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DISCRETE TIME 

VARIABLE STRUCTURE SYSTEMS 

ABSTRACT 

ii 

The design principles of Variable Structure Systems 

(VSS) sliding mode controllers in continuous time, achieving 

plant parameter insensitivity and disturbance rejection t are 

studied. The continuous VSS theory is extended to the discrete 

time domain. New design methods in Discrete Variable Structure 

Systems (DVSS) by which it is possible to reach the. switching 

planes in a stepwise. fashion are developed. Also an adaptation 

mechanism counteracting noise and plant parameter variations, 

not requiring any information. about the noise statistics, is· 

introduced. 

Both regulation and tracking problems for discrete 

time control systems are considered and suitable algorithms 

are developed. 

The feasibility of the control algorithm is verified 

through simulations on a digital computer. 
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AYRIK ZAMANDA 

DE~!~KEN YAPILI D!ZGELER 

OZETGE 

Bu ~al19mada degi9ken yapl1l dizgelerle, parametre 

deger degi9melerine ve bozan etkenlere kar91 duyarslz1lk 

saglayan kayma-kipi denetimci tasarlml tanltl1maktadlr. 

Surekli zaman denetim sorunlarl i~in onerilmi9 bulunan 

tasarlm ilkeleri ayrlkzaman denetim dizgelerini kapsaya

cak bi~imde bu ara9tlrmada geli9tirilmektedir. 

Dizgenin durum vektorlinlin anahtarlama dlizlemine 

bir dizi adlmlar bi~iminde ula9acak $ekilde ayrlk zaman 

uzaylnda yeni tasarlm yontemleri geli$tirilmi$ buiunmak

tadlr. Bunun yanlslra istatistik bilgilere gereksinim 

duymakslzln, dizge parametre degerlerindeki degi$melere 

ve bozan etkenlere kar$l bir uyarlama yontemi onerilmek

tedir. 

Dlizengeleme ve izleme sorunlarl ayrlk zaman denetim 

dizgelerinde tartl$11maktave uygun algoritmalar geli$tiril~ 

mektedir. 

Ayrlca anahtarlama dlizleminin en kli~uklemesi yolu ile 

en iyileme saglanmaktadlr. 

Denetim algoritmalarlnln ~er~eklenebilirligi bil

gisayar benzetimleri ile dogrulanmaktadlr. 

iii 
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I. INTRODUCTION 

In optimal control theory, the linear state regulator 

design procedures such as eigenvalue placement (pole place

ment) or quadratic minimization~ e:<bc .. Optimal' Control with state 

variable feedback where a performance index is minimized 

requires the solutions of algebraic or sometimes differential 

matrix Riccatti equations which are not suitable for hand 

calculations (1J '. Al though the theory is general and 

completely suitable for machine computation, the controller 

parameters are evaluated off-line and a fixed structure 

control·ler is implemented. This creates problems whenever 

plant parameter variation and disturbances, are present, 

in which case adaptation procedures requiring ~oise 

statistics, accurate modelling and parameter identification 

have to be applied. 

In variable structure systems, the control is allowed 

to change its structure and consequently. the controller is 

not a fixed controller. The idea of changing the structure 

of the system is a natural one and early utilization can be 

found in [2J - [3J. A reward for introducing the additional 

complexity of changing the structure of the system is the 

possibility to combine useful properties of each one of the 



/ 

structures [4J. Moreover, a variable structure system 

can posses new properties not present in any of the 

structures used. 

The salient feature of VSS is the so-called sliding 

mode. While in sliding mode, the system remains insensitive 

to plant parameter variations and disturbances. The design 

of a variable structure control which includes sliding 

mode doesn't require accurate modelling and parameter 

identification ; it is sufficient to know only the bounds 

of the model parameters. 

2 

Linear model-following control (LMFC) is an efficient 

control method that avoids the difficulty of specifying a 

performance index which is usually encountered in the 

application of optimal control to multivariable control 

systems. The model that specifies the design objective. 

is part of the system. However t LMFC systems are inadequate 

when there are large parameter variations or disturbances. 

This has led to the development of the so called adaptive 

model-following control system (AMFC) [5J. The stability 

conditions in AMFC guarantee that the error goes to zero 

as time tends to infinity, however not offering any direct 

quantitative control over the transient-. The design method 

proposed by Young [(::J provides a systematic and effective 

procedure for specifying the transient response of the 

error. The control is discontinuous on a number of switching 
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hyperplanes. During the sliding mode which exists on the 

intersection of the hyperplanes the system becomes more 

insensitive to system parameter variations and noise 

disturbances. 

In Chapter 2 and 3, the design methods of continuous 

time VSS with sliding modes is discussed and the control 

hierarchy method in multivariable control is studied. 

In Chapter 4, continuous time model following 

VSS is explained and its advantages are introduced. 

In Chapter 5, the continuous time VSS theory is 

extended into the discrete time domain and the controller 

design method guaranteeing insensitivity to plant. parameter 

variations and external disturbances is established. 

In Chapter 6', a new linear and adaptive discrete 

time controller is formulated. In this method, the step 

number or vector to reach the switching hyperplanes is 

set a priori. The adaptation procedure is applied by 

measuring the value of the switching plane, and no infor

mation about the noise statistics is necessary. 

In Chapter 7, the stepwise control method is 

extended into the model folowing discrete time case and 

finally in Chapter 8 optimality is discussed by the 

minimization of the switching hy.perplane.· 

3 
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II. VARIABLE STRUCTURE SYSTEMS 
, AND 

S LIDI NG f10DE 

In the linear state regulator design, the structure 

of the state feedback is fixed as 

T . 
u = k x for x = Ax + bu 

where the constant parameters ~ are chosen according to 

various design procedures ,such as eigenvalue placement or 

quadratic performance index minimization. In variable 

structure systems, the control is allowed to change its 

structure, that is, to switch at any instant from one 

to another member of a set of possible continuous func-

t~ons of state. 

Variable~structure systems offer the control de-

signer new possibilities for improving the quality of 

control in comparision with fixed-structure systems. In 

fact, VSS may have transients which are quite unattainable 

in fixed-structure systems. Thi~ includes the possibility 

of synthesizing high-quality stable' VSS which combine 

4 



unstable structures in a certain scheme so that the resul

ting system behaviour is stable. 

As an illustration, we consider a VSS controlling 

a conservative plant by switching the sign of the feed

back. 

The sys'tem (Fig l.a) with negative feedback loop 

has phase plane trajectories with elliptic structure. 

However, if the plant is included in a positive feedback 

(Fig l.b), it, is a periodically unstable system haying 

trajectories with hyperbolic structures with asymptotes 

°1 = x 2 +alxl , °2 = x 2 - alxl • 

Neither of systems (a) or (b) is satisfactory as 

far as the quality of the transient is concerned for the 

fact that they are unstable. Neverthless, certain parts 

of the phase traJectories of both systems are quite satis

factory. For example, the error of system (a) decreases 

rapidly in the first quadrant of the phase plane (xl x 2 >O) 

and the system (b) has a good phase trajectory in the 

fourth quadrant. 

If we divide the phase plane into four regions as 

in Figure l.c and include negative feedback in region I 

and III and positive feedback in region II and IV, the 

system under consideration is globally asymptotically 

stable and the transient is either aperiodic or involves 

at most one overshoot. Then we have a stable system which 

5 



/ 
6 

y 

y 

c) 

d) 

---+H-+J-I--t---~ Xi 

FIGU RE l' 



/ 

is synthesized from two. unstable systems. 

The above example shouldn't:give the impression 

that VSS are synthesized sOlely ~n the basis of unstable 

structures. High quality VSS may also be designed from 

structuraly stable systems and a single VSS may incorpo

rate both stable and unstable structures. In such cases, 

application of the variable structure principle yields 

a significantly superior transient in comparison with 

each of the component stable structures. As an example, 

consider the system in Figure 2. The system with configu

ration (a) has a transient of long duration which doesn't 

satisfy speed requirements, however there is no overshoot 

in the system. On the other hand, the configuration of 

(b) with a local switch open results in a conservative 

unstable system, although oscillatory, whose inital res

ponse is relatively ·fast. To construct aVSS, at the first 

stage of the transient, when the absolute value of the 

error is large, we open the local feedback path until 

th~ error is sufficiently small in absolute value, then 

we close the path. This will eliminate overshoot in the 

system and give a fast response. 

In the VSS with the phase portrait of Figure l.d, 

if the structure doesnt't change at the precise instant 

When the representative point crosses the asymptote 

01 = x
2 

+ alxl = 0, say owing to· the effect of noise, the 

motion of the system requires special investigation. The 

7 
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result of this investigation was the discovery of an im

portant advantage of VSS : the possibility of synthesi

zing systems which are insensitive to external disturban

ces and variation of the plant parameters within wide 

ranges. 

For the system in Fig l.a and b, the asymptote 

a = x 2 + alxl = 0 acts as a switching line. In the gene

ral case, a switching line need not be an asymptote ; 

it might be a straight line a = x 2 + cXl = 0 where O<c<oo. 

The phase plane is again divided into four regions as·in 

Figure 3.a. 

We first consider the case c> a l • The asymptote 

x 2 + alxl = 0 lies entirely in the union of regions I 

and III. Therefore, the representative point (RP) star

ting out from regi<?n I and reaching the line a = 0 at the 

instant the structure switches from elliptic to hyperbolic 

continues to move in region IV along an arc of a hyperbola 

that deviates from the asymptote (Fig 3.b). Consequently, 

when at a certain time the RP reaches the ordinate axis, 

the structure is again switched to elliptic and the pro

cess then repeats itself periodically performing oscilla

tl0ns. According to the contracting mapping principle, 

these oscillations will be damped. 

We consider now the case O<c< a l • Suppose that at 

time tQ>O the representative point starts out in region 

I. When the RP reaches the line a = x2 + cXl = 0, the 

9 
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structure of the system switches to the hyperbolic. But 

at the points of the line a = 0 the-hyperbolic trajec

tories point into region I so that the RP must .quickly 
'. 

leave region IV and return to region I. However, it cannot 

~emain there since the phase trajectories immediately re-

turn the RP to region IV, then it is again expelled into 

region I and so on. Thank's to the topology of hyperbolic 

and elliptic trajectories, the RP will reach the origin 

along the line a. 

Region I xl ~ 0, x .2 + cXl > 0 

Region II xl < 0, x2 + cXl ~ 0 

Region III Xl ~ 0, ~2 + cXl 
,::: 0 

Regino IV Xl > X2 + CXl ~ 0 

If the switching frequency is very high, the RP 

performs oscillations of fairly small amplitude about 

a = O. Then the motion of the system will be damped by 

the differential equation. 

(1) 

The motion approximated by the above equation is 

known as a sliding regime or SLIDING MODE. The solution 

of the above differential equation is given by ; 

11 



where to is the time at which the system enters 

the sliding mode. Since c>O, the motion is asymptotically 

stable. 

Sliding regimes have an important property : The 

corresponding motion of the system is independent of 

12 

changes in the plant parameters and of external disturbances 

In the specific VSS just considered, the performance 

of the VS sys~"is independent of the gain"al • This 

follows from Equation (1) which doesn't involve the 

parameter a l explicitly. Changing the gain a l will only 

change the slope of the phase velocity vectors relative 

to the line a = 0, but these vectors will again point 

in opposite directions. Consequently, the system will 

again move in a sliding regime on the same straight line 

a = 0. 

Suppose now that the vss experiences an external 

disturbance f(t). The forced motion of the VSS is described 

by the system. 

xl - x 2 
-+ 

x 2 - - alxl - f(t) 

The disturbance f(t) undoubtely distorts the phase 
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trajectories. However, if these trajecto,ries point in 

opposite directions in the neighborhood .of cr = 0, the 

system will again move in a sliding regime and its motion 

will be invariant with respect to f(t) . 

Unfortunately, for higher order systems it is not 

possible to make a sketch and see the behaviour of the 

phase-plane trajectories. Because of this reason an 

easy decision cannot be made about when to switch in 

order to have a stable system. However, there are mathe-

matical ways to settle this problem. 

tions 

Consider the general system of differential equa-

dx. 
1. 

Let's assume that the right hand members of these 

equations are discontinuous on a certain hypersurface 

Xn) = 0 in the phase space){ (xl' .•• xn) 

in such a way that the left and right-hand limits of the 

functions f. (Xl' ••. X ,t) ; i =1, ... n, exist as the 
1. n 

RP approaches 0 ~ 0 from either side. 

Lim 
0':0 fi (xl' •.• xn ,t) = fi (Xl' ••• xn ,t) (3) 

13 



Lim 

, , 

+ + 
a- a fi (Xl' ..• xn,t) = fi (xl~ •.• xn,t) (4) 

The derivative of the function 0 along 

tories of the system ( 2) is 

da n dO dx. n dO L J. r f. - = -dt i=l dX, dt, i=l dX, J. 

J. J. 

where f is a vector with components f l , f2' 

(2), (3), (4) the following limits exist ; 

Lim 

a ';0 'da· (f - grad a) = . 
dt 

Lim 
+ da (f+ grad 0) 0_0 = . 

dt 

= 

the trajec-

(i.grad a) 

f . By n 

(5 ) 

(6 ) 

At each point of 0 = 0, the sign of. the limits 

(5) and (6) may stand in several relations. Among these, 

the most interesting one is· the following relation, as 

it corresponds to an ideal sliding regime on the hyper-

Lim 
.+ a_a da 

dt 

Lim 

dt 

The equivalent inequality is ; 

14 
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Lim dcr 
cr+O cr -- < 0 

dt 

Inequality (7) may also be written 

Lim 
cr+O < 0 

(7) 

(8 ) 

In fact, the above inequality (8) suggests a 

necessary condition for system (2) to have a Lyapunov 

function of the form 

15 

The function (9) is positive semidefinite, Furtermore, 

since t~_e ~erivative: of, V-is required to be negative 

semidefinite in the neighborhood of the hypersurface, then 

v is a nonincreasing function near cr = 0 leading to a 

conditionally stable system relative to the. manifold 

~(xl' x2 ' •. ~ xn) = O. 



