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AN ADAPTIVE CONTROL STRUCTURE COMBINING
MODEL REFERENCE ADAPTIVE CONTROLLERS
AND
STOCHASTIC SELF-TUNING REGULATORS

‘ABSTRACT

Discrete-time model reference adaptive controllers
for single-input single-output minimum=phase plants in
deterministic environment are studied. Both explicit and
implicit referenée models are considered. Similarities
and dualities between the model reference adaptive
Acqntrollers and stochastic self-tuning regulators are
indicated and the behaviour of model refe;ence adaptive
éontrollers in stochastic environment is analyzed. Finally,
an adaptive control structure combining model reference
adaptive controllers and stochastic self-tuning regulators
is discussed, which is suitable for regulation and tracking
objectives in both deterministic and stochastic environment.
Simulations on a digital computer afe done to justify
theoretical results and investigate various features of

the adaptive control structures mentioned.



YZETCE

Gerektirici ortamda tek girdili tek glktl;l enkiigiik
evreli dizgeler ig¢in ayrik zamanli dayanak taslamli uyar-
lamali denetleyiciler incelenmektedir. Hem dolaysiz hem
de dolayli dayanak taslamlari séz konusu edilmistir.
Dayanak taslamli uyarlamali denetleyicilerle stokastik
oz—-ayarlanan diizengeg¢ler arasindaki benzerlikle; ve es-
leklik belirtilmekte ve dayanak taslémll uyarlamali denet-
leyicilerin stokastik ortamdaki davranisi incelenmektedir,
Son olarak, dayanék taslamli uyarlamali denetleyicileri ve
stokastik 6zayarianan diizengecleri birlestiren ve hem
gerektirici hem de stokastik ortamda diizengecleme ve
izleme amaglari iginbuygun olan bir uyarlamali denetim
yapisi tartisilmaktadir. Kuramsal sonuglari dodgrulamak
ve s0z konusu uyarlamali denetleme yapilarini gegitli
yénlerden arastirmak icin saylsal bir bilgisayarda ben-

zetimler yapilmigtir.
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I. INTRODUCTION

In recent years, considerable work has been done
to investigate similarities, connections and dualities
between the model reference adaptive controllers (MRAC)

and stochastic self-tuning regulators (S-STR) [ﬂ - [5].

In an adaptive control system, designed for
dgterministid environment, the controller parameters are
aéjusted'so that the output of the plant with unknown
parameters is able to follow a réference input in a
d?sired dynamics. This dynamics can be modeled explicitly,
‘sé the plant model error is used for adaptation (Figure l.l);
Anothér adaptive control strategie could be to use an
adaptive predictor to obtain a control such that the
output of the plant becomes the desired output(Figure 1.2).
If the output of/the predictor is identical to that of the
explicit reference model, two‘systems can be eqﬁivalent
[l], [2], [6]. In that cése, the controller and thek
predictor form an impliéit reference model (shown with
'~ dashed lines in Figure 1.2), andltherefore this type
adaptive controllers is referred as MRAC with implicit

reference model.
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On the other hand, é,structure similar to that of
the MRAC with implicit reference model appearsin case of
stochastic self-tuning regulators for which the control
objectives are given with ARMA models [7]. Starting from
the equivalendes between explicit and implicit model
reference controllers, stochastic self-tuning regulators
with explicit reference models can be defined [2]. These
are equivalent to the stochastic self-tuning regulators
where adaptive predictors are used, which from the class

of stochastic self-tuning regulatorsmostly considered in

literature.

As shown in [l] and [2], similarities can be found
between model reference adaptive control systems and
st?chastic self-tuning regulators. Both of them use the
sa%e CChtrol law and parameter adaptation algorithms
which have a similér structure. On the other hand, the
positive realness conditions which appear-as a result of
thé.stability analysis of a MRAC and the convergence

analysis of a S-STR are of the same type [2], [3], [5].

Furthermore, it is shown in [ﬂ and [5] that model
reference addptive controllersand stochastic self-tuning
regulators can be combined to built an adaptive control
structure which operates as a desired MRAC in deterministic

environment and as a desired S-STR in stochastic environment.

This thesis aims, after analyzing model reference

adaptive controllers and stochastic self-tuning regulators



with explicit and implicit referenqe models and exhibiting
their similarities and dualities, to discuss the adaptive
control structure combining them. Simulations are done on
a digital computer to investigate various properties of

these control structures and their adaptation algorithms.

In chapter II, the tracking and regulation of a
plant with known parameters are considered. Chapter III
analyzes the adaptive control problem in deterministic
environment. In chapter IV, the problem-is extended to
cover the stochastic éontext. The similarities and
duality - between MRAC and S-STR, the behaviour of MRAC
in stochastic enviroﬁment and the combined MRAC-S-STR
design are discussed. Chapter V interprets the simulation
results. The sixth and last chapter consist of conclusions

and areas of further research.



11. MODEL REFERENCE CONTROL FOR TRACKING AND REGULATION

Before analyzing the MRAC for a discrete-time single
—input single-output (SISO) minimum phase-plant with unknown
parameters (see Chapter III), we will consideflthe model
‘reference control for the same type of plant with known

parameters in both deterministic and stochastic environment.

II1.1 DETERMINISTIC ENVIRONMENT
i

| . .
Copsider the discrete linear time invariant SISO

|
system de%cribed by the following ARMA equation

a@Hyto = T 9@ Hum @0 v @
where

A(q—l) =1 + alq-l ...+ anaq_na (2.2)

Bla}) =bo + b;at + ... b _a ™ byF0 (2.3)

b

q_l is the unit delay operator and u(k) and y(k) are the



plant input and output,respectively. It is assumed that
the zeroes of B(z 1) are inside the unit circle ( !z |<1)
so that they can be cancelled without leading to an

unbounded control input.

The control objectives in tracking and regulation

are defined as follows [ﬂ ’ [6], [8]:

i) In tracking, the output of the plant is wanted

to satisfy the equation

c @My = g % Hu ) (2.4)
where
-1 _ =1 -n . (2.5)
Cilg ™) =1 +Ciy@ ™ *+ ..ot Clnclq cy |
o N . ,
D(g ™) = dg + 4,9 + ok + dndq d (2.6)

and uM(k) is a bounded reference input.

ii) In regulation (uM(k) = 0) an . initial disturbance
y(0) # 0 1is wanted to be eliminated with the dynamics

defined as

¢, tg My (kd) = 0 k 30 (2.7)

where

-1 ~1 -n02

C,(@™7) =1 +Cpa * .eu *Cy g (2.8)

is an asymptotically stable polynomial.



Two methods can be considered to obtain a solution

to such a control problem :

i) Explicit Reference Model :

We define the reference model as
c e hym = q % hu )
and the plant-model error as
0 -y -
Then, if the equation

c,lgh) e (ked) = 0 k > 0

holds, both control objectives are accomplished.

(2.9)

(2.10)

(2.11)

To compute the control input u(k), the fallowing

polynomial identity is used

- o= - -4 -

c,lah = aw@hsa™ + a R@h
where
-1 4 -1 ~hg
=1 + + ... F :

S(q ) Slq Sns q

- -1 C -
R(g l) = ry +ryd ol rnrq Ny

Using (2.10),(2.12) and (2.1)

(2.12)

(2.13)

(2.14)



Cz(é_l) e (k+d) = Cz(q_l) [y(1§+d) - yM(k+d)]
= [A(q_l)s(q-l) + q_dR(qjd)]y(k+d)
- ¢, (@ )y k)
- 3@ hs@Hum + riahym - c, @y oed) (2.15)
' To achieve (2.11),

Blg Dst@ Huk) = c,ta hy™kea) - Ria™Hyk)  (2.16)

c,y (@M k+ad) - R(@HYK) - Bgla Hulk)
u(k) = : - (2.16a

be,

where

Bg(a™h) = Bl@hsia™) - by (2.17)
Tt is shown in [6] and [9 ., if one chooses

ng = d-1 and n. = max(nA—l, ncz—d) (2.18).

(2.12) has a unique solution for S(q_l) and R(q—l) and
the total number of coefficients to be computed (ns+nr)

is minimum.

For such a case (2.16a) can be written as



(2.19)

¢ (qhyMkea) -
u(k) = -
i . _ bO

where
.
Py = [bosl + by, bgsy + bysy + bz...,bnbsd_l, Tor ...,rnr]
(2.20)
T :
8, k) =[ulk-1), ..., u(k-d-n_+1),y(k),...,y(k-n_)]
(2.19) can also be expressed as
¢, ta v k+a) = pTE(K) | (2.21)
where
T T ]
p = [bO’ po ]
T(Z.ZZ)
| Tx)] N
g ) = u(k), ¢O( ) ]

The block diagram of this control scheme is given
in Figure 2.1. The control objective is shown with dashed
lines.

Note that the ciosed—loop poles are defined by
Cz(q_l) polynomial. In the adaptive cas%, it will have
considerable importance on the control performances
(see Chapter V). in case of known parameters, if Cz(q—l)=l
all the closed loop poies are at the origin, which

means the model output is reached by the plant output

after d steps.
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ii) Implicit Reference Model :
This method is an applicatioﬁ‘of the separation
theorem. One first designs a predictor for the‘plant
output, then a control will be computed such that the

‘predictor output becomes equal to the desired output.

Defining the prediction error as

e (k) = y(k) - (k) (2.23)
we design a predictor such that
c la™h) & (k+@) = 0 k > 0 (2.24)

where Cz(q_l) is given by (2.8)

Using (2.23), (2.12) and (2.1),

Jd'(k)| DIlg) ‘yM(k+d. | _,» 5 1 d“Bld"| y(Kkl
Clq Cdq) * Al

v

!+
[
oy

c
=

R(d")

FZdl <3 kel
151.1— —djﬁgé;-—.—1fzqu‘xj_-—
v 2

0

Figure 21 Model Reference Control System (known pa\‘fameters)

r

I
|
|
I
|
-
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c,(a™h) & (k+d) = Cylah [y+a) - ¢ (k+)]
- [a@™Ms@™ + a %@ ]y k@) - cylah g lked)
= Bla hs(@ Muk) + R(@™) yik) - cy(g hFk+a) (2.25)

Hence, to achieve (2.24) the following predictor can be

used

Cyla DPd) = B@ThslaHutk) + R@ Hy(k)  (2.26)
If (2.18) is satisfied, (2.26) can be written as
(g k) = pT Bk : (2.27)

where p and @(k) are given by (2.22). I

Now, a control can be computed such that
- M
v(k+d) = y (k+d)
which gives as again the control expressed in (2.19).

