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PATH INTEGRALS IN  QUANTUM THEORY
AND
SOME APPLICATIONS TO HOMOGENEOUS SPACES

In this work we consider the path integrals in
quantum theory and some of their applications to
homogeneous spaces from the semiqlassical point of view.
We begin with thé basic principles underlying the Feynman
path integral formulation of quantum mechsnics and show
the domain where the méthod is useful 2nd powerful. We
present a method for calculating the path integrals for
quadratic Lagrangians and apply it to the example of
harmonic oscillator. Semiclassical propagator given by
the Van Vleck-Pauli formula is also discussed. We next

handle the Hamiltonian deri#ation of path integral. The

starting-point for this derivation is the usual operator

formalism of qQuantum mechanics.

Iater on we consider path integrals on



v

homogeneous spaces concentrating on the motion on group
manifolds. It turns out that for the free motion on the
group manifold the semiclassical approximation gives the
exact solution. We thus study the path integrals for

" (1) and 8U(2) groups. In these cases the propagator is
calculated directly by two methods : the sum over
classical paths and the stationary state'expénsion, which
are shown explicitly to be equivalent. We finally give

some remarks for motion on the hyperspheres S2n +l and

SEn

5

. Deriving a recursion relation for the propagator of

2n +1 o claim that there is the possibility of getting

the exaect solution from some kind of semiclassical

propagator for S2n +1 .
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KUANTUM MEKANI&INDE YOL iNTEGRALLERI
VE
HOMOGEN UZAYLARA BAZI UYGUILAMALARI

Bu ¢aligmada, kuantum mekaniginde yol integralle-
rini ve onlaran hémogen uzaylara bazi uygulamalarini yari
klasik 391dan gozonine 8ldik, Kuantum mekaniginin Feynman
formilasyonunun temelini olugsturan esas prensipler ile
baglayarak, methodun etkili ve kullanigli oldugu alanlara
gosterdik, lkinci dereceden iagranjiyenlere tekabiil eden
yol integralleri i¢in bir hesaplams ySntemi sunaralk, har;
monik osilatdr Srne¥ine uyguladik. Van Vleck-Pauli formiilii
ile verilen yara klasik propagatdr de svyrica incelendi.
Bundan sonra, Hamiltonyen yol integrallerinin tiliretilmesi-
ni ele aldik. Kuantum mekaniginin geleneksel operatdr
formalizmi bu formiilasyonun tiretilmesinde hareket nokta-
sidar.

Bunlari tekiben, &zellikle grup uzaylar: lzerinde

hareketi inceleyerek homogen uzaylarda yol integrallerini
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inceledik Grup uzaylarinda serbest hareket igin yara
klasik yaklasim dogru ¢dziumli verir. Bundan dolavi, U(1l)
ve SU(2) gruplarl icin yol integrallerini‘inceledik. Bu
hallerde, propagatdr birbirine ozdes olan klasik yollaﬁ

tizerinden toplama ve duragan haller acgilimi yiéntemleri

2n +1 2n

i1le heseaplanir., Son olarak S ve S hiperkiireleri

hakkinda bazi dislincelere yer verdik. 82n +1 kiiresinin

propagatdrit i¢in bir indirgeme bagintisi tiireterek, dogru

2n =1

¢ozlimin S kiresinin bir ¢esit yara klasik propagato-

riinden elde edilebilecegini iddia ettik.
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I. INTRODUCTION

The path integral formulation of gquantum
theory was suggested by some of Dirac's remarks(l)'(g)
concerning the relation of classical action to gquantum
mechanics. Later, the formulation was developéd and
shown to be equivalent to the more usual formulations by‘
Feynman(a)‘(q). In contrast to the échrﬁdinger
formulation, which stems from Hémiltonian mechanics, the
Feynman formulation is tied to the Lagrangian
formulation of mechanics. This new approach introduced =&
new mathematical concept into quantum theory, namely the
function space integral or "sum over paths", so that one
direétly computes the propagator'of the Schrddinger wave
function rath&r'than the wave function itself, expressing
this propagator as an integral over all possible pathé
from one given point to another.

In recent years, more attention has been placed
on the Hamiltonian path integral formulated in phase
space(s), whose equivalence to the Lagrangian path
integral has been shown only in Caitesian coordinates,
Since there is no general proof for the canonical
invariance of the Hamiltonian path integral, it is as yet
unknown to what extent the Hamiltonian formulation is
valid. This formulation of path integral differs from
Feynman's work in that it requires the description of
the classical system in terms of canonical variables
ard in the classical limit reduces to a Hamiltonian

variational principle. An advantage of the Hamiltonian
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formulation is that if the path integral is defined in
the simplest and most obvious way there is no need to
introduce special normalization constants to maintain
the unitarity of the propagator. In the conversion from
the Hamiltonian formulation to Feynman's formulation the
correct normalization constants automatiéally appear,

A representation of the propagator in the closed
form of a path integral is useful for physical
applications, and is especially appropriate for the
perturbative expansion and for the semiclassical
approximation. Nevertheless, the original form of Feynman's
path integral is applicable only to a limited class of
problems, where the Lagrangian is quadratic in the
variables x and X, For.a more complicated lagrangian, fcr
instance, the one which describes the motion in a
Riemannian space, the original form of the path integral
"needs a modification involving an additiohal term in the
Lagrangian proportional to #A. This appfoach was developed
by De witt (6,

The semiclassical approximation in the path
integral theory has paramount importance. Since we know
that at small times quantum effects are not very
substantial the short-time propagator is given correctly
by the semiclassical approximation..ln the framework of
the path integral representation, the semiclassical
expression arises quite naturally. The FPlanck constant is
a small parameter in a certain sense and the propagator
is given by the classical action in the phase with an

overall normalizing factor, which can be calculated, for
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instance, by the Van Vleck determinant. Then tkaz finite
time propagator is obtainedlby_integration of a product
of N short-time propagators. The limit N—- oo leads to
the functional integral overall the intermediate
coordinates. This is interpreted as the path integral.

Studies with the semiclassical approximation in
group manifolds have also quite nice features., As a matter
of fact, the semiclassical amplitude for the free motion
on a group manifold doincides with the exact solution,
apart from the fact that there may be, and there usually
is more than one classical path connecting two given
points. The: simplest examples of such situation are: the
motion on a c¢ircle or the motion of a particle in a box
with elastic walls. The compactness of the group
manifold is evidently the reason of appearance of an
infinite set of classical trajectories with fixed end
points. The total amplitude is then given by linearly
superimposing the correspending contributions. If the
manifold is simply connected we just strairshtforwardly
add the amplitudes. Whereas if  the classical paths divide
into homotopically distinct classes, then there is the
possibility of relative phase factors(7).

It is clear that Feynman path integrals for
quadratic Lagrangians such as free motion in Euclidean
space is given exactly by the semiclassical approximetion,
because in these cases one has a& multiple Gaussian
integral,‘that is calculated exactly by the stationary

phase method. In the literature, however, there appears

no such - simple explanation why the free quantal motion
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in group manifolds is also semiclassical. As a matter of
fact we have shown that the propagstor for a free motion

on the hyperspheres 82n +l

can be put in a form of =
.sunmation over classical trajectories showing some form
of the quasiclassical approximation, A direct calculation

1 and 85

with this propegator shows that for 8
semiclassical results are exact.

In the context of the path integrals on group
manifolds numerous works appear in the literature. Motion
in the SU(N) group manifold was considered by Dowker(B).
lHe showed that the exact solution in this case is siven
by semiclassical formula. Marinov and Terentyev(g)
considered the freé motion on a sphere of arbitrary
dimension, They write the ?ath integral on s® and expand
the quantum mechanical propégator in terms of Gegenbauer
polynomials. In more recent works.I.H.Duru(lo’ll)
studied the path integral 6f some potentials which are
related to the path integral on SU(2) group manifold.

In the present work we first give the basis of
Path integral in the context of Feynman's postulational
formulation as well as some quantum mechanical
-froperties of the propagaﬁcr. We consider the equivalence
of this formulation to the Schrddinger equation only for
a particle moving in a potential V(x,t) in one dimension.

The form of Feynman Path integral displays that it is

especially a useful technigue for systems with guadratic

Lagrangiahs. From this point of view we show the

calculation method of path integral with an application

in the example of harmonic oscillator. The
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pre-exponential factor, namely the Van Vleck determinant
not only underlies an over all normalizing factor, but
also an expansion of it contributes to effective
Lagrangian for the case of Riemannian spaces. Hence it
takes an important role from the semiclassical péint of
vier We then giﬁe the derivation of the Van Vleck
determinant in some detail. We conclude path integral
formulation of'quantum mechanics with the Hamiltonién
derivation.

Finally, we study the path integral on
homogeneous spaces. We especially concentrate our
attention on the equivalence of semiclassical results to
the exact solutions for free gquantal motion on U(l) and
8U(2) group manifolds.‘Some remarks about the path

2n 41

integral on the hyperspheres 5 and 82n conclude this

woTrkKe.



