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" OPTIMAL CONTROL OF GENERALIZED
STORAGE MODELS |

ABSTRACT

~ The purpose of this dissertation is to study to optimal control
problem of.the generalized storage processes. over an infinite planning
horizon. The gehera]ization.of the'contfblled storage,process'a11ows
for both positive and negative jumps by the stochastic input process :
as well as controlled inputs and outputs. The extension of the fhebry
for the optimal control of generalized storage processes mainly consists
of siUdying,various aspects of the uncontrolled storage model, deriving
the sufficient condition of optimality, verifying the existence of a
unique solution and studyfng its -properties. The approach is to'specify
the stochasfic structure of the pfocesses involved in the model and
monotonicity properties of the controls so as to guarantee the existence
of a uniquevsolqtion to the storage equation, to construct the Markov
process model fbr the content.1eve1 of the store and then to:appiy Markbv
deéision~theory in ordervto characterize the expected infinite time horizon
discounted return. Consequént]y the sufficient condition of optimality
is established as a functional differential equation in terms of the
generator of the storage process and shown to possess a unique and con-

. tinuously differentiable solution. In the procéssAbf verifying the



“existence and uniqueness of the optimal return and optimal controls,

the deterministic version is considered first so as to shed light upon.

-the nature of the solution methodology and then the results obtained
are extended as to include the stochastic processes inherenf in the

generalized storage model.
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GENEL BIRIKIM MODELLERININ
ENtYT KONTROLU

O0ZET

Bu calismanin amaci, genel birikim siireclerinin eniyi kontrol
problemini sonsuz p]anTama cevreni i¢inde incelemektir. Kontrol
altindaki birikim stirecinin genellestirilmesi, kontrol edilebilir
girdf ve ¢iktilarin yanisira rassal girdi ve ¢ikti siire¢lerinin sigra-
malarina izin vermektedir. Birikim modellerinin eniyi kontrol ku}é-
minin gelistirilmesi, birikim modelinin ¢esitli yonlerinin incelenmesi,
eniyilik yeterli kosu]unuh tiretilmesi, tek bir ¢ozlim varliginin dog-
fu]anmas1 ve bu ¢Oziimiin 6zelliklerinin ayrintil1 dederlendiriimesi
ile gercék1e$tir11mistir.' Yak]as1@, mode]deki‘rassa1 siire¢lerin yabj-
Tarinmi ve birikim denk]eminé tek bir ¢Ozimiin varolmasini saglayacak
girdi ve.c1kt1 kontro]]erinin.monotbn ozelliklerini saptamak, depo
“icerik dizeyi i¢in Markof siireci modelini kurmak ve beklenen indirilmis
kazanci belirlemek icin Markof karar kuramini uygulamaktir. Boylece,
beniy11ik yeterli késu1u birikim siirecinin lireteci cércevesinde'islévse1
tirevsel bir denklem olarak ifade edilmekte ve siirekli tiirevienebilir
tek bir ¢oziimiiniin varoldugu gosterilmektedir. Eniyi kazan¢ ve eniyi
| kontrollerin, varlik ve fek]ik kosulunu sagladiklarinin aogrulanmas1nda,
¢62Um yonteminin yapisini anlayabilmek i¢in Once gerekirci model ele
é]1n1p c6ziilmiis, elde edilen sonuglar daha sonra genel birikim modelin-

deki rassal sirecleri kapsayacak sekilde gelistirilmistir.
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I, INTRODUCTION

The objective of this dissertation is to study the optimal control
problem of a special class of Markov processes, namely storage processes.
The generalized storage process is described by the following stochastic

1ntegra] equation:

_ ot t
Xy = Xo + At * By ¥ of p(Xs)ds - 6f r(XS)ds , >0 (1.7)
- where Xt is the content level of the store at time t, At is the cumulative

uncontré]]ed input to the store during the time jnterval [O,t], Bt is the
: cumu]ative outbut from the store during [0,t] and X0 js the initial con-
~ tent Tevel of the store; The procesﬁes X = (Xt)tSO’-A ='(At),c>0 and

B = (Bt)£>0 will be referred to as the content oéﬁgtoragé proégss,'the
4input prdzéss; and‘the output process, respectively. The first integral
gives the total controlled input to the store upAto‘time t where p(x) is
the rdte of input when the‘content leyel of the store is x. Similarly,
'thersecond integral gives the total controlled output from the store up
to time t where r(x) is the raté of output when the}éontent level of the

store is x. Hence the equation under consideration expresses the simple



observation that the content level at time 't is equal to the sum of the
initial content and'thé'tota] input during [0,t] diminished by:the total

oufput during the‘same time period. |

AThe main concern in this study fs to control the content level of

the store by choosing within an admissible class a proper dutput rate

function r and a proper input rate function.p which will be referred to

:as the output control and the input control, respectively. The coﬁtent
Tevel of the $tore will. be observed continuously by the contro]jer who

possesses an objective function yielding utility at a rate given by
LG or (X)) = LK) + Ly (o)) + Ly(r(xy)) (1.2)

at any timé t. Thus at each 1nstanf of time, based upon’his own obserVa-
tion that the cufrent content 1evé1 of the store is x, the controf]er
should decide upon a proper input rate p and a proper output rate r so as.
to optimize somé measure of utility given by (1.2), 1in which case hié net
rate of earnings is L{x,p(x),r(x)). |

_ The objective underlying in this model is to determine (r,p) which
achieves the maximization of the expected infinite time horizon discounted
earnings. This is accomplished by developing a Markoy protess model for
‘the content level of the store and then applying Markoy decision theory to
characterize the opfimal controls as functions of the content level. Spé—
cifically DYNKIN's [1] theory of weak infinitesimal generators 6f Markov
processes is employed to characterize thé expected infinite:time hOrizon’-
discounted return in‘terms of a functiona],dffferentia] equation. Conse~
quently the balance of thfs dissertation is concernediwiih the study of

the existence and uniqueness of a return function and the associated controls



satisfying this equation. In the process of showing this, the dissertation

will have mainly fulfilled two taské: the first will be to analyze the
" generalized storage process described by (1.1) which includes two random
processes and two control possibilities fon'fncreasing and decreasing the
content of the store. In connection with this, the generatbr of the stor-
age process, which is the main tool in the Markov decision theoretic app¥
roach employed in the’optimal control pfob]em, is studied extensively.
The second task will be to control the content level of the store in an-
optima] manner where the reward and cost structure is specified by (1.2)
The storage process X is the core of the optimal control prob]em,.so
it is crucial to specify its stochasti¢ structure which is basically de-
termined by the stochastic structure of the input and output processes.
Throughout this study the input and qutput proéesses are dssumed to bé two
independent compOund Poisson processes which will be described in detail
in a later chapter. As far as the restrictions on the physical properties
of the store are concerned; it is assumed that the store has infinjte phy-
' sicé] capacity and that there does exist no backlogging. So a]though there
is norupber bound imposed upon the hhysica] cépaCity of the store, the
éontent'level is not permitted to fall below zero.AvRahdom jumps of the

output process B decrease the content level at random times, but any jump

that will drop the content level below zero is lumped at the critical point

~of emptiness. Accordingly the construction of the storage process X' as
described by (]i]) is done so as to incorporate this requirement. Further-
more the controls which specify the fnput and output rates, at each instant
of time, as functions of the content level are of vfta] importance in our

analysis, and their structures shou]d'be as general as possible. So we



will try to impose minimal restrictions on the‘}ﬁput and output rate func-
tions just to guarantee the existence‘of a unique solution to fhe gener¥
aiized}storage equation given by (1.1).

A review of‘the feseafch carriéd out so far-on storage theory is
presented in Chapter II. Most of the studies are basica]iy concerned with
the theqretica] aha]ysié of the uncontrolled sforage models, and the optimal |
control problem constitutes a rather newkarea of.research where Markov
decision théory or the diffusion approximation may be employed to charac-
terize the optimal controls. The innovations leading to the originality
~of our model become apparent jntconnection‘with‘previous studies. Chapter
IIT provides an insight into appTication areas of the generd]ized storage
process, verifying the novelty of the model under consideration.

The analysis of the uncontrolled storage model is acéomphiéhed in
Chapter IV. The stochastic strﬁctures of the input and output processes
are setvforth in Section 1. The concept of admissibility. is fntroduced in
Section 2, and the restrictions imposed on the controls in order to meet
the model requirements and to ensure the existence and uniqueness of a
»so]ﬁtion to the storage equation arevshown to compose the admissible class.
The storage process is constructed in Section 3 and proven}to be strong
“Markov. In Section 4, the expression for the generator of the storage pro-
cess js obtained, and its domain and range are explicitly characterized.

Chapter V is devoted to the formulation of the optimal control prob-
lem. In‘Sectioh 1 the control problem is introduced; and necessary res-
trictions are imposed upon the reward and cost structure. .In Section 2,
the sufficient condition bf optimality is_derivéd‘ih terhs of a functional

differential equation which is obtained by employing DYNKIN's [1] theory of



generator of Markov processes.

The balance of Chapter VI is primarily concerned with the study of
the deterministic version of the genera]ized;storage model in which case
stochastic input and output processeS‘aré.not taken into account. The
sufficient condition of optima]ify is restated for the deterministic prob-
lem in Section 1. In Section 2, it is shown that there exists a unique
return function and an assbciated control pair satisfying the optimality
condition over a certain subset of the admissible c]éss.:.This way a se-
ﬁuehce:of locally optimai return‘functions is created and shown to be
convergent. ;ﬁ Section 3, the limit of the Tocally optimal return func;
tions is shown to be the function we are seeking for-only if some monoto-
nicity assumptions are further made abOut.the'sthCture Of-L].

The results of the deterministic problem are extended .in Chapter VII
so as to include the stochastic processes inhérent in the generalized stor- -
age model. In Section 1, as it is done in the deterministic case, locally
optimal return funcfion and the associated control pair is constructed ih
M and their properties are studiéd. In Section 2, the mdnotonicity
assumption imposed on L1 enables us’to demonstrate that the functional
différentiaT sufficiency condition has a-unique‘and'contihuously di%feren-
tiable solution in ¥ on]y-when‘the existénce of the stochastjc output pro-
cess is excluded in our ana]ysfs of thgrgenera1izedkstorage model.

In Chapter VIII some possiblé generalizations are provided by -relaxing
the restrictions on the model features, and some suggestions are made to
réadapt the solution procedure propdsed by .our model. Section 1 drops the
assumption of infinite physical capacity and~discusses'the applicability of

the model to stores with finjte capacity. In Section 2 no backlogging



assumption js relaxed, and it is shown that ouf solution procedure can be

: immediétely employed for finite back]ogging;c'in Section 3 more general -
cost and reward structures are considered to illustrate that results similar
to those of Chapters VI and VII are readily obtained. Chapter IX mainly dwells
dpon the conditions under which the optimal controls turn out to possess

a bang-bang structuré.' The theory is discussed in Section 1 and used to
solve some simple problems in Section.2. 3Finally:Chapter X conc]udeé fhis
dissertation by providing a Summary of resu]ts. _

‘Our notation and terminology will fo]]oQ thdsevof BLUMENTHAL and
GETOOR [2]. We will let M, = {1,2,...}, R = (-=,0), R = (0,), R_ = [0,)
and let R; Ro and R+‘denot¢ the set of subsets of R,_Ro and R+, respectively.
If (E,e) and (F,F) are measurable spaces and f; E + F is measurable relative
to’ and F, then we write f ¢ ¢/F. In particular if (F,7) = (R,R) we simply
write.f € €. If in addition f is bounded, we write f ¢ be. The g-algebra
generated by (.) will be denoted_by:c(,). Afhisfofyif'=‘(Ft)£5bjonra pro-
babiliity space,(Q,H;PO iégan'incnea§ing£famf}y Of'sub’dda]gébégg of'H, and
the §ef of all-stopping times of ¥ ﬁiTT“be.denotedzby s(F%){if*.>g;

For any:real<valued fuh??fongfﬁaefiﬁed on‘aisét~F7wé‘waTfTef:ﬂ
|1£1]= sup|£(x)], F = sup F(x).and .= inf-f(R). Fmany we will Tet

xeF xeF
a Vb =max(a,b) and a A b = min(a,b) for any a,b ¢ R.



I1. LITERATURE SURVEY

Storége theory was introduced in 1950's with MORAN's [3] pioneering
investigations. Later various studies with different assumptions concern-
ing the model variables-time parameter, state space, release function,
stochastic structure of the 1nput‘process—succeeded his papers and»shed
1ight upon different aspects of storage theory.

Mbst,of the studies ;arried out so far focused attention mainly on
storage systems which described the stochastic evolution of the water
Tevel in dams. In such a storage model the input process is random in
nature, and there does not exist any form of uncontrollable raﬁdom output
- out of the sfore. Furthérmore, the control of the store-is possible via a
proper choice of the release ru1e which prescribes how and when the water
is to be released while an input control is not taken into account. The
model developed under these assumptions is described by the following equa=’ .
tion | .

t :

Xt = X0 + At - gf'r(Xs)ds R t.: 0 (2.1)

where X, is the content of the store at time t, A is the input process and

r(.) is the associated release rule.




The originality of this dissertation arises from the fact thét the
random uncontrolled output process and the input control are also incorppj
rated into the above-mentioned storage model. Thus. it takes into account
the existence of a random. process which diminisheé the content level of the
store and the'possibility of an input control ru]e which, dépending on the
content level of the store, prescribes when and how much the content level
js to be increased by some means varying according to the nature of the
particu1ar model under consideration;

Most of the studies on storage theory are basically concerned with
fhe theoretical analysis of the uncontrolled storage model in a way to -
constrdct the process and to derive the expressions for its limiting distri-
butiony ité generator and the local times. Studies dwelling upon the optimal
control problem are Tess in number and can be c]assifiéd into two Aistinct
groups as far as the formu]ation of the optimal control problem is concerned.
One group employs Markov decision theory to maximize the expected-infinite
time horizon discounted reward while the other uses a diffusion approxima-
tion to achieve the maximization of_the long-run average reward.

MORAN [3] first studjes the discrete time problem where the syétem
is observed at discrete time poihts.. He assumes that the system has a finijte
éapacity K and the inputs to the store at different time points {At=tﬁ€ N}
are independent and identically distributed random variables. The content

level is given by
Xt+1 = Xt + At - min(M,Xt+At) | (2.2)

for some constant M < K where Xt is the content level of the dam just before

the input A, occurs. He proposes several numerical techniques to find the



stationary probability distribution of the‘%mbeddéd Markov chain, but indi-
cates the difficulty of obtaining explicit solution for the finite dam. He
then simplifies the problem by dropping the finite capacity assumption and
identifies finite capacity dams with queues in two distinctvrespects: one
is known as qneueing with bulk service and the other is known as Smith's
queueing model. Thus-he refers to BAILEY's [4] and LINDLEY's [5] methods
for the solution of stationary distribution equations.

| MORAN [6] later studiés the continuous case in which time varies
continuously so that thé input is a continuous flow and the release occurs
at a nontinuous rate sn_long as there is any water in’ the dam. The input
process into the dam is taken to be .a right continuou5fadditive homogeneous
process with nonnegative independent increments whose means are finite for
finite time intenya]s, i.e. E[At+h - At] =mh > 0 for h > 0. The release
rule r is thosen so that in any interval of time (t, t+dt) the amount of
water released is r(Xt)dt + 0(dt) for any bounded realization of the content

“process. A heuristic destription of the resulting process is given by

dX, = -r(X,)dt + dA, - | (2.3)

where de and‘dAt are the increments of Xt and At over the time interval of
Tength dt. First r is taken to satisfy r(0) = b and r(u) = pu (p > 0) for
u >0, and Xt ié wrjtten as a 1fnear functional of At and shown to be ergo;
dic if p > m under these\asSumptions.- Later more restrictive condifions

are ‘imposed upon r and given by !

i. r(u) is a continuous function of u for u>0;

~ii. r(0) =0, r(u) > 0 for u > 0;
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jii.  r{u) is non-decreasing;
iv.  for any finite interval I, there-ekists a constant K such that

‘Ir(u]) - r(uz)l < Klug - uzl for u;, uye I.

Under these assumptions, he derives the following ihtegra] equation as a
solution to equation (2.3) '

‘ t
e - Xy = AL - AO - g r(XS)ds} . ~t>0
and shows that for any realization of A;Xt is a nondecreasing function of

b
t

same input,pfocess but different release rules ra(u) and’rb(u) such that

X+ Furthermore he considers two distinct processes Xz_and-x with the
r (u) < rp(u) for u > 0 while the initial conditions are equal, i.e.»

a _ b
X = Xo'

0 He then proves that for all s >0 and t > 0

Pix2 < st < P < sh

The first attempt to consider correlations among inputs‘is made by
LLOYD and ODOOM [7] where the sequénce of inf]ows {At} during consecutive
time ihtefva]s constitutes a simple Markov chain With'a finite number of
states. The release rule is.similar to MORAN [6], and the content Tevel
of the infinite dam under consideration is as given by (2.2). What distin-
guishes this study from the previoué studies is due to the fact that the
input At is dependent on the previous'va]ues of both the content and'the
input processes. They show that (X,A) forms a bijvariate Markov chain under
these considerations. |

KHAN and GANI [8] extend the study of corre]atéd 1npﬁts by considering

a similar model where the release rate M is taken to Be‘unity. Using the
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moment-generating function and matrix theory, they determine the probability
of . first emptiness of the dam, the joint probability distribution for (X,A)
and the Tlimiting distribution for X.

GINLAR and PINSKY [9] improve the dam model by imposing more refined
assumpfions.on the input process and the release rule. The control r is
taken to be a Lipschitz continuous strictly increasing function of the con-
tent level and the input process A is assumed to possess stationary inde-

" pendent increménts with a finite jump rate. From the general theory of

procesSes with stationary independent increments, it is obvious that

At ? a.t f At . o ‘ : 5 (2.4)
where a > 0 is a constant and At is a compound Poisson process with a finite

jump rate. So the content process X satisfies the differential equation
dX, = —r(Xt)dt-+ a.dt | (2.5)

between the jumps of A. They verify that equation (2.5) has a unique
solution q(x,t) which is monotonically non-decredsing, continuous, and
satisfies | |

- 2806 prx) - o 2ALE) ~ o (2.6)

at ot ’

Then X is recursively defined in terms of q(x,t), so that the storage equa-
tion is shown to possess a unique solution. They also show that the con-
tent process X is a normal standard Markov process and obtain the suffi-

ciency'condition for the exjstence of the limiting distribution for X.
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HARRISON and RESNICK [10] obtain fﬁe expression for the generator of
the content process under the assumptions of [9]. They study the Timiting
behaviour and the reéurrence,propertiésaof the content process X and pro- .
vide a necessary énd sufficient condition for the existence of the statio-
nary distribution. They derive some useful results explicitly in terms of
a posifive kerne],-concernihg the first hitting time of zero and the tran-
sition‘behaviour aﬁong,the states of the content level.

CINLAR []1] changes the struCturé of the input process A by assuming
it to be semi-Markovian which implies that a]thdugh the magnitudes of suc-
cessive inputs form a Markov chain, the sojourn times between successivé
inputs are not independent and identically distributed. He contructs thé'
content process X and shows that (X,A) is a Markov renewal process to fur-
ther characterize its transition function.

In a ;ubsequent study, QINLAR aﬁd PINSKY [12] analyze the situation
where the input process has infinitely many jumps in any finite time inter-
val. They further drop the restriction on the Lipschitz continuity of the
input rate control r.. In the case of infinite jump rate, the input process
A is coﬁsidered as thé Timit of an)iqcreasing sequence of compound Poisson

processes plus a drift term, so

A = At + z”(AS - A

n A .
t s<t sf)'I{As-As_ > 1/n} | | (2.7)

for all n>1and t > 0, and

A, = Lim A" . | (2.8)
t n—>oo‘t ' ) N
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Then it is obvious that for each n>1 A" ={A2: t > 0} is an increasing

compound Poisson brocess wifh a finite jump rate. Hence the results of

’pkevibus studies as applied tovthe~storage equation |
n n b oon -

Xy = Xo * AL -Of r(Xg)ds _ (2.9)
reveal that there exists a uhique solution to (2.9). They then show that
x" converges to X almost sure]y‘ahd this convergence is uniform in t over
any finite interval. | |

Considering the dependence of‘the input process on environmental
factors, GINLAR [13]_1hc1udes the environmental factors as a stochastic
process in his model. He lets the environment progress as a standard Mar-
kov process Z on an abstract state space and defines the input process A
as a non-stationary additive process on the environment process. A Levy-

Khinchin type decomposition is provided for A = {At:t_z 0}

_ foad - .
Ay =C A +AL . t>0 , (2.10)
where
a) C= {Ct: t > 0} is a continuous additive functional of the
~  Markov process Z;

b) Af = {Ai: t 2.0} is a‘puke jump process of the form

f

AL =3¢ W..1
t j‘] {T\]f-t}

N where each T3 is a stdppfng_time and the corresponding jump
magnitude wj is a random variable whose distribution depends

on the values of Z near fj;
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d d . . ' .
.c) A= {At:t > 0} is a pure jump process which is stochastically

continuous.

He furthermore lets the release fun;tion be an arbitrary continuous non-
decréasing function vanishing at the origin. Then the content process is
constructed by solving the integral equation (2.1) for X. The solution for
X is obtained first for input processes which are continuous, then for thosev
which have only finitely many jumps. in any finite interval, and fina]]y'for
those which have infinitely many jumps in any open.interval as the limit of
processes converging to the gjven input process. As an important result
it is shown that the resulting two dimensional process (Z,X) is a Hunt pro-
cess. | o
CINLAR [14] investigates the behaviour of the storage process X af
zero through a study of the hitting time of zero, local time at zero and
the inverse local time. He first computes the Laplace transform for the
"time to emptineﬁs", namely the hitting time S = inf{t > O:Xt = 0}. He
then considers the pr0b1em of constructing a local time at zero, which is
a continuous’additive functional whose support is the singleton {0}. So

the local time at zerb L ='{Lt:t 3;0} is defined as

—

| Lt = of I{O}(Xs)ds R t>0 A (2.11)

and its A-potential is computed when zero is regular for {0}. The inverse

of local times on the other hand is defined as

Z, = inf{s > O:L > t} . - (2.12)
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and shown fo be an increaéing Levy process. BROCKWELL and CHUNG [15] also
study. the Tocal time of the content process X at zero under the same
assumptions. | |

COHEN and RUBINOVITCH [16]‘dea1 with the stochastic properties of
level crossings in a classical dam. They show that the séquence of suc-
cessive up-.and down-crossings of level x forms a renewal process and con-
sequently compute the expected total time spend below x, expectéd total
time spent ébove X, expected total time spent at level zero and the expected
number of down-crossings of Tevel x. Furthermore they pose a simple prob-
lem of determining the optimal value of the capacity of a finite dam sd as
to achieve the maximization of the expected revenue per unit time; So their
study lays thevground for cost optimization studies of the dam process.

The above mentioned studies basically deal with constructing various
theoretical aspects of the storage theory; however the optimal control prob-
lem of the storage proceSses also receives attention from researchers now-
adays, and noteworthy studies contribufe greatly to the characterization
of the optimal control aspects. The Markov decision theory and’therdiffu-
sion approximation are the two maiﬁftoo1s used.in handling with this problem.

1Thé vital importance of the Markov pfoperty of processes in control
- theory 1is first pointed out by BELLMAN_[17]. .Aé a consequence of this per-
ception he and many ofhef~researchers succeeding him endeavor to obtain
necessary and sufficient conditions for the optimaTity of contro]s'fn Mar-
kov decision processes. - A Markov decision process is a stochastic process
defined on a state space which is controlled by choosing an admissible ac-
tion from an action spacé baséd on the state of the procéss. The actions

interact with chance environment in determining the. evolution of the process,
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but given the present.statevand the action the evolution of the procéss
unti]Athe.next decision is made is stochastically indebendent of the past.
A:policy which.is-defined»as a Lebesgue mea%urab]e,‘memory]ess, determinis-
tic rule prescribes the actions to be chosen, and for each policy and ini-
tial state an economic efectiveness is defined as the infinite horizon total
expected discounted return. Studies in this area are mainly based upon
deriving the condifions under which an optimal policy exists in the ﬁensé
| that it maximizes the total expected discounted return. In fact the necess-
éry and sufficient condition of optimality is derived in terms of the infi-
nitesimal generator of the content.process‘with.different mode]ycharacfé—,
ristics. | |
Mdch of the earlier work in this area is done by BLACKWELL [18] and -
STRAUCH [19] who restrict tﬁemse]ves to discrete time parameter case. |
HINDERER [20] gives an extensfve account of Markoy decisjon processes with-
discrete time parameter. MILLER'[21} considers Mafkbv decision processes
with continudué time parameter, Eut réstricting_his attentijon to the finite
state space case,‘ KAKUMANU [22] studies thé continuous time Markov decision-
- process in which both- the stafe'sbace and the action space are countable.
He proves the éxistence.of a unique optimal returh function whichﬁsatisfies
the dynamic optimality condition given in terms of the generator. He
furthermore provides a po]icy space iferative procedure which yields a con-
vergent sequence of stationary policies. VERMES [23] uses the funcfiona]
analytic theory of Markoy processes to prove a sufficient optimality con-.-
dition for the control of general discrete or continuous-time Markov pro-
cesses. DOSHI [24] deals with confinuous time Markov decision processes

on a fairly general state space. In his model no restrictive assumptions
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are made about the specific nature of thevcontro11ed process, and the exis-
| tence and uniqueness of a solution to the dynamic programming functional
equation which expresses the sufficient optfma]ity condition in term§ of
the generator is proven.- It js thén shown that the existence of an optimal
policy in the special caéé of time independent reward fﬁnction implies the
eXistence of a stationary optimal policy. For the problems with finite
action space a refined algorithm is presented to generate successively im-
proving stationary policies. Simi]ar results are obtained by PLISKA [25,
26] as well where consideration is focused on the transient, discounted,
positiVe and negative cases all with an infinite time horizon. It is sﬁown
that the maximum expected total reward is the 1imit of a fixed point of an i
operator on the space of upper semicontinuous functidns defined on'the
state space.

A functional differential equation that arisés frequently in the
Markov decision prob]ehs, specifically in the optimal control of storage
mode]s, is studied by PLISKA [27]. Letting S be an interval of the real
Tine and A denote a compact subset of n-dimensional Euclidean spéce, he
defines a nonnegative measure g(x,a,.) on the Borel subsets of S for each
- pair (x,a) e SxA and cohsiders two continuous real-valued functions on SxA
p and r with r nonnegative. He'then shows that for S = [0,») and each

X > 0 there exists a unique continuous real-valued function v that satisfies

| (with v' = dv/dx).

v'(x) = suf\{r“(x,am[v(y) -~ v(x)18(x,a,dy) - Av(x) + p(x,a)1}.,
o x>0 . (2.13)

and the boundary condition
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:gg{f&(y) - v(0)18(0,a,dy) - Av(0) + p (0,a)1} = 0 (2.14)
where A is a pdsitive constant. Moreover it is shbwn that v is continuously -
differentiable on (0,2). The proof of this important reéu]t is constructed
in a way.to overcome the difficulty created by the possibility that
r(x,a) = 0 at x = 0.

‘The. results of the §tud1es on the general theory of Markov decision
proéesées are fully utilized by researchers for the optimal control of

- various storage models; thus besides abstract versions of the Markov deci- ,’
sion processes, outstanding applications of the controlled storage pro-
cesses are involved. MORAIS [28] and MORAIS and PLISKA [29] use the_Markov;
decision theory and the generator of HARRISON and RESNICK.[30] to -analyze
the optimal control problem of the storage model that assumes-a pure jump
iﬁput with a non-stationary content-dependent juhp rate and jump sjze dis-
tribution. | | | | A

DESHMUKH and PLISKA [31] present a controlled storage process model

"of the problem of optimally consuming a natural resource and exploring: for

_ new sources of supp1y of that resource. Their 6bjective is to choose an

optimal consumption and exp]oratidn policy so as to maximizé the expected

“discounted ufi]ity of consumption diminished by the exploration cost over
an'infinite.p1anning horizon given the amount of‘proven resérves of the

resoufce. Their approach is to deve1pp a Markov process model for the level
~of the proven reserves, to derive the dynamic programming functional equa-
tion and to show that it has a unique, nonnegative, increasing, concave and

bdifferéntiable solution which turns out to be the max%mum expected'discounted

return. In the process of proving the existence of an optimal consumption
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-and exploration policy, they show that this policy is admissible, its asso-
ciated return is in fact the solution of the functional equation and the
'qptimal consumption rate is strictly positive and nondecreasing whi]e‘thev
optimal exploration rate is nonicreasing, In the deterministic models, the
shadow price df'the resource is shown to risé‘at the social rate of discount
by HQTILLING [32], DASGUPTA and HEAL [33j, SOLOW [34]. Deshmukh and Pliska
prove the stochastic analog of this result in their model so that the ex-
pected rate of increase of the shadow price equals the discount rate; thus
the expected scarcity rent on proven reserves‘risés exponentially in time
at the discount rate, but the actual rents may deérease by random amounfs

. at random times whenever new resource deposits are discovered.

The optimal control problem of storage models with Markov additive

v _ L
inputs introduced by GINLAR [13] is extensively investigated by OZEKICI [35].

