

A

It will be also useful to use Z-transform'of the first row,

c(z) =.cot c]'z"+ R

M+l

X%
Let F be the discrete Fourier transform matrix of dimension M ,

where

-
1

exp 2wj /M), j

- VTT

4.27

4.28



An important}. theorem is that if C is circulant it is diagonalized by F ,

that is C = FA F where

A = diag {C (1) C(w)....C( w"'")}
Equivalently , the eigenvalues of a circulant matrix are simply the sca-

led DFT of the first row of the matrix, i.e,,

N jek/m]
Xk = ez=o Ce exp [ k=0,1,...(M-1)

and the corresponding eigenvectors are given by

Vl< = l:] , exp(-j2nk/M),. . . .exp(-2nk(M-1) /M]

-

It can be also shown that any matrix expressible in the form of as FAF

is a circulant matrix. Details are found in [85].

Considering the properties of circulant matrices as we mentioned
so far, one can immediately obtain the deviation of ‘AR coefficiemts using

Eq. (4.13 ) as

B M-1 ]
5 a R e (A1)
2:1 ‘Q‘_ k=0 .
Aa = . ’l
oo oM (+-2)
5 ag I llkwk )
) ‘=l k=0
R B SRR :
: = z a )
=1 % x=0MW -
-
where 2 .
n i = e -
by = — i 0,1, (M-1)
Ay n

or for ith coefficient it can be expressed as

/

=]~
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R
~

M M=l -7 o
~,<Z/ -~-a~ . ; ‘. =Y N J2nk 4,33
Agy —_ g=1 % kz=0 }.J,.,]f,-:éxp T(&-l) 1=l'2"','M .
After having derived the deviation of AR coefficients , the n'th root dis-
placement due to these coefficients can be given by using Eq. ( 4.19 )
sy L alkemel)
z 5 Y 7 M yelk-m=1
=1 *= - k ¥9%n
Zn_ -kl . 0_m=0 : 4.34
M-1
= -m
mio (M-m) apZ, .
In this representation a , z represnt estimated coefficient and root ( pole
or zero ) respectively which are found for M th order AR procees. Also ,
the root displacement depends on thé eigenvalue seperation of autocorrela-
‘tion métrix, signal to noise ratio as expected and order of AR process.
" 4,3.2 TRANSFORMED CIRCULANT MATRIX CASE
There exists a case the‘ circulant matrix becomes a “diagonal matrix.
This can be achieved by using properties of discrete Fourier transform mat-
rix i.e.,, F F = I . Equivalently this is in other words, the . case where
the discrete Fourier transform matrix yields the unitary transform.
The solution of true AR parameters for the transform domain is obtain-
ed as follows
Co . # A
a=[1= RXF}Fr - 433

where R is circular matrix. Similarly we have an expression. for
X 7 .

" the estimated AR parameters

'a=~[F ByF ]Fr 4.36
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Now since

. FRF:=A
X

one can obtain easily

) | |
FR;’:Aﬁﬁg . | 4.38

and

: A a = F*l'
Using Eq. (#.35 ) into Eq. ( 4.36 ) and considering the fact that Aa = a

- a, we have

| 4.39
or _ 2 .
T g A for i=1,2,... 4.40
1

It caﬁ be concluded that from Eq.( 4.40 ), if the autocorrelation matrix is
of the same form Eq.( 4.37 ) in other words; if the fransform domain tech;
‘nique is used for autocorrelation matrix, the deviation of ith AR coeffici-
‘ent is independent of other coefficients in contrary to case of circulant

matrix.

The n’th root displacement for this case can be given as

M-1 '
b M-i-1 _™
By i+l Mi
) i=0 : 4.4
S TES M-i-1
Lo (M-i) -a; 2

. = n - .
The difference in root displacement of circular and transformed circular

matrices can perhaps best be demonsrated by examining 'Eq.( 4.41 ) and Eq.

( 4.34 ),
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‘ 4.3.3 . COMPLEX TOEPLITZ MATRIX CASE

For the case of complex Toeplitz matrix, R is given

*

R=6l+aVy': 4.42

Since Ryis Hermitian there exists a "unitary transformation P which

diagonalizes Ry as

' , 4.43
PR P = diag [ cee- :
y ‘ gl A 1 ‘
where
1 * ‘
P = ovvecves )
V?f)[ VoV, . VP"']- ]
ey Vy V, , Vp., are (p-1) mutually orthonormal vectors also
" orthogonal to V . Also the associated eigenvalues are
A=0 +pa 4.44 .a
I n , . ,
= feese == z ' 3 -
Al-)\ 3 o 4.44.p

The coefficient deviation can be expressed using ( 4.43 ) and ( 4.13 ). A-

nother formulation can be made by using ( 4.9 ) and ( 4.10 ) so that we

have
-l ) .
Aa:‘.G::,RHa ‘ | X 4.45
The n’th root displacement is given
2 T o~
2= - BER2 4.46
S (M- Az
w0 i“n
where ‘
el o T
z=[z, zp,2 veeene 1]
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4.3.4 REAL SYMMETRIC MATRIX CASE

It is well known that when a matrix is real and symmetric, it has re-

al eigenvalues and orthogonal eigenvectors. However it is not in general po-

~sitive definite and therefore may have positive, negative or zero eigenval-

ues. But for the real symmetric autocorrelation matrix case all eigenvalues

are positive. Since the analytic expression for the eigenvalues is not ava-

‘ilable let us formulate the problem using ( 4.9 ) and ( 4.10 ). By follow-

ing the steps in complex Toeplitz case, we have

. "1" aRe
pa= |- 23 Relvw ¥ - -5~ Relc a+D-DWTlla 4 47

: B
where ' : n F1

Bf 20n + é I:(M+l)—/nclcz]

" For the case real symmetric matrix, the closed form expression of the root

displacement is straightforward but it needs some tedious work.
4,3.5 VARIANCE OF THE AR PARAMATERS

It was shown that all the common methods of estimating the AR parame-
ters produces same estimate ( i.e., in numerical value ) for N ,/ M . Hence
Qe will restrict the discussion to the Yule-‘Walker methoq or autoéorrela—
tion method [26]. It has L‘feen'shown that asymptotically , the Yule-Walker
method produces an MLE. of the Ar parameters [87]. The asymptotic probabili-
ty density function for the a parameters is Gaussian and is given by

, Y ,\ - A ,
p(a);(zn)ICIpr[— (a-a)Cla-a)l 448

where
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for the real symmetric Toeplitz matrix, e, [r 1=r . Therefore the

“variance of the AR parameters usmg the closed form expression of R

found in Appendxx C, can be obtained as

1 Sinw, (M+1) | M
var ag ; = BN B,=2a + 2a p Cos (M-23) wy | for §=0,1,...~—
. : ' Sinw. : :

1 .
and ‘ o 4.49
- M 1 Slnwl (M+1) _ .
Var a2j + - = Flﬁ B -2a+2au——s-—v—€-—— Cos (23wl) er 3:1,2,___7 - 4.50

respectively. One can see easily that there is a symmetrical structure in

variance expression by examinig the above equations ; for example ;

