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ABSTRACT 

MULTIPROCESSOR OPTIMIZATIONS 

INTERCONNECTION 

AND 

TASK ASSIGNMENT 

v 

Effective spreading of the use of muLtiprocessors, -or distributed pro

cessing in generaL-, and achieving the potentiaL advantages of this new de

sign option require various hardware and software-reLated probLems to be 

soLved. 

This study is a research on two basic probLem areas, nameLy the Inter

connection and the Task Assignment in MuLtiprocessors. 

Any muLtiprocessor system that empLoys more than one processor for a 

singLe' job must be designed to aLLow efficient communication between pro

cessors, so that the advantages of muLtiprocessing is not negated by ineffi

cient communication. As the number of processors grows, the interconnection 

design becomes more cruciaL as crossbar or fuLLy-connected schemes become 

impracticaL. Thus, from a reaLizabiLity point of view a partiaLLy-connected 

structure is desirabLe, which, however, in turn, introduces the probLem of 

variabLe interprocessor distances, compLicating the task assignment pro

cess. In the first·part of this study, PON (Processor Omega Network), a par

tiaLLy-connected, muLtistage processor network with desirabLe impLementa

tion and commun~cation properties is prDposed and evaLuated. 
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In any distributed processing environment, except for identicaL proces

sors forming a fuLLy-connected network of uniform interprocessor distances, 

. optimaL assignment of software moduLes comprising a task to processors of 

the network is essentiaL for minimum-time compLetion of the task and this 

can be achieved by baLancing two confLicting factors; minimization of in

terprocessor communication and maximization of Load baLance of processors. 

In addition to the compLexities of the previousLy studied resource Limi

ted task -assignment environments, partiaLLy-connectedness introduces the 

new interreLated probLems of indirect data transfers, avaiLabiLity of inter

mediate processors, and data routing when more than one path is avaiLabLe 

between non-adjacent pairs. 

Two different performance measures are proposed for the two operation en

vironments considered. The minimum port-to-port time (PTP) criterion produ

ces optimaL assignments in singLe-run environments, whereas the optimum per~ 

formance in a muLti-run operation mode is achieved by minimizing the Least 

re-initiation period (LIP), which is equivaLent to maximizing the overLap 

between successive task executions. The characteristics of the objective 

functions, the number of constraints, and the precedence reLations dictated 

an aLgorithmic soLution to the assignment probLem. 

An anaLyticaL modeL is deveLoped to describe the task assignment environ

ment considered in this study', and based on the modeL components and the 

proposed objectives, the optimization probLems for both environments are 

formuLated. Some possibLe methods for storage-and-processing efficient rep

resentations of hardware and software are investigated and the task assign-. 

ment aLgorithm for partiaLLy-connected networks (PCTAA) is presented and 

the methods and modifications to reduce its computationaL compLexity -reLa

ted to the structure of networks and tasks- are discussed in order to ex

tend its use to anaLysis of Larger systems. 



vii 

OZETI;E 

I;oklu-i~lemci, ya da daha genel olarak dag1t1k bilgii~lem, kullan1m1n1n 

yayg1nla~abilmesi ve bu yeni tasar1m se~eneginin getirdigi olanaklardan 

tam anlam1yla yararlan1labilmesi i~in donan1m ve yaz1l1ma ili~kin ~e~itli 

sorunlar1n ~ozUmU gerekmektedir. 

Bu ara~t1rmada, "I;oklu-i~lemcilerde Arabaglant1lama ve Gorev Atanmas1" 

gibi iki temel sorun ele al1nm1~t1r. 

Birbiriyle ili~kili yaz1l1m par~ac1klar1n1n (modUl) olu~turdugu bir go

rev l~ln birden fazla i~lemci kullanan her yapl, i~lemciler araSl ileti~i

min yol a~abilecegi darbogazlarln ~oklu-i~lemcililigin getirecegi UstUnlUk

leri yok etmemesi i~in bilin~li bir bi~imde tasarlanmalldlr. K~llanllan i~

lemci saYlsl artbk~a tam-baglanbll veya "crossbar" tUrU arabaglanb· agla

rln1n kullan1ml mUmkUn olamad1glndan, ger~ekle~tirilebilirlik a~lslndan kis

mi-baglantll1 bir yap1 .istenmekte, bu ise i~lemciler aras1ndaki uzakl1kla

r1n farkl1 olmas1na neden oldugundan gorev atama i~lemini gU~le~tirmekte

dir. Bu ~al1~man1n ilk klsm1nda k1saca PON (Processor Omega Network) olarak 

isimlendirilen klsmi-baglant1ll, ~ok~katl1 (multistage) bir i~lemci baglan

tl ag1 Hnerilmekte ve irdelenmektedir. 

Birbirlerine e~ uzakl1kla bagl1, tek tUr i~lemcilerin olu~turdugu tam

baglant1l1 dizgelerin d1~lnda kalan bUtUn dag1t1k i~lem ortamlar1nda, gore

vi olu~turan yaz1l1m modUllerinin i~lemcilere en iyi bi~imde atanmas1, gore

Yin en krsa sUrede tamamlanmas1 i~in gereklidir. Bu ise, i~lemciler araS1 

ileti~imin en aza indirgenmesi ve de i~ dag1l1m dengesinin en Ust dUzeye ~l

kar1lmas1 gibi birbirleriyle ~eli~en iki faktorUn dengelenmesini zorunlu 

kllmaktadu. 
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KIsmi-baglantIllllk, gorev atama sorununa dogrudan bagil olmayan i§lemci

ler arasInda doiayll veri iletimi, ara i§lemcilerin iletim i9in serbest ele 

ge9irilmesi ve birden fazla en kIS~ yol durumunda veri yonlendirme gibi bir

birleriyle ili§kili ek yeni soruniarl getirmektedir. 

Ele ailnan iki ayrl 9al1§ma ortaml i9in iki ayrl ba§arIm ol9utu oneril

mektedir. ·Tek-seferli (single-run) ortamlarda klsaca PTP (Port-To-Port 

time) olarak isimlendirilen gorev tamamlama suresinin en aza indirilmesiyle 

en iyi gorev atamasl saglanmakta, 90k-seferli (multi-run) ortamlarda ise en 

ustun ba§arlm, gorevin ardarda tekrarl slrasInda en kU9uk yeniden ba§latma 

suresi LIP (Least re-Initiation Period) nin en aza indirilmesiyle elde edil

mektedir •. Ama9 i§levlerinin ozellikleri, slnIrlamalarIn 90klugu ve moduller 

araSI ili§~iler gorev atama probleminin .90zumune algoritmik bir yakla§lm ge

rektirmektedir. 

Burada, bir model geli§tirilerek her iki ortam ~9in ilgili eniyileme 

problemleri tanImlanmakta, donanlm ve yazIllm gosterimi i9in ge§itli tanIm

lama yontemleri irdelenerek algoritma I9In en uygun gosterim belirlenmekte 

ve "klsmi-ba9Iantlll dizgelerde gorev atama algoritmasl" (PCTAA) sunulmakta

dIr. AyrIca, algoritmanln i§lemsel karma§lkllgInl azaltarak daha buyuk diz

gelerin analizinde kullanllmaslnl saglamak amaclyia arabagiantl ag yaplsl 

ve gorev 9izgesInIn ozelliklerine ili§ik gerekli yontem ve degi§iklikler 

onerilmektedir. 
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1.0 

INTRODUCTION 

1.1 Distributed Processing: Promises and Problems 

1 

The growing need for high-performance, low-cost computing structures in 

order to match the requirements of compute-bound problems in various fields 

of application, and the enhancements due to the advent of VLSI technology 

have given rise to a wide area of research : the architectural and programm

ing issues in distributed processing. The progress in technology permits 

the availability of low cost and small size processors, making distributed 

processing economically feasible, and distributed processing brings the 

well-known advantages such as higher speeds, exploiting parallelism and con

currency in the algorithms, low initial system costs, incremental growth, 

flexibility and reliability. 

Effective spreading of the use of multiprocessors, or distributed 

processing in general, and achieving· the above mentioned potential advan

tages require two basic sets of problems to be solved: problems related to 

hardware and problems related to software. 

The hardware problem may be viewed at various levels: 

1- The processing element level: This is related to the structure and 

execution mechanism of the processor. 

2~ The network level Since the processors will be connected to each 

other in the form of a network, the interconnection structure must be 

designed such that:-

i) each processor should be able to communicate with any other in 

the network~ 

ii) degree of connectedness imposed on the processors, which 

determines the number of 1/0 ports, should be kept low and 

fixed. 

iii) it must be possible to expand the network by adding new 

processors. 

iv) interprocessor distances, whi~h affect the communication delay, 

should be kept as low as possible. 
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v) from a realizability point of view, assuming a large number of 

processors, the network may not be fully-connected. 

vi) for reliability and improved communication density, the 

availability of alternate paths is preferable. 

vii) a regular topology is desirable for ease of implementation. 

The software problem may be treated at different levels as well: 

1- Language and algorithm design level Since one of the most important' 

factors for higher speed is the exploitation of parallelism and 

concurrency in the algorithms, the design of algorithms and languages 

that reveal explicit parallelism presents an important research 

issue. 

2- Program partitioning level Development of efficient methods, to 

analyze and partition a computation task into modules such that 

minimum dependency is exhibited between the segments in different 

modules, is essential. 

3- Assignment level : Assigning modules that comprise a single task onto 

processors of a distributed system so as to cooperatively execute the 

task in minimum time is one of the· major. concerns of distributed 

processing. 

Undoubtedly, a large amount of research effort is devoted to solving the 

problems of both categories, which are actually interrelated. The choice of 

a processing element and the execution mechanism of processors, or the 

interconnection network, is 

assignment, which is affected as 

closely 

well by 

related to module-to-processor 

the effectiveness of program 

partitioning, 

language used 

the algorithm under consideration and the programming 

to implement the algorithm. Thus, all the elements of 

hardware and software need to be optimized for efficient utilization of 

distributed processors. 
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1.2 General Statement of the Problem 

In this study, we will give brief information on the hardware and soft

ware problems related to distributeo processing, and concentrate on the 

partially-connected (P-C) interconnection networks of processors and on the 

optimal assignment of software modules comprising a single program onto 

processors in a partially-connected network. 

Both of the topics of interconnection networks and task assignment have 

received great interest in the last decade and quite a number of topologies 

and assignment methods have been proposed. However, the interconnection net

works have been studied mainly for SIMD (single instruction multiple data) 

environments such as that of array processors, where they are used as 

permutation networks for permuting the data moved between processors and 

memories; in these networks data alignment in the memories, such as the 

skewed representation of matrix elements, has been the primary concern. 

Similarly, for systolic arrays the problem has been that of designing the 

underlying hardware to match the characteristics of the specific software 

algorithm. Our interest in interconnection networks is in their use in MIMD 

(multipLe instruction multiple data) environments such as that of true 

muLtiprocessors for general-purpose computing systems. 

The task assignment probLem for multiprocessors has been attacked by 

some researchers empLoying various methods for optimal or suboptimaL 

soLutions. However, in aLL the previous work on task assignment, the 

underLying processor network has been assumed to be fulLy-connected (F-C) 

(or bus-connected in some cases), and this is an unrealistic assumption, 

particuLarLy for networks of Large number of processors. Moreover, in most 

of these studies, except for a few recent ones, the effect of inter

processor communication is disregarded in the efforts to minimize the total 

run-time of the program. It 'has been observed that the interprocessor 

communication due to data passing between non-coresident software moduLes 

is responsibLe for the so-ca lled "saturation effect"-, whi ch is the 

degradation in system throughput for increased number of processors, and 

can onLy be alleviated using appropriate task assignment strategies~ The 

efficiency of task assignment is important especially in reaL-time environ

ments, where the task has to be compLeted within a given deadline. 
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Even for the fuLLy-connected networks, the task assignment process is 

highLy combinatoric and thus is in the cLass of NP-compLete probLems. 

Task assignment on partiaLLy-connected networks has not been considered 

previousLy. PartiaLLy-connectedness adds new interreLated probLems to the 

task assignment process: 

1- ProbLem of indirect data transfers between non-adjacent processor 

pairs, invoLving intermediate processors, 

2- ProbLem of the avaiLabiLity of intermediate processors on-route that 

act as repeaters from source to destination, and 

3- ProbLem of data routing when more than one path is avaiLabLe between 

two indirectLy communicating processors. 

assignment 

(precedence 

such as the 

These probLems in addition to .the previousLy studied task 

environment with constraints such as data dependences 

constraints) in the aLgorithm, non-time dependent constraints 

number and memory capacity of processors, and reaL-time constraints such as 

the input data rate or maximum finish time, create a highLy constrained 

optimization probLem. 

In this study, we propose a modeL based on graphicaL and array 

representation of the probLem, formuLate the reLated discrete optimization 

probLem and present an aLgorithmic soLution for this reaL-worLd scenario. 

We distinguish between two different environments, the singLe-run 

environment, and the muLti-run environment where periodic execution of a 

singLe task or successive execution of many tasks is considered, and 

accordingLy, propose two different objective functions to be minimized: 

nameLy, the port-to-port time (PTP), which is the maximum compLetion time 

of the task for the singLe-run case, and the Least re-initiation period 

(LIP), -which is denoted symboLicaLLy as II -, for the muLti-run 

environment. 

The inherent combinatoriaL behaviour of the optimaL assignment aLgorithm 

Limits its use in Large systems. Methods and modifications reLated to the 

structure of networks and tasks are discussed with the aim of reducing the 

compLexity of the proposed aLgorithm. 



1.3 Contributions of this Research 

The major contribution of this research is 

assignment probLem in partiaLLy-connected 

presence of reaL-time constraints. 

5' 

the soLution of the task 

processor networks in the 

The task assignment probLem invoLves both hardware and software 

components. A modeL is deveLoped to describe the task assignment 

environment. The software component of the modeL is assumed to be 

represented by a singLe-entry, directed, acycLic graph (the process graph), 

which exhibits the precedence reLations between the moduLes of a singLe 

task. The hardware component, aLso represented by a graph (the processor 

graph), is assumed to be a partiaLLy-connected network of identicaL 

processors with unit distance between adjacent pairs. The possibiLity of 

aLternate shortest paths between indirectLy connected processors and the 

reLated probLem of optimaL path seLection are considered. 

Two different performance measures are proposed depending on the probLem 

statement. The minimum port-to-port time criterion produces optimaL 

assignments for the singLe-run or non-Loaded operation environment, whereas 

the optimum performance in a muLti-run environment is achieved by 

minimizing the Least re-initiation time, which is equivaLent to maximizing 

the . overLap between succesive task executions. Based on the modeL 

components and the proposed objectives, the optimization probLems for both 

environments are formuLated. An aLgorithmic soLution is presented and 

methods to reduce its computationaL compLexity are discussed. 

Compared to the methods in previous studies, the significant features of 

the proposed aLgorithm are: the efficiency of LDF (Load Density Function) 

generation, which is achieved just by a singLe scan' of the module List, 

reLaxation of the simpLifying assumption that the moduLes receiving data 

from a common source can start execution simuLtaneousLy onLy after aLL have 

received their data, and better feasibiLity check of the generated 

~ assignment which takes into consideration not onLy direct but indirect 

precedence reLations in the process graph, as weLL. 
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Another contribution of this research is i~ the area of multiprocessor 

interconnection strategies. A multistage processor network, PON (Processor 

Omega Network), with regular interstage connections is proposed and 

evaluated mainly with respect to its communication properties. PON has low 

average path length, resonable processor reachability and linear 

implementation costs compared to multistage switching networks and other 

cube-type m~Ltistage processor networks. It provides various row-column 

alignment patterns for the same size, is incrementally expandable, 

homogeneous, and requires a fixed number of I/O ports per processor 

regardless of the size of the network. It also improves reliability and 

work distribution due to the presence of alternate paths. 
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1.4 Outline of the Dissertation 

The subject materiaL of this dissertation is treated in eight chapters. 

Chapter 1 introduces the subject of the study by presenting the promises 

and probLems of distributed processing environment. 

Chapter 2 is devoted to the hardware environment of distributed 

processing, where the possibiLities regarding the structuraL compLexity and 

execution mechanisms of processing eLements, the organizations of 

distributed systems, and the interconnection networks are briefLy surveyed. 

The muLtistage switching networks (MSN) are presented as an introduction to 

processor muLtistage networks (PMN). A reguLar configur~tion, the Processor 

Omega Network (PON), is introduced and evaLuated against some other 

structures. 

The software environment of distributed processing is introduced in 

Chapter 3. The task assignment probLem is stated in generaL, and in 

partiaLLy-connected processor networks in particuLar. The' reLated research 

on task assignment, fiLe aLLocation and scheduLing, and the soLution 

techniques are presented. The proposed soLution procedure is outLined. 

Chapter 4 deveLops an anaLytic modeL for the task assignment 

environment, introduces the performance measures for singLe-run and 

muLti~run environments, and presents a mathematicaL formuLation, both for 

fuLLy-connected and partiaLLy-connected networks, as a discrete 

optimization probLem. 

In Chapter 5, the methods for storage-and-processing-efficient 

representations of software and hardware components of the assignment 

process are investigated and the actuaL storage representations are 

determined in preparation for the aLgorithmic soLution presented in Chapter 

6. 
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Chapter 6 presents PCTAA (task assignment aLgorithm for partiaLLy

connected networks), and discusses each of its steps, the formaL aLgorithms 

of which are provided in the Appendices. The use of the proposed aLgorithm 

is demonstrated by exampLes and· its performance characteristics are 

evaLuated. 

In Chapter 7, some methods and possibLe modifications in the aLgorithm 

for reducing the computationaL compLexity of the assignment process, in 

order to enhance its use in the anaLysis of Larger systems are discussed. 

Chapter 8 concLudes the subject of the dissertation by summarizing the 

achievements and some possibiLities for further research in distributed 

processing. 
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FOR DISTRIBUTED PROCESSING 
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In this chapter, we briefLy review the hardware issues reLated to the 

design and efficient utiLization of distributed processing systems. 

Any muLtiprocessor system that empLoys more than 

singLe job must be designed to aLLow efficient 

one processor for a 

communication between 

processors, or between processors and memories, so that the advantages of 

muLtiprocessing are not negated by inefficient communication. As the number 

of processors grows, the interconnection design becomes more cruciaL as 

crossbar or fuLLy-connected schemes become impracticaL. 

Another point of interest is the organization of the computing system 

for which the interconnection probLem is considered. There. are basicaLLy 

two major computer organizations for distributed processing, nameLy SIMD 

and MIMD, [FLYN72J , and depending on the desired paraLLeLism in data and 

instruction handLing, eithe~ one' is empLoyed with its particuLar 

expectations for the performance of an interconnection network. 

The structuraL compLexity of processing eLements varies according to the 

appLication environment of high-performance computing systems. In addition, 

for higher degrees of paraLLeLism and concurrency, new execution mechanisms 

have emerged as opposed to that of conventionaL processors and this forms 

the basis for the research on the so-caLLed non-von-Neumann architectures 

and Languages [BACK78J • 

In the foLLowing sections, the structure and execution mechanisms of 

processing eLements, the organization of computing- systems, the topic of 

interconnection networks and specificaLLy the MuLtistage Switching 

Interconnection Networks wiLL be treated separateLy. In Sections 2.5 and 

2.6 we consider processor interconnection strategies, introduce Processor 

~ MuLtistage Networks, specificalLy PON (Processor Omega Network), and finish 

the discussion on hardware issues with the proposed hardware configuration. 
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2.1 The Structure and Execution Principle of Processing Elements 

Depending on the desired application environment, the processing 

elements (PE) used in distributed processing may consist of 

i) Simple arithmetic-logic units (ALU), equipped with a data 

transfer register (DTR) and with no control capability, or 

ii) Complete central-processing-units (CPU), possibly with some 

local memory, or 

iii) Processor-Local memory-I/O ports ensemble, or 

iv) Integrated computing and I/O processors. 

For example, type (i) may form the basic PE in an array processor 

while a processor network will employ types (ii)-(iv) as the basic unit. In 

the latter sections of this study, we are concerned with PE's of the 

(iii)rd category and in this case the PE will simply be referred to as the 

"processor". 

Most of the conventional computers are based on the von-Neumann 

principle, where the CPU connected to the memory via the so-called 

"von-Neumann bottleneck" - sequentially executes 

stored in the memory,· the operation sequence 

the program instructions 

being determined by the 

contents of a program counter. Thus, at anyone time only one instruction 

is being executed this execution mechanism is known as the 

"control-flow". The important point is that program execution is based on 

sequenced memory updates causing an enormous traffic of information through 

the bottleneck, much of which is not actually significant data, but 

addresses used to locate the data. 

In search of increased parallelism and concurrency in program execution, 

recently computer designs based on non-von-Neumann principles are 

attracting increasing interest as an alternative to conventional 

architectures. The basis of such designs are the "data-flow" and 

"demand-flow" (or "demand"-driven") execution mechanisms. 
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In a data fLow computer [OENN79J , an instruction is ready for 

execution, or "fired" , when aLL its required operands are avaiLabLe. There 

is no concept of controL fLow and thus there is no program counter. A data 

fLow program is represented by a graph where the instruction nodes (or 

"actors") are connected by arcs aLong which data tokens are passed between 

actors. The instructions themseLves are represented by "activity tempLates" 

(FIGURE 2.1.1> which are used in forming "operation packets" for execution 

of the form 

operation packet: <opcode, operands, destinations> 

and a "resuLt packet", 

resuLt packet: <vaLue, destination> 

for each destination fieLd of the tempLate. FIGURE 2.1.2 shows the basic 

execution mechanism of data fLow principLe aptLy caLLed a "circuLar 

pipeLine" where the activity is controLLed by the flow of information 

packets traversing the ring in countercLockwise direction. When an 

instruction is "ready", having received aLL operand and acknowLedge 

packets, the Update Unit which has updated the corresponding tempLate in 

the Activity Store upon arrivaL of each resuLt packet enters its address in 

the Ready Instruction Queue, - a FIFO stack - , and the Fetch Unit, which 

scans the queue, fetches the next tempLate in Line from the store, forms it 

into an operation packet and passes it on to the Operation Unit. The 

Operation Unit performs the operation specified by the operation code and 

generates and forwards resuLt packets to the Update Unit. Thus, a number of 

packets may be fLowing simuLtaneousLy in different parts of the ring such 

that at anyone time every active unit may be handLing a different 

instruction and this brings the concurrency advantag~ of data fLow 

principLe. The configuration in FIGURE 2.1.2 might actuaLLy be considered 

as a data-fLow PE for a data-fLow muLtiprocessor if many such PE's are 

interfaced to a connection network through their Update Units. 

In demand-driven execution, the requirement for a resuLt triggers the 

operation that wiLL generate it and the sequence of instruction executiqn 

is determined by the fLow of demand [TREL82J. A program is represented as 

- an expression consisting of nested ~ppLications, each composed of an 
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operator and an operand, and sequences. As an exampLe, the expression 

<6,(+:<2,4»> is a sequence of two eLements: number 6 and an innermost 

appLication composed of + operator and a sequence of numbers 2,4 as the 

operand. Since the first requirement. is 

demand fLows through subexpressions untiL 

primitive operations are encountered and 

opposite direction as the successive 

subexpressions, untiL the resuLt vaLue of 

for the resuLt 

subexpressions 

then reduction 

repLacement 

the originaL 

of the program, 

consisting of 

proceeds in the 

of reducibLe 

expression is 

reached. This sequence of reductions is'referred to as the "outermost" or 

"Lazy evaLuation" ruLe. 

Computer desingns based on reduction are caLLed "reduction machines" and 

are most convenientLy configured as tree structures (FIGURE 2.1.3), where 

the processing eLements, or ceLLs, are cLose to type (i), i.e. with Limited 

processing and memory capabiLity. There aLso exist reduction computers 

which are based on a data-driven mechanism and empLoy the "innermost" or 

"eager evaLuation" ruLe [MAG079J. 

The controL, data, and demand driven execution principLes are not 

distinct and it is possibLe that different combinations of the three 

mechanisms are empLoyed within one system. 

In principLe, we are concerned with the conventionaL (controL-fLow) 

processors, aLthough actuaLLy a data-fLow concept is inherent in the 

execution of a singLe program by muLtiprocessors where each dependent 

moduLe of the program is executed onLy when the required data is avaiLabLe 

from its predecessors residing on other processors. 
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2.2 The Organization of Distributed Systems 

According to FLynn [FLYN72J who tried to cLassify computing systems in 

terms of paraLLeLism within the inst.fuction stream and the data stream, 

four broad cLassifications of machine organizations are possibLe, Listed 

foLLows: 

as 

1- SISD 

which 

today. 

2- SIMD 

(singLe-instruction stream-singLe-data stream) organization 

represents most conventionaL computing equipment avaiLabLe 

(singLe-instruction stream-muLtipLe-data stream) organization 

where singLe instruction stream causes paraLLeL execution of incoming 

data to the system, which incLudes most array processors, systoLic 

arrays and pipeLined processors. 

3- MISD (muLtipLe-instruction stream singLe-data stream) organization 

which represents some speciaLized systems. 

4- MIMD (muLtipLe-instruction stream muLtipLe-data stream) organization 

referred to as "muLtiprocessors", incLuding true muLtiprocessors 

where severaL autonomous processors cooperate in the execution of a 

program, and shared resource muLtiprocessors composed of skeLeton 

processors sharing the resources. 

NaturaLLy, the work done in distributed processing invoLves either the 

SIMD or MIMD type of organizations. ALthough our main concern is 

muLtiprocessors, and not simpLy an array of processors, nevertheLess we 

wiLL gLance briefLy at SIMD structures as weLL, since most of the research 

on interconnection networks has originaLLy emerged and been carried out for 

SIMD systems. 

