
""'1
-F-O-R'-"'R~E-f-:-E-:R:-E::-N.:C ;-c,·

MODELS FOR A MULTI-ITEM

PRODUCTION SYSTEM

by

SECKiN iKiZ

B.S. in.M.E., Bogazici University, 1983

Bogazici University Library .

111111111111111111111111111111111111111 ~
I 39001100314544
\

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of
-,,:>'

M~ster, of Science

in

Industrial Engineering

Bogazici University

1985

MODELS FOR A MULTI-ITEM

PRODUCTION SYSTEM

APPROVED BY

DoC. Dr. GUndUz ULUSOY

(Thesis Supervisor) .

DoC. Dr. M. Akif EYLER

DoC. Dr. Ahmet KUZUCU

DATE OF APPROVAL

182938

iii

ACKNOWLEDGEMENTS

I want to express my gratitude to Doc.Dr. GUndUz

Ulusoy for his generous contribution and infallible guidance

throughout this study.

I also thank Doc.Dr. Akif Eyler and Doc.Dr. Ahmet

Kuzucu for their interest and evaluation as members of the

thesis commitee.

lowe much to Zehra Elicin and Ramazan Uzun from

PiMAS A.S. whose valuable suggestions led to more accurate

modelling of the problems handled in this study.

At last I want to thank Alper Oysal for the

painstaking typing.

i v

f"lODELS FOR A MULTI-ITEM PRODUCTION SYSTEM

A B S T RAe T

To minimize work-in-process, or equivalently mean flow

time of capital has been an emphatic objective in production.

It deserves still greater attention in today's Turkish

Economy governed by monetaristic austerity measures.

This study proposes models for two problems of a multi­

item production system.

One of them is an algorithm organizing activities at

three levels of the production process. The second one is an

implicit enumeration algorit~m rendering selection of orders

for simultaneous release when the current inventory is

incapable of sati~ying ali of them. Both are designed so as

to serve the aim of minimizing mean flow time of capital bound

to the process.

These models can be implemented separately or in

combination depending on the inventory/sales policy of the

application.

v

COKORONLO BiR ORETiM SiSTEMi iCiN MODELLER

tJ Z E T

SUrecteki is miktarlnln ya dakapitalin sUrecte tutul­

du~u ortalama .sUrenin enazlanmasl Uretimde Uzerinde Hnemle

durulan bir amac olagelmistir. Monetarist istikrar Hnlemleri

ile yHnetilen gUnUmUz TUrk Ekonomisinde bu amac daha da

fazla Hnem kazanmaktadlr.

Bu callsma cokUrUnlU bir Uretim sisteminin iki problemi

icin modeller Hnermektedir.

Bunlardan biri Uretim sUrecinin Uc dUzeyindeki etkinlik­

leri dUzenleyen bir algoritmadlr. ikincisi ise mevcut envante­

rin tUm siparisleri karSllamaya yeterli olmadlgl durumlarda

hangilerinin anlnda karSllanacaglna karar veren bir HrtUk

birerleme (implicit enumeration) algoritmasldlf. Her iki model

de kapitalin sUrecte tutuldugu ortalama sUreyi enazlama amaClna

hizmet edecek sekilde tasarlanmlstlr.

Bu modeller envanter/satlS politikaslna bagll ·olarak
/--- /

tek baSlna veya birlikte uygulanibilirler.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

ABSTRACT

iii

i v

tEET v

LIST OF FIGURES vii i

I.

II.

~INTRODUCTION

A DYNAMIC HIERARCHICAL APPROACH TO A
MULTI-LEVEL SCHEDULING PROBLEM

1

4

2.1 The Problem 4

2.2 A Constructive Algorithm; FCR 7

2.3 A Heuristic Algorithm for the
Multi-Level Scheduling Problem 12

2.3.1 The Reasons for the Hierarchical
Approach ·12

2.3.2 Assumptions 15

2.3.3 The Algorithm 17

2.3.3.1 Initialization

2.3.3.2 Phase One

2.3.3.3 Phase Two

2.4 Tests on the Algorithm

2.4.1 Factors

2.4.2 Tests and Results

2.4.3 Observations

2.5 Implementation of the Algorithm

2.6 Possible Extentions

17

1 7

22

24

24

26

27

28

29

III. AN IMPLICIT ENUMERATION ALGORITHM FOR

THE ORDER SELECTION PROBLEM 31

3.1 The Problem 31

3.2 An Implicit Enumeration Algorithm 33

3.3 The Proposed Heuristics for the
Selection of the Partitioning Variable 36

3.4 Results 38

IV. CONCLUSION 44

REFERENCES 47

APPENDIX 48

vii

LIST OF FIGURES

FIGURE 2.1.1 Armature Production 5

FIGURE 2.2.1 Comparison of Sand S' 9

FIGURE 2.3.1 Three Levels of the Problem 14

FIGURE 2.3.2 Flowchart for the 3-level
Scheduling Algorithm 18

FIGURE 2.3.3 Flowchart for the Mold/Machine
Scheduling Algorithm for a
Particular Ass~mbly Job 21

FIGURE 3.2.1 Flowchart for the Implicit
Enumeration Algorithm 35

FIGURE 3.4.1 Results for Case A 40

FIGURE 3.4.2 Results for Case B 41

FIGURE 3.4.3 Results for Case C 42

vii i

1

I. INTRODUCTION

This thesis involves study on two main topics which

are interrelated in the context of a real life problem.

One of them is a scheduling problem of a special nature.

Encountered in production of plastic armatures, a process

involving three levels of scheduling decisions, it can be

defined as a multi-level scheduling problem. The so called

lowest level decisions determine the schedule of molds on

injection molding machines. Each mold can be mounted on

certain machines. ,Plastic components of armatures are the

outputs of the molding process which feed the assembly shop

for the assembly of end~prodQcts. The mid-level deciSion is

scheduling the assembly of different types of armatures. The

third and the highest level is the sequencing of order

releases (or sales) which are made up of selection of end­

products at various quantities.

Coming from the wholesalers of the firm's products, the

orders, in general, don't have strict d~e dat~s. However, the

earlier an order is dispatched, the earlier is the receipt o~

its payment. Thus, it is important for the firm to make

2

ready the end-product requirements of orders as early as

possible. In other words, it is desirable to minimize the

delay of revenue receipts, or equivalently the mean flow

time of capital in process.

The company holds stocks of armatures as well as the

constituent parts. Thus, some of the periodic orders can be

met immediately before starting up with production. The

problem of selecting among all orders those to be answered

immediately is the concern of the second part of the thesis.

The above rationale is valid in this problem, too. The

aim is to minimize the average delay of potential revenues.