Var-(a):Var‘(a )
M/2 M/2 +2
Egs. ( 4.49 ) and ( 4.50 ) are needed in the frequency error analysis sec-

tion.

k4. FREQUENCY ERROR FOR AR PROCESS

If one is interested in 6n1y estimating the . frequency of sinusoid
with modern spectrum téchniqués there will be a problem which is the bias
in the positioﬁ of spectral peaks with respect to the true frequency loca-
tion of those 'peaks. Frequency bias in processing sinusoidal signal with
Burg algorithm hés been experimentally investigated by Chen and Stegen [20]
for noisy case and theoretically analyzed by Swingler [18] for noiseless ca-

se by considering the second order case.
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In this section, as frequency measurement ( estimation ) accuracies,

the ;tatistical fluctuation of a peak frequency is investigated by using

‘Newton's and Sakai’s methods. A major task in determinig the performance' of

frequency estimate obtainig by modern spectrum techniques is to investigate
the frequency error when the model order or data size or signal to noise ra-

tio is changed,

4.4.1 SAKAI'S METHOD

2
Let us define 2
‘ ' S(w) = -—ED——— 7 S(w)= — OT -
A(w) A(-w) A(w) A(-w)

T

true and estimated power spectrum respectively, Let us consider the statis-
tical fluctuation of the estimator for the frequency at which S (w)
has a peak value. Since S ( w ) and S ( w ) take the maximum values at w

and w respectively it follows that

d AW Alw)

= d_AW) Alw)
dw dw . .
. W=wW w=w
or
Alw) ACw) + Alw) Alw) =0
A AR + A A = 0

For large N, the frequency error can be assumed to be small so
' -1 P oy
AW) = Alw) + Alw) aw

~ - - . - I
Alw) = Alw) + Alw) dw

4.51

4.52

4.53.a

4.53.b

4.54.a

4.54.b

“l. e., A ( wv) and A (- w ) can be approximated near w, by means of Taylor

senes expansion and also by defining a & a -2a as the AR coefflaent

vector deviation, we can write
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A(w')= A(w) - ha F (w) . | 4.55;5
Alw)= Alw) “aaFlw) 4.55.b
where
F(w)= [e“j.we‘j,w:z. ven..eTiWM ]

"Eq.( 4.55 a-b ) shows"the estimated spectrum at w=w  contains - ﬁvo parts:
one part which gi\)es the exact spectral peak value,. the second pért
r‘eﬂ,ect‘s the bias term due to the coefficient deviation in AR fliter. (It

~ should be noted that o is interpreféd .as the difference betvs;een the r;lain

EEN ) . . PaY - .
‘peak frequency of A (w )and A (w ) in this investigation.)

By subsﬁtuting these into (4.53.a) and (4.53.b) , we have

[A (wl)+A" (w_l‘),Aw] [A(-wli+A/(— l)bAw] + [A(wl)+ﬁiwl) Aw] [A"(_Wi)‘fg.'.'(‘_&l) A"’J = 0

4.56

'énd:as‘,s;uming: paTAw AQ , AW?;O, -AaTAa = 0, we write the fre;;uency‘
érrbf. g#pr'éééion as follows : ' ) |

Cp| B ) Pl Pl A+ AGE) Flw) 4R wA () e

'H'AW%A’a . , -
|2 Atup)A(—wy) AT ) Al AGe) A" (o)

Since ‘Eq. (4.57) 'ésta{blishes the felationship between dawand Aa , o_ne‘ can
détek‘mine " the ffequency'error for AR process using the expressions of cbef-
»ﬁc':ienvt'_d'é\;iat‘ion presented in the previéus se_c%ion. 'Using the result of
the;., sé;:ond order AR ‘process ‘when the input data is sinusoidal .signal.i'n

: whité_‘ noise, we can show an interesting fact» namely that A (w,) and A (-w, )
beéome zero. Actﬁally for this ‘case, the freq.uency efrorexpression can be'v

rewritten as
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-, .
A R -
AW '=AaT[ (y) By J+A (=uy ) F(wy) . 4.58

_ o /
I. 2A(/wl).;A (-wl) L.
Also since  w is directly 'related to A a, we have to calculate A w

dep_ending upon the situation in which one can have a specific form the

autocorrelation matrix.

4.4.2 NEW METHOD

 Another particularly simple method which is actually associated with

the Newton method between w and w is investigated in this section.

In order to examine the behaviour of the frequency error w, A(w) is

approximated near w by its Taylor series expansion as

2 2 2 : 2 -2
|Aw) | =|&(w,)| + alam |- | (w—wl)+ %_Q__%y)__ (w—wl_) +o... A4.59,
- 1 dw , aw W=y

W=W.
1
By neglecting higher order terms and the above expression is differentiated .

A .o . .
and setting the result equal to zero at w = w in order to find the

frequency error in the equivalent form

2 2
2 2 _
d|Aw) | - __dlam| | 4 AW (@ =a) = 0 4.60
aw _ dw Iw 7 aw W=y
) W=W. 1
Since |A (w, ista constant. Finally we have
| alAw) 12‘ |
- aw w=w]
TN T T 2w 4.61
dw w=wl

A 2 .
A(w )land it_'s de-

“ Now let us try to find the closed form expression for

rivatives with respect to w . Since -
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M o
A o= 2 %
we 6bta_in
2 M-l . . :
B = . 8242 53 . coswe... 953 4.6
v 5 . 5 %, Cosw +....23.,8y CoswM .63
=0 k=0 : :
or ’ M M—i '
2 z a, a . ) - 4,64
|Aw) " |= 2 iEO Coswy yc ket - :
From Eq. (4.63), it follows that
M M-i
a 2 .
—I[&w) | = -2 % i sinwi A A
aw Ci=0 k=0 k+i

and finally ( Note that the first summation index begins from one. )

2 . M M-i

d 2 2 . |

5 |B(w)| = -2  i° Coswi L 8 a1 4,65
aw i=1 k=0 -

Using (4.65)and (4.64) into Eq.(4.61), the estimation error W=w -w s

expressed as.- - _ .
M M-i
L. . . I -~ A
1 Sinwi a, a, .. I B
| i-1 k=0 X Kk+i]lw=wy 4.66
WY1 T TFR 5 M-1 7]
I 1% Coswi ¢ a,a,,.|'w=w
Lizl , k=0 k"k+ 1

Although we derived detailed expression for frequency error here so
far using the mentioned method, exact evaluation of Eq.(4.66) requirbes the
solution of AR parameters which is available in the previous section for
the users. However, another interesting part :is the determining the second
order statistics of AR coefficients in order to obtain the expected value
of fhe estimation error. Also the specific structure of autocorrelation mat-
rix pléys a role in frequency error analysis as one can see easily. Final-

* ly, the asymptotic statistics of AR paramet_er estimates permits us to eval-
uate the asymptotié behaﬁour of the expected, value of the difference be-

tween true and estimated peak frequency location. Using.the exact solution.
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of AR parameters for complex Toeplitz matrix case, Eq.(4.66) becomes; af-

ter some further work

r—~ M N
]
Z i(M"‘i l S. . - . . 2-
- ) = Sin2iw;- j Sin iwy
wl—w1 = Re T ‘ ‘ 4.67
.2 . 2 ) :
N ‘ L i% (M~i) ! Cos“iw, -~ —3— Sin i2 }
L i=1 A T A N

Other matrices can be found by making use of the exact solution of AR pa-

rameters in a similar fashion.