The environmental process Z js taken to be.a regular Hunt process with an
infinite 1ifetimé and the input pfocess js taken to be a regular Markov

process with a Levy-Khinchin type deéomposition as given by (2.10). His
aim is to control the content 1eve]»0f'the infinite dam by determining

the release rate r defined as aifunction of both the environhent and con-
tent processes savas,to maximize the total expected infinite time horizon
.discounted earnings under fairly genera] assumptions .imposed upbn his ad-

missible set of controls. His reward and cost structure is specified by

In the process of showing the existence and uniqueness of an optimal return
function and the associated optimal release rate satisfying the sufficient

optimality condition, he considers different properties satisfied by L] and
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studies the conditions which result in bang-bang controls. His approach mainl)
consists of ena]yzing the corresponding deterministic model and generalizing
‘the results obtained to the stochastic model .
in addition tq MarkoV decision theory, there exists another method of

dealing with the opfima] control problem of a storage model, which is known
as the diffdsion approximation approach. The fact that the inpﬁt occurs
according to a jump process does not allow the input process to have contin-
uous path functions. Consequently the optimality cond1t1on is expressed in
terms of a funct1ona1 differential equation. However the relaxation of the
jump-process condition. will allow the input to possess normal.incrementsAand
continuous path functions, yielding'a considerably easier differentia] equa=-;
tion. This amounts tq assuming that the input process occurs according to a
Brownian motion. Although thﬁs is a rather crude representation of the true
input process-since it allows for negative inputs as We]] - jts advantages are
evident from a computational point of view. In all of the studies carried out
so far to determine the optimal release rule in diffusion approximated process
the input process into the stoirage model is assumed to be a Wiener process witl
positive dr1ft that is the input flow dur1ng the time interval (t, t+dt] is
distributed by N(udt,o?dt) where the parameter p is taken to be strietly posi-
tive to guarantee positive drift. Another assumption encountered in all is
that the store has finite capacity. |

| BATHER [36]~is concerned with determining the optimal release rule
for a finite capacity dam where a Wiener process is used to describe the
random input flow into the reservoir. His utility function measures the
ga1n per unit time when water is released from the dam at a certain rate

and is taken to be str1ct1y concave with cont1nuous second order derivatives.
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The content process in his model does not invo]ve‘boundary conditions, so
that he assumes the water level to be actually zero when the content level
~ falls down beTow zero, and he allows any excess of input over the capécity
qf the dam to be éimp]y wasted and'hot to enter the controlled output.
This makes pure reflection jmpossible. The optfma] po1iéy is obtained by
solving a secondvqrder differential equation of the potential utility func-
tion which represents the current state of the system withbregard to the |
total expeétation of utility over an infinite future.

FADDY [37] refined the model developed by BATHER [35] by allowing
the content at any time to be negative, effectively assuming a reflectihg
boundary for the process at the top, He assumes that water may be released '
at 0 or M units per unft time. The objective is to cohtrol this output in
a way as to mfnimize the Tong terﬁ average cost of operating the system.
At any time the cost of increasing the output rate from 0 to M is KM, K
being a nonnegative conétant; 1ikeWise the rate may be decreased from M to
zero with zero cost. Finally if the output rate is M during a time interval
of length dt, then a running cost of -aMdt is incurred where a isba nonnega-'
ﬁiye constant. He proposes a baﬁg-bang form for the optimal re]gase po]fcy

given by

M <{Increase Release Rate to M if x > A

P\ < Decrease Release Rate to 0 if x = 0. (2.16)

He furthermore proves the optima]ity of the PT policy and determines the

value of A explicitly through a renewal argument. o
PLISKA [38] further improves the model in BATHER\[BG] by considering

the boundary conditions both at the bottom and at thetop of the reservoir -
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as pure reflections. Moreover, the drift and diffusion coefficients are
assumed to be continuous functions of the content level and the release
rate, while the set of admissible controls consists of all piecewise con-

tinuous real-valued functions. He shows.that in this considerably general

set-up, the minimization of both the expected Tong run avérage cost and the

expectéd infinite time discounted cost can be accomplished.

The optimal policy for a two-stage release policy of a finite fam as
introduced by FADDY [37] 1is further analyzed By ZUCKERMANN [39] who allows
for a reflecting boundary at the top of the reservoir, and no boundary at

zero level. He examines particularly two extreme cases:

i. He assumes that K = 0, whiCh means that the release rate may be
increased at zero cost. The associated optimal policy .turns out
to be releasing water at the maximum possible rate as long as

~ the storage level is positive.

ii. He assumes that a = 0, which implies that the release of water
does nbt yield any earnings. Then the optimal policy results

B

in switching off the output rate permanently.. = . @ 1i:

~ He establishes a different vefsion of the proof for the optimality of
monotone policies PT as given by (2.16) fdr the cases mentioned above.
ATIA and BROCKWELL [40] study the same model, restricting themselves

to monotone optimal policies PT

as given by (2.16), but assuming two ref-
lecting boundaries at the top and bottom of the reservoir. They obtain
> similar results in the optimization of the 1ong—run average cost per unit

time.
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' This review of the studies on the théqry of storage models reveals
the novelty of this dissertaion.  In addition to the random input process
and the output control encountered in all the studies mentioned above, our
primary emphasis is on presenting and analyzing a model which explicitly
incorporates the existence of a random output pkocess-and fhe possibility
of an input cqntf01, Our approach.is to develop a Markov process model
for the content Tevel offthé store and then to apply Markov decfsioh theory
to construct the storage process and to characterize the optimal return

and optimal controls.
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I1I. APPLICATIONS OF THE GENERALIZED
STORAGE MODEL

- In this Chapter prominent applications of the generalized storégé_
model will be déscribed briefly. Particuiarly emphasis will be given
to demonStrqte how the generalization accomplished in this siudy can be
applied to problems and situations which can't be handled adequately by
the currently available storage models. The more general features of
the mode] developed here will allow for the aﬁa]ysis of new problems

which constitute brand new application areas.

DAMS. A dam is a store where there’ié a random ihput flow of water to

bé stored in the reservoir and to be discharged for purposes of flood
~control, pbwer generation, prdcessing drinking water, irrigation and
recreation. In such a store, evaporation, seepage and overflow condi-

tions inevitably prevailing in the environment require the consideration

of a random output process‘as well. As far as the control problem is
concerned, besides the possibi]ity of decreasing the content‘level at a ﬁ
controlled rate, there exists anothér control mechanism especially in a
network of dams. This enables one to incre?se the watéf level in any one of

thédamsinfthé:nétworkthrodgman?iﬁletpermittfng water flow at a particular
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rate. So the control prqb1em 6f the content level of a dam in a network
‘of dams can be modelled with the generalized storage equation (I.]).

 We Tet Xt be the content or watér Tevel of a dam at time t and assﬁme
that the random input to’the'dam.is ngen by a process A and the random out-
put out of the dam is given by a process B. Here A is the brocess descfibing
the jump inputs to the dam which arise from climatic conditions. Thus At
denotes the total amount of water kandomiy f]oWing into the dam during
[0,t]. B, on the other hand, is a proceﬁs which describes the random outputs
‘out of the dam due to QVaporation and overflow. 1Bt then is the total amount
of water randomly evapbrating, overf]owing of seeping out of the dam during
[o,t].

The controller who observes. the content level of thé dam continuously
decides dpon an butput ratekfor‘discharging water out of the dam and an iﬁ—
pUt rate for letting water into the dam from some other dam in series with
it or another source according to the current content level. If the output
rate is given by a‘function r of the water level and if the input rate is
given by a function p of the water level, then the storage equation (I.1)

c]ear]y'descfibes the model under consideration.

NATURAL~RESOURCES. This is the case where in a socially managed economy

theré is an exhaustible reséﬁrce:sucﬁ aé 0oil, mineral deposits, energy

’whiéh is essentia] and can’be stored indefinitely over the p]anning-hOrizon;
Although the resoUrCQS‘cannot be produced, the amount on hand may be increased
by‘explorihg and searching for new sources of supply of the resource. The |
exploration p;ocess involves uncertainiy-regarding.the time until a success-
ful discovery as well as the magnitude of supply gained upon discovery.

This randomness arising from the exploration process is conveyed in the

L ROGAZIC| UNIVERSITES] KUTUPHAL:S)
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model by the input process. The stock of this resource in turn is dep]etéd
through consumption for the sake of social and economic utility. In fact,
it.is a well-known observatfon that high consumption of the resource yieids
high returns. Moreover in some cases.the exp]oﬁation activity directly
depletes a portion of the extracted reserves of the resource. Exploring
for‘new oil, for example, depletes the existing stock of oil. It is a
decision maker's problem to decide upon the appropriate rate of consumption.
Besides the fandom input process, deterioration decreasing the level of
extracted reserves held in storage occurs rand6m1y in time, and misdetermi-
nation of the proven reserves may be realized upon the extraction and less
than what is estimated may be extracted; so these constitute a random out-
put process. Furthermoke_there exists some contro]]ed means of increasing
the level of extracted reserves. 1n macro level, the country suffering
from the scarcity of the resource may be obliged to import it. In micro
‘ 1eve1.especial1y when the éxp]oration itself consumes a portion of the
stock, the firm may require the procurement of the resource. Thus the.
availability of that resource at a controlled rate. from: exbgénerous
sources should be taken into accouﬁt'and incorpbrated into the modej;, At
each 1nstantAof time given the.amount of proven reserves, the prob]em is
 ‘reduced to determining the cpnsumption rate which includes the amount
consumed for social weTfafe and the amount depleted for further exp]oka-
tion activitieé, if such a situation exists, the exploration rate dnd the
procurement rate whiéh dﬁrect]y inéréases the amount of extracted reserves
in the stock. | |

Here Xy denotes the Tevel ofbproven reserves at time t without dis-

tinguishing between known reserves in the ground and extracted reserves
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held in inventory. The exploration increases the.stock in a random manner
as described by the process A while the.process B shows the effect of de-
terioration and the impact of errors made in forecasts. The control r
corresponds to the consumptfon rate of'the resource, regardless of the
purpgse it is béing used, while the control p corresponds to'the controlled

input rate. So the process X is clearly explained by the generalized stor-

age equation (I.1).

'QUEUING MODELS. A queue is a sing]é or multiple server system at which

customers arrive,.demanding a random amount of service, experienée de]a&s
before they are served, and leave at the completion. of their service demand.
Moreover customers may decide to leave the system before they are served.
This random depakture process is due to.either balking, reneging of'jockeying
conditions. In the presence of .these random proceﬁses the virtual waiting
time of the queue may be cdntro]]ed in two respects.. The output rate which
is the service rate in qUeu%ng theory can be adjusted by changing the num-
ber of servers, the rate at which sgkvers work etc. On the othér hand, it
is pbssib]e to 1ncreaée‘the work load of a‘particu1ar queue in a network
of queues. Thé controller may decide to. feed customers at a proper rate
to a particular queue under consideration from some other queue in thé‘
network with higher virtual waiting time.

Here A, is the total amountvof service demand that enters the QUéue
- during the time interval [O,t], and Bf is-the total amount of seryice de-
~mand that leaves the'queue during [0,t] because of balking, reneging and
jockeying. Consequently Xt denotes the outstanding demana for sefvite

at time t, i.e. At plus the controlled input up to time t diminished by Bt
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and the total amount of service delivered during [0,t]. It is obvious that
X¢ becomes the viriual waiting time of a customer in a "first-come-first-
served" priority rule if “he arrived at time t. The rate at which service
is delivered is specified through thé autput rate r, and the réte at which
service load is increased is specified by the input control b. Thus the

process X imbedded_in_the queueing model is described by. the genera]ized'

storage équation (1.1).

INSURANCE MODELS. An insurance company receives premiums from customers

and in return pays for claims made in random amounts at random time poihts.
The company's current fund position.increases due to premiums, arriving
randomly through time, which constitute the stochastic jnput process, and_
decreases by random magnitudes due to claims, also arising random]jrthrough
time, which constitute the stochastic output process. It can be controlled
by altering the premiums cﬁarged, by advertiéing and promotion campaigns,
and by re-spécifying the customer selection policy based on the risks in-
volved. The company's fund position can be increased by raising thelperi-
odic premiums charged from the customers or by relaxing the customer se-
lection criterion; it can be decreased by.imposing reinvestment opportu-
nities of any kind. At any instant of time the fund level is controlled
through prbper choices of an output rate, which is to evaluate the re--
jnvestment possibilities of the mbney'receiVed from premiums, and an in—
put rate, which is to determine the pfémidm and customer policies.

Thus, X is the company's fund position at time t. The premium

t
arrival process is described by A, and the claim arrivals are given by B.

If the rate at Which money is being expanded for various investment purposes
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is given‘by the output rate control r and the rate at which money fTows
through‘the premiums received from potential customers is given by the
input rate control p, then the fund process X is described by the gener-

alized storage equation (I.1).

BANKING MODELS. A bank is a store where people deposit money that earns

interest at a certain rate and can Withdfaw the unpaid principal plus the
interest accrued. The stochastic input process arises from the arrival
proéess of customer deposits which are random both in magnitude and timing
wherein the stochastic output process is due to the arrival process of bus-

tomer withdrawa]s.which also occur randomly through time at random quan-
btities, The bank's current fund position can be controlied by interest
rates, promotional efforts, credits, bonds, shares and various service
and investment decisions. The bank's managers observing the current finan-
cial sit@afioh may decide tb increase the credits provided for industrial,
agricultural and other socio-economic purposes, to invest money on any .
business venture or to employ further promotional'activities. On the other
hand, the bank itself may issue and gell bonds and shares, borrow money
from financial organizations or.borrow cash from the State Bank or some
other bank. Interest rates as applied to customer depesits and credits,
- and repayment plans of the loans provided by the bank,are,other'too]s of
controlling the financial situatiph.

In this application, X represents the bank's fund position at time

~t. The 1nput process A describes the arrival pattern of customers deposi-
t1ng money at the bank wh11e the withdrawal process 1s given by the process

B. The output rate control r gives the rate at which money is expanded,
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and the input rate control p gives the rate at which money is gained by any
one of the means mentioned above. So the bank's fund position X can be

described by the-generalized storage equation (I.1).

INVENTORY MODELS. An inventory model may be considered as a'storage node
where a commodityveither purchased or manufactured is accumulated to be
used to satisfy some future demand.. As far as the occurrence time and the
magnitude of the demand are concerned, the demand process conveys uncer-
tainty and_constitutes a stochastic pfocess. .Espeéially,in case of in-pro-
cess. inventories, the demand process can bé taken to possess a contro]]éb]e
-component in the sense that the controller may decide upon an increase in
the production 1eye1 of some stage which requires the depletion of the in-
process. inventory. The output protess is partially under control sﬁch that
one may decide when and at which rate to order 6r'to produce while there '
exfst soﬁe uncontrolled factors which occur randomly and which cause reduc-
tions in the outstanding demand.

~In an fnventory model, Xt denotes the outstanding demand, i.e. the
total demand that .has occurred minus the demand that has been met during
[0,t]. The random demand is given by the process A which depicts the total
demand for the product under consideration. 'The process B describes a11
possib]é random demaind: withdrawals which decrease the existing -demand re-
qhirement. If the product is being manufactured, the output rate is cont-
‘rolled by the production rate r-specified by the number of workers, number .. -
of‘machihes,.rates at which machines are operating etc. If the product is
being purchased, the odtput rate is controlled by thé_proéurement rate r.

Thé demand rate is controlled by the input control p in case of in-process
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inventories. So within this set-up théfinventdhy process X can be explained
vby the storage equation (I'])t
. As the above mentioned applications show, the generalized storage

model can be used for a variety of app1ications in financial managemgnt,
industria1 engineering and micro-economics all of which involve inflow,
storage and outflow undef uhéertainty, Furthermore the models én;ountered
in health services - such as blood banks - and computer memories can be des-
cribed: by the generalized storage equation with S]ight modifications.

In our model, assumptions on the stochastic structure of the input
and output processes are derived so as to meet the conditions required Byv
the arrival processes inherent in the applications. The input and output
processes are taken to be_two independent and increasing.Compound Poisson
processes which are employed frequently to eXp]ain the arrival patterns.
Furthermore it is assumed that they have finitely many jumps in any finite
time interval. The admissible output-and ihputkcontro]s are assumed not to
affect the stochastic behaviour of the input and output processes in any
way although the structure of the controls are‘made as general as possib]e.
Our model will be c1afified by ouflassumptions which will be desckibeq‘in

detail in Chapter IV.
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IV. - THE UNCONTROLLED STORAGE MODEL |

This chapter is devofed to a détai]ed déscription of the genera]izéd
storage model introduced in previous chapters.' The input process A and
the output process B are assumed to be two'independent compound Pgisson
pfocesées witﬁ only finfte]y many ijpg'in any finife time interval Whi]e
the input rate control p and the’oUtput rate control r are defined as
functions of the content level. 1In Section 1, the stochastic structures
of the ihput process A and the output proceés B are described in detail.
InvSection 2, the reétrictions to be imposed upon the controls are dis-
cussed, and consequently the admissibility conditions whiéh should be
séfisfied by p and r are formally put forward, = In thé meantime special
attention is given to make the controls as general as bossibie by imposing
minimal restrictions upon them. In Section 3, the storage process X is
constructed and shown to be strong Makkov for any given pair of admissible
controls (r,p). In Section 4, the generator of the storage process, which
turns out to be the main tool in the optimal control problem, is to be
analyzed, and its expression together with its domain and range is determined.

explicitly.
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4.1 THE INPUT PROCESS AND THE OUTPUT PﬁOCESS

As we proceed further, it will becomo clear how the stochastic struc-
tune of the storage processX is uniquely determined by the stochastic struc-
‘ture of the input process A and the output processz; thus it is crucially
necessary to comprehend the stochastic properties of A and B. In this sec-
tion we will specffy the input and output processes and try to provide an
~insight into their quantitative'properties. The main assuhption concerning
the. stochastic structure of A and B is stated below. Let (Qsu, P) be a

complete probability space.

(1.7) ASSUMPTION. The 1nput process A and the output process B are two in-
| dependent and increasing compound Poisson: processes defined on (Q;p , P) v
with finitely many jumps in any finite time interval. 0

This assumption implies that for any w e @, the mapping t = At(“)
is non-decreasing, rijght continuous, fnoreaées by jumps only, and Ao(m) = 0.
~ Similarly for any w € @ the mopping t +‘Bt(w) is non-decreasing, right
cont1nuous, increases by jumps on]y, and B (w) = 0. |

Throughout this study we def1ne {T } as the jump t1mes of the input

process A recursively by:

To =05 Ty = inf{t > T : A # At_},A neM, . | (1.7)
Similarly we define {Tn} as the jump times of the output process B

recursively by:

T =0, T .,=1inf{t> % Bt # Bt‘} s neMN, - (1.2)

n+1
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Furthermore if the magnitudes of the successive jumps of the input
- process are denoted by {¥n}, it is possib]ebto represent the input process

in the form

A= LY t>0
t Tnfﬁ n , -
where {Tn} is as defined by (1.1).
If the magnitudes of the successive jumps of the output process are

denoted by {Zn}, it is possible to represent the output prbcess in the form

t N t n —_

B, = I Z_ - ., t>0
Tnir '

!where {Tn} is as defined by (1.2).

By the fact that the magnitudes of the successive jumps in a compound-

Poisson process are independent and identically distributed random variables

independent of the jump times, {Yn}, namely the jump sizes of the input pro-

cess, are independent, and

P{YneD}=Ga(D_) , DeR, , n>0

for.some.distribUtion function Ga(.) on R_. Similarly the jump sizes of

" the output process {z,} are independent, and

P{Zn e D} = Gb(D) ,DeR. ,n>0

fdr some distribution function Gb(.) onR,.
Moreover it is another well-known result that the interarrival times
in a compound Poiéson process are ‘independent and'identica]]y distributed

exponential random variables; thus the distributions of the interarrival
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times of the input and output processes are given by

e Aat . t>0

P{T 47 = T >t}

and

P{Tnﬂ - T, > t} e-)\bt s t>0

for some finite parameters Ay 3.0"‘Ab >0 respéctive]y. |

The important point to note here is that the storage process X jumps
whenever A or B jumps and increases or decreases accordingly. So the jump:
times of A and B completeTy determine the jump timés of X. . Therefore we

define the jump times of X denoted as'{Sn} by

S =0, S ;= inf{t > Sn:jAt # At‘ or Bt # Bt‘}’ nef

o’ . (1.3)

n+1 +

It is clear that for any w e @ Splw) = min(T;(w)s 7y(w)),
{T, ()} ct{Sn(w)}'and {1, (w)} ={S,(w)}. Furthermore without loss of
generality we assume that for all |

Lim’Tn(w)A= o, Lim Tn(w) = o, Lim Sn(w) = .

N0 ‘ N-o0 - N-»c0

‘The stochastic processes invdlved in the storage equation, namely .
| the output and input processes, which are taken to be two combound.PoiSSon
processes independent of each other, their jump times and jump magnitudes
“are specified by the above argument to clarify thelstochastic behaviour

of the storage process X.
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4.2 ADMISSIBLE CONTROLS

In this section we will dwell upon-the input and output rate controls
p and r, réspective]y, and specify thé conditions that should be met by p
and r so as to guarantee the uniqueness and existence of a §o1ution:to the
storage equation. Since the controls p and r provide the only means of
contro]iing the generalized storage modei in the optimal control problem,
they-piay a crucial role whfch necessitates a thorough analysis. Note that
the optimal contro] problem requires the admissibility conditions which are
to be imposed upon p and r to be minimal, so we will define the set of ad-
mi;sib]e controls by imposing a set of minimal restrictions upon p and r.

We define the set of admissible controls M to be the set of all pairs
df fuhctioné (r,p) both defined on R satisfying the admissibi]itj condjtions

which we discuss next.

it ADMISSIBILITY CONDITION.1. The controls p and r are both bounded;

this implies that

0<r(x)<r , xeR,

0<plx)<p » xeR,

for some T € R, and p € R+.()v

. {, ;} ADMISSIBILITY CONDITION 2. The content level of the store is res-.

tricted not to fall below the zero leyel. 1In other words, there can not
be any output from the store when it is empty. This is guaranteed by

assuming that
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0 <1(0) <p(0). 0

(:..= ADMISSIBILITY CONDITION 3. The optimal control problem requires

(rop) to satisfy:

i.  r(.) and p(.) are both Teft-continuous on D] = {r(.) z_p(.)},
.and 1f'{xn}<::D] with x; 4 X',jthen hjﬂ[r(xn) - plx,)] =
r(x) - p(x);

ii.  r(.) and p(.) are both right-continuous on D = {r(.) < p(.)}
and if {x }(= D w1th X ¥ X, then L1m[r(x ) - p(x )] = “
n->oo
r(x - p(X). 0

This condition will enable us to characterize the generator'by
Proposition (4.1) and Theorem (4.1)} and to use it in the optimal control

of the generalized storage model through‘Theorem (v.2.5).

>, ADMISSIBILITY CONDITION 4. The controls (r,p) should be chosen in

a way so that for every we thelequation
. . . |
f(t) =x+A -8B, +/ (p-r)(f(s))ds , t>0 (2.1)
. 0 o .

possesses a unique solution for every x e R, .0 4

| A typical control pair (r(.), p(.)) satisfying,Admissibi]ity'Condi—
tiohs 1-3 is depicted in Figure (2.?).' Note that p(x) > 0 and r(x) > O,
and p(x) < p and r(x) < v for all x € R+ by Admissibility bondition 1.
At zero content level r(0) < p(0).by AdmiSSibi1ity'Cbndftion 2 Also note
- that by Adm1ss1b111ty Condition 3 r( ) and p(.) are right-continuous on

[0,x71and r(.) and p(.) are Teft- cont1nu0us on [XZ’ ).
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: | O\)‘(’x)
r(x) , . _

x1

3
—

=

N
P

- FIGURE 2.T - A typical control pa1r (r(.),p(.)) satisfying Admissibility J
' Conditions 1-3. o ' |

~ An important conséquence df Admissib11ity Conditions 3 is that the
set {r(.) = p(.)} is closed.iTo'see this, note thét if {xn} Ci{r(.)A= p(.)}
With X, X, then r(X) = p(x) by the left continuity of r and p on
{r(.) > p(.)} . On the other hand if {xh}.c:{r(.) = p(.)} wfth Xp ¥ X,
then r(x) = p(x) by the right continuity of Both r and p onf{r(.)‘i'p(.)};
“this argument implies that the set {r(.) # p(.)} is open.

The final admesibility condjtion is the most important restriction -

imposed upon the controls (r,p), so it deserves more emphasis. In fact,.

Admissibility Condition 4 can be simplified by the'faét that there are
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only finitely many jumps in any finite'tiﬁe interval. As it will be verifiéd
by Lemma (2.7), the jumps of the input and output processes do not affect

the structure of the controls as far as:the existence and uniqueness of a
solution to equation (2.1) is'concernéd. Thus it suffices to consider the

associated deterministic problem in evaluating Admissibility Condition 4.

(2.1) LEMMA. AdmiSsibf]ity Coﬁditidn 4 is satisfied if and only if there
exists some t; > 0 such that the eduafidn ‘ |
| t .
f(t) = x + é“ (p-r)(f(s))ds , t>0 (2.2)
has a unique solution on [O,t])‘fdr every x ¢ R, .
Proof. Note that ény function f satisfying (é.I) also satisfies -
| : t
f(t+s) = f(s) + Arys — A - (Bt+s" BS) + g (p - r){(f(s +u))du, t>0
for any fixed s > 0. Therefore, Admiséibi]ity Condition 4 is satisfied if
and only if for any w ¢ Q, equation (2.1) hés a unique solution on some
finfte_interva] [0,t(w)) for some t(w) > 0 and fd}'every x € R,. To show
necessity take t; = min(t(@),‘S](m)) > 0 for any v € Q ; This imbﬁieszthat
_ t] is less fhan any input.or output jump time; thus At(m) = 0 and Bt(m) =0
on [O,t]) and equation (2.7) reduces to equation (2.2).’ So the desired
result follows immediately. Sufficiency follows in a similar manner by
simply taking t(w) = min(ty,S;(w)) > 0 for any ¢ e 0.0
Lemma (2.7) states that equatjon (2.1) has a unique solution for all
t if and only if it has a unique solution for all t smaller than the first

jump times of both the input and output prbcessesﬁ The presence of th§ two
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stochastic processes does not influence fhé existence and uniqueness of a
solution of equation (:2.1). .SoAit follaws ffom Lemma (2.1) that we can
treat the»genera]ized storage model as if it is simply a deterministic model
with an input control p and an outpuﬁ control r.. It conséquent]y becomes
easier to sfudy the admissibility of control pairsA(r,p). The existence
or the uniqueness of a solution to equation (2.2) may fail fo some x € R_.
It therefore still remains to show under whatﬁcohditions there exist§ a
unique solution for the admissibility condition introduced by Lemma (2.1).
We now analyze some explicit conditions to be imposed upon p and r, which
will ihsure the existence and uniqueness of a solution to equation (2.2)
"GINLAR [9] Showed that in the storage model with no controlled input ‘
and no random output the storage equation has a-dnique solution if the
‘mapping x -~ r(x) is continuous and increasing. He.further showed that the
- same result holds true when r is Lipschitz continuous or continuously dif-
ferentiable. BZEKiCi [35] later extended these fesufts to the case where
" the output rate control r is dependent upon his enyironmental process..
Similar results are obtained in the generaljzed storage model, and the
Lipschitz or intreasiﬁg property of r(.) - p(.) is.shown to insure the

existence and uniqueness of a solution.

~(2.1) PROPOSITION. Let M, be the set of all pairs of functions (r,p) both

defined on R, satisfying Admissibility Conditions 1-3 and
i) r(.) and p(.) have only finitely many discontinuities in any
finite interval; |

ii) if either r(x7) < p(x), r(x+).3 p(x) or r(xf):zfp(x), r(x") < p(x)

for some x € R, then r(x) = p(x);
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iii) r(.) - p(.) is increasing;

then Mi = M.

" T
Proof. The proof follows OZEKICI [35], replacing his control r by r - p.0)

(2.1) REMARK. An‘fmpbrtant consequence of Proposition (2.1).15 that the

cqntfo] pair (r;p)'elMi turn; out to be admissible if r is taken to be

increasing and p is taken to be decreasing.c)ﬂ : |
A similar result is obtained when the controls are both piecewise

Lipschitz functions.

(2.2) PROPOSITION. - LettME be the set of all pairs of functions (r,p) both

defined on r, satisfying Admissibility Conditions: 1-3 and

i) r(.) and p(.)_have'on1y finitely many discontinuities in any finite
interval; |

ii) if either f(xf) < p(x), r(x+)'3_p(x) or rix ) > p(x), r(x+) < p(x)
for some x e R, then r(x) = p(x);

iii) r(.) and p(.) are piecewise Lipschitz, i.e. |r(x]) - r(x2)| 5_m1|x]—x2|
for some h] < Whenever Xqs Xp e I for some interval I on which r(.).
is continuous. Similarly, [p(xq) = p(x,)] < my[xq - Xo| for some
my < o whenever X1s. %Xy € I for some interval I on which p(.)fis

~continuous;

then MLC M.

Proof. The proof follows OZEKICI [35], replacing his control r by r - p.C]
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(2.2) BEMAEE. Propositions (2.1) and (2.2) reveal that if either p is
decreasing and r fs,increasing or both p and r piecewise Lipschitz, there
eXists a unique So]ution to equation (2,2). A]though_these do not consti-
tute the comphéte set of admissiblé:controls, these subﬁets of M are general
enough for our purposes.C)

. Actually we are now in a position to define for any (r,p) e & and

x ¢ R, a solution q(x,.) of (2;2) on R, by:

v

X .
-sup{L(x)<y<x:s . dz/(r(z)-p(2))>t3 VL(x) if r(x) > p(x)
y :

q(x,t) = X o if r(x) = p(x) (2.3)
| y . .
inf{x<y<U(x):s dz/(p(z)-r(z))>t}al(x) if r(x) < p(x)

X .

where

L(x) p(z)}
p(z)}.

Note that s dz/|r(z)-p(z)| gives us the total time required to change
> a . ) :

sup{z < x: r(z)

U(x)

inf{z > x: r(z)
=

the content Tevel from a to b when/there'exist only contro]]ed'input and -
output; thus the.fﬁnction q(x,t) as defined by (2.3) 1is the content level
of the store at time t if the.initial content is x. In fact q(x,t) is the
'-unique solution of equation (2.2) where the input procesé is deterministic
'with no jump inputs, and the output process is deterministic‘with no jump

outputs, i.e. A, =B, = 0 identically for all t.

(2.3) REMARK. Some properties of g can be listed as:

i) q(X,O) = x for every x € R+.;
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i1) q(x,t) is decreasing in t if r(x) Z;p(x) for x e R;
iii) q(x,t) is increasing in' t if r(x) < plx) for xeRy;

iv) the mapping t + q(x,t) is continuous for fixed x ¢ R .0

These observations are picfofia]]y summarized in Figbre*(z.z). If
the output rate exceeds the input rate at the initial level x, the céntent
level continuously decreases until'the output raie equals the current input
rate and then remains at thaf particular Tevel forever. The reverse holds
true when the initial output réte is ‘Tess than the initial input rate: the
content level increases until the fnput and output rates become equal and
remains there forever. |

In this section attention is primarily focused upon the admissibility

of the control pair (r,p) as far as the existence and uniqueness of a solu-

tjon to the storage equation is concerned. We characterized some subsets
of admissible controls iﬁ M by considering the deterministic problem and
consequently were able to identify thé unique solution qrﬁhich satisfies
equation (2.2). An important point;fo nbte here‘is that results we have

obtained in this section are in accordance with the resu]ts ofva11 the

work to date on-storage theory.

