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PATH INTEGRALS IN 

AND 

QUANTUM THEORY 

SOME APPLICATIONS TO HOMOGENEOUS SPACES 

iv 

In this work we consider the path integrals in 

quantum theory and some of their applications to 

homogeneous spaces from the semiclassical point of view. 

We begin with the basic principles underlying the Feynman 

path integral formulation of quantum mechanics and show 

the do;nain where the method is useful and powerful. We 

present a method for calculating the path integrals for 

quadratic Lagrangians and apply it to the example of 

harmonic oscillator. Semiclassical propagator given by 

the Van Vleck-Pauli formula is also discussed. We next 

handle the Hamiltonian derivation of path integral. The 

starting-point for this derivation is the usual operator 

formalism of quantum mechanics. 

Later on we consider path integrals on 
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homogeneous spaces concentrating on the motion on group 

manifolds. It turns out that for the free motion on the 

group manifold the semiclassical approximation ~ives the 

exact solution. We thus study the path integrals for 

U(l) and SU(2) groups. In these cases the Propagator is 

calculated directly by two methods : the sum over 

classical paths and the stationary state expansion, which 

are shown explicitly to be equivalent. We finally give 

some remarks for motion on the hyperspheres S2n +1 and 

S2n. Deriving a recursion relation for the propagator of 

S2n +1 we claim that there is the possibility of getting 

the exact solution from some kind of semiclassical 

propagator for S2n +1 • 
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KUANTUM MEKAN!~!NDE YOL !NTEGRALLER! 

VE 

HOMOGEN UZAYLARA BAZI UYGULAMALARI 

Bu Qa11~mada, kuantum mekani~inde yol integralle

rini ve onlar1n homogen uzaylara baz1 uygulamalar1n1 yar1 

klasik aQ1dan gozoniine 'ald1k. Kuantum mekanHtinin Feynman 

formulasyonunun temelini olu~turan esas prensipler ile 

ba~layarak, methodun etkili ve kullan1~11 oldu~u alanlar1 

gosterdik. !kinci dereceden Lagranjiyenlere tekabul eden 

yol integralleri iQin bir hesaplama yontemi sunarak, har

monik osilator orne~ine uygulad1k. Van Vleck-Pauli formulu 

ile veri len yar1 klasik propagator de aYr1ca incelendi. 

Bundan sonra, llamiltonyen yol integrallerinin turetilmesi

ni ele ald1k. Kuantum mekani~inin geleneksel operator 

formalizmi bu formlilasyonun turetilmesinde hareket nokta

s1d1r. 

Bunlar1 takiben, ozellikle grup uzaylar1 lizerinde 

hareketi inceleyerek homogen uzaylarda yol integrallerini 



vii 

inceledi~ Grup uzaylar~nda serbest hareket i~in yar~ 

klasik yakla~~m do~ru ~ozumu verir. Bundan dolav~, U(l) 

ve SU(2) gruplar~ iqin yol integrallerini inceledik. Bu 

hallerde, propagator birbirine ozde~ olan klasik yollar 

lizerinden toplama ve dura~an haller aq~l~m~ yontemleri 

. 1 ~ 1 k S2n 1"1 S2n h' k" 1 . ~le hesap an~r. :son 0 ara ve ~per ure er~ 

hakk~nda baz~ dli~lincelere yer verdik. S2n 1"1 kliresinin 

propagatorli iqin bir indirgeme ba~~nt~s~ tlireterek, do~ru 

qozlimlinS2n 1"1 kliresinin bir qe~it yar~ k1asik propagato

rlinden e1de edi1ebi1ece~ini iddia ettik. 
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I. INTRODUCTION 

The path integral formulation of quantum 

theory was suggested by some of Dirac's remarks(1),(2) 

concerning the relation of classical action to quantum 

mechanics. Later, the formulation was developed and 

shown to be equivalent to the more usual formulations by 

Feynman(3),(4). In contrast to the Schrodinger 

formulation, which stems from Hamiltonian mechanics, the 

Feynman formulation is tied to the Lagrangian 

formulation of mechanics. This new approach introduced a 

new mathematical concept into quantum theory, namely the 

function space integral or "sum over paths", so that one 

directly computes the propagator of the Schrodinger wave 

function rath"r than the wave' function itself, expressing 

this propagator as an integral over all possible paths 

from one given point to another. 

In recent years, more attention has been placed 

on the Hamiltonian path integral formulated in phase 

space(5), whose equivalence to the Lagrangian path 

integral has been shown only in Cartesian coordinates. 

Since there is no general proof for the canonical 

invariance of the Hamiltonian path integral, it is as yet 

unknown to what extent the Hamiltonian formulatlon is 

valid. This formulation of path integral differs from 

Feynman's work in that it requires the description of 

the classical system in terms of canonical variables 

ar.d in the classical limit reduces to a Hamiltonian 

variational principle. An advantage of the Hamiltonian 
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formulation is that if the path integral is defined in 

the simplest and most obvious way there' is no need to 

introduce special normalization constants to maintain 

the unitarity of the propagator. In the conversion from 

the Hamiltonian formulation to Feynman's formulation the 

correct normalization constants automatically appear. 

A representation of the propagator in the closed 

form of a path integral is useful for physical 

applications, and is espeCially appropriate for the 

perturbative expansion and for the semiclassical 

approximation. Nevertheless, the original form of Feynman's 

path integral is applicable only to a limited class of 

problems, where the Lagrangian is quadratic in the 

variables x and x. For a more complicated Lagrangian, fer 

instance, the one which describes the motion in a 

Riemannian space, the original form of the path integral 

. needs a modification involving an additional term in the 

Lagrangian proportional to ~. This approach was developed 

by De Witt(6). 

The semiclassical approximation in the path 

integral theory has paramount importance. Since we know 

that at small times quantum effects are not very 

substantial the short~time propagator is given correctly 

by the semiclassical approximation. In the framework of 

the path integral representation, the semiclassical 

expression arises quite naturally. The Planck constant is 

a small parameter in a certain sense and the propagator 

is given by the classical action in the phase with an 

overall normalizing factor, which can be calculated, for 
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instance, by the Van Vleck determinant. Then th'~ finite 

time propagator is obtained by integration of a product 

of N short-time propagators. The limit N - 00 leads to 

the functional integral overall the intermediate 

coordinates. This is interpreted as the path integral. 

Studies with the semiclassicat approximation in 

group manifolds have also quite nice features. As a matter 

of fact, the semiclassical amplitude for the free motion 

on a group manifold coincides with the exact solution, 

apart from the fact that there may be, and there usually 

is more than one classical path connecting two given 

points. The-' simplest examples of such situation are the 

motion on a circle or the motion of·a particle in a box 

with elastic walls. The compactnpss of the group 

manifold is evidently the reason of appearance of an 

infinite set of classical trajectories with fixed end 

points. The total amplitude is then given by linearly 

superimposing the corresponding contributions. If the 

manifold is simply connected we just strai",htforwardly 

add the amplitudes. \~hereas if- the classical paths divide 

into homotopically distinct classes, then there is the 

possibility of relative phase factors(7). 

It is clear that Feynman path integrals for 

quadratic Lagrangians such as free motion in Euclidean 

space is given exactly by the semiclassical approximation, 

because in these cases one has a multiple Gaussian 

integral, that is calculated exactly by the stationary 

phase method. In the literature, however, there appears 

no such simple explanation why the free quantal motion 
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in group manifolds is also semiclassical. As a matter of 

fact we have shown that the propagator for a free motion 

on the hyperspheres S2n ~l can be put in a form of a 

.summation over classical trajectories showing some form 

of the quasiclassical approximation. A direct calculation 

with this prop2gator shows that for 81 and S3 

semiclassical results are exact. 

In the context of the path integrals on group 

manifolds numerous works appear in the literature. Motion 

in the SU(N) group manifold was considered by Dowker(8). 

