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ABSTRACT 

The purpose of this thesis is to realize a prosodically guided, 

syllable based L limited-vocabulary, speaker-independent Turkish word 

recognizer and studying the effects of various parameters on the 

recognition rate. 

Basic recognition units are the syllables which form the words in 

the vocabulary according to the prosodical rules, of Turkish. The input 

of the system is the 18-word vocabulary spoken by 4 different speakers. 

The speech is first filtered with a low-pass filter which has cutoff at 

3.5 kHz, then sampled at 8 kHz and fed into the PDP 11/23 ·microcomputer 

which processes the data. The output is the best estimate of the word at 

the input. 

The endpoints of the syllables are found using pitch-period and 

energy information .. The feature sets used for the test and reference 

templates consist of the coefficients of a lO-pole LPC filter. The 

comparison between the test and reference templates is performed by 

dynamic time warping and log-likelihood. similarity measures. Also 

Turkish prosodical rules are used for reducing the calculation efforts 

during the cClmparison. And finally K-Nearest-Neighbour decision rule 

gives the best estimate of the word at the ,input. 

Various runs with different parameters and different speakers were 
, 

performed and the observations and results are ~ported in the thesis. 

'.' , 
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oZET<;E 

Bu tezin amaCl Slnlrll bir Turkye dagarclk iyin. kOnUsmaCldan 

baglmslz. btirtin destekli. hece tabanll bir ayrlk sozcuk tanlYlclYl, PDP 

11/23 mikro-bilgisayannda geryek1.emek ve deghik parametrelerin 

etkilerini incelemektir. 

Sistemin girdisi 18-kelimelik bir dagarclgln 4 ayrl konusmacl 

taraflndan sesletimidir. Bu sesletimler 3.5 kHz'lik bir alc;:ak gec;:iren 

suzgeyten geyirildikten sonra 8 khz de orneklenerek gerekli i$lemlerin 

yaplldlgl PDP 11/23 mikro-bilgisayarina verilmektedir. Sistemin ylktlSl 

girdide sesletilen sozcugun en iyi kestirimidir. 

Temel tanlma birimi. olarak. Turkc;:e'nin burun kurallarlna gore 

biraraya geldiklerinde sozcukleri olusturan, heceler seyilmistir. 

Tammada yok onemli bir rolu olan hecenin bas ve sonunun buiunmasl 

islemi perde slkhgl ve enerji bilgileri kullamlarak yaplimaktadir. 

Bellekte oznitelik seti olarak lO-kutuplu bir dogrusal ongoru suzgecinin 

katsayllan saklatllmaktadlr. Test sablonunun bellekteki sablonlarla 

karSllastlrllma islemi dinamik zaman bukme ve cesitli izgesel benzerlik 

olc;:uleri kullanllarak yapllmaktadlr. KarSllastlrma islemi slraslndaki 

c;:abalarl azaltmak ic;:in de Ttirkye'n:1.n btirun kurallarlndan 

yararlanllmaktadlr. Karar verme islemi K'lncl-enyakln-koIDSu kurail 

kul~anllarak yapllmakta ve sistemin ylktlSl olarak giristeki sozcugun en 

iy1 kestirimi bulunmaktadlr. 

J?egtsik parametreler ve konusmacllar kullaml~rak pek cok test 

J yapllmlS. varilan sonuylar ve edinilen gozlemiei sunul~~tur. 

. , , '. 

,' . 
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I. HITRODUCTIOH 

While digital machines can perform arithmetic operations at great 

speed and can reliably store and access huge amounts of information, 

they are very poor at communicating with humans. Humans find natural 

spoken language a highly effective medium for communications. Computers, 

on the other hand, prefer the special symbols of assemblers and 

compilers, typically entered from a typewriter keyboard, to control 

their internal processes. If, however, computers could be made to deal 

with voice signals, the normal telephone could assu~ many of the 

characteristics of a computer terminal. strong interest therefore 

centers upon providing computers with more human-like abilities for 

natural language exchanges •. In short, we wish to give computers a 

"mouth" to talk to humans and "ears" to listen to human-spoken requests. 

Giving the computer the ability to talk, using its own <machine> 

voice, draws upon the techniques of speech synthesis. Giving the 

computer the ability to listen and understand is called speech 

recognition. This thesis isa study on isolated word recognition which 

is a subfield of speech recognition . 

. Speech recognition has made major strides in the past fifteen years, 

and it has advanced to the point where several commercial systems are 

currently available. These commercial systems are predominantly isolated 

word, speaker-trained systems which achieve word accuracies greater than 

95 percent in noisy environments. There also exist speaker independent, 
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and connected string of words recognizers. 

As the capabilities of the word-recognizers have improved, the tasks 

to which they have been applied have become more sophisticated, and more 

difficult. Some of these tasks are: 

- Airlines information and reservations, 

- Automatic recognition of read text and typing (voice-typewriter), 

- Support for a fighter-pilot, 

- Support for the handicapped, 

- Support for the private branch exchanges (PBX's), 

- Voice input to computers, 

- Control of air-traffic, 

- Chess playing. 

In this thesis, a speaker independent isolated Turkish word 

recognizer has been realized on PDP 11/23 microcomputer and the effects 

of various parameters on the recognition rate have been studied. 

The speech production and recognition mechanisms in humans will be 

summarized and two models will be given in Chapter II. In Chapter III, a 

general isolated word recognition system and the role of grammar and 

prosody in speech recognition will be introduced. Chapter IV presents 

the system realized in this study. Chapter V is a presentation of the 

results '. and in Chapter VI, conclusions and possible areas of future 

research in this field. 
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II. ELEMENTS OF HUMAN COKHUNICATION 

If the computer is to assume more human-like .. abilities, at first, 

the, communication functions of humans has to be studied. A model of 

speech generation and speech recognition in the human is shawn in 

Fig. 2.1. 

SPEECH GENERATION 

TEXT PHONEMES/PROSODY ARTICULATORY MOTIONS 
~ ~ 1 ~ 

----------------- -------------- 1 -------------------- -----------------1 MESSAGE 1 _____ 1 LANGUAGE 1 ______ 1 _______ 1 NEURO-MUSCULAR 1 _____ 1 VOCAL TRACT 1 ___ _ 
1 FORMULATION 1 1 CODE 1 1 1 CONTROLS 1 1 SYSTEM 1 1 
----------------- -------------- 1 -------------------- ----------------- 1 

1 1 
DISCRETE INPUT 1 CONTINUOUS INPUT 1 

ACOUSTIC 
UAVEFORM 

1 
30000-50000 ----------------

50 BPS 200 BPS 2000 BPS BPS 1 TRANSMISSION 1 
1-------1--------------------1------------------------------1--------------------1------1 CHANNEL 1 
INFORMATION RATE 1 1 

1 
ACOUSTIC 
UAVEFORI'I 

SPEECH RECOGNITION 1 
1 

PHONEMES,UOROS, FEATURE EXTRACTION SPECTRUM 1 
SEMANTICS SENTENCES COOING ANALYSIS 1 

~ ~ ~ ~ 1 

----------------- --------------- ------------------ --------------------- 1 1 MESSAGE 1 _____ 1 LANGUAGE 1 _____ 1 ______ 1 NEURAL· I_~ ___ I BASILIAR MEMBRANE 1 __ 1 
1 UNDERSTANDING 1 I TRA~lATION 1 I' TRANSDUCTION 1 1 MOTION 1 

. ------------------

DISCRETE OUTPUT CONTINUOUS OUTPUT 

Figure 2.1 Schematic representation of the human speech 

communication process . 
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In the figure, approximate digital rates associated with 

descriptions of the information at several levels are indicated. Speech 

generation (by the human) encompasses the cerebral formulation of a 

message, casting the information into a language "code" acceptable to 

and uderstood by the intended (human) recipient, and physically 

actuating, by neural and muscular control, a sound generation system 

which produces a sequence of sound waves interpreted as the distinctive 

elements (phonemes) of the given language. 

As one descends this speech-generation "hierarchy", the information 

representation appears to become less efficient, and hence requires a 

higher digital bit rate for its specification. The sequential components 

of the "language code", visualized as being discrete symbols specifying 

fini te amounts of information, constitute "commands" to the transducer 

system that wU\ generate the acoustic output. These commands are the 

neural and muscular actions that control the operation and motions of 

the human vocal system; for example commands that cause the vocal cords 

to vibrate at a particular frequency and intensity, or commands that 

change the position of the mouth, jaw, and tongue. A general discrete­

time model for speech production is shown in Fig.2.2. 

The vocal tract is a nonuniform accoustic tube which extends from 

the glottis to the lips and varies in shape as a function of time. The 

components causing this changB are the lips, jaw, tongue, and velum. For 

example, the cross sectional area of the lip opening can be varied from 

o cm2 to about 20 cmr. The nasal cavity which begins at the velum and 

ends at the nostrils constitutes an additional accoustic tube for sound 

transmission used in the generation of the nasal sounds. As sound 
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propagates in the vocal and nasal tracts, its frequency spectrum is 

shaped by the resonances of these tracts. The resonance frequencies of 

the vocal tract are called formant frequencies. The formant frequencies 

depend upon the shape and dimensions of the vocal tract; each shape is 

characterized by a set of formants. Different sounds are formed by 

varying the shape of the vocal tract. Thus, the spectral prop,erties of 

the speech signal vary with time as the vocal tract shape varies.. The 

changes in the positions of the mouth, jaw, and tongue cause changes in 

the parameters of the vocal tract filter V(z). For voiced excitation the 

glottal pulse generator is used and the period of the glottal pulses is 

called "pitch period". For unvoiced sounds the excitation source is the 

white noise generator. A more sophisticated and detailed model has been 

developed in [1]. 

PIlCH PERIOD 
1 I_Av 

------~------ ------------- 1 
1 hlpulse 1 1 Glothl ~ 
1 train 1-----1 pulse I---x---
1 generator 1 1 lode I 1 1 VOCAL TRACT PARAMETERS 
------------ 1 G(z) 1 1 " " " , , 

------------- 1 --~---------~-- -------------

VOICED/UNVOICED 
S~IlCH 

1 1 Vocal 1 1 Radiation 1 
r ------1 Tract aodel I--~--I Model I----~ 
1 1 V(z) 1 1 R(z) 1 
1 -------------- -------------

------------- 1 
1 RandOl 1 1 
1 noise I-----x---
1 generator 1 t 
------------- 1 

Figure 2 .. 2. General discrete-time model for speech production 
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The effect of the vocal tract is modelled by an all-pole digital 

filter V(z) which has the formants as its poles. V(z) relates volume 

velocity at the source to volume velocity at the 'lips and finally. the 

. radiation model takes care of the radiation at the lips. 

The parameters of the model are assumed to be constant over time 

intervals typically 10-20 ms. long. This model is quite appropriate for 

sounds whose parameters change slowly with time, namely, vowels. It 

~ailsto represent voiced fricatives, for which both sources are 

involved at the same time. A second limitation is in the representation 

of nasals, because of the lack of zeros in V (z). Against all its 

limitations, this is a model that works sufficiently well and is widely 

used. 

On the other side, human recognit~pn of speech entails a frequency 
., 

analysis (by.the basiliar membrane of the inner ear) of the auditorily 

received acoustic wave. The results of this frequency analysis are then 

transformed into electrical neural signals that are interpreted .and 

comprehended in accordance with the mutually agreed upon language 

convention. In a complementary fashion, as one ascends this recognition 

hierarchy, the information representation likely becomes more efficient 

and compact, with lower digital bit rates associated with the more 

efficient descriptions of the speech information. 