2els The Feynman Formulation of Path Integral

In quantum mechanics given the initial state of a,
system one éan always fully solve the quantum meéhanical
problem if the propagator is known. At the present work
we will find the propagator without considering the |
eigenvalue problem of the corresponding Hamiltonian as in
the more usual formulaﬁions. We will first consider the
motion of & particle with one degree of freedom. The
generalization to higher dimensions will become clear.

Iet us specify the.position of a particle moving
in one dimension by a coordinate x depending on time t,
then x(t) describes a path. The particle starts to move
from a point Xg at time ta to a point X at tb’ the
function x(t) describing the path takes the values
X, = x(ta) and X, = x(tb) at the end points. In gquantum
mechanies, there is a probability amplitude, the propagator,
such that it takes the particle from the point Xy to the
point-xb. Now at this stage we have two postulates: The
first one 1s that, when a particle's position is observed
in some region of space~time then the probability
amplitude that the particlé has a path lying in this
region is the sum of complex contributions, one from each

'path in the region, that is P =|KI2 where

K——-Z @x)] | | (2.1.1)

over all paths
inihe region

Here, @ is the contribution from each path. The second

Postulate is that each path has a contribution egual in



magnitude, and a phase factor equalito theiclassibal

action in units of H
/&s[x(u] |
cp[x(’c)J= A€ , (2.1.2)

where A is an overéll normalization factor.

At this point & question arises in minds
immediately. If each pafh does not have any superiority
to any other, how does the classical path become most
~important in the appropriate limit? The answer to this
question comes im the following way. In the classical
approximation the action 8 'is much greater thaen # s
therefore, each path has a very large phase angle.When the
summation Eq.(E.l.l) over paths is concerned, since each
path has a different phase, contributions from the paths
eggentially cancel each other. Only near the c¢lassical
path the paths start having coherenticontributions, since
S is stationary in this region. Then, coherence is lost

again once the phase differs from the stationary value
/‘h S[X(U Set //h by about 7.

As a result, in the classical limit not only the classical
path dominateé the propagator‘by itself, but also the
paths whithin .*.=1bout;,“H of 5,4 make contributions
coherently.

After having discussed the classical limit we
can conclude with the semiclassical approximation to the
propagator. Depending on the condition that the Planck
constant h is a small parameter in the cilassical scale,

. Y
the propagator is represented by_exp(5'°+1f-.5,, ,.(zﬁ) 51+.-..)-
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The first term SO is just the classical action fﬁnction,
Sl is also determined by the classical motion only,
‘higher terms are more complicated. Hence, the action
function, the role of which is to generate solutions in
the classical mechanics, is the solution itself for the
quantum theory

R

K= Ae (2.1.3)
is just the semiclassical expression for the propagator.
Here A' is some normalizing factor which measures the
number of paths in the coherent range.

Now we come to the point of calculation of sum
over paths in Eg.(2.1.1). To do this let us first
consider the Riemann integral. In the definition of the
ordinary Riemann Integral, to find the area A, under a
curve the procedure is this : First , a subset of
ordinates Fig.(2.1.1) spaced at equal segments k are
taken. Clearly, k times the sum of the ordinates gives an
approximate value of A, To recover this approximation k

is chcsen in the limit k—» 0O

k—>0 é

In analogy with the Riemann integral Eq.(2.1.4),
we first divide the time interval tb- ta into N
‘intermediate segments each of width & , by introducirng
N-1 times t, = €En + to y 0 =z 0,1,2,...N, For each tn we
next introduce an assigrned coordinate X, 3 therefore, a

path x(t) is fully specified by an infinity of numbers
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x(to) ...x(tN), namely, the values of the function x(t)

at every point t in the interval t, = ta to t t

0 N = “pb?
Fig.(2+1.2). We contruct a path by interpolating the gaps
in the discrete function. To sum over all paths we must
integrate over all possible values of infinite wvalues

xl,...,xN_l_, except of course x(to) and x(tN) which will

be kept fixed at X5 = X4 &nd Xy = Xy respectively,

We hope that if we take fhe limit N——— o0 at the end
we will obtain a more representative sample of the
complete set of all possible paths between a and b.
Finally, introducing & normalizing factor whose value

depends upon the particular problem we write

K (b,a)= £im ,_’._j/---~-/e%5[b'°] dx..

E—~0 A (2.1.6)

“'”'Ekﬁ:”
A

where
3 |
N =t/ L(%,%,¢) dk, | (2.1.7)

(3

is a line integral taken over the trajectory passing
through the straight sections in between. In a more

compact notation

. | XL _;-_ J[bIO.J
K(b,a)-_: e D x(4) . (2.1.8)
Xa ' '
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This is called a path integral.

2.2. Some Properties of the Propagator

Now note that if tc is some time between ta and
t, due to the facts that the action is an integral in
time and L does not depend upon any higher derivatives
of the position than the first the action along any path

between the points_x_a and X, can be written as

S[be] = &[b.e]+§c.q) | (2.2.15

where ¢ denotes a point on the path on which S[b,é] is

evaluated. Carrying this action into_Eq.(2.1.8) we get

%{Sfb,a] +S[C,o]}
Dx(t). (2.2.2)

K(b,a).—./e

The integration over any path may be split into two
partss therefore, it is possible to integrate over all
pafhs from %, to x in two successive stéps. In the first
step we integrate over all paths from Xy to X, keepihg

5 [b,c] cosfant, and also integrating over all possible

values of xc

b %S[b.c]
K(ha)'—‘fj e K(c.a) Dx@)dx, .

X, % (2.2.3)

In the second step we just integrate over all paths from

X to X and get the result
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K (b,a)=f K (b,o) K (c0) d .

X : (2.2.4)

C

This means that amplitudes for events occurring in
succession in time multiply which is an important rule
for the propagators. |

S50 far we have dealt with the amplitude, the .
propagator, for a particle to reach a particular point in
space and time by closely following its motion in getting
there., Nevertheless, it is genepaly helpful to deal with
the amplitude which does not give any previous history.
‘Thus instead of K consider ¥ (x,t) as the total
amplitude to arrive at (x;t) from some past situation. In
fact, this kind of amplitude has also the same
probability characteristic as those we have so far
studied. As usual we will call this kind of
amplitude a wave function or the state of a system.
Therefore, we see that the propagator K(x',tf;x,t)_having
the same probabilist ¢ characteristics is actually a wave

function :
K (_LX.],'U,' X,{?) = ’\-P (XIJ‘E,)J - (20205)

' ] 1
which is just the amplitude of getting to (x ,t ), but
K(X',t':x,t) itself gives the past history of the system,
i.e. , where it came from. Hence, our rule for the

propagators gets the form
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() - ]m B SO

This result can be interprefed physicallv as the amplitude
to arrive at (x",t") is given by the integral over all
possible values of x' of the total amplitude to arrive at
the point (x',t') multiplied by the amplitude to go from
(x',t') to.(x",t"), which includes all the past history
of the system. |

Now we will use all of these properties of the
propagator and the wave function to derive the path
.integfal form of the propagator in a fancy alternative
way. We know that at small times the quantum effects are
not very substantiai, so that the small-time asymptotics
of the propsgator is given correctly by'the semiclassical
approximation. Thus we dan build up the finite time
propagator by iteration, dividing the time interval into
small segments and using the semiclassical expression at
any segment. According to superposition principle the
complete wave function arriving at X aﬁ time t0+2 £ is

given in terms of states Y (x4t + € ) as

V(% t+2¢) =/&x. K (%o, k426 X,, b é)’EP(Xq, Lae) ( )
2.2.7
(3)

to yield a quentum mechanical Huygens' principle Co

If the amplitude of the wave ¥ is known on a given
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surface in particular, the surface consisting of all x at
time t, its wvalue at'a perticular nearby point at time

t + £, is a sum of contributions from all points_of the
surface at t. Each contribution is delayed in phase by an
amount proportional to the action it would require to get
from the surface to the point along the path of least
action of classical mechanics. Thus the full propagator

from (xa,ta) to (xe,to + 2¢ ) is given as

K (XZ,EQ"‘Zé; X&,h‘) =

/K (X;,L-!-Z(:; X41‘l=o+€)K(x'rtﬂ"’e;xﬁ’&‘)dx"' (2-2_8)

Proceeding in the same manner we obtain the result

K(xb,‘l'-yS Xa,'l:n. s// ...... K(L,N-f)---

X Xy XN-J
o (2.2.9)
- K (1.+I, 4.) K (1, a)dx'-l""dxﬂ-l :
where |
K({-H,i).—: _g_. CXP[—;T (Scl_(x.‘.u.{:!'thfilf)} . - (2.2.10)

Wote here that although the paths linking two
successive points are the minimizing classical paths the
sum of stationary paths for all subintervals is ndt
neccessarily a stationary path for the full interval.