Thus, the total monetary worth of orders selected for instant

satisfaction should be maximized subject to the constraint of

current inventor) level s.

Austerity measures being practic~d by the government

force the business enterprises to work with extensive capital.

Decision making in production, thus, have to provide ways of

speeding up the flow of capital.

The theme of this study have thus been inspired by the

facts of the Turkish Economy in the 1980's.

The second chapter gives an account of the procedure
/--"

developed for the first problem. A polynomial time algorithm,

namedFCR (Fastest Capital Release), minimizing mean-flow

time of capital for a IIsingle machine ll scheduling problem is

i n t rod u c e d . I t pro v ide s the f ram e w 0 r k for _ the -0 ve r a 11 3 - 1 eve 1

scheduling algorithm which covers the rest of the chapter.

3

Chapter Three is on the order selection problem. A 0/1

programming formulation (recognized as a 0/1 multidimensional

knapsack problem) is constructed, and an implicit enumeration

algorithm exploiting the nature of the problem is developed.

Eleven decision. rules are proposed for the selection of

the partitioning variable. Finally, performances of these rules

are compared with varying; (a) number of orders, (b) number of

products, and (c) levels of inventory. To note, a rule

involving minimum of computational burden indisputably comes

out to be the most effective one.

The last chapter concludes the thesis by suggesting

ways the proposed methods can be used separately or in

combination under various operating conditions.

II. A DYNAMIC HIERARCHICAL

APPROACH TO A MULTI-LEVEL

SCHEDULING PROBLEM

2.1. The Problem

4

A company well known as a producer of plastic

construction materials, a year ago began producing plastic

armatures. Nine different types, each with four color options

were made available. Of the parts making up the end-products,

plastic ones are manufactured by the firm, metal and gasket

parts are supplied from outside vendors.

Plastic components are produced by injection molding of

granulated thermoplasti~s.

44 different molds can be mounted on one, two, or three

of four available molding machines. About two thirds of plastic
/--,

components are common to two or more types of armatures. Again,

about two thirds are colored components.

The process is summarized in Figure 2.1.1.

Production engineers had difficulty in synchronizing

molding and assembly processes mainly due to

Plastic
VENDORS Raw

Materials

INJECTION
MOLDING

VENDORS

Plastic
Components

(44 types)

Figure 2.1.1 Armature Production

ASSEMBLY

c.J1

6

(A) intricate bills of mat~rials for end-products, and

(8) mold/machine assignment restrictions.

Lack of systematic programming for production was causing

long waiting times of finished plastic components before the

assembly process since assembly of an end-product could not

start before all of its components were ready. A similar

trouble was felt at the sales end. Sales were made to

retailers, and thus, orders demanded various quantities of

almost all product types. This time, finished end-products

had to wait long prior to sale for the missing types to be

assembled. Customers being the retailers of the firm's

products, orders didn't have strict due dates, but the earlier:

an order was sent, the earlier was the receipt of its payment.

Through demand for products was being answered promptly,

it was achieved at the expense of holding a large working

capital .in the form of finished products and components.

It was expected, after these observations, that a

systematic mold/machine scheduling in connection with the

assembly scheduling of armature types would"reduce the in­

between waiting times of plastic components. Furthermore,

before-sales waiting times of finished products coul.d be

reduced by taking into "account orders' constituent product
,-

demands whi1e fixing the assembly schedule. Thus, on the

overall, flow of capital bound to the process could be

hastened significantly.

As could have been felt already, this study emphasizes

the rate at which money is used to gain returns. In view of

high interest rates and the rising competetiveness in today's

7

Turkish Economy, this is a critical measure of effectiveness

for a business enterprise. The longer a quantity of money

sojourns in a process, the greater will be its cost. Therefore

it must be an eligible approach for any entrepreneurial

activity to minimize the mean duration a unit of capital is

in the process.

The following section introduces an n jobs/single machine

scheduling rule which minimizes the mean flow time of capital

contained in these jobs. This IIconstructive algorithmll will be

the basis of the general algorithm for the solution of the

above posed problem.

2.2 A Constructive Algorithm, FCR

Fastest Capital Release (or FCR) Algorithm is a

constructive algorithm; one, as defined by French (lJ,

II which builds up an optimal solution from the data of

the problem by following a simple set of rules which exactly

determine the processing order.1I

Let us define the con~idered problem:

There are n type~ ofpfoducts to be processed on a

single machine. The following data are available;

~-

i 1 , ... ,n number of to-be-processed products x. =
. .

1 of type i ,

c . i = 1 , ... , n amount of capital contained in one
1 unit of product of type i ,

p . i = 1 , ... ,n processing time required by one ,
1 unit of product of type i.

8

The problem is to determine the sequence of jobs

which.reriders the mean flow time of capital bound to process

be minimum.

The rule for the solution of this problem is stated

below.

THEOREM: (The Fastest Capital Release (FCR) rule)

For the problem defined above, mean flow time of

capital is minimized by sequencing the lumped-jobs of types

i = l, ... ,n such that

c i (1)

Pi (1)

c i (n)

Pi (n)

where i(k) denotes the job that is processed kth.

Proof. Let 5 and 5· be two schedules differing only in

the order of two lumped-jobs 1 and 2 with distinct (c/p)

ratios (see Fig.2.2.la). The cumulative released capital

versus time profiles will differ only for the time interval

during which jobs 1 and 2 are processed (see Fig. 2.2.lb).

The profile for schedule 5 follows the dashed line

whereas that for 5· follows the solid line from A to E.

The area above the cumulative released capital versus

time profile is held capital-time which is a measure of

liability for the schedule. The mean fl~w ti~e of capital for

a certain schedule is the ratio of total held capital-time

it incurs to total c·apital it involves.

9

5 1 2,

-La. tb tel

5' 2-

t.a tc te!
(a)

(b)

fig~re 2.2.1 Comparison of Sand S'

Since total capital is a constant~ mean flow time is

proportional to the area above the profile. Returning to

Fig. 2.2.1, performance comparison for schedules Sand S'

can thus be made solely upon comparison of areas ABCFGHA

and DEFGHCD. If the first are is larger than the second,

schedule S is superior to schedule S', and vice versa.

Let us compare the two areas:

S(ABCFGHA) (X I CI)(X 2 P2) CI P2 (cl/pl)

S(DEFGHCD) - (x 2 c;)(x I PI) = = (c 2/p2) C2 PI

CI c 2
Thus, if > -- then S is superior to S • , and

PI P2

if -- >
PI

then S' is superior to S.