4.5. ZEROES OF THE AR POLYNOMIAL

When the input consists of a complex sine. wave in additiye complex
“white noise, the ( M-1) “th order (odd) AR polynomial has one of its ( M-1)
zeroes at ex‘p £ j( + ) ¢ The remaining ( M-2 ) zeroes represent the pre-
sen'ce“o.f complex white noise. Whéreas for real sinusoidal signél _case;j - it
has two of its M zeros located at exp t + j ( + )¢ and ( M-2 ) extra-
nous noise zeroes. In AR polynomial, fhe noise zeroes tend to distributé
themselves with approximatély uniform angular sepa’rationy_ and constant radi-
_"us inside the unit circle so as to account for the uniform spectrumv_l of the
additive wﬁife noise. For Ml'th order (real signal case) AR polynomial' (M-2)
zeros; dué to noise, 2 zeroes due to signal can be written as follows by as-

. ~suming the location of zeroes shown in Fig. ( IV.1 ), and frequency error;

A 21’2__. t exp[I j (W|+AW)] . : 4.68
and '

z; =1, exp[i (i 9n+W]+ AW)] : ' ) 4.69




It is clear that also one can see

(M-1) o, * 2(wl+Aw) = 2T
Now, from the basic polynomial properties we have
k 2 k-2 k-2

%,k T

i . "n
: s
or 1 ,

i -

ak,k - s rﬁ ’ exp [jM“] |

Let us define

n

B= —F

S
then Eq.(4.72) is rewritten as

A x = Tg Bk—z -‘exp\r( j_kn)

I Z. =1 .rk exp |{j X en
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4.70

Wy ot Aw | k=2,3..M
4,71

4.74

Depending upon whether k is even or odd, the sign of CER will
. ?

change, so
. '

k
3k2 X ' for k even
ok T k-2 e~ for k odd

- #Im(z) ~

'Fig.IV.]. Zeros of the AR polynomial ( :Signal zeros, :Noise zeros)

yé
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‘Therefdre 3 K is always real as expected. The abovge. equation gives - the
relationship between the reflection coefﬁcient and ra;iius of the signal ze-
ro. Since ﬁ is the ratio of the radius of the noise zero to the radius of

| the-signal zero, it is a function of bgth SNR and model order. To determine
the ~effect of the zeros on the reflection .coefﬁcient or directly on the AR
spectral estimate it is necessary to examine location of these zeros as a
function of both SNR and model order. It was shown that in [28], for high
SNR' the signal zeros are near to the origin and noise zeros are located far

enough within the unit circle so as not affect the spectrum and P &1.

As SNR decreasés the radius of the signal zero décreases until it is
equal to the rédii of trhe noise zeros‘which' produce equiripple approxima-
tion to the flat noise spectrum. Furthermore as the model order 1s increas-
ed, the radius of the signal zero increases for a constant SNR resulting in
a higher resolution spectrum estimate and L 1. In a practical sense howe-
ver, model order can not be increase’dr'%pdeper}dently. since (rk, k=1, . .

. M) must be estimated from the finite ”clirata samples to obtain the coeffici-
ents of AR polynomial. Ulyrch and Bishop [7] report that N/3 { M ‘{ N/2. As.
the model ofder is incréased beyond these limits, the radii of the noise ze-

ros approach that of/ the signal zeros for constant SNR, then poor spectral
estiméte is obtained. The fact that signal zeroé approach the wunit circle
faster than the noise zeros accounts for the better spectral estimate. Howe-
ver, when the autocorrelation function must be estimated, estimatipn errors
will give rise to zero perturbations. Thus a small perturbation of a noise
zero may result in a spurious peak if the radius of the noise zero is near-

ly equal to that of the signal zeros. Lacoume [88] has formulated this vari-

ation of zero locations with model order analytically as follows:
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i) Signal zero is at a distance

. 2 R ] .
d = 4.76
M(M+1) SNR ‘

from the unit circle and its angular position is when SNR

ii) The (M-1) other zeros are regularly distributed inside the unit

circle in the ring

<lz] <1 - - 4.77

-1/M
’ M

(2M)

It is noted that this limit allows us to use the radius-of zero in carrier

detection problem with a threshold [88]

1 o
12121 -5 | _ 4.78

Also recently Kay [77] has investigated the use of radius of zero of AR po-
lynomial  for the detection of sinusoid in white noise (In fact he determin-

ed the lower bound of AR detector).
4.5.1. STATISTICAL ANALYSIS OF ZEROS

Now-let us establish the relationship between reflection coefficient and ra-

dius of zero for the noise only case. Since AR spectrum for “H_ produces

épproximately flat spectrum, then

.k .
4.,k - Ty &%P [J 3
or )
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One can easily see that this formulation | contradicts the result of
“the exact solution of AR parameters, The problem arises from the fact that
finite observation i.e., error made during the . estimation of autocorrela- |
tion function. Secondly the characteristics of the distribl'Jtion of the ze-

ros satisfies with normalized Butterworth filter zeros.

The PDF for the estimated values of the reflection coefficient is gi-

ven [89] for H0

r (2-1/2) 2. 9-4/2
a

IO (a) = —— (1-
/n T(2=2/2)

) 2> 2 4.81

where

1=N-M+2
azay v= Reflection coefficient estimate for any M“th or-
" :

der model and T ( . ) denotes the Gamma Function.

- For Hl , the PDF of the reflection- coefficient estimate 'aM M
?
for any M’th model order is given if the true value of reflection coeffici-

ent is b : .
-1 ‘ -2

, - - |
Hy (1-b%) 2 " z)g'i a Cos ™ (-ba) 4.82
- Pit(a) = ' -a -2
a | 7 (2-3) d(ba) /1-b2a’

where | is as defined above and it reflects the effect of data samples and
model order. By making use of Eqs.(4.81) and (4.82), the PDF of the radius

of signal or noise zeros can be obtained as

H, | drg e, () r 4.83
P (r) = da M.M ‘
S
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for H .
-1 .
Ho d r ' H
P (x) = p.°(a) M
a B =
M.M a Tn

n
for H respectively. Eqs.(4.83) and - (4.84) give the final expressions

4.84

for "the: PDF of radius of root of AR polynomial. Although these expressions

appear in complicated form, they can be used for carrier detection problem,

4.5.2. FURTHER ASSUMPTIONS ABOUT THE STATISTICS OF ZEROS

We know that the roots of AR polynomial are complex conjugate order.

