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DECENTRALIZED  STABILIZATION WITH CONTROLLER CONSTRAINTS:
STRONG AND RELIABLE STABILIZATION
ABSTRACT
In this thesis we study two problems in decentralized

stabilization. The first is the . strong decentralized

stabilization problem, which can be stated as follows. Given

a plant Z, does there exist a block-diagonal stab}e

compensator C that internally stabilizes Z? The second is

the reliable decéntraiized stabilization problem. Given a

plant Z, does there exist a ,block—diagona; internally

stabilizing compensator C that maintains its stabilizing
property in case of interconnection failures in the plant? We

show that for two-channel systems the two problems are

equivalent in the following sense. The problem of reliable

decentralized stabilizatioh for a given plant is solvable if
and only if the problem of strong decentralized stabilization
for another plant (defined explicitly in terms of the

original plant) is solvable. 3

Using this méin result, we show that:
i) For a two-input-two-output plant with all of its zeros
stable, the strong decentralized stabilization pfoblem ig
solvable. '
ii) For a two—input—two—outpu£ plant which has a tansfer
matrix with the diagonal elements stable and the off-diagonal
elements minimum phase, the reliable decentralized

stabilization problem is solvable.



KISITLI DENETIMCI ILE AYRISIK KARARLILASTIRMA:
KUVVETLI VE GUVENILIR KARARLILASTIRMA

OZET

Bu tezde ayrigik karar111a§tirmada iki problem incelenmektedir.
Birincisi, verilen bir Z dizgesini ig karar111a§t1raéak 6bek—k6§egen
ve kendisi kararli olan bir demetimci C bulunmasidir. Buna kuvvetli
ayrigik kararlilagtirma diyoruz. Ikincisi ise verilen bir Z dizgesini
i¢ kararlilagtiracak Sbek-kdgegen ve Z'nin ara baglantilarindaki
koﬁukluklarda kararlilagtirma 6ie11igini yitirmeyen bir denetimeci C
‘bulunmasi diye tanimlanan giivenilir ayrigik kararlilagtirmadir. Burada
iki kanalli dizgelerde bu iki problemin b1rb1rler1 ile 31k1 sikiya .
iligkili olduklari gbsterilmektedir. Yani, verllen bir dlzgeyl glivenilir
ayrigik kararlilastirma broblemini ¢6zmek igin bu dizgenin parametreleri
ile fanlmlanan bagka bir dizge i¢in kuvvetli ayrigik kararlilastirma

problemini ¢6zmek gerekli ve yeterlidir.

Bu ana sonugtan yararlanilarak gdsterilebilir ki:
i) Sifirlari kararl:i olan iki-girdili-iki-giktili bir dizge igin kuvvetli
avrlslk kararlilastirma problem1 her zaman ¢&ziilebilir.:
ii) KSgegen lizerindeki déniiglim iglevlerinin kutuplarl kararli ve k6§egeni
digi danﬁgﬁﬁ iglevlerinin sifirlari kararli olan bir iki-girdili-iki- 7

giktili dizge her zaman giivenilir ayrigik kararlilagtirilabilir.
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I. INTRODUCTION .

‘ Since ‘the satisfactory resolution of polé assignment
and internal stabilization problems in linear control theory
via a dynamic output feedback scheme of Figure 2.1, (see
e.g., ROSENBROCK [1]1), the mor;’difficult problems where the
feedback compensator satisfies certain extra réquirements are
being considered. One of these special internal. stabilization
problems is the decentralized stabilization hroblem, where
the stabilizing compensator has a -biock—diagonalv structure.
The first satisfactory solution to decentralized
stabilization problem is due to WANG and DAVISON [Zj, in
~which the concept of decentralized fixed modes has been shown

to be central to the existence of  a decentralized
compensator. The synthesis procedure.of WANG and DAVISON [21,
however, does not provide an explicit expression for  the
compensator  transfer matrix. This is a major‘ obstacle 'iq
.imposing further engineering constraints on the stabilizing.
décentral compensator, such as reliability, compensator

stability, minimality, etc.. Another novel approach to solve

»



decentralized stabilization problem is that of CORFMAT and
MORSE [3], where the concept of strong connectedness as well
as decentralized fixed hodes has been basic to their
synthesis procedure. The main idea of CORFMAT and MORSE [3]
is to  use constént.output feedbacks in all but one input-
output channels of a strongly connected system to make the
system }eachable and observable from the remaining channel.
They use a dynamic output feedﬁack compensator in the
remaining channel to achieve overall internal stability. The
synthesis procedure of CORFMAT énd MORSE [3]1 suffers from the
same drawback of the originé} procedﬁre of WANG and DAVISON
{21 in that the procedure does not yield explicit expressions
for the decentral compensator; alihough one can draw certain
conclusions of immense practical value ‘from the work of
CORFMAT and MORSE [3] such as almost.ali strongly connected

systems can be decentrally stabilized.

In certain speciai cases, decentralized control
procedures which yield explicit expressions for the feedback
compensators do exist. One such synthesis procedure is. due to
GUCLU and OZGULER [4] in the special case  of diagonal
stabilization problem. In this work it is shown that given an
N—ihput—N—dutput plant, an internally stabilizing diagonal
- compensator can be determined by solving a nonlinear
polynomial equation which can in turn easily be solved via

Smith Canonical Forms (see Section III).

Another special stabilization problem is the strong
‘stabilization problem of YOULA, BONGIORNO, and LU [51, where
the compensator itself is required to be stable in addition
to its internal stability property. The practica; motivation
for strong stabilization is that such closed lSop systems
exhibit superior sensitivity properties compared to plants

which are intefnally stabilized by an unstable  compensator.



This classical paper of YOULA, BONGIORNO, and LU [5] yields
some conditions for the solvability of the problem pufely in
terms of the zeros and the poles of the plant to be
internally stabilized. The resuit of YOULA, BONGIORNO, andaLU
[51] is for a general m-input-p-output plant. The central
concept  that emerges is the parity interlacing property.
Later through the works of VIDYASAGAR and VISWANADHAM [6] and
GHOSH (7], it has been realized that strong stabilization is

also a 'central subproblem in simultaneous stabilization

prqblems. In the context of decentralized stabilization
problems, one can easily consider strong decentralized
stabilization problen, where the compensator is block-
diagonal, stable, and intérnally'stabili?es a given plant.

There has not been any noteworthy progress in this direction
mainly due to the fact that most of the existing
decentralized stabilization procedures do not yield explicit

expressions for the compensator.

Finally, still another special stabilization problem is
decentralized reliable stabilization problem which “;én
roughly be described as determinihg a Block—diagonal,
internally stabilizing compensator which remains functioning
in case of interconnection failures in the plant.
Decentralized reliable stabilization has been the 'main
concern of the book by SILJAK [8] in which decentralized
stabilization of a system by -(usually noniinear) étate—v
feedback has been considered. The conclusion SILJAK draws
through his works (SILJAK [9,101) and the work of DAVISON
{111 is that for a large <class of systems reliable
decentralized stabilization 1s possible and does not
constitute a serious constraint on the set of decentrally
stabilizing compensators. . In fhe case of.  decentralized
séhemes via dynamic output feedback, however, the decentral

linear compensator might exhibit bad reliability properties



with respect to interconnection failures (see the example of
Section V). It thus remaiﬁé a challenging question whether
one can synthesize a decentral compensator that internally
stabilizes a given plant and that remains reliable (i.e.,
maintains its stabilizing feature) in the case of
interconnection failures. ~ Another - motivation for
decentralized reliable stabilization is that a reliable
stabilization scheme is also - sub-reliable with respect to
failures in the feedback loop. This point  is further

elaborated in Section IV of the thesis.