The basic machine organi~ation for an SIMD computer is shown in FIGURE 

2.2.1 [KUCK77J. Here, a controL processor decodes·instructions, executes 

sequentiaL parts of the program and for paraLLeL executabLe program 

segments, it controLs the ALU's and routes the paraLLeL data between ALU's 

and memories by controLLing the switches in two 

- caLLed the aLignment networks. The 'aLignment 

interconnection networks, 

networks must be abLe to 
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handle the indexing patterns found in programs, for example, the uniform 

shift of 3 necessary in ACI)+ACI+3), and scramble/unscramble the data for 

memory access. Data alignment in memories, efficiency of the alignment 

networks, and the efficiency of the control algorithm on these networks to 

reduce the reconfiguration overhead are the major problems in the design of 

an SIMD machine. 

A typical configuration of an MIMD computer is shown in FIGURE 2.2~2. 

[LUND80J. Here, the processors are autonomous with individual processing 

and memory access capability and execute segments of a computation task. A 

coordinator implements the synchronization of processes and smooths out the 

execution sequence. The design of an efficient interconnection network 

seems to be the major problem. This configuration, where a bidirectional 

network is positioned between the processors and memory modules, is 

referred to as the processor-to-memory (P-M) approa~h and provides to the 

processors the ability to share large blocks of data and to vary the amount 

of memory used. 

An alternative MIMD structure is to equip e~ch processor with local 

. memory in order to achieve fast memory access and let the processors 

communicate with each other via a unidirectional interconnection network 

positioned between the processors (FIGURE 2.2.3.). This is known as the 

processor-to-processor CP-P) approach. Here, the processors cooperatively 

execute the partitioned and assigned segments of a computation task, and 

thus, program partitioning and assignment to processors as well as the 

choice of an efficient/interconnection network present the major problems 

to be solved. 

A survey on multiprocessor organizations appears in [ENSL77J. 

Let us call the organizations used in non-von-Neumann machines as CICD 

(concurrent-instruction-concurrent-data) to differentiate from the control 

flow multiprocessors. 



Po P1 
-

PN- I 
- - • • • • 
Mo M1 -. 

M
N

_
I 

INTERCONNECTION NETWORK 

FIGURE 2.2.3 An ALternative MIMD Structure (P-P) 

DISTRIBUTION 

NETWORK 

Processing Section 

Control 
Network 

rnstruction 
CeLL Block 

(ca) 

Memory Secti on 

ARBITRATION 1-+--'" 
NETWORK 

FIGURE 2.2.4 MIT Data fLow Computer 

17 



18 

As we have mentioned previously, the basic structure for reduction 

computers is in the form of a tree where, possibly, the expressions stored 

in the leaf cells wiLL be reduced as they move up the tree. 

. . 
For a data fLow computer, one possibLe organization might be to form the 

ceLLs shown in FIGURE 2.1.2. into a network, as previousLy stated. Such a 

muLtiprocessor network obviousLy posseses the probLems of efficient 

interconnection and software assignment, i.e. partitioning of the task into 

segments to be stored in the LocaL Activity Store as' activity tempLates. 

Two other basic approaches to a data fLow muLtiprocessor in experiment 

stage are the Manchester Ring [WATS82J, which in very simpLe terms is the 

basic mechanism (FIGURE 2.1.2.) enriched with muLtiple Operation Units, and 

the MIT architecture [OENN79J, iLLustrate9 in the simpLified diagram of 

FIGURE 2.2.4. Here, the distribution network distributes resuLt packets to 

CeLL-bLocks (C8) according to tempLate addresses and an arbitration network 

routes operation packets to processors according to the avaiLabiLity of 

processors and if the processors are not identicaL according to the 

operation-codes as weLL. These configurations are proposed in order to 

avoid the task assignment process since aLt processors are equaLly apart 

from the store. However, we are doubtfuL about the performance and 

feasibiLity of such netw~rks due to increased interconnection costs and 

port-to-port distances. ALso, having studied the task assignment probLem, 

we note that the ratio of moduLe processing time to communication time 

shouLd be high to achieve the speed benefits of muLtiprocessors and 

therefore, it is questionable if the concurrency advantage wiLL compensate 

for the time Lost in, interprocessor communication, with communication 

invoLving compLete operation/resuLt packets and the moduLe processing time 

being that of instructions. A constructive criticism on data fLow computers 

appears in [GAJS82J. 
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2.3 Interconnection Networks 

The seLection of an interconnection network depends on the organization 

of the distributed system under consid~ration. In an MIMD environment, the 

function of an interconnection network is to provide direct or indirect 

Links between processing eLements for the soLe purpose of interprocessor 

communication, whereas in an SIMD environment, data permuting capabiLity of 

an interconnection network is desired as weLL. Thus, the appLication 

required determines the parameters of the network. 

From a practicaL design~iewPoint,four basic parameters are identified 

in seLecting the architecture of an interconnection network (FIGURE 2.3.1); 

nameLy the communication mode, the controL strategy, the switching 

methodoLogy and the network topoLogy. If we view a typicaL interconnection 

network as consisting of a number of switching eLements and interconnecting 

Links, the controL strategy determines ~hether the switching eLements are 

set by a common controL unit or by the individuaL switching eLements. 

Circuit switching, packet switching or integration of the two can be 

seLected depending on the transmitted data voLumes in the appLication. A 

dynamic topoLogy permits reconfiguration of interprocessor Links by 

controLLing the switching eLements, whereas the Links in a static topoLogy 

remain passive and dedicated. 

SIMD. organization is best suited to centraLLy controLLed circuit

switched synchronous networks of dynamic topoLogy and MIMD organization 

mostLy favours decentraLLy controLLed packet-switched asynchronous networks 

of either topoLogicaL category. 

A detaiLed treatment. of interconnection networks appears in [ANDE7SJ and 

[FENG81J. 

We want to mention one important cLass of the dynamic topoLogy, the 

MuLtistage Switching Networks, that are wideLy used in both SIMD and MIMD 

environments. They are discussed in the next section. 
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2.4 Multistage Switching Networks (MSN) 

This class of dynamic networks ,dev~loped following the work of Benes 

[BENE6SJ on telephone switching, have found wide application in 

distributed processing, especially in SIMD environments. 

The binary n-cube multistage switching network (MSN) [SIEG81J with 

N=2n inputs and N outputs to connect N x N elements (processor/memory) 

is defined to consist of l092N switching stages, with N/2 switches per 

stage (FIGURE 2.4.1, [PEAS??] ) where, each 2x2 switching element has two 

states, straight or exchange, although some systems permit a broadcast 

state as well. Thus, it has a cost of (N/2)l092N switches and 0(l092N) 

end-to-end communication deLay. 

The connections between stages are based on the n cube interconnection 

functions [SIEG??J defined by 

C.(P 1·· P·+1 P.P. 1·· P )=P 1·· P·+1 P.P. 1 •• P , n- , " - 0 n- , " - 0 

where P 1 ••• P is the binary representation of element addresses (or n- 0 
equivalently labels of i,nput/output lines) and P. denotes complement of , 
P. for O~i<n • That is, C. applied to i th stage pairs input/output , , 
lines that differ in i th bit position and if the element addresses are 

considered as the corners of an n-dimensional cube, this network 

connects each element to its n neighbours. 

The importance of MSN's for SIMD computers is that they can be used ~s 

permutation networks operating on the input data, by controlling the switch 

settings either in stages or individually. However, being unable to realize 

arbitrary permutations, such as the bit-reverse permutation, in a single 

pass through the network, multiple passes are permitted, where 2 - 3 passes 

are found to be necessary and sufficient to realize any permutation and 6 

passes sufficient to generate any connection of the input to the output 

lines [PEAS?7J, [PARK80J in these blocki'ng type networks, meaning that 

in simultaneous connection requests to a tommon output some inputs need to 

be deferred. 
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FIGURE 2.4.1 A MuLtistage Switching Network (Indirect Binary 3-Cube) 

Various cube-type MS~'s proposed for SIMD interconnections, such as the 

Indirect Binary n-cube network [PEAS77], the Omega Network [LAWR7S], the 

BaseLine network [WU 80], the FLip network [BATC76] and the reguLar SW 

Banyan network (S=F=2) [LIP077] actuaLLy are aLL topoLogicaLLy equivaLent, 

but not necessariLy equaLLy efficient, the difference between them Lying 

mainLy in th~ hardwired connections between the stages [SIEG77], [SIEG79], 

[PARK80], [WU 80]. 

MSN's are used in MIMD environments as weLL, where, depending on the 

configuration, they are positioned between processors or between processors 

and memories and provide a uniform path Length of 0(Log2N). 

In the next section, we propose a cLass of processor muLtistage networks 

(PMN) which have a cLose topoLogica.L resembLance to muLtistage switching 

networks. 
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2.5 Processor Interconnection Networks 

There is a vast amount of literature on processor interconnection 

strategies and very frequently many new schemes are proposed. We confine 

our discussion to three basic schemes of interest. These are the ring, the 

tree and multistage connection networks, and parameters of int~rest are 

expandability of network, local degree of connectedness and regularity of 

connections, path length between processors, reliability and physical 

realizability. 

Ring structures permit expansion, provide fixed local· degree per 

processor and are physically realizable, but path length between processors 

increases linearly with every new processor introduced and there is no 

mechanism for fault-tolerance, except for the modified versions such as the 

chordal ring [ARDE81J. 

Tree networks [HOR081J provide fixed number of processor connections, 

are physically realizable, reliable if augmented using extra ring 

connections connecting the nodes at the same level [GOOD81J, and the path 

length depends on the depth of the tree which is related to the number of 

processors and branching degree employed. The disadvantage of tree networks 

seems to be the high traffic load concentrating at the root. 

The topology of MSN's, mentioned in the previous section, provides fixed 

and regular connections, realizability, reliability due to alternate paths 

between the nodes and permits expansion at the cost of increasing the 

uniform path length between the processors attached to the two ends. 

The processor multistage networks (PMN) are based on the topology of 

MSN's such that the switching elements are replaced by processors and the 

. two ends of the network are connected to form a cylindical structure. Each 

PMN is actually a virtual tree network that rolls around the cylinder at 

endless depth. PMN's are less costly than MSN's in the sense that the 

switching elements are eliminated, but at the expense of variable 

interprocessor distances, which necessitate proper task assignment, a topic 

to be discussed in the next chapter. 
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PMN's have attracted a number of researchers, but so far the interstage 

connection pattern chosen is that of Indirect r-ary n-cube [BURT81J, which 

forces the number of processors in the network to "facets" of N=nrn for 

reguLarity of connections, where n=2 i for some i [WINT83J. Then, for a 

2-ary n-cube the increments on network size grow as 2, 8, 64, 2048, •• etc., 

and when n is any integer, incrementing the network size can be achieved by 

doubLirig the height of the cyLinder and increasing the number of stages by 

one. The repLication of facets is possibLe for some intermediate N, for 

exampLe N=8 can be dupLicated for a network of N=16, but with an increase 

in the average path Length. 

In Section 2.6 we introduc~ another processbr muLtistage network with 

better properties compared to the previousLy studied muLtistage networks of 

processors. 
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2.6 Processor Omega Networks (PON) 

We now propose a new cLass of PMN's that permits reasonabLe incrementaL 

expandabiLity (in increments as Low as 4) and empLoys a fixed pattern for 

interstage connections regardLess of the size and aLignment of the network. 

We caLLed this network the Processor Omega Network (PON) due to its 

resembLance to one of the muLtistage switching networks, the Omega Network 

of Lawrie [LAWR75J which is iLLustrated in FIGURE 2.6.1 for interconnection 

of 8 processors. Here, the interstage connections are based on the shuffLe 

function defined by 

S(x) = (2x + L 2x/NJ )mod N 

where x is the binary .representation of 

for some n, and LxJ ~ x • Thus the 

Left-rotate of the index bits. 

index of an input Line, N=2n 

shuffLe permutation corresponds to 

We represent an N-eLement PON as N-processors arranged in a matrix (i,j) 

of r rows and c coLumns connected by the shuffLe interconnection as 

iLLustrated in FIGURE 2.6.2 and the index of each processor is given by the 

singLe index 

P = i + jr 

with O~i~r-1, O~j~c-1 and O~P~N-1. The Last coLumn of the figure coincides 

with the first. Each processor in j th coLumn is connected to two 

processors in coLumn (j+1)mod c 

coLumn (c+j-1)mod c on its 

, 
on its right, and to two processors in 

Left. Each processor in the i th row is 

connected to two processors in rows 

r/2 (i mod r/2) ; up 

and 

r/2 (i mod r/2)+1 ; down 

on its right and to two processors on its Left in rows 

Li/(r/2) J ; up 

and 

Li/(r/2)J+ r/2 ; down 
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The connection onLy requires that r=2k for some k. 

assume that r=2k at most so that N=c2k=2n for 
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However, we 

some n. The 

can 

main 

advantage of this configuration is homogeneity, that is, the view of any 

processor of the rest of the network is the same, a fact that can easiLy be 

proved by manipuLating row and coLumn indexes, and wiLL permit a singLe 

type of system software for aLL the proc·essors in a muLtiprocessor 

environment. 

To have a better appreciation for PON, we derive expressions for some of 

its deterministic properties and compare with those of Omega MSN. 

First, the average path Length L in an N=rc unidirectionaL PON is 

derived as d~x 

L =*2 f\j..~ 
FON ,=0 

and, 

1"!J:z.. r- 1 . c- i 
1 Iz I. ~ .=N j=o 2.1 + ~ r.i 

i=.l~ 

LpON = (c-3)/2 + Log2r + 1/r (2.6.1) 

where n. is the number of processors reached at a path Length of i, , 
d max is the maximum path traversed from anyone node to reach aLL the 

others, and use is made of the identities 

fV\ 
) and Z ; = M (M -i.) I 2. 

i=.o 

For the speciaL case, where· r= 2c and N= c 2c, 

d = 2c-1 max 
and LpON simpLifies to 

-c 
LpON = 3/2 (c-1) + 2 . 

The path Length in MSN with N= 2n is fixed and is given by, 

(2.6.2) 



TABLE 2.6.1 PON versus MSN for 1 ~ n ~ 6, N = 2n = rc 

N n k r=2k -2n- k c- nSW LMSN LpON 

2 1 1 2 1 1 0 1 

4 2 1 2 2 4 1 1 
8 3 1 2 4 12 2 2 

8 3 2 4 2 12 2 1.75 

16 4 1 2 8 32 3 4 

16 4 2 4 4 32 3 2.75 

16 4 3 8 2 32 3 2.62 

32 5 1 2 16 80 4 8 

32 5 2 4 8 80 4 4.75 

32 5 3 8 4 80 4 3.62 

32 5 4 16 2 80 4 3.56 

64 6 5 32 2 192 5 4.53 " 

If we re Late MSN and PON for the same N = 2n = rc = 2"k2n-k 

(2.6.1) can be rewritten as 
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(2.6.3) 

TABLE 2.6.1 gives LpON' LMSN and nSW' the number of switching 

eLements in MSN, for some parameters incLuding N=64, where 

nSW = N/2 Log2N = n 2 n-1 

We note a few points in TABLE 2.6.1. First, the increments on N are 

smaLLer than the increments of binary n-cube PMN's. Second, we have a wider 

choice of network aLtgnments indicated by the coLumn for k (note that for 

N=64, just one representative is shown). For exampLe, forN=16 the 

aLignment r=c=4 corresponds to a repLicated n-cube whiLe the aLignment r=8 

and c=2, onLy permitted in PON, provides Lowest average path Lengths. 
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LpON (with c=1,2) and LMSN are pLotted in FIGURE 2.6.3. For 

n > 2, PON aLways outperforms MSN, with a difference of 1/2. 
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Next, we want to investigate the reachabiLity property in PON. Let 

nd denote the number 

within a path Length of 

of 

d. 

distinct processors reachabLe from 

For N = 2n processors, in MSN's, 

processors are reachabLe within 

d = LMSN = n - 1 

any node 

aLL 2n 

(2.6.4) 

In PON's, considering the configuration with c = 2 in order to achieve 
. n-1 

the shortest LpON ' we have r = 2 and 

The number of distinct processors nd reachabLe from any node within 

the distance d for some r-c aLignments with N ~ 32 are tabuLated in TABLE 

2.6.2. As expected, c = 2 provides the highest processor reachabiLity for 

the same N. 

N r c d nd 

4 2 2 1 3 

8 2 4 2 5 

4 2 6 

16 2 8 3 7 

4 4 11 

8 2 12 

32 2 16 4 9 

4 8 15 

8 4 22 

16 2 24 

TABLE 2.6.2 Processor ReachabiLity in PON for N ~ 32 
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We consider three cases 

Case 1 l092 r = d < c=2 

d 

nd =Z 2i = 2d+1 - 1 

i=O 

Substituting the value for d from (2.6.4) 

nd = 2n - 1 , d < c=2 (2.6.5) 

Case 2 l092 r = d = c=2 

d 

nd =L 2f = 2d+1 ... 2 

i=1 

Substituting for d , 
nd = 2n _ 2 , d = c=2 (2.6.6) 

Case 3 l092 r = d > c=2 

d d-c 

nd = L. 2; -z 2i 

i=O i=O 

= 2d+1 [1 - 2-c] 

= (3/4) 2d+1 since c=2. , 
Substituting for d , 

nd = (3/4) 2n , d > c=2 (2.6.7) 

Processor reachability of both networks is plotted in FIGURE 2.6.4 for 

d = lMSN. It is seen that for this c=2 configuration of PON's, 75% of 

the processors compared to those in MSN are reachable in PON within the 

same distance, d. 
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TABLE 2.6.3 land d of some max 
unidirectional/bidirectional PON's 

N r c d d l uni lbi max max 
(un;) (bi) 

8 4 2 3 3 1.75 1.5 

12 4 3 4 3 2.25 1.66 

12 6 2 4 4 2.33 2~00 

16 4 4 5 4 2.75 2.00 

16 8 2 4- 4 2.62 2.25 

24 8 3 5 4 3.12 2.29 

32 16 2 5 5 3.56 3.06 

64 16 4 7 5 4.56 3.36 
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Moreover, we can make a rough cost comparison of the two if we assume 

that in PON each processor is connected to the rest of the network with a 

3x3 switch (two for external connect10ns and one for the internal 

connection) and we denote the cost of a K x K switch with 0(K2). The 

cost of an MSN with nSW 2x2 switches will be (n2n+1), where for the 

PON with N=2n processors it will be (9 2n). Thus for n>5, i.e. 

N>32, PON will be less costly than MSN Omega. 

So far we have assumed that PON is unidirectional in order to be able to 

compare it to the unidirectional MSN. Bidirectional PON~s offer lower 

average shortest path lengths, than unidirectional ones, as a result of 

the r=2k their higher processor reachability. Moreover, we relax 

restriction and let r=2k. TABLE 2.6.3 illustrates average shortest path 

length l and maximum path length d for some unidirectional and max 
bidirectional PON's. We see that average path lengths for bidirectional 

networks are an order better than for unidirectional ones and higher c is 

preferable in contrast to higher r alignment of unidirectional networks. 

Reachability, the average shortest path lengths and maximum path lengths 

provide some measure for the expected performance of these partially

connected networks. Actually, in the remaining sections of this 

dissertation our task will be to assign software modules of a computation 

task to· processors in such a partially-connected network so as to minimize 

the interprocessor communication during execution to be able to minimize 

the completion time of the task. Then, bidirectional PON will serve as a 

feasible model for the hardware component of the task assignment model to 

be developed in Chapter 4. 

For the rest of the work will assume that interconnection of adjacent 

processors 

Then, unit 

proportional 

can be achieved using intermediate dual-ported memory units. 

data transfer between a processor pair will take a time 

to the execution of a store-load instruction sequence and some 

memory management. This time will be associated with an interprocessor 

distance of unity, as the hardware cost ofa unit transfer. 
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The research on the software probLems of distributed computing can be 

broadLy cLassified into three groups : 

1- Languages and aLgorithms suitabLe for distributed processing 

2- Program anaLysis, transformations and task partitioning 

3- Task assignment 

As aLreadi mentioned, these groups are interrelated a proper Language 

that enabLes the software designer to indicate paralLelism expLi~itly for 

an aLgorithm that lends itseLf weLL to paralLeL execution eases the program 

anaLysis and partitioning phase, and naturaLLy improves the performance of 

the task assignment phase. 

As far as the programming Languages are concerned, basically two 

categories can be identified 

1- ConventionaL Languages 

2- Non-conventionaL Languages 

The disadvantage of conventionaL Languages in distributed processing is 

a resuLt of their underLying machine architecture, that is, the. sequentiaL 

execution mechanism of von-Neumann machines. Assignment statements and 

unstructured constructs, Like GOTO statement, seem to prevent their 

efficient use in distributed computers. Moreover, they have no mechanism to 

indicate the operation paraLLelism expLicitLy. 

The non-conventionaL Languages are basicaLLy the datafLow [ACKE82J and 

functionaL Languages. The work done in non-conventionaL Languages is highLy 

~ stimuLated by Backus [BACK78J, who also proposed a functionaL Language, 

FPP, with a desire to make programming a mathematicaL science rather than 

an art, so that programs can be generated and verified mathematicalLy. 
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FunctionaL Languages are weLL suited to reduction machines, since they 

represent programs as function appLications. DatafLow Languages have 

expLicit constructs Like "foraLL", they are free from side-effects and are 

based on the singLe-assignment ruLe, and the variabLes, not their 

addresses, are manipuLated. VAL and ID are two exampLes among the proposed 

datafLow Languages. The deveLopments in both categories are promising for 

appLications in a distributed processing environment, aLthough stiLL some 

probLems remain to be soLved, such as the debugging of distributed software 

[MCGR80J. 

On the other- hand, work in transLating conventionaL Languages into 

non-conventionaL ones has one sound objective; the desire to expLoit the 

experience and vast body of software in existing Languages [VEEN81J. This 

has Led to work on program fLow anaLysis and transformation techniques to 

reduce dependences in the programs in order to permit paraLLeL execution. 

ReLated work is reported in [BANE79J, [PADU80J, and [ALLA80J •. 

In [BANE79J, the concept of II-bLocks is introduced, which, simpLy 

stated, corresponds eith~r to an independent partition of a program or an 

indivisibLe bLock containing maximaLLy dependent statements. Within a 

II-bLock, data fLow between operations may be represented by bidirectionaL 

arcs, whereas between II-bLocks the fLow is unidirectionaL representing the 

precedence reLations between the bLocks. II-bLocks of a sampLe program 

graph are iLLustrated in FIGURE 3.1.1, where directed arcs indicate 

dependences between the nodes which correspond to assignment statements 

S1, ••• ,S7 Program partitioning corresponds to extracting 

II-bLocks of a task, which we wiLL caLL software "moduLes". 

The Last step in deveLoping software for a distributed environment is 

the assignment of these dependent moduLes to processors so as to minimize 

the execution time. This is a compLicated probLem of combinatoric nature 

and wiLL be treated in depth in the remaining sections. 
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3.2 The Task Assignment Problem 

The relation of task assignment probl~m to other phases of software and 

hardware design of distributed systems is illustrated symbolically in 

FIGURE 3.2.1. 

The task assignment problem implies that segments of a task are to be 

assigned to particular processors for execution at a particular time and is 

closely related to problems that occur in scheduling. 

The simplest problem in scheduling theory [CONW67J is the scheduling of 

a set of independent tasks on a single machine so that some objective is 

achieved, such as the minimum completion time for the tasks. The 

constrained version of this problem, where the tasks are no longer 

independent, poses a little harder problem to deal with. As we move away 

from the simplest problems, the next class is where we have more than one 

machine, that is, the problems for scheduling on two identical machines 

which have a deterministic solution, the most well-known being the 

Johnson's Problem. For the case when we have more than two machines, 

whether in a fLow-shop environment, where tasks are pipeLined over a 

non-identicaL set of machines, or, in job-shop environments where 

independent jobs composed of a number of ordered tasks requiring different 

machines are scheduLed, no deterministic soLutions could be found so far 

[COFF76J. For· these types of probLems, enumerative procedures for optimal 

solutions or heuristic procedures for suboptimal soLutions are chosen 

depending on the size and toLerance nature of the applications. 

In muLtiprocessor scheduLing, where independent or reLated tasks are to 

be assigned to processors, as weLL as in the generaL scheduLing probLems 

mentioned above, the primary concern has been to make an assignment to 

processors in order to minimize the total or mean completion time of tasks 

by considering onLy the processing time requirements of tasks and the 

- precedence reLations among tasks if the~ are not independent. 
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IdeaLLy, in a muLtiprocessor system one wouLd have expected an ideaL 

increase· in throughput that is LinearLy proportionaL to the number of 

processors used, when compared to the singLe processor resuLts. However, in 

practice, the throughput increases for the first few additionaL processors 

onLy, and after a certain point it begins to decrease with every new 

processor added to the system. This phenomenon of decrease in throughput 

for increased number of processors is caLLed the "saturation effect " , 

[FLYN72], [CHU" 80], and is caused by the excessive interprocessor 

communication (IPC) in the system, an issue not considered in 

muLtiprocessor scheduLing where communication in the system is totaLLy 

ignored. This is where the task assignment probLem differs from that of 

scheduLing. 

In order to avoid the saturation effect we must investigate the nature 

of IPC. The overhead in processing time due to IPC may occur for various 

reasons. ln some systems it is onLy due to the actuaL data passing between 

dependent software moduLes that reside on different processors. In some 

other systems it may aLso incLude the time required to satisfy 

communication protocoLs and for the management of store and externaL 

resources. There may aLso be deLays due to queueing at both ends of a 

communication path that add up to IPC overhead and aLtogether degrade the 

system performance. 