He showed that the exact solution in this case is 0iven 

by semiclassical formula. Marinov and Terentyev(9) 

considered the free motion on a sphere of arbitrary 

dimension. They write the path integral on Sn and expand 

the quantum mechanical propagator in terms of Gegenbauer 

polynomials. In more recent works I.H.Duru(IO,II) 

studied the path integral of some potentials which are 

related to the path integral on SU(2) group manifold. 

In the present work we first give the basis of 

Path integral in the context of Feynman's postulational 

formulation as well as some quantum mechanical 

properties of the propaga'sor. We consider the equivalence 

of this formuiation to the Schrodinger equation only for 

a particle moving in a potential V(x,t) in one dimension. 

The form of Feynman Path integral displays that it is 

especially a useful technique for systems with quadratic 

Lagrangians. From this point of view we show the . 

calculation method of path integral with an application 

in the example of harmonic oscillator. The 
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pre-exponential factor, namely the Van Vleck determinant 

not only underlies an over all normalizing factor, but 

also an expansion of it contributes to effective 

Lagrangian for the case of Riemannian spaces. Hence it 

takes an important role from the semiclassical point of 

view. We then give the derivation of the Van Vleck 

determinant in some detail. We conclude path integral 

formulation of quantum mecnanics with the Hamiltonian 

derivation. 

Finally, we study the path integral on 

homogeneous spaces. We especially concentrate our 

attention on the equivalence of semiclassical results to 

the exact solutions for free quantal motion on U(l) and 

SU(2) group manifolds. Some remarks about the path 

integral on the hyperspheres S2n +1 and S2n conclude this 

work. 
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2.1. The Feynman Formulation of Path Integral 

In quantum mechanics given the initial state of a, 

system one can always fully solve the quantum mechanical 

problem if the propagator is known. At the present work 

we will find the propagator without considering the 

eigenvalue problem of the corresponding Hamiltonian as in 

the more usual formulutions. We will first consider the 

motion of a particle with one degree of freedom. The 

generalization to higher dimensions will become clear. 

Let us specify the position of a particle moving 

in one dimension by a coordinate x depending on time t, 

then x(t) describes a path. The particle starts to move 

from a point xa at time ta to a point xb at t b , the 

function x(t) describing the path takes the values 

xa = x(ta ) and xb = x(tb ) at the end points. In quantum 

mechanics, there is a probability amplitude, the propagator, 

such that it takes the particle from the point xa to the 

point xb • Now at this stage we have two postulates: The 

first one is that, when a particle's position is observed 

in some region of space-time then the probability 

amplitude that the particle has a path lying in this 

region is the sum of complex contributions, one from each 

path in the region, that is P = I K 12. where 

ove.- .. tL p"th. 
i.H.( .... 3;0" 

(2.1.1) 

Here, ¢ is the contribution from each path. The second 

Postulate is that each path has a contribution equal in 



magnitude, and a phase factor equal to the::.cle.ssioal 

action in units of ;;; : 

7 

~ S [X (1:)J 

e , (2.1.2) 

• 

where A is an overall normalization factor. 

At this point a question arises in minds 

immediately. If each path does not have any superiority 

to any other, how does the classical path become most 

important in the appropriate limit? The answer to this 

question comes in the following way. In the classical 

approximation the action S'is much greater than 1; , 

therefore, each path has avery large phase angle.When the 

summation Eq.(2.1.1) over paths is concerned, since each 

path has a different phase, contributions from the paths 

essentially cancel each other. Only near the classical 

path the paths start having coherent contributions, since 

S is stationary in this region. Then, coherence is lost 

again once the phase differs from the stationary value 

by about lZ. 

As a result, in the classical limit not only the classical 

path dominates the propagator by itself, but also the 

paths whithin about~ of ScI make contributions 

coherently. 

After having discussed the classical limit we 

can conclude with the semiclassical approximation to the 

propagator. Depending on the condition that the Planck 

constant h is a small parameter in the classical scale, 

the propagator is represented by.e~p(SO+1.·J;S1 r(£t./,52. r._.'). 
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The first term So is just the classical action function. 

Sl is also determined by the classical motion only. 

higher terms are more complicated. Hence. the action 

function. the role of which is to generate solutions in 

the classical mechanics. is the solution itself for the 

quantum theory : 

(2.1.3) 

is just the semiclassical expression for the propagator. 

Here A' is some normalizing factor which measures the 

number of paths in the coherent range. 

Now we come to the point of calculation of sum 

oyer paths in Eq.(2.l.l). To do this let us first 

consider the Riemann integral. In the definition of the 

ordinary Riemann Integral. to find the area A. under a 

curye the procedure is this : First • a subset of 

ordinates Fig.(2.l.l) spaced at equal segments k are 

taken. Clearly. k times the sum of the ordinates gives an 

approximate value of A. To recover this approximation k 

is chosen in the limit k ----;,..,..0 : 

A=::.eim ~ k4 ~()(.i)1 
1<-0 J 

(2.1.4) 

In analogy with the Riemann integral Eq.(2.l.4). 

we first diyide the time interval t b- ta into N 

intermediate segments each of width ~. • by introduciLg 

N-l times tn = t n + to • n = O.l.2 •••• N. For each tn we 

next introduce an assigned coordinate xn ; therefore. a 

path x(t) is fully specified by an infinity of numbers 
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x(to) ••• x(tN). namely. the values of the function x(t) 

at every point t in the interval to = ta to tN = tb' 

Fig.(2.1.2). We contruct a path by interpolating the gaps 

in the discrete function. To sum over all paths we must 

integrate over all possible values of infinite values 

xl ••••• xN_l ' except of course x(to ) and x(tN) which will 

be kept fixed at Xo = xa and xN E xb ' respectively, 

We hope that if we take the limit N ---, co at the end 

we will obtain a more representative sample of the 

complete set of all possible paths between a and b. 

Finally, introducing a normalizing factor whose value 

depends upon the particular problem we write 

. 11/ j :S[b,o] K (b,Q)~ .e,m - ...... e cI~I .... · 
€-O A A (2.1.6) 

. " " . cl1"1(_1 , 

A 
where 

tJ, 
S[b,o] = j L(X,x,!) dt:, 

to. 
(2.1.7) 

is a line integral taken over the trajectory passing 

through the straight sections in between. In a more 

compact notation 

x~ • S[b,o..] 
K ( b, a) ==-- j e ~ D:x.(t) . (2.1.8) 

)to.. 
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This is called a path integral. 

2.2. Some Properties of the Propagator 

Now note that if tc is some time between ta and 

tb due to the facts that the action is an integral in 

time and L does not depend upon any higher derivatives 

of the position than the first the action along any path 

between the points .xa and xb can be written as 

S[h,o.] -S[b,c]-tJ[c,a] (2.2.1) 

where c denotes a point on the path on which S[b,a) is 

evaluated. Carrying this action into Eq.(2.l.8) we get 

j ~ { S[I:I,oJ +S[c,o] J 
K(b,o)= e Dx (t). (2.2.2) 

The integration over any path may be split into two 

parts; therefore, it is possible to integrate over all 

paths from xa to xb in two successive steps. In the first 

step we integrate over all paths from xa to Xc keeping 

S [b,C] costant, and also integrating over all possible 

values of Xc 

(2.2.3) 

In the second step we just integrate over all paths from 

Xc to xb and get the result 
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K (b,o.) '" J K (b,c) K (c,o) dxc . 

Xc. (2.2.4) 

This means that amplitudes for events occurring in 

succession in time multiply which is an important rule 

for the propagators. 

So far we have dealt with the amplitude, the 

propagator, for a particle to reach a particular point in 

space and time by closely following its motion in getting 

there. Nevertheless, it is generaly helpful to deal with 

the amplitude which does not give any previous history. 

