
MULTIPROCESSOR OPTIMIZATIONS:

INTERCONNECTION

AND
TASK ASSIGNMENT

by

FUsun Erdim

B.Sc. in Electrical Eng., Bogazi9i University, 1974

M.Sc. in Electrical Eng., Bogazi9i University, 1975

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Doctor

of

Philosophy

in

Electrical Engineering

Bogazici University Library

111111111111111111111111111111111111111 ~
39001100314502

BOGAZiCi 'UNIVERSITY

1985

APPROVED BY

MULTIPROCESSOR OPTIMIZATIONS
. INTERCONNECTION

AND
TASK ASSIGNMENT

by

FUsun Erdirn

Y.Do9.Dr. Orner Cerid
(Thesis Supervisor)

D09·Dr. Yorgo istefanopulos %\.e.Yo. '" =~. .
(Co-advisor) ~_ ~ u

D09.Dr. BUlent Sankur ~.
I

Prof.Dr. ErgUr TUtUncUoglu

DATE OF APPROVAL June,241985

.. ~" ~ ...
~ .,

"'"

' ..
:~" "-

Dedicated To My Parents:

Sabahat and Ali Rlza Erdim

196257

iv

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to all the past and present

members of the Electrical Engineering Department for their valuable

contributions during my undergraduate and graduate study.

Particular gratitude is due my advisor Y.D09.Dr. Orner Cerid for his

continuous support and valuable comments. Also, I would like to acknowledge

the support provided by my co-advisor D09.Dr. Yorgo istefanopulos who

enabled me to use a grant (NATO Grant No.0460/82) for information exchange

between Bog~zi9i University and Polytechnic of Central London, in relation

to this study. Thanks are also due D09.Dr. BDlent Sankur and Prof.Dr. ErgDr

TDtDncDogiu for their valuable suggestions and for participation as jury

members in the doctoral· committee.

ABSTRACT

MULTIPROCESSOR OPTIMIZATIONS

INTERCONNECTION

AND

TASK ASSIGNMENT

v

Effective spreading of the use of muLtiprocessors, -or distributed pro

cessing in generaL-, and achieving the potentiaL advantages of this new de

sign option require various hardware and software-reLated probLems to be

soLved.

This study is a research on two basic probLem areas, nameLy the Inter

connection and the Task Assignment in MuLtiprocessors.

Any muLtiprocessor system that empLoys more than one processor for a

singLe' job must be designed to aLLow efficient communication between pro

cessors, so that the advantages of muLtiprocessing is not negated by ineffi

cient communication. As the number of processors grows, the interconnection

design becomes more cruciaL as crossbar or fuLLy-connected schemes become

impracticaL. Thus, from a reaLizabiLity point of view a partiaLLy-connected

structure is desirabLe, which, however, in turn, introduces the probLem of

variabLe interprocessor distances, compLicating the task assignment pro

cess. In the first·part of this study, PON (Processor Omega Network), a par

tiaLLy-connected, muLtistage processor network with desirabLe impLementa

tion and commun~cation properties is prDposed and evaLuated.

vi

In any distributed processing environment, except for identicaL proces

sors forming a fuLLy-connected network of uniform interprocessor distances,

. optimaL assignment of software moduLes comprising a task to processors of

the network is essentiaL for minimum-time compLetion of the task and this

can be achieved by baLancing two confLicting factors; minimization of in

terprocessor communication and maximization of Load baLance of processors.

In addition to the compLexities of the previousLy studied resource Limi

ted task -assignment environments, partiaLLy-connectedness introduces the

new interreLated probLems of indirect data transfers, avaiLabiLity of inter

mediate processors, and data routing when more than one path is avaiLabLe

between non-adjacent pairs.

Two different performance measures are proposed for the two operation en

vironments considered. The minimum port-to-port time (PTP) criterion produ

ces optimaL assignments in singLe-run environments, whereas the optimum per~

formance in a muLti-run operation mode is achieved by minimizing the Least

re-initiation period (LIP), which is equivaLent to maximizing the overLap

between successive task executions. The characteristics of the objective

functions, the number of constraints, and the precedence reLations dictated

an aLgorithmic soLution to the assignment probLem.

An anaLyticaL modeL is deveLoped to describe the task assignment environ

ment considered in this study', and based on the modeL components and the

proposed objectives, the optimization probLems for both environments are

formuLated. Some possibLe methods for storage-and-processing efficient rep

resentations of hardware and software are investigated and the task assign-.

ment aLgorithm for partiaLLy-connected networks (PCTAA) is presented and

the methods and modifications to reduce its computationaL compLexity -reLa

ted to the structure of networks and tasks- are discussed in order to ex

tend its use to anaLysis of Larger systems.

vii

OZETI;E

I;oklu-i~lemci, ya da daha genel olarak dag1t1k bilgii~lem, kullan1m1n1n

yayg1nla~abilmesi ve bu yeni tasar1m se~eneginin getirdigi olanaklardan

tam anlam1yla yararlan1labilmesi i~in donan1m ve yaz1l1ma ili~kin ~e~itli

sorunlar1n ~ozUmU gerekmektedir.

Bu ara~t1rmada, "I;oklu-i~lemcilerde Arabaglant1lama ve Gorev Atanmas1"

gibi iki temel sorun ele al1nm1~t1r.

Birbiriyle ili~kili yaz1l1m par~ac1klar1n1n (modUl) olu~turdugu bir go

rev l~ln birden fazla i~lemci kullanan her yapl, i~lemciler araSl ileti~i

min yol a~abilecegi darbogazlarln ~oklu-i~lemcililigin getirecegi UstUnlUk

leri yok etmemesi i~in bilin~li bir bi~imde tasarlanmalldlr. K~llanllan i~

lemci saYlsl artbk~a tam-baglanbll veya "crossbar" tUrU arabaglanb· agla

rln1n kullan1ml mUmkUn olamad1glndan, ger~ekle~tirilebilirlik a~lslndan kis

mi-baglantll1 bir yap1 .istenmekte, bu ise i~lemciler aras1ndaki uzakl1kla

r1n farkl1 olmas1na neden oldugundan gorev atama i~lemini gU~le~tirmekte

dir. Bu ~al1~man1n ilk klsm1nda k1saca PON (Processor Omega Network) olarak

isimlendirilen klsmi-baglant1ll, ~ok~katl1 (multistage) bir i~lemci baglan

tl ag1 Hnerilmekte ve irdelenmektedir.

Birbirlerine e~ uzakl1kla bagl1, tek tUr i~lemcilerin olu~turdugu tam

baglant1l1 dizgelerin d1~lnda kalan bUtUn dag1t1k i~lem ortamlar1nda, gore

vi olu~turan yaz1l1m modUllerinin i~lemcilere en iyi bi~imde atanmas1, gore

Yin en krsa sUrede tamamlanmas1 i~in gereklidir. Bu ise, i~lemciler araS1

ileti~imin en aza indirgenmesi ve de i~ dag1l1m dengesinin en Ust dUzeye ~l

kar1lmas1 gibi birbirleriyle ~eli~en iki faktorUn dengelenmesini zorunlu

kllmaktadu.

viii

KIsmi-baglantIllllk, gorev atama sorununa dogrudan bagil olmayan i§lemci

ler arasInda doiayll veri iletimi, ara i§lemcilerin iletim i9in serbest ele

ge9irilmesi ve birden fazla en kIS~ yol durumunda veri yonlendirme gibi bir

birleriyle ili§kili ek yeni soruniarl getirmektedir.

Ele ailnan iki ayrl 9al1§ma ortaml i9in iki ayrl ba§arIm ol9utu oneril

mektedir. ·Tek-seferli (single-run) ortamlarda klsaca PTP (Port-To-Port

time) olarak isimlendirilen gorev tamamlama suresinin en aza indirilmesiyle

en iyi gorev atamasl saglanmakta, 90k-seferli (multi-run) ortamlarda ise en

ustun ba§arlm, gorevin ardarda tekrarl slrasInda en kU9uk yeniden ba§latma

suresi LIP (Least re-Initiation Period) nin en aza indirilmesiyle elde edil

mektedir •. Ama9 i§levlerinin ozellikleri, slnIrlamalarIn 90klugu ve moduller

araSI ili§~iler gorev atama probleminin .90zumune algoritmik bir yakla§lm ge

rektirmektedir.

Burada, bir model geli§tirilerek her iki ortam ~9in ilgili eniyileme

problemleri tanImlanmakta, donanlm ve yazIllm gosterimi i9in ge§itli tanIm

lama yontemleri irdelenerek algoritma I9In en uygun gosterim belirlenmekte

ve "klsmi-ba9Iantlll dizgelerde gorev atama algoritmasl" (PCTAA) sunulmakta

dIr. AyrIca, algoritmanln i§lemsel karma§lkllgInl azaltarak daha buyuk diz

gelerin analizinde kullanllmaslnl saglamak amaclyia arabagiantl ag yaplsl

ve gorev 9izgesInIn ozelliklerine ili§ik gerekli yontem ve degi§iklikler

onerilmektedir.

ACKNOWLEDGEMENTS

ABSTRACT

DZETCE

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

1.0 INTRODUCTION

TABLE OF CONTENTS

1.1 Distributed Processing: Promises and Problems

1.2 General Statement of the Problem

1.3 Contributions of this Research

1.4 Outline of the Dissertation

2.0 THE HARDWARE ENVIRONMENT FOR DISTRIBUTED PROCESSING

2.1 The Structure and Execution Principle

of Processing Elements

2.2 The Organization of Distributed Systems

2.3 Interconnection Networks

2.4 Multistage Switching Networks (MSN)

2.5 Processor Interconnection Networks

2.6 Processor Omega Networks (PON)

3.0 THE SOFTWARE ENVIRONMENT FOR DISTRIBUTED PROCESSING

3.1 General

3.2 The Task Assignment Problem

3.3 Related Research and Solution Techniques

3.4 Proposed Method of Attack

4.0 THE TASK ASSIGNMENT MODEL

4.1 Description of Model Components

4.2 Performance Measures

4.3 Mathematical Formulation

4.4 Extension to Partially-Connected Networks

ix

Page

iv

v

vii

ix

xi

xiii

1

1

3

5

7

9

10

14

19

21

23

25

34

34

37

44

51

53

53

55

57

69

5.0 THE STORAGE.REPRESENTATIONS FOR HARDWARE AND SOFTWARE

5.1 Storage Representations for Hardware

5.2 Matrix-Pointer Representation

5.3 Pointer Representation

5.4 Modified Matrix-Pointer Representation

5.5 Assumptions

5.6 Modified Pointer Model for the Hardware

5.7 Storage Representation for the Software

6.0 TASK ASSIGNMENT ALGORITHM FOR P-C PROCESSOR NETWORKS

6.1 General Description

6.2 Initialization

6.3 Assignment Generation

6.4 Constraint Checking

6.5 LDF Generation

6.6 Transfer Table Manipulation

6.7 Example for Single-Run Environment

6.8 Example for Multi-Run Environment

6.9 Verification of PCTAA

6.10 Complexity of PCTAA

7.0 SOME METHODS TO REDUCE COMPLEXITY

7.1 Reductions in the Number of Modules

7.2 Reductions at Constraint Checking Phase

7.3 Reductions in Assignment Generation

8.0 CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH

8.1 Summary and Conclusions

8.2 Recommendations for Further Research

BIBLIOGRAPHY

APPENDIX A. Algorithm for Step1 Permutation

APPENDIX B. Algorithm for Step2 Composition

APPENDIX C. Algorithm for Step3 Init:ialization of Assignment

APPENDIX D. Algorithm for Step4 Constraint Checking

APPENDIX E. Algorithms for Step5 LDF Generation

APPENDIX F. Algorithms for Step6 Transfer Table Manipulation

x

Page

75

75

76

79

81

82

86

88

93

93

101

102

106

110

113

117

123

127

130

131

131

132

138

145

145

149

152

157

159

160

161

162

165

Number

2.1.1

2.1.2

2.1.3

2.2.1

2.2.2

2.2.3

2.2.4

2.3.1

2.4.1

2.6.1

2.6.2

2.6.3

2.6.4

3.1.1

3.2.1

3.3.1

LIST OF FIGURES

TitLe

ELements of Data FLow Execution

Data FLow CircuLar PipeLine

Basic Tree Structure of a Reduction Machine

Basic SIMD Machine Organization

A TypicaL Configuration of MIMD Architecture (P-M)

An ALternative MIMD Structure (P-P)

MIT DatafLow Computer

Basic Design Parameters of Interconnection Networks

A MuLtistage Switching Network (Indirect Binary 3-Cube)

An (MSN) Omega Network (N=8)

A (PON) Processor Omega Network (N=8)

Average Shortest Path Lengths in MSN and PON

Processor ReachabiLity in MSN and PON

Extraction of II-BLocks for Program Partitioning

ReLation of Task Assignment ProbLem to Other

Phases of Sof~ware and Hardware Design

Graph Showing IPC {(.)} and Processing Costs

for the Min-Cut ExampLe

3.4.1 A SampLe Graph and Load Density Function

4.3;1 ExampLe Process Graph

4~3.2 ExampLe Processor Graph (F-C)

4.3.3 Load Density Function for F-C ExampLe

(M = 4, N = 3)

4.4.1 ExampLe Process and Processor Graphs (P-C)

4.4.2 Load Density Function for P-C ExampLe

(M = 4, N = 3)

5.2.1 Four-Processor P-C Network

5.7.1 ExampLe Process Graph (M = 6)

6.1.1 Parameters of Intermediate Transfer

6.1.2 The P-C Task Assignment ALgorithm

6.1.3 SimpLified FLow Diagram of PCTAA

xi

Page

12

12

12

15

15

17

17

20

22

26

26

29

29

36

38

47

52

65

65

67

73

74

76

92

95

98

99

Number

6.6.1

6.7.1

6.7.2

6.7.3

6.8.1

6.8.2

6.8.3

6.8.4

7.1.1

LIST OF FIGURES (continued)

TitLe

Cases for Transfer ModuLe Insertion

ExampLe Process and Processor Graphs

PartiaL LDF for the ExampLe

FinaL LDF for the ExampLe

Process and Processor Graphs for the ExampLe

PartiaL LDF for Assignment X1
FinaL LDF for Assignment X1
LDF for Assignment X2
ExampLe of ModuLe CLustering

7.2.1 SingLe-Run PCTAA for Reduction

7.2.2 MuLti-Run PCTAA for Reduction

7.3.1 ExampLe Process Graph (M = 5)

7.3.2 ExampLe Processor Graph (N = 4)

7.3.3 Modified Task Assignment ALgorithm

A.1 ALgorithm PERMUTE

B.1 ALgorithm COMPOSE

C.1 ALgorithm INITA

D .1 ALgorithm FEASA

E.1 ALgorithm GENLDF

E.2 ALgorithm CBOUND

F.1 ALgorithm XFER

F.2 ALgorithm CHK-INS

F .3 ALgorithm UPRL

F .4 ALgorithm UPARR

xii

Page

114

118

122

122

124

126

126

126

131

135

136

140

140

143

158

159

160

161

163

164

166

167
1"68

169

xiii

LIST OF TABLES

Number TitLe Page

2.6.1

2.6.2

2.6.3

5.5.1

5.5.2

6.4.1

6.7.1

7.2.1'

7.3.1

7.3.2

n PON v.s. MSN for 1 ~ n ~ 6, N = 2 = rc

Processor ReachabiLity in PON for N ~ 32

Land d of some unidirectionaL/bidirectionaL max
PON's

Comparison of Storage Requirements for the

Hardware-Representation Methods

Processor ReachabiLity within D ~ 2 for some N ~ 64

Assignment Generation for FIGURE 6.7.1.

(M = 4, N = 3)

Trace of LDF Generation for the ExampLe

ExampLe for the ReLation of PTP-LIP and IMC

k-partitions of n, S(n,k)

Partitions for the ExampLe,

S(5,4) = 10

28

30

32

83

85

108

120

133

141

142

1.0

INTRODUCTION

1.1 Distributed Processing: Promises and Problems

1

The growing need for high-performance, low-cost computing structures in

order to match the requirements of compute-bound problems in various fields

of application, and the enhancements due to the advent of VLSI technology

have given rise to a wide area of research : the architectural and programm

ing issues in distributed processing. The progress in technology permits

the availability of low cost and small size processors, making distributed

processing economically feasible, and distributed processing brings the

well-known advantages such as higher speeds, exploiting parallelism and con

currency in the algorithms, low initial system costs, incremental growth,

flexibility and reliability.

Effective spreading of the use of multiprocessors, or distributed

processing in general, and achieving· the above mentioned potential advan

tages require two basic sets of problems to be solved: problems related to

hardware and problems related to software.

The hardware problem may be viewed at various levels:

1- The processing element level: This is related to the structure and

execution mechanism of the processor.

2~ The network level Since the processors will be connected to each

other in the form of a network, the interconnection structure must be

designed such that:-

i) each processor should be able to communicate with any other in

the network~

ii) degree of connectedness imposed on the processors, which

determines the number of 1/0 ports, should be kept low and

fixed.

iii) it must be possible to expand the network by adding new

processors.

iv) interprocessor distances, whi~h affect the communication delay,

should be kept as low as possible.

2

v) from a realizability point of view, assuming a large number of

processors, the network may not be fully-connected.

vi) for reliability and improved communication density, the

availability of alternate paths is preferable.

vii) a regular topology is desirable for ease of implementation.

The software problem may be treated at different levels as well:

1- Language and algorithm design level Since one of the most important'

factors for higher speed is the exploitation of parallelism and

concurrency in the algorithms, the design of algorithms and languages

that reveal explicit parallelism presents an important research

issue.

2- Program partitioning level Development of efficient methods, to

analyze and partition a computation task into modules such that

minimum dependency is exhibited between the segments in different

modules, is essential.

3- Assignment level : Assigning modules that comprise a single task onto

processors of a distributed system so as to cooperatively execute the

task in minimum time is one of the· major. concerns of distributed

processing.

Undoubtedly, a large amount of research effort is devoted to solving the

problems of both categories, which are actually interrelated. The choice of

a processing element and the execution mechanism of processors, or the

interconnection network, is

assignment, which is affected as

closely

well by

related to module-to-processor

the effectiveness of program

partitioning,

language used

the algorithm under consideration and the programming

to implement the algorithm. Thus, all the elements of

hardware and software need to be optimized for efficient utilization of

distributed processors.

3

1.2 General Statement of the Problem

In this study, we will give brief information on the hardware and soft

ware problems related to distributeo processing, and concentrate on the

partially-connected (P-C) interconnection networks of processors and on the

optimal assignment of software modules comprising a single program onto

processors in a partially-connected network.

Both of the topics of interconnection networks and task assignment have

received great interest in the last decade and quite a number of topologies

and assignment methods have been proposed. However, the interconnection net

works have been studied mainly for SIMD (single instruction multiple data)

environments such as that of array processors, where they are used as

permutation networks for permuting the data moved between processors and

memories; in these networks data alignment in the memories, such as the

skewed representation of matrix elements, has been the primary concern.

Similarly, for systolic arrays the problem has been that of designing the

underlying hardware to match the characteristics of the specific software

algorithm. Our interest in interconnection networks is in their use in MIMD

(multipLe instruction multiple data) environments such as that of true

muLtiprocessors for general-purpose computing systems.

The task assignment probLem for multiprocessors has been attacked by

some researchers empLoying various methods for optimal or suboptimaL

soLutions. However, in aLL the previous work on task assignment, the

underLying processor network has been assumed to be fulLy-connected (F-C)

(or bus-connected in some cases), and this is an unrealistic assumption,

particuLarLy for networks of Large number of processors. Moreover, in most

of these studies, except for a few recent ones, the effect of inter

processor communication is disregarded in the efforts to minimize the total

run-time of the program. It 'has been observed that the interprocessor

communication due to data passing between non-coresident software moduLes

is responsibLe for the so-ca lled "saturation effect"-, whi ch is the

degradation in system throughput for increased number of processors, and

can onLy be alleviated using appropriate task assignment strategies~ The

efficiency of task assignment is important especially in reaL-time environ

ments, where the task has to be compLeted within a given deadline.

4

Even for the fuLLy-connected networks, the task assignment process is

highLy combinatoric and thus is in the cLass of NP-compLete probLems.

Task assignment on partiaLLy-connected networks has not been considered

previousLy. PartiaLLy-connectedness adds new interreLated probLems to the

task assignment process:

1- ProbLem of indirect data transfers between non-adjacent processor

pairs, invoLving intermediate processors,

2- ProbLem of the avaiLabiLity of intermediate processors on-route that

act as repeaters from source to destination, and

3- ProbLem of data routing when more than one path is avaiLabLe between

two indirectLy communicating processors.

assignment

(precedence

such as the

These probLems in addition to .the previousLy studied task

environment with constraints such as data dependences

constraints) in the aLgorithm, non-time dependent constraints

number and memory capacity of processors, and reaL-time constraints such as

the input data rate or maximum finish time, create a highLy constrained

optimization probLem.

In this study, we propose a modeL based on graphicaL and array

representation of the probLem, formuLate the reLated discrete optimization

probLem and present an aLgorithmic soLution for this reaL-worLd scenario.

We distinguish between two different environments, the singLe-run

environment, and the muLti-run environment where periodic execution of a

singLe task or successive execution of many tasks is considered, and

accordingLy, propose two different objective functions to be minimized:

nameLy, the port-to-port time (PTP), which is the maximum compLetion time

of the task for the singLe-run case, and the Least re-initiation period

(LIP), -which is denoted symboLicaLLy as II -, for the muLti-run

environment.

The inherent combinatoriaL behaviour of the optimaL assignment aLgorithm

Limits its use in Large systems. Methods and modifications reLated to the

structure of networks and tasks are discussed with the aim of reducing the

compLexity of the proposed aLgorithm.

1.3 Contributions of this Research

The major contribution of this research is

assignment probLem in partiaLLy-connected

presence of reaL-time constraints.

5'

the soLution of the task

processor networks in the

The task assignment probLem invoLves both hardware and software

components. A modeL is deveLoped to describe the task assignment

environment. The software component of the modeL is assumed to be

represented by a singLe-entry, directed, acycLic graph (the process graph),

which exhibits the precedence reLations between the moduLes of a singLe

task. The hardware component, aLso represented by a graph (the processor

graph), is assumed to be a partiaLLy-connected network of identicaL

processors with unit distance between adjacent pairs. The possibiLity of

aLternate shortest paths between indirectLy connected processors and the

reLated probLem of optimaL path seLection are considered.

Two different performance measures are proposed depending on the probLem

statement. The minimum port-to-port time criterion produces optimaL

assignments for the singLe-run or non-Loaded operation environment, whereas

the optimum performance in a muLti-run environment is achieved by

minimizing the Least re-initiation time, which is equivaLent to maximizing

the . overLap between succesive task executions. Based on the modeL

components and the proposed objectives, the optimization probLems for both

environments are formuLated. An aLgorithmic soLution is presented and

methods to reduce its computationaL compLexity are discussed.

Compared to the methods in previous studies, the significant features of

the proposed aLgorithm are: the efficiency of LDF (Load Density Function)

generation, which is achieved just by a singLe scan' of the module List,

reLaxation of the simpLifying assumption that the moduLes receiving data

from a common source can start execution simuLtaneousLy onLy after aLL have

received their data, and better feasibiLity check of the generated

~ assignment which takes into consideration not onLy direct but indirect

precedence reLations in the process graph, as weLL.

6

Another contribution of this research is i~ the area of multiprocessor

interconnection strategies. A multistage processor network, PON (Processor

Omega Network), with regular interstage connections is proposed and

evaluated mainly with respect to its communication properties. PON has low

average path length, resonable processor reachability and linear

implementation costs compared to multistage switching networks and other

cube-type m~Ltistage processor networks. It provides various row-column

alignment patterns for the same size, is incrementally expandable,

homogeneous, and requires a fixed number of I/O ports per processor

regardless of the size of the network. It also improves reliability and

work distribution due to the presence of alternate paths.

7

1.4 Outline of the Dissertation

The subject materiaL of this dissertation is treated in eight chapters.

Chapter 1 introduces the subject of the study by presenting the promises

and probLems of distributed processing environment.

Chapter 2 is devoted to the hardware environment of distributed

processing, where the possibiLities regarding the structuraL compLexity and

execution mechanisms of processing eLements, the organizations of

distributed systems, and the interconnection networks are briefLy surveyed.

The muLtistage switching networks (MSN) are presented as an introduction to

processor muLtistage networks (PMN). A reguLar configur~tion, the Processor

Omega Network (PON), is introduced and evaLuated against some other

structures.

The software environment of distributed processing is introduced in

Chapter 3. The task assignment probLem is stated in generaL, and in

partiaLLy-connected processor networks in particuLar. The' reLated research

on task assignment, fiLe aLLocation and scheduLing, and the soLution

techniques are presented. The proposed soLution procedure is outLined.

Chapter 4 deveLops an anaLytic modeL for the task assignment

environment, introduces the performance measures for singLe-run and

muLti~run environments, and presents a mathematicaL formuLation, both for

fuLLy-connected and partiaLLy-connected networks, as a discrete

optimization probLem.

In Chapter 5, the methods for storage-and-processing-efficient

representations of software and hardware components of the assignment

process are investigated and the actuaL storage representations are

determined in preparation for the aLgorithmic soLution presented in Chapter

6.

8

Chapter 6 presents PCTAA (task assignment aLgorithm for partiaLLy

connected networks), and discusses each of its steps, the formaL aLgorithms

of which are provided in the Appendices. The use of the proposed aLgorithm

is demonstrated by exampLes and· its performance characteristics are

evaLuated.

In Chapter 7, some methods and possibLe modifications in the aLgorithm

for reducing the computationaL compLexity of the assignment process, in

order to enhance its use in the anaLysis of Larger systems are discussed.

Chapter 8 concLudes the subject of the dissertation by summarizing the

achievements and some possibiLities for further research in distributed

processing.

2.0

THE HARDWARE ENVIRONMENT

FOR DISTRIBUTED PROCESSING

9

In this chapter, we briefLy review the hardware issues reLated to the

design and efficient utiLization of distributed processing systems.

Any muLtiprocessor system that empLoys more than

singLe job must be designed to aLLow efficient

one processor for a

communication between

processors, or between processors and memories, so that the advantages of

muLtiprocessing are not negated by inefficient communication. As the number

of processors grows, the interconnection design becomes more cruciaL as

crossbar or fuLLy-connected schemes become impracticaL.

Another point of interest is the organization of the computing system

for which the interconnection probLem is considered. There. are basicaLLy

two major computer organizations for distributed processing, nameLy SIMD

and MIMD, [FLYN72J , and depending on the desired paraLLeLism in data and

instruction handLing, eithe~ one' is empLoyed with its particuLar

expectations for the performance of an interconnection network.

The structuraL compLexity of processing eLements varies according to the

appLication environment of high-performance computing systems. In addition,

for higher degrees of paraLLeLism and concurrency, new execution mechanisms

have emerged as opposed to that of conventionaL processors and this forms

the basis for the research on the so-caLLed non-von-Neumann architectures

and Languages [BACK78J •

In the foLLowing sections, the structure and execution mechanisms of

processing eLements, the organization of computing- systems, the topic of

interconnection networks and specificaLLy the MuLtistage Switching

Interconnection Networks wiLL be treated separateLy. In Sections 2.5 and

2.6 we consider processor interconnection strategies, introduce Processor

~ MuLtistage Networks, specificalLy PON (Processor Omega Network), and finish

the discussion on hardware issues with the proposed hardware configuration.

10

2.1 The Structure and Execution Principle of Processing Elements

Depending on the desired application environment, the processing

elements (PE) used in distributed processing may consist of

i) Simple arithmetic-logic units (ALU), equipped with a data

transfer register (DTR) and with no control capability, or

ii) Complete central-processing-units (CPU), possibly with some

local memory, or

iii) Processor-Local memory-I/O ports ensemble, or

iv) Integrated computing and I/O processors.

For example, type (i) may form the basic PE in an array processor

while a processor network will employ types (ii)-(iv) as the basic unit. In

the latter sections of this study, we are concerned with PE's of the

(iii)rd category and in this case the PE will simply be referred to as the

"processor".