/ 

III. SLIDING MODE CONTROL 

3.1. SLIDING MODE EQUATIONS 

a. Scalar Control 

A single-input single output (SlSO) system is 

described by the equations given below 

~(t) = ~~(t) + eu(t) (1) 

yet) = ~~(t) (2 ) 

where ~ is (nxn) matrix and e
T = [0 0 ••• bnJ. For sim

plicity, the states are assumed to be accessibl~ so that 

no observer design is involved in the analysis. 

Suppose we have found a control such that the 

states move on the switching plane ; 

s (t) = 
n 
L: c. x. (t) = 0 

. 1 ~ ~ 
~= 

where c - 1 and c. = constant, i = 1, ••• n 
n ~ 
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By the above assumption, the last state can be 

expressed as a linear combination of ~the remaining (n-l) 

states. 

If xn is sUbstitued into the original system Equa

tion (1), the following new system equations are obtained, 

which are called the sliding mode equations. 

~. (t) = 
~ 

n-l 
l: 

j=l 
(a .. - c.a. ):x:.(t) 

~J J ~n J 
i=l, ••• n-l (3) 

If the system is in canonical form with a disturbance 

being added into the system, the equations become 

setting 

. 
xi (t) = x i +l (t) 

X (t) 
n 

set) = 

n 
l: 

i=l 
a.x. (t) - u(t} - f(t) 
~ ~ 

c.x. (t) 
~ ~ 

- 0 ; 

We get the following sliding mode equations which 

17 

are insensitive to plant parameters and external disturrances 
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• 0 1 0 xl 0 xl 
• x 2 0 0 1 0 x 2 

. . . . . . . . . . . . . 
= (4) 

0 ... lit ....... 1 

• 
X n-l -c -c 1 2 .... -c n-l X n-l 

Now, it is possible to have a new stable system 

by adjusting the parameters c.'s so that all eigenvalues 
~ 

of the new system matrix have negative real parts.' In 

other words, the zeroes of the characteristic polynomial 

lSI - A' I n-l = s n-2 
+ cIs + 

have negative real parts. 

+ cn_2s + c n-l 

Instead of making substitutions mentioned above, 

when b is a general vector, the sliding mode equations 

can be obtained from the so called equivalent control 

method. 

Again, we assume that we have found a control 

such that set) = 0 is achieved and there is no deviation 

from s(t), that is set) = 0 

~(t) = ~(x,t) + eu(t) (5) 

(6) 

18 
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occur, 

/ 

(7) 

. 
Setting s Ct) = o and solving Eg.7 for u (t), we eg 

The Equation (8) tells us that for sliding to 

T -1 
(~ E) should exist. 

(8) 

As a simple illustration, let's take the following 

plant into consideration. 

where 

~(t) = ~~(t)' + eu(t) 

e' = [b l b 2 ••• b n ], 

Substituting u (t) into the original system equaeq 

tion, the new system becomes 

with 

19 



x (t) 
n 

n-l 
l: 

i=l 
c.x. (t) 

1 1 

/ 

Making the necessary manipulations, we come up with 

the following (n-l)xl reduced order sliding mode equations. 

1 T -l[ T . where a .. = a
1
.
J
. - a. C. - b. (C b) C a J 

1J 1n J 1 - - --

i = 1, •.• n-l , j - 1, ••• n-l 

a j is the jth column vector of the matrix A. 
= 

b. Hultivariable control 

In multivariable control, it isn't possible to 

organize sliding regime by utilizing only one switching 

hyperplane. We have to use switching hyperplanes as many 

as the control inputs. Then, the aim is the simultaneous 

existence of a siliding regime on several switching hyper-

planes. We shall show that in multivariable VSS of a gen-

eral type, suitable choice of the control law yields a 

sl·idihg regime simultaneously on several switching hyper

planes and as a r.esul t one can stabilize plants of a general 

type even with variable parameters. 

Consider the system 

20 
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~(t) = ~~(t) + ~~(t) 

(nxn) (nxl) (nxm) (mxl) 

Let u(t) be a vector control chosen in such a way 

that the system has a sliding jregime simultaneously on 

m switching hyperplanes sl' s2' 

where 

n 
s. = z: c .. x. 

J i=l J ~ J. 

j = 1, m 

i = 1, •.. n 

c. = 1 In 

. . . s . 
m ' 

In vector notation, this is simply 

s = C x -
mxl mxn nxl 

When there exist a siliding regime simultaneously 

on all m switching hyperplanes. 

ds 
- 0 

dt 

21 
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ds 

dt 

Then"we find Ul (t) = -(CB)-lCAX(t) 
-eq == ==-

This control input achieves sliding mode in systems 

where there is no parameter variations in th~ system matrices 

A and B. In general the above control u is not the actual eq 

control applied to the plant. It is only instrumental in 

finding the sliding mode equations in the most general 

cases where variations in the plant parameters are allowed. 

If we substitute this control into the original system 

equations supposing that (g~)-l exists, we obtain the 

sliding mode equations as follows. 

(9) 

The above state equations appear to be of order 

(nxl), however this is not the case, because due to the 

sliding ~(t) = ~~(t) = 0 is achieved, and therefore m 

of the state variables can be expressed in terms of the 

remaining (n-m) state variables. Obviously system (9) 

can be reduced to an (n-m)xl dimensional system of equa-

tions. 

n-l 
.sl - l: cl'x. + x = 0 - J. J. n 

i=l 

n-l 
s2 = l: c 2 'x, + x = 0 

i=l 
J. J. n 



s = m 

n-l 
~ 

i=l 
c ,x, + x - 0 ml 1 . n 

/ 

However, the substitution is cumbersome in the 

above case. It becomes easier if we select C as a matrix 

of the following form. 

c -
= 

Then ; 

c 2l c 22 .•••••••• c 2 ,n-2 1 

. • • • . . • • . . • . . • . . • . •• 1 o 

1 

o 

o 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
c 1'" C .+. m m,n-llL 

x n-l 
. 

x ' 
n-m+l 

1 

n-l 
-'~l 

1.= 

n=2 
-, l:l 

1.= 

n-m 
-E 
i=l 

o .•••.•••••. 0 

cl'X' 1 1 

C
2

,X, 
1 1. 

c '.x. 
ml 1. 

The substitution of x , (j = 0, 1, •.• m-l) into 
n-J 

x = [~n - ~(~~)-l~J~~ will reduce the original system 

equations to a system of order (n-m)xl of the following 

form. 

. 
~(t) = ~m~(t) 

(n-m) xl (n-m) x(n-m) 

23 



The components of Am can 

sive relations in 

Then the stability 

justing C .. ' s. 
1J 

terms of the 

of the new 

I 

be expressed through recur-

elements of A and C .. ' s. 
1J 

system is achieved by ad-

Moreover, there is a transformation that can facil-

itate the above procedure. 

In the system 

~'<t) - Ax(t) + ~~(t) 
=:-

(10) 

§ (t) = ~~(t) 

consider the transformation get) = ~~(t) as two successive 

transformations, that is 

De.note 

~ll ~12 
I ----,-----

~21~22 

where 

~ll (n-m)x(n-m) 

~12 (n-m)x(m) 
matrices 

~21 (m}x(n-m) 

A22 (m) x (n-m) . 

24 
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with 

Setting §(t) -

u (t) -eq 

/ 

0, ue (t) is obtained as .follows. - q 

For sliding to oCcur, 

The equivalent control system becomes 

with 

~2 (t) 

Thus, the (n-m)th order equivalent system becomes 

. 
q (t) 

26 
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3.2. SLIDING MODE CONTROL CONDITIONS 

a. Scalar Control 

So far we have assumed tha£we have found a control 

J such that sliding regime is attained that is 2(t) = 0 

is achieved. Novt, the problem is how to find this specific 

control. 

First, a control of the following form is proposed. 

+ u (x,t) if s (x) ?; 0 

u(t) = 
u- (x,t) if s (x) < a 

for the single-input plant 

~(t) = ~~(t) "+ eu(t) 

For sliding to exist 

. 
ss < a 

must be satisfied. 

s (t) = ~T~(t), s (t) = ~?~(t) 



/ 

It follows directly from Eq.ll that 

+ This leads to the following inequalities for u and u 

T -1 T 
u > -(£ e) 2 ~~(t) 

- T -1 T -u >-u(c b) c Ax(t) - - - =-

In a closed form 

u(t) is selected as a function of the states 

u (t) 
n 
L l/J.x. 

. 1 J. J. 
J.= 

28 
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with 

a. x.s 
~ ~ ~ 0 

ljJ. = ~ 

(3. x.s < 0 
~ ~ 

where ai and (3i are constants to be determined. In our 
• n TiT .. 

case, set) = Lea x. - c b r ljJ.x .• By uSlng Bq 11 and 
i=l.- - ~ i=l l ~ 

Eq 12, we come up with the following sliding mode conditions. 

where a i is the i th qolumn vector of A • 
." 

If the parameters of the plant are time varying the 

condition (13) should be modified. i.e. 

In order to have a simpler controller, some of the 

states may not be switched. It is interesting to investi

gate what happens in this case. 



u (t) 
k 
L: 

i=l 
tjJ.x. 
~ ~ 

/ 

k <'; n 

In this case, 

+ " ~T9;~ _ (T n) (t) n-l [. 1 
t.. ~i ~. 9; Xi 

i=k+l 

. 
Fo~ ss(O to be satisfied, the following inequalities 

and constraints should be stisfied. 

i = 1, ••• k 

The additional constraints are 

T . 
c a~ 

c. 
~ 

T n = c a , i = k+l, •.• n-l 

For such systems, c. 's cannot be shosen arbitrarily 
~ . 

_ because these coefficients should satisfy the constraints. 

In such cases , it is desirable to .follow the procedure 

outlined below. 
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Let 

C - a = r n-l n 

C - a n-2 n-l 

c - a n-2 n-l 

C n-2 = (r + 

C n-2 = r2 + 

C - r j 
+ n-j -

= C lr n-

an)r + 

ran + a 

j-l 
r an 

The general formula is 

/ 

a n-l 

n-l 

+ ••• + ra n-j 

C. 
J. 

n-i = r n-i-l 
+ a r n ..,.. ••• + 

i = k +'1, .•• n-l 

+ a n-j+l 

The last constraint for i = n is an equality 

C = 1 n 

31 



Usually a small term u is added into the control in 

order to counteract disturbances resulting from parameter 

uncertainties and the additive noise in the system input. 

u(t) 

6 = 

k 
L 

i=l 
1/1 .x. - 0, 
~ ~ 

6 s > 0 
u 

-0 s < 0 
u 

b. Multivariable Control 

The problem in multivariable systems is to find 

32 

a control vector ~(t) such that a sliding regime is achieved 

simultaneously on m switching hyperplanes. The so called 

"control hierarchy method" ensures sliding on m switching 

hyperplanes simultaneously for the following general type 

of a plant. 

The procedure of this method is as follows. 

step 1 : First, a hierarchy of switching hyperplanes is selected. 

By a hierarchy of switching hyperplanes we mean that 

sliding mode occurs earlier on those switching hyperplanes 

which are higher in the hierarchy.' 



/ 

Suppose the hierarchy sl+s2 ...... -+sm is assumed. 

The arrow points in the direction of decreasing priority. 

Step 2 Let i = m 

step 3 : Suppose sliding mode occurs on the surfaces 

s. = 0 I j = I, ••• i-I 
J 

i-I Solve for the equivalent control u of the variable . -eq 
. i-I T 

structure control (~ ). = (ul ' ••• u i - l ) as ~ function 

f d ( ~ i + 1) T ( ) f th 1 b . a u i an = ui +l ' ••• um rom e a ge ra~c 
. i+l 

equations s. = 0, j = 1, ..•• i-I Note that ~ is known 
J 
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since u~ , u~, ~.= i+l, ••. m, have been determined previously. 

Step 4 : For the surface si = 0, find u:(x) and ui(x) such 
. 

that s.s. < O. 
~ ~ 

Usually a control for u(t) of the following form 

is proposed. 

where 

u. (x) 
J 

u. (x) 
J = 

n . 
l;< .. (a 7 I x. I + \S . -) s gn (s . ) 

. 1 J ~:J J 
~= 

+ if ~ 0 u. (x) s. 
J . J 

u-:-(x) if s. < 0 
J J 

j = 1, ... m 



space 

s. - 0 -]. 

j = 1, 

/ 

The inequality s.s. i( J. J. 0 guarantees that the state 

trajectories of the system move towards the surface 

along the intersections of the surfaces s. = 0, 
J 

... i-I and slides on it after reaching it. 

. +1 
While satisfying s.~. < 0, the max or min uJ. J. J. 

should be taken into consideration. That is 

+ < min or max i-I ~i+l ») u. (x) - i+l (f(~1 ~eq' J. u -

ui(x) max or min (f (~, i-I ui +l ») > -
u i +l u -eq , 

Step 4 : Let i = i-I if i > 0 go to Step 3 Else stop. 

As it is indicated by this procedure, initially 

sliding mode occurs on the switching plane sl = 0 and 

then on the intersection of the switching planes sl = 0 

and s2 = 0 and so on until sliding mode occurs on the 

intersection of all switching hyperplanes and we say 

that sliding mode occurs on §(t) = o. 

Note that S.5.<" 0 has the same form as in the J. J. 

design of single input VSS. This fact reveals the basic 

idea behind the hierarchy of control method which is to 

replace the multiinput problem by a sequence of single-

input problen:s. 