Thus instead of K consider :P (x,t) as the total 

amplitude to arrive at (x,t) from some past situation. In 

fact, this kind of amplitude has also the same 

probability characteristic as those we have so far 

studied. As usual we will call this kind of 

amplitude a wave function or the state of a system. 
I I 

Therefore, we see that the propagator K(x ,t;x,t)having 

the same probabilist c characteristics is actually a wave 

function 

I ( , ') k(x,t;X,t)="l' x,t I 

I , 

which is just the amplitude of getting to (x ,t ), but 
I I 

K(x ,t ;x,t) itself gives the past history of the system, 

i.e. , where it came from. Hence, our rule for the 

propagators gets the form 
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( " ") j . ('" , ') ',' I ' "f' X,t = K X"t;X,t ,,:!-,("X-,.t)~'X.. 
(2.2.6) 

_ 00 

This result can be interpreted physically as the amplitude 
ff 1J 

to arrive at (x ,t ) is given by the integral over all 
, 

possible values of x of the total amplitude to arrive at 
. " the point (x ,t ) multiplied by the amplitude to go from 

f f 11 n 
(x ,t ) to (x ,t ), which includes all the past history 

of the system. 

Now we will use all of these properties of the 

propagator and the wave function to derive the path 

integral form of the propagator in a fancy alternative 

way. \'Ie know that at small times the quantum effects are 

not very substantial, so that the small-time asymptotics 

of the propagator is given correctly by the semiclassical 

approximation. Thus we can build up the finite time 

propagator by iteration, dividing the time interval into 

small segments and using the semiclassical expression at 

any segment. According to superposition principle the 

complete wave function arriving at x2 at time to~2 6 is 

given in terms of states "f (xl' to + E. ) as 

"f ( X.,!. + 2 t.) = fdxl K (XL, i:.+2c.; X.,/:. + (;)':t' (X" t.-If.) 
(2.2.7) 

. 1 H" . 1 (3) to yield a quantum mechanlca uygens prlnclp e 

If the amplitude of the wave:J.i is known on a given 
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surface in particular the surface consistin~ of all x at 

" '" 
time t, its value at a particular nearpy point at time 

t + f, is a sum of contributions from all points of the 

surface at t. Each contribution is delayed in phase by an 

amount proportional to the action it would require to get 

from the surface to the point along the path of least 

action of classical mechanics. Thus the full propagator 

from (xa,t a ) to (x2 ,to ... 2 t: ) is given as 

K (xZ) ~o+ 26; .xc..I~") = 

j K (x., t. +H.; X. , to+f.)K (I{" t"H.; X .. ,~. )dx •. (2.2.8) 

Proceedinc in the same manner we obtain the result 

.... K (1.+1, t)- ... K (1, a)dx. •.... c1xN _ t , 
(2.2~9) 

where 

(2.2.10) 

i~ote here that although the paths linking two 

successive points are the minimizing classical paths the 

sum of stationary paths for all subintervals is not 

neccessarily a stationary path for the full interval. 

Thus as soon as we co beyond !l t = ~ we have to start 



including non-stationary paths. Nevertheless the phase 

for each of these non-stationary paths is still the 

classical action for that path, since for the path via 

N~2. 

+ L Sd (Xi." ~i+'; Xi, ~i ) 
oj:, 

14 

(2.2.11) 

The path is still classical, it is just no longer 

stationary between its end points. Here ScI which is 

given by 

tt., 

Sct (X;." lo(+I; XdJ= Hi" J L (;< (+), Xl'\'),t )d~) 
!t 

" (2.2.12) 

and L is supposed to be a quadratic function of the 

velocities. Then by the rule for multiplying amplitude of 

events which occur successively in time, we have 

N~} 

cP [X (t)]= Urn IT K 0+1, i) 
(;~o i:o 

(2.2.13) 

Consequent"ly, using these facts we reach the result of 
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Eq.(2.1.8) for the standard finite time path integral 

2.3. Equivalence to the Schrodinger Equation 

In this subsection we will derive the Schrodinger 

equation from Feynman's formulation of path integral 

which we have dealt with so far. For this aim we will 

consider the special case of a particle moving in a 

potential V(x,t) in one dimension i~e., for which 

·2 ( L = mx /2 - V x,t). 

Let us first introduce the equation 

dO 

Y(X ... t:L)'" I K(X1 .tl.; )( .. l~)"!'()(1.t41d)<1' (2.3.1) 

_01> 

which gives the wave function at a time t2 in terms of the 

wave function at time t l • In order to obtain a differential 

equation we go to an infinitesimal time interval such 

that 

Y(X.i:+t) ... j K (><.t+e; X:l:)"t'(;t.',t) d)</~ 
(2.3.2) 

_ob 

where the propagator is given by the semiclassical 

formula for that infinitesimal time interval. Using the 



fact that there is no need to do any integrations over 
I 
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intermediate x s to calculate K, since there is just one 

s lice of timet: between the start and finish. We have 

Thus, keeping in mind L .2 = mx /2 - V(x,t). Eq.(2.3.2) 

becomes 

-
Y(x,I:H.)= j ~ {ex,,[.L "",(X-xl/i) 

_00 A 11:J.. t. 

. expf[- i tv( x;J!, -t )J] "f(x',t)dx' . (2.3.4-) 

Here, notice that the factor exp [~ 
. 21;1:: 

(x -x' /J 
I 

oscillates very rapidly as (x-x ) varies since e is 

infinitesimal, {, is small and mj11l:. is large.On the other 

I 
hand ~ ex ,t) isa smooth function; therefore, when 

this first factor in the exponent is multiplied by 
I 

~ (x ,t), the integral vanishes for the most part due to 

the random phase of the exponential. Hence, only 

contributions within a distance '1 of the stationary 
I point x= x ,where the phase has the minimum value of 

zero, are substantial. In terms of { = x -x, the region 

of coherence range is 



Making the substitution we obtain 

We may expand 'If in a power series keeping terms of 

order t and by the relation Eq.(2.3.5) second-order 

terms in "y/ • Furthermore we can replace 

17 

.tv[ (X;"1 ,t)j by tV(x,t) since by doing so we make 

an errol' only of higher order than ~ • Expanding the 

left hand side to first order in c and the right-hand 

side to first order in '7 , we get 

j 
_ t:O 

'L 

[ 
~"JI I 1 ~ 'f J . "f(X t) + ~ - + -", - 01."", 

, I:JX 2. I :;) X1 ( • 
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Now if we take the terms to zero order in i: and '7 on 

both sides 

... 
:JI(x,t)= 

( 
I J j"'72. '2.~ ~ ) A __ e t- dj '1Ji(X,l-) 

= ~ e;:'1i (; )'\r (,,-,i) 0 
(2.3.8) 

In order that both sides agree in the limit ~ approaches 

zero A needs to be so chosen that the expression of 

Eq.(2.3.8) equals to one: 

Now evaluating the Gaussian integrals 

I ~ exp[im o,,z/2{,t] idj = 0, (2.3.9) 

-pO 

and 

"'" j ~ eXf[i"'''l/2~C] ,?\j7:: ./1,1;/'1'1'1 0 (2.3.10) 
-.,00 

Therefore Eq.(2.3.7) becomes 

(2.3.11) 

This will be true to order ~ if V satisfies the 

differential equation : 
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t ;;;i 2m 
(2.3.12.) ---. --=---

giving the Schrociinger equation for a particle moving in 

one dimension. 

2.4. Calculation of Path Integrals 

In this subsection we will introduce a technique 

which was given by Feynman. This technique will be valid 

only for the case that the integrand of the path inteGral 
o • 

is an exponential of a quadratic form in the var1ables x 

and x, and all of the variables appear up to the second 

order. For this purpose let us introduce the Lagrangian 

of the form : 

L= o.(U ~\ h(i))(X + C({-o)x2.+ cW:) X 

+ e(t-)( -I- f (-\;) 0 

(2.4.1) 

The action of course ~ill be time integral of this 

Lagrangian between two end points. life now wish to compute 

I< (Xb' t~; x",t",) 
XJ, , tJ, . 

= j eXf r ~ j L (X, x,t)d~] DX(U. 

Xc> 1:". 
(2.4.2) 

Let us WI·i te every path as 

(2.4.3) 
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where x(t) is the classical path between the specified 

end points and y is a new variable, namel~ the deviation 

from the classical path Fig.(2.4.1). Since all the paths 

agree at the end points y(ta ) = y(tb ) = O. The classical 

path is stationary so that any variation in the 

alternative path x(t) amounts to the associated variation 

in the deviation yet). Hence we can write 

o 

/ (2.4.4) 

o 

by means of which Eq.(2.4.2) takes the form 

K (Xb,tb ; Xo..to.) = 
o 

jeXf!; S[x(!) +~(tlJ}l)~(t). 