Suppose that the real and “imaginary parts of zeros for Ho are Gaussian

distributed both zero mean and the same variance . Let us define
A
Re[zi] = X
A . . H —
Im[zi]zyi fori=1,2...,M 485
Then their joint density function is < :
| . 2
1 _ 2 2
ny(Xi:Yi) = —2'_—1?5;7 exp l:—(Xl *yy)/20, ] 4.86
One can obtain from [74]
) "L exp [-ri/zon2 ] : 4.87
Pr,w(ri’wi - 210 2
' : n
where
2 2 2
r; = Xi + Yl
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Finally we have

r .
. . 2 .
P (r.) = 1 2 for r. >0 ‘ 4.88
¥y —3~ exp | -ry /20 | PO Xy 8
n

which is the well known Rayleigh density distribution.

For H] we assume that for éignal zeros E[x ] = M, Ely ]‘ = [“1 ’

2 2 2
and Oy, =6y, =G, where x and y denote the real and imaginary parts of

the signal zero. Similarly [74]

,, ' g oy 2, 21V2 £ 22,2  r, 0
Pr (rs) = 5 I, exp - s 1 "2 :
s %n ) 262 rg, 0
n n

o ' 4.89
where Io is the Modified Bessel Function of order zero which is written
as

27T

Io(x)*é—z%—- ; e¥C0Sb34 -
) n=0 2n

o8

Let us determine the probability P that r is the largest root.
The decision rule is given

R = max {rl,rz,....‘...rm} L 4.9
But we must note that the zeros of AR polynomial are. complex conjugate
therefore by the defined decision rule there are two largest roots due to
real sinusoidal signal. In order to solve this problem, we are interested
in upper side of unit circle i.e.,, w; =0, or 0 L W; 4T , then

r,

P _ m . . _' _ 1 ~ .2 ' 2
r;(ry) = of Pr,w(rllwl) aw; —-—————.20 5~ exp (_—rl /20 ] 491
: n
and P_ (rsv) does not change. Now ' :
s , : 7 _ _

P ={Pr all r; < rs} - 4.92
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or

P = Pr{ all rj< rg rg = o} Pr{rs = rT} 4.93
"~ and S : ( M i

Pr {all rj < rg |rS = rpl = Py {n(rg | rg ="12} 4.94

where r.. is the threshold . Using Eqs.(4.89) and (4.91)

- - M
1 ro : — —1
P= f P_ (R,) (r1) ar
. o s 7| J t d rq 4.95
Since o o
rT r2
i P_ (r,) dr, = 1 |1 - exp (- ———T——) 4.96
ry 1 ) . 2 ‘
o) : Zon
Finally we obtain
b M (.20 2 o o
_ 1 / _ - T 2 T, Yy, “4p 2 S 2 R Y
P = ———E—l ' 1l - exp ( ——20n2) T I T élz. 2 }/ exp — 2 dr,
27 o -',on2 “n 2:0 2
2 ' 4 . n
4.97.

When this method is used, the probability of error is equal to (1-P). In

this fofmulation, simulation s.tudies are needed to gain idea about the per.-' :
forrqance. Although the integral involving the Bessel Function cannot be.eva-
luan;.d in closed form, there exist some cases where Io(x) ce;n be app-

roximated and the closed form solution can be obtained accordingly.

4.5.3, AR SPECTRUM IN TERMS OF THE RADI OF ZEROS

Let us continue to analyze the role of radii of zeros in AR -spectrum.
It is of interest to formulate for the case of L sinusoidal signals with

~ noise free known autocorrelation function. Since the zeros of AR polynomial

are located in z-plane as




106

2y 2 = 5 explejw)  for i = 1,2,..,L

depending upon the power of each sinusoid; then one can find _immediately

the AR spectrum in terms of the radii of signal zeros.

|a(e

j 2
jW) l =
- 3

2 2]
4w [l—ZriCoswiZ+ri Z

‘ -1,.2 -2
i l—2riCosw-Z +r.2
e

=1 7.=e

Z=eJW
4.99

. _ : 2 _ 4 2, :
IA(EJW) |2 - .El{l 4r; [(lﬂr.i )Cosw+rl¢oswi] Coswi+r?._ +2r, Cos2w .4.100

or
1

It is clear that for any i, i.e., ri'zl and'w=wi

T 2
|a(e?") | =0

w=w; ,rj=1

i : S

To illustrate the result of Eq.(4.100) we let L=1, w=0.2 , the resulting

AR power spectrum has been nuxﬁerically calculated and is shown in Fig.IV.2
for different values of radius. Fig.IV.2 also describes the effect of value -

of radius on the notch width.

The presence of noise in observation destroys this formulation. Let
us consider again L sinusoids in white noise with N-point discrete time ob-
servations. In this case, AR spectrum whose roots satisfy Fig.IV.l can be

given
M/2
A(z) = 1 1 -2r; Coswj 7271 . riz 72 J
‘ i=1 :
™ M/2 " 2 | 2 2. 9 4| 4.103
il 1-4 ri(k+ri) CoswiCosw+2riC052w+4riCQs wi+ri

lace?™) ic1

2 ~

o}

I
™~

S
B,
Bi' Bi i

or 4 ‘ 2 2r

T M/2 re.: ; ,

|A(eJW) |2 / 1- s, 1 (1+—-s—(—l-) Coswi Cosw+ —LI=— Cos2w
i=L+1

e




L Ars,i 2 ' L
5 Cos‘w, + —=Se2 | ) T (-4r_ . (l+r
2 2 - 4
+4r Cos™ w. +
83 57 55,5

2

14

Fig.IV.2. AR spectrum for

different values

free, second order model)

of radius (L=1, noise
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j)'Cosw .C'osw+2r§ .CdsZw
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Now let us return to the case where L=1. Eq.(4.104) is written as
2

jw, |2 dr x , or 2
A = - S S
. I (e ) I [l 5 (1+ 82 ) CQSWCOS [(l_l)wN+wl] + _.__ES__
2 : . 6
4
. 4'rS ) . ) r

Cos2w + i - . s ’ 2

LoSew - Cos™ (i-1) Wyt oWy ot ‘ ] [l—4rs(l+4rs )
B . . B4 ‘
2

.CoszCosW * 2r, Cos2w + 4rs2 Cos2 wy ot rs4] 4.105

where
B: = B and r =r

1 s, 1 S

Now. let us consider noise only case. Similarly the AR spectrum whose

roots satisfy Fig.IV.1 is

M/2 . | 4 2 2
A(2Z) = I [(l—Zrn(Cosjw)z tr oz . ] 4.106
_ i=1
Since w,=12T/M and ‘
oo XMy
I (X -2X Cos kﬂ/M +l) = ___2__________ 4.107
k=1 x“-1
we have after some tedious work '
2M M
va 2 (l+rn2+2fncosw) (]_ + rn +2rn COSWM) |
Ale ] = 4.108
2 .
AL+ry” - 2ry Cosw)

4.5.4, THE RELATIONSHIP BETWEEN AZ AND AW

Much of the useful information contained for frequency of a signal is
obtained by locating spectral peaks or solving the roots of AR polynomial,
i.e., selecting a root with maximum magnitude. Now let us investigate the

effect of deviation of signal zeros on the frequency estimation problem by

using pole or zero method.