II.2 STOCHASTIC ENVIRONMENT

In this section, the behaviour of the control

structure shown in Figure 2.1 in stochastic environment

is analyzed.
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The plant in stochastic environment is defined as

aA@ Ny = a %B@ Huk) + clgh) wik) (2.28)
where

C(q-l) =1 + clq_l + ... +C_qPle ‘ (2.29)
o]

is an asymptotically stable polynomial, w(k) is a

sequence of independently and identically distributed

normal zero-mean random variables and A(q-l) and B(q-l)

are given by (2.2) and (2.3), respectively.

If the control law given in (2.16a) is used one

has

¢, (ahy"x+d) = Bl@™hsi@ Hulk) + R Dy (2.30)

Using (2.28), (2.12)

¢, (e hyk+a) = al@ Hst@ Dy k) + g R(@ TNy (k+a)

C(q_l)S(q-l)w(k+d)

1

Cz<q'l)y<k+d) - cla™hs@ Hwik+a) (2.31)
So, in tracking the plant-model error becomes

cz(q“l) e (k+d) = C(g 1)s(g MIwik+d) | (2.32)
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In other words, for the case of stochastic envi-
ronment, the control given with (2.16&) achieves the

control objectives defined by the equation

-1 -1
Clg )Slg 1) (k) (2.33)

y(k) =y x) o+ )
C,la™

(2.33) bécomes in regulation

cigHsig™h
y(k) = w (k) (2.34)

¢y (a7

1

-- Furthermore if one chooses Cz(q_ ) = C(q-l), then the

plant output becomes

g(k) = s(qg Hwx) (2.35)

which corresponds to the minimum variance regulator [ld .
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IT1., MODEL REFERENCE ADAPTIVE CONTROL :

DETERMINISTIC ENVIRONMENT

In this chapter the design of a MRAC for a discrete

-time SISO minimum-phase plént with unknown parameters

is given.

ITI.l A STABILITY THEOREM USEDFOR THE DESIGN OF THE MRAC
;.
.i

In adaptive‘c%se, the aim is to augment the linear

control strategie gi%en in the previous chapter with a
tparameter adaptationialgorithm‘so that the objectiveé
definéd are achieved asymptotically. It is also desired,
that the input and output of the plant remain.bounded,
so the design of the MRAC must be done from astability

point of view.

Below, a stability theorem [d ' [ﬂ . [iﬂ is given,
which will be used in the next section to justify the MRAC

~ design.

Theorem 3.1l. Assume that the following adaptation
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algorithm for updating the parémeter vector p(k) is used

P(k) = B(k-1) + F@(k-d)}v , (3.1)
where
Flo= 0 F T+ (00 k-a)gT (k=d); F_s 0 (3.2)
K+l 1 k 2 ! o g
with
0 < ap(k) <1 0 < A, (k) <2 Ve  3.3)

Assumeé that tlerelation between ¢ (k-4) and-&k is given by

v = Hig ) [p-8x) 78 (k-a) | (3.4)

where @(k-d) is a bounded or unbounded vector seqﬁence,

H(z-l) is a rational discrete transfer function normalized
\ &

under the form

Hiz 7) = - (3.5)

and p 1is a constant parameter vector. Then if the

transfer function

A

Ly o — (3.6)
2 .

H' (2 ) = H(z

is strictly positive real where
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3.7
2 > X »max A, (k) ( )
>0<k<co
one has for v, and p(0) bounded

i) lim vy =0 (3.8)

k—)_ou
ii) lim x. =0 (3.9)

k-5 o

(where Xy is the state vector of any of the state rea-

lizations of H(z_lH

1i1) Lim g7 (k-Q) ([3(k+1) - p] + F O (k-d) v, } =0 (3.10)

Ky
‘ ) |
iv) lim [1-2 00 ]| [B(k-1)-p] +F B (k-d)v, || =0 (3.11)
Kes | | 5%
| . 2 PRI I R
v) lim || @(k-d)v, || = limAap(k) F ~ap(k) = 0 (3.12)

(where aAp(k) = p(k) - p(k-1))
o ‘
vi) [pk-1)-p] F. [Bk-L-pl< M« = k>0 (3.13)

vii) lim[ﬁ(k—l)-p]T F;l[ﬁ(k-i)—p] = const. ‘(3.14)

1.-
i—3> ®
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. L. -1 - -1 .
If in addition Fk >e Fo1 : Fo > 0; 550,k>0and Fkl is
nondecreasing for k » kg (3.15)
viii) lim aAp(k) = lim'FkQ(k-d)vk =0 (3.16)
ks o ks
ix) ||k |[|lgMy<e k50 (3.17)

The proof of this theorem can be foundin[lll.lt is
done by making_use of the equivalent feedback representation
(EFR); i.e. the MRAC to be designed is represented by
an equivalent feedback system,defined by (3.1) and (3.4)
with a linear time invariant block(defined by H(Z_l)}and
a time vérying non-linear block. Then an appfopriate
adaptation mechanism.is chosen such that the global
~asymptotic stability of the equivalent feedback system

is assured.

The first result, (3.8) is used for the design.
The other results, (3.9)-(3.17) are used to prove the

boundedness of the input and output of the plant.

II1.2 A MRAC DESIGN

Having introduced the stability theorem in the
previous section, we are now ready to discuss a MRAC
design for minimum-phase plants where the time delay
‘ and the upperbounds of the degrees of polynomials

A(q_l) and B(q—l) are known.
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To deal with unknown plant parameters, a natural
way is to replace the parameter vector by an estimated
one and use an adaptation algorithm to ﬁpdate it.
Therefore the control in adaptivévcase will be computed

by

~1. M _T
C, (g D)y (k+d) - Po (k) @g (k)
u(k) = —2 o 770 (3.18)
Bo (k)

or equivalently,

¢, (a7hyM k) = BT 0 8 (k) (3.19)
where ‘
T R T
p (k) = [bo(k), po(k)] (3.20)
T

with Bo(k) and ﬁo(k) being the estimated values of bg

and pg -

The design objective is to achieve the objective
defined for the case of known parameters (expressedin

(2.11) )asymptotically; i.e.

lim C,(q™ ") e (k) = 0 c(0) # 0 (3.21)
k-.—"') w
orxr
lim e_(k) =0 | - (3.22)

k——;‘”
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where ec(k) is the filtered plant-model error defined

as
e k) = C (g e (k) . (3.23)

and the plant input and output remain bounded, which

can be expressed as

aE| <M < o Mk (3.24)

Since, the use of (2.12),(2.1),(2.20) and (2.22) yields

c,lahym) =[al@™s@™ + %rig™hH] yx)

Bla Yy s (g yuk-4) +Rig Yy (k-a)

p #(k-a) (3.25)
(3.23) can be written as (using 2.10) and (3.19))

e . (k)

o, la [y - yt]

[0 - §(k'd)]?¢(k-d) ' (3.26)

A comparison of (3.26) withl(3.4) shows that
Theorem 3.1 is not directly applicable to solve the
problem. To apply the theorem, one can define an a post-

eriori filtered plant-model error (called also augmentédemror
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. ) ) | -
e (k) = [p-00]" gix-a) (3.27)
Note that -¢* (k) can also be expressed as
* —_
(k) = e (k) + T(k) » (3.28)

where ¢(k) is the auxiliary error and given by

e (k)

) . 1T
[8(k-a) - 3] ¢ (x-q) (3.29)

Now,defining the a posteriori adaptation error as

Hio@h
v(k) = ———— €k (3.30)

Hz(q—l)

where Hl(q_l) and Hz(q-l) are monic polynomials of

-—

g ~, one can straightforwardly'apply Theorem 3.1 to

obtain the following result :

If one uses the adaptation algorithm given by

Blk) = B(k-1) + F, @ (k-d)v (k) (3.31)
with
F g (k-d)gT (k-d) F
Fy K

Fi,, = Fy - . ] (3.32)
A (K) /Ay (k) + 87 (k=-d) Fy @ (k-d)

0 < kl(k) < 1; 0 < Az(k)'< 2 F_>0 (3.33)
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one obtaines

lim v(k) = 0
Kk—> o - - (3.34)
if
-1
H,(2 7) A
1 - (3.35)
1 2
HZ(Z )

is strictly positive real with A given in (3.7),

Note that (3.32) in obtained from (3:2) applying

the matrix inversion lemma [lﬂ .

With further analysis, it can be shown that the
objective expressed in (3.22) is achieved too.EThis

proof, together with that of the boundedness éf the
b !

plant input and output is given in Appendix A.]

To make the algorithm implementable, an expression
for v(k) depending -on parameters estimated up to the (k-1)st
step’ should be found. This can be obtained using (3.30)

(3.27),(3.31)7and (3.25)

H, (g~ 0) :
vk = —2——— [p-3x) |"d (x-a)
Hz(q ) .
-1 :
Hy(q ) )
- Lt [pTsx-a) - 8T (k-1 g (k-a)
Hz(q )

- 8 (k=) Fy 0 (k=) v (K)
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@@y - B enguea ]+ [ ] v

11, @M k-0 B g (k-a) v (003
X 1 - :

1+ 9T k-a)F 0 (k-d) | (3.36)

The block diagram of this adaptive control structure

is given in Figure 3.1;

IIT.3 SOME PARTICULAR CASES.

As shown in the previous section, once the theorem
3.1 is introduced, the design of a MRAC beccmes raéher
straightforward. Another benefit of this theorem is thét
it constitutes a unifying framework among the discrete-time
adaptive control mechanisms so that the resulting design

| comprises many different types of adaptationalgorithms.

i) Particular Adaptation Gains: .
(3.32) gives us different possibilities for the adaptation gain
updating
a) If (k) =1, A,(k) = 0, one obtains the

simplest case, namely the constant adaptation gain

(Fk+1=Fk)’ used for example in'[lﬂ .

b) If Al(k) =1, Ay (k) =1, 0 <Ay < 2, the

time decreasing adaptation gain is obtained hA].
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Flgure 31 Model'Reference Adaptive Control System (deterministic environment)



c)  rplk) = a35 ay(k) =, (usually 0.95<x;<0.99)
_corresponds to time varying adaptation gain (also called
adaptation gain with forgetting factor), which is useful

for the case of slowly time-varying plants [lﬂ .

d)y 1If xl(k) and A, (k) are chosen such that trace
Fk is constant, a real time adaptation algorithm for
tracking time varying plants (called constant trace

adaptation gain algorithm) is obtained [6], [ .

Simulations compaXing all of these algorithmscan

be found in Chapter V.