Thus as soon as we go beyond At = £ we have to start
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including non-stationary paths. Nevertheless the phase
for each of these non-stationary paths is still the
classical action for that path, since for thé path via

Xp9XpyesesXy 19 for instance

-LSCI (xb;{b: xa:'l:a) = ‘S;[ (Xbi',:'b: XN-: ; J‘n-l)

N-2

*+ Z Scl. (xf'u, bios Xy, b )
i=1 :

* Scl (X‘,L,; Xa,l:.). (2.2.11)

The path is still clasSicai, it.is Just no longer
" stationary between its end points. Here Scl which is
given by

tu

Sat (X;m*:+::x,-,£r)= H,-,,,/L(;Z(U,X&)Q’c)dl:) . (2.2.12)
tr

and L is supposed to be a quadratic'function of the
velocities. Then by the rule for multiplying amplitude of

events which occur successively in time, we have
N-)
P [x®]=tim [ K (141,7)
e+0 j.0

= __L&. exp[—i— Sd (X;.LL;XG,J&)J-

A (2.2.13)

Conseduently, using these facts we reach the result of
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Eq.(2.1.8) for the standard finite time path integral

..t; S[ Kb.x‘]
K(Xpty ko ta)= [ € Dx(t). (2.1.8)

2.5+ Equivalence to the Schrodinger Equation

In this subsection we will derive the Schrﬁdi;ger
’equation from Feynman's formulation of path integral
which we have dealt with so far. For this aim we will
consider the special case 6f a particle moving in a
potential V{(x,t) in one dimension i.,e., for which

SN
L = mx /2 ~ V(X,t)-
let us first introduce the equation

-

’Y(xz.li'z)""'/ K(szjcz.; x«:L4)’Y(xq,‘l:4)cj)(4 . (2.3.1)

S d

which gives the wave function at a time té in terms of the
wave function at time tl. In order to obtain a differential
equation we go to an infinitesimal time inte:Val such
that
oo _
. y! ! !
Y(x,ﬂe);/l/\(x.hé, X, ) ¥(x,4) dx', (2.5.2)
-l

where the propagator is given by the semiclassical

formula for fhat infinitesimal time interyal. Using the



16
fact that there is no need to do.ény integrations over
- R '
intermediate x s to calculate K, since there is just one

gslice of time & between the start and finish, We have

. | - _ o
K(x,’de:x,%)-.-. .:i__ exf[é-é— L (_’.‘_35 Mx)} . (2.3.3)

Thus, keeping in mind L =lmi2/2 - V(x,t). EQ.(2.3.2)
becomes
w(xll:.\.e_):/ “’!—(ex,v[i m(X-x')z.]
Zoo A 4 2¢&
. )
1 X4XA 1 )
' CXP“'T{&V( z ’ {)]] Y (x,t)dx - (2.3.4)

Here, notice that the factor exp(.ig— (x -x')%{

2he

. ' '
oscillates very rapidly as (x-x ) varies since € is

infinitesimal, 4 is small and r%/ﬁ éis large.On the other

hand VY (x',t) is .a smooth functiong therefore, when
this first factor in the exponsnt is multiplied by

% (x',t), the integral vanishes for the most part due to
the random phase of the exponential. Hence, only
contributions within a distance % of the stationary
point X 'z x , where the phase has the minimum value of
zero, are substantial. In terms of ’7 = x'-x, the region

of coherence range is
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73
2&hT
71 g (245m)” (2.5.5)
Meking the substitution x' =X +’7 we obtain
"""72 he
’Y(x,&-ré)--’—/ REE
A - -]
-%ié \/[ (X-\-*)/z,%:)]
. e | ’Y(x+'1,£)447. (2.3.6)

We may expand Y in a power series keeping terms of
order ¢ and by the relation Eq.{(2.3.5) second-order

terms in 4 . Furthermere we can replace

€ V[ (x,;"] ,t)] bj éV(x,t) since by doing so we make

an error only of higher order than &€ . Expanding the
left hand side to first order in € and the right-hand

side to first order in ’7 , we get

av_ o [T e ]
xa{: —_— —— ._.__.\/ »
vireZEe £ | e [1- L€ v
“'[Y(x%)‘{' 9_'9_{+_L2_9_1’_§j]0[
' ax 2 3% 7'

(2.3.7)



18
Now if we take the terms to zero order in £ and ’7 on

both sides

on

Vix )= (;f— | e 47) Vi)

-b”

o (211:"/:'6 n
T A

”

'Y/(K.;{') N (20308)

In order that both sides agree in the limit & approaches
zero A needs to be so chosen that the expression of

Eq.(2.%.8) equals to one :

e 2
Ag('ﬂ“"é) .

”

Now evaluating the Gaussian integrals

[~ -]

j exp im 2 2 ,7 1] (2. - )
/A | [ ‘7 / 4 € ’ / 0, %49
and

o® -
| £ expimn/2he] pidy < dhe . (2.3.10)

Therefore Eq.(2.3.7) becomes

v ¢ ¢ 9"
Nyl —— = —-}A—V"i’»;;—nz—;y;. o (2.3.11)

This will be true to order £ if V satisfies the

differential equation :
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£ OV £ o'y

ot i —— T ittt

+ Vixd)y (2.3.12)

giving the Schrédinger equation for a particle moving in

one dimension.

2.4, Calculation of Path Integrals

In this subsection we will introduce & technique
which was given by Feynman. This technique will be wvalid
only for the case that the integrand of the path interral
is an exponential of é guadratic form in the variables x
-and x, and all of the variables appear up to the second
order. For this purpose let us introduce thé Lagrangian

of the form :

3 . .
Le aft) X#bU)RX + cth) x4+ dW) X
+ el X + £, (2.%.1)

The action of course will be time integral of this

Lagrangian between two end points. We now wish to compute

K (Xt i %0 ko)
Xb ¢,

7

=/ exp [—%'/ L (;(,X,’c)c“} 'D.X(U.

% Ly (2.4.2)

Let us write every path as

X(t)= X&) +ylE) (2.4.%)
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where Xx(t) is the classical path between the specified
end points and y is a new variable, namelv the deviation
from the classical path Fig.(2.4.1). Since all the paths
agree at the end points y(ta) :'y(tb) = 0. The classical
path is stationary so that any variation in the
alternative path x(t) amounts to the associated variation

in the deviation y(t). Hence we can write

Xp 0
_ - (2.4.4)
4 Dx(t) = O/Dy(t)

by means of which Eq.(2.4.2) takes the form :

K (Xb,{b : Xa,{a)—;.

0

/exF[—E: s[xw +g(“]} Dy(h). (2.4.5)
o

Expanding the action 8 in a Taylor series about X :

4 |

Srry]= [ L(Rei Rent)
1,
tp

B . oL 2L

,_t/ {L (x,x,’c)+(—5-;l§ g+ 9% Ix )

F . L. . 9
+__H(5_‘;;1LT; +l = xngf;ﬁ?} Y e
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The first piece L(X,X,t) integrates to give S[i}:Scl.
The second piece linear in y and § vanishes due to the

classical equation of motion. All that remain are the

“second order.terms in y
S[x®)= 8, [we]

t,
+/ ®)a*+ b(t) ¢ Hy | dt
t. [0 - ggfc( 4 }J ) (2.4.7)

- Since the integral over paths does not dépend upon the

classical path, the propagator can be written as

t,

.0
“/ SL [b.&l : - |
K(ba)= e l /(EXF/; /famgf
o

to

+ b(t)yy +cL¥)g‘]J£})'D;(£). (2.4.8)

Due to the fact that the path integral has no

memory of i, it can only depend upon t. Hence

‘:/& Sc [b,o] .
K (XE:{L;Xaaka)z A [ F-(‘Lbr‘kﬁ)? ' (204-9)

where F(tb,ta) is some function of t, and t . For the
case where the coefficients in Eq.(2.4.1) are time
inderendent F oan depend only on the difference

t = tb"tao
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Now we can get further information about F from Eq.(2.2.4).
This we demonstrate for the case of a free particle where

Eq.(2.2.4) yields,

F(t +s)\/t ¢+ 5 = F(&)T F(s)N/E"‘A, (2.4.10)

Now, if we define a new function (%)

£(£) = A F(8) % (2.4.11)
Inserting‘this into EQ.(2.4.10) we get

£(t +8) = £(E)E(S) o (2.4.12)

This relation simply says that f(t) must be of the form

at

f(t) = e . Now choosing t = £, an expansion in a Taylor

‘series to zeroth order in € yields

This tells us to set a = 1, so tiat F(t) becomes

l .
t = - e A' (2.4.14
F(®) ANT )

giving the normalizing factor. The technique given here
will be clear when we consider the harmonic oécillator
ekample in a later subsection.