Considering the worst case; the true and estimated signal zeros can

be given respectively for the case of a single tone (real or complex)’

109

Z, = eIV, 4.109.a

7 = ;Jw . -

2y =rype -l . 4.109.b
where ‘ :

Wl = wl + AW and rl = ]_._Arl , r]_< 1

The deviation of signal zero is

AZ = 2, -7 ' '
11 . 4.110
or f
AZ = 3+ 32 ' ‘ 4.111
where
Zr = Coswl - ,COS (wl +Aw).
Zy = Sinwl - Sin (wl + Aw)

Assuming that Aw is very small and ( Ar Aw) M0, we have

AZ = A»i'.l Coswy + r;aw Sinw, +]j ArySinw,-r, yw Cosw,  4.112

and -

,rlSinwl—rlAw Cosw1 v
- 1 ’ , 4.113

{4z = tan * 1.4]_'Coswl +ry; AW Sinw
Now using the limit for radius given by Eq.(4.76)

ZSinwl—(M M+l SNR-2)Aw Coswl

1 4.114

% AZ = tan” ‘
2Coswl—(M M+l SNR-2 Aw Sinw1

Eq.(4.114) gives the deviation of signal zero in terms of frequency of

signal, frequency error, SNR and order of the AR process.

Special case: r]=l' (Fig.Iv.3.d)

AZ =[Coswl - Cos (wl+Aw)]'+j[Sinwl-Sin ('wl+Aw)J 4..115.a




or again assuming w is small

AZ

\Y sinwl—j Cosw

=1
tan ”[ Coswl J

1

4 AZ~
. sinwl

Az is real: (Fig.IV.3.a)

AZ = Coswl = rl Sin (wl +AW)

SJ.nw:L = rl Sin (w:L + Aw)
XAz = 0°
_ 1
Kl - ' Coswy
; Cos Aw + ———— SinAw

Sinwj

For small & w

AZ = (l—rl) Coswl + ryAwW Sin Wy

1
r = v
1 , ——_Cosw;
Lo+ aw sinwjy
2z = 0°

Az is imaginary : (Fig.IV.3.b)

AZ = ] [Sinwl-rl Sin (wy + Aw)]
Coswl = Cos wl +AW

X AZ m/2
1

Coslw -tanw, Sinaw

"For small Aw
1

1 - Awtanw,

1
AZ = ] (l—;l) Sinwl ~rqAW Coswy

AZ = m/2
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4.115.b

4.115.¢c

4.116 .8
4.116.b

4.116.c

4.116.4d

4.117.a

4.117.b

4.117.c

© 4.118.a

4.118.b
4.118.c

4,118.d

4.119.a

4.119.b

4.120.c
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4
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Fig.1V.6. Signal zero and frequency error.
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bz is complex +" (Fig.V.3.c), but no frequency error

AZ = (Cosw, - ¢ ¢ Te 4 (s Ry
A ( swW, rl Coswl) + J (S:.nw:L lSlnw | 4.120

4 A? =Wy
The equations given in - this section establish the felationship

between 4z and the frequency error,

4.5.5. THE RESULTS FOR. SECOND ORDER‘ CASE

As stated in Section 4.2, 'the structure of the autocorrelation matrix
plays an important role in frequency determination. In this section. we li-
mit ourselves to second order case i.e., M=2 in order to give an insight
~about the lower bound of the mentioned AR method. As indicated A'in detail in
several papers [32, .33, 34, 46.], usually the accuracy of the s'bectrum' esti-
mator needs to minimize the frequency errors to acnieve good performance.
It can be seen that the structure of the known 2x2 AC matrix of a sinosoid
is accepted Toeplitz or circulant matrix. Th1s 1mphes that for the second

order case the performances of both circulant and real symmetric (Toephtz)

matrices are identical.

Sakai’s Method

For the eecond order AR case we have_
Alw) =1 -2 Coswlel—jw + e—2jw. |
.' Al(wl) = _2e7IM sinw, ' 4101

A" (wl) - 2e-_jwl Cosw, - 2 ’e—jwl ‘ '

Now let us} determine the denominator and: numerator of Eq.(4.66). Since

. -2 jw. 2.122
-jw e 7 l}
FT(wl) = [e ] 1’
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and using lthe fact that A(w ) and A(-w ) are equal to zero, we have

1 .
/ . y :
Alwy) Fl-w)) + F(w)) A-wy) = |- (-4Sinw,) 4.123
Cosw
1
and
’ ! .2
2 A (wy) A(-wy) = 4} Sin“w, _ | - 4,124
Finally
ra, + pra,Cosw
1
AW = 2 1 | 4.125
‘ --Si»nwl '
From Eq.(4.9) one can easily obtain
_ 2 +3u
ray . P 4.126.
1+ 20 +p” Sin Wy

"(l+2p“b+ pCOSZWl) , '
ra, = 2 ‘ . 4.126.b

Substltutmg (4. 126§ into l(# 125) we P‘ave

_(1+,./2) Cosw, +u/2 Cos3w '
AW = 1 - 1 4,127

(l+2p + p281n2wl) SJ.nwl
One can also obtain Aw=0 as H o @

- To illustrate the result of (4.126) and (4 127) we let several values of w
and SNR, the resulting parameter and frequency deviations have been numeri-

cally calculated and are plotted in Figs.IV.4, IV.5 and 1V.6

New Method

The closed fcrm expression of I A(w) I and its derivatives can be gi-

ven for the second order AR process as .
2
A (w) |2 =1 + 2&1 Cosw + 2520052w + 25152 Cosw + 52

2 | P
ala(w | = -2 a;sinw; * 2a, Sinw 2 + 8,3, Sinw,

dw -
W=

: 2
d2 Alw)
: r’lwz

1

-2 al,FOSWl + 452C052wl +5.,5ZCoswl' 4.128
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Substituting (4.128) into (4.66) the frequency error expression is obtained

in terms of estimated AR parameter and frequency of sinusoid’ as
[5+55 + da, Cos ] i

AW = 174142 2 Cosw, SJ.n.wl
. [alfalaﬂ CO‘Swl+4a2 Cos2w,

From Section 4.1 the exact solution of AR parameter for the second order

4.129

case can be found

2 .
.2
3. = —# Coswy . [2 Sin“wy +
a4 1 . 4,130
r ,
and
2,2 1
5-2 = H (Sln wl— _!.l_ COSW) 4‘131
r
where

r =1 +_2p + uz Sin2 wl

By making use of these exact solutions the final form of the frequency
error expression is
glu,w1) Sinwy

AW = ' ’ 4,133
g(Ex;lwl) Coswl - h (.plwl)_

where
g(ylwl) = _—HCoswy [(li-u) + 4(1+2u)Coszwl—4r Sinzwl}
1‘2, ‘
4,134
and

4 [(p2+2u) Sin4wl -—pSinzwl]

: h(lJ lwl) =
r
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CHAPTER V: CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS

In this dissertion , various modern spectrum approacﬁes to both
frequency and spectral moments estimation and their ability ( performance )
have been investigated and formulated in detail. | |

Most of the previous}ly‘appeared popular estimation techniques ‘used
~in frequency estimation , their performance and drawbacks are summarized
in Chapter I. |

In Chﬁpter I, we suggest a'rAeasonably accurate 'arid'computa'tmnally
simple téchnique for estimating the frequency of a sinusoidal signal. Two
pointg are emphasiZed. The first one deals with the great simplicity of the
frequency determination by the proposed method and second oné with the
acéuracy of the obtained results. This technique does not requiré the compu-
"~ tation of the entire spectrum or autocorrelation function which implies that
from the point of view of data’prrocéssing c(dﬁ\plexityl, the Argument ’mét-
_hod .is obviously much simpler. Additionally. it is shown_’th’at_ it is an uﬁbi,—' -

ased estimator.

