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f"lODELS FOR A MULTI-ITEM PRODUCTION SYSTEM 

A B S T RAe T 

To minimize work-in-process, or equivalently mean flow 

time of capital has been an emphatic objective in production. 

It deserves still greater attention in today's Turkish 

Economy governed by monetaristic austerity measures. 

This study proposes models for two problems of a multi­

item production system. 

One of them is an algorithm organizing activities at 

three levels of the production process. The second one is an 

implicit enumeration algorit~m rendering selection of orders 

for simultaneous release when the current inventory is 

incapable of sati~ying ali of them. Both are designed so as 

to serve the aim of minimizing mean flow time of capital bound 

to the process. 

These models can be implemented separately or in 

combination depending on the inventory/sales policy of the 

application. 
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COKORONLO BiR ORETiM SiSTEMi iCiN MODELLER 

tJ Z E T 

SUrecteki is miktarlnln ya dakapitalin sUrecte tutul­

du~u ortalama .sUrenin enazlanmasl Uretimde Uzerinde Hnemle 

durulan bir amac olagelmistir. Monetarist istikrar Hnlemleri 

ile yHnetilen gUnUmUz TUrk Ekonomisinde bu amac daha da 

fazla Hnem kazanmaktadlr. 

Bu callsma cokUrUnlU bir Uretim sisteminin iki problemi 

icin modeller Hnermektedir. 

Bunlardan biri Uretim sUrecinin Uc dUzeyindeki etkinlik­

leri dUzenleyen bir algoritmadlr. ikincisi ise mevcut envante­

rin tUm siparisleri karSllamaya yeterli olmadlgl durumlarda 

hangilerinin anlnda karSllanacaglna karar veren bir HrtUk 

birerleme (implicit enumeration) algoritmasldlf. Her iki model 

de kapitalin sUrecte tutuldugu ortalama sUreyi enazlama amaClna 

hizmet edecek sekilde tasarlanmlstlr. 

Bu modeller envanter/satlS politikaslna bagll ·olarak 
/--- / 

tek baSlna veya birlikte uygulanibilirler. 
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I. INTRODUCTION 

This thesis involves study on two main topics which 

are interrelated in the context of a real life problem. 

One of them is a scheduling problem of a special nature. 

Encountered in production of plastic armatures, a process 

involving three levels of scheduling decisions, it can be 

defined as a multi-level scheduling problem. The so called 

lowest level decisions determine the schedule of molds on 

injection molding machines. Each mold can be mounted on 

certain machines. ,Plastic components of armatures are the 

outputs of the molding process which feed the assembly shop 

for the assembly of end~prodQcts. The mid-level deciSion is 

scheduling the assembly of different types of armatures. The 

third and the highest level is the sequencing of order 

releases (or sales) which are made up of selection of end­

products at various quantities. 

Coming from the wholesalers of the firm's products, the 

orders, in general, don't have strict d~e dat~s. However, the 

earlier an order is dispatched, the earlier is the receipt o~ 

its payment. Thus, it is important for the firm to make 
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ready the end-product requirements of orders as early as 

possible. In other words, it is desirable to minimize the 

delay of revenue receipts, or equivalently the mean flow 

time of capital in process. 

The company holds stocks of armatures as well as the 

constituent parts. Thus, some of the periodic orders can be 

met immediately before starting up with production. The 

problem of selecting among all orders those to be answered 

immediately is the concern of the second part of the thesis. 

The above rationale is valid in this problem, too. The 

aim is to minimize the average delay of potential revenues. 

Thus, the total monetary worth of orders selected for instant 

satisfaction should be maximized subject to the constraint of 

current inventor) level s. 

Austerity measures being practic~d by the government 

force the business enterprises to work with extensive capital. 

Decision making in production, thus, have to provide ways of 

speeding up the flow of capital. 

The theme of this study have thus been inspired by the 

facts of the Turkish Economy in the 1980's. 

The second chapter gives an account of the procedure 
/--" 

developed for the first problem. A polynomial time algorithm, 

namedFCR (Fastest Capital Release), minimizing mean-flow 

time of capital for a IIsingle machine ll scheduling problem is 

i n t rod u c e d . I t pro v ide s the f ram e w 0 r k for _ the -0 ve r a 11 3 - 1 eve 1 

scheduling algorithm which covers the rest of the chapter. 
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Chapter Three is on the order selection problem. A 0/1 

programming formulation (recognized as a 0/1 multidimensional 

knapsack problem) is constructed, and an implicit enumeration 

algorithm exploiting the nature of the problem is developed. 

Eleven decision. rules are proposed for the selection of 

the partitioning variable. Finally, performances of these rules 

are compared with varying; (a) number of orders, (b) number of 

products, and (c) levels of inventory. To note, a rule 

involving minimum of computational burden indisputably comes 

out to be the most effective one. 

The last chapter concludes the thesis by suggesting 

ways the proposed methods can be used separately or in 

combination under various operating conditions. 



II. A DYNAMIC HIERARCHICAL 

APPROACH TO A MULTI-LEVEL 

SCHEDULING PROBLEM 

2.1. The Problem 

4 

A company well known as a producer of plastic 

construction materials, a year ago began producing plastic 

armatures. Nine different types, each with four color options 

were made available. Of the parts making up the end-products, 

plastic ones are manufactured by the firm, metal and gasket 

parts are supplied from outside vendors. 

Plastic components are produced by injection molding of 

granulated thermoplasti~s. 

44 different molds can be mounted on one, two, or three 

of four available molding machines. About two thirds of plastic 
/--, 

components are common to two or more types of armatures. Again, 

about two thirds are colored components. 