A sound conceptual framework in solving any special
internal stabilization problem such as the ones described in
the preceding paragraphs is the followinghz (i) Characterize
the set of all compenéators that solve the main problem
(internal’ stabilization problem) in terms of a parameter set
and (ii) Choose particular elements in the parameter set to
obtain corresponding  compensators with desired additional
features. Such a scheme has in fact been the .starting point
of ZAMES [12], YOULA, BONGIORNO, and JABR [131, DESOER, LIU,
MURRAY, and SAEKS [141, SAEKS and MURRAY {15] in a variety of
problems ranging from sensitivity minimization, gquadratic
optimal control to output regulation and tracking.“ The
success of such an approach is mainly due to the fact th;t it
is vrelatively easy to characterize the set of all linear
compensators that internally stabilize a given linear plant
(see Section II). The question one can ask at this point is
whether a similar chafacterization is possible for the setybf

all decentral compensators that stabilize a given plant in

terms of a simple parameter set.

‘ In this thesis, we exploit the main result of GUCLU and
"'OZGULER (4] in obtaining the set of all diagonal stabilizing

compensators in the simplesttcase of a  two-input- two-output



plant (Thecrem 3.1). Although the result applies_to a very
restricted decentralized stabilization problem, it is the
first of its kind and the same line‘ of reasoning as in
Theoremn 3.1 yields the set of all solutions to the
completeness equation (Theorem 3.2), which is ‘tightly
connected to the decentralized fixed modes in the
multivariable case (see OZGULER [167). Wé then rigorously
define and study decentralized strong stabilization and
decentralized reliable stabilization problems, again in the
simplest cases of two-input-two-output and two-channel
systems in the spirit of the conpgptual framework ofv the
preceding paragraph. The main outcdme of this study is that
strong stabilization is an integral part of reliable
stabilization problems. ~In fact, in ‘the special cases
examined in this thesis the reliable stabilization problem
for a given plant can be shown to be equivalent to a strong
stabilization problem defined for a new plant. See Theorems
4.1 and 4.2. We also show in the same theorems that both

problems ére eventually reducible to solving equations of the

type
a + bx + cy + dxy = u,
A + BXC + DYE = U,

where. the unknowns; u 1is a unit in the ring of stable
rational functions and x,y are elements in the ring; U is a
unimodular stable rational matrix and X, Y are stabié
proper rational matrices. We also state some sufficient
conditions for the solvability of these equations in Section

III and 1V.



This thesis is organized as follows. In Section 1I, we
give some necessafy definitions and notation we use in this
thesis. We characterize all two-dimensional diagonal
compensators that stabilize a given plant in Section III, and
we show that they are given in terms of the compensators of
another but a stable plant. We also give a comment on how to
solve decentralized strong stabilization problems in view of
this characterization. Muitivariable version of this
characterization, yielding the - set of all solutions to
completeness equation, 1is also studied in that section. In
Section IV, we show that for two-channel multivariable
systems and for two-input, two-output systems, reliable
decentralized stabilization problem is equivalent to strong
decentralized stabilization problem in the sense that ihe
preblem of reliable decentralized stabilization for a given
plant can be reduced to the problem of stabilizing a new
plant wusing a stable decentral compensator. In Section V we
give some consequences of the main results of Section IV and
we give a large class of transfer matrices for which _ the
reliable decentralized stabilization problem is solvable.
Finally, we give an example to show that a decentralized
stabiiizing -. compensator for a given plant’ does not
necessarily maintain its stabilizing feature in case of
interconnection failures in the plant, and an exaﬂhle-
illustrating the synthesis procedure for the reliable

decentralized stabilization problem  using the results of

Section 1IV.



II. BACKGROUND AND NOTATION

In this section we set up the notation and state some
preiiminary~ results that will be frequently "used in the
subsequent sections. For the details of notation and

terminology and results given without proof the reader is
-referred to KHARGONEKAR and OZGULER [171.

Throughout the thesis we let.R(s) dencte the set of
rational functions in s with real coefficients and we lét
" Ruwp denote the subset of R(s) consisting of proper rational
functions whose poles ‘lie in the open left-half plane. The>
- set Ruwp 15 a ring; thus if two functions f. and f= belongvto
Rup 8o do  their difference and product. The ring Ruwe is
clearly comnmutative (f:.fw=f=.f1) and is an integral domain

(f,.f==0 implies f.=0 or f»=0)>. The set R(s) is the quotient



field generated by Rue ; i.e. every g€R(s) can be written as
g=f1/f= such that f,,fz € Rm; and f=»#0 and conversely every
ratio fi/f:: where f.,f= € Rmp. f=#¥0 belongs to R(s). If we
define the dégree of an eleméntlé in Ruwe as its relative
degree (i.e. the degree of the denominator polynomial minus

the degree of the numerator polynomial) plus the number of

its finite =zeros in the right-half plane, then Ras can be
seen to be an Euclidean domain, i.e., given any two elements
f and g#0 in Rup, there exist an h, and an 1 such that

f=gh+l, where the degree of 1 is less than the degree of g.
In other words, a division algdrithmfcan be performed in Rue.
Note that the degree of an element. in Rup is precisely the
number of its unstable zeros counting the ﬁultiplicities‘and
the zeros at infinity. A most useful prope}ty of an Euclidean
domain is that a matrix with elements from an Euclidean
domain can be brought to Smith Canonical Form under

unimodular equivalence (MacDUFFEE [181).

A function f in Rap is called arunit if its reciprocal
belongs to Rup. Clearly the units in Rup.are those functions

with relative degree zero and with stabletzeros.

Given any rational function h, we can find two
functions f and g in R such that h=f/g, and such that f/and
g are relatively prime (i.e. one is a greatest common divisor
of f and g). In other words there exist a and b in Rup such
that a.f+b.g=1. Such a pair (f,g) is  called a copfi@g

factorization of h.

It is essential to recognize that we are expressing a
‘given rational function h as a ratio of proper stable
transfer - functions with no common factors, rather than as a

ratio of polynomials with no common zeros.



We let Ruwe™ ™ denote the set of nxm matrices whose
elements all belong to Ruw. Thus Rux™*™ 1is the  set of
transfer ‘functions of stéble linear time—invariant systems
with m inputs and n outputs. A matrix F € Ruwe™*" is
unimodular if its inverse exists and belongs  to Rup™™"™ .

Clearly, F is unimodular if and only if det(F) is a unit.

Given any Z € R(s)™™ (which means Z is an nxm matrix

whose elements are ratibnal'fuﬁctions of s). We <can find
matrices Nx € Rup™ ™ and Dm € Rup™ ™ such that Z=NmDs—* and
the matrices Nm,Dm are right-coprime, i.e. there exist

P € Rup™*" and Q € Rup™*™ such that

X

PNe + QD¢ = Im " for ali s.

Similarly, we can find N. € Rup™™, Do € Rap™",

P: € Rup™" and Q. € Res""" such that Z=D.~*N_ and
-DiQ1s +N Py = 1. for all s.

We refer to (Nx,Dw) as a righi—coprime factorization
(r.c.f.) of Z and to (D.,N.) as a left-coprime factorization

(l.c.f.) of Z. | | -

If (Ne,D=) is a right-coprime factorization of Z-so is
(NeU,DrU) whenever U is an mxm unimodular matrix. Conversely,
if  (Ne,Dw), (Nem:,De1) are two r.c.f. of Z, then Nw=Ne.U,

Dre=De2U for some unimodular U.

" If (D_,N.) is a left-coprime factorization of Z, so is
(UD..,UN_) whenever U is an nxn unimodular matrix.‘Conyérsely,
if (D_,N.), (D..,Nui) are two l.c.f. of Z, then D.=UD..,

No=UN..:1 for some unimodular U.
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Now, we briefly summarize some results on feedback
stability. Consider the feedback system shown below in Figure
2.1, where Z and C are rational matrices of order nxm and mxn
respectively, and assume that‘det(Im+ZC)¢0 (otherwise the

system is not well-defined).

1 ¢4 >

B +

Figure 2.1 A feedback system with dynamic compensator C

Then it is easy to verify that
Vi | (In+CZ)™2C -(In+CZ)™1CZ us.

Y= (1.+ZC)—*ZC ) (In+ZC)™*Z Uz

or more concisely



11

We will say that the pair (Z,C) is internally stable if
and only if H € Rup "+ = ¢n+m>  (VIDYASAGAR, SCHNEIDER, and
FRANCIS [191). We say that C internally stabilizes Z if (Z,C)

is internally stable.