Expanding the action S in a Taylor series about x 

tb . 

S[x+~]= J L(X-+-~,x+!},t)d+-
to. 

'Z. 'Z. '2. 
J ( :3 L.. I • 1;3 L. I . {1 L I . '2.11 d-t +-;- dX2. x~ + dx9x x#}+ dX'l. i(!1/J . (2.4.6) 
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The first piece L(i,x,t) integrates to give S[i]:SC1. 

The second piece linear in y and y vanishes due to the 

classical equation of motion. All that remain are the 

second order terms in y 

flo 

+J [O(t>lt h(Dj~+c..(t)!1"]c:lt. 
to. 

(2.4.7) 

Bince the integral over paths does not depend upon the 

classical path, the propagator can be written as 

• 0 tlo . 

y~ Sc.l r b. eol I( (' / z 
KCb,(A)= e llexf -2:.. fc.(t)~ 

o -11 t 
'" 

(2.4.8) 

Due to the fact that the path integral has no 

memory of x, it can only depend upon t. Hence 

(2.4.9) 

where F(tb,ta ) is some function of ta and tb. For the 

case where the coefficients in Eq.(2.4.1) are time 

independent F oan depend only on the difference 
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Now we can get further information"about F from Eq.(2.2.4). 

This we demonstrate for the case of a free particle where 

Eq.(2.2.4) yields. 

F(t + s)J t + s = F(t).[t F(S)~ A (2.4.10) 

" Now, if we define a new function f(t) 

fet) = A F(t) It (2.4.11) 

Inserting this into Eq.(2.4.l0) we get 

f(t + s) = f(t)f(s) • (2.4.12) 

This relation simply says that fet) must be of the form 

fet) = eat. Now choosing t = t, an expansion in a Taylor 

series to zeroth order in c yie Ids 

f( f ) = 1 

This tells us to set a = I, so t~at F(t) becomes 

F(t) = It:;""' = A' 
A,t 

(2.4.13) 

(2.4.14) 

giving the normalizing factor. The technique given here 

will be clear when we consider t~e harmonic oscillator 

example in a later subsection. 

To summarize : For a quadratic Lagrangian the 

propagator is evaluated by Feyn~an's theorem which 

involves essentially the computation of the classical 

action ScI' and it takes the form 



?3 

(2.4.9) 

where F is an entirely time dependent function described 

as a conditional path integral. As seen above we did not 

evaluate this conditional path integral but gave another 

procedure for obtaining F. papadapoulos(12) has recently 

evaluated this conditional path integral for a general 

quadratic Lagrangian. 

However it is also possible to obtain the 

normalizing factor F by using the Van Vleck-Pauli formula. 

In this formula F(tb,t ) is given by a -

... 

[ 12TI -a-d-x Io-d-X ... 

. "1. 
5 ()(, t .)( t \]. 

c.l w, 10' .. , 0./ • (2.4.15) 

In the next subsection we will give a complete derivation 

of this formula. 

2.5. Derivation of the Van-Vleck Determinant. 

As discussed in the previous sections, in the 

limit 11- 0 , the propagator is ~iven by the 

semiclassical formula 
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~e have shown that this expression is exact for the cases 

where the Lagrangian is quadratic in x and x. Then the 

preexponential factor depends only on time. In this 

subsection we will calculate the preexponential factor in 

SA alternative way aud for more general cases. 

Let the motion be considered as a result of two 

subsequent processes, such that 

under the condition 

8Sc\(Xj"Xc ) + C}.5d l)(c,x .. ) =-0 
d Xc. g )( c:.. 

which means that x is a point on the classical c 

t . t f om x to x
b

• It is also understood from the raJec ory r a 

last equation that the intermediate point Xc on the 
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trajectory is obtained as an extremum of the action at 

fixed end points. Writing the fundamental property of the 

propagator Eq.(2.2.4), in the semiclassical approximation 

(2.5.4) 

, , .J-
(xc,tc,xa,ta ). Since we, are working .in the limit "- 0 

the calculation of the integral in Eq.(2.5.4) corresponds 

to finding the asymtotic value of this integral 

of a rapidly oscillating function, which is called the 

stationary phase method; In Eq.(2.5.4) Al .A2 is slowly 

varying and l~ is large. Now let us write Eq.(2.5.4) as 
:r 

The stationary point of the integrand follows from the 

expression 

(2.5.6) 

The se~iclassical approxiillation involves neglectinc the 

.. " -" , ,:-'. 
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term in the parenthesis, since it is multiplied by ~ 

which is small and Al .A2 is slowly varying. In this 

approximation Eq.(2.5.6) is identical to Eq.(2.5.3) and 
• Xc becomes xc. Furthermore, expanding the integrand of 

the integral in the Eq.(2.5.5)·in a Taylor series it 

becomes 

. ( Sd~ + .sel.) I. (x~"'-- X';) ( x~fi_ x:)] 
xc· X, 

Recalling Eq.(2.5.2) this relation becomes 

A (Xj"tl>;X .. ,I:c.)= 

[(.21Ti{;)~et."5) A (xl..tb;X .l) A (xc.I:<-;)(o..-I:c.), 
(2.5.8) 

where B is given by 

(2.5.9) 

Here the intermediate coordinate Xc is a function of 

xa.xb,tb~tc' tc-ta given by Eq.(2.5.2). To find a better 

expression for the matrix B, apply the operator 

and 

ol 

to Eq.(2.5.2) and the operators 'd/gXo. 

to Eq.(2.5.3). Therefore, we get three 



equations 

or using the notation 

(ofJ 
Qo( = 

27 

) 



E~.(2.5.10) become 

(I) en"'", .J 

D 'T'\ Q QC')' (Z} Q(I)p . (l)S 

~I = I./",~ ·If + D. + !3 Q 
r t:I. 7jJ d"1J') 

n lJ) 
/../oI.jJ 

(Z) (1.)-t 

Del., + 8",""( Qp = 0 

28 

(2.5.12) 

To exclude the matrices Q(l) and Q(2), it is appropriate 

to use matrix notation. Thus 

T 
D=D,Qz. +Q,D2 +Q,BQ; 

V, + Q,B = 0 

D'2. + B Q; = O. 

From the last two equations 

Q 
-I 

1=- D, B 

(2.5.14) 

and substituting these into the first equation of 

This means that 

(2.5.16) 

Now, let us take this expression for B into Eq.(2.5.8) 

and group the related terms. 
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(2. rrif. t2. A (.2TT i~ /12. Az (.2 niJ;, ih A, --V del: (~D )' ,; de I: (- Dz) ..; dec (;- D,y' 
• 

The solution is evidently 

This expression for the pre exponential factor ~n 

the semiclassical approximation was found, using the 

Schrodin~er equation, in an early work by Van Vleck. 

Note here that if the action is bilinear in xa and xb 

for any bilinear Hamiltonian, the matrix D is independent 

of xa and xb • In this case the exact solution is given by 

the semiclassical approximation. 

2.6. Harmonic Oscillator 

In this subsection we will apply the method given 

in the subsection(2.4) to calculate the path integral of 

a linear. harmonic oscillator. For a harmonic oscillator 

the Lagrangian is 

l"" ~ X~- (YIw'J. ;<'1.. (2.6.1) 

2. J... 

Thus the path integral is given by 

(2.6.2) 
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NolV, let us expand each path about the path that makes 

the largest contribution to the path integral. Thus for 

any path we write 

"D X (t)= D2j (-1:). 

Upon introducing this into the ,classical action. 

ilo 

S[x +~]= '; J [~2. _w:Lxjd+' + 
to. 

