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" ABSTRACT

The purpqée of this study is to investigaée the behaviour . of the
transform domain .adaptiye filter :in thé Walsh domain. As it is well
known, becausé of the binary nature of the basis functions, the
computationally intensive frequency domain adaptive filter algorithm
lends itself to easier implementation if Walsh transform is employed.

This thesis starts with a brief review of Walsh £functions, Walsh
transforms "and adaptive filtering. The Walsh domain adaétive filter has
been simulated on fheydigital computer. Simulation results for various
input signals embedded 'in noise are given. It is shown that better
' convergence can be achieved,when'the adaptive filter is operated ' in the

~ Walsh domain, rather than time domain.

~ s
~

The effect of initial.weight on convergencé has been investigated.
It has been oObserved that smail values of the initialAweight are
necessafy for better convergence performance. Although the theoretical
basis :of the effect of small initial weight on convergence
éharacteristics has not Dbeen éstablished yet, simulation results

indicate improved performance with a small initial weight.

.

Since the Walsh transform requires only additions and subtractions,

the digital implementation of Walsh domain adaptive filter is easily

achievable, and can be thought as the SCOpe of a further study.



" OZETCE

Iletigim sist?mlerinde haber isaretine gliriilti karlsmaSL kaginilmaz
bir olaydlr..'iletisim sonucunda elde ediieﬁ_isaretten glirtiltiinlin ayird
edilmesi oldukqa'zor bir islolarak karslﬁlza Gikar. Haber isaretinden
gﬁrﬁitﬁyﬁ ayirma islemi dikkatlice yapllmaésa, sonu¢g olarak daha da
bozulmus bir isaretle karsllasabiliriz.‘ Buna radgmen, eger haberin
girtiltliden arindirilmasi islemi uyariaﬁlr (;daptive) bir sistem
vasitasiyla yapilirsa ’gﬁrﬁltﬁnﬁn haber - isaret{ ﬁzerindeki etkisi

azaltilabilir.

Uyarlanir bir sistemde, sﬁzme iglemi gelen isareté bagli olarak
paramétreleri kendi kendine >ayarlénan slizgeg devreleri ile'yaplllr.“
isaretteki dlizelmenin daha kiga birlsﬁrede saélanabilmesi igin uyarianlr
sizme iglemi zam;n ﬁzayl yverine frekans uzayinda yapllabilir.

- Walsh dépﬁsﬁmﬁ katsayilari yalnizca gergel sayilardan olugmaktadir.
Fourier donisglimi yada diger baska ddniligiimlerle kafsllastlrlldlélnda
Walsh déndsﬁmﬁnﬁn daha az hesaplama iglemi gerektirdigi gOriilmiigtiir. .Bu
galigmada Walsh uzayi uyarlanir sﬁzgeglerin' benzetimi yapllmls ‘ve

benzetim sonug¢lari incelenmistir.

Walgh fonksiyonlari belirli- bir kurala  gbre dizilerek birbirini
takip eaen ve sadece +1 ve -1 dééerlerini alabilen iéaretlerdén meydana
gelmektedirler: Bir- Walsh fonksiyonunun tanimlanabilmesi ig¢in indeks
numé;a51 ve zaman araligi olmak {izere iki de§igkene ihtiyag¢ vardar.

N

Walsh fonksiyonllari Wal(n,t) seklinde yazilmak  suretiyle ifade;

~
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edilmekte olup n indeks numarasini, t de zaman aralidini temsil
etmektedir. Walsh fonksiyonlarinin ilk  tanimlanmasinda siralanig
numaralarini belirleyen etken olarak igaret dedigtirme sayisi g8z Oniine

alinmigtir. Daha sonralari muhtelif Gzellikleri goz Oniline alinarak Paley

ve Hadamard siralamalari yapilmigtair.

Hadamard 51£alama51ndaki Walsh fonksiyonlarinin Orneklenmig hali
Hadamard matrisleriyle de4tan1mlanmaktad1r.'Bu_sgbéple Walsh doniliglimiine
ayni zamanda Hadamard doniisiimii de deﬂilmektedir. Bir fonksiyonun Walsh
"d6nligiimi alinirken ikinin +tam kati herhangi bir sayida Orneklenmig
halinin Hadamard matrisiyie garpimyi Ornek miktaraina boliinilir. Ters
doniigiim alainirkende ayni islem yéplllr ancak Grnekleme miktaflna bdlme
iglemi yapilmaz. Hadamard matgésinigueiemanlarl sadece +1 ve -1 lerden
olustuklaflndan gergekte garpim yérine toplam iglemi yapilmaktadir. Bu
ézélliéi itbariyla iglem kolaylidi saglamasi bir yana sayisal olarak .
gergeklestirilmeye de uygundur. ‘ : o

Uyarlanir siizme igleminde uyarlama algoritmasi olarak en kiigiik
kareler (least-mean square) algoritmasi segilmistir. Bu iglemde rastgele
bir baglangig agirligi segili; ve girig igaretinin bu agirlikla ¢arpimi
" gikig igareti olarak taﬁlmlanir. Clkl§ igaretinin istenen igarete olan .
uygunlugu arastirilir ve o andaki uygunsuzlugu giderecek‘ ybnde bir
diizeltme adarlik {zerinde yaélllr. Dederi yeniden belirlenmig olan
'aglfllk bir sonraki iglemde g?ris igaretiyle garpilir ve en uygun ¢oziimil

bulmaya galigarak bu iglemler devam eder gider. -

7/

!

Benzetim baglangicinda programlama dili olarak FORTRAN .seqilﬁié'

<
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ancak grafik neticeler elde edebilmek amaciyla daha sonra BASIC dilinde
program yeniden dlizenlenmistir. Cesitli igsaretler ig¢in benzetim
sonuglari gazlenmis ve bunlardan bir kismai sonuglar kisminda

sunulmustur.

Beyai giridltli ( white noise ) tarafindan bozulmus olan bir siniis
isaretinin iyiiestirilmesi uyarlama adim . geniglidi 0.005 allndléinda
ortalama 60 adaim sonucunda basarilmis ve gﬁrﬁltﬁnﬁn‘ genliginde vyaklasik
30 dB 1lik bir azalma saglanmigtir. Karesel 'b;r iéarétin lizerindeki
glrtltiiniin temizlenmesinde isé daha iyi sonuglar elde  edilmistir.
‘Uyarlama adim genisliﬁi 0.0025 olarak seg¢ildiginde yaklagik 40 adim
. sonunda isarétin iyiiesmesi saglanmig ve genelde‘40 dB nin ﬁzerinde‘ bir
gﬁrﬁitﬁ bastirimi saglanmigtir. QYaFlamanin saglanmasindan sonra hata
genligindeki degismenin 8 -dB den daha az sinirlar iginde o©oldudu
gbzlenmistir.

- Baglangi¢ agirliginin yaklnsama Aﬁzerindeki etkisi arast;r;lmls,
kiiglik baslahglg' éélrllél‘seqildiéinde daha iyi yakinsama etkinliéi elde

edildigi goriilmligtiir.
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I. INTRODUCTION

The problem {of detecting a signal and its paramaters finds
applications in.. signal processiné systems such as radar, sonar,
biomedical,.digital commununications, etc; In many cases, the presence
of noise which is inevitable brings out serious problems. Subtracting
noise from a received signal would seem to bé a dangerous procedure. It
could result in an increase in output noise ‘pAWer’ if it is done
improperly. However, when subtraction of noise from a received signal is
controlled by an adaptive algorithm which‘does not require statistical
information about the received signal, noise reduction can be performed
Qith little risk of distofting the signal or increasing the output noise .

“a

level.

In an adaptive system, enhancement of the output signal can be
-berformed aftér many operations. In order to obtain rapid convergéﬁce;
adaptive filtering can be done in a transformed domain rather then; time
domain. The Walsh transform of a signal consists of only real numbers.

" This brings less computational requirementsk in comparison with othér

transform techniques, such as Fourier transform.

The main objective of this study is to set up a computer  model of
Walsh domain adaptive filter and investigaterthe performance of it for
the signal enhancement problem.

Walsh functions are completé and orthogonal functions ahd they are

characterised by assuming only two states +1 and -1, thus matching the’

<



behaviour of digital logic. When the sine functions are used to analyze
time variable circuits, they often lead to unnecessary complications. It

was found that Walsh functions were excelléntlyAsuited for the analysis

of ‘sampled signals'and the design of equipment for such signals.

In chapter II we mainly deal with the Walsh functions and Walsh
transforms. It has been shown that the Walgh functions were originally
suggested, in a different manner, by Hadamard 7;£ firsff Aithouéh the
Walsh functions are ordered according to the number of zeré crossings.
for the first time, they can be ordered in some different‘ ways. The
. orderings and the relationship between them are investigated. When the
Walsh functions are ordered in Ha@amafd order, Hadamard matrices
represent the sampled version of thgfwalsh functions.’

We can obtain the Walsh transform ofka function by multipliy%ng, the
sémpled version of the function with‘the Hédamard ﬁatrix of appropriate
order followed a division of sample numﬁér. The sample number éhould be

taken as an integer power of two.

The basic concept , of adaptive filtering and transform domain
adaptive filtering are introduced in chapter III. The subject of
adaptive processors has been a research topic since the 1960s and these
have subsequently been appliedj in many practical systems mainly as
adaptive filters. :Conventional signal processing systems for the
extractionv af .noise from an. incoming signél such as a matched filter

- . A

operate in an open loop fashion. That is, the same processing function

is carried out in the present time interval regardless of whether that

N



function produced the correct resul; in thé preceeding time interval. In
other words, chventionalv signal processing technigques make the basic
assumption that éhe éighal degradation is a. knéwn and time invariant
quantity. Adaptive processors,’on the other hand, operate with a closed
loop arrangement. The incoming signal‘ is filtered or weighted in a
programmable filter to yield an output wh%ch is then compared against a
desired, conditioning or training, signal £o yield an error signal. This
error is then used to update the processor Weigh;f;g paramaters using an

algorithm such that the error is progressively minimized, 1i.e., the

processor output more closely approximates to the training signal.