10

Therefore it can be concludeq that while considering

two neighbor jobs, ordering them in decreasing (c/p) decreases

the mean flow time of capital for the overall process. If the

ratios are equal, their ordering is ineffective in this

concern.

This rule can be induced for the overall schedule, simply

by figuring out that two-by-two comparisons of (c/p) ratios of

n jobs should eventually lead to the optimal schedule.[]

Two-by-two comparisons of n entities require at most

n!
(n-2)!2! =

n(n-l)
2 =

1
2

1
2

n

calculations. Thus,number of computations to construct the

optimal schedule grows polynomially with the size of the

problem. Thus, as all other constructive algorithms, FCR

algorithm too, belongs to P class of time complexity.

There is a remarkable semblance between the FCR

algorithm and the Shortest Processing Time (or SPT) algorithm.

SPT, as defined in Conway et al. [2] minimizes the mean flow

time of jobs in an n jobs/single machine schedule by

sequencing the jobs in non-increasing processing times. FCR,

differing from SPT, decomvoses various jobs into identical

value units and minimizes their mean flow time. It is apparent

that FCR, with respect to SPT, provides a more flexible method

to minimize the flow rate of material (or work)-in-process.

11

Above, IIrecovered working capitalll was considered as a

~easure of returns for the production process. An alternative

which is widely respected in OR literature is IIgained profit".

May profit alone be a measure of returns for capital

used in a process? In consideration of time value of money,

it may not turn out so. As much as the profit gained from it,

the size of the working capital becomes important in this

respect. An eligible measure might be the ratio of profit to

the capital bringing that profit. Still another one may be the

revenue; capital plus profit, to break ties when profit

ratios of jobs are not significantly different. The measure

adopted in the argument above, namely capital-in-process, also

assumes the case when the relative profit is invariant among

jobs.

Two more points about Theorem deserve mentioning.

Above, identical jobs of a certain type were considered as

a whole and it was named a IIlumped-job". Consequently, all

jobs comprising a lumped-job were assumed incomplete before

time enough to cover their total processing times elapses.

In general, this may not be the case. Then, if all jobs are

treated individually, non-decreasing (c/p) sequence would

cluster like-type jobs at the optimal schedule. Thus, our

simplifying assumption was made without loss of ge~erality.

Discussion above also make~ clear that no improvement may be

gained in the optimal schedule by allowing pre-emption.

The last word is for the set-up times. In practice,

set-up times required prior to processing a batch of jobs

may be significant. This case may be accomodated by FCR

algorithm via replacing (c./p.) by
1 1

c.:
1

p. + (s./X.)
111

where s. is the sequence-independent set-up time per batch
1

of type i. With this modification, lumped-jobs schedule is

still guaranteed to be optimal. Here, it is certain that

pre-emption deteriorates the optimal solution.

2.3 A Heuristic Algorithm for the Multi-level Scheduling

Problem

This section presents an algorithm proposed for the

solution of the special scheduling problem of section l.l.

2.3.1 The Reasons for the Hierarchical Approach

As discussed above, this problem is characterized by

its multi-level structure. An intuitively appealing description

for the anatomy of the problem is given below.

LEVEL 1 :

Scheduling n non-identical molds on m non-identical

machines.

LEVEL 2 :

Scheduling p assembly jobs in series in an assembly

shop. Outputs of the molds at level 1 impose not-earlier­

than restraints on assembly start times.

13

LEVEL 3 :

Sequencing q order releases. Assembly completion times

of end-products at level 2 impose not-earlier-than

restr.aints on release times.

OBJECTIVE :

Synchronizing the activities at 3 levels so as to

minimize the mean sojourn time of capital from the time

injection molding starts to the moment it is released to

meet an order.

Figure 2.3.1 depicts the 3-level structure of the

problem.

The multi-echelon structure suggests a hierarchical

approach. More explicitly, a proper way to deal with the

problem is decomposing it into its levels and treating each

sub-problem individually without losing sight of (a) the

possible interactions between levels, and (b) the overall

objective.

Such a preference is totally heuristic and thus liable

ta produce sub~optimal ~olutions. Several authors, t6 mention,

MUller Merbach (3) and Silver et ale [4] justify decomposition

methods mainly due to their capacity for conforming to the

structure of the problem environment.

The alternative is constructing a single model and

determining all scheduling decisions in one pass.

Besides causing loss of view of the functional

interrelationships between activities, such an approach will

Released
Capital

j

Ml

M2 1

M3

M4 I

~

r

I
~

II I I

U I I 1 /-
I
i

I r I I I
I

I I r

r

... ..

14

LEVEL 3

Order Release
Schedule

T· ~me

LEVEL 2

-..
Ti me

Assembly
Schedule

-

-.
Time

LEVELl

Mold/Machine
Schedule

Figure 2.3.1 Three Levels of the Problem

15

prove unpractical by requiring a hug_e computational capacity

due to combinatorial nature of the problem.

2.3.2 Assumptions

are;

The underlying assumptions far the proposed algorithm

(i) no pre-emption is allowed for molding jobs;

(i i) no pre-emption is allowed for assembly jobs;

(iii) an assembly job can start only after all molding

jobs associated with its constituent parts are

complete;

(iv) an order can be released after the last assembly job

it is waiting for completion produces enough to

satisfy its demand for the associated end-product;

(v) defective injection output is detected during

production, and injection standard times are inflated

to include the average delays that occur thereby;

(vi) molding job for a certain plastic component is made

up of lots of different colors. No set-up time is

required for color shifts;

(vii) assembly job for a certain armature is made up of

lots of different colors. No set-up time ·is required

for color shifts.

/

The first assumption is justified by the damage risk

of molds which have no spares. Molding jobs have given

economical lot sizes arising from the trade-off between the

between the expected damage cost and the.holdjng cost for

extra production (see Appendix).

16

One reason behind the second ftssumption was discussed

at section 2.2; pre-emption incurs extra set-up time. Another

is due to need for simplifying the problem.

The third assumption may seem arbitrary in view of

the fact that an assembly job may start at the moment the

last molding jobs it waits for,produce just as much as it

will use. The assumption, however serves for simplification

of both the algorithm and the flow of finished components.

An 0 the r poi n tis . t hat add i t ion a 1 wait i n g c a use d bee 0 m e s

fairly short due to the nature of mold scheduling algorithm

which assigns jobs on machines in decreasing order of

processing times.

The fifth assumption reflects a fact of the problem

erivi:ronment. Quality control is performed by the operat"prs

and defective output rate is fairly low due to. precise

technology.

The sixth assumption is made considering that shift

from one color to another does not require mold adjustment

but only a change of the raw-material container, and that

mixed-color scrap output takes negligible time.