+; j~lf- wL~1'~(H. 
t" 

(2.6.3) 

The first integral gives the minimizing action Scl a Thus 

we may write 

~-t. SCl 
K(b,a.)""F(T)e I (2.6.4) 

where 

and T =tb-ta with y(ta ) =y(tb ) = 0, is a f'actor 

independe~t of the end points xa and xbo Thus expansion 

about the classical path allows us to separate the path 

integral into a factor dependent upon T and the end points, 

and another path integral dependent upon T alone. Thus 

the important dependence on xa and xb can be found by 

simply solving the minimizing differential equations 

subject to the end-point conditions x(ta ) = xa and 

x( t b ) = xb and calculating the integral 



1:1. 31 ! r; (x 2_ W
1 

X ) dt , 
~ 

The minimizing differential equation yields the 

solution 

where C is a constant which will be determined by the 

initial and fina.l conditions. Upon substituting this 

solution into the above integrand, we get 

t" 

Sc(= J ~ JeT Sin'l(Wt+tp) - Cos't(wf-+<p)]c:Jt 
t~ 

:z. . 

:. _ f'YI;C [5"n(wtb+I{J)C0.5 (wtJ,-+tf) 

(2.6.6) 

Considering the solution x(t) at ta and tb 

(2.6.7) 

Notice that 

St'nwT-



CO.5wT = XJ. Xa 
C C 

the simultaneous solution of which yields C 

Therefore, Scl becomes: 
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(2.6.8) 

(2.6.9) 

(2.6.10) 

Now let us come to the calculation of F(T). 

Consider the property Eq.(2.2.4) : 

K(b,o.)= j K (b,c)K(C,a)dxc. 
Xc. 

Let t =tb-tc and s -tc-ta , so that t ~s :tb-ta = T. 

Employing Eq(2.2.4) 

= F (1:) F (s) I exr { 2:~:/; [(x:+ X~ )C05W t _ 
_ cO 
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It can be easily shown by algebraic manipulations that, 

~.sCl j [ _ F(h) F(s)e e"p 
_00 

1'm v:J :5i" w (t- +0$) ] 

2...t:; S,;"w-l: SinwS 

(2.6.12) 

"S On the each side the factors e f <lilt cancel each other, 

and the integral on the right hand side is of the form 
""" 

J -oI.~'l. fi[' 
e c:J-; =--.; ~ 

-.,c 

Therefore, 

and 

(2.6.13) 

(2.6.14) 



Introducing a new funqtion, 

Eq.(2.6.14) becomes 

which implies that f(t) must be of the form: f= eat. 

Using the same arguments that lead to Eq.(2.4.13),· 

f(t):l, F(t) becomes 

-1/'2-

34 

F(-l:)=(mw !2nd;Sinwt) 
(2.6.16) 

and this com:")letes the solution of the path integral of 

a harmonic oscillator. 

2.7. Hamiltonian Derivation of Path Integral 

We will now derive the propagator as inteErals 

over trajectories in phase space. To do so, we will 

bee;in with the general principles of quantum mechsnics 

and then deducude the Feynman path intee;ral from them. 

Let us introduce Hilbert-space operator QH 
acting on the state vector with eigenvalue q in the 

Heisenberg picture 

(2.7.1) 

In this picture, one freezes the complete time 

dependence of the state vector, and the operators are 

Eiven by 



.!.. H t. 
1; 
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e 
-1.. Hi 

e1; 
) (2.7.2) 

where Qs is the time-independent position operator in 

the Schrodin~er picture, and H in the exponent is the 

Hamiltonian, The time evolution is then given by the 

equation : 

where 

with ei~envalue q 

/9/ , 
I q,t) 

H 
is an eigenstate of Q s 

The finite-time propagator is then given by 

(2.7.4) 

which measures the overlap of eigenstates of the 

position operator at different times. It studies the 

whole global motion of the system i.e., specify the 

dynamics of the system completely. We are going to 

express this transition amplitude as a path intefral in 

terms of a classical Hamiltonian, H(p,q), without 

reference to operators and states in Hilbert space. 

To proceed further, let us subdivide the time 

interval t'-t into N equal segments and take the limit 

N __ • r::O later. Let 
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So taat tJ.. _- i I -I- t J.·.O 1 c: , t ••• • Now using the 

completeness of the state vectors we can 

write Eq.(2.7.4) as 

=<9'1 (1-1 tHtl9) 
It 

since we consider large N, so that the step in time t is 

small. and expef;/~ H)~ l-ttH 
write each term in the integrand as 

• Therefore, we may 

• 
<92-/ (1- ~ c~)lq,/= 

j~ <91\P1)<PI\(I-,~eH)19'), 2n:i:; .., 
(2.7.7) 

and define the classical Hamiltonian H(p,q) by 

(2.7.8) 

Thus Eq.(2.7.7) can be written as 
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Therefore, G(q',t';q,t) becomes 

<9',t' i9It;=: ;Jm 11. ... 1 Jpo if' dp"dq" 
N_oO J J. J (:zn~)f naJ (2nf.)f 

. e\(p[; ~~ pn (9n .. - qnJ] 

/V-' 

. ~D [ I - ~e It ( p", 911)] I 

with the conditions qo.q, qN =q' 

At small t we have 

Then it becomes possible to write the amplitude 

Eq.(2.7.10) over unitary amplitudes replacing 

(2.7.10) 

(2.7.11) 
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(2.7.12) 

wi th £j t: (; • 

Suppose now the set of values {P., q. P1 ... 

successive values of certain functions q(t) and pet), 

which may be discontinuous functions, such that us_ng the 

notation 

tl'1= t + ~t 

q ... '" 9 (~,,) 

pl'1==p(!n) 

in the limit N _ 00 

(2.7.13) 

(or t> t _ 0) one can write 

(qn+I - ~~ )jLH -A-t--O~~ 9 (tn) 
t' 

_-~~ jf(7:)d7. . 
ilt-O i 

(2.7.14) 
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Consequently, under the light of these facts the finite

time propagator becomes 

G ( q I) L'; q J + ) :: 

i' 

jDf D~ exp{fl[?~- HlP1'l)1J-z:})(2.7.15) 

where / Dq Dp is the volume element of the phase space 

given by 

(2.7.16) 

Notice here that at the beginning the number of p 

integrals was one more than the number of q inte~rals, 

but in the limit N -_t 00. , it does not matter at all. 

If the classical Hamiltonian is in the form 

(2.7.17) 

one can easily obtain the original form the Feynman 

path integral by just performing the p-integration in the 

Eq.(2.7.12) by means of the formula: 

J d 
2n~ 

(2.7.18) 



Thus Eq.(2.7.l2) becomes 

where L is the Lagrangian 

L m .2-
. <=_ ~ - v(q), 

1. 

with qO=q(t) and qN =q'(t') 

40 

exp ! ~ il C 

1; n=D 

(2.7.19) 

(2.7.20) 

Eq.(2.7 .l~) is just the Feynman integral over path.s in 

coordinate space with the volume element 

f.1- t: 
{ -= IN' (2.7.21) 
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. III. PATH INTEGRALS ON HOMOGENEOUS SPACES 

The Feynman path integral as a method for 

quantization is quite appropriate in a standard situation 

when the coordinate spa.ce is flat and the Hamiltonian is 
2-

of the form : H =- .-E.- 4- V ( q ) • However, it needs to 
2m 

be considered more carefully for a study of compact 

coordinate spaces. For instance, the property that to 

apply the Feynman method one should have a unique 

classical traj·ectory at sufficiently small times for 

fixed end coordinates qi and qf t breaks down, if the 

coordinate space has a bo~ndary or is closed. In this 

case one has not only to integrate over q, but also to 

sum over all possible trajectories which may con~ribute 

with different phases. In the next subsection we will 

study the motion of a free particle on a oircle, the 

U(l) group manifold, in which these kind of problems 

arise. 

