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ABSTRACT

The purpose of this fﬁesis is +to realize. a prosodically guided,
syllable based, limited—vocabﬁlary, speaker-independent Turkish word
reoogﬁizer and studying 'fhe effects of various parameters on the
recognition rate.

Basic recognition units are the syllables which form the words in
the vocabulary accofding to the prosodicél\rules\of Tﬁrkish. The input
of thersystem is the 18—wordkvocébu1arj époken by 4 different speakefs.

The speech is first filtered with a low-pass filter which has cutoff at

3.5 kHz, then sampled at 8 kHz and fed into the PDP 11/23 microcomputer

which pfocesses the data. The output is the best éstimatelofAfhe word at
the input. |

The endpoints of the'syliables are founa‘using pifch—period and
energy information.,ihe feature éets used for the test and feference
templates consist of the éoefficients of a 10-pole LPC filter. The
comparison between the test and reference templates is performed by
djnamic time warping and log~likelihood similarity measures. Also
Turkish prdsodical rules are used for redﬁcing the calculation efforts
duringH_thé comparison. And finally K—ﬁeéfest—Néighbéur deciéion rule
gives the beétkes‘timate of the word at the input. o o

-Various runs with different paramétérs aﬁd different speakers were

performed and the observations and results are repdrté&ﬂin?thenthesis.’
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SZETGE

Bu tezin amaci sinirli: bir Tirk¢e dagarcik ig¢in, konusmacidan
bagimsiz, biiriin destekli, hece tabanli bir ayrik sdzcik taniyiciya. PDP
11/23 mikro-bilgisayarinda ger¢eklemek ve degisik parametrelerin
etkilerini incelemektir.

Sisfemin girdisi 18-kelimelik ©bir ' dagarcigin 4 ayr: konuéma01
tarafindan sesletimidir. Bu sesletimler 3.5 kHz'lik bir algak gegiren

siizgegten geqirildik%en sonra 8 khz de drneklenerek gerekli islemlerin
yapildigy PDP 11/23 ndkro-Bilgisayéfiﬁa vefilmei%edir. Sistemin ¢iktisa
girdide sesletilen sdzciijiin en iyi kestirimidir. |

Temel tanima ‘birimi_ olarak, Turk¢e’nin birtin kurallarina gore
biraraya geldiklerinde s&zciikleri olusturan, heceler‘ secilmistir,

Tanimada ¢ok 6nenﬂiv bir roli. olan hecenin bas ve sonunun bulunmas:
islemi perde sikligi ve enerji bilgileri kullanilarak yapilmaktadar.
Bellekte 6znitelik seti olarak iO—kutuplu bir dogrusal éngori slzgecinin
katsayilar: saklafxlmak{adxr. Test sablonunun bellekteki sablonlarla
karsilastirilma islemi dinamik zaman biikme ve cesitli izgesel benzerlik
olgiileri kullamilarak .yap11maktad1r. Karsilastirma islemi sirasindaki
-qabalar1 azaltmak i¢in de Tﬁrkqé'niﬁ biiriin - kurallarxndanl
yararlan1lﬁaktad1r. Karar verme islepi"K’1ncx—enyak1n—komsu kurala
kullanilarak yapilmakta ve sistemin ¢iktisa olarak girigteki sozciigin en

iyl kestirimi bulunmaktadar.
Degisik parametreler ve konusmacxiar kullan11§rak pek lcbk test -

) . ‘ e ‘,,,4
Q yapilmsg, varilan sonuglar ve edinilen gazlemle% sunulmustur.
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I. IRTRODUCTIOR

Vhile digital machines can perform arithmetic operations at great
speed and can reliably store. and access huge amounts of information,
they are very poor at communicafing’wifh humans. Humans find natural
spoken language a highly effective medium for communications. Computers,
on - the other bhand, prefer the speéial symbals of assembiers and
compilers, typically entered from a typewriter keyboard, to control
their internal processes. If, however, computers could be made to deal
with voice signals, the normal telephone could assume many of the
characteristics of a computer terminal. Strong interest therefore
centers upon. providing computers with more humén—like abilities for
natural -1angdagé exchanges. . Iﬁ short, we wish to give computersh a
“mouth" to talk to humans and “ears" to listen to human-spokén requests.

Giving the computer the ability to talk, using its own <(machine)
voice, draws upon the techniques of speech synthesis. Giving the
_.computer the ability bto listen and understand is called speech
recognition. This thesis is a study on isolated word recognition which
is a subfield of speech recognition.

.Speech recognition has made major>stridé§ in‘the past fifteen years,
‘and it bas advanced to the point where several commercial systems are
currently évailable. These commercial systems are predominantly isolated
word, speaker—trained systems which achieve word accuracies greéter than

95 percent in noisy environments. There also exist speaker independent,

\



and connected string of wordsvrecégnizers.

As the capabilities of the word-recognizers have improved, the tasks
to which they have been applied have becoﬁe more sophisticated, and more
difficult. Some of these tasks are:

— Airlines information and reservatiosns,

- Automatic recognition of read text and typing (voice-typewriter),
— Support for a fighter-pilot,

~ Support for the handicapped,

- Support for the private branch exchanges (PBX's),

- Vdice input to computers,

- Control of air-traffic,

- Chess playing.

In this thesis, a speaker independent isolated Turkish word
recognizer has been realized on PDP 11/23 microcomputer and the effects -
of varioué parameters on the recognition rate have been studied.

The speech productfgn and récognition mechanisms in humané will be
summarized and two models will be giveﬁ in Chapter II. In Chapter III, a
géneral isolated word recognition system and the role of grammar and
prosody in speech recognition will be introduced. Chapter IV presents
the system realized in this study. Chapter V is a presentation of the
results , and in Chapter VI, conclusions éﬂd possible areas of future

research in this field.



II. ELEMERTS OF HUMAK COMMUNICATION

If the computer is to assume more human-like, abilitiles, at first,
the . communication functions of humans has to be studied. A model of

speech generation and speech recognition in +the human is shown in

Fig.2.1.
SPEECH GENERATION
TEXT PHONEKES, PROSODY ARTICULATORY MOTIONS
4 ¢ | i
|
| MESSAGE |_____ I LANGUAGE 1______ | I | NEURO-MUSCULAR 1_____ ! VOCAL TRACT I___.
| FORMULATION | I CODE | | | CONTROLS I i SYSTEM | |
| |
5 , |
DISCRETE INPUT I CONTINUDUS INPUT |
ACOUSTIC
YAVEFORN
|
30000-50000 ==re===m==r=mmn=
50 BPS 200 BPS . 2000 BPS : B8PS | TRANSHISSION |
| 1 [ ] | I CHANNEL I
INFORMATION RATE . ) : | !
|
ACOUSTIC
. WUAVEFORH
SPEECH RECOGNITION | N
PHONENES, ¥ORDS, FEATURE EXTRACTION SPECTRUM |
SENMANTICS SENTENCES CODING ANALYSIS |
4 i + ’ & |
" _ , l
| MESSAGE  1____. | LANGUAGE I_____1______ l NEURAL - f_.___l BASILIAR HMEMBRANE 1__|
| UNDERSTANDING | | TRANSLATION.| | TRANSDUCTION | | MOTION i

— vt mn b = — —

DISCRETE OUTPUT CONTINUOUS QUTPUT

Figure 2.1 : Schematic representation of the human speech

communication process.



In the ' figure, appraximate digital rates associated Qith
descriptions of the information at several levels are indicated. Speech
generation (by the human) encompasses the cerebral formulation of a
message, casting the information into a language “code" écceptable to
and uderstood by the intended <(human) recipient, and physically
actuating, by neural and muscular control, a sound generation system
which produces a sequence of sound waves interpreted as the distinctive
elements (phonemes) of the given language.

As one descends this speech-generation “"hierarchy", the information
representation appears to become less efficient, and hence requires a
higher digital bit rate for its specification. The sequential components
of the “language code", visualized as being discrete symbols specifying
finite amounts of information, constitute "commands" to the transducer
sysfem that}wifi generate the acoustic output. These commands are the
neural and muscular. actions that control the opération and motions of
the human vocal System; for example commands that cause the vacal cords
to vibrate at a particular frequency and intensity, or commands that
change the position of the méuth, jaw, and tongue. A general discrete-
time model:for speech production is shown in Fig.2.2.

The vocal tract is a nonunifaorm accoustic tube which extends from
the‘élottis to the lips and varies in shape as a function of.time. The
components oauging this change arerthe lips, jaw, tongue, and velum. For
example, the cross sectional %rea of the lip opening can be varied from
0 cm® to about 20 cm®. The nasal cavify which begins at the velum and °
ends at the nostrils constitutes an additional accoustic tube for sound

transmission used in the generation of the nasal sounds. As sound



propagates in the vocal ana nasal tracts, its frequency spectruﬁ is
shaped by the resonances of these tracts. The resonance frequencies of
the vocal tract are called formant frequencies. The formant frequencies
depend upon-the shapeAand dimensions of the vocal tract; each shape is
characterized by a set of formants, Different sounds are formed by
varying the shape of the vocal tract. Thus, the spectral properties of
the speech signal vary with time as the vocal tract shape varies. The
changes in the positions of the mouth, jaw, and tongue cause changes in
the parameters of the vocal tract filter V(z). For voiced excitation the
glottal pulse genera?or is used énd the period of the glottal pulses is
c&lied “pitoh period". For unvoiced sounds the excitation source is the
white noise genefator. A more sdphisticated and detailed model has been

developed in [1].

PITCH PERIOD .
1

!
v

|
1
I Ispulse | I &lottal | ¢
I train f=---- I pulse |---x
I generator | 1 nmodel | 1 VOCAL TRACT PARAMETERS
------------ I 6 | C irreeas
-
l

--,‘ --------- ,L ---------------

I Vocal | | Radiation |

VBICED/UNVOICED p mm———— | Tract model [-----1 Model |---—-4
SWITCH | V(z} | I R(z) 1

Randor |
noise  |=--=-x---

—— —

Figure 2.2. General discrete-time model for speech production



The effect of the vocal tract is modelled by an all-pole digital
filter V(z) which has the formants as its poles. V(z) relates volume
velocity at the source to volume velocity at the lips and finally, the
‘ 'radiation model takes éare of the radiation at the lips.

The parameters of the model are assumed to be constant over time
intervals typically 10-20 ms. long. This model is quite appropriate for
sounds whose parameters change slowly with time, namely, vowels., It
fails to . represent voiced fricativeé, for which both sources are
involved at the same time. A second iimitation is in the representation
of nasals, because of the lack of zeros in V(z). Against all its
limitations, this is a modelvthat works sufficiently well and is widely
used.

On the other side, human recognit%gn of speech entails a frequency
analysis (by/the.basiliar membrane of the inner ear) of the auditorily
receivedkacoustic wave. The results of this frequeﬁoy analysis are then
transformed into électrical neural signals that are interpreted .and
comprehended 1n accordance with the mutually agreed upon language
convention. In a complementary fashion, as one ascend; this récognition
hierarchy, the information representétion likely becomes more efficient
and compact, with lower digital bit rates associated with the more
effic;ent descriptions of the speech information.