Given a software probLem, which we wi LL. caLL a "task", assume that in 

order to be executed in a muLtiprocessor system it is partitioned into a 

number of software moduLes such that the amount of data that needs to be 

transferred between dependent moduLes, i.e. the amount of intermoduLe 

communication (IMC), is minimaL. This means that bLocks of instructions of 

the program with strong data dependences among them are cLustered in 

forming the moduLes. Then, the amount of IMC in a partitioned task is 

strictLy a function of the software characteristics of the probLem and the 

partitioning procedure empLoyed. The next step in distributed processing of 

the task is to assign these moduLes "to processors. When any two moduLes 

with IMC between them are assigned to different processors in the system, 
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they will cause IPC, in an amount proportional to IMC between the modules 

and the cost of unit transfer between the processors, 

conveniently be associated with the distance between them. If 

which may 

the modules 

are coresident, we assume that the overhead is negligible and that there is 

no IPC cost. IPC is, therefore, a function of IMC, the distance between 

processors and the module-to-processor assignment, and in order to minimize 

the overhead due to IPC, we require proper task partitioning and task 

assignment. Here we assume that there is a software preprocessor which 

performs the partitioning phase and thus the modules with their related IMC 

values are available for the assignment phase. 

In the remaining sections of this study, our aim is to optimally assign 

modules to processors so as to achieve minimum finish time or maximum 

throughput. In this respect, we need to tackle with two conflicting 

problems. In any multiprocessqr system the obvious tendency is to 

distribute the work-load to all the processors as evenly as possible in 

order to reduce the overall proc~ssing time and improve system efficiency. 

This corresponds to the concept of load balancing. On the other hand, we 

have seen that a proc~ssing overhead due to IPC is incurred whenever 

dependent software modules are assigned to different processors, and to 

reduce IPC, we have to cluster the communicating modules to as few 

processors as possible. Then, an optimal assignment strategy should balance 

these two competing factors for maximum system performance. 

In any real application, we have other complications due to constraints 

on the assignment, related to the limitations on resources. These limited 

resources may include the number of processors, processor characteristics 

such as speed, memory capacity and peripherals, and real-time constraints 

such as the maximum finish time of the task or the task frequency. An 

efficient assignment procedure must be able to incorporate such constraints 

in the optimization model and tune the system to satisfy the constraints. 
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So far nothing has been said on the interconnection strategy of 

processors. For fuLLy-connected processors, i.e. when there is a direct 

path connectfng any processor pair in tfie network, it is sufficient to 

consider the interprocessor distances and proce'ssor speeds in the 

assignment process. In the case of identicaL processors with uniform 

interprocessor distance -a highLy vaLid assumption for cLoseLy-coupLed 

processors- , the contribution of any assigned processor to IPC cost due to 

IMC wiLL be equaL. 

Task assignment for partiaLLy-connected processor networks presents 

additionaL probLems. The first difficuLty arises in the communication of 

non-adjacent processors. Any, pair of processors that are not directLy 

connected have to communicate over some intermediate processors and the 

success of communication naturaLLy depends on the avaiLabiLity of these 

processors during the exact transfer intervaLs. Assuming that they are 

avaiLabLe, these processors-on-route wiLL have additionaL communication 

Loads. This is the situation with networks of unique shortest paths between 

each pair. When the interconnection strategy aLLows more than one path of 

shortest Length between, processor pairs, we have the additionaL probLem of 

alternate routes between processors. Now apart from the avaiLabiLity of 

processors we have to seLect some path among the aLternatives i.e. route 

the data over some seLected processors based on the preferabLe satisfaction 

of our objectives. 

In this dissertation, our emphasis is on the optimaL moduLe-to-processor 

assignment in partiaLLy-connected homogeneous processor networks with 

aLternate routes under the Limitations imposed by the number of processors 

and the reaL-time constraints. 

We wiLL distinguish between two environments for the task assignment, 

one being caLLed the non-Loaded or singLe-run environment where tasks are 

expected to be repeated at irreguLar in~ervaLs over a Long period of time. 

The' second environment we consider is the Loaded or muLti-run environment 
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where successive, periodic execution of a task is of concern. Accordingly, 

we will propose two objective functions to be minimized in order to achieve 

load balancing and minimization of IPe. The first objective function is the 

so-called port-to-port time (PTP) used in a recent research for 

fully-connected networks in non-loaded environments [HOl082] PTP is 

defined to be the elapsed time from the first start time of any module 

until the finish time of the last module to finish, i.e. the maximum 

completion time of the distributed task, and is composed of the processing 

time, the time spent for IPe, and the idle time on processors, 

corresponding to the waiting time of modules due to precedence constraints. 

Assignments that minimize PTP will obviously minimize IPe and balance load 

distribution, especially in non-loaded environments. The performance of PTP 

criterion in loaded environments depends on the task frequency and may 

degrade at higher frequencies. 

The second objective function that we introduce produces assignments 

with most well-balanced load (including processing and communication) and 

suboptimal PTP in non-loaded environments. We call it the least 

re-initiation period (lIP), related to multiple, periodic execution of a 

task. lIP corresponds to the maximum of the reserved-times of the 

processors, determines maximum input data rate to the system, i.e. the task 

frequency, and also is a measure of the overlap between successive task 

executions. Minimum lIP is a robust performance criterion maximizing the 

overlap and suboptimizing PTP, such that in multi-run environments, 

assignments with low lIP and suboptimal PTP outperform assignments with 

higher lIP and optimal PTP, this being possible with as few as two 

repetitions of the task set. Then, in a multi-run environment we speak of 

the overalL compLetion time and minlIP dominates minPTP criterion. 
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Related to scheduling terminology, our assignment strategy will be based 

on nonpreemptive (or basic) scheduling, meaning that interruption of a 

module is not permitted before its completion. Although, in general, 

preemptive disciplines generate better schedules than nonpreemptive ones, 

the context-switching overhead of preemption will cause further performance 

degradation and is unacceptable for our task assignment environment. 

In the next section, we present a brief review of the related research 

and solution techniques for the task assignment problem and Section 3.4 

outlines the proposed method of attack, which is treated in detail in 

Chapters 4 to 6. 

Any solution to the task assignment problem exhibits combinatoric 

complexity due to the inherent combinatorial nature of the problem. Indeed, 

any assignment or scheduling problem apart from the simple ones we have 

mentioned, is in the cla~s ~f the so-called NP-complete (or NP-hard) 

problems indicating that they possess no deterministic solut~on computable 

in polynomial time with respect to the dimension of the input [ULLM76J • 

This means that for very large systems, we might have to be content with 

suboptimal solutions an"d the task assignment procedure should be flexible 

enough to incorporate heuristics in order to find acceptable solutions for 

problems of higher dimensions. Chapter 7 of the dissertation presents a 

discussion of some methods to reduce the complexity of enumerations. 
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3.3 Related Research and Solution Techniques 

As previousLy mentioned, task partitioning and task assignment are the 

two essentiaL phases in the optimaL utiLization of a distributed system. 

Task partitioning is pureLy a software design, issue, reLated to program 

anaLysis techniques and compiLer generation, [KUCK72], [JENN77], [ALLA 80], 

[PADU80], [JOHN80], [VEEN81], and its importance is in providing the 

software component of the input of the task assignment process. 

The task assignment probLem and reLated probLems of processor and job 

scheduLing, as weLL as the fiLe aLLocation probLem, have been studied for 

many years, most of the techniques used being adaptations from oLder, 

weLL-estabLished resuLts' deveLoped in management science and operations 

research, i.e. techniques from graph theory, optimization, theory,queueing 

theory, mathematicaL programming and various aLgorithmic or heuristic 

methods. The cost function in these studies is usuaLLy formuLated so as to 

minimize either the maximum finish<fLow) time or the mean fLow time of the 

generated assignment<scheduLe) [CONW76] .' 

A graph theoretic approach is one of the most commonLy used techniques 

by researchers both in task assignment [STON77], [JENN77], [RAO 79], and in 

scheduLing fieLds [CONW67], [COFF76] It is based on a graph 

representation of the task where the moduLes are represented as nodes in 

the graph and the dependence between moduLes by arcs connecting the 

associated nodes. With this graphicaL representation of the probLem, in 

scheduLing, the nonpreemptive scheduLes generated are "List scheduLes", so 

that the probLem is reduced to that of finding an optimaL List of tasks and 

whenever a processor is avaiLabLe it is assigned a task from the ordered 

List [COFF76] • 

We want to mention two important issues from processor scheduLing. 

One of them is the work of Hu [HU 61] in operations research, which is 

. next to Johnson's resuLts for two-machine fLow-shop probLems is probabLy 
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the most frequentLy cited reference in muLtiprocessor scheduLing, as 

commented in [GONZ77J • Hu addressed the probLem of bounds -assuming unit 

duration tasks- , on 1) minimum compLetion time of a task graph, given 

Limited number of processors, and 2) minimum number of processors to 

process a graph, given Limited compLetion time. ApproximateLy, his bounds 

reLate the required minimum time with the LeveLs of the graph and the 

minimum number of processors with the number of nodes at each LeveL. 

A different approach, in 

'processor bounds in terms 

expressions for compiLation 

[BANE79J • 

computer science, to time 

of the number of operands 

of high LeveL Languages is 

and paraLLeL 

in arithmetic 

reported in 

The reason we emphasized Hu's work is due to the so-caLLed 

"muLtiprocessor anomaLies" probLem first addressed by Graham. In [GRAH66J, 

Graham shows that the maximum finish time of a scheduLe may actuaLLy 

'increase with reLaxations on the constraints, the most important ones for 

us being the,decreased processing times and precedence reLations in the 

task graph, and the increased number of processors. These anomaLies are 

studied in a scheduLing environment where the communication costs have even 

not been considered. The first two probLems mentioned are reLated to both 

partitioning and assignment, and the Last has strong .impLications for the 

task assignment. UsuaLLy in the assignment probLem, the number of 

processors in the system is assumed to be a fixed input parameter, but 

because of the communication overhead it may weLL be that a given task wiLL 

finish execution earLier if the number of processors used is Less than the 

avaiLabLe. This is true especiaLLy in partiaLLy-connected networks where 

the average interprocessor distance increases with an increased number of 

processors in the system. If we couLd have achieved bounds on the optimaL 

number of processors, given the task graph, the time Limit and the 

processor graph, we couLd have used optimaL number of processors in the 

assignment : either by seLecting a cLoseLy-coupLed subset of the network in 

a normaL operation 

accordingLy if in 

mode where 

the design 

the network is fixed, or by designing 

phase. UnfortunateLy, aLthough Graham's 
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resuLts carryover to the task assignment environment, Hu's bounds on 

unit-execution task graphs with communication costs excLuded are not 

appLicabLe and determination of bounds for the generaL task assignment 

environment that we consider poses a very chaLLenging probLem to be soLved 

due to aLL the additionaL compLications. [RAMA72J gives an exampLe of 

processor scheduLing using Hu's bounds, where the concept of E (earLiest 

precedence) and L (Latest precedence) partitions is used on the graph to 

determine the criticaL paths and to seLect dominating nodes. A good survey 

on deterministic processor scheduLing is presented in [GONZ77J • 

One method empLoyed to soLve the task assignment probLem in presence of 

communication costs is borrowed from the work on fLows in networks and 

makes use of the weLL-known max-fLow min-cut theorem [FORD64J • Here, it is 

assumed that IPe costs between non-coresident moduLes are known apriori and 

assigned as weights to arcs in the task graph. The processing cost of each 

moduLe is assumed to be given as weLL, so that if a moduLe cannot be 

executed on a processor it is assigned an infinite processing cost for that 

particuLar processor •. With this setup, Stone [STON77J has show~ that 

(FIGURE 3.3.1) : for two processors (P1,P2), two nodes (P1,P2) can be added 

to the graph and connected to moduLes with arcs that are assigned a weight 

as the processing cost of the moduLe on the opposite processor and by 

treating the resuLting graph as a network, with P1 as the source and P2 as 

the sink, the max~fLow min-cut theorem can be appLied for a min-cut on the 

network, to partition the moduLes into two disjoint sets and thus to 

distribute the moduLes to two processors for minimum cost assignment. 

ALthough it seems to be simpLe and favourabLe in compLexity (with a time 

upper bound of N3 for a network with N nodes [RAO 79J ), this method of 

moduLe assignment i~ infeasibLe since it provides no information on 

sequencing of moduLes on processors, resource constraints and Load 

baLancing cannot be incorporated and it becomes unmanageabLe for N>2. As 

reported in [RAO 79J, even in the two processor case, where one of them has 

Limited memory, the probLem is in the NP-compLete cLass and the compLexity 

advantage is Lost. 
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The other basic method applied in file allocation and task assignment is 

to formulate the problem as a discrete optimization problem with 

constraints which then can be solved using mathematical programming 

techniques such as integer programming, dynamic programming and 

branch-and-bound. Because of the large number of constraint the resulting 

problem is non-linear as an integer programming problem and has to" be 

linearized by additional constraints [CHU 69], [GYLY76], at the "expense of 

increased problem size. Apart from the increase in size and solution time 

of the problems, integer programming methods are not reliable. due to the 

possibility of not converging to a solution at all. 

Due to the NP-complete nature of the optimal assignment any solution 

method depends on enumeration techniques that examine all feasible 

alternatives. Ignoring integer programming for the reasons stated above, 

dynamic programming [BELL62] and branch-and-bound [KOHL76] are the two 

well-known methods used to reduce enumeration. 

If we ~odel the search s~ace as a finite tree of partial solutions, 

dynamic programming is "a breadth-first search method that uses dominance 

rules to prune the tree. Being a breadth-first search method, demand on the 

memory capacity is high to be able to save the entire solution tree and 

~ince only partial solutions are generated at every step, it cannot be 

interrupted during execution before the final stage, with the hope of 

finding suboptimal solutions. 

Branch-and-bound, on the other hand, is a depth-first search method 

where the most recently computed best solution is always available and the 

process can be interrupted before the end for acceptable solutions. In 

[MA 82], this technique is used for assignment considering IPC cost as the 

only objective to be minimized. 
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An interesting approach to deaL with enumerations as depth-first search 

methods might be the distributed execution of the task assignment probLem 

itseLf. Such an effort on network computes is reported in [El-D8DJ • 

Apart from the moduLe assignment probLem for muLtiprocessors, data 

mapping probLems to minimize communication costs have been extensiveLy 

studied for array processors, i.e. in SIMD environments. Some exampLes are 

given in [BOKH81J, [IRAN82J and [MOlD83J. In [BOKH81J, Bokhari considers 

the mapping probLem and shows its reLation to graph isomorphism probLem, 

bandwidth reduction probLem for sparse matrices and to quadratic assignment 

probLem. He presents a heuristic method based on graph theory, where using 

adjacency matrices to represent the process and processor graphs, he tries 

to achieve maximum matching of the two. The aLgorithm compLexity is 

reported as o(N2) for an N x N array of processors. ObviousLy, such 

heuristic methods can as weLL be empLoyed for the task assignment probLem 

to obtain suboptim~L soLutions. 

An aLgorithmic approach to optimaL task assignment is empLoyed in 

[HOll82J. Algorithmic spLution procedures may be considered as depth-first 

search methods, simiLar to the branch-and-bound technique, where increased 

number of probLem constraints heLps to reduce the search space by efficient 

pruning, in contrast to compLicating the soLution process in other methods. 

They aLso aLLow generation of suboptimaL soLutions in order to reduce the 

compLexity. In [HOll82J, an optimaL soLution to the task assignment probLem 

under reaL-time constraints in non-Loaded environments and a suboptimaL 

soLution in Loaded environments are presented. Her aLgorithm can be used 

for task assignment in fuLLy-connected processor networks of uniform or 

variabLe interprocessor distance to provide a safe upper bound on PTP, 

since she makes the approximation that when a moduLe has to pass data to 

more than one successor, the successors are assumed to start execution 

simuLtaneousLy onLy after the Last transmission is compLete, aLthough the 

moduLes whose data are sent earLier, aLr.eady have their data avaiLabLe and 
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can start execution. This way of computing PTP might Lead to a situation 

where an assignment is rejected as not satisfying the reaL-time constraints 

even though it actuaLLy ~eets the deadLine. Moreover, her method cannot be 

used for partiaLLy-connected networks where, intermediate processors are 

used in data transfers and the IPC cost which is a function of the distance 

shouLd not aLL be associated with the source (transmitting) moduLe. Another 

point is that, minPTP is used as the main objective in both Loaded and 

non-Loaded environments, whereas we wiLL" show that the proposed minLIP is a 

better performance measure in Loaded environments. 
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3.4 Proposed Method of Attack 

We have defined our task assignment environment as one with a singLe 

task of dependent moduLes, a partiaLLy-connected network of identicaL 

processors and with aLternate routes, and Limited time which is a function 

of moduLe processing times, IPC time and idLe time due to precedences. 

The presence of precedence reLations makes it necessary' to know the 

Location and the time sequence of every other moduLe in the system to make 

an assignment. Moreover, because of the partiaLLy-connectedness of the 

network, distances and aLternate paths between processors and the 

avaiLabiLity of intermediate processors at required instants aLso need to 

be known. CLosed form mathematicaL optimization techniques are not abLe to 

represent aLL the required information and are therefore inappropiate for 

the soLution of the task assignment probLem as deveLoped here, which 

requires some form of enumeration. 

We propose an aLgorithmic soLution procedure to soLve the task 

assignment probLem. It is based on a depth-first search technique and 

constraints are imposed to reduce the soLution space. Every feasibLe 

assignment that satisfies the constraints wiLL be evaLuated and if its 

performance is better than the previous ones, it wiLL override the formers 

as the so-far-best assignment. With the aLgorithmic approach, it is aLso 

possibLe to specify bounds on the number of generated assignmentS or 

"acceptabLe" vaLues for the desired performance and interrupt the aLgorithm 

execution before termination. 

In representing the gener~ted assignments, it is common to use a 

graphicaL representation where it is easy ~o see the Load on each processor 

and sequencing among the moduLes. We wiLL refer to such a chart as the Load 

density function (LDF), foLLowing the terminoL6gy in [HOLL82J, ~just as a 

matter of preference-, which is the same as the "Gannt chart" used in 
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Processor 
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a) Sample Task Graph b) The Load Density Function 

FIGURE 3.4.1 A Sample Graph and Load Density Function 

scheduling theory [CONW67J. As an example, the load density function 

corresponding to an arbitrary assignment (assuming IMC = 0) of a sample 

task graph is illustrated in FIGURE 3.4.1. The vertical axis represents the 

processors and the time used by the modules is shown along the horizontal 

time axis. 

In the next chapter, we will develop a model, state our objectives and 

present a mathematical formulation of the problem both for fully-connected 

and partially-connected processor networks. 

In Chapter 5, the methods of actual storage representations for the 

hardware and sofware components of the problem will be discussed and the 

most efficient ones will be determined in preparation for the algorithmic 

solution presented in Chapter 6. 



53 

4.0 

THE TASK ASSIGNMENT HODEL 

4.1 Description of the Hodel Components 

A model developed to describe the task assignment environment must 

represent both hardware and software components. 

In our model, we define a software task as a collection of cooperating 

modules obtained after task partitioning, such that no two modules have 

maximally connected components' between them and th~ precedences are 

unidirectional. In a distributed processing system of multiprocessors the 

modules comprising a task will be executed in different processors and the 

completion time of the task is considered to be the completion time of the 

last module to finish. 

A module is described by a number of attributes related to its 

processing requirements: m~inly, the number of instructions to execute the 

module which when divided by the speed of a processor gives the processing 

time for that module, the amount of storage required by the instructions 

and data of the module, and the amount of data to be sent to other 

succeeding· modules or to be received from the predecessors, called the 

intermodule communication (IMC). 

The hardware environment of the task assignment model can be' described 

by the characte~istics of the processors and the interconnection strategy 

between the processors. 

The processors may be characterized by their speed, their memory 

capacity and 1/0 capability. For a network of non-identical processors 

these attributes have to be supplied for each processor. Here, we confine 
~ 

ourselves to networks of identical processors and will need to specify just 

a 'single set of processor .characteristics. 



The interconnection strategy describes the connection 

processors and can be characterized by giving the pairs 

connected processors and the interprocessor distances. For a 

fuLLy-connected interconnection strategy, it is sufficient 
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pattern of 

of directLy 

to provide 

distances between the processor pairs. For a partiaLLy-connected network, 

fuLL information as to the adjacent processors of each processor and for 

indirectLy connected pairs, the identities of processors on the paths and 

the distance information must be suppLied. 

In this study, we treat the more· generaL and reaLizabLe case of 

partiaLLy-connected interconnection strategy of identicaL processors. 
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4.2 Performance Measures 

Having mentioned the components of the modeL, task assignment is the 

process of assigning moduLes comprising a singLe software task to 

processors in a network such that some objective is optimized. For this 

study, the initiaL objective is to minimize the maximum compLetion time of 

the task, measured from initiation to compLetion time of the task set, and 

this time wiLL be caLLed the port-to-port time (PTP) simiLar to the 

terminoLogy in [HOLL82J, an appropiate term borrowed from avionics. Thus, 

if we consider the processor network as a system and the task as a whoLe, 

PTP is the time eLapsed from entry of the task to the exit from the system, 

and hence is given the name port-to-port time. 

PTP consists of processing time of moduLes, interprocessor communication 

time (IPC) caused by moduLes sending data to dependent moduLes resident on 

other processors, and the idLe time on processors due to precedence 

reLations, such that, a moduLe assigned to a processor cannot be executed 

aLthough the processor has finished work on the previousLy assigned 

moduLes, because its predecessors on another processor has not yet 

compLeted execution. IPC depends both on the IMC between two moduLes and 

the distance between the processors in which the moduLes reside. For 

coresident moduLes with IMC between them IPC is taken to be zero. Thus, 

each component of PTP is a function of the software characteristics, the 

hardware characteristics and the moduLe-to-processor assignment, and our 

task is to find optimaL assignment given the software and the hardware 

characteristics. 

PTP is a good performance measure of Load-baLancing and reduced IPC in 

singLe-run or non-Loaded environments where a new task is not instantiated 

before the PTP of current task is reached. H~wever, one might be interested 

in periodicaLLy repeated instantiations of a task or overLapped execution 

of successive tasks so'as to improve utiLization and the throughput of the 

system. Here, we introduce such a performance measure, LIP, the Least 

re-initiation period, and denote it with the symboL (ll). 
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Let R correspond to the reserved time of a processor from initiation of 

its first module until completion of the last module assigned to it. The 

least re-initiation period LIP, is the max-imum R over all the processors 

and is a very good performance measure for load-balancing, such that, in 

fully-connected networks, minLIP is achieved at the most load balanced 

assignments. It gives an indication of the overlapping of successive task 

executions such that a small LIP value implies a high degree of overlapping 

and permits higher initial data rate. MinLIP value gives the highest data 

rate allowable before queues start to build up in the system. This is an 

important issue in performance prediction in loaded environments. In 

[HOLL82J, Holloway has noted that assignments generated for fully-connected 

networks using minPTP criterion in a non-loaded environment, might perform 

very badly in loaded environments and tried to predict behaviour of the 

system by taking minPTP non-loaded assignment as the starting point, 

gen&rating curves of PTP for increased loading for two extreme cases -a 

set of independent modules <there called min.precedence) and a -task chain 

of modules <there called max.precedence)-, and, interpolate between the two 

curves. Since minPTP assignment does not yield good performance in loaded 

systems, the use_of minLIP as the objective in generating -assignments for 

loaded environments is expected to improve the situation and produce 

superior results. 

Thus, .we distinguish between the two environments in task ~ssignment, 

the single-run environment and the multi-run environment, and recommend the 

use of two different objectives, minPTP and minLIP, respectively. 

In the following sections, we develop a mathematical formulation of the 

task assignment problem, based on the model and the objectives presented so 

far. 
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4.3 Mathematical Formulation 

The software component of the task assignment model is described by a 

process graph, defined to be a finite, directed acycLic graph (DAG) , where 

the modules are represented as nodes in the graph and, data transfer and 

precedence reLations between the moduLes are represented by directed arcs 

between the nodes in the graph [HARA69J, [COFF76J, [GONZ77J • This means , 
the directed arcs between the nodes impLy that a partiaL ordering or 

precedence reLation exists between the nodes. Knuth [KNUT73J, defines a 

partial ordering as 

foLLowing properties. 

i) Transitivity 

a relation among the objects of a set satisfying the 

For any eLements i,j, k in S 

ii) Asymmetry 

If i-< j' and j-< k, then io(k. 

If i..(.j, then jf..i. 

iii) IrrefLexivity: i~i. 
where the reLation io(j impLies that i precedes j Apart from the 

gLobalLy assigned moduLe number given to the nodes, a second number is 

associated with each node which refers to the execution time of the moduLe. 

Associated with each arc there is a number corresponding to the amount of 

IMC between modules, assoc~ated with'end nodes of the arc. The process 

graph can then be represented by a quadrupLet (~, ~,j[,o(), corresponding 

to moduLe set, processing times, IMC and precedences, respectively. An IMC 

vaLue, of zero impLies that there is no data transfer between the considered 

moduLes and 0( = a impLies independent moduLes. Here we consider 

singLe-entry or singLe-entry-singLe-exit connected (SEC) graphs [RAMA72J 

and co{¥ a . 

The hardware component of the task assignment modeL is aLso represented 

by a graph, a processor graph, defined to be a non-directed graph if the 

interconnecting links are bidirectionaL or a directed graph in case of 

unidirectional Links. The processors are represented as the nodes of the 

graph, with connecting arcs corresponding to the interprocessor links. 

Distances (or other link costs) between processors are represented as 

weights associated with arcs in the graph. 