3.1. Path Integral for the Group U(I) 

Free motion of a material point on a 9ircle 

corresponds to the Lagrangian : 

!l 
1· = 1 I 'f 

2 

wi th one. coordinate If , 0 ~ If ~ !2. IT 

(3.1.1) 

• This space 

is the group manifold of the group U(l) and with the 

metric corresponding to Eq.(3.1. 1), it is flat. The 

action for a curve 'f (t) between tp -f '" cP (~-f ) iAnd 



42 

(3.1.2) 

Thus the propagator K from ( tp" ,t l ) to (If>2. ,t2 ) is 

the sum over the paths of exp r l' S / -t:;] • In an 

dr.dinary case given paths ~(~) and ~(t) with the 

proper end points there arises no"question of relative 

phase between their contributions to the propagator, 

since if one deforms \II ( I:: ) continuously into t.p (t-)) 

the contribution due to ~ must continuously go over 

into that due to ~ • 

For a particle moving on a circle there are paths 

between given end points which are not deformable into 

one another. For instance the paths which loop around a 

circle different numbers of times are in ~ifferent 

homotopy classes, i.e., they are not continuously 

deformable into one another. Therefore the classical 

action has the form 

which depends not only the boundary points of the 

trajectory but also on the number of revolutions in 

process of the motion, where n= 0, ± I, t 2, .. , ..... . 

represents the number of revolutions in positive or 

negative directions. Thus the propagator is 
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c:;o 

I< Cf:z. I t, <f" t,) -; L Qn kIf (If.!), 
11=' 

(3.1.4-) 

where 

The most general an's which are possible are Given by 

,'" S 
an =- e so that K ~ 

Using the notation If. '" 'f.j. <p, 

Eq.(3.1.4) becomes 

is 
e I<. when 

and t 2 = I: + l, ;: 7 + /;, 

K ( If+ If" 7 + t., ; ~ , f) = K ( If, 7).: K $ ( If, T ), 
(3.1.6) 

where 

• 

Now recall the definition of the Jacobi theta 

function(13) : 
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-93 (J,t)= L 2.in~ 
e 0.1.7) 

0=-00 
, 

and its fundamental identity. 

(3.1.8) 

93 is analytic in ~ in the half-plane Im(t)~ O. 

Obviously K.jj is a theta function and noticinp; the fact 

that 173 (~,t)= eJ (- ~J t: ), K.. becomes 

Notice that 1m i =0 which depriving the series of its 

absolute convergence x. In spite of this fact it is 

possible to restore analyticity by taking the moment of 

inertia I or (~ ) to have a small positive imaginary 

part. Now let us handle this problem with conventjonal 

quantum mechanics. In that case we will call the 

propagator G for just notational convention, and we will 

show that the path integral (i.e. semiclassical 

approximation) propagator K is equal to the propagator G 

of ordinary quantum mechanics. In general the propagator 

can be written as a sum over stationary states. 



where '\f'"" 0 s and Em '.s are the eigenfunctions and 
1;1 'd t 

eigenvalues of the quantal Hamiltonian I-t= ___ _ 
:2 I ;;) If -z. 

respectively 

. and 
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E _! (rn+o<.)'Z. 
, '" - ::;.I I (3.1.12) 

Under rotation by 2 'IT the change in phase of 'IjI is 

2.nio(. e . Using Eq.(3.1.10) G can be formed as 

. 00 

~rr I exp[I'~ (~r~ )] expr-2~ (~rtnn, 
n=-oO 



where S = 2n 0(. and If=- 41 .. - 'f, , is =- I/1, T as before. 

Once again using the definition theta function G~ 

becomes 

~ eJl.p[ tJtp _ 
21I 21t 

_I ) 
2 -t'iL • 
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(3.1.14) 

using the identity Eq.(3.1.8) 

Inserting this relation into the expression for G 

Eq.(3.1.14) we obtain 

(3.1.16 ) 

Noticing the fact 
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G~ (If, T) = 

7f -21!i 

1'-"l/2. 
e (3.1.17) 

which is equal to /<.s (tp, -r) ; accordingly , we have 

shown that the exact solution of the motion in U(1) 

group manifold is given by the semiclassical series. 

3.2. Path Integral on SU(2) Group Manifold 

In this subsection we are going to write the 

path integral for the infinitesimal propagator on SU(2) 

group manifold by using the semiclassical formula and 

check the result by the standard quantum mechanical 

outcome. However we should remark here that our 

semiclassical formula including the Van Vleck 

determinant does not hold for this case, since SU(2) is 

curved i.e., the corresponding metric is non-trivial. 

For curved spaces and complicated mechanical syste~s, the 

normalization of the propagator is a function of the 

coordinates, which is not the case for, e.g. the 

harmonic oscillator. Therefore, the short-time propagator 

needs some modifications in this case. 

De Witt(6) suggested in his work in the 

Riemannian spaces that a modification involving an 

additional term in the Lagrangian proportional to ~ is 

necessary for the propagator to satisfy the Schrodinf,er 

equation. The details of this study is outside the 

scope of this work, hence we will only give the result 



which is related to our problem. In our case the 

curvature R of the space is constant and the only 

modification which arises is a time dependent phase 

exp (it; f( 7 / 12) which multiplies the propagator : 

~ 

-'/1j 
I 
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(3.2.1) 

" where g =g(xb ) and gl =g(xa ). and D =D(xb.tb , xa.ta ) is 

the Van Vleck determinant. 

Let us first write the SU(2) group element by 

means of Pauli matrices 

where If, e and If' are the Euler angles assigned to 

the system. 

A left multiplication of U( 'f' EJ, IJI ) with the 

matrix 

I 

(3.2.2) 

results in an active rotation of the system throu~h 

angle ~ about the axis n. On the other hand, passive 

rotation of the observer is effected by the same 
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multiplication but with ~ replacing _~ • 

The metric tensor for SU(2) or (SO(3») is 

the other components are zero. Let us show Euler angles 

by E =( 'f, &, 41 ) for convenience. Then, 

d~2 =- ~Ij dfidfj 

_ (d (7) 2+ ( d 'P) '+ (d If t+ 2 Cos e d'f d 11'. 
(3.2.3) 

Consequently, the relation between metric and the 

Lagrangian corresponding the motion on SU(2) manifold is 

/ (.2. .2. '2. ) 
= 2. I e + tf + If + 2. Gos 0 Y; , 

where I is the moment of inertia. Now what we need is 

this : given the initial and final configurations of the 

system, what is the action computed along the classical 

path connecting them? It is clear that the action S 

from Ea to ~ is a function of Ua and Ub and evidently 

T = tb-ta and S = f(Ua,Ub). At this point, an important 

argument can be given. Since the external world is 

rotationally symmetric, it requires f to be invariant 

under left multiplication of its arguments. The natural 

lie group metric is also invariant under both left and 

rir:ht multiplication, so that f0~~ any A ~ .s \J (2.) 



f ( 13 , c.) '" f ( BA, c: A) ~ f (A 13, A c.. ) • 

In the same manner, let us multiply the argument of 

S =f(Ua,Ub ) by A from the left and by Ua-lA from the 

right : 
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For diagonalizable matrices with which we deal, 

only the eigenvalues, their multiplicity, and functions 

of these remain invariant under a similarity 

transformation. In the case of SU(2) only one 

independent invariant remains after the application of 

the determinant and unitarity conditions. Let us call 

this invariant r and for convenience define 

C 05 r = / 
2 2 

0.2.6) 

S is some function of r . In t-erms of Euler anp:les 

To. specify the explicit dependence of r in S 

consider the boundary conditions eo-::' 9 b '" 0 I Lfb = \f"'
So that the motion can be taken as uniform rotation with 
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the figure axis pointing in the Q = 0 direction. The 

resulting ambiguity in f and ~ is resolved by taking 

I() = constant; accordingly, constant = ~ = ( CPt. - "P .... + 'J.nfl ) 

(C", - t,..) 
where n is the number of times If' passes through lfIJ. for 

t < tb. Taking this information into Eq.(3.2.4), and 

integrating between end points 

(3.2.8) 

From Eq.(3.2.7) we get only 

r =- lfb - lfJo,. + 2nTl • (3.2.9) 

Consequently, 

J 

2' 
C3.2 .10) 

Obviously, r is j.ust the arc length of the 

geodesic in SU(2) connecting Ua and Ub • In the 

Eq.(3.2.6) ~he inverse of the cosine function is multi

valued. This corresponds to the discrete set of 

geodesics connecting points in SU(2) manifold, each of 

which is only a local minimum. In the case of SO(3) 

group, the relevant paths correspond to the solutions of 

Cos.!. r = + 
2. 