In terms of fundemental understanding, the acoustics of sound
generation by the human vocal system and the physics of sound analysis
in the peripheral ear are now relatively well-known and can be
quantitatively specified. By contrast, the speech communication involves

cerebral process which implies that the human capacity for speech



communication ié related to our intelligence. THot suprisingly;
therefore, present day computers emulate the lower level (peripheral)
processes well, but emulate the higher level (central) processes only in
a very primitive way. We should therefore, not expect to achieve high-
quality speech recognition machines until >we can simulate human
intelligence. For that reason, .in fhe future, the researches will be
centered on syntax, semantics, prosodics and pragmatics in order to deal
with fluént continuous unconstrained speech in both speech synthesis and

recognition.



IITI. ISOLATED WORD SPEECH RECOGRITION SYSTEMS

Fig. 3.1 shows a typical model used in the majority of isolated word
speech-recogﬁition sysfems. There are three basic steps in the model:

1. Feature measurement,

2. Pattern similarity determination,

3. Decision rule.

I I TEST | | DISTANCE | | o
SPEECH { FEATURE }. PATTERN ! - PATTERN } SCORES : DECISION : REgg?NéE%D
SIGNAL I HEASUREMENT { } SINILARITY ;{, A v ; RULE % ¥ORD(S)
_________________________ ;- ——— OSSR
|
|
] |
{ REFERENCE I
N |
1 I

PATTERNS

Figure 3.1 : A typical model for speech-recognition systems

The input to the model is tﬁe acoustic waveform of the épokén input
(typically a word, or a connected string of words). The output of the
-modél is a "best" estimate of the word (or words) in the input. Often
the‘outéut of the model is a set of estimétes 6f the words in the input,
- ordered by similarity, allowing the final decision of what was actually

spoken to be deferred to a higher level of processing in the recognition

system.



3.1. FEATURE MEASUREHMERT

The analog front end of the system consists of a standard low-pass
filter which has a bandwith of approximately 3-4 kHz, followed by
analog-to-digital (A/D) converter which operateS‘ﬁear 8 kHz (using 8—16
bits). After this point, all processiﬂg is domne digitally.

The next step in prooeséing is feature measurements which are used
for detecting the endpoints of the words (or syllables as in the system
described in this thesis).vEndpoint detection means literally finding
the spoken word in the designated recording interval, that is to say,
seperating the speech from the backgroﬁnd sounds. This step 1s a crucial
one in the recognizer for two reasons, namely:

1. Erro;s in endpoint location increase the probability of making

)
recognition errors. Gross errors £n endpoint location make reliable
recognition impossible.

2. Proper 100%tion of endpoints kee?s the overall cbmputational load
of the system to a minimum.

For reasonably quiescent recording conditions (.e., a ﬁuiet room)
endpoint location is a very simp1e pr0cedure. However, as the recording
conditions degrade, the difficulty of endpoint location increases.

‘;eature measurement is basically a data-reduction technique whereby
a large number of data points (in this case samples of speech waveform
recorded at an appropriate sampling rate) are transformedAinto a smaller
set of features which are equivalent in the sense that they faithfully

describe the salient properties of the acoustic waveform. For speech

signals, data reduction rates from 10 to 100 are generally practical.
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For representing speech éignals, a number of different feature sets
hﬁve been proposed ranging from simple sets such as energy and zero
crdssing rates (usually in Selected‘ bands),  to complex, ‘“oomplete"
representations such as the short-time spectrum, linear-predictive
coding (LPC), and the homomorphic model. For recognition systems the
motivation for choosing one feature set over another is ofteﬁ complex
and highly dependent on constraints‘;mposed on the system (e.g., cost,
spegd, response time, computational complexity, etc.). Three of the most
important of these criteria are:

1. Compu£afion time,

2. Storage,

3. Ease of implementation.

Of course the ultimate criterion is overall system performance.
However, this ériterion is a complicated function of all system

variables.
3.2. TIXE REGISTRATION OF PATTERNS

-Once the patterns have been meaéured, the next Steé in the model of
Fig.3.1 is to determine similarity between test ana reference patterms.
Beca&ge speaking rates vary greatly, pattefn similarity involves both
time alignment and distance computation, and often these two are

performed simultaneously.
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1 I T(n) 1 NT

Figure 3.2 : Example of time registration of a test and a reference

pattern.

Fig.3.2 illustrates the function of time alignment between a test
pattern T(t) and a reference pattern R(t). Our goal is to find an
alignment function w(t) which maps R onto the corresponding pax;ts of T.
The criterion for the correspondence is that some measure of distance

between the functions, D(T,R), be minimized by the mapping w.



12

Several techniques have been proposed for determining the alignment

path w, including:

1. Linear time alignment, i.e.
m = w(n) = (n-1) T =D

2. Time event matching, i.e., times at which significant "events"

occur in both reference and test patterns are found, and lined up in

time
m = w{(n:)
mx = w(nz)
De = w(nel

and a functional fit to w(n) is found ;’based on these constraints.

(Typically w(m) is chosen to be piecewise linear fit).

- 8. Correlation maximization, i.e., the warping function w(n) is

varied to maximize the correlation between reference and test patterns

_R* =max . (T(n) Riw(n)))

where the optimization is performed in a constrained manmer.
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4. Dynamic time warping (DTW), i.e., the warping curve is determined

as the solution to the optimizatibn problem |
D¥ = min wen> L2 d(T(n), R(w(n) )]

where d(t(nm),R(w(n))) is the "distance" between frame n of the test
pattern, and frame w(n) of the reference pattern.

Previous studies have shown that, for polysyllabic words, distinct
improvements in recognition performaﬁoe are obtained using DTV for
detecting the similarity between test ‘and refe.rence"patterns. For that
reason, DTW has been chosen as the time registration method in this
thesis.

In order to implement the optimization problem of bTW, the concept
of distance betwgen frames of features must be defined. Several possible
distance measures can be used, depending on the form of the feature

sets. For example, a simple Euclidean distance of the form
p
d(T,R) = IT-RIl = (Ty - Rs)=

=0

where T: and R: are the i*" components of the vectors T and R,
respectively, is often used.
_ Other distance measures which have been-used include:

a) Covariance weighting: The distance is defined as
d(T,R) = (T - R) 7' (T - R)*

where 7-' is the inverse of the covariance matrix of the features.vThis

"typehof weighting compensates for correlation between features, and
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tends to give equal weight to all features in the overall distance.
b) Spectral distance: For this measure the log spectra of reference

and test patterns are obtained, and the distance is glven as
d(T,R) =j[ loglT(e’w)] - loglR(e?+*)]1< dw

where g is usually an even integer (to make the gth power of the
difference positive), and the integration is over the frequency range of
interest. This distance measure has been shown to correspond well with
subjective mesures of difference, and several efficient techniques for
| approximating the abqve‘integral have been proposed [11].

¢) LPC Log Likelihood Measure: For feature sets based on LPC
parameters, an extremely efficient distance measure was proposed by

Itakura [5], of the form
d(T,R) = log | ==-—~-==

where as and ar ére the LPC coeffiéient vectors of the reference and
test frames, and Vr is the matrix of autocorrelation coefficients of the
test frame.

One of the most important aspects of any distance measure is the
speed of computation, since distance calculations are the most, costly
(time consuming) part of most recognition systems. Any.proposed distance
meaéure whiéh requires a great amount of computatioh would not be a
candidate for use in a praotical system, no matter what its other
advantages ﬁight be. On this basis, LPC distances are reasonable

candidates for distance measures for recagnition systems.
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3.3, THE DECISION RULE FOR RECOGNITION

The last major step in the model of Fig 3.1'18 the deéision rule
which chooses which (reference) pattern (or patterns) most closely match
.the unknown test pattern. AlthoughA a variety of approaches are
applicable here, only two decision rules have been used in most
practical systems, namely, the nearest neighbour rule (NN rule) and the
K—nearesf neighbour rule (ENK rule).

The NN rule operates as follows: Assume we have V reference
patterns, R*, i =1,2, ... V, and for each pattern we obtain the average

distance score D* from DTV algorithm. Then the NN rule is simply
i* = argmin : [ D*]

i.e., choose the pattern, R?* with smﬁliest évefage distance as the
recognized patterﬂQ'In some applications, explicit choice of i* is not
required; instead an ordered <(by distance) 1list of recognition
candidates is used.

The KRN rule is applied when,eéch reference entity (e.g., word) is
represented by two or more reference patterms, e.g., as would be used‘to
makelthe reference patterns independent oflthé talker, as if is in this
thesis. Thus“if we assume there are P reference patterns for each of V
reference words, and we denote the jth occurence of the ith pattern as
Ri.9, 1¢i¢V, 1¢j<¢P, then if we denote the DIV distance for the jth
occurance of the ith pattern as D*-7, and if we reorder the P distances

of the jth word so that
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Di,f!J\(Di,L‘ZJ\('.' \(Di,EPJ

then for the KRN rule, for k ¢ P, the avefage distance is computed as

1 «
ri =3 pi.rk3
K k=]

and we choose the index of the "recognized" pattern as
i* = argmin s r*

Similarly to the NN rule, an ordered list of averaged distances (r*) can
be computed for cases when a list of recognition candidates is required.

The effectiveness of the KNN rule is seen when P is from 6 to 12, in
vwhich éase a feél statistical advantage is obtained using the KRN rule
(with K’= 2 ar 3) over the NN rule. |

3.4. THE ROLE OF GRAMMAR AND PROSODY IN SPEECH RECOGNITION

Up to now, we had an isolated word fecognizer. After tﬁat one can
build a robust speech recognition system, which performs human/machine
com;;nication, by utilizing the structural and linguistic aspects of
speech at .the same time [211, [22], [27]. In this section, the hierarchy
of the structural information of épeech, grammar and semantics and their
| application to speech recognition will be investigated. For the purposes
.of our discussion, grammar is the surféce structure of a message and

includes, but is not limited to the phonetic structure of words and word
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order in sentences. Semantiés is the deep structure 6f a message by
which meaning is conveyed.

Speech is a code used to convey information. Pierce [54] has
distinguished among four aspects of natural 1anguaée codes, symbolic,
syntactic, semantic, and pragmatic. The symbols of a language are
arbitrary and differ‘both from language to languaée and from the written
to spoken form of a given language. For written Turkish, for example,
the symbols are the 20 letters of the alphabet, a blank symboi or a
spacé, and a few punctuation marks., For spoken Turkish, 28 basic sounds
ar ?honemes and possibly, some diphtongs are a resonable choice. A
detailed study on Turkish syﬁbols'and souﬁds’are available in [55].

Syntax is the relationship of symbols to each bther. Although we
' usually think of SYntax as gfammar; that is the way the words are
concatenated to form sentences, syntéx equailj well describes the way
spectral types form phonemes,. phonemes form syllabieé, and syllables
form words. The syntactic structure df a language is also arbitrary to
the extent that any set of rules for-fofming sequences - of symbbls is
1egi£imate so long as the Sequences can actually be realized. In speech,
for example, 6ne would not expect to find sequences of phonémes which
are anatomically impossible to articulate.

