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AN ADAPTIVE CONTROL STRUCTURE COMBINING 

MODEL REFERENCE ADAPTIVE CONTROLLERS 

AND 

STOCHASTIC SELF-TUNING REGULATORS 

·ABSTRACT· 

Discrete-time model reference adaptive controllers 

for single-input single-output minimum~hase plants in 

deterministic environment are studied. Both explicit and 

implicit reference models are considered. Similarities 

and dualities between the model reference adaptive 

controllers and stochastic self-tuning regulators are 

indicated and the behaviour of model reference adaptive 

controllers in stochastic environment is analyzed. Finally, 

an adaptive control structure combining model reference 

adaptive controllers and stochastic self-tuning regulators 

is discussed, which is suitable for regulation and tracking 

objectives in both deterministic and stochastic environment. 

Simulations on a digital computer are done to justify 

theoretical results and investigate various features of 

the adaptive control structures mentioned. 
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~ZETCE 

Gerektirici ortamda tek girdili tek ~1kt1l1 enkn~lik 

evreli dizgeler iQin ayr1k zaman11 dayanak taslam11 uyar­

lama11 denetleyictler incelenmektedir. Hem dolays1z hem 

de dolay11 dayanak taslamlar1 soz konusu edilmistir. 

Dayanak taslam11 uyarlama11 denetleyicilerle stokastik 

oz-ayarlanan dlizenge~ler aras1ndaki benzerlikler ve es­

leklik belirtilmekte ve dayanak taslam11 uyarlama11 denet­

leyicilerin stokastik ortamdaki davran1S1 incelenmektedir. 

Son olarak, dayanak taslam11 uyarlama]~denetleyicileri ve 

stokastik ozayarlanan dlizenge~leri birlestiren ve hem 

gerektirici hem de stokastik ortamda dlizenge~leme ve 

izleme ama~lar1 i~in uygun olan bir uyarlama11 denetim 

yap1s1 tart1S1lmaktad1r. Kuramsal sonu~lar1 dogrulamak 

ve soz konusu uyarlama11 denetleme yap11ar1n1 ~esitli 

yonlerden arast1rmak i~in saY1sal bir bilgisayarda ben­

zetimler yap11m1st1r. 
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I. INTRODUCTION 

In recent years, considerable work has been 'done 

to investigate similarities, connections and dualities 

between the model reference adaptive controllers (MRAC) 

and stochastic self-tuning regulators (S-STR) [1] [5] • 

In an adaptive control system, designed fo~ 

deterministic environment, the controller parameters are 
I 

a~justed so that the output of the plant with unknown , 
parameters is able t'o follow a reference input in a 

dlsired dynamics. This dynamics can be modeled explicitly, 
i 

1 

so the plant model error is used for adaptation (Figure 1.1) ~ 

Another adaptive control strategie could be to use an 

adaptive predictor to obtain a control such that the 

output of the plant becomes the desired output(Figure 1.2). 

If the output of the predictor is identical to that of the 

explicit reference model, two systems can be equivalent 

[~, [2], [6]. In that case, the controller and the 

predictor form an implicit reference model (shown with 

- dashed lines in Figure 1.2), and therefore this type 

adaptive controllers is referred as MRAC with implicit 

reference model. 
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On the other hand, a structure similar to that of 

the MRAC with implicit reference model appears in case of 

stochastic self-tuning regulators for which the control 

objectives are given with ARMA models [71. starting from 

the equivalenaes between explicit and implicit model 

reference controllers, stochastic self-tuning regulators 

with explicit reference models can be defined [2]. These 

are equivalent to the stochastic self-tuning regulators 

where adaptive predictors are used, which from the class 

of stochastic self-tuning regulato~mostly considered in 

literature. 

As shown in [1] and [2], similarities can be found 

between model reference adaptive control systems and 

stochastic self-tuning regulators. Both of them use the 
I 
i 

same control law and parameter adaptation algorithms 
I 

which have a similar structure. On the other hand, the 
I 

PO~itive realness conditions \vhich appear as a result of 
I 

the stability analysis of a MP~C and the convergence 

analysis of a S-STR are of the same type [~, [~, [5]. 

Furthermore, it is shown in [~ and [5] that model 

reference adaptive controllers and stochastic self-tuning 

regulators can be combined to built an adaptive control 

structure which operates as a desired MRAC in deterministic 

3 

environment and as a desired S-STR in stochastic environment. 

This thesis aims, after analyzing model reference 

adaptive controllers and stochastic self-tuning regulators 
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with explicit and implicit reference models and exhibiting 

their similarities and dualities, to discuss the adaptive 

control structure combining th~~. Simulations are done on 

a digital computer to investigate various properties of 

these control structures and their adaptation algorithms. 

In chapter II, the tracking and regulation of a 

plant with known parameters are considered. Chapter III 

analyzes the adaptive control problem in deterministic 

environment. In chapter IV, the problem is extended to 

cover the stochastic context. The similarities and 
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II. MODEL REFERENCE CONTROL FOR TRACKING AND REGULATION 

Before analyzing the MRAC for a discrete-time single 

-input single-output (SISO) minimum phase-plant with unknown 

parameters (see Chapter III), we will consider the model 

reference control for the same type of plant with known 

parameters in both deterministic and stochastic environment. 

II.l DETtRMINISTIC ENVIRONMENT 
i 

i 
cohsider the discrete linear time invariant SISO 

I 
I 

system de~cribed by the following ARMA equation 

d>O y(O)f.(O) 

where 

A(q-l) 1 
-1 -n 

= + alq + . . . + a q a 
na 

B (q-l) bo 
-1 b q-nb .bof.O = + blq + . . . + 

nb 

(2.1) 

(2.2) 

(2.3) 

q-l is the unit delay operator and u(k) and y(k) are the 



plant input and output,respectively. It is assumed that 

the zeroes of B(z-l) are inside the ~nit circle (:~ \<1) 

so that they can be cancelled without leading to an 

unbounded control input. 

6 

The control objectives in tracking and regulation 

are defined as follows [2} , [6], [8]: 

i) In tracking, the output of the plant is wanted 

to satisfy the equation 

(2.4) 

where 

Cl(q-l) 
-1 

C 
-n 

= 1 + Cllq + . . . + q cl 
lnC!l 

(2.5) 

D (q -1) 
-1 -n 

= do + dlq + . . . + dndq d (2.6) 

and uM(k) is a bounded reference input. 

ii) In regulation (uM(k) = 0) an. initial disturbance 

y(O) i 0 is wanted to be eliminated with the dynamics 

defined as 

-1 . 
C2 (q )y(k+d) = 0 

where 

-1 
C2 (q ) 

-1 = 1 + C2l q + 

k ~ 0 

... , 

is an asymptotically stabla polynomial. 

(2.7) 

(2.8) 



Two methods can be considered to obtain a solution 

to such a control problem 

i) Explicit Reference Model : 

We define the referenc~ model as 

(2.9) 

and the plant-model error as 

e:(k) = y(k) - yM(k) (2.10 ) 

Then, if the equation 

-1 
C

2 
(q ) e: (k+d) = 0 k > 0 (2.11) 

holds, both control objectivei are accomplished. 

To compute the control input u: (k), the following 

polynomial identity is used 

where 

-1 seq ) -1 = 1 + slq + ••• + 

+ 

Using (2.10),(2.12) and (2.1) 

sn 
s 

-n 
+ r q r 

nr 

(2 .12) 

(2.13) 

(2.14) 
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-1 M -C2 (q )y(k+d) 

To achieve (2.11), 

u (k) = 
-1 t4 -1 -1 

C2 (q )y (k+d) - R(q )y(k) - Bs(q < )u(k) -
(2.16a 

where 

(2.17) 

It is shown in [6r and ~] , if one chooses 

(2.18) 

(2.12) has a unique solution for S(q-l) and R(q-l) and 

the total number of coefficients to be computed (n +n ) s r 

is minimum. 

For such a case (2.16a) can be written as 
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u (k) = (2.19) 

where 

(2.20) 

¢~(k) =[u(k-l), .•• , u(k-d-nb+l) ,y(k), ..• ,y(k-nr )] 

(2.19) can also be expressed as 

-1 M T C2 (q ) y (k+d) - p ~ (k) (2.21) 

where 

(2.22) 

~T (k) = [U(k), ~~ (k)] 

I 
I The block diagram of this control scheme is given 

I in Figure 2.1. The control objective is shown with dqshed 

lines. 

Note that the closed-loop poles are defined by 

-1 C2 (q ) polynomial. In the adaptive cas~, it will have 

considerable importance on the control performances 

. -1 (see Chapter V). In case of known parameters, 1f C2 (q )=1 

all the closed loop poles are at the origin, which 

means the model output is reached by the plant output 

after d steps. 
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ii) Implicit Reference Model : 

This method is an application~of the separation 

theorem. One first designs a predictor for the plant 

output, then a control will be computed such that the 

predictor output becomes equal to the desired output. 