34 
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Now, let's see what happens to the control vector 

if we change the hierarchy for a fourth order system 

with two control inputs._ 

~(t) = ~x + ~u 

Since we have two control inputs, two switching 

hyperplanes have to be selected. 

n 
E cl'x, 

i=l ~ ~ 

n-l 
s2 = E c 2 ,x. ; 

i=l ~ ~ 
= 1 = 1 

First select the hieararchy sl~s2 

According to the control hierarchy method, it is 

assumed that sliding has already occured on sl = 0 

Solving sl = 0 for uleq(t) 

1 
n 

,Elb'l 
~= ~ 

[ 

n 
- i: 

i=l 

i 
+. 
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. 
Now, the condition s2s2 < 0 must be satisfied for u 2 if 

uleq is substituted for ul ' the inequality s2s2 < 0 

gives 

where 

II . ..... 

1 [n-l - - l: 
II i=l 

n-1 
t b'l 

i=l ~ n 
( l: 
i=l 

~ ____________ ~A~ ____________ ~J 

f1 

n-1 
l: b i1 

i=l 

Now that u;(x) and u;(x) have been determined, the 

inequality s l sl < 0 should be satisfied. 

Following similar steps as in the above case 

36 
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u

l 
(x) < 

max or min 

u~(x) > -f 2 , 

min or max 

/ 

1 

~ ________ ~A~ ________ ~) 

Selecting now the hierarchy s2+sl' we assume 

that sliding has occured first on s2 requiring s2'= O. 

1 
u = 2eq n-l 

L b i2 i=l 

1 

r 

[-

n 
L 

i=l 

n-l 

n-l i T i~l bilUJ L c2i(~ ) ~ -
i=l 

i T 
eli «a ) ~) 

b i2 n-l 
. T J L c 2i «al.) ~) 

i=l 
L b i2 

i=l 

£3 
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u~(x) >.- f3 

where 

r -

with u{<x) , u~(x) determined in this manner, s2. s 2-< 0 

.must be satisfied. 

+ 1 [ nEl , T n-l bilU~ u 2 (x) .( c 2i ((~~) ~) + E 
n-l i=l i=l 

max or min E b'2 . 1 ~ 
ul 

~= 

min or max 

38 

It is easily observed that if the hierarchy is changed 

the control vector changes. Besides, the bounds on the 

controller parameters differ from each other. While 

selecting the hierarchy, the inital conditions have an 

important role. If some of the selected switching hyper~ 

planes is zero initially due to .inital conditions, it 

is useful to give these switching planes higher 

hierarchy than the other switching planes since sliding 



/ 
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occures initally on these planes. 

3.3. The effect of disturbances on VSS system 

~(t) = ~(t) + ~~(t) + ~(x,t) 

where the vector h represents disturbances and 

parameter variations. In the sliding mode 

and 

For total disturbance rejection C must be chosen such 

that 

requiring rank [~ rank B 
= 

This gives 

The desired motion is achieved by adjusting the coefficients 

of c. 
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IV. VARIABLE STRUCTURE MODEL 
FOLLOWING CONTROL SYSTEMS 

4.1. Model Following VSS 

In model following- systems, the plant is controlled 

in such a way that its dynamic behaviour approximates 

that of a specified model. The model is part of the control 

system and it specifies the design objectives. The adaptive 

controller should force the error between the model and 

the plant to zero as time tends to infinity • 

. 
x (t) = A (t)x (t) -I- B (t)u(t) -p FP -p =p-

. 
~m(t) = ~m(t)\~m(t) + ~m(t):!::(t) 

th t (A · B) (A,B) are stabilazible We assume a =p'",p' =m=m 

and x is acces~ible. 
-p 

~(t) - x (t) - x (t) -m -p 
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~(t) - x (t) - x (t) -m -p 

For the perfect model following, as it has been 

shown in Ref. 5. 

rank B = rank(B 
=p =p 

rank(B 
=p 

A_ - A ) 
=~ =p 

Throughout the study, we assume that perfect 

model following conditions are satisfied. 

Variable structure control has the form 

+ r) u. (x , ~, 
~ -p 

u. (t) 
J. = 

u:-(x , 
J. -p ~, r) 

In the most general case 

u. (t) - - [~rg (t~+ -J. 

qT(t) [~T .T fTJ = x -p 

6· l 

. ',', ... ---

s.(e) ~ 0 
J. -

s.(e) < 0 
J. -

i - 1, 2 - ••• m 

where the jth component of ~i vector is given by 

41 
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a .. q.s.(e) ~ 0 1J J 1 -

l/J .• 
1J = 

6 .. q.s. (e) < 0 
1J J 1 -

and 

.+ 
s. (e) O. ~ 0 1 1 -

o i"' = 
o ; s. (e) < 0 

1 1 -

i = 1, ... m 

j = 1, 2, ••• 2n + 9. 

where 9. represents the number of references to be tracked. 

In multivariable case, it is preferable to select 

a control of the following form. 

Define 

§(e) = ; e 

In the sliding mode s(e) = 0, the dynamic behaviour is 
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~(e) = g ~(t) 

Substitution into the original system 

For the perfect model following case, we obtain 

If the same transformation explained in the previous 

chapter is made, we get an expression for the (n-m)th 

order equivalent system. 

Then the eigenvalues of the above equation can be placed 

arbitrarily in the complex plane to ensure stable motion 

lim giving ~(t) = O. 
t-rOO 

4: ~'2. Model Matching 

For a single input system, a new method is proposed 

which forces an nth order system to ,follow the dynamics 

of a desired (n-l)thorder model without taking the error 
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space into consideration. The controller used is much 

simpler than the controller utilized iri model following 

VSS.The response is better in this case since the desired 

model order is decreased by one. 

Consider the plant given below 

. 
x(t) = ~~(t) + eu(t) + ~f(t) ( 1) 

with a switching plane 

( 2) 

where 

b = [0 0 ... bnJ 

d = (0 0 ... ~nJ 

A is assumed to be in canonical form. 

If a control is found such that 

s(t) = b'r(t) 

Then, the new system becomes 
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a a 1 a 

/ 

o 

o 
. 

~(t) -

(n-l)xl 

~(t) + r(t), (3) .......... 
-c -c 1 2 -c n-l 

b' 

This is actually a reduced order model which 

the plant will follow if s(t) = b'r(t) is achieved. 

A new switching plane 

s'(t)" = s(t) - b'r(t) 

is selected. 

45 

Setting s' (t) = a is the same as setting s(t) = b'r(t). 

This is guaranteed by a control satisfying the following 

inequality. 

s " (t) s' (t) < 0 

As easily seen, the above control differs from 

MFVSS system and is simpler because we don!t deal with 

the error space. The system behaviour is again insensitive 

to plant parameters and external disturbances. 
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VI DISCRETE TIME 
VARIABLE 

STRUCTlIRE SYSTEMS 

. 5.1. Sliding Mode Equations 

A single input-single output discrete time system 

is described by the equations given below. 

~(k+l) = ~~(k) + ~u(k) + gf(k) (1) 

where u(k) is the control and f(k) is the disturbance 

added into the system. 

Suppose we have found a control such that the 

states move on the switching plane. 

s (k) = 
n 
L: 

i=l 
c.x. (k) 

J. J. 
= 0 (2) 



where c 
n 

x (k) 
n 

= I, 
n-l 

l: 
i=l 

/ 

c. = constant i = 
~ 

c.x.(k) 
~ ~ 

1, ••• n-l From Eq. (2) 

Substituting Eq.(2) into Eq.(l), the following 

new reduced order syst~m equations are obtained. 

x. (k+l) = 
~ 

n-l 
z: 

j=l 

i = I, n-l 

j = I, n-l 

(a . '. -c . a. ) x . (k) 
~J J ~n J. 

As easily seen, the above equations are insensitive 

to external disturbances. If the plant matrix were in 

canonical form, the new system equations would be insensi-

tive to plant paramet.ers and external disturbances. 

Now, since the system is a discrete time system, 

the reduced order system is stable if the absolute values 

of the eigenvalues of the new system matrix are less than 

one. This is simply achieved by adjusting the coefficients 

of the switching plane. 

In a plant of a general type, the sliding mode 

equations can be obtained from the so called equivalent 

control method. 
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When s(k) = 0 is achieved, it has to be maintained. 
~ 

This is possible with a control input which is the solution 

of s(k+l) - s(k)=O after having achieved s(k) = 0, i.e. 

s(k+l) = 0 with s(k) = O. 

This kind of control mechanism is suitable for 

adaptation purposes which is not possible in continuous 

time case. The adaptation procedure will be described in 

subsequent chapters. 

where 

From 

Consider the discrete time system given below. 

~(k+l) = ~~(k) + ~~ 

~(k) = s:~(k) 

A(nxn) matrix ; ~(nxl) vector 

B{nxm).matrix ; ~(mxl) vector 

~ (rnxn) matrix t ~ (mxl) vector 

~(k+l) = O. 

u (k) - -(CB)-lCAX{k) 
-eq' == ==-

(3 ) 
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The substitution into Eq.(3) gives the reduced order 

sliding mode equations. 

(5 ) 

with ~(k) = 0 

The Equation (5) becomes (n-m) dimensional after 

s(k) = 0 is sUbstituted. The same transformation used 

in continuous time case facilitates the sliding mode" 

equations. i.e. 

(6 ) 

(n-m)xl 

where 

~ln 

x = Mx(k) ; x = -n =- -n 

(nxl) (nxn) (nxl) . ~2n 

M is a product of elemantary transformations on ~ and S 
such that 

o 

MB= 

~l 
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where ~l and ~2 are (mxm), ~l is (n-m)xm matrices 

when 

-1 
MAM 

~ll ~12 
1 - ____ 1 ___ _ , 
i 

~2l : ~22 , 

The equiv~lent system becomes 

is achieved then Eq.(7) takes the form of Eq(6). 

5.2 Sliding Mode Control Conditions 

If a control is found such that 

(7) 

[s (k+l) - s (k)] . s (k) < 0 is satisfied then the 

states will hit the switching hyperplane from any inital 

conditions and will chatter around it. As a result we 

say that s(k) = 0 is achieved • 

. . - - ~---:-. --
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A control input of the following form 

s (k) >,. 0 

u (k) = 
s (k) < 0 

is proposed for the single input plant 

~ (k+l) = ~ (k) + ~u (k) 

s(k) = ~?e(k) 

For sliding to exist 

must be satisfied. i.e. 

The above conditions are different from those 

obtained for the continuous time case. 

For a simple illustration, if we consider a plant 

in canonical form as given below. 
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~(k+l) = ~~(k)'4- eu(k) 

b = [00 •.• bnJ 

where bn is assumed to be positive, and if we let 

u(k) 

where 

n 
l: 

i=l 
ljJ. x. (k) 
~ ~ 

x. (k) s (k) > 0 
~ 

x.(k)s(k) < 0 
~ . 

we can determine the controller parameters through 

n-l n 
s (k+l) - s (k) = l: c~x~+l(k) - l: a.x. (k) -

i=l •• i=l ~ ~ 

n n 
b

n 
l: ljJ.x.(k) - l: c.x.(k) 
'l~~ 'l~~ 
~= ~= 

After some simplification, we obtain 

n 
s(k+l) - s(k) = l: (c. 1 

. 2 ~-
~= 

- a. - b ljJ. - c.) x. (k) 
~ n ~ ~ ~ 
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S(k)'[S(k+l) - S(kU..( 0 must be satisfied. 

if x.(k)s(k) > 0, tjJ. = 0'.. 
~ ~ ~ 

Then 

'I'hen 

0'.. > 
~ 

6. < 
~ 

61 < 

1 

b
n 

1 --
b n 

1 

b n 

(c. 1 - a i - c.), i = 2 I ••• n 
~- ~ . 

(c. 1 c. ) , i 2, - a. - = . . . n 
~- J. ~ 

( -a c l ) -1 

5.3. Multivariable Control 

For mUltivariable control, a control hierarchy 

'. method similar to the continuous case is proposed. 

Step 1. Suppose the hierarchy 
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is imposed. 

'I 

step 2. Let i m 

step 3. Suppose sliding has already occured on the surfaces 

s . (k) - 0, j = 1, ••• i-I 
J 

step 4. For the surface s. = 
~ 

o find + u. and u. 

u. (x (k» = 
~ 

such that 

+ u. (x (k) ) 
~ - . 

u:(x(k» 
~ -

~. ~ 

s:(k) > 0 
~ 

s . (k) < 0 
~ 

Since it is assumed that sliding has already 

occured on the surfaces s.(k) = 0, j =1, •.• i-I, an 
J 

equivalent control is sUbstitued for the value of u. (k) 
J 

which is the solution of s.(k+l) = 0 with s.(k) = 0 
J .J 

'~fter that for the remaining u~, ~ = i+l, ••• m, 

+ -the evaluated values of u~ or u~ are substituted since 

they are already determined for ~ < m 

Step 5. Let i = i-I if i > 0 fto m Step 3 else stop. 
:.' 
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VI I STEPWISE ADAPTIVE 

DVS 
. CONTROL 

In DVSS, the method that is proposed in Chapter 

5 gives a control such that s (k) . [s (k+l) - s (k~ < 0 

is satisfied. with this kind of control, the states are 

expected to slide and chatter around the switching plane 

after a certain number of steps, which is dependent on 

the controller parameters. The exact step number at which 

the states reach the switchi~g hyperplane cannot be set 

a priori. In this chapter, a new control method is propo-

sed by which it is possible to set the step number at which 

§(k) = 0 is desired to be reached and then maintained. 

A single-input single-output (SISa) discrete 

system is described by the equations given below. 

with a switching hyperplane 

s (k) = 
n 
r 

i=l 
c.x.(k) 
~ ~ 

, c _- 1 
n 

(1) 

(2) 
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The design principles and the reduced order sliding 

mode equations are the same as explained in Chapter 5. 

However, the proposed method of finding the control input 

achieving the desired motion is different. 

First a step value ~ is selected as ; 

l,; = s'(O) 

9, 
(3) 

where 9, represents the desired step number to reach the 

switching hyperplane. 

T 
s(k} = £ ~(k) 

then, the inequality below 

s(k+l) - s(k} - ~ (4) 

simply tells us that for every step the value of s(k} 

will decrease by l,;. 