.4.3 CONSTRUCTION OF THE GENERALIZED STORAGE PROCESS

In this section we\consfruct_the storage process X and show.that it
is a Hunt process.” In doing-so, an important aspect to be incorporated
into the construction is the no-backlogging Condition.i Recall that the

- content 1e9e1 of the store incréases due to an 1hput jump and decreases '

- due to an output jump where the input and output‘pkocesses are as defined
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FIGURE 2.2 - The content level q(x,.

) of the deterministic problem

for any (r,p)eM and a given x e R_.
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in Section IV.1. When a jump which brings“the current content level below
zero occurs, the content Tevel should be prevented froh falling below zero
to avoid backlagging, so it is lumped into zero at the critical point of
emptiness. To achieve this scheme, we introduce for fixed w e @

Z(0) = O (o) + A @) = A=) - (Bg () - B=())} V O, n e .

n. n n n

- Now we are in a position to define X inkterms of Z and q as defined

by (2.3). We assume that (r,p) e M is fixed. For every fixed w € Q and

x ¢ R, define Xt(w) recursively by:

Gl (0)s ) 0< t< Sl
Xlo) = (3.1)

A(Z, (), t - S (w)) Splw) < t <5 4q(w).

This is the unique sdlution of the generalized stbrage equation (I.1),
which follows from Lemma (2.1) and the fact that Lim Sn(m) = . Obyiously
-fof all u € Q, Xt(w) jumps only when At(w) or Bt(w) jumpé. Therefore the
jump times 6f X coincide with those of A or B.. The eyolution of X in
between'the jumps.is determinist1c4and descfibed-by q(x;t—to)vif at time
_ t0 there occurred a jump which brought the content level to x. Note that
if the‘jump which took p]aée at t, was due to an output jump and its mag-
nitude was large enough to bring the content 1eve1 below zerb, then the
eVo]ution of x is described by q(O,f-to) until the next jump occurs.

Assume that R and E are the input and output processes defined on

(5, ?, E), respectively, as given by Assumption (1.1). ;Now define the
shift operators {gt} on § such that for each t,s 3.03vﬁt+s(;) = Kt(G) +

.AS ) et(w) and Bt+s(w) = Bt(w) + Bs 0 et(w)',
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Let ; be the completion of G(RS, B

R z_O)IWith.respect to the family

of measures {Pu:u a finite measure on }q. Furthermore let EE be the

completion of g(As,Bs:s,< t) in ; with respect to the same family {P }.
/ - _ H
We now let
0 A A

= o = 0:
Q=R XxQ, F =R XF, F =R XF

and for each y = (x,;) e Q define

Al = B0 Blo) = B+ eylw) = (X(w)B (@)

where Xt(w) is the unique solution of the storage equation as gijven by '
(3.1) such that Xo(m) = X.

For x ¢ Ry define'a probability measure on P by

whereAGX is the Dirac measure concentrating its unit mass at X. It is clear
that the mapping x »-PX(A) is in R, for.any Ae P and thus

P (M) =1 u(da)P,(a)

Ry
is well-defined for any finite measure ponRg,. _

The construction of the storage process X will now be comp]eted by
1etting-F be the completion of 7° with respect to the family of measures
{Pu} and Ft'be the completion of ngin F with.respect to the same famf]y
{Pu}' Thus it is obvious that Ft conveys all the information contained
in the input, output and storage processes during [0,t). B

Theorem (3.1) based upon this construction states an important result
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which enables us to employ Markov decision theory in the optimal control

problem.

(3.1) THEOREM. The storage process

X = (QsF9Ftthsets HDX)

is a Hunt process taking values in R,.

Proof. In view of Definition (9f2) in BLUMENTAL and GETOOR [ 2], we need

to check the following properties:

a) Normality. From the definition of Xo and the probability measure

Py PX{Xo =x} =1 forany x eR,.

b) Right Continuity and the Existence of Left-Hand-Limits. The way
q(x,t) 1is defihed‘by (2.3) dﬁd the storage process X is constructed
din terms of q by (3.1) ensures ug that the mapping t » X, is right
continuous and has 1eft—hand-1im1ts.

c) Homogeneity. It suff1ces to check that X, . = X 08

Y

. Note that

Aps(®) = t(m) + A, 0 0,(w) and B, (w) = B) + B, 0 8,(a) for

fixed w (x,w). From the definition of X, X.,_(w) satisfies (2.1)’

t+s
for all s > 0; so we can write

N A t+s

Reas(@) = %+ Ay o) = Byyg(0) + 7 (pr) (K, (0D, > 0.

Writing the integral as the sum of the two integrals, we obtain for

s>0
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Xt+s(w) =X + At(Q) + AS 0 et(w) --Bt(m) - BS ) et(m)

t .
£ e - R (@))du + £ (p - ) (X
o - . (8] :

-+

prg(@))du

A

. A A A A A S .
(o) # By 0 86) - By o Bu@) + £ (1 - 1)ty lo))e

Hence s » Xt+s(w).satisfies equation (2.1) with (x,m)vrep]aced by (Xt(w),at(;)),

respectively. From the uniqueness of the so]utioh this implies
Xips(w) = X (K (0),0,(0)) = X, o 0, (w)
gince et(m) =_(Xt(w),9t(w))-

d) Quasi-Left Continuity. Let’{Tn} be an increasing séquenCe of {Fy}
stopping times with Limit T. By the fact that t +‘Xt has 1éft—hand
1imits everywhere, L;m XTn exists. Since Xt']s continuous on (Sn’sn+1)’
Xp > X; everywhere on @ except on the set

n

{T, < T forall n: Lim T =T T<w)

and then on]y.if T is a point of discontinuity for Xeo IF L1m XT # X7s

then.either LiquT # AT or Lim BT # BT since X has the same po1nts
n n -n

of discontinuity as either A or Bt But this is not possible since A

and B are both obviously. quasi-]eft—continuoUs which follows from the

fact that A and B are both compound Poisson processes ‘with f1n1te Jump

rates. Hence X is also quasi- 1eft-cont1nuous

e) Regularity Conditions. Conditians on the state Space ( R+,R+) are met

automatically, and our construction further 1mpjies that



f)

and

O
.Xt = X0 + At - Bt +f
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Xt € Ft/R+ ,

_which in turn implies that X is prbgressively measurable with respect

to {Ft}_by the right continuity; So if T is any {Ft} stopping time,
L3

XT € FT/R .

Moreover it follows from our construction of Fg and completion of Fy

that {F.} is right continuous. '

Strong Markov Property. Since A and B are processes with stationary

independent increments, (Q’F’Ft+?At’et’ Px) and (Q5F"F£+’Bt;et’ Px)

aré'strohg Markov’prbgesses and for any {E%+} stopping time T

. o o
PX{AT'Ft'- AT £ D]/FT'*'}- = HDX{At € D]} ) (3.2)

- .
P, (Bryq - By € Dy/Fp+} = P {By e D)}
for all t > 0 and D], 02 € R, independent of x. pefine

+ 7 +
Tt " Bre KT s 20

for ahy stopping time T in {Fg+}.' Then it follows from (I.1) that
t

(p - r)(X:)du , t>0
0 )

+‘,_+_0 - ’ s . d
where X f,At Br + g (p r)(Xu)du. Since c(At t > 0) an

c(B;:tqz 0) are both independent of"Fg by (3.2),

R e
PN € Dy/Pp) = Pyhp e D} on {X) =y} . (3.3)
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That is,

0 =
PX{XT+t € D3/FT+} = IPXT{Xt > D3}
s o 0 '
for all x eR., t>0and D3 € R_. This implies that (Q,F,Et+,Xt,et, Px)
is a strong Markov process. We know that if X is Markov relative to {Fg+},

then
= Fut for each t > 0 : (3.4)

by Proposition (8.12) in BLUMENTAL and GETOOR [2]. Thus expression (3.3)

reduces to

Pullreg © DyfFph = Py Ky e D)
for all t > 0, x e'm+, D3 € R, by Theorem (7.3) in BLUMENTAL and GETOOR [2].
Note that if Fk'is the completion of 7, in F with respect to {Pu},

then obviously f% = F and together with (3.4) we have

-7 .0

= Ft-i- =' t

t

Theorem (3.1) states that the storage process X is- in fact a.standard-
~normal strong Markoy process with the termination time being infinite almost
surely. So X is a Markov decision process where (r,p) are the associated

controls.

4.4  THE GENERATOR OF THE GENERALIZED STORAGE PROCESS

The geﬁerator possésses yital importance in the optimal control of
strong Markov processes. In this section we obtajn.the expression for the

'generator and characterize its domain and range. Our definition of the
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generator is equ1va1ent to the weak infinitesimal generator given in DYNKIN
[1] and BREIMAN [41] while our procedure follows OZEKICI [35].
For every f e b(R,) and x ¢ R+, Tet

0*F(x) = Lin f(x + h) - f(x) DF(x) = Lin £(x) - f(xv—‘h)‘

hv0 ~h o h+0 h
and for fixed (r,p) e ¥

DF(x) if  r(x) < p(x)
Drpf(x) =
D f(x)  if r(x) > p(x) .

If f(.) is absolutely continuous, then

f'(.) = D+f(.) =D f(.) almost everywhere.

(4.7) DEFINITION. A sequence of functions {ft} C:b(R;) converges boundedly

pointwise to a function f ¢ b(R,) as t + 0 if

i) Lim ft(x) = f(x) for évery x e R
40

ii) there exists some constant M < o such that

|1

¢l] = sup 'lfi(x)l f_M

~xeR+
for all t sufficiently sma]].()

~The generator Gﬁp of the process X, the range R(GYP) of.Gfp,,and

the domain D(Gfp) of Grp'for any (r,p) € & are defined in Definition (4.2).
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(4.2) DEFINITION. For any.(r,p) e u,’

i) The range R(Grp) of the generator Gr is the set of a11'f £ b(R;)

‘ p
such that '

'Ex[f(xt)] +~f(x) as t4+ 0 forall xe R, 3

) The domai . .
i) ?. omain D(Grp) of the'generator Grp is the set of all fe R(Grp)
such that |

Ex[f(Xt) - f(x)]/t converges boundedly pointwise on R, as

t ¥+ 0 to a function in R(Grp);

iii) for any f ¢ D(Grp)’ Gr f is defined to be the 1imiting function in

Gii).0

p

The stopping times T,, T and Sy of 7 as defined by (1.1), (1.2),
and (1.3).are the first jump times of the input process A, the output pro-
cess B and the storage process X, respectively. We know that for ahy

we@ Sqlw) =min(Ty(w)tyw)), so it is clear hat

' » ; -(A . )u
PX{S] >u} = e ‘a b, )

L (4.1)
P {S. >u, Sq = 14} = __p__ ef()\a+)\b)u , .
X1 L L
' : a b
_ \ )
P (S >u, S, =T} =—2 e athplu
X 1 1 1
Aa A

for every X g R, u>0. Finally let (Pt)tip be the contr;ction semi-

group on b(r,) defined by

) =ELF(] . t20.
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(4.7) PROPOSITION. For (r,p) e M, R(Grp) consists of all f e b(r;) such
that,

i) f(.) is right continuous on r(.) < p(.)

ii) f(.) is left continuous on r(.) > p(.) .
Proof. Fof every x e R_and t > 0,
Ptf(x) = Ex[f(Xt):S] > t] + Ex[f(Xt):S].i t].

On {'s-] > 1}, f(X) = f(a(X,,t)); thus

ELF(X):s > t] = & Pa)E (o)), | (4.2
Note that

ELF(Xp):5y < €] = EjLFIK):S) < by Sy = T + IR0 1S < ¢, Sy = ]

k](x,t) + kz(x,t) .
Using the strong Markov property of X at S], we obtain

g (x,2) = Ex[I{S]it} '~I{S1=T]'}' Ex[f(xt-s1) o6 /P A1
On {S] = T]} we have

X = q(XO,S-i) + AS - AS—

3 19
Since P {As " - As- € D/Sy = T4 } =G (D) for De&Rm, ,
] S] a .

ky(xst) = A, ;e 0athe)s gs £ g ,(dy)p - SFlalx,s) +y).
0 » o
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By a change of variables setting u=t-s, weget

: t o
SICLREWS e Batip)(t-uly, ;6P flalotu) +y).  (4.3)

SimiTarly We have

kz(x’_t) = Ex[I{S]_it}" I{S]=r]} . Ex[f(xt_s]) ) 651/F51]]

= ;X[I{Slfﬁ} . I{S]=T]} . Pt-S]f(XS])] .

On {S] = T]} we have

XS ={q(xqss]) - (BS - BS;)},V 0

1 1

‘by‘the definition of X as given in (3.1). Since we have

ﬂ”X{BS_I - BS-

] € D/S]>= T]} = Gb(D) for D € R+ 3
t Ve q(x,s)
ky(x,t) = Ay Ie (*a+§b)s;ds [ Gyldn)Py (Fla(xs) - )
T VT P | ”
A, S eathPds g G, (dy)p,_ F(0) .

o q(x,s)

By another. change of variables setting u = t-s,

t | | ( »t- )
kyx,t) = 2, £ e Ratp)(tulg, g 6, (dy)P F(a(x,t-u) - y)
0 ¢]
Ay ;e battp) (bu)gy 7 6, (dy)P,F(0) . (4.4)
o q(x,t-u)
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or if

(2.3)

o
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From (4.3) and (4.4) it is obvious that for all x e R,

Lim k](x,t) =0, Lim kz(x,t) = 0.
v ' t40 '

(4.2).f £ b(R+) is in R(Grp) if and only if for ;11 XER,

Lim[e'(xaﬂb)t fla(x,t))] = f(x)
tv0

and only 1f

Lim f(q(x,t)) = f(x) .
40

Now the desired result follows immediately by reca11ing from Remark

that

~a)  qx,t) ¥ x as t¥0 on {r(.) < p(.)}

b) q(x,t) =x fort>0 on {r(.) = p(.)}

c) q(x,t) 4+ x as t+ 0 on {r(.) > p(.)}. 0

fying

there

Proposition (4.1) characterizes the range of the generator by speci- -
the conditions to be satisfied by any function in the range. Now

remains to find an expression for the generator itself and to charac-

terize its domain.

For 0 < xT § Xos we define

£ (x;5%p) = Inf{t > 0:q(x)5t) = X, | (4.5)
t—(x],xz) = inf{t > O:q(xz,t) = x]};

So t+(x],x2) is the total amount of time it takes for the process to

" increase from x] to X,, and t_(x1’xz) is the total amount of time it takes



56

for the process to decrease from Xy to X4 when there are no random input-
and output jumps. At least one of these two quantities is obviously infinite.

If t_(x],xz)-< o, then for 0_<_'X <u <y < X9 r(u) > p(u), r(v) > p(v)s
t_(x],u) _<__t-(x] W) < » and '

t (uyv) =f ——— . | | (4.6)

Similarly if t+(x],x2) < », then for 0_<_ X] S U<V < Xy p(u) > r(u),

p(v) > r(v), t+(v,x2) < t'+(u,x2) < » and: |

; v '
t (u,v) = S ds
u

_ (4.7) i
p(s) - r(s) |

Keeping these definitions .in mind, we now state the conditions that

in the following theorem.

shou]d be met by D(Grp) and Grp

THEOREM (4.1). For (ryp) e i, D(G,)) consists of all f e &(G) such that
i) Drpf(x) exists for all xeR.;

ii) - The function f(.) 'is absolutely continuous on every interval

I= {x eHR+:r"(x),# p(x)} with m1r11 lr(x) - p(x)| > 03
Xe

ii1)  If for some X < x. t (X,x) < =, then f(.) is right continuous. -

~at x. Similarly if for some X > X t+(x,x_)'t< w, then f(.) is

left-continuous at X;

iv) The function
Dpf(X)IP(x) - r(x)] = (3; + Ap)F(x) +‘Ag”£' Ga(dV)F(x + y)

+ £ G (d)F(x - y) + AFO)(1 - G(x)), X e R,
0 .
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is in R(Grp)'
Furthermore Grpf(x) is equal to the function given in (iv) for any

fe R(Grp)'
Proof. From the definition given by (4.1)

1 | |
Gpf(x) = [’Elg = [Pf(x) - ()T, fe b(r,) (4.8)

" where the domain:DQGrp) is the set of all f ¢ b(r,) for which this limit
exists boundedly pointwise and belongs to R(Grp)'

Combining (4.2)-(4.4) together, we obtain
= [PLF(x) = F(x)] = == Ky (x,8) + = ko(x,t) + = ky(x,1)  (4.9)

where k3(x,t) = e'O‘aﬂ‘b)t f(q(x,t)) - f(x). To find the generator, it
suffices to find the 1imit of each of the terms involved in expression

(4.9). It is obvious that for f ¢ R(G )

rp
_l foe] ) .
Lim ki(x,t) =A_ S G_(dy)f(x +y) (4.10)
t+0 T M . ay, a ) |
and |
Lim — k o(Xst) = A f G (dy)f(x - y) + A f(0)(1 - G (x)). (4.11)
t b b , ,
t40 |
It follows from (4.3) and (4;4) that for all f ¢ R(Grp) and
fe b(R+)

t
e-(ka+xb)s

iy 0 < A L 7 ds < 2l (3.12)

) 1 -(AatAn)S
iyt )] 1711 = / e~ (ab)s 45 < |17
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which in turn implies that limits (4.10) and (4 11) exist bounded]y point-
wise. Now there remains to show that (]/t)k (x,t) converges boundedly

pointwise. In evaluating t;g (1/ﬁ)k3(x,t), note that Taylor's series expan-

sion yields
e~ Pathplt o _ (A, + A )t + 0(¢)

where o(t)/t ~ 0 as t + 0. Consequently,

- Kg(xst) = HLfal,t) - £(0] + [0, + 2g) + 0(8)/E1F(aCxt)).

| (4:13)
Furthefmore,'

Lin[-(A, + Ap) + O(t)/E]F(a(x,t)) = (A, + A )F(x) © (4.18)
t+0 C

boundedly pointwise for all fue R(Grp) by the boundedness of 0(t)/t. To

complete the proof, there remains to show that
—l{f(q(x,t)) - F(x)1 | ' (4.15)

converges boundedly po1ntw1se as t +0and G pf € R(G ) if and on]y if

f satisfies conditions (1)-(iv) of the Theorem.
We will first show necessity by assuming that the function given by
(4.15) converges boundedly pointwise as t + 0 for f ¢ R(Grp) and G f ¢ R(Grp).f

rp
Then it is necessary-to prove that: f satisfies the conditioh of.: the Theorem.



i) Note ‘that for x ¢ {r(.) # p(.)}

__q(xst) - X
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L ea(e, 1) - ()] = Halatll 1)
q(x,t)-x

Now we know that q satisfies

t
q(xst) = x + 7 (p - r)q(x,s)ds, t>0.
0 ~ ,
So, t ‘ |
S (p - r)g(x,s)ds
Lim AXat) = X _ Lim 2
t+0 ot

t40 t

p(x) - r(x) £ 0

(4.16)

(4:17)

Lim[p(q(x,t)) - r(q(x,t))]
t40

boundedly pointwise since p and r are both bounded and they satisfy Admis-

sibility Condition 3. This in turn implies that the fuhction

fla(x,t) - F(x).
Q(X,t) - X

(4.18)

converges pointwise as t ¢ 0 for every x e {r(.) # p(.)}. If r(x) = p(x),

then q(x,t) = x for all t > 0 and the left hand side of (4.16) is trivially

zero and the derivative D?pf(x) is not defined. Then the first term of the

expression in (iv) is set to be 1denti¢a11y equal to zero. This together

with the definition of Drpf amounts to saying that Drpf(x) exists for all

X e R+;
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ii)_ Let I be an interval of {r(.) #'p(.)} and assume that r(.) s p(.) on
I such that ¢ = min{r(x) - p(x); > O. » |
XeI )

If (]/t)[f(q(x,t)) - f(x)] converges boundedly pointwise, by Definition

(4.1) there exists M < « and tM > 0 such that for every x eR_ and.

t-<-tM_

[F(alx,t)) - F60] M.t . S C(4.19)

For arbitrary e > 0, let &= mih{?'tM; (¥/M)e}. For any finite.

collection {(Xi’x%)}i<n of nonoverlapping intervals of I with
n o i o .

. .
151 x5 = ;] <.5, we have

LIS
du Lo Xe =X

by =

o
t{x5xi) = s (4.20)
1

X

A

A

ct
=

r(u) - p0) =~ F T

Note that for all i = 1,...n

X = a(x}, t-(xi’x%))',

So, .-
n - n o
EF(x) - Fdl= o Flalxd O - Fxp]
i=1 =1
By (4.19),
n ' on- ‘
151 |F(x;) - fx3)| <M izl‘t (x55x3) -

Furthermore by (4.20),



61

i M
1,g]lf(xi) - f(x1)] S

IH~m=s

xy - %] < M osces
'i]-] 1—?‘ -

This implies that f(.) is absolutely continuous when r(.) > p(.)

on I. Note that the same argument can be repeated when r(;) < p(.) using
t(.,.). |

i11) We will show the desired result only for the case where
’t"(§3x1) < = for some X < X1> leaving the other to the reader.
Now assume that f(.) is not right continuous at Xx. For every

X € [i}x]] we have

|Falx,t"(G6x))) = FOOL _[FGD - F(x)|
t7(X,x) o tT(xx)

Since f(.) is assumed not to be right continuous at X,

" Lim f(x) # f(X). This together with the fact that
X¥X :
Lim t (X,x) = 0 implies that
X¥X »

sup 1F(X) - F(x)]. _
X‘ER_I_ t-(;(_,X)

which on the other hand cdhtkadicts the bounded]y pointwise
convergence of’(]/t)[f(q(x,t)) - f(x)] by (4.21); hence, f(.)
should be right continuous at X. |
Putting statements (4.9)-(4;18) together, the expression for

the generator Gr f is explicitly obtained, which js in fact given by

p
Condition (iv) of the Theorem. The proof of necessity condition 1is
completed by noting that f ¢ D(Grp) satisfies Condition (i)-(iii) of the

Theorem if expression (4.15) converges boundedly pointwise.



62

To show sufficiency assume. that fe R(G ) satisfies conditions (i)- |
(1v) of the Theorem. Then it 1s-necessary to show that the function
gjven by (4.15) converges boundedly pointwise. |

Since Drpf exists for all x e R, by Condition (1) it follows from
(4.16) thaﬁ the pointwise 1imit of (4.15) eXists for all x e R,. By
(iv), Grpf e R(G,. ) and all we need to show is that this convergence is
bounded. Note'that if r(x) = p(x) for some x e R, (q(x,t) -/t
becomes zero and .thus (4.15) fs trivially zero for all t > 0.

We will first prove that the convergence of (4.15) is bounded on
the set J = {X elR+: r(x) > p(x)}. To do thisfit.suffices to show that
for all t >0 and x ¢ J '

ety '
[fla(x,t)) - f(x)1 = 7 Drpf(u)du (4.21)
< |

~sﬁnce a change of variables s = t (u,x) and the fact that

- X dv
= ,8), - tT(ux) = f—7ro
u = q(x,s UsX T )

give
. » i . '

[f(a(x,t)) - f(X)] = of D f(q(x,S))[p(q(x,s)) - r(q(x,s))]ds..(4-22)
The fact that f ¢ R(G ) and G pf € R(G ) are bounded by PrOpos1t1on (4 1)
implies that the r1ght hand side of (4. 22) js bounded by Cond1t1on (iv),
which in turn implies the bounded pointwise convergence of (4.15).

To show (4.21) note that g(x,t) < x and Drpf(ﬁ) = D-F(.) on [q(x,t),x]
for all t > 0 since r(x) > p(x) on J; thus the right-hand side of (4.21)

s well-defined. Define y(t) = q(x,t), so y(0) = x and y(t) is decreasing



63

thh rgspect tot. Lety = tig y(t)f ‘Since t‘(y,k) < = for all y»e (¥,x),
f(.) is right-continuous on (y,x) by Condition (iii). So f(.) is continuous
‘Vand 1eft-diffefentiab]e on (¥,x] by Proposition.(4.1) since fe R(Grp) and
r(y) > ply). for all y ¢ (¥,x]. This and (ii) imply that (4.21) is true for
all t < t7(y,x). _If t7(y,x) = =, then we are done. If t7(¥,x) < = ,4then
obviously y(t) =y for all t > t7(y,x) and (.) is right continuous at y by
Condition (iii). So f(.) is continuous and left-differentiable at y by
Proposition (4.1) since f ¢ R(G, ) and r(¥) > p(¥). So (4.21) is still
true for all t >t (y,x). Now it is'proven.that (4.21) holds true for
a}] t>0 and x € d. The same argument can be repeated here to prove the
.bouﬁdedvcohvergence of (4.15) on {r(.) < p(.)} by_usingft+(.,.).

Although it is quite difficult to chéck whether a‘given.function
satigfies the conditions imposed by Theorem (4.1), fortunately we are

able to.find a set of functions which readily meet those requirements.

COROLLARY (4.1). Let f be a bounded function on R,_ so that f(.) is

‘ abéo]utely continuous, D+f(.) and D f(.) exist and are bounded on R_.
Then f ¢ D(Grp) for any (r,p) ¢ ¥ and

6oF(x) = £ (D) - (0] = Oy + AFLX) + 2, gw,ea(dy)f<xv+'y>

X ‘ | '
F £ @l - ¥) ¢ T - 6,(0).
Proof. This follows directly from Theorem (4.1). Note that the absolute
continuity of f(.) implies that f'(.) exists and is eqqa] to Drpf(')

~almost everywhere independent of (r,p).()
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REMARK (4.1). It is clear from Coro]]aryv(4.1) that every bounded function

f on R_with a bounded continuoqs derivétivé‘f'(f) on‘R+ is in D(Grp) for

every (r,p) e'Mf Furthermore Drpf(‘),z f'(.) independent of (r,p).f3
An important point to be emphasized is that the dependence of

the derivative on (r,p) is highly undesirable in the optimal control

problem; however the set of functions introduced by Remark (4.1) over-

comes this difficulty and will be employed throughout this paper.
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V. A GENERAL FRAMEWORK FOR OPTIMAL CONTROL
OF THE GENERALIZED STORAGE MODEL

In this chapter the problem of optimally controlling the content
Tevel bf the generalized storage model is analyzed in detail. In Section 1
;Ehé.' cOntro1 problem is formulated in the formal procedure of Markov
decisioh theory, and the main assumptions on the reward and cost’struc-
ture of the model are stated. In Section 2 sufficient optima1ity con-
ditions are derived in ferms of functional differential equations for

both local and global purposes.

5.1 THE OPTIMAL CONTROL PROBLEM

* The main purpose_imbeddéd in the}dptima] control problem is to
control the storage process X of fhe generalized storage model given
by (I.1). The controller will observe the content level and accordingly
decide.upon appropriate input and output rates continuously in time. If
at time t the content level is observed to be x, he is to choose an in-
~ put fate p(x) and an output rate r(x) within the admissible class.
The set of conditions that should be satisfied by his controls (r,p)

- constitutes his set of admissible controls; in fact, the set of all
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‘pairwise functions (r,p) both defined on R, satisfying Admissibility
Conditions 1-4 is defined to be the set of admissible controls M, and .
‘15 studied extensively in Sectfon IV.2. We have forthermore charac-
ter1zed explicitly some subsets of ¥ to be used frequently in this paper
In particular, recall that M; is the set of all pairs (rsp) € ¥ such that
r(.)-p(.) is increasing, and M, is the set of (r,p) ¢ ¥ such that both
are piecewise Lipschitz.

'In selecting the input ond output controls based upon his obser-
vation of the content level, the eontr011er shoauld optimize a return

function specified by
LOGap(X)ar(X)) = LK) + Ly(p(X)) + Ly(r(X,) | BRGRY

where et any time t L(x,p(x), r(x)) is the rate ofmearnings given that
the content level is x, the input rate chosen is p(x) and the output rate
chosen is r(x). Although from a theoretical po1nt of view no sign res-
triction is required on L], L2 and L3, we will assume that L] and L2
have negat1ve contributions while L3 has positive contr1but1on So

(x) can be interpreted as the holding cost rate when the content’ 1eve1
. of the store is x. Moreover Lz(p(x)) can be interpreted as the rate of
expense incurred by procurement when there is a contro]led jnput to the
store at a rate p(x) while L3(r(x)j can be interpreted as the rate of .
earnings obtained from sales when there is a controlled output from the
store at a rate.r(*). | | |

~ We oow define the return function Vpp 35 therexpected infinite time

horizon discounted earnings given.by
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. (1.2)

CEr .ot ,
"rp(’,‘)‘Ex[{) e LXpsp(X)ar(X))dt] 5 x e R
for any (r,p) e ¥ and o > 0. The control problem aims at choosing
contro]s (r,p) in the admissible class # so as to maximize the expected
infinite time horizpn discounted earnings.

Throughout this paper, (r*,p*) e M are said to be optimal con-

trols, and v* is said to be an optimal return function if

he

Vespn(X) = V¥(x) 2 v, (%)

for all (r,p) e ¥ and x ¢ R, Similarly for an arbitrary subset ¥ <,
(;,B) € &‘is optimal in ﬁ and v = vga is the optima] return function in
y if

V?E(X) = C(x)_z Vrp(x)

for all (r,p) e M and X ¢ R,
" We now state our basic assumptions imposed upon the reward and cost

structure.

ASSUMPTION (1.1).
i) L] is a bounded Lipschitz continuous function on R, and L](w) =
Lim,L](x) exists;
X0 )
i) L2 € Ci([O,B])'is concave decreasing and |L5[‘> ¢ for some € >0;

iii) Ly e C2([0,r]) is concave increasing and [L3] >.s for some €>0;

| i) .0
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Although the assumptions imposed on Lz\and L3 seem quite'restrictiVe,
resulting in the elimination of some interesting cases, it shoﬁid be poin-
ted out-that they are made for the sake of simplicity. In faet,‘simiiar
results will. be obtained by dropping these assumptions and Studying the
problem with less restrictive conditions in Chapter VIII. Furthermore,
we will show that nicer results will be obtained if L, satisfies some
monotonicity properties. The assumption ¥ > p is crucial, but it is still
a prominent assumption which implies that it is always possible to decrease
the content level whatever the input rate is.

It follows from Admissibility Condition 3.thaf Lz(p(.)) and L3(r(-))

“are left continuous on {r(.) > p(.)}; and L2(p(.)) and L3(r(.)) are right

continuous on {r(.) < p(.)}. So by Proposition (1v.4.1), Lz(p(.)) E‘R(Grp)

and L3(r(.)) € R(Grp). Furthermore L, € R(Grp) which follows from
Assumption (1.1) and Proposition (IV.4.1). So L e R(Grp) for all (r,p) e
Now we are in a position to provide a characterization of the ex-
pected infinite time horizon discounted earnings v. To do this we réfer
to a well-known result due to DYNKIN [2] and BREIMAN [41], which states

that Vr is the unique solution in D(Grp) of a functional differeﬁtial

p
equation.