The last assumption neglects the time spent during

preparation of colored co~ponents prior to shift to another

color for the same type of armature.

An assumption not appearing in the above list have been

accepted while defining the problem; assembly jobs would be

precessed in series. It was imposed by the restricted space

available for assemQly. Besides it became very useful for the

simplification of the problem.

17

2.3.3 The Algorithm

The algorithm rendering a low mean flow time of capital

for the 3-level scheduling problem is depicted in Figure

2.3.2.

2.3.3.1 Initialization

The First Step involves preliminary calculations.

Given, order descriptions (i.e. selections among available

type and color of armatures), total demand for end-products

and consequently total requirements for plastic components

are determined. Those components which have insufficient

stocks are accepted as molding jobs and their production

quantities are set to the greater of the economical lot
1

size and the amount required for assembly.

The rest of the algorithm can be considered as two

subsequent phases. These two phases sugg~st two different

hierarchical frameworks.

2.3.3.2 Phase One

First, unschedul~d assembly jobs are considered one

by one, and for each, a mold/machine schedule providing

earliest start for assembly is constructed. Among these

candidate schedules, the one which enables an assembly job

start with minimum delay after the last scheduled assembly

job, is picked and adopted. The associated assembly job is

1 Economical lot size is by definition a multipleof average
periodic demand; thus it is an exceptional case when the
immediate requirement for a period exceeds it (See Appendix)

START

Determine
Component Production
Quantities

18

RASE I
'- ---- ----------- - ------ ------------- --I

Consider Unscheduled

Assembly Jobs

For Each, Determine
The Time For Earliest

Start

Is "No Delay"
The Case

For All Jobs?

NO ..

I
NO I

~----l----""""' YES I
All Jobs Scheduled?

t I
I
I

Release the "Empty" Orders I
I
I

Eliminate the Scheduled Job I
From Unreleased Orders I

I
I ~
I

Schedule the Minimum I

Delay Assembly Job I

YES I
---------------------------------------~

PHASE II ------:--- -- ------- ------------ -----------

YES NO
Any "i-Item" Ord:rs?~--"'"

.
Schedule The "i-Item'" Schedule The Highest

With The Highest c/p c/p Assembly Job

I

NO

Eliminate The Scheduled
Job From Unreleased

Orders

Release The
IIEmpty" Orders

All Jobs Scheduled?

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I'

YES I
~--------------------~ ---------------

o
Figure 2.3.2 Flowchart for the 3-level Scheduling Algorithm

19

also scheduled in the assembly shop. If a tie occurs at this

step, it is broken in favor of the- candidate schedule with

the greatest c/p assembly job.

This .procedure aims at precluding idle time intervals

at the assembly level. It serves its cause through step-wise

minimization of inter-assembly durations. The final objective

of minimizing mean flow time of capital is indirectly attended

since any idle delay at the assembly level retards all waiting

assembly jobs, and delayed assembly of end-products translate

release times of orders. Another option for mold/machine and

assembly scheduling could be to respect c/p criterion alone.

But computational experience reveales that uncontrolled idle

times at the assembly shop may bring about much more loss

than the advantage gained by virtue of FeR algorithm (see

Section 2.4; results with algorithm A2).

Before proceeding further with PHASE ONE, let us

investigate the mold/machine scheduling algorithm.

Through seemingly a minor part of the overall algorithm,

the problem of scheduling molds on molding machines is quite

critical in view of the recent discussion about the

consequences of delays "at assembly level. This problem is

defined as follows.

x molding jobs are to be done on m machines: Each mold

j is distinct, and it can only be mounted on k. of non-iden­
J

tical machines. There are no precedence relations among

molding jobs. Ready times of machines are in general different.
-

The jobs are available at any time. The aim is to minimize

the maximum job completion time among machines, so that the

20

associated assembly job can start as early as possible (see

Assumption iii above).

IS. similar problem known as II mu lti-processor scheduling

problem ll has been subject to many articles in the literature.

It is defined in Nichols et al. [5] as, 11 ••• scheduling n

independent, single operation jobs, all availabl~ at time

zero, on m identical processors ... each job must be

processed by exactly one of these processors, and it is

desired to minimize makespan.1I

The assumption of lIidentical processors ll is the main

deviation between the two models. Besides, the problem dealt

in literature implicitly assumes that all processors are

ready at the same time.

Still, the algorithm developed in our study is inspired

from the IIlongest processing time ll algorithm proposed by

Greenberg [6] for that problem.

Figure 2.3.3 gives the flowchart for the algorithm

developed to tackle the current problem. Ties that may

occur either during job selection or during machine selection

can be broken arbitrarily.

The first stage of the 3-level scheduling algorithm,

thus concentrates on the lowest and middle levels, namely

mold/machine and assembly schedules. However, decisions are

made with due consideration about their consequences to the

overall objective. It can be said that PHASE ONE presents a

hierarchical framework in which two lower. levels interact

during fixing their respective scheduling decisions while the

highest level decisions are let to float.

C START)

Schedule the jobs which
can only be processed
on a certain machine

~ All jobs sCheduled?

NO

Consider the unscheduled
jobs

Pick the job with the

maximum processing time

Consider the machines on

which that job can be
processed

Of those machines, schedul

the job on the one which
becomes free-first

YES
STOP

Figure 2.3.3 Flowchart for the Mol~/Machine
Scheduling Algorithm for a
P~rticular Assembly Job

21

22

PHASE ONE closes as soon as there exists sufficient

evidence that the assembly shop will- never be idle then on,

no matter what the order among the remaining assembly jobs

will be. That evidence is having all candidate mold/machine

schedules letting their respective assembly jobs start

simultaneously as the former job ends.

2.3.3.3 Phase Two

If there are assembly jobs which remain unscheduled as

PHASE ONE ends, the algorithm enters a new ·stage where a new

hierarchical framework is valid.

In PHASE TWO the focus of attention is on the two

upper levels, namely the assembly schedule and the order

release schedule.

The main concern is releasing capital as early as

possible. Thus, it is an appropriate policy to assign

priority to assembly jobs which, when completed, let

completion of partially prepared orders. If there are no

orders. waiting for. a single assembly job, FeR algorithm is

applied to select among unscheduled assembly jabs the one
. . .

to be scheduled next. If there exists more than one such

order, ties between the awaited assembly jobs are again

broken by the FeR rule. When two or more IIsingle item ll

o r d e r s wa i t for the sam e last s c h e d u 1 e d ass em b 1 y job, the i r

releases need to be sequenced. They are released with respect

to

(total value)
(assembly time required by the demand for the assembly job)

23

ratio. The order with the higher ratio is released earlier.