~ow, let's find a control input for the plant 

(l), which will decrease the value of s(k) by l,;. 

56 



/ 

s(k+l) = s(k) - 1; 

(5) 

From 1!;q. 4, it is clear that the above control 

u (k) wil make the value of s(k) to be zero at the end 
s 

of ~ steps since 'we select , = 's( 0) 

After ~ steps, s(~)=O is achieved, and then the 

control should be changed such that s(k)=O for k > ~ 

This is achieved simply by setting , = 0 for 

k > ~. In fact, this control is the so called equivalent 

control in DVSS. 

The proposed control can be summarized in Figure 

6.1. 

As easily seen, u (k) and u (k) rely upon the, s eq' 

plant parameters and therefore parameter variations may 

'affect the control adversely. In ad,dition to that, if 

there is noise added into the system, the above controls 

57 



/ 

cannot maintain s(k) = O. Because after ~ steps s(~) = £(~) 

due to the distarbances instead of being s(~) = O. Then, 

u (k) will try to maintain s(k) = £(k) for k >~ which eq 

cann0t regulate the states. 

In this case, the sliding mode equations become ; 

x (k + 1 ) = A' (a "C • ) X (k ) + E (k) -n = I ~ n 

provided that !{ = [00 ... bnJ. For a general b vector 

case the corresponding expression can be found as explained 

in the previous chapters. 

Although the new system above is stable since 

c.'s are selected such that A' is a stable matrix, the 
~ 

states will not go to zero as k+oo , instead ~(k)+ g which 

is ciifficul t to find be.cause ~(k) is not constant and 

changes at every step. 

The problem can be solved by having an adaptive 

control for k >~ of the following form. 

where 

s(k+l) = s(k) - n(k) 

n(k) = s (k) = measured value of s(k) m 

(6) 
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s(k) T = ~ ~(k) 

From Eq.6, we find an adaptive control; 

for k > 9, 

It is easily seen that if ~(k)~O ; u (k)~u (k) a eq 

The adaptation in the above f~rmulation is performed 

for k > 9,. For k>9, the step value ~ can be updated for 

every step so that the cumulative error resulting from 

the deviation from s(k) = 0 due to noise and external 

disturbances will be much smaller. The method of updating 

~ is as given below. 

where 

1;; (9,) = 

N, 

s (k) 

9, 

1 

k_ 0, N-l 

As easily seen, ~ is updated for every step. Then, 

the control input u (k) for k < N becomes sa 
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The adaptation mechanism is summarized 'in Figure 

6.2. 

As already stated, in multiyariable control switching 

hyperplanes as many as the control inputs are selected. 

The control hierarchy method doesn't give us any definite 

step number at which states reach the switching hyperplanes. 

Besides, the hyperplanes are reached in a hierarchical 

order. Similar to the scalar case, a multivariable control 

by which the hyperplanes can be reached at desired steps 

which can be determined beforehand as desired is proposed. 

Then, the switching hyperplanes can be reached either at 

the same time or in a hierarchical order. 

Consider the system of a general type 

~(k+l) = ~~(k) + ~~(k) (7) 

with 

§(k) = ~~(k) 

First, suppose that it is desired to reach si(k) = 0, 

i = 1, ... m at the same time. In this case, a step vector 

is selected as ; 
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l::m 

where £ represents the desired number of steps to reach 
si(O) 

the switching hyperplanes and l::i = ; i = 1, •.. m 
,£ 

Now, the aim is to reach the switching hyperplanes 

simultaneously such that siCk) = 0, i = 1, ... m, is 

achieved at the same time and maintained. 

as 

The control vector performing this can be formulated 

§(k+l) = s(k) - ~ 

u (k) -s 

After £ steps s(k) = 0 and it has to be maintained 

so we set ~ = 0 and apply 

k > £ 

If it is desired to reach the switching hyperplanes 

~in different times, the ~ vector at the inital time becomes 

Z;;. 
1 = 

s i (0) 
i = 1, . . . m (9 ) 

L 
1 
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In this case, the hierarchy has an effect on the 

value of ~ such that its value changes at every time one 

of the switching hyperplanes is reached. Suppose the 

following hierarchy is assumed. 

then 

JI, > JI, 1>'··· > Jl,l m m-

(10) 

After Jl,i steps si becomes zero then ~i has to be 

set to zero, otherwise s. = 0 cannot be maintained. That's 
J. 

why the value of ~ vector is changed at the instants one 

of the switching hyperplanes is reached. 

As it is seen, the problem becomes more difficult. 

This can be seen in Figure 6.4 as compared to the case 

where ~(k) = 0 is achieved at the same time in Figure 

6.3. 

If there are disturbances in the system, a similar 

adaptation procedure as in the scalar case can be followed. 

Suppose that it is desired to come to the switching 

hyperplanes at the same time. Then, 

(§~) -l§( b-;O ~ (k) 
-1 

u (k) = - - (§~)~ -s -- - - -
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is applied for £ steps. 

After 1 steps, s(k) = 0 is supposed to be achieved. 

However, due to disturbances this condition may .not be 

satisfied. Then the following adaptation procedure is 

followed. 

slm(k) 

nm(k) = s2m(k) 
I 
I 
I 

S I (k) 
rom 

u (k) = -(GB)-lG(A-I)X(k) - (GB)-ln (k) 
-a == = = = - == m 

k > £ 

An adaptation for ~ similar to the scalar case 

can be formulated as follows. 

~ (k) 

~ = 

where 

k = 0, N-l 

£ = N, 1 
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The control vector becomes 



No 

START 

K=O 
~ = s(o)/l 

APPLY 
Us(k) 

K=K+l 

1=0 

APPLY 
Ueq(k) 

'---~--I K = K + 1 

FIGURE 6.~ Stepwise DVSS Control Algorithm 
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START 

A P pl Y usa(k) 

NO 

YES 

tl(k) = Sm(k) 

ApplY 

K = 

FIGURE 6.2 Adaptation mechanism of· Stepwise DVSS Control 



START 

READ l . 

K=O 

.. [~ ] 
1= t 

r----I Apply ~s(k) 

K =K+1 

FIGURE 6.3 Stepwise multivariable control algorithm 



Yes 

1n= 0 

START 

K =0 
Read lj 

t . . 
I 
• 

Yes 

Yes 

FIGURE 6.4 Multlvarl~~~e B~epwiBe control algorithm 
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V I I." DISCRETE TIME 

VSS 

MODEL FOLLOWING 

In model following, a model is selected which specifies 

the design objectives. The controller is designed such that 

the error between the plant and model states goes to zero 

as k-T<Xl. 

The plant and the model are described by the "equations 

given below. 

Then; 

x (k+1) = A x (k) + B"u(k) -p =p-p =p- (1) 

x (k+1) - A x (k) + B r(k) -m =m-m =m-
(2) 

~(k) = x (k) - x" (k) 
-m" -p 

(3) 

~(k+1) 

(4) 

= ~ e(k) + (A - A )x (k) + B r(k) - B u(k) =m- =m =p -p =ffi- =p-

/ 



A switching hyperplane as a function of the error 

space is defined as follows. 

In the sliding mode ~(~(k» is desired to be zero 

and then maintained. i.e. 

s (k+l) - s (k) - 0 -e -e k > Q. (5) 

k - 0, ••• N 

where Q. is the desired number of steps to reach s (k) = 0 -e 

From Eq. 5, 

with 

_ Upon substitution into Eq.4, we obtain 

( 6) 



For the perfect model following 

rank (B ) = rank (B :B ) - rank (B ~: (A -A » 
=p =p =m =p =m =p 

as it has been explained in reference 5. 

If the perfect model following conditions exist, 

then Eq.6 is reduced into the from given below. 

with 

The design problem is to adjust the ~ matrix such 

that the system in Eq.7 is stable. i.e. Lim e(k) = 0 
k~oo 

The control input can be found by the same idea 

introduced in the previous chapter. 

First, a step vector is selected 

§ -

If there is noise added into the system, § should 

be updated for every step k < ~. i.e. 



where 

s (k) -e 

.!I, = N, ••. 1 

k - 0, N-l 

Then the inequality below 

gives 

k < .!I, 

After .!I,=N steps s (k) = 0, then it has to be maintained. -e 

i.e. 

Again, in order to counteract the disturbances into 

the system, the following adaptation is utilized. 

s (k+l) - s (k) - n (k) -e -e -em (8 ) 
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where 

n (k) = s (k) = measured value of s (k) -e -em -e 

It follows directly from (8) that 

- (GB ) -In (k) 
==p -e 

k > t 



<. 

VIII. MINIMIZATION 
OF THE 

SWITCHING HYPERPLANE 

Consider the plant 

~(k+l) = ~~(k) + ~~(k) 

·with the switching hyperplane 

M~re s is (mxl) vector and ~ is (mxn) matrix. 

Define the performance index 

N 
L: (~T(i)2(i) + ~T(i-l)~(i-l)U(i-l») 

i=l 

(1) 

(2) 

We begin by defining VN to be the minimum value of 

the performance measure I N in Eq.2. 

min N . 
L: ('2T(i)~(i) 

u(O)u(l) ... u(N-l) i=l 

( 3) 



Using the principle of optimality, we proceed by 

starting with the last stage of control in our problem. 

where 

min 
(~T(N)§(N) + ~?(t-j-l)g(N-I)u(N-I») 

u(N-I) 

~(N) = g~(N) 

~(N) =~~(N-I) + ~~(N-I) 

Upon substitution in Eg.S, we obtain 

Then, VI becomes 

If we drop the time argument for simplicity 

(4) 

(5) 



T Denote § § =.g , it is easily seen that 9 is auto-

matically a positive semidefinite symmetric matrix. 

since 2 is symmetric 

Then, the third term in Eq.6 is the transpoze of the second 

term. Slnce both are scalars, the two terms are equal. 

Therefore, we write 

We obtain the minimum in Eq.7 by setting the gradient 

of the terms with respect to u equal to zero. Then, we 

have 

~) = 0 

Solving for u we see that 

_ [~_TQ=B= + ~_~1 -1.·. T u(N-I) = J ~ ~~~(N-l) 

As it is seen, if ~ is selected as a positive definite 

matrix, the resulting control law is physically realizable 

( E 



and additionally is linear and involves feedback of the 

current state. 

We define 

~(N-l) = ~(N-l)~(N-l) 

As the reader will readily recall, in the discrete 

time optimal regulator problem, the following performance 

measure is selected. (See optimal control by Meditch) 

I N = ~ [1fT (i)Q( i)'~ (i) + ~T(i-l)~(i-l)~(i-l~ (8) 
i=l -

For the plant in Eg.l, if we evaluate VN for the 

above I N, it becomes 

VN 
min [ T T 

2xTATCBu ~l (~T~~ ~) ~ = . x A CAx + + + 
~(N-l) - = ==- = --

This is the same as Eg.6 with the exception that 

S is repJ-aced by ~ which is the product of the switching 

hyperplane matrix by its transpoze. i.e. §§T. The desig~ 

approach is different in our case. Rather than selecting 

a ~ being at least positive semidef.inite and seLecting 

a performance index as in Eg.S which is to regulate the 



states, we attempt to minimize the switching plane resulting 

in a new system having properties as explained in the previous 

chapters and we regulate the states at the same time. 

If we continue to derive the performance measure for 

the N-stages, we get the following equations. 

~(k) = f,(k) ~ (k) 

!!(k) = - [~T~(k+l)~ + ~] ~T~ (k+l)~ 

~(k) = t':T~(k+I)t': + t': T~ (k+I)~L(k) + Q(k) 
- - -

for k = N-I, N-2 ••• 0 

Where 

~(N) = Q(N) 

BTW(k+I)B + R 
= = = is required to be positive definite for 

all k. 



IX. SIMULATION STUDIES 

9.1 Simulation Results for CVSS (Chapter 3) 

a. Scalar Control 

A continuous time unstable system 

0 .1 0 0 0 0 

. 0 0 1 0 0 0 
~ (t) = ~(t)+ u(t)+ f (t) 

0 0 b· 0 0 

12 16 1 -4 20 1 

having eigenvalues 

is simulated. 

First the switching plane 

(1) 



/ 
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is selected which results in new system eigenvalues 

that are found to be 

~l = [-1 -3 _~ T 

selecting another switching plane given by 

(2) 

the new system eigenvalues become' 

and when the performance of the two resulting new 

systems are compared, it . ~s seen that the system behaviour 

with the switching p;t.ane in Eq.l is faster than the behaviour 

with the switching plane . Eq.2 This verifies the design ~n 

of pole placement in VSS. Different switching planes are 

selected and it is observed that if it is desired to speed 

up the re~ponse of the system, switching planes having 

larger coefficients must be chosen which in turn require 

large controller parameters and as a result a large control 

effort is needed. Therefore, a compromise between the speed 

and the control has to be made. Much of the control effort 

is used at the inital time to force the states to come 

to the switching plane no matter whether the system is 



stable or unstable. 

The most favorable aspect of VSS is that in case 

additive noise is present in the system and the parameters 

are varied, the response of the system doesn't change 

as it has been verified by simulation studies. 

b. Multivariable Control With Control Hierarchy Method 

The Following plant-

~(t) = 

o 

2 

o 

o 

1 

1 

o 

2 

with switching planes 

o o 

3 0 

o 1 

3· 3 

~ (t) + 

o 

1 

o 

2 

o 
2 

o 

1 

[::] 

is simulated. The aim is to regulate the states xl and 

x3 with inital conditions. 

2 

0 
x(O}. --

2 

0 
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First, the hierarchy sl+s2 is imposed and for the 

controller 

i = 1, ••• 4 

j = 1,2 

the following controller parameters 

8 

-2 

8 

-3 

are used. Then, the hierarchy is rewersed. i.e. s2+sl 

and the controller parameters in this case are 

-1 

5 

-2 

8 
-4J 
14 

Observing the simulation results shown in Figure 

82 

9.1., we see that response speed changes when the hierarchy 

is changed. 