Adaptive filters are concerned with the use of a programmable
filter whose frequency response or -transfer function is altered, or

adapted, to pass without deg}adation the desired components of the

signal and to attenuate the undesired or interfering signals, or to

N '
/

feduce any distortion on the input ‘signal. In an adaptive system an
ab;olute minimum of a priori information is necessary about the incoming
signal. The adaptive filtef operates by estimating the statistics of the
incoming signal and adjusting its own response in such a way ag to
ﬁinimize some cost function. This cost function may be derived in a
number of wayé dependingron the intended application, but normally it is-
derived by the use of a secondary sigqal source or conditioning input.
This secondary signal’input may.be defined as the desired outéut of the
filter. In this case; the task of the adapﬁive algorithm is to adjust
the ‘weights\\in' the programmable filter dgbice in such a way as to
minimige tﬁe/aifference betweeh the £ilter outpu£ and the secondary

s

input.



The common realisation of %n adapti&e filter is a transversal
filter 'where -the weights are updated iteratively using an adaptive
algorithm. In theRtraﬁsfbrmed domain application,'the adaptation is done
in a transformed - domain brather ‘than in the time domain. In the
transformed domain adaptatioh, the incoﬁing data is processed in blocks
and adaptatioﬁ is done once for each block. By this way, the input data
block is convertea from serial into parallel form. Thus, the transform
domain filter cgn be thought of as 1 tap ;f;nsVersal filters in

parallel.

‘The computer simulation of the Walsh domain adaptive filter 1is
rintroduced in chapter 1IV. Programming language was FORTRAN at the:
beginning of the study. In order to evaluate graphical results it was
rewritten in BASIC., The coﬁéﬁter.uprograms are applicable with RADIO

SHACK TRS-80 MODEL 16 digital computer.

\The results are investigated through an extensive simulation  study
witqﬁ many types of input signals. The convergence behaviour of the Walsh
doméin adaptive filter studied with sine and square waves are given \in
chapter V. The . enhancement of a sine wave corrupted by white noise is
.performed after about 60 iterations with an adaptive step size of 0.005.
The reduction 1in the noise amplitude is generally greater than 30 d@B.
Better convergence performances - are obtained £for the squére wave
application. The enhancement of é square wave -corruted by white noise is
perfotmed after aboﬁt 40 1iterations with an"adaptive step size‘ of
. 0.0025. After the adaptation is completed the variation in the

amplitude of the mean-square error is less than 8 dB. The -value of the

«



adaptive step size is changed automatically according to the power of
the input signal for the mentioned applications. It has been observed
that small wvalues of the initial weigﬁt are necessary for better

convergence performance.



I1. WALSH FUNCTIONS AND WALSH TRANSFORMS
2.1 INTRODUCTION TO WALSH FUNCTIONS
V.

The basis fdf the development of electrical engineering in many
areas is va system of sine and cosine functions; Whenever the term
frequency is used, reference is madé implicitly to thesevfunctions. This
is due to the desirable properties of freqﬁéncy domain representation of

A N

a large class of functions encountered in the thedretical and practical

aspects of engineering design.

In recent years more dgeneral classes of complete systems of
orthogonal functions have been used for theoretical investigations as.
well as equipment design. Furthermore, semiconductor devices have made

et

it. possible to use linear. time variable circuits instead of linear

~ time-invariant ones. While sine and cosine functions have indisputable

~

advantages for linéar time-invariant circuits, they often lead to
unnecessary éompliéations if +they are used to analyze time-variable
vcircuits.l With the application of digital techniques and semiconductor
technology to the area of electrical systems, the Walsh functions have
come ' into use since they are charaéteriséd by assuming only two states,

thus matching the behaviour of digital logic.

Historically, the Walsh functions were defined in 1923 by the-

American mathematician J. L. Walsh, These functions formed a complete

orthonormal‘set taking only two values +1 and -1. Almost at the same

time . (in 1922), but independent of Walsh, the German mathematician, H.

Rademacher, presented another set of .two 1level orthogonal functioné,«

[N



’ which were founq 1éter to form gn incomplete but true subset to the
Walsh functions.

In_his original paper [1], Walsh gave a,recursive definition of the
Walsh funtions.that orders the functions acéording to the average number
Vof zero cros;ings in the time intérval. In 193&, an entirely different
.definition of the Walsh functions was described by R.E.A.C.Paley [2,3].
His definition is based on finite.products‘of Rademacher functions and

the order obtained was quite different from that of the Walsh.

'A much earlier approach to the ‘Walsh function’s ’definition is
" through the application of certain orthogonal'matrices, containing only
the entries +1 and -1, and known as Hadamard matrices [4]. Tﬁe Walsh
functions obtained througp;‘HadAAafd matriéesi repreéent another érder
which will be éxplained later.
.
- A new theory is not generally accepted unless its-advantages pan be
demonstrated convincingly. In engineering, a convincing demonstration
means' a working equipment. Walsh functions were virtually completed by
the 1930°s. However, publications referred to enéineering ahd other
applications did not appear until semiconductors and the digital
computers had come into use. The theéry of Walsh functions related to
practicél engineering problems‘ is still being developed.. The recent
areas of applicatioﬁ are{ ‘electromagnetic radiatign, radar systems,
rmultiplexing,;‘ déta processing, voice communications, pattern

recognition, random access communications, . TV picture processing, and

seismic event detection [5,6,7,8].



2.2 RADEMACHER FUNCTIONS

Rademacher functions are an incomplete set of orthogonal functions.

They were developed in 1922 by the German mathematician H. Rademacher.

R(O,t)

R(1,t)

R(2,t)

R(3,t)

R(4,t)

k 4
pr

0 0.5 4
Figure 2.1 A set of Rademacher functions

<



They represent a series of fecténgula: pulses or square waves having
unit mark—space ratio. The first £five of them are shown in Fig.2.1. The
Rademacher funct%on of index n is denoted by R(n,t). Thus, they have
two arguments n and t such " that R(;,t) has '2n—1 periods of

séuare—wave ovef a normalised time base 0 <;t.<;1. The first function,
R(O,t), | is equal to 1 for fhe entire interval. The next ~and
subsequent functions are square waves and their amplitudes are limited

between +1 and -1 [8]. : J
They can be derived from sinusoidal functions, as

R(n,t) = sign(sin(2™nt)) (2.1)
The generation of Rademacher functions may be obtained from-a sinusoidal
waveform of appropriate frequency by amplification £followed by hard
limiting. They are important principally since the Walsh functions' can
be derived from them.

’

2.3 WALSH FUNCTIONS

The term frequency'is defined as the parameter f that distinguishes
the functions cos2nft and sin2nft. Generally, practical interpretation
of f is £he number of cycles per second. The general definition of
frequency can be given as éne—half the average number of zero-crossing
/per second. \garmutﬁ introdﬁced the term .sequency to describe the
genérélised ) frequency. He applied the terﬁ sequency to describe

functions whose zero-crossings are not uniformly spaced over an-.
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interval, and which are not neceésarily periodic [9]. The definition of
sequency coinqides with the definition of frequency when it is applied
to sinusoidal funttidns; Then, the sequency of a periodic function
equals one-half - the number of siénvchangesvper period and the sequency

of an aperiodic function equals one half the number of sign changes per

unit time.

The incomplete set of Rademacher functions wasf‘completed by Walsh
‘in 1923, to fqrm the complete set of rectanéﬁlar functions known as
. Walsh functions; Walsh functions form an ordered set of rectangular
waveforms taking only two amplitude values +1 and -1. Unlike Rademacher
functions, the Walsh rectangular waveforms do not have unit mark—épace
ratio. They are defined over a limited time, T, known’as the time(base:
Like sine-cosine functions, “two 'érguments are required for éomplete
définition [10]. These are, a time period, t, (usually gormalised to the
time base as t / T ) and an ordering number, n, related to sequency. The

function is writtgn as
Wal(n,t) ‘ (2.2)

The Walsh functions can be defined by a difference equation rather than
a differential equation. In terms of Rademacher functions they can be
defined as

m+1 :
Wal(n,t)-= -I l gi_1R(i,t) : (2.3)
i=1 '

/

where n is expressed as a binary number

<



Wal(0,t)

Wal(1,t)

Wal(2,t)

Wal(3,t)

Wa1(4lt)

Wal(slt)

Wal(6,t)

Wal(7,t)

|

e 3

" FIGURE 2.2

A set of Walsh functions-(

N

-

A 4
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_ m -
n=b2t 4 b 20 4 L b2 (2.4)

and g is the Gray code equivalent of the binary decomposition of the
number n. The first 8 ones of Walsh functions arranged in increasing
value of the number of zero crossings are shown in Fig.2.2. As it is

shown in Fig.2.2 Walsh functions are symmetrical about their mid or zero

point. ‘ 7 )

The produét of any two Walsh functions yields a third Walsh

function [11].