To summarize : For a quadratic lagrangian the
propagator is evaluated by Feynman's theorem which

involves essentia lly the computation of the classical

action Ss10 and it tskes the form
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K(xb,‘kb, xd..a Em)"'—

» F:(Jcb,l:u) exp[.’_i;_ Sd. (Xb,'lrb; Xq,{&ﬂ, (2.4.9)

where F 1is an entirely time dependent function described
as a conditional path integral. As seen above we did not
evaluate this conditional path integral but gave another
procedure for obtaining F. Papadapoulos(la) has recently
evaluated this conditional path integral for a general

" quadratic Lagrangian.

| However it is also possible to obtain the

normalizing factor F by using the Van Vleck-Pauli formula,

In this formula F(tb,ta) is given by

F(L’bflz“) ="

. ~9’- S |/1_
- e | Kt ;xm,x.ﬁ]
{/ﬁﬁl %D Xa ‘( ¥ e ) - (2.4.15)

In the naxt subsection we will give'a complete derivation

of this formula.
2.5. Derivation of the Van-Vleck Determinant.
As discussed in the previous sections, in the

linit 4 —e 0 , the propagator is gmiven by the

semiclagsical formula :
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K (Xb’%b; xa,‘ka)z;

i, Serl bio)

A (Xt X ts) € (2.5.1)

We have shown that this expression is exact for the cases
where the Lagrangian is quadratic in x and X. Then the
preexponential factor depends only on time. In this

subsection we will calculate the preexponential factor in

an alternative way and for more general cases,

Iet the motion be considered as a result of two

subsequent processes, such that

SCL (XB,{E; Xa,ka).—.,-
‘Scl(xb'%b;xc"j‘c) + Sa CHERD MR (2.5.2)

under the condition

ascl(xbr Xc) 95:.[ (J(h)(o_) _0
2 Xe v 3 Xe o (2.5.3)

which means that Xq is a point on the classical.

trajectory from x, to Xy. It is also understood from the

last equation that the intermediate point x, on the
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trajectory is obtained as an extremum of the action at
fixed end points. Writing the fundamental property of the

propagator Eq.(2.2.4), in the semiclassical approximation

A exP(‘h Cl) = /A, AZ EXP%I- (SCld +Scl1) O,Xf._. ’ (20504)

)
and Aq

where.Scl and A depend on (xb,tb;xa,ta), Se1

1

1 ] :
depend on (xb,tb;xc,tc), and S and A, depend on

012

(x;,t;;xa,ta). Since we.are working in the limit h— 0
~ the calculation of the integral in Eq.(2.5.4) corresponds
to finding the asymtotic value of this integral

of a rapidly oscillating function, which is called the
stationary phase method: In Eq.(2.5.4) Ay .A5 is slowly

varying and l4f is large. Now let us write Eq.(2.5.4) as

A exp(!é_scf) = /ex,o [}é_ (Jc[, +3,. )+

| (2.5.5)
s Ln s+ dnh) dx, .

The stationary point of the integrand follows from the

expression

9\5;14 9‘5512 ,ﬁ(i DA
o  ax Al BX,

9%, DX

- ———

[ A )ﬁa. (2.5.6)
A DX,

The semiclassical approximation invelves neglecting the



26

term in the parenthesis, since if is multiplied by 4
which is small and Al-Ag is slowly varying. In this
approximation Eq.(2.5.6) is identical to Eq.(2.5.3) and
xé becomes Xy Furthermore, expanding the integrand of

the integral in the Eq.(2.5;5),in a Taylor series it

becomes
. ! ! -
Aews 51‘)‘/“““”{'2‘ (S0, %)),

. r ot
+-£n»4,,} +baA, ] + 2
' Xe X 4 3X 2%’

(San & )}x, . (x- xf)(XQ{X:)J (2.5.7)

[ Sk

B

Recalling Eq.{(2.5.2) this relation becomes

A (.Xb»lb?xn'{a)""

[(_2111'{7. ek B] (e ks X ) Al b %k),

where B is given by

(2.5.8)

B _ 95c1 (XB,X ) 916(.[ Lxc;xa)
P T o oxf 55 %

. (2.5.9)

Here the intermediate coordinate X, ig a function of .

- i o(2.5.2)e To find a better
X 9% sty Eo-t, glven by Eq.(2.5.2)

c’
expression for the matrix B, apply the operator

ol

9/9){ Qxb to Eq.(2.5.2) and the operators 2’/9)(‘=L

and 9/9)( to Eq0(205-5)- Therefore, we get three
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equations :

2 ‘ 4 1 :
9 S Xy, %) _ 3Salx. k) axl L 2% 9 et (¥p.X.)
axs axt axiox] oxf  ox 9xf9xf

ox? ( 95,1 (%, x) 9%, Xuxa))
+ ﬂ
ox?

9)(: 2x7 9)( gX 97(

2 -+ |
a Sd (Xc, x°)+ 8)((_ ( o S,_l (Xb,xc) al‘scl(xc'x‘*) - 0
axaxf Ix*\ A ax” 9x2 axf

1 | 7
B &nA) [ Ful ) a%Kx)) S% _p
Ox X x5 9x2? ox’ox? ) oxf

(2.5.10)

or using the notation
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Ex.(2.5.10) become

t 27 (7 (2) (7 2) 8

Rpm B G+ QD QB G,

, (1 Ok {2) 27
'Dozp Qet 51/6=_0; Ddﬁ +B°(1Qf: = 0.

(2.5.12)

To exclude the matrices Q(l) and Q(‘?), it is appropriate

to use matrix notation. Thus

D=D,Q, +Q,D,+ Q,BQ]
D, + Q,B = 0

(2.5.13)
From the last two equations:
-/
Q[ e DI B
Q.= -B'D: | (2:5.14)

and substituting these into the first equation of
Egs. (2.5413)
!

- . 21
D =-D, BD (2.5.15)

This means that

- ~1
B=-D,D Di=-D(-U)(-D) (2.5.16)
Now, let us take this expression for B into Eq.(2.5.8)

and group the related terms.
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1’ ‘ . 2 2
(anir)*a__ (niki*a, (a4,

Vdet (- D) \/def(-Dz) {Jeé (—D,—): ' (2.5.17)

The solution is evidently

A [det () fanin) |

This expression for the preexpdnential factor Zn

\/2

the semicléssical approximation was found, using the
Schrodinger equation, in an early work by Van Vleck,
Note  here that if the action is bilinear in x, and X,
for any bilinear Hémiltonian, the matrix D is independent

of x, and X . In this case the exact solution is given by

the semiclassical approximation.

2eba Harmonic Oscillator

In this subsection we will apply the method given
in the subsection(2.4) to calculate the path integral of
a linear harmonic oscillator. For a harmonic oscillator
the Lagrangian is

2

[om %% mw x* | (2.6.1)
2 2

. Thus the path integral is given by

b .
Kb e el [ (37 )it | Dxt0
& L

(2.6.2)
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Now, let us expand each path about the path that makes

the largest contribution to the path integral. Thus for

any path we write
X=.—.‘5(+y, Dx(¥)= Dg({').

Upon introducing this into the classical action,

%
+_f21'__/ Tg{_ wzylldf° (2.6.3)

The first integral gives the minimizing action Scl' Thus

we may write

K(b,a)=F(T) elfﬁsa, " (2.6.4)
where
0 b,
F(TF/F—’KP{;{/% (ﬂl—wﬂz)‘”} Dy ),
s A

and T =t, -t  with y(ty) =y(tb) = 0, is a factor
independent of the eﬁd points Xy and Xy, o Thus expansion
about the classical path allows us to separate the path
integral into a factor dependent upon T and the end points,
and another path integral dependent upon T alone. Thus

the important dependence on Xg and X, can be found by
-simply solving the minimizing differential equations
subjecf to the end-point conditions x(%.) = X, and

x(tb) z X, and caleulating the integral
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/ '__,2{,_(3._2_ WX ) dt

fﬂ

The minimizing differential equation yields the

solution

Xl(‘c) = C cos (wfnp) (2.6.5)

where C is a constant which will be determined by the
initial and final conditions. Upon substituting this

solution into the above integran¢; we get

£

Sd—.;/_%ufc?[ S:’ﬁ(w%-;—tpj — Co:»"(wfz-ktp)}dfc
tﬁ-

z

o 12 [ Sin{wobys ) Cos (why+ )

2
_Sin (W‘éa"'ﬁo) Cos (w‘{:a + ‘1")] (2.6.6)

Considering the solution x(t) at t, and t,

(Sc{-.-_.- — -ﬂz—@[m )(b - /Cz — xi Xo.] . (2.6.7)

Notice that
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Cosz,_xé'_).(_‘i ‘/_ Xb _ e |
(2.6.8)

the simultaneous solution of which yields C

7 / 2 2 : '
C = 3—-—-9—--—""' (xa -+ Xb—- zanb COSMJT]. (2-6.9)
o wT ‘

Therefore, Scl becomes :

285mwT

Now let us come to the calculation of F(T).