Semantics is the relationship of symboi$ to reality. It is at this
level of the communication hierarchy‘that‘the arbitrariness ends. Once
certain symbols are chosen to represent specific aspects of the real

world, certain constraints on the way symbols are arranged in sequencés
are automaticélly imposed if we are to have a faithful linguistic model

of our universe.
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Pragmatics is the relationship between symbols and their users. Two
different speakers, or the same speaker’;n two different contexts, will
use the same symbol to mean entirely different things. This aspect of

language is very difficult to formalize.
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Figure 3.3 : Processes involved in "recognition" and "understanding”.
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Although much of the mes;age in speeéh is conveyed by the segmental
phonemes, additional information is caried by the suprasegmental
phonemes. Prosodic features, or, suprasegmental phonemes are properties
of articulafion that encompass more than one phoneme. Duration, stress,
tone, intonation and harmony are the prosodic features used in
Turkish.The physical parameters.,of the speech.wave which signal the
prosody of an utterance are the durations and intensities of the
syllables, and the fundemental frequency contours. More information on
prosody and prosodic features of Turkish are available in [55].

Figf3.3 shows ?he hierarchy of 1linguistic and prosodic feature
analysis blocks in a +typical speech recognition Systeﬁ. This thesis
includes tﬁe parts grouped undér name "recognitidn". Prosodic features
are not frequently used in word recognizers. The prosodic information is
used in conpectéd speech recognition and speech understanding systems.
But the isolated word recognizer of this study uses pitch and energy
information for end point detection of syllables and vowel harmony of
Turkish for reducing the calculation efforts during word matching (i.e.,
Dynamic Time Varping). For thgt reson this study may»be thought as a
transition between isolated word fecognition and connécted word

recognition.
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IV. PROSODICALLY GUIDED, DYNAMIC TIME VARPING BASED
SPEAKER INDEPENDENT ISOLATED WORD RECOGRIZER

FOR POLYSYLLABIC TURKISH VORDS

In this chapter, the structure and operation of the isolated word
recognition system used in this thesis will be studied in more detail.
The system described in this thesis was implemented on PDP 11/23
microcomputer which was preceeded by a simple analog circuitry and an
12-bit A/D converter, Fig:4,1 shows the block diagram of the recognition
system. |

In thié thesis, minimum récognition unit has been ohosen as the
syllable. Choosing the syllable as a unit gives the system support of
prosady. Prosody is the collection of features that are common to
several phonemes. In Turkish, information 1is carried in prosodic -
features in the form of duration, stress, tone, intonation and &owel
harmony [55). The vowel harmony rules of Turkish have beeﬁ used‘in the
system for eliminating impossible .syllable candidates before pattern
similarity cémparison prdoess and causing a reduction in the required
computation efforts and an increase in the recognition performance. The
maximum achieved performance rate for theigpeaker indepéndent system is
90%. The total computation efforts have been reduced to one fifth of
that of the system which-is not guided by prosody.

A careful examination of this, or any other, isolated Qord

recognizer, shows that the system has three distinct modes of operation,

namely:
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1)AQqnisiiinn_ni_isaiure_sﬁis.fbr each word in the vocabulary.

2) Clustering: Creation of word reference templates from the
training feature sets, and classification according to Turkish vowel
harmoﬁy groups.

3> Recognition of an unknown pattern by comparison with each
reference pattern.

Details of these three modes, and major parts of the system shown in

Fig. 4.1 will be studied in the next sections of this chapter.
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Figure 4.1 : Overall block diagram of the word recognition system
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4.1. ACQUISITION OF THE FEATURE PARAMETERS

The traiﬁing set of the recognizer kconsistS‘ of 19 Turkish words
spoken by 4 diffe?ent speakers., Iﬁ the training mode each speaker
recites each word 12 times over an aﬁalog, transmission system, The
analog front end of the system consists of a standard carbon microphone
used in telephones; lowpass filter which has 6 dB point at 3.5 kHz,
followed by an amplifier which has output between +10 V. After that, the
12-bit analog to digital converter which operates at 8 kHz converts the
information into digital form. After this point, all processing is doﬂe

digitally by PDP 11/23.

4.1.1, SYLLABLE END-POINT DETECTION

The next{step in processing is the syllable end-point detection as
shown in Fig. 4.1. The vocabulary consists of 19 Turkish words which are
composed of 29 different syllables. The words in the vocabulary have
one, two or three syllables. The syllables are recognized independently
and then brought together using the Turkish prosodic rules, in order to
form the words of the vocabulary. For that reason we have to find first
the endpoints of the syllables from the recordings. This step is a very
crucial step because of the reasons given;ih’the previous chapter. It
directly eifects the recognition rate. In order to find the endpoints,
the energy and the pitch periods are found for every 12.5 msec. (100

samples) using overlapping frames of 37.5 msec (300 samples) of speech.
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- Figure 4.2 : Block diagram of syllable endpoint detector.

A block diagram of the syllable endpoint detector is given in
Fig.4.2. The inputs to the detector are the energy array . (), 1 = 1,2,
.+ ,L, where L is fhe number of frames in the recording interval, and
the pitch period array Ta, 1 = 1,2, .v+ ,L. The output of -the endpoint
detector is a set of beginning points B(m) and ending points E(mw), m =

1,2, ... , X, where each set defines a syllable endpbint pair.

4.1.1.1 Calculation of energy

The first step in the block diagram is to calculate the 0th

autocorrelation coefficient (energy) as

. ¥
R (0) =3 x(n) x(n), 1=1, ... ,L
n=0

where x is the speech samples, L is the number of frames and ¥ is the

number of samples in each frame.



24

4.1.1.2 Bimh_p_ex:md_as_timmn

In order to find the boundaries of the syllables, the second feature
required’is the pitch period of each frame. As previously mentioned, the
pitch period is the period of the impulsés gene?ated by the glottis of
the speaker during the generation of voiced sounds.

A pitch detector is a device which makes a voiced-unvoiced decision,
apd during periods of voiced speech, provides a measurement of the pitch
period. As a result of the numerous difficulties in pitch measurements,
many pitch detection methods bave been develaped [551.

The usual realization of a pitch detector may be considered ta be
consisting of three main blocks which are passed through successively:

-the preprocessor |

~the basic extractor

-the postprobeésor

The function of the preprocessor is data reduction in order to
increase the easehéf'pitch extraction. The basic extractor operates on
~ this altered signal to convert it into a sequence of pitch estimates.
The postprocessor is a block which performs the tasks of error detection
‘and correction, smoothing of an obtained contour, time-to;frequency
conversion and display of the parameters.

The ‘pitch period estimation process — was performed by the

autocorrelation method in this thesis.
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1. Autocorrelation Method

One of the difficulties in pitch period estimation is the effect of

the formant structure on measurements related to the periodicity of the

waveform. Thus, it is desired to remove the spectfal shaping in the

waveform due to the formants. A way to achieve this spectral flattening

is using centre clipping by which signal values below the clipping level

are set to zero and those above the clipping level are offset by the

clipping level. If the clipping level is appropriately chosen, most of

the waveform structure due to the formants can be eliminated. AUTOC [43]

uses this approach combined with autocorrelation analysis. (Figure 4.3)
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The first stage of processing is the computation of the clipping
level. Because of the.wide dynamic range‘of speech, the clipping level
must be carefully chosen so as fo prevent 1oss‘of information when the
waveform is either rising or falling in amplitude withiﬁ a frame. Such
cases occur when volcing is just beginning or ending, as well as during
voicing transitioms, e.g., from a vowel to a voiced f;icative, or a
ﬁasal. For the selection of CL, the clipping level, the first and third
100 samples of the frame is searched for maximum absolute peak levels.
The clipping level is then set as 80 percent of the smaller of these two
levels. |

Following the determination of +the clipping level, ‘the speech
section is then both center  01ipped, and infinite peak clipped,
resulting in a signal which assumes one of three pdssible values; +1 if
the sample exceeds the posifive clipping level, -1 if the sample falls
be}ow the negative clipping level, and 0 otherwise. The usé of infinite
peakf clipping greatly reduces the computational complexify of the
autocorrelation measurement, because 1o multiplications are required in
the compufation.

The next stage in.processing iS’the autocorrelation comppfation. The
short-time autocorrelation function of the 300—samples frame is defined

as:

299-a
Re(m) = x(n)x(n+m m=HMi, Miv1,..., M
=0 :
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where M: is the initial lag and HMr is the final lag for which the
autocorrelation function is computed. For the frequency range of 100 to
500 Hz, these values are 16 and 80 respectively. Additionally, R.(0) is

oomputed for the normalization of the autocorrelation function.

In the computation of the autocorrelation function, it is assumed
that samples oufside the current framé are assumed to be zero. This
effectively weights the autocorrelation function by a 1linear taper
which starts at 1 at m=0 and goes tp 0 at m=300. That property is
desired, because it enhances the peak at the pitch period with respect
to peaks at multiples of <the pitch period, thereby reducing the
possibility of doubling or tripling the pitch period estimate.

For voiced-unvoiced decision, the autocorrelation peak is compared
to the eﬁergy, Rx(O)ﬂva this ratio exceeds a_voiced—unvoicedkthreshold
of around 36%, the frame is classified as voiced'and the pitch period is
the)position of thg autocorrelation péak. If the peak value fallg below
the threshold, the interval is cléssified as unvoiced.

| Thé decision for the current interval is modified by the decisions
for fhe preceding and sucéeeding intervals. If fhese are both voiced
(unvoiced), then the current interval is forced to be declared véiced

(unvoiced). 5% - 10% of the decisions have been modified by this way.
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4.1.1.3 Adaptive level equalization
The next stage of the syllable recognizer is the adaptive level
equalizer which normalizes the log energy array t0 the background noise

level. The equalized energy array R, (0) is determined as
K1 (0) = loglR:(0)] - Q, 1=1,2, ... ,L

where @ is the averaged noise background level which is obtained as
follows. First, minimum energy Emin is obtained as

Bwmin = min (loglRi(0)1} .
1€1€L

Then a histogram is taken of the low 10 dB of tﬁe log energy levels from
the values of Alag[Rz(O)] versus I. A three-point averaging of <the
higtogfam is made, and the peak of the histogrambis found. @ is chosen
as the peak of the smoothed noise level histogram.

The 1level 'equalized energy array has the pfoperty that dufing
silence it fluctuates around the 0 dB. level, and during speech it is:
considérably larger. Thus absolute‘énergy thresholds can be‘defiﬁed for
detection of the presence of speech—liké signals; as described in the

following parts of this section.



29

4.1.1.4 Engngg_pulsg_dg&ggiign

| Based on the output of the adaptive level ‘equalizer R:(0), four
energy thresholds ki, k=, ks, and ks are defined as illustrated in
Fig.4.4. . The purpose of the thresholds is to define the presence of an
"energy pulse", i.e., a speech-like burst of energy during the recording
interval. The assumption is made that the spokég word contains a
»-sequence of one or more such energy pulses, therefore the problem
reduces to‘finding those pulses and determining which ones belong to the

spoken word. This problem has been efficiently solved by L. F. Lamel and

L. R. Rabiner in [9].

LOG ENERGY

| ]
| i
| |
| P34 |
o 13 |
| b S |
o b b4 |
| p 343 SRS ¢ b # 44 |
| b S 4 X |
| 3 44 b ¢ |
K4 | ¥ b4 ]
[ X f331 ]
|- b4 3 |
| 3 X |
K2 | $ 24
B ., Yowoo N
: 3% 3 .
K3 ! e xz SR | ¥4t 2 ¥ ¥ 3 13444
Kl | 3% $332 3t X X% X ¢ ¥ 3
3 3 33 23 3
A 82 fs fie

FRAME NUMBER

Figure 4.4 : Example illustrating the use of energy thresholds to find

beginning and ending frames of energy pulses



30

The detection of energy pulses proceeds from left to right. Values
of R:(0) are scanned (as 1 varies)\ ‘and when R;(0) exceeds the first
threshold ki, the frame number (a;) is recorded. If R:(0) exceeds the
highér threshold ke before falling below k;, the beginning of an emergy
pulse is detected. The bgginning point is normally chosen as frame A4,
unless the rise time (from 4, to 42) is tdo long, in which case the
beginning i)Oint‘ is chosen as frame A= 'The ending frame is detected in a
manner similar to the starting frame using thresholds k- and ks.
However, if the duration from A4s to 4. is too long (this typically
indicates breathing at the end of the &:o‘rd), frame As is used as the
ending frame of the énergy pulse.