It is clear that the FeR principle is~ directly applied in this

sequencing decision.

The algorithm terminates as soon as all assembly jobs

are scheduled, which coincides with the moment all orders are

released.

Similar to the case in PHASE ONE, the second phase of

the algorithm involves decision interactions between two levels

of the proble~. But there is a shift of focus between the two

stages. This feature of the algorithm qualifies it as

incorporating a IIdynamic hierarchical" structure.

As a matter of fact, the assembly schedule is always

under consideration. In both phases, its decisions are deter­

mined in close contact, first with the mold/machine schedule,

and later with the order release schedule.

The decision rule for the isolated assembly schedule

could be provided by the constructive algorithm FeR. But

constructing the remaining two schedules under dominion of

the FeR sequenc~ at the assembly level would, in general,

produce poor results in terms 6f the overall objective of

minimizing mean flow time-of capital (See Section 2.4;-results

with algorithm A2). However, FeR rule is put into action at

a number of steps, especially with greater weight towards the

end of the algorithm.

An alternative to the suggested h.ierarchical structure

could be to shift the attention from assembly level to order

level and to fix all scheduling decisions through step-wise

minimization of inter-release times of orders. In ge~eral ~

24

this algorithm will not perform better due to loose control

over inter-assembly-job delays and total negligence of c/p

values during assembly scheduling. It will fail more as the

molding rate goes ahead of assembly rate, and as the orders

are more selective.

2.4 Tests on the Algorithm

The 3-level scheduling algorithm described above can

be questioned from two main aspects.

The first question may arise for the design decisions.

Couldn't there be a better performing hierarchical structure?

Is the mQld/machine scheduling decision rule the best fit

for the case?

It is also questionable whether the established structure

of the algorithm is justifiable in terms of its performance

under various circumstances. With what sort of data the

algorithm perform more succesfully?

Below is the test performed to provide hints to these

questions.

2.4.1 Factors

Five factors are investigated in this study;

A) Four Alternative Algorithms;

Al The adopted 2-phase algorithm,

A2 An algorithm in which other two level scheduling

decisions are imposed by the FCR (i.e. non-increasing

c / p) 0 r de r i n g 0 f ass em b 1 Y job s -a t t h-e mid d 1 e 1 eve 1 ,

B)

C)

25

A3 The adopted 2-phase algorithm without FCR (i.e. c/p)

preferences among assembly jobs.

A4 An algorithm in which other two level scheduling

decisions are imposed by the arbitrary ordering of

assembly jobs at the middle level.

Three Mold/Machine Scheduling Rules:

Bl The adopted, IIlongest processing time firstll rule,

B2 IIShortest processing time firstll ru 1 e ,

B3 Random rule.

Three sets of Orders:

Cl Four orders all of which demand from all items,

C2 Four orders two of which demand from all items,

C3 Four orders none of which demand from all items.

(Item-wise sums of demands of all three sets are

equivalent.)

0) Two sets of Assembly Processing Times:

01 Short,

02 Long (3/2 x Short).

E) Two sets of Ready Times for the Assembly Shop .and for

the Molding Machines:

El All the same,

E2 All different.

BOGAI1C\ UNiVERSITE~i KU1UPHANESi.

26

2.4.2 Tests and Results

Following are the descriptions and the results of the

performed tests. The result figures are the mean flow times

of capital for the associated runs.

1) B = B1 , 0 = 01 , E = El

Cl C2 C3

A1 435.4 407.9 393.8

A2 478.5 472.0 466.5

A3 435.4 421 .2 413.0

A4 471 .3 471 . 1 470.1

2) B = B1 , 0 = 02 , E = E1

C1 C2 C3

A1 584.4 543.4 522.4

A2 643.5 633.7 625.6

A3 I 584.4 563.2 551 .0

A4 636.3 . 636.0 634.6

3) B - 83 , 0 = 01 , E = E1 -
/- '-

Cl C2 C3

A1 453.4 425.9 411 .8

A2 482.7 476.2 470.7

A3 453.4 408.8 384.1

A4 482.7 482.5 481 .5

·1

4)

5)

6)

B = B 3 , 0 -_ 02 E - E 1 , -

Al

A2

A3

A4

A = Al , C

Bl

B2

B3

A = Al , C

Bl

B2

B3

Cl C2

602.4 561 .4

647.7 637.9

602.4 535.8

647.7 647.4

= C2 , o = 01

El E2

~-----.-~
407.9 441.5,

424.8 458.2 I
1 I

~2~_: __ ~~~
= C2 , 0 = 02

El E2
~- .-----_.- ---'-

,543.4 579.2

560.3

I L:.61 .
4

593.7

597.9

2.4.3 Observations

27

C3

540.4

629.8

498.9

646.0

Upon investigating the above tabulations, the following

observations can be made.

28

1. With respect to tables 1,2,3 and 4, the adopted 3-level

scheduling algorithm Al performed most successfully when run

with the adopted mold/machine scheduling rule, A3 performed

better than Al when run with the random rule.

2. With the adopted mold/machine scheduling algorithm,

employing FCR criterion has a more pronounced effect when the

algorithm is applied for a non-homogeneous set of orders (Tables

1 and 2, comparison of Al and A3 entries), and/or with longer

assembly processing times (Comparison of Tables 1 and 2 for the

respective differences between Al and A3 entries).

3. With the adopted 3-level scheduling algorithm, the

Illongest processing time first" rule performed most successfully

among the three alternative mold/machine scheduling rules when

run with two different sets of ready times and with two

different sets of assembly processing times (Tables 5 and 6).

Upon comparison of tables 1 and 3, and, 2 and 4, in general

it performed better than the random rule with the exception

of entries A3-C2 and A3-C3 in tables 3 and 4.

4. No significant variation of performance superiority is

observed among mold/machine scheduling algorithms with respect

to variations in ready times and length of assembly processing

times, when run within the adopted 3-level scheduling algorithm

(tables 5 and 6).

2.5 Implementation of the Algorithm

The 3-level scheduling described in the previous section

is coded in FORTRAN IV. The computer program is prepared in

two versions; one to be run in CDC system at B~gazici University
1

and one to be used in IBM PC/XT micro-computer of the company.

1 Data files and output listings of the programs mentioned in this thesis
can be referred at the IE Department archives.

29

Besides schedules determined by the algorithm, the

program is prepared also to provide supplementary information

on

(A) the requirements for metal and gasket components,

(B) the color distribution of plastic components and

armature production,

(C) the initial and final levels of the stocks, the

required and produced quantities of the plastic

components.

The firm uses the program to facilitate periodic

production scheduling. It is also considered as a tool to

investigate results of various scenarios such as grouping

orders and scheduling once for each group.