Consider the property Eq.(2.2.4) :

K(b,a)=/ K (b,c)K (c,a)dx,

Let t =tb-tc and s "tc"ta_’ so that £ =8 -..-tb—ta =T,

Employing Eq(2.2.4)

K(b o)z F (t+s) exp{ Tmw [(X + X¢ ) Cosus (£45)

2{15mw({+s)
~ 2 Xq Xb}}

o0

= F({)F(\s)/engzgg:;é [(X:+ X,:)Co.sw{__




33

RO R L I

(2.6.11)

It can be easily shown by algebraic manipulations that,

LS,
K(b,a)e F(hes)e™

o

;‘Sct ! Sinw (t+3)
_ F_(L)F(S)C,& /ex?[ 1M w (t+s )

24 Sinwt Sinws

—

X Xp Sinws + KQSI'nuJ'l: ch |
‘{ - Sinwa(k+s) “ (2.6.12)

. 1.5‘.(/ﬁ
On the each side the factors e cancel each other,

and the integral on the right hand side is of the form
o0

L ®E" 7

Le JE - =

Therefore,
© )/;n-i‘ﬁ&'nw{&'nws |
1+5)=F(¥)F (s ’ (2.6.1%)
F( ) ' | M Sinw(t+s)

and
'F(£+s)\/§nw(w€+5)=

= F(é)y@:'nw{ F(J)‘/5,;,u,5'/z’f7z’f '

(2.6.14)
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Introducing a new fungtion,

| f% Ih;:-’
F(*)=/2”mi E R,

Eq.(2.6.14) becomes

f(4+9) = £() £ (), | (2.6.15)

which implies that £(t) must be of the form : f= &2V,
Using the same arguments that lead to Eq.(2.4.13), -
£{(£)=1, F(t) becomes _
L Mo
F(t)= (”"W/znz'ﬁs:'nwf)
_ (2.6.16)
and this completes the solution of the path integral of

a harmonic oscillator.

2.7. Hamiltonian Derivation of Psth Integral

We will now derive the propagator as integrals
over trajectories in phase space. To do so, we will
begin with the general principles of quantum mechznics
and then deducude the Feynman path integral from them.

Iet us introduce Hilbert-space operator QH |
acting on the state vector with eigenvalue g in the

Heisenberg picture

Q, ("7I°I'J°7H =.°1|q»£>u ' (2.7.1)

In this picture, one freezes the complete time

dependence of the state vector, and the operators are

Fiven by
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|ﬁ
R

LHE

Q, )= e

-% HE B
Qs c (2.7.2)

P
where Qs is the time-independent position operator in
the Schrddinger picture, and H in the exponent is the

Hamiltonian, The time evolution is then given by the

equation
‘ ._%H{-
:{. = . | |
la.t ), =€ ,‘1> s (2.7.3)
-t '
where Iqj)- e \q,tjm is an eigenstate of Qs

with eigenvalue q :

Qslﬂﬂm

The finite-time propagator is then given by

648 9.4)- (320 4.0,
= <<1' l exP{-—%- H(_’c‘-’c)} | f1> (2.7.4)

which measures the overlap of eigenstates of the |
position operator at different times. It studies the .
whole global motion of the system i.e., specify the
dynamics of the system completely. We are going to
express this transition amplitude as a path integral in
terms of a classical Hamiltonian, H(p,q), without
reference to operators and states in Hilbert space.

To proceed further, let us subdivide the time

interval t'~t into N egqual segments and take the limit

Ny O later. Let
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E=at=(t-t)/, (2.7.5)

8o that t;=1ié+ t , ie0,l... . Now using the
completeness of the state vectors lqi’ti> we can

write Eq.(2.7.4) as

<4¥] 8= <q:ef “Ie)

—<‘ﬂ Ferl )
/clq. d%\(ﬂ[u— H) ey - <3'|("%”)(q?é.7.6)

- gince we consider large N, so that the step in time £ 1is
small, and exp(-l'&/k1 H) ~ [~ 1%9. H « Therefore, we may

write each term in the integrand as

{3l (L en)lay -
[22: <alpCpll-FHlaY, @70

and define the classical Hamiltonian H(p,qa) by

(2.7.8)

{plHlay = Hip)Lpla7

Thus Eq.(2.7.7) can be written as
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<f11{(.1- e H)ay -

£
dp,  Pr(91-9)
P, /%

el e _
2nh _ (/ !1—_;- /'/(Fu?:)]
(2.7.9)

Therefore, G(g',t'3q,t) becomes

2 Lim ... | ope X
< ’q > N-—-r»oo// /(.znf; 0(’;;"‘?){

.exp[)ﬁ' ZD P (Gsr = Gn) ]

v |
i [/ - Lt H(pn,qn)],- (2.7.10)

with the conditions 4522 » 9y =9
At small €& we have

[1- € Hipa)|<plqy & exp[-3 0] (ply.
| (2.7.11)

Then it becomes possible to write the amplitude

Eq.(2.7.10) over unitary amplitudes replacing

(!-»2'6/,51”) by exp (__'z'f/h H)
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<t H%) Lim // ....... /(;’f;«)f m dpndq,;

N—» o2 (zm‘,)f
: exp[-:h— A%Zo i q’Z’t 7n)
- H(P"'?")] ) (2.7.12)
Qith Atz €,
Suppose now the set of values {pq Pao. .
G Pis o %_,,p,,_,] | as to be

successive values of certain functions g(t) and p(t),

which may be discontinuous functions, such that us.ng the

notation
i = + + At
qn".:. Q(Ln)
(2.7.13)
P = pltn) |
in the limit N—=w oo  (or At — 0) one can write

q(t,)

(q”” %> At At—-v-a',

N-]

Z DAY —— 5 P /f VT a0

_n=o
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| Oonsequently, under the light of these facts the finite-

time propagator becomes

G(q,t; g.t)-

/DPD7 exp{.%..[[?g' 3 H(P’q)]"h})(g.r?.w)

where ‘/ Dg Dp is the volume -element of the phase space

given by

dpr)datz)
/D‘?DF’ Lim /W 4 ? (2.7.16)
(2/1’

Notice here that at the beginning the number of p
integrals was one more than the number of q integrals,
but in the limit N ~—» 02 | it does not matter at all.

If the claessical Hamiltonian is in the form

(2
H(p.q)= .EZ_P_ + V(q), | (2.7.17)

one can easily obtain the original form the Feynman
path integral by just performing the p-integrstion in the

Eq.(2.7.12) by means of the formula

[ e 352 7))

i/ . .2

m 14 m o '
exp - —
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Thus Eq.(2.7.12) becomes

N-1

G (q't' q.)= ﬂ,m/ | {;
(9.5 9, (m/zm); L7 ¢

n=0

[g (22 v ()

{:’

= 1 .
/D‘i E"P{-{/L(q,q)étj :
+
(2.7.19)
where L is the Lagrangian
m -t | .
L-;_?L_q — V(9), (2.7.20)
with q0=q(t) and qy =a'(t")

Eq.(2.7.12) is just the Feynman integral over paths in

coordinate space with the volume element

Dol ] (),

anihé N—roP 20 ¢

£t
€ = /N' (2.7.21)
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IIT. PATH INTEGRALS ON HOMOGENEOUS SPACES

‘The Feynman path integral as & method for
quantization is quite appropriate in a standard situation
when the coordinate space is flat and the Hamiltonian is

_ 2
of the form : H - _EL_ + \/(q) » However, it needs to
Zm '

be considered more carefully for a study of compact
coordinate spaces. For instance, the property that to
apply the Feynman method one should have a unique
classical trajectory at sufficiently small times for
fixed end éoordinates 93 and Qe 9 breaks down;'if the
coordinate space has a boundary or is closed. In this
case one has not only to integrate over g, but also to
sum over all possible trajectories which may concribute
with different phases. In the next subsection we will
study the motion of a free particle on a oircle, the
U(1l) group manifold, in which these kind of problems

arise,

3.1. Path Integral for the Group U(I)

Free motion of a material point on a ¢ircle

corresponds to the Lagrangian :

1 .
L= 1 I (3.1.1)
2 .
with one.coordinate ¥ , O £ ¢ £ am . This space
is the group manifold of the group U(1) and with the
metric corresponding to Eq.(3.1.1), it is flat. The

action for a curve ¥ (t)_between CP4=_(p(é4) crnd
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(701='(P({71) l'l.f
S[LP(H}:/-LW(U} dt.

(3.1.2)

Thus the propagator K from (lP4’ﬁl) to"((‘oz ,tg) is
the sum over the paths of exp [+8 /%] « In an

ordinary case given paths ~P(t) and A~y ) with the
proper end points there arises no.gquestion of relative
phase between their contributions to the propagator,
since if one deforms v (¢) continuously into ¥ (%},
the contribution due to W must continueusly go over
into that due to V¥ .