Most of the conventional computers are based on the von-Neumann

principle, where the CPU connected to the memory via the so-called

"von-Neumann bottleneck" - sequentially executes

stored in the memory,· the operation sequence

the program instructions

being determined by the

contents of a program counter. Thus, at anyone time only one instruction

is being executed this execution mechanism is known as the

"control-flow". The important point is that program execution is based on

sequenced memory updates causing an enormous traffic of information through

the bottleneck, much of which is not actually significant data, but

addresses used to locate the data.

In search of increased parallelism and concurrency in program execution,

recently computer designs based on non-von-Neumann principles are

attracting increasing interest as an alternative to conventional

architectures. The basis of such designs are the "data-flow" and

"demand-flow" (or "demand"-driven") execution mechanisms.

..

11

In a data fLow computer [OENN79J , an instruction is ready for

execution, or "fired" , when aLL its required operands are avaiLabLe. There

is no concept of controL fLow and thus there is no program counter. A data

fLow program is represented by a graph where the instruction nodes (or

"actors") are connected by arcs aLong which data tokens are passed between

actors. The instructions themseLves are represented by "activity tempLates"

(FIGURE 2.1.1> which are used in forming "operation packets" for execution

of the form

operation packet: <opcode, operands, destinations>

and a "resuLt packet",

resuLt packet: <vaLue, destination>

for each destination fieLd of the tempLate. FIGURE 2.1.2 shows the basic

execution mechanism of data fLow principLe aptLy caLLed a "circuLar

pipeLine" where the activity is controLLed by the flow of information

packets traversing the ring in countercLockwise direction. When an

instruction is "ready", having received aLL operand and acknowLedge

packets, the Update Unit which has updated the corresponding tempLate in

the Activity Store upon arrivaL of each resuLt packet enters its address in

the Ready Instruction Queue, - a FIFO stack - , and the Fetch Unit, which

scans the queue, fetches the next tempLate in Line from the store, forms it

into an operation packet and passes it on to the Operation Unit. The

Operation Unit performs the operation specified by the operation code and

generates and forwards resuLt packets to the Update Unit. Thus, a number of

packets may be fLowing simuLtaneousLy in different parts of the ring such

that at anyone time every active unit may be handLing a different

instruction and this brings the concurrency advantag~ of data fLow

principLe. The configuration in FIGURE 2.1.2 might actuaLLy be considered

as a data-fLow PE for a data-fLow muLtiprocessor if many such PE's are

interfaced to a connection network through their Update Units.

In demand-driven execution, the requirement for a resuLt triggers the

operation that wiLL generate it and the sequence of instruction executiqn

is determined by the fLow of demand [TREL82J. A program is represented as

- an expression consisting of nested ~ppLications, each composed of an

12

FIGURE 2.1.1 ELements of Data FLow Execution

Result Packet Operation Packet
~ Operation J..
u Unit (01) v

Ready In s.truction
Update Queue (RIQ) Fetch

Unit Unit

(UU) (FU)

Activity
::5tore

(AS)

FIGURE 2.1.2 Data FLow CircuLar PipeLine

FIGURE 2.1.3 Basic Tree Structure of a Reduction Machine

13

operator and an operand, and sequences. As an exampLe, the expression

<6,(+:<2,4»> is a sequence of two eLements: number 6 and an innermost

appLication composed of + operator and a sequence of numbers 2,4 as the

operand. Since the first requirement. is

demand fLows through subexpressions untiL

primitive operations are encountered and

opposite direction as the successive

subexpressions, untiL the resuLt vaLue of

for the resuLt

subexpressions

then reduction

repLacement

the originaL

of the program,

consisting of

proceeds in the

of reducibLe

expression is

reached. This sequence of reductions is'referred to as the "outermost" or

"Lazy evaLuation" ruLe.

Computer desingns based on reduction are caLLed "reduction machines" and

are most convenientLy configured as tree structures (FIGURE 2.1.3), where

the processing eLements, or ceLLs, are cLose to type (i), i.e. with Limited

processing and memory capabiLity. There aLso exist reduction computers

which are based on a data-driven mechanism and empLoy the "innermost" or

"eager evaLuation" ruLe [MAG079J.

The controL, data, and demand driven execution principLes are not

distinct and it is possibLe that different combinations of the three

mechanisms are empLoyed within one system.

In principLe, we are concerned with the conventionaL (controL-fLow)

processors, aLthough actuaLLy a data-fLow concept is inherent in the

execution of a singLe program by muLtiprocessors where each dependent

moduLe of the program is executed onLy when the required data is avaiLabLe

from its predecessors residing on other processors.

14

2.2 The Organization of Distributed Systems

According to FLynn [FLYN72J who tried to cLassify computing systems in

terms of paraLLeLism within the inst.fuction stream and the data stream,

four broad cLassifications of machine organizations are possibLe, Listed

foLLows:

as

1- SISD

which

today.

2- SIMD

(singLe-instruction stream-singLe-data stream) organization

represents most conventionaL computing equipment avaiLabLe

(singLe-instruction stream-muLtipLe-data stream) organization

where singLe instruction stream causes paraLLeL execution of incoming

data to the system, which incLudes most array processors, systoLic

arrays and pipeLined processors.

3- MISD (muLtipLe-instruction stream singLe-data stream) organization

which represents some speciaLized systems.

4- MIMD (muLtipLe-instruction stream muLtipLe-data stream) organization

referred to as "muLtiprocessors", incLuding true muLtiprocessors

where severaL autonomous processors cooperate in the execution of a

program, and shared resource muLtiprocessors composed of skeLeton

processors sharing the resources.

NaturaLLy, the work done in distributed processing invoLves either the

SIMD or MIMD type of organizations. ALthough our main concern is

muLtiprocessors, and not simpLy an array of processors, nevertheLess we

wiLL gLance briefLy at SIMD structures as weLL, since most of the research

on interconnection networks has originaLLy emerged and been carried out for

SIMD systems.

The basic machine organi~ation for an SIMD computer is shown in FIGURE

2.2.1 [KUCK77J. Here, a controL processor decodes·instructions, executes

sequentiaL parts of the program and for paraLLeL executabLe program

segments, it controLs the ALU's and routes the paraLLeL data between ALU's

and memories by controLLing the switches in two

- caLLed the aLignment networks. The 'aLignment

interconnection networks,

networks must be abLe to

15

INSTRUCTION
DECODING

SW. AND
1 NFO. CONTROL
...... UNIT

N ALU'S

FIGURE 2.2.1 Basic SIMD Machine Organization

PATH FOR

I COORDINATOR
EXTENDED MEM.

FETCHES I COMM. I
PATH FOR

BUFFER PROCESSOR

I
COMM.

PROCESSOR
COMM. MEMORY BUFFER t-

(6 9 CONNECTION MODULE ¢ --I
I

• · I
• NETWORK • · • • · •
· •
· •
· •
· •

I

I-TO
I SECONDARY
: MEMORY

· I
PROCESSOR COMM. MEMORY

N-1
BUFFER MOD. I-

N-1 M_1

I __ J

FIGURE 2.2.2 A Typical Configuration of MIMD Architecture (P-M)

16

handle the indexing patterns found in programs, for example, the uniform

shift of 3 necessary in ACI)+ACI+3), and scramble/unscramble the data for

memory access. Data alignment in memories, efficiency of the alignment

networks, and the efficiency of the control algorithm on these networks to

reduce the reconfiguration overhead are the major problems in the design of

an SIMD machine.

A typical configuration of an MIMD computer is shown in FIGURE 2.2~2.

[LUND80J. Here, the processors are autonomous with individual processing

and memory access capability and execute segments of a computation task. A

coordinator implements the synchronization of processes and smooths out the

execution sequence. The design of an efficient interconnection network

seems to be the major problem. This configuration, where a bidirectional

network is positioned between the processors and memory modules, is

referred to as the processor-to-memory (P-M) approa~h and provides to the

processors the ability to share large blocks of data and to vary the amount

of memory used.

An alternative MIMD structure is to equip e~ch processor with local

. memory in order to achieve fast memory access and let the processors

communicate with each other via a unidirectional interconnection network

positioned between the processors (FIGURE 2.2.3.). This is known as the

processor-to-processor CP-P) approach. Here, the processors cooperatively

execute the partitioned and assigned segments of a computation task, and

thus, program partitioning and assignment to processors as well as the

choice of an efficient/interconnection network present the major problems

to be solved.

A survey on multiprocessor organizations appears in [ENSL77J.

Let us call the organizations used in non-von-Neumann machines as CICD

(concurrent-instruction-concurrent-data) to differentiate from the control

flow multiprocessors.

Po P1
-

PN- I
- - • • • •
Mo M1 -.

M
N

_
I

INTERCONNECTION NETWORK

FIGURE 2.2.3 An ALternative MIMD Structure (P-P)

DISTRIBUTION

NETWORK

Processing Section

Control
Network

rnstruction
CeLL Block

(ca)

Memory Secti on

ARBITRATION 1-+--'"
NETWORK

FIGURE 2.2.4 MIT Data fLow Computer

17

18

As we have mentioned previously, the basic structure for reduction

computers is in the form of a tree where, possibly, the expressions stored

in the leaf cells wiLL be reduced as they move up the tree.

. .
For a data fLow computer, one possibLe organization might be to form the

ceLLs shown in FIGURE 2.1.2. into a network, as previousLy stated. Such a

muLtiprocessor network obviousLy posseses the probLems of efficient

interconnection and software assignment, i.e. partitioning of the task into

segments to be stored in the LocaL Activity Store as' activity tempLates.

Two other basic approaches to a data fLow muLtiprocessor in experiment

stage are the Manchester Ring [WATS82J, which in very simpLe terms is the

basic mechanism (FIGURE 2.1.2.) enriched with muLtiple Operation Units, and

the MIT architecture [OENN79J, iLLustrate9 in the simpLified diagram of

FIGURE 2.2.4. Here, the distribution network distributes resuLt packets to

CeLL-bLocks (C8) according to tempLate addresses and an arbitration network

routes operation packets to processors according to the avaiLabiLity of

processors and if the processors are not identicaL according to the

operation-codes as weLL. These configurations are proposed in order to

avoid the task assignment process since aLt processors are equaLly apart

from the store. However, we are doubtfuL about the performance and

feasibiLity of such netw~rks due to increased interconnection costs and

port-to-port distances. ALso, having studied the task assignment probLem,

we note that the ratio of moduLe processing time to communication time

shouLd be high to achieve the speed benefits of muLtiprocessors and

therefore, it is questionable if the concurrency advantage wiLL compensate

for the time Lost in, interprocessor communication, with communication

invoLving compLete operation/resuLt packets and the moduLe processing time

being that of instructions. A constructive criticism on data fLow computers

appears in [GAJS82J.

19

2.3 Interconnection Networks

The seLection of an interconnection network depends on the organization

of the distributed system under consid~ration. In an MIMD environment, the

function of an interconnection network is to provide direct or indirect

Links between processing eLements for the soLe purpose of interprocessor

communication, whereas in an SIMD environment, data permuting capabiLity of

an interconnection network is desired as weLL. Thus, the appLication

required determines the parameters of the network.

From a practicaL design~iewPoint,four basic parameters are identified

in seLecting the architecture of an interconnection network (FIGURE 2.3.1);

nameLy the communication mode, the controL strategy, the switching

methodoLogy and the network topoLogy. If we view a typicaL interconnection

network as consisting of a number of switching eLements and interconnecting

Links, the controL strategy determines ~hether the switching eLements are

set by a common controL unit or by the individuaL switching eLements.

Circuit switching, packet switching or integration of the two can be

seLected depending on the transmitted data voLumes in the appLication. A

dynamic topoLogy permits reconfiguration of interprocessor Links by

controLLing the switching eLements, whereas the Links in a static topoLogy

remain passive and dedicated.

SIMD. organization is best suited to centraLLy controLLed circuit

switched synchronous networks of dynamic topoLogy and MIMD organization

mostLy favours decentraLLy controLLed packet-switched asynchronous networks

of either topoLogicaL category.

A detaiLed treatment. of interconnection networks appears in [ANDE7SJ and

[FENG81J.

We want to mention one important cLass of the dynamic topoLogy, the

MuLtistage Switching Networks, that are wideLy used in both SIMD and MIMD

environments. They are discussed in the next section.

COMMUNICATION
MODE

DESIGN

CONTROL
STRATEGY

PARAMETERS

SWITCHING
METHODOLOGY

, Corribin I2d Integrahd

Asynchronous Distributed

Synchronous C entrali ud Circuit
Switching

Packet
Switching

NETWORK
TOPOLOGY

Dynamic

Static

FIGURE 2.3.1 Basic Design Parameters of Interconnection Networks

N
o

21

2.4 Multistage Switching Networks (MSN)

This class of dynamic networks ,dev~loped following the work of Benes

[BENE6SJ on telephone switching, have found wide application in

distributed processing, especially in SIMD environments.

The binary n-cube multistage switching network (MSN) [SIEG81J with

N=2n inputs and N outputs to connect N x N elements (processor/memory)

is defined to consist of l092N switching stages, with N/2 switches per

stage (FIGURE 2.4.1, [PEAS??]) where, each 2x2 switching element has two

states, straight or exchange, although some systems permit a broadcast

state as well. Thus, it has a cost of (N/2)l092N switches and 0(l092N)

end-to-end communication deLay.

The connections between stages are based on the n cube interconnection

functions [SIEG??J defined by

C.(P 1·· P·+1 P.P. 1·· P)=P 1·· P·+1 P.P. 1 •• P , n- , " - 0 n- , " - 0

where P 1 ••• P is the binary representation of element addresses (or n- 0
equivalently labels of i,nput/output lines) and P. denotes complement of ,
P. for O~i<n • That is, C. applied to i th stage pairs input/output , ,
lines that differ in i th bit position and if the element addresses are

considered as the corners of an n-dimensional cube, this network

connects each element to its n neighbours.

The importance of MSN's for SIMD computers is that they can be used ~s

permutation networks operating on the input data, by controlling the switch

settings either in stages or individually. However, being unable to realize

arbitrary permutations, such as the bit-reverse permutation, in a single

pass through the network, multiple passes are permitted, where 2 - 3 passes

are found to be necessary and sufficient to realize any permutation and 6

passes sufficient to generate any connection of the input to the output

lines [PEAS?7J, [PARK80J in these blocki'ng type networks, meaning that

in simultaneous connection requests to a tommon output some inputs need to

be deferred.

22

.,

STAGES 51 52 53 -
(D)

(ll

(2)

(3) 0 I
N U

T P (1,) p
U U T

(5) T

(6)

(7)

FIGURE 2.4.1 A MuLtistage Switching Network (Indirect Binary 3-Cube)

Various cube-type MS~'s proposed for SIMD interconnections, such as the

Indirect Binary n-cube network [PEAS77], the Omega Network [LAWR7S], the

BaseLine network [WU 80], the FLip network [BATC76] and the reguLar SW

Banyan network (S=F=2) [LIP077] actuaLLy are aLL topoLogicaLLy equivaLent,

but not necessariLy equaLLy efficient, the difference between them Lying

mainLy in th~ hardwired connections between the stages [SIEG77], [SIEG79],

[PARK80], [WU 80].

MSN's are used in MIMD environments as weLL, where, depending on the

configuration, they are positioned between processors or between processors

and memories and provide a uniform path Length of 0(Log2N).

In the next section, we propose a cLass of processor muLtistage networks

(PMN) which have a cLose topoLogica.L resembLance to muLtistage switching

networks.

23

2.5 Processor Interconnection Networks

There is a vast amount of literature on processor interconnection

strategies and very frequently many new schemes are proposed. We confine

our discussion to three basic schemes of interest. These are the ring, the

tree and multistage connection networks, and parameters of int~rest are

expandability of network, local degree of connectedness and regularity of

connections, path length between processors, reliability and physical

realizability.

Ring structures permit expansion, provide fixed local· degree per

processor and are physically realizable, but path length between processors

increases linearly with every new processor introduced and there is no

mechanism for fault-tolerance, except for the modified versions such as the

chordal ring [ARDE81J.

Tree networks [HOR081J provide fixed number of processor connections,

are physically realizable, reliable if augmented using extra ring

connections connecting the nodes at the same level [GOOD81J, and the path

length depends on the depth of the tree which is related to the number of

processors and branching degree employed. The disadvantage of tree networks

seems to be the high traffic load concentrating at the root.

The topology of MSN's, mentioned in the previous section, provides fixed

and regular connections, realizability, reliability due to alternate paths

between the nodes and permits expansion at the cost of increasing the

uniform path length between the processors attached to the two ends.

The processor multistage networks (PMN) are based on the topology of

MSN's such that the switching elements are replaced by processors and the

. two ends of the network are connected to form a cylindical structure. Each

PMN is actually a virtual tree network that rolls around the cylinder at

endless depth. PMN's are less costly than MSN's in the sense that the

switching elements are eliminated, but at the expense of variable

interprocessor distances, which necessitate proper task assignment, a topic

to be discussed in the next chapter.

24

PMN's have attracted a number of researchers, but so far the interstage

connection pattern chosen is that of Indirect r-ary n-cube [BURT81J, which

forces the number of processors in the network to "facets" of N=nrn for

reguLarity of connections, where n=2 i for some i [WINT83J. Then, for a

2-ary n-cube the increments on network size grow as 2, 8, 64, 2048, •• etc.,

and when n is any integer, incrementing the network size can be achieved by

doubLirig the height of the cyLinder and increasing the number of stages by

one. The repLication of facets is possibLe for some intermediate N, for

exampLe N=8 can be dupLicated for a network of N=16, but with an increase

in the average path Length.

In Section 2.6 we introduc~ another processbr muLtistage network with

better properties compared to the previousLy studied muLtistage networks of

processors.

25

2.6 Processor Omega Networks (PON)

We now propose a new cLass of PMN's that permits reasonabLe incrementaL

expandabiLity (in increments as Low as 4) and empLoys a fixed pattern for

interstage connections regardLess of the size and aLignment of the network.

We caLLed this network the Processor Omega Network (PON) due to its

resembLance to one of the muLtistage switching networks, the Omega Network

of Lawrie [LAWR75J which is iLLustrated in FIGURE 2.6.1 for interconnection

of 8 processors. Here, the interstage connections are based on the shuffLe

function defined by

S(x) = (2x + L 2x/NJ)mod N

where x is the binary .representation of

for some n, and LxJ ~ x • Thus the

Left-rotate of the index bits.

index of an input Line, N=2n

shuffLe permutation corresponds to

We represent an N-eLement PON as N-processors arranged in a matrix (i,j)

of r rows and c coLumns connected by the shuffLe interconnection as

iLLustrated in FIGURE 2.6.2 and the index of each processor is given by the

singLe index

P = i + jr

with O~i~r-1, O~j~c-1 and O~P~N-1. The Last coLumn of the figure coincides

with the first. Each processor in j th coLumn is connected to two

processors in coLumn (j+1)mod c

coLumn (c+j-1)mod c on its

,
on its right, and to two processors in

Left. Each processor in the i th row is

connected to two processors in rows

r/2 (i mod r/2) ; up

and

r/2 (i mod r/2)+1 ; down

on its right and to two processors on its Left in rows

Li/(r/2) J ; up

and

Li/(r/2)J+ r/2 ; down

SWITCHING
STAGES

o t---.I
1 - 2

I--~O

FIGURE 2.6.1 An (MSN) Omega Network (N = 8)

FIGURE 2.6.2 A (PON) Processor Omega Network (N = 8)

26

The connection onLy requires that r=2k for some k.

assume that r=2k at most so that N=c2k=2n for

27

However, we

some n. The

can

main

advantage of this configuration is homogeneity, that is, the view of any

processor of the rest of the network is the same, a fact that can easiLy be

proved by manipuLating row and coLumn indexes, and wiLL permit a singLe

type of system software for aLL the proc·essors in a muLtiprocessor

environment.

To have a better appreciation for PON, we derive expressions for some of

its deterministic properties and compare with those of Omega MSN.

First, the average path Length L in an N=rc unidirectionaL PON is

derived as d~x

L =*2 f\j..~
FON ,=0

and,

1"!J:z.. r- 1 . c- i
1 Iz I. ~ .=N j=o 2.1 + ~ r.i

i=.l~

LpON = (c-3)/2 + Log2r + 1/r (2.6.1)

where n. is the number of processors reached at a path Length of i, ,
d max is the maximum path traversed from anyone node to reach aLL the

others, and use is made of the identities

fV\
) and Z ; = M (M -i.) I 2.

i=.o

For the speciaL case, where· r= 2c and N= c 2c,

d = 2c-1 max
and LpON simpLifies to

-c
LpON = 3/2 (c-1) + 2 .

The path Length in MSN with N= 2n is fixed and is given by,

(2.6.2)

TABLE 2.6.1 PON versus MSN for 1 ~ n ~ 6, N = 2n = rc

N n k r=2k -2n- k c- nSW LMSN LpON

2 1 1 2 1 1 0 1

4 2 1 2 2 4 1 1
8 3 1 2 4 12 2 2

8 3 2 4 2 12 2 1.75

16 4 1 2 8 32 3 4

16 4 2 4 4 32 3 2.75

16 4 3 8 2 32 3 2.62

32 5 1 2 16 80 4 8

32 5 2 4 8 80 4 4.75

32 5 3 8 4 80 4 3.62

32 5 4 16 2 80 4 3.56

64 6 5 32 2 192 5 4.53 "

If we re Late MSN and PON for the same N = 2n = rc = 2"k2n-k

(2.6.1) can be rewritten as

28

(2.6.3)

TABLE 2.6.1 gives LpON' LMSN and nSW' the number of switching

eLements in MSN, for some parameters incLuding N=64, where

nSW = N/2 Log2N = n 2 n-1

We note a few points in TABLE 2.6.1. First, the increments on N are

smaLLer than the increments of binary n-cube PMN's. Second, we have a wider

choice of network aLtgnments indicated by the coLumn for k (note that for

N=64, just one representative is shown). For exampLe, forN=16 the

aLignment r=c=4 corresponds to a repLicated n-cube whiLe the aLignment r=8

and c=2, onLy permitted in PON, provides Lowest average path Lengths.

Path
Length

l
7

6

5

4

J

2

FIGURE 2.6.3 Average Shortest Path Lengths in MSN and PON

nd

(d=n-1)
70

60

50

40

30

20

10

o 2 J 5 . 6 7 n = 1092 N

FIGURE 2.6.4 Processor ReachabiLity in MSN and PON

29

LpON (with c=1,2) and LMSN are pLotted in FIGURE 2.6.3. For

n > 2, PON aLways outperforms MSN, with a difference of 1/2.

30

Next, we want to investigate the reachabiLity property in PON. Let

nd denote the number

within a path Length of

of

d.

distinct processors reachabLe from

For N = 2n processors, in MSN's,

processors are reachabLe within

d = LMSN = n - 1

any node

aLL 2n

(2.6.4)

In PON's, considering the configuration with c = 2 in order to achieve
. n-1

the shortest LpON ' we have r = 2 and

The number of distinct processors nd reachabLe from any node within

the distance d for some r-c aLignments with N ~ 32 are tabuLated in TABLE

2.6.2. As expected, c = 2 provides the highest processor reachabiLity for

the same N.

N r c d nd

4 2 2 1 3

8 2 4 2 5

4 2 6

16 2 8 3 7

4 4 11

8 2 12

32 2 16 4 9

4 8 15

8 4 22

16 2 24

TABLE 2.6.2 Processor ReachabiLity in PON for N ~ 32

31

We consider three cases

Case 1 l092 r = d < c=2

d

nd =Z 2i = 2d+1 - 1

i=O

Substituting the value for d from (2.6.4)

nd = 2n - 1 , d < c=2 (2.6.5)

Case 2 l092 r = d = c=2

d

nd =L 2f = 2d+1 ... 2

i=1

Substituting for d ,
nd = 2n _ 2 , d = c=2 (2.6.6)

Case 3 l092 r = d > c=2

d d-c

nd = L. 2; -z 2i

i=O i=O

= 2d+1 [1 - 2-c]

= (3/4) 2d+1 since c=2. ,
Substituting for d ,

nd = (3/4) 2n , d > c=2 (2.6.7)

Processor reachability of both networks is plotted in FIGURE 2.6.4 for

d = lMSN. It is seen that for this c=2 configuration of PON's, 75% of

the processors compared to those in MSN are reachable in PON within the

same distance, d.

32

TABLE 2.6.3 land d of some max
unidirectional/bidirectional PON's

N r c d d l uni lbi max max
(un;) (bi)

8 4 2 3 3 1.75 1.5

12 4 3 4 3 2.25 1.66

12 6 2 4 4 2.33 2~00

16 4 4 5 4 2.75 2.00

16 8 2 4- 4 2.62 2.25

24 8 3 5 4 3.12 2.29

32 16 2 5 5 3.56 3.06

64 16 4 7 5 4.56 3.36

33

Moreover, we can make a rough cost comparison of the two if we assume

that in PON each processor is connected to the rest of the network with a

3x3 switch (two for external connect10ns and one for the internal

connection) and we denote the cost of a K x K switch with 0(K2). The

cost of an MSN with nSW 2x2 switches will be (n2n+1), where for the

PON with N=2n processors it will be (9 2n). Thus for n>5, i.e.

N>32, PON will be less costly than MSN Omega.

So far we have assumed that PON is unidirectional in order to be able to

compare it to the unidirectional MSN. Bidirectional PON~s offer lower

average shortest path lengths, than unidirectional ones, as a result of

the r=2k their higher processor reachability. Moreover, we relax

restriction and let r=2k. TABLE 2.6.3 illustrates average shortest path

length l and maximum path length d for some unidirectional and max
bidirectional PON's. We see that average path lengths for bidirectional

networks are an order better than for unidirectional ones and higher c is

preferable in contrast to higher r alignment of unidirectional networks.

Reachability, the average shortest path lengths and maximum path lengths

provide some measure for the expected performance of these partially

connected networks. Actually, in the remaining sections of this

dissertation our task will be to assign software modules of a computation

task to· processors in such a partially-connected network so as to minimize

the interprocessor communication during execution to be able to minimize

the completion time of the task. Then, bidirectional PON will serve as a

feasible model for the hardware component of the task assignment model to

be developed in Chapter 4.

For the rest of the work will assume that interconnection of adjacent

processors

Then, unit

proportional

can be achieved using intermediate dual-ported memory units.

data transfer between a processor pair will take a time

to the execution of a store-load instruction sequence and some

memory management. This time will be associated with an interprocessor

distance of unity, as the hardware cost ofa unit transfer.

3.1 General

3.0

THE SOFTWARE ENVIRONMENT

FOR DISTRIBUTED PROCESSING

34

The research on the software probLems of distributed computing can be

broadLy cLassified into three groups :

1- Languages and aLgorithms suitabLe for distributed processing

2- Program anaLysis, transformations and task partitioning

3- Task assignment

As aLreadi mentioned, these groups are interrelated a proper Language

that enabLes the software designer to indicate paralLelism expLi~itly for

an aLgorithm that lends itseLf weLL to paralLeL execution eases the program

anaLysis and partitioning phase, and naturaLLy improves the performance of

the task assignment phase.

As far as the programming Languages are concerned, basically two

categories can be identified

1- ConventionaL Languages

2- Non-conventionaL Languages

The disadvantage of conventionaL Languages in distributed processing is

a resuLt of their underLying machine architecture, that is, the. sequentiaL

execution mechanism of von-Neumann machines. Assignment statements and

unstructured constructs, Like GOTO statement, seem to prevent their

efficient use in distributed computers. Moreover, they have no mechanism to

indicate the operation paraLLelism expLicitLy.

The non-conventionaL Languages are basicaLLy the datafLow [ACKE82J and

functionaL Languages. The work done in non-conventionaL Languages is highLy

~ stimuLated by Backus [BACK78J, who also proposed a functionaL Language,

FPP, with a desire to make programming a mathematicaL science rather than

an art, so that programs can be generated and verified mathematicalLy.

35

FunctionaL Languages are weLL suited to reduction machines, since they

represent programs as function appLications. DatafLow Languages have

expLicit constructs Like "foraLL", they are free from side-effects and are

based on the singLe-assignment ruLe, and the variabLes, not their

addresses, are manipuLated. VAL and ID are two exampLes among the proposed

datafLow Languages. The deveLopments in both categories are promising for

appLications in a distributed processing environment, aLthough stiLL some

probLems remain to be soLved, such as the debugging of distributed software

[MCGR80J.