Wal(i,t) . Wal(j,t) = Wal(k,t) | (2.5)

where

-~ -
ran

k=103 (2.6)

The sign ® represents modulo-2 addition, and modulo-2 addition is a

Binary addition with no carry, as

Since the modulo-2 addition of a number with itself is equal to zero,
the product of a Walsh function with itself yields Wal(0,t) written

as
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Wal(i,t) . Wal(i,t) = Wal(0,t) ) (2.7)

Since, Walsh functions are complete and orthogonal

. Cif i=j
Wal(i,t). Wal(j,t) dt = « ‘ (2.8)
O 0if ifj

Since C=1, for the case where i=j, Walsh functions are said to be an

orthonormal set f111.

2.4 FUNCTION ORDERING

The set of Walsh functions 1is generally classified into three
groups [12]. These groups differ. from one another in such a way that-
their appearances having the same index number are different. The three

types of orderings are; Walsh ordering, Paley ordering, and Hadamard

ordering.

2.4.1 WALSH ORDERING

This is the ordering which was 6rigiﬁally defined by Walsh. In this
order, the fuqctions afe arranged in increasing number of zero crossings .
(Eig.z.é). It hés the advantage of having resemblance of the sine and
cosine functions when we defihe Cal and Sal functions [13], as

Cal(n,t) = Wal(2n,t) : (2.9a)



Wal(0,t)

Sal(1,t)

Cal(1,t)

Sal(2,t)

Cal(2,t)

sal(3,t)

Cal(3,t)

Sal(4lt)

|
| ]

v
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Sal(n,t) = Wal(2n-1,t) . : | (2.9b)

Using the two equations above , the first 8 ones of the Walsh functions
are shown in Fi§.2.3..It is appea:ent from'Fig.é.Z that the sequency of
a Walsh functibn.is greater than the sequency of the preceeding Walsh
function and has exactly one more zero crossing in the same time

interval.
2.4.2 PALEY ORDERING

‘ We can evaluate this ordering when we obtain the Walsh functions
from Rademacher functions. It 1is stated that the Walsh tfansforms
possess a better convergence when they are arranged in Paley order [12]..
The relationship between Walsﬁ andiPaley orderings can be formalised as

-

Pallg(n),t] = Wal(n,t) ) (2.10)

where g(n) is a function based on the Gray code. If we consider the

Binary equivalent of order number, n, as

n = ( bml bm_1l (2.11)

b1, b0 y 2

then g(n) can be evaluated as

g, =b, ®b, . ’ _ (2.12)

7

Thus, for n=6 we obtain g¢=5 and we can write
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Pal(5,t) = Wal(6,t)

The relatibnshipb between Wal and Pal ordering is also
formalised as

Wal(b(n),t) = Pal(n,t) (2.13)
where b(n) is evaluated from Gray code to Binary conversion of the order
number, n. The first 8 ones of Walsh fhhbtibnszin.Paléy.Qrdéf'are shown .

in Fig.2.4.
2.4.3. HADAMARD ORDERING

The set of Hadamard ordered Walsh functions is’ obtained when we
evaluate the Walsh functions from the Hadamard matrices [14]. The
relationship betwéen Walsh ordering and Hadamard 6}dering of the Walsh

functions can be formalized as
Wal (g(<(n)>,t) = Wal(n,t) = = : - (2.14)

where g<&(n)y stands fof the bitireﬁersédvyalue of -the Binary - to Gray
code conversioh.of the order nuﬁber n. Thus, in é seqﬁence consisting of
8.eleménts, for n=1 we get b(n)=001 and g(n)=001; After bit :eversél
operation, we get g<(n)>=i00, and this is equal to 4 in deéimal system.

Then, we can write as

/

'walh(4,t) = Wal(1,t)



Pal(O,t)
Pal(1,t)
Pal(2,t) K
Pal(3,t)
Pal(4,t) —
Pal(5,t)
Pal(6,t)
Pal(7,t) | .
s
; —
0 05 - 1
FIGURE 2.4 A set of Walsh functions in Paley orderw
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The relationship between Walsh ordering and Hadamard ordering of a

Walsh function can be formalised as

!
\
\

Wal(b(<n?),t) = Wal_(n,t) L ' (2.15)

where <n)> is obtained from the bit reversal of n and, b(<{n>) is the Gray
code to Binary conversion of {n?. The first:8 ones of the Walsh fuctions

' in Hadamard order are shown in Fig.2.5. ' 7 A -

X

One can easily deduce that the relationship between Paley and

Hadamard orderings is simply a bit reversal operation,as
Pal({n?,t) = Walh(n,t) \ . (2.16)

Wal, (<n>,t) = Pal(n,t) ‘ (2.17)

2.5 BIT REVERSAL OPERATION

The bit reversed sequence of a given series can be evaluated
finding the mirror appearance of its sequence number represented in the

Binary system. This can be summarized as,

Decimal Binary Binary Decimal
‘ bit-reversed bit-reversed
.0 - 00 00 - 0
1 01 10 ' 2

5 : 10 _ 01 o1

3 11 : 1 , 3



Walh(O,t)

Walh(1,t)

Walh(z,t)

Walh(3,t)

Walh(4,t)

Walh(Sft)

Walh(ﬁ,t)

Walh(7,t)

' FIGURE 2.5

A set of Walsh functions in Hadamard order

~
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or
Decimal Binary _ Binary Decimal
bit-reversed bit-reversed
0 L - 000 000 0
1 - 001 100 4
2 | 010 ‘ v-o1o 2
3 011 4 110 6
4 100 | 001 1
5 101 101 ¥'~ 5
6 110 011 | 3

7 111 111 7

As it is shown above (the rearrangement is made by taking intq
account the largest sequence number. In this study, the number of data
in a sequence is always -géken ‘as an integer power of twé. The
fear:angement' of a series into bit reversed order can“be made through a
suitable routing in the case‘of hardware\derivation or a bit reversal
software routine. Program-1 is written to rearrange a given se?ies into

bit reversed order. The flow diagram of this computer program is shown

in Fig.2.6. .

2.6 GENERATION OF WALSH FUNCTIONS

The Walsh functions can be_'evaiuated in several different ways,
each of which has its own particular advantages. In this study, we are
going to evaluate the Walsh functions from the product of the Rademacher
functions for the continuous case, and from the Hadamard matrices for

the discrete case.



READ
Nl.x([)

I

A= I-1
IC=1

Y

18{IC)=1

1A= 1D

iC={C+1

f= 1+1 l

=1 -
[6 =N
It=1

: - 16=16.7 2

: I IE= IE+1G%1B(11)

11z 11+

YUE)= X(1)

B

FPIGURE 2.6 Flow diagram for bit reversal operation-
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2.6.1 WALSH FUNCTION GENERATION FROM THE RADERMACHER FUNCTIONS

The Rademacber ‘functibns form an incomplete series having odd
symmetry {81]. fn particular, a complete set of Walsh functions in Paley
order can be obtained from the selected Rademacher function products
[15]. Thé product series for the Rademacher functions is expressed as

) m+1 ’ )
Pal(n,t) = bi_1-R(i,t) (2.18)
1

1=

We have seen that the relationship between’ Walsﬁ and Paley
orderings is simply a Binary to Gray code conversion of the sequeﬁce
number. In order to find the value of bit position i of the sequence
number n to be expressed in the Gray code wé need to add bit i to bit
i+1 of the original binary number. Thu;, from Eq.(2.11), by expressing

n as a string of binary bits and expressing this in the Gray code, we

can write

P -

n = (gm 91 Ipen ctoerer9y 9o ) 2 (2.19)

where

g; = b; ®bsy

Then, we can write

m+1.
Wal(n,t) = T [ (b, ® b, ,)-R(i,t) | (2.20)
_i= . ‘

J .

“If we use 0 instead of -1 in the representation of the Rademacher

o
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functions, this product becomes a modulo-2 summation written as

m+1
Wal(n,t) = @ > (b, ® b,_.)+ R(i,t) (2.21)
Loi=1

Hence, to find Wal(6,t), we first express it in the Binary code as
b(n)=110. Then, by rearranging this in the Gray code we get g(n)=101. As
it is seen from the Gray code equivalent, the second bit position is

equal to zero. This means that (from Eqg.2.20)
Wal(6,t) = R(3,t) . R(1,t)

or (from Eqg.2.21)
Wal(6,t) = R(3,£) © R(2,t)

A gfaphical illustration of this function’s derivation is shown in

-

Fig.2.7.

The hardware scheme to generate any Walsh function with an index ih
the range 0<n $:31 is shoﬁn in Fig.2.8. A Binary counter is used to
generate Rademacher fuﬁctions. The  Binary equivalent b4b3b2b1b0 of the
desiredv inaex, n, is Vloaded into the input register. The Binary

equivalent of the index number n is converted to the Gray code

equivalent 9,939,919 by the modulo-2 adders. The output of the modulo-2

adders controls the transfer of the Rademacher functions through the AND

gates. The output of the AND gates controls the final modulo-2 adder.



R(1,t)
R(3,;t)
Wal(6,t)

- ' . — L

] 0.5 4

PIGURE 2.7 Derivation of Wal(6,t) from
the Rademacher functions
Wal(n,t)

Input
Register

N
Ll

Rs Ry [Rs |Ra|R4

L

———P  Binary Counter
Clock

FIGURE 2.8 ~ A scheme for dgenerating Wal(n,t) from Binary

equivalent of its index number, n

24



25

The output of the final modulo-2 adder is the desired Walsh funétion of

index n.