24

. -1 -1 -1 -1, .
ii) IfHq 7) = 1; Hy(@ ) =Cyla ") and C,lq ‘) is
such that
-
1 - (3.37)
cz(z"l) 2 |

is strictly positive real, with » as in (3.7), the a

posteriori adaptation error can be calculated as

c, @ Hyto - BT -1gte-a) +[1-c, @ H] v

vik) = (3.38)

1+ ¢T(k-d)Fk¢(k—d)

Using (3.25), (3.30), (3.28),(3.29),(3.26) one obtains:
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r -1.1-=
k -
vik) = i ) ¢y la )]E(k)_ (3.39)

l+bT(k-d)Fk¢(kfd)

Furthermore, if the poles in tracking and regulation are
same, i.e. Cl(q_l) = Cz(q—l), the algorithm is called

parallel MRAC algorithm.

Note that (3.37) drasticallyllimits the region
allowed for the noots of Cz(i%), if stability is wanted
to be assured.
1i1) If Hl(q-l) = Hz(q_l) = 1,thé aposteriori

adaptation error can be given as

¢, (@™ Hy ) - plk-1)9 (k-a)
v (k) =

1+ dﬁk—d)Fka(k-d)

] Cyla™) e (k)

= (3.40)
1+ @(k-d)F, 0 (k-d)

with no positive realness conditions to be "fulfilled.
Comparing (3.40) with (3.39), note that filtering the
plant-model error has the effect of removing the positive

realness condition.

Furthermore, if one chooses -Cz(q_l) = Cl(q_l),

(3.40) can be written as [d

v - vl + [pk-a) - 5k-1]"g (k-a)
v(k) = T . (3.41)
1+ g7 (k-d)F, 0 (k-a)

BOGAZIC) {NIVERGITES] K’(ﬂ'\lmm&ﬁ;\
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M .
_where ys(k) 1s the output of a series-parallel reference

model given as

M -1 - -
y ) = [1-cp @]y + a7 pigh e (3.42)
This algorithm is called series-parallel MRAC algorithm.

ITT.4 GENERALIZED MRAC DESIGN

As shown in thg previous section the positive
realness conditions can be removed by using an appro-
priate filter for the plant-model error. An alternative
way could be to introduce avfilter which acts on the
plant input and output. Such a filter will allow‘us to
dbtain'more flexibility in the design, since the degree
of frzedom in choosing the appropriate polynomials is
increased. On the other hand, as shown in Chapter IV, it
may also be useful in “fulfilling the cbnvergence
coﬁditions in stochastic environment. In this section,
this generalized desién of MRAC is covered although it

is not considered in simulation studies.

1et usdefine the following filtered variables

Lig hyT (k)

yik) . : ]

Lig Huf (k)

Lig Hy™ ) = Moo

- £
Lia Hg,(x) = g4k)
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where

L(q'l) =1 + zlq'l + ... +2. g " (3.44)

g

' is an asymptotically stable polynomial.

Using filtered variables, (2.15) can be written as

-1 S -
c,ta ek+d) = Lig e @ ™Msig™huf k) +rg™h v (k)

c,(ahy Fk+a)] ' (3.45)

Hence if the parameters are known, to achieve the

objective defined in (2.11), the control input

uk) = Lig™h ufay " (3.46)
with
. c, (@ hy"™ (k+a) - p70, () |
oFix) = (3.47)
by ;

has. to be used.

In case of unknown parameters, again, the parameters

must be replacéd by their estimated values, i.e.

-1. Mf T £
c (g Hy™ ke - 5 ek
afixy = —2 °© ©° (3.48)
B (k).
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or

-1 M )
Cyla )y T k+a) = 57 ()t (k) (3.49)

with

o5 00 = [uf 0,057 0] (3.50)

' .T
and p (k) as in (3.20),

Using (3.49) and (3.43), the a posteriori adaptation

error defined in (3.30) can now be given as

-1 -1

H (g )L(g )
v(k) = —% [o-8 (<fo % (x-a) (3.51)
Hz(q_l)

A straightforward application of Theorem3.l gives

that if the adaptation algorithm

p(k) = p(k-1) + Fkaf_(k-d)v(k) (3.52)

£ £T
F ¢ (k-d)¢ (k-A)F
F =._l..___.[F - k k

k+1 k
xl(k)‘

£T £ N
Al(k)/xz(k) + @ (k-d)Fk¢ (k-a) (3.53

with (3.33) is used, one has

lim u(k) = 0 - (3.54)

K—s o
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if

- ’ (3.55)

is strictly positive real, where X is given in (3.7).

It is shown in |§ , that with this adaptation
algorithm the convergence of the plant-model error and

the boundedness of plant input and output is assured.

In general the a'posteriori adaptation error can

be implemented as [ﬂ ‘

vk = (1, (@ @ h e, @hy o - 5T k-1 9% k-a)
- -1 -1, .13 T £
+{ 181, (g Vi) +[18 @ HLE@ )] 8T ARG k=D vk}

i} - | . (3.56)

1P k-ayE gf k-a)
Note that (3.56) reduces to (3.36) for L(q—l) = 1.
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IV. MODEL REFERENCE ADAPTIVE CONTROL :

STOCHASTIC ENVIRONMENT

In this chaptef, the adaptive control problem
for a discrete time SISO minimum-phase plant in stochastic

environment is discussed.

After introducing a convergence theorem which will
enable'ﬁs to ¢o the convergence analyses in stochastic
environment, two exémples of S-8STR are analyzed in order
to establish connections, similarities with corresponding
MRAC schemes. Then the behaviour of MRAC in a stochastic
environment is discussed. Finally, an adaptive control
scheme combining model reference adaptive controllers
and stochastic self-tuning regulators is considered,
which is able to accomplish both tracking and regulation

objectives in deterministic and stochastic environment.



IV.1l. A THEOREM FOR CONVERGENCE ANALYSIS IN STOCHASTIC
ENVIRONMENT

In the convergence analyses in stochastic envi-

ronment we will use the following theorem [ﬂ :

Theorem 4.1. Consider the adaptation algorithm
(3.31)-(3.32) where |

Xl(k) =‘l, Az(k) =x; 0 g A < 2 \%k l (4.1)

Assume that the stationary processeé g (x,p) and v(k,D)
can be defined for p(k) = p and p(k) belongs infinitely
often to the domain for which these stationary processes

can be defined. Assume that for p(k) = p

Fk,p) = H (@ HFT (k-a ,B) [p -B]+ w* (k) (4.2)

where w*(k) is the image of the stochastic disturbance
inithe equation governing the a posteriori adaptation
error and is a white random sequence (or incorrelated.
to ¢(k-d),p)).

Theh,.if |
-1

A ) ’
H(z %) - — (4.3)
2 )

is strictly positive real, then

Prob { lim p(k)eD } =1 - (4;4),

k— =
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where

p: {p|[p*-p 00 = 03 (4.5)

and

Prob {lim v(k) = w*(k)} = 1 (4.6)

K> o

If in addition, the input is sufficiently rich

and the controller is of adequate order, it follows

Prob {lim p(k)= p*} = 1 (4.7)

ks =

The proof of this theorem canbe found in [ld or
h.].11£ is made by making use of the ordinary differential

equatioh (ODE) method [lﬂ.
i

i
|

IV.2 STOCHASTIC SELF-TUNING REGULATORS:TWO EXAMPLES

In stochastic environment, for which the plant is
described by (2.28{, when the plant pafametenstogether
with the disturbance dynamics are unknown, it is natural
to replace the parameters in the control law with their
estimated values to achieve the control objectives

asymptotically.

Considering (2.33), the 6bjective in the case of

known parameters, a rather general objective for this
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case can be stated as

-1
' Cz (q ) B
Prob {1lim e(k) = w(k) 1 =1 (4.8)
k—=Clg 1)S(g D) |

where S(q_l) is unigely defined with (2.12) and (2.18).

To show the similarities and connections of the
stochastic self-tuning regulators with model reference

adaptive controllers we will give to examples.

i) Example 1 :

The control objective is chosen as

-1
Prob {lime&k) = S{g )Iw(k)} =1 ‘Q4.9)

k— o -

which corresponds in (4.8) to the particular case

L | (4.10)

cz(q_l) = Clq

Together with the control law expressed in (3.18),
the adaptation algorithm given in (3.31)-(3.32) with (4.1)
is used. Below we will show that if the a posteriori

adaptation error is calculated as

, - elk) | (4.11)
vik) = .

1+ g7 (k-d) Fy 8 (k-a)
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and if

1 A

ciz L) 2 _( (4.12)

is strictly positive real the objective defined in (4.9)

will be achieved.

To® show . this we rewrite (4.11) as

vik) + §7 (k-Q)F, @ (k-d)v(k) = e(k) (4.13)

and use (3.31) to obtain

vk) +[px) - px-1)]T(k-1) = e(x) (4.14)
Since
e (k) -
clk) = S = — 2 [p-B k-0 [T (k-a)
c, g™ cylaTh
s sig e Hwix) } (4.15)
(4.14) becones
vio+[sk) + k-1 |Tg(k-a) = —2— [p-Bk-a) | "o (k-a)
+ S(q”l)é:(q'l)w(k) (4.16)

Now, introducing the staticnary sequences a(k,ﬁ) vik,p)
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and e(k,P)for PH(k) = p and considering (4.10)

— 7T x-a,p) [p-8] + staHwik) (4.17)
Clg ) .

vik,p) =

On the other hand, from (4.14), it follows that

vi(k,p) = =(k,p) : (4.18)

Now, Theorem 4.1 can be applied to (4.17) with (4.18) to
obtain the contrcl objective defined in (4;9) if the positive

Yealness condition in (4.12) is satisfied.

ii) Example 2 :

For this case, the following objective is wanted to

be achieved.
-1 -1 _ -1, _ ‘
Prob {Cz(q Ye(k) = S(g T)w(k) }=1; C(g 7) =1 (4.19)

Consider the following a pbsteriori adaptation error
with the control law (3.18) and the adaptation algorithm

(3.31),(3.32),(4.1)

Cz(q—l)s(k)
v(ik) = o (4.20)
1 + ¢T(k-d)Fk¢(k-d)

or
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vik) + 0 (k-d)Fy B (k-a) v (k) = C,lq ) e (k) (4.21)

vk +[500 - 51 1" (k-a) = [p-p (k-a) |%g (k-a)

+ sig e hwx)  (4.22)

Using stationary sequences #(k,p),v(k,5), for p(k) = P

and the fact that c(g 1) = 1,

v(k,B) = § (k-d,5)[p-5] + S(q wik) | (4.23)
It'follows from (4.21),

(k) = cz(g'l)z(k,ﬁ) ©(4.24)
So, (4.23) can be reﬁritten as

¢, (@ ek = 07,5 [p-p] + slg Hwk) (4.25)

Néw applying/TheOrem 4.1 to (4.25) directly gives

the objective expressed in (4.19) without anypositive

realness condition to be satisfied.
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IV.3 SIMILARITIES AND DUALITY BETWEEN MRAC AND S-STR

The two examples introduced in the previous’
section make us possible to analyze the structural
similarities between MRAC designed for deterministic

environment and S-STR designed for stochastic environment.