On the other- hand, work in transLating conventionaL Languages into

non-conventionaL ones has one sound objective; the desire to expLoit the

experience and vast body of software in existing Languages [VEEN81J. This

has Led to work on program fLow anaLysis and transformation techniques to

reduce dependences in the programs in order to permit paraLLeL execution.

ReLated work is reported in [BANE79J, [PADU80J, and [ALLA80J •.

In [BANE79J, the concept of II-bLocks is introduced, which, simpLy

stated, corresponds eith~r to an independent partition of a program or an

indivisibLe bLock containing maximaLLy dependent statements. Within a

II-bLock, data fLow between operations may be represented by bidirectionaL

arcs, whereas between II-bLocks the fLow is unidirectionaL representing the

precedence reLations between the bLocks. II-bLocks of a sampLe program

graph are iLLustrated in FIGURE 3.1.1, where directed arcs indicate

dependences between the nodes which correspond to assignment statements

S1, ••• ,S7 Program partitioning corresponds to extracting

II-bLocks of a task, which we wiLL caLL software "moduLes".

The Last step in deveLoping software for a distributed environment is

the assignment of these dependent moduLes to processors so as to minimize

the execution time. This is a compLicated probLem of combinatoric nature

and wiLL be treated in depth in the remaining sections.

TIl

cycle

....,.......-max.
cycle

cyclQ

0J m

FIGURE 3.1.1 Extraction of II-BLocks for

Program Partitioning

36

· 37

3.2 The Task Assignment Problem

The relation of task assignment probl~m to other phases of software and

hardware design of distributed systems is illustrated symbolically in

FIGURE 3.2.1.

The task assignment problem implies that segments of a task are to be

assigned to particular processors for execution at a particular time and is

closely related to problems that occur in scheduling.

The simplest problem in scheduling theory [CONW67J is the scheduling of

a set of independent tasks on a single machine so that some objective is

achieved, such as the minimum completion time for the tasks. The

constrained version of this problem, where the tasks are no longer

independent, poses a little harder problem to deal with. As we move away

from the simplest problems, the next class is where we have more than one

machine, that is, the problems for scheduling on two identical machines

which have a deterministic solution, the most well-known being the

Johnson's Problem. For the case when we have more than two machines,

whether in a fLow-shop environment, where tasks are pipeLined over a

non-identicaL set of machines, or, in job-shop environments where

independent jobs composed of a number of ordered tasks requiring different

machines are scheduLed, no deterministic soLutions could be found so far

[COFF76J. For· these types of probLems, enumerative procedures for optimal

solutions or heuristic procedures for suboptimal soLutions are chosen

depending on the size and toLerance nature of the applications.

In muLtiprocessor scheduLing, where independent or reLated tasks are to

be assigned to processors, as weLL as in the generaL scheduLing probLems

mentioned above, the primary concern has been to make an assignment to

processors in order to minimize the total or mean completion time of tasks

by considering onLy the processing time requirements of tasks and the

- precedence reLations among tasks if the~ are not independent.

38

Problem Interconnection
Strategy

Algorithm

Language

Program Flow } Preprocessor
Analysis for

& Software
~P_a_r_t_i_tl~·o~n_i_n~g~~

Objectives
and

Constraints

TASK ASSIGNMENT

Optimal Assignment
of

Preprocessor
for.

Hardware

Processor
Graph

Modules to Processors

FIGURE 3.2.1 ReLation of Task Assignment ProbLem to Other

Phases of Software and Hardware Design

39

IdeaLLy, in a muLtiprocessor system one wouLd have expected an ideaL

increase· in throughput that is LinearLy proportionaL to the number of

processors used, when compared to the singLe processor resuLts. However, in

practice, the throughput increases for the first few additionaL processors

onLy, and after a certain point it begins to decrease with every new

processor added to the system. This phenomenon of decrease in throughput

for increased number of processors is caLLed the "saturation effect " ,

[FLYN72], [CHU" 80], and is caused by the excessive interprocessor

communication (IPC) in the system, an issue not considered in

muLtiprocessor scheduLing where communication in the system is totaLLy

ignored. This is where the task assignment probLem differs from that of

scheduLing.

In order to avoid the saturation effect we must investigate the nature

of IPC. The overhead in processing time due to IPC may occur for various

reasons. ln some systems it is onLy due to the actuaL data passing between

dependent software moduLes that reside on different processors. In some

other systems it may aLso incLude the time required to satisfy

communication protocoLs and for the management of store and externaL

resources. There may aLso be deLays due to queueing at both ends of a

communication path that add up to IPC overhead and aLtogether degrade the

system performance.

Given a software probLem, which we wi LL. caLL a "task", assume that in

order to be executed in a muLtiprocessor system it is partitioned into a

number of software moduLes such that the amount of data that needs to be

transferred between dependent moduLes, i.e. the amount of intermoduLe

communication (IMC), is minimaL. This means that bLocks of instructions of

the program with strong data dependences among them are cLustered in

forming the moduLes. Then, the amount of IMC in a partitioned task is

strictLy a function of the software characteristics of the probLem and the

partitioning procedure empLoyed. The next step in distributed processing of

the task is to assign these moduLes "to processors. When any two moduLes

with IMC between them are assigned to different processors in the system,

40

they will cause IPC, in an amount proportional to IMC between the modules

and the cost of unit transfer between the processors,

conveniently be associated with the distance between them. If

which may

the modules

are coresident, we assume that the overhead is negligible and that there is

no IPC cost. IPC is, therefore, a function of IMC, the distance between

processors and the module-to-processor assignment, and in order to minimize

the overhead due to IPC, we require proper task partitioning and task

assignment. Here we assume that there is a software preprocessor which

performs the partitioning phase and thus the modules with their related IMC

values are available for the assignment phase.

In the remaining sections of this study, our aim is to optimally assign

modules to processors so as to achieve minimum finish time or maximum

throughput. In this respect, we need to tackle with two conflicting

problems. In any multiprocessqr system the obvious tendency is to

distribute the work-load to all the processors as evenly as possible in

order to reduce the overall proc~ssing time and improve system efficiency.

This corresponds to the concept of load balancing. On the other hand, we

have seen that a proc~ssing overhead due to IPC is incurred whenever

dependent software modules are assigned to different processors, and to

reduce IPC, we have to cluster the communicating modules to as few

processors as possible. Then, an optimal assignment strategy should balance

these two competing factors for maximum system performance.

In any real application, we have other complications due to constraints

on the assignment, related to the limitations on resources. These limited

resources may include the number of processors, processor characteristics

such as speed, memory capacity and peripherals, and real-time constraints

such as the maximum finish time of the task or the task frequency. An

efficient assignment procedure must be able to incorporate such constraints

in the optimization model and tune the system to satisfy the constraints.

41

So far nothing has been said on the interconnection strategy of

processors. For fuLLy-connected processors, i.e. when there is a direct

path connectfng any processor pair in tfie network, it is sufficient to

consider the interprocessor distances and proce'ssor speeds in the

assignment process. In the case of identicaL processors with uniform

interprocessor distance -a highLy vaLid assumption for cLoseLy-coupLed

processors- , the contribution of any assigned processor to IPC cost due to

IMC wiLL be equaL.

Task assignment for partiaLLy-connected processor networks presents

additionaL probLems. The first difficuLty arises in the communication of

non-adjacent processors. Any, pair of processors that are not directLy

connected have to communicate over some intermediate processors and the

success of communication naturaLLy depends on the avaiLabiLity of these

processors during the exact transfer intervaLs. Assuming that they are

avaiLabLe, these processors-on-route wiLL have additionaL communication

Loads. This is the situation with networks of unique shortest paths between

each pair. When the interconnection strategy aLLows more than one path of

shortest Length between, processor pairs, we have the additionaL probLem of

alternate routes between processors. Now apart from the avaiLabiLity of

processors we have to seLect some path among the aLternatives i.e. route

the data over some seLected processors based on the preferabLe satisfaction

of our objectives.

In this dissertation, our emphasis is on the optimaL moduLe-to-processor

assignment in partiaLLy-connected homogeneous processor networks with

aLternate routes under the Limitations imposed by the number of processors

and the reaL-time constraints.

We wiLL distinguish between two environments for the task assignment,

one being caLLed the non-Loaded or singLe-run environment where tasks are

expected to be repeated at irreguLar in~ervaLs over a Long period of time.

The' second environment we consider is the Loaded or muLti-run environment

42

where successive, periodic execution of a task is of concern. Accordingly,

we will propose two objective functions to be minimized in order to achieve

load balancing and minimization of IPe. The first objective function is the

so-called port-to-port time (PTP) used in a recent research for

fully-connected networks in non-loaded environments [HOl082] PTP is

defined to be the elapsed time from the first start time of any module

until the finish time of the last module to finish, i.e. the maximum

completion time of the distributed task, and is composed of the processing

time, the time spent for IPe, and the idle time on processors,

corresponding to the waiting time of modules due to precedence constraints.

Assignments that minimize PTP will obviously minimize IPe and balance load

distribution, especially in non-loaded environments. The performance of PTP

criterion in loaded environments depends on the task frequency and may

degrade at higher frequencies.

The second objective function that we introduce produces assignments

with most well-balanced load (including processing and communication) and

suboptimal PTP in non-loaded environments. We call it the least

re-initiation period (lIP), related to multiple, periodic execution of a

task. lIP corresponds to the maximum of the reserved-times of the

processors, determines maximum input data rate to the system, i.e. the task

frequency, and also is a measure of the overlap between successive task

executions. Minimum lIP is a robust performance criterion maximizing the

overlap and suboptimizing PTP, such that in multi-run environments,

assignments with low lIP and suboptimal PTP outperform assignments with

higher lIP and optimal PTP, this being possible with as few as two

repetitions of the task set. Then, in a multi-run environment we speak of

the overalL compLetion time and minlIP dominates minPTP criterion.

43

Related to scheduling terminology, our assignment strategy will be based

on nonpreemptive (or basic) scheduling, meaning that interruption of a

module is not permitted before its completion. Although, in general,

preemptive disciplines generate better schedules than nonpreemptive ones,

the context-switching overhead of preemption will cause further performance

degradation and is unacceptable for our task assignment environment.

In the next section, we present a brief review of the related research

and solution techniques for the task assignment problem and Section 3.4

outlines the proposed method of attack, which is treated in detail in

Chapters 4 to 6.

Any solution to the task assignment problem exhibits combinatoric

complexity due to the inherent combinatorial nature of the problem. Indeed,

any assignment or scheduling problem apart from the simple ones we have

mentioned, is in the cla~s ~f the so-called NP-complete (or NP-hard)

problems indicating that they possess no deterministic solut~on computable

in polynomial time with respect to the dimension of the input [ULLM76J •

This means that for very large systems, we might have to be content with

suboptimal solutions an"d the task assignment procedure should be flexible

enough to incorporate heuristics in order to find acceptable solutions for

problems of higher dimensions. Chapter 7 of the dissertation presents a

discussion of some methods to reduce the complexity of enumerations.

44

3.3 Related Research and Solution Techniques

As previousLy mentioned, task partitioning and task assignment are the

two essentiaL phases in the optimaL utiLization of a distributed system.

Task partitioning is pureLy a software design, issue, reLated to program

anaLysis techniques and compiLer generation, [KUCK72], [JENN77], [ALLA 80],

[PADU80], [JOHN80], [VEEN81], and its importance is in providing the

software component of the input of the task assignment process.

The task assignment probLem and reLated probLems of processor and job

scheduLing, as weLL as the fiLe aLLocation probLem, have been studied for

many years, most of the techniques used being adaptations from oLder,

weLL-estabLished resuLts' deveLoped in management science and operations

research, i.e. techniques from graph theory, optimization, theory,queueing

theory, mathematicaL programming and various aLgorithmic or heuristic

methods. The cost function in these studies is usuaLLy formuLated so as to

minimize either the maximum finish<fLow) time or the mean fLow time of the

generated assignment<scheduLe) [CONW76] .'

A graph theoretic approach is one of the most commonLy used techniques

by researchers both in task assignment [STON77], [JENN77], [RAO 79], and in

scheduLing fieLds [CONW67], [COFF76] It is based on a graph

representation of the task where the moduLes are represented as nodes in

the graph and the dependence between moduLes by arcs connecting the

associated nodes. With this graphicaL representation of the probLem, in

scheduLing, the nonpreemptive scheduLes generated are "List scheduLes", so

that the probLem is reduced to that of finding an optimaL List of tasks and

whenever a processor is avaiLabLe it is assigned a task from the ordered

List [COFF76] •

We want to mention two important issues from processor scheduLing.

One of them is the work of Hu [HU 61] in operations research, which is

. next to Johnson's resuLts for two-machine fLow-shop probLems is probabLy

45

the most frequentLy cited reference in muLtiprocessor scheduLing, as

commented in [GONZ77J • Hu addressed the probLem of bounds -assuming unit

duration tasks- , on 1) minimum compLetion time of a task graph, given

Limited number of processors, and 2) minimum number of processors to

process a graph, given Limited compLetion time. ApproximateLy, his bounds

reLate the required minimum time with the LeveLs of the graph and the

minimum number of processors with the number of nodes at each LeveL.

A different approach, in

'processor bounds in terms

expressions for compiLation

[BANE79J •

computer science, to time

of the number of operands

of high LeveL Languages is

and paraLLeL

in arithmetic

reported in

The reason we emphasized Hu's work is due to the so-caLLed

"muLtiprocessor anomaLies" probLem first addressed by Graham. In [GRAH66J,

Graham shows that the maximum finish time of a scheduLe may actuaLLy

'increase with reLaxations on the constraints, the most important ones for

us being the,decreased processing times and precedence reLations in the

task graph, and the increased number of processors. These anomaLies are

studied in a scheduLing environment where the communication costs have even

not been considered. The first two probLems mentioned are reLated to both

partitioning and assignment, and the Last has strong .impLications for the

task assignment. UsuaLLy in the assignment probLem, the number of

processors in the system is assumed to be a fixed input parameter, but

because of the communication overhead it may weLL be that a given task wiLL

finish execution earLier if the number of processors used is Less than the

avaiLabLe. This is true especiaLLy in partiaLLy-connected networks where

the average interprocessor distance increases with an increased number of

processors in the system. If we couLd have achieved bounds on the optimaL

number of processors, given the task graph, the time Limit and the

processor graph, we couLd have used optimaL number of processors in the

assignment : either by seLecting a cLoseLy-coupLed subset of the network in

a normaL operation

accordingLy if in

mode where

the design

the network is fixed, or by designing

phase. UnfortunateLy, aLthough Graham's

46

resuLts carryover to the task assignment environment, Hu's bounds on

unit-execution task graphs with communication costs excLuded are not

appLicabLe and determination of bounds for the generaL task assignment

environment that we consider poses a very chaLLenging probLem to be soLved

due to aLL the additionaL compLications. [RAMA72J gives an exampLe of

processor scheduLing using Hu's bounds, where the concept of E (earLiest

precedence) and L (Latest precedence) partitions is used on the graph to

determine the criticaL paths and to seLect dominating nodes. A good survey

on deterministic processor scheduLing is presented in [GONZ77J •

One method empLoyed to soLve the task assignment probLem in presence of

communication costs is borrowed from the work on fLows in networks and

makes use of the weLL-known max-fLow min-cut theorem [FORD64J • Here, it is

assumed that IPe costs between non-coresident moduLes are known apriori and

assigned as weights to arcs in the task graph. The processing cost of each

moduLe is assumed to be given as weLL, so that if a moduLe cannot be

executed on a processor it is assigned an infinite processing cost for that

particuLar processor •. With this setup, Stone [STON77J has show~ that

(FIGURE 3.3.1) : for two processors (P1,P2), two nodes (P1,P2) can be added

to the graph and connected to moduLes with arcs that are assigned a weight

as the processing cost of the moduLe on the opposite processor and by

treating the resuLting graph as a network, with P1 as the source and P2 as

the sink, the max~fLow min-cut theorem can be appLied for a min-cut on the

network, to partition the moduLes into two disjoint sets and thus to

distribute the moduLes to two processors for minimum cost assignment.

ALthough it seems to be simpLe and favourabLe in compLexity (with a time

upper bound of N3 for a network with N nodes [RAO 79J), this method of

moduLe assignment i~ infeasibLe since it provides no information on

sequencing of moduLes on processors, resource constraints and Load

baLancing cannot be incorporated and it becomes unmanageabLe for N>2. As

reported in [RAO 79J, even in the two processor case, where one of them has

Limited memory, the probLem is in the NP-compLete cLass and the compLexity

advantage is Lost.

I
I

[5~

FIGURE 3~3.1 Graph Showing IPC {(.)} and Processing Costs

for the Min-Cut ExampLe

P1: tA.B,e. D.E I
P2: t F 1

~
--.J

48

The other basic method applied in file allocation and task assignment is

to formulate the problem as a discrete optimization problem with

constraints which then can be solved using mathematical programming

techniques such as integer programming, dynamic programming and

branch-and-bound. Because of the large number of constraint the resulting

problem is non-linear as an integer programming problem and has to" be

linearized by additional constraints [CHU 69], [GYLY76], at the "expense of

increased problem size. Apart from the increase in size and solution time

of the problems, integer programming methods are not reliable. due to the

possibility of not converging to a solution at all.

Due to the NP-complete nature of the optimal assignment any solution

method depends on enumeration techniques that examine all feasible

alternatives. Ignoring integer programming for the reasons stated above,

dynamic programming [BELL62] and branch-and-bound [KOHL76] are the two

well-known methods used to reduce enumeration.

If we ~odel the search s~ace as a finite tree of partial solutions,

dynamic programming is "a breadth-first search method that uses dominance

rules to prune the tree. Being a breadth-first search method, demand on the

memory capacity is high to be able to save the entire solution tree and

~ince only partial solutions are generated at every step, it cannot be

interrupted during execution before the final stage, with the hope of

finding suboptimal solutions.

Branch-and-bound, on the other hand, is a depth-first search method

where the most recently computed best solution is always available and the

process can be interrupted before the end for acceptable solutions. In

[MA 82], this technique is used for assignment considering IPC cost as the

only objective to be minimized.

49

An interesting approach to deaL with enumerations as depth-first search

methods might be the distributed execution of the task assignment probLem

itseLf. Such an effort on network computes is reported in [El-D8DJ •

Apart from the moduLe assignment probLem for muLtiprocessors, data

mapping probLems to minimize communication costs have been extensiveLy

studied for array processors, i.e. in SIMD environments. Some exampLes are

given in [BOKH81J, [IRAN82J and [MOlD83J. In [BOKH81J, Bokhari considers

the mapping probLem and shows its reLation to graph isomorphism probLem,

bandwidth reduction probLem for sparse matrices and to quadratic assignment

probLem. He presents a heuristic method based on graph theory, where using

adjacency matrices to represent the process and processor graphs, he tries

to achieve maximum matching of the two. The aLgorithm compLexity is

reported as o(N2) for an N x N array of processors. ObviousLy, such

heuristic methods can as weLL be empLoyed for the task assignment probLem

to obtain suboptim~L soLutions.

An aLgorithmic approach to optimaL task assignment is empLoyed in

[HOll82J. Algorithmic spLution procedures may be considered as depth-first

search methods, simiLar to the branch-and-bound technique, where increased

number of probLem constraints heLps to reduce the search space by efficient

pruning, in contrast to compLicating the soLution process in other methods.

They aLso aLLow generation of suboptimaL soLutions in order to reduce the

compLexity. In [HOll82J, an optimaL soLution to the task assignment probLem

under reaL-time constraints in non-Loaded environments and a suboptimaL

soLution in Loaded environments are presented. Her aLgorithm can be used

for task assignment in fuLLy-connected processor networks of uniform or

variabLe interprocessor distance to provide a safe upper bound on PTP,

since she makes the approximation that when a moduLe has to pass data to

more than one successor, the successors are assumed to start execution

simuLtaneousLy onLy after the Last transmission is compLete, aLthough the

moduLes whose data are sent earLier, aLr.eady have their data avaiLabLe and

50

can start execution. This way of computing PTP might Lead to a situation

where an assignment is rejected as not satisfying the reaL-time constraints

even though it actuaLLy ~eets the deadLine. Moreover, her method cannot be

used for partiaLLy-connected networks where, intermediate processors are

used in data transfers and the IPC cost which is a function of the distance

shouLd not aLL be associated with the source (transmitting) moduLe. Another

point is that, minPTP is used as the main objective in both Loaded and

non-Loaded environments, whereas we wiLL" show that the proposed minLIP is a

better performance measure in Loaded environments.

51

3.4 Proposed Method of Attack

We have defined our task assignment environment as one with a singLe

task of dependent moduLes, a partiaLLy-connected network of identicaL

processors and with aLternate routes, and Limited time which is a function

of moduLe processing times, IPC time and idLe time due to precedences.

The presence of precedence reLations makes it necessary' to know the

Location and the time sequence of every other moduLe in the system to make

an assignment. Moreover, because of the partiaLLy-connectedness of the

network, distances and aLternate paths between processors and the

avaiLabiLity of intermediate processors at required instants aLso need to

be known. CLosed form mathematicaL optimization techniques are not abLe to

represent aLL the required information and are therefore inappropiate for

the soLution of the task assignment probLem as deveLoped here, which

requires some form of enumeration.

We propose an aLgorithmic soLution procedure to soLve the task

assignment probLem. It is based on a depth-first search technique and

constraints are imposed to reduce the soLution space. Every feasibLe

assignment that satisfies the constraints wiLL be evaLuated and if its

performance is better than the previous ones, it wiLL override the formers

as the so-far-best assignment. With the aLgorithmic approach, it is aLso

possibLe to specify bounds on the number of generated assignmentS or

"acceptabLe" vaLues for the desired performance and interrupt the aLgorithm

execution before termination.

In representing the gener~ted assignments, it is common to use a

graphicaL representation where it is easy ~o see the Load on each processor

and sequencing among the moduLes. We wiLL refer to such a chart as the Load

density function (LDF), foLLowing the terminoL6gy in [HOLL82J, ~just as a

matter of preference-, which is the same as the "Gannt chart" used in

52

Processor

P1 A 0 E

P2 C 8
2 2

o 1 2 3 4 5 6 lime

a) Sample Task Graph b) The Load Density Function

FIGURE 3.4.1 A Sample Graph and Load Density Function

scheduling theory [CONW67J. As an example, the load density function

corresponding to an arbitrary assignment (assuming IMC = 0) of a sample

task graph is illustrated in FIGURE 3.4.1. The vertical axis represents the

processors and the time used by the modules is shown along the horizontal

time axis.

In the next chapter, we will develop a model, state our objectives and

present a mathematical formulation of the problem both for fully-connected

and partially-connected processor networks.

In Chapter 5, the methods of actual storage representations for the

hardware and sofware components of the problem will be discussed and the

most efficient ones will be determined in preparation for the algorithmic

solution presented in Chapter 6.

53

4.0

THE TASK ASSIGNMENT HODEL

4.1 Description of the Hodel Components

A model developed to describe the task assignment environment must

represent both hardware and software components.

In our model, we define a software task as a collection of cooperating

modules obtained after task partitioning, such that no two modules have

maximally connected components' between them and th~ precedences are

unidirectional. In a distributed processing system of multiprocessors the

modules comprising a task will be executed in different processors and the

completion time of the task is considered to be the completion time of the

last module to finish.

A module is described by a number of attributes related to its

processing requirements: m~inly, the number of instructions to execute the

module which when divided by the speed of a processor gives the processing

time for that module, the amount of storage required by the instructions

and data of the module, and the amount of data to be sent to other

succeeding· modules or to be received from the predecessors, called the

intermodule communication (IMC).

The hardware environment of the task assignment model can be' described

by the characte~istics of the processors and the interconnection strategy

between the processors.

The processors may be characterized by their speed, their memory

capacity and 1/0 capability. For a network of non-identical processors

these attributes have to be supplied for each processor. Here, we confine
~

ourselves to networks of identical processors and will need to specify just

a 'single set of processor .characteristics.

The interconnection strategy describes the connection

processors and can be characterized by giving the pairs

connected processors and the interprocessor distances. For a

fuLLy-connected interconnection strategy, it is sufficient

54

pattern of

of directLy

to provide

distances between the processor pairs. For a partiaLLy-connected network,

fuLL information as to the adjacent processors of each processor and for

indirectLy connected pairs, the identities of processors on the paths and

the distance information must be suppLied.

In this study, we treat the more· generaL and reaLizabLe case of

partiaLLy-connected interconnection strategy of identicaL processors.

55

4.2 Performance Measures

Having mentioned the components of the modeL, task assignment is the

process of assigning moduLes comprising a singLe software task to

processors in a network such that some objective is optimized. For this

study, the initiaL objective is to minimize the maximum compLetion time of

the task, measured from initiation to compLetion time of the task set, and

this time wiLL be caLLed the port-to-port time (PTP) simiLar to the

terminoLogy in [HOLL82J, an appropiate term borrowed from avionics. Thus,

if we consider the processor network as a system and the task as a whoLe,

PTP is the time eLapsed from entry of the task to the exit from the system,

and hence is given the name port-to-port time.

PTP consists of processing time of moduLes, interprocessor communication

time (IPC) caused by moduLes sending data to dependent moduLes resident on

other processors, and the idLe time on processors due to precedence

reLations, such that, a moduLe assigned to a processor cannot be executed

aLthough the processor has finished work on the previousLy assigned

moduLes, because its predecessors on another processor has not yet

compLeted execution. IPC depends both on the IMC between two moduLes and

the distance between the processors in which the moduLes reside. For

coresident moduLes with IMC between them IPC is taken to be zero. Thus,

each component of PTP is a function of the software characteristics, the

hardware characteristics and the moduLe-to-processor assignment, and our

task is to find optimaL assignment given the software and the hardware

characteristics.

PTP is a good performance measure of Load-baLancing and reduced IPC in

singLe-run or non-Loaded environments where a new task is not instantiated

before the PTP of current task is reached. H~wever, one might be interested

in periodicaLLy repeated instantiations of a task or overLapped execution

of successive tasks so'as to improve utiLization and the throughput of the

system. Here, we introduce such a performance measure, LIP, the Least

re-initiation period, and denote it with the symboL (ll).

56

Let R correspond to the reserved time of a processor from initiation of

its first module until completion of the last module assigned to it. The

least re-initiation period LIP, is the max-imum R over all the processors

and is a very good performance measure for load-balancing, such that, in

fully-connected networks, minLIP is achieved at the most load balanced

assignments. It gives an indication of the overlapping of successive task

executions such that a small LIP value implies a high degree of overlapping

and permits higher initial data rate. MinLIP value gives the highest data

rate allowable before queues start to build up in the system. This is an

important issue in performance prediction in loaded environments. In

[HOLL82J, Holloway has noted that assignments generated for fully-connected

networks using minPTP criterion in a non-loaded environment, might perform

very badly in loaded environments and tried to predict behaviour of the

system by taking minPTP non-loaded assignment as the starting point,

gen&rating curves of PTP for increased loading for two extreme cases -a

set of independent modules <there called min.precedence) and a -task chain

of modules <there called max.precedence)-, and, interpolate between the two

curves. Since minPTP assignment does not yield good performance in loaded

systems, the use_of minLIP as the objective in generating -assignments for

loaded environments is expected to improve the situation and produce

superior results.

Thus, .we distinguish between the two environments in task ~ssignment,

the single-run environment and the multi-run environment, and recommend the

use of two different objectives, minPTP and minLIP, respectively.

In the following sections, we develop a mathematical formulation of the

task assignment problem, based on the model and the objectives presented so

far.

57

4.3 Mathematical Formulation

The software component of the task assignment model is described by a

process graph, defined to be a finite, directed acycLic graph (DAG) , where

the modules are represented as nodes in the graph and, data transfer and

precedence reLations between the moduLes are represented by directed arcs

between the nodes in the graph [HARA69J, [COFF76J, [GONZ77J • This means ,
the directed arcs between the nodes impLy that a partiaL ordering or

precedence reLation exists between the nodes. Knuth [KNUT73J, defines a

partial ordering as

foLLowing properties.

i) Transitivity

a relation among the objects of a set satisfying the

For any eLements i,j, k in S

ii) Asymmetry

If i-< j' and j-< k, then io(k.

If i..(.j, then jf..i.

iii) IrrefLexivity: i~i.
where the reLation io(j impLies that i precedes j Apart from the

gLobalLy assigned moduLe number given to the nodes, a second number is

associated with each node which refers to the execution time of the moduLe.