Furthermore it is observed that when the hierarchy 

is changed the roles of the control inputs are interchanged, 

al though the values are not -exactty the same due to the 



different parameter values .determining the control inputs 

\ as derived in detail in Chapter 3. As mathematically proved 

in chapter 3, when the hierarchy is changed, the bounds for 

the controller parameters are different in each case. 

Simulation results have also verified that in case 

the hierarchy is sl~s2' sl converges faster, while in the 

reverse order s2 converges. 

9.2. Simulation Results for Model Following VSS (Chapter 4) 

a. Model Following 

An unstable plant given below. 

o o o o 
. 

83 

~ (t) = a 

1 

O· 1 ?!'( t)+ 0 

10 

u(t) + o f(t) (3) 

-4 4 1 1 

is desired to follow the model described by 

a 1 0 0 

xm(t) = 0 0 1 x (t) + m a ret) (4) 

-6 -11 -6 6 

Inital conditions are x 
= nJ x - m -p -m -
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A switching plane 

is selected. The controller parameters used in the 

simulation study are 

T 
t2 -2 -2 -2 -1 -1 -3J C1 --

(5) 

T 

= [2 lJ S 2 3 3 7 5 

It is observed that whether noise is applied or 

not, the system behaviour is almost the same. The simulation 

results where noise is added into the system are tabulated 

in Table 9.2 

b. Model Matching with VSS 

In model matching as explained in Chapter 4, a 

plant is controlled by a reduced order model without 

using model following control theory. 

The same plant described in Eq.3 is simulated using 

the same switching plane as a function of the plant 

states, not being the function of the error states as 

in the model following case. 

set) = [12 7 ~ x'(t) , p 



A new switching plane 

s' (t) = s(t) - 12 ret) 

is selected where ret) is the r~ference trajectory. If 

stet) = 0, then the reduced order system equations are 

in the form given below. 

(6 ) 

The controller parameters are 

T [-3 -5 -5J a. = 
',. 

,. [4 3 ~ f3 = 

It is seen that the controller is simpler than 

the controller used in model following cases. Moreover,. 

in the two cases xpl is desired to track ret), in model 

matching case the speed with which xpl tracks ret) is 

higher than in the model following cases since the plant 

is forced to behave as the system in Eq.6 which is a 

reduced order model. In cases where r(t) has a sudden 

change as shown in Figure 9.2, the deviation of set) 

from zero becomes large and at that point a larger control 



value is needed as compared to the model following case, 

since it is necessary to make set) = 0 again. 

9.3. Simulation Results for Disc~ete Time VSS (Chapter 5) 

a .. Scalar Corttrol 

A discrete time system given below 

~(k+l) = 

1.00 

0 

0 

7.20 

o 

o 

0.1 

1.0 

0 

5.40 

+ :' f (k) 
o 

1 

with a switching plane 

0 

0.1 

1.0 

0.1 

s(k) - [60 47 12 ·IJ ~(k) 

0 

0 
~(k) 

0.1 

0.4 

o 

o 
+ u(k) 

o 

2 

is simulated. The controller parameters satisfying 

~(ktl) - S(k~ • s(k) < 0 are evaluated and the'following 

conditions for a and S are found 
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T 
~ = 5.7 2.2 o .~ 

In the simulation study, the results of which are 

shown in Figure 9.3.a, the following v~lues for a and 

(3 are used. 

3.67 -0.1 

6.00 -0.1 
~ = S - , 

2.50 -0.1 

0.40 -0.1 

It is observed that if large values of a and S 

are used, the response speed becomes faster. However, 

very large values may result in large deviation from 

s(k) = 0 and instability may occur. Therefore, while 

selecting the parameters values very large numerical 

values are not advisable. By large values, we mean that, 

if for example for 'a parameter a the condition is a > 3, 

values much greater than 3 shouldn't be used. 

Furthermore,one should be careful while selecting 

87 

switching planes having large coefficients because inita11y 

they may take very large values and ;consequently it may 

take much time to reach them, res,u1ting in slow system 

response. 



The noise in Fig 9. 3 .:.i~:' is added into the system 

and as it is seen in the same figure the response is 

almost the same although no additional term for counter-

acting the noise is used and the same controller, parameters 

are preserverd. It is ,seen that in the noisy case the 

control input changes polarity at different instants from 

the noiseless case control input. 

b:~ Hu1 tivariab1e DVSS 

The plant given below 

~(kf-1) -

1.00 

o 

0.6 

0,1 0 

1.0 0,1 

-0.1 0.6 

with a switching hyperplane 

~ (k) _ [2 3 'lJ ~(k) 
610 

o 0 

x(k)+ 0.1 0 

0,2 1 

o 

+ 0 f{k) 

1 

is simulated. The following controller parameters are 

used. 
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~~ 7 

7 

:J T 

~ --
1.10 

T [: -0.2 -0.2J 
~ = 

-3.0 -0.7 

The simulation results are shown in Figure 9.3.b. 

Although not shown in the figure, if the hierarchy is 

changed, the response speed of the system changes. 

Moreover, selection of switching hyperplanes resulting 

in new reduced order system equations having faster 

eigenvalues increases the response speed of the system. 

The noise added into the system doesn't effect the 

stability of the system behaviour even with the same 

controller parameters used in the noiseless case •. 

9.4. Simulation Results for Stepwise Adaptive DVS Control 

(Chapter 6) 

a. Scalar Control 

A discrete time system 

1,00 0,1 0 0 :0 0 

0 1 0,1 0 0 0 
~(k+l) - ~(k) + u(k)+ - 0 0 1 0,1 0 0 

1,2 1,6 0,1 0,6 2 1 
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f(k) 



with a switching plane 

s(k) = [60 47 12 ~ ?S(k) 

is considered. It is desired to bring s(k) = 0 in 6 

steps. The initial conditions are 

1 

o 

o 

o 

therefore it is easily found that ~ = 10: The control 

vector is 

us(k) "" [-0.6. -3.8 -2.4 -O.~ ~(k) - 5 

ua(k) = [-0.6 -3.8 -2.4 -o.~ ?S(k) - O.Ssm(k) 

In the first example, noise isn't added into the system 

i.e. f(k) = O. The simulation results are shown in Figure 

9~4.a. Although the desigp procedure does not require 

any particular noise model or noise statistics, in this 

simulation a Gaussian random noise shown in Figure 9.4.b 

is added into the system and the adaptation procedure is 

applied. It is observed that the ·system behaviour is 
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almost the same with the noiseless case. The only change 

is in the control input. 

Besides, although not shown in the figures if the - . 

step value ~ is increased with the objective to reach the 

switching plane earlier, the response of the system becomes 

faster whereas the control input increases slightly. 

b. Multivariable Control . 

A discrete time system 

," 

1 0,1 0 0 0 0 0 
.' .' " 

0 
.. ~ .. 

1 0,1 0 0 0 

[:~+ 
0 

~ (k ... ·l) = x(k) + 
0 0 1 0,1 0,1 0 0 

1,2 '. 1,6 0,1 0,6 0,2 1 1 
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f{k} 

with inital conditions x (0) = [~] is simulated. The switching 

hyperpalene and control vector are 

=[:: 47 12 

~J s(k) ~(k) , 
12 1 

[:.2 -35 -12 
-1 J [::j ~(k) , x (k) -

41.4 12 0,6 

The above control has a step vector , = ~ 6 J which 
3,5 . 



meanslthat ~(k) = 0 is desired to be achieved in 10 

steps. 

In the first simulation example shown in Figure 
". 

9.4.c no noise is added into the system. In Figure 9.4.d, 

the results for the noisy case are shown, In that case 

the ,control vector is 

,g(k) = [, 0 

. -1,2 

,-35 

41.4 

-12 

12 
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It is seen that the system behaviour is almost the 

same in the two cases. LBy the adaptation procedure every 

time the cumulative error is eliminated, except in the 

interval from k to k+l. This results in a small deviation 

in s(k) from zero. This small deviation doesn't effect the 

state behaviour. 

Another interesting point that should be mentioned 

is that if it is desired to come to the switching planes 

in different step numbers, it is observed that the response is 

different in each case. 

Although not shown, a noise vector d
T = [0 0 1 lJ 

is used, and again the simulation shows that the stability 

of the system isn't effected. 

If it is observed'care£ul1y in DVSS, although the 

adaptation is inherent, the deviation of ~(k) from zero 



is much larger than the deviation in Stepwise DVS. This 

is because in the stepwise DVS we·~controL the step size. 
- .. \.J,.....- ~-_--

9.5. Simulation Results for Model 'Following DVSS 

(Chapter 7) 

The discrete time system 

x (k+l) --p 

1,0 ·0,1 o 

o 1,0 0,1 

-0,4 0,4 1,1 

o 

X (k)+ 0 
.-p 

0,1 

is desired to follow a model described 'by 

1,0 0,1 o 
o 1 0,1 

-0,6 -1,1 0,4 

The initial conditions are 

-1 0 

x -p = 0 ~m = 0 

0 0 

A switching plane 

s (k) - [3512 lJ ~ (k) 

o 
x (k) ,+ 0 
-m 

0,6 

is selected •. It the end of 7 steps, s(k) = 0 

u(k) 

r(k) 

o 

o 

1 
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f(k) 



is desired to be reached_ i.e. se = 5. 

The simulation results where f(k) = 0 are shown 

in Table 9.5. In the case where noise is added into the 

system, although there is little deterioration as compared 

to the noiseless case, the convergence of the plant states 

94 

to the model states is perfect. The success of this adapta-

tion is quite remarkable considering the particular extreme 

case simulated, where the additive noise to the system has 

values as large as the state values. 

9.6. Simulation Results for the Minimization of the 
. . 

Switching Hyperplane (Chapter 8) 

The following discrete time plant 

1.0 0,1 o o 

~(k+l) = o 1 0,1 ~(k) + 0 . u(k) 

0.6 -0.1 0.6 0.2 

is to be regulated by·a control input minimizing 

.:rO T' T 
J = L ( s ( i) s ( i ) + u Ru }) 

i=l 

where R = 0.25 

In the simulation study performed, several switching 

planes are selected.It is observed that the smaller the 



/ 
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eigenvalues of the new system,.the faster the regulation 

time is, verifying our design approach. 

In order to check the va1.idity of the desig.n 

procedure a switching plane s = [-12 1 ~ x(k) is 

selected which results in an unstable reduced order 

system with eigenvalues ~1 = 1.1 and A
2 = 1.2. It is 

observed that although s = 0 is reached, the state 

value increases as expected and reaches the value 25.16. 

These results suggest that some care should be given to 

avoid condidate switching planes which may result in 

unstable systems which can not be regulated. In Table 

·9.6 the simulation results are shown where s(k) = Q.2 7 ~ 

~(k) 
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CONCLUSIONS 

The use of variable struct~re systems theory for the 

establishment of a sliding mode in a control system is effective 

in lowering the system sensitivity with respect to changes 

in the parameters of the system and the external disturbances. 

It should be remembered that complete invariance is achieved 

only when the system is in a sliding mode. The duration of 

the transient up to the hitting of the sliding plane should 

therefore be kept as small as possible. This has been made 

possible by the stepwise discrete variable structure controller 

by which the step number to reach the switching hyperplanes 

is set a priori. 

The design technique is straightforward and requires 

little computational effort. Most designs can be carried out 

without any computer assistance. Besides, the design procedure 

doesn't require an exact knowledge of the system parameters. 

However, the control algorithm requires a precise knowledge 

of almost all of the states, because the switching plane 

value which is a function of the states has to be known so 

that decisions can be made on the controller parameters in 



discrete time variable structure systems and adaptation can 

become possible in stepwise DVSS. 

Another aspect of the sliding mode is the inevitable 

chattering on the sliding plane. In order to minimize this, 

the system sensors should be designed carefully, not to allow 

too big deviations of the representative point of the system 

from the sliding plane. This has also been ensured by the 

adaptation, procedure in stepwise DVS. 

At the initial times before hitting occurs, increasing 

the values of the compqnents of the step vector results in 

a better response speed and the insensitivity to plant 

parameter variations becomes better. As already mentioned, 

this is made possible by the stepwise DVS controller. Since 

no control on the stepsize is involved in DVS controller, 

this improvement of the insensitivity can be made possible 

by increasing the values of the controller parameters. 

However, after hitting the switching plane large parameters 

result in large deviations from the switching plane which in 

turn result in parameter sensitivity. Therefore, it is 

advisable to use stepwise DVS controller until the state 

values decrease to a predetermined small number and then 

DVS controller is applied. 

The simulation studies have shown that in DVSS more 



control effort is used as compared to the stepwise DVS 

controller. This is because in stepwise DVS, the stepsize 

is controlled and adaptation is made according to the 

deviation from the switching plane so that the control effort 

is used optimally. 

It is also advisable to use stepwise DVS controller 

in multivariable control since the step vector values can 

;easily be adjusted such that the switching planes can be 

'reached at the same time or in a hierarchical order. This 

isn't possible by DVS controller since in DVS a hierarchy 

is imposed and according to this hierarchy, the design 

procedure is carried out. 

The most favorable aspect of DVSS and stepwise DVSS 

controller is that·they are on line, real time and adaptive 

procedures and can easily be applied to both regulation and 

tracking problems. 

If the simulation results of VSS is compared with 

optimal control, it is seen that more control effort is 

needed in VSS. This shouldn't create any problem since the 

control effort is obtained by using state feedback. 

Moreover, the plant parameter and external disturbance 

insensitivity fails in optimal linear regulator design. 



In such cases, the use of Kalman Estimator is needed which 

is a more sophisticated control-algorithm as compared to 

the VSS control algorithm. 