"THEOREM (1.1). For o > 0 and (r,p) € M, the expected infinite time

horizon discounted earnings Vrp given'by (1.2) is the unique solution

in'D(Grp) of the equation

(oI - Grp)vrp = |
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That is,

_avrp =L+ Grpvrp .C)

Theorem (1.1) -relates the expected. infinite time horizon discounted
earnings to the storage process X fhrough its generator. It bears great
importance in the opfima] control problem since fhis result is used to
derive the sufficient condition of optimality.

We conclude this section by providing the fu]] expression for the
functional differential equation given in Theorem (1.1). It follows frpm

_Corollary (IV.4.1) that Vrp satisfies for (r,p) e ¥ and X ¢ R,

L (30 + Ly(px)) * Ly(r(x)) + v 00Lp0) = rG]

(g + AplVppx) + 2 7 v x + ¥)6, (dy)
0

avrp(x)

+

A fx gl = V&) + A O - 6,00] (1.3)

where v' ( ) = Drpvrp( ) is well-defined on {r( ) f p( )} since v rp
‘Note that in case r(x) = p(x) for some x ¢ R, the fourth term on the right

hand side of equation (1.3) is trivially zero.

5.2 A SUFFICIENT CONDITION OF LOCAL AND GLOBAL OPTIMALITY

In this sect1on we- establish a sufficient opt1ma11ty condition for

Vykp to be optimal in (G, ). 0ur most jmportant tool in this respect

- - is the generator of the storage process X with its domain and range as

specified in Chapter IV. So the resu]ts of Proposition (IV.4.1), R

Theorem (IV.4.1) and Theorem (1.1) are fully utilized to accomplish our aim.

€ D(Grp)‘
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Continuous time control of Markov decision processes have been studied
by many researchers who stated the sufficient conditions of optiha]ity-ih
various forms. We refer the reader to DOSHI [24] and "VERMES [23] for
detailed treatment of these processes. We follow the approach of SZEKiCi
[35] to obtain the existence and uniquenessvresu1ts on optimal controls
as well as the sufficient optimality conditions.

For sihp]icity of notation for'every xeR,, let
& = + Xa Ay . ‘ | (2.1)

and

© X
Kv(x) =, S vx +¥)6 (dy) +ap /S vix - y)6,(dy)
0 0

+Mywx1-egm1. (2.2)

Then it follows from (1.3) that for x e R, V ., satisfies

Gy (x) = Ly(x) + Lz(p(X)) +Lg(r0a) v (OIp(x) - r(x)] + kv (%)
/ (2.3)

Sinée Kv(x) will be encountered frequently in our analysis of the

. optimal confro] problem, it is necessary to.dwell .upon some of the proper-

ties it possesses.

LEMMA (2.1) For any f € b(R,),

i) Kf(.) is continuous if f(.) is continuous;
" §i)  Kf(.) is Lipschitz continuous if £(.) is Lipschitz continuous;

ii1)  KF(.) is decreasing if f(.) is decreasing on [0,«).
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Proof. Note that for x ¢ R+

KF(x) = 2,01 (x) + a.c,(x)

where

q (x) (f)w Flx + y)6, (dy)

X : .
colx) = s fx - ¥)6,(dy) + f(O)[1 - G (x)].
0

It is convenient to introduce for x ¢ R+
f(x) R x>0

g(x) =
f(0) . X< 0

and to express Cq and Cy in terms of expectations by

c](x) = E[f(x + Y)]
~and

cy(x) = Elg(x - 7)]

‘where Y and Z have the probab111ty d1str1but1ons G, (.) and Gb( )s n

respect1ve1y

i) The continufty of f 1mpliesithat f(xn) + f(x) as X, > X. S0
X, * Y > x + Y and f(xn +Y) » fx +rY){.'Then by the bqunded
convergence theorem E[f(xn +.Y)] - E[f(x + Y)]; and cohsequent]y
;e is continuous The contihuity of f fufther implies the con-
tinuity of g by the way g is def1ned Similarly then
g(x, - Z) » g(x - Z), and E[g(x - Z)] +-E[g(x - 1)]. Thsc,

is also continuous;
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i1)  If f is Lipschitz continuous, then
|f(xq) - f(x,)] < MIx; - Xo|

which implies
[ £(x, +‘Y) - flxy £ V)| < M[xq - x|

Then note that

[ELF(x, + V)] - E[f(x, + )| = [ELF(x; + ¥) - F(x, + V)]

A

|E[M X] = Xy 1] = M|x] - x2|:

So Cq is continuous. The Lipschitzpfoperty of c, can be shown

- in a similar manner by using the same argument.

iii). If f is decreasing on [0,0), i.e.:for X1 < X, f(x])_z fx,),
then x; + Y <Xyt Y and f(xi +Y) z_f(x2 +Y) which implies
that ¢ 7
Likewise the fact that f is decreasing on [0,o) implies that

is decreasing since E[f(x1 +Y)] > E[f(x, +Y)].

g is decreasing on (-»,»), so Xq - L% %y - Land

g(xy - 2) > g(x, - I) for X] < Xp- Thus E[g(xy - Z)] 3_E£9(X2 - 1)1,

and accordingly Co is also decreasing.C).-

The fact that the properties of f are inherent in Kf as stated by

Lemma  (2.1) will be useful in the proof of the following theorem.

THEOREM (2.1)  If there is a bounded function v on R, which satisfies:
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i) v(.) is absolutely continuous, D+v(.)_(resp, D7v(.)) exists.
and it is bounded, right—continuods (resp, ]eft—continuous)

on R.3

1) sup{L,(P) + L3(R) + (P = R)D,V(x)} + Ly(x) + Kv(x) - av(x) =

=0,

Pe[0iP]"

REEO,% x>0
'sup{Lz(P) + L3(R) + (P - R)Drpv(O)} + L](O) + Kv(0) - gv(0) = 0.
P € [O:B] »

Re10,F]

Then v(x) 2 vrp(x) for every x ¢ R, and (r,p) ¢ .

Proof. Let Vrp(x) be the return function in D(Grp) satisfying (2.3) for
every x ¢ R, and assume‘that:v satisfies Condition (i)-(ii) of the Theorem.
Then by Corollary (IV.4.1) V‘svD(Grp). It is obvious that for every

XeRO

Ay (x) - av(x) = Ly(plx)) + Ly(r(x)) + [p(x) - r(x}ID vy, (x)

SsuptLy(P) + Ly(R) + (P = RID V() + Ky () - Ku(x). (2.4)

Pe[0,p]
- Ref0,r]

Adding and subtracting [p(x) - r(x)1D,v(x) on the right hand side
of (2.4), we obtain ‘
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alvep(x) = vOOT = Ly(px)) + L3(r(0)) "+ [p(x) = r(x)10 (v, = VI(X)

“SUpELy(P) + Ly(R) + (P = RID, V(XY + K(vy = V)(x)

4E§E8:g% + Ip(x) - r(x)IDv(x) (2.5)

" which reddces to
au(x) = Ly(p(x)) + Ly(r(x)) + [p(x) - r()1D,v(x) (2.6)

SUpLy(P) + Ly(R) + (P - RO V(x)] + [p(x) = r(0)I0, ju(x)

52%8;5% ' | + Ku(x) - (Aa * Aplu(x)

by letting u = Vep = Ve -A similar argument also yields

p

au(0) = Ly(p(0)) + Ly(r(0)) + [p(0) - r(0)ID,v(0)

-sup{L,(P) + Ly(R) + (P - R)D_v(0)} + [p(0) - r(0)ID, u(0)

ﬁiEgzg% | + Ku(0) - (a; *+ aglu(0) .

" So define for every x ¢ R

9(x) = Ly(p(x)) + Ly(r(x)) * [p(x) + r(x)D, v(x)
-sup{L,(P) + L3(R) + (P - RID.V(X)}. (2.7)

o Pe[O,—p] ’
Re[0,r]
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and

9(0) = Ly(p(0)) + L3(r(0)) + [p(0) ~ r(0)Ip,v(0)
= sup(Ly(P) + Ly(R) + (P - R)Drpv(o)}.

Pe[0,p]
RE[O,P]

Note by Theorem (IV.4.1) that for‘evefy xeR,

Grgu(x) = [p(6) = P(OI0, 000 = (1, + aghul) +halx).  (2.8)
Thus rewriting (2.6) in terms of (2.7) and (2.8), we obtain

au(x) = g(x) + G, u(x) - , (2.9)

p
for every x ¢ R_. By the fact that (r,p) ¢ M, the first three terms on
the right hand side of (2.7) are in R(Grp)' The continuity and boundedness
of the fourth term on thé“right hand side of (2.7) follows from the bounded-
ness .and continuity of Kv(.) on R, by Lemma (2.]) and Condition (ii) of the
Theorem. So it is also in R(Grp)’ which implies that g ¢ R(Grp);
Since g ¢ R(Grp),,u € D(Grp); it follows from Theorem (1.1) that
u(x) = E[r e g(x,)dt]
0 _ .

for x e R, and (r,p) € M. The way g(.) is defined by (2.7) implies that
g(x) < 0 for all x ¢ R, and (r,p) e M. So

u(x) <0 s x e R,

which in turn implies that for every x e R

Vo) < vix). O
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- Condition (i) of Theorem (2.1) is hard to verify because of the

dependence of Dr v upon (r,p), so a more practical sufficient optimality

p
condition is provided by the following corollary.

COROLLAﬁY (2.1). Assume there is a bounded:function v* on R, which satisfies

i) v*(.) is differentiable with a bounded continuous derivative

v¥'(.) on R,;

1) supfLy(P) + Ly(R) + (P = RIV*'(x)} + Ly(x) + Kv*(x) - av*(x) = 0,

PE[O a—p—] : . ’ '
Re[0,r] . : o x>0

sup(L,(P) + Ly(R) + (P - R)V'(0)} + Ly (0) + Kv¥(0) - av*(0) = 0.
P € [Osm A
R e [0,P]

Then,

a) V*(X).Z Vrp(x) for all (r,p) ¢ M, x e R;

b) if there are controls (r*,p*) e M such that v* = Vr*p* then

(r*,p*) are the unique optimal controls.

~ Proof. Note that (a) follows direct]y from THeorem (2.1) since v*! ;lDrpv*
" for every (r,p) ¢ M. To show (b) assume that (;,B) is another optimal

control pair, so it satisfies Vog Vpskpr v*¥, Then (2.3) implies that

sup(Ly(P) + Ly(R) + (P = RIVF(0)} = Ly(p(x)) + Ly(r=(x))

Pe[0,p] + [p*(x) - r¥(x)Iv*'(x)
Re[O,?] ’ ,
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" and 4 |
SUp(L,(P) + Ly(R) + (P = RIV*' ()} = Ly(p(x)) * Ly(R(x))
PE[O,j o ~ ~ )
Re[0,r] + [p(x) - F(x)Iv*'(x)

which contradicts the str1ct concavity of L, on [0 ,p] and Ly on [o,r],
so (r*,p*) = (r,p). O

In the following chapters we will illustrate the proof for the
existence of a function v* and controls (r*,p*) ¢ ¥ satisfying Conditions
(1)-(i1) of Corollary (2. 1) such that v* =y *ﬁ* This will be achieved
by constructing v* in a step by step procedure using the suboptIma] results
on subsets of ¥ using a similar proof of Theorem (2.1) and Corollary (2.1).

These subsets of M can be defined by o ' 1

M, = {(r;p) e M: r(0) = p(0), r(X).Z p(x) + (1/n) for all x ¢ R}

| (2.10)
for every n e M. We will show that it is possible to obtain a sufficient
_condition of optimality for M- Assume without loss ofvgenerality that
r > B'+v(1/n) for every n e M_, which can be interpreted in the same manner

as the assumptionr > p given by Assumption (1.1.14v).

COROLLARY (2.2). 'Let neM_be fixed and assume there is a bounded functiqn

‘vn on R, which satijsfies:

i) »v (.) is differentiable with a bounded continuous derivative
n -

lv ‘ .
vn(.) on R
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1) sup{L,(P) + L3(R) + (P - R)v(x)} + Ly (x) + kv (x) - av (x) =0

~ Pel0, _
PEEPﬂ/n),ﬂ - x>0

sup{L,(P) + L4(R) + (P - R)V;(0)} + L (0) + kv (0) - av (0) = O .
.P € [O:E |
R=P

Then

a) vn(x)‘z Ve

p(x) fot all (ryp) & M, xe R

b) if there are controls (rn,pn) > Mh suchltha.t.vn = Vg oo then

P
n"n
(rn,pn) are the unique optimal controls in Mh‘
Proof. This can be proved by using the procedure of Theorem (2.1) and
Corollary (2.1). The point to be emphasized here js that in (b) (rn,pn)
are unfque only in M, i.e. there may exist controls (;,B) e M such that

Vp = Vi but (r,p) £ Mn.Q

REMARK (2.1). Note that the conditions on Ly Lo and L3 could be less .

- restrictive in constructing the locally optimal return function and controls
in M. Since rn(.) > pn(.) in M L1 could be taken to be bounded and left

.continuous only, and L2 and L3 could be assumed to be strictly concave simply

without twice continuous differentiability in & . Furthermore, absolute

confinuity of Vi and left-continuity of D'vn would be sufficient to be able

to use the theory deve]oped;C)
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Corollary (2.2) is very important in the sense that it will be cited
repeatedly in proving the existence of a unique function vn'which satisfies
the sufficient condition of optimality in Mh and controls (rn,pn) e M

such that Vg =V

r This way we will construct an improving sequence

nPn*
of locally optimal controls (i.e. optimal in Mh) which will be shown to

converge to the function we are seeking.
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VI. THE DETERMINISTIC OPTIMAL CONTROL PROBLEM

The aim of this chapter is to»analyze the associated deterministic
optimal control problem in order to set forth the basic features of the.
So]ution procedure.. In Section 1, the deterministiC'storage model will
be described shortly, and the sufficient condition of optimality will be
'restated for the resulting optimal control problem. In Section 2; a
~sequence of suboptimal return functions which are optimal only in some
subset of the admissible class, name]y,Mh, will be constructed and shown
to converge .to a Timiting function. In Section 3, this limiting function
will be shown to be.the global optimal réturn function only if L] is taken
to satisfy some monotdniCity properties. In particular, the optimal re-
turn function and the corresponding optimal contr61s will be constructed

explicitly under the additional asumption that L] is decreasing.

6.1 A SUFFICIENT OPTIMALITY CONDITION FOR THE DETERMINISTIC
STORAGE MODEL

By the deterministic model we mean the special case where the sto -
chastic input process A and the stochastic output process B are excluded,

"so that there are no jump inputs and outputs. The only input to the store
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is through the controlled input rate p and the only output of the store ‘is
through the controlled release rate r. As it is seen in Figure (IV.2.2),
starting at an 1nitfa1 content level x, the content level of the store is
either increased or décreased.byvusing controls (r(.),p(.)) until it reaches
some level X € R, such that p(X) = r(X) and is kept there forever. The
simplicity of the detérministic structure enables us to obtain significanf,
results which can be easily extended so as to .include the original sfochastic

control model.

In the deterministic model for every (r,p) e ¥ and x ¢ Ry,

}\a = 0’ }\b =0 s ‘ - (].])
Kep = 05 |
GppVpp(x) = [p(x) = r(x)1Dv (x) .

The content level of the store at any time t is given by
t . :
x(t) =x+ s (p-r)x(s))ds , t>0 . . (1.2)
)

for any (r,p) e ¥ while the return function is defined to be

VeplX) = {:o e'“t[L] (x(t)) + L,(p(x(t))) + Ly(r(x(t)))1dt (1.3)

for any (r,p) e # and x ¢ R_. Now the control-problem can be restated as

finding control (r*,p*) e M such that
Ve (X) > VepX)

for every (r,p) e ¥ and x e R_.

This set-up reveals that the deterministic model is only a special




82

case of the general prob]emrdescribed in previous chapters. So the results

obtained so far still hold true. MNote that the return function V satisfies

v, (x) = Lz(p(VX)) * La(r(x)) +'[p(X) - r(X)]Dvrp'(x) *L(x) (1.4)

for any (r,p) e ¥ and x ¢ R, . The dependence of Dv,., upon (r,p) will be

: P
eliminated to acquife practicality in handling with thesresults encountered
in our analysis. | | |

Hence sufficient conditions of optimality can be expressed in terms.
of an ordinary differential equation. Below we‘state.the.deterministié

version of Corollary (V.2.1).

COROLLARY (1.1). Assume there is a bounded function v on R, which satisfies:

i. v(.) is differentiable with a bounded continuous derivative

v'(.) on R

ii. sup {LZ(P) + L3(R) + (P - R)v'(x)} + L1(x) -av(x) =0
Pe[0,p] .
sto,Pﬂ . , x >0
sup _{Ly(P) + Ly(R) + (P - RIV'(0)} + Ly(0) - av(0) = 0 .
Pe[0,p]
Rezo,g]
Then,

a) v(x) > Vrp(x)' for all (r,p) e M, x e R;

b) if there are controls (r,p) € ¥ such that v =v ., then (r,p)

are the unique optimal controls.

Proof. The proof follows direct]y from Corollary (Vizfl).C)
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In a similar fash1on a deterministic version can be provided for

Corollary (V 2.2) as well.

COROLLARY (1.2). Letn ¢ N, and assume there is a bounded function v, on

R; which satisfies:

i. vn(.) is differentiable with a bounded continuous derijvative

] .
vn(.) on R.;

i guEO : Ly(P) L (R) FOP - Ry +L 00 - o (x) =
Re[P.+(1/n),r] | | x> 0
SZEO,E]{LZ(P) + L3(R) + (P - RIV}(0)} + L1(0) - av (0) - 0.
R=P

Then,

a) vp(x) Z_vrp(x) for all (r.p) e ¥, x e R

b) if there are controls (r ,p ) e ¥ such that v = Vrnpn’ then

(rﬁ,pn) are the unique optimal controls in M, .
Proof.  The proof follows directly from Corollary (V.Z.Z).()

The simﬁ]icity of the deterministic probTem main1y arises from the |
fact that‘tﬁe sufficient optimality conditioh is ekpressed in terms of an
ordinary differential équétion rather than a functional differentiél equa-

t%on whiéh,fs considerably difficult to deal with; thus we start our
,-éna1ysis by showing the-existénce and uniqueness of a'fqnction satisfying
the sufficiency condition of Corollary (1.1) forrthe deterministic model.

- In Chapter VII, the results to be obtained will be fui]y utilized in
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‘characterizing the optimal return function and the optimal controls for the

stochastic problem.

6.2  CONSTRUCTION OFSUBOPTIMAL CONTROLS

The first step .in our procedure of showing the existence and uniqueH 
ness of a function satisfying the sufficiency condition of Corollary (1.1)
is to obtain a sequence of suboptimal return functions, each satisfying
the sufficiency condition of Corollary (1.2). We are in fact interested
in the.1imit of this sequence df suboptimal return functions {Vn}5 each of
which 1is optimal in Mh - This Timiting function and the corresponding
controls cah be expected to be optimal in M defined by .
M, =Un = {(rsp) € 5 r(0) = p(0), r(x) > p(x) for xe R}

n>1 ' ‘

However we cannot -be assuréd of the optimality of the 1limiting function in

M. .In‘fact in some cases the Timiting funttioh will not be optimal in M.

However, in the next section, we will be able to.obtain some explicit con-

ditions which guérantee that the limiting function turns out to be @he one
we are seeking.. » | |

In this section we show that there exists a unique réturn function
“and a unique control pair satisfying’the sufficiency condition Qf Corollary
(1.2), and that the limits of {vn} and {(rn,pn)} exist and are optimal

in M_. Our approach is similar to 0ZEKICI [35], and the mathematics in-

volved follows PLISKA [27].
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LEMMA (2.1). For any n ¢ N, X e R, V ¢ R there exists a unique bounded

function v on [x, X+t] where T = 1/2ny which satisfies:

i,V s differentiable with a bounded Lipschitz continuous deriva-

tive v' on [X,X+T];

i SZEO,B]{LZ(P) P LR+ (P = RV # Ly(X) - av(x) = 0,
RelP+(1/n),r] v - X g (X,Xx+E]

av(x) = v .
Proof. For any x € (X,x+t] it is clear that

sup {L,(P) + Ly(R) + (P - RIV'(x)} + Li{x) - av(x) = 0 - (2.2)
PE[O:E] A
Re[P+(1/n),r]

if and only if
Ly(P) + L3(R) + (P = R)v'(x) + Lq(x) - qv(x) < O | (2.3)

For all P ¢ [0,p] and R ¢ [P+(1/n),r] with equality ho]ding‘fbr some
P e [0,p] and R e [P+(1/n),r], if and only if

1
R-P

Vi (x) > == [L(P) + Li(R) + Ly(x) - av(x)] (2.9)

for all P ¢ [0,p] and R & [P+(1/n),r] with’equa]ity‘ho1ding for some
P ¢ [0,p] and R ¢ [P+(1/n),r]. It follows from (2.4) that.
v x) = sup (s [P+ Ly(R) + L(x) - av()]y  (2:5)
P€[Osp :
RE[P+(]/n)sF] ]

for all x e (X,x+#E]. Hence v satisfies (i) if and only if it satisfies

(2.5).
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We let B be the Banach space of all bounded cont1nuous functions on
[x,x+—] with the usual supremum norm [|+]| and define two mappings I and

r, on B such that for any f ¢ B

sup _ {riplLy(P) + Ly(R) + Ly(x) - af ()1} (2.6)

ri(f)(x) =
Pe[0,p]
Re[P+(1/n),r]
| ) | |
Tp(F)(x) = v + £ 1(f)(s)ds . | (2.7)
X : v

Now we need to show that Ty is a contraction mapping, so that it
J .
possesses a unique fixed point. It is obvious that for all f,g ¢ B,

P e [0.P], R e [P+(1/n),F] and xq, x4 x & [X,x+E]

Py ()0)) =17 (A (x,)] < sup _ g [Ly(%) = Ly ()] o F(x)=F(x,) |3

Pel 0,
i UM (2.8)

< nfLy(xg) = Ly(xp) |+ na|Flxg) = Flxp) |

Similarly,

Iry (= | [ ()- f(x)1} S (2.9)
Iy 9)(X)IsggEm{!R 7 Lag(x) - of (I3 B
RQ[P'*' ]/n):F]

< mafg(x) - FL0] <nf] 9 - 7]

From the definition of ré it follows that r, is a mapping of B into

B and

X g .
T, (f - 9)] < £ |ny(f - g)(s)|ds . (2.10)
: - | L

By (2.10), we obtain
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X .
HT(f = )| < nas |[f - g|jds . (2.11)
X
Since x -.'x-_<_T:' for  x ¢ [X,x+t],
[To(f - 9)|] < nat}|f - g]]. (2.12)
Letting T = 1/2ng ,
1 |
[T (f = )] < — ||f - g]].

~ So Ty is a contraction mapping,'which_implies that there is a unique

V.g B such that‘
vi(x). = 1y(v)(x) , v(x) = 1,(v)(x)

for all x ¢ [X,x+t]. Since v satisfies (2.5)-(2.7), v.satisfies Condition
(ii) of the Lemma. Since Ly 1s Lipschitz continuous on g, and v' is bounded

by
V'L = 1m0 ] < nELy(0) + Ly(R) + | [Ly]] *al (V]| »

v is Lipschitz‘continuous on [x,x+t]. Furthermore v' is also Lipschitz
continuous by (2.6).() _ | |

Although it Would be preferrable to directly obtain a global exis-
tence and uniqueness result over u, the necessity to use M, is apparent,
since the possibility that r(x) = p(X) for some x ¢ R, is-allowed, in which
case T, woy]d not be a contraction mapping as it can be seen in the proof
of Lemma (2.1). This presents a difficulty, namely, the solution v might
be unbounded in a neighborhood of x, or even if not the limit of v(x) as

X +~ x might not exist.
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REMARK (2.1). 'An important point to note here is that the properties of L]
are inherent in v' although v always turns out to be absoTute]y continuous
whatever L] is. The continuity of L]'impliesﬂthe continuity of v', and the
Lipschitz property of‘L1 impliés the‘Lipschitz property of v.'. Fdrthermore
if L] is left-continuous, Dv is also 1eft—contiﬁuous.CB

The following lemma now extends the result of Lemma (2.1) to [0,s]

for any s > 0. Note that we need a boundary tondition at zero as it.cank

be seen below.

LEMMA (2.2). For any n ¢ H,,'s e R, there exists a unique function v on

[Q,s] which satisfies:

j. v is differentiable with a bounded Lipschitz continuous derivative

v' on [0,s];

ji. sup _{LZ(P) + L3(R)‘+ (P - R)V'(x)} + L](X) - ov(x) =

.o, ;
Pe[0,p] g . |
ReLP3(1/n) 7] 0,5l i
B ) . i
sup __{L(P) + L4(R) + (P - RIV'(0)} + Ly(0) - av(0) = 0. |
Pef0,p o | |
R=P
Proof. Note that the requirement rn(O)'= Pn(O) imp}ies
(Ly(P) + Ly(R) + (P = R) v(0)} + Ly (0) = av,(0) =0

su
PeEo,EJ
R=P

if and only if

{L,(P) + Lo (R)} + L;(0) - av,(0) = O.
R=P
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So it is obvious that pn(O)_=,p(0) for'all n g N, independent-of n, which
implies that the boundary‘conditions in M, for all n ¢ M, coincide. Thus-
the thima] input rate at zero'COntent.leve] is determined by

L,(p(0)) + L,(p(0)) = sup. :{L (P) +~L'(P)}. S (2.13)
In other wdrds‘if p(0) maximizes the right-hand-side of (2.13), then

p(0) =0 -> ' : if -Lé(O) > Lé(O) ;.
— : _ _ (2.14)
p(0) =P , it L) < L3(p) 5
' Lé(p(O)) = -Lé(p(o)) otherwise.

The strict concavity of both L2 and L3‘ensure$ the uniqueness of p(0) -
given by_(2.14). Then r(0) which is the optimal output rate at zero |
content level is determined by setting r(0) = p(0) independent of n.
With this argument note that
Csup _{Ly(P) * Ly(R) # (P - R)V'(0)} + Ly(0) - av(0) = O
e

if and only if
L,(p(0)) + Ly(p(0)) * L;(0) - av(0) = 0 C(2.15)

where p(0) is defined by (2.14). Since the boundary condition required

by thé Lemma is now prbvided by (2.15), we are in a position to prove the

| Lemma. Using Lemma (2.1). we will iteratively construct a unique function

v on [0,s]. |

| On [0,(1/2na)]let v.be the unique function of Lemma (2.1) with x =0
and v = (L,(p(0)) + L,(p(0)) + L,(0))/a which follows from (2.15). Repéating
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this argument and using Lemma (2.1) recursively by taking X = k/2no and

v = v(k/2n0) for k = 1,2,..., [s/(2na)] + ],'we define v on [0,s] in a
finite number of steps.

Note that v is baunded on [0,s] since it is -bounded on intervals
[k/2n0, (k+1)/2na] and v is continuous because of our construction. The
continuity of v!' atipoints X = k/2na follows from the continuity of v and
L]. The Lipschitz continuity of v' follows from the facts that v' is

bounded; L] is Lipschitz continuous and for any (x],xz) e [0,s]
[V (xq) = v'(x,)| < nlILy(xq) = Ly(x,)] + afvixy) = vixy){].
Uniqueness follows trivially from Lemma (2.2).

Letting v be the unique function on [0,s] of Lemma (2.2), we

realize that for all s e R,

[Ivsll = sup, vl < ' | »(2-16)
[vell = iZF[’O,S]Wg(XH < n[L,Z(O) + L(8) + |[Lq] + allvg]

It is obvious that if 0 < s < t, then vs(x) = vt(x) for: x <s, i.e.
v, and v, coincide on [0,s].

Now we state some bounds on vs_and study its}]imiting behaviour.

LEMMA (2.3). Let Ly = sup L,(x) and Ly = inf L, (x). Then for every s e R 3
: X€R+ XeR;‘ .

1-5®+%m+ggmmi5mf%m+;;

i1, Lim av (s) = L,(0) * Ly(r) * Lyl=) -

S0
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Proof. i) We will first prove that “Vs(s).i Lé(O) +~L3(F) + I} by
cohtradiction,'so assume that

avs(s) > L,(0) + Ly(r) + T ' ‘ - (2.17)
which implies that

avs(s) E.LZ(P) + L3(R),+ L1(s) (2.18)

for all P ¢ [0,p] and R ¢ [P+(1/n),r] because of Assumption (V.1.1) and

the definition of T%.

Recall that

vel(x) = ;gEo,ﬂ{ Tal_P [L,(P) +, Ly(R) + Ly(x) - av (x)1} s Ke [0,s].
Re[P+(1/n),r] (2.19)

If (2.18) holds true, it follows from (2.19) that vi(s) < 0. Now it

suffices to show that vs.is decreasing;on [0,s]. If it is not, then

X = sup{x ¢ [0,s]: v;(x) =0}>0
and |

av (X) > avg(s) > Ly(0) + Ly(r) + L7 > L(P) + L3(R) + Ly (x)

for all P ¢ [0,p], R € [P+(1/n),r]. But then (2.19) yields.v;(i) <0
which contradicts the definition of X. Hence}_vS is decreasing on [0,s].

Then for all x <'s
av (x) > »\vs(s) > Ly(0) + Ly(r) + 13 > Ly(0) + Ly(r) + 1;(0) (2.20)

Taking x = 0, it follows from (2.20) that
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avg(0) > Ly(0) + Ly(F) + 14(0) > Ly(P) + Ly(R) + L, (0)

for all P € [0,p], R ¢ [0,r], which then contradicts the boundary condition
given by (2.15). | |

In a Simi]ar manner we now assume that
avg(s) < Ly(p) + L3(0) + Ly | (2.21)
which implies that for all P ¢.[0,p], Re [P + (1/n),?j :

avg(s) < Ly(P) + La(R) + Ly(s) .