Two further tests are made on each detected energy pulse. The peak
eﬁergy of the pulse is measured, and if it falls below the level
threshold ka, thé energy pulse is rejected‘ as being part of the word.
Alsoy the overall pulse duration is meaéured, and if it is too short
(less than six frémes, i.e., 7D ms'), the energy pulse is rejected. The
outputs of the energy pulse detector is a series of pulse beginning
. points Ps(m) and pulse ending points Pe(mw), =»=1,2, ... ,¥ for X
detected pulses in the recording interval. Vhen X = 0 (.e., nb detected
pulses), the recording is rejected and no endi)oints are found. Checks
are “Zalso made on whetﬁer pulses of éign;t_ficant energy occur at the
boundaries of the recording interval. If so, the recording is again

rejected. A flow diagram of the energy pulse detector is given in

Fig.4.5.
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4.1.1.5 lelahl.e_kﬁnnﬁl_ggngmx_mn

The next stage in the block diagram of Fig.4.2 is the syllable
kernel generator. Syllables are usually defined as hlgh energy chunks
which correspond to voiced sections. An approach, based on this
definition, makes use of the fundemental frequency (inverse of pitch
period) in finding syllable kernels has been used in this study.

The syllable structure of Turkish is such that there will be a vowel
at the‘kernel of each syllable and these vowels will be manifested by
- long sections of voicing. The algorithm uses these sections as
candidates of syllable kernels and the energy waveform to find the
syllable endpoints. This algorithm usually works because the voiced
consonants are always next‘to a vowel, and during articplation of the
vowel and the yoiced consonant next to it, no discontinuity in voicing
long eﬁough to be detected- occurs, and even if this occurs, there will
be no ;ldoal minimum in the- energy waveform oorresponding\ to this
discontinuity. The algorithm may fail inkcases of all-voiced sequences,
where all the consonants are voiced, and no discontinuity in voicing is
detected. One example is given in Fig. 4.6 where the fundemental
frequency and energy curves are plotted for the utterance "ko-nus-ma".
This algorithm has been efficiently realized and studied in [551. The

fortran subroutine is also available in [551.

4,1.1.6 Syllable end-point detection

In many languages, including English, syllable division is not
uniquely defined. In Turkish, rules for syllable division are clearly

set. Detailed information about' the syllable ‘ division rules are
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available in [55]. In general, there will be ae;. many  syllables as vowels
in a word., Syllables can be recognized as voiced sections bounded by
large dips in energy. Using this definition, and after finding the
‘kernels of fhe syllables and end-points of the energy pulses, the
infermediate end-points of the syllables are chosen such that‘ they
correspond to the valleys between kefneis. The béginning of the first
syllable coincides with the beginning of the first energy pulse or the
beginning of the first kernel according to which starts earlier, and the
end point of the last syllable is chosen as the end-point of the last
energy pulse or the last kerne} according to which ends later. Fig.4.6
shows an example word which is seperated into syllabieé using the'above

technique.

4.1.2 LPC FEATURE EXTRACTION

One of’the commdnly used -feature sets for recogﬁition is the LPC
based feature set originally proposed by.Itakura £51. Thé basic idea
behind linear predictive coding is that a given speech sample can be
approximated as a linear combination of past speech sgmples. By
‘minimizing the sum of fhe squared differences (over a finite interval)
between the actual samples and the linearly predicted ones, a unique set
of ‘predictor coefficients can be determined. Linear-predictive coding
has: been shown to be closely related to the basic model of speech
production, given in Fig.2.2, in which the speech signal is modelled as
the output of a linear, time-varying system excited by either quasi-
feriodic pulses (for voiced sounds) or random noise (for unvoiced

sounds) (11, [31. The linear-predictive coding method provides a robust,
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reliable, and accurate method for estimating the parameters that

characterize the linear, time-varying system [371, [38].

-
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Figure 4.7 : Block diagram of the LPC-based feature extractor.

'F;g.4.7' shows a block diagram of the LPC-based feature analysis
system. This system is a block processing model in which a frame of N
samples of speech is pracessed, énd a vector of features is meésured. To
obtain this vector, the speech is preemphasized (to spectrally flatten
the speech signél and to reduce computational instabilities associated
with finite precision arithmétio) using a fixed first-order digital

system with transfer function

B(z) =1 - az™?, a= 095

giving the sigmnal

~

's(n) = s(n) - as(n - 1),

The signal is next re-blocked into N sample sections (frames) for
feature mesurement. In order to get constant number of frames for each

template, the number of samples in each frame (frame size) is changéd
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according to the length of the syllable. In this way, syllable templates
each consisting of 25 frames are obtained. This is a kind of linear time
warping. As it will be discussed ‘in the, following sectioms,
experimentation with this approach improves the performance of the
dynamic time warping algorithm, and gives better results in terms of the

recognition rate.

A typical smoothing window used in LPC analysis systems is the

Hamming window defined as

w(n) = 0.54 - 0.46 cos ———-——

The next step in the analysis of tﬁe windowed frame of data is the
LPC analysis.

The ‘basic discrete-time model for speech production in Fig.2.2 is
appropriate for the discussion of linear predictive analysis. Iﬁ that
figure the obmpoéite spectrum effects of radiation, vocal tract, and
glottal " excitation are represented by a time varying digital filter

whose steady state system function is of the form

S(z) G
H(z) = =
U(z) p
1 +2 arz™*
k=l

This system is excited by an impulse train for voiced speech or a random

noise sequence for unvoiced speech. Thus, the parameters of this model
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are: voiced/unvoiced classification, pitch period for voiced speech,

gain parameter G, and the coefficients f{ac} of the digital filter. These
parameters all vary slowly with time. “ .

The simplified model in Fig. 2.2 is a natural representation of non-
nasal voiced sounds, but for nasals and fricative souﬁds, the detailed
acoustic theory calls for both zeros and poles in the vocal tr&ct
transfer function. However, if the order p is high enough, the all-pole
model provides a good representation for almost all sounds of -speech.
The major advantage of this model is that the gain parameter, G, and the
filter coefficients {a.) can be estimated in a very straightforward and
computationally efﬂcient manner by the method of linear predictive

analysis. For the system of 'Fig. 2.2, the speech .samples s(pn) are

related to the excitation u(n) by the simple difference equation

p
s(n) = £ awks{n-k)+Gun)d
k=1

A linear predictor with prediction coefficients, aw is defined as a

system whose output is
P
&(n) = ¥ oxs(n-k)
k=1
The prediction error e(n) is defined as
P

elm) = s - s(n) = sn) - = aws@k
kel
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It is seen that the prediction error sequence is the output of a

system whose transfer function is

/.

: p
A(z) = 1 - 2 auz*
k=1

The basic problem of LPC analysis is to determine a set of predictor
coefficients {aw.} directly from the speech signal in such a manner as to
obtain a good estimate of the spectral properties of the speech signal.
The basic approach is to fihd a set of predictor coefficients that will
minimize the mean-squared prediction error over a éhort segment of
speech waveform. It can be seen‘that if ax = aw, then e(n) = Gu(n). For
voiced speech this means that e(n) would consist of a train of impulses;
i.e., eln) would be small most of the time.

To illustrate fhe néture af the error signal ng. 4.8 shows é series
of sections of waﬁefdrmé for several vowels, and the corresponding error
signals. For all these simple vowel sounds the error signal exhibits
sharp pulses at intervals corresponding to the pitch periods of these
vowels.

The order p of the linear predictive analysis can effectively
control the degree of smoothness of the“fesulting spectrum. This is
"illustrated in Fig. 4.9 which shows the imput spéech segment and linear
predictive spectra for various orders. It is clear that as p increases,
more of the details of the spectrum are preserved. Since our objective
is to obtain a representation‘ of only the spectral effects of the

glottal pulse, vocal tract, and radiation, it is clear that we should
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Figure 4.8 : Typical signals and spectra obtained from LPC model

for a vowel, (After Rabiner et. al. (11)

" Very ‘efficient ways of calculating the LPC coefficients {ax} have
been explained and discussed in (31, (6], [50]. The subroutines, AUTO
and COVAR used for calculating the LPC coefficients of each frame have

been realized by Gray and Markel, [11], using the autocorrelation and

covariance methods.
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4.2. CLASSIFICATION AND CLUSTERING OF THE REFERENCE TEMPLATES

4.2.1. CLUSTERING OF FEATURE SETS - -
In the clustering mode, a conversion is 'made from isolated
occurences of feature sets for a word to reference patterns to be used

in the recognizer. Three different methods are used to perform this

conversion, namely:

4.2.1.1 Direct conpversion or causal training, in which a reference
template is created for each occurrence of a feature set. Thus, if a
speaker utters each:df vocabulary words two times during training, and
there are V words in the voéabulary, a total of 2V word templates are
kcreated. This method is used Vprimafily in simple, ' speaker-trained
systems where it is aésumed that one or two spoken versions of each word‘
are adequate‘fof recognition.

4,2.1.2 Averaging conversion in which all the occurences of a giveﬁ word
are averaged togéther (after some form of time alignment) to give a
single reference template. This method provides a statistical gain over
direct conversion since spurious recordings are downgraded by» the
averagiﬁg. if enough recordings of each word are made. In this thesis
ten recordings of each word are usedvfor averaging.

4.2.1.3 Qluﬁiﬂ:ing;ggnggnsign in which it is assumed that there are P
oocureﬁces of each vocabﬁlary word, and they are grouped together to
form @ ciusters. Vithin each cluster the tokens (elements of clustering
analyéis)’ have +the property that they are ‘“similar® (i.e., small
distance to each other), .and between clusters, the tokens have the

property that they are dissimilar. For each such cluster, a single-word
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reference template is created using an averaging technique of the type
mentioned above. Clearly, the clustering analysis is most appropriate
for obtaining speaker-independent templates; however it has been equally

well applied to speaker-trained systems [131.

DISTANCE TO CLUSTERING
TEMPLATE 2

lwd
(%]

DISTANCE TO CLUSTERING TEHPLATE 1

‘Figure 4.10 : Example showing clustering of reference tokens of Turkish
word " ALTI " into three clusters (Ci, C2, C3) with an

putlier A.

Fig. 4.10 illustrates the concept of clustering for a set of 14 two-
dimensiona1>tokens. This set consists of 14 different templates of the
word " ALTI ". It can be seen that 13 of the tokens fall into one of the
thrée clusters labeled C1, C2, and C3 in Fig.4.10. Each of these
clusters have been represented by a singié reference template. However
it is also seen that one of the tokens (labeled A) is an outlier,i.e.,
it is not close to any of the other clusters. For that reason, this
gutlier has formed a single-element cluster and has been individually

represented as a template. The dimensions in Fig. 4.10 are the LPC
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distance measures of each template to the clustering templates. These
clustering templates are chosen arbitrarily in the beginning, and after
clustering, they are placed into the clu;ters which have minimum
distance respectively. Fig.4.11 shows the flow diagram of the algo%ithm
used to combine P repligations of a reference word into @ clusters and

form one reference template per cluster.