2.6 Possible Extentions

This study can be interpreted as a rudimentary

treatment of an interesting production scheduling problem.

Though it involves three distinct stages of a process, its

conduct is not a comprehensive one.in view of unmentioned

functions peripheral to production.

In a broad outlook, there are three main organizational

units which interact claselywith production. They ~re;

material requirements planning, inventory planning and

distribution planning.

The approach in this/~tudy has been to focus on

production, and develop a modular model that can fit and

perform successfully in the overall production planning

activity.

30

As an extention to what has been done, the principles

proposed for multi-level scheduling can be applied to a

similar system in a manner incorporating the interactions

mentioned above. Such an implementation could invol ve a

system-dynamical framework, introducing feedback loops, and

controls on operational variables. For instance, results of

scheduling decisions may suggest modifications oh"lot sizes

or on parameters of the inventory policy. Similarly,

resulting requirements for externally supplied components

could affect material requirements planning decisions more

intimately. More effective distribution of products could be

achieved through considering the regional origins of orders

at the order release scheduling level.

III. AN IMPLICIT ENUMERATION

ALGORITHM FOR THE ORDER

SELECTION PROBLEM

3.1 The Problem

31

This part of the thesis deals with the very common

problem of selecting among all orders those to be answered

simultaneously given that on-hand inventory is short of

meeting all of them.

This problem too, was faced by the firm discussed in

chapter one. It will be recalled that orders were being

received from wholesaler~ on a periodic basis, and t~ey

were made up of demands for up to nine types of products.

With the current policy, the inventory is sufficient to

sati sfy some of these order~s momentarily. The remaining,

together with the stock-replenishment order, are met as

production proceeds.

The problem is relevant to the concept of capital flow

rate analyzed in chapter one. The selection should -be made

32

in a manner minimizing mean sojourn time of capital bound

to finished products. Thus the tota} capital contained in

the combination of orders selected for simultaneous release

should be maximum. Of course, subject to the constraints

imposed by available stocks, and that no order can be

satisfied partially. It is apparent that what we are up to

is a problem of combinatorial nature.

Let us formulate;

subject

where

m n
rna x L L c. 0.. x.

to

·1· 1 J 1J 1 1= J=

m
L o .. x. ~ I .

i = 1
1J 1 J

j = l, ... ,n

x. = 1 or
1

0 i = l, ... ,m

c. : capital contained in product j,
J

0 .. : demand of order i for product j,
1 J

x.
1

1 if order i is selected, a otherwise,

I. : available stock of product j.
J

This formulation reveals that our problem is a typical

0/1 multidimensional kn~psack problem.

Literature on this special problem of integer programming

contains articles proposing heuristic methods to obtain

a p pro xi mat e sol uti 0 n s (e. g~ Lou lou eta 1. [7J).

Our approach will be to develop an efficient implicit

enumeration algorithm exploiting the nature of the problem

to find the exact optimal solution. Thi~ appr~ach is

justified in view of the moderately sized problems_which will

be attacked.

33

3.2 An Implicit Enumeration Algorithm

As defined by Garfinkel et a1. [8], IIImp1icit

enumeration is the name of a class of branch and bound

algorithms designed specifically for the case in which x is

required to be a binary vector.1I

In our case, the decision variable vector xis binary,

in that its elements can either be 0 or 1.

Before proceeding to describe the algorithm devised for

the order selection problem, let us define the nomenclature.

c .
1

o

Fk
FATH(k)

!k
Ij

k
LB

LOW(k)

m

N

NV

O.
-1

o ..
, J

o P TSOL

OPTV

p

capital content of order i,

set of free variables dropping to 0 due to

reduced inventory,

set of free variables at vertex k,

TRUE if vertex k is fathomed, FALSE otherwise,

remaining inventory vector at vertex k,

inventory for item j remaining at vertex k,

global lower bound on the objective function

value,

low~r bound on the tree emanating from vertex k,

number of. cons i dered orders,

maximum number of vertices,

number of created vertices,

demand vecto~\" of order i,

demand of order i for item j,

set of selected orders for the optimal solution~

opt i mal v e r.t ex,

the ~artitioning variab1e~·

PARV(k)

PV(k)

RMV

SO
k

UP(k)

V

VV

34

the partitioning variable chosen at vertex k,

the vertex parent ta vertex k,

the rightmost vertex,

set of variables of which values are a at

vertex k,

set of variables of which values are 1 at

vertex k,

upper bound on the tree emanating from vertex k,

the number associated with the current vertex,

the number associated with the previous vertex

while branching right.

Figure 3.2.1 gives the complete description of the

algorithm. However it will be useful to recount shortly.

The procedure starts from vertex 1 where no variable

has an assumed value. It piogresses by partitioning the set

of possible solutions through ramifications to right and left;

the right branch assuming the value a and left branch 1, for

the chosen IIpartitioning variable. 1I Branching advances first

on the leftmost side until a vertex is reached with F = { };
in other words until it is fathomed. Backtracking searches

for the solutions suggest~d by the unattended right branches.

A right vertex is fathomed if the upper bound on it is less

than or equal to the global lower bound developed so far. Any

v e r t e x of w h i c h both branches are fa tho m ed, i sit s elf fa tho m ed,

too. The algorithm terminates when there remains no unfathomed

branches, that is when the rightmost branch is fathomed. The

order selection problem has a feature which helps prune many

branches and thus complete the enumeration- with small number

~~
IIv lTlitLI "2.flTlorJ

v= ~) NV=.-f

L£S: ¢ > RMV::.~

LOW(1)~¢ ..,
UP{-1) =.Z'Ci

l:-t

r1= [1,0·,,,,,,,1
s~ = f 1 ' s/= f 1

fATH{-f, .. /tJ) = 'FALSE

1<1

I
D= fi I {6 Tv ,,\Ad .3~{Ivl-O'lj ~¢)] I I J.

I
f'v= FV- D) S~=S~_1+D tJO<LJf'(V)~LS<>'1'€S ~

,.,0

V=~MV?n OPTV: fV!fYlMGfLoI<J{v)}]
OPTSOI...::. S1

l
up{v) =- Z. Ci I

?~S,,¢

1
." YES LOt.U{-.I) = UP(V-1) Z/>-"-=--

IVO

,,--_tJ()-< LOW (V)::. uP tV) or UP(v) ~ 1...6 ?