For a particle moving on a circle there are paths
between given end points which are not deformable into
one another, For instance the paths which loop around a
circle different numbers of times are in cifferent
homotopy classes, i.e., they are not continuously
deformable into one another., Therefore the classical

action has the form

. 1
Sn (‘ﬁr&z; ‘Pu,kr) = w—)) (3-;-3)
2 (k2-%)

which depends not only the boundary points of the
trajectory but aiso on the number of revolutions in
process of the motion, where n= D, +/,42,.........
represents‘the number of revolutions in positive or

negative directions. Thus the propagator is
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=p-p; tetts T (3.1

where

k() = ( - ,“)’/zew[%(tp—znnz)},

|0nl=1. (3.1.5)

The most general an' s which are possible are given by

n&

7
a e so that K —» e K when Po—r P27,

n =

Using the notation Y, = ¥+ ¢, and ta2= b4t =T+ £,
Eq.{(3.1.4) becomes

K(‘P+LP.,'T+£,; P ,é,) = K(tf, T)= Ks(kp"rl
(3.1.6)
LA

where

7 (- 2rn)/z

s (v.7) ‘—*-(m)l/z Z emg ’

Now recall the definition of the Jacobi theta
(13) -

function



o

| i 1"!: : n |
93(3,1:)_—.2 en" e.l 5 (3.1.7)

Nz=woo ’

and its fundamental identity

. "I/g_ 31/"”'{.
0 (3.4)= (-it) e O (3. -1) | (3.1.8)

93 is analytic in 3 in the halffplane Im(t):y 0.
Obviously K5 is a theta function and noticing the fact

that 93 (5,%. )= 93 (-3, t), K.s becomes

,/1. 2 2
g \* /2
KS(“P, T)=(———) e O, (ﬂt cp,__zlS,QnS)_ (

ani 3.1.9)
Notice that Im'i =0 which depriving the series of its
absdlﬁte convergence x , In spite of this fact it is
possible to restoré analyticity by taking the moment of
inertia I or (¥ ) to have a small positive imaginary
part, Now let us handle this problem with convent:onal
qﬁantum mechanics., In that case we will.call the
propagator G for just notational convention, and we will
show that the path integral (i.e. semiclassical
approximation) propagator K is equal to the propagator G
of ordinary quantum mechanics. In general the propagator

can -be written as a sum over stationary states.
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6.(L'011£z; (P“%')=

- * ""Em (Ez.-f:;) 4 :
Zm. (%)Y, () e /, (3.1.10)

where ‘¥, s and £, 's are the eigenfunctions and

t 1
eigenvalues of the quantal Hamiltonian }{=__ii CH

21 2y*
respectively :
/ [(miet)ep
’\({h ("P)-"— E)l/ze , m=0,*1, . (3‘51.11)
.and
E .k (mea)* 0 ¢ =<l
' ’”=3-i' : / - * (3-1012)

Under rotation by 27T the change in phase of ¥ is

277 Using Eq.(3.1.10) G can be formed as

s (3.1.13)
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where ©&=20R ang @=,-Y , F=I/4T as verore.

Oncg again using the definition theta function G6

becomes
] ;'gstp 1' Sz } 5 ]
__exP._-_.—-.]65(_¢ﬂ.__, ;__>_
2n 21 7 z I g¥n

(3.1.14)

using the identity Egq.(3.1.8)

fzz(_'. ¢ S )z
% ('"f‘ ~ P, 200) (5 3 15)

Inserting this relation into the expression for G

Eq.(3.1.14) we obtain
1. ;/2-. . 2
Gs(LP-T)=(——.) exp iy /2
2. /L1

. g, (_;:g_z’n ¢, 29T) .
(3.1.16)

Noticing the fact 93(31 t)= 0s ('3»£') , G becomes
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77972
‘a’.
i € 63 (""_I‘/’—zﬁé,zm’), (3.1.17)

which is equal to f<s(q,1) $ accordingly, we have
shown that the exact solution of the motion in U(1l)

group manifold is given by the semiclassical series.

3.2. Path Integral on SU(2) Group Manifold

In this subsection we are going to write the
path integral for the infinitesimal propagator on SU(2)
group manifold by using the semiclassical formula and
‘check the result by the standard quantum mechanical
outcome, However we should remark here that our
semiclassical formula including the Van Vleck
determinant does not hold for this case, since SU(2) is
curved i.e., the corresponding metric is non-trivial.

For curved spaces and complicated mechanical systems, the
normalization of the propagator is a function of the
coordinates, which is not the case for, e.g. the

harmonic oscillator. Therefore, the short-time propagator
needs some modifications in this case.

De Witt(6) suggested in his wérk in the
Riemannian spaces that a modification involving an
additional term in the lagrangian proportional to 5 is
necessary for the propagator to satisfy the Schrddinger
équation. The details of this study is outside the

scope of this work, hence we will only give the result
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which is related to our problem, In our case the
curvature R of the space is coﬁstant and the only
modification which arises is a time dependent phase

exp (z'ﬁRT / 12) which multiplies the propagator :

"/g Ity ’. I/q

K(Xbltb; Xa,éa): 3_” D g,

/'ZRT/‘,Z o
. e exP [-:-;-—- S(Xb,{:b; XG'{:'.)}

P

(3.2.1)"'

n
where g =g(xb) and g' =g(x,), and D =D(x sty 4 xa,ta) is
the Van Vleck determinant.

Let us first write the SU(2) group element by

means of Pauli matrices
Ulp,8,¥)=

expliyGin) exp-190/2)exp1¥G 1), (3.2.1)

where ¥, & and ¥ are the Euler angles assigned to
the system.
A left multiplication of U( ¢, 8,V ) with the

matrix

exp (‘1'“’?'5:/2) (3.2.2)

results in an active rotation of the system through
angle « about the axis 4. On the other hand, passive

rotation of the observer is effected by the same
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multiplication but with A replacing _ &

The metric tensor for SU(2) or (S0(3)) is

399=3vv=9v9’=/> gtﬂy.—:gq"p:COSQ,

the other components are zero., Iet us show Euler angles

by E =( ¢, &, ¥ ) for convenience, Then,

d31= 9,‘} JEICJEJ

= (9004 (d@)+ (d¥)+ 2cosedpdy. (5 , 5,

Consequently, the relation between metric and the

Lagrangian corresponding the motion on SU(2) manifold is

2

(ds)

arr——

(dt)*

L=1
2

1(9'24.952-;- V;z,;.zc,osy':(;u), (3.2.4)

b~

where I is the moment of inertia, Now what we need is
this : given the initial and final configurations of the
system, what is the action computed along the classical
path connecting them? It is clear that the action S
from Ea to Eb is a function of Ua and Ub and evidently

T = t,-t, and § = f(Ua,Ub). At this point, an important

b
argument can be given. Since the external world is
rotationally symmetric, it requires f to be invariant-
under left multiplication of its arguments. The natural
lie group metric is also invariant under both left and

right multiplication, so that for any A € 3SV(2)
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f(B,C): {.(BA,CA):. f (AB, Ac_);
In the same manner, let us multiply the argument of

8 =f(Ug,Uy) by A from the left and by U,"'A from the
right :

| -
6‘___1: (l, AUpu A). (3.2.5)

For diagonalizable matriceé with which we deal,
only the eigenvalues, their multiplicity, and functions
of these remain invariant under a similarity
transformation. In the case of SU(2) only one
independent invariant remains after the application of
the determinant and unitarity conditions. Let us call

this invariant I and for convenience defirne

!

Cos oL 1ruyuy (3.2.6)
2

I
2
S is some function of | . In terms of Euler anrles
Cos _E_ = C,os% (Bb - 9&) Cos.?': (Lpb_'tpc‘)
' |
Cos L(4,-%) Cosy (6,+6)
, Jrn_?i_ (*Pb_t,oa)__ggfn.é- (Vp- Vo).  (3.2.7)

To. specify the explicit dependence of M in S

consider the boundary conditions 90=9L= 0, W, = Pou

So that the motion can be taken as uniform rptation with
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the figure axis pointing in the © = 0 direction. The
resulting ambiggity in ¥ and ¥ 4is resolved by taking

¥ = constantj accordingly, constant = l,L = (__sl_’g"“’a-a"z”ﬂ)
(6o-£2)
where n is the number of times ¥ passes through %E for

t < ty+ Teking this information into Eq.(3.2.4), and

integrating between end points

2z
6:—..__1;-— (‘-Vb-%u+2nﬂ). (5-2.8)
2T '
From Eq.(3.2.7) we ' get only
Consequently,
T v
S= = I,
2 1 (3.2.10)

Obviously, M is Just the arc length of the
geodesic in SU(2) connecting U, and Uy . In the
Eq.(3.2.6) the inverse of the cosine function is multi-
valued. This corresponds to the discrete set of
geodesics connecting points in 8U(2) manifold, each of
- which is only a local minimum. In the case of S0(3)
group, the relevant paths correspond to the solutions or

Co.s_?': N.+ . T~ u, d:. (3.2.11)

!
Z
The homotopy group of SC(3) has two elements, i.e., it is

ddubly connected. Hence between given end points in 30(3)

there are two classes of paths.