Defining the prediction error as 

~ (k) = y(k) - y(k) (2.23) 

we design a predictor such that 

C
2 

(q-l) E (k+d) = 0 k > 0 (2.24) 

where C
2 

(q -1) is given by (2.8) 

Using (2.23), (2 .12) and (2.1), 

Bs(q-') I-

If(k) 0(q-1) M{ .• ,- 1 -d B( -') y{k) IY' k+CIL. C
2
{q') + q q -

C,{q-') I bo u(k) A(q1) I --' 

I 
I 
I 
I 

R{q') I 
I I 

I I 
I ; 
I r -=d1 _ "' to r: - - - I I 
'-, q t- -j»---. C (q-l) r---I 

.... _.1 I L:.2 __ -J 

J. 
o 

Figure 2.1 Nodel Reference Control System (known parameters) 
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Hence, to achieve (2.24) the following predictor can be 

used 

-1 -1 -1 -1 C2 (q )y(k+d) = B(q )S(q· )u(k) + R(q )y(k) (2.26) 

If (2.18) is satisfied, (2.26) can be written as 

(2.27) 

where p and rJ (k) are given by (2.22). 

NOw, a" control can be computed such that 

which gives as again the control expressed in (2.19). 

II.2 STOCHASTIC ENVIRONMENT 

In this section, the behaviour of the control 

structure shown in Figure 2.1 in stochastic environment 

is analyzed. 
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The plant in stochastic environ~ent is defined as 

-1 -d -1 1 A(q )y(k) = q B(q )u(k) + C(q- )'tl(k) (2.28 ) 

where 

+ ••• + (2.29) 

is an asymptotically stable polynomial, w(k) is a 

sequence of independently and identically distributed 

normal zero-mean random variables and A(q-l) and B(q-l) 

are given by (2.2) and (2.3), respectively. 

If the control law given in (2.l6a) is used one 

has 

-1 M C
2

(q )y (k+d) 

using (2.28), (2.12) 

(2.30) 

-1 -1-1 = C2 (q )y(k+d) - C(q )S(q )w(k+d) (2.31) 

So, in tracking the plant-model error becomes 

-1 C
2 

(q ) e: (k+d) (2.32) 
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In other words, for the case of stochastic envi-
-

ronment, the control given with (2.16a) achieves the 

control objectives defined by the equation 

(2.33) becomes in regulation 

y (k) = 
C(q-1)S(q-1) 

-1 C2 {q) 

w(k) 

(2.33) 

(2.34) 

.. Furtherrrore if one chooses 
-1 C2 (q ) = C(q-1), then the 

plant output becomes 

y(k) = S(q-1)W(k) (2.35) 

which corresponds to the minimum variance regulator [1~ • 
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III. MODEL REFERENCE ADAPTIVE CONTROL 

DETERMINISTIC ENVIRONMENT 

In this chapter the design of a MRAC for a discrete 

-time SISO minimum-phase plant with unknown parameters 

is given. 

III.l A STABILITY TH,EOREM USEDFOR THE DESIGN OF THE MRAC 
i 
! 
.i 

In adaptive case, the aim is to augment the linear 
I 

control strategie giJen in the previous chapter with a 
I 

parameter adaptation algorithm so that the objectives 

defined are achieved asymptotically. It is also desired, 

that the input and output of the plant remain bounded, 

so the design of the MRAC must be done from astability 

point of view. 

Below, a stability theorem [~, [~ [l~ is given, 

which will be used in the next section to justify the MRAC 

design. 

Theorem 3.1. Assume that the following adaptation 
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algorithm for updating the parameter vector p(k) is used 

where 

with 

-1 
F 

k+l 

(3.1) 

(3.2) 

(3.3) 

As~ that tI-erelation between ~ (k-d) and vk is given by 

(3.4) 

where ~(k-d) is a bounded or unbounded vector seq':lence, 
! 

H(z-l) is a rational·discrete transfer function no~malized 

under the form 

H(z -1) = (3.5) 

and p is a constant parameter vector. Then if the 

transfer function 

(3.6) 
2 

is strictly positive real where 



2 > A ? max A2 (k) 
o < k < 0) 

one has for Vo and p(O) bounded 

i) lim 

~~_<X> 

v k = 0 

ii) lim x
k = 0 

k~ 0) 

16 

(3 .7) 

(3.8) 

(3.9) 

(where ~k is the state vector of any of the state rea­

lizations of H(z-l» 

iii) lim ~T(k-d) {[p(k+1) - p] + Pk~(k-d) V-k } = 0 (3.10) 

.k~ 00 

[ 1-Al (k) ] Ii [p (k -1) -p] 
2 

iv) lim +Pk~(k-d)Vk II - ~ =0 (3.11) 
-1 . 

~ 0) 

r.' .l.k 

v) lim II ~(k-d)vk II 2 = lim !J. p (k) Tp-1 b. p (k) = 0 (3.12 ) 
Pk k 

k~ 0) k_ 0) 

(where !J.p(k) = p(k) - p(k-1» 

(3.13) 

(3.14) 
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If in addition -1 F-l 
Fk >e: 0 F 0 > 0; ~ > 0 I k> 0 and F- l is 

k 

nondecreasing for k ~ ko (3.15) 

viii) lim llP(k-) == lim Fk~(k-d)Vk == 0 (3.16) 
~~ cx> k_cx> 

ix) \ \ p (k) \ I ~ M2 < cx> k ? 0 (3.17) 

The proof of this' theorem can be found in [111. It is 

done by making use of the equivale~t feedback representation 

(EFR); i.e. the MRAC to be designed is represented by 

an equivalent feedback system def ined by (3.1) and .(3.4) 

with a linear time invariant block(defined by H(Z-l») and 

a time varying non-linear block. Then an appropriate 

adaptation mechanism is chosen such that the global 

asymptotic stability of the equivalent feedback system 

is assured. 

The first result, (3.8) is used for the design. 

The other results, (3.9)-(3.17) are used to prove the 

boundedness of the input and output of the plant. 

111.2 A MRAC DESIGN 

Having introduced the stability theorem in the 

previous section, we are now ready to discuss a MRAC 

design for minimum-phase plants where the time delay 

and the upperbounds of the degrees of polynomials 

A(q-l) and B(q-l) are known. 
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To deal with unknown plant parameters, a natural 

way is to replace the parameter vector by an estimated 

one and use an adaptation algorithm to update it. 

Therefore the control in adaptive case will be computed 

by 

u (k) = 
-1 M T 

C2 (q )y (k+d) - ~O(k)~o(k) 
(3.18) 

Do(k) 

or equivalently, 

-1 M T 
C2 (q )y (k+d) =.~ (k)0(k) (3.19) 

where 

(3.20) 

T. 
with Do(k) and ~o(k) being the estimated values of b o 

and po. 

The design objective is to achieve the objective 

defined for the case of known parameters (expressed in 

(2.11»asymptoticallYi i.e. 

lim 
-1 e: (k) 0 C2 (q ) = e:(0) 10 (3.21) 

k~ 00 

or 

lim e:c(k) = 0 (3.22) 
k...-., co 



where E (k) 
c is the filtered plant-model error defined 

as 

e: (k) c (3.23) 

and the plant input and output remain bounded, which 

can be expressed as 

11~(k)II~M<(X) (3.24) 

Since, the use of (2.12) ,(2.1), (2.20) and (2.22) yields 

= p ~ (k-d) (3.25) 

(3.23) can be written as (using Q.10) and (3.19» 
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(3.26) 

A comparison of (3.26) with (3.4) show~ that 

Theorem 3.1 is not directly applicable to solve the 

problem. To apply the theorem, one can define an a post-

erior i filtered plant-model error (called also augmented error 



* Note ~hat -£ (k) can also be expressed as 

* £ (k) = £c. (k) + -; (k) 

where -;(k) is the auxiliary error and given by 

Now,defining the a posteriori adaptation error as 

V(k) = 
-1 

Hl (q ) 

-1 
H

2
(q ) 

* £ (~) 

20 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

. -1 -1 
where Hl(q ) and H2 (q ) are monic polynomials of 

-1 . . 
q ,one can straightforwardly apply Theorem 3.1 to 

obtain the following result : 

with 

where 

If one uses the adaptation algorithm given by 

p(k) = p(k-l) + Fk~(k-d)v(k) (3.31) 

Fk~(k-d)~T(k-d)Fk 
------------] (3.32) 

Al lk)/A 2 (k) + ~T(k-d)Fk~(k-d) 

o ~ A 2 (k)< 2 (3.33) 
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one obtaines 

lim V{k) = 0 

k---+ 00 
(3.34) 

if 

(3.35) 

is strictly positive r~al with A given in (3.7). 

Note that (3.32) in obtained from (3:2) applying 

the matrix inversion lenna [12] . 

With further analysis, it can be shown that the 
I 

objective expressed in (3.22) is achieved tOO'iThiS 

I 
proof, together :"with that of the boundedness of the 

I 
plant input and output is given in Appendix A.i 

To make the algorithm implementable, an expression 

for V(k) depending on parameters estimated up to the (k-l)st 

step' should be found. This can be obtained using (3.30) 

( 3.27) , (3 .31) and (3.25) 

v (k) = 

= 

-1 
Hl (q ) 

-1 
H2 (q ) 

-1 
Hl (q ) 

-1 
H

2
(q ) 

[ 
T -T rt P ~ (k-d) - p (k-l) ';J (k-d) 

. - 0rr; (k-d} Fk~ (k-d) v (k) 



={Hl (q-l)[C2 (q-l)Y(k) - pT(k-l)~(k-d)] + [1-H2(q~1)]V(k) 

+[1-H1 (q-1U~T(k-d)Fk~(k-d)V(k)} x 1 . -

22 

. 1 + ~T(k-d)Fk~(k-~) (3.36) 

The block diagram of this adaptive control structure 

is given in Figure 3.1. 