In terms of fundemental understanding, the acoustics of sound 

generation by the human vocal system and the physics of sound analysis 

in the peripheral ear are now relatively well-known and can be 

quantitatively specified. By contrast, the speech communication involves 

cerebral process which implies that the human capacity for speech 
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communication is related to our intelligence. Not suprisingly, 

therefore, present day computers emulate the lower level (peripheral> 

processes well, but emulate the higher level (central) processes only in 

a very primitive way. Ve should therefore, not expect to achieve high­

quality speech recognition machines until we can simulate human 

intelligence. For- that reason, in the future, the researches will be 

centered on syntax, semantics, prosodics and pragmatics in order to deal 

with fluent continuous unconstrained speech in both speech synthesis and 

recognition. 
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III. ISOLATED WORD SPEECH RECOGNITION SYSTEMS 

Fig. 3.1 shows a typical model used in the majority of isolated word 

speech-recognition systems. There are three basic steps in the model: 

1. Feature measurement. 

2. Pattern similarity determination, 

3. Decision rule. 

1 
SPEECH 1 

------------1 SIGNAL 1 
1 

FEATURE 

MEASUREMENT 

1 TEST 1 
I. PATTERN 1 
1-----------1 
1 1 
1 1 

1 

PATTERN 

SIIIILARITY 

t 
1 
1 

1 REFERENCE 
1 

. 1 PATTERNS 
1 -

1 DISTANCE 1 
1 SCORES 1 
1------------1 
1 1 
1 1 

DECISION 

RULE 

1 
1 
1-------
1 
1 

RECOGNIZED 
(SET OF) 

WORD(S) 

Figure 3.1 A typical model for speech-recognition systems 

The input to the model is the acoustic waveform of the spoken input 

<typically a word, or a connected string of words). The output of the 

moden is a "best" estimate of the word (or words) in the input. Often 

the ,output of the model is a set of estimates of the words in the input, 

ordered by similarity, allowing the final decision of what was actually 

spoken to be deferred to a higher level of processing in the recognition 

system. 
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3.1. FEATURE MEASUREMENT 

The analog front end of the system consists of a standard low-pass 

filter which has a bandwith of approximately 3-4 kHz, followed by 

analog-to-digital (AID) converter which operates near 8 kHz (using 8-16 

bits). After this point, all processing is done digitally. 

The next step in processing is feature measurements which are used 

for detecting the endpoints of the words (or syllables as in the system 

descri bed in this thesis). Endpoint detection means literally finding 

the spoken word in the designated recording interval, that is to say, 

seperating the speec~ from the background sounds. This step is a crucial 

one in the recognizer for two reasons, namely: 

1. Errors in endpoint location increase the probability of making 
I 

recogni tion errors. Gross errors in endpoint location make reliable 

recognition impossible. 

2. Proper location of endpoints keeps the overall computational load 

of the system to a minimum. 

For reasonably quiescent recording conditions <i. e., a quiet room) 

endpoint location is a very simple procedure. However, as the recording 

conditions degrade, the difficulty of endpoint location increases. 

Feature measurement is basically a data-reduction technique whereby 

a large number of data points (in this case samples of speech waveform 

recorded at an appropriate sampling rate) are transformed into a smaller 

set of features which are equivalent in the sense that they faithfully 

descri be the salient properties of the acoustic waveform. For speech 

signals, data, reduction rates from 10 to 100 are generally practical. 
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For representing speech signals, a number of different feature sets 

have been proposed ranging from simple sets such as energy and zero 

crossing rates (usually in selected bands), to complex, n complete" 

representations such as the short-time spectrum, linear-predictive 

coding (LPC) , and the homomorphic model. For recognition systems the 

moti vation for choosing one feature set over another is often complex 

and highly dependent on constraints imposed on the system (e. g., cost, 

speed, response time, computational complexity, etc.). Three of the most 

important of these criteria are: 

1. Computation time, 

2. Storage, 

3. Ease of implementation. 

Of course the ultimate criterion is overall system performance. 

However, this criterion is a complicated function of all system 

variables. 

3.2. TIME REGISTRATION OF PATTERNS 

Once the patterns have been measured, the next step in the model of 

Fig.3.1 is to determine similarity betwe-en test and reference patterns. 

Because speaking rates vary greatly, pattern similarity involves both 

time alignment and distance computation, and often these ~wo are 

performed simultaneously. 



NR NR 1 
1 1 
1 1 

-------------------------�-------�------------------------
1 1 1 
1 1 1 
1 R(n) 1 1 
I 1 1 
1 1 1 
I. 1 1 

-------------------I~------I------- 1 
1 1 1 
1 1 I 
1 1 1 

T(n) 

J 
1 
I 

------.-------------------------­, 

NT 

NT 

Figure 3.2 Example of time registration of a test and a reference 

pattern.. 

11 

Fig.3.2 illustrates the function of time alignment between a test 

pattern T(t) and -a reference pattern R(t). Our goal is to find an 

alignment fUnction w(t) which maps R onto the corresponding parts of T. 

The c.ri terion for the correspondence is that some measure of distance 

between the functions, D(T,R), be minimized by the mapping ~ 
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Several techniques have been proposed for determining the alignment 

path w, including: 

1. Linear time alignment, i.e. 

m = wen) _- (NR - 1) 
(n-1) -------- + 1 (NT - 1) 

2. Time event matching, 1. e., times at which significant "events" 

occur in both reference and test patterns are found, and lined up in 

time 

m, = wen,) 
.Ill:2 = w(n.:?) 

and a functional fit to wen) is found based on these constraints. 

<Typically wen) is chosen to be piecewise linear fit). 

3. Correlation maximization, i. e., the warping function wen) is 

varied to maximize the correlation between reference and test patterns 

R* = max L (T(n) RC-w(n») 

where the optimization is performed in a constrained manner. 
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4. Dynamic time warping <DTW) , 1. e., the warping curve is determined 

as the solution to the optimization problem 

D* = min wCn) [:E d (T(n) I R(w(n»)] 

where d (t (n) I R (w(n») is the "distance" between frame n of the test 

pattern, and frame w(n) of the reference pattern. 

Previous studies have shown that, for polysyllabic words, distinct 

improvements in recognition performance are obtained using DTW for 

detecting the similarity between test and reference patterns. For that 

reason, DTW has been chosen as the time registration method in this 

thesis. 

In order to implement the optimization problem of DTW, the concept 

of distance between frames of features must be defined. Several possible 

distance measures can be used, depending on the form of the feature 

sets. For example, a simple Euclidean distance of the form 

P 
d(T,R) =IIT-RII =:E (Ti -Ri):2 

i=O 

where Ti. and Ri. are the it.h components of the vectors T and R, 

respecti vely, is often u·sed. 
',. 

other distance measures which have been' used include: 

'a) Covariance weighting: The distance is defined as 

d (T, R) = (T - R) -r- J (T - R) t. 

where -r- J is the inverse of the covariance matrix of the features. This 

type of weighting, compensates for correlation between features, and 
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tends to give equal weight to all features in the overall distance. 

b) Spectral distance: For this measu~e the log spectra of reference 

and test patterns are obtained, and the distance is given as 

d(T,R) = f[ logfT(e.iW)] - logfR(e.iW)J] q dw 

where q is usually an even integer (to make the qth power of the 

difference positive), and the integration is aver the frequency range of 

interest. This distance measure has been shown to correspond well with 

subjective mesures of difference, and several efficient techniques for 

approximating the above integral have been proposed [111. 

c) LPG Log Likelihood Measure: For feature sets based an LPG 

parameters, an extremely efficient distance measure 'was proposed by 

Itakura [5], of the form 

d(T,R) = log ~!J_Y:I_!3!J t.1 
ar Vr art. _ 

where aR and ar are the LPG coefficient vectors of the reference and 

test frames, and Vr is the matrix of autocorrelation coefficients of the 

test frame. 

One of the most important aspects of any distance measure is the 

speed of computation, since distance calculations are the most i costly 

(time consuming) part of most recognition systems. Any proposed distance 

measure which requires a great amount of computation would not be a 

candidate for use in a practicil system, no matter what its other 

advantages might be. On this basis, LPG distances are reasonable 

candidates for distance measures for recognition systems. 
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. 3.3. THE DECISION RULE FOR RECOGNITION 

The last maj or step in the model of Fig 3. l' is the decision rule 

which chooses which (reference) pattern (or patterns) most ~losely match 

the unknown test pattern. Although a variety of approaches are 

applicable here, only two decision rules have been used in most 

practical systems, namely, the nearest neighbour rule (NN rule) and the 

K-nearest neighbour rule (KNN rule). 

The NN rule operates as follows: Assume we have V reference 

patterns, R1, i = 1,2, ... ~ and for each pattern we obtain the average 

distance score D1 from DTW algorithm. Then the ·NN rule is simply 

i* = argmin 1 [D1] 

1. e., choose the pattern, R;I. with smallest average distance as the 

recognized pattern: In some applications, explicit choice of i* is not 

required; instead an ordered (by distance) list of recognition 

candidates is used. 

The KNN rule is applied when .each reference entity (e.g., word) is 

represented by two or more reference patterns, e.g., as would be used to 

make the reference patterns independent of the talker, as it is in this 

thesis. Thus if we assulne there are P reference patterns for each of V 

reference words, and we denote the jth occurence of the ith pattern as 

R;I. , j, H H V, H j ~ P, then if we denote the DTW di stance f or the jth 

occurance of the ith pattern as D;I.,j, and if we reorder the P distances 

of the jth word so that 
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then for the KNN rule, for k f P, the average distance is computed as 

1 K 

r:J. = -:E D:J., Ck:J 

K k=1 

and we choose the index of the "recognized" pattern as 

i* = argmin :i. r:i. 

Similarly to the NN rule, an ordered list of averaged distances (r:J.) can 

be computed for cases when a list of recognition candidates is required. 

The effectiveness of the KNN rule is seen when P is from 6 to 12, in 

which case a real statistical advantage is obtained using the KNN rule 

(with K= 2 or 3) over the NN rule. 

3.4. THE ROLE OF GRAMMAR AND PROSODY IN SPEECH RECOGNITION 

Up to now, we had an isolated word recognizer. After that one can 

build a robust speech recognition system, which performs human/machine 

communication, by utilizing the structural and linguistic aspects of 

speech at .the same time [21], [22], [27]. In this section, the hierarchy 

of the structural information of speech, grammar and semantics and their 

application to speech recognition will be investigated. For the purposes 

of our discussion, grammar is the surface structure of a message and 

includes, bu~ is not limited to the phonetic structure of words and word 
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order in sentences. Semantics is the deep structure of a message by 

which meaning is conveyed. 

Speech is a code used to convey information. Pierce [54J has 

distinguished among four aspects of natural language codes, symbolic, 

syntactic, semantic, and pragmatic. The symbols of a language are 

arbitrary and differ both from language to language and from the written 

to spoken form of a given language. For written Turkish, for example, 

the symbols are the 29 letters of the alphabet, a blank symbol or a 

space, and a few punctuation marks. For spoken Turkish, 28 basic sounds 

or phonemes and possibly, some diphtongs are a resonable choice. A 

detailed study on Turkish symbols and sounds are available in [551. 

Syntax is the relationship of symbols to each other. Although we 

usually think of syntax as grammar, that is the way the words are 

concatenated to form sentences, syntax equally well describes the way 

spectral types form phonemes,_ phonemes form syllables, and syllables 

form words. The syntactic structure of a language is also arbitrary to 

the extent that any set of rules for forming sequences of symbols is 

legitimate so long as the sequences can actually be realized .. In speech, 

for example, one would not expect to find sequences of phonemes which 

are anatomically impossible to articulate. 

Semantics is the relationship of symbols to reality. It is at this 

level of the communication hierarchy that thB arbitrariness ends. Once 

certain symbols are chosen to represent specific aspects of the real 

world, certain constraints on the way symbols are arranged in sequences 

are automatically imposed if we are to have a faithful linguistic model 

of our universe. 

, , 
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Pragmatics is the relationship between symbols and their users. Two 

different speakers,or the same speaker ~n two different contexts, will 

use the same symbol to mean entirely different things. This aspect of 

language is very difficult to formalize. 

\ \ 
Acoustic analysis I I 

I I 
---------------------------1 I I 
+ 1 Acoustic Parameters I I 

------------ + I I 
. I Prosodic I --------------------------------- I I 

I Analysis I---~I Phonetic analysis I I 
I I 

Information carying parameters I I 
I I 

I Linguistic I--~I Classification & segmentation I "RECOGNITION" I 
1 Support I ----------------------------------

Phonetic sequence for input 
I I ---------------------------------- -----------
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I I 
I I 
I I 
I I 
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I 
I 

Sentence struc tures 
"UNDERSTANDING" 
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I 
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Pragmatics 1 
I 

Intended computer response I 
I 

Figure 3.3 Processes involved in "recognition" and "understanding". 
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Although much of the message in speech is conveyed by the segmental 

phonemes, additional information is caried by the suprasegmental 

phonemes. Prosodic features, or, suprasegmental phonemes are properties 

of articulation that encompass more than one phoneme. Duration, stress, 

tone, intonation and harmony are the prosodic features used in 

Turkish. The physical parameters,) of the speech wave which signal the 

prosody of an utterance are the durations and intensities of the 

syllables, and the fundemental frequency contours. More information on 

prosody and prosodic features of Turkish are available in [55). 