The first similarity between them arises in their
control laws. As it was the case for a plant with known
parameters, in the case of unknown parameters the same ..
control law provides a-control input to achieve the
objectives in stochastic environment as well as in deter-
ministic environment. Not only in deterministic but also
in stochastic case the same control law can be obtained
using explicit or implicit reference models. But in

' literéture, usually, the model ref%rence adaptive
controllers are conéidered with éxp%icit reference models
whereas the stochastic self-tuningEregulatorswith impliéit

reference models.

On the other hand, similar adaptation algorithms
can be used for both the MRAC and S-STR (Note that, only
a certain class among all possible adaptation algorithms
suitable for MRAC is allowed to be used for S-STR if
convergence is wanted to be assurad; namely the class

defined by (4.1)). For example, the adaptation algorithm

1

- -1
of a MRAC given in III.3. iii (Hl(q ) = Hz(q ) = 1)

considered with (4.1) is identical'with the algorithm used
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in the S5-STR introduced as the second example in IV.3.ii.
On the other side, the adaptation algbrithm which
corresponds to the MRAC given in ITI.3.ii differs froﬁ |
that of the S-STR in the first exémple (See. IV.3.1i) only
in the a posteriori adaptation error during transients
(compare (3.39) and (4.11) and consider that ge(k) — O
as k —» ). Morever, if S-STR in Example 1 is operated

in deterministic environment (w(k)=0\¥k, c;=0 i=1,...,cq )
c

the MRAC corresponding to the a posteriori adaptation

error given by (3.39) for Cz(q-l) = 1 is obtained.

Another similarity between the model reference
adaptive controllers and stochastic self-tuning regulators
shows itself up in the positive realness conditiong to
ensure stability in deterministic environment and conver-

gence in stochastic environment.

However in spite of these similarities MRAC and
S-STR accomplish different tasks in different environments,

so the introduction of the following definition is justified [ﬂ

Definition 4.1. (Asymptotic)>Duality between MRAC
and S-STR. A MRAC (implicit or explicit) designed for a
deterministic environment is (asymptotically) dual with
respect to a S-STR (implicit'or explicit) designed for a

stochastic environment if and only if

i) The adjustable parameter vectors are updated by

(asymptotically) identical adaptatién»algoritth‘[same
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structure, same observation vector (§), same a posteriori

adaptation error (as k—» w)].

ii) The positive realness conditions for global
asymptotic stability of the MRAC and for w.p.l convergence

of the S-STR are the same.

iii) The control laws are (asymptotically) the same.
(If both control laws and a posteriori adaptation errors

are identical for any k, they will be called dual).

After having intrbduced this definition, two ques-

tions come into the picture :

i) what is the behaviour of MRAC designed for a

.. . . | . . .
deterministic environment in a stochastic environment?
: i

ii) How can an adaptive control structure be built
{
| A
which behaves as a desired MRAC in a deterministic en-

vironment and as a desired S-STR in a stochastic environment?

This questions are tried to be answered in the next

two siections of this chapter.
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IV.4 BEHAVIOUR OF MRAC IN STOCHASTIC ENVIRONMENT

In this section we will analyze the behaviour of
the MRAC, designed in Chapter IIT for a deterministic

environment, in a stochastic environment.

Since the plant is described in stochastic envi-
ronment with (2.28), the filtered plant-model error

becomes

e (k) cz(q'l)[y(k{ - v ]

at@Ds@hy + Rl@Hyk-d) = Cyla )y k)

Bla bysig Hulk-a) +R(g M)y (k-d) - cz(q‘l)yM(k)
+ S(q—l)C(q_l)w(k)
=[p-§(k-d)]T¢(k-d) +kS(q'l)C(q"l)w(k) (4.26)

Now,for the case of regulation (yM(k) = 0; hence,

e(k)= y(k)), one can write (4.26) as

- - - - T
cytah ete) [e,ta™h - cla Le) =[p-px-a)]"g (x-a)

le,i@™h - c@™h] v

+ S(q_l)C(q_l)W(k) (4.27)

or
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-1 -~ T v, - -
cla ™ ek) = [p'-pk-0) "o k-a) + s" (g Hc(@ Hywik) (4.28)
v, =1 . .
where S (q ™) is given by the polynomial identity

cah = aghs'@h + g% (Y (4.29)

and

p' =[bo,bosy * by ..., bnbsé_i,ré,...,r;g (4.30)
1 '

with s;, 1 = 1,...,d-1 and Ty, = l,.,.,nr being the

coefficients of sh{i)gﬂq'l)respectively (i.e,p' contains

the parameters corresponding to the case when the closed

loop poles are determined by the disturbance dynamics).

(4.28) gives the following relation between tha

corresponding stationary processes for p(k) = p

e(k,p) =

~T 'L ' o
¢ (k,ﬁ)[p -p] + 8 (@7Hw(k) (4.31)

1

clq

Here‘follows

-1
_ C,(g ™) oo _ A
: B = ——— 7"k, p) [p'-B]+ ¢y (a™hs (@ hw)
© c (g7l -
(4.32)
So,

Hl(q_l) - -

Tlk,B) = ——— Ec(k.B)

Hz(q )



Hylg ) C,l(a™h)

-.T - 1
= = - ¢"(k,p)|p -P
Hy(a™h) cia™h) [2"-2]

-1
Hy(a ) “1y 0, -1

b —_— Cz(q )S (g T)Ywi(k) (4.33)
H, (g71)

The application of Theorem 4.1 at this point yields
that if

Hl(z—l) Cz(zfl) A
T - - (4.34)
) C(z"7) 2

Hz (Z—

is strictly positive real then

i

‘ Hl(q—l) -1 ' -1 I
Prob { lim v(k) = —m C2(q )S (g )w(%)} =1(4.35)
| |
i
and
Prob { lim ﬁ(k)e-Dl} =1 (4.36)
k_,
with
' ' T .
Dy =4 p\[p —p] g(k)i= 0 | (4.37)

On the other hand, if one considers the filtered
variables introduced in the generalized MRAC design in
I1IT.4, a similar analysis method as through (4.26)-(4.37)

will yield the result that if
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A
Lz 7) = — (4.38)
: > .

is strictly positive real then (4.35) and (4.36) with

(4.37) holds.

So if the disturbance dynamics is known, L(q—l)

makes us possible to assure stability without loosing
the freedom in choosing the control objective (defined
by Cz(q—ln and the filter used in calculating the a

posteriori adaptation error.

Note that, in stochastic environment the controller
parameters will depend on the disturbance dynamics, in
general. But in the control law expressed by (3.16),
the closed loop poles are defined by C2(q_l), =) thé

3

parameters are incompatible with them.

In regulation, this drift in the controller parame-

ters is not a handicap in eliminating the plant-model

error (Note that~yM(k+d) O‘in‘(3.l8)), but the regulation

objective is dictated by the disturbance dynamics.

In_traéking, if the disturbance dynamics is known
the parameters can be matched by choosing the disturbance
dynamics as the regulaﬁion objective (i.e Cz(q-l)=C(q~l))
For the case of unknown distﬁrbanée dynamics the control

‘law must be extended in a way éuch that the drift in

parameters is compensated. This will lead us to an
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adaptive control scheme which is suitable for tracking and
regulation 'in both deterministic and stochastic environment,

in the next section.

IV.5 AN ADAPTIVE CONTROL STRUCTURE COMBINING MODEL
REFERENCE ADAPTIVE CONTROLLERS AND STOCHASTIC

SELF-TUNING REGULATORS

In the previous section, it is concluded thaﬁ tracking
in a stochastic enviropment with known disturbance dynamics
can be done by choosing the closed loop poles appropriately
(Cz(q-l) = C(q_l)y Therefore, if the disturbance dynamics
is unknown, it is reasonable to estimate the control
objective besides the parameter vector p. ?hat is; the

i
control law is modified as

|
|
e, (a tr vyt ked) - B (k)8 (k)
u(k) = (4.39)
by (k)

or equivalently,
e, ki) = B g (4.40)

where

-1 -~ -1 = -n;
Cz(q k) =1 + c21(k)q e czna(k)q c (4.41)

is a polynomial in q—l with estimated coefficients.(4.40)
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can also be written as
-1, M - -
@My kea) - [, (@™ - e i ] M

= 7(k) B(k) (4.42)

or.

¢, gy ked) = BRI, (k) (4.43)

where

Betk) =[Bk), ato]
‘ (4.44)

B k) =[o ),y (xra-1), ...,y (kedong)]

with c(k) containing the coefficients of [Cz(q—l)—CZ(q"l,k)].J

- So, the control input can be calculated as /

_l M - .
C,(q Ty (k+d) - p__ (k)@ __ (k)
u(k) = —2 S (4.45) {

B, (k)

where

\
\
\
Poe (k) - and #oc (k) are obtained by extending .(

Bo(k) and ¢ (k) in the same way as Pe (k) and @ (k) \

are obtained from p(k) and @(k).

The adaptation algorithm will be asféllows

Be (k) = Pglk-1) + F @ (k-d)v(k)  (4.46)
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I AL LA |
k+1 k T
/%, + 8 (k-a)F 0§. (k-d)
2 e ke > (4.47)
0 €2y <2 F, > 0
Ho(g ™) H. (g ™) T
1 *
vik) = ——— 0 - L [po-Bo (8 | 0 (k-a) (4.48)
H, (q™1) H, (g 1)
with
po = [P/0,....0] | : (4.49)

(Note that this scheme is reduced to MRAC in case of regula-

tion yo(k) = 0.)