III.3 SOME PARTICULAR CASES 

As shown in the previous section, once the theorem 

3.1 is introduced, the design of a MRAC becomes rather 

straightforward. Another benefit of this theorem is that 

it constitutes a unifying framework among the discrete-time 

adaptive control mechanisms so that the resulting design 

comprises many different types of adaptation algorithms. 

i) Particular Adaptation Gains: 

(3.32) gives us different possibilities for the adaptation grain 

up:Iating 

a) If Al(k) = 1, A2 (k) = 0, one obtains the 

simplest case, namely the constant adaptation gain 

(Fk+l=Fk ), used for example in [l~ 

b) If Al(k) = 1, A2 (k) = A2 0 < A2 < 2, the 

time decreasing adaptation gain is obtained ~~. 



d"(k) J O(q-l) I ( , .. -~ 
C,(q-~ 

~ 1 Iv(k).1 l+~(k-d)Fk0(k-d)~ F\(. ¢(k-d) I L.lF''D '~ P"{ :1 

f}(\( 11 - H2.(cf~ K-K--+ 

-HJcj~~(k-d)~¢(k- d), 

t....- ___________________________ J 

Fi 9 ure 3.1 Model Reference Adaptive Control System (deterministic environment) 



c) Al(k) = Al; A2 (k) = A2 (usually 0.95<A l <0.99) 

.Corresponds to time varying adaptation gain (also called 

adaptation gain with forgetting f~ctor), which is useful 

for the case of slowly time-varying plants [l~. 

24 

d) If Altk) and A2 (k) are chosen such that trace 

Fk is constant, a real time adaptation algorithm for 

tracking time varying plants (called constant trace 

adaptation gain algorithm) is obtained [6], [~ . 

Simulations compaJ:ing all of these algorithns can 

be found in Chapter V. 

ti) 
-1 

If H;L(q ) 

such that 

1 
A . 

-1 C2 (q ) and. 
-1 C2 (q ) is 

(3.37) 

is strictly positive real, with A as in (3.7), the a 

posteriori adaptation error can be calculated as 

Using (3.25), (3.30), (3.28), (3~29), (3.26) one obtains 
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-v (k) = (3.39) 

Furthermore, if the poles in tracking and regulation are 

same, i.e. Cl(q-l) = C2 (q-l), the algorithm is called 

parallel MRAC algorithm. 

Note that (3.37) drastically limits the region 

allowed for the noots of C2(z~), if stability is wanted 

to be assured. 

iii) 
If -1-1 

Hl (q ) = H2 (q ) = 1, the, a posteriori 

adaptation error can be given as 

v'(k) = 
-1 ..T 

C2 (q )y(k) - p(k-l)~(k-d) 

1 + ~1k-d)Fk~(k-d) 

-1 
C

2
(q ) e: (k) 

= -----rn-------------
1 + ·i(k-d) Fk~(k-d) 

(3.40) 

with no positive realness conditions to be . fulfilled. 

Comparing (3.40) with (3.39), note that filtering the 

plant-model error has the effect of removing the positive 

realness condition. 

Furthermore, if one chooses 

(3.40) can be written as [8] 

....;1 -1 
C2 (q ) = C

l 
(q ), 

v(k) 
y(k) - y~(k) + [p(k-d) p(k-l~T~(k-d) 

1 + ~T(k-d)Fk~(k-d) 
(3.41) 
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where is the output of a series-parallel reference 

model given as 

(3.42) 

This algorithm is called series-parallel MRAC algorithm. 

III.4 GENERALIZED MRAC DESIGN 

As shown in the previous section the positive 

realness conditions can be removed by using an appro-

priate filter for the plant-model error. An alternative 

way could be to introduce a filter which acts on the 

plant input and output. Such a filter will allow us to 

obtain more flexibility in the design, since the degree 

of freedom in choo"sing the appropriate polynomials is. 

increased. On the other hand, as shown in Chapter IV, it 

may also be useful in .' fulfilling the convergence 

conditions in stochastic environment. In this section, 

this generalized design of MRAC is covered although it 

is not considered in simulation studies. 

Let usdefine the following filtered variables 

-1 f L(q )u (k) = u(k) 

L(q-1)yMf(k) = yM(k) 

-1 f 
L(q )~o(k) = ~dk) 

(3.43) 
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where 

+.9. q-n 
~ 

(3.44) 

is an asymptotically stable polynomial. 

using filtered variables, (2.15) can be written as 

(3.45) 

Hence if the parameters are known, to achieve the 

objective defined in (2.11), the control input 

(3.46) 

with 

-1 Mf T' f 
C2 (q )y (k+d) - po~o(k) 

(3.47) 
b o 

has~ to be used. 

In case of unknown parameters, again, the parameters 

must be replaced by their estimated values, i.e. 

C2(q-l)Y~~(k+d) - P~(k)~!(k) 

00 (k) . 

(3.48) 
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or 

~l Mf T f 
C2 (q ) Y (k+d) = P (k) ~ (k) (3.49) 

with 

~fT (k) = (uf (k) ,~f'f (k)] 
o _ (3.50) 

and P_T (k) . (3 20) as ~n • • 

Using (3.49) and (3.43), the a posteriori adaptation 

error defined in (3.30) can now be given as 

(3.51) 

A straightforward application of Theorem3.l gives 

that if the adaptation algorithm 

f = p(k-l) + Fk~ (k-d)v(k) (3.52) 

Fk~f{k-d) ~fT(k-d)Fk 
1 [Fk - -----------] 

"1 (k) "1 (k) /" 2 (k) + ~ fT (k -d) F k ~ f (k - d) ( 3 . 5 3 

with (3.33) is used, one has 

lim v(k) = 0 (3 .54) 

k_ <Xl 



if 

Hl(Z-l)L(Z-l) 

H
2

(Z-1) 

(3.55) 
2 

is strictly positive real, where A is given in (3.7). 

It is shown in ~ , that with this adaptation 

algorithm the convergence of the plant-model error and 

the boundedness of plant input and output is assured. 

In general the a posteriori adaptation error can 

be implemented as [~, 

[ 
-l~ [ -1 -1 ~ 

+ l-H2 (q )jV(k) + l-Hl (q )L(q.)j 

x 1 

fT f 

~fT(k-d)Fk~f(k-d)V(k)} 

(3.56) 

'1+.~ (k-d) Fk ~ (k-d) 
-1 

Note·that (3.56) reduces to (3.36) for L(q ) = 1. 



IV. MODEL REFERENCE ADAPTIVE CONTROL 

STOCHASTIC ENVIRONMENT 

30 

In this chapter, the adaptive control problem 

for a discrete time SISO minimum-phase plant in stochastic 

enviro~~ent is discussed. 

After introducing a convergence theorem which will 

enable us to do the convergence analyses in stochastic 

environment, two examples of S-STR are analyzed in order 

to establish connections, similarities with corresponding 

MRAC schemes. Then the behaviour of MRAC in a stochastic 

environment is discussed. Finally, an adaptive control 

scheme combining model reference adaptive controllers 

and stochastic self-tuning regulators is considered, 

which is able to accomplish both tracking and regulation 

objectives in deterministic and stochastic environment. 



IV.l. A THEOREM FOR CONVERGENCE ANALYSIS IN STOCHASTIC 

ENYIRONHENT 

In the convergence analyses in stochastic envi­

ronment we will use the following theorem [~ 

Theorem 4.1. Consider the adaptation algorithm 

(3.31)-(3.32) where 

V-k (4.1) 

Assume that the~tionary processes ~(k,p) and v(k,p) 

can be defined for p(k) = p and p(k) belongs infin~te~y 

often to the domain for which these stationary processes 

can be defined. Assume that for p(k) = P 

(4.2 ) 

where w*(k) is the image of the stochastic disturbance 

in the equation governing the a posteriori adaptation 

error and is a white random sequence (or incorrelated 

to ~(k-d) ,p» • 

Then, if 

2 

is strictly positive rea~ then 

Prob {lim p(k)eD } = 1 

k- Q) 

(4 .3) 

(4 .4) 



where 

and 

D 

Prob {lim v(k) = w*(k)} = 1 
k~ CIO 

(4.5) 

(4.6) 

If in addition, the input is sufficiently rich 

and the controller is of adequate order, it follows 
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Prob {lim p(k)= p*}- 1 (4.7) 
~~ CIO 

The proof of this theorem canbe found in ~~ or 

~~ . I~ is ~ade by making use of the ordinary differential 
I 

equatior (ODE) method [l~. 
I 
I 

IV.2 STOCHASTIC SELF-TUNING REGULATORS:TWO EXAMPLES 

In stochastic environment, for which the plant is 

described by (2.28), when the plant parame-telS together 

wi th the disturbance dynamics are unknown, it is natural 

to replace the parameters in the control law with their 

estimated values to achieve the control objectives 

asymptotically. 

Considering (2.33), the objective in the case of 

known parameters, a rather general objective for this 



case can be stated as 

Prob 

-1 C2 (q ) 
{ lim e: (k) = w (k) } = 1 
k~ co C (q -1) S (q -1) 

33 

(4.8) 

where S(q-l) is uni~cly defined with (2.12) and (2.18). 