Next, we state without proof a necessary and sufficient
condition for a pair (Z,C) to be stable. The proof is

essentially contained in DESOER and CHAN [201.

LEMMA 2.1 Let Z € R(s)"®*™ he represented as Z=PQ™*R,
"where P, Q, R belong to Rwse™", Rup***, and Ruwp"*™,
respectively and (P,Q) is right-coprime, -(Q,R) is left-
coprime. Let C € R(s)™" be represented ash&=ED"1F, where E,
D, F belong to Rup™™, Rup™**®, Rup™*" respectivelyvand (E,D>
is right-coprime, (D,F) is left-coprime. Then the following

statements are equivalent:
i) The pair (Z,C) is internally stable.

Q RE
ii)d The:matrix 2 = | is unimodular.
-FP - D |
P |

Let (Nw,Dn) be any r.c.f. of Z € R(s)™ ™ and let
(Dee ,Ne.) be any l.c.f. of C € R(s)™ ™. Then letting P=N,
Q=Dw, R=I and E=1, D=Dc., F=Nc., where 'l is the identity"

matrix, the above lemma simplifies.

Corollary 2.1.1 The following statements are
equivalent:- . .
‘ i) The pair (Z,C) is internally stable.

ii) The matrix (DcoeDee + NeoNe) is - unimodular.
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, Similarly, let (D.,N.) be any l.c.f. of Z € R(s)™*™ and-
let (Nwr,Dor) be any r.c.f. of C € R(s)™ ", Then letting P=1,
Q=D.., R=N.. and E=Now, D=Duw, F=1, where I is the identity

matrix, we have a dual result to.Corollary 2.1.1.

Corollary 2.1.2 The following statements are
equivalent. , v | |
i) The pair (Z,C) is internally stable.
ii).The matrix (DLDga + NLNcg) is unimodular.
|

Note that if C € Rup™ ",i.e., if the transfer matrix of
" the compensator is a stable proper rationallhatfix‘then Ne:=C,
Dee=1 and N..=C, D..=1 vyield right .and left-coprime
factbrization for C, respectively. This easily yields the

following result.

Corollary 2.1.3 Let (N=,Dw), (D.,N.) be any r.c.f.
and l.c.f. of Z € R(s)™*™ and suppose C € Rux"%". Then the
following conditions are equivalént. ‘

i) The pair (Z,C) is internally stable.

iid Thekmatrix Die+CNee is unimodular.

iii) The matrix D.+N.C is unimodular. -

Throughout the thesis we:often encounter the problem of

characterizing all solutions to the equation
PNee + QDee = 1

Solution to this problem is related to the characterization
éf all compensators of a plant. Before we characterize all
compensafors that stabilize a given strictly proper plant, we

give general solution to this equation.
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LEMMA 2.2 Let Z € R(s)"*™ and let (Nw,Dw), (D ,Nu)
be any r.c.f. and l.c.f. of Z. General solution to  the
equation PNe+QDw=1 in the unknowns P € Rup™", Q € Rux™™ is
given by '

P = P® + R D.
Q = Q® - R N

wvhere (P®,Q®)  1is a particular solution of the equation

PNF‘(+QDF\‘=I and R E Rmpmun.

General solution to the equation DLQtNLP=I is given by,

for arbitrary S in Rup™*"

P = Pi1® + DmS
Q = Q.® - NmS

ﬁhere (P1®,Q.") 1is a parﬁicular solution of the equation
D.Q+N_P=1. Various procedures exist to obtain a particular
solution to these equations (see e.g./KHARGONEKAR and OZGULER
{173, PERNEBO [211).

Tﬁe next result characterizes all compensators ~that
stabilize a given strictly proper plant. (see  VIDYASAGAR,
SCHNEIDER, and FRANCIS [191). ' ’ ‘

LEMMA 2.3 Let Z € R(s)™*™ be strictly proper and 1let:
(Nge, Dee ), (D.,N.) be any r.c.f. and l.c.f. of 'Z. Select
matrices P,Q,P.1,Q: such that

PNF"\‘ + QDF'\‘ = In’\

N P2 + .DL..Q'I. = _Ir'\
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Then the set of all- compensators that internally

stabilize Z is given by

C = (Q-RNL)™*(P+RD..), .R € Ruwe™™ "

or
C = (P1+DnS)(Q1-NnS)™2, ~° S5 € Rap™*"
REMARK 2.1 : The matrices Q-RN. and Q:-NwS are
nonsingular for any choice of . matrices R € Rup™" ‘and

S € Rup™ ™. To see this note that By~PNm+QDm=Im, we - have
De"*=PZ+Q implying that Dee is biprbper, i.e. Dm™* is also
proper. Consequently, Nm=ZDm is strictly>p;oper.'This in turn
‘implies that Q=(Im-PNe)Dm™* 1is biproper. Similarly, it
follows that N. is strictly proper and that Q. is biproper.
Now, Q-RN_=Q(I-Q~*RN.) where Q is biproper and I-Q7*RN.
is also biproper for any R E'Rmpm“”. Therefore, Q-RN. 1is
nonsingular for any R € Rap™ ™. ‘Similarly, it follows that

‘Q1-NeS is nonsingular for any S € Rua™".
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I11. CHARACTERIZATION

In this section we give a characterization of all
diagonal compensators that internally stabilize a given two-

input—-two-output plant.

Consider the strictly proper transfer matrix

Z11 Zim
Z = '

Zama Zozm
where z+:1, 21z, 2Z=i1, and 2=z are strictly proper rational
functions. Let p be a least common denominator of all minors .
of Z, i.e. a least degree polynomial which is divisible by
the denominator polynomials of 2zi1., Ziz, Zza, 2wz, and -
(Z11Zm=—2122=1). Then, pnZ is easily seen to be a polynomial
matrix; denoted as

Vi S Vaim :

nz = NERS
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Let ¢ be any polynomial having all its zeros stable and

wiLh degree equal to the degree of n. It follows that

m := plo

is biproper and 1is in Rupe. Further,

N=:=Viz2/0, Nm:=Vzai/o, and na:=v=z=/¢, which
Vi Viz - N,

ple Z = 1/o -=  1/m}|-

We claim that m divides nina-nzn=,

Ruwe, we have

md = Ning—haNx

let

are in R

Na

i.e. for

To see this note that on taking the determinants in

n.:=vaii/o,

wp S50 that

some d in

(3.1), we

have p=(z112Z=2-Z122Z=1)=ViiV==—VizV=i. By the choice of u,
PCZs1Zmm—222222)=:6 is a polynomial. = Hence, PWE=Vy 1 Va =V =Vaza
which on division by ¢= yields md=ninha-n=n=, where d:=8§/0.
Coﬁsequently we have a representation
ni N
Z = 1/m (3.2)
N Na

of Z which has the property that

i) m divides nina—n=n=,

ii) m = p/o, where o is a stable polynomial and p is the

characteristic polynomial of Z.
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Let
O /B4, -0
c=| _
0 Oz / B
-be thé fractional representation over Ruwe of unknown
compensator transfer matrix C. Where o ,81,0z,B2 are in Rue

and (0 ,.Bs) 1i=1,2 are coprime pairs.
Then we can state the followiggllemma.
LEMMA 3.1 C internally stabiiizes Z if and only if
U= MB1Bam+nalyBat+nalOntdd Ox | ' (3.3)
is a unit in R“p[
_. Proof: C internally stabilizes Z if and only if
d.det(I+ZC)  is . a unit, GUCLU and OZGULER F4J.' An easy

calculation yields that

d.det(I+ZC)=mB1B=+n. 0(1'3:3+n4f310(z+d0(10(:-.~

By this lemma, the problem of finding all C’s that

internally stabilize a given. plant Z turns out to. be a
question of characterizing all 0., B, Oz, B= that satisfy
equation (3.3). We will give an answer to this question
below.