Fig.3.3 shows the hierarchy of linguistic and prosodic feature 

analysis blocks in a typical speech recognition system. This thesis 

includes the parts grouped under name "recogni tion". Prosodic features 

are not frequently used in word recognizers. The prosodic information is 

used in connected speech recognition and speech understanding systems. 

But the isolated word recognizer of this study uses pitch and energy 

information for end point detection of syllables and vowel harmony of 

Turkish for reducing the calculation efforts during word matching (i.e., 

Dynamc Time Warping). For that reson this study may be thought as a 

transition between isolated word recognition and connected word 

recogni tion. 
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In this chapter, the structure and operation of the isolated word 

recognition system used in this thesis will be studied in more detail. 

The system described in this thesis was implemented on PDP 11/23 

microcomputer which was preceeded by a simple analog circuitry and an 

12-bit AID converter~ Fig.4.1 shows the block diagram of the recognition 

system. 

In this thesis, minimum recognition unit has been chosen as the 

syllable. ChOOSing the syllable as a unit gives the system support of 

prosody. Prosody is the collection of features that are common to 

several phonemes. In Turkish, information is carried in prosodic 

features in the form of duration, stress, tone, intonation and vowel 

harmony [55]. The vowel harmony rules of Turkish have been used in the 

system for eliminating impossible. syllable candidates before pattern 

similari ty comparison process and causing a reduction in the required 

computation efforts and an increase in the recognition performance. The 

maxi~um achieved performance rate for the speaker independent system is 

90%~ The total cumputation efforts have -been redu-ced to one fifth of 

that of the system which-is not guided by prosody. 

A careful examination of this, or any other, isolated word 

recognizer, shows that the system has three distinct modes of operation, 

namely: 
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l)Acquisition Of feature sets for each word in the vocabulary. 

2) Clustering: Creation of word ~eference templates from the 

training feature sets, and classification according to Turkish vowel 

harmony groups. 

3) Recognition of an unknown pattern by comparison with each 

reference pattern. 

Details of these three modes, and major parts of the system shown in 

Fig. 4.1 will be studied in the next sections of this chapter. 

I 
I ----------- -----------
IT: TRAIIHNG I TURKISH I I STORED 
I I VOYEL 1___ I REFERENCE 
I R : RECOGNITION r HARMONY I \ I TEMPLATES 
I ----------- \ -----------
I \ t 
I \ I 
I --------------- ------------- ---------------
I __ -' ENERGY '---' _-' CLUSTERWG Z 

-------------- ------------- I I I MEASUREMENT I I SYLLABLE I ------------ T I I CLASSIFICATI~ 
-MIC __ I LPF 1 ___ 1 AID 1 __ 1 __ 1 --------------- I 1 ____ 1 LPC 1 __ 1 ---------------

I fc=3.5 kHz I 1 f5=8 kHz 1 1 I ---------------- I ENDPOINT I I ANALYSIS 1 \ --------------

-------------- ------------ 1 1 ___ 1 PITCH-PERIOD 1 __ 1 I ------------ R \ ___ 1 DYNAMIC 
I 1 DETECTION I I DETECTION 1 1 TIME-YARPINE 
1 ---------------- I 1 --------------

------------ I 1 
I + 

I -------------
I I KNt~ 

I I -DECISION RUl 
----------- I 
I 1 ____ ' I 

POP 11/23 I LEXICON I + 
MICROCOMPUTER I I -----------. 

Figure 4.1 Overall block diagram of the word recognition system 

I RECOGtHZEI 
I TEMPLATE 
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4.1. ACQUISITION OF THE FEATURE PARAMETERS 

The training set of the recognizer consists of 19 Turkish wards 

spoken by 4 different speakers. In the training mode each speaker 

reci tes each ward 12 times over an analog transmission system. The 

analog front end of the system consists of a standard carbon microphone 

used in telephones, lowpass filter which has 6 dB point at 3.5 kHz, 

fallowed by an amplifier which has output between ±10 V. After that, the 

12-bit analog to digital converter which operates at 8 kHz converts the 

information into digital form. After this point, all processing is done 

digitally by PDP 11/23. 

4.1. 1. SYLLABLE END-POINT DETECTION 

The next step in processing is the syllable end-point detection as 

shawn in Fig. 4.1. The vocabulary consists of 19 Turkish wards which are 

composed of 29 dlfferent syllables. The words in the vocabulary have 

one, two or three syllables. The syllables are recognized independently 

and then brought together using the Turkish prosodic rules, in order to 

farm the words of the vocabulary. For that reason we have to find first 

the endpoints of the syllables from the recordings. This step is a very 

crucial step because of the reasons given in the previous chapter. It 

directly effects the recognition rate. In order to find the endpoints, 

the energy and the pitch periods are found for every 12.5 msec. (100 

samples) using overlapping frames of 37.5 msec (300 samples) of speech. 
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___ I PITCH PERIOD , _____ , SYLLAB~E ,___ SYLLABLE 
DIGITAL , 'DETECTION' 1 KERNEL , 1 ENDPOINT 
SPEECH ,---------------- , GENERAl ON 1 1 . ------------ PAIRS 
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1 , , ENDPOINT , 
1 --------------- ------------- 1 I ORDERING 1 
1 ___ ' ENERGY ' _____ 1 ENERGY 1 ____ ' ------------

, MEASUREMENT , 1 PULSE 1 
--------------- , DETECTION 1 

Figure 4.2 Block diagram of syllable endpoint detector. 

A block diagram of the syllable endpoint detector is given in 

Fig. 4. 2. The inputs to the detector are the energy array Rl (0), 1 = 1,2, 

,L, where L is the number of frames in the recording interval, and 

the pitch period array TI, 1 =1,2, .•. ,L. The output of ' the endpoint 

detector is a set of beginning points B(m) and ending points E(m), m = 

1,2, ... ,N, where each set defines a syllable endpoint pair. 

4.1.1.1 Calculation of energy 

The first step in the block diagram is to calculate the Ot.t"> 

autocorrelation coefficient (energy) as 

" H 
Rl (0) =:E x(n) x(n), 1=1, ... ,L 

n=O 

where x is the speech samples, L is the number of frames and N is the 

number of samples in each frame. 
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4.1.1.2 Pitch period estimation 

In order to find the boundaries of the syllables,the second feature 

required is the pitch period of each frame. As previously mentioned, the 

pitch period is the period of the impulses generated by the glottis of 

the speaker during the generation of voiced sounds. 

A pitch detector is a device which makes a voiced-unvoiced decision, 

and during periods of voiced speech,provides a measurement of the pitch 

period. As a result of the numerous difficulties in pitch measurements, 

many pitch detection methods have been developed [55]. 

The usual realization of a pitch detector may be considered to be 

consisting of three main blocks which are passed through successively: 

-the preprocessor 

-the basic extractor 

-the postprocessor 

The function of the preprocessor is data reduction in order to 

increase the ease of 'pitch extraction. The basic extractor operates on 

this altered signal to convert it into a sequence of pitch estimates. 

The postprocessor is a block which performs the tasks of error detection 

and correction, smoothing of an obtained contour, time-to-frequency 

conversion and display of the parameters. 
'n 

The pitch period estimation process was performed by the 

autocorrelation method in this thesis. 
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1. Autocorrelation Method 

One of the difficulties in pitch period estimation is the effect of 

the formant structure on measurements related to the periodicity of the 

waveform. Thus, it is desired to remove the spectral shaping in the 

waveform due to the formants. A way to achieve this spectral flattening 

is using centre c~ipping by which signal values below the clipping level 

are set to zero and those above the clipping le~el _ are offset by the 

clipping level. If the clipping level is appropriately chosen, most of 

the waveform structure due to the formants can be eliminated. AUTOe [43] 

uses this approach combined with autocorrelation analysis. <Figure 4.3) 

1 1 
____ � FIND PEAK OVER 1 _________________ _ 
1 1 FIRST PORTION 1 _____ 1 
1 1 ________________ 1 1 SET CLIPPING 
1 __________________ 1 

1 1 '-___ -' LEVEL 1 
1 ___ 1 FIND PEAK OVER 1 1 ________________ 1 
1 1 LAST PORTION 1 1 1 1 ________________ 1 1 

________________ 1 1 
1 ________________________ 1 

1 1 1 SECTION INTO 1 1 1 
--I LPF 1---1 300 SAMPLE 1---1 ________ 1_________ _______________ ____________ -----------_ 

1 ____ -' 1 SECTIONS 1 1 1 1 1 1 FIND 
1 ______________ 1 1 1 CENTER CLIPPER 1 1 AUTO- 1 IPOSITION &1---1 VOICEO 1 

1---1 & 1---1 CORRELATION 1---1 VALUE OF 1 1 UNVOICEO I~ 
1 I-PEAK-CLIPPER 1 1 COMPUTATION 1 1 PEAK 1---1 DECISION 1 
1 ___ --__ ---______ 1 I _____ .~ ______ I 1 __________ 1 1 __________ 1 

Figure 4.3: Block diagram of the AUTOe pitch detector 
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The first stage of processing is the computation of the clipping 

level. Because of the wide dynamic range of speech, the clipping level 

must be carefully chosen so as to prevent loss of information when the 

waveform is either rising or falling in amplitude within a frame. Such 

cases occur when voicing is just beginning or ending, as well as during 

voicing transitions, e.g., from a vowel to a voiced fricative, or a 

nasal. For the selection of eL, the clipping level, the first and third 

100 samples of the frame is searched for maximum absolute peak levels. 

The clipping level is then set as 80 percent of the smaller of these two 

levels. 

Following the determination of the clipping level,thespeech 

section is then both center clipped, and infinite peak clipped, 

resulting in a signal which assumes one of three possible values; +1 if 

the sample exceeds the positive clipping level, ~1 if the sample falls 

below the negative clipping level, and 0 otherwise. The use of infinite 
) 

peak clipping greatly reduces the computational complexity of the 

autocorrelation measurement, because no multiplications are required in 

thE? computation. 

The next stage in processing is the autocorrelation comRutation. The 

short-time autocorrelatio~function of the 300-samples frame is defined 

as: 

2.99-1 
Rx(m) =:E x(n)x(n+m) m=}[i., Ni.+ I, ••• 11ft' 

n=O 
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where Hi is the initial lag and Xt' is the final lag for which the 

autocorrelation function is computed. For the frequency range of 100 to 

500 Hz, these values are 16 and 80 respectively. ~dditionally, Rx(O) is 

computed for the normalization of the autocorrelation function. 

In the computation of the autocorrelation function, it is assumed 

that samples outside the current frame are assumed to be zero. This 

effectively weights the autocorrelation function by a linear taper 

which starts at 1 at m=Oand goes to 0 at m=300. That· property is 

desired, because it enhances the peak at the pitch period with -respect 

to peaks at multiples of the pitch period, thereby reducing the 

possibility of doubling or tripling the pitch period est.imate. 

For voiced-unvoiced decision, the autocorrelation peak is compared 

to the energy, Rx(O). If this ratio exceeds a voiced-unvoiced threshold 

of around 30%, the frame is classified as voiced and the pitch period is 

the position of the autocorrelation peak. If the peak value falls below 

the threshold, the interval is classified as unvoiced. 

The decision for the current interval is modified by the decisions 

for the preceding and succeeding intervals. If these are both voiced 

(unvoiced) t then the current interval is forced to be declared voiced 

(unvoiced). 5% - 10% of the decisions have been modified by this way. 
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4.1.1.3 Adaptiye level equalization 

The next stage of the syllable recpgnizer is the adaptive level 

equalizer which normalizes the log energy array to the background noise 

level. The equalized energy array Rl (0) is determined as 

1=1,2, ... ,L 

where Q is the averaged noise background level which is obtained as 

follows. First, minimum energy Entin is obtained as 

Entin = min GOgtRl (O)]} 

HHL 

Then a histogram is taken of the low 10 dB of the log energy levels from 

the values of logt Rl (0)] versus 1. A three-point averaging of the 

hi~togram is made, and the peak of the histogram is found. Q is chosen 

as the peak of the smoothed noise level histogram. 