To show the similarities and connections of the 

stochastic self-tuning regulators with model reference 

adaptive controllers we will give to examples. 

i) Example 1 : 

The control objective is chosen as 

-1 
Prob {lim~k) = S(q )w(k)} = 1 4.9) 

k~co 

which corresponds in (4.8) to the particular case 

(4.10) 

Together with the control law expressed in (3.18), 

the adaptation algorithm given in (3.31)-(3.32) with (4.1) 

is used. Below we will show that if the a posteriori 

adaptation error is calculated as 

e:(k) 
(4.11 ) 

v (k) = 
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and if 

1 A --
2 (4.12 ) 

is strictly positive real the objective defined in (4.9) 

will be achieved. 

To'sh:!~Lthiswe rewrite (4.11) as 

v(k) + ~T(k-d)Fk~(k-d)V(k) = ~(k) 

and use (3.31) to obtain 

Since 

e: (k) . c 
e: (k) = --=-----=-- = -1 

C2 (q ) 
1 -1 {[l?-P (k-d) ]T~ (k-d) 

C2 (q ) 

+ S(q-1)C(q-1)w(k) } 

(4.14) becomes 

v (k)+[~k) + P (k-1) ]T~ (k-d) = 

-1· -1 
+ S(q )C(q )w(k) 

(4 .13) 

(4 .14) 

(4.15) 

(4 .16) 

Now, introducing the stationary sequences ~(k,p) v{k,p) 
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and ~(k,p)for p(k) = p and considering (4.10) 

-1 
S(q )w(k) (4.17) 

On the other hand, from (4.14), it follows that 

(4 .18) 

Now, Theorem 4.1 can be applied to (4.17) with (4.18) to 

obtain the controlobjective defined in (4.9) if the positive 

realness condition in (4.12) is satisfied. 

ii) Example 2 : 

For this case, the following objective is wanted to 

be achieved. 

-1 Prob { C
2 

(q ) s(k) = S(q-l)w(k) } = 1; C(q-l) = 1 (4.19) 

Consider the following a posteriori adaptation error 

with the control law (3.18) and the adaptation algorithm 

(3.31), (3.32), (4.1) 

v(k) = 

or 

-1 C
2

(q )e(k) 
(4.20) 
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T 
v(k) + ~ (k-d)Fk~(k-d)v(k) = -1 

C
2 

(q ) E (k) (4.21) 

(4.22) 

-
U~ing stationary sequences ~(k,~) ,~(k,~) ,for ~(k) = P 

and the fact that C(q-l) = 1, 

(4.23) 

It" follows from (4.21), 

-1 -= C2 (q )E(k,~) (4.24) 

So, (4.23) can be r~written as 

(4.25) 

Now applying Theorem 4.1 to (4.2S) directly gives 

the objective expressed in (4.19) without anypositive 

realness condition to be satisfied. 



IV.3 SIMILARITIES AND DUALITY BETWEEN MRAC AND S-STR 

The two examples introduced in the previous 

section make us possible to analyze the structural 

similarities between MRAC designed for deterministic 

environment and S-STR designed for stochastic environment. 

The first similarity between them arises in their 

control laws. As it was the case for a plant with known 

parameters, in the case of unknown parameters the same 

control law provides a-control input to achieve the 

Objectives in stochastic environment as well as in deter-

ministic environment. Not only in deterministic but also 

in stochastic case the same control law can be obtained 

using explicit or implicit referenqe models. But in 

literature, usually, the model refJrence adaptive 
I 

contro11e~are considered with expiicit reference models 
! 
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whereas the stochastic se1f-tuninglregulato~with implicit 

reference models. 

On the other hand, similar adaptation algorithms 

can be used for both the MRAC and S-STR (Note that, only 

a certain class among all possible adaptation algorithms 

suitable for MRAC is allowed to be used for S-STR if 

convergence is wanted to be assuL3d; namely the class 

defined by (4.1». For example, the adaptation algorithm 

of a MRAC given in III.3. iii (H1 (q-1) = H2 (q-1) = 1) 

considered with (4.1) is identical with the algorithm used 



in the S-STR introduced as the second example in IV.3. ii. 

On the other side, the adaptation algorithm which 

corresponds to the MRAC given in III.3.ii differs from 

that of the S-STR in the first example (see. IV.3.i) only 

in the a posteriori adaptation error during transients 

(compare (3.39) and (4.11) and consider that ~(k) -+ 0 

as k ~ 00). Morever, if S-STR 

in deterministic environment 

in ,Example 1 is operated 

(w(k) =0 Vk, c. =0 i=l, •.. ,cn ) 
~ c 

the MRAC corresponding to the a posteriori adaptation 

error given by (3.39) for C
2

(q-l) = 1 is obtained. 

Another similarity between the model reference 

adaptive controllers and stochastic self-tuning regulators 

shows itself up in the positive realness conditions to 

ensure stability in deterministic environment and conver-

gence in stochastic environment. 

However in spite of these similarities MRAC and 

S-STR accomplish different tasks in different environments, 

so the introduction of the following definition is justified [~ 

Definition 4.1. (Asymptotic) Duality between MRAC 

and S-STR. A MRAC (implicit or explicit) designed for a 

deterministic environment is (asymptotically) dual with 

respect to a S-STR (implicit or explicit) designed for a 

stochastic environment if and only if 

i) The adjustable parameter vectors are updated by 

(asymptotically) identical adaptation algorithms [same 
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structure, same observation vector (~), same a posteriori 

adaptation error (as k~ 00)]. 

ii) The positive realness conditions for global 

asymptotic stability of the MRAC and for w.p.l convergence 

of the S-STR are the same. 

iii) The control laws are (asymptotically) the same. 

(If both control laws and a posteriori adaptation errors 

are identical for any k, they will be called dual) • 

After having introduced this definition, two ques-

tions corne into the picture : 

i) ~11'hat is the behaviour of MRAC designed for a 

deterministic environm~nt in a stochastic environment? 

I . 
ii) How can an apaptive control structure be built 

! 

which behaves as a des~red MRAC in a deterministic en-

vironment and as a desired S-STR in a stochastic environment~ 

This questions are tried to be answered in the next 

two ~ections of this chapter. 
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IV.4 BEHAVIOUR OF MRAC IN STOCHASTIC ENVIRONMENT 

In this section we will analyze the behaviour of 

the MRAC, designed in Chapter III for a deterministic 

environment, in a stochastic environment. 

Since the plant is described in stochastic envi-

ronment with (2.28), the filtered plant-model error 

becomes 

1 1 1 .... 1 M 
= B(q- )S(q- )u{k-d)+R(q- )y(k-d) - C2 (q )y (k) 

-1 -1 
+ S(q )C(q )w(k) 

[ 1T -1-1 
= p-p(k-d) ~(k-d) + S(q )C(q )w(k) 

Now,for tiE case of regulation (yM(k) - 0; hence, 

s(k)= y(k», one can write (4.26) as 

or 

-[C
2

(q-l) - C(q-l)] y(k) 

+ S(q-~)C(q-l)w(k) 

(4.26) 

(4.27) 
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(4.28) 

, -1 
where S (q ) is given by the polynomial identity 

(4.29) 

and 

(4.30) 

, 
with si' i = l, ... ,d-l and rj,j = l, .•. ,nr being the 

coefficients of S'(q-l) ,R'(q -1) respectively (i .e. p' contains 

the parameters corresponding to the case when the closed 

loop poles are determined by the disturbance dynamics) • 

(4.28) gives the following relation between th~ 

corresponding stationary processes for p(k) = P 

-T 
e(k,p) = 1 !3 (k,p)[P'-p] + S'(q-l)w(k) 

C (q -1) 

(4 .31) 

!1ere follows: 

-1 C2 (q ) 
~T(k,p)[P'_p]+ -1 , -1 

E (k, p) = C2 (q )S (q )w(k) 
c C (q-l) 

(4.32) 

So, 
-1 

v(k,p) 
Hl (q ) 

~c (k,p) = 
-1 H2 (q ) 



= 

+ 

-1 
Hl{q ) 

-1 H2 {q ) 

(4.33) 

The application of Theorem 4.1 at this point yields 

that if 

(4.34) 
2 

is strictly positive real then 

Prob { lim v (k) = 
k __ 00 

and 

Prob {lim p{k) e Dl } = 1 (4.36) 

k_ 00 

with 

(4.37) 

On the other hand, if one considers the filtered 

variables introduced in the generalized MRAC design in 

III.4, a similar analysis method as through (4.26)-(4.37) 

will yield the result that if 



-1 
Hl(Z ) 

-1 H2 (Z ) 

-1 
C

2 
(z ) 

(4.38) 
- 2 

is strictly positive real then (4.35) and (4.36) with 

(4.37) holds. 

-1 So if the disturbance dynamics is known, L(q ) 

makes us possible to assure stability without loosing 

the freedom in choosing the control objective ~defined 

by C2 (q-l» and the filter used in calculating the a 

posteriori adaptation error. 

Note that, in stochastic environment the cont~oller 

parameters will depend on the disturbance dynamics, in 

general. But in the control law expressed by (3.18), 

-1 
the closed loop poles are defined by C2 (q ), so the 

parameters are incompatible with them. 

In regulation, this drift in the controller parame-

ters is not attandicap in eliminating the plant-model 

error (Note that-yM(k+d) - Din (3.18», but the regulation 

objective is dictated by the disturbance dynamics. 

In. tracking, if the disturbance dynamics is known 

the parameters can be matched by choosing the disturbance 

dynamics as the regulation objective (i.e C2 (q-l)=C(q-l» 

For the case of unknown disturbance dynamics the control 

law must be extended in a way such that the drift in 

parameters is compensated. This will lead us to an 
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adaptive control scheme which is suitable for tracking and 

regulation"in both deterministic and stochastic environment, 

in the next section. 