2.6.2 WALSH FUNCTION GENERATION FROM HADAMARD MATRICES

The Hadamard matrix ié a squaré array whose array coefficients
consist of only +1°s and -1’s, and where its rows (and columns) are
orthogonal to one another. In .a symmetrical Hadamard matrix, it is
possible to -interchange rows and columns'or’tqnéhange the sign of each
element in a row without affecting the orthogonality properties. This
makes it possible to obtain a symmetriéal Hadamard matrix whose first
roﬁ and first column contain only positive 1°s. The matrix - obtained in

this way is known as the "normal form" for the Hadamard matrix [14]. The

lowest order Hadamard matrix _is of the order 2 written as

Higher order matrices, which are restricted to having integer powers of

two, can be obtained from the recursive relationship given by
H =H ®H ‘ (2.23)

where the sign‘ ® denotes the direct or Kronecker product and N is an
integer power of two. The Kronecker prbduct can be defined as the
replacement of each element in the matrix to be evaluated by the matrix
‘H,. e
2" oot ARES
B L
\ T e
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Thus, to evaluate the H4 matrix, we can write as

H =H BH, ' . , : (2.24)

Then, we replace each of the 1°s and -1°s of the matrix in H

2
by the complete matrix qf H2, or by its inverse. Thus, we can
evaluate H4 as

1 1 1 1
. 1 -1 1 -1 .
H4 = ' (2.25)

Furthermore, if we now repléce each element in the H4 matrix by

an H, matrix, we obtain an H, matrix.

H = . 1 ' | (2.26)

Each row of a Hadamard matrix of order N represents a sampled -Walsh

function in the Hadamard order. Program-2 is written to evaluate theé.

<
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Hadamard matrices of any order restricted .having the integer powers of
2. The flow diagram of this computer program is shown in Fig.2.9.
!

2.7 WALSH TRANSFORM
It can be stated that every function £(t), which is integrable,is

capable of being represented by a Walsh series defined over the open

interval (0,1) [11], as

£(t) = aj + aWal(1,t) + aWal(2,t) + ..... ' (2.27)

where the coefficients ‘are given by

1 s ’ : , , _ ,
an = ‘{ f(t).Wal(n,t)dt ‘ (2.28)
0 .
Therefore, we can define a transform pair as o
. 1 )
F(n) = f f(t).Wal(n,t) dt (2.29)
0
and
f(t) = E F(n).Wal(n,t) . 4 (2.30)

n=0

This definition is applied to a continuous. function limited in time
over the interval\ 04§t:4;1. lFor numerical use, it is convenient to
consider a discrete series of N term; which érg set up by sampling the
céntinuous functions at N equally spaced points over the open interval

(0,1). In order that the properties of the continuous and discrete

“



READ, N

AL 1= AR(L1)
All2) = AR(1,2)
A(ZA):AR(Z,!))

1
i
1

Al2,2)= AR(22

-

Y

MTz -1
. 1A= N
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——HALJ)=A RUK, UAULL1D) |
J=Jel | ’ : ‘_ 1z1+1 I
. F N
GT
[1-1 ]
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A
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Lo | ]
o AR(LJ ):HA(1J )
T FLsFLr0.5 FK=FK+0.5 . -
LI=FL KIzFK.

FIGURE 2.9 Flow diagram for hadamard matrix evaluation
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systems should correspond, we must take N éQual to an integer power of
. n . . ' . A
two, i.e. N=2 . The integration shown in Eq.(2.29) may then be
L. :
replaced by summation. Then, we can define the finite discrete Walsh

transform pair as

N-1 Coe
1 ,
X(n) = - E . x(n) +» Wal(n,i) N (2.31)
n=0 .
- i=0,1,2,3,..00000.,N-1
and
. N-1
x(n) = X(n). Wal(n,1i) , (2.32)
n=0

i=0,1,2,3,0000000.,N-1
As it 1is seen appearently, the Walsh transform involves only
additions and subtractions. Therefore it has distinctive advantages in

g

adaptability to digital implementation and also computer analysis. -

’

2.7.1 MATRIX DEFINITION OF WALSH TRANSFORM

A Walsh matrix can: be evaluated from appropriately sampling of
continuous Walsh functions, or directly from the Hadamard matrices.Then,
we can represent the Walsh matrix as W(n), where n is an integer

number. This should have a certain order, N, that must satisfy
n = logz\ N - » - {2.33)

Let a continuous function be sampled over a time interval at>,Nﬂ

~
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equidistant points and the discrete function be represented by means of

a vector x(n), where

x(n) = [ x. x cteerceneces X ]

Then, the Walsh transform of a sampled function can be defined [16], as
X(n) ==« W(n) - x(n) . _ (2.35)

where, the product X(n) is a vector consisting of the Walsh coefficients

as
X(n) = [ X, X x ] (2.36)

The inverse Walsh transform can be defined as

~ 4

x(n) =.W(n) . X(n) (2.37)

In fact, the matrix cited above is the Hadamard matrix in ‘qush
order. In computer applications, it is more convenient to use Walsh
matrix in the Hadamard order ratherlthan any other order. Program-3 is
written to compute the Walsh transform of a given series. To compute the
inversé transformation, TR should be set to -1. Fig. 2.10 shows the flow
diagram of Program-3.

_Example : Let N be equal to 8, and x(n) be.

«(n) = [ 0.7 1.0 0.7 0.0 =-0.7 =1.0 -0.7 0.0 1%



( READ ’
L oTRN, UM 31

~ COMPUTE J
HADAMARD [T HA(L,J) *
MATRIX i
Y
J=1
A4
. Vi) =0
’ I =1
Y
—— VOJ:VU I+ U)X HA(L, 3)
JuT+y
‘T=1.
\f
> U= v : : . ui)=vil) 7 N <

WRITE, ul) |

FIGURE 2.10  Flow diagram for Walsh transform
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Then, the transform coefficients are found as

f : N r 1 [ -
T 1 1 1 1 1 1 0.7 0.0
T =11 -1 1 -1 1 - 1.0 0.6
T 1 =1 =1 1 1 =1 = 0.7 0.25
. T -1 -1 1 1 -1 -1 71 0.0 0.0
X(n)=—§— ) =
T 1 1 1 -1 -1 -1 -1 -0.7 0.0
T -1 1 =1 -1 1 -1 1} |'-1.0 -0.25
1T 1 -1 =1 -1 -1 1 1 -0.7} 0.1
1 -1 -1 1 -1 1 1 - 0.0 0.0
- o L - - J

In order to verify that the transformation in Eq.(2.35) is unique,

we substitude X(n), in Eq.(2.37) to obtain

. - - - - -
1 1 1 1 1 1 1 1 0.0 0.7
1 - 1 -1 1 -1 1 -1 0.6 1.0
11 -1 -1 11 -1 -1 0.25 0.7 o
1 -1 -1 1 1 -1 -1 1 0.0 0.0

x(n)= ' =

1 1 1 1 -1 -1 -1 -1 0.0 -0.7
1 -1 1t -1 -1 1 -1 1 -0.25 -1.0
1 1 -1 -1 =1 =1 1 1 0.1 -0.7
1 -1 -1 1 -1 1 1 -1 0.0 0.0

L - L. o - -

2.7.2 FAST WALSH TRANSFORM

 Fast Walsh Transform can. be derived using matrix factoring or

matrix partitioning techniques [14]. Now, we are going to illustrate the

~
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matrix partitioning technique for the case N=8. For N=8, Eé.(2.35)

yields
1 ; . ;
X(3) =5 W(3).x(3) _ , (2.38)
Using Eq.(2.23), W(3) is expressed in terms of W(2) to obtain

1 W(2) W(2) .
X(3) =5 x(3) , - ‘ (2.39)
W(2) -W(2) ) '

Using matrix partitioning it follows that

rx(o) [ _ x1(o)
X(1) 3 it x{(1)
= 5 W2 ‘ (2.40)
X(2) ) x1(2)
X(3) x,(3)
|5 |
x(4) | x,(4)
.X(5) 1 _ x1(5)
= W2 (2.41)
X(6) XI(G)
X(7) | x,(7)
h ” b o
where
x, (1) = x(1) + x(4+1) . (2.42)
i=0,1, 2, 3 '
' 'x1(1)' = x(1-4) - x(1) - ' S (2.43)
1=4,5,6,7
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The sequence of additions and subtractions in Eqgs.(2.40) and (2.41) are

shown in the signal flow graph in Fig. 2.11, and are indicated by

Iteration # 1.;Again,vthe application of Eq.(2.23) to Egs.{2.40) and

(2.41),results\

1 x(0)
X(1)
X(2)

X(3)

o

X(4)
X(5)

X(6)

x(7)

-4

From matrix partitioning indicated in

in

At
& Hwn
S [me
8w

{x(O) 1
=—8-,- W(1)
x{1) x1(1)
x(2) 1 x1(0)
_J ol L
ECH [ %, (4)
=—8-- W(1)

x(5) x1(6)
[« (6) , rx1<4)
=-§—- w(1)

x(7) x, (6)

w(1)

- -W(1)

W(1)

-W(1)

xl(O) + x1(2)

x1(3)

x1(2)

x1(3)

31(5)

x1(7)

x1(5)

x1(7)

-

-y

4

x1(())-1

.x1l1)
’ x1(2)
x1(3)

f
x1(4)W

x1(5)

x1(6)

31(7)‘

>

(2.44)

(2.45)

Eg.(2.44) and (2.45), we obtain

]

wW(1)

L

W(1)

wW(1)

L

— W(1)

L

x2(0)

x2(1)

x2(2)

x2(3)

x2(4)

x2(5)

x2(6)

x2(7)

-

-

-

o~

(2.46)

(2.47)

" (2.48)

(2.49)
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Iteration.# 1 Iteration # 2 | -“Iteration # 3 _;_
x(0) % (0) _ %, (0) %, (0)——— X(0)
x(1) —\ >, (1) %, (1) %5 (1) ——> X(1)
x(Z)\\/ ».x1(2) 153(2} > X(2)
x(3) x1(35, x3(3)—~——9—-x(35

x(4) x1(4) x3(4)——-—+—X(4)

x3(5)—-——+¢- X(5)