Associated with each arc there is a number corresponding to the amount of

IMC between modules, assoc~ated with'end nodes of the arc. The process

graph can then be represented by a quadrupLet (~, ~,j[,o(), corresponding

to moduLe set, processing times, IMC and precedences, respectively. An IMC

vaLue, of zero impLies that there is no data transfer between the considered

moduLes and 0(= a impLies independent moduLes. Here we consider

singLe-entry or singLe-entry-singLe-exit connected (SEC) graphs [RAMA72J

and co{¥ a .

The hardware component of the task assignment modeL is aLso represented

by a graph, a processor graph, defined to be a non-directed graph if the

interconnecting links are bidirectionaL or a directed graph in case of

unidirectional Links. The processors are represented as the nodes of the

graph, with connecting arcs corresponding to the interprocessor links.

Distances (or other link costs) between processors are represented as

weights associated with arcs in the graph.

58

In this study, we assume identicaL processors of known characteristics

(such as the speed, the memory capacity,.etc ••) and that the processing
I

times of moduLes are given after being normaLized with respect to the

processor speed. When considering partiaLLy-connected networks, we

aLso assume a bidirectionaL network and the vaLue given for the distance

between two nodes corresponds to the number of interprocessor Links traced

from the source to the destination node invoLved in the communication. For

fuLLy-connected networks, distance corresponds to the Length of a path

connecting a processor pair.

In formuLating the probLem, we wiLL first handLe the case for

fuLLy-connected networks since it is easier to grasp and then deaL with the

probLem of partiaLLy-connected networks based on the formuLation of the

former case.

For mathematicaL formuLation, we wiLL use the foLLowing notation to

describe the software and the hardware components. The actuaL storage

representations wiLL be derived in the next chapter.

For a process graph of M moduLes and a processor graph of N processors

we define (CapitaL characters within brackets denote array dimensions):

Software

PROC(M)

NO

An M-vector describing processing time requirements of each

moduLe. Convenient unit is seconds •

A scaLar. The number of arcs in the process graph, i.e., the

number of dependent moduLe pairs in the task.

OEP(NO,2) A matrix giving List of dependent pairs in the process graph

IMC(NO)

such that for the pair given in each row, former moduLe

precedes the Latte~ in the graph.

A vector consisting of IMC vaLues between each pair of

dependent moduLes given in OEP • Convenient unit is

bytes or words •

Hardware

DIST(N,N)

PROUT(.)

ROUT(N,N)

An NxN matrix describing the 'distance' between

processors.

List of processors-on-route between communicating

processors that are not directLy connected.

An NxN matrix for routing in partiaLLy-connected

networks. Entries are pointers to PROUT.

59

After the software and the hardware have been specified, we next define

an assignment matrix, X(M,N), such that

x (i, k) ={10' if

, otherwise

i th moduLe is assigned to k th processor

That is , we assume that an assignment has been generated and X(M,N) has

been constructed accordingLy •

Now we may start computing the components of PTP corresponding to an

assignment, nameLy the processing time, the IPC time, and the idLe time.

Processing time is represented by an M-vector, where

PROCT(i) = PROC(i) * x(i,k) (4.3.1),

That is, PROCT(i) is the processing time of moduLe'i on processor k to

which it has been assigned.

The time spent in IPC is a function of IMC of moduLes, the distance

between processors, and the moduLe-to-processor assignment. Then IPCT is

represented by an M-vector, where

IPCT(i) =.2IMC(i,j) * x(i,k) * x(j,l) * DIST(k,U (4.3.2),'

j £R. ,

60

R. is the set of moduLes receiving data from moduLe i, i.e., ,
Ri = {jIIMC(i,j»O}. This means that, the time spent in IPC, for

moduLe i, is given by summing over aLL moduLes j to which moduLe i sends

data, with the summands consisting of the IMC from moduLe i to moduLe j

times the distance between the processors to which moduLes i and j have

been assigned •.

In order to specify the idLe time on a processor, we make use of start

and finish times of moduLes on processors. As we have mentioned earLier,

idLe time on a processor is caused when the processor, having compLeted

execution of a previous moduLe, is free but cannot start execution of the

next moduLe in its assigned work List since that moduLe is not yet "ready".

This situation is due to the precedence reLations among the moduLes. A

moduLe is "ready" for execution when aLL its predec.essors in the process

graph are compLeted and provided it with the data to operate -on. This is

same as the "fi ring" concept of data-flow machines - an ins"tr.uction is

"fired" when aLL its operands ~re avaiLabLe-", aLthough the contents of a

mbduLe here is assumed to be much more than a si~gLe instruction. Thus, a

moduLe whose predecessors reside on other processors must wait untiL it

receives the required data.

Then, ~ convenient way to describe the idLe time of some processor k

before executing certain moduLe i is to treat it as the deLay between the

start time of moduLe i and the finish time of some moduLe (i_1)

assigned to precede i on k, and associate it with the waiting time of

moduLe i • We denote this waiting period of process moduLes by an M-vector,

WAITP, where

WAITP = [STARTCi,k) - FINISH(i_1 ,k)] * x(i,k) C4.3.3)

We had defined PTP as the maximum finish time over aLL the moduLes,

which is equivaLent to maximum finish time among aLL the processors to

61

which the moduLes have been assigned. Then, in terms of the three

components, the finish time FCk) of processor k is given by

F(k) = ~ [PROCTCi) + IPCTCi) + WAITPCi)]

i (i A

where A = {jl xCj,k)=1} •

Because of the nature of

moduLe-to-processor assignment.

processors is PTP, so that

PTP = max { FCk) }

i~k~N

its components, FCk)

The maximum finish

C4.3.4)

is a function of

time over aLL the

C4.3.5)

Our aim is to make assignments such that PTP is minimized. Then, minimum

PTP is given by

PTP. =
ffiln

min { .PTP }

X

that is, by minimizing PTPover aLL possibLe assignments.

In a more representative form, this is equivaLent to

C4.3.6)

PTP. = min {max [<7 C PROCT(i)+IPCT(i)+WAITPCi)) * xCi,k)] }
ffiln ~

C4.3.7>

Then the optimization probLem given in C4.3.7) produces a minimum finish

time task assignment. The data required to soLve the objective function are

a measure of processing time, IPC time, and precedence constraints , and

are obtained from the software and hardware specifications and the task

assignment •

62

Having finished formuLation for PTP, we next discuss formuLation of the

optimization probLem for LIP, which determines the degree of overLap

between successive task executions in a multi-run environment.

We have defined R for each processor as its reserved time. We notice

that the difference between R(k) and F(k) for some processor k is the

start time of the first moduLe assigned to k • Then R(k) of processor k is

given by,

R(k) = F(k) - START(1(k), k) (4.3.8)

where F(k) is given in (4.3~4) and START(1(k), k) denotes the start time

of first moduLe on processor· k. T.he maximum reserved time over aLL the

processors gives LIP for the assignment, i.e.,

LIP = max { R(k) }

1~k~N

(4.3.9)

In order to make minLIP assignments, we have to find minimum LIP over aLL

the possibLe assignments, so that

LIP. = min { LIP} mln
X

(4.3.10>

or equivaLentLy in a form simiLar to (4.3.7) ,

LIP. = min { max { '\" [PROCT(i)+IPCT(i)] * x(i,k)
ffiln L

X

+ ;> :. WAITP(i) * x(i,k) } }

1~i~M

i ~1 (k)

(4.3.11)

63

Comparing (4.3.7) and (4.3.11) , it is easily seen that minimizing LIP

helps to minimize PTP as well •

The overlap in successive task executions is given by,

OVLP = PTP - LIP (4.3.12)

Thus, decreasing LIP helps to increase the overlap. Actually there might be

many assignments with the same PTP but different LIP values, such that the

one with minimum LIP gives the maximum overlap.

If a task is to be executed K times (K-run), then the total completion

time after K iterations, denoted by KPTP, is given by ,

KPTP = (K-1) LIP + PTP (4.3.13)

Thus for a K-run environment we can seLect an assignment based on KPTP,

related to· LIP and PTP. To see this, consider two assignments X1 and

X2 characterized by PTP and LIP.values as

where

In a single-run environment, the choice of X2 is preferable since one

aims for lower PTP. The situation might alter, however, in a multi-run

environment. To determine when X1 with higher PTP is preferable, we

compute KPTP for each assignment. We require that KPTP1 ~ KPTP2, or

64

Then the number of iterations K, after which X1 supercedes X2 is

given by ,

(PTP - LIP) - (PTP - LI~)
2. z 1 1

OVLPlt - OVL~ 6PTP

K ~------------------------ = -=----- = 1 + ----

LIP~ - LIP2, LIP - LIP
{ 2.

b.LIP

(4.3.14)

That is, when K exceeds a certain vaLue (which may be as Low as 2) given by

(4.3.14), X1 outperforms X2 ' and the seLection is governed more

by the Lower LIP criterion than by the Lower PTP •

The points mentioned so far wiLL be used to determine the seLection of

optimaL assignments depending on the probLem environment. Before 'proceeding

with the task assignment in partiaLLy-connected networks, we want to

mention one more point reLated to LIP and aLso give an eXqmpLe for the task

assignment on "fuLLy-connected processors.

When comparing the performance of singLe processors and muLtiprocessors

one commonLy used measure is the speed-up SN [PADU80J achieved by using

N processors, such that

SN = T1 / TN

where T1 is the time ~equired to execute

singLe processor, and TN by using N

which is never achievabLe in practice.

the task sequentiaLLy

processors. IdeaLLy SN

on a

= N

We define K-run speed-up

task on N processors, by

SNK ' for the iterative execution of a

K* T1
S - --------- = ------------------------NK -

KPTP LIP + (PTP - LIP) / K (4.3.15)

65

2

2

FIGURE 4.3.1 ExampLe Process Graph

FIGURE 4.3.2 ExampLe Processor Graph (F-C)

66

and ,

lim

K~oo

(4.3.16)

Expression (4.3.16) shows very clearly the influence of LIP on speed-up, as

is to be expected.

Now, we give an example of task assignment. The process graph shown in

FIGURE 4.3.1 corresponds to a task consisting of four modules. The

processing time for modules and IMC values are given next to nodes and

arcs, respectively. We want to make an arbitrary assignment of four modules

to three processors shown by the graph in FIGURE 4.3.2. The distances

between processors are given as weights on non-directed arcs. The two

graphs are represented in our notation by the following items:

M = 4, N = 3

ND = 4

DEP = l1 2

J
.13

2 4

1MC = I ~] D1ST = [~ ~ n
Let the arbitrary assignment be given in our notation by the assignment

matrix X as

and

1 0 0

X = 0 1 0

o 0 1

o 0 1

The processing vector and the time spent in IPC of modules are given by

PROCT = (2,2,2,3)

IPCT = (3,1,0,0)

67

There are four dependence pairs, same as the number of ·arcs in the

process graph and onLy one of these, (3,4), is coresident for the task

~ssignment chosen, giving zero IPCT(3Yby definition. ModuLe 1 sends data

to moduLes 2 and 3 at the same IMC vaLue of 1. But, since the distance

between processors 1 and 3 , where modules 1 and 3 reside , is 2, IPCT

caused by moduLe 3 is 2 whereas it is 1 for moduLe 2, and, their sum gives

IPCT(1) = 3.

FIGURE 4.3.3 shows the Load density function constructed for this

exampLe assignment, where the verticaL axis represents the processors and,

the time occupied by processing time, IPC time. and idLe time due to moduLes

is shown aLong the horizontaL time axis. It must be noted that precedence

reLations given in DEP have governed the construction of the Load density

function once the assignment is made.

Processors

.A

r OVLP

I
I I

1 1-2
I -.3 I P1

: I

I
I

WAITP (2) 2 1-4
I

P2
I

P3 WAITP(3) 3 4

o 1 2 3 5 6 1 s 9

FIGURE 4.3.3 Load Density Function for F-C ExampLe

(M = 4 , N = 3)

,
R(1) = 5

R(2)= 3

R(3FS

10 11
f Time

PTP

68

The vaLues for PTP and LIP are computed from the start and finish times

of the Load on processors

and

PTP = F(3) = FINISHC4,3) = 10

LIP = max { RCk) } = max { 5,3,5 } = 5

k

Then OVLP = 5 and if we repeat the task for five times CK = 5), KPTP = 30

whereas for a singLe processor T1 = 9 and K * T1 = 45. The speed-up

is not high, SNK = 1.5 , but the muLtiprocessor system permits data at

a rate 1 'LIP = 0.2 'sec, whereas for the uniprocessor case the rate is

1 , T1 =0.1 'sec, twice sLower than the former.

4.4 Extension to Partially-Connected Networks

Task assignment for partiaLLy-connected networks

differences compared to the fuLLy-connected case.

69

has compLicating

One of the basic

differences is that any pair of processors that are not connected directLy,

has to communicate with the aid of intermediate processors and this

naturaLLy depends on the avaiLabiLity of those processors. If avaiLabLe,

those processors-on-route wiLL have additionaL transfer duties apart from

their assigned processing and IPC duties. In addition to distances between

processors, now a List PROUT containing intermediate processors between

each indirectLy connected processor pair must be suppLied. This increases

the compLexity of the representation of the hardware component of the modeL

and of the processing for the assignment. This is the situation when there

is onLy one shortest path of intermediate processors between a source and a

destination pair.

When the interconnection pattern of the processor network is such that

there .is more than one path of shortest Length connecting a pair, for

various reasons such as reLiabiLity and better work distribution, we face

the probLem of aLternate routes and the reLated probLem of routing.

Routing, in this case, refers to a decision making process in seLecting one

of the equivaLent (in Length) aLternate paths depending on the avaiLabiLity

of processors on route and minimization of objectives. For this case, IMC

cost is fixed onLy for the source and the distance used in IPC computation

is the distance to the first intermediate processor aLthough the

source-destination pair is farther apart. For convenience, the distance

between adjacent processors is taken as unity and for the PMN networks we

conside~this distance is uniform for any adjacent pair.

Now, Let us assume that an initiaL assignment of moduLes to processors

is made, aLternate routes for non-adj~cent communicating processors are

anaLyzed and optimaL paths are seLectep such· that the seLected processors

are assigned transfer duties in addition to moduLe processing and IPC. We

may now start computing the components of PTP and accordingLy of LIP

70

As it is clear from the previous discussion, PROCT and WAITP vectors for

the fully-connected formulation remain the same (Equation (4.3.1) and

(4.3.3), respectively), but we have to-thange the IPCT vector, where

IPCT(i) = L IMC(i,j) * x(i,k) * x(j,U

je R.
1

(4.4.1)

We have to define as well two new vectors, XFER for the transfer

operations and WAITX for idle time on processors before the transfer

operations. The dimension of both vectors is the same and depends on the

number of transfer operations assigned to particular processor during the

process of load density function generation.

If we consider transfer operations as assignment-created modules, we can,

associate a processing time and a wait time with each, similar to the PROCT

and WAITP of original modules. XFER denotes the "proc~ssing time" of

transfer modules, where

XFER(i ') =,IMC(i,j) * x(i,k) * x(j,U ;

i 'E T k ' ; k 'Eo { 1, •• ,N } (4.4.2)

for IMC from module i on processor k to module j on processor l, where k'

is the intermediate processor which will "execute" the transfer module i'

Tk' is the set of all transfer operations

processor k' •

(modules)

WAITX defines the waiting ti~e for transfer modules, where

WAITX(i') = START(i',k') - FINISH(i'_1 ,k')

assigned to

(4.4.3)

is the time difference between the sta~t time of transfer module i' and

finish time of some module (i'_1) assigned to precede i' on processor

k', and during which k' is left idle.

71

We may now compute the finish time on aLL processors. Finish time F(k)

for processor k is given by

F(k) =2: [PROCHi)+IPCHi)+WAITP(i)] +L [XFER(i)+WAITX(i)] (4.4.4)

i E A

Let us augment the set A corresponding to process moduLes assigned to k

to incLude eLements of Tk (the transfer set of k) as weLL and name it
* M the number of originaL moduLes M* incLude A , augment to to

transfer moduLes as weLL, and assume that X is augmented to * X to

enabLe representation of transfer moduLe assignments such as x(i',k') but

X* stiLL represents the - same number of possibLe assig~ments as X. Then

we can easiLy obtain equations for PTP. and LIP. as m1n mln we have

done for the assignment probLem on fuLLy-connected processors.

For minimum PTP we have,

PTP . mln
= min {max {L [PROCHi)+IPCHi)+WAITP(i)+XFER(i)+WAITX(i)]*x (i ,k)}}

* k l' * X 1~ ~N ~l~M

(4.4.5)

For LIP, we recaLL that the difference between F(k) and reserved time

R(k) -is the start time of first moduLe, some moduLe 1(k) on k, which is

equivaLent to negLecting the wait time for that moduLe in the summation for

the totaL Load on processor k. Here, we have two types of moduLes that can

be 1(k) and two types of waiting times must be considered,accordingLy.

Then, the optimization probLem corresponding to the objective function

stated as minimum LIP is given by,

LIP . m1n

= min {max {.L. [PROCHi)+IPCHi)+XFER(;)]*x(i,k)

X* 1~k'N 1(i~M*

+ ~ [WAITP(i)+WAITX(i)]*x(;,k) } }
. *
1~i~M

i~1(k)

(4.4.6)

72

Both probLems as formuLated in (4.4.5) and (4.4.6) are functions of

moduLe processing times, IMC between the moduLes and distance between the

processors, moduLe precedence reLations~ processor avaiLabiLity and initiaL

moduLe-to-processor assignments.

We wiLL present a simpLe exampLe of task assignment on partiatLy

connected processors. The next chapter on storage representations wiLL

prepare us to the aLgorithmic soLution of (4.4.5) and (4.4.6) to be

discussed in Chapter 6.

The exampLe proces~ and processor graphs are shown in FIGURE 4.4.1 and

we want to assign four moduLes to three partiaLLy-connected processors.

The initiaL data are given beLow.

M = 4 , N = 3

NO = 4

1 2 1

=[~
1

n OEP = 1 3 IMC = 1 OIST a
2 4 1 1

3 4 1

ROUT =U ~ U PROUT = 2

Let the assignment be given by the matrix

1 a a
x = a a 1

a 1 a
a 1 a

73

2
2

a)Process Graph

b) Processor Graph

FIGURE 4.4.1 ExampLe Process and Processor Graphs (P-C)

The processing time and IPC vectors are given by,

PROCT = (2,2,2,3)

IPCT = (2,1,0,0)

74

There is one transfer operation for processor 2, transferring data ·from

moduLe 1 on processor 1 to moduLe 2 on processor 3. For convenience, Let us

LabeL it as moduLe 5.

Then, XFER(5) = IMC(1,2) = 1

FIGURE 4.4.2 gives the Load density function for the exampLe.

P1

P2

P3

A=7

rO
VLP

--\
I
I I
I I

?P(4} 1 1-2 1--3
I I

I ,
WAITX(S) 5 3 4

I

WAITP(2) 2 1-4
I

I I I .

° 1 2 3 5 6 7 8 9 10

t
PTP

FIGURE 4.4.2 Load Density Function for P-C ExampLe

(M = 4 , N·= 3)

R (I) =

R(2}:

R(3}:

4

7

3

5.0

STORAGE REPRESENTATIONS

FOR HARDWARE AND SOFTWARE

5.1 Storage Representations for Hardware

75

Various representation methods can be empLoyed to represent the topoLogy

of the processor network. However, one must choose a representation based

essentiaLLy on the foLLowing three criteria:

i) Storage efficiency

ii) ~rocessing efficiency

iii) Characteristics of networks under consideration

There is no priority among the three criteria. We need to find a compromise

to satisfy aLL the three.

For a fuLLy-connected network, onLy the vaLues corresponding to the

distances between the processors in the network suffice to represent the

topoLogy. These vaLues may be suppLied by a distance matrix { Dk,L } ,

where the entries represent the Lengths of the Links between proce~sors k

and L, or by making use of the symmetry, some form of pointer mechanism or

Linked-List structures may be empLoyed to reduce storage requirements.

For a partiaLLy-connected network, however, Like the ones we consider in

this study, information regarding the processors on-route and the number of

aLternate routes between any pair of processors that are not directLy

connected must be suppLied in addition to the distance information. Thus,

the storage requirements are inverseLy proportionaL with the connectedness

of the network and we need to find a cLever way to represent aLL the

information we requi~e with as LittLe overhead as possibLe regarding the

storage capacity and the processing time.

We now introduce three modeLs capabLe to represent partiaLLy-connected

networks, nameLy the Matrix-Pointer, the Pointer and the Modified

Matrix-Pointer modeLs. We present each using an exampLe aLong which we

expLain the method and discuss its efficiency.

76

5.2 Matrix-Pointer Representation

Let us consider an example graph to represent a four-processor

partially-connected network. The distance, i.e. the length of a link,

between two adjacent processors is taken as unity. The values we must

represent are the interprocessor distances, { 0 }-, the number of

alternate shortest paths for each 0>1, {NROUT}; and the list of processors

on-route, excluding the source, for each alternate route. The network is

labeled as shown in FIGURE 5.2.1.

FIGURE 5.2.1 Four-processor Partially-Connected Network

First, we form the distance matrix {Ok l}' where ,

,k = l

,k ~ l

and PROUT array, to list the processors on-route from k to l including l.

PROUT is arranged as shown below

PROUTk l:(NROUTk l;proc.list~ l; ••• ;proc.list~R~UTk,~) , , , . '

for all k,l £ S2 ' where S2

list contains 0k,l processors.

shortest paths from k to l •.

= {k,lIOk,l~2}
NROUT is the

and each

number of

processor

alternate

77

For the network in FIGURE 5.2.1 , {Ok,L} arid {PROUT} are given as,

0 2 1 1 PROUT(m) = (2, 3, 2, 4, 2, 1 ~ 2

O(k,U= 2 0 1 1
~.

3, 1, 4, 1, 2 ~ 1 1/2,
1 1 0 2 6/2, 1, 4, 2, 4, 3 ~ 4

1 1 2 0 11/2, 1, 3, 2, 3) 4~3

16 t
! NROUT m

For PROUT, m is the starting-entry index for the List of p~ocessors on the

route from k to L, and we introduce another matrix {Ak L} for routing
. ,

information, where

index for PROUT for k, L e S2

Then {Ak,L} for the exampLe is given by

0 1 0 0

A(k,L) = 6 0 0 0

0 0 o 11

0 o 16 0

If we need to find the reLevant vaLues for transfer from 1 to 2 for

exampLe, 0(1,2)=2 gives us the distance, A(1,2)=1 gives us the index for

PROUT, and starting at PROUT(1), we access the routing information such

that, there are two aLternate paths from 1 to 2, one over processor 3 to 2

and another over processor 4 to 2.

This representation certainLy fits the network, unidirectionaL or

bidirectionaL, and does not Lead to processing overhead since during task

assignment we can immediateLy access {O(k,L)} and {A(k,L)} and recording

the index m obtained from {A(k,L)} permits unique access to reLevant data

78

for future references for k,L e S2. However, the storage requirements

are not very favourabLe. For a network with N processors, we need

N2 Locations for {D(k,L)} ,

N2 Locations for {A(k,L)} ,

R

~ [NROUTm *
m=1

D + 1] Locations for {PROUT(m)} , m

where R = Is21, the number of nodes in S2. In totaL,

2N2 Locations for the matrices and o(N2) Locations for {PROUT}.

we require

For the exampLe with N=4, 52 Locations are required and for an 8-eLement

PON, the representation occupies 186 Locations.

Thus the storage requirement for N processors is in the order of 3N2

to N3 This is a ~aste especiaLLy for bidirectionaL networks of higher

N, where {D(k,L)} is symmetric and we actuaLLy need onLy N(N-1)/2 entries.

Regarding {A(k,L)}, we notice that the number of non-zero entries is R,

the totaL number of processors not reachabLe in unit distance from each

node. If we consider PON's, where the LocaL degree of nodes is 4, i.e.,each

node can access at most 4 neighbours, 4N entries out of N2 are wasted.

Storing {PROUT} necessitates R groups, each of variabLe size depending

on N and network topoLogy, and the number of Locations required increases

with N. However, the information contained in {PROUT} is essentiaL for task

assignment and no reduction in storage seems to be possibLe for the moment.

79

5.3 Pointer Representation

We consider the same network of N=4 shown in FIGURE 5.2.1. {PROUT} is

formed as expLained for the previous method.

We try to reduce the storage requirements for {D(k,L)} and {A(k,L)} at

the expense of a smaLL amount of extra processing.

We form (N-1) groups of processors, where each group contains processor

pairs (k,L) such that for k=1,2, ••• ,N-1 the index L goes a~ L=k+1, ••• ,N and

we form a base array, {B(k)}, serving as a group pointer and generated

using the recursive definition (5.3.1).

°B(k+1) = B(k) + N-k (k=1,2, •• ,N-2)

B(1) = 0 (5.3.1)

Then the index i for each given k and L in a group is obtained using

i = B(k} + L-k (5.3.2)

Before using (5.3.2), pair (k,L) is checked to see if k<L. If k>L, we

exchange k and L to index the base array for determining i and set another

index j such that

. {1,
J =

2 ,

k<L

(5.3.3)

k>L

The index i computed using (5.3.2) is used to access a distance array

{D(i)}, and pair (i,j) is used to access a routing matrix {A(i,j)} which

gives index m for {PROUT}.

80

The arrays for FIGURE 5.2.1 are given beLow.

BCk) = (0,3,5) ; OCi) = C2,1,1,1,1,2) ;

ACi,j) = 1~ 1: J
. PROUTCm) = C2,3,2,4,2, 1 ~ 2 ,

2,3,1,4,1, 2 ~ 1

2,1,4,2,4, 3 -? 4

2,1,3,2,3) 4 ~ 3

Then, if we need to access the information for the transfer 1 ~ 2, we are

given k=1 < L=2; j=1, i=BCk)+L-k=1 and we have O(1)=2 and m=AC1,1)=1 for
• referencing {PROUT}. For the case of transfer 2 ~ 1,j=2 since k=2 > L=1,

i=BCL)+k-L=1 and we have 0(1)=2 and m=A(1,2)=6.

Compared to the previous method, the pointer representation requires a

smaLL amount of processing in checking Ck,L) and in evaLuating expressions

(5.3.2) and (5.3.3), in order to access {O(i)} and {PROUT}. As before, m

can be recorded for future references to the transfer. With this

presentation, the modeL can be used to represent bidirectionaL partiaLLy

connected networks. However, unidirectionaL networks can be handLed by

adding an extra coLumn to {O(i)} and accessing the entries in a manner

simiLar to that for {A(l,j)}.

The storage requirements are as foLLows

(N-1) Locations for {B(k)} ,

N(N-1)/2 Locations for {O(i)} ,

R Locations for {A(i,j)} ,

R

~ [NROUTm * Om + 1J Locations for {PROUT(m)}.

m=1

The Last component is the same for both methods.

R~N2_4N. Then, excLuding {PROUT},

[(3/2)N2-(7/2)N-1J Locations, much Less than

method.

If we consider

method

of the

PON's,

requires

matrix

In this representation the exampLe network requires 33 Locations and for

an N=8 PON , 125 Locations are required. Thus, the pointer method is more

efficient than the matrix method as far as storage is concerned.

81

5.4 Modified Matrix-Pointer Representation

In this method, we have one matrix {DA(k,Ln which is a combination of

{D(k,L)} and {A(k,L)} matrices introduced in the first method, such that,

__ {DmCk,L>"
DA(k,L>

if D(k,L> = 0,1

if D(k,L> > 1

and m is used to index an array {DP(m)} which is a" combination of

{PROUT(m)} and distance information for D(k,L) > 1. The smaLLest value of m

is 2 and DP(1) = 0 is dummy.

{DA} and {DP} for the 4-processor network of FIGURE 5.2.1 are as

foLLows.

DIST NROUT PR.1 PR.2

0 2 1 1 DP(T~2 , 2 , 3,2 , 4,2 , 1 ~ 2

DA(k,L>= 8 0 1 1 2~2 , 2 , 3,1 , 4,1 , 2 ~ 1

1 1 o 14" 8 2 , 2 , 1,4 , 2,4 , 3 ~ 4

1 1 20 0 14~ , 2 , 1,3 , 2,3) 4 ~ 3

20

Given a pair (k,L), if DA(k,l) > 1, we record it as index m to access

{DP(m)}, where m gives the distance, (m+1) gives NROUT and so on.