So it turns out that v (s) > 0 in (2.19). If v, is not increasing on

[0,s], then

X = sup{x ¢ [0,s1: v;(x) =0} >0
and

avg(®) < avg(s) < Ly(B) + Ly(0) + Ly < Ly(P) + Ly(R) + LX)

for all P e [0,p], R e [P+(1/n),F]. This implies that v!(x) > 0 which
contradicts the definﬁtion of Xx. Hence we conclude that v is inqreasfng

on [0,s]. Then for all x < s

av (x) < av (s) < Ly(p) + Ly(0) + Ly < Ly(P) + L,(0) + L (0).
Setting x = 0, we obtain

av (0) < Ly(p) + L4(0) + L;(0) < Ly(P) + Ly(R) + Ly (0) (2.22)

for all P ¢ [0,3], R ¢ [0,F]. On the other hand, (2.22) contradicts the

_ boundary condition given by (2.14).
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ii. Let e > 0 be arbitrary and assume.without loss of generality

]-L(w)>eand[L(0)-L2(p)]+[L(‘)—L<0)1+[L(w)-LJ>s
Let X be def1ned such that for all x > x

L) - L)) < e
Now we define Yy» ¥y on [xe,g) by
) = e s L[ (0) + LRy 4 L) +els (2.28)
yyx) = -1 [L,00) + Ly(F) + T,
¥, x) =»c2'e’"°‘X + L [L,(0) + L) + Ly(=) - el
Val) = == [L(B) + L3(0) + LyJs

where C1 and C2 are suitable constants determined by the boundary condi-
tions. It can be easily shown that under the assumptions made above
C].Z 0 and Cz.ﬁ 0, and ¥ turns out to be‘conVex decreasing and Yy turns
out to be concave increasing on [xe,m). It is obvious that

Lim y;(x) = == [L(0) + Ly(F) + Ly (=) + €]

X0 .

Lin y,(x) = = [L(0) + L) * Ly (=) - €],

K->

First of all it is necessary to show yz(s) < v (s) < y](s) for all

S > X_.

o+ We will present the argument only for v (s) < y1(s), 1eaV1ng the

other part to the reader. 4
If s = x_, yy(s) = (1/a)[L,(0) + LB(F) +14] gnd the desired result
follows immediately from Condition (i) of the Lemma. Now assume v (s)>y,(s)

for some s > Xeo then
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vils) = 32‘[)0,3]{_"1—*’ [Lp(P) + Lg(R) + Ly(s) - avg($)]}
Re[P+(1/n),¥] \
< nlhp(0) + Ly(r) + Lyl=) + € - avg(s)]
< n[Ly(0) + Ly(F) + Ly(=) + € - ayy(s)] = yj(s)

where the last statement follows from (2.23). This implies that

Vy (Xe) > y](xe) by repeating the same argument for
€

X = sup{xe[xe,s]: v;(x) = y{(x)} Vox_

and showing that x = X+ Thus we reach a contradiction to part (i) ofi-
the Lemma, i.e. avs(s) §_L2(O) + L3(?) + I}. Hence we have shown that
for all s > X vs(s) f_y](s). o

Now we let § > O be arbitrary, take e = §/4 and let X, ¥y ¥5

be defined accordingly as before. Let
xg = inflx e [xs=):yy(x) - yy(=) < Ze, yyle) - yz(X) < 2},

then

|w4ﬂ~[5@)+gﬁ)+H@Hl<6

- for all s > x This completes the proof.(3

5

REMARK (2.2). Note that if I} = L](m), then we let C; = 0 and define

»y] on [x_,») independent of €. The same results would still hold true.CJ
E .
~ Now it s necessary to extend Vg to v, on R, so define~vh'on R,

such that

vn(x) = Vs(x) for any | x e R, and s>x = (2.24)
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where Ve is the unique function of Lemma (2.2). We are now in a position

to construct the control pair (rn,pn) in M satisfying Condition (ii) of

Corollary (1.2). For X € R, define'(rn(x),pn(x)) such that

Lz(pn(X)ﬂ)+L3'(rn(;<))+[pn(X)-rn(X)]v;,(X»)=;g;EO B]{LZ(P) + L3(R) + (P-R)v/ (x)}

| ~ Re[PH{(1/n),¥] (2.25)

with O.S_pn(x) <P pn(x)+(1/n) f.rn(x) < r. By Kuhn-Tucker conditions,

if (rn(x), pn(x)) satisfies (2.25), then there exist Lagrange multipliers

{A;» 1=1,2,3} such that (rn(x),pn(x),xl,kz,k3) satisfies:

Lo(p,(x)) + vp(x) = Ay = a5 < 0} |  (2.26) ;
LS(rn(x)) VX)) R A=A, =0 - (2.27)
pn(x)[Lé(pn(X)) +_V$(x)‘- A - A= 0 - (2.28)
ral%) = (%) - o= >0 B | (2.29)
r-r(x)>0 | " (é.ao)
p-p,(x)>0 | # | | (2.31)
A Lr (x) - p(x) - Q]-]—] = 0 C (ea2)
AF - (01=0 - ~ (2.33)
Alp - p(x)] =0 (2.34)

-where rn(x),-pn(x), Ays A2,>A3 cR,.
Moreover the sufficient conditions for (rn(x),'pn(x)) to be the unique

optimal solution satisfying (2.25) require the Hessian matrix
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H=| : : (2.35)
0 L3(r,(x))

to be negative definite on the tangent subspace of active constraints at

(rn(x), pn(x)). This assertion implies that
yiLo(p, (x) + yiLa(r (x)) < 0 , (2.36)

for all possible values of Yys Yoo However the concavity assumptions '
imposed upon L2 and L3 ensure us that (2.36) holds true for all 2 and .
Yo So it{sufficies to set r(0) = p(0) where p(0) is as defined by

(2.14) and to determine (rn(x),pn(x)) for x e R, by solving (2.26)-(2.34).

REMARK (2.3). Note that for x ¢ R and v'(x) fixed, the control pair

(rh(x),pn(x)) satisfying (2.25) 1is characterized by:

) =g p(x) =0 it v (x) < -L5(0)
| vp(x) > Lg(1/n)
i) e (x) =¥, p(x)=0 i v!(x) < -Ly(0)

yg(X) < L3r)

) s plx) =0 HF vilx) < -Ly(0)
L3R < v (x) < Ly(1/m)

i) Ly (x)

i) LA () = Vi) <Ay g A -La(0) < vi(x) < ~Ly(P)
-La(p(x)) = vp(x) - 2 vg(X) 3_L§(1/n)



v)

vii)

viii)

qlrg ) - p(x) - —H1 = 0
AZEF j Pn(X)] =0

ra(x) =7, -L(p (x)) =v!(x)
La(r,(x)) ='v5(X) = M

Ly(p,(x)) = vp(x) - &g

MIr (x) = p(x) - (1/n)]

Il
o

Ly(r (x)) = v;]'(x) S X+,
“Ly(p (%)) = v1(x) - Ap - A,
A][r;(X) - pp(x) - (1/n)] =0
Aolr - r (x)] =0

AP - p, ()] = 0

rax) =r , p(x)=p

L3r () = v06) -
-Lé(pn(x)) = VA(X) - A] - A3
MIr () = p,(x) = (1/m)] = 0

AP - p, ()1 =0,

if

if

if

if
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-Ly(0) < vp(x) < -Ly(p)

va(x) < Lg(r)

-Lé(O) < vé(x) < -Lé(ﬁ)

Lé(?} < va(x) < Lé(]/n)

'vg(X)_z ~L5(p)

valx) 3 Ly(1/n)

vg(X) > -L,y(p)

Lé(?) < vé(x) < Lé(]/n)
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It follows from this characterization that 0 < p (x) <P, 0 r (x) <T,

rn(x)-z pn(X)+(1/n) and x],ngx3 e R, for all x e R, .0

~ The following result prdvides an insight as to what properties
(r,(x)sp,(x)) as defined by Remark (2.3) possesses. So for x e R, define

(¥,(x),B,(x)) by
Lé(?n(x)) = vﬁ(x) and —Lé(Bn(x)) = vé(x) . (2.37)

It is clear from (2.37) that-(?n,ﬁn)‘is the solution of the unconstrained

optimization problem.

LEMMA (2.4). For any Xys X, € R, neM;
i. ‘if vo(xq) > vi(x,)s then p (x;) Ziph(x2)~ and ' r (x;) < ro(x,);
i1, 3 vi(xq) < vi(x,), then p (x;) < po(x,) and r (x1) > r (x,).

Proof. We prove only part (i) of the Lemma for the case described by (vi)
of Remark (2.3) where the optimal controls do not occur at the boundaries.
. The other cases can be shown fn a similar manner, but will bé omitted hére
~ to avoid repetition. ’ |

| Let (;n(x]),gn(x])) and (;n(xz);gn(xz)) be the tangent points as.
defined by (2.37). Furthermore let (r(x]),p(x1)) and (r(xz);p(xz)) be

the solutions determined by Remark (2.3.(iv)) whi]é M and Ayp are the

corresponding Lagrange multipliers. So
L3lrp(xq)) = () = g s =Lyl (xgd) = vp(xg) = 2y

Aqlr (k) = (x) - (1/m)] = 0 (2.38)
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Lylrn(xg)) = vi(xp) = Ay 5 -Lplpp(x5)) = V(%) = Aqy s
Malry(x,) = P (x,) = (1/m)1 = 0 (2.39)

Three possible cases should be considefed:

r (x ) - ﬁ (xA) > 1/n implies that ?n(xz) - Bn(xz) > 1/n since

n( ]) >V (x ) and L2 and Ly are strictly concave. Hence Aq7 = Aqp =0

 and (r (x705P, (%)) = (7 (x1) 5B, (x1))s (r (%5 5P (%)) = (F(%5)5P, (%)) -

It follows from (2.38) and (2.39) that -Lé(pn(x]))_i —Lé(pn(xz)) and
Lé(rn(x]))-i Lé(rn(xz)). By the conc;vity of Lz and L3 this implies.
that p'(x )_z p (x2) and r (x ) 5_rn(x2);

r (x ) p (x ) < 1/n and v (xz) ﬁn(xz) > 1/n 1mp1y that A > 0

and Aqp = 0. It obviously fo]]ows that'(rn(xz),pn(xz))_ (v (xz) (x2))
and rn(x]) = pn(x]) + 1/n satisfying (2.38). It is clear that

v'(x ) - Ay > v'(x2) since v’(x]) - A1 < va(xz) contradicts the

fact that r (xz) P (x2) > 1/n. So -Lé(pn(x])) 3_-Lé(pn(x2)) and
L3(rn(x1)) 2_L3(rn(x2)).and the desired result follows immediately;

?n(X() - Bn(x])>< 1/n and ?n(xz)_- P (o) < 1/n imply that A7 > 0

and Ay, > 0. Then rn(x]) = pn(Xl) + 1/n and r (x2) pn(xz) + 1/n
satisfying (2.38) and (2.39), respectively. Now we show by contra-
diction that.vé(x]) - Ai] = vﬁ(xz) Ayp+ First assume that

Vﬁ(x1) - A < va(xz) = Mo which implies that Lé(rn(x]))f< Lé(rn(xz))

and -L,(p,(x7)) <-L3(p,(x,)); hence r (x;) > ”_n.(xz) and p (x;) < p,(x,)
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» which.contradiéts the fact that rn(x1) - pn(x]) = 1/n and
rn(xz) e.pn(xz) = 1/n; Now assuhe that vﬁ(xlj - A1 vﬁ(xz) - Ao
which implies that Li(r (x;)) > Li(r (x5)) and-Ly(p (x;)) > -L5(p, (x5))3
so it follows that rn(x1) < rn(xz) and~pn(x]) > pn(xz) which again
contradicts rn(x]) - pn(x1) = 1/n and rn(xz)_- pn(xz) = 1/n. So
AMESPEDER = vﬁ(xz)'- Ay, and by the strict concavity of L, and L,
rn(x]) = rn(xz) and pn(x]) = pn(xz). Q | |

REMARK (2.4). Note that A1 2 Ao IF ya(x])_z va(xz) gnd M1 222 if

vﬁ(x]) f-vﬁ<x2)' This is trivially apparent in Cases (a) and (b) of Lemma

(2i4)vand to see this in Case (c), note that X]] - Ay = va(x]) - vﬁ(xz)_zﬁofcz

The proof of the following result follows from Lemmas (2.2), (2.3)
and (2.4). Note that v, is the return function as defined by (2.24).

THEOREM‘(2.1). For every n ¢ N, there exists a unique bounded function

v, on R, which satisfies:

i. iy is diffekentiable with a bounded Lipschitz continuous deriva-

L4 ] -«
tive vn on R+,

ii. sup {LZ(P) + L (R) + (P - R)v (x)¥ + L (x) - av (x) =0,
Pe[0,p] :
Re[P+(1/n) 2l | x>0
;ZEO,EI{LZ(P) + L3‘(R) + (P - -R)vr'](o)} + L](O) - own(O) =0 ;
R=p

iii. Furthermore there exists a unique optimal control pair (rn,pn)

in M, such that v, = vrnpn’ o) (rn,pn) are optimal in M.
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Proof. 1) Boundedness of v, follows from Lemma (2.3). The differentia-
bility of v, fot]ows from Lemma (2.2) since‘vS is differentiable on [0,s]
for every s ¢ Ro‘ The boundedness and Lipschitz property of Vﬁ follows .
from the boundedness of vnjand L] and Lipschitz continuity of L]. It is

is unique on [0,s];

obvious that v, is unique since Ve

i1) vy satisfies Condition (ii) of the Theorem since VS satisfies Condi-

tion (i1) of Lemma (2.2);

iii) For every x ¢ Ro’ (rn(x),pn(x)) is as defined by Remark (2.3) and
r(0) = p(0) where p(0) is given by (2.14).’ Hence it suffices tpw
shbw that (rn(x),pn(x)) obtained accordingly are Lipschitz continuous
on R,. |
The assumption that L, and L; are strictly concave implies that,Lé

and Lé are strictly decreasing Th1s together with the fact that v is

continuous on R amounts to say1ng that (r (x), Pp (x)) 1is continuous on

Ry~ Let m be the Lipschitz constant of v/ and e be such that [L3| > e

‘and |L5| > e as given by Assumption (V.1.1).

We show the Lipschitz property of P only for the case (v1) of
- Remark (2.3), leaving the other cases to the reader Letting X{s Xo € Ro

be arbitrary, assume without loss of generality that Vﬁ(xz).i vé(x]). So,

-L3(0) < vi(xy) < vA(x;) < ~Lp(P)

Ly(r) < vplxy) < vplxg) < L3(1/n) .
It follows from Lemma (2.4) that pn(x])_z pn(xz);since va(x1) 3_v6(x2).
- Then,
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Py (%,) Py (%)
0 < LAp(x,)) - LA(p(x4)) = 1 L"(s)ds > [ “g.ds
] — "2'"n*"2 2V nt pn(x]) Pn(Xz) =

= elp,(x7) - p (x5)].
Thus, ’

0 < pplxy) - pylxg) <~ [L3(p (x,)) - Lylp (] (2.0)

Letting A1 KiZ e R_ be the multipliers in (vi) of Remark (2.3) -

‘corresponding to x Xy and x = x2,.respective1y, (2.40) implies that
1 1 ) ] |
0 < p(x7) - p(x,) <o Dvplxg) = vplxo) + g5 = aqqd.
.By'Remark (2.4), A2 = Ayq < 0 and thus

0 < palxy) = Pylxp) < = [vilxg) = vk < =y = 3

The Lipschitz property of r, on R, can be ‘established us1ng a similar
procedure. Note that (r P ) is Lipschitz continuous only on (0,») and not

cohtfnuous at x = 0, but they are still adm1ss1b1e.c)

REMARK (2.5). - Theorem (2.1) clearly demonstrates the reasons why we have

~ assumed the reward function to satisfy Assumption (V.1.1). Those conditions
on L], L2 and L3 enable us to find admissible controls in My, If L] is
taken to be piecewise Lipschitz, then both Vﬁ and (rn,pn) turn out to be
piecewise'Lipschitz, preserving the‘admissibility. However if L1 is con-
tihuous only, we cannot be assured about the admissibility of (rn,pn). If
on the other hand L] is both decreasing andrcontinuous; then (rn,pn) is

certainlyadmissible as it will be considered in Section 3.f3



103

COROLLARY (2.1). For every n ¢ Ny v, satisfies:
i L)+ Ly(0) + Ly < av(x) < L(0) + Ly(P) + T, s x e Ry

ii. Lim ov (x) = L,(0) + L3(?)'+ Ly (e)s

X->00

i11. [[vall f_n[Lz(O) + L3(F) * L1 +al|v,l |1 < nC
for some C > 0 independent of n;

jv. Lim v'(x) = 0 .
n
X->c0 -

Proof. Here (f) and (ii) follow directly from Lemma‘(2.3) while (iii)

follows from (2.16). To see (iv), note that

. 3 . 'l . . ' -
- vp(x) -,;gtﬁo’m{—g—:—p [L,(P) + Ly(R) + Ly(x) - avn(x)]}- :
Re[P+(1/n),r]

"~ So,

;22 Vo) = Ps[O,p‘{E—%—?'[LZ(P)/+ L3(R) + Lyle) = av(=)]}
RE[P"'(]/H) s_F]

1
(%]
=

Ne]

- sup (- [L,(P) * Ly(R) - Ly(0) = Ly} = 0.0
PE[OaE] . ‘
Re[P+(1/n),r]

So far we have created a sequence of locally optimal return functions {vn}
and control pairs {(rn,pn)}. Now it is necessary to show that the sequence

{vn} converges to some functionin ¥ =y M, as defined by (2.1). Since
n>1

M, C:Mn+]’ it is obvious that Vorl 2 Yy for every n ¢ N,. Therefore

n—)oon

v(x) = Lim v_(x) ) | (2.41)
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exists. Now the following proposition states that thevlimiting function
is optimal in M_, but does not necessarily satisfy the sufficient opti-

mality condition.

PROPOSITION (2.1). v > vy, for every (r,p) e 4, . In particular,

V(%) 2 Lg(x) + Ly(p(x)) + Ly(p(x)) for every x ¢ R,.

Proof. Let (r,p) e M_ and define

p(x) if x =0,
ro(x) =< p(x) + —%—- if x >0, r(x) < p(x)+(1/n) ,
r(x) if x>0, r(x) > p(x)+(1/n) ,

and -

p(x) =p(x) ., x>0

for every n ¢ M_, which implies that (rn,pﬁ) e M, since (r.p) e M.
It is obvious that lrn(x) - r(x)lg_ 1/n and rn(x) 3_rn+](x) for every
xeR, . So {rn} decreases to r.

For fixed x e R, let fn(t) and f(t) be the content level of . ‘the

> » 0y .

store at time t with initial-content x when the controls being used are
(rn,pn) and (r,p) respectively. In other words, f, and f are the unique
solutions of

_ t ’ ‘

Falt) = x + £ (pp= r)(f(s))ds &2 0

.
f(t) =x+ 7 (p - r)(f(s))ds s t>0.
0
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Since r, ;_rn+] 2 Ppyp.= P, for every n e.m+, 0<f < fyq <X and
v{fn} increases to h which is defined by
h(t) = Lim fn(t) .
Note that for all.t > 0

[(rg=p) (£ (8)) = (r-p)(R(ED)] = |Cry B (£ (£)) = (r-p)(F(£)
o o + (r-p) (£ (£)) = (r-p)(h(t))]

o R (Fo) = (ep) (R (D)
ﬂwp)qun-(rmwnnl |

< () + [(r=p)(Fy () - (r-p)(h(ED)],

and similarly .
v (£ (£)) - r(n(t))] < Iry(Fyfe) - e(f (8] + [r(f, (£)) - r(h(t))]
< (/m) + r(£(8) - r(h(t))]

since |r (x) - r(x)] < I/n and p, (x) = p(x). Then the Teft-continuity
of both r(.) and p(.) on {r(. ) > p(.)} by Adm1ss1b111ty Condition 3 and
: the fact that f + h imply that

Lim{ (r-p)(f(t)) - (r-p}(h(t)}] =0 , t>0,
ne ‘ :

_and

Linlr(F,(£)) - r(h(E)] =0 , 20 - (2.42)
N0 ‘

Therefore by the bounded convergence theorem,

t .
h(t) =x + 5 (p-r)(h(s))ds , t>0
0
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which implies that h = f by uniqueness and fn + f. Then by the left-

continuity of Ly> L, and Ly, we have

Lin Ly (£ (1)) = Ly (7(£))

and

Lin Ly (py(Fy(£))) = Ly(p(#(£)))

since pn(x) = p(x)kfor all x e R_. Moreover it follows from (2.42) that
Lim Lo(r (f_(t))) = L (r(f(t .
Lin Ly (Fy(£))) = Ly(r(£())
By the bounded convergence theorem
Lim v (x) = v (x)
e TnPn TP

since by definition

"L (£ (8)) # Lylp, (£ (D)) + Lylr )R (£)))1dt

Ve b

(x) =75 e
nn 0

and

0 = £ TR ¢ Ly(RUR(ED) + (R i

(x) which implies
n

By Theorem (2.1), vn(x) 3_vrnp

v(x) = hiz v, (x) z_hiz vrnpn(x)v= vrp(x). | (2.43)

Now take r(x) = p(x) for all x e R_ which implies that f(t) = x
for all t > 0. So | |

]

V() ém L 00+ Lp(R00) * Ly(pLe)) Jet

—%—-[L](x) + Lo(p(x)) + La(p(x))]
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for all x e R,. . Then it follows from (2;43) that
@¥(x) 2 Ly (x) + Lp(p(x) + Ly(p(x)) .0

As Propositidn (2.1) reveals, we can be'éssured of'the optimality
of the 1imit1ng function and the corresponding controls 1n»M@'on1y. In
’géneral it is difficult to find controls (r,p) € M;.such that v = Vrb‘
This prob]em can be solved by imposing some monotonicity requirehenfs
upon L], which has been taken to be qu1te general so far, and will be

discussed 1in deta11 in Section 3.

6.3 CONSTRUCTION OF GLOBALLY OPTIMAL CONTROLSb

In this section we show that there exists'a unique return function
satisfying the sufficient condition of Corollary (1.1) under some addi-
tional reétrictions imposed upon L]. Proposition (2.1) shows that the
Timiting return function is not guarahteed to satisfy the sufficient
cqndition of optimality in M if L] is taken to be simp]y,prschitz con-
tinﬁous. To overcome this prob]ém, we assume that L] is a decreasing
function and then verify the, existence and uniqueness of the optimal -
return function and the optima1.controllpair in M. We first analyze what
further properties are satisfied by Vi andf(rn,pn),under the assumption

that L] is decreasing.

COROLLARY (3.1). For any n ¢ N, let‘vn be the optimal return function

as given by Theorem (2.1) and (rn,pn) £ Mn'be the éor%esponding optimal

controls. If L] is decreasihg,
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S av (0 2 L)+ Lylp (0) * Lylp,(x)) for x < By
ii. Oy -4l = vp(x) < L3(p,(x)) < L3(0)  for x eR,;

iii. r, s increasing and Pn is decreasing.

Proof. (i) Let (rh,pn) be the optimal controls detérmined by Remark (2.3).
It is clear ‘that the assertion is true for x = 0 since r (@) = p (0) = p(0)
where p(0) is as defined by (2.14) and fn(t) = x for all t > 0 where %n
is the unique solution of
t
fn(t) = x + é (pn-rn)(fn(s))ds » t>0.

For fixed Xq € mo, define

pn(x0)+(1/h). if x>0

) =g (3.1)
Pn (%) o if x =0

and

R =p 0, xxo.

‘It is obvious that (?n,ﬁn) e M and by Theorem (2.1) -

v

vh(x0)~__o?x° e—at[LI(fn(t)) * Ly(p (F (£))) + Ly(F, (£, (£)))dt

- ML (F(£) # Ly(B, (F, (£))) + Ly(F (F,(t)))]dt
nx
0

for every n ¢ M, and xois R It follows from the definition of (Fn,ﬁn)

o
that
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xg-(1/n)t if ot 5_hx

o it > mx

Therefore,
: ( ) . ?.XO .ot . . (] d
o) 2 /e [Ly(xg = (1/n)t) + Ly(p,(x))) + La(p,(xg) + (1/n))]1dt

1 e HL(0) + Ly(p(xy)) + Ly, (%)) 1dt
nx, ‘ :
Ltk Ly(p (%)) , ba(pa(x))

.o o o1
since Li_is decreasing and L3 1s increasing. This completes the proof

of (i) since Xo is arbitrary.

ii) Note that

Vi) = sup i )+ Ly(R) #1400 - ey ()
| Re[P;(lln),F]

: |
{ [L.(R) - L }
f'angn(x)+(l/n),F] =000 3(R) 3(?n(x))]

= Ly(p, (x)) < L4(0)

by part (i) of the Corollary and the fact that Lé is decreasing. . Also
by Corollary (2.1),
' __']_— T _ —
Re[P+(1/n),r]

Letting P = 0 and R = v, we obtain
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v (x) > ———-[L T]

for every x ¢ R, and n ¢ . So for every n ¢ M+, ||vﬁ|| f_C for some

constant C defined by
¢ = max {|L(0)], 1/F|L; - 4]} > .

(i) If v, s increasing on some interval [O,Eh] where x_ is defined by

n

Xy = jnf{x‘gvm+:.v6(u) 20 forallu > xj, (3.2)

then Vi must be concave on [0,2;]. To verify this it suffices to show

k for x ¢ R+,

(IR FERRA

Now assume that there exists some X < X < ih such that vﬁ(x)_z va(u)

for all u ¢ [x,ih] which implies that

up _]{LZ(P) + Ly(R) + (P - Ry (X)}<SEE0,E]{L2(P) t La(R) + (P—R)v;,(U)}-
Re[P+(]/n),_] ‘ 8 Re[P+(1/n),r]

Since L](x) f_L](u) for u e'[x,§],

';gEO’_ﬂ{LZ(P) + La(R) + (P-R)v,'](.X)} + L4(x)
RE[P+(]/n):?]

< su {L (P) + L (R) + (P- R)v (u)}-fL (u).
PeFO
RE[P+(]/n)s“]

So av (;) < av, (u) which contradicts the fact that Vi is increasing’
on [x,x ] hence v must be concave increasing on [0,x ] “for some xn >0
possibly infinite and decreasing on [xn,m). Firthermore by the concave
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| increasing property of v, on [0,§h]‘vﬁ is decreasing and'positive on
’[0,?6]. Thus the characterization of (rn,ph) as given by Remark (2.3)
and Lemma‘(2.4) implies that as the content level of the store increases
ﬁn increases and approaches its upper limit'?'while Py decreases and
approaches its Tower 1%mit zero.

Moreoverv(rn,pn) is continuous on Rg by'fhe,strict concavity of both

L, and Lé'and the continuity of Ly. It follows from (2.19) that
avn(x) = L2(0) + L3(r) + L](xn)

since vé(ih) = 0. It is further obvious that for all x > x_ s

avn(x).z LZ(O) + L3(r) + L](x).

This argument revals that (rn,pn) € Mp» and i is increasing and Py

is decreasing as functions of the content level .. O

REMARK (3.1). Note that the same characterization could be made even if

L1 were assumed to be simply continuous and decreasing, but not Lipschitz.
Although (rn,pn) would not turn out to be.Lipschitz, by Proposit}on (1v.2.1)
and Remark (IV.2.1) their admissibi]fty would be preserved since r would
$t111 be increasing and Pn would sth] be_decreasing.ca’

We now aim at analyzing the 1imiting function v by acquiring'a detailed
1n$ight into how the sequence {vn}'is‘proceeding. In order to achieve this,

the behaviour of (rn,pn) should be studied in more detail. So define

x. = supx e Ry v (x) = p(x) + (1/n)} | (3.3)
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for all n £ N_. Corollary (3.1) and the fact that vé(x) Zjvﬁ(gn) for

~
X< X

n imply that as the content level decreases, r decreases, Pn in-.

creases.unti1’§ is reached, and then both stay at respective levels- -

n
satisfying rn(Qn) = pn(ﬁn) + (1/n) for all x ¢ (O,Qn].' An important

result on the behaviour of (rn,pn) js stated by Lemma (3.71).
LEMMA §3.1). For fixed n e N_ and x ¢ (O,Qn], (rn,pn) éatisfies:
i-_’pn(X)_i pn(O)_g.pn(X)f(T/n);
i1, py(0) = p(0) < ry(x)
Proof. As itvis gi?en by (2.14), p(0) is found by solving
- Lylp(0) + L3(0)) = 0, | 5.0

and pn(O) = p(0) for all n ¢ N+. Note that for all x € (O,Qn]-

ra(x) = p (x) + (1/n) | - (3.5)
and . -
sup o {La(P) + Ly(PHQI/m) + (1/m)vi () + L(x) - av (x) =0
(3.6)
which implies that
“Lylp () = Li(p, () + (1/m) , x & (03,1 EER)

where pn(x) = pn(0+) on (O,Qn].

i. | By the concavity of Lj, it follows from (3.4)

-

Ly(p(0)) + L3(p(0) + (1/n)) < O
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which together with (3.7) implies that p(b)_z p,(x). On the other hand
the concavity'o¥\L2 implies that

L3(p(0)) = (1/m) + L(p(0)) 5 0 ,
so p(0) < p,(x)+(1/n) by (3.7);
ii.  This follows direct1y from (f) by‘noting that rh(x) = pn(x)+(1/n).

By Lemma (3.1) the definition of in can be restated as

X, = suplx e Ry: vi(x) = Ly(p (x)+(1/n)) = -Ly(p, (x))}.

We are now in a position to provide a pictOria] description of the
relationship between r, and Pn inM . Note that both r, and p, are dis-
continuous only at x = 0.9n Figure (3.1) which depicts the observations
made by Corollary (3.1) and Lemma (3.1).

A

g 3

5+

¥ A

p(0) @& 1In

VY x

FIGURE 3.1 - Optimal Control pair in M (rn(.),pn(;)).

] >
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It remains~to study the limiting behaviour of (rn(x);Ph(X)) for

x € R,, so for m > n define
Xnn = inf{x e R+ T (x) = P (x)+(]/n)} .' (3.8)

which is the content level at which the difference between " and P

becomes exactly 1/n for the first time.
The following result clarifies the relationship between Ve Vi
and  (rp.pp)s (rosp,).

LEMMA (3.2). For m,n ¢ M, and m > n,

i. v&(x) 5_vﬁ(x)_for X g [xmn,w);
1. r(x) > r (x) and p_(x) < p(x) for x & [x i3
ifi.  r (x) < r (x) and pm(x)_z pn(x)’for X g (O,an].