- The block diagram of this scheme is given in Figure
4.1, where the adaptation algorithm is analogous to that
in Figure 3.1. The analysis in deterministic and stoc-

hastic environments can be made as follows.

i} Deterministic Environment :

In deterministic environment, the analysis éan be -
done by applying Theorem 3.1 and following the same way
as in the MRAC design in IIT.2. (Only replace p,p(k) and
g(k) by perPelk) and Ge(k), respectively.) Therefore it

is omitted here.
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ii) Stochastic Environment

The analysis in stochastic environment can be made

using Theorem 4.1. The filtered plant-model error, in

this case is given as

eo(k) = [po-Be kid 0, (k-a) + s(g™hcl@ Hwik)  (4.50)

" (obtained in a similar way as done in (4.26))

Hence,
c,lahet -[eyt@™ - cla et

- [ oo k-] "o k@) =[c, @™ -cta™h ][y " 0]

| ‘ .
+ s(q_%)c(q'l)w(k) (4.51)

!
or }
!
cla ek = pé—ée(kmdﬂTQe(k—d) +s' (@ he@hwx (4.52)
where

1
Py ~ [P FxZIclf"'CZné_an ‘ (4.53)

and

Bo (k) =[B(x), c1=81 (), + v S _~Gn (k)] (4.54)

In terms of the stationary processes for p(k) =p



1
- - =T - 1 . ! - -
c(k,p) = —EIE:I; 7, (k-a,p) [pe—?e] + s (g"hHwik) (4.55)

Here follows

- -1
H. (g ™) c,{g 7) -
_ 1 2 T ~ v .
= g, (k,B) [peepe]

Hz(q—l) cigh
Hy (@) 4
o_ Cz(q )S (g T)Ywl(k) : (4.56)
1 | ¢
Hz(q )

If theorem 4.1 j§ applied, it is concluded that if

Hl(z-l) cz(z-l) 2 ’ (4.57)

-1 -l). 5

Hﬁz ) C(z

is strictly positive real then

Hl(q’l)
Prob {lim v(k) =
1

. Cz(q_l)s'(q‘l)w(k)} =1 (4.58)
k-)oo Hz(q— )

and
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Prob{ lim pg(k)e Dy} = 1 (4.59)
k——> 0 -, '

where

- ! T
Dy = { Pel[pe-pe] g, (k) =0 3 (4.60)
Furthermore; since

Hl(q-l)

J(k,p) = ¢, (a™HZ (k,B) © (4.61)

-1
Hy (g ™)
the plant model error will converge such that

c(k) = 8' (a1 wik) © (4.62)

so the plant output becomes asymptotically

y(k) = YR +s' (@ Huk) (4.63)

Comparing (4.63) with (2.33), it can be seen that in
stochastic environment the control objective accomplished -

takes asympotically the form dictated by the disturbance

dynamics (Cz(q_l) = C(q_l)), But, in a deterministic
environment (c¢; =0 ,i =1, ...,nc), contrary to same
1

S-STR schemes, which behave as having Cz(q_ ) = 1
(See 1IV.2.i and 1IV.3), the combined MRAC-5-STR scheme can

accomplish- any control objectivé defined by an asympto-



l).'This means, it behaves as

tically stable polynomial cz(q'
a desired MRAC in deterministic environment and as a

desired S-STR in stochastic environment.
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V. SIMULATION STUDIES

Simulations are done an a CDC 17(¢/815 CYBER to

- examine the performances of particular MRAC and combined
MRAC-S-STR schemes in both determihistic-and stochastic
environments (The computer program used in simulations

is given in Appendix B.).

The plant used in simulatioq studies is given in
deterministic environment before pirametenichange by the

discrete transfer function. ) ’

t
i

-d,, - -1 -1 |
z “B(z ) _ z (L +0.4z 7) ' (5.1

). (1-0.5z2" 5[ 1-'0.8+0.3 j1z"+]|[1-(0.8-0.35)2"Y

aA(z

A change of parameters is made at k=t so the plant
transfer function becomes
) 2z 0.9 + 0.527Y (5.2)
1

z-dB'(z_l

Az (1-0.52"

) [1-(0.940.5j)z_1][l—(a9f0-5j)z;q
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(5.1) and (5.2), which differ from the plant transfer
functions used in_[8] for simulations.only in their

time delays (d=2 in [8] ), correspond in time domain to

v{k+l) = u(k) + 0.4a(k-1) + 2.1ly(k) - 1.53y(k-1)

+ 0.365y(k-2) k < t, (5.3)
y(k+1l) = 0.9 u(k) + 0.5u(k-1) + 2.3y(k) - 1.96 y(k—;)

+ 0.53.y(k—2} k 3 t (5.4)
respectively.

On the other hand, in stochastic environment the

plant is characterized by

y(k+l)=u(k) + 0.4u(k-1) + 2.1ly(k) - 1.53y(k-1) + 0.365y(k-2)

+ w(k) - 0.25w(k-1) (5.5)
- before parameters change and by

y(k+1l) = 0.9u(k) + 0.5u(k-1) + 2.3y(k) - 1l.96y(k-1)
+ 0.53y(k-2) + w(k) - 0.1lw(k-1) (5.6)
after parameters change, where w(k) is a sequence of

independent and identically distrubuted zero-mean normal

random variables with variance 0.25.



Three different reference models are used in

simulations for tracking :

i) RMI1 :
z—dD(z—l)‘ _ ‘ z-l(0.28 + 0.222_1) (5.7)
c,(z™h (1-0.52"1) [1-(0.7+0.29) 2" [1-(0.7-0.29) 2" 1]
or in time domain :
Mik+1) = 0.280 (k) + 0.22 Wk-1) + 1.9y™(x)
- 1.23 y'(k-1) + 0.265 y'(k-2) (5.8)

which, again, differs from the reference model used in
[8] only in time delay. The reference input applied in

the case of this reference model is given as

N

M pk 0 <k < 50 or 100 ¢ k < 150
u (k) =

(5.9)
0 elsewhere

The output of this reference model is such that
the system operates partly in regulation (yM(k) = 0) and

partly in tracking.

ii) RM2 :
z %"t 7t R (5.10)
c (Z-l) 1-¢70- 1,71



or eqﬁivalently,

k1) = oMy o+ e 0 Mk ~ (5.11)

The reference input in this case in chosen as a train

of impulses

wtk) = 7
n

8 (k=50n) (5.12)
0

H ™MW

Note that the first differences in the reference
model output is relatively high at some instants; a
fact which will cause problems in tracking as we will

see in simulation results.

iii) RM3 ;
|
A 1
z :D(z ) . _Z . sin(n/60) N (5.13)
cl(z"l) 1- 2 cos(n/60)z 1+ 272
ox

YMik+1) = sin(r/60)ul(k) + ~2ccos(n/60)yT (k) - yM(k-1)
(5.14)

The reference input is taken to be a single

impulse at k=0,i.e.

a0 = 6 (k) f © (5.15)
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so that the model let the system operate continously in

tracking.

on the other hand, in regulation an initial output
level (y(k) = 2,k ¢ 2) is wanted to be reduced to zero

with a dynamics specified by Cz(q_l).

In simulations, where RM1 or RM3 is used, parameters>
are changed at k=25. In the case of RM2 and regulation the

parameter changes occur at k=15 and k=0 respectively.

In Figures 5.1-5.43 the reference model outputs

are shown with thick lines.:

Figures 5.1-5.16 exhibit how the plant output is

affected by different types of adaptation gains used in

|

a MRAC. j

|

Figures 5.1-5.3 an% 5.13. indicate that the
magnitude of the adaptatién gain, if constant adaptation
gain (A7 (k)=1,1,(k)=0) is used, has not any effect on

the plant output in tracking or in regulation.

But as seen iﬁ Figures 5.4-5.9 and 5.14-5.15, in
case of decreasing adaptation gain (xl(k)=l, Az(k)=l )
and constant trace adaptation gain (xl(k),xz(k) ‘such
that tr[Fk+l]= tr [Fk])the choice of X's are more or
less important to improve the performance of the system
in tracking, whereas this is notithe case in regulation.

For finding Al(k) and Az(k) in cése of constant trace



adaptation gain the ratio Al(k)/xz(k) is fixed to a
certain value and a xl(k) is chosen at each step such
that tr [Fk¥l] = tr [Fk] . The best performance is
~obtained in the case of Az(k)=032 among all simulations
done with the décreasing adaptation gain algorithm; i.e.
a relatively slowly decreasing gainvis moré successful in
tracking thé model output than a rapidly decreasing gain-
On the other hand&, the constant trace adaptation gain
with Al(k)/xz(k) = 0.25 shows the best performance,
which means omne have to weight the measurement vector
more than the gain value at timé k, in calculating the

gain for time k+l.

In Figures 5.10-5.12, and 5.16 the performances .of
three types of adaptation gains can be compared. bbviously,
in regulation (see Figure 5.16) the decreasing and constant
trace adaptation gains are equallyvmore successfull than
constant adaptation gain. This is true also for tracking
(provided) that A, (k) or Al(k)/kz(k) are chosen properly),
The success of the constant trace and decreasing adaptation
gains is observed especially in Figure 5.11. We see that
the plant—model error increases after each impulse input
(i.e. when the first differences of the model output are
relatively high) in case of constant adaptation gain algorithn
But if decreasing or constant trace adaptationgains are
used although the transients after the first impulse input
after parameters change are large in magnitude than that

in case of constant gain, after the later impulse inputs
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the plant-model error decreases to zero. That exhibits

the "learning" character af the decreasing and constant

trace adaptation gain algorithms.

v

In Figure 5.17 a disadvantage of decreasing
adaptation gain algorithm is seen. There, after parameters
change at k=25, they take their previous values backat
k=125. One observes that the convergence time of decreas-
‘ing adaptation gain is relatively increased. The reason
for this is that the gain continous to. decrease e&en
when no adaptation is needed any more (f50 < k < 125) and
one way to overcome this effect may be reinitialize the
adaptation gain periodically (or before each adaptation

process) .

Although it is considered in literature usually
for slowly timewvarying plants, simulations using adap-
tation gain with forgetting factor are done, too (only
for RM1l, see Figure 5.18). It is obvious, how important
is to make an appropriate choice for A and 2

1 2

obtain a rapid convergence and reasonable transients.

to

The best results are obtained with Al=0.95 and A2=0.2.-
That is, for a time-invariant plant it is better to let

the adaptation gain "forget" the past measurements slowly

than rapidly.

The effects of C2(q-l) polynomial and Hl(q—l)ﬁb(q{H
filter can be observed in Figures 5.19-5.28. In these ‘

simulations, constant trace adaptation gain with



Ay (k) /x, (k) =1 and F,=10-1 is used.