IV.5 AN ADAPTIVE CONTROL STRUCTURE COMBINING MODEL 

REFERENCE ADAPTIVE CONTROLLERS AND STOCHASTIC 

SELF-TUNING REGULATORS 

In the previous section, it is concluded that tracking 

in a stochastic environment with known disturbance dynamics 

can be done by choosing the closed loop poles appropriately 

(C
2

(q-l) = C(q-l». Therefore, if the disturbance dynamics 

is unknown, it is reasonable to estimate the control 

objective besides the parameter vector p. That is, the 

control 
, 

law is modified as i 

i 
i 
I 

-1 M C
2

(q ,k)y (k+d) 
I 

p; (k) 1)0 de) 
u(k) = --~--------------------------

or equivalently, 

-1M C
2

(q ,k)y (k+d) = pT(k)l)(k) 

where 

-1 C
2 

(q ,k) 
-1 = 1 + c21 (k)q + ••• 

-n­c
2 

(k)q c 
n-c 

(4.39) 

(4.40) 

(4.41) 

is a polynomial in 
-1 

q with estimated coefficients.(4~40) 
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can also be written as 

= pT(k) (3(k) (4.42) 

or. 

(4.43) 

where 

(4.44) 

with elk) containing the coefficients of [C2(q-l)-C
2

(q-l,k)]. 

So, the control input can be calculated as 

u(k) = (4.45) 

where poe(k) and (3oe(k) are obtained by extending 

Bo(k) and (3o(k) in the same way as Pe(k) and ~e(k) 

are obtained from p(k) and (3(k). 

The adaptation algorithm will be asfollows 

(4.46) 
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(4.47) 

HI (q-l) 
* 

HI (q-l) T 
v(k) = e: (k) = [ p e -P e (k) ] ~ e (k -d) (4. 48 ) 

H
2

(q-l) H
2

(q-l) 

with 

Pe = [PrOr .... O] (4.49) 

(Note that this scheme is reduced to MRAC in case of regula­

tion yM(k) = 0.) 

The block diagram of this scheme is given in Figure 

4.l r where the ad~ptation algorithm is analogous to that 

in Figure 3.1. The analysis in deterministic and stoc-

hastic environments can be made as follows. 

i) Deterministic Environment : 

In deterministic environment, the analysis can be 

done by applying Theorem 3.1 and following the same way 

as in the MRAC design in 11I.2. (Only replace Prp(k) and 

~(k) by Pe,pe(k) and ~e(k), respectively.) Therefore it 

is omitted here. 



wllilJ C(g-') 
A(q-l) 

uM(klJ 0 (q-,' 1 I,,' • 

C, (q- ) 
~ g-dB(q-') I -.. 

1---1....----'31 A (q -1 ) 

1 
5;1 u(k) 

:1-. 'Q9JAda pta t ion 
I .1 

Mechanis 

"""---II R (q -1) K 

" 

'Fi 9 u re L..1 Combined MRAC-S-STR Control Structure (stochastic environment) 
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ii) Stochastic Environment : 

The analysis in stochastic environment can be made 

using Theorem 4.1. The filtered plant-model error, in 

this case is given as 

(obtained in a similar way as done in (4.26» 

Hence, 

or 

-1 
C(q )e:(k) 

where 

and 

P ' =[P'c'2-c c -c] e ' . 1· l' .. , 2 nc nc 

In terms of the stationary processes for ~(k) = P 

(4.53) 

(4.54) 



Here follows 

= 

-1 
Hl(q ) 

-1 H2 (q ) 

(4 .56 ) 

If theorem 4 .. 1 is applied, it is concluded that if 

(4.57) 

2 

is strictly positive real then. 

= 1 (4.58) 

and 

49 



..JV 

Prob{ lim Pe(k) e D2 } = 1 
4 00-_ 

(4.59) 

where 

(4.60) 

Furthermore; since 

-1 
- Hl (q) -1 - _ 
v(k,p) =-~--C2(q )c:(k,p) 

-1 
(4.61) 

H2 (q ) 

the plant model error will converge such that 

so the plant output becomes asymptotically 

Comparing (4:.63) w~th (2.33), it can be seen that in 

(4.62) 

! 
(4.63) 

stochastic environment the control objective accomplished 

takes asympotically the form dictated by the disturbance 

-1 -1 
dynamics (C

2
(q ) = C(q ». But, in a deterministic 

environment (ci = 0 , i= 1, ... , PC')' contrary to s.ane 

-1 
S-STR schemes, which behave as having C2 (q ) = 1 

(See IV.2.i and IV.3), the combined MRAC-S-STR scheme can 

accomplis~ any control objective defined by an asyrnpto-
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tically stable polynomial C2 (q -1) .. T_his means I it behav'es as 

a desired MRAC in deterministic environment and as a 

desired S-STR in stochastic envi~onment. 
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V. SIMULATION STUDIES 

Simulations are done an a CDC l7W8l5 CYBER to 

examine the performances of particular MRAC and combined 

MRAC-S-STR schemesin both deterministic and stochastic 

en~ironments (The computer program used in simulations 

is given in Appendix B.) • 

The plant used in simulati09 s'cudies is given in 

deterministic environment before parametelS change by the 

discrete transfer function. 

z -dB (z -1) 
= 

i 

I 
I 
i 
! 

-1 -1 z (1+0.4z ) 

A (z -1) -1 [ -ll[ -1] (1-0.5z' ) 1- ~.8+0.3 j)z 1-(0.8-0.3j)z 

A change of parameters is made at k=t so th8 plant 

transfer function becomes 

(5.1 

-d, -1 
z B (z ) 

= 
-1 -1 

z (0.9 + 0.5z ) (5.2) 
. I -1 

A (z ) -1 [ -11 [ -ll (1-0.5z ) 1-(0.9+0.5j)z 1-(Q9-0.5j)z J 



(S.l) and (S.2), which differ from the plant transfer 

functions used in [~ for simulations~only in their 

time delays (d=2 in [8] ), correspond in time domain to 

y(k+l) = u(k) + O.A'~(k-l) + 2.1y(k) - 1.S3y(k-l) 

+ 0.36Sy(k-2) k < t, (S.3) 

y(k+l) = 0.9 u(k) + O.Su(k-l) + 2.3y(k) - 1.96 y(k-l) 

+ O. S3 y (k-2) k ~ t (S ... 1) 

respectively. 

On the other hand, in stochastic environment the 

plant is characterized by 

y(k+l)=u(k) + 0.4u(k-l) + 2.1y(k) - 1.S3y(k-l) + 0.36Sy(k-2) 

+ w(k) - 0.2Sw(k-l) (S • S) 

before parameters change and by 

y(k+l) = 0.9u(k) + O.Su(k-l) + 2.3y(k) - 1.96y(k-l) 

+ 0.53y(k-2) + w(k) - O.lw(k~) (5.6) 

after parameters change, where w(k) is a sequence of 

independent and identically distrub~ted zero-mean normal 

random variables with variance 0.25. 



Three djfferent reference models are used in 

simulations for tracking : 

i) RMl 

-1 -1 
Z (0.28 + 0.22z ) z -dD (z -1) 

-1 
Cl(z ) -1 [ -11[ -1] (1-0.5z ) 1-(0.7+0.2j)z j 1-(0.7-0.2j)z 

or in time domain 

M M - 1.23 y (k-l) + 0.265 y (k-2) 

which, again, differs from the reference model used in 

~] only in time delay. The reference input applied in 

the case of this reference model is given as 

M {l. u (k) = 
. 0 

o < k < 50 or 100 ~ k < 150 

(5.9) 
elsewhere 

The output of this reference model is such that 

the system operates paLtly in regulation (yM(k) = 0) and 

partly in tracking. 

ii) RM2 

z -dD (z -1) 

-1 Cl (z ) 
= 

-1 z 

-0.1 -1 1-e z 

(5.10) 

(5.7) 

(5.8) 
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or equivalently, 

(5 .11) 

The reference input in this case in chosen as a train 

of impulses 

:1 
E <5 (k-50n)· (5.12) 

n=O 

Note that the first differences in the reference 

model output is relatively high at so~e instants; a 

fact which will cause problems in tracking as we will 

see in simulation results. 

iii) RM3: 

j 

I 
Z-~D(z-l) z-~ sin(n/60) 

I -

Cl(z-l) 1-' 2 cos(rr/60)z-1+ z-2 

(5.13) 

or 

yM(k+l) = sin(i/60)uM(k) + : 2('cos(-rr:/.60)yM(k) - yM(k-l) 

(5.14) 

The reference input is taken to be a single 

impulse at k=O,i.e. 

(5.15) 
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so that the model let the system operate continously in 

tracking. 

On the other hand, in regulation an initial output 

level (y(k) = 2,k ~ 2) is wanted to be reduced to zero 

-1 
with a dynamics specified by C2 (q ). 

In simulations, where RMI or RM3 is used, parameters 

are changed at k=25. In the case of RM2 and regulation the 

parameter changes occur at k=15 and k=O respectively. 

In Figures 5.1-5.43 the reference model outputs 

are shown with thick lines. 