F %4 (6) s X(6)

x3(7)————+—-x(7)

x(7)
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The sequence of additions and SUbtractions in Egs. (2.46) through (2.49)

are indicated by Iteration # 2 in Fig. 2.11. Since
W(1) =

these equations reduces to

X(0) =%[x2(0) " x2(1)]=-18—x3(o)

X(1) =%[xé(0) - 32(1):‘=%-x3(1)

X(2) =-:3-:x2'(2) + x2(3): =& %,(2)

X(3) =%:x2(2) - x,(3) =’,%-x3(”3)- 50
X(4) =-%-Lx2(4) ¥ x2(5):"'=-;—x3({1)

X(5) =—;-|3-Lx2(4) - x2(5)j=-:§-x3(5)

X(6) =-;-[x2(6) 4 x2(7)j=—;—x3(6) o
XH)=%P#65—%Ui=%ﬂﬁﬂ

The sequence of additions and sﬁbtractions .in Eq.(2,50) " are
indicated by Iteration # 3 in Fig. 2.11. From the signal flow graph, it
is apparent that ap#rt‘ from the 1/8 multiplier, only vadditions and.
subtractions are performed. The number of additions and' subtractions

required td compute the eight Walsh Transform coefficients is

8.10g,8 = 24.

It sﬁoald be mentioned that there is a drowback with the Fast Walsh

Transform. Since the Hadamard matrices possess a simple recursive

~
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formula, it is necessary to rearrange_the input into bit reversed order
before the transformation. The output coefficients are in bit reversed
order compared wiﬁh the coefficients of an increasing ordered sequency.
Therefore, thg ‘6utput needs the rereversi;g of the bits to reorder the

coefficients in increasing sequency [17,;18].

Program-4 is written to compute the Fast Walsh Transform of a
-sampled function. The number of data in the array to be transformed
should be an integer power of two. The flow diaéram of Program-4 is

shown in Fig. 2.12.

Generally, for the case N=2" the following remarks can be made:

R

- :

1. The total number of iterations is given by n=logzN. 1If IT is
an iteration index, then IT =1, 2, 3, ceeeess Do

2. The I'I‘Er—l iteration results in 2IT_1 groups with

N/ZIT—1 members in each group. Half of the members in each group are

associated with an addition operation, while the remaining half are

associated with a subtraction operation.

3. The total number of arithmetic operations to compute all of the

transform coefficients is approximately NlogzN.
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fIéURE 2.12 Flow diagram for fast Walsh transform
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ITI. ADAPTIVE FILTERS

3.1 ADAPTIVE PROCESSING
t;f
Conventiopal signal processing systems for the extraction of
information from an incoming signal, such as matched filters, operate in
an open-loop fashion, Fig.3.1. This means that, the same processing
function is carried out in the present time interval regardless of

whether the resulted output is correct in the preceeding time interval.

Input Output
signal : _ signal
> Processor P

o

Figure 3.1 Open-loop processing system

An adaptive signal processing system can operate in an open-loop or
in "a closed-loop fashion with respect to the processed signals. In an

open-loop adaptive signal processing system, the processing function

Input . 7 Output
signal ’ ' signal
> > Processor >
- Other '(
data re Adaptation-
et @lgorithm

figure 3.2 Open—léop adaptive processing system
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changes while the incoming signals change, Fig.2.2. The incoming gignals
are applied to a computational algorithm ana the results are used to set
the adjustments oﬁ,the édaptive system to improve the output signal
characteristics..‘In Aa élosed—loop adaptive signal processing system, on.
the other hand, the adjustments are changed by procesing both the inputs
and resulted signals to optimize the éystem performance. A closed-loop

adaptive signal processing system is shown in Fig. 3.3.

Input. | A ‘ Gutput
signal Processor ‘signal
— > > >
Adaptation
algorithm
A
Other .
data > Performance .
> calculation]

Figure 3.3 Closed-loop adaptive processing system
3.2 ADAPTIVE FILTERING

The usual method of esﬁimatihg a signal corrupted by noise is to
pass it through a filter that tends to supress the noise while leaving
the signal relatively. unchanged. Subtracting noise £from a received
-signal would seém to be a dangerous procedure. It cohld result in an
increése in odtpu£ hoise power if it is done improperly. If, however,

filtering énd subtraction are controlled by an appropriate adaptive
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Primary _ System
input : output
Signal S +f—\ . R
source n - 2;;/ 4 ” =
0 —
A
Filter
output
Y
A |
Noise . Adaptive _>J Y
source b n 4 fFilter .
1
Reference ' { i )
input ’ .- EBrror

Figure 3.4 Adaptive noise cancelling system

-

'proéess, noise reduction can be_performed with little risk of distorting
the signal or increasing the output noise level. Fig.3.4 shows the basic
'problem and the adaptive noise cancelling solution to it. A signal,” s;
is transmitted' over a channel to>a sensof. This sensor also receivés a

noise, n uncorrelated with the signal. The combined signal and

ol

noise form the primary input to the canceller. A second sensor receives

another noise, n uncorrelated with the  signal but correlated in

1’

. same unknown way with the noise n,. This sensor = provides the

reference input to the canceller. The noise n, is filtered to

1

produce an output, y. This output is subtracted from the primary input

s + ny to produce the system output.

'e=s+'n0/'—-y ’ . (3.1)
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Assume . that s, Dys 0, and y are statistically stationary

and have zero means. Squaring Eq.(3.1); we can obtain
_ 2
e” =s" + (n0 -y )T +2s (n0 -y) ’ (3.2)

Taking expectation of both sides of Eqg.(3.2), and taking into account

that, s is uncorrelated with n0 and y; it yields

E[e2]

E[52] + E[(no - y)2] + 2 E[s(n0 -y)l

E[s?‘] + E[(no - y)2] : (3.3')

The signal power E[sZ] will be unaffected as the filter is adjusted
to minimize E[e2]. Accordingly, the minimum output power is

min E[ez] = E[szl + min E[(n0 - y)2] . (3.4)

~ .
i

When the filter 'is adjusted _50 that E[e2] is minimizéd,
E[(no-y)2] is also minimized. Adjusting of adapting the filter

to minimize the total ocutput power causes minimizing the output noise
power. Since the signal at the output rémains constant, minimizing the

total oﬁtput power maximizes the output signal-to-noise ratio [19].

As it is seen from Eq.(3.3) that the smallest possible output power

is E[e2] = E[sz]. When this is performed, we get

7
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Input
signals Weights
x(3) W(3)
x1(3) > ) ——
w1(])
Xz(]) > >
. wy(3) | .
y(3) = W (3) X(3)

' . Output
. 7 signal
. Error.

} a . . )
. e(3)=d(3)-y(3)
xn—1(3)
xn(J)

Figure 3.5 Adaptive linear combinatorial system

Therefore, y = ng and e = s. In

this

case, minimizing the output

- power causes the output signal to be noise free.

3.3 ADAPTIVE FILTER OPERATION

The andlféis of the adaptive filter can be developed by

the adaptive linear combinatorial

~

considering

system shown in Fig. 3.5. In the ;
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system shown in Fig. 3.5, a set of stationary input signals is weighted

and summed to form an output signal. The input signals in the set are

assumed to occur simultaneously and discretely in time. The jth sét
of input signals-can be represented by means of a vector X(j) as
o v (4 . ’ ‘ . T
X(3) [ x1(3) Xz(j) Ceerenenn ceeenn xn(J)*] (3.6)
The set of weights can be represented by the vector W(j) as
N . . .

w(j) =1 WI(J) w2(j) Ceeeeeeanaenens wn(J) ] (3.7)

Then, the output is
n : :

y(3) =, wi(j)oxi(j) , , (3.8)

i=1 ‘
This can be written in matrix form as
o T, . T, . : | '

v(3) = W (3), X(3) = X (3).W(3) (3.9)

. oy s . .th . )
Assuming that d(j) is the desired response for the j set of input
signals, the error at the jth time is written as

. . T, . . -
e(§) = a(j) - y(3) =da(j) - w (3).%X(3) : (3.10)

-The square of this error is

e2(3) = a2(9) - 2 a(3) X (LW + W), X03) XT0H) . W) (3.11)
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The expected value of e2(j) is the mean-square error.
2., A2, . T
Efe™(3)] = d"(3) - 2 #(x,d) W(3) + W (3) B(x,x) W(I) (3.12)

Where, @#(x,d) is the vector of cross-correlations between the input

signals and the desired response, and @(x,x) is the correlation matrix

of the input signals [20].

It can be observed in Eq.(3.12) that for sﬁationa}y input s%gnals,
the mean-square error is a second-order function of the wéights. The
mean-square error performance function can be visualised as a
bowl—shaped surface, a parabolic function of the weight variables. The
adaptive filtering has the meaning of:continually seeking the bottom of
the bowl where the error 1; minimpm. The minimum of the mean-square

error function can be found by differentiating Eq.(3.12) with respect ‘to

the weight vector.