The level equalized energy array has the property that during 

silence it fluctuates around the 0 dB. level, and during speech it is 

considerably larger. Thus absolute energy thresholds can be defined for 

detection of the presence of speech-like signals, as described in the 

following parts of this section. 
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4.1.1.4 Energy pulse dptection 

Based on the output of the adaptive level 'equalizer Rl (0), four 

energy thresholds kJ I E:ZI kSI and k4 are defined as illustrated in 

Fig.4.4 .. The purpose of the thresholds is to define the presence of an 

"energy pulse", 1. e., a sp~ech-like burst of energy during the recording 

interval. The assumption is made that the spoken word contains a 

sequence of one or more such energy pulses, therefore the problem 

reduces to finding those pulses and determining which ones belong to the 

spoken word. This problem has been efficiently solved by L. F. Lamel and 

L. R. Rabiner in [9]. 
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1 
1 
1 n 
1 * * 1 * . * 
1 * * ** I' n" * * n* 
1 ** * * * 
1 * n * K4 I 1: * 
1 * t*i 
1 * * 
1 * * K2 I ;/ 1:\ n 

I *** ** * . * * ** * * K3 I U * 1: * 1: ;:u t * 1: * Un I 
KI In; ; ; n * nit it it I 

1* * *t n- ; 1 
---------------------------------------------------------------------------------------------------1 AI A2 A3 A, 

FRAME NUMBER 

Figure 4.4 Example illustrating the use of energy thresh?lds to find 

beginning and ending frames of energy pulses 
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The detection of energy pulses proceeds, from left to right. Values 

of Rl (0) are scanned (as 1 varies) and ,when Rl (0) exceeds the first 

threshold El, the frame number (a 1) is recorded.· If Rl (0) exceeds the 

higher threshold k2 before falling below El, the beginning of an energy 

pulse is detected. The b~ginning point is normally chosen as frame Al, 

unless the rise time (from Al to A2) is too long, in which case the 

beginning point is chosen as frame 'A:2. \ The ending frame is detected in a 

manner similar to the starting frame using thresholds k2 and ks. 

However, if the duration from As to A4 is too long (this typically 

indicates breathing at the end of the word) , frame As is used as the 

ending frame of the energy pulse. 

Two further tests are made- on each detected energy·pulse. The peak 

energy of the pulse is measured, and if it falls below the level 

threshold k4, the energy pulse is rejected as being part of the word. 

Also,' the overall pulse duration is measured, and if it is too short 

(less than six frames, i.e., 75 ms), the energy pulse is rejected. The 

outputs of tne energy pulse detector is a series of pulse beginning 

. points Pe (111) and pulse ending points FE (111), m=1,2, ,]tf for]{ 

detected pulses in the recording interval. When]tf= 0 (i.e., no detected 

pulses), the recording is rejected and no endpoints are found. Checks 

are also made on whether pulses of significant energy occur at the 

boundaries of the recording interval. If so, the recording is again 

rej ected. A flow diagram of the energy pulse detector is given in 

Fig.4.5. 



ML : MAXIMUM LEVEL 
E1 : ENERGY OF THE Ith FRAME 

I : PULSE INDEX 

. I 

1=1 

SEARCH FOR 
AI or A2 

SEARCH FOR 
Aa or A. 

BESINeI) = AI or A2 
ENDCI) = Aa or A4 

NO 
1=1+( t---~ 

YES 

YES 

NO 

RE-RECORD 

NO PULSE 
DETECTED 

Figure 4.5 Flow chart of the energy pulse detector. 
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4.1.1.5 Syllable kernel generation 

The next stage in the block diagram of Fig. 4. 2 is the syllable 

kernel generator. Syllables are usually defined as high energy chunks 

which correspond to voiced sections. An approach, based on this 

defini tion, makes use of the fundemental frequency <inverse of pitch 

period) in finding syllable kernels has been used in this study. 

The syllable structure of Turkish is such that there will be a vowel 

at the kernel of each syllable and these vowels will be manifested by 

long sections of voicing. The algorithm uses these sections as 

candidates of syllable kernels and the energy waveform to find the 

syllable endpoints. This algorithm usually works because the voiced 

consonants are. al ways next to a vowel, and during art:l,culation of the 

vowel and the voiced consonant next to it, no discontinuity in voicing 

long enough to be detected- occurs, and even if this occurs, there will 

be no, local minimum in the- energy waveform corresponding to this 

discontinuity. The:. algorithm may fail in cases of all-voiced sequences, 

where all the consonants are voiced, and no discontinuity in voicing is 

detected. One example is given in. ~ig. 4.6 where the fundemental 

frequency and energy curves are plotted for the utterance "ko-nus-ma". 

This algorithm has been eifici-ently realized and studied in [55]. The 

fortran subroutine is also available in [55]. 

4.1.1.6 Syllable end-point detection 

In many languages, including English, syllable division is not 

uniquely defined. In Turkish, rules for syllable division are clearly 

set. Detailed information about the syllable division rules are 
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Figure 4.6 : Example for syllable end-point detection: Turkish 

word" KO-NUS-:M.A ". 
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available in [55]. In general, there will be as many syllables as vowels 

in a word. Syllables can be recognized as voiced sections bounded by 

large dips in energy. Using this definition, and after finding the 

kernels of the syllables and end-points of the energy pulses, the 

intermediate end-points of the syllables are chosen such that they 

correspond to the valleys between kernels. The beginning of the first 

syllable coincides with the beginning of the first energy pulse or the 

beginning of the first kernel according to which starts earlier, and the 

end point of the last syllable is chosen as the end-point of the last 

energy pulse or the last kernel according to which ends later. Fig.4.6 

shows an example word which is seperated into syllables using the above 

technique. 

4.1.2 LPC FEATURE EXTRACTION 

One of the commonly used -feature sets for recognition is the LPC 

based feature set originally proposed by Itakura [5]. The basic idea 

behind linear predictive coding is that a given speech sample can be 

approximated as a linear combination of past speech samples. By 

minimizing the sum of the squared differences (over a finite interval) 

between the actual samples and the linearly predicted ones, a unique set 

of 'predictor coefficients can be determined. Linear-predictive coding 

has· been . shown to be closely related to the basic model of speech 

production, given in Fig.2.2, in which the speech signal is modelled as 

the output of a linear, time-varying system excited by either quasi­

periodic pulses (for voiced sounds> or random noise (for unvoiced 

sounds> [1], [3]. The linear-predictive coding method provides a robust, 
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reliable, and accurate method for estimating the parameters that 

characterize the linear, time-varying system [37], [38]. 

N" w(n) p p:(order) 
1 1 1 1 1 

SPEECH ~ ~ ~ ~ ~ LPC 
SAMPLES ---------- -------------- ---------- ------------------- ------------ COEFFICIENTS ________ 1 I-az-I 1 ____ 1 BLOCK INTO 1 ____ 1 WINDOW 1__ 1 AUTOCORRELATION 1 1 LPC 1 

1 a=O,9S 1 1 FRAMES 1 1 FRAME 1 --I ANALYSIS 1----1 ANALYSIS 1----
---------. -------------. .---------- ------------------- ------------

Figure 4.7 Block diagram of the LPC-based feature extractor. 

Fig. 4. 7· shows a block diagram of the LPC-based feature analysis 

system. This system is a block processing model in which a frame of N 

samples of speech is processed, and a vector of featureS is measured. To 

obtain this vector, the speech is preemphasized (to spec~rally flatten 

the speech signal and to reduce computational instabilities associated 

with finite precision arithmetic) using a fixed first-order digital 
.. 

system with transfer function 

H (z) = 1 - az- 7 I a = 0.95 

giving the signal 

-
's(n) = s(n) - as(n - 1>. 

The signal is next re-blocked into N sample sections (frames) for 

feature mesurement. In order to get constant number of frames for each 

template, the number of samples in each frame (frame size) is changed 

''\ ", 
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according to the length of the syllable. In this way, syllable templates 

each consisting of 25 frames are obtained. This is a kind of linear time 

warping. As it will be discussed in the~ following sections, 

experimentation. with this approach improves the performance of the 

dynamic time warping algorithm, and gives better results in terms of the 

recognition rate. 

A typical smoothing window used in LPC analysis systems is the 

Hamming window defined as 

2rrD 
w(n) = 0.54 - 0.46 cos ------­

N - 1 

The next step in the analysis of the windowed frame of data is the 

LPC analysis. 

The basic discrete-time model for speech production in Fig. 2. 2 is 

appropriate for the discussion of linear predictive analysis. In that 

figure the composite spectrum effects of radiation, vocal tract, and 

glottal' excitation are represented by a time varying digital filter 

whose steady state system function is of the form 

S(z) G 
."H(z) = ------ .= ---------------

U(z) P 
1 + L: akz-k 

k=1 

This system is excited by an impulse train for voiced speech or a random 

noise sequence for unvoiced speech. Thus, the parameters of this model 
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are: voiced/unvoiced classification, pitch period for voiced speech, 

gain parameter G, and the coefficients {ak} of the digital filter. These 

parameters all vary slowly with time. 

The simplified model in Fig. 2.2 is a natural representation of non-

nasal voiced sounds, but for nasals and fricative sounds, the detailed 

acoustic theory calls for both zeros and poles in the vocal tract 

transfer function. However, if the order p is high enough, the all-pole 

model provides a good representation for almost all sounds of -speech. 

The major advantage of this model is that the gain parameter, G, and the 

filter coefficients {ak} can be estimated in a. very straightforward and 

computationally efficient manner by the method of linear predictive 

analysis. For the system of Fig. 2.2, the speech .samples s(n) are 

related to the excitation u(n) by the simple difference equation 

p 
sen) = L aks(n-k~+Gu(n) 

k=l 

A linear predictor with prediction coefficients, ~k is defined as a 

system whose output is 

p 
sen) = L ~ks(n-k) 

k=l 

The prediction error e(n) is defined as 

p 

e(n) = sen) - sen) = sen) - ~ ~ks(n-k) 
k=l 
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It is seen that the prediction error sequence is the output of a 

system whose transfer function is 

! 

P 
A(z) :: 1 -:E CXkZ-k 

k=l 

The basic problem of LPC analysis is to determine a set of predictor 

coefficients {CXk} directly from the speech signal in such a manner as to 

obtain a good estimate of the spectral properties of the speech signal. 

The basic approach is to find a set of predictor coefficients that will 

EiniEize the mean-squared prediction error over a short segment of 

speech waveform. It can be seen that if ak = Bk, then e(n) = Gu(n). For 

voiced speech this means that e(n) would consist of a train of impulses; 

i.e., e(n) would be small most of the time. 

To illustrate the nature of the error signal Fig. 4.8 shows a series 

of sections of waveforms for several.vowels, and the corresponding error 

signals. For all these simple vowel sounds the error signal exhi bi ts 

sharp pulses at intervals corresponding to the pitch periods of these 

vowels. 

The order p of the linear predictive analysis can effectively 
',. 

control the degree of smoothness of the resulting spectrum. This is 

illustrated in Fig. 4.9 which shows the input speech segment and linear 

predictive spectra for various orders. It is clear that as p increases, 

more of the details of the spectrum are preserved. Since our objective 

is to obtain a representation of only the spectral effects of the 

glottal pulse, vocal tract, and radiation, it is clear that we should 
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Very· efficient ways of calculating the LPG coefficients {ak} have 

been explained and discussed in [31, [6], (501. The subroutines, AUTO 

and GOVAR used for calculating the LPG coefficients of each frame have 

been realized by Gray and Markel, (11], using the autocorrelation and 

covariance methods. 
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values of predictor order p. (After L.R. Rabiner [1]) 
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4.2. CLASSIFICATION AND CLUSTERING OF THE P~FERENCE TEMPLATES 

4.2.1. CLUSTERING OF FEATURE SETS 

In the clustering mode, a conversion is made from isolated 

occurences of feature sets for ~ word to reference patterns to be used 

in the recognizer. Three different methods are used to perform this 

conversion, namely: 

4.2.1.1 Direct conversion or causal training, in which a reference 

template is created for each occurrence of a feature set. Thus, if a 

speaker utters each of vocabulary words two times during training, and 

there are V words in the vocabulary, a total of 2V word templates are 

created. This method is used primarily in simple,' speaker-trained 

systems where it is assumed that one or two spoken versions of each word 

are adequate for recognition. 

4.2.1.2 Averaging conversion in which all the occurences of a given word 

are averaged together <after some form of time alignment) to give a 

single reference template. This method provides a statistical gain over 

direct conversion since spurious recordings are downgraded by the 

averaging, if enough recordings of each word are made. In this thesis 

ten recordings of each word are used for averaging. 

4.2:1.3 Clustering conversion in which it is assumed that there are P 

occurences of each vocabulary word, and they are grouped together to 

form Q clusters. Vithin each cluster the tokens <elements of clustering 

analysis)~ have the property that they are II similar" (i. e. , small 

distance to each other), .and between clusters, the tokens have the 

property that they are dissimilar. For each such cluster, a single-word 
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reference template is created using an averaging technique of the type 

mentioned above. Clearly, the clustering analysis is most appropriate 

for obtaining speaker-independent templates; however it has been equally 

well applied to speaker-trained systems [13]. 