Proof. ‘(i) Recall that for x e R

o -
v (X) : EO,BJ R [L (P) + L3(R) + L](X) - an(X)}-
Re[P+(1/m),_]

On [xmn,m) rm(x)'z pm(x)+(1/n) by the definition of Xope SO it

- follows that for m,n e.N, and m > n

. - 1T
ve(x) = EZ?O,E] {ﬁ—zfg [LZ(P) + L3(R) + Ly(x) - av, (x)1}
Re[P+(1/n),F]
1 : ' oy .
< sup S fg=p [L(P) + Ly(R) + Ly(x) - av (x)]} = v!(x)
RE: +(]/n)s—.]
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since Vm(X)‘z-vh(x) for'mjzfn’by¥Prdﬁbsﬁtion (2.1);
ii) follows .immediately from Condition (i) of the Lemma and Lemma (2;4);

iii) S1nce‘rm(x)_z rn(x) on [an’ ) by (ii), rm(xmn)‘z rn(x) for x < x .3
furthermore since pm(x).i pn(x) on [xmn;m) by (ii) and rm(xmn) =

Pa(Xgn) + (1/n) by (3.8), p (x ) < p,(x) for x < x

< Xon® Then it

follows from}rn(x)_z pn(x) + (1/n) that

n=r (x ) - po(x ) > r(x) - p (x) > 1/n

which implies that

(x

m" mn

rm(xmn) B rn(xmn) and P n- mn

) =p (x ).
So

foXgn) = ByXgn) + (1/n) and v (x ) = p (x )+ (1/n) .

Then rn(x) = rn(xmn) and pn(x) = pn(xmn) for a]] X g (O’anjf Also
rm(xmn) Z_rm(x) and pm(xmn):i pm(x) for x ¢ (O,an] which follows
from. (iii) of Corollary (3.1). Then the desired result follows !

direct]y.()

Figure (3.2) given below depicts the argument of Lemmas (3.1) and
(3.2) for (rn,pn) and (rm,pm), illustrating the re]ationship between them.
By Figure (3.2) it is apparent that the sequence {Qn} is decreasing,

~and its. Timit exists and is defined by

X =Limx . S (3;9),
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*m  *mn  *n

o

FIGURE 3.2 - The re]ationship between (rn,pn) . and *»(rmgpm)
for m > n.

L e

X
>~
>

We are now in a position to show that the 1imiting function v is

the one we are seeking for.

THEOREM (3.1). If L; is decreasing, then
i) v is the uniquevfunction_satisfying the sufficiency condition of
Corollary (1.1);

i1)  There exist unique optimal controls (r*,p*) such that v = Vpspx:

Furthermore (r*,p*) M_, and r* is increasing while p* is decreasing
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Proof. (i) First it is obvious that v is bounded since Vi is bounded by
(i) of Corollary (2.1) for every n ¢ M,. Next it is necessary to show that
v is continuous on g,. '

Note that vm(O)

vn(O) and vm(w)'='vn(m) for every m > n implies that

there exists some 0 < X < « such that
vy = vl = v () = v (x) with v (x) = v} (x).
Thgn it follows that

O,_ﬁ]{Lz(r{) + La(R) + (P-R)v} (X))
P+(1/m),r]

O’B]{LZ(P) + L3(R) + (P-R)v (x)}.
P+(1/n),r] ’

Recall the definition of(r,p) given by (2.37) and consider the three

Pe

0< a[vm(i) - Qn(i)] = sup
| Rel

Pe
Re,

- sup

possible cases:

1) #p > 1/n implies that r-p > 1/m. So (r.p) = (rnzpn) = (F,p).
Therefore, a[vm(i) - vn(i)]'= 0;

2) $-p > 1/m and P-p < 1/n implies that (rm,ph) = (v,p) and r = pn+(1/n).
So alv,(x)-v (X)] = Ly(p,) + La(ry) + (p -1 )vp(X)
Ly(p,) & Lyr ) = (py-r)vp(x)

Lptg) = Lplpy) * Lylrg) = Lylry) + (b )va(R)
| + (1/n)y}(x)

AT

Lp(Py) = LplPy) + Lylry) = Lylrg) + [ - (X

< vm



- 118

where the last statement follows from (2.38) and the fact that L2 is

decreasing and L3 is increasing;

A A

3) -p < 1/m implies that r-p < 1/n, ro = P + (1/m) and ro=p,* (1/n).

It is obvious that n > " and Py < Ppe Similarly we obtain

alv, (%) = v, (0T = Ly(p) = Ly(p) + Lylr ) = Ly(r ) + [ - —Iv)(¥)
- ‘ 1 1 R
| < b= v ).

Then it fo]]oWs from Corollary (3.1) that

al vy = vyl | < T+ 3c |

which implies. that {vn} converges uniformly to v. This in turn implies
v is continuous..
Now it remains to show the continuous differentiability of v on R,.

Define for x ¢ R+

f(x) = sup s [L,(P) + Ly(R) + Ly(x) - av(x)1}. (3.10)
R-P "2 3 1
Pel[0,p] -
RE[Psgj
Let us assume for now that X = 0 and prove the results under this assump-
‘tjon. We shall later show that this 1$ in fact true to complete the proof.

For any x € Ro we can find an N, given by

NX = inf{n: xh < X}

so that rn(x) > pn(x)+(1/n) for n> N,. Therefore

vp(x) = sup _ 1 R 7= [L(P) + L3(R) + L4 (X) - av,(x)1}
Pe[0,p] .
RE[P+(1/n)’—]



- 119

= 1 L :
= SZEO’E]{E“:"ﬁ'[LZ(P) ¥ L3(R)‘+ Ly(x) - av, (x)]}
Re[P,r] '

n

for ne N,. Sincev 4+ v by Proposition»(2.1), Vﬁ + f pofntwise as' N » o,
By Theorem‘(2.1) for every n e N,
X
= !
vn(x) Vn(xT) + xf vn(s)ds .
1

Henceiby the bounded convergence theorem

X
v(x) = v(x]) + f f(s)ds
: X
1 : .
which implies that v is differentiable with a bounded derivative v' = f on.
Ro‘ The boundedness of v' follows from the fact Vﬁ ¢ v' and leﬁ|+.i C for
all neH,_and x e R,.
Now define for x ¢ RO
p(x) = Lim p, (x) - o | (3.11)
N0 R : : ‘
and
r(x) = Limr (x) . - | (3.12)
N : ,

Note that these limits exist since {p,} is a decreasing sequence and‘{fn}
is an increasing sequence. Furthermore r(x) > p(x) since for all n >N, |
ro(x) > p (x) + (1/n). | | |

It suffices to show that the limits given by (3.11) and (3.12) are

the solution to (3.10). If (rn,pn) is the optimal control pair, then
av (x) = Ly(x) + Lz(Pn(X)) t Ly(r(x)) + [pp(x) = r (x)]v;(x) (3.13)

which in the Timit conyerges to
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av(x) = L1(x) + Ly(p(x)) + Ly(r(x)) + [p(x) = r(x)Iv'(x) (3.14)

since v, converges uniformly to v and,vﬁ converges pointwise to v'.

On the other hand, for n >N,

avn(x) = ggEo’_]{Lz(P) + L3(R) + (P-R)vé(x)} + L](x)- (3;15)
‘ Re[P’gj v
which implies that as n + «~
’av(x)‘= ;gEO,_]{LZ(P) + L3(R) + (P-R)v'(x)} + Ll(x) . | : | (3.16)
'Re[Psgj

Since the assertions made by (3.14) -and (3.]6) are equivalent, the limiting
~control pair (r,p) as given by (3.11) and (3.12) respectively solves (3.10).
Furthermore.it follows from Corollary (3.1) that

aw(x) > L) + Ly(p()) + Ly(p(x) | (3.17)
where p(x) isxthefSOIUtion to (3.10). So
RECRIECOI . - (318)

Note that for any x e Ro‘there is some r(x) > p(X)'which max imizes

~ the right hand side of (3.10). Thus for any ups Uy € B

lﬁf%”ﬁ'[L1(“1) - Lylup) - av(ug) + “V(UZ)]I

A
o own

pJ

Iv'(u])fv'(uz)l
| ]

up
[0
[p

r(u])Ar(uz)-P(q])Vp(uz)

A

11y (ug)-Ly (o) vty v ]

which shows the continuity of v' on Ro' The behaviour of v' near zero level



121

is important in our analysis. We first show that p is continuous at zero.

This follows by noting that for x e (O,Qn] and any ne N_
p(0) - (1/n) < p,(x) < p(0)
by Lemma (3.1). So

Lim Lim[p(0) - (1/n)] < Lim Lim pn(x)‘< Lim Lim p(0)
X4+0 noo T x40 e T X400 N

whfch implies that

,:Lim p(x) = p(0) .
x40 :

1

We will now show that v'(0) = Lim v'(u) = Lé(p(O)). Let {u )} =R,
usy0

with u 40 and recall that qv(0) = av_(0) = L,(0) * L,(p(0)) + Ly(p(0)).

For any‘un >0andmeM,,

vi(u ) = sup _]{W—l—-p- [Ly(P) + Ly(R) + Ly(u ) - av(u )]}

1
> EEEO,B] {TTT"?'[LZ(P) + Ly(R) f Ly(uy) - av(u )1}
Re[P+(1/m),r]

>mlLy(p(u )} + Ly(p(u) + (1/m)) + LyCu) - av(u )] .

Thus,

Lim inf m[Lz(p(un)) + L3(p(un)+(1/m))+ L1(un) - aV(Un)]
N->c0 .

< Lim inf v'(un)
S e

5_Lim sup v'(u,) < L3(p(0))

n->co
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since p is continuous at zero. Then the continuity of L] and v implies that
m{L5(p(0)+(1/m)) - L3(p(0))] < Lim inf v'(u ) < Lim sup v'(u,) < L3(p(0))
N=oo <o
“for every m € N+. Taking the 1imit as m + «, we obtain
Lim m[L,(p(0)+(1/m))= Ly(p(0))] = L(p(0)) -
Mo -
So we have
Lim v'(u_) = L:(p(0)) .
N0 n 3

Since v has a bounded continuous derivative v' given by

1 - . 1 ' K :
v'(x) - EZFO,B] {ﬁ—;—p [L,(P) + Ly(R) + Ly(x) - av(x)]} ,
RE[Paﬂ'

then it satisfies

sup {L,(P) + L(R) + (P-R)v'(x)} + L;(x) - av(x) =0, x> 0.
2\") T kg 1 , |
PE[O ,% ) . :
Re[P,r
" Furthermore it follows from v‘(x);i Lé(p(x)) for all x > 0 that the
optimal r(x) occurs in the interval [p(x),r] since L3 is a concavepfunction.
‘Thus the optimization over [0,r] yields the same solution as the optimiza-

‘tion over [p(x),r], and consequently we have

sup __{Ly(P) + Ly(R) + (P-RIV'(x)} = sup _ {L,(P) + Ly(R) + (P-R)v'(x)}.
PE[Os—] R PE[OS ]
RE[P,%I ‘ RE[Oa%

‘Also v'(0) = Lé(p(O)) jmplies that

L.(P) + L.(R) + (P-R)v'(0 L(P) + L (R P-R)v'(0)}.
EEEO,B]{ 2( ) + 3( ) + (P-R)v'(0)} SZEO,p { 2( ) + Ly( )»+ (P-R)v'(0)}
R=P Re[0,p]



123
So v(0) satisfies

Pe[0,p]

sup _ {L,(P) + Ly(R) + (P-R)v'(0)} + L;(0) - av(0) = 0. (3.20)
Rel0.p] N | |

It immediately follows from (3.19) and (3.20) that V satisfies the
sufficiency cohditionbof Corollary (1.1).

To complete the proof of (i) we need to show that X is in fact
equal to zero as assumed before.

If X > 0, then for any n'e N, and all-x 5-§n

v (x) = Ly (x) + Ly(p (x)) + Ly(p (OH(1/m) + (1/n)v (x)
which implies
av(x) = L(x) + Ly(p(0)) * Ly(p(0)) »  x e [0,%]

by taking the 1imit since |[vﬁ|| is bounded independent .of n. But this -

contradicts the fact that v > " for any n since by taking (?n,ﬁn) e M as

p(0)+(1/n) , x >/0‘

. ?n(x) N
p(0) » X =0

and

P, (x) = p(0) X

|v
o
-

one can easily see that



124

nt .
W0 2 v g (0) = J e L (x-(1/n)t) + Ly(p(0)) + Ly(p(0)+(1/n)ldt

£ &L (0) + Ly(p(0)) + Ly(p(0))Tat
nt .

-+

A\

L0+ Ly(p(0)) + Ly(p(ON)T = v(x).

Now there on]y.remains to show the uniquéness of v. Assume there
exists another functioﬁ'u‘sétisfying.the sufficiency condition of Corollary
(1.1), so that u > v. Then for every X e R,

sup  {u(s) - v(s)} =.u(X) -y(x) >0 : (3.21)

se[0,x Ehas
which amounts to saying that u(x) - v(k) is increasing in x and (u-v)' > 0.
To see (3.21), assume that this maximum is attained at some 0 < s'< x.

Then u'(s) = v'(s) which 1mplie§ u(s) - v(s) =0 < u(x) - v(x).
Now assume that u(?)‘> v(x) for some x > 0. Then for x 2.;

u'(x) < Lé(p(x)) implies .

afu(x)-v(x)] = sup _ {Lo(P) + Ly(R) + (P-R)u’ (x))

Pe[0,p]
Re[0.¥]
- sup (kP + LR+ (PRI ()
R€[Osg]
= ' L,(P L.(R P-R)u'
gy 7 R T D
Re[P,r] '

- SZFO,_j{LZ(P) + L3(R) + (P-R)v'(x)}

Re[P,gj

A
o
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Since u'(x) > v'(x) by the above argument and by (3.21). . So u'(x) z_Lé(p(x))
for all x i‘i'which in turn contradicts the boundedness of u, so in fact |

-~ u=v and v is unique.

‘ii) We have already defined (r*,p*) as the limiting functions by (3.11)
and (3.12). This definition and (3.]9) imply that (r*,p*) satisfies

Ly(p*(x)) + Ly(r*(x)) + [p*(x) ~ r*(x)Iv*(x) -
- sup (Ly(P) + Ly(R) + (P-R)V' ()}
} Re[O,gj
for x”evR+. Furthermore v'(x) f;Lé(p*(x)) implies r*(x) > p*(x) for x ; 0
and v'(0) = Lé(p(O)) jmplies r*(0) = p*(0). The strict ¢dncavity of L2 and
_L3 ensures us about the uniqueness of (r*,p*) for any given v'.
Note that v'(0) = Lé(p(O))‘> 0, and thg proéeddre'of Coro]]ary (3.1)
can be repeated here to show that if v is increasing on [0,x] for some

X > 0. given by
X = inf{u ¢ R,: v"(u) = 0},

then'v"is decreasing, SO that;v is concave on fo,i]. Furthermore; by our
definition of (r*,p*), r* is increasing, p* is decreasing and (r*(x),p*(x))
= (r,0) for all x 3_21 So (r*,p*) ¢ M;r'7,Mi; AIso v = vr*é* which
follows by noting that (rf,pf) is contjnuous on R _ by the strict concavity
of L, and Ly. |

Then it follows from (3.10) that

w(®) = L,(0) + L) + L)
and

av(x)

{v

Lz(_o) + ‘L3(F) + L'l x) X > Y 0
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REMARK (3.2). Since v is either concave increasing on R+ or decreasing on

[X,») for X > 0, v(») = Lim av(x) exists. By uniform convergence of {v}
' X+ .

to v and (ii) of Corollary (2.1)
(=) = L,(0) + Ly(F) + Ly(=).0

So far we accomb]iShed to construct locally and globally optimé]i
controls in the deterministicuprobiem. FIf L] ié arbitrary, then for every
ne M, there exists a unique dpfima].coﬁtro] pair (rn,un) in M, N M2 )

and the return function vh’is,shown‘to be the unique solution of the
sufficiency condition of Coro]lary (1.2). We 1ater showed that Vo

converges to the optimal return function in M _ and established the optimaiity
of the corresponding controls in M_. However it is perceived that the opti-
mality of the Timiting function in » requires further conditions'uppn‘Ll.

So L] is assumed to be decreasing, and. v is shown to Satisfy the sufficient _
condition of Corollary (1.1) under this'aésumptiqn; We then characterized
“the optimal return function and the optimal control pair explicitly. Note‘
that r* > p* implies fhat one has no incentive to increase the content

level because of the decreasing property of L].
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VII. THE STOCHASTIC OPTIMAL CONTROL. PROBLEM

“This chapter is devoted to an extensive analysis of the original
‘stochastic storage model. The results obtained in the determihistic
problem are fu]iy used to verify whether there exists a unique optimal. -
return function v € b(R+)tsatisfying the sufficient condition of Corol-
lary (V.2.1) and to characterize the optimé] controls which yier this
return if there,exists'any. In Section 1 the emphasis is>on the cons-
. truction of suboptimal return function and suboptimal control pair.
It is demonstrated that there exists a unique return function and a
un}que contfo] pair optimal in Mn,satisfying Corollary (V.2.2) if L] is
assumed to be arbitraky. Agaih the 1imit of the sequence of suboptimal
}eturn functions does not turn out to be optima1 in M. So in Section 2
the deéreasing requirement is imposed upon L]; however it is not tech-
nica]lyrpOSSible to employ ouf argument of the deterministic problem
in the presence of random output jumps. So the stochastic output.process
B is excluded in our procedufe of proving the desired result, and the
existence andtfhe uniqueness of globally optimal return function and
coﬁtro] pair is proven for a storage model whose réndomness arises only

from the input proceés A.
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7.1 CONSTRUCTION OF SUBOPTIMAL CONTROLS

_vOur main concern in this section is to verify that even in the pfe-
sence of fwo stpchastic‘processes there exists a unique solution to the
functional differential equation characterization of the max imum expected
discounted return deffned over M while the basic assumptions on the cost
structure are as given by‘(V.1.]). In fact, this unique so]utfon is
proven to be identical with the maximum return of the unique suboptimaT
control pair. Such a study is first carried out by MORAIS [28] and later
by DESHMUKH and PLISKA [31] who consider the optimal control of nonrenew-
aB]e resources. Our procedure follows 8ZEKiCi [38] who studies a similar
situation with Markov additive inputs.

Réca]] that-in the'stochastic problem for (r,p) € ¥ and x E'R+

satisfi
Vrp atisfies

@0pp(x) = Ly (%) # kv o (x) + Ly(p(x)) + Ly(r(x)) + [p()=r(x) vy, (x)

where

0L=0L+)\a+r)\b

erp(X) =, [ vixty)G

/ Jlay) + Ap r V(x_y)eb(dy) +apv(0)[1 - G (x)].

0
Now it is convenient to define for x £ m+1
N 2 ’ . o0 B x .
Ly(v)(x) = Ly(x) + &, g V(Xfy)Ga(dy) * Ay é v(x-y)G, (dy)
| + Abv(O)[l -‘Gb(x)] (1.1)

and treat E](v)(x) as L](x) in the deterministic problem§ Note that if
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~ v is Lipschitz continuous, then L](v)(x) is Lipschitz continuous since L]
is Lipschitz by Assumption (V.1.1) and Kv is Lipschitz continuous by
Lemma (V.2.1). | '

The following result is equivalent to Theorem (VI.2.1).

COROLLARY (1.1). For arbitrary L] and every n e M_;

i) there exists a unique function V, € b(r,) satisfying the sufficiency

‘condition of Corollary (V.2.2);
i) furthermore Vo satisfies

Lim av, (x) = L,(0) + Ly(F) + Ly ()

X
and _ _
Lo(p) + Lg(0) + Ly < av (x) < L,(0) + Ly(r) +1; for x e R;
iii)‘ there 'exists a unique optimal control pair (rn,pn) € M, such that
vV, =V . '
noorp,

Proof. (i) For fixed n e N_ ]et»B be a Banach space with the usual
supreﬁum‘norm'and-define the mapping T on B so that for every f ¢ B,
“u(.) = r(f)(.) is the unique solution of
sup __{L,(P) + Ly(R) + (PRI (x)} + L (F)(x) - au(x) =0  (1.2)
i A | |
where L](f)(.) is as defined by (1.1). It suffices to show that r is .
a contraction mapping. Let f], fz e B and up = P(f]) and Uy = r(fz),

then
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&[U](X)-UZ(X)] SEEO,EJ{L o(P) +1L (R) + (P-R)u (X)} : (1-3)

Re[P+(1/n),—]

=sup _ {Ly(P) + Ly (R) + (P-R)u ( )} + L (f ) (x)
Pe[0,p]
RE[P+(1/n),—] - L1(f2)(x)" X >0

and

3Ly (0)-0,(0)] = sup _{L,(P) + Ly(R) + (P-R)ul (0)3

Pe[0,p
R=P
- L,(P L,{R P-R o)} L f O
sup ) + Ly(0) + (P-Ru3(0) + o)
R=P - L [(£0(0) . (1.4)

Note that~|u](.)-u2(;)| is maXimized-éitherﬂat some §"$ 0 in which case
ui(?) = ué(i) of at x = 0 in which case ui(O) 5_ué(0) assuming without loss
of generafity that u](O)_z.uz(O). The fact that X should be finite follows
- from the boundedness of'ﬁj and u, so that U](m) =‘U2(m). Thereforé it

follows from (1.3) and (1.0
alu uz(X)I < |L (F)(x) - L (fz)(X)| (1.5)
On the other}hand, we know that | |
|E1(f1)(X)-E](f2)(X)l Ay f [, (x+y)-f,(x+y) 16, (dy)

.
Py [, (x-y)-f,(x-y)1G, (dy)

+pl1 - 6, (x)10F; (0)-F,(0)]
f-Aallf]'f2||+Ab||f1flelﬁb(x)+xb[1-Gb(x)]||f]_f2||

= (g * 2)[F=F,l
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which implies that

v)\a‘ +)\b
Ju; (-uy(x) | < =—= [[f}-F,]]
- .
or
[TRERTIPL, D RPN
Uu{-uU,|] < f., - .
he Ta by tay he

Sihce,(lafxb)/(“+Aa+xb) <1, T is a contraction so that there is a
v¥ ¢ B such that v* = p(v*). This proves the uniqueness of v* in B.
Assume now that u é}B is another function satisfying the sufficient condi-
tjon of Corollary (V.2.2) such that u > v,

If u(.)-v*(.) is max1m1zed at some X > 0, then it follows from (1. 2)ﬁ

‘and u'(x) = v*¥'(x) that

alu(x) - v*(x)1 < (a, + ap)[u-vy*||. | (1.6)
So
a b
[fu=y*|| & ————— [[|u-v*]]
(¢4 + )\a + )\b
which implies that if [Ju-v*||'> 0, then ||u-v*|| = ». Then u is unbounded .

"since v* is bounded; on the other hand the unboundedness of u is a'contré—
~diction and consequently ||u-v*|| = _
Now to see (1.6) note that if:u(.)—v*(.) is maximized at the infinity,

then sup {u(x)-v*(x)} = L1m{u(x )- v*(x )} for some sequence {x } <R, with

xeR, N-seo0
X 4 o Th1s 11m1t may be 1nf1n1te, j.e. Lim{u(x n)-v*(xn)} = in wh1ch case
, fosoo S
[ Ju-v*|| —<»and the above argument holds true immediately. However if

Lim{u(xn)-v*(xn)} < «, we should consider two possible cases:
oo ‘
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1. u'(xn) = v*'(xn) for all n implies from (1.2)

Limg{u(x,)=v*(x )} = Ly (w)(x) = Ly (v (x)

N->co

< g Tag) ] u-vE].

2. Lim{u' (x)-v*(x)} = 0. implies that vF'(x) < u'(x) f_Lé(p(x)) for
all x > x for some §'> 0. By.(1.2) and the fact that N

SUEOV {LZ(P) +L (R) + (P-R)u' (x)}
RE[P+ ]/n)s_] - Sup : {LZ(P) i L (R) + (P R)U*I(X)} < 0-

R€[P+(1/n),”]

for X > X

Limagu(x,)-v¥*(x )} < L (U)(x ) - L T () < (gtag) [ |u-v] |

N-co

This proves the uniqueness of v* in M-

i1) Letting Vi be v* of part (i), it is easy to show that E](vn)(.)
satisfies

Ag * A

2 [L,(0) + Ly(¥) + 15 (1.7)

A : Ay T Ap —
L) s L+ L, (F) + Ly(0) + LyTs

A Aa * Ab ’ —=
Lim Ly (v )(x) = Ly(=) + Y [L,(0) + Ls(r) + Ly(=)]

X-co

where the last statement requires Gb(w) = 1. It follows from (1.7) that

A

L is bounded and its 1imit exists. Note that by (i) of the Corollary
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IRCART

A

nLyl] + 11l * 1LV ) ]| * & 1vgl )]

In

nCULo I+ HESL *+ TN T T+ Ogtag) ] [vgl ] & [vg] |1

22 (a+Aa +Ab)[l|L]|| % llell + IIL3I1J =M

=
since &[]vnll < Ll + j|L2|| * ||Lg||.  This implies that
|vn(x]) - vh(xz)l»f_Mlx] - x2[7

‘Then by Lemma (V.2.1) E]vis Lipschitz continuous and by Coko]]éry_(VI.Z.])

Vi satisfies
Bvyle) = Ly(0) + Ly(F) fmvn)(’;); : ()
av, () > Lilv,) + LZ(F) +1,5(0) 3
av (L) < To(v.) + Ly(0) + Ly(F).
By some straightforward ca]éu]ations it is.c1eaé that (1.8) implies
(=) = Lp(0) + Ly(F) + L) 5 - (1.9)
avp(4) > Ly . ’Lz(ﬁ) +15(0) 3
avy(-) < Ty + Ly(0) + Ly(P).

iii) Define (rn,pn) by Remark (VI.2v3) as we have doné in the deterministic

© . problem. By the Lipschitz property of E], (rn,pn) are Lipschitz con-

tinuous as before SO'that (rn,pn) e M - Thus we have v_ = vrnpn.
The uniqueness of (rn,pn) follows from the uniqpeness’of Vi and the

strict concavity of L2 and L3.(3
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Corollary (1.1) enables us to create a Sequence'{vn} of return func-
tions Tocally optimal in M énd to characterize the-correéponding controls
(rn,ph). Meanwhile we observe that the input and output processes of the . .
stochasticvproblem do not affect the basic features’of our construction of
the suboptimal ¢ontrd]s in Mh- |

Letting v be the optimal return function in M, ahd}(rn,pn) be the
corresponding optimal.control pair in Mh’ it ié-obvious_that Vo1 > Vp

si (= ' .
nce M M, for every n ¢ M,

+1
Let v =Limv,. It isclear that

N->co

L(B) + L3(0) + Ly < av(x) < L,(0) + L™ + T

for every (r,p) e M

PROPOSITION (1.1). v > Vep X

Proof. Let (r,p) e M_ and define

p(x) ‘,1f x=0
e (x) =< pO)*I/M) AF x> 0, r(x) < p(x)+(1/n)
r(x) if x>0, r(x)> p{x)+(1/n)
and |
Pa(x) =p(x) . x>0

for every n ¢ M, . Obyiously (rh,pn)'g M, We can prove the desired |
result by using the samevargument as in Proposition (VI.2.1) and showing
that for fixed.x ¢ R and a]most.every weE fn + f where fn and f are: -
the unique solutions of

t
fo(t) = x + Aclw) - Bylw) + ! (p,rp)(f(s))ds , t>0
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t
f(t) = x + A(w) - B(w) + 1 (p-r)(f(s))ds , t>0
o

respective]y.C)

Proposftion.(l.l) states that the sequence {vn}converges to the
optimal feturn function in M;."However, in order to guarantee that the
Timiting function is optimal in ¥, we need to p1ace some monotonicity
restrictione upon L] Thus, as we have done in the deterministic case,
L] is taken to be decreasing to see whether the Timiting return func-

t1on satisfies the suff1c1ent optimality cond1t1on of Corollary (V.2. 1).

7.2  CONSTRUCTION OF GLOBALLY OPTIMAL CONTROLS

In our procedure of showing that there exists a unique return func-
tion optimal in y satisfying the sufficient condition of Corollary (v.2.1)
under the additionel'assumption that L1'is~decreasing, we realize fhaf the
generalization of the results obtained in the deterministic control problem
cannot be done immediately and a djffereht analysis is required in the
presence of jump outputs whieh decrease-the content level of the étorek
.randbmly. So in order not to digress from the .proposed so]ution approach,
we restrict our attention to a storage proceSs where there are only random
input jumps end there does not exist any form of fandom output in proving

the following result.

THEOREM (2.1)._ If L] is decreasing and there does not exist a random out-

put process, then
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i) v is the unique function satisfyiné the sufficiency condition of

~Corollary (V.2.1);.

ii) there exists a unique optimal control pair (r*,p*) such that v = Vr*p*‘

Furthermore (r*,p*) e M_ and r* is increasing while p* is decreasing.

Proof. Note that this corresbbnds to the case where Xb = 0 and there are

no random outputs. Therefore, the function E](vn) is - now equal to
Ly(vgd(x) = L(x) + Ya Vplxiy)6 (dy). - (2.)

i) We will first show that vn(.) is concave increasing on [O,ih] and

decreasing on [ih,m) where _h‘is given by

X, = inf{x e R; va(u) < 0 for a11' u s> X}.

To do this, it is necessary. to show that for any 0 < x < x

BT e W

By the definition of §h this supremum is greater than zero. Now
assume there exists some X < X < ih such that vﬁ(i) > va(u) for

all u ¢ [x,ih] which implies that

sup __{L,(P) + Ly(R) + (P-R)V!(X)} < sup {Ly(P) + L3(R)>+V(P-R)v5(u)

P Osj . 0’
REEP+?1/n),F] : ReLP+(1/n) 7]
| ue [x.x] .
Then
afv (x)-v (u)] g_fl(vn)(i) - E](vn)(U) - . .
<o 7 v ()G, (dy) < AL v (k)G (dy)
0 : 0
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for u ¢ [x,§] sjnce L] is decreasing. Then dividing by’§-u.and taking

the 1imit, we have
avp(x) <A, u Vo (xty)G (dy) < a v, (x)

by the bounded convergence theorem. But this is a contradiction since
va(g) > 0. Sb vn(;).is concave increasing on [O,Yh] for some ih >0 and
deéreasing on [ih;w).