VI22(5)] = - 2 Bx,d) + 2 Flx,x),W(5) (3.13) -

‘To find the optimal weigth vector, W. we should set the gradient

LMs

equal to zero. Then, we get

B(x,d) = B(x,x). W o ' \ 7 (3.14)
and

- a) - (3.15)
WLMS =d (x,x)f¢(x )

Eq.(3.15) is thé Wiener-Hopf equation in matrix form. The mean-square
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error can be obtained by substituting Eq;(3.15) into Eq.(3.12), as

A2

a2, T |
&% in = &) - W Bix,a) (3.16)

A

3.4 -THE IMS ADAPTATION ALGORITHM

The purpose of the adaptation process‘ is to find an exact or
approximate solution to the Wiener-Hopf equétidnﬁ_in\pfactice it is not
possible to find a perfect solutidn of . Eq;(3.15) because of the fact
- that an infinite statistical sample. would be required to estimate
perféctly the elements of_the correlation matrices. The IMS algorithm
can be used to find an épproximate solution to Eq.(3.15). This algorithm )
does not even requirevsquariﬂg, avéraging, or .differentiating in order
to make use of gradients of mean—squafe errof functions.

When using the LMS, changes in ﬁhe weight vector are made along/ the

reverse direction of the estimated gradient vector. Accordingly

- 2, . ‘ '
W(i+1) = W(j) - 8.V [8°(D] (3.17)
- Where
W(3j) = Weight vector before adaptation
W(§+1) = Weight vector after adaptation'
¢ = A scalar constant controlling the rate of

~ convergence and stability o<1
~ ‘ . 2 ' .
\7[32(j)]/= Estimate of gradient qf E[e”] = éz with

respect to W, .with W = W(3)

~
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One method for obtainingAthe-estimated gradient of the mean-square
error function is to take the gradient of a single time sample of the

squared error; that is

i
|

Vet =Vie()1 = 2 e(3)- Vie(3)] | (3.18)
From Eq.(3.10)

Viet)] =V [a(3) - W3- X(3)1 = - X(3) l*" S (3.19)
‘Thusf

F122(9)1 = - 2 e($),X(9) = -2 [ d(§) - W (5).X(5) 1-X(5)  (3.20)

e

Using the gradient estimating formula above, the weight iteration rule

given by Eq.{3.17) becomes
W(i+1) = W(j) + 2 Mel(d)-X(J) (3.21)

and the weight vector is obtained by adding the present weight vector to
the input vector scaled by the value -of the error. This is the LMS

- algorithm and the convergence is guarantied only if CA is chosen as

0 < 0=

A max | ' (3.22)

Where is the largest eigenvalue of the input correlation

) max /

matrix [21].
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Figure 3.6 Transform domain adaptive filter

3.5 TRANSFORM DOMAIN IMS ALGORITHM

A block diagram of the transform domain adaptive filter is shown in

Fig.3.6. The input, X, is sampled at N equidistant points to form an

‘input signal vector x(n) where

7 ’ T

x(n) = [ Xy X4 Xy eoevnnnrnanconens gN_1] (3.23)



AN

Then, the input vector is transformed into .another vector, X{(n)

X(n) = [ xo,:\x1 x2 xN_1 ]T ) (3.24)

using an orthogonal transformation, as .

1 -
X(n) = =— W(n).x(n) e (3.25)
N .

where W(n) is a unitary matrix of rank N, That is :

, W(n).WT(n) =NI | (3.26)

The elements of the vector X(n) are multiplied by the elements of

transform domain weight vector

H(n) = [ H) H eevvvneennneeeneeennnees B o] (3.27)

01 N-1

to form the adaptive £filter output, Y¥Y(n). The output and

corresponding error signal are given as

. s ' T
= : cececevssssesses Y 3.28
Y(n) { Yo Y, ¥, . et 1 ( )
and
) B, 1" (3.29)
E(n) = | E0 E1 E2 ceenseesnneenaess By L .
where
Y, = H,X, , ‘ . (3.30)

49

the ’

-

the
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and
E, =D, - Y, ’ ' (3.31)
* i=0,1,2, cocecey N=1
respectively. Eq.(3.31) denotes that, there are N orthogonal error
outputs "'rather than single global'error of the time domain approach. To

minimize this error, the transform domain weight update equation for ‘the

kth iteration can be exressed as -

By ge1 =W o * 2 {x-E, ‘ (3.32)
The system output is given as

y(n) =W (n)-¥(n) - | (3.33)
and the error is

e=d—y (3-34)

~ -,
>

Since the filter 'processes the data in N point blocks, each weight is
updated ' once for each block. This provides superior -convergence

properties by comparison with time domain approach [22,23,24].
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IV. SIMULATION OF WALSH DOMAIN ADAPTIVE FILTER

The implémen@ation pf a transform domain adaptive filter can be
done by transforming the input signal,.multiélying the transformed input
signal by a sefvof stored transform d§main weights, followed by inverse
transform‘ processing. Although this appears at first sight to be more
complicated than time domain prgcessing, the transform domain

application requires many fewer multiplicétion when -the filter length is

large ( e.g., > 16 ).

Simulation of the Walsh domain adaptive filter is made by taking
- into account the transform domain LMS algorithm ( Fig. 3.6 ). The input
signal and the desired response are_accumulated in buffer memories to
form N-point data blocks.“’They' are then fransformed by N-point fast
Walsh transforms. Each of the fast Walsh transform outputs comprisés a
set of N real numbers. The weighted input transform values/ﬁane
subtracted from the aesired response transform values to form N -error:
signals. Thére afe N weights, .and each of them is independently ubdated
for each data block. The weighted inputs form the output rtransfo;m.

‘values and they are fed to an inverse fast Walsh transform operator to

produce the output signal.

A substantial reduction in computation is obtained with the Walsh
domain adaptive filter as compared with conventional time domain

/adaptive filtering. This fact can be demonstrated by examining the

number of multiply operations required to process a fixed amount of
e . A

' daté; To produce N output data points with an N-tap, time domain LMS
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adaptive filter requires 2N2 mqltiplications. To produce the same
amount of output with this Walsh domain éilter requires three N-point
fast Walsh trahsfgrms and 2N multiplications for the weighting and
updating. Then, \the tétal number‘of multiplicafions is 3NlogzN + 2N.
For large filters, the computationél savings produced by Walsh domain

filter is substantial.

Program-5 is written to filter a signal} corrupted by white noise,
adaptively in Walsh domain. Fig.4.1 shows> theleiow diagram of this
computer program. The whole program is given in the Appendix as

'Prog;am-s. It consists of two main parts, one is the basic routine and
the other is the subroutines. Although the filter length can be chosen
as any number being an integer power of’ tﬁo, the computer memory
restricts the maximum -to 64. Because of the plotter capacity, .the

maximum number of iterations is limited at 1600.
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V. RESULTS AND CONCLUSIONS

5.1 ADAPTIVE FILTERING OF A SINE WAVE

The rgsults of the Walsh domain adaptive filtering of a sine wave
are shown in Fig. 5.1. The inputnsignal is a sine wave corrupted by
white noise. Fig. 5.1(b) shows the mean-square error versus iteration
number. As it is shown in Fig.5.1(b), thé mean-square error decreases
very rapidly at first. With an adaptive step ;ize of 0.005, the
gdaptation proceéé is completed after about 60 iterations. After the
adaptation process is completed, the change in the rate :of decrease of
the mean-square error becomes insignificant. Tbe waveforms of the input,
desired, and oﬁtput signals are shdwn in Fig. 5.1(a) for the last
iteration. Although there 1is quite a difference betweén the input énd
the desired signal, the output signal is almost the same aé the desired
-signal. Walsh spectra of the waveforms in Fig. 5.1(a) are shown.in
Fig.5.2. Fig. 5.2(a) shows that there are only a few Walsh transform
coefficients to r;present the desired signal in the Walsh domain. Lots
of the Walsh transform coefficients of the desired signal . are equal or
very close to zero. In order to make the putput noise free, we have to
eliminate the Walsh £ransform coefficiénts of the input signal which are
.not present in the Walsh spectrum of the desired signal, and try to
evaluate/the Walsh transform coefficients of the desired signal from the
Walsh transform coefficients of the input signal. This is performed by
éhe transform domain LMS algorithm. At the begining of the adaptation an

arbitrary value is chosen as the elements of the weight vector (initial

weight). The products of the input signal Walsh transform coefficients-

«
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and the corresponding weight vector elements form the output signal

Walsh transform{ coefficients. After comparing the output signal Walsh
t;ansform cogfficients with the ‘correspogding desifed signal Walsh
transform coefficients, the elements~of an error vector are evaluated.
This error vector is used to update the preseﬁt weight vector elements
and the first iteration process is completed. Then, the updated weight
is used to compute the following butput signal, apd« the same process
goes on. The reduction in the noise amplitude islgenerally,greater than

30 dB. After the adaptation is completed, the variation in the magnitude

of the mean-square error is less than 10 dB.