Figure 3.2.1

...
F{\ItI(v J = "R!}~
V=V-1

FAiH{V) ="TRUE
L-

Flowchart for the Implicit Enumeration
Algorithm

OPTV

(SToP

36

of vertices. It is possible to assign the value 0 to certain

variables by comparing their associated item demands with

the remaining inventory at the current vertex. If the available

inventory is short of satifying the demand for at least one

item, the variable, lifting need to branch further, assumes

the value O. In figure 3.2.1, 0 is the set of such variables.

The performance of the algorithm depends heavily on

the method used for the selection of the partitioning variable

among free variables. A proper selection at an early stage

may significantly reduce the number of vertices needed for

algorithm termination.

In our study, eleven decision criteria are suggested

for partitioning variable selection. The following sections

are devoted to their descriptions and comparison of their

performances under a number of circum~tances.

The algorithm is coded in FORTRAN and run in CDC

system in Bogazi~i University.

3.3 The Proposed Heuristics for the Selection of the

Partitioning Variable

Silver et al. [4.] , w h i 1 e c 1 ass i f yin g he u r ;" s tic

methods, note that, " ... a heuristic may be used as a part

of an iterative procedure that guarantees the finding of an

opt i mal sol uti 0 n . II 0 n e po s s) b i 1 i t Y for s u c h use 0 f . h e uri s tic s

may be, they continue, II ••• to make a dectsion at an

intermediate step of an exact solution procedure, e.g., the

rule for selecting the variable to be entered into the basis

in the Simplex Method is heuristic in that it does not

37

necessarily minimize the number of steps needed to reach the

optimal solution. 1I

Decision rules for the selection of the partitioning

variable at a vertex in the algorithm described above are

also heuristics of this kind. No matter for which variable

we branch at a particular vertex, sooner or later we reach

the optimal solution. However, it is important t6 keep the

number of vertices small in practice, since the memory

required by the prepared computer program varies directly

with this quantity.

Following are eleven such heuristics.

1) LARGEST TOTAL VALUE FIRST (LTVF)

Choose the free variable with tRe maximum capital

content.

2) SMALLEST TOTAL VALUE FIRST (STVF)

Choose the free variable with the minimum capital

content.

3) MEDIAN TOTAL VALUE FIRST (MTVF)

Choose the free variable with the median capital

content.

4) DEMANDING THE LEAST REMAINING ITEM LEAST FIRST

(DLRILF)

Choose the free variable which demands the item

remaining least in the inventory, least.

5) DEMANDING THE MOST REMAINING ITEM LEAST FIRST (DMRILF)

Choose the free variable which demands the item

remaining most in the inventory,'least.

38

6) DEMANDING THE MOST REMAINING ITEM MOST FIRST (DMRIMF)

7)

8)

Choose the free variable ~hich demands the item

remaining least in the inventory, most.

DEMANDING THE LEAST REMAINING ITEM MOST FIRST

(DLRIMF)

Choose the free variable which demands the item

remaining least in the inventory,most.

DEMANDING THE LEAST ABUNDANT ITEM LEAST FIRST

(DLAILF)

Choose the free variable which demands the item
j

with least abundance (i.e. abundance(j) = I - L o ..),
v i~F lJ

least. v

9) DEMANDING THE MOST ABUNDANT ITEM LEAST FIRST (DMAILF)

Choose the free variable which demands the item

with least abundance, most.

10) DEMANDING THE MOST ABUNDANT IJEM MOST FIRST (DMAIMF)

Choose the free variable which demands the item

with most abundance, most.

I •

11) DEMANDING THE LEAST ABUNDANT ITEM MOST FIRST (DLAIMF)

Choose the free variable which demands the item with

least abundance, most.

3.4 Results

The eleven heuristic rules are coded in FORTRAN and

integrated with the program of the algorithm. The program is

run for the following values of problem parameters once for

each heuristic.

39

A) Inventory Content = I
0

Number of Products (NP) = 12

Number of Orders (NO) = 6 , 9, 12, 15, 18, 21

8) Inventory Content = I
0

Number of Orders (NO) = 12

Number of Products (NP) = 3, 6, 9 , 12, 1 5

C) Number of Orders (NO) = 12

Number of Products (NP) = 1 2

Inventory Content = (1/2) I I 21
0 0 0

The number of vertices required for algorithm termination

are plotted for cases (A), (8), and (C) in Figures 3.4.1

3.4.2 , 3.4.3 respectively.

The following conclusions are drawn;

1) Greedy heuristics LTVF, DMRIMF, DLRIMF, DMAIMF and

DLAIMF perform significantly better than the rest in all three

cases.

2) The heuristic LTVF, though requiring minimum of compu­

tation with respect to other greedy algorithms, performs best

i n eve r y c i rc u m s tan c e .

3) Wi th few exceptions, the a 1 gori thm requires increasing

number of vertices for completion when run with

a . increasing number /of orders,

b . increasing inventory content, and

c. decreasing number of products.