Figures 5.1-5.16 exhibit how the plant output is 

affected by different types of adaptation gains used in 

! a MRAC. i 

I 
Figures 5.1-5.3 and 5.13~ indicate that the 

I 
magnitude of the adaptati1n gain, if constant adaptation 

gain (A l (k)=1,A 2 (k)=O) is used, has not any effect on 

the plant output in tracking or in regulation. 

But as seen in Figures 5.4-5.9 and 5.14-5.15, in 

case of decreasing adaptation gain (Al(k)=l, A2 (k)=>.. ) 

and constant trace adaptation gain (AI (k) '''2 (k) ·such 

that tr[Fk + l ] = tr [ Fk ]) the choice of ,,'s are more or 

less important to improve the performance of the system 

in tracking, whereas this is not· the case in regulation~ 

For finding "l(k) and "2(k) in case of constant trace 



adaptation gain the ratio A1(k)/A 2 (k) is fixed to a 

certain value and a A1 (k) is chosen at each step such 

that tr [Fk +1 ] = tr [Fk ] The best performance is 
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obtained in the case of A2 (k) =0·.2 among all simulations 

done with the decreasing adaptation gain algorithm; i.e. 

a relatively slowly decreasing gain is more successful in 

tracking the model output than a rapidly decreasing gain~ 

On the other hand, the constant trace adaptation gain 

with A
l

(k)/A2(k) = 0.25 shows' the best performance, 

which means Oine have to weight the measurement vector 

more than the gain value at time k, in calculating the 

gain for time k+l. 

In Figures 5.10-5.12, and 5.16 the performances .df 

three types of adaptation gains can be compared. Obviousll', 

in regulation (see Figure 5.16) the-decreasing and constant 

trace adaptation gains are equally more success full than 

constant adaptation gain. This is true also for tracking 

(provided) that A2 (k) or Al (k) /A2 (k) are chosen properly). 

The success of the constant trace and decreasing adaptation 

gains is observed especially in Figure 5.11. w~ see that 

the plant-model error increases after each impulse input 

(i. e. when the first differences of the model output are 

relatively high) in case of constant adaptation gain algorithn 

But if decreasing or constant trace adaptation gains are 

used although the transients after the first impulse input 

after parameters change are large in magnitude than that 

in case of constant gain, after the later impulse inputs 
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the plant~model error decreases to zero. That exhibits 

the "learning" character af the decreasing and constant 

trace adaptation gain algorithms. 

In Figure 5.17 a disadvantage of decreasing 

adaptation gain algorithm is seen. There, after parameters 

change at k=25, they take their previous values backat 

k=125. One observes that the convergence time of decreas-

ing adaptation gain is relatively increased. The reason 

for this is that the gain continous to, decrease even 

when no adaptation is needed any more ('50 < k < 125) and 

one way to overcome this effect may be reinitialize the 

adaptation gain periodically (or before each adaptation 

process) . 

Although it is considered in literature usually 

for slowly time-vary~ng plants, simulations using adap­

tation gain with forgetting factor are done, too (only 

for RMl, see Figure 5.18). It is obvious, how important 

is to make an appropriate choice for Al and 1..2 to 

obtain a rapid convergence and reasonable transients. 

The best results are obtained with 

That is, for a time-invariant plant it is better to let 

the adaptation gain "forget" the past measurements slowly 

than rapidly. 

-1' -1..;.1 
The effects of C2 (q ) polynomial and HI (q ) /H2 (q ) 

filter can be observed in Figures 5.19-5.28. In these 

simulations, constant trace adaptation gain with 



In Figures 5.19-5.21 and 5.25 the plant outputs 

of model reference adaptive systems with different 

control objectives (defined by 
-1 

C2 (q ) polynomial) and 

-1 
Hl (q ) 

-1 = H2 (q )=1 are shown. The -1 C
2 

(q ) polynomials 

used in these simulations are 

i) 

ii) 

= 1-O.6q-l + O.13q-2 
(5.l6b) 

(5.l6c) 

-1 It is clearly seen that as the roots of the C
2

(q ) 

polynomial (the closed loop poles) approaches the unit 

circle, the adaptation process is smoothed and abrupt 

changes in plant output are avoided. In regulation (Figure· 

5.25), a proper choice of the regulation objective«5.l6b) 

in this case) highly improves the performance. Oh the 

other hand, in tracking, as seen in Figures 5.19-5.21, 

-1 the best choice for C2 (q ) polynomial seems to be (5.16a), 

since as the roots are taken away from the origin both. 

the transient plant-model error and the convergence time 



increase. But two examples are presented in Figures 

5.27-5.28 showing the usefullness of~choosing the 

roots of 
. -1 

C2 (q ) polynomial away from the origin. In 

these simulations the plant delay is chosen to be d=2, 

which is a rather "harder" case for an adaptive controller; 

and the control objectives are defined by (5.l6a) and 

(5.17) 

It is seen clearly, how important may the placement of 

the closed-loop poles be in avoiding catastrophic 

transients. 

In Figures 5.22-5.24 and 5.26 the simulation 

results of model reference adaptive controlle~with 

-1 -1 -1 -1 Hl(q )=1 and H2 (q )=c2 (q ), where C2 (q ) is given 

by (5.l6b), are shown. It can be concluded from these 

Figures that the transient errors are increased in 

tracking, whereas the regulation performanceis not 

affected at all. 

From all simulations for model reference adaptive 

controllemdone in deterministic environment it can be 

deduced that the convergence of the controller parametem 

to the true values is not guaranteed always. In Table 5.1, 

the values to which the controller parameters co~verge 

(p~) are tabulated for different initial parameter values. 

These are the results obtained from regulation simulations 



-1 -1 -1 
with Hl(q ) = H2 (q ) =C2 (q ) = 1 and constant 

trace adaptation gain Al(k)/A2(k) = 1, Fo=lO,I). The 

true parameter vector corresponding to this case is 

pT = [0.9 0.5 2.3 -1.96 0.53]. It is seen that 

pro is closer to the true parameter vector if the 

initial estimates are not near to it. This is a 

reasonable result, since if the differences between the 

initial estimates and true values of the parameters are 

high the input is expected to be richer. (Large values 

and variations at the input are observed in such cases) • 

TABLE 5.1 

p(O) 

0.80 0.40 2.20 -1.86 0.43 0 .. 851 0.473 2.173 -L859 0.511 

1.00 0.60 ..... 2 . CO -1.86 0.63 0.911 0.505 2.329 -1.982 0.539 

-1.00 -l.CO 0.00 1.00 :-1.00 0.899 0.499 2.297 -1.958 0.529 

0.10 0.10 0.10 0.10 0.10 0.900 0.500 2.299 -1.959 0.530 

0.50 0.50 0.50 r 0-.50 0.50 0.900 0.500 2.300 -l.960 0.530 

1.00 1.00 1.00 1.DO 1.00 0.900 0.500 2.299 -1.959 0.530 

The results of simulations for st:ochastic environment 

and combined MRAC-S-STR scheme are presented in Figures 

5.29-5.43. In this part of simulation studies 

-1 
H2 (q ) polynomials are chosen equal to unity. 

-1 
Hl(q ) and 

The performances of MRAC with constant adaptation 

-1 gain and C2 (q )=1 in stochastic environment for RMl, RM3 
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and regulation are shown in Figures 5.29-5.31. The 

simulation result for RM2 is omitted since in that case 

the plant output turned out to be practically un~able. 

On the other hand, the plant outputs of the 

combined MRAC-S-STR scheme in stochastic environment 

are shown in Figures 5.36-5.39. As in the case of MRAC, 

-1 constant adaptation gain algorithm and C2 (q )=1 is used 

in these simulations, too. Comparing Figures 5.29-5.31 

with 5.36-5.39, one can conclude that the combined 

control scheme improves the performance in stochastic 

environment in case of tracking. But the performances 

of I>1RAC and combined MRAC-S-STR scheme are equal in 

regulation, as expected. This facts are made more clear 
" . 

in Table 5.2 where sum of thei plant-model error squares 

after parameters change are 

TABLE 5.2 

RMl 

RM2 

RL\13 

REG 

n 
l: 

k=t 

MRAC 

325 

36,305 

143 

37 

I 

t~bulated. 
I 
! 
I 
I 

I 
MRAC-S-STR 

198 

248 

103 

37 

n = 180 for tracking,n=50 for regulation 



It should be noted that, tracking the reference 

model RM2, where the first differences of the model 

output is relatively high at some instants, is practically 

impossible for a MRAC in stochastic environment; whereas 

the combined MRAC-S-STR is at least not unstable in that 

case although the plant-model errors are high after each 

impulse input. 

On the other hand, the performances of combined 

MRAC-S-STR in deterministic environment are figured in 

Figures 5.32-5.35. The. smoothing effect of C
2

(q-l) 

-1 -1 
polynomial (C 2 (q )=1-0.6q ) can be observed in these 

simUlation results. 

Although, Theorem 4.1 allowS· only the use of 

constant. or decreasing adaptation gains to assure 

ccnvergence: . .in stocha!?tic environment; simulations are 

done with constant trace adaptation gain, too. Figures 

5.40-5.43 show the results of simUlations done with 

combined MRAC-S-STR scheme using constant trace adap-

tat ion gain (Fo=lO.I, Al (k)/A 2 (k)=1). A comparison 

between the combined schemes which use constant trace 

and constant adaptation gains is made in Table 5.3. 