Let (a}b.é.d) be in Rwe® such that the greatest

common factor of (a,b,c,d) is a unit. Define two sets A and M

as
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A=((U1,Gi,81,8ﬁ) € Run™ : aB1Bu+tbB.0m+clyBau+di, 0:==12,

and

M=((m+ ,mz,mx,Ma) € Raup® @ mima+Qmame=1 3,

where ) := ad-bec.
Let
B31% [0 P 3= S=n=
U= .= - e =
§.% T1® . _ ‘ (8 Cd T=®

x

be unimodular matrices with detU®=detV®=1 satisfying

a b 1 ]
‘ ge Ve .= =: 8§ .
c d 0 N
a b
Here S is the Smith Canonical Form of the matrix - in
c d

Rmp?"z and such unimodular matrices exist by the fact that
Rwp is an Euclidean domain. Then we can state the following

DA

thedrem.

THEOREM 3.1 A quadruple (O.,0:=,B:,B3=) belongs to A if
and'only if there exists a‘quadruple (ms ,Mz, I, Ma) in M such’

that

By ) = (ma mm) 3.9 o v Bz | =| Bx® - da® ] ma
N _ S S Ta® | Oz 1 O=® Tz o
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Proof: If (O .0x,B..Bz) belongs to A then,

([31. CX1..) a b B;- = 1
c d (3 O
(B], ALY U=~ § yo—1 Bm = 1 .
(3

Let (my m=) = (B, Q.) U=—2 and,

Ma = Yoo B3z ‘ »
Mo Oz : . K'

then obviously we have,

- namely, mima+tmz=n==1. Thus (m.,m=,m=,Ma) belongs to M.

Conversely, if (m.,M=,mx,ma) belongs to M then,

(ma M=) 1 0 mal= 1, (m+ mz) U= | a b] Volmal|= 1.
1] 0] m= . c d M -

Then (B, o) [a b Bx=| = 1.  Therefore (dl,az,e;,ﬁz)
o el
belongs to A.
n
- Letting
a :=m, b := na, c := n;. and d := d,
in Theorem 3;1, we obtain the set of all solutions

(0, ,0=,B1.Bx%) of equation (3.3). This in turn yields a

characterization of the set of all decentral (diagonal)



stabilizing compensators
0. /B, - 0
0 Oz /B

of the given plant Z. It is'aétually possible to state this
characterization in a more system-theoretic setting. To do
this note that '

! = ad~bc = md-nina = “Nzh=,

and consider a subsidiary stable transfer matrix

Iy

- This transfer matrix consists of the off-diagonal entries of
the numerator matrix of original plant Z. It follows by Lemma

3.1 applied to Z. that diagonal. compensator

Mz /Iy ‘ ¢]
Cs

0 M/ Ma

is such that (Z.,C.) is internally stable if and only if
(my ,M=,Mm=,Ma) 1is in M. It follows that the set. of all

diagonal stabilizing compensators of Z is described by the

parameter set M.

REMARK 3.1 Note that in view of this characterization,
one procedure to solve decentralized strong stabilization
proﬁlem for the plant of (3.2) is to search for an element

(mq .Mz ,I=,Ma) in M such that
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Bvr = miB."+mad, @, Bz = MaBx"+nxd=

are units in Ruwm.

Multivariable version of theorem 3.1 can be proved by a
similar reasoning and its use will be.in determination of all

K,L,M,N  such that completeneés equation (see OZGULER [161)

(K L) | Q R M = 1
P 0 N

is satisfied. We state the following result without proof as

it 1is only loosly connected with the rest of the material in
this thesis. ‘

THEOREM 3.2 The set
L= ((KLMND :&XM>[a RIIM]= 1 3
P ol N
is given by
£ = € (K.LM,N) : (K L)=(Us Uz) [K= L= |, [M]=[Me  Ma=]ua].
Ky L.® N N= N.< U-:

Ua U4+UzsUr:..=I h)
where
. K(:) Lc.? Q R MCJ le I 0

Ki® L. P 1] Ne’ N.® o S
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IV. STRONG AND RELIABLE DECENTRALIZED STABILIZATION
PROBLEMS ) ‘

One of the most important aspects of large—-scale system

control is decentralization. This implies that. various

controllers in the system are only allowed to measure certain

oﬁtputs of the system and <control certain _inputs. The

deéentralized information structure often appears in practice

in large-scale systems where it may be impractical,

unreliable, and costly to utilize all inputs and

measurements.



4.1 TWO-CHANNEL MULTIVARIABLE SYSTEMS

In this section. we consider the strong and reliable
decentralized stabilization problems for ftwo—input~chaqnel
and two-output-channel systems. Two—inpui-channel and two-
output-channel systems are those systems that provide two
groups of outputs to measure and two groups of inputs to

control.

4.1.1 STRONG DECENTRALIZED STABILIZATION PROBLEM

The problem of stabilizing a given plant using a stable
compensator is called strong stabilization problem, YOﬁLA,
BONGIORNO, and LU [51. If thebstabilizing compensator is
required - to be block-diagonal, then it is called a strong
decentralized  stabilization problem, which can formally be

defined as follows.

Given a linear time-invariant multivariable system

“transfer matrix



where Z.a., Ziz, Z=mi, Z== are elements of R(s)®Pxr R(s)P=a,

R(g)m»r R(g)m»= reepectively. Determine a block diagonal

feedback compensator

C. 0

such that

i) C is stable rational. i.e. C., Cz are elements of

Rup™P, Rup®** respectively, and ’ :
ii) C internally stabilizes Z.

Let Z be represented in coprime matrix fractional

representation as

Z =|P.] Qr (Ra Re) - _ (4.1)

P
WhEI‘e P'j_ ’ P':: » ,Qs R‘L s R’.’.‘: bEIQng to Rmpppnk ’ thpmxk ’ Rmp‘i”“ ’
Rep**™, Rue"*9 respectively, with (P.,P=,Q) right-coprime,

(Q,Ry ,R=) left-coprime. It follows by LEMMA 2.1 that C

internally stabilizes Z if and only if

Q R.Ca =Cm
@ = -P. I / 0
-P= 0 I

. - ? Chp gy —-un >
is unimodular in Rug (HrPr=2= P
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Multiplying the second and the third columns by P, and Px

from the right, respectively, and adding to the first column
we have -
Q+R, C1 P41 +RinCiP-a R. R=
2. = 0 I 0 .
0 0] I
Clearly, &., therefore 8, is unimodular if and only if

Q+R1C1P1+R=Csz=U is unimodular in Ruap"*¥®
This proves the following statement:

Proposition 4.1.1 Strong decentralized stabilization
problem is solvable if and only if there exist Ci in Ruwp™*F

and C= in Ruwp9**™ such that

Q + RiCiPa + RuCxPz =: U

is a unimodular matrix; in which case, C:=diag{(C,,Cz} is a

solution to the problem.

By the result of this proposition one can concentrate
on the equation Q+R;Ci1P1+R=CzP==U, wvhere the unknown U is
unimodular and unknowns C,, C= are stable proper rational

matrices.

.Qnﬁ.h'?f.fi ﬁnhlrnr'i-n-.-: Ll



4.1.2 RELIABLE DECENTRALIZED STABILIZATION PROBLEM

In this section we pose further requirements on the
feedback compensator. These réquirements improve the
reliébility of the system. Here by reliability we mean that
in the case of complete break—down- of any one of the
interconnections the subsystems remain stable. It is
possible, however, to have an unstable sfétem due to _a
disconnection of a controller. But in that éase the remaining
compensator makes the system sub-reliable (i.e. not worse

than the original system with no'compensators).

Consider the decentralized control system below

Cy
+ P .
Ug ﬁ\\// zzu _____fgi;) Yi ;
o 212 :
o A ‘ Zzi 7 |
23 3 Zzz U Y2

Cs

Figure 4.1.1 Decentralized control system
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where the compensator C=diag(C..,Cx=2 interhally stabilizes the
Zya 2y
plant Z = '
Zaa Za=
Here we call Zi:, Zz= as subplant transfer matrices; and

Zy=, Z=1 as interconnection transfer matrices.

v

Now, suppose that any one of the interconnections,
namely Zr=2 or Zz:, breaks down completely. In such a
situation, if the controllers are chosen such that Ca

internally stabilizes Zi. and Cz= internally stabilizes Z==,

then the»subsystems, namely (Z,,,Cy) and (Zz=,C=), remain
stable. Clearly, if both of the interbohneétidns fail, then
the system again remains stable. Such a system is called

reliable.