In time optimal control problems, switching hypersurfaces 

are required to b~ reached as in VSS system. However, in time 

optimal control, an analytical expression showing the behovior 

of the phase trajectories for different control inputs has 

to be known, which is generally difficult to obtain for 

higner order systems (n 3). In VSS, a it is sufficient 

to select an arbitrary switching hyperplane and adjust the 

coefficients of the switching hyperplane such that the 

resulting system behaviour is stable. This is made possible 

by simpie sUbstitutions without requiring knowledge about 

the behaviour of the phase trajectories. 

Although the adaptation introduced in stepwise DVS 

controller works very nicely, it suffers in the interval 

between k and k 1. For further research, it is advisable 

to design a controller predicting the value of the switching 

plane for the next interval so that s{k) = 0 is perfectly 

achieved. As a matter of fact, the deviation of the switching 

plane value from zero is an information. It is advisable to 

study whether it can be possible to make identification by 

using this information. 



The establishment of discrete variable structure 

controller opens up a new horiz.on to the digital control 

field which should be looked into in more detail. 
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on 901 n J=J,TSrT 
SU;.=SU;;+:.,8S (Uel »';'\'_1.,1 

901.') COi'~Tl :IU"-= 

·90J.1 FfHI'I,T(J5X,' iDTf;L >!i:JGHTeD cniHkOL EFFORT =' ,Flu.:",/) 
C Cf,L(:!JL/.\nil'~ OF j-,:\X t.!]) :;li~ CGUlfWL EFFORT 
C INITlf,LTzr LOOP If,!D;:X i>.i'Ji) G~L:r'.i 

1<-:. 
GRt:'~T=U(l) 

1=1+:i. 
I F ( j 4 LT. I S [ -;) G [J TO 9" i.. 2 .. 
:.; ~ 1 T r: ( b , 9 '''1 .~ ) G R r: ! T 

9~'13F!J;:·:/.\:(]~X,' ·i.Xl"U·: P[:SlTIvL v.'·.UH: UF U=',F}".5,1} 
1=2 
S :~ I., L L ::: U ( 1. ) 

1=1 +i 
I F ( T • LT. 1 S .:: T ) G 1) T ~j 9 "t 1. ~ 
;-! ~~ J T": «() ,q :":L "') S' . / L L 

90!.S F(IP'"(T{E,y',' '~5..;<l"U'; HI:G;.Tlvt: \ULUL DF U=f.,Fl.(·',5,/l 
STU P 
:: ~lf) 
S lJ 2. ~~ u liT r; j ~ ,. U ' .. ; (,' . ( 1 ,: IS, :-; L. , h , f'i i , Y 1 ) 
C :k .: lj'U '. H ":: T I ,xc <; , F· '-'\ ) , ~) ( J..J ) , G t·; ( J.-~~;;; ) 
C D i ~ !' li ;.1/ !: Y 1':, .: / f ( -L'; , :' •• -.) ,[. ( :.. i) ) 

D T I , 1= >; 'i I ntj T ( ) ") , Y T ( 1.;. ) , U~, Cl 5,J :-, ) 
DO 1:,1 T=j~I;;, 

un! ;~ ? .J = }. , t. ;'. 

T(l )=T{ T)+.::.(i ,J)':Yl (J) 

;,;."2 cnJ~TJ ?~lV 

1'\ 1 C fli!TI 'WI: 
un?,::> T = 1 , :.; i'. 
T (I ):: T ( T ) +:~ ( r ):~ U S ( K ) ... ,) ( r ) :It Gr·, ( !<. ) 

2"2 cnilTI!JU~ 

D n 1 t..' ~ r = J., r~;\ 

y ! ( I ) ;:: x (1 , ... ; ) + Hl. '~d yo T (I ) 
1.:)3 CO.-Hi r!Ur: 

!{ '=T Ui~:l 
E ;·ID 



en;.: :J;,1/·.'·:1 '\~T/FX( ~), 1:,'-~. ) 
D r r\ r i ~ S I ('1.:./ C i,) l ) ,; ) , T t, l{ 1 ... ; ) , T i~ rj ( 1,_ ) , l' L F l ;. ,-: ) 
V (10;,)=(\, 

D 0 J 21 J: = 1 , ~~ 

V (1'\ )=V( K) +CR( J) :"TEX (l ,I<) 

1.21 COrHH!u r 
D 0 12 2. I = ~_! :1 
p =V (K H' n~ x ( J , t<) 

IF ( ? ) 2 b'), ? b ('. , Z 65 
2h(: TAL(I}=T[B(I) 

G;1 Til 112 
265 TAL (1 ) =Tl F ( Il 
1.22 CClrJTlNUr: 

I F ( V ( K) • LT. [' .. ) G 0 T~) 12 j 
DEL F j .. = -1. 'leT r: L 
GO TLl -le't 

1.23 DELFA=Tf:L 
124 YU(K)=0. 

D (1 12 5 J = 1., !-·1 

Y U ( K) = Y U ( to + T ',L {I H: n. x ( r , K ) 
.I. 2 5 C fEH! :·JU r

YU(K)=YU(K)+UELFA 
RFTUUl 
ENO I 
SUSRUUTHi[ PLLlT(Xf>.X'Y!'.X,fiP,X,Y,D0T) 
o J t. r.: t·J SInN x (,) : >1 P) ,Y (u : t: P ) ,X r-JU U ( ;, : ~,~) ) , Y N U(: (Q : 1 2 (; ) 
C ri.'; R,~ C1' ~PJ: 1. P (L; : 48\.' ,~.: : :.!.;: ) ,)U T, H.\ Y ( 2) 
CH4khCTE~~10 ~0TLIN(15) 

CH/~Ri,CTfI.(. -'tj HLS C::) 
CHhRACTFR"'3 H~::l(Z) 

D ,q~. S x ,-c J, X, S Y ! :, X ~ x;·: r:;\ :; , Yi ~E t. :.: / 11 • , 4!:if; ~ rt. ,\.: • 1 
o ,It T b. Hi( Y I I X t, t y r 1 ~ H LS / I Li. fZG i? I , f S .-, !'L L I / , H\ :11 'i',!:. X I , ' i" J I~ , / 
DAT,~. P,SCJTLLJ/5'd53f" ',lS""-~·-----··-+'1 

1 F C X/~ X~ GT "S Xli ~.X} Tli E:'! 
l·nn T L ( b , 9 :') Ii X Y ( 1. ) , ~ lL S ( 1 ) ,S Xi 1,. X d . :. { 1 J 
xtx =5 X;·~ ".X 

E"lLl IF 
1 F ( X ,\1." L T ,. 3 c) T H t: i.i 

H R 1 Tf.. (6 ,9 .--' ) H XY (1 ) , HL :; ( 2 ) ,X..\ x , Hi:; i ( L ) 
t: NO 1 r: 

. 't;) I F ( Y P. x to G T • S Y, t· X) T H ;::: ! 
A re. I It: ( 6 , (n', ) il X Y (;~ ) , HL :; { U , S Y ~ it,',.: , Ii . ,( J. ) 
Y t, X = S Y; i 1, X 

I F ( Y':, X .. l. r c 1. :» T~n:;. 

Yt.X=lc:o. 
;~ R 1 T l:: (n ,9 (' ) H X Y ( ;~ ) , H L S ( ?) , Y h. X , ~,jF, : ( ;; ) 

t: ~\IJ I F 
4.L j{ X= X~~:<.;. L,. - :,. 

Y Y::: Y i·. X'':- ) 'v .. - J q 

X :1 J hi = X ( .', ) 
yl~lN=Y{-') 

X "!;i, X= ~ ( r\) 
Y :;l. X = Y ( ~'l ) 

n 8 1 7 I = 1. , !~ 1')-1 
1 F { x ( I ) • L T .. x>; ij ) X:. I r := x ( 1 ) 
IF(X(!).GT~Xi;pX) Xh·\X=X{l) 
IF{YCT).L",.y:,J;i) Y::I:i=Y(l) 
1t;=(Y(J).GT.Y:·,,:'X) Y;c.,\X=Y(1) 

i7 CCli;TU!U~ 
IXtlCl=XX/l(;+) 

·lYr-l'.l=YY/o+l 
... 2 ~ • . " . 



C:·LL ::C'L-'(YY,Y""X,Y, i,~,lY;,::i,H"to.,Sf-Y,y;:U",y !::.';"F2) 
on, 6 J =-",,!P ·-1 
X (1 ) = X ( T ) / S F X + 1= 1 .. X, F i, :~ / S P ,x + '~~ 5 
.y ( 1·) '" Y ( J ) / S F Y + F 2 + Y N -;: lJ'./ Spy + r:.. ::; 
J X? = I F I X ( ~< ( j ) } 

1 Y? =! F 1 X ( Y ( r ) ), 
6 '1> ( 1 Y? , J X r) } = ;J ::f T 

}·j:{l Ti. (t" '14) 

r ~ ? f~ ::< = r X fliJ ,t 1 :', 
t,!PF:.Y=1Y'W""6 
;~ R I T 1: ( 6 , S 3) (X , .. ; U 1', ( J ) ,I = (> , 1 ;( :.~ (1) 

l~RITE(h,5n (Bt1TLIU{ 1) d=1,lXi4iJ) 
K =(j 

L=6 
o n 8 T = (', r ,! PRY 
I F ( L .. F Q .. 7) T H Fr.l 
L=l 
K=K+l 
E U[J r F 
IF(L~J:Q.,b) TdF.~'~ 

,j R I T L ( 6 , ,'3'") , Y I,IU ., ( K ) , { ? ( I , J) , J = '" , ! ~ P LX} 
E LS r 
\'1 R IT:; ( (; , (\ :t.) {P ( ! , J) ,J =;J , !'l P k X ) 
E 1··lD IF 

,8 L =L +1. 
RFTU~~!J 

9 4 F n~; .; f., T ( l:i I I I / 1 H ) 
9 t: F m~ ~.: ,:.. T ( I / 1 X , • ~ i ~ t,!.( III lJ G :~ SCALf FkCTOR GIVEN FOR I,~l, 

& '("XIS IS TOt) , , J. 5 n .. 1 X , I r T 1 S " Fit. 1, ' ( I , ;\ 3 , I 

l. S S U ;0, Fr). ' ) 
au Fl:lk;;:~T(?X,::8.;>, '+',t15/~2) 

en F m~ " ; 0 T (Jf. X! r I r , Ll ~ /, 1 ) 
f3 2 F D~, : ' i, i { l.i. ,(, r + ' , 11 Ai·'" ) 
8::; F n r.: ~~ h T ( 7 X ,1 ? E- j '} • :-: ) 

5 U b r:: Cl U T hi::: S C t.L ::: ( T T , T: f.; X ~ L', r fl , 1 'w , C 1 ~ C Z ,SF 1 ,1 I,) LP' , T N f:J P" F ) 
LJn::uS10;~ iTU .. (-'~l.;::'-o) 
J F ( T i , I "i • Gr. t,:) T H ~ ;.; 

S FT =T ;';'. :<1 iT 
F ::',' ~ ~. 
0(1 ? j=,-,~ T'n 

. 2 P~U"( 'j) =C7=:>:j:j.::FT 

~ F: T iJ f~ i·" 
t.= LS t: 

S 1=1' = (T,. ,: x ~··i o) r:) I ( T1 ~C 1. ) 

F =j, 2. > (T ~'l ;;) /:3 n +C J. 

3 T !·iU" ( r) =C 2.;:. J:; :,1= T-F', SF T 
1 F ( T, i," X ~ G -:- " -' •. ) T:1,;.,~ 

fJ n 't J = (:, T ~,l q 
I F(T:.U:, (1 ). Ci .. ~,&() Tri;"~ 

T ~ J L: t. f: = T 'li.l ' ( J ... J. ) 
Dn ~) ~:=n! LW 

~) T '\lU ~.' ( K) =-I')U 0' ( 1\).~ 1 :.,i L ,'\!' 

R r:T lk t! 
l;:E; IF 

"t C~;iTHld!':': 

E:~:J IF 
E :'1Li 1 F 
~~ ;: T U i ~ ~·i 

[ ;,l[, 

16 ./l ,}. 1."1 ~ U C L?, t..!:... P : <-{ 



APPENDIX B 
P R D G R ,~ : IF!: to{ ( E i' A ~, r·n "~;.; , T /" P ~ 5 = E P i.. R , T s" ? E 6 = ~W :~ ..... ) 

C ii 0 D t= L F t. L L 0 q It 1 G V Il, K U, 8 L r s n. U C T U R ~ S Y S T FilS I it U L /J. T ION STU 0 Y 
o If, [ N SIn r~ t-. L F (l (\) ,a E ( 1 oj ) , C ( 1 u ) , S ( h. (\ U ) , U ( U: n u ) , A L ( 1 (') ,R f F ( H) (, I 

o It, F N S 1 /l N ' v 1 ( !t. ) , v i: (l () ,v 3 ( 1 tj ) , V '-i (l (1) ,U: ( H' ) , Y ( 1 \J ) , H R 0 R <' lL- () (' 
C Oil i'(HU D.L I I X,': ( 5 ,1 f),1 -1) ,.t\ i; ( hi , 1 r; h b ;;;, ( !_ (; ) 
ca,i f':U NII,j,; II XP (5 ,1 ij0:') ,A P l 1\J , H') d P ( 10 ) , G;~ ( 10(: til ,[) ( 1 n ) 
D I h r IJ S 1 or J TAP ( 1 50 ) , T 1\ bq 1 ~ n) ,T t, t: LL 5 (. ) , B A l( 15 (\ ) 
K =1 

NR=7 
RfAD(5,~)N,H,R,ISET 

C INITAL CuNDITIONS 
R E/.; D ( :;, :of:) (X P ( I , 1) , 1 =1 , N ) 
R E/\ 0 ( 5, >;<)( X~q I, 1) d =1 ,tn 

C SHlTCHING PLAtlE PARf\r:FTf:RS 
READ(5,"') (~(l ),I=l,N) 

C VSS CONTROL PARA~fTfRS 
REA D ( 5, *) (A LF CI ) , 1= 1, i>JR) 
READ( 5,>!t) (BE( 1),1 =1 ,:'~R.) 