58 

In this study, we assume identicaL processors of known characteristics 

(such as the speed, the memory capacity,.etc •• ) and that the processing 
I 

times of moduLes are given after being normaLized with respect to the 

processor speed. When considering partiaLLy-connected networks, we 

aLso assume a bidirectionaL network and the vaLue given for the distance 

between two nodes corresponds to the number of interprocessor Links traced 

from the source to the destination node invoLved in the communication. For 

fuLLy-connected networks, distance corresponds to the Length of a path 

connecting a processor pair. 

In formuLating the probLem, we wiLL first handLe the case for 

fuLLy-connected networks since it is easier to grasp and then deaL with the 

probLem of partiaLLy-connected networks based on the formuLation of the 

former case. 

For mathematicaL formuLation, we wiLL use the foLLowing notation to 

describe the software and the hardware components. The actuaL storage 

representations wiLL be derived in the next chapter. 

For a process graph of M moduLes and a processor graph of N processors 

we define ( CapitaL characters within brackets denote array dimensions ): 

Software 

PROC(M) 

NO 

An M-vector describing processing time requirements of each 

moduLe. Convenient unit is seconds • 

A scaLar. The number of arcs in the process graph, i.e., the 

number of dependent moduLe pairs in the task. 

OEP(NO,2) A matrix giving List of dependent pairs in the process graph 

IMC(NO) 

such that for the pair given in each row, former moduLe 

precedes the Latte~ in the graph. 

A vector consisting of IMC vaLues between each pair of 

dependent moduLes given in OEP • Convenient unit is 

bytes or words • 



Hardware 

DIST(N,N) 

PROUT(.) 

ROUT(N,N) 

An NxN matrix describing the 'distance' between 

processors. 

List of processors-on-route between communicating 

processors that are not directLy connected. 

An NxN matrix for routing in partiaLLy-connected 

networks. Entries are pointers to PROUT. 
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After the software and the hardware have been specified, we next define 

an assignment matrix, X(M,N), such that 

x (i, k) ={10' if 

, otherwise 

i th moduLe is assigned to k th processor 

That is , we assume that an assignment has been generated and X(M,N) has 

been constructed accordingLy • 

Now we may start computing the components of PTP corresponding to an 

assignment, nameLy the processing time, the IPC time, and the idLe time. 

Processing time is represented by an M-vector, where 

PROCT(i) = PROC(i) * x(i,k) (4.3.1), 

That is, PROCT(i) is the processing time of moduLe'i on processor k to 

which it has been assigned. 

The time spent in IPC is a function of IMC of moduLes, the distance 

between processors, and the moduLe-to-processor assignment. Then IPCT is 

represented by an M-vector, where 

IPCT(i) =.2IMC(i,j) * x(i,k) * x(j,l) * DIST(k,U (4.3.2),' 

j £R. , 
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R. is the set of moduLes receiving data from moduLe i, i.e., , 
Ri = {jIIMC(i,j»O}. This means that, the time spent in IPC, for 

moduLe i, is given by summing over aLL moduLes j to which moduLe i sends 

data, with the summands consisting of the IMC from moduLe i to moduLe j 

times the distance between the processors to which moduLes i and j have 

been assigned •. 

In order to specify the idLe time on a processor, we make use of start 

and finish times of moduLes on processors. As we have mentioned earLier, 

idLe time on a processor is caused when the processor, having compLeted 

execution of a previous moduLe, is free but cannot start execution of the 

next moduLe in its assigned work List since that moduLe is not yet "ready". 

This situation is due to the precedence reLations among the moduLes. A 

moduLe is "ready" for execution when aLL its predec.essors in the process 

graph are compLeted and provided it with the data to operate -on. This is 

same as the "fi ring" concept of data-flow machines - an ins"tr.uction is 

"fired" when aLL its operands ~re avaiLabLe-", aLthough the contents of a 

mbduLe here is assumed to be much more than a si~gLe instruction. Thus, a 

moduLe whose predecessors reside on other processors must wait untiL it 

receives the required data. 

Then, ~ convenient way to describe the idLe time of some processor k 

before executing certain moduLe i is to treat it as the deLay between the 

start time of moduLe i and the finish time of some moduLe (i_1) 

assigned to precede i on k, and associate it with the waiting time of 

moduLe i • We denote this waiting period of process moduLes by an M-vector, 

WAITP, where 

WAITP = [ STARTCi,k) - FINISH(i_1 ,k) ] * x(i,k) C4.3.3) 

We had defined PTP as the maximum finish time over aLL the moduLes, 

which is equivaLent to maximum finish time among aLL the processors to 
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which the moduLes have been assigned. Then, in terms of the three 

components, the finish time FCk) of processor k is given by 

F(k) = ~ [PROCTCi) + IPCTCi) + WAITPCi) ] 

i (i A 

where A = {jl xCj,k)=1} • 

Because of the nature of 

moduLe-to-processor assignment. 

processors is PTP, so that 

PTP = max { FCk) } 

i~k~N 

its components, FCk) 

The maximum finish 

C4.3.4) 

is a function of 

time over aLL the 

C4.3.5) 

Our aim is to make assignments such that PTP is minimized. Then, minimum 

PTP is given by 

PTP. = 
ffiln 

min { .PTP } 

X 

that is, by minimizing PTPover aLL possibLe assignments. 

In a more representative form, this is equivaLent to 

C4.3.6) 

PTP. = min {max [<7 C PROCT(i)+IPCT(i)+WAITPCi) ) * xCi,k) ] } 
ffiln ~ 

C4.3.7> 

Then the optimization probLem given in C4.3.7) produces a minimum finish 

time task assignment. The data required to soLve the objective function are 

a measure of processing time, IPC time, and precedence constraints , and 

are obtained from the software and hardware specifications and the task 

assignment • 
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Having finished formuLation for PTP, we next discuss formuLation of the 

optimization probLem for LIP, which determines the degree of overLap 

between successive task executions in a multi-run environment. 

We have defined R for each processor as its reserved time. We notice 

that the difference between R(k) and F(k) for some processor k is the 

start time of the first moduLe assigned to k • Then R(k) of processor k is 

given by, 

R(k) = F(k) - START( 1(k), k ) (4.3.8) 

where F(k) is given in (4.3~4) and START( 1(k), k ) denotes the start time 

of first moduLe on processor· k. T.he maximum reserved time over aLL the 

processors gives LIP for the assignment, i.e., 

LIP = max { R(k) } 

1~k~N 

(4.3.9) 

In order to make minLIP assignments, we have to find minimum LIP over aLL 

the possibLe assignments, so that 

LIP. = min { LIP} mln 
X 

(4.3.10> 

or equivaLentLy in a form simiLar to (4.3.7) , 

LIP. = min { max { '\" [PROCT(i)+IPCT(i) ] * x(i,k) 
ffiln L 

X 

+ ;> :. WAITP(i) * x(i,k) } } 

1~i~M 

i ~1 (k) 

(4.3.11) 
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Comparing (4.3.7) and (4.3.11) , it is easily seen that minimizing LIP 

helps to minimize PTP as well • 

The overlap in successive task executions is given by, 

OVLP = PTP - LIP (4.3.12) 

Thus, decreasing LIP helps to increase the overlap. Actually there might be 

many assignments with the same PTP but different LIP values, such that the 

one with minimum LIP gives the maximum overlap. 

If a task is to be executed K times ( K-run ), then the total completion 

time after K iterations, denoted by KPTP, is given by , 

KPTP = (K-1) LIP + PTP (4.3.13) 

Thus for a K-run environment we can seLect an assignment based on KPTP, 

related to· LIP and PTP. To see this, consider two assignments X1 and 

X2 characterized by PTP and LIP.values as 

where 

In a single-run environment, the choice of X2 is preferable since one 

aims for lower PTP. The situation might alter, however, in a multi-run 

environment. To determine when X1 with higher PTP is preferable, we 

compute KPTP for each assignment. We require that KPTP1 ~ KPTP2, or 
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Then the number of iterations K, after which X1 supercedes X2 is 

given by , 

(PTP - LIP) - (PTP - LI~) 
2. z 1 1 

OVLPlt - OVL~ 6PTP 

K ~------------------------ = -=----- = 1 + ----

LIP~ - LIP2, LIP - LIP 
{ 2. 

b.LIP 

(4.3.14) 

That is, when K exceeds a certain vaLue (which may be as Low as 2) given by 

(4.3.14), X1 outperforms X2 ' and the seLection is governed more 

by the Lower LIP criterion than by the Lower PTP • 

The points mentioned so far wiLL be used to determine the seLection of 

optimaL assignments depending on the probLem environment. Before 'proceeding 

with the task assignment in partiaLLy-connected networks, we want to 

mention one more point reLated to LIP and aLso give an eXqmpLe for the task 

assignment on "fuLLy-connected processors. 

When comparing the performance of singLe processors and muLtiprocessors 

one commonLy used measure is the speed-up SN [PADU80J achieved by using 

N processors, such that 

SN = T1 / TN 

where T1 is the time ~equired to execute 

singLe processor, and TN by using N 

which is never achievabLe in practice. 

the task sequentiaLLy 

processors. IdeaLLy SN 

on a 

= N 

We define K-run speed-up 

task on N processors, by 

SNK ' for the iterative execution of a 

K* T1 
S - --------- = ------------------------NK -

KPTP LIP + (PTP - LIP) / K (4.3.15) 
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2 

2 

FIGURE 4.3.1 ExampLe Process Graph 

FIGURE 4.3.2 ExampLe Processor Graph (F-C) 
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and , 

lim 

K~oo 

(4.3.16) 

Expression (4.3.16) shows very clearly the influence of LIP on speed-up, as 

is to be expected. 

Now, we give an example of task assignment. The process graph shown in 

FIGURE 4.3.1 corresponds to a task consisting of four modules. The 

processing time for modules and IMC values are given next to nodes and 

arcs, respectively. We want to make an arbitrary assignment of four modules 

to three processors shown by the graph in FIGURE 4.3.2. The distances 

between processors are given as weights on non-directed arcs. The two 

graphs are represented in our notation by the following items: 

M = 4, N = 3 

ND = 4 

DEP = l1 2

J 
.13 

2 4 

1MC = I ~] D1ST = [~ ~ n 
Let the arbitrary assignment be given in our notation by the assignment 

matrix X as 

and 

1 0 0 

X = 0 1 0 

o 0 1 

o 0 1 

The processing vector and the time spent in IPC of modules are given by 

PROCT = (2,2,2,3) 

IPCT = (3,1,0,0) 
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There are four dependence pairs, same as the number of ·arcs in the 

process graph and onLy one of these, (3,4), is coresident for the task 

~ssignment chosen, giving zero IPCT(3Yby definition. ModuLe 1 sends data 

to moduLes 2 and 3 at the same IMC vaLue of 1. But, since the distance 

between processors 1 and 3 , where modules 1 and 3 reside , is 2, IPCT 

caused by moduLe 3 is 2 whereas it is 1 for moduLe 2, and, their sum gives 

IPCT(1) = 3. 

FIGURE 4.3.3 shows the Load density function constructed for this 

exampLe assignment, where the verticaL axis represents the processors and, 

the time occupied by processing time, IPC time. and idLe time due to moduLes 

is shown aLong the horizontaL time axis. It must be noted that precedence 

reLations given in DEP have governed the construction of the Load density 

function once the assignment is made. 

Processors 
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The vaLues for PTP and LIP are computed from the start and finish times 

of the Load on processors 

and 

PTP = F(3) = FINISHC4,3) = 10 

LIP = max { RCk) } = max { 5,3,5 } = 5 

k 

Then OVLP = 5 and if we repeat the task for five times CK = 5), KPTP = 30 

whereas for a singLe processor T1 = 9 and K * T1 = 45. The speed-up 

is not high, SNK = 1.5 , but the muLtiprocessor system permits data at 

a rate 1 'LIP = 0.2 'sec, whereas for the uniprocessor case the rate is 

1 , T1 =0.1 'sec, twice sLower than the former. 



4.4 Extension to Partially-Connected Networks 

Task assignment for partiaLLy-connected networks 

differences compared to the fuLLy-connected case. 
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has compLicating 

One of the basic 

differences is that any pair of processors that are not connected directLy, 

has to communicate with the aid of intermediate processors and this 

naturaLLy depends on the avaiLabiLity of those processors. If avaiLabLe, 

those processors-on-route wiLL have additionaL transfer duties apart from 

their assigned processing and IPC duties. In addition to distances between 

processors, now a List PROUT containing intermediate processors between 

each indirectLy connected processor pair must be suppLied. This increases 

the compLexity of the representation of the hardware component of the modeL 

and of the processing for the assignment. This is the situation when there 

is onLy one shortest path of intermediate processors between a source and a 

destination pair. 

When the interconnection pattern of the processor network is such that 

there .is more than one path of shortest Length connecting a pair, for 

various reasons such as reLiabiLity and better work distribution, we face 

the probLem of aLternate routes and the reLated probLem of routing. 

Routing, in this case, refers to a decision making process in seLecting one 

of the equivaLent (in Length) aLternate paths depending on the avaiLabiLity 

of processors on route and minimization of objectives. For this case, IMC 

cost is fixed onLy for the source and the distance used in IPC computation 

is the distance to the first intermediate processor aLthough the 

source-destination pair is farther apart. For convenience, the distance 

between adjacent processors is taken as unity and for the PMN networks we 

conside~this distance is uniform for any adjacent pair. 

Now, Let us assume that an initiaL assignment of moduLes to processors 

is made, aLternate routes for non-adj~cent communicating processors are 

anaLyzed and optimaL paths are seLectep such· that the seLected processors 

are assigned transfer duties in addition to moduLe processing and IPC. We 

may now start computing the components of PTP and accordingLy of LIP 



70 

As it is clear from the previous discussion, PROCT and WAITP vectors for 

the fully-connected formulation remain the same (Equation (4.3.1) and 

(4.3.3), respectively), but we have to-thange the IPCT vector, where 

IPCT(i) = L IMC(i,j) * x(i,k) * x(j,U 

je R. 
1 

(4.4.1) 

We have to define as well two new vectors, XFER for the transfer 

operations and WAITX for idle time on processors before the transfer 

operations. The dimension of both vectors is the same and depends on the 

number of transfer operations assigned to particular processor during the 

process of load density function generation. 

If we consider transfer operations as assignment-created modules, we can, 

associate a processing time and a wait time with each, similar to the PROCT 

and WAITP of original modules. XFER denotes the "proc~ssing time" of 

transfer modules, where 

XFER(i ') =,IMC(i,j) * x(i,k) * x(j,U ; 

i 'E T k ' ; k 'Eo { 1, •• ,N } (4.4.2) 

for IMC from module i on processor k to module j on processor l, where k' 

is the intermediate processor which will "execute" the transfer module i' 

Tk' is the set of all transfer operations 

processor k' • 

(modules) 

WAITX defines the waiting ti~e for transfer modules, where 

WAITX(i') = START(i',k') - FINISH(i'_1 ,k') 

assigned to 

(4.4.3) 

is the time difference between the sta~t time of transfer module i' and 

finish time of some module (i'_1) assigned to precede i' on processor 

k', and during which k' is left idle. 
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We may now compute the finish time on aLL processors. Finish time F(k) 

for processor k is given by 

F(k) =2: [PROCHi)+IPCHi)+WAITP(i)] +L [XFER(i)+WAITX(i)] (4.4.4) 

i E A 

Let us augment the set A corresponding to process moduLes assigned to k 

to incLude eLements of Tk (the transfer set of k) as weLL and name it 
* M the number of originaL moduLes M* incLude A , augment to to 

transfer moduLes as weLL, and assume that X is augmented to * X to 

enabLe representation of transfer moduLe assignments such as x(i',k') but 

X* stiLL represents the - same number of possibLe assig~ments as X. Then 

we can easiLy obtain equations for PTP. and LIP. as m1n mln we have 

done for the assignment probLem on fuLLy-connected processors. 

For minimum PTP we have, 

PTP . mln 
= min {max {L [PROCHi )+IPCHi )+WAITP(i )+XFER(i )+WAITX(i )]*x (i ,k)}} 

* k l' * X 1~ ~N ~l~M 

(4.4.5) 

For LIP, we recaLL that the difference between F(k) and reserved time 

R(k) -is the start time of first moduLe, some moduLe 1(k) on k, which is 

equivaLent to negLecting the wait time for that moduLe in the summation for 

the totaL Load on processor k. Here, we have two types of moduLes that can 

be 1(k) and two types of waiting times must be considered,accordingLy. 

Then, the optimization probLem corresponding to the objective function 

stated as minimum LIP is given by, 

LIP . m1n 

= min {max {.L. [PROCHi)+IPCHi)+XFER(;)]*x(i,k) 

X* 1~k'N 1(i~M* 

+ ~ [WAITP(i)+WAITX(i)]*x(;,k) } } 
. * 
1~i~M 

i~1(k) 

(4.4.6) 
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Both probLems as formuLated in (4.4.5) and (4.4.6) are functions of 

moduLe processing times, IMC between the moduLes and distance between the 

processors, moduLe precedence reLations~ processor avaiLabiLity and initiaL 

moduLe-to-processor assignments. 

We wiLL present a simpLe exampLe of task assignment on partiatLy

connected processors. The next chapter on storage representations wiLL 

prepare us to the aLgorithmic soLution of (4.4.5) and (4.4.6) to be 

discussed in Chapter 6. 

The exampLe proces~ and processor graphs are shown in FIGURE 4.4.1 and 

we want to assign four moduLes to three partiaLLy-connected processors. 

The initiaL data are given beLow. 

M = 4 , N = 3 

NO = 4 

1 2 1 

=[ ~ 
1 

n OEP = 1 3 IMC = 1 OIST a 
2 4 1 1 

3 4 1 

ROUT =U ~ U PROUT = 2 

Let the assignment be given by the matrix 

1 a a 
x = a a 1 

a 1 a 
a 1 a 



73 

2 
2 

a)Process Graph 

b) Processor Graph 

FIGURE 4.4.1 ExampLe Process and Processor Graphs (P-C) 



The processing time and IPC vectors are given by, 

PROCT = (2,2,2,3) 

IPCT = (2,1,0,0) 
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There is one transfer operation for processor 2, transferring data ·from 

moduLe 1 on processor 1 to moduLe 2 on processor 3. For convenience, Let us 

LabeL it as moduLe 5. 

Then, XFER(5) = IMC(1,2) = 1 

FIGURE 4.4.2 gives the Load density function for the exampLe. 

P1 

P2 

P3 

A=7 

rO
VLP 

--\ 
I 
I I 
I I 

?P(4} 1 1-2 1--3 
I I 

I , 
WAITX(S) 5 3 4 

I 

WAITP(2) 2 1-4 
I 

I I I . 

° 1 2 3 5 6 7 8 9 10 

t 
PTP 

FIGURE 4.4.2 Load Density Function for P-C ExampLe 

( M = 4 , N·= 3 ) 

R (I) = 

R(2}: 

R(3}: 

4 

7 

3 
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STORAGE REPRESENTATIONS 

FOR HARDWARE AND SOFTWARE 

5.1 Storage Representations for Hardware 
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Various representation methods can be empLoyed to represent the topoLogy 

of the processor network. However, one must choose a representation based 

essentiaLLy on the foLLowing three criteria: 

i) Storage efficiency 

ii) ~rocessing efficiency 

iii) Characteristics of networks under consideration 

There is no priority among the three criteria. We need to find a compromise 

to satisfy aLL the three. 

For a fuLLy-connected network, onLy the vaLues corresponding to the 

distances between the processors in the network suffice to represent the 

topoLogy. These vaLues may be suppLied by a distance matrix { Dk,L } , 

where the entries represent the Lengths of the Links between proce~sors k 

and L, or by making use of the symmetry, some form of pointer mechanism or 

Linked-List structures may be empLoyed to reduce storage requirements. 

For a partiaLLy-connected network, however, Like the ones we consider in 

this study, information regarding the processors on-route and the number of 

aLternate routes between any pair of processors that are not directLy 

connected must be suppLied in addition to the distance information. Thus, 

the storage requirements are inverseLy proportionaL with the connectedness 

of the network and we need to find a cLever way to represent aLL the 

information we requi~e with as LittLe overhead as possibLe regarding the 

storage capacity and the processing time. 

We now introduce three modeLs capabLe to represent partiaLLy-connected 

networks, nameLy the Matrix-Pointer, the Pointer and the Modified 

Matrix-Pointer modeLs. We present each using an exampLe aLong which we 

expLain the method and discuss its efficiency. 
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5.2 Matrix-Pointer Representation 

Let us consider an example graph to represent a four-processor 

partially-connected network. The distance, i.e. the length of a link, 

between two adjacent processors is taken as unity. The values we must 

represent are the interprocessor distances, { 0 }-, the number of 

alternate shortest paths for each 0>1, {NROUT}; and the list of processors 

on-route, excluding the source, for each alternate route. The network is 

labeled as shown in FIGURE 5.2.1. 

FIGURE 5.2.1 Four-processor Partially-Connected Network 

First, we form the distance matrix {Ok l}' where , 

,k = l 

,k ~ l 

and PROUT array, to list the processors on-route from k to l including l. 

PROUT is arranged as shown below 

PROUTk l:(NROUTk l;proc.list~ l; ••• ;proc.list~R~UTk,~) , , , . ' 

for all k,l £ S2 ' where S2 

list contains 0k,l processors. 

shortest paths from k to l •. 

= {k,lIOk,l~2} 
NROUT is the 

and each 

number of 

processor 

alternate 
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For the network in FIGURE 5.2.1 , {Ok,L} arid {PROUT} are given as, 

0 2 1 1 PROUT(m) = (2, 3, 2, 4, 2, 1 ~ 2 

O(k,U= 2 0 1 1 
~. 

3, 1, 4, 1, 2 ~ 1 1/2, 
1 1 0 2 6/2, 1, 4, 2, 4, 3 ~ 4 

1 1 2 0 11/2, 1, 3, 2, 3) 4~3 

16 t 
! NROUT m 

For PROUT, m is the starting-entry index for the List of p~ocessors on the 

route from k to L, and we introduce another matrix {Ak L} for routing 
. , 

information, where 

index for PROUT for k, L e S2 

Then {Ak,L} for the exampLe is given by 

0 1 0 0 

A(k,L) = 6 0 0 0 

0 0 o 11 

0 o 16 0 

If we need to find the reLevant vaLues for transfer from 1 to 2 for 

exampLe, 0(1,2)=2 gives us the distance, A(1,2)=1 gives us the index for 

PROUT, and starting at PROUT(1), we access the routing information such 

that, there are two aLternate paths from 1 to 2, one over processor 3 to 2 

and another over processor 4 to 2. 

This representation certainLy fits the network, unidirectionaL or 

bidirectionaL, and does not Lead to processing overhead since during task 

assignment we can immediateLy access {O(k,L)} and {A(k,L)} and recording 

the index m obtained from {A(k,L)} permits unique access to reLevant data 
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for future references for k,L e S2. However, the storage requirements 

are not very favourabLe. For a network with N processors, we need 

N2 Locations for {D(k,L)} , 

N2 Locations for {A(k,L)} , 

R 

~ [NROUTm * 
m=1 

D + 1] Locations for {PROUT(m)} , m 

where R = Is21, the number of nodes in S2. In totaL, 

2N2 Locations for the matrices and o(N2) Locations for {PROUT}. 

we require 

For the exampLe with N=4, 52 Locations are required and for an 8-eLement 

PON, the representation occupies 186 Locations. 

Thus the storage requirement for N processors is in the order of 3N2 

to N3 This is a ~aste especiaLLy for bidirectionaL networks of higher 

N, where {D(k,L)} is symmetric and we actuaLLy need onLy N(N-1)/2 entries. 

Regarding {A(k,L)}, we notice that the number of non-zero entries is R, 

the totaL number of processors not reachabLe in unit distance from each 

node. If we consider PON's, where the LocaL degree of nodes is 4, i.e.,each 

node can access at most 4 neighbours, 4N entries out of N2 are wasted. 

Storing {PROUT} necessitates R groups, each of variabLe size depending 

on N and network topoLogy, and the number of Locations required increases 

with N. However, the information contained in {PROUT} is essentiaL for task 

assignment and no reduction in storage seems to be possibLe for the moment. 
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5.3 Pointer Representation 

We consider the same network of N=4 shown in FIGURE 5.2.1. {PROUT} is 

formed as expLained for the previous method. 

We try to reduce the storage requirements for {D(k,L)} and {A(k,L)} at 

the expense of a smaLL amount of extra processing. 

We form (N-1) groups of processors, where each group contains processor 

pairs (k,L) such that for k=1,2, ••• ,N-1 the index L goes a~ L=k+1, ••• ,N and 

we form a base array, {B(k)}, serving as a group pointer and generated 

using the recursive definition (5.3.1). 

°B(k+1) = B(k) + N-k (k=1,2, •• ,N-2) 

B(1) = 0 (5.3.1) 

Then the index i for each given k and L in a group is obtained using 

i = B(k} + L-k (5.3.2) 

Before using (5.3.2), pair (k,L) is checked to see if k<L. If k>L, we 

exchange k and L to index the base array for determining i and set another 

index j such that 

. {1, 
J = 

2 , 

k<L 

(5.3.3) 

k>L 

The index i computed using (5.3.2) is used to access a distance array 

{D(i)}, and pair (i,j) is used to access a routing matrix {A(i,j)} which 

gives index m for {PROUT}. 
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The arrays for FIGURE 5.2.1 are given beLow. 