( START )

~FIND ALL UTTERANCES
OF THE WORD .

, |
FIND AVERAGE DURATION

|

LINEARLY VARP VORDS
T0 AVERAGE DURATION

|

COMPUTE DISTANCES
BETUEEN WORDS AND
REFERENCE TEMPLATES

T

GROUP UTTERANCES WITH
SIMILAR OISTANCES

I

FORM TEMPLATES
FRON EACH GROUP

Fighre 4.11 : Flowchart of the clustering algorithm

v
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4.2.2. CLASSIFICATION OF SYLiABLES BY USING TﬁRKISH PROSODICAL RULES

There exist eight vowels : /a,e;i,i,o,o,u,u/ in Turkish, Any ome of
these vowels may occur in monosyllabic QArds. In words of more than one
syllable, however, there are systematic restrictions on the co-oocurancé
of the several vowelyphonemes. Thus, in words of native Turkish origin,
front vowels, /i,u,e,o/; and back vowels, /i,u,a,o/, do not occur
together. And then, there are thé rounded vowels, /o,o0,u,u/, and
unrounded vowels, /a,e,i,i/. If a word contains an unrounded vowel in
its first syllable, it ‘cannot contain rounded vowels in its ather
syllables. Moreoverﬁ the phonemes /o/ and /o/ occuf generaily only in
the first syllable of a word (with the exception of the suffix -yor).
This is generally called Jvowel'harmony" in Turkish,

In order to reduce the computations during the comparison of the
test template and refereﬁce templates, the syllables of the vocabulary
have beenwclassified according to the vowel harmony of Turkish. The
syllables of the vocabulary used in this study have been classified as
shown in Table 4.1. During the recognition process, for the first
syllable, the target space is all of the syllables. But for the second
~and third syllables, the algoritﬁm.is constrained according to the vowel
harmony of Turkish. Table 4.2 éhows the target gfoups for the second
and third syllables corresponding to the group which the first syllable
belongs. As can be seen from Table 4.2, fﬂé number of target groups for
the second and third syllables is two- -out of eight. This shows a

significant amount of reduction in the computation effort required

during the template comparison.
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| UNROUNDED - | ROUNDED |
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. 1 | | 1

| VIDE | CLOSE | VIDE | CLOSE |

| | ! 1 !

I

[ it -1- 1 -2- 1 -3- 1 -4- |
I il BAS | CIK | DO | Kuz |
| BACK i1 SAK | FIR | | |
! AL 1 TI ! | |
i it LA | 8sI I ! |
! It RA 1 1 | |
1 b mad | ! |
! it -5 1 -6- 1 =-7- | =-8- |
1 it BES | KIZ | DORT I UC |
| It LES | VIR 1| | o
| Il DEN | TIR | !
| FROKT i YE. | BIR | ! !
| 1t SE | GIR | ! 1
1 it CE 1 KI ! ! !
| Il GE | NI 1 1 |
| I 1 DI | ! |
{ | 1 | |

Table 4.1 : Distribution of syllables of the vaocabulary according to

vowel harmony.

'GROUP OF THE FIRST SYLLABLE | POSSIBLE GROUPS OF THE SECORD
1 ARD THIRD SYLLABLES

S e IS T ORI
©mO OB NN

1
|
i
!
|
!
|
!

O~ WN -

Table 4.2 : Possible groups for the second and third syllables of a

polysyllabic Turkish word.
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4.3 RECOGNITIOK OF THE_?EsT TEMPLATE

The recognition mode of the system proceeds initially as the
training mode which has been described in section 4.1. A word is spoken,
a set of featqres (energy and pitch) is measured, and the endpoint
locations of the syllables are found. Following endpoint detectionm,
autocorrelation analysis is performed on each frame of the syllables to
give a test pattern T(m), n=1,2,...,25 to be used in the dynamic time
warping algorithm. This test pattern is optimally time aligned (using
DTW) with each of the 29 reference patterns, giving a distance score D,
i=1,2,{..,29. The decision ruleiorders'the'distance scores and provides
a best candidate based.on either NK or KNN decision rules.

After recognition of the first syllable, the following syllables (if
they exist) are searched émong the target groupé defined in Tabie 4.2,
according to Turkish vowel harmony.-This extra informationAexcellently

improves the system speed during the recognition of polysyllabic words.

4,3.1 DYRAKIC TIKE VARPIKG

It is well known that speaking rate variation causes nonlinear
fluctuation in a speech pattern time :axis. Elimination of this
fluctuation, or time-normalization, has been one of the central problems
in spoken word recognition research. At an early stage, some linear
normalization techniques were examined, in whicﬁ timing differences

between speech patterns were eliminated by linear transformation of the

time axis.



47

Dynamic time warping is a pattefn 'méfching algorithm with a
nonlinear time normalization effect and is originally proposed by Sakoe
and Chiba [4]. In thié algorithm, time a;is fluctuation is approximately
modelled with a ﬁonlinéar warping function of some carefully specified
properties, Timing differences between two speeéh patterns are
eliminated by warping the time axis of one so that the maximum
coincidence is attained with +the other. Then, the time-normalized
distance is calculated as the minimized residual distance between them.
This minimization process is very efficiently carried out bﬁ use of the
dynamic programming ﬁechnique, The basic idea of DIV has;been reported
in several publications [4], flO], [23].

Speech can be expreésed By appropriate feature. extraction as a
sequence of vectors

A
B

A1,82) 000 38i) 00,41
bl,bz‘,-..,bj,:»-,b..r

as we have seen before. The timing differences of these two sets are
plotted on an i-j plame, shown in Fig. 4.12, as a sequence of points

o=, 1)

F =¢c(1),c(2),...,c(k), oo (K,
whére

ok} = (ik),J&)).

This sequence can be considered to represent a function which
approximately maps the time axis of the test pattern onto that of the

reference pattern. It is also called the warping function. Vhen there is
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no tim;ng difference between these two patterns, the warping function

coincides with the diagonal line j = i. It deviates further from the

diagonal line as the timing difference ETOWS.

Adjustenent Window

bs
Ce = (1,

o
-

\;—""——_—_———‘”f—_——“

- N
— — e s e e s

oo

a2z i a1

Figure 4.12 : Varping function and adjustment window definition.

As a measure of the difference between two feature vectors a: and

bj, a distance
d(c) =d¢i,j> =ila: - by il

is defined between them. Then the weighted summation of distances on



49

warping function is found as

E(F) = ﬁg d(c(k)). w(k)

k=l '
where w(k) is a nonnegative weighting coefficient, which is used for the .
optimality of the warping functién F. It attains its minimum value when
warping function F is determined so as to optimaily adjust the timing
differences. This miniﬁum.residual distance value can be considered to

be a normalized distance between the two patterns :

! s |
! = de) . wk) |
| k=l |
D(T,R) = Min f=—=mmmmmmmmmmmm oo |

F ¥
- 2 w(o
! k=

where the denominator is used for éompensating the effect of using K
points dn the warping fumction.

The above definition is notﬁingvmore than a fundamental definition
of fime-normalized distance. Effective characteristics of fhis measure
greatly depend on the warping function specification and the weighting
cééfficient definition. Desirable oharactgtistics of the time normalized
distance measure will vary according to speech pattern properties to be
dealt with.

Varping function F is a model of time axis fluctuation in a speech
pattern. Accordingly, it should approximate the properties of actual

timé—axis. fluctuation. In other words, the warping function must



50

preserve linguistically essential structures of the pattern 4 time axis
and vice versa. Essential speech pattern time-axis structures are
continuity, monotonici»ty, limitation on the” acoustic parameter
transition speed in speech, and so on. These conditions can be realized
as the following restrictions on warping function F.

1) Monotonic conditions: .

Jf‘ (k-1) ¢ 1;(1() and J(k-1) § j(k).

2) Continuity conditions:

i(k) - i(k-1) ¢ 1 and j(k) - J&k-1) ¢ 1,

As a result of these two restrictions, the following relation holds

between two consequtive points.

| A&, jk - 1, | /
clk-1) = G -1, jU0 - 1), |
or G -1, ).

3) Boundary conditions:

i
I

i¢1) =1, j(1) = 1, and

7.

1 =1, j&E

i 4) Adjustment window condition (see Flg 4.12)
| ik - j&)t ¢&r

where r is an appropriate positive integer called window length. This
condition corresponds to the fact that time-axis fluctuation in usual

cases never causes a too excessive timing difference.
, ) N
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5) Slope constraint condition:

Neither too step nor too genﬁle a gradient should be allowed for
warping function F, because such deviations may cause undesirable time-
axis warping. Therefore, a restriction called a slope constraint was set
upon the warping function, so that its first derivative is of discrete
form. The slope constraint condition is realized as a restriction on the

possible relation among several consecutive points on the warping

function as shown in Fig. 4.13.

n - times

) g - times
n - tiges

P N
Ca £4

’///j”ﬁi & - bises “ ‘ ,,a”’A

(a) Mininue slope _ (b} Maxinum slope

w

Figure 4.13 : Slope constraint on warping function. (After Sakoe [41.)

In other words, if point c(k) moves forward in the direction of i-
axis (or j-axis) consecutive m times, then point c(k) is not allowed to
step further in the same direction before stepping at least n times in

the diagonal direction. The effective intensity of the slope constraint
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is expressed as follows

P=n/n

-

The larger the P measure, the more rigidly the warping function slope is
restricted. When p = 0, there are no restrictions on the warping
function slope. WVhen p = o (that is, m = 0), the warping function is
restricted to the diagonal line j = i, This means no time normalization.
Generally speaking, if the slope constraint is too severe, then the time
normalization would not work effectively. If the slope constraint is too
loose, +then discrimination  between speech patterns in different
catagories is degraded. Thus, setting neithef a too large nor a too
small value for p is desirable.  |

Since the expression for the'totgl normalized distance is a rational
funotion, its ﬁinimization is .an unwieldly problem. If the denominator
is iﬁdependent of warping function, it can be put out of the bracket,

and the equation.beoomes:

1 | K |
D(T,R)= == min | X d(c() . wk) | ,
¥ F I ¥

! ‘ i
vhere N is given as

¥
N== w .
k=l
This simplified problem can be effectively solved by use of the dynamic
programming technique. There are two typical weighting coefficient

definitions which enable this simplification. They are as follows:
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- 1) Symmetric form:

w(k) = (1) - 1(k-1)) + (FCk) - J(k-1)),
=1+,
where I and J are lengths of speech patterns 4 and B, respectively.

2} Asymmetric form:

w(k) = (i(k) - i(k-1)),

¥F=1

(Or equivalently, wdt) = (Jdo) - j(k-1)), then N = J.)
Time normalized :distance is symmetric, or D(T,R) = D(R,T), in the
symmetric form and not gymmetric, or D(T,R) # D(R,T), in the asymmetiric

form. Veighting coefficients for both symmetric and asymmetric forms are

given in the Fig. 4.14.