5.2 ADAPTIVE FILTERING OF A RECTANGULAR WAVE

The results of the Walsh domain adaptive filtering of a _rectaﬁgular
wave are shown in Fig. 5.3. Thé input signal is a rectangular.wave
corrupted b& white ﬁoise. The waveforms of the input, desired and}
output sigsals a;e shown in Fig.5.3(a). Fig.5.3(b) shows the mean-square
error versus iteration number. As it is shown in Fig.5.3(a) ﬁhe effect
of noise on the output signal is eliminated but there is still a
difference between the input and.outbut signal. With an adaptive step
size of 0.0025, the adaptation is completed after about 70 iterations.
At the/end of the last iteration the reduction in the noise amplitude is
greater than 30 dB. After‘the adaptation is completed the variation in
the magnitude of tﬁe mean-square error is generélly less than 10 dB.
Fig.5.4 shows the Walsh spectrum of the desired, input, and output

signal. As it is shown in Fig.5.4, the Walsh transform coefficients of |

the input signal which are not present in the desired signal Walsh
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spectra are eliminated.!Although-they have the~same index number, there
is a difference. between the magnitﬁde of the corresponding desired
signal and the outpué signal Walsh transform coefficients. Because of
the differences between the magnitudes of the desired signal and the
output signal Walsh transform coefficients; the output signal waveform
is not same as the desired signal. Since the whole signal is represented
by only a few Walsh transform coefficients;‘.a small chahge in the
magnitude of any ﬁalsh transform coefficient can éfrongly change the
shape of the output waveform. The difference between “the magnitudes of
the output and désired signal Walsh transform coefficients can be
minimized but there will be always a small error because of the nature
of>the adaptation process.

o

5.3 ADAPTIVE FILTERING OF A SQUARE WAVE

The results of the Walsh domain adaptive_filtering of a square wave’
are shown in Fig.5.5. The input signal is a\square’wave corruptéd by
white noise. Fig.5.5(b) shows the mean-square error versus iteration
number. As shown in Fig.5.5(b) +the reduction in the magnitude of the
mean-squre error is significant. As it is shown in Fig.5.6, a §quare
wave can be represented by only'a single Walsh transform coefficient.
éince there is only a singie Walsh transform coefficient to be evaluated
~after the adaptation, all of: the other Waléh transform coefficients
should be eliminated; After the unwanted Walsh transform coefficients
are gliminated,\'the- output signal becomes noise free. With an adaptive
step .size of 0.0025, the adaptation process is coméleted afﬁer about 40

iterations. The reduction in the noise amplitude is greater than 40 dB.

~
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After the adaptation is ¢ompléted; the variation in the amplitude of the
méan square error is less than 5'dB. The output signal is almost the
same as the desired signal. There is only a small difference between the
magnitudes vof the desired signal and the output siénal. This error is
inevitablelbecause of the nature of the adaptation process. However, the

result is quite satifactory.

5.4 EFFECTS OF INITIAL WEIGHT AND ADAPTIVE STEP SIZE ON

CONVERGENCE CHARACTERISTICS.

The effects of phe initial weight, bias weight, vand the adaptive
step size on the mean—sqdare error are shown in Figs. 5.7 and 5.8. As it
is shown in Figs. 5.2, 5.4, and 5.6; the Walsh spectra of the desired
signal comprises only a feW/Waléﬁ transform coefficients. After setting
an element of ‘the initial weight vector equal to zero, if éhe

~corresponding  Walsh transform coefficient of the desired signal is eéuai
to zero, the relateq Walsh transform coeffidient ‘of the output éignal
' will be directly evaluated without taking into account the Walsh

tfansform‘coefficient of the input signal (3.30).

The choice of the adaptive sﬁep size effects both the number of
“iteration  to complete the adaptation and the magnitude of the
~mean-square error. The adaptive step éize ié chosen empfically for.
optimum convergence in the plots. When the adaptive step size is chosen
very close to 1 no convergence can be obtained. As the value of the
gdaptive step /size decreases the number of iﬁeration to complete the
adaptatiqn increases, but the final valﬁe of the mean square error alsoﬁ ;

decreases. . s
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5.5 CONCLUSIONS ’ . -

After setting ub the computer model of 'thg Walsh domain adaptive
filter, the con?ergence performance: has been investigated through an
extensive stqdy with ﬁany types of input signals embedded in white
noise.‘ Although no rigorous theoretical proof about the convergence
properties has been given, a great deéi . of empricél evidence
illustrating the stability of the Walsh domain adap;{vé filter has been
presented using computer simulations. It should be Eentioned "that the
Fourier transform is favourable’ when we deal with the continuous
waveform analysis. On the other hand, a discontinuous waveform, a
rectangular waveform, is more easily reconstrﬁcted when the - Walsh
transform is empléyed. The Walsh fﬁfansform and its inverse can be
obtained by matrix multipli;;tion using the digital computef. Since the
matrices are symmétrical for the Walsh fransform, ( unlike the Fourier
t;ansform ) theﬁ both the transform andv its inverse aré identicai,
except for a scaling ﬁactor, 1/N. Consequently, the use of Walsh doﬁain
brings out computational savings and easy implementation over the
Fourier dogain techniques.

bk K
The discrete Eourier transform is invariant to the phase of the input
signal so‘ ‘that the same spectral decomposition can be obtained
independently of tﬁe phase or circular timé—shiftvof the ihpgt signal.
Thig is not possible for the discrete Walsh transform.
KSiﬁce the sine and cosine functions cannot be. represehted exactly

by a ‘number of bits, a source of truncation noise is introduced by the

N
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discrete Fourier transform which involves repeated multiplication by a
complex number. The Walsh tfansform, on the other hand, involves only
addition and subtraction and precise répresentation is possible. This
can be interpreted that the Walsh transform does not bring a truncation

noise.

Fér the case of sinusoidal inputs gmbedded in white noise, it has
been shown that many of the Walsh transform coefficients of the desired
signal are equal to zero. This brings out rapid- convefgence performance
when the initial weight is chosen reiatively sﬁéll or very close to

Zero.

Special interest was given to the square waves and it has been
demonstrated that almost a noise+ free output is evaluated when the

"

desired signal is representedrby a single Walsh transform coefficient.‘

The effects of initial weight and adaptiye step size on 'convergenbe'
performance were stgdied in detail. 1If bne sets an element o£>the
initial weight vector equal to =zero, +the corresponding output signal
Walsh transform coefficient can be obtained independently for the input
- signal when the related Walsh transform coefficient df the deéired
signal is equal to zero. Smaller adaptive step size brings small
variations on the magnitude of the mean square error after the

adaptation is completed, but the number of iteration to complete the

adaptation increases.
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5.6 SUGGESTIONS FOR FURTHER STUDY

A hardware implementation of the.Walsh domain adaptive filter is
practical and caJ\ be performed in a further'study. Since the Walsh
transform dependsfon Modulo-2 additioﬁ, it possesses dyadic convolution.
The“effect, of dyadic convolution -on ‘convergence performance can be
invesﬁigated analytically. Further study might concentrate on the bounds
of the adaptive step size which is an open problem in the Walsh domain
adaptive filtering‘for the time being. The effect Ofl;ero intial weight
on the mean-square error should be investigated and,analytiéal results
should be establisﬁed if possible. The initial phase dependency of the

Walsh transform for the case of sinusoidal signal can also. be

ihvestigated analytically.
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APPENDIX.

A number of'programs referred to earlier in the study are given

\
4

here. The programs( are éll written in BASIC for the RADIO SHACK TRS~80
MODEL 16 digital COmputer. Program—1 can bg used to rearrange a series
into bit reversed order. Program-2 is written to evaluate Hadamard
matrices of any ‘order restricted having the integer power of two.
Program-3 ‘can be used to compute Hadamard ordered Walsh transform.
Program-4 can be ﬁsed to compute fast Walsh tfénsfbrm; Computer
simulation of the Walsh domain adaptive filteriné is presented in
Pfograme. The input medium is the keybord of the computer. The output
medium 1is either a printer or a plotter. After the run command,.the
explgnation promts apper where they are nécessary. More specific‘
information about the plottef’comménds_can be found in the user’s manual

of the computer. The important variables of Program-5 are listed below.

D Desired response

DW Transformed desired response

E Errori

N Number of data in one iteration
NB Bit reverse order index

vNM Number of iteration

X Input signal

TR Transform key

U Dummy argument

v Durmmy argqméﬁt.

Y  Output signal

W Weight vector



- 100

110
120
130
140
150

160

176

18@-

196

z0e

210
220
238
240
750
260
270
Z80
290
300
310
320
330
340
350
360
370
380

390

400

410

420
430
440
450
460

470

480
490
500
510

. :r,m
338

540
550
560

570
580
590

600

JA=I-1

REM®® . 'PROGRAM-1 o

REM#*% THIS PROGRAM REARRANGES A GIVEN %%

REM#* SERIES INTO BIT REVERSED ORDER %%

cLs , '
DEFINT I-N

DIM X(3Z).¥{32),IR(10)

PRINTA(10,0),

PRINT"ENTER THE NUMBER OF DATA IN THE SEQUENCE®
PRINT"TO PE REARRANGED INTO BIT REVERSED ORDER".

INPUT"IT SHOULD RBE A POWER OF 2“3

CLS

FOR I=1 TG N

INPUT. X(ID

NEXT I

PRINT"THE ORIGINAL SEUUENCE"

PRINT

FOR I=1 TO N STEP 8 -

PRINT USING" +#dtt# . ##" X (I ) s X{I+1) 5 X(I+2 );X(I+3)1
IF I+43N THEN GOTO 310

PRINT USING"+#### FHY IXCIH4) 3 N(I45) (X(I+6) §X(I+7)
NEXT 1 -
PRINT

FOR I=1 TO N *EIT REVERSE

I1C=1 o
ID=1A/Z o -
IRITIIC)=1 § o :
IF 1A=(ID%2) THEN IB(IC) Q.
IF ID=0 THEN GOTO 4Z

IA=ID

IC=IC+1

GOTO 350

IE=1

1G=N :
FOR I1=1 TQ IC

1G=1G/2

IE=IE+IG*IB(I1)

NEXT It

Y(IE)=X(I)

NEXT I

FOR I=1 TO M

X(I)=Y(1)

NEXT I

PRINT" THE BIT REVERSED SEQUENCE
PRINT

FOR I=1 TO N STEP 8

PRINT USING" -+, #3#" s X(1) 3 XCI+1)3 X(I+ )3 X(I+3)s
IF I+4>N THEN GOTO 400

PRINT USING" +diti. ##" s X(I+4)3 X(I+5) X(I+&)3 X(I+7)'

NEXT 1 ~
END-
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10a
11@
120
130
140
150

. 160

176
180
196
pedruln
- Z1e
220
230
240
250
260
270
280
290
380
310
32

3@
340
25a

360

370

- 380

390

- 4@0

410
420
430
44@
450
450
470

480

450

- 500

51@
b rid i}
.30

540

558
5360
2370
580
590
. &B@
‘610

REM#% PROGRAM-Z e
REM#%% THIS PROGRAM EVALUATES HADAMARD MATRICES —#%
DEFINT I-N '
DIM A(Z\Z’)»HR(S.&.\EZ’) HA(32|3.¢.’ o

CLS sPRIMNTYENTER THE MATRIX DIMENSION *

INPUT”IT SHOULD BE AN INTEGER POWER OF 2 ;3N
Ally1)=1:14(1,2)=1¢ A(’,1>—1:AR41,1)=1 A
AR(1,Z)=12AR(Z, 1)=11A(2,2)=—11AR(Z,2)=~1
MT=~1:IA=N -
IA=1A/2:1IF 1A=0 THEN GOTO 210
MT=MT+1:GOTO 190

NA=Z

FOR M=1 TO MT

NA=NA%Z
FK=1:FL=1:II=1:JJ=1:K=1"

FOR I=1 TO NA '

L=t - :

FOR J=1 TO NA

HACT, J)=ARCK, L) *ACIT, JJ) .