A statistical analysis of the argument method is made for both a

a single:tone and two tohe case and examined the effect of autocorrelation
lag oﬁ the estimation. performance to obtéin optimal result. Then the ;/ariance
of estimated frequency is deriyed analytically as functions SNR - number of
data and autocorrelation lag. This expre;éion gives a hint that the optimal
perfdrmance can be obfained with proper chpice of the -autocorrelation lag.

Ithas been observeo that the estimation performance of the suboptimum fre-

quency estimator is comparable to that of the corresponding optimum estima-

tor known as ML ‘when ‘autocorretllation lag is 1/3 the data length. In other



words it can be concluded tha’g the parfdrménce of the pfoposed method
can be greatly improved by using optimal value of autocorrelation lag.which
is an integer number close to N/3 brfnging the perforn;ance'close to that of
ML frequency estimator, Another important concluéion’ is that the thres-
occurs at about 10 decibel. Therefore only /3'th autocorrelation ﬂm—
is needed to determine the frequency of a single tone optimally.
This situation is also valid for another popular methods such as Modified
Covarianee, ‘Covariance, MEM etc; but they do need certainly some additional
complex processing. Also this technique yields estimate which is independent

" of initi phase of sinusoid as demonstreted in [34] .

Final study of the Chapter II is the derivation of PDF of estimated
fr‘equencﬁl ‘for both H_ and H1 cases. In a short, this technique gives the ex-
pected result for noise only case ( H,) ,like that uniformly~distributed pro-
bability density function. The PDF for Hi,r:_isexpressed in terms of the freqg-
‘uency of sinusoid, number of data samp autocorrelation lag and SNR. |
Also it displays 'arithfnetic symmetr)‘l around the true frequency which implies

again ; the estimator is unbiased.

Remarkable points which are still open for further research are
to determine the receiver operation charecteristics of this tecnnique using
the PDF expressions obtained in Chapter II and the optimal performance

for bandwidth estimation problem.

The chapter III gives the results of a study to determine the asymp-
totic behaviour and statistical properties of MESA spectral moments. The

elementary properties of MESA moments, such as filtering, windowing and
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shifting are formulated. A good estimate of the moments can be obtained

by using only a few autocorrelation lags i.e., 54{M<10 . The first and

sgcond moments can be reliably estimated using two lags.

The analysis of statistical properties reveals that probability of
detection and p_robability qf false alarm can be written as fu-nvctions of the
expected value and variance of n'th moment for the tone detection problem.v
It will be interest to compute the hypothesis tests on the n'th moment

(n=1,2.....) based on their asymptotic relative efficiency.

Simulation studies.have shown that after a certain value of M (typ-.
ically 10 to 20 ) there is a little improvement in the tone frequency esti
mate, In other words it is observed that from the derived analytical exp
ression, the variance of the mean frequency estimate does not deprease
with increasing the number of autocorrelation terms, For fixed number
of data sampleé, the autocorrelation estimation errors at higher order lags

and k term in the formulation account for this behaviour,

Finally; the derived expression for  PDF using only two autocorr-
elation terms with signal plus noise case does not yield satisfactory re -
sult at low SNR- condition. However for noise only case, it displays arith-

“metic symmetry around 0.25 T as expected.

Chapter 1V deals with the effectiveness of AR method in frequ-
eﬁcy estimation problem. The fidst step of our analysis isr to obtain the
exact solution of AR parameters by employing standard matrix inyerSion
| lemma for different structured matrices such as complex Toeplitz and rea;
symmetric matrices; In thé second section the coefficient devi@tioh of
AR polynomial is formulated in order to investigate the performance of

AR method. It is shown that the presence of white noise causes the esti-

mated AR parameters deviaté from the true parameters. Actually the main
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thrust of this formulation is to determine analytically the root displace-
ment of AR polynomial whose coefficients similarly obtained by various mat-
rices such as ;' circular, complex Toeplitz; real symmétric and transformed
circular. For circular matrix case Aa and Az are expressed in terms of SNR‘,
eigenvalue seperation of autocorrelation matrix and order of AR polynomial.
It is shown that if fhe circular matrix is transformed vyia DFT, the deviation

of ith AR coefficient is independent of other coefficients in contrary to

case of circular matrix,

In Section & , as frequency estimation accuracy the statistical fluctu-
ation of a Spectral peak is investige_ited by using Sakai's and Taylor series
approximation rﬁéthods. It is demonstrated that one can determine the frequency
é‘rrér for AR process using the expressions of coefficients deviation ménti-
oned abov’e in Sakai's méthod. In Taylor series approximation method the ,
exact evaluation of frecjuency error expression requires the solution of AR~
. parameters which is available. Another interesting point is the determinig
the second order statistics of AR parameters in order to obtain the expected _
value of estimation error. Also the spesific structure of autocorrelation. matrix
.plays a role in freql’Jen‘cy analySis.

Finaliy the statistical properties of roots of AR polynomial are inves-
tigated., The PDF of roots are derived‘ for the cases H_ and H1 respéctively...
Although this expressions app.ear in comlicated form, they can be used for
carvrier detection problem. It is demonstrated that the probability of error
for (p'ole4-zero) method can be obtained \yith.reaspnable assumption and ma;
king use of structure of roots. Another important result established in the
remainig part of this Section is to illustrate the several possible positions

of signal zero in Z-plané and give some analytic: expressions for those cases




related to the frequency estimation problem. Also second order case makes

use of the derived expressions in Section 4.
5.2 RECOMMENDATIONS FOR FURTHER RESEARCHES

This dissertation suggests topics of further research can be outli-
ned as follows

i.The performance of bandwidth estimation can be optimized by
examining autocorrelation lag or selecting the optimal value of autocorrela- .
tion lag in obtained variance expression of bandwidth estimate.

ii. Computational complexity-variance of frequency estimate product
can be taken as a basis to illustrate the attract1v1ty of the analytic signal
model and modern spectrum estimation methods.

iii. Signal detection statistics of

| f-Frequency estimation via analytic signal method
~— Bandwidth estimation via ar.lalytic signal method
— MESA spectral moments method
- — AR method by- making use of the statistics of roots
can be found by using the expressions in the dissertation and‘comparéd ,
to each oihers. .

iv. The comparative performance of maximum root and spectral
decxslon rule can be obtamed by -using the result of the statistics of roots
and spectral coefficients ior frequency estimation problem

v. .Simulation studies are needed in order to understaqd and analyze

the results of Section 3, i.e., the upper and lower limits of the roots and

coefficients displacement varying with the matrix structure. This investigation

+
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also gives an oppurtunity to evaluate performance of frequ‘ency estimation

by making use of the expressions derived in last section of chapter IV.
vi. It will be of interest to compute the efficacies of fhev MESA

spectr':al moment test and to compare the h);pothesis tests on the n'th mo-

ment ( n=1,2,....) based on their asymptotic relative efficiency (ARE) figures.
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APPENDIX A

The purpose of this appendix is tb obtain the statistics of the real

and  imaginary parts of the autocorrelation function of a complex sinusoidal

signal in white noise.