The storage requirements 2 are N for {DA} and R for distance in {DP},

in addition to that of {PROUT}. Excluding {PROUT}, for PON's we require

[2N2-4N+1J Locations for N processors. For N=4 and N=8, 41 and 155

Locations are required, respectiveLy.

Comparing with the other two, this method of representation seems to be

a compromise in storage and processi~g overheads among the three. It can be

used to model both unidir~ctionaL and bidirectionaL networks.

82

5.5 Assumptions

A cqmparison of the three methods with respect to storage requirements

for 4 and 8 processor networks is given in TABLE 5.5.1. The difficuLty

arises mostLy with the PROUT array.

At this point, it is worthwhiLe to recaLL the task assignment probLem

and review the requirements reLated to the representation.

Our aim is to assign software moduLes represented by a precedence graph

onto a partiaLLy-connected network of processors so as to optimize the

finish time of the task and the workLoad distribution. We know that IPC

time is an important component of finish time and to minimize its effect,

we need to respect the principLe of "LocaLity of communication", that is,

communica~ion shouLd be restricted to nearby processors. Moreover, we are

not interested in aLL the aLternate paths between each processor pair, but

onLy in the shortest aLternate paths between them. This means that if

d1 is the shortest distance between k th and L th processors, we want

to consider onLy. NROUT paths of distance d1, where NROUT is the number

of aLternate paths of shortest distance. This is in agreement with the type

of interconnection schemes introduced earLier, PMN's, especiaLLy with PON

as an outstanding reguLar representative (Chapter 2). These networks

provide NROUT. ~ 2 aLternate paths for connections with interprocessor
1

distance D. ~ 1, the exact vaLues depending on the number of processors
1

N and the row-coLumn arrangement of nodes. Here D. is not a distance
1

actua LLy but refers to the number of inter-processor-Links (i.p.U. In

order to minimize IPC as we have aimed, we obey the principLe of LocaLity

within a toLerance to permit aLternate paths, and reach our first basic

assumption.

Assumption 1 : Task assignment strategy shouLd permit IPC between k th

and L th processors if and onLy if D(k,L) ~ 2, where D(k,L) is the number

of i.p.L.'s between processors k and l.

N

4

8

TABLE 5.5.1 Comparison of Storage Requirements for the

Hardware-Representation Methods

(* with D(k,L)~ 2 assumption)

.

83

Matrix-Pointer Pointer Modified Matrix-Ptr. Modified Pointer

Method Method Method Method *

D : 16 B : 3 DA : 16 B : 3

A .: 16 D : 6 DP : 25 D : 6

- A : 4 - -
PROUT : 20 PROUT : 20 - PROUT : 7

·TotaL : 52 TotaL : 33 TotaL : 41 TotaL : 16

D : 64 B : 7 DA : 64 B : 7

A : 64 D : 28 DP : 91 D : 28

- A : 32 - -
PROUT : 58 PROUT : 58 PROUT : 37

TotaL : 186 TotaL : 125 TotaL :155 TotaL : 72

84

This means that we do not take the principLe of LocaLity of

communication in the strict sense, i.e., permit communication of adjacent

processors (D(k,L) ~ 1) onLy, but aLLow one degree of freedom which in turn

aLLows aLternate paths, and enhances the work distribution and the

possibiLity of finding feasibLe soLutions. Insisting on the LocaLity in the

strict sense wouLd be to force aLmost a perfect match between the process

graph and the processor graph and might Lead to a situation without a

soLution in an environment, where the network is given and the assignment

of an arbitrary task is desired, as we have here. The principLe is vaLid

for speciaL-purpose muLtiprocessors or arrays which are designed for a

specific aLgorithm in mind.

To compLete the justification for Assumption 1, we need to consider one

more point and see that D(k,L) ~ 2 is a good compromise between LocaLity

and processor accessing capabiLity regarding a soLution. First, we state

our second assumption for the hardware •

. Assumption 2 : The cLass of partiaLLy-connected networks empLoyed in

the task assignment process is assumed to have bidi rectionaL 'L inks.

We concentrate on bidirectionaL PON's since they are easiLy

impLementabLe using duaL-ported .memories and they provide Lower average

i.p.L~s than unidirectionaL networks as a resuLt of better processor

reachabiLity, and permit aLternate routes, an important issue in

reLiabiLity and task assignment. It must be noted that for unidirectionaL

networks, there exist no aLternatives for the shortest path when D(k,L)~ 2.

We are interested in n2, the number of

node within D~2 TABLE 5.5.2

networks of varying N ,r and c,

coLumns in a PON, respectiveLy,

n2
%n2 =--* 100

N-1

where

and

Lists

rand

nodes reachabLe from any one

n2 , %n2 and d max for some

care the number of rows and

TABLE 5.5.2 Processor ReachabiLity within 0 ~ 2

for some N ~ 64

N r c d max n2 % n2

8 4 2 3 6 85.7

12 4 3 3 10 90.9

16 4 4 4 10 66.7

24 8 3 4 12 52.2

32 8 4 4 13 41.9

64 16 4 5 13 20.6

85

AnaLysis of the tabLe reveaLs that n2 covers more than 50% of the

processors for moderateLy sized processor networks and Assumption 1 is thus

justified.

Now, with the simpLifications imposed by Assumptions 1 and 2, we propose

the foLLowing Modified-Pointer modeL to represent the hardware component of

the task assignment modeL.

86

5.6 Modified Pointer Model for the Hardware

We refer to Pointer representation presented in Section 5.3. The base

array {B(k)} is formed using Equation (5.3.1) and accessed using Equation

(5.3.2) if k ~ l, as for the Pointer model. We do not need index j since

for D = 2, there is only one intermediate processor whether the transfer is

k ~ l or in the reverse direction. {D(i)} is accessed using i computed in

(5.3.2).

Modification lies in the distance array {D(i)} which is now conveniently

used for two purposes, similar to the function of {DA} matrix in the

Modified-Pointer representation.

The entries of {D(i)} possess three meanings as given by (5.6.1).

{

1, if D(k,D = 1

D(i) = m, if D(k,l) = 2

0, if D(k,l) > 2 (5.6.1)

The minimum value for m is m = 2 and PROUT(1) = 0, i.e. dummy similar

to DP(1) in Modified Matrix-Pointer method. Index m is used to access

{PROUT} as before. Now {PROUT(m)} lists only NROUT and the intermediate

processors for D(k,l? = 2 between k and l. The value of NROUT is mostly 2,

but depending on N and the configuration, it may vary and we prefer to keep

the NROUT entries in {PROUT}.

Total storage requirement for an N-processor PON is

(N-1) locations for {B(k)},

N(N-1)/2 loc~tions for {D(i)},

n -4
2

~[NROUTm+1J+1 locations for {PROUT(m)}, arid

m-1

approximately 0(N2) as a whole.

87

The arrays for the 4-processor network in FIGURE 5.2.1 are as shown

beLow.

B(k) = m ; D(i)

NROUT .

. ~
PROUT(m~2,3,4,

2 2,1,2)

5/

=

2

1

1

1

1

5

1 ~ 2

3 ~ 4

The storage efficiency of the method is contrasted to other methods for

N = 4,8 in the Last coLumn of TABLE 5.5.1.

88

5.7 Storage Representation for the Software

The software component of the

acycLic graph representing the

moduLes of the task and directed

I

task assignment modeL is a directed

aLgorithm, where the nodes correspond to

arcs joining the nodes indicate the

precedence reLations between the moduLes. In the graph representation, the

processing time of eac~ moduLe is written next to' its node and the IMC

vaLues are written as weights on the arcs. The parameters of interest for

the representation of the process graph are the processing time of the

moduLes, and IMC and precedence reLations between the moduLes. As

previousLy has been noted, other moduLe attributes, Like memory or 1/0

restrictions, can be easiLy incorporated if required.

In order to represent the moduLes, we first LabeL each node in the graph

in increasing numeraLs 1,2, •• ,M as we scan the graph from Left to right

and top to bottom, considering precedences. After the moduLes are numbered,

we . can represent the processing time of each using a matrix if non

identicaL processors are used. That is, {PROC(i,k)}, an M x N matrix for M

moduLes and N processors gives the processing times.

PROC(i,k) = processing time of i th moduLe on k th processor

Preferences may be imposed on assignments if processors are not identi

caL. For exampLe, if the code Length of a moduLe exceeds the memory

capacity of a processor, the use of a very Large' processing time for that

processor may eLiminate such an assignment.

Here we concentrate on networks of identicaL processors and represent

processing time requirements of the moduLes as an array {PROC(i)} where

PROC(i) = processing time of ith moduLe

on aLL the processors.

89

Representation of the precedences and the reLated IMC vaLues between the

moduLes has two basic aLternatives: matrix and array.

In the matrix representation of M moduLes, the connectivity matrix

CON(M-1,M-1), giving the precedences, has entries

_-
f1
0 " CON(i,j) L

if ie{j

otherwise

where i = 1, •• ,M-1 ; j = i+1 •

We might use a shortcut to represent IMC vaLues in the same matrix by

aLtering entries CON(i,j) such that now

The storage

(

IMC(i,j) ,

CON(i,j) =
a ,

requi rem"ent for

if io{j

otherwise

this representation wilL be

Locations. However, the processing requirements are not" favourabLe since we

have to scan M2 eLements for dependences, whiLe the actuaL number of

dependent pairs is much Less than that.

In the array representation, one way is to provide a List {DEP(i,j)} of

dependent pairs onLy, giving (i,j) for each i~ j in each row, and another

List {IMC(i,j)} of the associated IMC vaLues. The storage requirement is

proportionaL to the number of dependent pairs and processing is more

efficient.

Instead of dupLicating"the source moduLe i for each io{ j, we can group

successors of each source moduLe, order the source moduLes 1,2, •• ,M and

eLiminate the specification of the source. If a moduLe has no "successors

90

its successor List entry is zero. The end of each successor List is aLso

identified by zero. We name this array {DSUC}, corresponding to the direct

successors of each moduLe. The format of two sampLe rows of DSUC is shown

beLow, where i precedes moduLes j, Land r, and M is the terminaL moduLe:

ModuLe DSUC

i (j L r 0)

M (0)

The IMC array foLLows a simiLar pattern except that, since we wiLL

access it using the information in DSUC, the zeroes to mark the end of rows

and the Last row are not required. Each entry IMC(i,p) gives the vaLue of

IMC from moduLe i to its successor j in p th position in the List of its

successors in DSUC.

In the process graph, if nodes corresponding to moduLes i and j are

connected by a directed arc, then i ~ j and this reLation is specified in

DSUC. On the other hand, if i..{ j and j ~ k, then k is an i ndi rect

successor of i, i.e. io(o(k. One-step precedence pairs in DSUC are not

sufficient to fuLLy represent the precedence reLations and we propose a

second array {ISUC}, for indirect successors. The format of one row of ISUC

array is ~s foLLows, where 0 denotes the end of a row:

ISUC (

moduLe.

i

indir~ct successors

k L •••••• 0)

91

To concLude this section, as an exampLe consider the representation of

the process graph in FIGURE 5.7.1. The processing times of moduLes wiLL be

represented by

3

PROC(M) = 2

2

4

2

4
j

To represent precedences and IMC,the first two methods produce the

foLLowing arrays:

Matrix CON (incLuding IMC vaLues) wiLL be as foLLows

1 1 0 0 0

CON = 0 0 2 1 0

0 0 0 1 0

0 0 0 0 2

0 0 0 0 2

DEP and IMC arrays for the first array representation method wiLL be as

foLLows,

ND = 7 ; the number of dependent pairs

1 2 1

1 3 1

2 4 2

DEP = 2 5 IMC = 1

3 5 1

4 6 2

5 6 2

92

2)

(4)

FIGURE 5.7.1 ExampLe P~ocess Graph eM = 6)

The arrays for the proposed representation of the same graph are given

beLow :

2 3 0 1 1

4 5 0 2 1

= l~
4 5 6 0] DSUC = 5 0 IMC = 1 ISUC 6 0

6 0 2 6 0

6 0 2

0

Now, we are ready to expLain the task assignment aLgorithm introduced in

Chapter -6, which empLoY0s the representations determined in this chapter

for the process and processor graphs of the assignment probLem.

6.0

TASK ASSIGNMENT ALGORITHM

FOR P-C PROCESSOR NETWORKS

6.1 General Description

In this chapter, we present

93

an aLgorithm to compute the

moduLe-to-processor assignment in partiaLLy-connected processor networks so

as to achieve min.PTP in the singLe-run environment or min.LIP in the

muLti-run environment, for a given process and processor graph.

It is an enumerative aLgorithm based on depth-first search where at each

iteration a sampLe assignment is generated and evaLuated to check its

performance. "

The optimization probLems defined by Equation <4.4.5) and Equation

<4.4.6) need not have unique soLutions. It is possfbLe that muLtipLe

assignments yieLd the same minimaL vaLues for PTP or LIP, and the optimaL

soLution space consists of aLL such aLternative assignments. When one is

interested in aLL the "optimaL soLutions, especiaLLy for a smaLL system, a

possibiLity is to output every generated so-far-best assignment and Let the

user pick up the optimaL soLutions. However, from a practicaL design

viewpoint, just one optimaL moduLe-to-processor assignment for each

objective is sufficient and this view is adopted in our soLution procedure.

For the singLe-run environment, where the objective is to minimize

maximum compLetipn time, we assume that an initiaL bound, PTP, Larger than

any possibLe finish time is given. The first evaLuated assignment produces

a new vaLue PTPX as the current bound. If PTPX is Lower than PTP, the

assignment is saved as theso-far-best and PTP:=PTPX. Then,at any time

during the execution of the aLgorithm, PTP has the vaLue corresponding to

the assignment that first resuLted in this so-far-best PTP vaLue. The

aLgorithm runs untiL the end, givin~ one of the assignments that is optimaL

with respect to PTP.

94

For the multi-run environment,the objective might be to find assignments

that minimize KPTP, given by Equation (4.3.13) as KPTP = (K-1)LIP + PTP ,

or LIP,if the maximum task repetition frequency is of utmost importance. We

are concerned with the latter case. We assume that an initial bound

LIP, larger than the expected repetition period is given. This time, any

evaluated assignment which yields a current value LIPX that is lower than

the last value of LIP is saved, and LIP and PTP bounds are updated with the

current values. The final result is an optimal assignment with respect to

LIP.

The proposed task assignment process basically involves two phases

1) Assignment generation phase, and

2) Evaluation phase

For each assignment 'generated in phase 1 and input to phase 2, an LDF is

generated by assigning start and finish times to all the modules on all'

processors according to the precedence relations between the modules as

specified by the directed arcs in the given process graph.

During LDF generation, if there are no indirect transfers requiring the

availability of intermediate processors, the generated LDF is complete and

we proceed to compute the resultant current values and check the bounds.

If,there arise transfer requests, however, we proceed as follows: Since

a transfer request arises when the distance D(k,l) between the processors

(k,l) of the two communicating modules (i,j) is equal to 2, the source

processor is assigned an extra time for IPC, equal to IMC(i,j). The

intermediate processor, if available, will also have a transfer duty of the

same duration. Then, if all goes well, the destination processor may start

executing the dependent module IMC(i,j) time units after the source has

finished transmission. This is the transfer interval and we specify it with

its start time XS, which is the ,transmission finish tim,e of the source, and

with its finish time XF, which is the earliest time the,destination

processor may start execution. FIGURE 6.1.1 illustrates parameters of a

transfer operation on a partial LDF.

Processors

k

Some L'

L

I

: i-j
I
I~= IMe (i.j)
I

xs·

~
XF

~
I ;
I I

l-~-:
I :

t. Time

START (J) = XF

FIGURE 6.1.1 Parameters of Intermediate Transfer

We recall from Section 5.6 that the corresponding entry of the

95

distance

array when DCk,L> = 2 gives an index m to address the PROUT array. This

means , for example if m = 2, we address the second entry of PROUT arranged

as follows.

~
1

1 2 3 4

PROUT(m) I 0 NROUT2
l' t'
1 2

The number of alternate routes, NROUT, is given by PROUTCm), the first

processor on route is ~iven by PROUTCm+1) and the second, alternate

processor is given by p.ROUTCm+2) when NROUT=2. Then, index m, obtained from

DCk,l), completely characterizes the processors that may be involved in the

transfer. We record m, XS, and XF in a row of a transfer table TX for each

transfer request discovered during LDF generation. These values provide all

the information required to insert transfer modules on intermediate

processors after the partial LDF, i.e., the LDF before the transfer modules

are inserted, is complete.

96

However, when we have a finaL assignment we wiLL aLso need to know with

which moduLe pair each transfer operation is associated. For this purpose,

the pair (i,j) is recorded in a transfer-moduLe array T. Every transfer

moduLe is given a LabeL,the first being (M+1). T is part of the arrays

required to specify a generated LDF and is saved when the assignment is

found to be successfuL. TX, on the other hand, is not needed after transfer

moduLe insertion and can be overwritten.

An LDF is characterized by the sequence of moduLes on each processor and

the start and finish time of each moduLe. If there are indirect transfers,

we have additionaL created-moduLes assigned to some processors with their

sequence and timing information, where their source and destination moduLes

are specified in the T array. This means that, if we "want to print out or

save an LDF to characterize a successfuL assignment, a set of arrays have

to be considered. To economize on time and space, we assume doubLe

workspace for these arrays and use a workspace fLag (WSF) such that

initiaLLy WSF=O and the assignment is deveLoped in the first workspace. If

the bound for this assignment is better than the initiaL bound, the bounds

are updated, WSF is comp~em~nted to indicate the second workspace and the

assignment is saved untiL the first assignment, which yieLds Lower bounds.

Thus, WSF is compLemented after each successfuL assignment to indicate the

aLternate workspace for the succeeding iterations and the current LDF is

saved. "After the finaL run, the workspace indicated by the compLement of

WSF contains the optimaL assignment, and LDF and PTP/LIP bounds can be

printed nut.

The aLgorithm corresponding to this gLobaL description consists of seven

steps, each of which are described in detaiL in the foLLowing sections.

Sections 6.7 and 6.8 iLLustrate the use of the aLgorithm in both

environments by exampLes. In the finaL sections of this chapter, we discuss

the performance characteristics of the task assignment aLgorithm ; we

demonstrate that the aLgorithm is correct and, discuss its computationaL

requirements.

97

The iterative structure of the task assignment aLgorithm is shown in

FIGURE 6.1.2 and FIGURE 6.1.3. In Step 0, the process graph, the processor

graph and the objectives are defined, and an initiaL vaLue for PTP/LIP is

set. The WSF is initiaLized.

Steps 1, 2 and 3 generate aLL sampLe assignments. Step 1 generates

permutations of the order of the moduLes and for each permutation

generated, Step 2 determines the number of moduLes to be assigned to each

processor. Using the number determined for each processor in Step 2 to

seLect the moduLes from the order generated in Step 1, Step' 3 determines

which moduLes are assigned to which processors and initiaLizes the working

arrays for the generated assignment.

In Step 4, we determine if the current assignment satisfies precedence

and LocaLity constraints. If the constraints are not vioLated, we have a

feasibLe assignment and we proceed to the next step. Otherwise, the

assignment is rejected and we return to Step 2 to generate the next

assignment.

In Step 5, we generate the LDF. If there is no indirect communication

request, the generated LDF is compLete and we compute the bound. If the

current bound is better than the former we save the assignment, eLse reject

the assignment and, go to Step 2. If we have transfers recorded in the

transfer tabLe, and the computed temporary bound is Lower than the former

best bound we proceed to Step 6. ELse, we reject the assignment and go back

to Step 2.

In Step 6, we scan the transfer tabLe and insert the transfer moduLes on

intermediate processors, if avaiLabLe. If a transfer moduLe, either due to

nonavaiLabiLity of a processor or due to no improvement over the Last

bound, cannot be inserted the assignment is rejected. When aLL the transfer

moduLes are inserted successfuLLy we compute and check the current bound

after insertions. If it is Lower, we update the bounds, compLement WSF and

return to Step 2 for the next assignment.

98

PROCEDURE : BEGIN ;

STEPO. Initialize data

Do ;

STEP1. Generate next permutation

Do ;

STEP2. Generate next composition

STEP3. Initialize the assignment

STEP4. Check constraints

STEPS. Generate LDF and check bounds

STEP6. Generate final LDF and check bounds

END ;

END ;

Output optimal assignment

END PROCEDURE ;

FIGURE 6.1.2 The P-C Task Assignment Algorithm

Initialize
Data

Generate
Next

Permutation

Generate
Next

Composition

Initialize
the Assignment

Check
Constraints

Generate
LDF

&
Check Bounds

y

y

r~. - - - - - - - -"
I <,[Transfer Tablell
I Manip. J , ,
I Generate I

I Final LDF, :
Check Bounds I

__ - _'_ - - ___ I

Printout
Optimal
Assignment

FIGURE 6.1.3 Simplified Flow Diagram of PCTAA

99

Assignment
Generation

Evaluation

100

The mechanism of pruning the soLution tree is apparent with this

description. At aLL possibLe points .in the aLgorithm, the process is

controLLed to see if constraints are vioLated or if there is no improvement

in the bounds, and if so, such assignments are rejected, saving any further

computation.

The aLgorithm terminates after the Last composition of the moduLes for

the Last permutation, giving the LDF and the bounds for the optimaL

assignment.

The aLgorithms for the steps of the task assignment aLgorithm are

provided in the Appendices A to F.

101

6.2 Initialization

In Step 0, the user enters the system parameters

For the software description

M = number of moduLes

Arrays :

PROC

DSUC as defined in Section 5.7

IMC

ISUC

For the hardware description :

N = number of processors

Arrays

B

D as defined in Section 5.6

. PROUT

For the objectives

K = {:o ,-
for singLe-run environment

for muLti-run environment

For K=O ;

PTP = some number greater than any possibLe finish time

For K~O;

LIP = some number Larger than the expected repetition period

The workspace fLag WSF is set to zero.

(The Last permutation fLag LASTP is set to zero.)

102

6.3 Assignment Generation

We use a combination of permutations ~nd compositions to generate every

possibLe assignment.

In Step 1, we. generate every permutation of M moduLes. We assume the

processors to be ordered with LabeLs 1,2, •• ,N and keep the processor

order fixed. Then, by permuting the order of the moduLes and assigning

moduLes to processors in order, such that the first moduLe is assigned to

processor 1, the second to processor 1 or 2 depending on the number of

moduLes for each processor to be computed in Step 2, we generate every

possibLe assignment of M moduLes to N processors.

The permutation step of the aLgorithm is considered as a subroutine

which accepts a vaLue for M and the current permutation, and generates the

next permutation of M. The current permutation is stored in a vector A(M).

A flag is raised when the Last permutation has been gener"ated. When every

composition of the Last permutation has been generated, then every possibLe

assignment has been enumerated.

In Step 2, we compute the number of moduLes to be assigned to each .
processor. This is same as the probLem of "distributing M Like objects into

N unLike ceLLs, with no ceLL empty" in combinatoriaL mathematics and it is

aLso caLLed "the composition of Minto N parts" [NIJE78J.

Given M and N,this step computes a set of integers L(k) where 1<L(k)<M

and k =1,2, •• ,N such that

N

M = L Uk)

k=1

The vaLue of L(k) corresponds to the number of moduLes to be assigned to

processor k.

103

The order of compositions is important to ensure that in combination

with the permutation of moduLes, every moduLe is assigned to every

processor in every possibLe order.

For exampLe, assume we have a system of four moduLes and three

processors. The foLLowing are the three possibLe compositions of four

things into three parts.

M L(1) L(2) L(3)
----- -----

4 = 2 + 1 + 1

= 1 + 2 + 1

= 1 + 1 + 2

The composition step of the task assignment aLgorithm is considered as a

subroutine which accepts vaLues for M, Nand L, and generates next vaLues

for L. The first caLL to the subroutine generates L(1) = M - N + 1, i.e.,

the maximum number of moduLes that can be assigned to a ~rocessor, and aLL

the other parts are unity. Subsequent caLLs change this distribution untiL

the generation of the Last composition where L(N) = M - N + 1 and a fLag

LASTC is raised. After the a~signment for the Last composition has been

generated, the aLgorithm returns to Step 1 to generate the next permutation

and for each permutation, every composition of Minto N parts must be

generated. When the Last composition for the Last permutation has been

generated, the process is compLeted.

Step 3 of the aLgorithm finaLizes the moduLe-to-processor assignment

generation by assigning

each processor k in order ,
L(k)

k =
moduLes from the permuted List A(M)

1,2, ••• ,N. First, WSF is checked

to

to
determine the current workspace and depending on whether it is zero or not,

SetO: {C,Y,S,F,T} or Set1: {CC,YY,SS,FF,TT} is used in caLLing the

initiaLization subroutine.

104

The foLLowing arrays which are used in the aLLocation procedure are

initiaLized in this step Cconsidering WSF=O)

CCN) = workspace copy of LCN).

YCN,CCN» = It is the assignment array with respect to processors,

showing the order of moduLes assigned to each processor.

Each entry YCk,pCk» gives the moduLe occupying pCk) th

position on k th processor. k= 1, .. ,N ; pCk)= 1, •• ,CCk).

XCM) = It is the assignment vector with respect to moduLes,showing

the processor to which the moduLe is assigned~ Each entry

XCi) gives the processor to which moduLe i is assigned.

OCM) = Each entry QCi) gives the order or position of moduLe i on

the processor to which it is assigned. This means that

if XCi)= k, then YCk,OCi»= i~

SCN,CCN» = Start-time array, aLigned same as the Y array. Each entry

SCk,OCi» wiLL correspond to the start time of some moduLe i

in OCi) th position on processor k. InitiaLLy, the entries

are aLL set to zero.

FCN,CCN» = Finish-time array, aLigned simiLar to Sand Y arrays. Each

entry FCk,pCk», associated with some moduLe i at the same

position as in Y, gives finish time of i. InitiaLLy, aLL

entries are set to zero.

In the foLLowing work, we wiLL interchangeabLy use S or START for the

start-time array and F or FINISH for the finish-time array. When we want to

describe the start time of a moduLe i, we wiLL use the notation STARTCi).

ALternativeLy, we wiLL use STARTCk,pCk» to refer to the start time of some

moduLe i on processo~ k at pCk) th position. On the other hand, when we

want to refer to start and finish time of processors, we might use

SrARTCk), which is actuaLLy STARTCk,1), and FINISHCk) to describe

FINISHCk,CCk». Since most of the time, we use Letters i-j to refer to the

moduLes and k-L to refer to the processors, the meaning shouLd be cLear.

105

As an example, consider again M=4 and N=3. The contents of the arrays

after Step 3 for the generated sample permutation and composition will be

as follows.

A = (1,2,3,4) ; sample permutation

C = (2,1,1) ; sample composition

module processor

i XCi) = k

1 1

2 1

3 2

4 3

position

O(i)

1

2

1

1

106

6.4 Constraint Checking

This part of the algorithm checks feasibility of the generated

assignment with respect to the constraints imposed on the problem.

By feasibilty of assignment here we mean and treat two cases:

1- Precedence constraints, i.e. the order of the dependent coresident

modules,

2- Locality of communication constraint, i.e. ihe restriction on the

interprocessor distances of the assignment.

Considering case 1 first, we know that i·f two modules i and j have a

precedence relation between them ,i.e. i j, and they are also coresident

such that' X(i)=X(j)=k for some k { 1, •• ,N }, then for a feasible assignment

module i should precede module j on processor k. This requires the order of

module i to be less than th~ order Df module j, i.e. O(i)<Oej). 'In the case

XCi) # X(j), i.e. the modules are not coresident, noth~ng can be said

about the feasibility of orders in obeying the precedence relations.

The precedence relatlons between two modules can be of two types, as we

have mentioned in Section 5.7. If ie{j this is direct precedence. Since the

precedence relation is transitive, i.e. if io(j and jo(m then io(.m, we will

call this type of precedence "indirect precedence" and denote as i..(o(m. The

list of direct precedence relations is always supplied as part of the

software representation, as in the DSUC array of our model. However,

determining indirect precedences from such a list is not very practical,

and that is why we have added an ISUC array, giving indirect successors of

each module, to our software representation. In a recent study [HOLL82] ,
precedence check on pairs of indirect precedence is not performed, such an

assignment passes to the insertion phase and is rejected after many

reinsertions of the pair when the bound is exceeded. We find such a

mechanism time consuming and impractical, and thus have included checking

the feasibility of indirectly preceding pairs as well.