The process is summarized in Figure 2.1.1. 

Production engineers had difficulty in synchronizing 

molding and assembly processes mainly due to 
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(A) intricate bills of mat~rials for end-products, and 

(8) mold/machine assignment restrictions. 

Lack of systematic programming for production was causing 

long waiting times of finished plastic components before the 

assembly process since assembly of an end-product could not 

start before all of its components were ready. A similar 

trouble was felt at the sales end. Sales were made to 

retailers, and thus, orders demanded various quantities of 

almost all product types. This time, finished end-products 

had to wait long prior to sale for the missing types to be 

assembled. Customers being the retailers of the firm's 

products, orders didn't have strict due dates, but the earlier: 

an order was sent, the earlier was the receipt of its payment. 

Through demand for products was being answered promptly, 

it was achieved at the expense of holding a large working 

capital .in the form of finished products and components. 

It was expected, after these observations, that a 

systematic mold/machine scheduling in connection with the 

assembly scheduling of armature types would"reduce the in­

between waiting times of plastic components. Furthermore, 

before-sales waiting times of finished products coul.d be 

reduced by taking into "account orders' constituent product 
,-

demands whi1e fixing the assembly schedule. Thus, on the 

overall, flow of capital bound to the process could be 

hastened significantly. 

As could have been felt already, this study emphasizes 

the rate at which money is used to gain returns. In view of 

high interest rates and the rising competetiveness in today's 
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Turkish Economy, this is a critical measure of effectiveness 

for a business enterprise. The longer a quantity of money 

sojourns in a process, the greater will be its cost. Therefore 

it must be an eligible approach for any entrepreneurial 

activity to minimize the mean duration a unit of capital is 

in the process. 

The following section introduces an n jobs/single machine 

scheduling rule which minimizes the mean flow time of capital 

contained in these jobs. This IIconstructive algorithmll will be 

the basis of the general algorithm for the solution of the 

above posed problem. 

2.2 A Constructive Algorithm, FCR 

Fastest Capital Release (or FCR) Algorithm is a 

constructive algorithm; one, as defined by French (lJ, 

II .... which builds up an optimal solution from the data of 

the problem by following a simple set of rules which exactly 

determine the processing order.1I 

Let us define the con~idered problem: 

There are n type~ ofpfoducts to be processed on a 

single machine. The following data are available; 

~-

i 1 , ... ,n number of to-be-processed products x. = 
. . 

1 of type i , 

c . i = 1 , ... , n amount of capital contained in one 
1 unit of product of type i , 

p . i = 1 , ... ,n processing time required by one , 
1 unit of product of type i. 
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The problem is to determine the sequence of jobs 

which.reriders the mean flow time of capital bound to process 

be minimum. 

The rule for the solution of this problem is stated 

below. 

THEOREM: (The Fastest Capital Release (FCR) rule) 

For the problem defined above, mean flow time of 

capital is minimized by sequencing the lumped-jobs of types 

i = l, ... ,n such that 

c i ( 1 ) 

Pi ( 1 ) 

c i (n ) 

Pi ( n ) 

where i(k) denotes the job that is processed kth. 

Proof. Let 5 and 5· be two schedules differing only in 

the order of two lumped-jobs 1 and 2 with distinct (c/p) 

ratios (see Fig.2.2.la). The cumulative released capital 

versus time profiles will differ only for the time interval 

during which jobs 1 and 2 are processed (see Fig. 2.2.lb). 

The profile for schedule 5 follows the dashed line 

whereas that for 5· follows the solid line from A to E. 

The area above the cumulative released capital versus 

time profile is held capital-time which is a measure of 

liability for the schedule. The mean fl~w ti~e of capital for 

a certain schedule is the ratio of total held capital-time 

it incurs to total c·apital it involves. 
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5 1 2, 

-La. tb tel 

5' 2-

t.a tc te! 
(a) 

(b) 

fig~re 2.2.1 Comparison of Sand S' 

Since total capital is a constant~ mean flow time is 

proportional to the area above the profile. Returning to 

Fig. 2.2.1, performance comparison for schedules Sand S' 

can thus be made solely upon comparison of areas ABCFGHA 

and DEFGHCD. If the first are is larger than the second, 

schedule S is superior to schedule S', and vice versa. 

Let us compare the two areas: 

S(ABCFGHA) (X I CI )(X 2 P2) CI P2 (cl/pl) 

S(DEFGHCD) - ( x 2 c;)( x I PI) = = (c 2/p2) C2 PI 

CI c 2 
Thus, if > -- then S is superior to S • , and 

PI P2 

if -- > 
PI 

then S' is superior to S. 
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Therefore it can be concludeq that while considering 

two neighbor jobs, ordering them in decreasing (c/p) decreases 

the mean flow time of capital for the overall process. If the 

ratios are equal, their ordering is ineffective in this 

concern. 

This rule can be induced for the overall schedule, simply 

by figuring out that two-by-two comparisons of (c/p) ratios of 

n jobs should eventually lead to the optimal schedule.[] 

Two-by-two comparisons of n entities require at most 

n! 
(n-2)!2! = 

n(n-l) 
2 = 

1 
2 

1 
2 

n 

calculations. Thus,number of computations to construct the 

optimal schedule grows polynomially with the size of the 

problem. Thus, as all other constructive algorithms, FCR 

algorithm too, belongs to P class of time complexity. 

There is a remarkable semblance between the FCR 

algorithm and the Shortest Processing Time (or SPT) algorithm. 