BCk) = (0,3,5) ; OCi) = C2,1,1,1,1,2) ; 

ACi,j) = 1~ 1: J 
. PROUTCm) = C2,3,2,4,2, 1 ~ 2 , 

2,3,1,4,1, 2 ~ 1 

2,1,4,2,4, 3 -? 4 

2,1,3,2,3) 4 ~ 3 

Then, if we need to access the information for the transfer 1 ~ 2, we are 

given k=1 < L=2; j=1, i=BCk)+L-k=1 and we have O(1)=2 and m=AC1,1)=1 for 
• referencing {PROUT}. For the case of transfer 2 ~ 1,j=2 since k=2 > L=1, 

i=BCL)+k-L=1 and we have 0(1)=2 and m=A(1,2)=6. 

Compared to the previous method, the pointer representation requires a 

smaLL amount of processing in checking Ck,L) and in evaLuating expressions 

(5.3.2) and (5.3.3), in order to access {O(i)} and {PROUT}. As before, m 

can be recorded for future references to the transfer. With this 

presentation, the modeL can be used to represent bidirectionaL partiaLLy 

connected networks. However, unidirectionaL networks can be handLed by 

adding an extra coLumn to {O(i)} and accessing the entries in a manner 

simiLar to that for {A(l,j)}. 

The storage requirements are as foLLows 

(N-1) Locations for {B(k)} , 

N(N-1)/2 Locations for {O(i)} , 

R Locations for {A(i,j)} , 

R 

~ [NROUTm * Om + 1J Locations for {PROUT(m)}. 

m=1 

The Last component is the same for both methods. 

R~N2_4N. Then, excLuding {PROUT}, 

[(3/2)N2-(7/2)N-1J Locations, much Less than 

method. 

If we consider 

method 

of the 

PON's, 

requires 

matrix 

In this representation the exampLe network requires 33 Locations and for 

an N=8 PON , 125 Locations are required. Thus, the pointer method is more 

efficient than the matrix method as far as storage is concerned. 



81 

5.4 Modified Matrix-Pointer Representation 

In this method, we have one matrix {DA(k,Ln which is a combination of 

{D(k,L)} and {A(k,L)} matrices introduced in the first method, such that, 

__ {DmCk,L>" 
DA(k,L> 

if D(k,L> = 0,1 

if D(k,L> > 1 

and m is used to index an array {DP(m)} which is a" combination of 

{PROUT(m)} and distance information for D(k,L) > 1. The smaLLest value of m 

is 2 and DP(1) = 0 is dummy. 

{DA} and {DP} for the 4-processor network of FIGURE 5.2.1 are as 

foLLows. 

DIST NROUT PR.1 PR.2 

0 2 1 1 DP(T~2 , 2 , 3,2 , 4,2 , 1 ~ 2 

DA(k,L>= 8 0 1 1 2~2 , 2 , 3,1 , 4,1 , 2 ~ 1 

1 1 o 14" 8 2 , 2 , 1,4 , 2,4 , 3 ~ 4 

1 1 20 0 14~ , 2 , 1,3 , 2,3 ) 4 ~ 3 

20 

Given a pair (k,L), if DA(k,l) > 1, we record it as index m to access 

{DP(m)}, where m gives the distance, (m+1) gives NROUT and so on. 

The storage requirements 2 are N for {DA} and R for distance in {DP}, 

in addition to that of {PROUT}. Excluding {PROUT}, for PON's we require 

[2N2-4N+1J Locations for N processors. For N=4 and N=8, 41 and 155 

Locations are required, respectiveLy. 

Comparing with the other two, this method of representation seems to be 

a compromise in storage and processi~g overheads among the three. It can be 

used to model both unidir~ctionaL and bidirectionaL networks. 
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5.5 Assumptions 

A cqmparison of the three methods with respect to storage requirements 

for 4 and 8 processor networks is given in TABLE 5.5.1. The difficuLty 

arises mostLy with the PROUT array. 

At this point, it is worthwhiLe to recaLL the task assignment probLem 

and review the requirements reLated to the representation. 

Our aim is to assign software moduLes represented by a precedence graph 

onto a partiaLLy-connected network of processors so as to optimize the 

finish time of the task and the workLoad distribution. We know that IPC 

time is an important component of finish time and to minimize its effect, 

we need to respect the principLe of "LocaLity of communication", that is, 

communica~ion shouLd be restricted to nearby processors. Moreover, we are 

not interested in aLL the aLternate paths between each processor pair, but 

onLy in the shortest aLternate paths between them. This means that if 

d1 is the shortest distance between k th and L th processors, we want 

to consider onLy. NROUT paths of distance d1, where NROUT is the number 

of aLternate paths of shortest distance. This is in agreement with the type 

of interconnection schemes introduced earLier, PMN's, especiaLLy with PON 

as an outstanding reguLar representative (Chapter 2). These networks 

provide NROUT. ~ 2 aLternate paths for connections with interprocessor 
1 

distance D. ~ 1, the exact vaLues depending on the number of processors 
1 

N and the row-coLumn arrangement of nodes. Here D. is not a distance 
1 

actua LLy but refers to the number of inter-processor-Links (i.p.U. In 

order to minimize IPC as we have aimed, we obey the principLe of LocaLity 

within a toLerance to permit aLternate paths, and reach our first basic 

assumption. 

Assumption 1 : Task assignment strategy shouLd permit IPC between k th 

and L th processors if and onLy if D(k,L) ~ 2, where D(k,L) is the number 

of i.p.L.'s between processors k and l. 



N 

4 

8 

TABLE 5.5.1 Comparison of Storage Requirements for the 

Hardware-Representation Methods 

(* with D(k,L)~ 2 assumption) 

. 

83 

Matrix-Pointer Pointer Modified Matrix-Ptr. Modified Pointer 

Method Method Method Method * 

D : 16 B : 3 DA : 16 B : 3 

A .: 16 D : 6 DP : 25 D : 6 

- A : 4 - -
PROUT : 20 PROUT : 20 - PROUT : 7 

·TotaL : 52 TotaL : 33 TotaL : 41 TotaL : 16 

D : 64 B : 7 DA : 64 B : 7 

A : 64 D : 28 DP : 91 D : 28 

- A : 32 - -
PROUT : 58 PROUT : 58 PROUT : 37 

TotaL : 186 TotaL : 125 TotaL :155 TotaL : 72 
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This means that we do not take the principLe of LocaLity of 

communication in the strict sense, i.e., permit communication of adjacent 

processors (D(k,L) ~ 1) onLy, but aLLow one degree of freedom which in turn 

aLLows aLternate paths, and enhances the work distribution and the 

possibiLity of finding feasibLe soLutions. Insisting on the LocaLity in the 

strict sense wouLd be to force aLmost a perfect match between the process 

graph and the processor graph and might Lead to a situation without a 

soLution in an environment, where the network is given and the assignment 

of an arbitrary task is desired, as we have here. The principLe is vaLid 

for speciaL-purpose muLtiprocessors or arrays which are designed for a 

specific aLgorithm in mind. 

To compLete the justification for Assumption 1, we need to consider one 

more point and see that D(k,L) ~ 2 is a good compromise between LocaLity 

and processor accessing capabiLity regarding a soLution. First, we state 

our second assumption for the hardware • 

. Assumption 2 : The cLass of partiaLLy-connected networks empLoyed in 

the task assignment process is assumed to have bidi rectionaL 'L inks. 

We concentrate on bidirectionaL PON's since they are easiLy 

impLementabLe using duaL-ported .memories and they provide Lower average 

i.p.L~s than unidirectionaL networks as a resuLt of better processor 

reachabiLity, and permit aLternate routes, an important issue in 

reLiabiLity and task assignment. It must be noted that for unidirectionaL 

networks, there exist no aLternatives for the shortest path when D(k,L)~ 2. 

We are interested in n2, the number of 

node within D~2 TABLE 5.5.2 

networks of varying N ,r and c, 

coLumns in a PON, respectiveLy, 

n2 
%n2 =--* 100 

N-1 

where 

and 

Lists 

rand 

nodes reachabLe from any one 

n2 , %n2 and d max for some 

care the number of rows and 



TABLE 5.5.2 Processor ReachabiLity within 0 ~ 2 

for some N ~ 64 

N r c d max n2 % n2 

8 4 2 3 6 85.7 

12 4 3 3 10 90.9 

16 4 4 4 10 66.7 

24 8 3 4 12 52.2 

32 8 4 4 13 41.9 

64 16 4 5 13 20.6 
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AnaLysis of the tabLe reveaLs that n2 covers more than 50% of the 

processors for moderateLy sized processor networks and Assumption 1 is thus 

justified. 

Now, with the simpLifications imposed by Assumptions 1 and 2, we propose 

the foLLowing Modified-Pointer modeL to represent the hardware component of 

the task assignment modeL. 
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5.6 Modified Pointer Model for the Hardware 

We refer to Pointer representation presented in Section 5.3. The base 

array {B(k)} is formed using Equation (5.3.1) and accessed using Equation 

(5.3.2) if k ~ l, as for the Pointer model. We do not need index j since 

for D = 2, there is only one intermediate processor whether the transfer is 

k ~ l or in the reverse direction. {D(i)} is accessed using i computed in 

(5.3.2). 

Modification lies in the distance array {D(i)} which is now conveniently 

used for two purposes, similar to the function of {DA} matrix in the 

Modified-Pointer representation. 

The entries of {D(i)} possess three meanings as given by (5.6.1). 

{ 

1, if D(k,D = 1 

D(i) = m, if D(k,l) = 2 

0, if D(k,l) > 2 (5.6.1) 

The minimum value for m is m = 2 and PROUT(1) = 0, i.e. dummy similar 

to DP(1) in Modified Matrix-Pointer method. Index m is used to access 

{PROUT} as before. Now {PROUT(m)} lists only NROUT and the intermediate 

processors for D(k,l? = 2 between k and l. The value of NROUT is mostly 2, 

but depending on N and the configuration, it may vary and we prefer to keep 

the NROUT entries in {PROUT}. 

Total storage requirement for an N-processor PON is 

(N-1) locations for {B(k)}, 

N(N-1)/2 loc~tions for {D(i)}, 

n -4 
2 

~[NROUTm+1J+1 locations for {PROUT(m)}, arid 

m-1 

approximately 0(N2) as a whole. 



87 

The arrays for the 4-processor network in FIGURE 5.2.1 are as shown 

beLow. 

B(k) = m ; D(i) 

NROUT . 

. ~ 
PROUT(m~2,3,4, 

2 2,1,2 ) 

5/ 

= 

2 

1 

1 

1 

1 

5 

1 ~ 2 

3 ~ 4 

The storage efficiency of the method is contrasted to other methods for 

N = 4,8 in the Last coLumn of TABLE 5.5.1. 
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5.7 Storage Representation for the Software 

The software component of the 

acycLic graph representing the 

moduLes of the task and directed 

I 

task assignment modeL is a directed 

aLgorithm, where the nodes correspond to 

arcs joining the nodes indicate the 

precedence reLations between the moduLes. In the graph representation, the 

processing time of eac~ moduLe is written next to' its node and the IMC 

vaLues are written as weights on the arcs. The parameters of interest for 

the representation of the process graph are the processing time of the 

moduLes, and IMC and precedence reLations between the moduLes. As 

previousLy has been noted, other moduLe attributes, Like memory or 1/0 

restrictions, can be easiLy incorporated if required. 

In order to represent the moduLes, we first LabeL each node in the graph 

in increasing numeraLs 1,2, •• ,M as we scan the graph from Left to right 

and top to bottom, considering precedences. After the moduLes are numbered, 

we . can represent the processing time of each using a matrix if non 

identicaL processors are used. That is, {PROC(i,k)}, an M x N matrix for M 

moduLes and N processors gives the processing times. 

PROC(i,k) = processing time of i th moduLe on k th processor 

Preferences may be imposed on assignments if processors are not identi

caL. For exampLe, if the code Length of a moduLe exceeds the memory 

capacity of a processor, the use of a very Large' processing time for that 

processor may eLiminate such an assignment. 

Here we concentrate on networks of identicaL processors and represent 

processing time requirements of the moduLes as an array {PROC(i)} where 

PROC(i) = processing time of ith moduLe 

on aLL the processors. 
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Representation of the precedences and the reLated IMC vaLues between the 

moduLes has two basic aLternatives: matrix and array. 

In the matrix representation of M moduLes, the connectivity matrix 

CON(M-1,M-1), giving the precedences, has entries 

_-
f1
0 " CON(i,j) L 

if ie{j 

otherwise 

where i = 1, •• ,M-1 ; j = i+1 • 

We might use a shortcut to represent IMC vaLues in the same matrix by 

aLtering entries CON(i,j) such that now 

The storage 

(

IMC(i,j) , 

CON(i,j) = 
a , 

requi rem"ent for 

if io{j 

otherwise 

this representation wilL be 

Locations. However, the processing requirements are not" favourabLe since we 

have to scan M2 eLements for dependences, whiLe the actuaL number of 

dependent pairs is much Less than that. 

In the array representation, one way is to provide a List {DEP(i,j)} of 

dependent pairs onLy, giving (i,j) for each i~ j in each row, and another 

List {IMC(i,j)} of the associated IMC vaLues. The storage requirement is 

proportionaL to the number of dependent pairs and processing is more 

efficient. 

Instead of dupLicating"the source moduLe i for each io{ j, we can group 

successors of each source moduLe, order the source moduLes 1,2, •• ,M and 

eLiminate the specification of the source. If a moduLe has no "successors 
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its successor List entry is zero. The end of each successor List is aLso 

identified by zero. We name this array {DSUC}, corresponding to the direct 

successors of each moduLe. The format of two sampLe rows of DSUC is shown 

beLow, where i precedes moduLes j, Land r, and M is the terminaL moduLe: 

ModuLe DSUC 

i ( j L r 0 ) 

M ( 0 ) 

The IMC array foLLows a simiLar pattern except that, since we wiLL 

access it using the information in DSUC, the zeroes to mark the end of rows 

and the Last row are not required. Each entry IMC(i,p) gives the vaLue of 

IMC from moduLe i to its successor j in p th position in the List of its 

successors in DSUC. 

In the process graph, if nodes corresponding to moduLes i and j are 

connected by a directed arc, then i ~ j and this reLation is specified in 

DSUC. On the other hand, if i..{ j and j ~ k, then k is an i ndi rect 

successor of i, i.e. io(o( k. One-step precedence pairs in DSUC are not 

sufficient to fuLLy represent the precedence reLations and we propose a 

second array {ISUC}, for indirect successors. The format of one row of ISUC 

array is ~s foLLows, where 0 denotes the end of a row: 

ISUC ( 

moduLe. 

i 

indir~ct successors 

k L •••••• 0 ) 
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To concLude this section, as an exampLe consider the representation of 

the process graph in FIGURE 5.7.1. The processing times of moduLes wiLL be 

represented by 

3 

PROC(M) = 2 

2 

4 

2 

4 
j 

To represent precedences and IMC,the first two methods produce the 

foLLowing arrays: 

Matrix CON (incLuding IMC vaLues) wiLL be as foLLows 

1 1 0 0 0 

CON = 0 0 2 1 0 

0 0 0 1 0 

0 0 0 0 2 

0 0 0 0 2 

DEP and IMC arrays for the first array representation method wiLL be as 

foLLows, 

ND = 7 ; the number of dependent pairs 

1 2 1 

1 3 1 

2 4 2 

DEP = 2 5 IMC = 1 

3 5 1 

4 6 2 

5 6 2 
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2) 

(4 ) 

FIGURE 5.7.1 ExampLe P~ocess Graph eM = 6) 

The arrays for the proposed representation of the same graph are given 

beLow : 

2 3 0 1 1 

4 5 0 2 1 

= l~ 
4 5 6 0] DSUC = 5 0 IMC = 1 ISUC 6 0 

6 0 2 6 0 

6 0 2 

0 

Now, we are ready to expLain the task assignment aLgorithm introduced in 

Chapter -6, which empLoY0s the representations determined in this chapter 

for the process and processor graphs of the assignment probLem. 



6.0 

TASK ASSIGNMENT ALGORITHM 

FOR P-C PROCESSOR NETWORKS 

6.1 General Description 

In this chapter, we present 
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an aLgorithm to compute the 

moduLe-to-processor assignment in partiaLLy-connected processor networks so 

as to achieve min.PTP in the singLe-run environment or min.LIP in the 

muLti-run environment, for a given process and processor graph. 

It is an enumerative aLgorithm based on depth-first search where at each 

iteration a sampLe assignment is generated and evaLuated to check its 

performance. " 

The optimization probLems defined by Equation <4.4.5) and Equation 

<4.4.6) need not have unique soLutions. It is possfbLe that muLtipLe 

assignments yieLd the same minimaL vaLues for PTP or LIP, and the optimaL 

soLution space consists of aLL such aLternative assignments. When one is 

interested in aLL the "optimaL soLutions, especiaLLy for a smaLL system, a 

possibiLity is to output every generated so-far-best assignment and Let the 

user pick up the optimaL soLutions. However, from a practicaL design 

viewpoint, just one optimaL moduLe-to-processor assignment for each 

objective is sufficient and this view is adopted in our soLution procedure. 

For the singLe-run environment, where the objective is to minimize 

maximum compLetipn time, we assume that an initiaL bound, PTP, Larger than 

any possibLe finish time is given. The first evaLuated assignment produces 

a new vaLue PTPX as the current bound. If PTPX is Lower than PTP, the 

assignment is saved as theso-far-best and PTP:=PTPX. Then,at any time 

during the execution of the aLgorithm, PTP has the vaLue corresponding to 

the assignment that first resuLted in this so-far-best PTP vaLue. The 

aLgorithm runs untiL the end, givin~ one of the assignments that is optimaL 

with respect to PTP. 
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For the multi-run environment,the objective might be to find assignments 

that minimize KPTP, given by Equation (4.3.13) as KPTP = (K-1)LIP + PTP , 

or LIP,if the maximum task repetition frequency is of utmost importance. We 

are concerned with the latter case. We assume that an initial bound 

LIP, larger than the expected repetition period is given. This time, any 

evaluated assignment which yields a current value LIPX that is lower than 

the last value of LIP is saved, and LIP and PTP bounds are updated with the 

current values. The final result is an optimal assignment with respect to 

LIP. 

The proposed task assignment process basically involves two phases 

1) Assignment generation phase, and 

2) Evaluation phase 

For each assignment 'generated in phase 1 and input to phase 2, an LDF is 

generated by assigning start and finish times to all the modules on all' 

processors according to the precedence relations between the modules as 

specified by the directed arcs in the given process graph. 

During LDF generation, if there are no indirect transfers requiring the 

availability of intermediate processors, the generated LDF is complete and 

we proceed to compute the resultant current values and check the bounds. 

If,there arise transfer requests, however, we proceed as follows: Since 

a transfer request arises when the distance D(k,l) between the processors 

(k,l) of the two communicating modules (i,j) is equal to 2, the source 

processor is assigned an extra time for IPC, equal to IMC(i,j). The 

intermediate processor, if available, will also have a transfer duty of the 

same duration. Then, if all goes well, the destination processor may start 

executing the dependent module IMC(i,j) time units after the source has 

finished transmission. This is the transfer interval and we specify it with 

its start time XS, which is the ,transmission finish tim,e of the source, and 

with its finish time XF, which is the earliest time the,destination 

processor may start execution. FIGURE 6.1.1 illustrates parameters of a 

transfer operation on a partial LDF. 



Processors 

k 

Some L' 

L 

I 

: i-j 
I 
I~= IMe ( i.j ) 
I 

xs· 

~ 
XF 

~ 
I ; 
I I 

l-~-: 
I : 

t. Time 

START (J ) = XF 

FIGURE 6.1.1 Parameters of Intermediate Transfer 

We recall from Section 5.6 that the corresponding entry of the 
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distance 

array when DCk,L> = 2 gives an index m to address the PROUT array. This 

means , for example if m = 2, we address the second entry of PROUT arranged 

as follows. 

~ 
1 

1 2 3 4 

PROUT(m) I 0 NROUT2 
l' t' 
1 2 

The number of alternate routes, NROUT, is given by PROUTCm), the first 

processor on route is ~iven by PROUTCm+1) and the second, alternate 

processor is given by p.ROUTCm+2) when NROUT=2. Then, index m, obtained from 

DCk,l), completely characterizes the processors that may be involved in the 

transfer. We record m, XS, and XF in a row of a transfer table TX for each 

transfer request discovered during LDF generation. These values provide all 

the information required to insert transfer modules on intermediate 

processors after the partial LDF, i.e., the LDF before the transfer modules 

are inserted, is complete. 
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However, when we have a finaL assignment we wiLL aLso need to know with 

which moduLe pair each transfer operation is associated. For this purpose, 

the pair (i,j) is recorded in a transfer-moduLe array T. Every transfer 

moduLe is given a LabeL,the first being (M+1). T is part of the arrays 

required to specify a generated LDF and is saved when the assignment is 

found to be successfuL. TX, on the other hand, is not needed after transfer 

moduLe insertion and can be overwritten. 

An LDF is characterized by the sequence of moduLes on each processor and 

the start and finish time of each moduLe. If there are indirect transfers, 

we have additionaL created-moduLes assigned to some processors with their 

sequence and timing information, where their source and destination moduLes 

are specified in the T array. This means that, if we "want to print out or 

save an LDF to characterize a successfuL assignment, a set of arrays have 

to be considered. To economize on time and space, we assume doubLe 

workspace for these arrays and use a workspace fLag (WSF) such that 

initiaLLy WSF=O and the assignment is deveLoped in the first workspace. If 

the bound for this assignment is better than the initiaL bound, the bounds 

are updated, WSF is comp~em~nted to indicate the second workspace and the 

assignment is saved untiL the first assignment, which yieLds Lower bounds. 

Thus, WSF is compLemented after each successfuL assignment to indicate the 

aLternate workspace for the succeeding iterations and the current LDF is 

saved. "After the finaL run, the workspace indicated by the compLement of 

WSF contains the optimaL assignment, and LDF and PTP/LIP bounds can be 

printed nut. 

The aLgorithm corresponding to this gLobaL description consists of seven 

steps, each of which are described in detaiL in the foLLowing sections. 

Sections 6.7 and 6.8 iLLustrate the use of the aLgorithm in both 

environments by exampLes. In the finaL sections of this chapter, we discuss 

the performance characteristics of the task assignment aLgorithm ; we 

demonstrate that the aLgorithm is correct and, discuss its computationaL 

requirements. 
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The iterative structure of the task assignment aLgorithm is shown in 

FIGURE 6.1.2 and FIGURE 6.1.3. In Step 0, the process graph, the processor 

graph and the objectives are defined, and an initiaL vaLue for PTP/LIP is 

set. The WSF is initiaLized. 

Steps 1, 2 and 3 generate aLL sampLe assignments. Step 1 generates 

permutations of the order of the moduLes and for each permutation 

generated, Step 2 determines the number of moduLes to be assigned to each 

processor. Using the number determined for each processor in Step 2 to 

seLect the moduLes from the order generated in Step 1, Step' 3 determines 

which moduLes are assigned to which processors and initiaLizes the working 

arrays for the generated assignment. 

In Step 4, we determine if the current assignment satisfies precedence 

and LocaLity constraints. If the constraints are not vioLated, we have a 

feasibLe assignment and we proceed to the next step. Otherwise, the 

assignment is rejected and we return to Step 2 to generate the next 

assignment. 

In Step 5, we generate the LDF. If there is no indirect communication 

request, the generated LDF is compLete and we compute the bound. If the 

current bound is better than the former we save the assignment, eLse reject 

the assignment and, go to Step 2. If we have transfers recorded in the 

transfer tabLe, and the computed temporary bound is Lower than the former 

best bound we proceed to Step 6. ELse, we reject the assignment and go back 

to Step 2. 

In Step 6, we scan the transfer tabLe and insert the transfer moduLes on 

intermediate processors, if avaiLabLe. If a transfer moduLe, either due to 

nonavaiLabiLity of a processor or due to no improvement over the Last 

bound, cannot be inserted the assignment is rejected. When aLL the transfer 

moduLes are inserted successfuLLy we compute and check the current bound 

after insertions. If it is Lower, we update the bounds, compLement WSF and 

return to Step 2 for the next assignment. 
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PROCEDURE : BEGIN ; 

STEPO. Initialize data 

Do ; 

STEP1. Generate next permutation 

Do ; 

STEP2. Generate next composition 

STEP3. Initialize the assignment 

STEP4. Check constraints 

STEPS. Generate LDF and check bounds 

STEP6. Generate final LDF and check bounds 

END ; 

END ; 

Output optimal assignment 

END PROCEDURE ; 

FIGURE 6.1.2 The P-C Task Assignment Algorithm 
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The mechanism of pruning the soLution tree is apparent with this 

description. At aLL possibLe points .in the aLgorithm, the process is 

controLLed to see if constraints are vioLated or if there is no improvement 

in the bounds, and if so, such assignments are rejected, saving any further 

computation. 

The aLgorithm terminates after the Last composition of the moduLes for 

the Last permutation, giving the LDF and the bounds for the optimaL 

assignment. 

The aLgorithms for the steps of the task assignment aLgorithm are 

provided in the Appendices A to F. 
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6.2 Initialization 

In Step 0, the user enters the system parameters 

For the software description 

M = number of moduLes 

Arrays : 

PROC 

DSUC as defined in Section 5.7 

IMC 

ISUC 

For the hardware description : 

N = number of processors 

Arrays 

B 

D as defined in Section 5.6 

. PROUT 

For the objectives 

K = {:o ,-
for singLe-run environment 

for muLti-run environment 

For K=O ; 

PTP = some number greater than any possibLe finish time 

For K~O; 

LIP = some number Larger than the expected repetition period 

The workspace fLag WSF is set to zero. 

(The Last permutation fLag LASTP is set to zero.) 
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6.3 Assignment Generation 

We use a combination of permutations ~nd compositions to generate every 

possibLe assignment. 