In Figures 5.19-5.21 and 5.25 éhe plant outputs
of model reference adaptive systems with different
control objectives (defined by Cz(q-l) polynomial) and
Hl(q_l) = Hz(q—l)=l are shown. The Cz(q—l) polynomials
used in these simulations are
1

i) C,lg M) =1 . (5.164)

1) Cy(a™H

[1-(0.3+Q.2j)q-l]~[l-(0-3-0.2j)q_1]

-1 -2

= 1-0.6q 1 + 0.13q (5. 16b)
111) Cy(a™h) =[1-(0.9+0.23) 7] [1-(0.9-0.25)q7}]

= 1-1.8q% 2

+ 0.85q (5.16c)

It is clearly seen that as the roots of the Cz(q_l)
polynomial (the closed loop poles) approaches the unit
circle, the adaptation process is smoothed and abrupt
changes in plant output are avoided. In regulation (Figure-
5.25), a proper choice of the regulation objective((5.16b)
in this case) highly improves the performance. On the
other hand, in tracking, as seen in Figures 5.19-5,21,
the best choice for C2(q_l) polynomial seems to be (5.16a),
since as the roots are taken away from the origin both.

the transient plant—model error and the convergence time



increase. But two examples are presented in Figures
5.27-5.28 showing the usefullness of choosing the

roots of szq_l

) polynomial away from the origin. In
these simulations the plant delay is chosen to be d=2,
which is a rather "harder" case for an adaptive controller;

and the control objectives are defined by (5.16a) and

c,lgh) = (1-0.4q"H?> | (5.17)

It is seen clearly, how important may the placement of
the closed-loop poles be in avoiding catastrophic

transients.

In Figures 5.22-5.24 and 5.26 the simulation
results of model reference adaptive controllerswith
Hl(q_ly:l and Hz(q—l)=C2(q_l), where C2(q_l) is given
by (5.16b), are shown. It can be concluded from these
Figures that the transient errorsare increased in
tracking, whereas the regulation performanceis not

affected at all.

From all simulations for model reference adaptive
controllen;done in deterministic environment it can be
deduced that the convergence of the controller parameters
to the true values is not guérahteed always. In Table 5.1,
the values to which the controller parameters converge
(p ) are tabulated for differen; initial parameter values.

These are the results obtained from regulation simulations
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with Hl(q_ ) = Hz(q_l) ='C2(q_l) 1 and constant

trace adaptation gain xl(k)/xz(k) L, Fo=10+I). The

true parameter vector corresponding to this case is

pT =[0.9 0.5 2.3 -1.96 0.53] . It is seen that

P~ 1is closer £o the true parameter vector if the
initial estimates are not.near to it. This is a
reasonable result, since if the differences between the
initial estimates and true values of the parameters are

high the input is expected to be richer. (Large values

and variations at the input are observed in such cases).

TABLE 5.1
P (0) " . Pe
0.80 0.40 2.20 -1.86 0.43 . 0.851 0.473 2.173 -1.859 0.511
1.00 0.60 =2.C0 -1.86 0.63 0.911 0.505 2.329 -1.982 0.539
-1.00 =1.C0 0.00 1.00 -1.00 0.899 0.499 2.297 -1.958 0.529
0.10 0.10 0.10 0.10 0.10 0.900 0.500 2.299 -1.959 0.530
- 0.50 0.50 0.50 “0.50 0.50 © 0.900 0.500 2.300 -1.960 0.530
1.00 1.00 1.00 ~1.00 1.00 0.900 0.500 2.299 -1.959 0.530

The results of simulations for stochastic environment
and combined MRAC-S-STR scheme are presented in Figures
5.29-5.43. In this part of simulation studies Hl(q—l) and

Hz(q_l) polynomials are chosen equal to unity.

The performances of MRAC with constant adaptation

gain and C,(q_l)=1 in stochastic environment for RM1l, RM3
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and regulation are shown in Figures 5.29-5.31. The
simulation result for RM2 is omitted since in that case

the plant output turned out to be practically unstable.

On the other hand, the plant outputs of the
combined MRAC-S-STR scheme in stochastic environment
are shown in Figures 5.36-5.39. As in the case of MRAC,
constant adaptation gain algorithm and Cz(q—l)=l is used
in these simulations, too. Comparing Figures 5.29-5.31
with 5.36-5.39, one can conclude that the combined
control scheme improves the performance‘in stochastic
environment in case of tracking. But the performances
of MRAC and combined MRAC-S-STR scheme are equal in
regulation, as expected. This facts are made more clear
in Table 5.2 where sum of thejplant-model error squares

after'parameters chhange are tabulated.

TABLE 5.2 n 5 !
T e (k) !
k=t }
MRAC : MRAC-S-STR
RM1 325 198
RM2 36,305 248
RM3 ' 143 103
REG ‘ 37 : 37

n = 180 for tracking, n=50 for regulation



It shouldvbe noted that, tracking the reference.
model RM2, where the first differences of the model
output is relatively high at some instants, is practically
impossible for a MRAC in stochastic environment; whereas
the combined MRAC-S-STR is at least not unstable in that

case although the plant-model errors are high after each

impulse input.

On the other hand, the performances of combined
MRAC-S-STR in deterministic environment are figured in
Figures 5.32-5.35. The smoothing effec£ of Cz(q—l)
polynomial (Cz(q-l)=l—0.6q-l)can be observed in these

simulation results.

Although,‘Theorem 4.1 allows only the use of
constant or decreasing adaptation gains to assure
convergence’ in stochastic environment; simulations are
- done with constant trace adaptation gain, too. Figures
5.40-5.43 show the results of simulations done with
combined MRAC-S-STR scheme using constant trace adap-
tation gain (Fo=10-1, Ai(k)/kz(k)=l). A comparison
between the combined schemes which use constant trace

and constant adaptation gains is made in Table 5.3.

Although no‘convergence proof 1is given for this
case, the simulations with constant trace adaptation
gain yield quite satisfactory resuits; except in tracking
RM2 the sum of the plant-model érrqr squares increases
because of the large transientsafter each impulsé input;
which is a behaviour contrary to that in deterministic

environment.



TABLE 5.3

n
2
z e (k)
k=t
Const. Adap. Gain' Const. Trace Adap. Gain

RM1 198 165
RM2 248 832
RM3 103 138
REG : 37 24

n= 180 for tracking, n=50 for régulation
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50 = 100 , B =

F=1
F=10-1
F=100-1

Flgure 51 Plant output of MRAC (H.‘(q_])=H2(q_])=C2(q-])=1, const. ad. gain)for RMI

G9



150

FoI

F=10-1
F=100-1

Figure 5.2 Plant output of MRAC (H](q'])=H2(q']-)=C2(q'])=], const. ad. gain) for RA2



Figure 5.3 rant output of mrac

70 | 180

F1
F=10-1
F=100-1

. - ] - . ’
(H](q )=H2(q ])=C2(q 1)=1; const. ad. gain) for RM3.

L9
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{ Fo=100-1, A =1 .

FO= 1001, AZ;O,S

FO"- 100-1, >\2-=0.2

Flgure 5.4 Plant output of MRAC(H](q'])=H2(q'])=C2(q'])=1‘, dec. ad. gain) for RM1

' i \v - ‘ 15;0\"r —
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50 100 150
Fg=100-1, xy,=1

—————— Fu=100-1, 3,=0.5

0
Fo=100-1, 2,=0.2

Figure 5.5 piant output of MRAC (11 (4o, (q1) =, (q™)=1, dec.ad.gain) for 2

/Q



o
3..
1-
180
-1+ :
-3-—
Fg=100-1, ,=1
_100-T. A _
N {Fo_mo I, %,=0.5
RO
Fg=100-1, *,=0.2

Flgure 56 ‘Plant output of MRAC (H'](q-])=H2(q—])=C2(q-])=1, dec. ad. gain) for RM3

nit
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L3
2 . e B »
J b w b k
100 ' 150

Fo =101, A (k)/A,(k) =1
mmmmm—e Fo 21001, A (K) /A, (k) -4
............. | FO =10-1, )\](k)/kz(k) =0.25

Fiaure 5.7 pant output of MRAC (H.(q~ ")=Ho(a )=Cula~ V=1, const. trace ad. amin) far RMI

TL



100
FO =10-1, }\] (k)/’kz(k) =1

______ Fo=10-1, A, (k)/>-2(k) =4

.............. FO ~10-1, J\](k)/}\z(k) =0.25

'Figure 5.8 Prant output of HRAC (Hy(q™")=H,(q"")=C (g™

=Co(q ' )=1, const. trace ad. gain) for RM?
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Fo =101, A (K)/Ay(k) =1
Fo =101, Ay(k)/ay(k) =4
Fg =10-1, 23 (K)/3(K) =0.25

1, const. trace ad. gain) for RM3

"Figure 5.9 piant output of MraC (H1(Q']?=H2(q’])=cz(q-])=

13
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50 100 150
e ereeane Const. A. G. F=10-1

------ ~Dec. A.G.  Fg=10:1, },=0.:

. =  Const. Tr. A.G. F,=10"1, 2 ,(k)/ X(k)=1
Fugure 5.10 Piant output of MRAC (H](q-])=H2(q_])=C2(q—])=1)for RMI ° ] 2
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-------------- Const. A.G. F=10-I

—————— Dec. A.G. FO=100fI, A2=0.2
Const. Tr. A.G. F0=10°I,A](k)/ké(k)=1

Figure 5.11 Plant output of MRAC (Hy (g™ )=Hyla™)=Cola™)=1) for B2
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Const. A.G. F=10-I

Dec. A.G. F0=100-I, A2=0.2

Const. Tr. A.G. Fo=10-1, A (k)/ay(k)=1

Figure 5.12 - plant output of MRAC (H,(q™")=H,(q™)=C,(q™1)=1) for RM3
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A k
2 i 5 It L
Y10 20 30 40 50 - F=1
F =101
| F = 1001
Flgure 513 Plant output of MRAC (H](q‘])=H2(q-])
=Cz(q'])=1, const. ad. gain) for regulation
!
|
!
|

10 - 20 30 40 50 ’
Fo=100-1, 2,=1
F=100-1, 1,=0.5

Fp=100-1, 2p=0.2

Figure 5.14 riant output of MRAC (H;(q™)=H,(q™!)<C,(q™1)=1,

dec. ad. gain) for regulation
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AN , l K

L 1

10 20 30 40 50
Fo=10-T, 1 1 (k)/A,(k)=1
Fo=108T, 2 (k)/A,(k)=4
Fo=10-1, A1(k)/x,(k)=0.25

Figure 5.15 piant outbut of MRAC (H](q-])=H2(q-])=C2(q-])

=1, const. trace ad. gain) for regulation

1]

/10 20 30 40 50

————— "Const. A.G. F=10-1
{ Dec. A.G. F _=100-1,1,=0.2
0 2 .
L Const. Tr. A.G. Fg=10-T A (k)/2,(k)
Figure 516 Plant output of MRAC (H](q'])sz(q']):CZ(q'],-)ﬂ) for

reguiation
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Const. A.G.. F=10°I

150

DEC A (J ' FO=100.I ) AZ-O 2

—————— . Const.Tr.A.G. F, -10 I aq(k)/ag(k)=1

Figure 5. 17 Plant output of MRAC (H1(q™1)=Hp(q"1)=Co(q"1)=1) for RMI
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Cpla™)=1

0.3 q

______ \ S

cz(q“)=1-1.8 q"]

+0.85 q~

F-'igure 5.271 Plant output of MRAC (H](q'])=H2(q-])=1 , const. trace ad. gain) for RM3
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+0.13/q'2, const. trace ad. gain)

50 100 150
Hz(q-])z']
—— - Hz(q'1)=02(q'1)
Figure 5.22 Plant output of MRAC (H,(q7)=1, Cyla)=1-06 g

v8



Figure 523 | Plant output of MRAC '(H](q_])ﬂ, C2(q-])=1-0.6 q

1

+0.13 q'z, const trace ad. gain)
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‘ Hz(q-])"']
————— Hyla™1)=C,(q™)

Figure 5.24  prant output of MRAC (H‘](q'])=1 , C2(q-])=1—0.6 q-]+0.13 q-z, const. trace ad. gain)
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-1y
Pt Cz(q )‘.l

—— == C,(q7)=1-0.6 ¢!