(3.2.11) 

The homotopy group of SO(3) has two elements, i.e., it is 

doubly connected. Hence between given end points in SO(3) 

there are two classes of paths. 

Now notice that we could determine the classical 



52 
action for SU(2) in an alternative and more 

straightforward way. We know that any SU(2) matrix can be 

written in the form 

(3.2.12) 

satisfying the condition 

The space of points that obey this last condition is the 

three-dd.mensional sphere S3; consequently, any SU(2) 

matrix is isomorphic to the sphere S3 i.e., the 

parameter space of SU(2) is the sphere S3 which is 

parametrized by the components of a. four dimensional unit 

vector. Therefore we can think the motion on SU(2) group 

manifold equivalently as a free particle moving on the 

parametrizing sphere. The corresponding Lagran~ian is 

where • The Euler-

Lagrange equations of motion immediately follow 

.. "9 =~Cf, (3.2.14) 

to,ether with the constraint that the norm of '1 is 

unity we Get .. 
q.q-= Ii 

q.'f=O. 

Simultaneously consideration of the last equation with 

the equations of motion leads us to 
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. . . _d ( _, .!.. 2.) = 0 q. q 
= dt 2 ~ J 

(3 .• 2.16) 

with the result 

(3.2.17) 

is identified by means of this expression and 

Eq.(3.2.15) 

/J =- 9" q ~ l- ( ~. ~ ) _ 9 2 

dt 
__ 2 c = Con:si(mt. (3.?18) 

Upon inserting this value for ~ into the equations of 

motion we obtain 

(3.2.19) 

which is nothing more than a harmonic oscillator 

equation. The solution to this equation is immediate 

9"(0:: -a.c.o.swt + h S/nwi (3.2.20) 

where UV~~ and a and b are constant vectors. 

To identify a and b 
. _2 

we refer to the constra~nt q "'" / ; 

accordingly, 

on do ii. b = 0 (3.2.21) 

The first of these immediately verify our previous 

result Eq.(3.2.17). 

Now uLder the light of these facts, the 

computation of ScI follows 
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tT. 
(3.2.22) 

At this stage we need the physical meaning of 8
cl

• To 

achieve this we consider the initial and final conditions 

q, = 9(0)= a 

-:: Cf (7)= a Co.swT + b 0/nwT. (3.~.23) 

The scalar product of these two vectors gives 

91· 91 = CO.5wT, 

DIre Cos ( q I . q1) = u.J 7 
(3.2.24) 

Let us call this angle W 7 between the vectors ttl 
• Then 

2. 
t. -= S /27, (3.2.25) 

which is the arc length of the geodesic between given 

points on the sphere S3. In fact the only classical path 

is not $ , but there are the classical paths windL,g 

around the sphere 83 , a number of times i.e., defining 

a new angle r = .8 + 2n IT where n is the number 

of revolution, we obtain 

'2. 
r /2 T (3.?26) 

This expression is the same as the one we have found by 

using a different argument. 

NOVI let us return to our previous discussion. The 

position of the system on the SU(2) group manifold as a 
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function of time can be easly obtained by considering the 

connection between geodesics and one parameter subgroups 

(3.2.27) 

from which the relation of r " and n to Ub and Ua is 

evident 

('1.2.28) 

'I?. -'14 

Finally, the computation of the factor D f 
is necessary for the evaluation of Eq.(3.2.1'), the 

expression for the short -time propagator. The 

calculation of this factor is tedious and the result can 

be found in the paper by Schulman(15) 

(3.2.29) 

Consequently,· carrying all these infor"1ation into 

Eq.(3.2.11) and noticing that the curvature R of SUe?) 

is t<: ~ , the path integral expression for the short-
2-

time propagator is written as 

)

31t r 
K =- ( 2 rr~~ T 2 S' I • ..., 

In I. I 
Z 
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where T = \: b- ho.. • and r is the smallest solution of 

Eq.(3.2.6). Let us call this ro • then r:. ro+ 2.nTl 

n: :tI,:!: 2 •..... 

Now we are going to check this result by the 

Green function which will be constructed by standard 

Quantum mechanical technique. However, we will first do 

the same thing for the sphere 82 to be more instructive. 

The quantal Hamiltonian is 

/ 
+ 

Sin2.{} 

its eigenfunctions and eigenvalues are 

11m = >1,., (e, ¢), 

where Ylm's are the spherical harmonics. 

Then using the formula, the spectral expansion 

for the Green function 

we obtain 

G ( 9 2 , cPz I 1:1; 9'1 cPl' if) = 

"'" -1'1(1.+1)7 

'/;,., (eb.¢>b)~,.., (ec..cPo.) e -I; I (3.2.33) 
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where 

m 1'".,4> m 
. (-0 e ~ (cose). 

(3.2.34) 

It is possible to take the summation over m by using the 

addition formula for spherical harmonics. 

+1 
~ (cose)= L 

m::-l 

(.2.35) 

where 

(3.2.36) 

It is evident that the angle e given by Eq.(3.2.36) - -is the anGle between the vectors 9~ and 9b that 

specify the end points on the sphere S2, since S2 is 

parametrized by a unit vector whose components are 



S/n9 Cos cP ) 
Sin 9 S'-n cP 

CO.5 ¢> 

Consequently Green's function is written as 
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(3.2.37) 

-i:r:..1.U+/) 
1; 

e 'f.e. (Co.:; s ) 

(3.2.38) 

Nov.· let us turn to our original problem. Laplace 

operator on SU(2) group manifold is given by 

(3.2.39) 

with this Laplacian the Schrodinger equation is 

2 

17 
(3.2.40) 

21 

The stationary states are labeled by j,m,k,which are 

related respectively to the eigenvalues of 
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A • ,where n p01nts along the 
T, 

figure axis. 

The normalized eigenfunctions having the appropriate 

rotational properties together with their eigenvalues are 

z. 
E . -j;, '(0') J""k = _. ~ j+ 1 I 

2.T • 
1)~~ is the representation matrix of 

group and given by the expression(16). 

im tp 

e 

the rotation 

C3.2.42) 

where the matrix element d~k (8) is given by in terms 

of the Jacobi polynomial 

This relation is strictly speaking only valid for non 

negative values of m-k and m +k. Nevertheless all the 



result:;! to be derived from it are true for the general 

case. 

ConsequentlY/for the Green's function we have 

G ( E h ,t h ; E", / t" ) = L 
;j,., Ie 

( 
i7;7 . . ) 

ex.p -- 1U+O ) 
2I 

60 

(3.2.44) 

here the summation index j runs over 

integer and half-integer values, and 

all nonnegative 
• • 

-J~m ... k~j 

Notice that the m and k dependence is only in the 

.1) matrices. To take the summation over m and k, we 

will use the unitarity property of U. Hence consider the 

argument of D to be lL ( E) c; s 11 (2) ,rather than 

just E. Then 7)!.~ (1.1)= "Ok! (1.1-1) , and for any j 

L 
mk 

'¥ 
- ') j~ _') ~ ( -I) 
-L. 1)""", (Uj, U .. ::: T.,...1) Uj,LA" ,(3.2.45) 

m 

Here, Dj can be taken diagonal, because the trace is. 

invariant under a similarity transform, and this will be 



61 

the case if the z axis is taken along the direction n 
defined by U

b 
and 

Then, with the r 

• 

Ua through Eq.(3.2.28). 

of Eq.(3.2.6) 

Dmm~ (lhll~')= e.)(.p(1m r), 
so that 

-iJr[ if' 2J j f'] - e ..., -+ e. + .... + e 

_ijr 
_ e 

Sit! U-t t ) r 
oS i ,.,rh 

• 

Together with this expression G follows 

(3.2.46) 

(3.?47) 

(3.2.48) 

To get rid of the summation over half-integers let us 

transform j to.f /2 where..t. can take ir.teger values 

(3.2.49) 
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Now let us take 1 to k-l, such that 

'k r I _ 

e.. 2 

(3.2.50) 

We will now employ the eq.(A.S) 

"I'l e e 

, 
(A.S) 

the formula which is derived in the Appendix on 

considering the Jacobi imaginary transform(13). Then 

Eq.(3.2.50) becomes 



on taking the r -derivative we obtain 

(r+4nn;) 

01n1 r 
2 

exp [ir (r+ 4nrc)2.] 
2-t:.T 1 
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C3.2. 52) 

as infinitesimal propagator on SU(2) group ~anifold. For 

sufficient Iv small T, the only term contributing n • O. 