In Step 1, we. generate every permutation of M moduLes. We assume the 

processors to be ordered with LabeLs 1,2, •• ,N and keep the processor 

order fixed. Then, by permuting the order of the moduLes and assigning 

moduLes to processors in order, such that the first moduLe is assigned to 

processor 1, the second to processor 1 or 2 depending on the number of 

moduLes for each processor to be computed in Step 2, we generate every 

possibLe assignment of M moduLes to N processors. 

The permutation step of the aLgorithm is considered as a subroutine 

which accepts a vaLue for M and the current permutation, and generates the 

next permutation of M. The current permutation is stored in a vector A(M). 

A flag is raised when the Last permutation has been gener"ated. When every 

composition of the Last permutation has been generated, then every possibLe 

assignment has been enumerated. 

In Step 2, we compute the number of moduLes to be assigned to each . 
processor. This is same as the probLem of "distributing M Like objects into 

N unLike ceLLs, with no ceLL empty" in combinatoriaL mathematics and it is 

aLso caLLed "the composition of Minto N parts" [NIJE78J. 

Given M and N,this step computes a set of integers L(k) where 1<L(k)<M 

and k =1,2, •• ,N such that 

N 

M = L Uk) 

k=1 

The vaLue of L(k) corresponds to the number of moduLes to be assigned to 

processor k. 
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The order of compositions is important to ensure that in combination 

with the permutation of moduLes, every moduLe is assigned to every 

processor in every possibLe order. 

For exampLe, assume we have a system of four moduLes and three 

processors. The foLLowing are the three possibLe compositions of four 

things into three parts. 

M L(1) L(2) L(3) 
----- -----

4 = 2 + 1 + 1 

= 1 + 2 + 1 

= 1 + 1 + 2 

The composition step of the task assignment aLgorithm is considered as a 

subroutine which accepts vaLues for M, Nand L, and generates next vaLues 

for L. The first caLL to the subroutine generates L(1) = M - N + 1, i.e., 

the maximum number of moduLes that can be assigned to a ~rocessor, and aLL 

the other parts are unity. Subsequent caLLs change this distribution untiL 

the generation of the Last composition where L(N) = M - N + 1 and a fLag 

LASTC is raised. After the a~signment for the Last composition has been 

generated, the aLgorithm returns to Step 1 to generate the next permutation 

and for each permutation, every composition of Minto N parts must be 

generated. When the Last composition for the Last permutation has been 

generated, the process is compLeted. 

Step 3 of the aLgorithm finaLizes the moduLe-to-processor assignment 

generation by assigning 

each processor k in order , 
L(k) 

k = 
moduLes from the permuted List A(M) 

1,2, ••• ,N. First, WSF is checked 

to 

to 
determine the current workspace and depending on whether it is zero or not, 

SetO: {C,Y,S,F,T} or Set1: {CC,YY,SS,FF,TT} is used in caLLing the 

initiaLization subroutine. 
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The foLLowing arrays which are used in the aLLocation procedure are 

initiaLized in this step Cconsidering WSF=O) 

CCN) = workspace copy of LCN). 

YCN,CCN» = It is the assignment array with respect to processors, 

showing the order of moduLes assigned to each processor. 

Each entry YCk,pCk» gives the moduLe occupying pCk) th 

position on k th processor. k= 1, .. ,N ; pCk)= 1, •• ,CCk). 

XCM) = It is the assignment vector with respect to moduLes,showing 

the processor to which the moduLe is assigned~ Each entry 

XCi) gives the processor to which moduLe i is assigned. 

OCM) = Each entry QCi) gives the order or position of moduLe i on 

the processor to which it is assigned. This means that 

if XCi)= k, then YCk,OCi»= i~ 

SCN,CCN» = Start-time array, aLigned same as the Y array. Each entry 

SCk,OCi» wiLL correspond to the start time of some moduLe i 

in OCi) th position on processor k. InitiaLLy, the entries 

are aLL set to zero. 

FCN,CCN» = Finish-time array, aLigned simiLar to Sand Y arrays. Each 

entry FCk,pCk», associated with some moduLe i at the same 

position as in Y, gives finish time of i. InitiaLLy, aLL 

entries are set to zero. 

In the foLLowing work, we wiLL interchangeabLy use S or START for the 

start-time array and F or FINISH for the finish-time array. When we want to 

describe the start time of a moduLe i, we wiLL use the notation STARTCi). 

ALternativeLy, we wiLL use STARTCk,pCk» to refer to the start time of some 

moduLe i on processo~ k at pCk) th position. On the other hand, when we 

want to refer to start and finish time of processors, we might use 

SrARTCk), which is actuaLLy STARTCk,1), and FINISHCk) to describe 

FINISHCk,CCk». Since most of the time, we use Letters i-j to refer to the 

moduLes and k-L to refer to the processors, the meaning shouLd be cLear. 
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As an example, consider again M=4 and N=3. The contents of the arrays 

after Step 3 for the generated sample permutation and composition will be 

as follows. 

A = ( 1,2,3,4) ; sample permutation 

C = ( 2,1,1) ; sample composition 

module processor 

i XCi) = k 

1 1 

2 1 

3 2 

4 3 

position 

O(i) 

1 

2 

1 

1 
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6.4 Constraint Checking 

This part of the algorithm checks feasibility of the generated 

assignment with respect to the constraints imposed on the problem. 

By feasibilty of assignment here we mean and treat two cases: 

1- Precedence constraints, i.e. the order of the dependent coresident 

modules, 

2- Locality of communication constraint, i.e. ihe restriction on the 

interprocessor distances of the assignment. 

Considering case 1 first, we know that i·f two modules i and j have a 

precedence relation between them ,i.e. i j, and they are also coresident 

such that' X(i)=X(j)=k for some k { 1, •• ,N }, then for a feasible assignment 

module i should precede module j on processor k. This requires the order of 

module i to be less than th~ order Df module j, i.e. O(i)<Oej). 'In the case 

XCi) # X(j), i.e. the modules are not coresident, noth~ng can be said 

about the feasibility of orders in obeying the precedence relations. 

The precedence relatlons between two modules can be of two types, as we 

have mentioned in Section 5.7. If ie{j this is direct precedence. Since the 

precedence relation is transitive, i.e. if io( j and jo(m then io(.m, we will 

call this type of precedence "indirect precedence" and denote as i..(o(m. The 

list of direct precedence relations is always supplied as part of the 

software representation, as in the DSUC array of our model. However, 

determining indirect precedences from such a list is not very practical, 

and that is why we have added an ISUC array, giving indirect successors of 

each module, to our software representation. In a recent study [HOLL82] , 
precedence check on pairs of indirect precedence is not performed, such an 

assignment passes to the insertion phase and is rejected after many 

reinsertions of the pair when the bound is exceeded. We find such a 

mechanism time consuming and impractical, and thus have included checking 

the feasibility of indirectly preceding pairs as well. 
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Once the two arrays DSUC and ISUC are given and the assignment is 

generated, we check all the pairs in the arrays for coresidence and, if 

coresident, for their· respective positions on the processor; we reject the 

assignment if any pair i.,( j or i-(", j fails to satisfy the condition 

O(i)<O(j) on their common processor. 

Regarding the feasibility check on interprocessor distances of the 

assignment, in Assumption 1 (Section 5.5) , we have adopted a rule to 

satisfy the principle of locality of communication such that the maximum 

distance allowed between two communicating processors is bounded to the 

value of 2. 

Therefore, if the assignment generated in Step 3, causes dependent 

modules to be placed on processors that are farther apart than 2 units, we 

reject the assignment saving further computation. 

Then, if we recall that in our representation of the hardware, any 

D(k,l»2. is represented by D(k,l) = 0, where D(k,l) is the distance between 

k th and l th processors, all we need to do is to scan DSUC array for 

dependent modules and check if D(k,l) = 0 when k t l, where k= XCi), 

l= X(j) and ic(j for pair (i,j). 

Generation of assignments and the result of constraint' checking for 

FIGURE 6.7.1 is summarized in TABLE 6.4.1. 

It is possible to have constraints other than feasibility of precedence 

and locality of communication. These might be related to limitations on 

resources, such as the limited storage capacity of processors or limited 

I/O capability of processors. Such constraints, if present, can be easily 

incorporated in the constrairit checking algorithm and are very useful in 

reducing the computational complexity of the task assignment problem since 

many of the assignments will be rejected at this phase before going into 
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TABLE 6.4.1 Assignment Generation for FIGURE 6.7.1 o(M=4, N=3) 

* : infeasibLe assignment 

Compositions 

Perm.n. C(1)=2,C(2)=1,C(3)=1 C(1)=1,C(2)=2,C(3)=1 C(1)=1,C(2)=1,C(3)=2 

1234 (12) (3) (4) (1 ) (23) (4) (1 ) (2) (34) 
2134 *(21) (3) (4) (2) (13) (4) (2) (1 ) (34) 
3124 *(31) (2) (4) (3) (12) (4) (3) (1 ) (24) 
1324 (13) (2) (4) (1 ) (32) (4) (1 ) (3) (24) 
2314 (23) . (1 ) (4) *(2) (31) (4) (2) (3) (14) 
3214 (32) (1 ) (4) *(3) (21) (4) (3) (2) (14) 
4213 *(42) (1 ) (3) *(4) (21) (3) (4) (2) (13) 
2413 (24) (1 ) (3) *(2) (41) (3) (2) (4) (13) 
1423 (14) (2) (3) *(1 ) (42) (3) (1 ) (4) (23) 
4123 *(41) (2) (3) (4) (12) (3) (4) (1 ) (23) 
2143 *(21) (4) (3) (2) (14) (3) *(2) (1 ) (43) 
1243 (12) (4) (3) (1 ) (24) (3) *(1 ) (2) (43) 
1342 (13) (4) (2) (1 ) (34) (2) *(1) (3) (42) 
3142 *(31) (4) (2) (3) (14) (2) *(3) (1 ) (42) 
4132 *(41) (3) (2) (4) (13) (2) (4) (1 ) (32) 
1432 . (14) (3) (2) *(1 ) (43) (2) (1 ) (4) (32) 
3412 (34) (1 ) (2) . *(3) (41) (2) (3) (4) (12) 
4312 *(43) (1 ) (2) *(4) (31) (2) (4) (3) (12) 
4321 *(43) (2) (1 ) (4) (32) (1 ) *(4) (3) (21) 
3421 (34) (2) (1 ) *(3) (42) (1 ) *(3) (4) (21) 
2431 (24) (3) (1 ) *(2) (43) (1 ) *(2) (4) (31) 
4231 *(42) (3) (1 ) (4) (23) (1 ) *(4) (2) (31) 
3241 (32) (4) (1 ) (3) (24) (1 ) *(3) (2) (41) 
2341 (23) (4) (1 ) (2) (34) (1 ) *(2) (3) (41) 
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the aLLocation phase. For exampLe, given the code Lengths of moduLes, 

L., , and the storage capacities of processors, Sk' in identicaL 
units, for every assignment it is possibLe to check if 

~ Lj ~ Sk ; jG{iIXCi)=k} ; kE{1, •• ,N} 
j 

is satisfied and otherwise reject the assignment. 

SimiLarLy, for I/O capabiLity of processors, given the 1/0 attributes of 

processors as 

={: 
, if k th processor has I/O capabi L ity 

IOPk 
, otherwise 

and the I/O attributes of moduLes as 

10M; ={: 
, if moduLe i requires I/O 

, otherwise 

the assignments may be rejected at the constraint checking phase if 

IOPk * IOMi = 0 ; XCi)= k ; k~{1, •• ,N} ; it{1, •• ,M} 

After the constraint checking phase, we have a feasibLe assignment and 

we continue to the next step of inserting moduLes on processors for LDF 

generation. 
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6.5 LDF Generation 

In the previous step, we have checked that precedence reLations on each 

processor is satisfied. In this step,. we insert precedence reLations 

between non-coresident moduLes and generate an LDF for the assignment by 

specifying start and finish time of each moduLe on each processor. 

In order to satisfy the precedence reLations, we scan the DSUC array, 

which gives successors of each moduLe i (i= 1, •• ,M) in its i th row. 

In the initiaLization step, the entries in START and FINISH arrays, 

corresponding to the start and finish times of moduLes on each processor, 

have aLL been initiaLized to zero. Now, as we scan DSUC we update these 

entries for each reLevant moduLe in order. A fLow diagram of GENLDF 

subroutine for LDF generation is given in Appendix E. 

The start time of each moduLe depends on the finish time of its 

predecessors in the graph and on the communication deLay if t~ey are 

non-coresident, ·and aLso on the finish time of the previous moduLe on the 

same processor if it is not the first moduLe. The finish time of each 

moduLe is computed as the sum of its start time, processing time, and IPC 

time, that is, 

FINISH(i) = START(i) + PROC(i) +~IMC(i,j) 
i a< j 

XCi) -t X(j) 

and we shouLd have 

START(j) ~ FINISH(i) 

for any i 0( j. 

For each moduLe i treated as a source (in communications), we check if 

it is the first moduLe on its processor k and if so we insert its 

processing time, that is, 

FINISH(i) = START(i) + PROC(i) 
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If i is not the first moduLe on processor k, we make sure that 

where (i_1) denotes the previous moduLe on k, and then compute its 

finish time. 

Processing time of each moduLe is inserted onLy when it is considered as 

a source moduLe and after the first time, we just update' its finish time by 

adding the IPC time due to IMC to non-coresident dependent moduLes. 

The moduLes that are treated as destination moduLes are assigned 

appropriate start times~ onLy. 

As we scan DSUC, if a pair (i,j) 

check if START(j) ~ FINISH(i) to 

satisfied we update start time of j, 

is coresident, i.e. k=L, we simpLy 

sati sfy i 0( j. If precedence is not 

i.e. set START(j) = FINISH(i) and 

proceed to the next successor moduLe in the List. 

If j = 0, i.e. either the moduLe has no successor or its successor List 

is exhausted, we proceed to the next source moduLe. 

If a pair (i,j) is not coresident (k ~ L), we update the finish time 

of i by adding IMC(i,j) and check the distance between processors k and L. 

If the distance m = 1, we proceed as in the coresident case. If the 

distance is more than one, index m points to PROUT array for the processors 

on-route between k and L, and a transfer using some intermediate processor 

is required. We assume at this moment that a processor wiLL be avaiLabLe to 

carry out the transfer task at the right time. The start time of the 

transfer is XS = FINISH(i), and the finish time of the transfer is XF = XS 

+ IMC(i,j). If S(j)< XF, then XF is aLso the start time of moduLe j. We 

record source-destination pair (i,j) in the transfer-moduLe array T, and 

the vaLues of m, XS, and XF are saved in the transfer tabLe TX, to be used 

in the next step of the aLgorithm. 
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LDF generation aLgorithm is very efficient in the sense that just a 

singLe scan of the DSUC array is sufficient, in comparison to muLtipLe 

scans through the moduLes empLoyed in p'revious studies. 

After aLL the moduLes i~ DSUC are scanned and are assigned start and 

finish times, using subroutine CBOUND, we compute PTPX and LIPX for this 

assignment, given by 

PTPX = max { FINISH(k,C(k)) } 

k 

LIPX = max { FINISH(k,C(k)) - START(k,1) } 

k· 

where C(k) and 1 denote the Last and the first moduLes, respectiveLy, on 

processor k. 

Then, we check the current bound against the previous bound PTP I LIP. 

For K= 0, i.e. sing~e-run environment, if PTPX ~ PTP we reject the 

assignment. Otherwise, we go to check the transfer tabLe. 

For K~ 0, i.e. muLti-run environment, if LIPX~IP the assignment wiLL 

be rejected. 

After the bounds are checked and we have a possibLe assignment, we check 

the transfer tabLe: if it is empty, we have a finaL LDF for the assignment; 

we update PTP and LIP with the current vaLues and save the LDF by 

compLementing WSF,before going back to Step 2 for the generation of the 

next assignment. If the transfer tabLe is not empty, we have a partiaL LDF 

and LIPX is temporary, since we stiLL need to insert the transfer moduLes 

indicated in the tabLe. Therefore, we proceed to the next step for the 

compLetion of the current assignment •. 
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6.6 Transfer Table Manipulation 

After the assignment of process-modules is compLeted, the entries in the 

transfer tabLe for transfer-modules have been marked, and current PTPX and 

LIPX have been computed and checked against PTP and LIP, we start to 

manipuLate the transfer tabLe. For each transfer entry in the table, we 

wiLL use m to access the PROUT array for the number (NROUT) and the 

identities (L) of intermediate processors, and XS and XF entries wiLL 

denote the start and finish times, respectiveLy, for the transfer. For each 

transfer moduLe, we wiLL try to find an idLe sLot on its candidate 

processor(s) matching the transfer intervaL, insert and name the transfer 

moduLe, and if we are successfuL in inserting aLL the moduLes Listed in the 

tabLe, the current assignment wiLL be the 'best-so-far'; the bounds for PTP 

and LIP wiLL be updated and the assignment wiLL be saved. 

The insertion of a transfer moduLe invoLves two basic steps 

determining the avaiLabLe processors and among the avaiLabLe processors 

seLecting the one which minimizes the bounds. The first step is the 

Check-Insertion phase to determine, if the intermediate processor is 

avaiLabLe during the transfer intervaL, i.e., if the moduLe can be 

inserted. We consider three cases with respect to XS and XF 

Case 1 XF , START(L,1) ; front-empty. 

The moduLe can be inserted before the 1st moduLe on processor L. 

Case 2 STARTCL,1) < XF, FINISH(L,C(l)) ; intermediate. 

The moduLe can be inserted onLy if there is an appropriate idle 

sLot among the process-moduLes. 

Case 3 XS 7 FINISH(L,C(L)) ; end-empty. 

The moduLe can be inserted after the Last moduLe on L. 

The three cases are iLLustrated in FIGURE 6.6.1. 

After each processor is checked for insertion, if it is avaiLabLe, it is 

aLso checked for the bounds and eLiminated at this stage if the' bounds are 

exceeded. Thus "avaiLabiLity" in our terms impLies "avaiLabLe and within 

the bounds" • 
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l 

a 

Case 1 

insert 

l 

a 
S(l,l) XS XF 

i} insert i i) no insertion 

Case 2 

insert 

~ 

l 

t 
XF 

Case 3 

FIGURE 6.6.1 Cases for Transfer ModuLe Insertion 

t 
F(l,c{l) ) 
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The aLgorithm for checking the insertion empLoys a doubLe-purpose fLag, 

INS, to identify successfuL insertions and to be used in determining the 

number of avaiLabLe processors as weLL. At the beginning of each transfer 

moduLe insertion, INS is initiaLized to zero, and after each successfuL 

check it is incremented by an index (iL), which corresponds to the order of 

intermediate processor L in PROUT. That is, iL= 1,2 depending on whether 

the first or the second processor is checked for avaiLabiLity, for the case 

NROUT = 2. If there is just one intermediate processor, i.e.,NROUT = 1, 

then iL= 1 for the check. Then, after aLL the processors have been 

checked, INS may have the foLLowing vaLues with their associated meanings: 

0 , insertion not possibLe, i.e. invaLid assignment 

INS = 1 , first processor is avaiLabLe 

2 , second processor is avaiLabLe 

3 , both processors are avaiLabLe 

When there is just one insert the transfer 

moduLe on that processor 

processor avaiLabLe, we 

and check the bounds. However, when both 

processors are avaiLabLe, i.e., have got appropriate idLe sLots, we have to 

seLect one of them based" on the probLem definition. 

We have to notice that, during transfer tabLe manipuLation, the 

insertions do not infLuence PTPX of the current assignment. For the 

singLe-run environment PTPX was checked previousLy against PTP after 

process-moduLe assignments such that PTPX < PTP and this PTPX wiLL repLace 

PTP at the end if the insertions are aLL successfuL. 

However, LIPX for the current assignment may change with the insertions 

if it happens that the reserved time R(L) on the intermediate processor L 

increases, such that R(L»LIPX due to two possibiLities: 

i) XS < START(L,1) ; transfer moduLe inserted to a sLot before 

the first"moduLe. 

ii) XF > FINISH(L,C(L)) ; transfer moduLe inserted to a sLot at the end 

." 
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Then, for single-run environment (K= 0)- where the objective is to 

minimize PTP, the maximum completion time, we select the first available 

processor and update LIPX with the corresponding LIP. value. For case i) 

above RCl) = FINISH(l,C(l» - XS. For case ii) Rel) = XF - START(l,1) 

For either case, if R(l»LIPX, LIPX is updated. After aLL the insertions 

are finished the current PTPX which is less than the previous PTP becomes 

the new PTP. However, LIPX replacing the previous bound LIP need not be 

smaLLer. 

In the multi-run environment (K~ 0>, our objective is to find 

assignments that minimize LIP. For this environment, LIPX was checked 

against LIP after the assignment of process-modules, such that LIPX<LIP • 

. Then, after we check each processor for insertion, we check if its R( l) has 

increased LIPX, i.e.,R(L»LIP. If the bound is exceeded, for NROUT= 2, for 

the first processor we manipulate the INS flag that was incremented at 

check-insertion phase and thus indicate that the processor is 

"unavailable". If the processor is available, i.e., t.he bound is not 

exceeded, its R(l} is temporarily saved and the processor which causes a 

smaller LIPX is selected for insertion. For NROUT= 1 case, if RCl»LIPX 

then LIPX is updated and the assignment is rejected if LIPX~LIP. After all 

the insertions required by the transfer table entries are completed, LIPX 

and PTPX become new LIP and PTP values, respectiveLy. On the contrary to 

the single-run case, here, current LIPX<LIP but PTPX replacing PTP need not 

be smaller than the previous value. 

Every time we insert a transfer-module on the selected processor 

give to it a module number (i max) where i max= M+1 for the 

inserted module and at the completion of an assignment, i = max 

l, we 

first 

i.e., the sum of process and 

and F are updated accordingly. 

transfer modules. C(l} and l th rows of Y, S 

At the end of any successful assignment, the workspace flag WSF is 

complemented to point to the alternate workspace and we return to Step 2 

for generation of the next assignment. 
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6.7 Example for Single-Run Environment 

In this section, we iLLustrate the P-C task assignment aLgorithm by 

working out a simpLe exampLe probLem. The process and processor graphs for 

M=4 and N=3 are shown in FIGURE 6.7.1. 

First,we initiaLize the data for the aLgorithm, corresponding to Step O. 

M = 4 

PROC = ( 1, 1, 1, 1 ) 

2 3 0 { 11 DSUC = 4 0 IMC ISUC = [1 4 OJ 

4 0 1 

0 

N = 3 
NROUT 

[~ ] rn 
i-

S = D = PROUT = ( 0, 1, 2 ) 
'I' 

L 

K = 0 and Let PTP = 8 

WSF = 0 ; LASTP = 0 

The first permutation (Step 1) of 4 eLements is A = ( 1, 2, 3, 4 ) and 

the first composition (Step 2) of 4 moduLes into 3 parts is L(1) = 2, L(2) 

= 1, L(3) = 1. We make the assignment by initiaLizing the arrays (Step 3) 

C = ( 2 ,1 ,1 ) x = ( 1,1,2,3 ) o = ( 1,2,1,1 ) 

That is, moduLes 1 and 2 are assigned to processor 1, moduLe 3 to processor 

2 and moduLe 4 to processor 3. 
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1 
1 

Process Graph (M =4 ) 

Processor Graph ( N = 3 ) 

FIGURE 6.7.1 ExampLe Process and Processor Graphs 
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We check constraints e Step 4 ). In this exampLe, interprocessor 

distance is maximum 2 and the order of coresident pair, e1,2), on processor 

1 satisfies precedence. Therefore, we have a feasibLe assignment and we 

proceed to Step 5, for generating LOF. 

We give a trace of LOF generation for this assignment in TABLE 6.7.1. 

InitiaLLy, it = 1, indicating first index to transfer tabLe. 

We scan OSUC : 

i=1; O(1)=1 so we set F(1)=Se1)+PROCe1)=O+1=1 

j=2; k=Xei)=1=L=Xej), i.e. coresident, so we check start time of 

moduLe 2. Since START(2)=O < FINISH(1)=1, we set S(2)=1. ModuLe 1 

has one more successor : moduLe 3 • 

j=3; L=X(3)=2 and k=1, moduLes are not coresident. Therefore, we 

update F(1) for IMC to moduLe 3. IMCe 1 -> 3 ) is given by 

IMCe1,2) which is 1. Then F(1)= F(1) + IMCe1,2) = 1+1 = 2 • We 

find the distance for k=1 : B(1)= 0 and L-k = 1 • Then 

m = D[ B(1)+L-k J= O(1)= 1 < 2 • We check start"time of 3 

START(3)= 0 < FINISH(1)= 2 and we update start time of moduLe 3 : 

S(3)= F(1)= 2 • Next entry of OSUC is for moduLe 2. 

i=2; ModuLe 2 is"not the first moduLe on processor 1 and we check its 

start time against finish time of moduLe 1, which is the 

preceeding modu~e ; S(2)= 1 < F(1)= 2 and therefore, start and 

finish times for moduLe 2 are updated: S(2)= F(1)= 2 and 

F(2)= S(2) + PROC(2)= 2 + 17 3. Successor of moduLe 2 is 4. 

j=4; k=1~L=3, they are not coresident. We update finish time of 

2 for IMC to 4, i.e. F(2)= F(2) + IMCe2,1) = 3+ 1= 4 • We find 

the distance between processors 1 and 3 which gives m= O(2)= 2. 