Ok y=y £(k) W=l

§=2 V=1 V=1 V=0
C(k-1) b O(k-1) T &
(a) Syauetric fora - (b) Asysnetric fora

Figure 4.14 : Veighting coefficient w(i) for both symmetric and

asymmetric forms. (After Sakoe and Chiba [41)
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4.3.1.1 MMMM&A@MMLMM@

The basic algorithm of DIV can be written as follows:

Initial condition :

.

&1 (c(1)) = d(c(1)), w(l).
N
Dynamic Programming equation :

8 lc(k)) = min [gu—: (c(k-1)) + d(c(k)).wlk)].
elk=1)

Time-normalized distance:’

DA, B) = —z- 8k (c (k).
r ,

It is simply assumed here that c¢(0) = (0,0). Accordingly, w(l) = 2 imn
the symmetric form, and w(1> = 1 in the asymmetric form. By realizing
the ‘pre;’iously described restrictions on the warping function and
substitufing thg 'weighting symmetric and asymmetric coefficients w(k) in
the formula given above, several practical algorithms have been derived.
As one of the simplest examples, the a‘lgor-ithm of the symmet%:ic form, inmn
which nd slope constraint is employed (i.e., P = 0) is shown below.
Inétial condition :

g(1,1) = 2 d(1,1).
Dyna;mic Pfogramming_equation :

| gd,j-1) +dd, ) 1

&¢i,3) = min | g(i-1,7-1) + 2 d(i, 1)
| g(i-1,7) +dd, ) |
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Restricting condition (adjustment window):
J-r€i¢j+r,
Time-normalized distance:
1
D4, B) = —— g(I,]), where N =1 + J
¥ .
Dynamic Programming (DP) equation or 8(¢i,J) must be recurrently
calculated in ascending order with respect to the coordinates i and j,

starting from initial condition at (1,1) up to (I,J). The domain in

which the DP-equation must be calculated is specified by

and

J-r€is¢ij+r (adjustment window)

The algorithm used for calculating the fime normalized distance is
showﬁ in Fig. 4.15 ih a flowchart. The algorithm, especially the DP-
equation should ge modified when the asymmeiric form is adopted or some
slope constraint is used.

Previous studies on DIV, by Hyers [23), have shown thét, for the
optimal DTV algorithm, both the feference and thé'test patterns are
linearly warped to a fixed standard length prior to DIV alignment. By
pe;forming linear warping, possibie ?athmregion is maximized and the
best chance of matching the two patterns is ensured by the DIV

algorithm.. For that reason, in order to improve the recognition

performance, the algorithm used in this thesis performs linear warping

before DIV as mentioned previously.
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Figure 4.15 : Flowchart of the DIV algorithm.

) Also two recognition features that serve'to reduce computation, and
increase -the flexibility of the system have been appgnded to the
algorithm. The first, called the rejection threshold, is a curve of
accumulated distance which bounds the DTV search. Thus, if the m%nimum

accumulated distance Da(n) at frame n exceeds the threshold T(n), then

the'DTW search is terminated and the reference template is given an .
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infinite distance. As shown in Fig 4.17, T(n) is generally of the form

T = Tmsn + (0 =~ 1) Tarope

where Tmim 8Dnd Taiope are parameters of the distance function.

The second extra recognition feature is the backup frame labeled Nsu
in Fig. 4.16. This is essentially an alternative word ending frame based
on the assumption that a breath noise is made at the end of the word and
included within the word interval. The backup frame is calculated
directly from the word\energy contour, and is used as an early stopping

frame in the DIV algorithm.

/
ACCUNULATED DISTANCE

REJECTION
THRESHOLD

— —— —— Y (— — — T S — — — ——— S— — —

Tnin

0 - Moo Newo
! , FRAME NUNBER

Figure 4.16 : Plot of accumulated distances, rejection threshold and the

backup frame.
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4.3.2 DISTANCE KEASURES FOR VORD RECOGNITION

In order to implement dyhamic time warping, the 'conéép’c of distance
between frames of templates must be defined. As® we have seen in the
previous chapter, a distance measure d(x,y) between two frames of speech

data x and y should satisfy at least the following properties.

1 d&x,y) =d,x) , symmetry
2) d{x,y) > 0 for x 2 y ypositive definitness
d(x,x) = 0

3) d(x,y’ should have a meaningful interpretation in the frequency
domain. |
4) It should be possible to efficiently evaluate d(x,y).
However, there also exist. some distance measurés which do not
satisfy the first two criteria. For that reason they are called “pattern
similarity measures” instead of “"distance measures". During the study

both type of measures have been used and tested. These are:

4.3.2.1 LPC Likelihood Ratios

If a sample x(n) is estimated by a linear combination of the

preceding X samples, the residual or predictor error can be expressed in

the form

. X
e(n) =X ai x(n-iJ.
- I=0

Vith ao = 1, the total squared error or residual energy is given by

o
a=x le@l=

”:"‘m
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In the autocorrelation method, the data sequence {x(n)} is truncated
§o that x(n) = 0 for n < 0 and n > ¥F.- 1, The coefficients {a:} are

chosen to minimize a. The error « can be comsidered to be the output of

an inverse filter A(z) where

N
A(z) =1 +3% a; z-1
i=l
is the filter that minimizes a. Physically, 1 / A(z) corresponds to a
smoothed épectral representation of the data sequence {x(m)}. If {x(nJ)}
is passed through a different inverse filter A’'(z) of the form
L ,
A'(z) =2 a'y z-1
i=0
which minimizes the ehergy o' for some other data sequence {x'(n)}, with

a'o = 1, then the total-squared error or residual energy, §, must be

greater than the.'minimum residual error,

o ¥
fs== [ = aly x(n - 1) 12 «
n=—ew  j=f

with equality holding if -and only if A(z) = A'(z).

The possibilities for coﬁparing the filters A(z) and A'(z) in terms -
of the residual energies are illustrated in Fig. 4.17. If {x(n)},
defined as a test template, is passed through a reference filter A4’ (z),
a residual energy, 4, is obtained as shown in Fig. 4.17(a). The minimum
residual energy, « using the same test sample 'occurs with the

minimizing filter A(z) designed by the autocorrelation method as
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indicated by Fig 4.17(b). The ratio & / « then defines a differenée
between the test and reference déta or their spectra. Conversely, if the
sequence {x'(n)} is defined as the test template and passed through a
reference filter A(z), a residual energy &' is obtained as indicated by
Fig. 4.17(0).‘If a! represents the minimal residual energy, obtained
with the minimizing A'(z) as indicated in Fig. 4.17(d), then the ratio
6! / a' also defines a difference betwéen the spectra..In both cases the
ratios 6§ / @ and §' / o' are always greater than or equal to one, and
can equal one if and only if the two filters, A4(z) and A4'(z), are
identical. The only‘difference in the results depends upon which data

sequence or spectral model is called the reference. and which is called

the test.
x(n) -mmemmmmmee—- I & B R §1a
TEST 1 ] RESIDUAL ENERGY
REFERENCE
(a)
x(n) mmmmmmmmmeee- | A (7)) |=e-mmmmmmem- o HINIHUM
TEST ‘ { | RESIDUAL ENERGY
REFERENCE
x'{n) ==mmmmmmmema- | A(2) [=memmmomome- 53
TEST | | RESIDUAL ENERGY
REFERENCE
()
T -
x'{p) ==m==mmmm———= I A'(Z) |memmmmmmmee- a'  MINIMUM
TEST _ | | -RESIDUAL ENERGY

REFERENCE
(d)

Figure 4.17 : Possible combinations for reference and test data which

give different residual energy.
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The ratios 6§ / a and 6' / a' are called likelihood ratios, since
under certain assumptions on the data and analysis, where the data are
assumed Gaussian and the analysis window is much greater than the
inverse filter length, these ra;cios have been shown to be likelihood
ratios [11]. The logarithms of these ratios are called log likelihood
ratios. Evaluation of these ratios can be efficiently carried outv
through the use of autocorrelation sequAences (111, (50]. Let {ra(m>} and
{ri(n)} denote the autocarrelation séquence for the coefficients of the
polynomial A(z) and the data {x(m)}, respectively. In a similar manner,
{~f', (n)} and {r'.(n)} are defined as the autocorrelation sequences for
the coefficients of 4'/(z) and the data sequence {x’(n)}, respectively.

The minimal residual error, a, can then be caomputed from

y :
=2 rafn) r(n).
n=-f

The finite 1imits on the summation occur because ra(n) is zero for

inl > M. In additionm,

=

> r'a(m r.(m).
n=-4

)

The likelihood ratios 6 / a and 6' / «' can be efficiently computed by
using the above two formula. But the likelihood ratios are asymmetric
measures. For eliminating this disadvantage Gray and Markel {111 have

defined a symmetric measure by averaging the two asymmetric likelihood

ratios as follows
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In order to relate 2 to a decibel scale, they have defined w as

cosh(w) - 1 = Q,
ar

@ =1nll1+Q+\/ Q2 2+ 1.

The name of the new measure is "Cosh measure" and it is efficiently

evaluated by Gray and Markel [il].

4.3.2.2 Qther logarithmic distance measures

During the studies, two other logarithmic distance measures, which
have been’originally proposed by Gupta and Bryan [7]1, have been used.

These measures are.of the form-

R T | |

dt,r) = log { = I 2 fi s -1 -l } |
k=l 1=l
' PP - _ |
dt,r) =log {3 [ X Fi I'ii — k1 - re 1%}

k=1 i=]

where the ; are the estimated 1linear prediétor coefficients of the

. reference speech sample while r. are the autocorrelation coefficients of

the unknown speech sample. It should be clear that the distance measures

are independent of energy in each window since r« are normalized
F

autocorrelation coefficients (ro = D).
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4.3.3 DECISION RULE

The definitiqnsv of +the nearest-neighbour,(RN) and K-nearest-
neighbour(NK) decision rules have been given in chapter 3. The KN rule
is a suboptimal procedure; howevgr, it can be used with vocabularies
which have small number of templates per syllable ratio. Because of the
memory and time limitations of our system, most of the tests have been
performed with one, two or three templates per syllable ratio. For that
reason NN decision rule has been used and good results have been |
obtained.

Also, while stuaying‘with‘more than 2 templates per syllable, KNN
‘rule with K = 2 or 3 has been used for deciding the best estimate of the
word at the input.

The performance of the two decision rules is greatly dépendent upon
the made of the tests: Speaker dependent or speaker independent; These
results will be given in the next chapter.

During the decision process, a rejection threshold is set and if the
syllable with minimum distance has total normalized distance gfeater
than thié threshold, the recording at the input is rejectéd for ﬁot
being similar to any of the syllables of the vocabulary. This threshold
is" very important and it . adjusts ‘the tradeoffs between the
“recognition*, "rejection" and “error" ra£es..Usua11y, increasing this
threshold causes an-increase in both recognition and error rates at the
same time while the‘,rejection rate decreases, and reducing this

thfeshold causes a reduction in these two ratios while the rejection

rate- increases.
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4.3.4 IMPROVHENTS IN THE ﬁECOGNITION ALGORITHM

In order to improve the memory -and time requirements of the
recognition algorithm, a number of preprocessing steps have been applied
prior to time alignment via dynamic programming. These are:

1> Turkish vowel harmony rules have been used before choosing the
searching space for the second and third syllables of the test word.
After syllable segmentation and recognition of the first syllable, the
group of the first syllable is detected by looking af Table 4.1.
According to this group, target classes for the second and third
syllables are found (if they exist) using Table 4.2 . Usually this new
subspace of syllables consists of 30% of the whole vocabulary. This
reduction directly effects the time requirements for the recognition of
polysyllabic words.