Hence 

i~-r 
~r 

e 

which agrees with the semiclassical result Eq.(3.?30). 

3.3. Some Remarks About the Path Integral on the 

Hyperspheres S2n+ I and S2n 

In this subsection we will consider the exact 

solution to the free quantal motion on the snheres SD and 

discuss the validity of semiclassical approximation in 

these cases. 

Using the spectral expansion, the exact solution 

for Sn is riven by(9) , 



-i1i7 1. (-l+2"V) 
2 

e 
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(3.3.1) 

v 
where 01 (c.os &) is the Gegenbauer polynomial, y::.(n-I)/ 2. 

Now let us remember what we have done before. We 

know that for the cases of U(l) = 81 and 8U(2) = 83 the 

semiclassical approximation to the path integral leads to 

Eq.(3.3.1). Hence for these cases the semiclassical 

formula gives the exact result. The equivalence of the 

semiclassical formula to the exact result Eq.(3.3.1) is 

obtained by using the Poisson summation formula or 

equivalently the Jacobi imaginary transformation for 

Q - function in the last step. As we have seen the use 

of this transformation contains an infinite summation, 

however, in contrast to Eq.(3.3.1) where the summation 

extends over energy eigenvalues, the new summation is 

over homotopy classes of classical paths which wind 

around the sphere (81 or 83 ) different number of times. 

An immediate question is whether Eq.(3.3.1) which 

contains a sum over energy 

into such a form for other 

eigenvalues 
n spheres 8 • 

can be transformed 

Here we will show 

that this is indeed possible for odd n, but we have not 

been able to find such a formula for even n. 

We start by differentiating Eq.(3.3.1) with 

respect to cos Q 



d 
d(CO.s6 ) 

- 1·t; T .1 U. + 2v) 
VI-I 2 

l (}.fV) 0-1 (COS & ) e 

The differentiation rule(17) of the Gegenbauer 

polynomial is 
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In Eq.(3.3.2) we use the superscript v on K to mean that 

K V is the propagator for Sn. Consider now the index 

transformation -'2. --~ ..1 + I so that 

Then 

·tT ] . exp [- -t 1. .1 (1+ 2-v+ 2) (3.3.4) 

Notice that C_/~O and the summation on the ri~ht 

{/V+ I (.G, T ) " in the above equation is related to A v 

therefore, 



d 

d(cose) 

This formula gives 

KV+'{ )_ e/7 -

'V 
in terms of K 

.. dT (zv+r) 
e 2- d 

-
2 (H I) d(cose) 
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• 

This nice expression makes it possible to 

calculate the propagator for 83 ,85, ••• 82n -+ 1 given KO 

for 81 • Notice that it is applicable both the exact 

result and to the path integral result. 'tlhen applied to 

the path integral it coincides with the semiclassical 

result for u(l) = 8 1 and 8U(2) = 83 • For other 82n -+ l ,s 

(n = 2,3, ••• ) it does not coincide with the semiclassical 

result. showing that the semiclassical result is not 

exact for these cases. However. the formula is still of 

the form of a summation over classical trajectories and 

indicates some form of a quasi - classical approximation 

for these cases may also give the exact result. 
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SUMMARY 

The Feynman path integral formulation of quantum 

mechanics carrying a global approach in contrast to the 

local Schrodinger equation provides a powerfull 

technique that a significant portion of today's 

theoretical calculations rely on.The'path integral takes 

an important role not only for its modern applicatfons in 

quantum fie'1d theory but also forms a useful basis for 

the development of approximation methods. It is especially 

adequate for semiclassical considerations in some cases. 

In this work we have given the fundamental 

principles underlying the Feynman path integral approach 

to quantum mechanics, showing its equivalence to the 

Schrodinger equation for a simple special case. It turns 

out that despite its intuitive appeal the applicability 

of this approach has been limited because of analytical 

difficulties and expressions for path integrals are 

available only for a few cases.From this,point of view, 

we have. shown a calculation method for systems with 

quadratic Lagrangians in the variables x and x and 

later on applied it to a special example, namely the 

harmonic 0scillator in one dimension. In the calculation 

technique we have just mentioned above evaluation of 

path inte~ral reduces to the computation of exponential 

of classical action with an overall normalizing factor 

depending on time only. This preexponential factor is 

given alternatively by Van Vleck determinant. Furthermore, 

this expression related to the second derivatives of the 
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classical action is more appropriate in the case of curved 

spaces since in this case the preexponential factor 

depends also on the coordinates. He have then given the 

complete derivation of the Van Vleck determinant. Our 

next task has been the Hamiltonian derivation of path 

integral. We have begun with the usual operator formalism 

and shown that the Feynman original form of path 

integral is equivalent to this form only for the case 

where the Hamiltonian is given in the quadratic form. 

In the context of the semiclassical approximation 

the path integral propagator for free quantal motion on 

group manifolds is of prime interest, since it turns out 

that the exact result is given correctly by the 

semiclassical result. In these cases the most interesting 

part of the problem is that. The classical trajectory 

with fixed end points at sufficiently small times is not 

unique. \~e have first considered the example of uC 1) 

gro~p. Writing the path integral in semiclassical 

approximation we have seen that a~ sum over an infinite 

number of classical paths, arising from the m~ltiply 

connectedness of U(1) group, is necessary. We have shOlvn 

the equivalence of this result to the exact solution 

relating the sum over paths to a theta function : Our 

second example has been the free quantal motion on SU(2) 

group manifold where we have also used the semiclassical 

considerations, but it has been necessary to modify the 

semiclassical formula since SU(2) is curved. We have then 

obtained the classical action by using two different 

arGuments. Finally, we have written the stationary state 
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expansion and using the Jacobi imaginary trans~ormation 

shown that the semiclassical solution coincides with the 

exact solution. 

It turns out that the semiclassical approximation 

is not generally exact on the spheres. 'while the 

semiclassical result coincides with the exact solutions 

for the srheres Sl and S3 it does not hold for the other 

spheres. However, in our present work we have shown that 

the propagator for the spheres S2n ",1 can be written by 

means of a recursion relation giving the propagator in 

the form of a summation over classical paths which implies 

that there is the possibility of giving the exact solution 

by starting solely from the path integral. 
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APPENDIX 

THE POISSON Sur~MATION FORMULA AND THE JACOBI 

IMAGINARY TRANSFORM FOR THETA FUNCTION 

Consider the summation 

irng 
e 

. ~t _1m 

e.. (A.l) 

We would like to linearize the m2 term in the exponent. 

To do so let us employ the Jacobi imaginary transform 

which sterns from the definition of a Gaussian integral 
00 

_o.(x+ib)~ 

j dx =/i[ e 
- cO 

giving the transform 
00 

_ob
2 If J 2 . b _Q.x-2./C< x 

e =- e /l. _ 00 

Let us apply this transform to the 

summation eq(A.l) 

00 

L 
/me 

e e 

I (A.2) 

dx (A.3) 

e term in the 

(A.4-) 

with a = it. Now by virtue of the one dimensional FoissJn 

summation formula : 



00 00 

L /n9 
e = :2.11 L 8 (e + 2.n71. ) 

the eq(A.4) becomes 

/me _im7.-I: 
e e 

m .. - oO 

n=-oD 

-~( 
e 
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(A. 5) 

(A.6) 

I 

(A.7) 

on using the property of $ function: S 0-)() "" 0(- \ ~ ('/.. ). 
Therefore the summation eq(A.l) takes the form 

e = 
m=-oO 

(A.S) 
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