Now notice that we could determine the classical
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action for SU(2) in an alternative and more

straightforward way. We know that any SU(2) matrix can be

written in the form

qf +1 qz_ - 93 +"%

. . (3.2.12)
-qJ"'lcll' Ci:-l'(}r. LI

. 2 z 2 z
satisfying the condition lq.l + lqzl + IQ3| + [qql =/

The space of points that obey this last condition is the
three-dimensional sphere 85; consequently, any SU(2)
matrix is isomorphic to fhe sphere S5 i.8., the

parameter space of SU(2) is the sphere s? which is
parametrized by the components of a four dimensional unit
vector. Therefore we can think the motion on SU(2) group
manifold equivalently as a free particle moving on the

parametrizing sphere. The corresponding Legrangian is

2

_ g, A (3% (3.2.13)
| L==9 +'—9_‘(‘7 ') |
where E‘I_r—c_]'(‘h, Ge» 95> 9 ) . The Euler-

ILagrange ecuations of motion immediately follow

? =A9 (3.2.14)
¥

tormether with the constreint that the norm of q' is

unity we get

g= A

— O (%.2.15)

E?.
_q—.q =

Simultaneously consideration of the last eguation with

the equations of motion leads us to
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=L 4 -
7.9 - =-(L3%)=0,

dt ' . (5‘.2016)
with the result
] =
—2_: ? - e = conséané. (5-2017)

A is identified by means of this expression and

Eq.(3.2.15)

Y | > = -1
A=9-9-2(%9)-9

- 2 & _ Constant. | (3.2.18)

Upon inserting thisg value for J into the equations of

motion we obtain

q+2€9=0 (3.2.19)

which 1s nothing more than a harmonic oscillator

equation. The solution to this equation is immediate

G(t)= Coswt + b Sinwt (3.2.20)

where w=~2¢ snd 3 and b are constant vectors.
- — ) 2
To identify & and b we refer to the constraint g =/;

accordingly,

oio b=/ and B.b=0 (3.2.21)

The first of these immediately‘verify our previous

result Eqe(3.2.17).
Now urder the light of these facts, the

computation of Scl follows
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T

Su= [ Ldt €T,

o (3.2.22)

At this stage we need the physical meaning of Sg1+ To

achieve this we consider the initial and final conditions

g = §(0)= @

o _ = 3.0.2
91_ = ?(T)': aloswT 4 b Sinuwd T. ( 3)
The scalar product of these two vectors gives
E;,-§; = CoswT,
(3.2.24)

orc(os (-CT, E{;) = T .

Iet us call this angle W T between the vectors éﬁ
and 43 , S . Then

2
_é =8 /27T, (3.2.2%)

which is the arc length of the geodesic between given
points on the sphere 85. In fact the only classical path
is not & , but there are the classical paths winding

3

around the sphere 3°. a number of times i.e., defining

a new angle M= S8+ 2nm where n is the number

of revolution, we obtain

Syu= I /2T . (3.2.26)

This expression is the same as the one we have found by

using a different argument.

Now let us return to our previous discussion. The

position of the system on the SU(2) group manifold as a
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function of time can be easly obtained by considering the

connection between geodesics and one parameter subgroups

ut)-= exp(-{/—'ér?.gr/?.‘r) Uo ,
| (3.2.27)

from which the relation of [' and N to U, and U_ is

evident

— ' ’ A -
TR _e_xp(-"r,n‘r/l)"
b T = (3.2.28)
"/1.. Ve -I/q
1
Finally, the computation of the factor g” .ID 5

is necessary for the evaluation of Eg.(3.2.1'), tne
expression for the short -time propagator. The
calculation of this factor is tedious and the result can

be found in the paper by Schulman(IB)

r

zszn%r‘ (3.2.29)

(g") D (9) =|—=

onth T

-'lq '/2 -l/;’, ( I )3/?_ rl

Consequently,-cérrying all these information into

Eq.(3.2.11) and noticing that the curvature R of SU(2)

is R=§_ , the path integral expression for the short-
A

time propagator is written as

3/, .
K:( ! ) T exp(HT)
21 ihT 2 Sinl, 3T -
2

. exp (1'.1'!’"2/2},1'), (3.2.30°
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where “ﬂ:&;b_ka s @and 17 is the smallest solution of
EQ.(3.2.6). Let us call this lo 4 then [’ [, + 2nTT
n=%*1,2,..

Now we are going to check this result by the
Green function which will be constructed by standard
Quantum.mechanical technique. However, we will first do
2

the same thing for the sphere S~ to be more instructive.

The quantal Hamiltonian is

2z
Heo B[ L0 2 (5ine 2 ),

27 LSne 36 28

1 .
-t / 9 ] - (502.51)
Sin*t8 o

its eigenfunctions and eigenvalues are

%m= >.9m (8: ¢)’

Espe £(L+1), - (3.2.32)

where Ylm's are the spherical harmonics.
Then using the formula, the spectral expansion

for the Green function

G(sz P, by ] 8f,qbn£f)=

JEJ,,.,U: é,)/
5 % (6B 9,,q>)e 4
we obtain ”
G (9‘2-) ¢Zr J'-LI‘ 9" q")” ‘£f)==
L4+ 1)T

Z Z Yom (8, qb;,) Y, (ada) e ®

bao m=-L ’ (3.2.33)



57
where
| Y
Yom (8,a0)= | (2441) (L-m)!
47 (2+m)!

(3.2.34)

It is possible to take the summation over m by using the

addition formula for spherical harmonics,

+4 .
Pe (C058)= Z em(d)b- qga)_ F(j—m“)
m=-—l- [—1 (ae“"m‘f-/)
LB (cose) BT(CosOL) . (.35

where

Cos6="Cos BQCOSQI,

+SinB, Sin 51, Cos(cba- bu). (3.2.36)

Tt is evident that the angle @& given by Eq.(3.2.36)
- —
is the angle between the vectors ?a and ¢, that
2 . .
specify the end points on the sphere 87, since B~ 1is

parametrized by a unit vector whose components are
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SinB Cos b

9 =\ Sine Jf'n b
Cos > (3.2.37)

Consequently Green's function is written as

241 i:[.eﬂi+/)
GCST) Z i d '&CCosS)

.(3.2.58)

Now let us turn to our original problem. Laplace

operator on SU{2) group manifold is given by

2 z 2
V= 9 + CO{'-Q-‘;-;— o+ - / ( I -
ae* B giie N B¢
2z 2
,.9_ _2Cos58 2
Z .
v ¢V (3.2.39)
with this Laplacian the Schrddinger equation is
2
h Z £ O
- VY= i% “9%/ ’ (3.2.40)

21

The stationary states are labeled by Jj,m,k, which are

related respectively to the eigenvalues of
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J ; j;, > :,; = fl.; ) j , Where ‘ﬁ_;points along the
figure axis.
The normalized eigenfunctions having the appropriate

rotational properties together with their eigenvalues are

2 j+1 2 3*
( D, (¢.,8.¢),

gt
£ 2
mi = — ( '-!"l) 7
. / 27 4(4 | (3.2.,41)
T)n?k ~ is the representation matrix of the rotstion

group and given by the expression(16).

. imy¢ 4 amy
D? (¢,0,¥). e d (0)e,
(3.2.42)
where the matrix element dLi;(B) is given by in terms

of the Jacobi polynomial :

]
/2 vk

42 (0| Gl | (st
mik ] 2
(4+k)! (4K )

o+

m-
' (J"" isl) E"”’ o (3.2.43)

This relation is strictly speaking only valid for non

negative values of m-k and m4 k. Nevertheless all the
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results to be derived from it are true for the general

case,

Consequently, for the Green's function we have

(3.2.44)

here the summation index J runs over all nonnegative

integer and half-integer values, and ——J'S m, k .éj '

Notice that the m and k dependence is only in the
D matrices. To take the summation over m and k, we
will use the unitarity property of U. Hence consider the
argument of D to be U ( E) € su(z2) , rather than
just E. Then 'D:"n: (U)= D i(u-l) , and for any J

; -Dmi <ub) Dmk (ua\)
-2, D (), (u7)

. \ | * -1
=/. D,.f U 1) = T (U U)es.2.0)
m

- Here, 1)'j can be taken diagonal, because the trace is.

invarisnt under a similarity transform, and this will be
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the case if the =z axis is taken along the direction
defined by U, and U, through Eq.(3.2.28),

Then, with the I of Eq.(3.2.6)

g (ubu:)= exp(iml), (3.2.46)
80 that
o ) 2 &
me

- 0 2i 40
= & [44‘& TR =) J

. T(24+4)
...1'JP [4__ e J ]
e ‘ -

1-¢€
Sin (g+4)1

—
—_— -

Sinl/2 - (3.2.47)

Together with this expression G follows

—7th@+O

G= -2 o Cosl{4+L )P
SinC/2 8f[z Ql_,;_ 5[4 ]
' (3.2.48)

To get rid of the summation over half-integers let us

transform Jj to f/g where -£.  can take integer values

1*”1(142)

-2
= — __]_ | l"
A 312 ar ZC” el

(3.2.49)
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Now let us take £ to k-1, such that

) hT/er — M
G- - e { T
SinTy, 8mt EE: %;'COSkQ/ e }
=]
a7,
I e 3 {
.Smf'/;_ 3“1 9!"