DISTANCE TD CLUSTERING 
TEMPLATE 2 

I 
I 
I 
I· 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

C3 

* * * 

Cl 

* * * * 
A 

* 
C2 

* * * * * 

DISTANCE TO CLUSTERING TEMPLATE 1 

Figure 4.10 .. Example showing clustering of reference tokens of Turkish 

word ~' ALTI II into three clusters (C1, C2, C3) with an 

outlier A. 

Fig. 4.10 illustrates the concept of clustering for a set of 14 two­

dimensional tokens. This set consists of 14 different .templates of the 

word II ALTI ". It can be seen that 13 of the tokens fall into one of the 

three clusters labeled C1, C2, and C3 in Fig.4.10. Each of these 

clusters have been represented by a single reference template. However 

it is also seen that one of the tokens <labeled A) is an outlier, i.e. , 

it is not close to any of the other clusters. For that reason, this 

outlier has formed a single-element cluster and has been individually 

represented as a template. The dimensions in Fig. 4.10 are the LPC 
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distance measures of each template to the clustering templates. These 
I 

clustering templates are chosen arbitrax:ily in the beginning, and after 

clustering, they are placed into the clusters which have minimum 

distance respectively. Fig.4.11 shows the flow diagram of the algorithm 

used to combine P replications of a reference word into Q clusters and 

form one reference template per cluster. 

START ) 
I 

FIND ALL UTTERAlICES 
OF THE ~ORO 

I 
FHlDAVERAGE DURAlIOtI 

I 
LINEARLY ~ARP ~OROS 
TO AVERAGE OURATION 

T 
COMPUTE DISTANCES 
BETUWI VOROS ANO 

REFEREtlCE TEMPLATES 

I 
GROUP UTTERANCES ~ITH 

SIMILAR DISTANCES 

I 
FORM TEMPLATES 
FROM EACH GROUP 

NO~ FHI~SHEO . 
• YES 

( STOP. 

Fi 4 11 Flowchart of the clustering algorithm gure '. 
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4.2.2. CLASSIFICATION OF ~LLABLES BY USING TURKISH PROSODICAL RULES 

There exist eight vowels: la,e,i,i,o,o,u,ul in Turkish. Anyone of 

these vowels may occur in monosyllabic words. In words of more than one 

syllable, however, there are systematic restrictions on the co-occurance 

of the several vowel phonemes. Thus, in words of native Turkish origin, 

front vowels, li,u,e,ol, and back vowels, li,u,a,ol, do not occur 

together. And then, there are the rounded vowels, lo,o,u,ul, and 

unrounded vowels, la,e,i,i/. If a word contains an unrounded vowel in 

its first syllable, it· cannot contain rounded vowels in its other 

syllables. Moreover, the phonemes 101 and 101 occur generally only in 

the first syllable of a word (with the exception of the suffix -yor). 

This is generally called "vowel harmony" in Turkish. 

In order to reduce the computations during the comparison of the 

test template and reference templates, the syllables of the vocabulary 

have been classified according to the vowel harmony of Turkish. The 

syllables of the'. vocabulary used in this study have been classified as 

shown in Table 4.1. During the recognition process, for the first 

syllable, the target space is all of the syllables. But for the second 

and third syllables, the algorithm is constrained according to the vowel 

harmony of Turkish. Table 4.2 shows the target groups for the second 

and third syllables corresponding to the group which the first syllable 

belongs. As can be seen from Table 4.2~ the number of target groups for 

the second and third syllables is two· ·out of eight. This shows a 

significant amount of reduction in the computation effort required 

during the template comparison. 



---------------------------------
I 
I UNROUNDED ROUNDED 
I I I 
I---------------I-------------~-I 

I I I I I 
I WIDE I CLOSE I WIDE I CLOSE I 
I I I I I 

---------1:::::::1::::::: :::::::1:::::::1 
I I I -1- -2- -3- -4- I 
I I I BAS CIK DO KUZ I 
I BACK II SAK FIR I 
I II AL 71 . I 
I II LA SI I 
I II RA I I I 
1-------11-------1------- -------1-------1 
I I I -5- I -6- -7- I -8- I 
I II BES I KIZ DORT I UC I 
I I I LES I VIR I I 
I I I DEN I TIR I I 
I FRONT I I YE I BIR I I 
I II SE I GIR I I 
I II CE I KI I I 

II GE I NI I I 
II I DI I I 
II I I I I 

Table 4.1 Distribution of syllables of the vQcabulary according to 

vowel harmony. 

GROUP OF THE FIRST SYLLABLE I POSSIBLE GROUPS OF THE SECOND 
I AND THIRD SYLLABLES 

1 
2 
3 
4 
5 
6 
7 
8 

1 I 2 
1 , 2 
1 I 4 
1 I 4 
5 6 
5 I 6 
5 I 8 
5 I 8 

Table 4.2 : Possible groups for the second and third syllables of a 

,polysyllabic Turkish word. 

45 
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4.3 RECOGNITION OF THE TEST TEMPLATE 

The recognition mode of the system proceeds initially as the 

training mode which has been described in section 4.1. A word is spoken, 

a set of features (energy and pitch) is measured, and the endpoint 

locations of the syllables are found. Following endpoint detection, 

autocorrelation analysis is performed on each frame of the syllables to 

gi ve a test pattern T(n), n=1,2, ..• , 25 to be used in the dynamic time 

warping algorithm. This test pattern isopti1llally time aligned (using 

DTW> with each of the 29 reference patterns, giving a distance score Di, 

i=1,2, ... ,29. The decision rule. orders the distance scores and provides 

a best candidate based on either NN or KNN decision rules. 

After recognition of the first syllable, the following syllables (if 

they exist) are searched among the target groups defined in Table 4.2, 

according to Turkish vowel harmony. This extra information excellently 

improves the system speed during the recognition of polysyllabic words. 

4.3.1 DYNAMIC TIME WARPING 

It is well known thatspea-king rate variation causes nonlinear 
... 

fluctuation in a speech pattern time axis. Elimination of this 

fluctuation, or time-normalization, has been one of the central problems 

in spoken word recognition research. At an early stage, some linear 

normalization techniques were examined, in which timing differences 

between speech patterns were eliminated by linear transformation of the 

time ·axis. 
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Dynamic time warping is a pattern matching algorithm with a 

nonlinear time normalization effect and is originally proposed by Sakoe 

and Chiba [4]. In this algorithm, time axis fluctuation is approximately 

modelled with a nonlinear warping function of some carefully specified 

properties. Timing differences between two speech patterns are 

eliminated by warping the time axis of one so that the maximum 

coincidence is attained with the other. Then, the time-normalized 

distance is calculated as the minimized residual distance between them. 

This minimization process is very efficiently carried out by use of the 

dynamic programming technique. The basic idea of DTW has been reported 

in several publications [4], [10], [23]. 

Speech can be expressed by appropriate feature. extraction as a 

sequence of vectors 

A = a" a2, ... , ai., ... , ax 
B = b" b2, ••• , b.;, ••• , b~T 

as we have seen 'before. The timing differences of these two sets are 

plotted _on an i-j plane, shown in Fig. 4.12, as a sequence of points 

. c=(1,j); 

F = c(1),c(2), •.• ,c(k), •.. ,c(K), 

where 

.c(-k) = (iGr),j(k». 

This sequence can be considered to represent a function which 

approximately maps the time axis of the test pattern onto that of the 

reference pattern. It is also called the warping function. When there is 
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no timing difference between these two patterns, the warping function 

coincides with the diagonal line j = i. It deviates further from the 

diagonal line as the timing difference grows. 

j 
I 
I 

bJ 1-----------------------------------------I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

bJ 1-

I 
I I __ ( 

I (-' 
bz I _-' 

Adjustement Vindo~ 

j=i-r 

__ II 
-' I 

I 
I 
I 
I 
I 

Ck = CI,J) 

b, I I Cl = (1,1) . 

----------------------- -----------------------------------------------1 

Figure 4.12 Warping function and adjustment window definition. 

As a measure of the difference between two feature vectors ai and 

bJ. a distance 

d(c) = d(i,j) = II ai - bj II 

is defined between them. Then the weighted summation of distances on 



warping function is found as 
t 

,K 
E(F) = L: d (c (k». w(k) 

k=/ 
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where w(k) is a nonnegative weighting coefficient, which is used for the, 

optimality of the warping function F. It attains its minimum value when 

warping function F is determined so as to optimally adjust the timing 

differences. This Einimum residual distance value can be considered to 

be a normalized distance between the two patterns : 

DCT, R) = Kin 
F 

K 
L: d (c (k» . w(k) 

1 k=/ 1 
1----------------------------1 
1 K 1 
1 L: w(k) 1 
1 A'=/ 1 

, 
where the denominator is used for compensating the' effect of using K 

points on the warping function. 

The above definition is nothing more than a fundamental definition 

of time-normalized distance. Effective characteristics of this measure 

greatly depend on the warping function specification and the' weighting 

coefficient definition. Desirable charact~ristics of the time normalized 

distance measure will vary according to speech pattern properties to be 

dealt with. 

Varping function F is a model of time axis fluctuation in a speech 

pattern. Accordingly, it should approximate the properties of actual 

time-axis, fluctuation. In other words, the warping function must 

" ..... 
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preserve linguistically essential structures of the pattern A time axis 

and vice versa. Essential speech pattern time-axis structures are 

continuity, monotonicity, limi tation on the" acoustic parameter 

transition speed in speech, and so on. These conditions can be realized 

as the following restrictions on warping function F. 

1) Monotonic conditions: 

i (k-1) ~ i (k) and j (k-1) ~ j (k). 

2) Continuity conditions: 

i (k) - i (k-1) ~ 1 and j (k) - j (k-1) ~ 1. 

As a result of these two restrictions, the following relation holds 

between two consequtive points. 

c(k-1) = 1 
Dr 

(i (k) , j (k) - 1), 

(i (k) - 1 , j (k) - 1), 

(i (k) - 1 , j (k». 

3) Boundary conditions: 

i (1) = 1, j (1) = 1, and 

i (K) = I, j (K) = J. 

4) Adjustment window condition (see Fig. 4.12) 

i (k) - j (k) I ~ r 

( 

where r is an appropriate posi ti ve integer called window length. This 

condi tion corresponds to the fact that time-axis fluctuation in usual 

cases never causes a too excessive timing difference. 
" 
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5) Slope constraint condition: 

Nei ther too step nor too gentle a .sradient should be allowed for 

warping function F, because such deviations may cause undesirable time­

axis warping. Therefore, a restriction called a slope constraint was set 

upon the warping function, so that its first derivative is of discrete 

form. The slope constraint condition is realized as a restriction on the 

possible relation among several consecutive points on the warping 

function as shown in Fig. 4.13. 

n - Hmes 

I - tiles 
n - times 

I - tilles 

(a) Minimum slope (b) Maximul slope 

Figure 4.13 Slope constraint on warping function. (After Sakoe [4].) 

In other words, if point c(k) moves forward in the direction of i­

axis (or j-axis) consecutive m times, then point c(k) is not allowed to 

step further in the same direction before stepping at least n times in 

the diagonal direction. The effective intensity of the slope constraint 
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is expressed as follows 

P=n/JIl 

The larger the P :measure, the more rigidly the warping function slope is 

restricted. When p = 0, there are no restrictions on the warping 

function slope. When p = (1J (that is, JIl = 0), the warping function is 

restricted to the diagonal line j = i. This means no time normalization. 

Generally speaking, if the slope constraint is too severe, then the time 

normalization would not work effectively. If the slope constraint is too 

loose, then discrimination between speech patterns in different 

catagories is degraded. Thus, setting neither a too large nor a too 

small value forp is desirable. 

Since the expression for the total normalized distance is a rational 

function, its minimization is an unwield1y problem. If the denominator 

is independent of warping function, it can be put out of the bracket, 

and the equation becomes: 

1 K I 
D(T,R)= min L: d(c(k». w(k) I 

N F k=1 I 

where N 1s given as 

K 
. N = L: w(k). 

k=1 

This simplified problem can be effectively solved by use of the dynamic 

programming technique. There are two typical weighting coefficient 

definitions which enable this simplification. They are as follows: 
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1) Symmetric form: 

'. 

w(k) = (i(k) - i(k-l» + (j(k) - j(k-l», 

N = I + J, 

where I and J are lengths of speech patterns A and B, respectively. 