SPT, as defined in Conway et al. [2] minimizes the mean flow 

time of jobs in an n jobs/single machine schedule by 

sequencing the jobs in non-increasing processing times. FCR, 

differing from SPT, decomvoses various jobs into identical 

value units and minimizes their mean flow time. It is apparent 

that FCR, with respect to SPT, provides a more flexible method 

to minimize the flow rate of material (or work)-in-process. 
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Above, IIrecovered working capitalll was considered as a 

~easure of returns for the production process. An alternative 

which is widely respected in OR literature is IIgained profit". 

May profit alone be a measure of returns for capital 

used in a process? In consideration of time value of money, 

it may not turn out so. As much as the profit gained from it, 

the size of the working capital becomes important in this 

respect. An eligible measure might be the ratio of profit to 

the capital bringing that profit. Still another one may be the 

revenue; capital plus profit, to break ties when profit 

ratios of jobs are not significantly different. The measure 

adopted in the argument above, namely capital-in-process, also 

assumes the case when the relative profit is invariant among 

jobs. 

Two more points about Theorem deserve mentioning. 

Above, identical jobs of a certain type were considered as 

a whole and it was named a IIlumped-job". Consequently, all 

jobs comprising a lumped-job were assumed incomplete before 

time enough to cover their total processing times elapses. 

In general, this may not be the case. Then, if all jobs are 

treated individually, non-decreasing (c/p) sequence would 

cluster like-type jobs at the optimal schedule. Thus, our 

simplifying assumption was made without loss of ge~erality. 

Discussion above also make~ clear that no improvement may be 

gained in the optimal schedule by allowing pre-emption. 

The last word is for the set-up times. In practice, 

set-up times required prior to processing a batch of jobs 

may be significant. This case may be accomodated by FCR 



algorithm via replacing (c./p.) by 
1 1 

c.: 
1 

p. + (s./X.) 
111 

where s. is the sequence-independent set-up time per batch 
1 

of type i. With this modification, lumped-jobs schedule is 

still guaranteed to be optimal. Here, it is certain that 

pre-emption deteriorates the optimal solution. 

2.3 A Heuristic Algorithm for the Multi-level Scheduling 

Problem 

This section presents an algorithm proposed for the 

solution of the special scheduling problem of section l.l. 

2.3.1 The Reasons for the Hierarchical Approach 

As discussed above, this problem is characterized by 

its multi-level structure. An intuitively appealing description 

for the anatomy of the problem is given below. 

LEVEL 1 : 

Scheduling n non-identical molds on m non-identical 

machines. 

LEVEL 2 : 

Scheduling p assembly jobs in series in an assembly 

shop. Outputs of the molds at level 1 impose not-earlier­

than restraints on assembly start times. 
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LEVEL 3 : 

Sequencing q order releases. Assembly completion times 

of end-products at level 2 impose not-earlier-than 

restr.aints on release times. 

OBJECTIVE : 

Synchronizing the activities at 3 levels so as to 

minimize the mean sojourn time of capital from the time 

injection molding starts to the moment it is released to 

meet an order. 

Figure 2.3.1 depicts the 3-level structure of the 

problem. 

The multi-echelon structure suggests a hierarchical 

approach. More explicitly, a proper way to deal with the 

problem is decomposing it into its levels and treating each 

sub-problem individually without losing sight of (a) the 

possible interactions between levels, and (b) the overall 

objective. 

Such a preference is totally heuristic and thus liable 

ta produce sub~optimal ~olutions. Several authors, t6 mention, 

MUller Merbach (3) and Silver et ale [4] justify decomposition 

methods mainly due to their capacity for conforming to the 

structure of the problem environment. 

The alternative is constructing a single model and 

determining all scheduling decisions in one pass. 

Besides causing loss of view of the functional 

interrelationships between activities, such an approach will 
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prove unpractical by requiring a hug_e computational capacity 

due to combinatorial nature of the problem. 

2.3.2 Assumptions 

are; 

The underlying assumptions far the proposed algorithm 

( i ) no pre-emption is allowed for molding jobs; 

( i i ) no pre-emption is allowed for assembly jobs; 

( iii) an assembly job can start only after all molding 

jobs associated with its constituent parts are 

complete; 

(iv) an order can be released after the last assembly job 

it is waiting for completion produces enough to 

satisfy its demand for the associated end-product; 

(v) defective injection output is detected during 

production, and injection standard times are inflated 

to include the average delays that occur thereby; 

(vi) molding job for a certain plastic component is made 

up of lots of different colors. No set-up time is 

required for color shifts; 

(vii) assembly job for a certain armature is made up of 

lots of different colors. No set-up time ·is required 

for color shifts. 

/ 

The first assumption is justified by the damage risk 

of molds which have no spares. Molding jobs have given 

economical lot sizes arising from the trade-off between the 

between the expected damage cost and the.holdjng cost for 

extra production (see Appendix). 
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One reason behind the second ftssumption was discussed 

at section 2.2; pre-emption incurs extra set-up time. Another 

is due to need for simplifying the problem. 

The third assumption may seem arbitrary in view of 

the fact that an assembly job may start at the moment the 

last molding jobs it waits for,produce just as much as it 

will use. The assumption, however serves for simplification 

of both the algorithm and the flow of finished components. 

An 0 the r poi n tis . t hat add i t ion a 1 wait i n g c a use d bee 0 m e s 

fairly short due to the nature of mold scheduling algorithm 

which assigns jobs on machines in decreasing order of 

processing times. 

The fifth assumption reflects a fact of the problem 

erivi:ronment. Quality control is performed by the operat"prs 

and defective output rate is fairly low due to. precise 

technology. 

The sixth assumption is made considering that shift 

from one color to another does not require mold adjustment 

but only a change of the raw-material container, and that 

mixed-color scrap output takes negligible time. 