. Let (rn,pn) be the optimal control bair of (ii) of Coro]]ary (1.1).
Then this result implies that as functions of the content. level ™ is.
increasing and Pp is decfeasing. Now note that for n ¢ N, i satisfiés

- the bouhdary condition
v, (0) = Ly(p(0)) + Ly(p(0)) + Ly (v, )(0)

where p(0) is the optimal input control at zero Tevel and defined by

(YI.2.4). Then for x ¢ R,

) = sup 5]-{§—%—p-[L2(P) + Ly(R) + L (v ) () = Gy, (0D

implies that

vi(x) < vi(0) = n[Ly(p(0) + (1/m)) - Ly(p(0)] < L3(p(0)) < Li(p ()
| | (2.2)
since L3 is concave and bn is décreasing. So Vﬁ(') is bounded below uni-
formly in n and [vi(.)| < C for-some C > 0 for all n ¢ H,.
Now the procedure of Theorem (VI.3.1) ﬁan be repeated here to show

that v is continuous. Let X be so that for m >n
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)S(£+{vm(x) - v (0} = (X) - v (%),

If this supremum occurs-at x = 0 for<somé m>mn , then:

n

aLvy(0) - v, (0] L (v )(0) - (v )(0)

Ay £ DV (3) - v (¥)]6, (dy)
0
< Aglv,(0) - v (0)]

which implies v_(0) = v (0) by the definition of §&.
If x> 0, then v&(i) = va(i) and

0 < 8Ly (%) = vy (0] < (5= + ) + Ky () = kv, (%)
which follows by recalling that in the deterministic problem

LP)+L(R)+(PR)( - LP+L(R+PR
s Lyl ME; sup _]{ »(P) ) + (P-R)v} (‘)}

R€[P+(1/n),7 S Re[P+(1/n),_]

,E;(-ﬁ—-+ —ﬁ—qc.

On the other hand,
Kv (x) - Kv(x) =2, ! Ly (xty) - v, (x+y)]6, (dy)
< '/\a[vm(X) - vy (x)].
" Therefore

0 < B (R) - (0] < (G IC Dy (D) - v ()]

or

0 < alyy(®) = ¥, (R < (= + 7)e
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~

since 0. = o + Ay So the sequence {vn} converges uniformly to v and thus

v(.) is continuous.

Now defihe for x ¢ Ré

p(x) = Lim p () , R (2.3)
Nsco v .
and
r(x) = Lim rn(X) . ‘ | (2.4)
Moo ‘ .

We Ean further define {;n}.in the same manner as we have done in the deter-

ministic problem and restate the definition of X as
X = sup{x & [0,m):av(x) = L (v)(x) + Ly(p(x)) + Ly(p(x))3.

To proceed further, we assume that X = 0 and show the results under this
assumption, deferring its pnodf'unti1 later. The proof of Theorem (Vi.3.1)
can be repeated here to show that v is continuously differentiable with a
derivative given by

- v'(x) = sup {ﬁ—%—p-[Lz(P) + L3(R) + Ly(v)(x) - av(x)1} (2.5)

Pe[0,5]
Re[P 5]

for x ¢ [0,=). Note that vé(x) f_Lé(pn(x)) by (2.2) implies

E”Eo (L) + Ly(R) + (P-RIV ()} 3 Ly(p () + Ly(p, (x))
€ 3 . .

5
RelP ]
for x ¢ R,, every n ¢ N_. Then it is obvious that

av,(x) > L (v )(x) + Ly(p, () + Ly(p, (x))

and by Proposition (1.1) we obtain
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-

() 2 L0000+ Ly(p(x)) + Ly(p(x))

where p is as defined by (2.3). This together with (2.5) implies that

v'(x) f_Lé(p(x))"for x eR . So v'(.) is'fn fact bounded. The continuity
of v' and (r,p) on R, can be shown by using the argumentvbf Theorem (VI.3.1);
vthus we omit it to avoid repetition. ' |

Now there remains to show that X = 0 to complete our proof of (i).

Since

(=) = (0 (@) + 1y(0) + Ly > L () ) + Ly(p(x)) + Lylp(x))

for any x ¢ R+, ft is obvious that ;\is finite.

Note that v'(g) = Lé(p(Q)) which can be shown by ﬁsing a sequence
{u} =R, with U ¥ X as.we have done in Theorem (VI.B.]). Furthermore
by the same argument given at the beginning of the pfoof -
it can be .shown that :v ié;concave incfeasing on [;,ij for §'§ Q énd i

decreasing on [X,o). Now define (r*(x),p*(x)) on R, such that

SZEO,EJ{LZ(P) + L3(R) +.(P-R)v-(x)} = L,(p*(x)) +,L3(r*(X))  (2.6)

R=P ~
for 0 <. x < X

and

sup _ {L,(P) + Lg(R) + (P-R)v'(x)} = L2(p*(x))+L3(r*(-x-))+ﬁ)?.(x)i-r‘*(xv)]v'(x
PE[OsE] . V :
RE[P,—Y'_] A

for x > x . (2.7)

Now it is obvious that (r*,p*) e M_ since r*(.) is increasing and p*(.)
is decreasing and v(x) = vé*p*(x) for every x > x.
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Now assume that X > 0 and for arbitrary A < §_define (rA(x),pA(x))

‘on R, such that

sup{L,(P) + L3(R) + (P R)u'(x)} = Lo(py (x)) + L3(r,(x))
Pe[O _]

for 0< X f_X-A ,

‘and

(r, (0),0,(x)) = (r¥(xta),p*(xta))  for x> Xoa .

For fixed w ¢ Q , let f](t,w) andhfé(t;m)nbe:BhEﬁUniqUe’SO]UtiO”S of
~ t
fltss) = x+ AL+ 1 (p*=r*)(fi(s.))ds ,
) :
. t
fz(-t,w) =X-A + At + .g (pA'-‘"' rA)(fz(ssw))ds
respectively. Then fz(t,w) 5Jf](t,w)_i fz(t,w)+A, and consequently
- Y'*.(f](taw)) f_ rA(fz(t:U)))' and p*(f](tsw)) 3_ PA(fz(t,w)) fOY‘ a]1 t.
This implies that ’

p Lyt ) * Lylo, (Fp(ts)) + Lylr, (Fy(to0))dt

s 7 e (R (b)) + Ly(*(F (Ew)) + Lylrs(F, (t))1dt
0
since L] is decreasing, L2 is decreasing and L3 fs‘increasing. Thus. -

v (§4A) >V *'*(;) .
Y‘APA —_ Y'-p_

(;—A) >y

From our definition of (r*,p*), Vs >V, ~(x-A) which implies that

APa

Vprpr(X = A) 3_vr%pf(X)- | o (2.8)



142

Assertion (2.8) is a contradiction since v is concave increasing on [0,x]

where X > Xx. So our assumption X > 0 fails. Then by (2.5) v satisfies

on Ro

sup *__{L,(P) -+ Ly(R) + (P-R)V'(x)} + Lq(v)(x) - av(x) = 0 ,
PEZ[O;‘.I 2 3 ) 1 >
and furthermore by the fact that v'(.)‘f_Lé(p(.)) we have
sup _{L,(P) + L,(R) + (P-R)V'(x)} = sup _ {L,(P) + Lo(R) + (P-R)v'(x)}
pefo,p] 2 3 | Pe[0,p] 2 3 |
Re[Pr] | Re[0.r]
The fact x = 0 jmplies v'(0) #’Lé(p(o)) which in turn satisfies

sup ‘{LZ(P) + L3(R) + (P-R)v'(0)} = sup '{LZ(P) + L3(R) + (P-R)v'(0)}

Pe[0,p] Pe[0,p]
R=P = - Re[0;p]

ahd | ,
ngo,ﬁj{Lz(P) + L3(R) + (P-R)v*(0)} + Ly (v)(0) - av(0)
Pe[0,p] ‘

= Lp(pH0)) + Ly(p(0)) + L, (v)(0) - av(0).

It then immediately follows that vy satisfies the sufficiency condition
* of Corollary (V.2.1). |

The proof_of (i) is comp]eted by noting that the uniqueness of v can
be shown as in the deterministic prob1eh by using the procedure of Theorem

(v1.3.1).
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ii)  The optimal control pair (r*,p*) are as defined by (2.6) and (2.7).
It follows from v!(x) < Lé(p(x)) and‘vJ(O) = L3(p(0)) that =
r*(x) > p*(x) for xve'Ro and r*(O) = p*(0). The strict concavity
of L2 and L3 ensures us about the continuity of (r*,p*) on R+ and
the‘uhiqueness of (r*,p*) for any given v'. Since Q is shown to be
concave increasihg on.[0,x] and decreasing on [X,) for some X > 0,

~ v!' is decreasing which implies that r* is increasing, p* is decreasing
on [0,x] and (r*(x),p*(x)) = (v,0) for all x > X. So (r*,p*) € M, E M
and v = Vr*p*‘c} '

REMARK (2.1). Note that y'(x) is the marginal contribution of an additional |

unit of the content Tevel to the total optimal return and is interpretéd as
the shadow price of the content at the content level x. Since v(.) is con-
cave on [0,x], this price is decreasing.in the content leyel on [0,x] and
becomes negative on [x,»). Thus the lower the shadow price of .the content
level, the higher is the optimal output rate and the lower is the optimal
input rate. The characterization.of the optimal control paik (r*,p*) as
r*(x) > p*(x) for x ¢ R+ implies that the greater .the content 1evé1, the

| faster it should be diminished. Also the fact that v'(x) f_Lé(p*(x))i
yields that at the optimum the marginal value of the content level is-1e$s

than or equal to the marginal utility of consuming the content.() _

Theorem (2.1) resolves the optimal control problem of the generalized
storage model by disregarding the stochastic output process. The existence
and uniqueness of an optima] return function v satisfying the sufficiency

condition of Corollary (V.2.1) ‘is verified under the assumption that there



144

is no. uncontrolled output from the storé ;nd L, is decreasing. Unfortunately
it seems difficult to obtain similar results in the presehce of 'a random
output procesé by extending the procedure of the deterministic problem.
However, the same line of reasonfng can be utilized to study various storage
processes With'different’modei attributes, a few of which will be diséussed

in the following chapters.



145

- VIIT, GENERALIZATIONS

The main point in this chapter is to reveal to whatvextent our pro-
cedure of constructing the bptimal refurn function and the associated
optimal confrols.can be employed in various applications of storége models. '
In Section 1, stores with finite physical capacity will be considered,vand
the appiicabi]ity of our construction will be discuséed briefly. It will
be pointed out that a different anaTysis should be developed to handle with
' fhe finite cépacity restriction. The concept of back]ogging will be in-
troduced in Section 2. The no-back]oégihg condition which does not permit
the content Tevel to fall below zero Qi11 be relaxed, and our procedure
wif] prove to be efficient in trééting the problem of finite backlogging;
however in case of infinite backlogging the boundary condition invokes a
. complicatidn which our procedure cannot solve adequately. To overcome
that difficu]ty one can incorporate a content-dependent output process
,which in turn changes the basic features of our argument. Finally in.
Section 3 restrictions oﬁ cost and reward structures are modified, and
the construction of the optimé] return function and the optimal control
pair with these modifications is outlined by simply providing rough

sketches of the pfoofs. The optimal control problem will be overviewed .
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first by assuming L] to be a concave inckeasing function and then by.

assuming L2 and L3 to be nondifferentiable at a finite number of points.

- 8.1 . FINITE CAPACITY STORES

In our analysis we have constructed the unique optimal return func-
tion and the associated optimé] control pair under the assumption that
~ the store has infinite physical capacity. However it ié common experience
to encounter stores with finite storage capacity. Then our construction
methodology 1is naturally expe&ted to changé considerably, and the admissib]é
controls- and conéequently the optimal control problem.should be redefined g
to analyze storage models with a finite capacity Tevel K. We will not
present a formal argument, but simply point out some basic consiaerations
that should be taken into account in such an analysis.

One formu]atfon possibility is to fail the system and to incur a
Tumpsum cost as soon as the content of the store exceeds its capacity.

If we define
T = inf{t > 0:X, > K}

as the hitting time of Tevel K, then the storage process X is made to
remain- above K,fdrever after T.. In other wdrds, Xt =Afort>T where
A = [Ky) =R, -

Another possibi]ify on the other hand is to imagine the existence
of another infinite store which simply records the behaviour of X until
routine operatiohs are resumed. So it is assumedvthét ény excess input

over the capacity K will simply overflow into the imaginary store and will
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_not enter the controlled model. Although the problem of choosing optimal
“controls is somewhat artificial with this cbnvention; its results are use-
ful since cohtro]s are needed only when Xt e [0,K]. In the process of
treéting_this situation, it suffices to express the output control as the
sum of two'determihistic functions, one of which is specified by our choice

of an output rate r.while the other is specified by a given deterministic

function f. Thus if we define (r.p) by

r(x) . . s x<K
r(x) = |
r(x)+f(x=K) . » X > K
‘and
p(x) = p(x) LxeR, ,

we can rép]ace (r,p) by (?,E) in our analysis. If the content level of
the sfore is less than or equal to the physical capacity K, then the out-
put rate is given by r(x) and the input rate is given by p{x). Otherwise
if~the content level exceeds the capacity, there is an additional output
stream af a rate f(x-K) into the imaginary store while the input éate.;
'remains the same. It is preferable to take f(.) to be continuous increasing
function with’f(o) = 0.'>In the dam models f possesses a well-known inter-
pretation and corresponds to the flooding rate.

This discussion reveals that our formulation of the storage model
and the structure of the optimal control problem changes considerably, and
a different line ofvreasoning ié required to characterize the optimal return

function and the optimal controls in case of stores with finite capacity.
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8.2 - 'STORES WITH BACKLOGGING

In our analysis of the génera]ized storage model we have assuméd that
there cannot be any output from the store when it is empty. -This no-back-
logging requirement has prevented the content level of the store from
falling below zero. This is accomplished by aséuming that r(0) < p(0).
A]though we héd tb exclude the random output process B in the proof of
Theorem (VII.2.1), the output process B ié inherent .in the generalized
storage model, so it should be fﬁrther considered in our analysis. As far
as the stochastic oufput process B is concerned, the random outputs th§e
jump magnitudes exceed the current content level of the store-are avoided
at the point»of emptiness.in our aﬁabySis:: Hence the jump outputs are made
dependent upon the content level, so that the distribution of the output

jump magnitudes in fact is made to satisfy

6, (dy) Y <x |

Gy (dy) =< | ()
IoG(dy)
I8 y) y

]
x

i

- 1f the content level of the store is x. This convention is depicted 'in
Figure (2;1) where a typical distribution functidn Gﬁ(.) is given. Note
,that'Gﬁ‘(u) = ng(u) for u <X f_xz.

An obvious generalization of this convention would be to allow for
finite backlogging. If a backorder level of I units is'permitted, the
cohfent level may fall below zero down to -I units. So the 'state space of
the content procéss X bécomes [-I,%) for some I > 0. In such a case our

construction can be directly repeated so as to include finite backlogging
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of I units by simply extending the domains of input and output controls
and the cost and reward functionﬁ. Then if suffices to change the boun-
dary condition-by assuming that r(QI)‘g p(-I). In tfeating the finite ~
backlogging sitdation, similar results can be obtained by employing our
procedure of the ﬁoback]oggihg case; however we should point out that this
argument holds trué only when the éonvention introduced by (2.1) is used.
Otherwise a totally. different analysis would result when a different kind.
of distribution were‘assumed for the output jump magnitudes. For example

a more complicated output process would be obtained by considering content- -
dependént outpufs, and a different solution procedure would be required.

In stores with content-dependent outputs, the times between successive

outputs are independent and identically distributed, but the magnitudes -of
successive outputs depénd upon the content level of the store at the parti-

‘cular instant. So {Zn}lare conditionally independent given F and satisfy

P{Z eD|X. =x}=/ G(dy) , DeR n>1  (2.2)
n T : D b zZ _

- +
for some fami]y-{GE(dy)} of distribution functions on R, with Gggx) = 1.
A content-dependent output process affects the essence of the generalized

- storage model, so a different argument should be employed to accomplish:

the construction of the storage process and'the characterization of the

optima1'ret0rn function. .
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" FIGURE 2.1 - For a.given distribution G, (.) and a fixed x € R

the distribution of output jump magnitude Gé(.).+,

8.3  GENERALIZATIONS ON THE COST AND REWARD STRUCTURE

Thé'procedure'developed so far has achieved the construction of ..
the optimal return function and the optimal control pair satisfying the
sufficient optimality condition of Corollary (V;2.1) under the restric-
tiéns specified by Assumption (V.1.1) and the additional assumption that
L] 1s'decreasing,Natura]1y fheseiconditions eliminate some interesting
cases~encountered frequently in storage models. Thus in this. section the
validity df our brbcedure wi]]lbe established for some problems with dif- .
ferent cost and reward structures. Th%s will be done by discussing these
new app]ications and pointing out the differencés fn fhe construction rather

than providing a detailed proof of the results.
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We showed that the T1imit of return functions locally optimal in -
M might not turn out fo be optimal in ¥ in case Ly is an arbitrary
| function and pointed out that monotonicity properties on L1 are required
to guarantee the g]oba1'optima1ity in M. Hence L] was‘assumed td be
decreasihg, and only then the existence and uniqueness of the global
reiurn function and the control pair in ¥ were established. . Naturally
it is possible to consider the same problem with a differentimonotonicity
restriction imposed on Ly and try te achieve:.the:construction’by.a similar

argument.

COROLLARY (3.1). If Ly is concave increésing, then in the deterministié cas

i) v is concave increasing;

1) v is the unique function satisfying the sufficient condition of

Corollary (VI.1.1)3

ii1)  there exist unique optimal control pair (r*,p*) such that v = Vipxpx:

Furthermore (r*,p*) € Mil-

Proof. (i) Consider the‘deterministic'prob1em discussed in Chapter VI.
For every n e M_ the construction of the unique optimal return function
Vi and the unique optimal control pair'(rn,pn)te M can be exactly as in

Theorem (VI.2.1). Also v = Lim v . Now for fixed n e M, 0 S Xp < X,
_ N300

0 <x < 1, define
| t
f(t) =% # ! (Pt ) (Fy(s))ds , t>0, (3.1)

t L
fo(t) = %o + ! (ppr ) (fols))ds . t>0,
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-+
—~
+
~

1

= Af](t) + (] - A)fz(t) N t _>_‘0

‘-k
n

] inf{t > 0:f(t).= 0}

-+
it

o = Inf{t 3_0:f2(t) =0} .

Then it is obvious that f, and f are strictly decreasing on [0,t2] while
f] is decreasing on [O,t]], and fi(t)t= fz(t) = f(t) = O'fqr t > t, and
0 g_t] < t2 < » since (rn,pn) € Mh. Now define f'](x) to be the func-

tional inverse of f, so"that for O 5_x’§gkx + (1—A)x2

.I .
#1(x) = inf{0 <t < tyrf(t) < xb.
Since f is strictly decreasing and continuous on [O,tz], f'] is

strictly decreasing and continudus on [O,Ax] +(1-A)x2]. Define (r,p) by

—Arn(x])f(l-x)rn(xz) s X & (Axy+(1-2)x55)
r(x) =< |
|y (£ (TR0 (£ 00D x & 0,0 +(10)5,]
and i
[ 3p, (x))+(1-0)p, (%,) L x e OxH(I- %)
p(x) =< | |

e, (P (T G- (5 (00D, x e [0, +(1-2)%, ],

Note that #(0) = B(0) since £7'(0) = t,, f(t,) = f,(t,) = 0 and
vrn(O) = pn(o). Also the fact thét f+](xx]+(1-i)x2) = 0 implies that
(#,p) are continuous at Ax]+(1—x)x2. Within this set-up, the procedure
‘of OZEKICI [35] can be utilized to show that (¥,p) are both Lipschitz

continuous on (0,Ax1+(1—x)x2) which implies that (r,p) e M_. We omit
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. [ l!
‘the proof to avoid repetition, but rely upon the Lipschitz continuity

~result.
By definition f1 and f are the contént Tevels of the store with

initial Tevels x] and Xos respectively, where (r ,p ) are the contro]s

being used Now note that

f(t)

M () + (1= A)F,(t) | (3.2)

g+ (1-0)x, + 7 [ap (F1(s)) + (1-1)p (Fo(s))
o o

- Arn(f](s)) - (1-A)rn(f2(s})]ds

t
AXq * (1 - A)xo + S (p- )(f(s))ds
- , 0

1}

where the third equality follows from

1

P(f(s)) = ap (F1(s)) + (1 - A)p,(f,(s))
and . '

r(F(s)) = ar (F1(s)) + (1 - A)r (Fp(s)).

So f is the content Tlevel of tﬁe.store with initial ]eve] Ax]+(1—x)x2
where (#,p) are the controls being used.

The concavity of v can be shown by noting that

o e ILy (F(£)) + Ly(BCF())) + Ly(R(F(£)))]dt

‘vﬁﬁ(xx]+(1fx)x2)‘ !

i

L G () + (1-08,(0) + (om0
0 .

+ (1- x)pn(fz(t))) + g, (f (t))

+ (1-A)rn(f2(t)))]dt.z '
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By the concavity of Li» Ly and Ly, we obtain

Vas Do H(1-)xg) 2 40 ML (7, (£)) + Ly(p (F(£)) + Lylr (£,(£)))1at
| / |
) €L (£(8)) + Ly(p (£,(£)))
/
F Lyl (Fy () et

= AV (x4) + (1-2)v
PP | n

pr"(xz) =_Avn(x]) + (1-A)vn(x2).
Then it .follows from Proposition (VI.2.1) that
VO +(1-30%,) 2 g H(1-1)%,) 2 v () + (1-2)vp(x5) -~ (3.3)

since v 2 Vpp for all (r,p) ¢ M. The pointwise convergence of v, to v

together with (3.3) implies that
viaxy + (1-2)%5) > av(xg) + (1-2)vlx,) . - (3.4)

Now note that dvn(x) §_L2(0) + L3(F) + L](x)'for every x ¢ R, since

0 P2 5_?} L] and L3 are increasing and L2 is decreasing. Then

for X € R+

W0 = 2R g [Lp(P) + Ly(R) + LX) - av, (T3
Re[P+(1/n),¥] |

> = [Lp(0) * Ly(F) * Ly(x) - ey ()] 20.

Thus v is concave increasing.
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ii) The concave increasing property of‘L] tempts one to increase the
content level of the store when it is below a certain level, so
one is justified to claim that for n e N_ there exists some x. € R

n 4
such that

dvn(x) > Lz(pn(x)) + L3(pn(x)) f’L](x) for every x > ih (3.5)

avn(X) §_L2(pn(x)) + L3(pn(x)) +4L1(x) for every x §_§h (3.6)

So define §h for arbitrary n e N_ by

. §h = inf{x e [0,=): gvn(u) > Lz(ph(u)).+_L3(pn(u)) + L1(u) (3.7)
‘ for all u > x} ,
and note that 0 :_xn.< « since avn(w) =.L2(0) +,L3(r)_+ L](m) > Lz(pn(x))
+ L3(pn(x)) + L](m).for any x ¢ R and avn(O) é,LZ‘p(O)) + L3(p(0)) + L](O).
Then the argument of Theorem (VI.3.1) together with the bounded
convergence theorem can be used here to show that v is continuously

differentiable with a bounded derivative v' given by

vi(x) = Sgﬁo,ﬁ{T‘% [LZ»(P') +L3(R) + Ly (x) - av(x)]}
RE[P.sE]

for a1l x e [X,») where X = Lim §h. The optimal control pair (r*(x),p*(x))

. N->o .

are still as defined by :(VII.2.7) such that v(x) = Vr*p*(x) on [X,=).
However the construction of the-optimal return function and the

optimal control pair on [0,x] necessarily introduces for n ¢ m+

A}n = {(r,p) e M: r(x) <p(x)-(1/n) for x <%, (r(x),p(x))
= (r*(x),p*(x) for x > x} (3.8)
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 where (r*,p*) is as,definedlby (Vi1.2.7). The procédure of .Chapter VI
:is employed to yield symmetrical results. . .So within the framework of
the approach outlined previously, we create a sequence of return func-

tions {u } Tocally optimal in ¥ such that it satisfies

a) | U, is differentiable with a bounded Lipschitz continuous derivative

] "",
up on [0,x1;

b) EUEO _j'{Lz(P) + La(R) + (P-Rup(x)} + Ly(x) - au (x) = 0,
Re[O:g-(]/h)]_ ' 0 0 <x<X

up(x) = vr*p*(x) = v(x) s ox2X;
c)  Ly(p) +L3(0) + Ly < au (x) < Ly(0) + Ly(r) + L; for all x e [0,x];

d) there exist unique optimal control pair (?n,ﬁn) in &n such that

= \yana oA s ‘1‘}.
Uy Vrp’ so (r,p) are optimal in .

So (a), (b), and (c) can be proven repeating the steps of Lemmas
-(VI.2.]); (v1.2.2), (VI.2.3) and (VI.2.4) Theorem (VI.2.1) and Corollary
(VI.2.1) by noting that Uy satisfies (b) if and only if

W (x) = infip [Ly(P) + Ly(R) + Ly(x) - au (T3 5 x & [0,K].

Pe[0,p]
Re[0,P-(1/n)]

To show (d), define (Fn(X);ﬁn(X)) such that

S Ly(P) + Ly(R) + (PRI (x)} = Ly(5,(0)) + Lo(F (X))
R§[025-<1/n)1 Ay oa
* Ipp(x) = ro(x)Jup(x), (3.9)

X <X
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(R 0058,00) = (r(x)pHx)) 5 x>

An explicit Characterjzation of (?h;ﬁn) on [0,2] similar to Remark
(VI.2.3) can be made;directly by using the Kuhn-Tucker approach, but is
omitted here to avoid repetition.

Next the argument of Proposition (VI.2.1) can be repeated here to
show that the seduencef{un} converges to some function u optimal in
ﬁ; = U ﬁh given by |

n>1 '

M = {(r,p) € M:r(x)<p(x) for xel0sx1; (r(x),p(x)) =(r*(x),p*(x))
| for xe[X,=)} . (3.10)

Finally u can be shoWh.to satisfy the sufficiency cdndition of
Coroliary (VI.1.1) by emp1oying an argument similar to Corollary (VI.3.1),
Lemmas (VI.3.1) and (VI.3.2) and Theorem (VI.3.1). So u turns out to be
continudus]y_differentiab]e_with a bounded derivative u'(x) = f(x) given
by

F(x) = inf g [L(P) LR + L0 - a0}, x < [0,5]

e[0,p] .
Rel0,p] : . (3.11)
where (r,p) is the Timit of (?n,ﬁn) defined by (3.9). The fact that

ua(x) converges pointwise to (3.11) follows from

Cau(x) > Ly(p(x)) + Ly(p(x)) + Ly(x) » x e [0,X]

~which together with (3.11) and by the bounded convergence theorem implies

u'(x) = f(x) > L3(p(x)) .
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‘Note that the concavity of u on [0,x] can be shown by the procedure
of (i) of the Corollary. ForneMN, and 0 <x <X u(x) 2 Ly(p,(x))
* La(p,(x)-(1/n)) + Ly (x) which implies that.

1 s 1 ;
Un(X) 2 inf {R—-TnTXT [L3(R) - L3(Pn(x) - (1/n)1} > 0.
Re[0,p, (x)-(1/n)] »
Sq-u must be concave increasing on R since u(x) = v(x) for all

X > X.

iii) The optima1 control pair (r*(x),p*(x)) on [x,*) is defined by
(VII.2.7), and r*(x) 2 p*(x) on [Xs=) since u'(x) = v'(x) <
Lé(p(x)) on [x,»). However for x ;:[0,§](r*(x),p*(x)) is

- characterized as the limiting function of (rn(x),pn(x)) defined
by (3.9), so that it becomes optimal to choose some r*(x) < p*(x).
Furthermore the concavity of u on [0,=) implies that r* is -
increasing and p* is decreasing in the content level. The unique--
ness of {r*,p*) is ensured by the strict concavity of L2 and
Ls. So (r*,p*) € Mi.()"

Now there remains tb generalize the results of Corollary (3.1)
to include the stochastiC'processes; however, the output process B
creates a difficulty in constructing the'optima1 return function and
the optimal controi pa%r which satisfy the sufficiency condition of
Corollary (V.2.1). So it becbmés nécessary to exclude the considera-
tion of the random output process B in this generalization as stated

below.
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COROLLARY (3.2). If L].is concave increasing and there does not exist.

any stochastic output from the store, then

i) there exists a unique function v & b(R+) that satisfies the

sufficiency condition of Corollary (V.2.1);

ii) furthermore, v(.) is concave increasing and there exist a unique

optimal control pair (r*,p*)'§uch'that V= Vs
Proof. Let B be the set of all f e’b(R;) which satisfy:_
1. f(.) is concave increasing}
2. Lim'&f(x)‘= LZ(O) + L3(?)‘+ L](m);

X0

3.  for every x e R,
L,(p) + L3(0) + Ly < of(x) < L,(0) + Ly(r) + [
4. furthermore f(.) is Lipschitz continuous.

Define a mapping T on B so that for f € B, r(f)(.) = u{.) is

the unique solution of

sup _ {L,(P) + L3(R) +(P-R)u'(x)} + L (f)(x) - au(x) =0,
-Pe[0,p] . ' ,
Re[O,F] ~ - - | x>0, (3.12)
sup___(L,(P) + Ly(R) + (P-R)u'(0)} + Ly(£)(0) - du(0) = 0 , (3.13)
P€[0,5] ' o v . '
Re[0,P]

where

(A0 = (00 + 3 7 Fhaley(ay)
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and

o =0a + A
. a

~ Then there is a unique solution u(.) of<(3.12) by Corollary (3.1)
that is concave increasing by noting that f](f)(.)‘is concave increasing

since f ¢ B and
L) £ T+ Og/mlLy0) + Ly + T,
L) 2L+ Oy/LE) + Ly00) + 141 5
Lim Ly (£)(x) = (=) + (A /a)[Ly(0) + Ly(F) + Ly(=)].
X0 : ~

The rest follows similarly as in Coro]]ary (VII.1.1) and Theorem

(vir.2.1). 0

Another generalization on thé cost and reward structure would be
.to consider the situation where L2 and L3 are not necessafi]y contin-
ﬂuou$1y differentiable on R,. Suppose'Lz(;) and L3(.) are differentiable
except at a finite number of points. The construction of the optimal
return function v and the optimal control paif (r*,p*) fol]ow\thexpro—
cedure bf the previous chapters. The optimal return function which
satisfies the sufficiency condition of Corollary (VI.1.1) for the deter-
ministic problem under. the assumption that L]Lis decreasing‘canvbe
conétrdcted by Coro]]éry (vI.3.1), Lemmas (VI.3.1) and (VI.3.2), and
Theorem (VI.3.1). Then the argument of Theorem (VII.2.1) can be
employed for the stochastic problem.  As befohe, v can be shown to be
concave increasing on [0,x] and decreasing on [x,») for some X > 0,

and (r*,p*) can be shown to be in M, . Under these new conditions on
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L2(.) and.L3(.),‘the characterization of (r*,p*) can be still done by
(VIT.2.6) and (VII.2.7) where Lé(.) and'Lé(.) are replaced by D+L2(.)
and~D+L3(.), respectively. The fact that v'(.) < D+L3(p*(.)) still
holds true, so-r*(.) i_b*(.); The difficulty arising in this éituation

is that the optimal controls might not be unique in ¥,

REMARK (3.1). Note that piecewise linear functions are not differen-
tiable at a finiﬁe number of points and constitute a special class to
which the above argument épp]ies'direct1y. ‘If'LZ(.) and L3(.) are

- assumed to be bieéewise 1inearAfuh¢tions, then Lz(.) is linear with-
s]dpe y; on nonoverlapping intervals I =[0,p], and L3(.) is linear |
with slope B; on nonoverlapping intervals KiC: [0,r]. Then.the above
argument can be used to show that there exists a unique optimal return
function v and an optimal control pair (r*,p*) whose uniqueness on

the other hand might fail.  However, (r*,p*) are observed to possess

a finite number of jumps; in fact they are bang-bang controls. O

The bang-bang controls consitute a significant class of admissible
controls and deserve more emphasis. - So in the next chapter we will
dwell upon tﬁe construction of the bang-bang controls in the presence

of piecewise linear cost and reward structures.