2) Asymmetric form: 

w(k) = (i (k) - i (k-l», 

N = I. 

(Or equivalently, w(k) = (j(k) - j(k-l», then N= J.) 

Time normalized distance is symmetric, or D(T,R) = D(R, T), in the 

symmetric form and not ~ymmetric, or D(T,R) ~ D(R,T), in the asymmetric 

form. Weighting coefficients for both symmetric and asymmetric forms are 

given in the Fig. 4.14. 

C(H) ij = 1 C(k) W = 1 

W = 1 ~ = 0 

f C(k-l) 

(a) Symle~ric fora (b) ASY;Be~ric fori 

Fi 4 14 t.Teighting coefficient w(k) for both svmmPtric and gure. W J--

asymmetric forms. (After Sakoe and Chiba [4]) 



4.3.1.1 The Dynamic Time Warping Algorithm used in this study 

The basic algorithm of DTW can be written as follows: 

Initial condition: 

gl (cO» = d(c(1». w(1). 

" 
Dynamic Programming equation 

gk(c(k» = min [gk-l (c(k-1» + d(c(k».w(k)J. 
e(t-/} 

Time-normalized distance: 

1 
D(A,B) = --- gk (c(k»; 

N . 
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It is simply assumed here that c(O) = (0,0). Accordingly, wO) = 2 in 

the symmetric form, and wO) = 1 in the asymmetric form. By realizing 

the previously described restrictions on the warping function and 
, 

substituting the weighting symmetric and asymmetric coefficients w(k) in 

the formula given above, several practical algorithms have been derived. 

As one of the simplest examples, the algorithm of the symmetric form, in 

which no slope constraint is employed (i.e., P = 0) is shown below. 

Initial condition: 

gO,1) = 2 d (1,1). 

Dynamic Programming equation 

g(i,j-1) + d(i,j) 
g(i,j) = min gCi-l,j-1) + 2 dCi,j)1 

gCi-l,j) + dU,j) I 



Restricting condition (adjustment window): 

j-r~i~j+r. 

Time-normalized distance: 

1 
D(A, B) = g<I,J>, where N = I + J 

N 
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Dynamic Programming (DP) equation or g (i, j) must be recurrently 

calculated in ascending order with respect to the coordinates i and j, 

starting from initial condition at (1,1) up to <I,J>. The domain in 

which the DP-equation must be calculated is specified by 

1 ~ i ~ I , 1 ~ j ~ J, 

and 

j - r ~ i ~ j + r (adjustment window) 

The algorithm used for calculating the time normalized distance is 

shown in Fig. 4.15 in a flowchart. The algorithm, especially the DP­

equation should be modified when the asymmetric form is adopted or some 

slope constraint is used. 

Previous studies on DTY, by Myers [23], have shown that, for the 

opt~mal DTY algorithm, both the reference and the test patterns are 

linearly warped ,to a fixed standard length prior to DTY alignment. By 

performing linear warping, possible path region is maximized and the 

best chance of matching' the two patterns is ensured by the DTY 

algorithm. For that reason, in order to improve the recognition 

performance, the algorithm used in this thesis performs linear warping 

before DTW as mentioned previously. 



· i=1 J=I 
INITIAL tONDITION 
g(I,I) = 2 d(I,I) 

i = i + I 

I g(l,i-I) + d(i,j) 
g(i,j) = ein I g(i-i,j-I) + 2 d(i,j) I 

I g(i-!,j) + d<i,j) . I 

j = j + I 

Figure 4.15 Flowchart of theDTW algorithm. 
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i = j - r 

Also two recognition features that serve to reduce computation, and 

increase· the flexibility of the system have been appended to the 

algorithm. The first, called the rejection threshold, is a curve of 

accumulated distance which bounds the DTY search. Thus, if the minimum 

accumulated distance DA (n) at frame n exceeds the threshold T(n), then 

the DTW search is terminated and the reference template is given an. 
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infinite distance. As shown in Fig 4.17, T(n) is generally of the form 

T(n) = Tm~n + (n - 1) Tslope 

where Tmin and Tslope are parameters of the distance function. 

The second extra recognition feature is the backup frame labeled Rev 

in Fig. 4.16. This is essentially an alternative word ending frame based 

on the assumption that a breath noise is made at the end of the word and 

included within the word interval. The backup frame is calculated 

directly from the word energy contour, and is used as an early stopping 

frame in the DTW algorithm. 

ACCUMULATED DISTANCE 

T .. in 

-------------------------------------------------------.-----------------------

REJECTION 
THRESHOLD 

o ----------------------------------------------------~~---------------N::-----NEND 
FRAME NUMBER 

Figure 4.16 Plot of accumulated distances, rejection threshold and the 

backup frame. 
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4.3.2 DISTANCE MEASURES FOR WORD RECOGNITION 

In order to implement dynamic time warping, the concept of distance 

between frames of templates must be defined. As' we have seen in the 

previous chapter, a distance measure d(x,y) between two frames of speech 

data x and y should satisfy at least the following properties. 

1) d(x, y) = d (y, x) , symmetry 

2)d(x,y) > 0 for x ~ y ,positive definitness 

d(x,x) = 0 

3) d (x, y) should have a meaningful interpre,tation in the frequency 

do:main. 

4) It should be possible to efi'iciently evaluate d(x,y). 

However, there also exist some distance measures which do not 

satisfy the first two criteria. For that reason they are called "pattern 

similari ty measures" instead of "distance measures". During the study 

both type of measures have been used and tested. These are: 

4.3.2.1 LPC Likelihood Ratios 

If a sample- x(n) is estimated by a linear combination of the 

preceding Ksamples, the residual or predictor error can be expressed in 

the form 

If 
e(n) =:E a;L x(n-i). 

i=O 

With ao = 1, the total squared error or residual energy is given by 

I1J 

a = :E [ e (n)] :z. 

n=-11J 

, "'-.:, 
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In the autocorrelation method, the data sequence {x(n)} is truncated 

so that x(n) = 0 for n < 0 and n > N. - 1. The coefficients {ail are 

chosen to minimize ~ The error a can be considered to be the output of 

an inverse filter A(z) where 

If 
A (z) = 1 +:I: ai. z-:1 

i=/ 

is the filter that minimizes a. Physically, 1 / A (z) corresponds to a 

smoothed spectral representation of the data sequence {x(n)}. If {x(n)} 

is passed through adi-fferent- : inverse filter A' (z) of the for111 

If 
A'(z) =:I: a'i. Z-1 

i=(J 

which minimizes the energy a' for some other data sequence {x' (n)} , with 

a' 0 = 1, then the total-squared error or residual energy, {), must be 

greater than the minimum residual error, . 

ID H 
o = :I: :I: a 1:1. x(n - 1) ].2 I a 

n=-ID i=(J 

with equality holding ii-and only ir A(z) = ~'(z). 

The possibilities for comparing the filters A (z) and A' (z) in terms . 

of the residual energies are illustrated in Fig. 4.17. If {x(n)}, 

defined as a test template, is passed through a reference filter A' (z), 

a residual energy, 0, is obtained as shown in Fig. 4.17(a). The minimum 

residual energy, a, using the same test sample occurs with the 

minimizing filter A(z) designed by the autocorrelation method as 



60 

indicated by Fig 4.17 (b). The ratio 0 / a then defines a difference 

between the test and reference data or tpeir spectra. Conversely, if the 

sequence {x' (n») is defined as the test template· and passed through a 

reference filter A (z), a residual energy 0' is obtained as indicated by 

Fig. 4.17(c). If a' represents the minimal residual energy, obtained 

with the minimizing A'(z) as indicated in Fig. 4.17(d), then the ratio 

0' / a' also defines a difference between the spectra .. In both cases the 

ratios 0 / a and 0' / a' are always greater than or equal to one, and 

can equal one if and only if the two fiI ters, A (z) and A' (z), are 

identical. The only. difference in the results depends upon which data 

sequence or spectral model is called the reference. and which is called 

the test. 

1 1 
x(n) -------------1 A'(z) 1------------ 8) q 
TEST 1 1 RESIDUAL ENERGY 

REFERENCE 
(a) 

1 I. 
x(n) -------------1 A (z) 1------------ a MINIMUM 
TEST 1 1 RESIDUAL ENERGY 

REFERE~ICE 
(b) 

1 1 
x'(n) -------------1 A (z) 1------------ 8' ) q' TEST 1 1 RESIDUAL ENERGY 

REFEREtlCE 
(c) 

j---------r 
x'(n) -------------1 A'(z) 1------------ ql MINIMUM 
TEST 1 1 ·RESIDUAL ENERGY 

REFERENCE 
(d) 

17 Possible combinations for reference and test data which Figure 4. 

gi v,e different residual energy. 
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The ratios 0 / a and 0' / a' are called likelihood ratios, since 

under certain assumptions on the data and analysis, where the data are 

assumed Gaussian and the analysis window is much greater than the 

inverse filter length, these ratios have been shown to be likelihood 

ratios [11]. The logarithms of these ratios are called log likelihood 

ratios. Evaluation of these ratios can be efficiently carried out 

through the use of autocorrelation sequences [11], [50]. Let {ra (n)} and 

{rx(n)} denote the autocorrelation sequence for the coefficients of the 

polynomial A(z) and the data {x(n)} , respectively. In a similar manner, 

{-ria (n)} and {r'x(n)} are defined as the autocorrelation sequences for 

the coefficients of A' (z) and the data sequence {x' (n)} , respectively. 

The minimal residual error, a, can then be computed from 

If 
a = 'E reA (n) rx(n) • 

n=-I/ 

The finite limits on the summation occur because ra(n) is zero for 

I nl > X. In addition, 

If 
o = ~ ria (n) rx (n). 

n=-!! 

The l~kelihood ratios 0 / a and 0' / a ' can be efficient~y computed by 

using the above two formula. But the likelihood ratios are asymmetric 

measures. For eliminating this disadvantage Gray and Markel [11] have 

defined a symmetric measure by averaging the two asymmetric likelihood 

ratios as follows 
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o / a + 0 1 / a l 

Q = ---------------- - 1 
2 

In order to relate Q to a decibel scale, they have defined ~ as 

cosh (~) - 1 = Q, 

or 

~ = ln [1 + Q + \/ Q (2 + Q) ] • 

The name of the new measure is "Cosh measure" and it is efficiently 

evaluated by Gray and Markel [11]. 

4.3.2.2 Other logarithmic distance measures 

During the studies, two other logarithmic distance measures, which 

have been originally proposed by Gupta and Bryan [7], have been used. 

These measures are of the form-

p p 
d(t,r) = log { :E :E Ii TIl. - kl - Tk I } 

k=1 i=1 

P P 
d (t, T) = log { :E [ :E Ii. TIl. - kl -n,]2} 

k=l i=l 

where the I} are the estimated linear predictor coefficients of the 

reference speech sample while Tk are the autocorrelation coefficients of 

the unknown speech sample. It should be clear that the distance measures 

are independent of energy in each window since 

autocorrelation coefficients (To = 1). 

Tk are normalized 
f-
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4.3.3 DECISION RULE 

The defini tions of the nearest-neighbour; <llN) and K-nearest­

neighbour(NN) decision rules have been given in chapter 3. The NN rule 

is a suboptimal procedure; however, it can be used with vocabularies 

which have small number of templates per syllable ratio. Because of the 

memory and time limitations of our system, most of the tests have been 

performed with one, two or three templates per syllable ratio. For that 

reason NN decision rule has been used and good results have been 

obtained. 

Also, while studying with· more than 2 templates per syllable, KNN 

rule with K = 2 or 3 has been used for deciding the best estimate of the 

word at the input. 

The performance of the two decision rules is greatly dependent upon 

the made of the tests: Speaker dependent or speaker independent. These 

results will be given in the next chapter. 

During the decision process, a rejection threshold is set and if the 

syllable with minimum distance has total normalized distance greater 

than this threshold, the recording at the input is rej ected for not 

being similar to any of the syllables of the vocabulary. This threshold 

is" very important and it adjusts . the tradeoffs between the 

"recognition", "rejection" and "error" rates. Usually, increasing this 

threshold causes an'increase in both recognition and error rates at the 

same time while the rejection rate decreases, and reducing this 

threshold causes a reduction in these two ratios while the rej ection 

rate- increases. 
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4.3.4 IMPROVMENTS IN THE RECOGNITION ALGORITHM 

In order to improve the memory -and time requirements of the 

recognition algorithm, a number of preprocessing steps have been applied 

prior to time alignment via dynamic programming. These are: 

1) Turkish vowel harmony rules have been used before choosing the 

searching space for the second and third syllables of the test word. 