2) The,temélates which have more than 1.4 times timing difference
are nbt compared with each other and they are given infinite distance
before dynamic time warping. This causes approximately 50% reduction in
the required computationé for pattern matching.

3) A sequential decision procedure is used to reduce the computation’
time during dynamic time warping.‘Affer'calculating distances for the
first 6 windows, one half of the reference templates are rejected. These
ar;‘the reference samples which give highef distances for the first 6
windows. A similar decision is taken after the 12*" window. This reduces

the computation to about ome half while it has practically no effect on

the recognition rate.
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V. RESULTS

The major goal of this work was to design and implement a speaker
independent isolated word recognition system using the syllable as the
recognition unit and using the Turkish prosodic information in order to
improve the perfdrmance of the recognizer. In this chapter, the results

and performances of different parts of the recognition system will be

reviewed.
5.1 THE VOCABULARY, SPEAKERS AND THE RECOGNITION ERVIRONKENT

During the studies, the vocabulary listed in Table 5.1 has been
used. The vocaﬁqlary consists of Turkish words formed of one, two or
three syllables per word. The-average number of éyllables per word is
1.94. Total number of syllables is 29 and the vocabulary has 19 Turkish
word consisting of these syllables. The vocabulary may be enlarged much
further using different combinations of these syllables or by adding a
few different syllables.

Each word in the vocabulary has been uttered 6 times by two female
éndh two male épeakers. The speech samples were taken on PDP 11/23
microcomputer interfaced to an analog. circuitry. Analog circuitry
consists of a normal telephone microphone which is followed by an
amplifier and a lowpass filter which has cutoff frequency at 3.5 kHz. By
using this analog circuitry telephone quality speech was tried to be

simulated. The samples were ‘taken 1in the computing room with the
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BIR BASLA

IKI SIRALA

ug YENIDEN
DORT &ir0!

BE§ - GETIR
ALTI CIKTI
yeot . SAKLA
SEKtZ ~ BIRLESTIR
DOKYZ . CEVIR
SIFIR

Table 5.1 : The vocabulary used during the studies.

inherent high noise 1level. The sampling i1s started- mﬁnually and
terminates when 2 seconds of speech is sampled. The sampling frequency
is 8 kHz., The samples are stored on floppy diskettes and later
classified by the PDP 11/23. Total of 960 seconds of speech has been

analyzed during the study.
5.2 USIKNG SYLLABLE AS A UNIT OF RECOGNITION

There are several alternatives for a recognition unit: phoneme,
allophone, diphone, syllable and word. All of these have been used as
units in different recognition systems, but none of them ﬁas proved
ideal. In fact, all have their advantages and -disadvantages, and a
. reéagnition system may use a combination qf;these units. The advantages
and disadvantages of these units have been studied in [551.

In this system, the recognition unit was the syllable. The syllable,
being halfway between the phoneme and word, has advantages of.both to a
It is indeed the only unit which is easy to detect in continuous

degree.

speech, and one in which the context dependence is somewhat eliminated.



67

One additional advaﬁtage of using syllable’is its being a prosodic unit;
i@ is the smallest unit thatvprosodic features are carried om. Stressea
syllables are of gréat importance as mentioned in [55]. The main
drawback to using the»syliabie has been its being a uﬁif not uniquely
defined in English, but in'Turkish'syllable is a more basic dnit and
many rules of the Turkish langﬁage act ﬁpon’the éyllable as a whole. For
example, in this study, by using Turkish vowel harmony rules, 30% of
redugtion' in the memory reéuirements, and 30% of reduction in the
computation time have been obtained. Detaiis of these reductions Qill be
glven in section 5.7:(Re§u1ts of DTW),

A possible aanntage is that the syllable inventory can becume'very
small corresponding to that.of Qords. To give an idea on the size of the
éyllable inventory, some results of a study omn the coun£ of units in a
Turkish text f15] will be given. The text cqnsists, of 22,216 words
(58,992 syllables). In this text, the number of different syllables was
found to be 1506. The frequency. of occurance of these syllables such
that a small number of them (60) formed about half of the text. This
means that syllable based vocabularies can be easily enlgrged by adding
a small number of new syllables. .

One disadvantage of using the syllable in recognition has been tﬂe
lééi of methods to detect the syllable ;bqundaries, namely, syllabie

Ségmentation. A method has been developed in this study and the results

will be given in the next sectiom.
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5.3 SYLLABLE ENDPOINT DETECTION

9% of the recordings have been.fejected because

1)>No significant energy pulses has been detected

2) High energy levels have been detected at the bDundariesAof the
regording interval (i.e. the sampling has begun or ended at an
intermediate point of the word).

The syllable endpointrdetection algorithm has located -90% of the
syllables correctly and missed the endpoints of 10% of the syllables.
But no false detection of syllable endpoints has occured. All of the
missing cases have occured while working with polysyllabic words. Tﬁe
algorithm has failed in cases of all &Diced sounds, where all the
consonants were voiced, and no discontinuity in voicing was detéoted as

in the word “"sirala" shown in Fig. 5.1.
5.4 FEATURE SETS

Some parameters, such as intensity, voicing and pitch parameters and
duration have alsb been  used during the study but the> reference
templates have consisted of the coefficients of the 10*" order linear
pré&ictive coder. At the beginning 8*", 12?5 and 14*" order LPC filters
have been.tested. Ko significant difference of recognition performance
has been detected for the filter orders 10, 12 and 14, but 8" order
filter has given worse performance than the others. For that reason the

p=10, which requires the minimum memory and computation efforts, was

chosen as the filter order.



70

In order to calculate some of the distances defined in section
4.3.2, autocorrelation coefficients of “the samples of the reference
templates are required. During the tests with thésé diétance’measures,
the correspondingrfirst 10 autocorrelation coefficients have been stored
as the feature vectors of each frame. The recognition performahcés

versus the order of the LPC filter is given in Fig. 5.2.

% RECOGNITION
PERFORMANCE

+ | 2 Templates / syllable

¢ 1 1 Template / syllable

90

85

%+

70

!
!
|
|
l
|
!
|
|
80 |
-
|
|
|
|
65 |
l
|
| .
! | | |

8 10 12 14 LPC FILTER
- ORDER

Figure 5.2 : Recognition performances versus LPC filter orders.
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5.5 CLASIFICATION ACCORDING TO TURKISH VOVEL HARMONY

The clasification procedure and the advantages of using Turkish
vowel harmony have been described in the brevious sectioﬁs, but, the
improvments in the recognition procedure are felated to the syllabic
structure of the vocabulary, especially for small vocabularieé. The
vocabulary consists of 19 words (37 syllables). The number of different
syllables is 29, This means that the reduotipn in the required memory is
27.6%, but.this is nof a general result and it depends on the syllabic
structure of the vocabulary.

For the vocabulary, ‘the‘ average number of syllables per word is
\1.94. The syllable inventory ié divided into 8 different sections as
shown in Table 4.1, After finding the first syllable, the following
syllables aré found among the target groups defined by Table 4.2. If the
average number of syllaﬁles is taken as 2, for the first syliabie the
searching area is the whole syllable inventory, and for the second
syllable the searching‘area is a quarter of the syllable inventory. This
means again average 35% of reduction in thg computation efforts and this
reducuction ié caused only by Turkish vowel harmony. Anothef advantage
gained by using this classification procedure is the elimination of
imszsible combination of syllables beforeﬂ@he comparison procedure and
preventing recognition errors. These results support cur previous
hyphothesis that Turkish language has a set of rules which directly gqts-

upon the syllables and they can be used easily for improving the

performance of the recognizer.
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5.6 CLUSTERING OF THE REFERENCE TEMPLATES

Each word in the vocabulary has been uttered 6 times by 4 different
speakers. Before preparing the reference templates for these words, the
24 different recordings have Been clustered as described in section 4.2.
The results of the tests have pointed out that clustering is a crucial
step especially for speaker independent recognition systems. For SPeaker
dependent tests, one reference template per word and no olustéring has
given comparable performance to the tests with more than

% RECOGNITION
PERFORMANCE

: Speaker dependent
+ | Speaker independent (KNN, K=2)
: Speaker independent (NN)
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Figu?e 5.3 : System performance Versus the number of templates per word.
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one clustered templates used. The reduction in the recognition rate is
no more than 10%. But for speaker independent cases the recognition rate
of the system redgces to 56%, while the performance of the system using
clustered templates approaches 90%. Fig. 5.3 shows performances of the
system corresponding to the number of templates per wora.

It is clear from the figure that the recognition performance
increases as the number of templates per word increases. The improvment
is more sharp between 1 to 4 templates per word, and then the improvment
corresponding to the increase in the number of templates per word
reduces, but still .is important. Maximum recognition rate has been
obtained using 6 templates per word. The testé with higherktemplates per
word ‘ratiOS' could not be performed because of the %ine and memory
limitations of the system used during the study. Details of these
requirements wiil be given in the following sections. Because of the
time ligﬁtations of the system the templates pef word ratio has been
chosen as 4 and ﬁbst of the tests have been performed with these ratio.
The plots in Fig. 5.3 have been drawn using only 2 of the speakers and
"only 10 digits of the vocabulary. During the speaker independent tests,
the reference templates have been prepared ﬁsing the recordings of one
male speaker and one female speaker, and the test tehplates have been
utt;red by the other two speakers, ome malé and one‘femalef Vhile the
templates per word ratio was 2, the groups constructed by the clustering
algorithm bhave usually corresponded to male and female speakers. The
maximum number of templates used for each word in this study is 6 but
previous studles [71, {131 have shown that for reliable speaker

indefendent word recognition 10 - 12 templates per word is required.
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5.7 DYNAMIC TIME VARPING

Time registration of <the test and reference patterns have been
performed using dynamic time warping (DTV). Previous studies {71, [28]
have shown that DIV is a very efficient way of comparing two speech
patterns especially for speaker independent systems. It has been
observed during the tests that the duration of the same word has varied
in different articulations of the same speaker and from speaker to
speaker. Table 5.2 shows the durations of different utterances of the
same word for different speakers. Duration statistics of the vocabulary.

have shown that the duration of the same word may vary 40% from the mean

UTTERANCE DURATIONS (unit: 12,5 msec frame)

| UTTERED | FEMALE-1 | FEMALE-1 | FEMALE-1 | FEMALE~2 | MALE- | MALE-2 |
[ DIGIT | SHORTEST | LONGEST | AVERAGE | AVERAGE | AVERAGE | AVERAGE |

| BRI 35 1 40 1 3 1 4 1 4 1 40 |
| fmmmmmmmme | l l | 1 |
LofKE 1 43 1 51 1 47 1 48 I 43 1 45 |
| | | | | | | |
| Gg | 42 | 4T 1 43 1 46 | 42 1 & |
| | | l | | | e
| DORT | 39 ! 46 I AL 1 49 1 3% 1 40 1
1 l n | — | | |
|OBES I 3 | 4 1 4 1 & 1 37 1 39 |
| | | | | | | !
| ATI I S0 | § I 8 | 5 I 58 | 52 |
! ! | | | | | |
| OYEDf | 42 1 4T 1 44 1 48 1S4 I 48 |
| | | | | | | |
| SEKf2 | 37 | 46 | 40 83 : 41 : 46 :
| | ! | |

Lpokvz | 37 1 S0t 4T L 49 1 50 | 47 |
l | | | | | | |
[ SIFIR | 39 | 46 | 42 | 54 1 4 | 43 :
|

Table 5.2 : Durations of the digits uttered by different speakers
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value. For this reason the pattern éomparison algorithm>disregards the
reference templates that exceed this limit. It can be easily seen that
the timg duration threshold improves the computation time requirements
of the system, because the system does not spend time for calculating
the distances between patterns which exceeds this limit. The duratioﬁ
difference threshold has caused 50% decrease in the cbmpﬁtation efforts,

The results of tﬁe study performed by Sakoe and Chiba [4 have shown
that symmetric DTV gives better performance than asymmetric DTV and the
optimum slope constraint for the slope of the algorithm is 1LFor that
reason these values have been used in the algorithm as the parameters.