v
90

80

70

60

50

40

30

20

10

t-i
I
I
I

INP 12 I -
I -
i

I I

-~--~-i ----
j I

I
I-------I-~-~--.~---!-I -

I

6 9 12 15

Figure. 3.4.1 Results for Case A

4U

~~~-~-4 
I 

4-

2-

5,9 

8 

\ :3 
j 

7 
6.10 

1 

18 21 



v 

160 

140 

120 

100 

80 

60 

40 

20 

NO = 12 

1------+--------

4 
8 

---- ----.. -.- ---I-

1-----I32.-P~=~~\_--·-_l__----- - .-f-------- --._---t--

5 
!t 

f---- --- .- -- - -- --. 

3 6 

I I I 

---- --4------1-----+--\ 
I 

I 
I 

- - - - '-1-- ---.-.- '-- -- -- --- ----T I 
! 

I 

I 
I 

- ! -' ------f---
I 

-, 

·1 - I 

- --- - -- - - -,- ---~ - I ' 

9 12 15 NP 

Figure ).4.2 Results for Case B 



V 

180 t--
- 12 I NP 2-- I 

NO 
=~ 

5,9 

160 

1 

I 

-t------
I 

I 
I I 

140 1 .1 
I 

I 
! ! I I ! I 
i 
i 

120 -t-

100 
I 

r-------~------~--·----~-~:~-----tl~------L-------~· ; 
, 

80 

I .. -+---1--
,3 

I 
I i 

-- ----~-----
i 

-I 

1------ - - -j- • ----

I 
i 
I 

I 
60 ---1- --

J 

40 
6,10 

1 

20 -- --------1---

I 

Figure 3.4.3 Results for Case C 



These trends make sense since number of feasible 

combinations of orders is directly pr6portional to number of 

orders and available stocks, and inversely proportional to 

43 

number of products. This point also emphasizes the effectiveness 

of free variable elimination procedure inherent to the algorithm. 



44 

IV. CONCLUSION 

In the preceding chapters two distinct problems were 

analyzed and algorithms for their satisfactory solutions were 

introduced. The two procedures emerged as two tools that can 

be used together in the real-life problem treated by this 

study. Before proceeding with the application, it is worthwhile 

to note certain points with regard to algorithms themselves. 

The 3-level scheduling algorithm has as essence the 

notion of IIfastest capital release ll
• Its elements work in 

the direction which rende~s minimum delay of value-containing 

output. Whether it be the case that stocks of finished 

products are kept or not, the philosophy of the algorithm is 

justified since anyhow time is money. If all orders are met 

by IIjust-in-time ll production, the merit of the algorithm is 

obvious. In the other extreme, if all orders are met 

simultaneously from the inventory (which is the classical 

approach in inventory/production managemenf), the algorithm 

1 ... 



hastens 

goods. 

the conversion of invested capital into sellable 

45 

The implicit enume~ation algorithm for the order selection 

problem li"kewise minimizes the delay of sales of finished goods 

through maximizing the total value of simultaneously-released 

orders. Its very nature presumes existence of end-product 

stocks. It is applicable to all multi-item whole-selling 

activities. 

One possible application for both algorithms was the 

case of the producer company we have discussed. 

The company had been keeping stocks of finished armatures, 

yet itwas desi~dto organize production such that some orders l 

could be answered directly as armatures are produced, and 

thus stock levels could be lowered somewhat. 

Thus, as periodic orders are received, those orders 

selected by the second algorithm can be answered instantly, 

and the rest (perhaps together with the stock-replenishment 

order), as the scheduling algorithm decide~. 

It is clear that if the production capacity is sufficient, 

the on-hand inventory levels may be kept low. Thus the 

production manager may adjust the stock levels by considering 

the limitations of the established system, the trends in demand, 

and the stock-holding costs. The two algorithms can thus be 

employed under various stock-holding policies by arranging 

the frequency and sizes of the stock~replenishment orders. 

One can think of many applications for the 3-level 

scheduling algorithm. Up to this point, it was suggested for 

periodic production scheduling. It can also be implemented 



46 

for dynamic decision making through_updating the states of 

the molding machines and the assembly shop. Thus, the schedules 

can be revised in view of realized processing times and/or 

newly arrived orders. Another application may be using it as 

an aid in making overtime decisions. It is advantageous to 

arrange overtime working for the molding process so as to 

eliminate time gaps between consequent assembly jobs. Likewise, 

overtime decisions for the assembly shop which would let early 

release of orders can be made more effectively with the aid 

of the algorithm. The algorithm may also be used to reconsider 

molding lot sizes in view of their effects on the overall 

performance of the schedule through simulation. 

This thesis introduces algorithms to help solve two 

distinct problems which may be" interrelated in some real cases, 

as the one treated above. They are useful tools in the sense 

that they may be used under various operating conditions and 

in many applications. 

I ... 



47 

REFERENCES 

1. French, S. Sequencing and Scheduling. Ellis Horwood Ltd., 

U.K., 1982. 

2. Conway, R.W., Maxwell W.L. and Miller, L.W. Theor.y of 

Scheduling. Addison-Wesley, USA, 1967. 

3. MUller-Merbach,M.,Heuristics and their design: a survey, 

EJOR, 8, 1, 1981. 

4. Silver, E.A., Vidal, R.V.V. and de Warra, D., A tutorial 

on heuristic methods, EJOR, 5, 153, 1980. 

5. Nichols, R.A., Bulfin, R~L. and Parker R.G., An interactive 

procedure for minimizing makespan on parallel 

processors, IJPR, 16, 77, 1978. 

6. Greenberg, I., Application of the loading algorithm to 

balance workloads, AIIE Transactions, 4, 337, 1972. 

7. Loulou, R. and Michaelides, E., New greedy-like heuristics 

for the multidimensional 0-1 knapsack problem, 

Op. Res., 27,1101,1979. 

8. Garfinkel, R.S. and Nemhauser, G.L. Integer Programming. 

John Wiley, USA, 1972. 



2D 

D 

48 

APPENDIX 

DETERMINATION OF ECONOMIC LOT SIZE FOR MOLDING 

Nomenclature: 

~. probability of damage while mounting mold j 
J 

C. cost of damage for mold j (TL) 
J 

D. average periodic demand for component j (units/period) 
J 

P. production rate for component j (units/period) 
J 

h. cost of holding component j (TL/unit-period) 
J 

a. 
J 

number of periods of which demands make up the lot 

size for mold j. 

Derivation 

A = 
1 D . 

D. (1 __ J_) 
2 . J P . 

. J 

Average on-hand inventory a.A 
1 

D. ( 1 D . / P . ) = = a. -
J 2 J J J J 

Holding cost for period 
1 

D. ( 1 D . / P . ) h . a = 2 a. -
J J J J J 

. Expected damage cost for a period = 1 
~. C. 

J J a. 
J 

j • 



49 

Necessary condition for minimum total cost; 

cHC. 1T.C. 1 J J J D . ( 1 D . / p . ) h. 0 = - +-- - = 2 
, 

* *2 J J J J a CI. • CI.. 
J J 

Sufficiency condition; 

21T . C. 
J J 

= *3 > 0 
CI.. 

J 

Hence CI.~ gives the lot size yielding the minimum total 
J 

periodic cost. 

CI.. should be truncated or raised to an integer for 
J 

practical reasons. This decision can be made by comparing the 

total costs caused by the two alternatives. 


	Tez5817001
	Tez5817002
	Tez5817003
	Tez5817004
	Tez5817005
	Tez5817006
	Tez5817007
	Tez5817008
	Tez5817009
	Tez5817010
	Tez5817011
	Tez5817012
	Tez5817013
	Tez5817014
	Tez5817015
	Tez5817016
	Tez5817017
	Tez5817018
	Tez5817019
	Tez5817020
	Tez5817021
	Tez5817022
	Tez5817023
	Tez5817024
	Tez5817025
	Tez5817026
	Tez5817027
	Tez5817028
	Tez5817029
	Tez5817030
	Tez5817031
	Tez5817032
	Tez5817033
	Tez5817034
	Tez5817035
	Tez5817036
	Tez5817037
	Tez5817038
	Tez5817039
	Tez5817040
	Tez5817041
	Tez5817042
	Tez5817043
	Tez5817044
	Tez5817045
	Tez5817046
	Tez5817047
	Tez5817048
	Tez5817049
	Tez5817050
	Tez5817051
	Tez5817052
	Tez5817053
	Tez5817054
	Tez5817055
	Tez5817056
	Tez5817057