In  case of controller\failure, namely C.=0 or C=z==0,
however, the system may become unstable. But in that case the
remaining compehsator makes the system not worse - than the
original unstable system. We call such a system as  sub-

reliable.

On the other hand, if C. and C= do not have reliabil}ty
property, then the overall system may become unstable in case

of interconnection failures.

Consider a linear time-invariant system represented by

a transfer matrix
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where Zi., Ziz, Zzmi, Zm= belong to R(s)P*¥r R(s)Pxa, R(s)™=r,
R(s)®xa, respectively. The ‘reliable decentralized

stabilization problem is formally defined as follows:
Determine a decentralized feedback compensator

Ca . 0

such that

i) Ca: internally stabilizes Zaa, .  °
ii) Czx internally stabilizes Z==, b

iii) C internally stabilizes Z.

"Let Z be represented\in coprime matrix fractional
a~* (R. R=) .

representation as Z =[P1
Pz

Also let Z,,=P.Q"'R. and Z===P=Q Rz be represented by

coprime matrix fractional representation as

Zia = Qu:27*Riax = PioQie™?

and

Zz= = Qzz"'Raz = PaoQne™?
where Qi11, Rii, Q==, Rz=z, Pis, Qie, Pzme, Q=me belong to
R-pp.ﬂp s Rmipp"r- , R‘mpmns . R‘“pmn-tq . prpxr' . R‘mpr‘xr- . Rm‘pqu . B.nd
Rup9*9 respectively, and (Qr1,Rx11), (Qz=.Rx=) are left-

coprime, (Pio,Qio)., (Pzo,Qmc) are right-coprime.
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By Lemma 2.1, a compensator

E.D,—? 0
C = . 4.1.D)
0] " EzDx?
where E:., E=, D,, D= are in Rap™*P Rmpq”‘. RupP*P ., Rup™>™,

with (E.,Di), (E=,Dz) right—coprime. internally stabilizes Z
if and only if o

Q RiE. RzE=
g := -Pa D 0 »
~Pz 0 Dz
is unimodular. For the compensator C to ' satisfy the

additional constraints (i) and (ii) it is also necessary by
. Corollary 2.1.2 that

Uyr := Q11Ds + R11E:,

.Uz := Qe=Dz= + RazE:
are also unimodular. Conversely, if there exist E:i, Di, E=,
Dz in Rwp™™P, Rup*P, Rup™*", Rup™*™, réspectively such that
the stable rational matrices U., Uz, U are all unimodular,
- then the compensator -defined by (4.1.1) satisfies (i), (ii) -
and (iii) above, i.e., it is a solution to reliable
decentralized stabilization problem. Consequently, in the

light of the above discussion we can state the following

preliminary result.
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LEMMA 4.1.2 The reliable stabilization problem for Z
is solvable if and only if there exist right-coprime pairs
(E. ,D1) and (E:.Dz) such that U.,, Uzx.and U, "defined above,
are all unimodular matrices. ‘In £his case, the compensator C

of (4.1.1) is a solution to the problem.

Now we can give the main result of this section. Let

Es, Dis, i=1,2 be particular solutions to the equations

QiiDi + RitEy =1 1_=1.2

x

(such particular solutions exist by the fact that (Qu:.Ris)

are left-coprime pairs).

Define

Q R1E.11® RaxE==®
Q= = -P. Dy1® 0 ’
~Px 0 D==®
“RiQia| -RzQ=o P.® := (0 1 0y, .
R1® :=| Pio y R=® :=| O s Pz= := (0 o Iy .
0 P:?.o ‘ \
Since 2Z is strictly proper, by similar reasoning in_

REMARK 2.1 detQ® # 0, so that Q7* is well-defined. It is

easy to show also that @, R.®, R=® are left-coprime and P.*,

P=®, Q® are right-coprime.
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THEOREM 4.1 The following statemerits are equivalent:

i) The reliable decentralized stabilization problem

for Z is solwvable.

ii) There exist X and Y in Ruwp™™P and Rup®*™

respectively, such that '

Q® + R1®XP,® + Rzx®YP=® =: U°

is unimodular.

iii) The strong decentralized stabilization problem for

7o = (me] Q== (Ri® Rx™)

P==

is solvable.

Proof: [(i)<=>(ii)] If the reliable decentralized
stabilization problem is solvable, then there exist D.’, Ei’,

D=’, Ez’ such that

Q11Ds’ +Ra1Es *=:Us , ’ (4.1.2)
QuzDz’ +RzzEz’=:Uz . (4.1.3)
and ,
Q R:iE.’ R=Ez’
-P. Dy’ 0 =: U
Pz 0 ‘Da’

are all unimodular matrices.



Let E.":=E, U, "1, Di":=Dy U, 1, Exr":=Ez ' Uz"*,
Dz":=Dz’U="* , note that by unimodularity of Ui., U=z, Ux the
matrices E.", D", Ez",  Dz=" are stable proper rational

matrices, and substituting into (4.1.2).(4.1.3) we obtain

011D1"+R11E1"=1.
Qz=Dz"+RzxzEa"=1.

| By Lemma 2.2, there exist X in Ruo™" and Y in Ruwe™*S
such that

Er" = E1® - QroX, Ez" = E=® - QzoY (4.1.4)
Di" = D1® + Pi1oX, Da" = Dz=® + PioY = (4.1.5)
Note that
Q R:iE." R:Ez" Q R:iE.’ RzEz’|| I 0 0
U=’:= | P2 D1" 0 = | -Pa D’ 0 O U™ 0
' -P= O D=" -P= . 0 D=’ 0 0 Ux—?

is unimodular as U,, U., Ux are unimodular.

Substituting expressions (4.1.4), (4.1.5) into the

expression for Ux‘, we obtain

qQ R1 (E1®-Q10X) Rx(Ex®-Q=oY)
U’ = | -Pa D..94+P1 X 0 .
—P= 0 Da+PooY

It is straightforward to verify that

U=’ = 0% + R.®XP1® + Rx®YP="
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Conversely, if for some X in Rup™™® and Y in Rue™ 9, U®

is unimodular, then letting

Ei := Ex® - QuoX, Ex := E=® - QeoY.
Dy := Da® + PyoX,  Du := Da® + PmoY
we obtain )
Q11D1 + RaiE. = 1, Qz=Dz + RanzEn = I,
and
_ . Q R.E. RzE= .
U= =|-P, D, 0 . As U°V. by hypothesis, is

-P= O Dz
unimodular, the local compensators E,D,™? aﬁd E=D="* solve

the reliable decentralized stabilization problem for Z.

Equivalence of (ii) and (iii) is a direct consequence

of Proposition 4.1.1.
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4.2 TWO-INPUT-TWO-QUTPUT ‘SYSTEMS

-In the special case where the plant has two inputs and

two outputs, the representation

Na N

Z = 1/m -l (3.2)

is more convenient for a closer examination of thé relation
between  strong decentralized stabilization and ‘reliah{g
decentralized stabilization problems. For the purpose of
obtaining - simpler equations for the solutions of  these
problems, - we now use representation (3.2) " in pro%ing»

a counterpart of Theorem 4.1.

We consider the problems of strong' decentralized
sﬁabiiization and reliable decentralized stabilization in
terms of the more convenient representation (3.2) of Z rather
than the representation Z=PQ~ 'R, where P, Q, R are in Rup®*=®

With S (P,Q) right-coprime and (Q,R) left-coprime . (see

Remark 4.1). -



35

Let
(5 8% “31 0
C = ' .
where 0., O=, Bi, Bz are in Ruap and (0 ,B1), (0=,B3=) are

coprime pairs, be a candidate compensator for Z.