+0.13 g2

1 2.

----------- Cz(q-1)=1-1.8 q +0.85 q°
Figure 5.25 Plant output of MRAC (H](q-])=H2(q-2)=1 ,

‘const. trace ad. gain) for regulation

V 10 20 30 40 50

Hz(q—1 )31
Hz(q'])=cz(q'])

Figure 5.20  prant output of MRAC (Hy(q™")=1, c,(a7)
=1-0.6 q_]+0.]3 q'z, const. trace ad. gain)

for regulation
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Figure 5.27 Plant (d=2) output of MRAC (H](q_])

=H9(a"])=1, const. trace ad. gain) for RM]
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Flgure 5 29 plant output of MRAC (H](q'])=H2(q ])=C2(q 1y=1, const. ad. gain) for RMI 1n
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1[:‘)\

- V» 40 Vw

|V

Figure 5.31 riant output of MRAC (H](q-])=H2(q'])=cz(q—1)=1

const. ad. gain)for regulation in stochastic

environment.

Figure 532 Plant output of combined MRAC-S-STR (H](q-])
' =H2(q'])=1,‘cz(q'])=170.§ q'], const. ad. gain)

for regulation in deterministic environment’
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50 100 150

Figure 5.3 3 plant output of combined MRAC-S-STR (H](q'])=H2(q-])=1, Cz(q-])=1—,0.6 q

for RM1 in deterministic environment

1

, const. ad. g
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Figure 53[. Plant output of combined MRAC-S-STR (H](q'])=H2(q'])=], /cz(q'])=]-0.5 q'], const.
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F|gure 5. 37 plant output of combined MRAC-S-STR (H(q" 1) ah »(a )=C,(q"")=1, const. ad. gain) for

Ay ‘-+m~lmc+-m nm/nnnnmnf



Figure 5.3 8 Plant output of combined MRAC-S-STR (H](q'])=H2(q'])=1, const. ad. gain) for RM3

Fachkactier envivanment
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FlgU re 5.39 riant output of combined MRAC-S-STR (H](q-])
=H2(Q_BCZ(Q'1)=1, const. ad. gain)for regulation

.

in stochastic environment
|

t _
,\ | | k
1 20 o) 4

Flgu re 5.40 rant output of combined MRAC-S-STR (H](q—])

T =H2(q-])=Cé(q-]) =1 const. trace ad. gain)

for regulation in stochastic environment. .



Figure 5.471 Plant output of combined MRAC-S-STR (H1(q-])=H2(q-])=C2(q-])=] , const, trace ad.

~aain) for RM1 in stochastic environment
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_])::z(q-])=], const. trace ad. gain)

output of conbined MRAC-S-STR (Hy(a™')=Hy(a

Figure 5.42 Pant]

o BMO ta etnerhactic environment
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Figure 5.43 plant output-of-combined MRAC-S-STR (H;(a™)=Hy(q™ )=C,(a™")=1, const. trace ad. gain) '

far DM in ctachastic environment
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V1. CONCLUSIONS AND AREAS OF FURTHER RESEARCH

In this thesis, a model reference adaptive control
structure, which is applicable to minimum-phase single-
input single-output discrete—time plants, ié discussed.

It is assumed that the plant delay and an upper bound

for the degrees of polynomials A(q—l) and B(q-l) are

known. Two equiqalent strategies (explicit and implicit
reference modelé) are presented which yield the same cont-

rol structure. i .

Furtherméie, the similarities between themodel
reference Adaptive controllérs and stochastic self-tuning
regulatOrs,}where the control objectives are defined by
ARMA models, are ihdicated and a definitio§ of duality

between then is given.:

Starting from this duality an extension of model
reference adaptive controllers is considered, which
is capable of doing regulation and tracking in both

deterministic and stochastic environment.

various features of deterministic and stochastic
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model reference adaptive controllers are examined iﬁ
simulations. It is shown that, the control performances
are considerably affected by the adaptation gains used

and polynomials chosen to define the control objectives.
The simulations yield also the result that the performance
of the combined MRAC-S-STR scheme is better than that of

the MRAC, in a stochastic environment.

Although the simulations yield satisfactory results
for MRAC in deterministic environment aﬁd for cdmbined
MRAC-S-STR in both deterministic and stochastic environments,
still there are important problems to be solved, which

present new subjects of research in this area :

i) To guarantee that the .zeroes of the plént are
cancelled with a bounded control input, the plant is
assumed to be minimum-phase in all adaptive schemes
cdhsidefed in this thesis. The adaptive control of non-

minimum-phase plants is still an open questicn.

ii) Another subject to be investigated iS the
extension of discrete-time model reference adaptive

control techniques to the multi-input multi-output case.

iii) RM2 and RM3‘usea iﬁ simulations are reference
models of the order less than that of the plant. Although
the simulations yieid satisfactory results in many cases,
the theoretical analysis of MRAC using reduced order

models is still missing.
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iv) The model reference adaptive control of time-

varying plants is another question to be answered.

~

v) On the other hand, another area of further

research may be the adaptive control of (at least certain

classes) of nonlinear systems.

vi) In simulations, it is seen that even in cases
where the plant-model error is within reasonable limits,
large values for the control input may be obtained. There-
fore, also the problem ofradaptive control with constraints

on the control input and its variation must be considered

in future.

vii) In Chapter IV., the disturbance in stochastic
i
environment is assumed to b% normally distrubuted with
|
zero-mean. It is still an oﬁen question whether the

|
. combined MRAC-S-STR scheme given can deal with other

types of disturbances.

viii) Theorem 4.1 limit oufselves to constant or
decreasing adaptation gain algorithms, if convergence is
to be assured. But simulations have shown, better results
may be obtained with a constant trace adaptation gain.

So the convergence analysis in stochastic environment
must be extended to constant trace adaptation gain
(and other types of gains) case in order *o obtain

convergence conditions in those cases.
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ix) Lastly, a major problem in this area is the
analysis of the effects of unmodeled plant dynamics to
the performance of MRAC and combined MRAC-S—STR schemes.
Such an analysis may allow a rébust redesign of des-

crete time adaptive control schemes.

It is clearly seen, although growing effort has
been made in this area in recent years, there are still
guestion to be answered. As these questions are solved,
which actually arise since the cases where adaptive
control schemes are applied inérease, the ektension of

the use of adaptive control will continue.
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APPENDIX A

PROOF OF THE BOUNDEDNESS OF O(k) AND
CONVERGENCE TO ZERO OF e (k)

For this proof, which is given in [ﬂ , one uses

Theorem 3.1 and the following lemmas.

Lemma A.l.[lB]. The vector ¢ (k) given in (2.22)
containing the inputs and outputs of the plant in (2.1),

which is minimum-phase, verifies

| ¢ (k-a)|| <cy+Cy max| y(2) ] (A.1)
Ug2gk

0§C1<m’ 0<7C2<oo
Lemma A.2. [18] . If

, ec(k)
lim - =0 (A.2)

o (1487 (k-a) P 0 (k-a) ] V2

k

where {e_(k)} is a real sequence, { #(k-d)} 1is a real

vector sequence and Fy is a sequence of positive definite



real matrices, then subject to

1) e Est, e>0  F>0 Wis1

ii)  ||g(k-d)|| < C5+C, max |e (k)]
O<2gk

It follows that

lim sc(k) =0

ks o«
and

.H¢(k—d)H<C5,0 <C5<’oo Vk » 0

From Theorem 3.1, one has

lim wv(k) =0

k:-—-)oo
which implies that

.
lim - ¢ (k) =0

| S
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(A.3)

(A.4)‘

(A.5)

(A.6) -

(a.7)

(A.8)

-1 -1 . '
given that Hl(q ) and Hz(q l) are asymptotically stable

polynomials (See (3.30)). Then we can write
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b3 R
lim e (k) -0 - | (A.9)

k— (1467 k- BI-a)] V2

‘because

1 <1 (A.10)
[146" (k-a)F, 0 (k-a) | 1/2
Consider now
e (k)
(k) =
1/2

(1497 (k-a) £, 8 (k=) ]

[5(x-a) - Bx)]Td(x-a)

(A.11)
[149T (k-a)F, B (k-a) ] 172
Using (3.31)
| a-1
~@ (k-4) i£O~Fk_i¢(k—d;1Lv(k—1)
(k) = (A.12)

[ 146" k-arF g (k-a) ] 1/2

From Theorem 3.1 (with‘the additional requirement
that kl(k) and Az(k)Aare‘such that 1lim Fy > 6Fg ¢ > 0)
it results that p(k) is bounded, and from (2.1) and
(3.18) are concludes that u(k) and vy (k) canﬁot become
unbounded for finite k. (Division in 3.18 can be avoided

by choosing xl(k) and .Az(k) prbperly.) Therefore,



@#(k-d) can eventually become unbounded only asymptotically.