162

~IX.  BANG-BANG CONTROLS

In this chapter the primary emphasis will be on presenting and
analyzing a special class of'contro1s, namely bang-bang controls. In
Section 1, the characterization of optimal bang-bang controls will be
shown to be an immediate consequéncé of fhe reﬁu]ts obtained so far, and
an algorithmic procedure will be provfded. In Section 2, the méthodo]ogy :
developed will be employed ﬁo obtain the explicit expressions for the
optimal return function.and the asso¢1ated optima1 control pair in some

numerical problems.

9.1 A THEORETICAL FRAMEWORK

In this section we study the conditfons imposed on the cost énd
reward structure under which bang—bang controls arise and try to construct
them by utilizing the'argUment presented in Sectjon VIII.3. Here L2(.)’
isbtaken to be piecewisé Tinear and concave decreasing, L3(.) is taken
to be piecéwiSe Tinear and concave inéreasing, and L](.) is taken to be
decreasing. The piecewise linearity of LZ(‘) anq L3(,) implies that they

are differentiable except at a finite number of boints and satisfy
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[ 7 ., PC(P:Py)
1 Yz s P C (P ,P ) B
L) =g ° e (1.1)
Y s PC (P _P))
and
8, , RC(R:Ry)
B, » RC(R:R,)
L3(R) =<
| B .+ RC (R _15R)
for some 0 = P <Py <....<P =P, 0=R <R <....<R =F

0> Y7 > Yp > eee > yn,,and 31 >A32 > L. > sm‘z_o, respectively.

By Remark (VIII.3.1), the optimal return function v is concave
increasing on [0,x] and decreasing on [z}m) for some 2:3 0,'aﬁd it is
cdntinuous1y differentiable on R,. The optimal controls (r*,p*) are as
defined by (VII.2.6) and(VII.2.7)'where Lé(.) and Lé(;) are’reP}aced by
D+L2(.) and D+L3(.), respectively. Then they increase or decrease'by
jumps only, so they both have bang-bang structures. The fact v'(.) j_v
D+L3(p*(;)) sti11 holds true and imb1ies that r*(x) > p*(x) on R_.
Althdugh they are not unﬁqué any Tonger, (r#,p*) e M.. ' |

5
For § = 1,...,nand L = 1,..f,m; define

z; = sup{x e [0,®): D+v(x).i -yn+]_j}_v 0, - (1.2)

and
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y_ = suplx e [0@): D'v(x) > gy VO, (1.3)

S 4
Yp 2 vee S Yo Now assume without Toss of generality that p(0) defined

by (VI.2.14) satisfies

respectively. Then it follows that 0 < 21 <2y < ..e 220 and 0 = ¥y 2

Peop < P(0) <P~ and R, ;< P(0) <R,

for some 1 < k < n and 1 < i < m, respectively. Then it follows from

the definition of (r*,p*) that

[p(0) , x=0
Pk_‘l . s X E (Oszn_k+2]
Prx) =< Py > X e {2y o Zypag! ' (1.4)
P ‘ ,» X € (Zn—1’ zn]
- L_Po y X € (Zn3°°)
and
[ P(0) , x=0
R'i » X E (O’y’i+]]
R*(x) =< Ry > X € (Y410 Viepd - (1.5)
R -1 s X (Y o Yy
L.Rm s X E (.Ymsw) .

This characterizafion‘reVeals that (rf,p*) are bang-bang controls.
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REMARK (1.1). Note that (r*,p*) are unique if v is strictly concave on

[0,x]. For any i, L, the sets {D+v = Bi} and {D+v’= —yn+]_L}are isolated
points of R, since then D¥v is strictly decreasing on [0,2]. If-for some-
. o+
1<j<nand x e [0,x], Ynel-j < D'v(x) < =yp4p_ 30 then p (x) Posl- -

which implies that p*(. ) is uniquely determined on the set U (D v( ) #
Yn+1-j}' Then the set U]{D v( ) = Yn+1 J} comprises a f1%1le number of
points on R_. S1m11ar1y if g <D v(x) < BL_12 then r (x) = R is the
nique point on [0, r] So r*(x) is un1que]y determined on the set

LU]{D v( ) # BL}, and s1m11ar1y the set LU]{D v( ) = BL} includes a f1n1te
number of isolated points .on R,

Then Admissibility Condition 3 allows us to define (r*,p*) uniquely
on these sets as the left-hand 1imits since both f* and p¥ are,1eft—eon-

tinuous on {r(.) > p(.)}.c)

Now the problem reduces to determining p(O) by (VI.2.14) and f1nd1ng

a function v and two sequences of points {z } and {y| } such that:

i) v(.) is a bounded continuously differentiable function on R _ which
. is'concave'increasing on [0,x] and decfeaSihg on [X,») for some

x > 0 given by
x = max(z .y) s ‘ (1.6)

ii) Lz(Pj) + L3(R ) ¥ (P.-R YJv'(x) + Kv(x) = 0 whenever

X € (z s 2o J+1] and X € (yL,yL+]] for k < Jj <n-1and

J
i f.L.i m-1, and

Vi zaog) = Yn

) V|(Zn_j+']) = -Y

’ V'(_YL) = BL
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4i1) Ly (0) + LB(F) - rev'(x) + Kv(x) = 0 whenever x e (X,»), and

furthermore vi(z,) = -y; and v'(y,) = 8.

This characterization of v and (r*,p*) constitutes a methodolbgy

which enables us to obtain explicit solutjons to some problems.

9.2 EXPLICIT SOLUTIONS TO SOME DETERMINISTIC PROBLEMS

The results of the preVious section reveal that in case L2 and,L3
poseess piecewisev1inear structures, there exist unique optimal controls
~ which are of the bang-bang type. Our aim in this section is to construct
the oﬁtima] return function and the associated optimal controls explicitly :
by employing the characterization given by (1.6). This can be’accomp1ished
rather easi]y'in deterministie storage models where there are no. jump in-
puts and outputs to the store, and the procedure will be described below
to identify. the optimal return function v and the optimal control pair
(r*,p*) in two deterministic problems. .However in the stochastic optimal..
control problem in which either a random input or a random output process

prevai1s, it is computationally difficult to retain our methodology.

EXAMPLE (2.1). Let Ly =0, ‘F =4, p =2 and

\CLAN o, 0<P<]
L,(P) =
| Ly (P-1) , 0<P<2

for some O 2Yy 2 Y- Furthermore let
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B8R ., 0<R<2
L3(R) =< 28,+8,(R-2) s 2<R<3
L ZB]+82+B3(R"3) . s 3 < R < 4

for some 8, > B8, > B, > 0. We will illustrate the solution procedure
for B, > -y, > -v;, leaving the other cases for the readér. As a first
step jt is necessaryito find p(0) which maximizes L2(P) + L3(P) on [0,2].
By straightforward.ca]cu]ations it can be shown thatvLZ(P) + L3(P)Aéffains
its maximum at P = 2. Hence p(0) = r(0) = 2. | ,

Then fhe characterization given by (1.4) and (1.5) impiies that

(r*,p*) are of the form

2 5w X =0
r¥(x) =< 3 s x e (0,y;]
4 , XE (y3,m)
and _ \
2 , x=0
p*(x) =<1, x e (0,y5]
0 » X E (y3,°°.)‘

for some z, > 0 and ¥3 > 0. It is obvious that av(0) = yy+y,+28;. Now

it follows from (1.6) that the optimal return function v satisfies
Y1+ 2By * By - 2v'(x) - av(x) = 0 ., Xe (0,24y,] (2.1)
which implies that
Nt th

v(x) = " c]e'("‘/z)X - (2.2)
) |
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-~ and

vt = ~(a/2)c,e” (/20

for all x € (O,z]Ay3]. The constant of integration C] must be chosen so

“that v is continuous at zero. 1i.e

.9

Yi+t 28, +8 Yy vy, * 28
v(0+) = 172, C, = 12 1 (2.3)
: o , o ‘

So C, turns out to be (yz-sz)/a, and

1Tt B Y2 By (a2

o o

v(x) =

and
Bo = Yo _(C
V'(x) = 2 > 2 e (./2)x

for all x e'(O,z,Ay3].. It is obyious that v is concave ihcreasing on

(0,21Ay3]; Now the fact that v'(y3) = By and v'(z]) = -71 implies that

' B -y

B e I (2.4)
a -263 ‘
and
B, - Y '
2, = 2 jp2—2 | (2.5)
-28
o 1

Now to proceed further we should consider the following cases:

Case 1. -y, > 63 Then it follows from (2.4) and (2 5) that Y3 > 74

and consequent]y (r*(x),p*(x)) = (3,0) for X € (z],y3] Then the optimal

return funct1on sat1sf1es
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251 + B, - 3v'(x) - av(x) = 0  , v X € (z],y3] . (2.6)

Consequently,

v(x) = ———2 s g e(e/3x
and | , |
' - ‘( /3)X
v'(x) = - —%—-Cze o

for all x € [z],y3]. Then it follows from the continuify of v at 2 that .

Byt B a3z TP T B Y2 " By (/2)zy
o .

) - T (2.7)

© “where z].is as given by (2.5). Solving (2.7), we obtain for

1 2
Cy = - ——{=2r;) 28, - 1) /2 < 0,
Then
28, + 8 1 2
vix) = 2 - 3 () Va(e, - y,) T2 &3

o 20
and -
1 27 _
v(x) = (-2ry) T2(8, - vp) T2l
for all x ¢ (z],y3]. The boundary condition v'(y3) = B3 implies that

: 17 . 27
V'(y3) = 63 = —%— ('ZY]) /3(82.‘ YZ) /3 e (0L/3)y3

or

| 'Y](Bz - Yz)z
n

Tn[ 1. | | : (2.8)
483

Y37 o
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- It can be easily verified that y;-> z, since (~v1(By-v,)2/483) "> (62-Y2)2/4Yf
Now note that (r*(x),p*(x)) = (4,0) on (y3;w), and the optimal return func-

tion v satisfies
281 + 62 + 83 - 4v'(x) - av(x) = 0 : (2.9)
for x € (y3,m). Solving (2.9) we obtain

2B, + B, + B
v(x) = 12 3.,¢
64

3e'(a/4)x‘ . % yge)

and

ef(a/4)x

vi(x) = - —f%— C3

) X € EY39“) .
Then the boundary condition.v'(yg) = By implies that

B = - _.g._ C e_(d‘/4)y3

3 4 3 :

where y, is as given by (2.8). So
_25/4

cy = 20 (oney) /oty - vy V2 < 0
3, 11°3 2~ Y2 o

and then we have

Bt Byt By o

V(X) - l*'(_'2'Y183)1/h(82 - Yz)l/zﬁe_(u/4)x

o o
and

v'(x) = Eé%:—(—2y153)1/u(82 - Yz)llé,e-(a/4)x

for all x € (y3,w). These results can be summarized as follows:
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11Yo%28,) /0 . x=0
. - Bo=y
((v1+26]+82)/a) ~((Bymyp) fa)e™ (/20 L x e (0,2 1nl 2272 1]
. . o . e - _I
23 + B, 1 ' 2' - » ;'Y
1 . ‘? _ 2233(-Y]) /3(82-Y2) /ae,(a/3)¥ Lxe( 2 Tn[ ?ij] R
vix) =9 ] int'Y1(Bz Yz)zy
-3
28, +B 1B 3/y 1 1 _ v ~Y1(B5-Y,)
1 OLZ 3 _ 4 - (_.Y]BS) /Q(B.Z__Yz)./ze (00/4)X , Xe ( ; -ln[ 1 4:3 2
N ! : 3

BoYo  _(a/2)x
2 ¢

Bo=y,
, x e (0, Zn[-2-27]
. o 'Y]

-¥1(Bo=v,)2
1272712

ed o e o A aam (03X 2 . BoYpo 7.
v (x)=< T Y1) "2 (Bym,) e s xe (= 1n[_2§] 1 — in[ e

. . ‘ ,
1 Yiia v \2.-(a/8)x 1 (B
m('Y133) *(B,-v,) e | » x € (—In[ e 1)

2 s x=0"

pH(x) =<1 : x e (0, <z/a)1n[, ]1
| 0 : x e ((2/a)In2- 2] )
- 'Y_l
K , X =0
’ (2 2)2
R¥(x) =<3 ,, X (0 (1/a)1n[————-———]]
. 463
vy (Boy)?
4 : X & (/o) N[22 1 0)
- . :

3
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Case 2. -y; < B5. Then it follows from (2.4) and (2.5) that y, < z,
.and (r*(x),p*(x)) = (4,1) for x € (y3,z]]; Then v satisfies
Yyt 281 + 62 + 83 - 3v'{x) -oy(x) =0, x€ (y3,z]] ~ (2.10)
which yié]ds

Y] + 2‘811+ 32 + B

v(x) = 34 ¢ e (O3 | (2.11)

o
and

vi(x) = - —9‘—-C4e'(°‘/3)x
3

for all x ¢ (yé,z]]. Then it follows from the continuity of v that

Vi + 28, + B, + B . Yt 28 +B, v, B
1 1 273, C4e-(oc/3)y3 21 1 2,12 2 e—(OL/Z)_y3

o o o
s ) (2.12)

where Y3 is as given by (2.4). Solying (2.12) for Cy» we obtain
_ 3 .173 _ 2'/3 |
C4 = - 237;— (33) (BZ Yz) <0.
(x . _ N
Then

Yy Y28 By By g

V(X) ) 22/3d

(33)1/3(82 _ Y2)2/3e—(0L/3)x
a .

and

V00 =l (89) 208y - v e

for all x € (y3,z1].b Now the boundary condition v'(zl)”= -y, implies

‘ | 1 | 2, _ -
vi(zy) = 1 = 2;53(83) /3(82 - v,) /e (a/3)zy
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82(By - v,)?
zq = l Tn[ 372 2 2 ]
-4Y]
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(2.13)

- It immediately follows that (r*(x),p*(x)) = (4,0) on (zrw), and v then

satfsfies‘
28y + By * By - v'(x) -av(x) =0 , x 6 (Z],w)

which can be shown to equal

2By T B, + B
x) = 1 2" By

+ Coem(0/A)x X € (2q,%)
5 1

.
and

vi(x) = - —i—-CSe’(“/4)X  xe (z)) -
By the boundary condition v'(z]) = -Yp we obtain

3/ .
Y 1/, 1/,
CS-— - _OL—(-Y]B3) (32 T Yz) <0.

Then

28, + 8, + B ‘3/ | ~
v(x) = 1 ‘ 2 3 - .4 '-L* ('Y'|33)1/L*(82 _ Yz)l/ze-(a/4)x

o o

and

V'(X) = 4_1]'/_4' ('Y]Bé)l/u(sz = Yz)l/ze—(a/4?x

for all x ¢ (z],w).

Similarly we can summarize the results as follows:

(2.14)
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[ (vp+ryt28)) ' » x=0
2By Bp Yo (a/2)x B2y
. . - > x e (0,-2— In[-2—2]]
' ‘ ' o 28
3
Y +28,+8,18 . 4 _ : B, -y
1717273 3 s 2/3,-(a/3)x 2 ..r2 '2
- B Bo- e s X In[ 1,
N 25" 3) " 3(8y-1,) e (£ :
V(X) =ﬁ 1 33(82"Y2)2
Inf 3
o —4Y.I
. _ ,
2B,+B, *B 3y v 1y B2(Bs-7,)
1 72 3 _ 4 (_,Y 8 ) /I+(B -y ) /2e (G/4)X , Xe ( 1 ]n[ 3'72 2 ’w).
s 173 212 3
B a o o -lly.l 3
8y - ¥ SR By=Y
22 b2l , xe (0, Zan-2-A]
@ : 284
. ' : - B (B-v,)?
1 1/ 2[5 ~(a/3)x , 2 Bo=Yp 1 . 367,
vi(x) =< —2—/—-(83) 3(Bymvy) e » xe (—Inl 1, —Inl 1]
” : Bo(By-v,)?
1 LY 17,5 ~(a/8)x 1 3\P2 Yo
{(=y782) "*(B,-v,) "2e x € (—In[ 1,)
L‘T41 R TYR3 2772 ’ o _4Y?

% 1]

- In[
-4y

Ba(Bymv))2
i e A

- | o -4Y]
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[ 2 s, X=0
By
R*(x) =< 3, x e (0, & In[-2—2]]
o 2B,
2 Bty
[ 4, x e(——1n[ 1y =) .
o 283 '

Note that v is concave increasing and differentiable with a bounded
contihuous derivative. It is also obvious.from the characterizations that

, &v(w) =V261+62+B3 , and v'(x) = 0.()

REMARK (2.1). In Examp1e (2.1) €, is chosen sofas,to guarahtee the

continuity of v at zero; however this convention results in

8 '
v (0) = 22Q<sz=f%wmn. o (2as)

So in the Bang-Bang case v'(0) = D+L3(p(0)) condition may fail because

for any n e, lim ph(x) =1 # p(0) ~and
x40 «

- Lim rn(x) = 3 # p(0). However v'(0) 5_D+L3(p(0)) = B, must still
x+0 ' ‘ B
~ hold true.C) '

EXAMPLE (2.2). Letr =4, p =2, L, and L3 be as given in Examp]é (2.1)

and define

-kX’. N X € [Osxo]
L,(x) = ' ) ' (2.16)
kxg s Xe [xgs=)

for some k > 0 and x, eR . Let the optimal control pair (r*,p*) be

defined as in Example (2.1). Then by (1.6) v satisfies

Yyt 28+ By - 2v'(x) - kx - av(x) =0, xe (0,z] hys A ij
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which implies that

Yy * 28+ 8
v s 2 2k kg n(e/2)
- o - a2 o _
and _
vi(x) = - K . —9-‘—-C1e"(°‘/2)x
o 2

for all x € (0,2 A y5 A x,1. Recall that av(0) = v, *+y,+28, which

implies by the continuity of v at zero that

Y+ vy + 28y ot 281 * By . 2

+ C] .

o o -
Then the constant of integration C] turns out to be equal to

[-2K - a(8,-r;)1/a2, s0

y1 + 28y + B, . - B, = ¥ }
vy =T TR ko ko 2k (a/2)x 22 7 Y2 ~(a/2)x
and :
| : By = Yy

a o 2
for all x ¢ (0,z1 Ays A xa]. By the boundary conditions v'(y3) = B3

and v'(z1) = .-y we obtain

2k + u(BZ - Y2)

N

= 1 ] | | (2.17)
'3 o nl 2(a63 + k)
and :
' : 2k + a(B, - v,)
zy = & 1n[ 2" Y2’ 5, | (2.18)
o 2(—ay1 + k) T

Again possible cases should be taken into consideration.
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Case 1. =Yy > B3 Then it follows from (2.17) and (2.18) that Y3 > Zq-
If Xy > 245 then z; as given by (2.18) is the opfima] solution. Conse-
quently (r*(x),p*(x)) = (3,0) for x ¢ (25 ¥4 A'xo]. Then the optimal .

return function satisfies
281 + B, - 3v'(x) - kx ~av(x) =0, xe (21,'y3 A xo] (2.19)

which is equal to

281 + B
it M | S ~(a/3)x .
v(x) > + 2 Xt Cze , X€ (z], Y3 A.XOJ
and |
vi(x) = - L —%—-Cz é-(“/3)x~ s, X € (z], Y3 A x0] .

Then it follows from the continuity of v that

81 * By, 3k
O

2 o2 2y * (e

7~ 24

(/3 NI B ok k
- o (o4 o

2k ~(w/2)zy _ B2 T Y2 -(a/2)7
o o
" (2:20)

where 21 is as given by (2.18).  Solying (2.20), we obtain

C, = - —~—§—— (-a + k)1/3(2k +a(B, - v ))2/3 <0
2 22/3(12 11 S 2 2 :

Then it becomes that

26 + B . . ) 7 1y 0 2 _ :
V(X) = 1 = 2 + 35 - 5 X - zz/iaz(v_éow_l + k) /3(_2k + a(Bz_Yz)) /3e (0&/3‘
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and
-V'v(x) = k + —2-—}—— (;OL'Y] + k)l/3(2k + OL(BZV - YZ))Z/se"(OC/3)X
2 '3 .

¢

for x € (z1, Y3 A xo]. It then follows from the'boundary condition

v'(y3) = B3 that

1 . -
vi(yg) = By = - ‘iﬁ'* E’%Z;(‘“Yl + k) /(2K + (B, - Y2))2/3e (a/3)y,

or
(moy, + K)(2k + (B, - v,))2
y3 = == nl L kB (2.21)
22‘(a83 + k)3

If Xo > y3 as given by (2.21), then y3 is the optimal solution. If X f_y3,‘

.then v satisfies

28, + B, - kx_
v(x) = ——2 OfCBe’(O‘B)X

o

X € L}o,y3] .

Then by the continuitybof v at Xg» We obtain

, v(*) i} 28, *+ By - k&o + 3k e-(q/a)(x_xo)

o . o2

- —z§~——{-av + k)1/3(2k + (B, - v ))z/ae-(u/3)x
o l3y2 1 2 2

for x € [xo,y3]. Now}v'(ys) = By implies

v'(y3) = B3 = - ;g__e-(a/3)(y34xo) + 2"};"('aY1+k)1/3(2k+a(82-Y2))2/3e—(a/3)y:
. o - -
or .
1 (-GY1+k)1/3(2k + u(Bzfvg))z/a RPRETACE)Y
Y3 == Inl 13, (2.22)

. 2
2 /3a83
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On the other hand if Xo 2 7 which. is givén by (2.18), then v satisfies
Yy * 28] + By - 2v'(x) - kxy - av(x) =0, x e [x;,z] (2.23)

or

Yyt 231 +,32 -kx 2 :
v‘x) = — LU Cye (a/2)x. , Xeg [xo,z]] .

The continuity of v at Xo implies that

Yi + ZB] + 62 = kXO

SR + 28, +
+ C4e-(a/-2)xo = ) 176 + 2k

0
o \ a a? o

2k e-(

az

/2%, B2 ; Y2 o~(a/2)x,

'Solving (2.24) for Cyqs we obtain

_ 2k (a/2)x. 2k Bp-vpo
o € 0= Tz - o

Cq

and

Y, + 28, + B, - kx ) ) o By,
vix) = 2 17727 7o, 25 o (q/2)(x Xg) . 2k ~(a/2)x _ P27V2 ~(a

o o a

for x € [xo,z1]. Then v'(z]) = -y; implies that

. . . _ _ By = Yo
vi(zg) = -y = - _5_ o (0/2) (%) _g_ o (a/2)z1 . _g_g_"g_e (a/z)z]
or ’

1
27 = — In[

| e (a/2)
a(?z - Yz) + Zk —_2ke.a X0 ]2 | ) (2.25)

-ZaY]

which turns out to be the optimal z, in this case. Then (r*(x),p*(x)) = (3,0)

for x (21,y3], and the optimal return function v satisfies.
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ZB] + B, - 3v'(x) - kx0 -av(x) =0 , xe¢ (z],y3] | (2.26)

which in turn equals

2B, + B, - kx .
v(x) = 1 2 O_ 4+ Cse-(a/B)x sy X € (z],y3]
a
and |
v'(x) = - —%— C5e-(°‘/3)X | s, Xeg (z],y3]

Then by the continuity of v at zy we have

281 F By~ K, e (/37 2 1 P T BT Koy 2k ~(w/2) (2>
o ‘ a a? . |
B -
_ 2k ~(a/2)zy _ P2 " Y2 -(a/2)z
0('2 ' a

(2.27)

where zy is as given by (2.25). Solving (2.27) for Ces we get
‘ 1 2
Cp = - _Ié"——(‘aY ) /3(a(B - Y, *+ 2k - 2ke(q/2)xo) /3 <0
57 " g B2~ Y2

and

V(0 =~ (o) (s < ) + 2K - 2kl B0y Vg lo3
o)

- for x e‘(z],y3]. Then the boundary condition Vf(y3) = B3 implies

Vo) = By = ap(eany) a8, - vp) + 2 2ke(0/2)%5)* 3¢ (a/3)y
' ' o .

i (carvy)(a(8 - v,) + 2K - 2kel®/D¥o)2

vy = = In[ 22&38§
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In summary,.

| 2k talBy - v) 2k + alBy - vp)
(]) If xo > 2 ]n[ 2 2 ] Y then Z-I = ]n[ : z__. 2 ];
. o 2(‘GY] + k) : o 2(-uy] + k)

(mayq + K)(2k + a(B, - v,))2
(i) Then if Xy > ] n[ 1 2~ Y2 ]
K o : .22(683 + k)s

. (-ays + k) (2K + a(B, - v.))2
Yq = 1 In[ ld ( a(BZ Yo )];
S o 22(0033 + k)3

('QY] + k)(2k + a(BZ - Yz))z
. 22(0'83 + k)3

o 1
(i) If» Xo 2735 1h[

L Gy #1052 v s, - )7 - 2 el

y3 = 1n[ ]%
o - 22/3a8 . |
3
- 2k + d(B, - Y,)
(2) If Xg < 2 In[. 2 2 ], then
. ) 2(—ay] + k)
S alBy - vg) + 2k - 2kel®/2)%
zy = —In[ : 12 and
o
(o) (alBy - vp) + 2k - 2kel®/2)%
y3 = Inf 1.
o

2.303
2°0 83 3

Case 2. -Yy < B3- Then it follows from (2.17) and (2.18) that y3¥5 zq-
The same argument presented above can be repeated here to obtain symmetrica]

results.
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REMARK (2.2). ,It'follows from the examples given above that when there are

_no Jjump fnputs to tHe store and no jump outputs from the store the optimal
return function v is obtained by recursively 501ving an ordinary first
order differential equation. However in the presence of:stochastic output
and input processes it becomes necessary to solve a functional differential

equation which complicates the proéedure greatly, so that the computations

involved become cumbeksome.()
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X. SUMMARY OF RESULTS

In this dissertation the optimal control problem of the generalized
storage model subject to both randdm Jump fnputs and 6utputs is consi- |
defed where the content Tevel df the store can be controlled through =
probér choices of input .and output rates. Under mild conditions the
existence and uniquenéss of optimal input and>output control” functions
which maximize the expected ihfinité time discounted earnings and the
associated optimal return function is proven for the deterministic prob-
lem. The solution procedure is tﬁen-.extended to inciude the stochastic
processes, but proven to be inefficiéntrin handling with the stochastic
output process, a1thoﬁgh it'cén be easily applied to the stochastic mddels
where there exists only a random input process. Thé results abtained
both in the deterministic case and the stochastic case with a random in-
put process are symmetrical such that as functions of the content level
of the store the optimal output rate is showh to be increasing while the
optimal input rate ié decreasing. The optimal'return_function is shown
tbvbe~concave fncreasing’unti] a certain level fs reached and decreasihg
from then on. | |

Once the generalized storage process is introduced by (1.1), a
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brief review of studies carried but‘éo far on storage theory is provided
in Chapter II, and possible app]ications of the generalized storage
mode} are discussed in Chapter III. Our emphasis in Chapter IV is on
anaiyzing_the uncontrolied stofége model:.. We first specify the proper-
ties of the input and output processes. as twofindépghdentxcompound
Poisson'processes and'then,gharactérize the set.of admissible controls
so as to meet the model requirements and to guarantee the existence
of a unique solution..to the generalized storage model. Next the stor-
age process is constructed and: shown to‘bé'a'Hunt process for any given
admissib1e control pair. Its:generator}together with its”domain and'
range is specified to enable us to employ Markov decision theory in the
optimal control problem. |

The_basic.features of the optimal cohtro]‘problem are introduced
4n Chapter V where the cost and reward structure is specified by the
.assumptions imposed on them.  Then a Markov decision theoretic approach
is employed fo express the'sufficientlcondition:of global 6ptima11ty iﬁ
terms of a functional differential équation. In'a similar manner}the
sufficient condition of local optimality, optimality with respect to a
subset of admissible controls, is derived. . The first step'of our pro-
cedure to analyze the optimal control problem is to study thé corres—
ponding deterministic'prob1em'in'Chapter VI. By showing‘the,existence
“and uniqueness of‘avreturn:fuhction»which safisfies the sufficient con-
dition of‘ioca1 optimality, we thus create a sequence-of 1oca11y‘optima1
return functions. ‘Later,L] is assumed.tb be decreasing in order to
guarantee that the limit of this 1oca11y optimal»Feturn functions is

»fhe global optimal return function. Moreover the Tocal and g]obé] optimal
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control pairs are characterized as fﬁnctions of the marginal utility.
The results and- the procedure of -the deterministic problem are
extended in Chapter VII so as to include the stochastic input process
involved in the original generalized storage model. Again the exis-
‘tence and uniqueness of Tocal and global optimal control pairs are
proven under.the condition that.L1 is decreasing. In Chapter VIII some
'naturaT generalizations of the modé] characteristics are presented;
and some solution proceddres are briefly discussed. Finally in Chapter
IX, the.theory is eXtended'for the case when both L2 and L3 have piece-
wise linear structures, and the optimal contr01 pair is shown to be
6f the BangeBéng form whose uniqueness may in general fail. The procé-
dure out]inéd is illustrated with some example problems of the deter-

ministic case.
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