Letl

Nii/Mia := ni/m , Noe/Maz = nﬁlm

where nii, MNMii, Nm==, Nnz= are in Rue and (niiimii1), (Nz==,m==)

are coprime pairs.

Proposition 4.2 .Consider  the transfer matrix Z of
(3.2). ‘

al The strong decentralized stabilization problem is

solvable if and only if there exist x and y in Raes such that

m+ nix + nay + dxy =: u

S

is a unit in Rwe; 1in which base C=diag(x,y} is a soclution to

the problem.

b)  The reliable decentralized stabilization problem
is solvable if and only if there exist 0.,  O=, 1, and B= in

Rwp such that

i) mq2f3 + Napally =: U
11) Mizi3e + Noalm: =@ Us
iii) mB31B= + N 03B + NalB.0x + A0 X =: U
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a

are all units in Ruw; in which case C=diag(0, /B, .0=/B=) is
solution to the problem.

Proof: a) By the definition of strong decentraiized
stabilization problem

O /3, 0
C = ' € Rmp -
1] Oz /B
Since (0:,B.) and (0z,Bx) are coprime, and since 8., Bz are
units in Rwe, By Lemma 3.1 (Z,C) is internally stable if and
only 1if

mB3+Bz= + nali1B= + naﬁmuﬁ‘ +  dO. O ;; v

is a unit. Multiplying both sides with B.~B="1, we have
m + na0.B3.7* +VD4UEBZ_1 + dUlBLfiﬂsz~1 = vE3,.T3"1
which'implies with x:=00:.8:+"* and y:=0=Bx"* that
m + nlk + nay + dxy =: u,
where u:=vB,7*Bz"' is a unit. A N
. ~
Conversely, if u 1is a unit, then by the choice .of
"Bi=1, B==1 and 0i=%, O==Y, C solves strong decentralized
stabilization problem.

b) By definition, the reliable decentralized
stabilization problem is solvable if and only if (Z,C),
(211.C1), and (zm=,Cw) are internally stable.  Since
z;1=n11/m11, Zwm=noe/Mez, C2=0/Bi, and cm=0n/Bz are coprime
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1) (zia,ce) is internally stable if and

only if miiBi+n..0, is a unit.

11)  (Zzz,cm) is intébnally stable if and

only if ma=Bu+na=0zn is a unit.

iii) (Z,C) is internally ' stable,by Lemma 3.1,

if and only if m8183+n10183+n481u2+da1Gz is a unit.

=

Let
M1 131 + N, 0,2 = 1, . (4.2.1)
Mz + Nonla®™ = 1 (4.2.2>

for some 8.%, 01, Bz, 0z in Rus. Since (mii1,n.1) and

(==, nzxz) are coprime pairs, such elements exist.
Define
m® := mBi"B=" + Ni0L®B= + NaB31°02° + dO, 0=

Note that m® is in Ramep (not necessarily a unit).

- THEOREM 4.2 The following statements are equivalent

i). The reliable decentralized stabilization problem

for Z of (3.2) is solvable.
ii) There exist x and y in Rue such that

m°+(dm11-n4n11)Umwx+(dmnz-n1nmz)ﬂlmy+(dm11-nan11)mrzxy =: u«



is a unit.

1ii) The strong decentralized stabilization problem for

v (dmy 1 —Nany 1 ) 0= n=
2 := 1/m®
N o ‘ (dnzz=-ninz=)0.*
is solvable.
Proof: [(i)<=>(ii)>] By Proposition 4.2, 1if reliable
decentralized stabilization problem is solvabie, then: there
exist O ‘, [ TR B+, B=’ in Rus such that

’

Uz :=mMey1f82°+n21102 ', Uz:=Mn=Bx’+n==0=‘', and

Um:=mBi ‘Bz’+ni0y ' Bx’+nafy ‘Oz’ +dd. 'Oz’ are units in Rup.

Now, let By":=B.'Usr™?, O1":=01'Uus"*, Ba":=Bx'u=""?*, and

O=":=0z='u=""1. These rational functions ,clearly, are in Rum.

Then, we can write

my1f32"” + ne0” =1,

' Using expressions (4.2.1) and (4.2.2), and Lemma 2.2, it

follows that for some X, ¥y 'in Rups B1"=B.%+n4 11X,
Oy " =02 -M1 1%, Bz"=Bz"+nz=zy, and O="=0="-N=zy .
Consequently,

UsmUsUsz = mMBy"Bxm" + na0"Bz=" + naBy"Oz" + dof, "0=" (4.2.3)
is also a unit in Rue. If we substitute oL, =", B.", Bz"

into the equation (4.2.3), then we obtain by a

straightforward calculation that uwu.u= = u<.
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Conversely, if for some X, "y in Rup, U® is a unit in
Rup , then letting Br:=B,"+n, %, O : =01 ¥~my 1%, Bx:=Bx+nunz=y
and um:=az”—mm;y, we obtain My 114N 102=1, me=Brtne=lx==1,

~and mB1Bm+n1u18z+n481U3+dﬂmum=Uw.

Consequently, O /13, and Oz / B solve reliable

decentralized stabilization problem foé Z.

[€ii)<=>(iii)] Let us first Eompute d® associated with
Z=. Let the numerator matrix of Z® be N®, namely N®=m®Z®.

Then, the determinant of N® is
detN= = (dm11-n4n11)(dmzz—nmnmz)u;QGm?¢nmn$.
Since n11Im11=n1/m, and nzzlmz==n4/m, for some g1, d= in Ruww,
we have m=mii:gi=Mz==g:=, N1=Ni11g:, and Na=n=m=g=. Using these
equalities and md=n.nsa-n=n=, we obtain
(Zie‘l’.N":’=(dl’(l:x.1."'1141!13.:.)l':(dl'ﬁ’.z.'.':_n"-'tl'l1:.)CXI-wCXZG""gl:l -

And using (4.2.1), (4;2.2) we can write

gig= = (mB1°4+n.0:9) (MB="+Nal=") . -

Substituting this into the term in the square brackets,  we
get

' ’ detN® = m®(dmii-nNan.idnz=
Therefore m= divides detN= and the quotient is
(dmi:-nanzaildm== =: d®. By straightforward manipulations it

can further be shown that m®=p®c./o=, where u® is the
characteristic polynomial ~of Z® and o¢., o are stable

polynemials. Hence the representation of Z® is of the_ form

(3.2). Thus, by Proposition‘4.2; (iii) is equivalent to (ii).
' u

»
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By the result of Theorem 4.2, a + bx + cy + dxy = u,

wvhere u is a unit, 1is a centr
reliable decentralized stabiliz
X - in Rup, . | |
existence

well-known (VIDYASAGAR, and
straightforward examination of

conditions for the solvability

Corollary 4.2.1 1If 4 is
a + bx + cy .
there exist x,

then y and a

above equation.

Proof: Let d be a unit
in Rap such that (c+dx) is a
where u, is a unit.
_unit, similarly we can

atbhx+cy+dxy is a unit.

REMARK 4.1

closeiy related. In fact

where m = u.detQ and d = u,detP.detR

a4 necessary and sufficient

Qf Y in Rue such that a+bx+cy+dxy is a

‘unit. In

Then we have

The representations (3.2) and

ai problem for both strong and
ation problems. Given a fixed
condition for thé
unit, - 1is
VISWANADHAM

this equation, some sufficient

£61). By a

can be obtained.

a unit in
+ dxy = u,

unit u in Rwoe \éatisfying the

in Rwe, then we can find an x

fact, x=d~*(u.-c?,

a+bx+u,y=u. Since ui. is a

find -y 'in Rwmp such that
||
(4.1) are

for some u in Rup.