The last assumption neglects the time spent during 

preparation of colored co~ponents prior to shift to another 

color for the same type of armature. 

An assumption not appearing in the above list have been 

accepted while defining the problem; assembly jobs would be 

precessed in series. It was imposed by the restricted space 

available for assemQly. Besides it became very useful for the 

simplification of the problem. 
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2.3.3 The Algorithm 

The algorithm rendering a low mean flow time of capital 

for the 3-level scheduling problem is depicted in Figure 

2.3.2. 

2.3.3.1 Initialization 

The First Step involves preliminary calculations. 

Given, order descriptions (i.e. selections among available 

type and color of armatures), total demand for end-products 

and consequently total requirements for plastic components 

are determined. Those components which have insufficient 

stocks are accepted as molding jobs and their production 

quantities are set to the greater of the economical lot 
1 

size and the amount required for assembly. 

The rest of the algorithm can be considered as two 

subsequent phases. These two phases sugg~st two different 

hierarchical frameworks. 

2.3.3.2 Phase One 

First, unschedul~d assembly jobs are considered one 

by one, and for each, a mold/machine schedule providing 

earliest start for assembly is constructed. Among these 

candidate schedules, the one which enables an assembly job 

start with minimum delay after the last scheduled assembly 

job, is picked and adopted. The associated assembly job is 

1 Economical lot size is by definition a multipleof average 
periodic demand; thus it is an exceptional case when the 
immediate requirement for a period exceeds it (See Appendix) 
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Figure 2.3.2 Flowchart for the 3-level Scheduling Algorithm 
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also scheduled in the assembly shop. If a tie occurs at this 

step, it is broken in favor of the- candidate schedule with 

the greatest c/p assembly job. 

This .procedure aims at precluding idle time intervals 

at the assembly level. It serves its cause through step-wise 

minimization of inter-assembly durations. The final objective 

of minimizing mean flow time of capital is indirectly attended 

since any idle delay at the assembly level retards all waiting 

assembly jobs, and delayed assembly of end-products translate 

release times of orders. Another option for mold/machine and 

assembly scheduling could be to respect c/p criterion alone. 

But computational experience reveales that uncontrolled idle 

times at the assembly shop may bring about much more loss 

than the advantage gained by virtue of FeR algorithm (see 

Section 2.4; results with algorithm A2). 

Before proceeding further with PHASE ONE, let us 

investigate the mold/machine scheduling algorithm. 

Through seemingly a minor part of the overall algorithm, 

the problem of scheduling molds on molding machines is quite 

critical in view of the recent discussion about the 

consequences of delays "at assembly level. This problem is 

defined as follows. 

x molding jobs are to be done on m machines: Each mold 

j is distinct, and it can only be mounted on k. of non-iden­
J 

tical machines. There are no precedence relations among 

molding jobs. Ready times of machines are in general different. 
-

The jobs are available at any time. The aim is to minimize 

the maximum job completion time among machines, so that the 
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associated assembly job can start as early as possible (see 

Assumption iii above). 

IS. similar problem known as II mu lti-processor scheduling 

problem ll has been subject to many articles in the literature. 

It is defined in Nichols et al. [5] as, 11 ••• scheduling n 

independent, single operation jobs, all availabl~ at time 

zero, on m identical processors ... each job must be 

processed by exactly one of these processors, and it is 

desired to minimize makespan.1I 

The assumption of lIidentical processors ll is the main 

deviation between the two models. Besides, the problem dealt 

in literature implicitly assumes that all processors are 

ready at the same time. 

Still, the algorithm developed in our study is inspired 

from the IIlongest processing time ll algorithm proposed by 

Greenberg [6] for that problem. 

Figure 2.3.3 gives the flowchart for the algorithm 

developed to tackle the current problem. Ties that may 

occur either during job selection or during machine selection 

can be broken arbitrarily. 

The first stage of the 3-level scheduling algorithm, 

thus concentrates on the lowest and middle levels, namely 

mold/machine and assembly schedules. However, decisions are 

made with due consideration about their consequences to the 

overall objective. It can be said that PHASE ONE presents a 

hierarchical framework in which two lower. levels interact 

during fixing their respective scheduling decisions while the 

highest level decisions are let to float. 
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PHASE ONE closes as soon as there exists sufficient 

evidence that the assembly shop will- never be idle then on, 

no matter what the order among the remaining assembly jobs 

will be. That evidence is having all candidate mold/machine 

schedules letting their respective assembly jobs start 

simultaneously as the former job ends. 

2.3.3.3 Phase Two 

If there are assembly jobs which remain unscheduled as 

PHASE ONE ends, the algorithm enters a new ·stage where a new 

hierarchical framework is valid. 

In PHASE TWO the focus of attention is on the two 

upper levels, namely the assembly schedule and the order 

release schedule. 

The main concern is releasing capital as early as 

possible. Thus, it is an appropriate policy to assign 

priority to assembly jobs which, when completed, let 

completion of partially prepared orders. If there are no 

orders. waiting for. a single assembly job, FeR algorithm is 

applied to select among unscheduled assembly jabs the one 
. . . 

to be scheduled next. If there exists more than one such 

order, ties between the awaited assembly jobs are again 

broken by the FeR rule. When two or more IIsingle item ll 

o r d e r s wa i t for the sam e last s c h e d u 1 e d ass em b 1 y job, the i r 

releases need to be sequenced. They are released with respect 

to 

(total value) 
(assembly time required by the demand for the assembly job) 
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ratio. The order with the higher ratio is released earlier. 

It is clear that the FeR principle is~ directly applied in this 

sequencing decision. 