After syllable segmentation and recognition of the first syllable, the 

group of the first syllable is detected by looking at Table 4.1. 

According to this group, target classes for the second and third 

syllables are found (if they exist) using Table 4.2 . Usually this new 

subspace of syllables consists of 30% of the whole vocabulary. This 

reduction directly effects the time requirements for the recognition of 

polysyllabic words. 

2) The templates which have more than 1. 4 times timing difference 

are not compared with each other and they are given i nfi ni te distance 

before dynamic time warping. This causes approximately 50% reduction in 

the required computations for pattern matching. 

3) A sequential decision procedure is used to reduce the computation 

time during dynamic time warping. After calculating distances for the 

first 6 windows, one half of the reference templates are rejected. These 

are the reference samples which give higher distances for the first 6 

windows. A similar decision is taken after the 12th window. This reduces 

the computation to about one half while it has practically no effect on 

the recognition rate. 

., '. 
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V. RESULTS 

The major goal of this work was to design and implement a speaker 

independent isolated word recognition system using the syllable as the 

recognition unit and using the Turkish prosodic information in order to 

improve the performance of the recognizer. In this chapter, the results 

and performances of different parts of the recognition system will be 

reviewed. 

5.1 THE VOCABULARY, SPEAKERS AND THE RECOGNITION ENVIRONMENT 

During the studies, the vocabulary listed in Table 5.1 has been 

used. The vocabulary consists of Turkish words formed of one, two or 

three syllables per word. The - average number of syllables per word is 

~.94. Total number of syllables is 29 and the vocabulary has 19 Turkish 

word consisting of these syllables. The vocabulary may be enlarged much 

further using different combinations of these syllables or by adding a 

£ew different syllables. 

Each word in the vocabulary has been uttered 6 times by two female 

and two male speakers. The speech samples were taken on PDP ·11/23 

microcomputer interfaced to an analog circuitry. Analog circuitry 

consists of a normal telephone microphone which is followed by an 

amplifier and a lowpass filter which has cutoff frequency at 3.5 kHz. By 

using this analog circuitry telephone quality speech was tried to be 

simuiated. The samples were taken in the computing room with the 



BiR 
iKi 
Uc 
ODRT 
BE~ 
ALTI 
YEol 
SEKtZ 
OOKUZ 
SIFIR 

BA$LA 
SIRALA 
,YENtOEN 
GtRol 
GET1R 
CIKTI 
SAKLA 
BIRLESTlR 
CEvlR 

Table 5.1 The vocabulary used during the studies. 
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inherent high noise level. The sampling is started manually and 

terminates when 2 seconds of speech is sampled. The sampling frequency 

is 8 kHz. The samples . are stored on floppy diskettes and later 

classified by the PDP 11/23. Total of 960 seconds of' speech has been 

analyzed during the study. 

5.2 USING SYLLABLE AS A UNIT OF RECOGNITION 

There are several alternatives for a recognition unit: phoneme, 

allophone, diphone. syl1.able and word. All of these have been used as 

units in different recognition systems, but none of them has proved 

ideal. In fact, all have their advantages -and 'disadvantages, and a 

recognition system may use a combination of these units. The advantages 

and disadvantages of these units have been studied in [55]. 

In this system, the recognition unit was the syllable. The syllable, 

being halfway between the phoneme and word, has advantages of both to a 

degree. It is indeed the only unit which is easy to detect in continuous 

speech, and one in which the context dependence is somewhat eliminated. 
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One additional advatitage of using syllaqle is its being a prosodic unit; 

it is the smallest unit that prosodic fe~tures are carried on. Stressed 

syllables are of great importance as mentioned in [55]. The lIIain 

drawback to using the syllable has been its being a unit not uniquely 

defined in English, but in Turkish syllable is a more basic unit and 

many rules of the Turkish language act upon the syllable as a whole. For 

example, in this study, by using Turkish vowel harmony rules, 30% of 

reduction in-the memory requirements, and 30% of reduction in the 

computation time have been obtained. Details of these reductions will be 

given in section 5.7 (Results of DTW). 

A possible advantage is that the. syllable inventory can become very 

small corresponding to that of words. To give an idea on the size of the 

syllable inventory, some results of a study on the count of units in a 

Turkish text [15] will be given. The text consists. of 22,216 words 

(58,992 syllables). In this text, the number of different syllables was 

found to be 1506. The frequency of occurance of these syllables such 

that a small number of them (60) formed about half of the text. This 

means that syllable based vocabularies can be easily enlarged by adding 

a small number of new syllables. 

One disadvantage of using the syllable in recognition has been the 
.,. 

lack of methods to detect the syllable boundaries, namely, syllable 

segmentation. A method has been developed in this study and the results 

will be given in the next section. 
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5. 3 SYLLABLE ENDPOINT DETECTION 

5% of the recordings have been rejected because 

1) No significant energy pulses has been detected 

2) High energy levels have been detected at the boundaries of the 

recording interval (i.e. the sampling has begun or ended at an 

intermediate point of the word). 

The syllable endpoint detection algorithm has located -90% of the 

syllables correctly and missed the endpoints of 10% of the syllables. 

But no false detection of syllable endpoints has occured. All of the 

missing cases have occured while working with polysyllabic words. The 

algori thm has failed in cases of all voiced sounds', where all the 

consonants were voiced, and no discontinuity in voicing was detected as 

in the word "s irala" shown in Fig. 5.1. 

5.4 FEATURE SETS 

Some parameters! such as intensity, voicing and pitch parameters and 

duration have also been used during the study but the reference 

templates have consisted of the coefficients of- the 10t.h order linear 

predic~ive coder. At the beginning 8t.h, 12t.h and 14t.h order LPC filters 

have been. tested. No significant difference of recognition 'performance 

has been detected for the filter orders 10, 12 and 14, but 8t.h order 

filter has given worse performance than the others. For that reason the 

p=10, which requires the minimum memory and computation efforts, was 

chosen as the filter order. 
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In order to calculate some of the distances defined in section 

4.3.2, autocorrelation coefficients of 'the samples of the reference 

templates are required. During the tests with these distance measures, 

the corresponding first 10 autocorrelation coefficients have been stored 

as the feature vectors of each frame. The recognition performances 

versus the order of the LPC filter is given in Fig. 5.2. 

( 

~ RECOGNITION I • : 2 Templates I syllable 
PERFORMANCE I 

I • : 1 Template I syllabl& 
I 
I 

90 I 
I 

85: ~ 
SOl ~ 

I 
75 I­

I 
70 I 

I 
65 I 

I 
I 
1 
---------------1--------------1--------------1--------------1----------

8 10 12 14 LPC FILTER 
ORDER 

F ' 5 2 Recognition performances versus LPC filter orders. 19u.re . 
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5.5 CLASIFICATION ACCORDING TO TURKISH VOWEL HARMONY 

The clasification procedure and the advantages of using Turkish 

vowel harmony have been described in the previous sections, but, the 

improvments in the recognition procedure are related to the syllabic 

structure of the vocabulary, especially for small vocabularies. The 

vocabulary consists of 19 words (37 syllables). The number of different 
\ 

syllables is 29. This means that the reduction in the required memory is 

27.6%, but this is not a general result and it depends on the syllabic 

structure of the vocabulary. 

For the vocabulary, 'the average number of syllables per word is 

1. 94. The syllable inventory is divided into 8 different sections as 

shown in Table 4.1. After finding the first syllable, the following 

syllables are found among the target groups defined by Table 4.2. If the 

average number of syllables is taken as 2, for the first syllable the 

searching area t"s the whole syllable inventory, and for the second 

syllable the searching area is a quarter of the syllable inventory. This 

means again average 35% of reduction in the computation efforts and this 

reducuction is caused only by Turkish vowel harmony. Another advantage 

gained by using this classification procedure is the elimination of 

impossible combination of syllables before the comparison procedure and 

preventing recognition errors.. These results support our previous 

hyphothesis that Turkish languag~ has a set of rules which directly acts 

upon the syllables and they can be used easily for improving the 

performance of the recognizer. 
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5.6 CLUSTERING OF THE REFERENCE TEMPLATES 

. 
Each word in the vocabulary has been uttered 6 times by 4 dif£erent 

speakers. Before preparing the reference templates' for these words. the 

24 different recordings have been clustered as described in section 4.2. 

The results of the tests have pointed out that clustering is a crucial 

step especially for speaker independent recognition systems. For speaker 

dependent tests. one reference template per word and no clustering has 

given comparable performance to the tests with more than 

1 RECOGNITION 1 
PERFORMANCE 1 

1 
I 
1 

* : Speaker dependent 
• : Speaker independent CKNN, K=2) 
o : Speaker independent CNN) 

95V 
90: 
85 . 

1 
80 1 

1 
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I 
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1 

55 1 
1 

50 
1 _______________ 1 ______________ 1 ______________ 1 ________ ------1--------------1 

2 3 4 5 6 
NUMBER OF TEMPLATES PER SYLLABLE 

Fi 5 3 ·Syste,m performance versus the number of templates per word. gure . 
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one clustered templates used. The reduction 'in the recognition rate is 

no more than 10%. But for speaker independent cases the recognition rate 

of the system reduces to 50%, while the performance of the system using 

clustered templates approaches 90%. Fig. 5.3 shows performances of the 

system corresponding to the number of templates per word. 

It is clear from the figure that the recognition performance 

increases as the number of. templates per word increases. The improvment 

is more sharp between 1 to 4 templates per word, and then the improvment 

corresponding to the increase in the number of templates per word 

reduces, but still .. is important. Maximum recognition rate has been 

obtained using 6 templates per word. The tests with higher templates per 

word ratios· could not be performed because of the time and memory 

limi tations of the system used during the study. Details of these 

requirements will be given in the following sections. Because of the 

time limitations of the system the templates per word ratio has been 

chosen as 4 and most of the tests have been performed with these ratio. 

The plots in Fig. 5.3 have been drawn using only 2 of the speakers and 

only 10 digits of the vocabulary. During the speaker independent tests, 

the reference templates have been prepared using the recordings of one 

male speaker and one female speaker, and the test templates have been 

uttered by the other two speakers, one male and one female. While the 

templates per word ratio was 2, the groups constructed by the clustering 

algori thm have usually corresponded to male and female speakers. The 

maximum number of templates used for each word in this study is 6 but 

previous studies ['7], [13] have shown that for reliable speaker 

independent ~ord recognition 10 - 12 templates per word is required. 
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5.7 DYNAMIC TIRE WARPING 

Time registration of the test and reference patterns have been 

performed using dynamic time warping <DTW). Previous studies [71, [28] 

have shown that DTW is a very efficient way of comparing two speech 

patterns especially for speaker independent systems. It has been 

observed during the tests that the duration of the same word has varied 

in different articulations of the same speaker and from speaker to 

speaker. Table 5.2 shows the durations of different utterances of the 

same word for different speakers. Duration statistics of the vocabulary 

have shown that the duration of the same word may vary 40% from the mean 

UTTERANCE DURATIONS (unit: 12,5 msec frame) 
------------------------------------------------------------------~----------

1 UTTERED 1 FEMALE-I 1 FEMALE-l 1 FEMALE-I 1 FEMALE-2 1 MALE-I 1 MALE-2 1 
1 DIGIT 1 SHORTEST 1 LONGEST 1 AVERAGE 1 AVERAGE 1 AVERAGE 1 AVERAGE 1 

1 B1R 1 35 1 40 I· 37 1 44 1 41 ·1 40 1 
I---------I-----~----I----------I----------I----------1----------1----------1 
1 lKl 1 43- 1 51 1 47 1 48 1 43 1 45 1 
I---------I----~--~--I----------I----------I----------1----------1----------1 
1 lie I' 42 1 47 1 43 1 46 1 42 1 41 1 
1---------1----------1----------1----------1----------1----------1----------1 
1 DORT 1 39 1 46 1 41 1 49 1 38 1 40 . 1 
1---------1----------1----------1----------1----------1----------1----------
1 BES 1 39 1 43 1 40 1 43 1 37 1 39 
1---------1----------1----------1----------1----------1----------1----------
1 ALTI 1 50 1 57 1 52 1 55 1 56 1 52 
1---------1----------1----------1----------1----------1----------1----------

,. 1 YEDl 1 42 1 47 1 44 1 48 1 54 1 48 
1---------1----------1----------1----------1----------1----------1----------
1 SEKfZ 1 37 1 46 1 40 r 53 1 41 1 46 

1 1 1 - --1----------1----------1----------1--------- ---------- ---------- ------ -
1 DOKUZ 1 37 1 SO 1 47 1 49 1 50 1 47 
1---------1----------1----------1----------1----------1----------1----------
1 SIFIR 1 39 1 46 1 42 1 54 1 43 1 43 
1---------------------------------------------------------------------------

Table 5.2 Durations of the digits uttered by different speakers 
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value. For this reason the pattern comparison algorithm disregards the 

reference templates that exceed this limit. It can be easily seen that 

the time duration threshold improves the computation time requirements 

of the system, because the system does not spend time for calculating 

the distances between patterns which exceeds this limit. The duration 

difference threshold has caused 50% decrease in the computation efforts. 