Theorem 4.2 is, of course, -a special case of Theorem 4.1. In

fact,
4.2 - using- Theorem

representations. In the

4.1 and the relation

notation of

it is possible to give an alternative proof of Theorem

between the two

" Theorem 4.1, an



alternative expression for Z% turns out to be

-
0 01 0]|jqs =
A = qa
0001 —pl. ) ¢
L'pﬁ ~pa
.
P2 p=
Qhere = P,
P Pa

(nll,mII),

Ne=/Nan

-are

qa

roala®

qa

coprime

1-L

and

ra

Nnai/maa

Fa
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Zia,



V. CONSEQUENCES OF THE MKIN RESULTS AND EXAMPLES

In this last section, we - investigate certain
implications of the main theorems of the pnébious section to
give some interesting - sufficient conditions  for the
solvability of strong and reliable decentralized
stabilizations problems. We also give examples indicating the
significance . of. reliable stabilization problem and
.illustrating the synthesis of. strong and reliable diagonal

compensators.

It is well known (YOULA, BONGIORNO, and LU [51) that a
minimum-phase multivariable plant can always be (centrally)
"strong stabilized.  We show below that a similar result holds
in the case'of,two—input—two—outﬁut diagonal stabilization.
Consider ' .

ny Nz _
Z = 1/m| = 'R, . (5.1

(Q,R) is left-coprime. As we have shown in Remark 4.1 that m
may differ from detQ by a factor of u, where u is a unit in

Rue . But Q and R can be chosen such that - m=detQ and d=detR.
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Also let s denote the smallest invariant factor of 2,
i.e., the greatest common factor of all entries of R. Then it

can also be shown that s=g.c.f.{(ni,na,d}.

THEOREM 5.1 i If d is minimum phase (i.e., Vits Zeros
are stable), then the plant Z of (5.1) is strong
decentralized stabilizable. )

ii) If d=0, then Z is strong decentralized stabilizable
if and only if Z is strong (cenﬁralized) stabilizable, i.e.,
if and. only if there exists w in Rwg such that m+sw is a

unit.

Proof: i) If d is minimum phase, then the greatest
common factor of (na,d) is also minimum'pﬁase (due to the
fact that zeros of d are stable, éeros of any factor of d
are also stable). Let g:=g.c.f.(na,d} so that g is minimum

phase and
Na=gna’, d=gd”’.

Clearly (na’,d’) is coprime. By the theqrém of ~ YOULA,
BONGIORNO, and LU [51], since d’ has no unstable zZeros there

exists an %’ in Rup such that na’+d’x’=:u’, where u’ is a
[

unit  in. Ruas. Let a’:=m+n.x’ ~ and note that a’ " is

biproper due to ‘the fact that m is biproper and na is

strictly proper. Since gu’ is minimum phase and (a’,gu;) is

coprime, there exists v’ in Rue such that a’+gu’y’ is a

unit. Letting x=x‘and y=y’, x and y satisfy the equation
(m+nix)+(na+dx)y = u ,

where u is a unit in Rwe. Thus the plant Z of (5.1) is strong

decentralized stabilizable.
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i) If d=0, then s is the gréatést common factor of
(nny ,na). We can write n.i=sni.’, na=sna’. Clearly (ni’ .na’)
is coprime andk there exist x’ and v’ in Rws such that
n@’x’+n4’y’=1. If there exists w in Rww such that m+sw is a
unit then letting x=x’'w and y=y’'w, we have w=n1’x+n4’y.>Since
_by_hypothesis. m+sw is a unit, a straightforward manipulation
yvields that mtn.xtnay+dxy is-a unit: Therefore diagl(x,y?

solves the strong decentralized stabilization problem for Z.

Conversely, 1if there exist x and y in Rue such that
diag(x,y} solves the strong decentralized stabilization
problem for Z, then m+tnix+nay+dxy is a unit in Rup. Letting

w=n, ‘sX+na’y it follows that m+sw is a unit.

In case of reliable stabilization, a consequence of

Theorem 4.2 is the following.

Let a two-input-two-output plant Z be such that the
elements on the main diagonal is stable .and the  other

elements are minimum phase. Then it can be represented as

Nyi/mMmia Biz/Miz ni. n= A
Z = = 1/m (5.2)
Nzzy /M Nz / Monze N . Na
where mii, Mz= are units in Rup., (Mi=,m=1) is coprime, and
n.=, nN=i1 have stable zeros. Then we can state the following

theorem.
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THEOREM 5.2 A plant with transfer matrix Z of (5.2)

always admits a diagonal reliable stabilizing compensator.

Proof: If we represént Z in the form (3.2), then we

“have

m=m12m21. Ny =NzaMai=MziMyy ™, Nz Na =Mey, N =Nz 1 Mg =
and pa=nazm1=mzlmz=“1. Then

d = (nina-n=n=)/m = nl1nngm1zmz1m11—1m22_1‘n1=n21
If we calculate d* associated with Z® of Thegrem 4.2, then we

obtain d® = -mm=zni=n=i., which has stable'zéros; Therefore -by

Theorem 5.1 Z= is strong decentralized stabilizable, and by

Theorem 4.2, Z  admits a diagonal. reliable stabilizing
compensator.
' -
o
Example 1

In this example we will find a diagonal .stabilizing
compensator for Z below and show that it does not stabilize

"the subplants.

Let unknown compensator be C=diagf{c.,c=} and

let
[ 2s5-3 1]
(s-1)(s-2) . (s-2)
. :
1 1
I (s-2) (s-2) |
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If we represent 2 in the form (3.2), then we have

m.= (s=1)(s-2)/(s+1)= | n: = (25-3)/(s+1)=

“Ma = Nm = Nx ='(s—1)/(s+1)2 . and d = 1/(s+1)=
Let ni/m=ni:i/msa, where ni1=(2s-3)/(s+1)=,

my1=(5-1)(s5-2)/(s+1)*. Naote that (n.i,m::) is coprime.

Let na/m = nzz/mz=, where nm= = 1/(s+1), M=z = (5-2)/(s+1).

Note that (nmz=,m==) is coprime.

Let Bz = (5-5)/(s+1) and O= = (s-10)/(s+1), then
Cz = O=/Bz = (s-10)/(s-5) .

Substituting Bz and 0= 'into the equation

u = mBiB=+n:liBatnal;d=+dd, 0=,
where u is a unit, we obtain
s(s-1)(s-6) 25=-125+5 S (5.3)
u = Bi + d1 .
(g+1)F (s+1)~

Since the coefficients of B: and ©, are coprime we can find
B, and 0. satisfying (5.3).

In fact,

28345=-2999s+5

(s+1)=

1

1

25s5%-5368s5+2530

(s+1)=

By =

gives u=25, which is a unit in Rup -
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Hence

C = diag(0, /B ,0=/Bx) solves

_ ‘decentralized
stabilization problem for Z.

But

01 = Mia1f31i+N1 100

2554+2255%+41845=-9319s+5045

(s+1)4

which is not unit in Ruwe, thus (zlx,ci)‘is unstable, and

which is not unit in Rwewm, thus (z==z,c=) is unstable.b



Example 2

In this example we solve a diagonal reliable

stabilization problem. Consider a 2x2 tfansfer matrix:

[ (s-1) (s+2) | [ nas niz |
(S"'l)2 (5‘3)2 ms 1, My =
2 = =
(s+3) (s-1) Neza N
i | (s-4)= | (s+2)% | | mmy M= |
Let‘
(s=1) (s+2) , (s-3)=
nuz—-—-—) mu’-': 1 ’ n12= il ‘vmlz = —
(s+1)= .  (s+1)= 3 (s+1)=
(s+3) (s-4)= (s=1)
2= —, myz=—e—— , MNa=———-—, M2 = j .
(s+1)= - {s+1)= o (s+2)=

Note that m.:, m== are units in Rap, (Mi=,mz=:1) is coprime and
Niz, h=: are minimum phase. .If we represent Z in the form
(3.2), then we have

(s-3)=(s—-4)= ~ (s-1)(s-3)=(s5-4)=

m = > , n,= )
(s+1)4 o (s+1)*
(5+2)(5-4)= S (s+3)(s5-3)=

nl: ) . f)3:
(s+1)4 (s+1)+

| fy= L8T1(s=D2s-)= d__427sw+5394-4415$+411sﬁ—s4ss+120
-— ) — -
(s+1)4(s+2)= (s+1)®(g+2)*

By Theorem 5.2, Z admits a diagonal reliable stabilizing

compensator.