The algorithm terminates as soon as all assembly jobs 

are scheduled, which coincides with the moment all orders are 

released. 

Similar to the case in PHASE ONE, the second phase of 

the algorithm involves decision interactions between two levels 

of the proble~. But there is a shift of focus between the two 

stages. This feature of the algorithm qualifies it as 

incorporating a IIdynamic hierarchical" structure. 

As a matter of fact, the assembly schedule is always 

under consideration. In both phases, its decisions are deter­

mined in close contact, first with the mold/machine schedule, 

and later with the order release schedule. 

The decision rule for the isolated assembly schedule 

could be provided by the constructive algorithm FeR. But 

constructing the remaining two schedules under dominion of 

the FeR sequenc~ at the assembly level would, in general, 

produce poor results in terms 6f the overall objective of 

minimizing mean flow time-of capital (See Section 2.4;-results 

with algorithm A2). However, FeR rule is put into action at 

a number of steps, especially with greater weight towards the 

end of the algorithm. 

An alternative to the suggested h.ierarchical structure 

could be to shift the attention from assembly level to order 

level and to fix all scheduling decisions through step-wise 

minimization of inter-release times of orders. In ge~eral ~ 
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this algorithm will not perform better due to loose control 

over inter-assembly-job delays and total negligence of c/p 

values during assembly scheduling. It will fail more as the 

molding rate goes ahead of assembly rate, and as the orders 

are more selective. 

2.4 Tests on the Algorithm 

The 3-level scheduling algorithm described above can 

be questioned from two main aspects. 

The first question may arise for the design decisions. 

Couldn't there be a better performing hierarchical structure? 

Is the mQld/machine scheduling decision rule the best fit 

for the case? 

It is also questionable whether the established structure 

of the algorithm is justifiable in terms of its performance 

under various circumstances. With what sort of data the 

algorithm perform more succesfully? 

Below is the test performed to provide hints to these 

questions. 

2.4.1 Factors 

Five factors are investigated in this study; 

A) Four Alternative Algorithms; 

Al The adopted 2-phase algorithm, 

A2 An algorithm in which other two level scheduling 

decisions are imposed by the FCR (i.e. non-increasing 

c / p) 0 r de r i n g 0 f ass em b 1 Y job s -a t t h-e mid d 1 e 1 eve 1 , 
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C) 
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A3 The adopted 2-phase algorithm without FCR (i.e. c/p) 

preferences among assembly jobs. 

A4 An algorithm in which other two level scheduling 

decisions are imposed by the arbitrary ordering of 

assembly jobs at the middle level. 

Three Mold/Machine Scheduling Rules: 

Bl The adopted, IIlongest processing time firstll rule, 

B2 IIShortest processing time firstll ru 1 e , 

B3 Random rule. 

Three sets of Orders: 

Cl Four orders all of which demand from all items, 

C2 Four orders two of which demand from all items, 

C3 Four orders none of which demand from all items. 

(Item-wise sums of demands of all three sets are 

equivalent.) 

0) Two sets of Assembly Processing Times: 

01 Short, 

02 Long (3/2 x Short). 

E) Two sets of Ready Times for the Assembly Shop .and for 

the Molding Machines: 

El All the same, 

E2 All different. 

BOGAI1C\ UNiVERSITE~i KU1UPHANESi. 
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2.4.2 Tests and Results 

Following are the descriptions and the results of the 

performed tests. The result figures are the mean flow times 

of capital for the associated runs. 

1) B = B1 , 0 = 01 , E = El 

Cl C2 C3 

A1 435.4 407.9 393.8 

A2 478.5 472.0 466.5 

A3 435.4 421 .2 413.0 

A4 471 .3 471 . 1 470.1 

2) B = B1 , 0 = 02 , E = E1 

C1 C2 C3 

A1 584.4 543.4 522.4 

A2 643.5 633.7 625.6 

A3 I 584.4 563.2 551 .0 

A4 636.3 . 636.0 634.6 

3 ) B - 83 , 0 = 01 , E = E1 -
/- '-

Cl C2 C3 

A1 453.4 425.9 411 .8 

A2 482.7 476.2 470.7 

A3 453.4 408.8 384.1 

A4 482.7 482.5 481 .5 

·1 



4) 

5 ) 

6 ) 

B = B 3 , 0 -_ 02 E - E 1 , -

Al 

A2 

A3 

A4 

A = Al , C 

Bl 

B2 

B3 

A = Al , C 

Bl 

B2 

B3 

Cl C2 

602.4 561 .4 

647.7 637.9 

602.4 535.8 

647.7 647.4 

= C2 , o = 01 

El E2 

~-----.-~ 
407.9 441.5, 

424.8 458.2 I 
1 I 

~2~_: __ ~~~ 
= C2 , 0 = 02 

El E2 
~- .-----_.- ---'-

,543.4 579.2 

560.3 

I L:.61 .
4 

593.7 

597.9 

2.4.3 Observations 
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C3 

540.4 

629.8 

498.9 

646.0 

Upon investigating the above tabulations, the following 

observations can be made. 
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1. With respect to tables 1,2,3 and 4, the adopted 3-level 

scheduling algorithm Al performed most successfully when run 

with the adopted mold/machine scheduling rule, A3 performed 

better than Al when run with the random rule. 

2. With the adopted mold/machine scheduling algorithm, 

employing FCR criterion has a more pronounced effect when the 

algorithm is applied for a non-homogeneous set of orders (Tables 

1 and 2, comparison of Al and A3 entries), and/or with longer 

assembly processing times (Comparison of Tables 1 and 2 for the 

respective differences between Al and A3 entries). 