Since m > 1 , we have a transfer moduLe. We mark in the transfer 

tabLe 

T(1)= [2 4 J; from moduLe 2 to moduLe 4 • 

TX(1,1)= 2 ; m 

TXe1,2)= 4= XS = F(2) 

'TXe1,3)= 5= XF = F(2) +"IMCe2 ~ 4) 

it := it + 1 = 2 

The start time of moduLe 4 is updated since S(4)= 0 : 

S(4) = XF = 5 • The next entry in OSUC is for moduLe 3 • 
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TABLE 6.7.1 Trace of LDF Generation for the ExampLe 

---------------- SCAN OF DSUC ---------------> 
MODULE INITIAL 

1~2 1~3 2~4 3~4 4~0 

1 S(1)=F(1)=0 F (1) =1 FC1 )=2 

2 S(2)=F(2)=0 S(2)=1 S(2)=2 

F(2)=3, 4 

3 S(3)=F(3)=0 S(3)=2 F(3)=3, 4 

4 S(4)=F(4)=0 S(4)=5 F(4)=6 

TRANSFER t TABLES: 

TX TX(1,.) 

=(2,4,5) 

T T(1,.) 

=(2,4) 

it=1 it=2 

'''''' 
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i=3; O(3)= 1 therefore we insert its processing time : 

F(3)= S(3) + PROC(3) = 2 + 1 =3. We check its successor • 

j=4; X(4)= 3= L k= X(3)= 2 m= DCk,L)= 1 , so we just ~pdate finish 

time of moduLe 3 , for IMC to moduLe 4 

F(3)= F(3) + IMCC3,1) = 3 + 1 = 4 • We check start time of moduLe 

4, S(4)= 5 > F(3) • 

Last entry in DSUC is for moduLe 4 • 

i=4; it has no successors and we update its finish time 

F(4) = S(4) + PROC(4) = 5 + 1 = 6 • 

Now, since it=2~1 , we have a transfer entry. We wilL compute parti a L 

bounds and proceed to Step 6 • PartiaL LDF is shown in FIGURE 6.7.2. with 

PTPX= 6 and LIPX= 4. For'Step'6, i = max 5, first number for a transfer 

moduLe. Since PTPX < PTP = 8 , we wilL insert the transfer by a caLL to 

XFER : i L=1, from PROUTCm)=1 we see that NROUT=1 and L= PROUTCm+1)= 2 '. 

Check-insert aLgorithm succeeds in XS ~ FCL,CCL» test and the insert 

position is ii= CCL)+1=2 , INS= 1 • Since NROUT= 1 , we compute R for 

processor 2 and check against LIPX using the UPRL routine. R = 3<LIPX and 

LIPX rem~ins the same • 

We next update the arrays using the routine UPARR • i= 2 > C(2)= 1. So, 

simpLy C(2) = 2 

VC2,2) 

SC2,2) 

FC2,2) 

= 

= 

= 

i max 
XS = 

XF = 

= 5 . inserted moduLe , 
4 

5 

There are no other transfer entries in the transfer tabLe. New bounds are 

PTP=6 and LIP=4. We compLement WSF to save the LDF given by the set 

{ C,V,S,F,T} and return to Step 2 for the next composition of the same 

permutation. FinaL LDF is shown in FIGURE 6.7.3. 

After aLL 24 permutations with 3 compositions are tested, we output the 

optimaL assignment , which has minimum vaLues PTP = 6 and LIP = 4 , for 

this exampLe • 



122 

-.. 

: • 
I 

P1 1 :-3 2 :-4 
: • 

I : 
3 

I • 1-4 • • 1 I 

P2 
I 

P3 4 

o 2 3 4 5 6 

t PTPX =6 

FIGURE 6.7.2 Partial LDF for the Example 

A=4 

P1 1 2 

P2 3 5 

P3 4 

o 2 3 4 5 6 

t PTP =6 

FIGURE 6.7.3 Final LDF for the Example 
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6.8 Example for the Multi-Run Environment 

The exampLe graph we choose is representative of inner-product of two 

vectors, which when executed iterativeLy can be used to caLcuLate matrix

vector products, both functions forming the basis for many digitaL signaL 

processing appLications. The exampLe process graph for two 4-vectors and 

the processor graph of 4 processors are shown in FIGURE 6.8.1. 

This time, we wiLL consider two sampLe assignments onLy to exempLify the 

difference between minPTP and minLIP assignments in multi-run or Loaded 

environments. 

Assignment X1 
Permutation 

Composition 

A = (1, 3, 6, 2, 4, 5, 7, 8) 

C = (1, 2, 1, 4) y = 
1 

3 6 

2 

4 5 7 8 

The partiaL LDF after Step 5 is iLLustrated in FIGURE 6.8.2. For the 

transfer 1->3 betweeri the moduLes from processor 1 to processor 2, NROUT= 2 

and L1= 3 , L2=4 are the candidate intermediate processors. 

The intervaL is specified by XS=2 and XF=3 Processor 3 is not 

availabLe during this intervaL and CHK-INS routine in XFER returns after 

first triaL since C(3)=1 and, INS=O Since NROUT=2 , processor 4 is 

tested next. CHK-INS routine succeeds in first triaL since XF satisfies 

XF<START(L,1) condition. INS=2 , ii=1 and transfer moduLe 9 is inserted 

before the fi~st moduLe (moduLe 4) on processor 4, increasing X to 11. 

The finaL LDF for X1 is 

Assignment X2 
Permutation A = (1, 

Composition C = (1, 

shown 

8, 4, 

1, 3, 

in FIGURE 6.8.3. 

5, 7, 2, 3, 6) 

3) 

1 

Y = 8 

457 

236 



2 

FIGURE 6.8.1 

2 

Process and Processor Graphs 

for the ExampLe 

124 
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There are no transfers and the LDF generated in Step 5 is final. It is 

illustrated in FIGURE 6.8.4. 

After 4 iterations, 

KPTP1 = 46 and, 

KPTP2 = 39 • 

If·we specify the problem for minPTP (K=Q) , assignment X1 wi II be 

selected as the optimal assignment with PTP = 13 • However, if the problem 

is specified as a minLIP (K ~ 0) assignment, the assignment X2 will 

be saved with LIP= 8 With a repetition period of 8 , X2 will give an 

output at constant periods, whereas the port-to-port time of successive 

iterations for X1 will continuously increase due to queueing on 

processors. Even when the repetition rate is higher, requi ri ng LIP < 8 , 
X2 will perform better than X1 Thus, the use of the minLIP 

criterion in multi-run or loaded environments, in order to maximize the 

overlap and minimize the delay due to queueing, is essential and, any 

perfofmance prediction methodology for analyzing the behaviour of a loaded 

system should be based on the min assignment of the non-loaded system 

instead of the minPTP assignment which cannot exploit the benefits due to 

overlap. 
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- !..AX = 10 

P1 '* j T 

• • 
, 

-2:-3.-1; ~- 5 , I • , 
• \ 

2 • -6 • P3 
• 

3 6 : -8 • P2 

P4 4 5 7 8 

o 2 3 4 5 6 7 8 9 10 11 

FIGURE 6.8.2 PartialLDF for Assignment X1 

,.A.=11 

P1 1 

P3 2 

P2 3 6 

P4 9 4 5 7 8 
, 

o , 2 3 4 5 6 7 8 9 10 11 12 13 
PTP 

FIGURE 6.8.3 Final LDF for Assignment X1 

~..A.= 8 

P1 

I • : I , 
-2~-3:-4:_5 • • 

P3 4 5 7 -8 

P2 8 

2 3 6 
: -8 , 
• , P4 

o 2 3 5 6 7 8 9 10 11 12 13 14 15 

P1F 

FIGURE 6.8.4 LDF for Assignment X2 
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6.9 Verification of PCTAA 

In order to verify that the task assignment aLgorithm for 

partiaLLy-connected networks (PCTAA) is performing correctLy we must 

demonstrate that the aLgorithm 1) generates every possibLe assignment, 

2) generates LDF for feasibLe assignments onLy , 3) terminates , and 

4) terminates with the requested minimum PTP or LIP assignment. 

It is easy to show that PCTAA generates every· possibLe task assignment. 

This is handLed in Steps 1 and 2 of the aLgorithm, compLeted in Step 3. 

Step 1 (permutations) generates every' possibLe ordering of the M moduLes. 

Step 2 (compositions) partitions these ordered moduLes into N groups for 

every possibLe way of grouping M moduLes into N processors. As we have 

mentioned previousLy, we keep the order of N processors fixed whiLe making 

the assignment. At first sight, since the distances between the processors 

are different· i~ a partiaLLy-connected network, one might suspect that the 

processors need to be permuted as weLL. We consider an exampLe with M = 8 

and N = 4 to show that this is unnecessary. Using processor permutations, 

we have ·the sampLe assignment 

Perm. of moduLes 

Composition 

Perm. of processors 

1,3,6,2,4,5,7,8 

1,2,1,4 

4,1,2,3 

ResuLting assignment (i) 

1 2 3 4 Processors 

ModuLes (36) . (2) (4578) (1) 

Using our method with processor or.der fixed, we have 

Perm. of moduLes 3,6,2,4,5,7,8,1 ResuLting assignment (i i) 

Composition 2,1,4,1 Processors 1 2 3 4 

Fixed proc. order 1,2,3,4 ModuLes (36) (2)(4578) (1 ) 

We see that the resuLting assignments (i) and (ii) are the same. ActuaLLy, 

the order in permutations and compositions of case (ii) corresponds to a 

rotate-Left of the order of permutations and compositions of case (i) • 
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-
Since we generate aLL permutations of M moduLes and for each permutation 

aLL non-zero compositions of M moduLes into N processors, permutation of 

processors is not required expLicitLy Bnd by keeping the pr~cessor order 

fixed we assign every moduLe to every position on each processor as it 

traveLs through aLL permutations and compositions, using Steps 1,2 and 3 of 

the aLgorithm. 

Another point of interest is the order of transmissions when a moduLe 

has to send data to more than one non-coresident moduLe. It is cLear that 

the moduLes on the criticaL path shouLd receive their data before the 

others for timeLy finish of the task. RecaLL that we generate LDF in Step 5 

by scanning through the DSUC array which has a fixed order. However, owing 

to the principLe of assignment generation, this ordering is taken care of 

by different permutations, in a manner simiLar to that of the previous 

case. Otherwise, we have to treat the moduLes that receive data in the 

following dominance order, where (H) 'and (U correspond to highest and 

Lowest vaLues, respectiveLy : 

1- DIN (H) 

2- DOUT (H) 
3- IMC IN (U 

4- IMCOUT (H) 

5- PROC (H) 

which requires reordering the eLements of DSUC for every assignment. 

FortunateLy, there is no need to expLicitLy determine the criticaL moduLes 

and the muLtipLe-transmission ordering. 

We now show that the aLgorithm produces LDF onLy for feasibLe 

assignments, which is equivaLent to rejecting aLL non-feasibLe assignments. 

Step 4 of the aLgorithm checks every generated assignment to see if 

precedence reLations specified in the process graph are satisfied between 

coresident moduLes, by a singLe scan through DSUC and ISUC arrays, which 

contain aLL pairs with a direct and indirect precedence reLation between 
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them, respectiveLy. ALso, during the scan through DSUC, non-coresident 

moduLes are checked for the distance between their processors. To minimize 

IPC and deLays due to nonavaiLabiLity of intermediate processors, we have 

imposed the constraint that the interprocessor distance be Limited to two, 

permitting just one intermediate processor for the transfers. The 

assignments that pass these two tests are feasibLe within our definition 

and are forwarded to Step 5 for LDF generation. Any assignment that faiLs 

either test is non-feasibLe and is rejected at this step. 

We have shown that PCTAA generates aLL possibLe assignments and' we get 

every non-feasibLe assignment. We now show that the aLgorithm aLways 

terminates. Since the number of permutations and compositions is finite, 

Steps 1 and 2 terminate after the Last composition for the Last 

permutation. Step 3 assigns the moduLes to processors working on finite 

arrays. Step 4 performs a singLe scan of DSUC and ISUC arrays which are 

finite. Step 5 for LDF generation again performs a singLe scan of the 

finite DSUC array to assign start and finish times to moduLes on 

processors. If there are any entries in the transfer tabLe TX, Step 6 caLLs 

the insertion aLgorithm XFER a finite number of times for the entries in 

TX, where one or two intermediate processors, depending on NROUT, are 

checked for insertion. Thus, the aLgorithm wiLL aLways terminate. 

At ,every possibLe point in the aLgorithm the current bound, partiaL or 

finaL, is compared to the so-far-best bound and aLways the assignment which 

yieLds a bound Lower than the recent-best is saved. Any assignment that is 

equaLLy weLL or worse, compared to the recent one for the objective under 

consideration, is rejected. Therefore, the aLgorithm terminates with the 

minPTP or minLIP assignment, as the optimaL soLution requested. 
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6.10 Complexity of PCTAA 

The computationaL compLexity of the task assignment aLgorithm is a 

function of the compLexities of each of its steps. Step 0 is the 

initiaLization step and invoLves no computation. The compLexity of the 

remaining six steps is individuaLLy discussed in Appendices A - F : 

Generation of each successive permutation is performed using a singLe 

transposition (exchange) of two eLements of the previous permutation. 

Compositions, Likewise, increment and decrement onLy a determined pair of 

the previous composition. InitiaLization of the assignment invoLves a 

singLe scan through the moduLes of the process. The compLexity of 

constraint checking depends on the assignment and possibLy many of the 

generated assignments are rejected at this step. For feasibLe assignments a 

compLete scan of DSUC is required for constraint checking. LDF generation 

is very efficient as has aLready been stressed many times invoLving just a 

singLe scan of DSUC and the process of transfer tabLe manipuLation, if 

required, invoLves the insertion of just· a few transfer moduLes. 

It is cLear that aLthough each iteration of the aLgorithm is efficient, 

its computationaL compLexity is dominated by the number of iterations of 

Step 1, the permutations, which exhibits factoriaL growth on the number of 

moduLes. The totaL number of assignments to be considered for constraint 

checki~g in Step 4, for a system of M moduLes and N processors, is the 

number of permutations times the number ~f compositions, given by 

This Limits the usefuLness of "the aLgorithm to probLems with a smaLL number 

of moduLes. 

The next chapter discusses some methods that can be empLoyed to reduce 

the compLexity of the aLgorithm and extend its use to Larger probLems. 
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7.0 

SOME METHODS TO REDUCE COMPLEXITY 

7.1 Reduction in the Number of Modules 

The complexity of the proposed PCTAA increases as a function of the 

number of modules in the system. 

To analyze larger systems, it may be possible to group the modules into 

clusters to reduce the number of modules for the assignment. An example of 

clustering is depicted in FIGURE 7.1.1 , where a system of modules is 

reduced to a system of 4· modules, resulting in 24 permutations for the 

assignment against 40320 permutations for the original system. 

Another possibility is to partition a system and analyze the parts 

separately or instead of considering all the modules, onl~ time-critica~ 

parts may be treated in the assignment process and then integrated into the 

system. For these special cases the proposed algorithm may be employed 

without modifications. Fo~ other systems, however, the algorithm may be 

modified as discussed in the next two sections. 

2 

FIGURE 7.1.1 Exam~le of Module Clustering 
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7.2 Reductions at Constraint Checking Phase 

The first reduction technique we proposed is based on the observations 

of a number of· assignments for various task graphs and fuLLy or 

partiaLLy-connected processor networks. As an exampLe we refer to TABLE 

7.2.1 corresponding to some feasibLe assignments for FIGURE 6.8.1. 

Observation 1 : The minPTP and minLIP assignments are in the min.~IMC 
subset of the feasibLe assignments, where 

..L. IMC = LIMC(i,j) 

io( j 

X(i)~X(j) 

i = 1, •••• ,M 

This is an expected situation since minPTP and minLIP are proposed to 

minimize IPC in the two environments ·and Z-IMC corresponds to :::EIPC with 

interprocessor distances. of unity. Due to LocaLity restriction, 

contribution due to distance is at .most 2 * IMC's, where Z-IPC is given by 

Z IPC = ::2: ·IMC(i,j) * O(k,l) 

io( j 

k=X(i)~X(j)=L 

IPC time added to each moduLe processing time infLuences the waiting 

period, i.e. the start time, of the successors of the moduLe. Considering 

that the finish time on each processor is the sum of processing times, IPC 

times and the idLe times depending on the assignment, 

minimizing IPC time heLps to minimize PTP and LIP for baLanced 

since the processing times are fixed. 

we see that 

assignments 

Observation 2 The minLIP assignments occur among the min ~ IMC 

assignments with interprocessor communication being restricted to adjacent 

processors. 

This means that in the muLti-run environments we obey the principLe of 

LocaLity of communication in the strict sense. This then resuLts in many 



TABLE 7.2.1 ExampLe for the ReLation of PTP-LIP and ~ IMC 

* :Minimum PTP/LIP among the assignments 

Composition 

Permutation of IIPC ~IMC PTP LIP 

FeasibLe Assign. 

13624578 1, 2, 2, 3 13 10 17 15 

1, 2, 3, 2 17 12 21 19 

2, 1, 2, 3 15 11 17 14 

2, 1, 3, 2 " 19 13 21 14 

3, 1, 2, 2 18 11 18 12 

3, 2, 1; 2 17 11 Rejected 

3, 2, 2, 1 17 11 20 14 

1, 2, 1, 4 9 8 * 13 11" 

1, 2, 4, 1 13 10 19 17 

2, 1, 1, 4 11 9 17 15 

2, 1, 4, 1 15 11 19 12 

1, 1, 1, 5 11 8 17 16 

3, 1, 1, 3 14 9 16 13 

3, 1, 3, 1 14 9 16 12 

3, 3, 1, 1 20 13 24 18 

18457236 1, 1, 3, 3 8 8 15 * 8 

· · · · · 
· · · · · 
· · · · · 

133 



134 

simpLifications in the aLgorithm. We have to simpLify the hardware 

representation such that the PROUT array is not required any more and the 

entries of the distance array are to be -modified as given by 

__ {1 , 
D(k,L) 

o , 

if D(k,L) = 1 

if D(k,L) > 1 

ALso, in GENLDF routine we may omit the D(k,L»1 test since there can be 

no transfers, and Step 6 of transfer tabLe manipuLation is omitted totaLLy. 

by 

by 

We propose a rough initiaL bound for the sum of IMC's , SIMC, as given 

SIMC = 

Z IMC(i,j) 

ic{j 

A simiLar initiaL bound can be used for initiaLizing PTP/LIP, as given 

"2. PROC(i? + Z IMC(i,j) 
i > io(j 

InitiaL PTP/LIP = 

Then, at the constraint checking phase, when DSUC is scanned for precedence 

or LocaLity tests, IMC between non-coresident pairs can be summed and if 

the sum exceeds SIMC, the assignment can be rejected. Otherwise, SIMC wiLL 

be updated with the new sum. For the muLti-run environment, moreover, 

LocaLity test wiLL reject any assignment with D(k,L) > 1 • 

Considering th~ number of evaLuated assignments at this step, it may be 

wiser to separate the aLgorithms for the .singLe-run and the muLti-run 

environments to avoid the environment checking steps which wiLL accumuLate 
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SINGLE-RUN ) 

Initialize 
data . 

(PTP SIMC) 

Generate 
Next 

Assignment 

Constraint -- - - - ---.. Checking 
(D ~ 2) 

~ 
SIMC:=ZIMC 

Generate 
LDF 

Check PTP 

- - - - - - - - - --.. 
Insert Transfer 
Modules on first 
avail. proce.ssor 

Check PTP 

FIGURE 7.2.1 Single-Run PCTAA for Reduction 
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( MULTI-RUN 

Initiplize 
data 

(A, SIMC ) 

Generate Next 
Assignment 

Constraint checking 
--------~ 

(D ~ 1) 

"'IMC~V 
N 

SIMC:=ZIMC 

Generate LDF 
"'-

Check A.. 

FIGURE 7.2.2 Multi-Run PCTAA for Reduction 
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to some unnecessary overhead. FIGURE 7.2.1 and FIGURE 7.2.2 outLine the 

aLgorithms for the two environments. 

Other reductions may be possibLe due to additionaL constraints. For 

exampLe, we have mentioned the storage capacities of processors versus the 

code Length, and the 1/0 probLem. If onLy certain processors have 

communication capabiLity with the outside worLd, the start and terminaL 

moduLes shouLd be assigned to those processors and this can be checked at 

the constraint checking phase. ALso, for SEC graphs in a muLti-run 

environment, we know that the entry and the exit nodes of the process graph 

shouLd not be assigned to the same processor for minLIP objective. 

Many constraints Like the ones we have mentioned can be incorporated 

into the constraint checking phase and heLp to reduce the number of LDF's 

generated or transfer tabLes manipuLated <Steps 5 and 6 ). However, 

constraint checking is performed for every generated assignment and 

therefore reducing the number of the generated assignments is highLy 

desirabLe. This subject is qiscussed in the next section. 
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7.3 Reductions in Assignment Generation 

In PCTAA we have used permutations and compositions to generate every 

possible assignment of M modules to N processors. This method of assignment 

generation is useful in arbitrary partially-connected processor networks. 

In practice, however, we will need to assign modules of some process graph 

onto a given network and it may be possible to exploit the topological 

properties of the network. 

When the processor networks under consideration are regular and possess 

some symmetry property, the task assignment problem can be handled more 

efficientLy. The processor muLtistage networks (e.g. PON) introduced in 

Chapter 2 are homogeneous in the sense that eich processor has an identicaL 

view of the network. Due to this property, for single-entry graphs, the 

first module can be arbitrariLy assigned, for exampLe to processor 1. Then 

we can ignore module 1 in the permutations and this gives a saving of M 

iterations. Further, if 1/0 constraints are imposed on the network, -which 

is highLy. probabLe in practice- , the. terminaL moduLes may be left out in 

the permutations by numbering the processors appropriateLy. For SEC graphs, 

for exampLe, fixing the entry in the exit moduLes gives a totaL saving of 

M(M 1) iterations, which is considerabLe for Large M. For exampLe, for 

M=8, the number of permutations wiLL reduce from 40320 to 720 with 1/0 

restrictions. 

In a homogeneous network, the first processor to be assigned can be any 

processor of the network, and with our generaL task assignment procedure, N 

repLications of the same communication pattern wiLL be evaluated, each 

starting at one of the N processors. The number of times each pattern is 

repLicated corresponds to the number of equivaLence cLasses induced on the 

set of processors, D = {1,2, ••• ,N} , by the permutation group of the set, a 

weLL-known topic investigated in graph theory, in number theory, or 

combinatoriaL anaLysis in generaL [BECK64J, [LIU68J, [BERG71J. 

Interconnection networks can be considered 

bijection, i.e. one-to-one and onto mapping, 

addresses (or numbers). To find the equivalence 

as functions, each a 

on the set of processor 

cLasses induced by the 

functions on the set of processors, we can represent the symmetries in the 
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network by the permutation group of the processors. We wiLL expLain using 

an exampLe. In the 4-processor network in FIGURE 7.3.2 arranged in the form 

of a square, D = {1,2,3,4} and the permutation group G consists of the 

foLLowing permutations: ( I11 is the identity eLement of the group, 

I1 2- 4 represent rotations and 

respect to the diagonaLs.) 

represent the symmetry 

I1~ =(11 2 3 4) ; I12 =(1 2 3 4) 
2 3 4 2· 3 4 1 

; ~ ='(1 2 3 4); I14 =(1 2 3 4) ; 
3 4' 1 2 4 1 2 3 

I16 =(1 2 3 4) 
. 3 2 1 4 

In terms of cycles, I1i~(1)4; I13-~(4)1 ; I1 ~(2)2 ; 
1 2 2-3 

I14~(4) ; I1.s~(1) (2) and ITc; ~(1)' (2), where the numbers in 

the brackets represent the cycLe Lengths. 

The cycLe index PG of the group is defined by 

with 

where i denotes the cycLe Lengths and b. the muLtipLicity of each cycLe 
1 

and, for our exampLe, it is given by 

EmpLoying p6Lya's theory of counting [DEBR64J, we obtain the number of 

equivaLence cLasses of functions from domain D to range R = {1,2,3,4} by 

evaLuating [PGJ~.=JR" which equaLs 8 for our exampLe, corresponding to 

the symmetries of the square. This means that, if we permute the order of 

the four processors arranged at the vertices of a square, the number of 

distinct permutations is 24/8 = 3 , ,for exampLe the set {1234,1243,1324~, 

and we do not need aLL of the 24 permutations. SimiLarLy, for an 8 

processor PON, where the processors are arranged at the corners of a cube, 

using the symmetry of the cube with respect to its vertices, the number of 

identicaL patterns is 24, requiring 40320/24 = 1680 distinct permutations. 
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1 1 

FIGURE 7.3.1 Example Process Graph (M = 5) 

FIGURE 7.3.2 Example Processor Graph (N = 4) 
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ObviousLy, extending this method to higher sized networks, determining the 

required processor permutations themseLves and automatization of the 

permutation generation process require some more work to be done, but these 

probLems wiLL be soLved onLy once for a given network. Then, assuming that 

this can be done, we can propose the foLLowing modified PCTAA for reguLar 

networks. 

If we wouLd have had N packages of moduLes to be assigned to N 

processors, we wouLd have permuted the processors and assigned a package to 

each. This requires partitioning the set of M moduLes into N subsets, i.e., 

the probLem of "distributing M distinct objects into N Like ceLLs, with no 

ceLL empty". The number of ,k-partitions of an n-set is given by the 

'StirLing number'( of the second kind ), which satisfies the foLLowing 

recurrence equation 

S(n,k) = S(n-1,k-1) + k S(n-1,k) 

and identities 

S(n,1) = S(n,n) = 1 

S(n,k)= 0 for k > n 

TABLE 7.3.1 shows S(n,k) up to and incLuding S(9,9). 

n I k 1 2 3 4 5 6 7 8 9 

1 1 

2 1 1 

3 1 3 1 

4 1 7 6 1 

5 1 15 25 10 1 

6 1 31 90 65 15 1 

7 1 63 301 350 140 21 1 

8 1 127 966 1701 1050 266 28 1 

9 1 255 3025 7770 6951 2646 462 36 1 

TABLE 7.3.1 k-partitions of n, S(n,k) 
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Then, if we consider the moduLe set of FIGURE 7.3.1, where M=5, to be 

assigned to 4 processors in FIGURE 7.3.2, the number of distinct 

partitionings is given by, 

S(5,4) = S(4,3) + 4 S(4,4) = 6 + 4.1 = 10 

which corresponds to the 10 partitionings Listed in TABLE 7.3.2. 