AT T
- e —"IJ . (3.2.50)

We will now employ the eq.(A.8)
o0 - * 2
ing “In"T
2. e e
N=-
ot ‘/__‘Z 14 (9-{-2”“:)
iT ? (4.8)

fl=-00

the formula which is derived in the Appendix on
considering the Jacobl imaginary transform(la). Then

Eq.(3.2.50) becomes

5T
Sinlfy ~ &T° k7l 20

km-o® (3,2.51)
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on taking the r -derivative we obtain

('7=( )3/ (" +4nn)
201k T

N=_o0 Iﬂ'z—r'
"'J'% 11 ( z
: P+ 4nit) J
(ol ex [
2 ST ’ (3.2.52)

as infinitesimal propagstor on SU(2) group manifold. For
sufficientlv small T, the only ferm contributing n = O,

Hence

3 #T L pr
z

e:: 1 ) 2 5 e‘BI e?_ T

(3.2.53)

which agrees with the semiclassical result Eq.(%.2.20),

3.%, Some Remarks About the Path Integral on the

Hyperspheres SEnq-l and 82n

In this subsection we will consider the exact
solution to the free guantal motion on the spheres s” and

discuss the validity of semiclassical approximation in

these cases,.

Using the spectral expansion, the exact solution

(9 )

for ST is Fiven by
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oo y, - ‘1%;.E(JL+ZV)
Ko, T)= ) =X ¢, "(cose) e

+
£=0

(3.3.1)

‘where CI(COS&') is the Gegenbauer polynomial, v=(n-1)/2

Now let us remember what we have done before. We
know that for the cases of U(1l) = sl ana SU(2) = s> the
semiclassical approximation to the path integral leads to
Eq.(%3.3.1). Hencelfor these cases the semiclassical
formula gives the exact result, The equivalence of the
semiclassical formula to the éxact result Eq.(3.3.1) is
obtained by using the Poisson summation formula or
equivalently the Jacobi imaginary transformation for
& - function in the last step. As we have seen the use
of this transformation contains an infinite summation,
however, in contrast to Eq.(3.3.1l) where the summation
extends over energy eigenﬁalvés, the new summation is
over homotopy classes of classical paths which wind
around the sphere (Sl or SB) different number of times.,
An immediate question is whether Eg.(3.3.1) which
contains a sum over energy eigen#alues can be transformed
into such a fofm for other spheres s™, Here we will show
that this is indeed possible‘for odd n, but we have not
been able to find such a formula for even n.

Wwe start by differentiating Eq.(3.3.1) with

respect to cos @
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d(Cos8) :
it J%:’i(.hzv)
Z - Z(Jw) (coss, e .
L=p _ ' (3.3.2)

The differentiation rule(l7) of the Gegenbauer

polynomial is

v
d Cy CCO.S&) - 7v C CCosG) (3.3.3)
d (Cos8)

In Fq.(3.%3.2) we use the superscript ¥ on K to mesn that
Kv is the propagator for Sn. Consider now the index

trangformation £ —> £+ s0 that
Lt 2v) —» L(L+2v+2) +(2v+1)

Then

ke v+ ...ff';T( Vi) fa
dK8T) _ v '(Cose) 2v+1))
d(cose)
oo BT (2v+1
+Z 7_(1-1—1/4—!)0 (6058) )/
L=zo
| exp[“ffuunww] (3.3.)

Notice that C_,=0 end the summation on the right
v )
in the above equation is related to K (6,7);

therefore,
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d

_Z . KY(8,7)=
d(Cose) : |
| —"—EJ(ZVHJ
Vvl
2(v+i) € K (87)7.
(3.3.5)
This formula gives K¥*! 5p terms of K & .
‘l_'_ﬁ_T(Z‘v-}l)
v+ v
K™ e,1)- € 4 ka7
2(v+1) oACos®)
(3.2.6)
This nice expression makes it possible to
calculate the propagator for SB,SE',..,SEH"l'l given KO

for Sl. Notice that it is applicable both the exact
result and to the path integral result. When applied to
the path integral it coincides with the semiclassical

! and su(2) = s>. For other gon+1.g

result for U(l) = 8
(n = 2,3,...) it does not coincide with the semiclassical
result, showing that the semiclassical result is not
exact for these cases. However; the formula is still of
the form of a summation over classical trajectories and

indicates some form of & quasi - classical approximation

for these cases may also give the exact result.
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'SUMMARY

The Feynman path integral formulation of quantum
mechanics carrying a global approach in contrast to the
local Schrodinger equation provides a powerfull
technique that a significant portion of today's
theoretical calculations rely on.The:path integral takes
an important role not only for its modern applications in
quantum field theory but also forms a useful basis for
the development of approximation methods. It is especially
adequate for semiclassical considerations in some cases.

In this work we have given the fundamental
principles underlying the Feynman path integral approach
to quantum mechanics, showing its equivalence to the
Schrodinger equation for a simple special case, It turns
out that despite its intuitive appeal the applicability
of this approach has been limited because of analytical
difficulties and expressions for path integrals are
available only for é few cases.From this~point of view,
we have shown a calculation method for systems with
quadratic lLagrangians in the variables x and x and
later on applied it to & special example, namely the
hafmonic éscillator in one dimension. In the calculation
technigue we have just mentioned above evaluation of
path interral reduces to the computation of exponential
of classical actién with an overall normalizing factor
depending on time only. This preexponential factor is
given alternatively by Van Vleck determinant. Furthermore,

this expression related to the second derivatives of the
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classical action is more appropriafe in the case of curved
spaces since in this case the preexponential factor
depends also on the coordinates. We have then given the
complete derivation of the Van Vleck determinant. Our
next task has been the Hamiltonian derivation of path
integral. We have begun with the usual operator formalism
and - shown that the Feynman original form of path
integral is equivalént to this form only for the case
where the Hamiltonian is given in the quadratic form.

In the context of the semiclassical approximation
the path integral propagator for free quantal motion on
group manifolds is of prime interest, since it turns out
that the exact result is given correctly by the
semiclassical result. In these cases the most interesting
part of the problem is that. The classical trajectory
with fixed end points at sufficiently small times is not
unique. We have first considered the example of U(1l)
growp. Writing the path integral in semiclassical
approximation we have seen that a- sum over an infinite
number of classical paths, arising from the multiply
connectedness of U(l) group, is necessary. We have shown
the equivalence of this result to the exact solution
relating the sum ovef paths to a theta function : Our
second example has been the free guantal motion on SU(2)
group manifold where we have also used the semiclassical
considerations, but it has been necessary to modify the
semiclassical formula since SU(2) is curved. We have then
obtained the classical action by using two different

arpuments, Finally, we have written the stationary state
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expansion and using the Jacobi imaginary transformation
shown that the semiclassical solution coincides with the
exact solution,

| It turns out that the semiclassical approximation
is not generally exact on the spheres. While the
semiclassical result coincides with the exact solutions
for the srheres S1 and 53 it does not hold for the other
spheres. However, in our present work we have shown that

the propagator for the spheres S2n +l

can he written by
means of a recursion relation giving the propagator in
the form of a summation over classical paths which implies
thaf there is the possibility of giving the exact solution

by starting solely from the path integral.
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APPENDIX

THE POISSON SUMMATION FORMULA AND THE JACOBI
IMAGINARY TRANSFORM FOR THETA FUNCTION

Consider the summation

2 imB -!mz't
2., ¢ = (A.1)
M=-ob

we would like to lineezrize the m2 term in the exponent.

To do so let us employ the Jacobi imaginary transform

which stems from the definition of a Gaussian integral :

~o(x+1b)?
/ € CJX:V% ) (A.2)

— o0

giving the transform

oo
_abz 7y _axz.zfabx '
) -0

—imtE

Iet us apply‘this transform to the (4 term in the

summation eq(A.l)

2 /mpB —imtt
J e e =
M= — b
oD
o _a.x?' g m(B8-2ax)
‘\ﬂ—ﬁj € € dx ‘ (A L)
—00 Mz-o00 *

with a = if. Now by virtue of the one dimensional Poisson

summation formula :



7%

0 o0
= 2""2 S (9+2nn) | (A.5)

-0 =-acn

s DMy
(V)

the eq{A.4) becomes

g Im§ -:m 4
2. € -
mx=

...a)(
znZ S (8+2mm - 2ax)d x

9+2mll Z
/71 Z —a

M= — o8 (A-'?)

(4.6)

o
on using the property of & function : S ("‘x)f— o ().

Therefore the summation eq(A.l) takes the form

3N 1q
m‘-.
3
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