Another study by Mayers [23] has shown that if the test and

NUMBER OF 251 , :p=2 LA D S
FRAMES | _ LR 2 S
{ % Extra points EOR A A
| forp=6 sy, 3
| . - N B B S S |
| - S S SR T O |
| 1%, ., ,, , ¥y
] ¥, ., , , ¥
| t 3, ., ., ., 33323
i - OIS SR S I I
] - 3 B G S I S 4
| T I I SR B B
| t 13, .. byt
| xtz‘x....-::xx
I *:**llll’ixx:*
i - S O S 1133
| SRR EER
| tr 2, ., , ¥ 322
2, ,,.,,8+331
tyr ., ., . ;3313
¥**lll"z;xx
1, ,, ., 411
*lll'lxxxx
c'nalp**xx
lll'*xxx
A 2 AR ¢
| 25

Figure 5.4 : The relation between the number of distance calculation

points used by DIV algorithm and the window length p.
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reference patterns are linearly warped to a fixed length before DIV, the
performance of the algorithm improves. As mentioned before, all of the
syllable pattgrns in this study have been linearly warped to 25 frames
before DIV. Sakoe and Chiba have found the optimum window length (p) as
6. But choosing p=6 means lots of distance computation for éach of the
points shown in Fig. 5.4. |

| The tests with various window lengths have shown that if the two.of
the compared templates are linearly warped>to the same length before
DIV, the window length p can be choseh as 2. Choosing the window length
as 2 has not caused any significant drop in the recognition rate of the
system. The number of required distance points is 30i when the window
length is 6 and 141 when the window length is 2.’ This means 54%
reduction in the number of required distance computations and that much
of reduction in-the required computation time.

Another advantage'of using syllable as the recognition unit is its

being shorter than or equal to the words in length. If the recognition'

\

unit is the word the prewarping length must be 50 for being comparable
to the average lengths of the words, but for syllables thisilength is
25. The average syllable per word-rativof the vocabulary is about 2.
This means that as an average, words are compared with reference
temglates in twolstéps. Fig. 5.5 shows the-required computation points
when using word and syllable as the unit. The average number of required
computation points when using word as the unit is 651 for window length
p=6 and 291 for p=2.

The average ﬁumber of computation points when using syllable as the uni£

is 602 for p=6 and 282 for p=2. These numbers correspond to 8%
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improvment for p=6 and 3% improvment for p=2 1in the cﬁmputation
requirements,

Another useful conception is the rejection threshold. The rejection
threshold was used for giving infinite distance to the reference
templates which have .passed the threshold before DTV algorithm has
found the total normalized distance. 30% of the refereﬁce templates have
passed this threshold before the middle of the syllable and 15% of the
syllables have passed this threshold after passing the middle of the
syllable. This corresponds to average 30% savings in the computation

efforts.

NUMBER OF FRAMES 50

Savings due to
using syllables

25

Savings due to
using syllables

——— ——— f— —— —— S $im} S, S P} S e Sty S S et e

1

1 50

Figure 5.5 : Distance calculation points for word based and syllable

based comparison.
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The improvments in the computation efforts required for dynamic time
warping are summarized in Table 5.3. It can be seen from the table that
the total savings in the computation efforts is 80%, or in other words,
the pattern comparison process is performed 5 times fasﬁer.

Some distance and similarity measures used during pattern comparison
have been mentioned in the previous chapters. Obviously, the Euclid
distance measure has given the worst performance, because this measure
can not differentiate between the negative and positive errors and does
not have any speotrai meaning, but the performance obtained with this
distance measure was comparable with that of the others. The remaining
four distance measures have given almost equal performance, but they

have different computation requirements. The method used for calculating

the maximum likelihood ratios requires the autocorrelations of the LPC

coefficients of reference templates and the autocorrelations of the test
templates. For that reason this measure increases the computation
efforts during the training mode and decreases the computation efforts

of the test or recognition mode. In practice the training mode does not

have any time constraints, but the recognition mode does. This phonemena

makes the distance measure very‘effective in speech recognition. The
other two spectral distance measures have also good performances, but
tggy .require more computation than the. likelihood ratios during the
recognition mode. Another result obtained during the tests is that
symmetric distance measures give better results than the asymmetric
ones. Usually, making a distance measure symmetric oéuses an increase in

the computation efforts but improves the performance of the system.
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40% duration difference threshold

: 50%

" Window length (p = 2) . 54%
Using syllable as recognition unit y 3% - 8%
Rejection threshold “r 308
Vowel harmony rules : 35%
Total average saving 1 B0y *

I
-

If the individual savings are summed for finding the total savings, a percentage

greater than 100% will be found, but some of the savings overlap and make the total
average saving 50%,

x .
'

Table 5.3 : Savings in the computational efforts for DIV.
5.8 DECISION RULE

The decision rules NN and KNN have been discussed in the decision
rule section of the system. For K equals 1 the KNN rule reduces to NN
rule. The upper curve in Fig.” 5.6 shows’the performance bf fhe éystem
for,different vélues of X as a function of thé number of templates per
syllable for speaker dependent recognition. The results of the tests
show that NN rule has almost equal per{ormaﬁce with KKN rule and may be
used for speaker dependent récognition, because it is simpler and easier
to calculate tham the KNN rule. Howevef, NN rule has shown slightly
worse performance for speaker~dépendent fééognition. As can be seen from
the lower- curve in Fig. 5.6, KNN rule with K=2 or K=3 has shown better

performance for the speaker independent recognition.
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5.9 REAL-TIME AND MEMORY REQUIREMENTS

The user accessible memory of the system is less than 20 KByte. The

sampling frequency of the system is 8 KHz. This means that the longest

segment of

speech that can be stored each time can be 2 sec. For that

reason, the words in the vocabulary have begn uttered in time intervals

of that length. The 19 words in the vocabulary have been uttered 6 times
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by 4 different speakers. This way, 456 sampled recordings each 2 seconds
long have been obtained. Each sample had 12 bits and was represented by
two bytes of memory. This implies that the total memory required for all
‘of the utterances is 14.5 MBytes of secondary memory. The secondary
memories used during the tests were the floopy diskettes.

The syllables are linearly warped to form 25 frames and each frame
is modelled by a 10-pole LPC filter; This means 250 coefficients are
required for each reference template. If the number of templates per
syllable is one, then the required memory for 29 syllables is 14.5
KBytes, but for speaker independentl recognition usually two or more
templates per syllable have been used. This implies that all of the
reference templates havé not been placed in the memor& at the same time
but they have been‘stored in the files and read from these files during
recognition. This reading process was the nmst‘time consuming part of
the algorithm and increased the time required for one syllable 4 or 5-
times. The remaihing parts of the algorithm have also required 2 KBytes
of RAN.

The time required for recognizing a word increases depeﬁding on the
number of syllableé included by tﬁe word, but this relationship is not
linear. The second-énd third syllables increase the fecognition time by
36%, because of the reduction in the target space of that syllables.
¥onosyllabic words require about 60 seconds for the creation of the test
template and about 120 seconds for the comparison with the reference
templates. Or in 6thervwords, a monosyllabic word can be recognized in 3
minutes, a two-syllable word can be recognized in 4 minutes, and a

three-syllable word can be recognized in 5.5 minutes.
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5.10 RECOGNITIOR PERFORMANCE ARD CONFUSION TABLES

In the previous sections of fhis chapter, it is shown that the
recognition performance depends on varioushparameters and varies between
50% and 98%. The maximum achieved performance for speaker deﬂendent
recognition is 98%. This value is 90% for .épeaker independent
recognition. The minimum performance attained is 852 for speaker
dependent recognition andeO% for speaker independent recognition. Table
5.4 summarizes the system performance for various éarameters. The
recognition  performance strongly depends on the  words
formingthe vocabulary and the speakers who have httereq these words. For
éxample, one of the male speakers (male-2) alone has caused the system
perform#ncé to drop 5% - 10% . This is because his pitch period differs
very much from that of the other talkers. This variation caused errors

in syllable segmgnfation and gross errors in recognition.

Recognition Rejection Error

Speaker dependent (1 Template/syllable) 85 ' 5 10
Speaker dependent (2 Templates/syllable) 95 4 I

Speaker independent (2 Templates/syllable) 85 ’ 25 10
Speaker independent (4 Templates/syllable) 85 : 10 5
' : ( KNN, K=2 )
Speaker independent (4 Templates/syllable) ! 95 4 1
( KNN, K=2 ; without )
( “speaker male-2" )

Speaker independent (1 Template/syllable) ! 50 30 20

Table 5.4 : Percentage system performance for various parameters.
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Table 5.5 : Confusion Table (TOTAL TOKENS / SYLLABLE : 24 )
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VI. CORCLUSION

In this study, algorithms bhave been developed forv speaker
independent, isolated word recognition. The prosodic structures of
Turkish have been investigated for use in speech recognition systems and
some of the ideas have been realized in an isolated speech recognition
system. The basic conclusions drawn in each step of the analysis can be
sﬁmmarized as follows.

Syllable is a very suitable .unit for automatic recognition of
Turkish., It causes great feductioﬁs in the computation efforts and
'meﬁory requireﬁents during +the recognition of polysyllabic Turkish
words. |

LPC coefficients form a very suitable featurg set. 8§, 10%r orv12th
order LPC filters give good results for isolated word recognition.

Some of the prosodic structures of Turkish, namely, duration and
vowel harmony can be used in automatic speech reoognition of Turkish in
the following ways:

—Dﬁration of a syllable chaﬁges very little from an expected
duration. This property can be used for reducing the computation efforts
in word matching. “ |

-Vowel harmony can be used to group syllables. Hatéhing and
verification can be made within these groups. This reduces the
computation time substantially.

KNN decision rule gives good results for the speaker independent

isolated word rebognftion.



85

6.1. SUGGESTIONS FOR FURTHER WORK

Finding the'eﬁdpoints 6f the syllables is one of the most difficult
parts.pf the'élgorithm; The methéd'éuggested_for finding thé endpoints-
can be modified in order to use _in a connected speech—frecognitioﬁ
) sﬁstem. | |

The performance of the syllable segmentation method may be improvéd
if smaller segments of analysis are used. Hore complicatéd algorithms
may also be used tb deal with thbse phenomena.uéing the information om
the energy waveform only. -

The éystem realized in the laboratory dépends on a microcomputer. If
the system can be realized on a microprocessor card supported by a
signal procéssor (e.g. TMSSZOlO),'one can establish a real-time system

with the methods described in this thesis.
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