Although no convergence proof is given for this 

case, the simulations with constant trace adaptation 

gain yield quite satisfactory results; except in tracking 

RM2 the sum of the plant-model error squares increases 

because of the large transients after each impulse input; 

which is a behaviour contrary to that in deterministic 

environment. 
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TABLE S.3 

RM1 

RM2 

RM3 

REG 

n 
~ 

k=t 

2 
e: (k) 

Const. Adap. Gain 

198 

248 

103 

37 

Const~ Trace Adap. Gain 

165 

832 

138 

24 

n= 180 for tracking, n=SO for regulation 
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VI. CONCLUSIONS AND AREAS OF FURTHER RESEARCH 

In this thesis, a model reference adaptive'control 

structure, which is applicable to minimum-phase single-

input single-output discrete-time plants, is discussed. 

It is assumed that the plant delay and an upper bound 

for the degrees of polynomials A(q-l) and B(q-l) are 

known. Two equivalent strategies (explicit and implicit 
! 

reference models) are presented which yield the same cont-
I 

rol structure. I 
I 
I 

i 
Furthermore, the similarities between themodel 

reference adaptive controllers and stochastic self-tuning 

regulators, where the control objectives are defined by 

ARMA models, are indicated and a definition of duality 

between then is given. 

Starting from this duality an extension of model 

reference adaptive controllers is considered, which 

is capable of doing regulation and tracking in both 

deterministic and stochastic erivironment. 

Various features of deterministic and stochastic 
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model reference adaptive controllers are examined in 

simulations. It is shown that, the control performances 

are considerably affected by the adaptation gai~used 

and polynomials chosen to define the control objectives. 

The simulations yield also the result that the performance 

of the combined MRAC~S-STR scheme is better than that of 

the Mru~C, in a stochastic environment. 

Although the simulations yield satisfactory results 

for MRAC in deterministic environment and for combined 

MRAC-S-STR in both deterministic and stochastic environments, 

still there are important problems to be solved, which 

present new subjects of research in this area : 

i) To guarantee that thez2roesof the plant are 

cancelled with a bounded control input, the plant is 

assumed to be minimum-phase in all adaptive schemes 

considered in this thesis. The adaptive control of non­

minimum-phase plants is still an open question. 

ii) Another subject to be investigated i$ the 

extension of discrete-time model reference adaptive 

control techniques to the multi-input multi-output case. 

iii) RM2 and RM3 used in simulations are reference 

models of the order less than that of the plant. Although 

the simulations yield satisfactory results in many cases, 

the theoretical analysis of MRACusing reduced order 

models is still missing. 
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iv) The model reference adaptive control of time-

varying plants is another question-to be answered. 

v) On the other hand, another area of further 

research may be the adaptive control of (at least certain 

classes) of nonlinear systems. 

vi) In simulations, it is seen that even in cases 

where the plant-model error is within reasonable limits, 

large values for the control input may be obtained. There-

fore, also the problem of adaptive control with constraints 

on the control input and its variation must be considered 

in future. 

vii) In Chapter IV., the disturbance in stochastic 
i 

environment is assumed to b4 normally distrubuted with 
I 

zero-mean. It is still an o~en question whether the 
I 
I 

combined MRAC-S-STR scheme given can deal with other 

types of disturbances. 

viii) Theorem 4.1 limit ourselves to constant or 

decreasing adaptation gain algorithms, if converge0c€ is 

to be assured. But simulations have shown, better results 

may be obtained with a constant trace adaptation gain. 

So the convergence analYSis in stochastic environment 

must be extended to constant trace adaptation gain 

(and other types of gains) case in order to obtain 

convergence conditions in those cases. 



~uu 

ix) Lastly, a major problem in this area is the 
~ 

analysis of the effects of unmodeled plant dynamics to 

the performance of MRAC and combined MRAC-S-STR schemes. 

Such an analysis .may allow a rObust redesign of des-

crete time adaptive control schemes. 

It is clearly seen, although growing effort has 

been made in this area in recent years, there are still 

question to be answered. As these questions are solved, 

which actually arise since the cases where adaptive 

control schemes are applied increase, the extension of 

the use of adaptive control will continue. 



APPENDIX A 

PROOF OF THE BOUNDEDNESS OF 0(k) AND 

CONVERGENCE TO ZERO OF €c(k) 
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For this proof, which is given in [~, one uses 

Theorem 3.1 and the following lemmas. 

Lemma A.l. [18] . The vector ~ (k) given in (2.22) 

containing the inputs and outputs of the p l ant in (2.1), 

which is minimum-phase, verifies 

II ~ (k-d)11 < Cl +C 2 max I y(~) I 

Lemma A.2. [18]. If 

lim 
e (k) 
c 

--~--------- = 0 

k~ ~ [1+~T(k-d)Fk~(k-d)]V2 

where {€c(k)} is a real sequence, { ~ (k-d) } 

(A .1) 

(A.2) 

is a rea'l 

vector sequence and Fk is a sequence of positive definite 



reil matrices, then subject to 

i) F-l>e: -1 F , e: > 0 
k 0 

F >0 o 

ii) 11~(k-d)1I < C3 +C4 max Ie: c(k)1 

O~x'~k 

It follows that 

and 

lim e:c (k) 

k~ co 

o 

II ~ (k-d) II < CS' 0 < Cs < co 

From Theorem" 3.1,one has 

lim v (k) = 0 

k~ 00 

which implies that 

* 1 im " e: (k ) = 0 
k_co 

V-k>l (A. 3) 

(A.4 ) 

(A. S) 

(A. 6) 

(A.7) 

(A. 8) 

given that 
-1 -1 

Hl (q ) and H2 (q ) are asymptotically stable 

polynomials (See (3.30». Then we can write 
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* lim E (k) = 0 -

k- CX) [ 1 +~T (k-ci) Fk~ (k-d)·] ]/2 

·because 

1 
-------------------------- ~ 1 
[l+~T (k-d) Fk~ (k-d) ] 1/2 

Consider now 

51 (k) = 

= 

Using (3.31) 

51(k) = 

e(k) 

[ T ] 1/2 
l+~ (k-d)Fk~(k-d) 

d-l 
I . Fk . ~ (k-d-iLv (k-i) 

i=O -1 
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(A.9) 

(A.IO) 

(A.ll) 

(A .12) 

From Theorem 3.1 (with the additional requirement 

that ~l(k) and ~2(k) are such that lim Fk > 8Fo 5 > 0) 

it results that p(k) is bounded, and from (2.1) and 

(3.18) are concludes that u(k) and y(k) cannot become 

unbounded for finite k. (Division in 3.18 can be avoided 

by choosing ~l(k) and A2 (k) properly.) Therefore, 



~(k-d) can eventually become unbounded only asymptotically. 

Therefore, the following relation is always true 

II (a' (k-d) II II ~ (k~d) II 
-----------~ C6 < <X) 

[1+ "min (Fk) II ~ (k-d) II] 1/2 

---------------------~ 

and one concludes from equations (A.12) and (3.16) 

lim n (k) = 0 
~<X) 

(A .13) 

(A .14) 

From (A.9), (A.ll), (A.14) and (3.29), one obtains 

(A.2) of the lemma A.2, (A.4) is obtained as follows from 

(2. JD), we have 

(A .15) 

since yM(k) is bounded. 

-1 
From (3.23), and knowing that C2 (q ) is an asymp-

totically stable polynomial, we have 

IE(k) I~ Ca + C9 max 1EcU.)1 

O~£~k 

o < C
9 

< <X) 

On the other hand, 

(A .16) 



I y (k) I > C 1 0 + ell max I y ( ~) I 
O~~~k 

(A .17) 

Using (A.15)-(A.17) and (A.l) we obtain (2.11). 

Thus from lemma A.2, one concludes that lim Ec(k)=O 

and that ~(k-d) is bounded. An~ given that C2-polynomial 

is asymptotically stable, we can also say that 

lim E(k) = 0 
k---+ co 

(A .18) 
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APPENDIX B 
COMPUTER PROGRAM 



·********************************************************* 
* THIS PROGRAI4 SIMULATES A CONTROL SVSTC:I'! WHERE A MRAC * 
'* OR A COMBINED MRAC-S-STR SCHEMi IS USED -.. * 
~ir ** ** **** ** ** ** ** ** *"*' * *** ** '**** ** ** ** ** **** ** *****. ** ** ** 

DIMENSION OR TYPE DECLARATIONS 

DIMENSION UM(O:180),Y~(O:182),U(O:180),Y(O:182) 
DIMENSION P(7),PO(6),FI(7),FIO(S) 
DIMENSION F(7,7),FIFI(7,7),FFIFI07,7),FFIFIF(7,7),FFI(7) 
C H A RAe T E R 9 OS , Y I L , C I Z, ART , N'O K , C (- 90 : 11 5 ) 
INTEGER 0 

INPUT: PLANT OELAY(D), CONTROL STRUCTURE IDENTIFIER(ISTR), 
~OOEL IDENTIFIER(IM), ENVIRONMENT IOENTIFIER(IENV), 
AOAPTATION GAIN IDENTIFIER(lG), A POSTERIORI ADAPTATION 
ERROR IOENTIF1ER(IH), TIME AT ~HICH PARAMETERS CHA~~E(KT) 
SIMULATION ENDING TIME(IST) 