49

- In fact, C=diag(0:/B.,0:»/B=»} where

2035-12095+30535-2735

Az =
(s+2)(s5+3)(s5+19)
s{s5+3)
By= —
(s+1)=

8¥-17554+16135™~-36485=+66485-2279
(s+2)™(5+3)(s5+19)

2=

y

solves the reliable stabilization problem for Z. To see tﬁis,
note - that v
My 1324032100 = 1,

thus (z11,c1) 1is internaliy stable,

MazBatNeml= = 1,
.thus (zz=,c=) is internally stable, and
ME 1 Bortn.. Xy Batnall ) Oon+d 0y Nz =$ttl—
© S$++19

vwhich is a unit in Ru.o, thus (Z,C) is internally stable.

Note also that- C=diag(x,y} where ®x =1,

-203s¥+1209s*-3053s5+2735
(s+2)(s+3)(s+19)

--.solves the diagonal strong stabilization problem for

[ (s+2) |
o} 227
(s-3)=
A
(5+3)
= 0
| (s-0>= I
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VI. CONCLUSIONS

In this thesis, we have studied the reliable
decentralized stabilization and .strong decentralized
stabilization problems for two-channel systems (scalar or
multivariable). We héve shown that the reliable decentralized
stabilization problem for a given plant is equivalent toc a
'strong decentralized stabilization problem for a new plant
defined in terms of the original‘piant (Theorem 4.1 and
Theorem 4.2). Both probléms are reducible to solving

X

eduations of the type

a + bx + cy + dxy =.u,
A + BXC + DYE = U

where the unknowns; u is a unit in Ruwp; X, ¥y are in Rmp,.U is
a unimodular matrix in Rekes™"™ and X, Y are stable rational
matrices. We have given some sufficient condiiions to solve
these equations for the scalar case and a large class of
trahsfer matrices for which the reliable stabilization

problem is solvable (Theorem 5.1 gnd Theorem 5.2). ' -

We have. also given a sét of all diagonal stabilizing
compensators in the simplest case of a two-input-two-output
plant. Although the result applies to a very: restricted
decentralized <control problem, it is the first of its kind
and by similar reasoning the 'set of all solutions . to the

completeness equation caﬁ be found.
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Using the mainvresﬁlts, we havevshown that
i) For a two—input—two—outpuﬁ plant with all of its zeros
stable, the strong decentralized stabilization problem 1is
solvable . -
ii) For a tWo-input—two—output plant which has a transfer
matrix with diagonal elements stable and the off-diagonal
elements minimum phase, the reliable decentralized

stabilization problem is solvable.

Finally, we have given some examples wusing the
,technique outlined in this thesis and we have shown that  a
decentralized stabilizing compehsator-does not have built-in
reliability properties. It has to satisfy . further

requirements. _ ' o



Lo

52

BIBLIOGRAPHY

Rosenbrock,H.H., State Space and Multivariable Theory.
London: Nelson-Wiley, 1970.

Wang,S.H., and Davison,E.J., "On the stabilization of
decentralized control systems," IEEE Trans. Automat.

Contr., vol. AC-18, pp.473-478, 1973.

Corfmat,J.P., and Morse,A:S.,\"Decentralized control of
linear multivariable systems,"”  IEEE Trans. Automat.

Contr., vol.12, pp.479-495,1976.

Guclu,A.N., and Ozguler,A.B., "Diagonal stabilization of
.linear multivariable systems,” Int. J. Contr., vol.43,

pp.-965-980, 1986.

Youla,D.Ci; Bongiorno,J.J., and - Lu,C., "Single loop
feedback stabilization of a 1linear . mnultivariable

dynamic plant," Automatica, vol.10, pp.159—173, 1874.

Vidyasagar,M., and Viswanadham,N., "Algebraic design
techniques for - reliable stabilization," IEEE Trans.

Automat. Contr., vol.AC-27, pp.1085-1095, 1982.

Ghosh,ﬁ.K.. "A  robust reliable stabilization scheme for
single input, single output system using transcendentél
methods," Systems and Control Letters, vol.5, pp.111-
115, Nov. 1984. / | |

Siljak,D.D.,Large-Scale Dynamic Systems: Stability and
Structure, New York: North-Holland, 1978.



10.

11.

12.

13.

14.

15.

16.

17.

53

Siljak,D.D., IEEE Trans. Sys. Man. Cyber., vol.2, p.657,
1972. o )

Siljak,D.D, Proceedings of the 6th IFAC World Congress,
p.1849, 1978. S

Davison,E.J. ,Automatica, vol.10, p.309, 1974.

Zames, "Feedback and optimal sensitivity: Modél-referehte

transformation, multiplicative seminorms, and
approximate inverses," IEEE Trans. Automat. Contr.,

vol .AC-26, pp.301-320, April 1981.

Youla,D.C., Bongiorno,J.J., and Jabr ,H.A.,"Modern Wiener-—
Hopf. design of optimal contfollgfs—Part 1," 1IEEE
Trans. Automat. Contr., vol _AC-21, pp.3-15,1976.

Descer,C.A., Liu,R.W., Murray,J., and Saeks,R., "Feedback
system design: The fractional representation approach
to analysis and synthesis," IEEE Trans. Automat.
Contr., vol_ AC-27, pp.399-412, June 19880.

Saeks,R., and Murray,J., "Feedback system design: The

trackingv and disturbance  rejection problems,"” I1EEE
Trans. = Automat. Contr., vol.AC-26, pp.203-217,
Feb.1981.

Ozquler,A.B., "Completeness and single channel
stabilizability,” Systems and Control Letters, No.6,-

pPp.253-259, Oct.1985.

Khargonekar,P.P., and Ozguler,A.B., "System-theoretic and
algebraic aspects of the rings of stable. and proper
" stable rational functions,

Applications, vol.66, pp.123-168, April 1985.

" Lineaf Algebra and its



18.

19.

20.

21.

54

MacDuffeé,C.C., Theory of Matrices, New York: Chelsea,
~1956. ‘
Vidyasagar,M., Schneider ,H. , and - Francis,B.A.,

"Algebraic and topblogicél aspects of feedback
stabilization,"” IEEE Trans. Automat. Contr., vol.AC-27,
,pp.880—894,,Aug.1982.

Desocer,C.A., and Chan,W.S., "The feedback interconnectionr
of lumped linear time-invariant systems," J. Franklin
Inst., vol.300, pp.335~351, 1975.

Pernebo,L., "An algebraic theory for design of
controllers for linear multivariable systems-Part 1I:
Feedback realizations and‘feedback7design,";IEEE Trans.

Automat. Contr., vol.AC-26, pp.183-193, 1981.



	Tez4218001
	Tez4218002
	Tez4218003
	Tez4218004
	Tez4218005
	Tez4218006
	Tez4218007
	Tez4218008
	Tez4219001
	Tez4219002
	Tez4219003
	Tez4219004
	Tez4219005
	Tez4219006
	Tez4219007
	Tez4219008
	Tez4219009
	Tez4219010
	Tez4219011
	Tez4219012
	Tez4219013
	Tez4219014
	Tez4219015
	Tez4219016
	Tez4219017
	Tez4219018
	Tez4219019
	Tez4219020
	Tez4219021
	Tez4219022
	Tez4219023
	Tez4219024
	Tez4219025
	Tez4219026
	Tez4219027
	Tez4219028
	Tez4219029
	Tez4219030
	Tez4219031
	Tez4219032
	Tez4219033
	Tez4219034
	Tez4219035
	Tez4219036
	Tez4219037
	Tez4219038
	Tez4219039
	Tez4219040
	Tez4219041
	Tez4219042
	Tez4219043
	Tez4219044
	Tez4219045
	Tez4219046
	Tez4219047
	Tez4219048
	Tez4219049
	Tez4219050
	Tez4219051
	Tez4219052
	Tez4219053
	Tez4219054