3. With the adopted 3-level scheduling algorithm, the 

Illongest processing time first" rule performed most successfully 

among the three alternative mold/machine scheduling rules when 

run with two different sets of ready times and with two 

different sets of assembly processing times (Tables 5 and 6). 

Upon comparison of tables 1 and 3, and, 2 and 4, in general 

it performed better than the random rule with the exception 

of entries A3-C2 and A3-C3 in tables 3 and 4. 

4. No significant variation of performance superiority is 

observed among mold/machine scheduling algorithms with respect 

to variations in ready times and length of assembly processing 

times, when run within the adopted 3-level scheduling algorithm 

(tables 5 and 6). 

2.5 Implementation of the Algorithm 

The 3-level scheduling described in the previous section 

is coded in FORTRAN IV. The computer program is prepared in 

two versions; one to be run in CDC system at B~gazici University 
1 

and one to be used in IBM PC/XT micro-computer of the company. 

1 Data files and output listings of the programs mentioned in this thesis 
can be referred at the IE Department archives. 
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Besides schedules determined by the algorithm, the 

program is prepared also to provide supplementary information 

on 

(A) the requirements for metal and gasket components, 

(B) the color distribution of plastic components and 

armature production, 

(C) the initial and final levels of the stocks, the 

required and produced quantities of the plastic 

components. 

The firm uses the program to facilitate periodic 

production scheduling. It is also considered as a tool to 

investigate results of various scenarios such as grouping 

orders and scheduling once for each group. 

2.6 Possible Extentions 

This study can be interpreted as a rudimentary 

treatment of an interesting production scheduling problem. 

Though it involves three distinct stages of a process, its 

conduct is not a comprehensive one.in view of unmentioned 

functions peripheral to production. 

In a broad outlook, there are three main organizational 

units which interact claselywith production. They ~re; 

material requirements planning, inventory planning and 

distribution planning. 

The approach in this/~tudy has been to focus on 

production, and develop a modular model that can fit and 

perform successfully in the overall production planning 

activity. 
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As an extention to what has been done, the principles 

proposed for multi-level scheduling can be applied to a 

similar system in a manner incorporating the interactions 

mentioned above. Such an implementation could invol ve a 

system-dynamical framework, introducing feedback loops, and 

controls on operational variables. For instance, results of 

scheduling decisions may suggest modifications oh"lot sizes 

or on parameters of the inventory policy. Similarly, 

resulting requirements for externally supplied components 

could affect material requirements planning decisions more 

intimately. More effective distribution of products could be 

achieved through considering the regional origins of orders 

at the order release scheduling level. 



III. AN IMPLICIT ENUMERATION 

ALGORITHM FOR THE ORDER 

SELECTION PROBLEM 

3.1 The Problem 

31 

This part of the thesis deals with the very common 

problem of selecting among all orders those to be answered 

simultaneously given that on-hand inventory is short of 

meeting all of them. 

This problem too, was faced by the firm discussed in 

chapter one. It will be recalled that orders were being 

received from wholesaler~ on a periodic basis, and t~ey 

were made up of demands for up to nine types of products. 

With the current policy, the inventory is sufficient to 

sati sfy some of these order~s momentarily. The remaining, 

together with the stock-replenishment order, are met as 

production proceeds. 

The problem is relevant to the concept of capital flow 

rate analyzed in chapter one. The selection should -be made 



32 

in a manner minimizing mean sojourn time of capital bound 

to finished products. Thus the tota} capital contained in 

the combination of orders selected for simultaneous release 

should be maximum. Of course, subject to the constraints 

imposed by available stocks, and that no order can be 

satisfied partially. It is apparent that what we are up to 

is a problem of combinatorial nature. 

Let us formulate; 

subject 

where 

m n 
rna x L L c. 0.. x. 

to 

·1· 1 J 1J 1 1= J= 

m 
L o .. x. ~ I . 

i = 1 
1J 1 J 

j = l, ... ,n 

x. = 1 or 
1 

0 i = l, ... ,m 

c. : capital contained in product j, 
J 

0 .. : demand of order i for product j, 
1 J 

x. 
1 

1 if order i is selected, a otherwise, 

I. : available stock of product j. 
J 

This formulation reveals that our problem is a typical 

0/1 multidimensional kn~psack problem. 

Literature on this special problem of integer programming 

contains articles proposing heuristic methods to obtain 

a p pro xi mat e sol uti 0 n s (e. g~ Lou lou eta 1. [7J). 

Our approach will be to develop an efficient implicit 

enumeration algorithm exploiting the nature of the problem 

to find the exact optimal solution. Thi~ appr~ach is 

justified in view of the moderately sized problems_which will 

be attacked. 
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3.2 An Implicit Enumeration Algorithm 

As defined by Garfinkel et a1. [8], IIImp1icit 

enumeration is the name of a class of branch and bound 

algorithms designed specifically for the case in which x is 

required to be a binary vector.1I 

In our case, the decision variable vector xis binary, 

in that its elements can either be 0 or 1. 