107

Once the two arrays DSUC and ISUC are given and the assignment is

generated, we check all the pairs in the arrays for coresidence and, if

coresident, for their· respective positions on the processor; we reject the

assignment if any pair i.,(j or i-(", j fails to satisfy the condition

O(i)<O(j) on their common processor.

Regarding the feasibility check on interprocessor distances of the

assignment, in Assumption 1 (Section 5.5) , we have adopted a rule to

satisfy the principle of locality of communication such that the maximum

distance allowed between two communicating processors is bounded to the

value of 2.

Therefore, if the assignment generated in Step 3, causes dependent

modules to be placed on processors that are farther apart than 2 units, we

reject the assignment saving further computation.

Then, if we recall that in our representation of the hardware, any

D(k,l»2. is represented by D(k,l) = 0, where D(k,l) is the distance between

k th and l th processors, all we need to do is to scan DSUC array for

dependent modules and check if D(k,l) = 0 when k t l, where k= XCi),

l= X(j) and ic(j for pair (i,j).

Generation of assignments and the result of constraint' checking for

FIGURE 6.7.1 is summarized in TABLE 6.4.1.

It is possible to have constraints other than feasibility of precedence

and locality of communication. These might be related to limitations on

resources, such as the limited storage capacity of processors or limited

I/O capability of processors. Such constraints, if present, can be easily

incorporated in the constrairit checking algorithm and are very useful in

reducing the computational complexity of the task assignment problem since

many of the assignments will be rejected at this phase before going into

108

TABLE 6.4.1 Assignment Generation for FIGURE 6.7.1 o(M=4, N=3)

* : infeasibLe assignment

Compositions

Perm.n. C(1)=2,C(2)=1,C(3)=1 C(1)=1,C(2)=2,C(3)=1 C(1)=1,C(2)=1,C(3)=2

1234 (12) (3) (4) (1) (23) (4) (1) (2) (34)
2134 *(21) (3) (4) (2) (13) (4) (2) (1) (34)
3124 *(31) (2) (4) (3) (12) (4) (3) (1) (24)
1324 (13) (2) (4) (1) (32) (4) (1) (3) (24)
2314 (23) . (1) (4) *(2) (31) (4) (2) (3) (14)
3214 (32) (1) (4) *(3) (21) (4) (3) (2) (14)
4213 *(42) (1) (3) *(4) (21) (3) (4) (2) (13)
2413 (24) (1) (3) *(2) (41) (3) (2) (4) (13)
1423 (14) (2) (3) *(1) (42) (3) (1) (4) (23)
4123 *(41) (2) (3) (4) (12) (3) (4) (1) (23)
2143 *(21) (4) (3) (2) (14) (3) *(2) (1) (43)
1243 (12) (4) (3) (1) (24) (3) *(1) (2) (43)
1342 (13) (4) (2) (1) (34) (2) *(1) (3) (42)
3142 *(31) (4) (2) (3) (14) (2) *(3) (1) (42)
4132 *(41) (3) (2) (4) (13) (2) (4) (1) (32)
1432 . (14) (3) (2) *(1) (43) (2) (1) (4) (32)
3412 (34) (1) (2) . *(3) (41) (2) (3) (4) (12)
4312 *(43) (1) (2) *(4) (31) (2) (4) (3) (12)
4321 *(43) (2) (1) (4) (32) (1) *(4) (3) (21)
3421 (34) (2) (1) *(3) (42) (1) *(3) (4) (21)
2431 (24) (3) (1) *(2) (43) (1) *(2) (4) (31)
4231 *(42) (3) (1) (4) (23) (1) *(4) (2) (31)
3241 (32) (4) (1) (3) (24) (1) *(3) (2) (41)
2341 (23) (4) (1) (2) (34) (1) *(2) (3) (41)

109

the aLLocation phase. For exampLe, given the code Lengths of moduLes,

L., , and the storage capacities of processors, Sk' in identicaL
units, for every assignment it is possibLe to check if

~ Lj ~ Sk ; jG{iIXCi)=k} ; kE{1, •• ,N}
j

is satisfied and otherwise reject the assignment.

SimiLarLy, for I/O capabiLity of processors, given the 1/0 attributes of

processors as

={:
, if k th processor has I/O capabi L ity

IOPk
, otherwise

and the I/O attributes of moduLes as

10M; ={:
, if moduLe i requires I/O

, otherwise

the assignments may be rejected at the constraint checking phase if

IOPk * IOMi = 0 ; XCi)= k ; k~{1, •• ,N} ; it{1, •• ,M}

After the constraint checking phase, we have a feasibLe assignment and

we continue to the next step of inserting moduLes on processors for LDF

generation.

110

6.5 LDF Generation

In the previous step, we have checked that precedence reLations on each

processor is satisfied. In this step,. we insert precedence reLations

between non-coresident moduLes and generate an LDF for the assignment by

specifying start and finish time of each moduLe on each processor.

In order to satisfy the precedence reLations, we scan the DSUC array,

which gives successors of each moduLe i (i= 1, •• ,M) in its i th row.

In the initiaLization step, the entries in START and FINISH arrays,

corresponding to the start and finish times of moduLes on each processor,

have aLL been initiaLized to zero. Now, as we scan DSUC we update these

entries for each reLevant moduLe in order. A fLow diagram of GENLDF

subroutine for LDF generation is given in Appendix E.

The start time of each moduLe depends on the finish time of its

predecessors in the graph and on the communication deLay if t~ey are

non-coresident, ·and aLso on the finish time of the previous moduLe on the

same processor if it is not the first moduLe. The finish time of each

moduLe is computed as the sum of its start time, processing time, and IPC

time, that is,

FINISH(i) = START(i) + PROC(i) +~IMC(i,j)
i a< j

XCi) -t X(j)

and we shouLd have

START(j) ~ FINISH(i)

for any i 0(j.

For each moduLe i treated as a source (in communications), we check if

it is the first moduLe on its processor k and if so we insert its

processing time, that is,

FINISH(i) = START(i) + PROC(i)

111

If i is not the first moduLe on processor k, we make sure that

where (i_1) denotes the previous moduLe on k, and then compute its

finish time.

Processing time of each moduLe is inserted onLy when it is considered as

a source moduLe and after the first time, we just update' its finish time by

adding the IPC time due to IMC to non-coresident dependent moduLes.

The moduLes that are treated as destination moduLes are assigned

appropriate start times~ onLy.

As we scan DSUC, if a pair (i,j)

check if START(j) ~ FINISH(i) to

satisfied we update start time of j,

is coresident, i.e. k=L, we simpLy

sati sfy i 0(j. If precedence is not

i.e. set START(j) = FINISH(i) and

proceed to the next successor moduLe in the List.

If j = 0, i.e. either the moduLe has no successor or its successor List

is exhausted, we proceed to the next source moduLe.

If a pair (i,j) is not coresident (k ~ L), we update the finish time

of i by adding IMC(i,j) and check the distance between processors k and L.

If the distance m = 1, we proceed as in the coresident case. If the

distance is more than one, index m points to PROUT array for the processors

on-route between k and L, and a transfer using some intermediate processor

is required. We assume at this moment that a processor wiLL be avaiLabLe to

carry out the transfer task at the right time. The start time of the

transfer is XS = FINISH(i), and the finish time of the transfer is XF = XS

+ IMC(i,j). If S(j)< XF, then XF is aLso the start time of moduLe j. We

record source-destination pair (i,j) in the transfer-moduLe array T, and

the vaLues of m, XS, and XF are saved in the transfer tabLe TX, to be used

in the next step of the aLgorithm.

112

LDF generation aLgorithm is very efficient in the sense that just a

singLe scan of the DSUC array is sufficient, in comparison to muLtipLe

scans through the moduLes empLoyed in p'revious studies.

After aLL the moduLes i~ DSUC are scanned and are assigned start and

finish times, using subroutine CBOUND, we compute PTPX and LIPX for this

assignment, given by

PTPX = max { FINISH(k,C(k)) }

k

LIPX = max { FINISH(k,C(k)) - START(k,1) }

k·

where C(k) and 1 denote the Last and the first moduLes, respectiveLy, on

processor k.

Then, we check the current bound against the previous bound PTP I LIP.

For K= 0, i.e. sing~e-run environment, if PTPX ~ PTP we reject the

assignment. Otherwise, we go to check the transfer tabLe.

For K~ 0, i.e. muLti-run environment, if LIPX~IP the assignment wiLL

be rejected.

After the bounds are checked and we have a possibLe assignment, we check

the transfer tabLe: if it is empty, we have a finaL LDF for the assignment;

we update PTP and LIP with the current vaLues and save the LDF by

compLementing WSF,before going back to Step 2 for the generation of the

next assignment. If the transfer tabLe is not empty, we have a partiaL LDF

and LIPX is temporary, since we stiLL need to insert the transfer moduLes

indicated in the tabLe. Therefore, we proceed to the next step for the

compLetion of the current assignment •.

113

6.6 Transfer Table Manipulation

After the assignment of process-modules is compLeted, the entries in the

transfer tabLe for transfer-modules have been marked, and current PTPX and

LIPX have been computed and checked against PTP and LIP, we start to

manipuLate the transfer tabLe. For each transfer entry in the table, we

wiLL use m to access the PROUT array for the number (NROUT) and the

identities (L) of intermediate processors, and XS and XF entries wiLL

denote the start and finish times, respectiveLy, for the transfer. For each

transfer moduLe, we wiLL try to find an idLe sLot on its candidate

processor(s) matching the transfer intervaL, insert and name the transfer

moduLe, and if we are successfuL in inserting aLL the moduLes Listed in the

tabLe, the current assignment wiLL be the 'best-so-far'; the bounds for PTP

and LIP wiLL be updated and the assignment wiLL be saved.

The insertion of a transfer moduLe invoLves two basic steps

determining the avaiLabLe processors and among the avaiLabLe processors

seLecting the one which minimizes the bounds. The first step is the

Check-Insertion phase to determine, if the intermediate processor is

avaiLabLe during the transfer intervaL, i.e., if the moduLe can be

inserted. We consider three cases with respect to XS and XF

Case 1 XF , START(L,1) ; front-empty.

The moduLe can be inserted before the 1st moduLe on processor L.

Case 2 STARTCL,1) < XF, FINISH(L,C(l)) ; intermediate.

The moduLe can be inserted onLy if there is an appropriate idle

sLot among the process-moduLes.

Case 3 XS 7 FINISH(L,C(L)) ; end-empty.

The moduLe can be inserted after the Last moduLe on L.

The three cases are iLLustrated in FIGURE 6.6.1.

After each processor is checked for insertion, if it is avaiLabLe, it is

aLso checked for the bounds and eLiminated at this stage if the' bounds are

exceeded. Thus "avaiLabiLity" in our terms impLies "avaiLabLe and within

the bounds" •

l

a

114

l

a

Case 1

insert

l

a
S(l,l) XS XF

i} insert i i) no insertion

Case 2

insert

~

l

t
XF

Case 3

FIGURE 6.6.1 Cases for Transfer ModuLe Insertion

t
F(l,c{l))

115

The aLgorithm for checking the insertion empLoys a doubLe-purpose fLag,

INS, to identify successfuL insertions and to be used in determining the

number of avaiLabLe processors as weLL. At the beginning of each transfer

moduLe insertion, INS is initiaLized to zero, and after each successfuL

check it is incremented by an index (iL), which corresponds to the order of

intermediate processor L in PROUT. That is, iL= 1,2 depending on whether

the first or the second processor is checked for avaiLabiLity, for the case

NROUT = 2. If there is just one intermediate processor, i.e.,NROUT = 1,

then iL= 1 for the check. Then, after aLL the processors have been

checked, INS may have the foLLowing vaLues with their associated meanings:

0 , insertion not possibLe, i.e. invaLid assignment

INS = 1 , first processor is avaiLabLe

2 , second processor is avaiLabLe

3 , both processors are avaiLabLe

When there is just one insert the transfer

moduLe on that processor

processor avaiLabLe, we

and check the bounds. However, when both

processors are avaiLabLe, i.e., have got appropriate idLe sLots, we have to

seLect one of them based" on the probLem definition.

We have to notice that, during transfer tabLe manipuLation, the

insertions do not infLuence PTPX of the current assignment. For the

singLe-run environment PTPX was checked previousLy against PTP after

process-moduLe assignments such that PTPX < PTP and this PTPX wiLL repLace

PTP at the end if the insertions are aLL successfuL.

However, LIPX for the current assignment may change with the insertions

if it happens that the reserved time R(L) on the intermediate processor L

increases, such that R(L»LIPX due to two possibiLities:

i) XS < START(L,1) ; transfer moduLe inserted to a sLot before

the first"moduLe.

ii) XF > FINISH(L,C(L)) ; transfer moduLe inserted to a sLot at the end

."

116

Then, for single-run environment (K= 0)- where the objective is to

minimize PTP, the maximum completion time, we select the first available

processor and update LIPX with the corresponding LIP. value. For case i)

above RCl) = FINISH(l,C(l» - XS. For case ii) Rel) = XF - START(l,1)

For either case, if R(l»LIPX, LIPX is updated. After aLL the insertions

are finished the current PTPX which is less than the previous PTP becomes

the new PTP. However, LIPX replacing the previous bound LIP need not be

smaLLer.

In the multi-run environment (K~ 0>, our objective is to find

assignments that minimize LIP. For this environment, LIPX was checked

against LIP after the assignment of process-modules, such that LIPX<LIP •

. Then, after we check each processor for insertion, we check if its R(l) has

increased LIPX, i.e.,R(L»LIP. If the bound is exceeded, for NROUT= 2, for

the first processor we manipulate the INS flag that was incremented at

check-insertion phase and thus indicate that the processor is

"unavailable". If the processor is available, i.e., t.he bound is not

exceeded, its R(l} is temporarily saved and the processor which causes a

smaller LIPX is selected for insertion. For NROUT= 1 case, if RCl»LIPX

then LIPX is updated and the assignment is rejected if LIPX~LIP. After all

the insertions required by the transfer table entries are completed, LIPX

and PTPX become new LIP and PTP values, respectiveLy. On the contrary to

the single-run case, here, current LIPX<LIP but PTPX replacing PTP need not

be smaller than the previous value.

Every time we insert a transfer-module on the selected processor

give to it a module number (i max) where i max= M+1 for the

inserted module and at the completion of an assignment, i = max

l, we

first

i.e., the sum of process and

and F are updated accordingly.

transfer modules. C(l} and l th rows of Y, S

At the end of any successful assignment, the workspace flag WSF is

complemented to point to the alternate workspace and we return to Step 2

for generation of the next assignment.

117

6.7 Example for Single-Run Environment

In this section, we iLLustrate the P-C task assignment aLgorithm by

working out a simpLe exampLe probLem. The process and processor graphs for

M=4 and N=3 are shown in FIGURE 6.7.1.

First,we initiaLize the data for the aLgorithm, corresponding to Step O.

M = 4

PROC = (1, 1, 1, 1)

2 3 0 { 11 DSUC = 4 0 IMC ISUC = [1 4 OJ

4 0 1

0

N = 3
NROUT

[~] rn
i-

S = D = PROUT = (0, 1, 2)
'I'

L

K = 0 and Let PTP = 8

WSF = 0 ; LASTP = 0

The first permutation (Step 1) of 4 eLements is A = (1, 2, 3, 4) and

the first composition (Step 2) of 4 moduLes into 3 parts is L(1) = 2, L(2)

= 1, L(3) = 1. We make the assignment by initiaLizing the arrays (Step 3)

C = (2 ,1 ,1) x = (1,1,2,3) o = (1,2,1,1)

That is, moduLes 1 and 2 are assigned to processor 1, moduLe 3 to processor

2 and moduLe 4 to processor 3.

118

1
1

Process Graph (M =4)

Processor Graph (N = 3)

FIGURE 6.7.1 ExampLe Process and Processor Graphs

119

We check constraints e Step 4). In this exampLe, interprocessor

distance is maximum 2 and the order of coresident pair, e1,2), on processor

1 satisfies precedence. Therefore, we have a feasibLe assignment and we

proceed to Step 5, for generating LOF.

We give a trace of LOF generation for this assignment in TABLE 6.7.1.

InitiaLLy, it = 1, indicating first index to transfer tabLe.

We scan OSUC :

i=1; O(1)=1 so we set F(1)=Se1)+PROCe1)=O+1=1

j=2; k=Xei)=1=L=Xej), i.e. coresident, so we check start time of

moduLe 2. Since START(2)=O < FINISH(1)=1, we set S(2)=1. ModuLe 1

has one more successor : moduLe 3 •

j=3; L=X(3)=2 and k=1, moduLes are not coresident. Therefore, we

update F(1) for IMC to moduLe 3. IMCe 1 -> 3) is given by

IMCe1,2) which is 1. Then F(1)= F(1) + IMCe1,2) = 1+1 = 2 • We

find the distance for k=1 : B(1)= 0 and L-k = 1 • Then

m = D[B(1)+L-k J= O(1)= 1 < 2 • We check start"time of 3

START(3)= 0 < FINISH(1)= 2 and we update start time of moduLe 3 :

S(3)= F(1)= 2 • Next entry of OSUC is for moduLe 2.

i=2; ModuLe 2 is"not the first moduLe on processor 1 and we check its

start time against finish time of moduLe 1, which is the

preceeding modu~e ; S(2)= 1 < F(1)= 2 and therefore, start and

finish times for moduLe 2 are updated: S(2)= F(1)= 2 and

F(2)= S(2) + PROC(2)= 2 + 17 3. Successor of moduLe 2 is 4.

j=4; k=1~L=3, they are not coresident. We update finish time of

2 for IMC to 4, i.e. F(2)= F(2) + IMCe2,1) = 3+ 1= 4 • We find

the distance between processors 1 and 3 which gives m= O(2)= 2.

Since m > 1 , we have a transfer moduLe. We mark in the transfer

tabLe

T(1)= [2 4 J; from moduLe 2 to moduLe 4 •

TX(1,1)= 2 ; m

TXe1,2)= 4= XS = F(2)

'TXe1,3)= 5= XF = F(2) +"IMCe2 ~ 4)

it := it + 1 = 2

The start time of moduLe 4 is updated since S(4)= 0 :

S(4) = XF = 5 • The next entry in OSUC is for moduLe 3 •

120

TABLE 6.7.1 Trace of LDF Generation for the ExampLe

---------------- SCAN OF DSUC --------------->
MODULE INITIAL

1~2 1~3 2~4 3~4 4~0

1 S(1)=F(1)=0 F (1) =1 FC1)=2

2 S(2)=F(2)=0 S(2)=1 S(2)=2

F(2)=3, 4

3 S(3)=F(3)=0 S(3)=2 F(3)=3, 4

4 S(4)=F(4)=0 S(4)=5 F(4)=6

TRANSFER t TABLES:

TX TX(1,.)

=(2,4,5)

T T(1,.)

=(2,4)

it=1 it=2

''''''

121

i=3; O(3)= 1 therefore we insert its processing time :

F(3)= S(3) + PROC(3) = 2 + 1 =3. We check its successor •

j=4; X(4)= 3= L k= X(3)= 2 m= DCk,L)= 1 , so we just ~pdate finish

time of moduLe 3 , for IMC to moduLe 4

F(3)= F(3) + IMCC3,1) = 3 + 1 = 4 • We check start time of moduLe

4, S(4)= 5 > F(3) •

Last entry in DSUC is for moduLe 4 •

i=4; it has no successors and we update its finish time

F(4) = S(4) + PROC(4) = 5 + 1 = 6 •

Now, since it=2~1 , we have a transfer entry. We wilL compute parti a L

bounds and proceed to Step 6 • PartiaL LDF is shown in FIGURE 6.7.2. with

PTPX= 6 and LIPX= 4. For'Step'6, i = max 5, first number for a transfer

moduLe. Since PTPX < PTP = 8 , we wilL insert the transfer by a caLL to

XFER : i L=1, from PROUTCm)=1 we see that NROUT=1 and L= PROUTCm+1)= 2 '.

Check-insert aLgorithm succeeds in XS ~ FCL,CCL» test and the insert

position is ii= CCL)+1=2 , INS= 1 • Since NROUT= 1 , we compute R for

processor 2 and check against LIPX using the UPRL routine. R = 3<LIPX and

LIPX rem~ins the same •

We next update the arrays using the routine UPARR • i= 2 > C(2)= 1. So,

simpLy C(2) = 2

VC2,2)

SC2,2)

FC2,2)

=

=

=

i max
XS =

XF =

= 5 . inserted moduLe ,
4

5

There are no other transfer entries in the transfer tabLe. New bounds are

PTP=6 and LIP=4. We compLement WSF to save the LDF given by the set

{ C,V,S,F,T} and return to Step 2 for the next composition of the same

permutation. FinaL LDF is shown in FIGURE 6.7.3.

After aLL 24 permutations with 3 compositions are tested, we output the

optimaL assignment , which has minimum vaLues PTP = 6 and LIP = 4 , for

this exampLe •

122

-..

: •
I

P1 1 :-3 2 :-4
: •

I :
3

I • 1-4 • • 1 I

P2
I

P3 4

o 2 3 4 5 6

t PTPX =6

FIGURE 6.7.2 Partial LDF for the Example

A=4

P1 1 2

P2 3 5

P3 4

o 2 3 4 5 6

t PTP =6

FIGURE 6.7.3 Final LDF for the Example

123

6.8 Example for the Multi-Run Environment

The exampLe graph we choose is representative of inner-product of two

vectors, which when executed iterativeLy can be used to caLcuLate matrix

vector products, both functions forming the basis for many digitaL signaL

processing appLications. The exampLe process graph for two 4-vectors and

the processor graph of 4 processors are shown in FIGURE 6.8.1.

This time, we wiLL consider two sampLe assignments onLy to exempLify the

difference between minPTP and minLIP assignments in multi-run or Loaded

environments.

Assignment X1
Permutation

Composition

A = (1, 3, 6, 2, 4, 5, 7, 8)

C = (1, 2, 1, 4) y =
1

3 6

2

4 5 7 8

The partiaL LDF after Step 5 is iLLustrated in FIGURE 6.8.2. For the

transfer 1->3 betweeri the moduLes from processor 1 to processor 2, NROUT= 2

and L1= 3 , L2=4 are the candidate intermediate processors.

The intervaL is specified by XS=2 and XF=3 Processor 3 is not

availabLe during this intervaL and CHK-INS routine in XFER returns after

first triaL since C(3)=1 and, INS=O Since NROUT=2 , processor 4 is

tested next. CHK-INS routine succeeds in first triaL since XF satisfies

XF<START(L,1) condition. INS=2 , ii=1 and transfer moduLe 9 is inserted

before the fi~st moduLe (moduLe 4) on processor 4, increasing X to 11.

The finaL LDF for X1 is

Assignment X2
Permutation A = (1,

Composition C = (1,

shown

8, 4,

1, 3,

in FIGURE 6.8.3.

5, 7, 2, 3, 6)

3)

1

Y = 8

457

236

2

FIGURE 6.8.1

2

Process and Processor Graphs

for the ExampLe

124

125

There are no transfers and the LDF generated in Step 5 is final. It is

illustrated in FIGURE 6.8.4.

After 4 iterations,

KPTP1 = 46 and,

KPTP2 = 39 •

If·we specify the problem for minPTP (K=Q) , assignment X1 wi II be

selected as the optimal assignment with PTP = 13 • However, if the problem

is specified as a minLIP (K ~ 0) assignment, the assignment X2 will

be saved with LIP= 8 With a repetition period of 8 , X2 will give an

output at constant periods, whereas the port-to-port time of successive

iterations for X1 will continuously increase due to queueing on

processors. Even when the repetition rate is higher, requi ri ng LIP < 8 ,
X2 will perform better than X1 Thus, the use of the minLIP

criterion in multi-run or loaded environments, in order to maximize the

overlap and minimize the delay due to queueing, is essential and, any

perfofmance prediction methodology for analyzing the behaviour of a loaded

system should be based on the min assignment of the non-loaded system

instead of the minPTP assignment which cannot exploit the benefits due to

overlap.

126

- !..AX = 10

P1 '* j T

• •
,

-2:-3.-1; ~- 5 , I • ,
• \

2 • -6 • P3
•

3 6 : -8 • P2

P4 4 5 7 8

o 2 3 4 5 6 7 8 9 10 11

FIGURE 6.8.2 PartialLDF for Assignment X1

,.A.=11

P1 1

P3 2

P2 3 6

P4 9 4 5 7 8
,

o , 2 3 4 5 6 7 8 9 10 11 12 13
PTP

FIGURE 6.8.3 Final LDF for Assignment X1

~..A.= 8

P1

I • : I ,
-2~-3:-4:_5 • •

P3 4 5 7 -8

P2 8

2 3 6
: -8 ,
• , P4

o 2 3 5 6 7 8 9 10 11 12 13 14 15

P1F

FIGURE 6.8.4 LDF for Assignment X2

127

6.9 Verification of PCTAA

In order to verify that the task assignment aLgorithm for

partiaLLy-connected networks (PCTAA) is performing correctLy we must

demonstrate that the aLgorithm 1) generates every possibLe assignment,

2) generates LDF for feasibLe assignments onLy , 3) terminates , and

4) terminates with the requested minimum PTP or LIP assignment.

It is easy to show that PCTAA generates every· possibLe task assignment.

This is handLed in Steps 1 and 2 of the aLgorithm, compLeted in Step 3.

Step 1 (permutations) generates every' possibLe ordering of the M moduLes.

Step 2 (compositions) partitions these ordered moduLes into N groups for

every possibLe way of grouping M moduLes into N processors. As we have

mentioned previousLy, we keep the order of N processors fixed whiLe making

the assignment. At first sight, since the distances between the processors

are different· i~ a partiaLLy-connected network, one might suspect that the

processors need to be permuted as weLL. We consider an exampLe with M = 8

and N = 4 to show that this is unnecessary. Using processor permutations,

we have ·the sampLe assignment

Perm. of moduLes

Composition

Perm. of processors

1,3,6,2,4,5,7,8

1,2,1,4

4,1,2,3

ResuLting assignment (i)

1 2 3 4 Processors

ModuLes (36) . (2) (4578) (1)

Using our method with processor or.der fixed, we have

Perm. of moduLes 3,6,2,4,5,7,8,1 ResuLting assignment (i i)

Composition 2,1,4,1 Processors 1 2 3 4

Fixed proc. order 1,2,3,4 ModuLes (36) (2)(4578) (1)

We see that the resuLting assignments (i) and (ii) are the same. ActuaLLy,

the order in permutations and compositions of case (ii) corresponds to a

rotate-Left of the order of permutations and compositions of case (i) •

128

-
Since we generate aLL permutations of M moduLes and for each permutation

aLL non-zero compositions of M moduLes into N processors, permutation of

processors is not required expLicitLy Bnd by keeping the pr~cessor order

fixed we assign every moduLe to every position on each processor as it

traveLs through aLL permutations and compositions, using Steps 1,2 and 3 of

the aLgorithm.

Another point of interest is the order of transmissions when a moduLe

has to send data to more than one non-coresident moduLe. It is cLear that

the moduLes on the criticaL path shouLd receive their data before the

others for timeLy finish of the task. RecaLL that we generate LDF in Step 5

by scanning through the DSUC array which has a fixed order. However, owing

to the principLe of assignment generation, this ordering is taken care of

by different permutations, in a manner simiLar to that of the previous

case. Otherwise, we have to treat the moduLes that receive data in the

following dominance order, where (H) 'and (U correspond to highest and

Lowest vaLues, respectiveLy :

1- DIN (H)

2- DOUT (H)
3- IMC IN (U

4- IMCOUT (H)

5- PROC (H)

which requires reordering the eLements of DSUC for every assignment.

FortunateLy, there is no need to expLicitLy determine the criticaL moduLes

and the muLtipLe-transmission ordering.

We now show that the aLgorithm produces LDF onLy for feasibLe

assignments, which is equivaLent to rejecting aLL non-feasibLe assignments.