Therefore, the following relation is always true

| (k-a) || - | % (k=a) || ;
< £ CG < © (A.13)
[1edtk-arr k-0 ] Y2 [14amin(ryp) |10 (k-a) || ] Y2

and one concludes from equations (A.12) and (3.16)

limq(k) =0

A.14
ks o ( )

From (A.9), (A.11), (A.1l4) and (3.29), one obtains
(A.2) of the lemma A.2, (A.4) is obtained as follows from

(2..10),we have
le () 3]y () [=]y" k) [yl ~co5 0 < ¢y <o (A.15)

since yM(k) is bounded.
From (3.23), and knowing that C2(q~l) is an asymp-

totically stable polynomial, we have

le (k) [ Cg + Cq max lec(z)l
O0<2gk

(A.16)

0 < C,< > ' 0< C

< @

On the other hand,



ly(k)|> T4 + Cqy max [y(2) | (A.17)
O<egk

0 < Cpg < =i 0 <Gy =

Using (A.15)-(A.17) and (A.l) we obtain (2.11).
Thus from lemma A.2, one concludes that lim e (k) =0
and that @(k-d) is bounded. And given that Cz—polynomial

is asymptotically stable, we can also say that

lim e(k) = 0 | o (A.18)

ks =




APPENDIX B
COMPUTER PROGRAM
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Do

F ¥ ** I YEXEE R EERI RS RN REESRLESRSRESRERSRELESEEELELREETRP

*
*

THIS PROGRAM SIMULATES A CONTROL SYSTEM WHERE A MRAC =
OR A COMBINED MRAC=S—=STR SCHEME IS USED ~' - *

N LA i R R L E R R e R Ry R L Y N TR

DIMENSION OR TYPE DECLARATIONS

DIMENSION UM(CO0:180),YM(0:182),U(0:18G),Y(0:182)
DIMENSION P(7),POC6) ,FL(7),FI0(S5)

DIMENSION F(7,7) FIFIC?,7)FFIFICT,7),FFLIFLF(T,7),FFL(T)
CHARACTER 80S,YIL,CIZ,ART,NOK,C(=90:115)

INTEGER O

INPUT: PLANT DELAY(D), CONTROL STRUCTURE IDENTIFILER(ISTR).,
MODEL IDENTIFIER(IM), ENVIRONMENT IDENTIFIER(IENY).,
ADAPTATION GAIN IDENTIFIER(IG), A POSTERIORI ADAPTATICN

ERROR IDENTIFIER(IH), TIME AT #HICH PARAMETERS CHAMGE(KT)
SIAULATION ENDING TIME(CIST)

READ(O,*) D, ISTRAIM,IENV,IG,IHAKTL,IST

13
2]

3J

4)
3]

INPUT: COEFFICIENTS OF C2-POLYNCHIAL
READ(6,%x)C21,C22,C23
INITIALIZE PLANT AND HODEL

READ (6, %) (U(L),1=2=2%D,1),(Y(1),I==D,0+1)
READ(S,«) (UACL) »1=1,0+1),C(YN(1),1=D=1,0+1)

INPUT: INITTIAL GAIN MATRIX(F), GAIN UPDATING COEFFiCIEﬁTS
(ALT,AL2,AL), INITIAL PARAHMETERS(P)

L=D+4

IFCISTRL.EQ,1) GO TO 10
L=L+1

D0 28 I=1,L

READ (S, *) (F(I,d)rd=1,L)

"READ(G,*)AL1,AL2, AL

READ(QI*)(P(I)II=1IL)
DATA

DATA BOS,YIL,CIZ,ART/" ', "2, 1','+Y/
DATA V,V1,V2,V3/Gesr0as0ar0a/

DATA ISEED:H/H1/10000“00001 arQal
DATA YMIN,YMAX/10,.,0./

Li=L~-1

WRITE(6.,39)

FORMAT(3X,' K',?X,'Y“(K*D)'l?X/'Y(K*D)';?X( UCK) ', 77X V(XK) ', 6Xr"
T+0) " 428X, P /s 2Xs3C = ), S5X s ( =) ,5K B8 (=) ,5%,6( =) ,5X,8("="
X,7('="),8X,43('="))

00 320 K=2,:ST
FORM FI(X=D) VECTOR

D0.4C 1I=1,0+1
FICI)=U(K=D¢1=1)

- D0 50 1=1.,3

FICI#+0#1) =7 (=D +1=I)
IFCISTRLEQL1) GO TO 60



<

<

<

<

<

«»

<>

o3

73

8l

93

103
111
123

133
143

152

16)

173

18]
192

IFCIM=2)150,16G,140

CALCULATE THE A POSTERICRI ADAPTATION EXROR, V(K)
DO 70 N=1.,L -

FFI(N)=0.

DO 70 I=1.,L

FFICN)=FFI(N) +F(N,T)*FI(1)

CALL VECHMULC(L,FI,FFI,Q)

CALL VECHMUL(L,P,FI, VD)

YC= Y(K)*C21*Y(K-1)*CZZ*Y(K-2)+C23*Y(K -3)
VH=0,

IFCIHLEQ.,1) GO TO 80

v3i=ve

ve2=v1

vi=y
VH==(C21+V1+C22+V2+(C23%v3)
V=(YC=VD+VH)/ (1+Q)

PARAMETER ADAPTATION

DO 90 I=1,L
PCID=P(I)+FFI(I)xV

FORM THE PC(K) AND FIO(K) VECTORS

DO 100 I=1,0L1
POCII=P(I+1)

D0 1190 I=1,0
FIOCI)=U(K=1)

DO 120 1=1,3
FIOCI+D)=Y(K+1=1)
IFCISTR.EQ2.1) GO TO 130
F10(0+4) YH(K+U-1)§

THE FODEL ouTPUT FJR THE (K+1)ST ST:P

IFCIN=3)160,170,130

f
i
|
{4
1
Y

"REFERENCE MODEL 1

Ud(KI=1.

IFCKWGE (50, AND K. LT.100) UK(K)=0,

IF(KLGE4150) UM(K)=0,

YHCK4D) = 28 *UMCK) +0 22#UM(K=1) #1209 #YM(K+D=1) =1 . 235 YM(K+D=2) 4,265

S(K+C=3)

GO TC 190

REFERENCE MODEL 2

IFC(K4D=1),EQe50.0RQa (K+D=1) ,E2,10N,0R(K+ D= 1) EQa150) UM(K+D=1):
H(K*D)‘UH(K+D-1)?EXP( Oa 1)'YH(K*D-1) ‘
GO 70 190

REFERENCE MODEL 3

Y%(K*D) =2#C0S(3.14159/60) #Y4(K+D=1)~ Y!(K*D =2)
GO TO 190

REFERENCE MODEL 4 (REGULATION)

YH(K’D) =0-

YHACSYM(K+D) +C21#Y4(K+D=1) +C22*YM(K+D=2) +C232YM(K+D=3)



OO

[ I Y

o

- CALL VECMUL(L1,PO,FIO0,PFI)

203

.21)

223

23]
240

253

26)

273

28]

293

()

OO0

30
313

UK)=(YAC=PFI)/P(Y)

APPLY THE CONTROL TO THE PLANT
LET THE PLANT PARAMETERS CHANGE AT K=KT

IF(KaGE4KT) GO TO 200
Y(K+D)=UCK) 4044 *U (K=1)+2, 1#Y(K+D=1)=1,.53%Y(K+D=2) +(, 365¢Y (K+D=3
GO0 TO 210

YIK+D)= o9 #UCK)+ .5 %0 (K=1)+2, 3*Y(K*D-1) “1.96*Y(K+D=2) +, SS*Y(K*D-3

IN CASE OF STOCHASTIC ENVIRONMENT LET THE DISTURBANCE ACT
ON THE PLANT QUTPUT

IFCIENVL.EQLT) GO TO 240
d=0.

50 220 1=1,12

CALL RANSET(ISEED)
2AV=RANF ()

RV=RVY/2
ISEED=10*RV*ISESD
W=W+RV

W=W=3,

IF(KaGE.KT) GO T0 230
Y(K+D)=Y(K+D) +5=0,25*W1
60 TO 24G _
Y(K+D)=Y(K+D) +d =0 1 *W1
Wi=y

UPDATE GAIN

!
IFCIGeEQ.1) GO TO 300
D0 250 I=1,L ;
00 250 J4=1,L |
FIFICI,4)=FICD) *FICJ)
CALL MATHUL(L,F,FIFI FFIFI)
CALL MATHULCL,FFIFI,E,FFIFIF)
IFCIGLEQ.3) GO TO 26C
FCL,d)= (F(I’J)—FFIFIF(I,J)/(AL1/AL2+Q))/AL1
GO TC 300
D0 279 I=1,L
DO 270 J4=1,L
FCL,3)=F(I,3)~ FFI?IF(IIJ)/(AL*Q)
AL1=0C,
00 230 1=1.,L
ALT=ALYI+FCL,I)/ C10%L)
00 290 I=1,L
D9 250 J4=1,L .
FCL,d)=FC1,0) 7ALT

QUTPUT

ARITECE,310)K,YHCK+D) Y CK+D) s UCK) r¥rus(PCT) »1=1,L)
FORMAT(2X,13,5XsF7.4+,6X+F8a 4'3XIF8"315XIE3 CsS5XsFTa 3’7X16(F6 %

3

323

33)

CONTINUE

PLOT

WRITE(6,330)

FORMAT(I0C(/))

00 340 -K=0,15T

IFCY(K) aGTo YMAX) YMAX=Y(K)



353

36)
37)

O

o

60)

[aNe]

OO0

303

14442

IE=INT(YMAX*SC)

D0 370 K=0,1IST .
IP=INTC(Y(K) *SC) . ot
IS=INTC(YM(K)«SC)

D0 350 I1=18,IE

€(1)=80S

C(0)=CIZ

C{IS)=ART

cap)=yIL
WRITE(6,360)K,(C(1),1=13,1E)
FORMAT(1X,13,123(A1))
CONTINUE

sTOP
END

SUBROUTINE VECMUL(N,A,3,3)

THIS SUBROUTINE IS USED FOR VECTOR 1ULTIPLICATION§

DIMENSION A(N),3(N)
S=0.

DO 6CO I=1,N
S=S+A(I)+B(D)
RETURN

END

SUSROUTINE MATMUL(N,A,3,C)

THIS SUBROUTINE IS USED FOR MATRIX AULTIPLICATIONS

DIMENSION A(N,N),BIN,N),C(NIN)
DQ 8GO I=1,N

D0 3C0 J=1,N

C(I,J)=0,

b0 800 K=1,N

C(I,J)= C(IrJ)*A(IrK)*G(K'J)
RETURN

END

«21.UCLP, AA, PG4 ’ Ne 27 7KLNSa
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