Before proceeding to describe the algorithm devised for 

the order selection problem, let us define the nomenclature. 

c . 
1 

o 

Fk 
FATH(k) 

!k 
Ij 

k 
LB 

LOW(k) 

m 

N 

NV 

O. 
-1 

o .. 
, J 

o P TSOL 

OPTV 

p 

capital content of order i, 

set of free variables dropping to 0 due to 

reduced inventory, 

set of free variables at vertex k, 

TRUE if vertex k is fathomed, FALSE otherwise, 

remaining inventory vector at vertex k, 

inventory for item j remaining at vertex k, 

global lower bound on the objective function 

value, 

low~r bound on the tree emanating from vertex k, 

number of. cons i dered orders, 

maximum number of vertices, 

number of created vertices, 

demand vecto~\" of order i, 

demand of order i for item j, 

set of selected orders for the optimal solution~ 

opt i mal v e r.t ex, 

the ~artitioning variab1e~· 



PARV(k) 

PV(k) 

RMV 

SO 
k 

UP(k) 

V 

VV 
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the partitioning variable chosen at vertex k, 

the vertex parent ta vertex k, 

the rightmost vertex, 

set of variables of which values are a at 

vertex k, 

set of variables of which values are 1 at 

vertex k, 

upper bound on the tree emanating from vertex k, 

the number associated with the current vertex, 

the number associated with the previous vertex 

while branching right. 

Figure 3.2.1 gives the complete description of the 

algorithm. However it will be useful to recount shortly. 

The procedure starts from vertex 1 where no variable 

has an assumed value. It piogresses by partitioning the set 

of possible solutions through ramifications to right and left; 

the right branch assuming the value a and left branch 1, for 

the chosen IIpartitioning variable. 1I Branching advances first 

on the leftmost side until a vertex is reached with F = { }; 
in other words until it is fathomed. Backtracking searches 

for the solutions suggest~d by the unattended right branches. 

A right vertex is fathomed if the upper bound on it is less 

than or equal to the global lower bound developed so far. Any 

v e r t e x of w h i c h both branches are fa tho m ed, i sit s elf fa tho m ed, 

too. The algorithm terminates when there remains no unfathomed 

branches, that is when the rightmost branch is fathomed. The 

order selection problem has a feature which helps prune many 

branches and thus complete the enumeration- with small number 
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of vertices. It is possible to assign the value 0 to certain 

variables by comparing their associated item demands with 

the remaining inventory at the current vertex. If the available 

inventory is short of satifying the demand for at least one 

item, the variable, lifting need to branch further, assumes 

the value O. In figure 3.2.1, 0 is the set of such variables. 

The performance of the algorithm depends heavily on 

the method used for the selection of the partitioning variable 

among free variables. A proper selection at an early stage 

may significantly reduce the number of vertices needed for 

algorithm termination. 

In our study, eleven decision criteria are suggested 

for partitioning variable selection. The following sections 

are devoted to their descriptions and comparison of their 

performances under a number of circum~tances. 

The algorithm is coded in FORTRAN and run in CDC 

system in Bogazi~i University. 

3.3 The Proposed Heuristics for the Selection of the 

Partitioning Variable 

Silver et al. [ 4.] , w h i 1 e c 1 ass i f yin g he u r ;" s tic 

methods, note that, " ... a heuristic may be used as a part 

of an iterative procedure that guarantees the finding of an 

opt i mal sol uti 0 n . II 0 n e po s s) b i 1 i t Y for s u c h use 0 f . h e uri s tic s 

may be, they continue, II ••• to make a dectsion at an 

intermediate step of an exact solution procedure, e.g., the 

rule for selecting the variable to be entered into the basis 

in the Simplex Method is heuristic in that it does not 
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necessarily minimize the number of steps needed to reach the 

optimal solution. 1I 

Decision rules for the selection of the partitioning 

variable at a vertex in the algorithm described above are 

also heuristics of this kind. No matter for which variable 

we branch at a particular vertex, sooner or later we reach 

the optimal solution. However, it is important t6 keep the 

number of vertices small in practice, since the memory 

required by the prepared computer program varies directly 

with this quantity. 

Following are eleven such heuristics. 

1 ) LARGEST TOTAL VALUE FIRST (LTVF) 

Choose the free variable with tRe maximum capital 

content. 

2 ) SMALLEST TOTAL VALUE FIRST (STVF) 

Choose the free variable with the minimum capital 

content. 

3) MEDIAN TOTAL VALUE FIRST (MTVF) 

Choose the free variable with the median capital 

content. 

4) DEMANDING THE LEAST REMAINING ITEM LEAST FIRST 

(DLRILF) 

Choose the free variable which demands the item 

remaining least in the inventory, least. 

5) DEMANDING THE MOST REMAINING ITEM LEAST FIRST (DMRILF) 

Choose the free variable which demands the item 

remaining most in the inventory,'least. 
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6) DEMANDING THE MOST REMAINING ITEM MOST FIRST (DMRIMF) 

7 ) 

8) 

Choose the free variable ~hich demands the item 

remaining least in the inventory, most. 

DEMANDING THE LEAST REMAINING ITEM MOST FIRST 

(DLRIMF) 

Choose the free variable which demands the item 

remaining least in the inventory,most. 

DEMANDING THE LEAST ABUNDANT ITEM LEAST FIRST 

(DLAILF) 

Choose the free variable which demands the item 
j 

with least abundance (i.e. abundance(j) = I - L o .. ), 
v i~F lJ 

least. v 

9) DEMANDING THE MOST ABUNDANT ITEM LEAST FIRST (DMAILF) 

Choose the free variable which demands the item 

with least abundance, most. 

10) DEMANDING THE MOST ABUNDANT IJEM MOST FIRST (DMAIMF) 

Choose the free variable which demands the item 

with most abundance, most. 

I • 

11) DEMANDING THE LEAST ABUNDANT ITEM MOST FIRST (DLAIMF) 

Choose the free variable which demands the item with 

least abundance, most. 