Step 4 of the aLgorithm checks every generated assignment to see if

precedence reLations specified in the process graph are satisfied between

coresident moduLes, by a singLe scan through DSUC and ISUC arrays, which

contain aLL pairs with a direct and indirect precedence reLation between

129

them, respectiveLy. ALso, during the scan through DSUC, non-coresident

moduLes are checked for the distance between their processors. To minimize

IPC and deLays due to nonavaiLabiLity of intermediate processors, we have

imposed the constraint that the interprocessor distance be Limited to two,

permitting just one intermediate processor for the transfers. The

assignments that pass these two tests are feasibLe within our definition

and are forwarded to Step 5 for LDF generation. Any assignment that faiLs

either test is non-feasibLe and is rejected at this step.

We have shown that PCTAA generates aLL possibLe assignments and' we get

every non-feasibLe assignment. We now show that the aLgorithm aLways

terminates. Since the number of permutations and compositions is finite,

Steps 1 and 2 terminate after the Last composition for the Last

permutation. Step 3 assigns the moduLes to processors working on finite

arrays. Step 4 performs a singLe scan of DSUC and ISUC arrays which are

finite. Step 5 for LDF generation again performs a singLe scan of the

finite DSUC array to assign start and finish times to moduLes on

processors. If there are any entries in the transfer tabLe TX, Step 6 caLLs

the insertion aLgorithm XFER a finite number of times for the entries in

TX, where one or two intermediate processors, depending on NROUT, are

checked for insertion. Thus, the aLgorithm wiLL aLways terminate.

At ,every possibLe point in the aLgorithm the current bound, partiaL or

finaL, is compared to the so-far-best bound and aLways the assignment which

yieLds a bound Lower than the recent-best is saved. Any assignment that is

equaLLy weLL or worse, compared to the recent one for the objective under

consideration, is rejected. Therefore, the aLgorithm terminates with the

minPTP or minLIP assignment, as the optimaL soLution requested.

130

6.10 Complexity of PCTAA

The computationaL compLexity of the task assignment aLgorithm is a

function of the compLexities of each of its steps. Step 0 is the

initiaLization step and invoLves no computation. The compLexity of the

remaining six steps is individuaLLy discussed in Appendices A - F :

Generation of each successive permutation is performed using a singLe

transposition (exchange) of two eLements of the previous permutation.

Compositions, Likewise, increment and decrement onLy a determined pair of

the previous composition. InitiaLization of the assignment invoLves a

singLe scan through the moduLes of the process. The compLexity of

constraint checking depends on the assignment and possibLy many of the

generated assignments are rejected at this step. For feasibLe assignments a

compLete scan of DSUC is required for constraint checking. LDF generation

is very efficient as has aLready been stressed many times invoLving just a

singLe scan of DSUC and the process of transfer tabLe manipuLation, if

required, invoLves the insertion of just· a few transfer moduLes.

It is cLear that aLthough each iteration of the aLgorithm is efficient,

its computationaL compLexity is dominated by the number of iterations of

Step 1, the permutations, which exhibits factoriaL growth on the number of

moduLes. The totaL number of assignments to be considered for constraint

checki~g in Step 4, for a system of M moduLes and N processors, is the

number of permutations times the number ~f compositions, given by

This Limits the usefuLness of "the aLgorithm to probLems with a smaLL number

of moduLes.

The next chapter discusses some methods that can be empLoyed to reduce

the compLexity of the aLgorithm and extend its use to Larger probLems.

2

131

7.0

SOME METHODS TO REDUCE COMPLEXITY

7.1 Reduction in the Number of Modules

The complexity of the proposed PCTAA increases as a function of the

number of modules in the system.

To analyze larger systems, it may be possible to group the modules into

clusters to reduce the number of modules for the assignment. An example of

clustering is depicted in FIGURE 7.1.1 , where a system of modules is

reduced to a system of 4· modules, resulting in 24 permutations for the

assignment against 40320 permutations for the original system.

Another possibility is to partition a system and analyze the parts

separately or instead of considering all the modules, onl~ time-critica~

parts may be treated in the assignment process and then integrated into the

system. For these special cases the proposed algorithm may be employed

without modifications. Fo~ other systems, however, the algorithm may be

modified as discussed in the next two sections.

2

FIGURE 7.1.1 Exam~le of Module Clustering

132

7.2 Reductions at Constraint Checking Phase

The first reduction technique we proposed is based on the observations

of a number of· assignments for various task graphs and fuLLy or

partiaLLy-connected processor networks. As an exampLe we refer to TABLE

7.2.1 corresponding to some feasibLe assignments for FIGURE 6.8.1.

Observation 1 : The minPTP and minLIP assignments are in the min.~IMC
subset of the feasibLe assignments, where

..L. IMC = LIMC(i,j)

io(j

X(i)~X(j)

i = 1, •••• ,M

This is an expected situation since minPTP and minLIP are proposed to

minimize IPC in the two environments ·and Z-IMC corresponds to :::EIPC with

interprocessor distances. of unity. Due to LocaLity restriction,

contribution due to distance is at .most 2 * IMC's, where Z-IPC is given by

Z IPC = ::2: ·IMC(i,j) * O(k,l)

io(j

k=X(i)~X(j)=L

IPC time added to each moduLe processing time infLuences the waiting

period, i.e. the start time, of the successors of the moduLe. Considering

that the finish time on each processor is the sum of processing times, IPC

times and the idLe times depending on the assignment,

minimizing IPC time heLps to minimize PTP and LIP for baLanced

since the processing times are fixed.

we see that

assignments

Observation 2 The minLIP assignments occur among the min ~ IMC

assignments with interprocessor communication being restricted to adjacent

processors.

This means that in the muLti-run environments we obey the principLe of

LocaLity of communication in the strict sense. This then resuLts in many

TABLE 7.2.1 ExampLe for the ReLation of PTP-LIP and ~ IMC

* :Minimum PTP/LIP among the assignments

Composition

Permutation of IIPC ~IMC PTP LIP

FeasibLe Assign.

13624578 1, 2, 2, 3 13 10 17 15

1, 2, 3, 2 17 12 21 19

2, 1, 2, 3 15 11 17 14

2, 1, 3, 2 " 19 13 21 14

3, 1, 2, 2 18 11 18 12

3, 2, 1; 2 17 11 Rejected

3, 2, 2, 1 17 11 20 14

1, 2, 1, 4 9 8 * 13 11"

1, 2, 4, 1 13 10 19 17

2, 1, 1, 4 11 9 17 15

2, 1, 4, 1 15 11 19 12

1, 1, 1, 5 11 8 17 16

3, 1, 1, 3 14 9 16 13

3, 1, 3, 1 14 9 16 12

3, 3, 1, 1 20 13 24 18

18457236 1, 1, 3, 3 8 8 15 * 8

· · · · ·
· · · · ·
· · · · ·

133

134

simpLifications in the aLgorithm. We have to simpLify the hardware

representation such that the PROUT array is not required any more and the

entries of the distance array are to be -modified as given by

__ {1 ,
D(k,L)

o ,

if D(k,L) = 1

if D(k,L) > 1

ALso, in GENLDF routine we may omit the D(k,L»1 test since there can be

no transfers, and Step 6 of transfer tabLe manipuLation is omitted totaLLy.

by

by

We propose a rough initiaL bound for the sum of IMC's , SIMC, as given

SIMC =

Z IMC(i,j)

ic{j

A simiLar initiaL bound can be used for initiaLizing PTP/LIP, as given

"2. PROC(i? + Z IMC(i,j)
i > io(j

InitiaL PTP/LIP =

Then, at the constraint checking phase, when DSUC is scanned for precedence

or LocaLity tests, IMC between non-coresident pairs can be summed and if

the sum exceeds SIMC, the assignment can be rejected. Otherwise, SIMC wiLL

be updated with the new sum. For the muLti-run environment, moreover,

LocaLity test wiLL reject any assignment with D(k,L) > 1 •

Considering th~ number of evaLuated assignments at this step, it may be

wiser to separate the aLgorithms for the .singLe-run and the muLti-run

environments to avoid the environment checking steps which wiLL accumuLate

135

SINGLE-RUN)

Initialize
data .

(PTP SIMC)

Generate
Next

Assignment

Constraint -- - - - ---.. Checking
(D ~ 2)

~
SIMC:=ZIMC

Generate
LDF

Check PTP

- - - - - - - - - --..
Insert Transfer
Modules on first
avail. proce.ssor

Check PTP

FIGURE 7.2.1 Single-Run PCTAA for Reduction

136

(MULTI-RUN

Initiplize
data

(A, SIMC)

Generate Next
Assignment

Constraint checking
--------~

(D ~ 1)

"'IMC~V
N

SIMC:=ZIMC

Generate LDF
"'-

Check A..

FIGURE 7.2.2 Multi-Run PCTAA for Reduction

137

to some unnecessary overhead. FIGURE 7.2.1 and FIGURE 7.2.2 outLine the

aLgorithms for the two environments.

Other reductions may be possibLe due to additionaL constraints. For

exampLe, we have mentioned the storage capacities of processors versus the

code Length, and the 1/0 probLem. If onLy certain processors have

communication capabiLity with the outside worLd, the start and terminaL

moduLes shouLd be assigned to those processors and this can be checked at

the constraint checking phase. ALso, for SEC graphs in a muLti-run

environment, we know that the entry and the exit nodes of the process graph

shouLd not be assigned to the same processor for minLIP objective.

Many constraints Like the ones we have mentioned can be incorporated

into the constraint checking phase and heLp to reduce the number of LDF's

generated or transfer tabLes manipuLated <Steps 5 and 6). However,

constraint checking is performed for every generated assignment and

therefore reducing the number of the generated assignments is highLy

desirabLe. This subject is qiscussed in the next section.

138

7.3 Reductions in Assignment Generation

In PCTAA we have used permutations and compositions to generate every

possible assignment of M modules to N processors. This method of assignment

generation is useful in arbitrary partially-connected processor networks.

In practice, however, we will need to assign modules of some process graph

onto a given network and it may be possible to exploit the topological

properties of the network.

When the processor networks under consideration are regular and possess

some symmetry property, the task assignment problem can be handled more

efficientLy. The processor muLtistage networks (e.g. PON) introduced in

Chapter 2 are homogeneous in the sense that eich processor has an identicaL

view of the network. Due to this property, for single-entry graphs, the

first module can be arbitrariLy assigned, for exampLe to processor 1. Then

we can ignore module 1 in the permutations and this gives a saving of M

iterations. Further, if 1/0 constraints are imposed on the network, -which

is highLy. probabLe in practice- , the. terminaL moduLes may be left out in

the permutations by numbering the processors appropriateLy. For SEC graphs,

for exampLe, fixing the entry in the exit moduLes gives a totaL saving of

M(M 1) iterations, which is considerabLe for Large M. For exampLe, for

M=8, the number of permutations wiLL reduce from 40320 to 720 with 1/0

restrictions.

In a homogeneous network, the first processor to be assigned can be any

processor of the network, and with our generaL task assignment procedure, N

repLications of the same communication pattern wiLL be evaluated, each

starting at one of the N processors. The number of times each pattern is

repLicated corresponds to the number of equivaLence cLasses induced on the

set of processors, D = {1,2, ••• ,N} , by the permutation group of the set, a

weLL-known topic investigated in graph theory, in number theory, or

combinatoriaL anaLysis in generaL [BECK64J, [LIU68J, [BERG71J.

Interconnection networks can be considered

bijection, i.e. one-to-one and onto mapping,

addresses (or numbers). To find the equivalence

as functions, each a

on the set of processor

cLasses induced by the

functions on the set of processors, we can represent the symmetries in the

139

network by the permutation group of the processors. We wiLL expLain using

an exampLe. In the 4-processor network in FIGURE 7.3.2 arranged in the form

of a square, D = {1,2,3,4} and the permutation group G consists of the

foLLowing permutations: (I11 is the identity eLement of the group,

I1 2- 4 represent rotations and

respect to the diagonaLs.)

represent the symmetry

I1~ =(11 2 3 4) ; I12 =(1 2 3 4)
2 3 4 2· 3 4 1

; ~ ='(1 2 3 4); I14 =(1 2 3 4) ;
3 4' 1 2 4 1 2 3

I16 =(1 2 3 4)
. 3 2 1 4

In terms of cycles, I1i~(1)4; I13-~(4)1 ; I1 ~(2)2 ;
1 2 2-3

I14~(4) ; I1.s~(1) (2) and ITc; ~(1)' (2), where the numbers in

the brackets represent the cycLe Lengths.

The cycLe index PG of the group is defined by

with

where i denotes the cycLe Lengths and b. the muLtipLicity of each cycLe
1

and, for our exampLe, it is given by

EmpLoying p6Lya's theory of counting [DEBR64J, we obtain the number of

equivaLence cLasses of functions from domain D to range R = {1,2,3,4} by

evaLuating [PGJ~.=JR" which equaLs 8 for our exampLe, corresponding to

the symmetries of the square. This means that, if we permute the order of

the four processors arranged at the vertices of a square, the number of

distinct permutations is 24/8 = 3 , ,for exampLe the set {1234,1243,1324~,

and we do not need aLL of the 24 permutations. SimiLarLy, for an 8

processor PON, where the processors are arranged at the corners of a cube,

using the symmetry of the cube with respect to its vertices, the number of

identicaL patterns is 24, requiring 40320/24 = 1680 distinct permutations.

140

1 1

FIGURE 7.3.1 Example Process Graph (M = 5)

FIGURE 7.3.2 Example Processor Graph (N = 4)

141

ObviousLy, extending this method to higher sized networks, determining the

required processor permutations themseLves and automatization of the

permutation generation process require some more work to be done, but these

probLems wiLL be soLved onLy once for a given network. Then, assuming that

this can be done, we can propose the foLLowing modified PCTAA for reguLar

networks.

If we wouLd have had N packages of moduLes to be assigned to N

processors, we wouLd have permuted the processors and assigned a package to

each. This requires partitioning the set of M moduLes into N subsets, i.e.,

the probLem of "distributing M distinct objects into N Like ceLLs, with no

ceLL empty". The number of ,k-partitions of an n-set is given by the

'StirLing number'(of the second kind), which satisfies the foLLowing

recurrence equation

S(n,k) = S(n-1,k-1) + k S(n-1,k)

and identities

S(n,1) = S(n,n) = 1

S(n,k)= 0 for k > n

TABLE 7.3.1 shows S(n,k) up to and incLuding S(9,9).

n I k 1 2 3 4 5 6 7 8 9

1 1

2 1 1

3 1 3 1

4 1 7 6 1

5 1 15 25 10 1

6 1 31 90 65 15 1

7 1 63 301 350 140 21 1

8 1 127 966 1701 1050 266 28 1

9 1 255 3025 7770 6951 2646 462 36 1

TABLE 7.3.1 k-partitions of n, S(n,k)

142

Then, if we consider the moduLe set of FIGURE 7.3.1, where M=5, to be

assigned to 4 processors in FIGURE 7.3.2, the number of distinct

partitionings is given by,

S(5,4) = S(4,3) + 4 S(4,4) = 6 + 4.1 = 10

which corresponds to the 10 partitionings Listed in TABLE 7.3.2.

(15) (2) (3) (4) (1) (24) (3) (5)

(1) (25) (3) (4) (1) (2) (34) (5)

(1) (2) (35) (4) (13) (2) (4) (5)

(1) (2) (3) (45) (1) (23) (4) (5)

(14) (2) (3) (5) (12) (3) (4) (5)

TABLE 7.3.2 Partitions for the ExampLe

S(5,4) = 10

Let us consider the assignment of the partitioned set {12; 3; 4; 5} to

the processors whose order is permuted, keeping the partition incLuding

moduLe 1 on processor 1 due to symmetry. Thus we have 3! assignments

corresponding to this set.

Processor

1 2 3 4
(12) (3) (4) (5) • •••••• a

(12) (3) (5) (4) ••••••• b
"-

(12) (4) (3) (5) • •••••• c

(12) (4) (5) (3) • •••••• b

(12) (5) (3) (4) • •••••• c

(12) (5) (4) (3) • •••••• a

Letters a, b, c denote equivaLent assignments and we see that indeed we

have 3 distinct assignments. Then for the 10 partitionings with 3 processor

permutations each, the totaL number of assignments is"30. With PCTAA

143

PROCEDURE BEGIN ;

STEPO. InitiaLize data

Do ;

STEP1. Generate next moduLe partition

Do ;

STEP2. Generate next processor permutation

STEP3. InitiaLize the assignment, check c.onstraints

STEP4. G~nerate LDF and check bounds

STEPS. Generate finaL LDF and check bounds

END ;

END ;

Output optimaL assignment

END PROCEDURE ;

FIGURE 7.3.3 Modified Task Assignment ALgorithm

144

without any restrictions we wiLL generate M!(~=~) = 480

assignments. If we restrict moduLe 1 to processor 1, the totaL number wiLL·

be 4!(4)= 96. The advantage of the method gained by expLoiting the network

symmetry is obvious.

Then, if the network topoLogy is known and fixed, distinct permutations

on the order of the processors can either be saved in memory for smaLL N or

can be generated during the computations using an aLgorithm. For each given

process graph with M nodes, an aLgorithm to generate S(M,N) partitions of

moduLes in topoLogicaL order may be empLoyed and the task assignment

aLgorithm may then be modified as shown in FIGURE 7.3.3. It must be noted

that, apart from the difference in assignment generation phase,i.e. Steps 1

and 2, the precedence checking part of Step 4 of PCTAA is not required

since the ordering of the moduLes within each partition aLready obeys the

precedence constraints. This brings a reduction due to eLimination of

dupLicate or infeasibLe assignments. If we empLoy the .method of the

previous section, Step 5 wiLL aLso be eLiminated for minLIP assignments.

Then such a method wiLL suffice to cover aLL the required assignments at a

Lower computationaL cost, owing to the symmetry of the network.

Since the number of processors is usuaLLy much Less than the number of

moduLes, even if the network topoLogy cannot be expLoited, using I/O

constraints, the compLexity of permutations can be reduced. The· separation

of the processes of generating N moduLe packages and the permutation of

processors aLso permits expLoitation of the symmetry of the process graph

to eLiminate equivaLences, aLthough the probLem seems to be Less

straightforward than that of the network topoLogy, since the symmetry of a

process graph changes dynamicaLLy with each assignment, due to the

distance-varying contribution of IMC.

Variations or combinations of various methods discussed in this chapter

can be appLied appropriateLy in order to reduce the computationaL

compLexity and this wiLL aLLow the anaLysis and task assignment in Larger

,systems.

8.0

CONCLUSIONS AND RECOMMENDATIONS

FOR FURTHER RESEARCH

8.1 Summary and Conclusions

145

In this study, we have presented a miniaturized image of the macroscopic

problems in distributed processing environment, by giving a brief survey of

the hardware and software environments.

We have concentrated on two important probLem areas

Interconnection and Task assignment.

For the interconnection of processors, we have introduced PON, a

reguLar, partiaLLy-connected, muLti-stage processor network which provides:

i) expandabiLity and moduLarity, requiring a fixed number of

connections at each processor,-which is the same as the number of

I/O ports-,regardLess of the size of the network;

ii) fauLt-toLerance due to the presence of aLternate path~;

iii) homogeneity, which can be expLoited in task assignment or in

preparing monitor software for the processors;

iv) reguLar interstage connection pattern, which permits quite a

number of row-coLumn aLignment patterns and enhances incrementaL

expandabiLity,-as Low as 4 processors-, in contrast to other

muLtistage networks with variabLe interstage patterns, where onLy

particuLar sizes and aLignments are permitted and an increase in

the network size can be achieved by doubLing the height of the

cyLinder and by incrementing its circumference by one extra stage;

v) interconnecti~n of each pair of processors in the network without

the need for direct paths, a property that makes the network

reaLizabLe and eases its impLementation.

We have derived anaLyticaL expressions for some deterministic properties

of. PON, mainLy, the average path Length and processor reachabiLity, and

compared it to other networks mainLy the MSN's and other unidirectionaL

146

cube-type interconnection networks. The comparison reveaLed that for the

same number of processors, the average path Length of PON is aLways Lower

than that of MSN , and reachabiLity is around 75%. A rough comparison of

costs aLso favoured PON for N~32. Later, whiLe determining the appropriate

storage representation of partiaLLy-connected networks, higher reachabiLity

property of bidirectionaL PON's, -which permits over 50% reachabiLity

within a path Length of 2, for moderate sizes-, is expLoited to simpLify

the storage representation which in turn reduced the number of intermediate

processors to be tested for avaiLabiLity in the task assignment process.

With its simpLe

candidate for the

but powerful structure, PON apparently,is a promising

interconnection of multiprocessors, although further

study is required to determine its area compLexity if VLSI impLementation

is of concern.

The second problem we have addressed is the task assignment problem. In

any distributed processing environment, ~ith the exception of identical

processors forming a fuLLy-connected network of uniform interprocessor

distances, proper assignment of the software moduLes that comprise a task

to proce~sors is essentiaL for minimum-time. completion of the task~ by
,

achieving Load balance and minimum interprocessor communication.

The environment we considered is described by a modeL where the software

component, the process graph, is assumed to be a singLe-entry directed

acyclic graph exhibiting the precedence relations between the moduLes, and

the hardware component, the processor graph, is based on the regular

interconnection of identical processors that form a partialLy-connected

network with interprocessor distance of unity betwee~ adjacent processors.

We distinguished between two operational modes . , single-run where the

minimum completion time is 'of concern, and multi-run where the overlap

between successive iterations and the minimum re-initiation time are

important, and accordingLy, we proposed two different objective functions,

minPTP and minLIP, for the two modes, ~espectively. We have dembnstrated

that the minLIP criterion introduced in this study is a robust performance

measure in the multi-run mode jointly optimizing IPe and load baLance, -as

achieved by the minPTP criterion in tne singLe-run mode-,

outperforms minPTP criterion by maximizing the overLap.

147

and it

We determined the dominant parameters for the task assignment probLem in

partiaLLy-connected networks to be the precedence reLations in the process

graph, the interprocessor distances, the number and avaiLabiLity of

intermediate processors for indirect transfers, the seLection of the proper

processor when more than one is avaiLabLe, and the reaL-time constraints

given as minPTP or minLIP.

We formuLated

environments. The

the discrete optimization equations for the two

compLexity of the probLem prevented the use of cLosed

form mathematicaL optimization techniques and dictated an aLgorithmic

soLution, which benefits from additionaL constraints in reducing the

soLution space, and can be taiLored easiLy to satisfy varying demands for

optimaL or suboptimaL soLutions.

The important steps of the proposed task assignment aLgorithm are the

sampLe assignment generation, the constraint checking and the LDF

generation, which enables description of the generated assignment in

graphicaL form. LDF generation and transfer tabLe manipuLation are the

unique features of the aLgorithm and are handLed very efficientLy using a

singLe scan of the associated List of process moduLes or the transfer

moduLes. In the constraint checking. phase, both direct and indirect

precedence reLations are checked and communication is restricted to

processors with a maximum separation of two Links. Any assignment that

yieLds for PTP or LIP a vaLue Lower than those of the past assignments is

made the new optimaL assignment temporariLy, and after the finaL iteration

a moduLe-to-processor assignment that is optimaL with respect to PTP or

is achieved.

We have discussed the performance characteristics of the proposed

aLgorithm we showed that it generates aLL possible assignments, -generates

LDF for feasibLe assignments onLy, and it terminates with an optimaL

assignment. Its computationaL compLexity is mainly a function of the number

of moduLes and hence is usefuL for smalL systems.

148

We have discussed the possibiLities for reductions in module number, at

the' constraint checking phase, and in assignment generation using the

symmetries in the network. We have _observed that minPTP and minLIP

assignments are in the subset of minzIMC assignments and moreover, minLIP

requires strict locality of communication. This simplified LDF generation

and eliminated the transfer table manipulation step for minLIP assignments.

In order to exploit the symmetry properties of the network in reducing the

number of generated assignments, it was necessary to modify the algorithm

such that modules and processors are treated separately. This approach also

permits reductions due to task symmetry if possible, and enables the

analysis of systems with a larger number of modules. The modified task

assignment algorithm is aLso proposed.

In the Latter part of this study, we have presented algorithms for

various steps of PCTAA and we have not implied any specific language for

the actual implementation. We' have tO,note, however, that the computational

and coding efficiency of the PCTAA can be greatly improved if many of its

segments are implement~d in an assembly Language. Moreover, the proposed

algorithms are based' on depth-first search and therefore it might be more

efficient to execute them on multiprocessors, the only communication

required being the exchange of the most recent best values for PTP or LIP.

In assignment generation, it is assumed that the number of processors,

N, is given. However, as it was discussed in the section on related

research, this N. might not be optimal. A modification in Step 2

(compositions) of PCTAA in order to permit "empty cells" as well during the

distribution of modules to processors wilL allow generating assignments

with N ~ N .l opt aval but at a cost of a factor of N.

149

8.2 Recommendations for Further Research

Distributed processing is an area of ~ever-growing interest due to the

Limited speed achievabLe with singLe processors of current semiconductor

technoLogy, on one hand, and the increasing demand for higher computationaL

speeds, on the other~ However, many issues reLated to the interconnection

and programming of muLtiprocessors, -each presenting interesting areas. for

research-, must be treated efficientLy in order to reaLize the potentiaL

benefits of distributed processors.

Regarding the topic of processor interconnections, the network presented

in this study is reguLar and easiLy i~pLementabLe, but it is expandabLe at

best in increments of four processors. This is acceptabLe in systems

impLemented in VLSI, but, for distributed systems of muLtipLe

microprocessors, increments fewer than those provided with this network

might be desirabLe. Various processor interconnection topoLogies, for

better incrementaL expandabiLity, or for other possibLe requirements for

specific probLems, deserve further study.

ReLated to the probLems in software design for distributed processing,

we have mentioned the three interreLated research areas -Languages and

aLgorithms, program partitioning, and assignment-, and discussed the

assignment probLem a?suming that the process graph is given. The particuLar

wayan aLgorithm is represented by a. process graph and input to the

assignment phase, affects the overaLL performance of the resuLting optimaL

assignment. DeveLopment of efficient methods for task partitioning itseLf

in order to achieve better IMC characteristics, or a combined treatment of

the partitioning and assignment phases, where the status information of one

phase is fed back to the other, might provide better resuLts.

The contribution of IMC to the overaLL cost is distance-dependent and is

determined by each moduLe-to-processor assignment generated. Due to the

Saturation effect, the optimaL number of processors to be used in 'a system

before the interprocessor communication begins to degrade the system

150

performance is an important design parameter. Assuming a fuLLy-connected

network with unit distance between adjacent processors, it might be

possibLe to compute Lower bounds for th~ compLetion time, the re-initiation

period and the number of processors as a function of the characteristics of

a given process graph. However, we have to note that the probLem of

determining bounds for the generaL task assignment modeL is a very

difficuLt one that requires a Large amount of experimentaL work, which is

hindered by probLem dimensions due to the combinatoriaL nature of the

assignment process.

In our modeL, it is assumed that each processing eLement performs both

of the tasks of processing and interprocessor communication. When the

processing eLements are composed of two separate processors, one for each

task, LDF generation needs to be modified accordingLy, by keeping separate

start and finish time arrays for each processor. ALso, we have concentrated'

on conventionaL structures based on the controL fLow execution principLe.

The effect of task assignment in other systems with different execution

mechanisms may be investigated with the strong expectation of improved

performance.

During LDF generation, we have assumed that the processors operate with

a poLLing mechanism for the input data and each moduLe is assumed to occupy

an indi,visibLe time bLock with its processing and IPe time on its assigned

processor. It may be possibLe to give higher priority to communication such

that. after the processing time of a moduLe, a transfer operation whose data

is avaiLabLe during the moduLe processing time is inserted before the IPe

time for that moduLe. Another strategy that can be investigated is the

"transmit-first" strategy, where each processor wilL be assigned IPe times

before the processing times, according to the precedences. Many other

strategies may be incorporated in the LDF generation phase and this is a

usefuL area to pursue.

151

The modeL of the presented aLgorithm is based on a principLe of

"toLerant" LocaLity of communication, where the interprocessor

communication distance is restricted to two, but, it has been observed that

periodic task executions favour "strict" LocaLity, the communication being

restricted to adjacent processors. The reLation of the concept of toLerant

and strict LocaLity of communication to the aLgorithm-network structure can

be investigated further.