Let us assume that the sample vector is

Xty . for H] :
Z= . . . (A.1)
y for H0
where . y
x= [xo ’xl' LN . e 060000 e XH—]_]

y= [yo,yl, .......'.,.........yN__l]

Ho‘ and H] mean the null, alternative hypotheses, i.e., the ‘noise

only case and signal plus noise Xp=5,+js, and yr’FWn*'jwn and “ ~° denotes

~

the Hilbert Transform. Also y is a .complex = Gaussian vector and

Elw, =0, Varlwyl= 02/2, Elwwl-0.

Define the circular autocorrelation function estimate as in [77].

] N-1
re . 33

k. = W 2y Zisx (A.2)

i=0
(Some of the steps of derivation follow that of [77]) where the unobserved

- data points Zy,Zygqse-dyeg-] 3¢ defined as ZN=Z<0’ZN+VJ.=ZI’ .. - Thus

Zi can be viewed as a periodic sequence with period N.
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For N>>p where k:l,l. .oy p.

)

~C -~ N"k-l * i
LD ”-Q:%Z 7. 7.
i=0 L itk (A.3)

. since the added terms in the sum are small compared to the rest of the sum.

Now define the permutation matrix J with NxN

0 1 0.......0
0 0 1°0...0
J = E .
. (a.4)
1l 0 ...0.0.0. 0
Then - -
' " H . - .
Fi=232 : (a.5)
C oL ) ) T
rwh_e.re H denotes conjugate transpose and Z=| ZQ’Zl’ .o 'ZN—ll
Let
Z=M1Z _ A (A.6)

where M is the modal matrix of J which is a circular matrix, then

. 1 ) ‘Zﬂ'ik . )
M, =5 ex® (51 xi=01,....08-1) (a.7)
| and the eigenvalues of J are given
.?JT.Q, ) .
Aﬂ,': exp |J—T\]——-I - ) 2:: O,l,c.o- (N'—l) (A.8)
Rewriting Eq.(A.5) we have ' '
. : A H .
ri=-[(Mz')J(Mz')] IN. (3.9)

Sirice M is a unitary transformation so that M = M and

H . e a
M 1M = diag {AOA‘I.;A...AN_1}= A (a.0)

. ' 2 : -
. ,B N-1 X, |Z.| ‘
realz = B : (a.11)
1 i=0
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For any lag it can be shown that | 77|

~ 2 j_2mik |
Ek:': —;—Z Iz eXPlJ‘*—N-— | (A.12)‘
i=0 =
For H
‘ : / H
We proceed to consider the noise only case. Since Z = M Z and
E[Z]=0, E[ZZ]_ 'S'nI then it is clear that
E[Z]:O_ -  (A.13)
and
(A.14)

) 2
ElZzZ]= 0,1

which has the same statistical properties as Z.

2 2 , 4 22
From [74, pp.194] we have E [z, | =o_and Var lZil =0 Cov lZil ',|Zj| =,

for all i. The statistics for can be summarized as follows:

o 4
E { R, Ty } 0o , Var Re(rk) R
, on'4
E I_T*T =0 |, var I (¥, ) =
m Tk : miUke 2N
: 4
E £ =g.° Var ¢ - Cn (A.15)
‘ o n ! ) - N "
Cov 4Re(fk)' Im(fk), =0, CQV Im(fk)' i.{'0 =0
Coy Im(B), £, =0 ' (A.16)

We ‘can say that £o, Re B , In fk are independent random variables.
Although probabilty density function for is exponential for large N,

the densities become Gaussian by means of the central limit theorem. Hence

5 4
- n -
Re rk Y N (OI N )
-4
- On
G .
2 A N (2, —2 (A.17)




126
where N denotes normal random vrariable

For H]

For signal plus noise case, the input sample is

Z; = X; +oxy; . o (A.18)
- and
2 2 2 2 .2
|Z1| = 5 +:Si W, W,
2 . 2 .2 2 :
E lzi| = (8,)7 + (8;) + o (A.19)
Now: let us determine
2 2ﬂkl
N-1 E |z, | Cosi/x—) N-1 2 2 2ﬂk1
E R.(§,) = & 1 =L I (S)+(S)Cos( )
) e k_ N N . ._0 ‘
i=0. 1=
N-1 ' o :
_ 2 N-1 2 .
E o1 gy =L = Elz;l sinEFH=L 1 (s +(5,)? sin3FH
- m N i=0 : i=Q
Lt i N1 2 2 2
E ©r = — E |2 = — L (58;) +(8;) + 0
o N =0 i N 5o i i n
If we define the circular signal autocorrelation functi‘on as
o oL N;l- st s (A.20)
sk N i=0 i "i+k
where etc. Since
N-1 .
s. + 48, = © MY s +3s, 8- ¢ (A.21)
L 1o g=0 il ~ /N .
" where  is the DFT coefficient of  and thus
N-1 . - 2 j 27k 2
~C 1 ) (82)2 + (Sz) exp —LIT\;——
r = —— 1 E2E .
sk N £=0

_ Rearranging the expected value of the previous term as
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E Re(f) = Re 5
sk
- 2 _c ,
E = ) .
I, : Gn + rso . (2.22)

Now let us find the variance of

2 2 2, 2
Var(IZil ) = E |zi| -1 ] o
whére : i ‘n (A.23)
| l2- , 2
it o= sy o+ jSll
.. After some tedious work, we have
. : 2 |
= 2,2
Var (|Zi| ) =E (8 + 2a; = o) (A.24)
, ; i n .
~ where
_ 2 ~ 2
By = (wi)™ + (w;)
a; = Wl Si + Wy Sl

" By using the moment feature of normal random variables stated in [74]
' n
n 1,2,.... (n-1) o n - even :
E X" = (A.25)
n odd ’

where g x =0 E X° =

Then
2 2 2 4
var ( |2;]1) =20 | ;| + 7, | (A.26)
n ]
and
. 2 B 2 2 . : .« -
Cov lzil ' ;zj[ = var [Z,]| . i3 & # 3
: 2
N-1 , g 4 ol
2 2rik fy n o
- \V/ 7. C =
var. Re(rk) _ __:ZL_ z ar (! ;17) Cos S o N rSO+R(