The results of the study performed by Sakoe and Chiba [4 have shown 

that symmetric DTW gives better performance than asymmetric DTW and the 

optimum slope constraint for the slope of the algorithm is 1.For that 

reason these values have been used in the algorithm as the parameters. 

Another study by Mayers [23] has shown that if the test and 
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* * * + * * • · · · · · * * * * · · · · · * * * * 
* * * * · · · · · * * * * 

* * * * . · , · i * * * * * * * * · . · · i * * * * * * * , · , , 

* 
* * * 

* * * * . . , , 

* 
* * * 

* * * * , , , , , * * * 
* * * * , , , , , * * * * 

* * * * , , , . . * * * * * * * * · · . • 

* 
* * * * 

* * * * · · · . i * * * 
* * + 

* * * * · · · • i • 
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The relation between the number of distance calculation Figure 5.4 

points used by DTW algorithm and the window length p. 
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reference patterns are linearly warped to a fixed length before DTV, the 

performance of the algorithm improves. As mentioned before, all of the 

syllable patterns in this study have been linearly warped to 25 frames 

before DTV. Sakoe and Chiba have found the optimum window length (p) as 

6. But choosing p=6 means lots of distance computation for each of the 

points shown in Fig. 5.4. 

The tests with various window lengths have shown that if the two of 

the compared templates are linearly warped to the same length before 

DTY, the window length p can be chosen as 2. Choosing the window length 

as 2 has not caused any significant drop in the recognition rate of the 

system. The number of required distance points is 301 when the window 

length is 6 and 141 when the window length is 2. This means 54~ 

reduction in the number of required distance computations and that much 

of reduction in the required computation time. 

Another advantage of using syllable as the recognition unit is its 

being shorter than or equal to the words in length. If the recognition 

unit is the word the prewarping length must be 50 for being comparable 

to the average lengths of the words, but for syllables this length is 

25. The average syllable per word ratio of the vocabulary is about 2. 

This means that as an average, words are compared with reference 

templates in two steps. Fig. 5.5 shows the required computation points 

when using word and syllable as the unit. The average number of required 

computation points when using word as the unit is 651 for window length 

p=6 and 291 for p=2. 

The average number of computation points when using syllable as the unit 

is 602 for ,p=6 and 282 for p=2. These numbers correspond to 8~ 
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improvment for p=6 and 3% improvment for p=2 in the computation 

requirements. 

Another useful conception is the rejection threshold. The rejection 

threshold was used for giving infinite distance to the reference 

templates which have . passed the threshold before DTW algorithm has 

found the total normalized distance. 30% of the reference templates have 

passed this threshold before the middle of the syllable and 15% of the 

syllables have passed this threshold after passing the middle of the 

syllable. This corresponds to average 30% savings in the computation 

efforts. 

NUMBER OF FRAMES 50 -----------------------------------------------------~-------, 
I 
I 
I 
I 
I 

Savings due to I I 
using sJllables I I 

I 
I 
I 
I 

25 1------------------ --------------------1 
I I 
I I 
II 

I I 
I Savings due to I 
I using syllables I 

I 
I 
I 
I 
I .1 .1.-__ ~ ___________________________________________________ _ 

25 50 

Figure 5.5 Distance calculation points for word based and syllable 

based comparison. 
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The improvments in the computation efforts required for dynamic time 

warping are summarized in Table 5.3. It can be seen from the table that 

the total savings in the computation efforts is 80%, or in other words, 

the pattern comparison process is performed 5 times faster. 

Some distance and similarity measures used during pattern comparison 

have been mentioned in the previous chapters. .Obviously, the Euclid 

distance measure has given the worst performance, because this measure 

can not differentiate between the negative and positive errors and does 

not have any spectral meaning, but the performance obtained with this 

distance measure was. comparable with that of the others. The remaining 

four distance measures have given almost equal performance, but they 

have different computation requirements. The method used for calculating 

the maximum likelihood ratios requires the autocorrelations of the LPC' 

coefficients of reference templates and the autocorrelations of the test 

templates. For that reason this measure increases the computation 

efforts during the training. mode and decreases the computation efforts 

of the test or recognition mode. In practice the training mode does not 

have any time constraints, but the recognition mode does. This phonemena 

makes the distance measure very effective in speech recognition. The 

other two spectral distance measures have also good performances, but 

they .require more computation than the likelihood ratios during the 

recogni tion mode. Another result obtained during the tests is that 

symmetric distance measures give better results than the asymmetric 

ones. Usually, making a distance mea~ure symmetric causes an increase in 

the computation efforts but improves the performance of the system. 



40% duration difference threshold 
Windo~ length (p = 2) . 
Using syllable as recognition unit 
Rejection threshold 
Vowel harmony rules 

Total average saving 

50% 
54% 
3% - 8% 
30% 
35% 

80% *' 
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*' : If the individual savings are summed for finding the total savings, a percentage 
greater than 100~ will be found, but some of the savings overlap and make the total 
average saving eo~, 

• 
Table 5.3 Savings in the computational efforts for DTW. 

5.8 DECISION RULE 

The decision rules NN and KNN have been discussed in the decision 

rule section of the system. For Kequals 1 the KNN rule reduces to NN 

rule. The uppe~ curve in Fig: 5.6 shows the performance of the system 

for different values of K as a function of the number of templates per 

syllable for speaker dependent recognition. The results of the tests 

show that NN rule has almost equal performance with KNN rule. and may be 
. . 

used for speaker dependent recognition, because it is simpler and easier 

to calculate than the KNN rule. However, NN rule has shown slightly 

worse performance for speaker dependent r·ecognition. As can be seen from 

the lower· curve in Fig. 5.6, KNN rule with K=2 or K=3 has shown better 

performance for the speaker independent recognition. 
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Figure 5.6 Recognition accuracy as .a function of several parameters. 

5.9 REAL-TIME AND MEMORY REQUIREMENTS 

.The user accessible memory of the system is less than 20 KByte. The 

sampling frequency of the system is 8 KHz. This means that the longest 

segment of speech that can be stored each time can be 2 sec. For that 

reason, the words in the vocabulary have been uttered in time intervals 

of that length. The 19 words in the vocabulary have been uttered 6 times 
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by 4 different speakers. This way, 456 sampled recordings each 2 seconds 

long have been obtained. Each sample had 12 bits and was represented by 

two bytes of memory. This implies that the total memory required for all 

of the utterances is 14.5 HBytes of secondary memory. The secondary 

memories used during the tests were the floopy diskettes. 

The syllables are linearly warped to form 25 frames and each frame 

is modelled by a 10-pole LPC filter. This means 250 coefficients are 

required for each reference template. If the number of templates per 

syllable is one, then the required memory for 29 syllables is 14.5 

KBytes, but for speaker independent recognition usually two or more 

templates per syllable have been used. This implies that all of the 

reference templates have not been placed in the memory at the same time 

but they have been stored in the files and read from these files during 

recogni tion. This reading process was the most time consuming part of 

the algorithm and increased the time required for one syllable 4 or 5 

times. The remaining parts of the algorithm have also required 2 KBytes 

of RAIl{. 

The time required for recognizing a word increases depending on the 

number of syllables included by the word, but this relationship is not 

linear. The second and third syllables increase the recognition time by 

30%, because of the reduction in the target space of that syllables. 

Monosyllabic words require about 60 seconds for the creation of the test 

template and about 120 seconds for the comparison with the reference 

templates. Or in other words, a monosyllabic word can be recognized in 3 

minutes, a two-syllable word can be recognized in 4 minutes, and a 

three-syllable word can be recognized in 5.5 minutes. 
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5.10 RECOGNITION PERFORMANCE AND CONFUSION TABLES 

In the previous sections of this chapter, it is shown that the 

recognition performance depends on various parameters and varies between 
) 

50~ and 98%. The maximum achieved performance for speaker dependent 

recognition is 98~. This value is 90% for. speaker independent 

recognition. The minimum performance attained is 85~ for speaker 

dependent recognition and 50~ for speaker independent recognition. Table 

5.4 summarizes the system performance for various parameters. The 

recognition performance strongly depends on the words 

formingthe vocabulary and the speakers who have uttered these words. For 

example, one of the male speakers (male-2) alone has caused the system 

performance to drop 5% - 10% • This is because his pitch period differs 

very much from that of the other talkers. This variation caused errors 

in syllable seg~ntation and gross errors in recognition. 

Recognition Rejection Error 
----------- ---------

Speaker dependent (1 Template/syllable) 85 5 10 
Spe~ker dependent (2 Templates/syllable) 95 4 1 
Speaker independent (1 Template/syllable) 50 30 20 
Speaker independent (2 Templates/syllable) 65 25 10 
Speaker independent (4 Templates/syllable) 85 10 5 

( KNN, K=2 ) 

Speaker independent (4 Templates/syllable) 95 4 
( KNN, K=2 : ~ithout ) 
( Rspeaker male-2 R ) 

Table 5.4 Perce,ntage system performance for various parameters. 
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BiR f Kf fie DORT BES AL TI YE Df 5E KfZ DO KUZ 51 FIR BAS LA RA Nf DEN SfR SE TfR elK 5AK LES eE VfR REJECT 
INPUT --- -- -- -- ---- --- -- -- -- -- -- --- -- --- -- --- --- -- -- -- --- --- -- --- --- --- ---. -- --- ------
BiR : 20' 1 3 
1 : 21 2 1 
Ki : 1 21 2 
fie: 22 2 
DaRT: 21 3 
BES 19 2 2 
AL 21 2 1 
Tl 19 2 2 
YE 20 3 
Of 20 2 
5E 19 3 
KfZ 18 2 3 
DO 22 2 
M n 1 
51 19 2 2 
FIR 21 3 
BAS 21 2 
LA 20 2 2 
AA 1 W 3 
Ni 2 19 2 
DEN : 22 1 
SfR : 2 19 2 
E : ~ 2 
TfR : 1 18 3 
elK 21 2 
W n 1 
LE~ 2 20 2 
eE : 19 2 
ViR : 1 19 3 

Table 5.5 Confusion Table (TOTAL TOKENS I SYLLABLE: 24 ) 

'" 
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VI. CONCLUSION 

In this study, algori thms have been developed for speaker 

independent, isolated word recognition. The prosodic structures of 

Turkish have been investigated for use in speech recognition systems and 

some of the ideas have been realized in an isolated speech recognition 

syst~m. The basic conclusions drawn in each step of the analysis can be 

summarized as follows. 

Syllable is a very suitable unit for automatic recognition of 

Turkish. It causes great reductions in the computation efforts and 

memory requirements during the recognition of polysyllabic Turkish 

words. 

LPC coefficients form a very suitable feature set. 8~h, lO~h or 12~h 

order LPC filters give good results for isolated word recognition. 

Some of the prosodic structures of Turkish, namely, duration and 

vowel harmony can be used in automatic speech recognition of Turkish in 

the following ways: 

-Duration of a syllable changes very little from an expected 

duration. This property can be used for reducing the computation efforts 

in word matching. 

-Vowel" harmony can be used to group syllables. Hatching and 

verification can be made within these groups. This reduces the 

computation time substantially. 

KNN decision rule gives good results for the speaker independent 

isolated word recognition. 
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6.1. SUGGESTIONS FOR FURTHER WORK 

Finding the endpoints of the syllables is one of the most difficult 

parts of the algor! thm; The method suggested for finding the endpoints 

can be modified in order to use in a connected speech--1-ecogni tion 

system. 

The performance of the syllable segmentation method may be improved 

if smaller segments of analysis are used. Nore complicated algorithms 

may also be used to deal with those phenomena ,using the information on 

the energy waveform only. ' 

The system realized in the laboratory depends on a ,microcomputer. If 

the system can be realized on a microprocessor card supported by a 

signal processor <e.g. TMS32010), one can establish a real-time system 

with the methods described in this thesis. 
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