3.4 Results 

The eleven heuristic rules are coded in FORTRAN and 

integrated with the program of the algorithm. The program is 

run for the following values of problem parameters once for 

each heuristic. 
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A) Inventory Content = I 
0 

Number of Products (NP) = 12 

Number of Orders (NO) = 6 , 9, 12, 15, 18, 21 

8 ) Inventory Content = I 
0 

Number of Orders (NO) = 12 

Number of Products (NP) = 3, 6, 9 , 12, 1 5 

C) Number of Orders (NO) = 12 

Number of Products (NP) = 1 2 

Inventory Content = ( 1/2 ) I I 21 
0 0 0 

The number of vertices required for algorithm termination 

are plotted for cases (A), (8), and (C) in Figures 3.4.1 

3.4.2 , 3.4.3 respectively. 

The following conclusions are drawn; 

1) Greedy heuristics LTVF, DMRIMF, DLRIMF, DMAIMF and 

DLAIMF perform significantly better than the rest in all three 

cases. 

2) The heuristic LTVF, though requiring minimum of compu­

tation with respect to other greedy algorithms, performs best 

i n eve r y c i rc u m s tan c e . 

3) Wi th few exceptions, the a 1 gori thm requires increasing 

number of vertices for completion when run with 

a . increasing number /of orders, 

b . increasing inventory content, and 

c. decreasing number of products. 
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These trends make sense since number of feasible 

combinations of orders is directly pr6portional to number of 

orders and available stocks, and inversely proportional to 
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number of products. This point also emphasizes the effectiveness 

of free variable elimination procedure inherent to the algorithm. 
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IV. CONCLUSION 

In the preceding chapters two distinct problems were 

analyzed and algorithms for their satisfactory solutions were 

introduced. The two procedures emerged as two tools that can 

be used together in the real-life problem treated by this 

study. Before proceeding with the application, it is worthwhile 

to note certain points with regard to algorithms themselves. 

The 3-level scheduling algorithm has as essence the 

notion of IIfastest capital release ll
• Its elements work in 

the direction which rende~s minimum delay of value-containing 

output. Whether it be the case that stocks of finished 

products are kept or not, the philosophy of the algorithm is 

justified since anyhow time is money. If all orders are met 

by IIjust-in-time ll production, the merit of the algorithm is 

obvious. In the other extreme, if all orders are met 

simultaneously from the inventory (which is the classical 

approach in inventory/production managemenf), the algorithm 

1 ... 



hastens 

goods. 

the conversion of invested capital into sellable 
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The implicit enume~ation algorithm for the order selection 

problem li"kewise minimizes the delay of sales of finished goods 

through maximizing the total value of simultaneously-released 

orders. Its very nature presumes existence of end-product 

stocks. It is applicable to all multi-item whole-selling 

activities. 

One possible application for both algorithms was the 

case of the producer company we have discussed. 

The company had been keeping stocks of finished armatures, 

yet itwas desi~dto organize production such that some orders l 

could be answered directly as armatures are produced, and 

thus stock levels could be lowered somewhat. 

Thus, as periodic orders are received, those orders 

selected by the second algorithm can be answered instantly, 

and the rest (perhaps together with the stock-replenishment 

order), as the scheduling algorithm decide~. 

It is clear that if the production capacity is sufficient, 

the on-hand inventory levels may be kept low. Thus the 

production manager may adjust the stock levels by considering 

the limitations of the established system, the trends in demand, 

and the stock-holding costs. The two algorithms can thus be 

employed under various stock-holding policies by arranging 

the frequency and sizes of the stock~replenishment orders. 

One can think of many applications for the 3-level 

scheduling algorithm. Up to this point, it was suggested for 

periodic production scheduling. It can also be implemented 
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for dynamic decision making through_updating the states of 

the molding machines and the assembly shop. Thus, the schedules 

can be revised in view of realized processing times and/or 

newly arrived orders. Another application may be using it as 

an aid in making overtime decisions. It is advantageous to 

arrange overtime working for the molding process so as to 

eliminate time gaps between consequent assembly jobs. Likewise, 

overtime decisions for the assembly shop which would let early 

release of orders can be made more effectively with the aid 

of the algorithm. The algorithm may also be used to reconsider 

molding lot sizes in view of their effects on the overall 

performance of the schedule through simulation. 

This thesis introduces algorithms to help solve two 

distinct problems which may be" interrelated in some real cases, 

as the one treated above. They are useful tools in the sense 

that they may be used under various operating conditions and 

in many applications. 

I ... 
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APPENDIX 

DETERMINATION OF ECONOMIC LOT SIZE FOR MOLDING 

Nomenclature: 

~. probability of damage while mounting mold j 
J 

C. cost of damage for mold j (TL) 
J 

D. average periodic demand for component j (units/period) 
J 

P. production rate for component j (units/period) 
J 

h. cost of holding component j (TL/unit-period) 
J 

a. 
J 

number of periods of which demands make up the lot 

size for mold j. 

Derivation 

A = 
1 D . 

D. (1 __ J_) 
2 . J P . 

. J 

Average on-hand inventory a.A 
1 

D. ( 1 D . / P . ) = = a. -
J 2 J J J J 

Holding cost for period 
1 

D. ( 1 D . / P . ) h . a = 2 a. -
J J J J J 

. Expected damage cost for a period = 1 
~. C. 

J J a. 
J 

j • 
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Necessary condition for minimum total cost; 

cHC. 1T.C. 1 J J J D . ( 1 D . / p . ) h. 0 = - +-- - = 2 
, 

* *2 J J J J a CI. • CI.. 
J J 

Sufficiency condition; 

21T . C. 
J J 

= *3 > 0 
CI.. 

J 

Hence CI.~ gives the lot size yielding the minimum total 
J 

periodic cost. 

CI.. should be truncated or raised to an integer for 
J 

practical reasons. This decision can be made by comparing the 

total costs caused by the two alternatives. 
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