F6r dynamic environments, where the system parameters change sharply

over time, efficient dynamic task assignment strategies, which require

mechanisms for the measurement of current system state and prediction of

future beh~viour, and that aLLow tasks to be re-assigned for optimaL

performance present another interesting area for research.

Further study in assignment generation methods' that expLoit the'

symmetries in the process and the processor graphs in order to avoid

dupLicate assignment patterns is essentiaL, and this topic seems to present

a very interesting research area for the soLution of task assignment

probLem in Large systems within a reasonabLe computationaL compLexity.

[ACKE82J

[ALLA8OJ

[ANDE75J

[ARDE81J

[BACK78J

[BANE79J

[BATC76J

[BECK64J

[BELL62J

[BENE65J

[BERG71J

[BOKH81J

[BURT81J

BIBLIOGRAPHY

Ackermann,W.B., " Data Flow Languages ,"

!ggg_f2mE~1~r, Feb.1982.

152

ALLan,J.S. and A.E.OLdehoeft, " A FLow AnaLysis Procedure

for the TransLation of High-LeveL Languages to a Data FLow

Language," .!ggg_Ir2D~~2!Lf2mEu Sep.1980.

Anderson,G.A. and E.D.Jensen, " Computer Interconnection

Networks: Taxonomy, Characteristics and ExampLes ,"

8f~_f2mE~1iDg_~~rY~l~, Dec.1975.

Arden,B.W. and H.Lee, "AnaLysis of ChordaL Ring Network, "

!ggg_Ir2D~~_2D_fQmE~, Apr.1981.
Backus,J., II tan Programming Be Liberated From the von

Neumann StyLe ?! A FunctionaL StyLe and Its ALgebra of

Programs ," 1977 ACM Turing Award Lecture, f2mm~Di£21iQD~

2f_1h~_8f~, Aug.1978.

Banerjee,U., S.-C.Chen, D.J.Kuck, and R.A.TowLe,

"Time and ParaLLeL Processor Bounds for Fortran-Like Loops,"

!ggg_Ir2D~~_2D_f2mE~, Sep.1979.

Batcher,K.-E.," The FLip Network in STAR AN ," Er2£~_12ZQ~

.!D1:1_fQDf_E2r211g1_~rQ£g~~iD9 , Aug.1976.

Beckenbach,E.F.(ed.): 8EEligQ_£QmQiD21Qri21_~21hgm21i£~,

John WiLey and Sons, Inc., New York, '1964.

BeLLman,R.E. and S.E.Dreyfus, 8EEligQ_QlD2mi£_~rQgr2mmiDg,

Princeton University Press, 1962.

Benes,V.E., ~21hgm21i£21_IhgQrl_2f_fQDDg£1iD9_~g1~2r~~_2DQ

IglgEhQDg_Ir2ffi£, Academic Press, 1965.

Berge,C., EriD£iElg~_2f_fQmQiD21Qri£~, Academic Press,

New York, 1971.

Bokhari ,S.H., ... On the Mapping ProbLem ,"

.!ggg_Ir2D~~_QD_fQmE~, Mar.1981.
~

Burton,F.W. and M.R.SLeep, " Executing FunctionaL Programs on

a VirtuaL Tree of Processors," 8f~_£QDf_QD_.E~D£1iQD21

E~b2D9~_2DQ_fQmE~_8r£hi1g£1~rgL_~g~_tl2mE~hirg,

Oct.1981.

[CHU 69J

[CHU 80J

[COFF76J

[CONW67J

[DEBR64J

[DENN79J

[El-D80J

[ENSl77J

[FENG81J

[FlYN72J

[FORD64J

[GAJS82J

[GONZ77J

[GOOD81J

[GRAH66J

153

Chu,W.W., "Optimal File Allocat-ion in a Multiple Computer

System," 1999_Ir2!J~.:._Q!LfQ!!!Q.:., Oct .1969.

Chu,W.W., l.J.Holloway, M.!.lan, and K.Efe,

"Task Allocation in Distributed Data Processing,"

1999_Ir2!J~.:._Q!J_fQ!!!Q.:., Nov.1980.

Coffman,E.G.Ced.),

fQ!!!Q~!~r_2mL!QQ=§hQQ_§£h~Q~ii!Jg_Ih~Qr:t,

John Wiley and Sons, Inc., 1976.

Conway,R.W., W.l.Maxwell and l.W.Miller,

Ih~Qr:t_Qf_§£h~Q~ii!Jg,

Addison-Wesley Publ.Co.lnc., 1967.

de Bruijn,N.G., "Polya's Theory of Counting," in ~QQii~Q

fQ!!!Qi!J2!Qri2i_~2!h~!!!2!i£~, E.F.BeckenbachCed.),

WiLey, New York, 1964.

Dennis,J.B., "The Varieties of Dataflow Computers,"

ErQ£_l~!_lD!~i_fQ!Jf_Qi~!riQ~!~Q_fQ!!!Q~ii!Jg_§:t~!~!!!~LIQ~iQ~~~

Oct.1979.

El-Dessouki,O.I. and W.H.Huen, "Distributed Enumeration on

Between Computers," 1999_Ir~m~.:._Q!J_fQ!!!Q.:., Sep.1980.

Enslow,P.H~Jr., "Multiprocessor Organization - A Survey,"

~f~_fQ!!!Q~!i!Jg_§~ry~:t~, Mar.1977.

Feng,T.-Y., "A Survey of Interconnection Networks,"

1999_fQ!!!Q~!~r, Dec.1981.

Flynn,J.N., "Some Computer Organizations and Their

Effectiveness/' 1999_Ir2!J~.:._Q!J_fQ!!!Q.:., Sep.1972.

Ford,l.R. and D.R.Fulkerson, EiQ~~_i!J_~~!~Qr~~,

Princeton University Press, 1964.

Gajski,D.D., D.A.Padua, D.J.Kuck and R.H.Kuhn,

"A Second Opinion on Data Flow Machines and languages,"

1999_fQ!!!Q~!~r, Feb.1982.
Gonzalez,M.J.Jr., "Deterministic Processor Scheduling,"

~f~_fQ!!!Q~!iDg_§~ry~:t~, Sep.1977.

Goodman,J.R. and C.H.SeqiJin, "Hypertree : A Multiprocessor

Interconnection Topology," 1999_Ir2!J~.:._Q!J_fQ!!!Q.:., Dec.1981.

Graham,R.l., "Bounds for Certain Multiprocessing Anomalies,"

§~ii_§:t~!.:._I~£h.:._d.:._~2, 1966.

[GYLY76J

[HARA69J

[HOLL82J

[HOR081J

[HU 61J

CIRAN82J

[JENN77J

[JOHN8OJ

[KNUT73J

[KOHL76J

[KUCK72J

[KUCK77J

[LAWR75J

[LIU 68J

154

GyLys,V.B. and J.A.Edwards,

"OptimaL Partitioning of WorkLoad for Distributed Systems,"

Qi9~§!_Qf_E2~~r§£fQ~EfQ~_Z2_E211, 1976.

Harary,F., §r2~b_Ib~Qr~, Addison-WesLey, 1969.

HoLLoway,L.J., "Task Assignment in a Resource Limited

Distributed Processing Environment," Ph.D.Dissertation,

Computer Science Dept., UCLA, 1982.

Horowitz,E. and A.Zorat, "The Binary Tree as an Inter

connection Network: AppLication to MuLtiprocessor Systems

and VLSI," !ggg_Ir2n§:.._Q!LfQ!!!~:.., Apr .1981.

Hu,T.C., "ParaLLeL Sequencing and AssembLy Line ProbLems,"

Q~~r2!iQn§_B~§~2r£b, Sep.1961.
Irani,K.B. and K.-W.Chen, "Minimization of Interprocessor

Communication for ParaLLeL Computation,"

!ggg_Ir2n§:.._Qn_fQ!!!~~!~r§, Nov.1982.

·Jenl1y,C.J., "Process Partitioning in Distributed Systems,"

ErQ£~~Qin9§_~If, 1977.
Johnson,D., et aL., "Automatic Partitioning of Programs in

. MuLtiprocessor Systems," fQ~EfQ~_§QL_~k~!L_~~~_!:!Qri~Qn§,

1980.

Knuth,D.E., Ib~_8r!_Qf_fQ!!!~~!~r_ErQ9r2!!!!!!in9_l_~Ql~!!!~_!_L

E~nQ2!!!~n!21_819Qri!b~§, Addison-WesLey, 1973.

KohLer,W.H. and K.SteigLitz, "Enumerative and Iterative

ComputationaL Approaches,". in fQ!!!~~!~r_2mLJQQ:2bQ~

~£b~Q~lin9_Ib~Qr~, E.G.Coffman et aL., Eds., John WiLey,

1976.

Kuck,D.J., Y.Muraoka, and S.-Y.Chen, "On the Number of

Operations SimuLtaneousLy ExecutabLe in Fortran-Like Loops and

Their ResuLting Speed-up," !ggg_Ir2n§:.._Qn_fQ!!!~:.., Dec.1972.

Kuck,D.J., "A Survey of ParaLLeL Machine Organization and

Prog rammi ng," 8f~_fQ!!!~~!in9_~~D!~~§, Ma r. 1977 •

Lawrie,D.K., "Access and ALignment of Data in an Array

Processor," !ggg_Ir2n§:..~Qn_fQ!!!~:.., Dec.1975.

Liu,C.L., !n!rQQ~£!iQn_!Q_fQ!!!Qin2!Qri21_~2!b~!!!2!i£§,
Mc Graw-HiLL, New York,. 1968.

[LUND80J

[MA 82J

[MAG079J

[MCGR80J

[MOLD83J

[NIJE78J

[PADU80J

[PARK80J

[PEAS77J

[RAMA72J

[RAO 79J

[SEDG77J

[SIEG77J

[SIEG79J

155

Lundstrom,S.F. and G.Barnes, "A ControLLabLe MIMD Architect

ure," ,ErQ£_12§Q_!n!~1_fQnf_E~r~11~1_ErQ£~22ing, 1980.
Ma,R.P.-Y., E.Y.S.Lee andM.Tsuchiya, "A Task ALLocation

ModeL for Distributed Computing Systems,"

!ggg_Ir~n2~_Qn_fQmQ~!~r2' Jan.1982.
Mago,G.A., "A CeLLuLar Computer Architecture for FunctionaL

Programming, " E[Q£_!ggg_fQr1EfQ!L§QL-':~~~LYQr~, Feb.1980.
Mc Graw,J.R., "Data Flow Computing - Software DeveLopment,"

!ggg_Ir~n2~_Qn_fQmQ~, Dec.1980.

MoLdovan,D.I., "On the Design of ALgorithms for'VLSI SystoLic

Arrays," !ggg_ErQ£~~ging2' Jan.1983.

Nijenhuis,A. and H.S.WiLf, fQm~in~!Qri~1_81gQri!hm2'
Academic Press, 1978.

Padua,A.D., D.J.Kuck, and D.H.Lawrie, "High-Speed MuLtipro

cessors and CompiLation Techniques," !ggg_Ir~n2~_Qn_fQmQ~,

Sep.1980.

Parker,D.S., "Notes On ShuffLe/Exchange-Type Switching

Networks," !ggg_I[~n2~_Qn_fQmQ~, Sep.1980.

Pease,M.C., "The Indirect Binary n-Cube Microprocessor Array,"

!ggg_Ir~n2~_Qn_fQmQ~, May.1977.
Ramamoorthy,C.V., K.M.Chandy and M.J.GonzaLez,Jr.,

"OptimaL ScheduLing Strategies in a MuLtiprocessor System,"

!ggg_Ir~n2~_Qn_fQmQ~, Feb.1972.

Rao,G.S., H.S.Stone and T.C.Hu , "Assignment of Tasks in a

Distributed Processor System with Limited Memory,"

!ggg_Ir~n2~_Qn_fQmQ~,Apr.1979.

Sedgewick,R., "Permutation Generation Methods,"

8fr1_£QmQ~!ing_§~r~~~2' Jun.1977.
SiegeL,H.J., "AnaLysis Techniques for SIMD Machine Intercon

nection Networks and the Effect of Processor Address Masks,"

!ggg_Ir~n2~_Qn_fQmQ~,Feb.1977.

SiegeL,H.J., "A ModeL o~,SIMD Machines and a Comparison of

Various Interconnection Networks," !ggg_Ir~n2~Qn_fQmQ~,

Dec.1979.

[SIEG81]

[STON77]

[TREL82]

[ULLM76]

[VEEN81]

[WATS82]

[WINT83]

[WU 80]

156

Siegel,H.J. R.J.Mc Millen, "The Multistage Cube: A Versatile

Interconnection Network," !ggg_fQ!!!Q~!~r, Dec.1981.

Stone,H.S., "Multiprocessor Scheduling with the Aid of Network

F low A 19ori thms," !ggg_Ir~Q~~Q!L2Qf!~~r~_gQ9iQ~~riQ9,

Jan.1977.

Treleaven,P~C., D.R.Brownbridge and R.P.Hopkins,

"Data-Driven and Demand-Driven Computer Architecture,"

~f~_fQ!!!Q~!iQ9_2~rY~~~, Mar.1982.
Ullman,J.D., "Complexity of Sequencing Problems," in

fQ!!!Q~!~r_~QQ_~QQ:2hQQ_2£h~Q~iiQ9_Ih~Qr~,

E.G.Coffmann et al., Eds.,John Wiley, 1976.

Veen,A.H., "Reconciling Data Flow Machines and Conventional

Languages," fQ~~~!L§l, 1981.

Watson,I. and J.Gurd, "A Practical Dataflow Computer,"

!ggg_fQ!!!Q~!~r, Feb.1982.

Winter,S.C., "A Cube Type Distributed Interconnection of

Microcomputing Elements," r1i£rQ£Q!!!Q~!~r~,,_g~rQ!!!i£rQ_12§~,

North-Holland, 1983.

Wu,C.-L., T.-Y.Feng, "On a Class of Multistage Interconnection

Networks,"· !ggg_Ir~Q~~_QQ_fQ!!!Q~, Aug.1980.

APPENDIX A

ALGORITHM FOR STEP1

PERMUTATION

157

There are many methods to generate permutations [SEDG77J. The aLgorithm

we choose is taken from [HOLL82J and [NIJE78J, where successive

permutations of M eLements differ onLy by a transposition. The aLgorithm is

given in FIGURE A.1.

Each permutation ACi), i=1,2, •• ,M is encoded by an array ECi),

i=1, •• ,M-1 , caLLed an inversion vector, such that ECi) gives the number of

eLements preceding ACi+1) that are Larger than ACi+1). For exampLe, for M=4

three possible permutations are encoded as foLLows.

A = C1,2,3,4) . ~ E = CO,O,O)

A = C2,1,3,4) ~ E = C1,0,0)

A = C3,4,2,1) ~ E = (0,2,3)

If a permutation can be generated from its predecessor by interchanging

A(1) and A(2), the signature, SIGN, of such a permutation is defined to be

even, which is odd otherwise. The signature is set to be even on first

entry and aLternates between even and odd with each subsequent entry. Then,

for each entry, if SIGN = 1 Ceven) we simpLy interchange eLements A(1) and

A(2) and set SIGN = ~1 (odd) before return. If SIGN = -1, a number GCi) is

computed to determine which entries to interchange next, and SIGN = 1

before return. When GCi) faiLs to satisfy the conditions to determine

interchange indexes, this means that finaL permutation has been generated

and LASTP = 1.

The average of the totaL number of computations invoLved is computed in

[NIJE78J to be bounded by M!(2e-2). The totaL compLexity, however, ;s

o CM!) •

(A) [first entry] A(i) = i , i = 1, •• ,M ,

SIGN = 1 , Return.

(8) [subsequent entries] If SIGN = -1 go to (C) • Else set

SIGN = -1, interchange A(1) and A(2) , Return.

(C) Set SIGN = 1,

Calculate

E(i) = { jl j ~ i, A(j) > A(i+1) },

M-1

G(i) = L E(i) ,

i=1

158

until either G(i) is odd and E(i) < i , or G(i) is even and

E(i) > O. In the first (second) case search A(k), k=1, •••• ,i ,

for the largest (smallest) number less (greater) than A(i+1)

and interchange the two. If A(i) = 1, i = 1, •• ,M , set LASTP = 1.

Return.

FIGURE A.1 Algorithm PERMUTE

APPENDIX B

ALGORITHM FOR STEP2

COMPOSITION

159

The foLLowing aLgorithm adapted from [NIJE78] generates the next

composition of M moduLes into N parts for the N processors every time it is

invoked. InitiaLLy, before entry a fLag is cLeared i.e. LASTC = O. After

aLL the compositions corresponding to a permutation are generated, LASTC=1.

Then, next permutation again resets LASTC = 0, the process repeating untiL

after aLL compositions for the Last permutation are generated.

The number of compositions of Minto N non-zero parts is given by

Thus, the compLexity of the process of generating aLL compositions is a

functi6n of M and N, and is Lower when the vaLue of M is cLose to N.

(A) [first entry] L(1) = M - N + 1 ; L(k) = 1 , 2 ~ k ~ N • Return.

(B) [subsequent entries] h = min {kIL(k)#1} ; T = L(h) ;

L(h) = 1 ; L(1) = T - 1 ; L(h+1) = L(h+1) + 1.

If L<N)=M - N + 1 , set LASTC = 1.

Return.

FIGURE B.1 ALgorithm COMPOSE

APPENDIX C

ALGORITHM FOR STEP3

INITIALIZATION OF ASSIGNMENT

160

This step finalizes the assignment generation phase and initializes the

working arrays. Its complexity is oCM).

~b§Q!HIJjr:L.!!gI~

Procedure: INITA ;begin

l:=1; [index to P]

For k:=1 to N do [for each processor]

begin

CCk):=LCk); [copy composition]

For j:=1 to CCk) do [for max.module'capacity of k]

begin

i:=PC L) ;

YCk,j):=i ;

OC;) :=j ;

XC;):=k ;

SCk,j):=O ;

FCk,j):=O ;

l: =l+1

end . [j] ,
end ; [k]

end [INITA]

[module]

FIGURE C.1 Algorithm INITA

APPENDIX D

ALGORITHM FOR STEP4

CONSTRAINT.CHECKIN~

161

The feasibiLity of the assignment is checked using aLgorithm FEASA,

given beLow. REJ = 0 before entry and is checked upon exit. If REJ = 1 an

error return is taken to Step 2.

The compLexity of the. aLgorithm is a function of the number of dependent

pairs in the process graph, i.e. between oeM) and 0(M2).

(A) For aLL moduLe pairs (i,j) in DSUC , check:

If (i,j) coresident and O(i) > O(j) go to (C).

If (i,j) non-coresident, check the distance between their

processors (k,L)

If D(k,L) > 2 go to (C).

Otherwise, go to (8).

(8) For aLL moduLe pairs (i,j) in ISUC , check:

If (i,j) coresident and O(i) > O(j) go to (C).

ELse, Return. [normaL]

(C) Set REJ = 1 • Return. [error]

FIGURE D.1 ALgorithm FEASA

APPENDIX E

ALGORITHMS FOR STEPS

LDF GENERATION

162

This step scans DSUC array just once and generates an LDF of the

assignment by caLLing a routine GENLDF. It then computes the current

bounds. For K = 0, current bound PTPX is compared to PTP. For K t 0,

current bound LIPX is compared to LIP. If current bound is not better than

the Last bound, the assignment is rejected and we return to Step 2.

Otherwise, transfer tabLe is checked. If it is empty, i.e. it= 1, the

generated LDF is compLete and we save the assignment PTP = PTPX ,
LIP = LIPX and WSF = WSF ; and return to Step 2. If

Step 6. Here, we present GENLDF and CBOUND (compute

FIGURE E.1 and FIGURE E.2, respectiveLy.

it > 1, we proceed to

and check bounds) in

The compLexity of the aLgorithm is a function of the size of DSUC, i.e.

the number of directLy dependent moduLe pairs in the process graph. Since

for a process graph of M nodes, the maximum number of precedence pairs is

M(M-1)/2, it is o(M2). For SEC graphs, compLexity of the aLgorithm is

between oeM) and o(M2).

GENLDF

it=l :Init.Transrer Tables
i=l :First Module

Record (i,j),m,
XF'I XS.
XS=F(i)
XF =XS+IMCCi, j)
next it

FIGURE E.1 ALgo~ithm GENLDF

163

(A) [compute current vaLues PTPX and LIPX]

Set PTPX = F(1,C(1» and

LIPX = F(1,C(1» - S(1,1).

Then for k = 2, ••• ,N check and compute:

If PTPX < F(k,C(k» , set PTPX = F(k,C(k».

164

If LIPX < F(k,C(k» - S(k,1) , set LIPX = F(k,C(k» - S(k,1).

Then, go to (B).

(B) If K = 0 and PTPX ~ PTP or

If K ~ 0 and LIPX ~ LIP then set REJ= 1

[reject the assignment], Return.

Otherwise, Return.

FIGURE E.2 ALgorithm CBOUND

APPENDIX F

ALGORITHMS FOR STEP6

TRANSFER TABLE MANIPULATION

165

This step scans the transfer table and for each entry, an algorithm XFER

is called in order to insert the transfer module on available processors. A

flag REJ is initialized to zero for each assignment and is tested upon each

return. If REJ = 1, the current assignment is not valid and we return to

Step 2. If REJ = a after all insertions, we have an optimal assignment

candidate PTP = PTPX , LIP = LIPX and WSF = WSF • Then, we go to Step 2

for the next assignment.

We present a flow diagram in FIGURE F.1 for the algorithm XFER. The

three algorithms used by XFER, namely, 1) CHK-INS, checks insertion,

·2) UPRL, updates Rand LIPX after each possible insertion, and 3)UPARR,

updates { C,Y,S,F} arrays after insertion; are presented in figures F.2

to F.4.

The complexity of the algorithm depends on the number of transfer table

entries and NROUT. NROUT is at most 2 and for assignments that have not

been rejected up to this step, the number of transfer modules is usually

small. Since the first available processor is accepted in single-run

operation mode, its complexity is negligible, whereas in muLti-run mode at

most two processors have to be checked for insertion and minimum LIPX.

XFER

m=TX(~1);xs=TX(~2);XF=TX(~3)
NROUT- PROUT (m) : count
i1:1 : 1 st processor
1:PROUT(m+i):candidate processor
IN5:0 : no insertion yet .

FIGURE F.1 Algorithm XFER

r=row index
to transfer
table,TX.

REJ=D

166

(A)

167

ii= 1 [first moduLe on L J.

If S(L,ii) ~ XF go to (D) [front emptyJ. ELse,

if XS ~ F(L,e(L» , set ii= e(L)+ 1 and go to (D) [end emptyJ.

Otherwise, go to (8) [intermediateJ.

(8) [search sLotJ For ii= 2,3, •• ,e(L), check

If S(L,ii) ~ F(L,ii-1) [a sLotJ and S(L,ii) > XS

[reLevant sLotJ , go to (e).

ELse, after ii= eel) go to (E) [no sLotJ.

(e) [correct time sLotJ

If F(L,ii-1) > xs [Late start, cannot insertJ go to (E).

ELse, if· S(L,ii) < XF [earLy finish, cannot insertJ go to (E).

Otherwise, go to (D) for insertion.

(D) [insertJ Set ip(iL)=ii for the order of insertion on (iL) th

processor checked (iL= 1,2) , and set

INS = INS + iL [update Insert fLagJ.

Return.

(E) Return.

~IGURE F.2 ALgorithm eHK-INS

8b§QB!Itl~_~EBb(Update Rand LIPX)

(A) If XF > F(l,C(l» [finish time has changed]

set R(il) = XF - S(l,1).

Else, if XS < S(l,1) [start time has changed]

set R(il) = F(l,C(l» - XS •

Go to (8).

168

(8) "If NROUT = 1 and R(il) > LIPX [bound has changed and single

processor]

or

If K = 0 and R(il) > LIPX [single-run mode]

Then LIPX = R(il) [update LIPX].

Return.

FIGURE F.3 Algorithm UPRL

Procedure : UPDATE_ARRAYS; Begin

L:=PROUT(m+iL); [processor seLected]

;:=ip(iL) ;

If i ~ C(L) then

begin

[position of transfer moduLe]

[insertion before the Last]

C(L):=C(L)+ 1 ;

For r:= C(L) downto i+1 do

begin

Y(L,r):= YCL,r-1) ;

SCL,r) := S(L,r-1) ;

FCL,r) := FCL,r-1)

end

end

169

eLse C(L):= C(L)+ 1 ; [insertion after the Last moduLe]

Y(L,i):= i ; [insert] max
S(L,i):= XS ;

F(L,i):= XF.;

i := i + 1 max max
end; [UPDATE_ARRAYS]

FIGURE F.4 ALgorithm UPARR

	Tez4169001
	Tez4169002
	Tez4169003
	Tez4169004
	Tez4169005
	Tez4169006
	Tez4169007
	Tez4169008
	Tez4169009
	Tez4169010
	Tez4169011
	Tez4169012
	Tez4169013
	Tez4170001
	Tez4170002
	Tez4170003
	Tez4170004
	Tez4170005
	Tez4170006
	Tez4170007
	Tez4170008
	Tez4170009
	Tez4170010
	Tez4170011
	Tez4170012
	Tez4170013
	Tez4170014
	Tez4170015
	Tez4170016
	Tez4170017
	Tez4170018
	Tez4170019
	Tez4170020
	Tez4170021
	Tez4170022
	Tez4170023
	Tez4170024
	Tez4170025
	Tez4170026
	Tez4170027
	Tez4170028
	Tez4170029
	Tez4170030
	Tez4170031
	Tez4170032
	Tez4170033
	Tez4170034
	Tez4170035
	Tez4170036
	Tez4170037
	Tez4170038
	Tez4170039
	Tez4170040
	Tez4170041
	Tez4170042
	Tez4170043
	Tez4170044
	Tez4170045
	Tez4170046
	Tez4170047
	Tez4170048
	Tez4170049
	Tez4170050
	Tez4170051
	Tez4170052
	Tez4170053
	Tez4170054
	Tez4170055
	Tez4170056
	Tez4170057
	Tez4170058
	Tez4170059
	Tez4170060
	Tez4170061
	Tez4170062
	Tez4170063
	Tez4170064
	Tez4170065
	Tez4170066
	Tez4170067
	Tez4170068
	Tez4170069
	Tez4170070
	Tez4170071
	Tez4170072
	Tez4170073
	Tez4170074
	Tez4170075
	Tez4170076
	Tez4170077
	Tez4170078
	Tez4170079
	Tez4170080
	Tez4170081
	Tez4170082
	Tez4170083
	Tez4170084
	Tez4170085
	Tez4170086
	Tez4170087
	Tez4170088
	Tez4170089
	Tez4170090
	Tez4170091
	Tez4170092
	Tez4170093
	Tez4170094
	Tez4170095
	Tez4170096
	Tez4170097
	Tez4170098
	Tez4170099
	Tez4170100
	Tez4170101
	Tez4170102
	Tez4170103
	Tez4170104
	Tez4170105
	Tez4170106
	Tez4170107
	Tez4170108
	Tez4170109
	Tez4170110
	Tez4170111
	Tez4170112
	Tez4170113
	Tez4170114
	Tez4170115
	Tez4170116
	Tez4170117
	Tez4170118
	Tez4170119
	Tez4170120
	Tez4170121
	Tez4170122
	Tez4170123
	Tez4170124
	Tez4170125
	Tez4170126
	Tez4170127
	Tez4170128
	Tez4170129
	Tez4170130
	Tez4170131
	Tez4170132
	Tez4170133
	Tez4170134
	Tez4170135
	Tez4170136
	Tez4170137
	Tez4170138
	Tez4170139
	Tez4170140
	Tez4170141
	Tez4170142
	Tez4170143
	Tez4170144
	Tez4170145
	Tez4170146
	Tez4170147
	Tez4170148
	Tez4170149
	Tez4170150
	Tez4170151
	Tez4170152
	Tez4170153
	Tez4170154
	Tez4170155
	Tez4170156
	Tez4170157
	Tez4170158
	Tez4170159
	Tez4170160
	Tez4170161
	Tez4170162
	Tez4170163
	Tez4170164
	Tez4170165
	Tez4170166
	Tez4170167
	Tez4170168
	Tez4170169