C INPUT Vl:CTORS 
R fi', 0 ( 5 , :;,) (B P ( I ) , 1 = 1 ,N ) 
R i: t,; 0 ( 5 , ,;,) (B R ( I ),1 = 1 ,[0; ) 
R E ,f.. 0 ( 5 , *') (0 ( I ) , J = 1 , r~) 

C SYSTE~'; E. !;:UDEL i-IAn:IC[S 
K :: Ie. 0 ( 5 , ::<) ( ( AP ( 1 ,J ) , J~ 1, !'J) , 1 = 1 , N ) 
REt. D ( 5 , i~) ( ( ,\; ... ( I , J ) , J = 1 , t'J} , 1 = 1. , 1'1 ) 

C 'RtfFREUCi:: H~PUT 
REF(1)=2. 
DOlt 0 () 1 = 1 , 2 00 
REF (1+1 )=REF( I> 

"t (ll.i CO:'lT 11'1 u r-
oo 4 if, I=ci.Jl, Lji,J('o 

REF ( I T 1 ) = RE F ( J) 

4111 C Ol·j TllJu r:: 
DO 42 r: 1= 40 1, SCI~' 
R':F <I T.L )=(l~ 

'teO CONTINU~ 
C R AiWG ;': till IS E GE ['Ii.: Rt. Tl O1,j 

1 S= 45 6 
C/.LL R,·..1.JSET{IS) 
00 43;") J = J. , r S [I" 
GN( J) =RrNF( ) 
I FtGi'l (1 )-0. 5) 467,46'7,468 

,,467 GN(I)=-J>:'GNO) 
G f) TU Lt 30 

4 6 8 G N ( I ) == G t! ( I ) 
43C· CO;~TH1Ur: 

c- VARI~BLE STRUCTURE CONT~QLL~R 

7'0 R=rzF.F(K) 
00 2 J=l,N 
E R ( J ) = X"·; ( J ,K ) - x P ( I , K ) 

2 C nrHl fWr
ERROR(K)=XriCl,Kl-XP(l,K) 
S(K)={\. 
00 3 I=l,N 
S C K ) = S t K) + C ( I ) * r: f·'. U ) 

3 COiHlqUF 
DO 4 I=].,N 
Z =s (K >* Ff.: (I ) 
1 F( Z) 20 ,2(",2, 

2u AUI)=df(I) 
GO TO 4 

25 A L ( I) =1; LF ( I ) 
4 C Oi'IT1 I'lUF 

00 7 1=1,1-1 
t _" . ....&....,..1 



IF(Z)3i;,3;1,3S 
30 ALCU=SF(l) 

GO TO 7 
35 AUU=ALFCL) 

7 COiHl NUE 

Z=R*S(K} 
I F ( Z ) 60 ,6 i1, 65 

60 AL(NR)=9E(NR) 
GO TO 9 

65 AL(NR}=ALF(~R) 
9 U(K)=(I. 

00 lU l=l,U 
J = 1 +i~ 
U (.K ) = U ( K) ~ ( AL (I ) * E R <I )+ AL ( J ) * XP (I ,K ) ) 

10 CONTINUE 
U(K)=U(K)-(AL(NR)*R) 
DO 11 l=l,N 
VUIJ=O. 
o 0 12· J = 1 ,t~ 
V 1 ( J ) =V 1 ( I ) +J;.. Ii ( I , J ) ::rX H ( J , K) 

J.2 CON TII-JU r 
11 CONTINUE 

0013I=1,N I. 
V l( I ) = "J.( I ) + BR ( I ) * R 

13 COI'ITlr~UF . 
HL=f).5 
DO '14 1 =1 ,N 
Y <l ) = XIi( I ,K ) + HL *H.* V l{ I ) 

14 CONTINUF 
C AL L :iO D ( V 2 ,K ,H L, H , !~, Y, K) 
HL=l .. 
CALL KOD(V3,R,HL,H,N,Y,K} 
CALL MOD(V4,R~HL~H,N,y,K) 

DOl:; I = 1, i'i , 

... 

XH( J,K+l)=Xi:(J,K)+(H/6 .. )';-CVl(I)+2.>i-VZ(I )+2.*V3(I)+V4( 1» 
15 CONTlNU~ 

o 0 1 b 1 = 1. ,~j 
VIlJ)=iJ. 

··00 17 J=l,t~ 
V 1 ( J ) = V 1 ( ! ) + A P ( I , J ) *X P ( J, K) 

17 CONTI NLIE 
16 CONTliiUE 

1-1 L= n. 5 
DO 15 1 =1 ,i'.j 

V J.( I ) = V '1 ( I ) + bP ( J ) * U 0:, ) 
18 CONTlI'IU~ 

DO 44(; I=l,u 
V l( r ) = V U I ) + 0 ( I H' G!\ (i\) 

440 COiHINUF. 
DO 11. 8 r = 1, !~ 
Y C1 )=XP (I ,K)+HL*H':'Vl( I) 

118 . C Oi'H 11'IU F 
U S=U ( K) 
CALL RUNGA(VZ,US,HL,H,N,Y,K) 
HL= 1. 
CALL RUNGA(V3,US,HL,H,N,Y,K) 
CALL RUNGA(V4,US,HL,H,N,Y,K) 
D O. 19 I = 1. ,!'l 
X P ( I , K -to 1 ) = X P ( I ,K ) + ( H / 6. ).;, ( V l( I ) +'2 • * V 2 ( 1 ) + Z • * V 3 ( I ) + v 4 ( J ) ) 

19 COlHFW r . 
K=K+l 
·1 F ( K'it L T .1 SE T) GO TU 7 {\ 
vi R I Tl: ( 6 , 779 ) 
~IR ITt ( 6 , 7 7 a ) ( U ( I ) , 1 =1 , I S E Tl 

'U 



-17'1 FOk~Jf.ID5X,' Ttir-EV,l,LU;.TtD V~.L0r:S UF 'ISS CiYJ1RUL j',//} 
J K=:(\· 
08 5ul I=1,I5tT,20 
JK=JK+l 
S ( J K) =S (1 ) 
X? ( 1, J K ) = xp (l ,I ) 
X :.l( 1 , J K ) = X 1\ <l ,I ) 
ERROK(JK)=ERKOk(l) 
RFFeJK).=KFF(I) 

501 CONTI~'!Ur= 
II RI Tl: (6 ,In))t,j ,H 

1('0 FORHAT(15X,' OKDE:R. =',T't,'INTl:GR',Fb.3,/) 
~~RITE (6,101)· 
W RI TE ( b ,10t> ) ( (A P ( I , J) , J =1., ~~ ) , 1:: 1, tn 
~IRITE(6,102) 

14 R 1 T E { b , 1 (18 ) ( (A ~.:c ! , J) , J =i ,N ) , 1 = 1 , N) 
WRITE{6,103) 
H Rl TE (6,1 '.18 ) ( BP ( I ) , I= 1, N) 
vlR-ITE: (6,1(14) 
~I R 1 T E ( 6 , 1 ~ 8 ) ( B R( 1 ) , 1= 1 , r-.J} 
,~ R I T E ( 6 , 1 r 5 ) 
W Rl TE (6,1 (la ) (C ( J) ,1 =1,!-.J) 
WRITi:(o,ln6) 
wRl Tt_ (6,908) (ALF( I) ,I =1 ,NiU 
dRI TE. (b ,1:'7) 
H RI TE (6 ,9 rl8 ) ( BE ( I ) , J= 1., NR ) 

908 FOK!';/.,T(7F5.2) 
101 FORMAT(15X,'SYSTE~ ~ATRIX AP::',/) 
1112 FO~U;I\T(l~X, '!-,\ODFLcl/\TRIX A}:=',I) 
103 FOkHAT(15X,'DUTPUT M~TkIX BP=',/) 
ln~ FORI';!,T( 15X, 'OUTPUT 'ikTKTX aR= I, /) 
105 FOfd'1/~T(15X, 'SHITCH1:~G ?LA~~E PARf..;ciETERS=',1) 
106 FOf\~;.\T(l':X:,'YSS C:JfFP,[JL PM.AhE1E~S .ALF=',n 
1.1)7 FORl>i~\T(15X, 'vss COrHROL ?ARb.I,FTEkS BE=','/) 
~n8 F8R0AT(J5X,3F12e4,1/) 

rl !::. I Te ( 6 ,1 ()9 ) 
1 (i 9 F 0 I~ :~ t. T ( 1 2 X, ';\ 0 D F L ' , 1 Z X, • t' L,\In • , 12 x, 'E K r: 0 R ' , 

:~ 1 2 x , ' S h r T C H Ir-~ G P L I .. ~n:' , 5 X! 'K.E F 1:: ~~ [= N C!::. ' , 5 X , ' NO J S [= , ,/ ) 

\'1 K,1 T ~ ( b , 1 1 () . 
111) FOK:~, .. I( lUX, 7 ... ,(' ~d), n 

DO 311 I=l,JK 
'"j R 1 T f: ( 6 ,111 ) X r-~ ( 1 , J.) ,X P ( 1, ! ) ,L R k or< (1 ), 5 ( I ) ,r F F { 1 } , G Ii ( I ) 

III FOK~hT{luX,F7~3,9X,F7.3,15X,F7.3,1~X,F7.3,lnX,F7.3, 
*H'X,F5.3,/) 

311 cmnllwr
XAX=7 
Y AX=13 
o 0 5 (; ('1 1 = 1 , J K. 
tL~L ( I ) =1 

SliD 1. CON Tl ;.Jut: 
\:/:U TE: ( b , !) :}J 21 

50!1i FORnAT( l~X,' THF: PLOT OF THE fh,P.OF.. 5l;\T:':: ;' ,I/) 
C~, L L PLOT ( ;< : x , Y l X ,IX, , c R F, 0 R , B t .. L , • :;-' ) 

S TGP 
END 
5 Uti ROUT r I'j 1: h\O Ll ( T, F. , HL , H ,H4 , !" Y ,K ) 
C Oh 1-: Ij N / AL II X r-; ( 5 ; 10L:'-1) , t, i, ( hI ,1 (!) ,8 F: ( 1 iJ ) 

D I I, t [~S 1 ON T ( 1 (I) ,t. Y ( lu ) 
DO 2 iJ ("\ I = 1. , n.!;, 
T(I)=(1. 

00 2111. J=!,rJ~, 
T (1 ) = T ( J ) + /; ,~( I , J ) *'A Y ( J ) 

2('\) C Dr'lT! ~'W F 
DO 202 I=1.~N.;\ 

(] )=T< J) +Bj::{ I).:<F, 



.' 

L ''I 2 C' UTi .j ,J ~: 
0021;3 J=l,f'Ii-, 
A Y ( I ) =;< ,l( I , K) + H L ,'I'!"" T ( 1 ) 

2 (\ 3 CON T liW r-
K ET UK:~ 

E ~"ll 
S Uf,KUUT T:~r- r.:UNGl (TR ,US ,HL ,H ,j'g, AZ ,K.) 
C Or-. Hi "i I f,!-i! I XP (5 ,1 N' j) ,,'. p ( 11) ,1 n) , t3 p ( lu ) , GN ( Hl\J 0) ,D ( 1. (» 
D ! h :: /'j ::; I fllj rru h) ) , 1:. Z 0') ) 
DO 2\.1'1 J= 1,N,;,. 
TR(I)=:J. 
DO 2u 1 J= 1,t·1t. 
T R ( I ) = TF~ ( I ) + A P ( J ,. J ) * t. Z ( J) 

2.(\1 Cor~Tl NUr 
LOu C OtH ItlU E 

DO 202 I=l,t~A 
TR{!)=TR(I)+BP(l)*IJS +D{l)¥GU(K) 

202 CONTlIJUJ:: 
DO 2i.:3 I=l,NA 
A Z< J } = X? ( J , K) +H L'F H>f. n: C 1 ) 

2[')3 COI'HP1Ur-
i< ET UR:: 
E t.JO 
SUB ROUT Tn t= PLOT (X!>.X,Y AX, f.lP,·x, yI, DOT) 
Q Hi E ;'.j S 1 (J .\1 X (r.; : q P ) , Y (tl : N P) , X Nun .J : 15 ) , Y t W!; ( li :l 2 u ) 
C HA RA CT r:R ~!.l p Hl : it 8it ,ii : 112) , DctT, HX Y ( 2) 
CHARACTER~10 BUTLI~(15) 
CHARACTfR*5 HLS12) 
CHARACTEi<.:;:3 Hhi'; (2) 
DATA SxwAX,SYHAX,XN~AR,YN~AR/ll.,~5.,O.,O.1 
OAT A H X Y I 'X ' , • Y , I , rl LSI ' L i'. t~ G F ' , ' S i i .t. L L.' I , Hi', I~ I 't~!, X ' , t f I r~ , / 
OAT}. P,$JTLHU54353*' ',15~"---------+'/ 
IF ( XA X ~ GT • S X,i, I.X) TH ':i~ 
rl R 1 T t ( 6 ,9 (') H X Y ( 1 ) , HL S ( U ,S At, l, X , H f'~:', ( i ) 
XAX=SXr;.~X 

GO TO <if' 

END 1 F 
I F ( Xt.~ X. LT. 3.) T HF i-J 
X"X=3. 
i~ R ITt: ( t.) ,9 {l} H X Y ( 1 ) , HL S ( 2) ,X t. X , I-lfl i~ { 2 } 
E!W 1;: 

4 u I F ( Y.:;. x • G T • 5 Yi; 11 X) T H F j,! 
,H:IT::':(b,9')) HXY(2),HLS(l> ,SYL:l,X,H!'di{l) 
YAX=SYhAX 
GO'TO itl 
E:'m IF 
IF(YJ.,X.LT.l.5) THr:i~ 