(15) (2) (3) (4) (1 ) (24) (3) (5) 

(1 ) (25) (3) (4) (1) (2) (34) (5) 

(1 ) (2) (35) (4) (13) (2) (4) (5) 

(1 ) (2) (3) (45) (1) (23) (4) (5) 

(14) (2) (3) (5) (12) (3) (4) (5) 

TABLE 7.3.2 Partitions for the ExampLe 

S(5,4) = 10 

Let us consider the assignment of the partitioned set {12; 3; 4; 5} to 

the processors whose order is permuted, keeping the partition incLuding 

moduLe 1 on processor 1 due to symmetry. Thus we have 3! assignments 

corresponding to this set. 

Processor 

1 2 3 4 
(12) (3) (4) (5) • •••••• a 

(12) (3) (5) (4) ••••••• b 
"-

(12) (4) (3) (5) • •••••• c 

(12) (4) (5) (3) • •••••• b 

(12) (5) (3) (4) • •••••• c 

(12) (5) (4) (3) • •••••• a 

Letters a, b, c denote equivaLent assignments and we see that indeed we 

have 3 distinct assignments. Then for the 10 partitionings with 3 processor 

permutations each, the totaL number of assignments is"30. With PCTAA 
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PROCEDURE BEGIN ; 

STEPO. InitiaLize data 

Do ; 

STEP1. Generate next moduLe partition 

Do ; 

STEP2. Generate next processor permutation 

STEP3. InitiaLize the assignment, check c.onstraints 

STEP4. G~nerate LDF and check bounds 

STEPS. Generate finaL LDF and check bounds 

END ; 

END ; 

Output optimaL assignment 

END PROCEDURE ; 

FIGURE 7.3.3 Modified Task Assignment ALgorithm 
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without any restrictions we wiLL generate M!(~=~) = 480 

assignments. If we restrict moduLe 1 to processor 1, the totaL number wiLL· 

be 4!(4)= 96. The advantage of the method gained by expLoiting the network 

symmetry is obvious. 

Then, if the network topoLogy is known and fixed, distinct permutations 

on the order of the processors can either be saved in memory for smaLL N or 

can be generated during the computations using an aLgorithm. For each given 

process graph with M nodes, an aLgorithm to generate S(M,N) partitions of 

moduLes in topoLogicaL order may be empLoyed and the task assignment 

aLgorithm may then be modified as shown in FIGURE 7.3.3. It must be noted 

that, apart from the difference in assignment generation phase,i.e. Steps 1 

and 2, the precedence checking part of Step 4 of PCTAA is not required 

since the ordering of the moduLes within each partition aLready obeys the 

precedence constraints. This brings a reduction due to eLimination of 

dupLicate or infeasibLe assignments. If we empLoy the .method of the 

previous section, Step 5 wiLL aLso be eLiminated for minLIP assignments. 

Then such a method wiLL suffice to cover aLL the required assignments at a 

Lower computationaL cost, owing to the symmetry of the network. 

Since the number of processors is usuaLLy much Less than the number of 

moduLes, even if the network topoLogy cannot be expLoited, using I/O 

constraints, the compLexity of permutations can be reduced. The· separation 

of the processes of generating N moduLe packages and the permutation of 

processors aLso permits expLoitation of the symmetry of the process graph 

to eLiminate equivaLences, aLthough the probLem seems to be Less 

straightforward than that of the network topoLogy, since the symmetry of a 

process graph changes dynamicaLLy with each assignment, due to the 

distance-varying contribution of IMC. 

Variations or combinations of various methods discussed in this chapter 

can be appLied appropriateLy in order to reduce the computationaL 

compLexity and this wiLL aLLow the anaLysis and task assignment in Larger 

,systems. 
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CONCLUSIONS AND RECOMMENDATIONS 

FOR FURTHER RESEARCH 

8.1 Summary and Conclusions 
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In this study, we have presented a miniaturized image of the macroscopic 

problems in distributed processing environment, by giving a brief survey of 

the hardware and software environments. 

We have concentrated on two important probLem areas 

Interconnection and Task assignment. 

For the interconnection of processors, we have introduced PON, a 

reguLar, partiaLLy-connected, muLti-stage processor network which provides: 

i) expandabiLity and moduLarity, requiring a fixed number of 

connections at each processor,-which is the same as the number of 

I/O ports-,regardLess of the size of the network; 

ii) fauLt-toLerance due to the presence of aLternate path~; 

iii) homogeneity, which can be expLoited in task assignment or in 

preparing monitor software for the processors; 

iv) reguLar interstage connection pattern, which permits quite a 

number of row-coLumn aLignment patterns and enhances incrementaL 

expandabiLity,-as Low as 4 processors-, in contrast to other 

muLtistage networks with variabLe interstage patterns, where onLy 

particuLar sizes and aLignments are permitted and an increase in 

the network size can be achieved by doubLing the height of the 

cyLinder and by incrementing its circumference by one extra stage; 

v) interconnecti~n of each pair of processors in the network without 

the need for direct paths, a property that makes the network 

reaLizabLe and eases its impLementation. 

We have derived anaLyticaL expressions for some deterministic properties 

of. PON, mainLy, the average path Length and processor reachabiLity, and 

compared it to other networks mainLy the MSN's and other unidirectionaL 
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cube-type interconnection networks. The comparison reveaLed that for the 

same number of processors, the average path Length of PON is aLways Lower 

than that of MSN , and reachabiLity is around 75%. A rough comparison of 

costs aLso favoured PON for N~32. Later, whiLe determining the appropriate 

storage representation of partiaLLy-connected networks, higher reachabiLity 

property of bidirectionaL PON's, -which permits over 50% reachabiLity 

within a path Length of 2, for moderate sizes-, is expLoited to simpLify 

the storage representation which in turn reduced the number of intermediate 

processors to be tested for avaiLabiLity in the task assignment process. 

With its simpLe 

candidate for the 

but powerful structure, PON apparently,is a promising 

interconnection of multiprocessors, although further 

study is required to determine its area compLexity if VLSI impLementation 

is of concern. 

The second problem we have addressed is the task assignment problem. In 

any distributed processing environment, ~ith the exception of identical 

processors forming a fuLLy-connected network of uniform interprocessor 

distances, proper assignment of the software moduLes that comprise a task 

to proce~sors is essentiaL for minimum-time. completion of the task~ by 
, 

achieving Load balance and minimum interprocessor communication. 

The environment we considered is described by a modeL where the software 

component, the process graph, is assumed to be a singLe-entry directed 

acyclic graph exhibiting the precedence relations between the moduLes, and 

the hardware component, the processor graph, is based on the regular 

interconnection of identical processors that form a partialLy-connected 

network with interprocessor distance of unity betwee~ adjacent processors. 

We distinguished between two operational modes . , single-run where the 

minimum completion time is 'of concern, and multi-run where the overlap 

between successive iterations and the minimum re-initiation time are 

important, and accordingLy, we proposed two different objective functions, 

minPTP and minLIP, for the two modes, ~espectively. We have dembnstrated 

that the minLIP criterion introduced in this study is a robust performance 

measure in the multi-run mode jointly optimizing IPe and load baLance, -as 



achieved by the minPTP criterion in tne singLe-run mode-, 

outperforms minPTP criterion by maximizing the overLap. 
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and it 

We determined the dominant parameters for the task assignment probLem in 

partiaLLy-connected networks to be the precedence reLations in the process 

graph, the interprocessor distances, the number and avaiLabiLity of 

intermediate processors for indirect transfers, the seLection of the proper 

processor when more than one is avaiLabLe, and the reaL-time constraints 

given as minPTP or minLIP. 

We formuLated 

environments. The 

the discrete optimization equations for the two 

compLexity of the probLem prevented the use of cLosed 

form mathematicaL optimization techniques and dictated an aLgorithmic 

soLution, which benefits from additionaL constraints in reducing the 

soLution space, and can be taiLored easiLy to satisfy varying demands for 

optimaL or suboptimaL soLutions. 

The important steps of the proposed task assignment aLgorithm are the 

sampLe assignment generation, the constraint checking and the LDF 

generation, which enables description of the generated assignment in 

graphicaL form. LDF generation and transfer tabLe manipuLation are the 

unique features of the aLgorithm and are handLed very efficientLy using a 

singLe scan of the associated List of process moduLes or the transfer 

moduLes. In the constraint checking. phase, both direct and indirect 

precedence reLations are checked and communication is restricted to 

processors with a maximum separation of two Links. Any assignment that 

yieLds for PTP or LIP a vaLue Lower than those of the past assignments is 

made the new optimaL assignment temporariLy, and after the finaL iteration 

a moduLe-to-processor assignment that is optimaL with respect to PTP or 

is achieved. 

We have discussed the performance characteristics of the proposed 

aLgorithm we showed that it generates aLL possible assignments, -generates 

LDF for feasibLe assignments onLy, and it terminates with an optimaL 

assignment. Its computationaL compLexity is mainly a function of the number 

of moduLes and hence is usefuL for smalL systems. 
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We have discussed the possibiLities for reductions in module number, at 

the' constraint checking phase, and in assignment generation using the 

symmetries in the network. We have _observed that minPTP and minLIP 

assignments are in the subset of minzIMC assignments and moreover, minLIP 

requires strict locality of communication. This simplified LDF generation 

and eliminated the transfer table manipulation step for minLIP assignments. 

In order to exploit the symmetry properties of the network in reducing the 

number of generated assignments, it was necessary to modify the algorithm 

such that modules and processors are treated separately. This approach also 

permits reductions due to task symmetry if possible, and enables the 

analysis of systems with a larger number of modules. The modified task 

assignment algorithm is aLso proposed. 

In the Latter part of this study, we have presented algorithms for 

various steps of PCTAA and we have not implied any specific language for 

the actual implementation. We' have tO,note, however, that the computational 

and coding efficiency of the PCTAA can be greatly improved if many of its 

segments are implement~d in an assembly Language. Moreover, the proposed 

algorithms are based' on depth-first search and therefore it might be more 

efficient to execute them on multiprocessors, the only communication 

required being the exchange of the most recent best values for PTP or LIP. 

In assignment generation, it is assumed that the number of processors, 

N, is given. However, as it was discussed in the section on related 

research, this N. might not be optimal. A modification in Step 2 

(compositions) of PCTAA in order to permit "empty cells" as well during the 

distribution of modules to processors wilL allow generating assignments 

with N ~ N .l opt aval but at a cost of a factor of N. 
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8.2 Recommendations for Further Research 

Distributed processing is an area of ~ever-growing interest due to the 

Limited speed achievabLe with singLe processors of current semiconductor 

technoLogy, on one hand, and the increasing demand for higher computationaL 

speeds, on the other~ However, many issues reLated to the interconnection 

and programming of muLtiprocessors, -each presenting interesting areas. for 

research-, must be treated efficientLy in order to reaLize the potentiaL 

benefits of distributed processors. 

Regarding the topic of processor interconnections, the network presented 

in this study is reguLar and easiLy i~pLementabLe, but it is expandabLe at 

best in increments of four processors. This is acceptabLe in systems 

impLemented in VLSI, but, for distributed systems of muLtipLe 

microprocessors, increments fewer than those provided with this network 

might be desirabLe. Various processor interconnection topoLogies, for 

better incrementaL expandabiLity, or for other possibLe requirements for 

specific probLems, deserve further study. 

ReLated to the probLems in software design for distributed processing, 

we have mentioned the three interreLated research areas -Languages and 

aLgorithms, program partitioning, and assignment-, and discussed the 

assignment probLem a?suming that the process graph is given. The particuLar 

wayan aLgorithm is represented by a. process graph and input to the 

assignment phase, affects the overaLL performance of the resuLting optimaL 

assignment. DeveLopment of efficient methods for task partitioning itseLf 

in order to achieve better IMC characteristics, or a combined treatment of 

the partitioning and assignment phases, where the status information of one 

phase is fed back to the other, might provide better resuLts. 

The contribution of IMC to the overaLL cost is distance-dependent and is 

determined by each moduLe-to-processor assignment generated. Due to the 

Saturation effect, the optimaL number of processors to be used in 'a system 

before the interprocessor communication begins to degrade the system 
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performance is an important design parameter. Assuming a fuLLy-connected 

network with unit distance between adjacent processors, it might be 

possibLe to compute Lower bounds for th~ compLetion time, the re-initiation 

period and the number of processors as a function of the characteristics of 

a given process graph. However, we have to note that the probLem of 

determining bounds for the generaL task assignment modeL is a very 

difficuLt one that requires a Large amount of experimentaL work, which is 

hindered by probLem dimensions due to the combinatoriaL nature of the 

assignment process. 

In our modeL, it is assumed that each processing eLement performs both 

of the tasks of processing and interprocessor communication. When the 

processing eLements are composed of two separate processors, one for each 

task, LDF generation needs to be modified accordingLy, by keeping separate 

start and finish time arrays for each processor. ALso, we have concentrated' 

on conventionaL structures based on the controL fLow execution principLe. 

The effect of task assignment in other systems with different execution 

mechanisms may be investigated with the strong expectation of improved 

performance. 

During LDF generation, we have assumed that the processors operate with 

a poLLing mechanism for the input data and each moduLe is assumed to occupy 

an indi,visibLe time bLock with its processing and IPe time on its assigned 

processor. It may be possibLe to give higher priority to communication such 

that. after the processing time of a moduLe, a transfer operation whose data 

is avaiLabLe during the moduLe processing time is inserted before the IPe 

time for that moduLe. Another strategy that can be investigated is the 

"transmit-first" strategy, where each processor wilL be assigned IPe times 

before the processing times, according to the precedences. Many other 

strategies may be incorporated in the LDF generation phase and this is a 

usefuL area to pursue. 



151 

The modeL of the presented aLgorithm is based on a principLe of 

"toLerant" LocaLity of communication, where the interprocessor 

communication distance is restricted to two, but, it has been observed that 

periodic task executions favour "strict" LocaLity, the communication being 

restricted to adjacent processors. The reLation of the concept of toLerant 

and strict LocaLity of communication to the aLgorithm-network structure can 

be investigated further. 

F6r dynamic environments, where the system parameters change sharply 

over time, efficient dynamic task assignment strategies, which require 

mechanisms for the measurement of current system state and prediction of 

future beh~viour, and that aLLow tasks to be re-assigned for optimaL 

performance present another interesting area for research. 

Further study in assignment generation methods' that expLoit the' 

symmetries in the process and the processor graphs in order to avoid 

dupLicate assignment patterns is essentiaL, and this topic seems to present 

a very interesting research area for the soLution of task assignment 

probLem in Large systems within a reasonabLe computationaL compLexity. 
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There are many methods to generate permutations [SEDG77J. The aLgorithm 

we choose is taken from [HOLL82J and [NIJE78J, where successive 

permutations of M eLements differ onLy by a transposition. The aLgorithm is 

given in FIGURE A.1. 

Each permutation ACi), i=1,2, •• ,M is encoded by an array ECi), 

i=1, •• ,M-1 , caLLed an inversion vector, such that ECi) gives the number of 

eLements preceding ACi+1) that are Larger than ACi+1). For exampLe, for M=4 

three possible permutations are encoded as foLLows. 

A = C1,2,3,4) . ~ E = CO,O,O) 

A = C2,1,3,4) ~ E = C1,0,0) 

A = C3,4,2,1) ~ E = (0,2,3) 

If a permutation can be generated from its predecessor by interchanging 

A(1) and A(2), the signature, SIGN, of such a permutation is defined to be 

even, which is odd otherwise. The signature is set to be even on first 

entry and aLternates between even and odd with each subsequent entry. Then, 

for each entry, if SIGN = 1 Ceven) we simpLy interchange eLements A(1) and 

A(2) and set SIGN = ~1 (odd) before return. If SIGN = -1, a number GCi) is 

computed to determine which entries to interchange next, and SIGN = 1 

before return. When GCi) faiLs to satisfy the conditions to determine 

interchange indexes, this means that finaL permutation has been generated 

and LASTP = 1. 

The average of the totaL number of computations invoLved is computed in 

[NIJE78J to be bounded by M!(2e-2). The totaL compLexity, however, ;s 

o CM!) • 



(A) [first entry] A(i) = i , i = 1, •• ,M , 

SIGN = 1 , Return. 

(8) [subsequent entries] If SIGN = -1 go to (C) • Else set 

SIGN = -1, interchange A(1) and A(2) , Return. 

(C) Set SIGN = 1, 

Calculate 

E(i) = { jl j ~ i, A(j) > A(i+1) }, 

M-1 

G(i) = L E(i) , 

i=1 
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until either G(i) is odd and E(i) < i , or G(i) is even and 

E(i) > O. In the first (second) case search A(k), k=1, •••• ,i , 

for the largest (smallest) number less (greater) than A(i+1) 

and interchange the two. If A(i) = 1, i = 1, •• ,M , set LASTP = 1. 

Return. 

FIGURE A.1 Algorithm PERMUTE 
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The foLLowing aLgorithm adapted from [NIJE78] generates the next 

composition of M moduLes into N parts for the N processors every time it is 

invoked. InitiaLLy, before entry a fLag is cLeared i.e. LASTC = O. After 

aLL the compositions corresponding to a permutation are generated, LASTC=1. 

Then, next permutation again resets LASTC = 0, the process repeating untiL 

after aLL compositions for the Last permutation are generated. 

The number of compositions of Minto N non-zero parts is given by 

Thus, the compLexity of the process of generating aLL compositions is a 

functi6n of M and N, and is Lower when the vaLue of M is cLose to N. 

(A) [first entry] L(1) = M - N + 1 ; L(k) = 1 , 2 ~ k ~ N • Return. 

(B) [subsequent entries] h = min {kIL(k)#1} ; T = L(h) ; 

L(h) = 1 ; L(1) = T - 1 ; L(h+1) = L(h+1) + 1. 

If L<N)=M - N + 1 , set LASTC = 1. 

Return. 

FIGURE B.1 ALgorithm COMPOSE 
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This step finalizes the assignment generation phase and initializes the 

working arrays. Its complexity is oCM). 

~b§Q!HIJjr:L.!!gI~ 

Procedure: INITA ;begin 

l:=1; [index to P] 

For k:=1 to N do [for each processor] 

begin 

CCk):=LCk); [copy composition] 

For j:=1 to CCk) do [for max.module'capacity of k] 

begin 

i:=PC L) ; 

YCk,j):=i ; 

OC;) :=j ; 

XC;):=k ; 

SCk,j):=O ; 

FCk,j):=O ; 

l: =l+1 

end . [j] , 
end ; [k] 

end [INITA] 

[module] 

FIGURE C.1 Algorithm INITA 
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The feasibiLity of the assignment is checked using aLgorithm FEASA, 

given beLow. REJ = 0 before entry and is checked upon exit. If REJ = 1 an 

error return is taken to Step 2. 

The compLexity of the. aLgorithm is a function of the number of dependent 

pairs in the process graph, i.e. between oeM) and 0(M2). 

(A) For aLL moduLe pairs (i,j) in DSUC , check: 

If (i,j) coresident and O(i) > O(j) go to (C). 

If (i,j) non-coresident, check the distance between their 

processors (k,L) 

If D(k,L) > 2 go to (C). 

Otherwise, go to (8). 

(8) For aLL moduLe pairs (i,j) in ISUC , check: 

If (i,j) coresident and O(i) > O(j) go to (C). 

ELse, Return. [normaL] 

(C) Set REJ = 1 • Return. [error] 

FIGURE D.1 ALgorithm FEASA 
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This step scans DSUC array just once and generates an LDF of the 

assignment by caLLing a routine GENLDF. It then computes the current 

bounds. For K = 0, current bound PTPX is compared to PTP. For K t 0, 

current bound LIPX is compared to LIP. If current bound is not better than 

the Last bound, the assignment is rejected and we return to Step 2. 

Otherwise, transfer tabLe is checked. If it is empty, i.e. it= 1, the 

generated LDF is compLete and we save the assignment PTP = PTPX , 
LIP = LIPX and WSF = WSF ; and return to Step 2. If 

Step 6. Here, we present GENLDF and CBOUND (compute 

FIGURE E.1 and FIGURE E.2, respectiveLy. 

it > 1, we proceed to 

and check bounds) in 

The compLexity of the aLgorithm is a function of the size of DSUC, i.e. 

the number of directLy dependent moduLe pairs in the process graph. Since 

for a process graph of M nodes, the maximum number of precedence pairs is 

M(M-1)/2, it is o(M2). For SEC graphs, compLexity of the aLgorithm is 

between oeM) and o(M2). 



GENLDF 

it=l :Init.Transrer Tables 
i=l :First Module 

Record (i,j),m, 
XF'I XS. 
XS=F(i) 
XF =XS+IMCCi, j) 
next it 

FIGURE E.1 ALgo~ithm GENLDF 
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(A) [compute current vaLues PTPX and LIPX] 

Set PTPX = F(1,C(1» and 

LIPX = F(1,C(1» - S(1,1). 

Then for k = 2, ••• ,N check and compute: 

If PTPX < F(k,C(k» , set PTPX = F(k,C(k». 
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If LIPX < F(k,C(k» - S(k,1) , set LIPX = F(k,C(k» - S(k,1). 

Then, go to (B). 

(B) If K = 0 and PTPX ~ PTP or 

If K ~ 0 and LIPX ~ LIP then set REJ= 1 

[reject the assignment], Return. 

Otherwise, Return. 

FIGURE E.2 ALgorithm CBOUND 
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This step scans the transfer table and for each entry, an algorithm XFER 

is called in order to insert the transfer module on available processors. A 

flag REJ is initialized to zero for each assignment and is tested upon each 

return. If REJ = 1, the current assignment is not valid and we return to 

Step 2. If REJ = a after all insertions, we have an optimal assignment 

candidate PTP = PTPX , LIP = LIPX and WSF = WSF • Then, we go to Step 2 

for the next assignment. 

We present a flow diagram in FIGURE F.1 for the algorithm XFER. The 

three algorithms used by XFER, namely, 1) CHK-INS, checks insertion, 

·2) UPRL, updates Rand LIPX after each possible insertion, and 3)UPARR, 

updates { C,Y,S,F} arrays after insertion; are presented in figures F.2 

to F.4. 

The complexity of the algorithm depends on the number of transfer table 

entries and NROUT. NROUT is at most 2 and for assignments that have not 

been rejected up to this step, the number of transfer modules is usually 

small. Since the first available processor is accepted in single-run 

operation mode, its complexity is negligible, whereas in muLti-run mode at 

most two processors have to be checked for insertion and minimum LIPX. 



XFER 

m=TX(~1);xs=TX(~2);XF=TX(~3) 
NROUT- PROUT (m) : count 
i1:1 : 1 st processor 
1:PROUT(m+i):candidate processor 
IN5:0 : no insertion yet . 

FIGURE F.1 Algorithm XFER 

r=row index 
to transfer 
table,TX. 

REJ=D 
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ii= 1 [first moduLe on L J. 

If S(L,ii) ~ XF go to (D) [front emptyJ. ELse, 

if XS ~ F(L,e(L» , set ii= e(L)+ 1 and go to (D) [end emptyJ. 

Otherwise, go to (8) [intermediateJ. 

(8) [search sLotJ For ii= 2,3, •• ,e(L), check 

If S(L,ii) ~ F(L,ii-1) [a sLotJ and S(L,ii) > XS 

[reLevant sLotJ , go to (e). 

ELse, after ii= eel) go to (E) [no sLotJ. 

(e) [correct time sLotJ 

If F(L,ii-1) > xs [Late start, cannot insertJ go to (E). 

ELse, if· S(L,ii) < XF [earLy finish, cannot insertJ go to (E). 

Otherwise, go to (D) for insertion. 

(D) [insertJ Set ip(iL)=ii for the order of insertion on (iL) th 

processor checked (iL= 1,2) , and set 

INS = INS + iL [update Insert fLagJ. 

Return. 

(E) Return. 

~IGURE F.2 ALgorithm eHK-INS 



8b§QB!Itl~_~EBb( Update Rand LIPX ) 

(A) If XF > F(l,C(l» [finish time has changed] 

set R(il) = XF - S(l,1). 

Else, if XS < S(l,1) [start time has changed] 

set R(il) = F(l,C(l» - XS • 

Go to (8). 

168 

(8) "If NROUT = 1 and R(il) > LIPX [bound has changed and single 

processor] 

or 

If K = 0 and R(il) > LIPX [single-run mode] 

Then LIPX = R(il) [update LIPX]. 

Return. 

FIGURE F.3 Algorithm UPRL 



Procedure : UPDATE_ARRAYS; Begin 

L:=PROUT(m+iL); [processor seLected] 

;:=ip(iL) ; 

If i ~ C(L) then 

begin 

[position of transfer moduLe] 

[insertion before the Last] 

C(L):=C(L)+ 1 ; 

For r:= C(L) downto i+1 do 

begin 

Y(L,r):= YCL,r-1) ; 

SCL,r) := S(L,r-1) ; 

FCL,r) := FCL,r-1) 

end 

end 

169 

eLse C(L):= C(L)+ 1 ; [insertion after the Last moduLe] 

Y(L,i):= i ; [insert] max 
S(L,i):= XS ; 

F(L,i):= XF.; 

i := i + 1 max max 
end; [UPDATE_ARRAYS] 

FIGURE F.4 ALgorithm UPARR 
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