N-1
z 2 i Y 4 g 2
vVar Im(fk) = _12_ . Var |z,| Sin 2'n;k - _n n
om N4 1=0 2N N
. N-1 o
Var © 1 2 2 °h4( -2 1o
Y - Var (|z2.| ) = +9q so
© N2 i=0 124 N 20,
N
. o 2
Cov R_(r, ), I. (F = D =C
el s ImlTy) o m Fsak
20n2 c
Cov Rel(r,), © = =
’ k!'r To . AN R'e. sk
< ' 20 2 , c
Cov Inp (X)), T = I =
™k To N M Tsx
In a summary
. 4 2
- : c a a c
R r v N (Re T n + n = =C
e "k sk . rso + Re (rszk)
2N
g 4 ‘g 2
= =C n n =C ~C
: r v NO(I T ' + r  -Re(r )
m i m sk' N , N S0 s2k
20 zfc o] 4
o ™ N (f:o * 0In ' n s ,-n
N - N
, _ c
'or known signal autocorrelation function case i.e fsk
:oswlk, we have
2 ' o 4
© N N 2 N

(A.27)

(A.28) .

_ 2% (n-k)

N

_Cos2w, k)
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: . 2 e v
I ¥ ~ N (_é;iﬁiﬁl_) Sinw.k ,i__E_; _l+‘+11(1 _ {N-2k) Cos2w, k)
m "k i 1 2 : 1
: N N ‘ _ N
. 2 4 )
» 2 2 5
_r AN (A%t , 2hog D (a.29)
o n N N

2 | .
where A , u are signal power, SNR respectively
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APPENDIX - B

In - this Appendix; we now study certain properties of two jointly

variablés (x,y) and the probability.density function of their ratio .

The joint density of x and y is given [74].

, 1 : - 2 e I .
Px,y(x'y) = exp | ( --l,2 ) (x—;{) 2r (x=x) (y=y) . {y-y) B.1
2 - - ,
_ ncxoy. 1-r N 2(1-x7) o o-xcy oyz
A for x>0, y0
Let us find the distribution of the ratio z= x /y. From [74, ppl_96]
we write '
P,(2) = [ yoBxlyz,y) dy . | B.2
’ [0} . . .
Define ’ ' 7 '
- (yz_}—()Z _ y222 2% 2y + )—{2
l 2 . -
Oy
T, = 2r (x-x) (y—y? R § Zy2 oy - Ry + XY
oxoy 00y
: - 2 - =2 : _
o=y oy =2y ty , . . 5.3
3 g2 2 :
y o
Then y
£5(2) =By J yexp By (I#yTy) &y | (B.4) -
where
1 1
A, = ‘and Ay E————
1 2 2 (i-r?)
2-"' o’a: o'y l—r .
Now '
' er A Zaeay+a | B.5
Tl+T2+T3—A3Y 4Y T8 o | » o
where
2
Z 1 2rg
A, = —— +F —— =



By - 2rZy , 2rx _ 2x% .2y
g, 0_ g . g
. OX Cy Xy 7 X2 y2
2 — =2
A =X _ 2rxy + Y
5 2 2
Ox OX Uy Gy

By collecting these terms, Eq. ( B.4 ) becomes as

5 | . _ P
©_| _-AsAp + AoAq © A
fZ(Z)-~e S 1. A fyexp(—ABA y + 4 ) dy
4A3 1 2 2A3
' o]
Define
By
5 = (y+ 4)VA3A2"
2Ry
then
- .l A2A 2 ® _52 © A4 -§
f(Z)=AleXp —A5A2+ 4 f 1 ge d§"f — e
7 (o]
| By o A 2R3 Asfy
Since
2 .
- - " and
J§ e d§ = ——
2
o]
w2
/ e dg = L
o) 2
we have finally , _ 5
A, DU Y By
1 . 4 . S
_ . — exp =4 A2 + - .
£, (2) = 1/2 1/2 3
7z o, A21/2 /. 22, , 4B,
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B.6

B.7

B.S

B.10




. 132

” APPENDIX C
i.COMPLEX TOEPLITZ

For the signal which is a sinusoidal (complex) with power " a " and
frequenéy w, -, the autocorrelation matrix can be written as follows :

R=a’l+a VvV

2. . :
‘where o, is .the power of the white noise and T

V:[‘I', exp( j W) yoe...expl juM )}
~and ' * ', ' T denote complex conjugate transpose respectively.

‘By using the Matrix Inversion Lemma ( MIL)
. -

T
[A+aV*VT]= Al-,—al}v.VA
I + a VTA'V*®

- | P T
[R] I | avy'
¥37 o2 | o+ a V'V

-

we have

- or more clearly

’ T
1 [1 -xv"v]

where

y. SNR___ and  SNR =-53
I + ( M+I ) SNR ; ‘

Finally

I-¥ \Xexp (jw, ). « « . ¥exp ( jwM) -1

¥ exp (-j w)

Sexp (M w,) exp(-j 'w‘) - I-¥




ii. REAL SYMMETRIC -

Real symmetric matrix can be written as

. T‘
Y 2 * * T
Rx:o“n_l +—%[VV+VVJ

~ Let us define .
: T

. . ) )
A=0;‘I+'2'VV

- » T
R‘=A+-;-_‘_VV

133

X
and
' -1 % T _" -1 X T -t
[Rr]:A+£‘.VV - A--AVY A
K2 | hav AV
" where
- [1 v V*T] d SR
A == - an =
O ,/‘ , /! 2 + ( M+1) SNR
then

: L (;- *r) -
k)

| 273‘1(1 -V v*T)(v*vT) LGov v)

T v wT\ o
Losay (1-y v )v

265
Observe that-
PRI ‘ ‘sin(M+l)w,
c :VV:.Z exp()Zlul)) = ——
-1 1=0
-
L 3
VVc,=cl
A .
V V= M+l

After some tedious work,

o ' o1 o
[Rr]: B 1-2a Re[V \' I—rf!/mReV vC2
i 201+5) &'

sin W,
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R EM*” e C’z]

B1 ='2<J.n2 +a {(Mﬂ) - pclcz:l '

T Y el
Z -
Z‘ L]
* T .
) WT — - .',‘ . .
- \ 51
MMt e :
L—‘ . . . . - p— \.
— o T
1 2 eeeeneninn 2?
| 7 22 7
o 72 74 .
T . . :
VV = . . ’
ZM ZM+1- es s e .».i..'ZZM
L. _ -
v ’ —-—1
G CaT aeenns C T
| 2 2 2 M+1
VT. ~ . [ ]
Re[c; VW' ]=Re | - -
M M+l - 2M :
Cy% CyZ Z G |
L—. N

Or, another representation is ’ :

-1
] |
on2 '

2a Re [VV*T_] 2a }14Re [VVTC2] ‘
+

81 By
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