Y AX=!. .. ? 
.. I R 1 T 1; ( b , 9 n ) Ii X Y ( 2. ) , HL S ( 2) ,Y /, X , H :.; (i ( 2 ) 
t: ND 1 F 

LjJ XX=Xt,,:tr}I.'p-lc 
Y Y = Y i". X If. 1 \J " -I • 
X 1 a I'~ = X ( (; ) 
Y IH IJ=Y {rq 
X ~:AX=':' { r.} 
Y ·i;~X::. Y ( (1) 

on 17 I=i,'H'-l 
1 F( X( T}.L T. XI1I~'J) Xn Il~=X (U 
IF(X(T)"GT.X;,AX) X/,,\X=X{I) 
IF(Y(I}cLTeYi\I:~) YF,Jii=Y(l) 
IF(Y(j)cGT.Y:iIX} Y;,AX=YCI) 

. 1 7 C DIH 1 ilU r 
I Xi!O=XX/i(',+l 

I n;o=YY /0+1 . 
C L.L L S C l,LF ( XX , X U;\ x ,;<r, 1 [.J , 1 X >10 , 12 • , 1 i.: _ , SF X, X NUl. ,x N E P. L , F U 

(" r v' v, It I h ~ V ,I - • 



DJ b J=(",:JP-i 
)( (J ) = ;( e I ) IS F ,>( '1" F 1 + X r~ ?= /. R I 5 F X + (). I) 

Y Cl }=Y( I} ISFY+F2+Y(~::;..RISFY+<). 5 
JXP=lFIXeX(I» 
I Y? = 1 F I X { Y ( I) } 

6 P(lYP,JXP)=DOT 
i~Q,ITE C6,9 4 ) 

NPKX=IX"iu>,"lil 
NPRY=IYNO'':6 
(1 Rl TE ( 6 ,83) {X I~U n ( I ) ,I =0, I XN 0 ) 
,-J R I T E ( 6 , S 2) (B OT LIN ( I J , I = 1. , 1 X1-~ 0 ) 
K =\J 

L.=b 
DO 8 I=0,NPRY 
IF{L.EO.7) THEN 
L=l 
K=K+l 
E NO IF 
IF(L.Eu.6) THEN 
W ~ I T E ( 6 , 0 (, ) Y NU F ( K) , C P ( I, J) , J =0 , N P R X ) 
E LS t: 
... JRITE(b,81) (PCI,J),J=O,NPRX) 
E NO IF 

8 L =L +1 
RETUK~~ 

9q FORHATCIH 1IIIlH ) 
9 I.; F Q!.{'",.\ T ( I I 1. X , I ';: \ IlJ: N I ~I G ::' 

& '/~XIS IS'TOO 
& ) tIS SU~·:r. D. '} . 

s C .\ L EFt.. C TOR G I V F N FOR " {, 1 , 
',A5/11X,'IT IS ',F4.1, '('~A3~f 

8 '.1 F mu; i\ T ( 2 X ,E 8. 2 , I + I , n 5,!!.1) 
81 FOR.~';"T(lUX,'I·,115Al) 

82 FORfliIT<J.LX, '+',llAlf) 
83 FORI-IAT(7X,'1Zt:lu.2} 

END 
Slid P U U T TN t= seA L r: ( T T , 1 ':.t. X, T h I r; , l r~ f) , C 1 , C.2 , S F 1', T N U :~ , Tf~ [I:. f:. , F ) 
i) r I. E t~ S I [1:-1 T I..JU <.: ( .1: 121) 
IF(Ti\Ii'i.GI:.0~) TdEN 
SFT=Ti~AXITT 

F =U. i) 
00 2 I=n, 1:'1(1 

Z T ~~U n ( J ) ='C (' * H SF T 
RFTURN 
f LS E 
SFT=(TMAX-TKIN)/(TT-Cl) 
F =,.\ B S <T "l ;,n I S F T ~ C 1. 
DO 3 J=0, ;i'JO 

3 PWH I) =C 2:;< I¥SFT-F~': SF T 
IFlThAX.GT.';.rq THc"! 
D!') LI I = '" J .'i [1 
I F (nWr'i (1 ). GT • \). (I) TH '-t'l 
T i~L ,", K = T ~JU ',C 1-1. ) 
DO 5 K=~'l, jtlO 

:> TNU~(K)=nJuHI{)-TN.L:,r .. 
kETUR,IJ 
E NO IF 

4 COUTI NUE 
E NL. 1 F 
E "W 1 F 
RFrUf~N 

E f·Il) 
J.4.15&42.UCLP, l:.A, Pu3 



APPENDIX C 
PR()Gr;t·~ FEr~r:1 (I L, -Il.F:,TAPL5=AL,T!;PE6=V[F:) 
o I!-d: j\$l C!, X (i, ,l,J(;), S v.. (4;)0 j, S (400,4),f; (5), R (I., 4) 
D I r~ u. S ! 0 r; r-. (5 ,5 ) , J T ( 5 , 5 ) , Q ( 5, 5 ) , \~ (it iJ (J , 4 , 't ) 
D !f~ E /, ~ 1 U, LJ (4 Ci fj ) , ,C"l ( 5 , 5 ) , ,1\ HJ ( 5, 5) , A T \oj A ( 5, 5) , B Hi ( 5 ,5 ) 
D I :.: f: h S 1 .J 1i F T~: ,. ( :), :;) , E S ( :;, 5 ) ,,, T ~I ;;. S (5 , 5 ) 
!~ UK =, 
DATA ~,~R,lSLT,~,IFINAL/1,O.25,31,J,311 
DATA E1,l2/0.9,1 a Z/ 
DinA C1,C2,C3/-2.,-1.,1./ 
DATA 8(1),O(2),8(3)/G.,0.,0.21 
D A T I, X ( 1 , 1) , x «(' , 1 ), x C5, 1> 13., o. ,0 • 1 
{)f,TA A(1,1),I,(1,2),A(1,3)/1.,O.1,O./ 
o " T A II ( 2 , 1 ) , f\ (2 , 2 ) , f!. (2, 3 ) / 0", 1 • , 0 • 1 / 
DATAA(3,1),A(3,2),k(3,3)/U.6~-C.·1,O~6/ 

DATA Q(1,1),Q(1,~),Q{1,3)/1J.,+O.,O.J 

DATA ~(2,1),aC2,2),Q(2,3)/O.,11.,G./ 
DATA Q(3,1),Q(3,2),Q(3,3)/O~,G.,11.1 

C W(N)=Q(N)=ST(N)*S(N) 
.00 2 I=1,N 

DO 3 J = 1, i~ 
i~ (! S t ,., 1 , J) ;: Q (1 , J ) 

3 C O:~THWE 
2 CO~TINUE I 

C . T R .\, " .s P 0 Z i: . (J F r-j ,. T i<!X ;. 
DO 7 1=1,N 
DO 3 .J = 1 , :'{ 
ATCI,J)=t.,(J,!) 

6 CON T 1 N'U r. 
7 CC!nHW£ 

C A T* W (K+l ) 
7J 00 9 r=1,1~ 

DO. 1 C J =~ , ~i 
,f" T.i ( 1 , J ) = C • 
DO 11 L=I,F . 
ft. T.i ( 1, J ) = A T ;~ ( J , J ) + A T {l, U "'~! (I SET , L, J ) 

11 C O"Ji) iH! E 
1') C Gin 1 ~~U~: 

9 COHTJHUf 
C ( Ii T * ~ (+ 1 ) * t, . 

D (j 1".1 = 'I , i, 
no 1~ J=1,t, 
A 1;': A (! , J) =C, • 
DO 1 i., L=1,1'· 
ATWA(l~J)=AT~A(I,J)~AT~(I,L)*A(l,J) 

14 CO:~Tl:'i'J~ 

13 C OiH HiU::: 
12 C C ~n H, U ;: 

C B T * \.: h~ + 1 ) 
DO 15 I;:1,i~ 
00 1 t J =1 , tJ 

8 n) ( 1, J ) = C c 

DO 17L=1,f.] 
8 n! ( 1 , J ) = 8 T h ( 1, J) + b ( U .. ~i ( 1 SET, L , J ) , 

17 C 0 H T 1. ;'lU E 
16 corn hu:.: 
15 CO~HIHUE 

DO 1£ 1=1,L 

D(l 19 J=1,r-; 
eT~J=3T~2+~T~(1,J)*8(J) 

19 CO;'iTHiuL 
1:3 C \) ~ ! T 1 'iU ;: 

R I. = D ,. \J b + 1\ R 
n T ~.~ - f 1 I P I \ 



C 

C 

-'j 
L~ 

21 . 
20 

24 

['lO 2 C I =1 , i" 

DO 21 J=1,r J 

Fl T ,,! A ( I , J ). = [i • ' 
DO 22 l =1 ,Ii 
8TWA(I,J)=8TWA(I,J)+ETW(I,l)*ACL,J) 
CONTINUE 
CO;HINU( 
CONT I1W E 
! SET = I $ ET-1 
S O~) 
DO 2/1 J=1,1" 
S(~SET,J)=-1.*RIN*ETWA(1,J) 
CONTINUE 
B*S 
DO 25 1=1,N 
DO 2(; J=j,N 
BS(l,J)=B(l)*S(!SET,J) 

26 CONTINUE 
25 CONTINUE 

DC 2E I=1,t; 
DO 2<; J=1,N, 
". nls S <I , J ) = o. 
DO 3(; l=i,N 
ATWDS(I,J)=AT~(!,L)*8S(L,J) 

3:1· CO:~TIf.lUE 
29 CONTH,UE 
28 C C!'H lNU E 

C NEW ~,(K) 

DO 31 r=1,N 
DO 32 J=1,N 
W(ISET,1,J)=ATWA(I,J)+ATW8~(!,J)~a(I,J) 

32 C01HliWE 
31 COrH HlU S 

I F ( I ~ [l • G T • 1) G 0 ·T 0 7 [I 
I( =1 

C CO~T~OL U(ISET) 
71 U(K)=(j. 

DO 35I=I,N 
U «.) =U( K) +$ (K,I)* X-( 1,K) 

3S C o:n ltlU l 
C ST/,T[ VALUtS 

DO 36 1=1,1~ 
X (I ,t:+1 )=CJ. 
00 37 J=1,f-,: 
X (! , If + 1.) = X ( I, K + 1 ) +A ( 1, J ) * X ( J, K) 

37 cc:nTINur 
36 C OHTIrW E 

DO 5 ( 1 =1 ,i~ 
X<r,~+1 )=X<l,K+1)+8<l)*U(K) 

5J CO;'!Tl:WE 
Sw(K)=C1*X(1,K)+C2*X(2,K)+C3*X(3,K) 
K=K+1 
I F ( K • LT. 1 f I t~ A L) G [) 1 0 71 
~nnH:(6,S02) ~i1 

5 G 2 FOR 1'. f. T ( 1 5 X, 'M AT R I X. R', I ,1 5 X , • R ( 1 , 1 ) = • , F 7 • 2 , I I I ) 
IF(~UK.EQ.1) GO TO 5(5 
WRIT[(6,5JG)C1,C2,C3' 

5 CD f c:: rd·: j. i' ( 1 :, x, • s ya T C H 1 N G P LldH.; P fi. P'\ r\ ET E R S ' , I , i 5 x , 
$ , C 1 = • , F (5.. 4, 3 X , r ': 2 = • , F <3. 4, 3 X , Ie:; = r , F 8. 4, I I I) 

\1iUT[(6,501 )(1,£2 
501 ,FO~nf.T(15x, 't;Ei-J SYSTFi": EiGEN VALUES',1,1SX, 

'! • E 1 = f , F 8 II I", 3 X, • F. (: = I , F 8. 4, II / ) 
'585 DO 171 I=1,N 

~.J r. I T ( (6 ,1 :5 U) ( 1 , J , A ( I , J ) , J = 1 , I.; ) 
171 CQ'HH;U[ 



1 :3 ':' F O;~ .. , ; T ( :: U.;i.., • /, ~ I ,1 1 , I , I , 11 , I ) = I , F:5 • ? ,:3. ;(, I:~ ( I ,11 , I , • , r 1 , I ) = 
1. • , F .5 L :.:, .:..'- , I A ( I , 11 , I , I , I 1 , I ) = I , F 5. ;;, I) 

DO 172 1=1iS 
i.JRI T[(6,131) <l,J ,AT (UJ) ,J=1 ,r.;) 

1 n c aLIT! ,wr 
1 31 f c:~ ;', t' T ( 2 ij .:<, ,." T ( 1 , 11 ,.' , • , I 1 , • ) = • , F 5. 2,3 X, I AT ( 1 , I 1, I, I, -! 1 , , ) = 

! • , F 5 '" 2 ,') x , • AT ( • , I 1 , , , • , I 1 , • ) = 1 , r 5 .2 , I ) 
00173 I=1,H 
\·.!r..:ITf(6,132) (I,J,Q(I,J),J=1,N) 

173· C 0\ T I tW E 
1 32 r c;~ : iF. T ( 2{) x., 'Q ( I , I 1, • , • , 11 , 1 ) = , , F 7 .2 ,3 X, • Q ( I , I 1 , , , , , 11 , • ) = 

$ 1 , F 7 • 2, 3 X " Q (' , I 'i ~ 1 , , ,11 , , ) = 1 , F 7. 2, /) . 
DO 6L 1=1,(IFII(AL-1) 
WRITE(6,1C8) I,U(!),I,SWCI),1;X(1,1),I,S(I,1) 

60 C D'H INU E 
1 00 . FOR i"; II T ( 5 x, • u ( , , 12, • ) = 1 ; F 7. 2,5 x, • S \oJ ( I , 12 ,. ) = • , F 7 • 2, 

:) 5 t., , xC 1 , • ,12, • ) = 1 , F 7;. 2,5 X, I S ( , , 12, I , , , , 1 ) = ' , F 7 • 2, I) 
STOP 
END 

16.3l..56 .. UCLf), All, PiJ4 , C.18.SKU~S. 
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