. READ(6,*) D,!5TR,lM,IENV,IG,!H,KT, 1ST 
C 
C INPUT: COEFFICIENTS OF C2-POLYN0r1IAL 
C 

REA D (6, *) C 2 1, C 2 2, C 2 3 
c 
C INITIALIZE PLANT AND HODEL 
C 

C 

REA D (6, *) (U (I ) , 1= 2- 2 * 0, 1 ) , ( Y ( 1> , I =- 0, !) + 1 ) 
REAO(6~*) (U:HI> ,1=1 ,0+1), <YX(!) ,1=0-1 ,0+1) 

C IN PUT: 1 N IT U L GA I N ~ A T R I X ( F> 'i G A IN UP 0 AT IN G CO E F Fl C 1 EN T S 
C (AL1,AL2,AL>, INITIAL ~ARA~~TERS(P) 
C 

c 

L=O +4 
If(ISTR.EQ.1) GO TO 10 
L=L+1 

1) DO 20 1=1,L 
2) REAO(6,*) (F<I,J),J=1,L> 

REA 0 C6, *) .~L 1, AL 2, AL 
REAOC6,*)(PC1),I=1,L) 

C DATA 
c 

c 

c 

C 

OAT A 80S, n L, C I Z, ART I' .,. * ' , • I ' , • + ' I 
DATA V,V1,V2,V3/0:,0.,O.,O.1 
DATA ISEEO,~,~1/1QOOCOOooo,n.,O.1 
DATA YMIN,Y~AX/10~,O.1 

L 1 = L-1 
~RITE(6,31) 

3) FOR HAT ( 3 X,' K' ,7 X, • Y M (K + 0) 1,7 x, • Y C K +. 0) • , 7 x , , U ( K) , , 7 x, , v (10 ' ,6 x, , 
i·O) ',28x,'P',1,2X,3( '-' ),SX,9C'-' ),5x,8C'-' ),5X,6C'-' ),5)(,8('-' 
S x ,7 ( '-' ), 8)( ,43 C '- , ) ) 

~ 00 320 K=2,1ST 

C FORM FI(K-O) VECTOR 
C 

00 40 1=1,0+1 
4) FI<I>=U(K-0+1-I) 

00501=1,3 
5) F1(1+0+1)=1(,-0+1-1) 

IF(lSTR.EQ.1) GO TO 60 



c 
c 

c 

CALCULATE THE A POSTERIORI ADAPTATION E~RO~, VCK) 

§.J 0 0 70 N = 1 , L 
FFI (N)=O. 
D070I=1,L 

7) FFI(N)=FFI(N)+F(N,I)*FICI) 
C.~LL VECMUL(L,FI,FFI,Q) 
CALL VECMUL(L,P,F!,VO) 
'fC='f(K)+C21 *Y(K-1 )+C22*Y<K-2)+C23*Y(K-3) 
VH=O.­
IF(IH.EQ.1) GO TO 80 
"13="12 
V2= V1 
"11="1 
VH=-(C21*v1+C22*V2+C23*v3) 

8J V = C Y c-v 0 + VH ) I (1 +Q ) 

-. . 

C PARAMETER ADAPTATION 
C 

.c 
c 
C 

.c 
c 
C 

C 
C 
.c 

c 

00 90 I=1,L 
9) P(I)=PCI)+FFI(I)*v 

10J 
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1 2) 

13) 
14J 

15J 

FOR~ THE POCK) AND FIO(K) VECTORS 

00 100 1=1,L1 
poe I)=P <I"1 ) 
00 110 1=1,0 
FIO(I)=U(K-I> 
00 120 1=1,3 
FIO(I+0)=YCJ(+1-I) 
IF(ISTR.E·J.1) GO Toi 130 
FIO(O+4)=Y?1CK+O-1) : 

I 

THE ~ODEL OUTPUT FJR THE 
i 

IFCI~-2)150'160'14~ 
IF( Il"-3)160,170,180i 

I 

REFERENCE ,",ODEL 1 

U.i1(I()=1. 

(K+1 )ST STEP 

IF(K.GE.50.ANO.K.LT.100) U~CK)=O. 
IF(K.GE.150) U~(K)=O. 
YM(~+O)=.28*U~(K)+.22*U"'(K-1)+1.9*'f~(I(+O-1)-1.23*'fMCK+0-2)+.265-

HI(+t::-3) 
GO TO 190 

C REFERENCE MODEL 2 
C 

c 

1 6) I F ( (K + 0 -1 ). E Q .5 I). 0 R • (K + 0 -1 ) • E. 'l. 1011. OR. ( K + 0 -1> • E Q • 1 50) U)1 ( K + D -1 ) : 
Y~(K+D)=U~(K+O-1)+EXP(-0.1)*YM(K+O-1) 
GO TO 190 

C REFERENCE ~ODEL 3 
C 

c 
17) Y~(K+D)=2*COS(3~14159/6a)*Y~CKTO-1)-Y~(K+O-2) 

GO TO 190 

C REFER~NCE ,",ODEL 4 (REGULATION) 
C 

1 8) . Y M (I( + 0) =0. 
c 

c 1 9J Y i4 C = Y ~ ( I( + 0) + C 21 11 Y ... ( K + 0 -1 ) + C 22 * Y ~ ( I( + 0 - 2) + C 23 * Y 1'! ( K -+ 0 - 3) 



c 
c 
c 
c 

CALL VEC~UL(L1,PO,FIO,PfI) 
U(J()=(Y~C-PFl)/P(,1) 

APPLY THE CONTROL TO THE PLANT 
LET THE PLA~T PARA~ETERS CHANGE AT K=KT 

-\ 

IF(K.GE.KT) GO TO 200 
Y(K+D)=U(J()+O.4*U(K-1)+2.1*V(K+O-1)-1.S3*Y(K+0-2)+O.365*V(K+O-3 
GO TO 210 

20J Y(K+O)=.9*U(K)+;S*U(K-1}+2.3*Y(K+O-1)-1.96*Y(K+0-2)+.53*Y(K+O-3 
C 
C IN CASE OF STOCHASTIC EN"IRIJN~ENT LET THE OISTURaANCE ACT 
c ON THE PLANT OUTPUT 
C 

c 
c 
c 

c 

,21) IF(tENV.E~.1) GO TO 240 
,. =0. 
!>O 220 1=1,12 
CALL RANSET(ISEEO) 
~ V= RANF () 
RV=RV/2 
ISEED=10*~V*IS~~D 

22) W=w+RV 
'.=w-3. 
IF{K.GE.KT> GO TO 230 
Y(K+O)=Y(K+O)+~-O.25*W1 
GO, TO 240 . 

23) Y{J(tO)=Y<K+O)+i4-0.1*W1 
24J w 1 = W 

UPOATE GAIN 

1F(IG.EQ.1) GO TO 30d 
o 0 2 SO 1= 1 , L I 
00 250 J=1,L I 

25) FIFt(I,J}=FI(I>*FI<J~ 
C'LL ~ATMUL(L'F,fIFI~FFIfI) 
C."LL MAT~UL(L,FFIFI,F,FFlFIf) 
IF(IG.EQ.3) GO TO 260 
F <I, J ) = (F <I, J ) - FF IF I F <I, J ) 1 (A L 1 / A L2 tQ » 1 A L 1 
GO TO 300 

26) 00 270 I=1,L 
00 270 J=1,L 

27) F(I,J)=F(I,J)-FFlfIF(I,J)/(AL+Q) 
AL1=Q. 
00 2eo I=1,L 

28) ALl =AL1 ~F <I,I)I (1 ')*L) 
i)0 290 I=1,L 
D·') 290 J=1,L 

29) F (! , J ) = F ( I, J) / A L1 

C OUTPUT 
C 

30) ~RITE(6,3l0)K,YM(K+O),Y(K+D),U(K),V,W,(P(I),I=1,L) 
3 1 0 FOR MAT ( 2.( ,! 3, ·S X , F 7. 4 , 6 X , F 8. 4, 3 X '. F 8 .. 3, 5 X , E 3. 2, 5 X , F 7. 3, 7 X,, 6 ( F 6. 3. 

S) 
c 

3'2) CONTINUE 
c 
C PLOT 
C 

\o4RITE<6,3'30) 
33) FQR~AT(10(/» 

00 34DK=O,IST 
IF(Y(K).GT.'O,\AX) YMAX=Y(K) 



c 

c 
c 
c 

c 

35J 

36J 
37J 

I E= ! NT ( ,(M AX *S C) 

00 370 K=O,1ST 
IP=1NT(Y(K)*SC) 
IS=INT(YM(,()*SC) 
00 350 1=I8,1E 
C <I ) =80 S 
C(O)=CIZ 
C (t S) =A RT 
C(IP)=YIL 
wRITE(6,360)K,(C(I),I=Ia,1E) 
FORMAT( 1x,13,123(A1» 
CONTINUE 

STOP 
END 

C THIS SUdROUTINE IS USEO FOR VeCTOR ~ULTIPLICAT10NS 

C 

C 
C 
C 

c 

OI~ENSION A(N),3(N) 
5=0. 
00 600 I=1,N 

60) S=S+A(1)*S(1) 
RET U RN 
ENO 

SuBROUTINE ~ATMUL(N,A,a,C) 

C THIS SUBROUTI~E IS USED FOR HATRIX ~ULTI?LICATIONS 
C 

DIMENSION A(N,K),S(N,N),C(N,N) 
00 8GO I=1,N 
00 300 J=1,N 
CCI,J)=O. 
DO 800 K=1,N 

80:; C(I,"J)=C(I,J)+ACI,K)*S(I(,J) 
RETURN 
END 

14.42.21.UCLP, AA, P04 , O.277KLNS. 
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