IF JJ=2 THEN GOTO 310
JI=2:GOTO 320 '

JJ=1 S

FL=FL+@.5:LI=FL

IF LI=FL THEN L= L+1 _

NEXT J -

IF II=2 THEN GOTQJWVB
11=2:G0OTO 380 -

I1=1 ,
FK=FK+@.5:KI=FK .

IF KI=FK THEN K=K+

NEXT I '

FOR I=1 TO M . ~

IF M=MT THEN GOTO 450 ,
FOR J=1 TQ MzAR(I,J)=HA(I,J)
NEXT J:NEXT I:NEXT M

CLS :PRINT*THE HADAMARD MATRIX OF ORDER";N
FOR J=1 TO N’WRITE THE DESIRED MATRIX

FOR I=1 TO N STEP 1&:PRINT

PRINT USINGY +####" sHA(IJ) $HACI+1,0) 3§

PRINT USING" +#3H#" iHA(I+2, J) sHAC(I+3,J) 3
IF I+4>N THEN GUTO &00 -
PRINT USING"+####" iHA(I+4,0) 3 HA(I+5 J)s
PRINT USING® +3####" iHA(I+64J) 3 HA(I+7 J)s
IF I+8>N THEN GOTC 4600
PRINT USING"+####"'HA(I+8 J)IHA(I+F, J)1

PRINT USING"+####" tHACI+10,J) sHACI+11,J) 3

IF I+12>N THEN GOTQ 600

PRINT USING® +4HHHE" tHACT+12, J) §HACI+13,0) %
PRINT. USING" +####" iHACT+14, ) SHA(T+15, )5
NEXT I

PRINT:NEXT J

END .

70



1006
110
120
- 138
140
156
160
170
180
196
200
210
2 e 20
230
240

250

260
z7a
280
290
3060
310

320 .

330
340
350
360

370
380
390

400

410

420
430
440
450
460
470
480
490
500

510
520

536
540

- 5506

560
570

580"
' 590

608
610

620,

71

REM#® % " PROGRAM-3 ' %%
REM#®% THIS PROGRAM COMPUTES THE WALSH TRANSEORM %
REM*% OF A GIVEM SERIES. TO COMPUTE THE INVERSE ¥

REM** WALSH TRANSFQPH TR MUST BE SET TO -1 *%
DEFINT I-N |
DIM AL{Z42),AR(3Z2y32),HA(32,32),X(32),Y(32

CLS1INPUT"ENTER T "ITR
INPUT"ENTER THE NUMBER OF DATA"'N
FOR I=1 TO N:IMPUT X(I):NEXT I
GQOSUR 340

FOR J=1 T0O N:iY(J)=0

Y{J)}=8:FOR I=1 TG N
Y{T)=Y(T)HR{I)¥HACTJ)

NEXT I:NEXT J

IF TR=-1 THEN GOTQ 270

FOR I=1 T¢O N'X(I)=Y(I)/N'NEXT I
GOTO 280

FOR I={ TO NiX{(I)= Y(I) NEXT I

FOR I=1 TO. N STEP 8

PRINTUSING® +34dh. $4HEY $ X (1) 5 X(I+1) X(I+2) 5X(1+3) 3
IF I+4>N THEN GOTO 330
PRINTUSING"+###.####"_X&I+4),X(I+5),X(I+6)$X(I+7)
NEXT I ' '

END

Al 1)=1tA(1,2)=11A(2 11) 17ARCY, 1)“1
ARCL,2)=12AR(2, 1)=1:A(2,2)=~11AR(Z,2)=~1
MT=-1:{IA=N

IA=IA/Z2:IF 1A=0 THEN GOTO a?@
MT=pMT+1: GOTO 370

Na=Z
FOR M=1 TQ MT P
NA=NA®Z

FR=1:FL=1:11I= 1:JJ=1:K=1

FOR I=1 TO MA:L=1

FOR J=1 TO NA .

HAC(T v J)=AR(K, L) *A(IIJJ)
IF JJ=2 THEN GOTO 48@
J—”:GOTO 490

JJ=1 o

FL=FL+@.5:LI=FL o / : .
IF LI=FL THEN L=L+1 :
NEXT J

IF II=2 THEN GOTQ 540
II=2:GOTO 550

II=1 '

FK=FK+@.5 :KI=FK

IF KI=FK THEN h h+1
NEXT 1~

FOR I=1 TGO N ’

IF M=MT THEN RETURN

FOR J=1 TO N:iAR(I,J)=HA(I,J)
NEXT JiNEXT I:INEXT M ‘
RETURN



100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
z70
280
290
300

310"

320
330
3408
250
360
370
380
390
400
410
420
430
448
450
460
478
480
490
500
510
52
- 536
340
550
560

..5378

- 580
590
o500
L 610

- &Z0
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REM# % ' PROGRAM—-4 | ¥
REM** THIS PROGRAM COMPUTES FAST WALSH %=

'REM%% TRANSFORM OF A GIVEN SERIES. TO COMPUTE #*#%

REM%x* THE IMNVERSE WALSH TRANSFORH SET TR~~1 K1
CLS:DEFINT I-N

DIM U(&4)Y.V(64), IB(Z0)

INPUT"ENTER -1 TO GET INVERSE TRANSFORN“ TR
INPUT"ENTER THE NUMBER QOF ‘DATA “3iN

CLS:FOR I=1 TO N:iINPUT U(I)INEXT I

IT=0:1J=NM *TARE LUGARITHN AS RASE 2

IJ=INT(1J/2)

IF IJ=0 THEN GOTO 230

IT=IT+1:GOTO 200

FOR I=1 TO NBIT REVERSE
IA=I-1:1C=1

ID=INT(IA/Z)

IRIT(IC)=1 . |

IF IA=(ID¥Z) THEM IB(IC)=0

IF ID=8 THEN GOTO 310
1A=ID:I1C=1C+1

GOTC 2508

IE=1:1G=N

FOR I1=1 TO IC .

IG=INT(IG/2)
IE=IE+IG*IRIT(IL)

NEXT I

V(IE)=U(I)

NEXT 1 : .
FOR I=1 TO NiU(I)=V(I):INEXT I
FOR Ji=1 TO IT *COMPUTE TRANSFORM
IF Ji=1 THEN JA=1 |

IF J1<¥1 THEN JA=JA%Z

JE=INT (N/JA)

JC=INT(JB/2Z)

AlL=1

FOR Jz=1 TO JA

JE=(J2—1) %JP

FOR J3=1 TO JC

ID=JE+J3+JC: JG=JE+J3
V(JG)=U(JG) +AL*UJID)
V(JID)=U(JG) ~AL*U(ID)

NEXT J3

AL=—AL:NEXT JZ

FOR I=1 TO N:U(I)=V(I)INEXT I
NEXT J1

IF TR=-1 THEN GOTO 570

FOR I=1 TO N:U{I)=U(I)/NINEXT I
PRINT® THE TRANSFORMED SEQUENCE *

FOR I=1 TO N STEP 8:FRINT

PRINT USING" +#$##. ###" UCI) 5 U(I+1)»U(I¢’)1U(I+3)-‘

PRINT USING" +3i3 . $#3H " jUCTI+4) SULT+5) JUCT+6) SUCI+T7)

NEXT I° ,
END . : RS



1006
161a
1eza
1636
1640
1656
150
107@
1080
1096
1160
11106
11z@
113@
1150
11466
117@
11g@a
119@
1206
1210
1220
1230
124@
L1750
1250
1286
1290
1366
13605

131

13412
1314
1315
1326
1338

1352

1333
- 134
1390
1406
1410
1420
1430
1440
1450
14480
1476
148a
1490
12008
1510
1520

© 15306

1340

- 1550

D=0
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CLSZ t REM# %%+ FPROGRAM 5  #%%

PRINT"TO GET A PLOTTER OQUTPUT®

INPUTYENTER Y OQTHERWISE N "iPL$.

IF PLS="N" THEN GOTO 1090

PRINT" PRESS ENTER OR RETYPE LINE 4670 AND 5440 *
PRIMT*TO THE NUMEER OF ITERATION HILL EE DONE"
INPUT® {

PR$="MN" ‘

‘GOTO 1100

PR;&——" Yll
CLS:DEFINT I-N
DIM %{54).Y(64)D(64) DU (H4) U(BAL1) . V(E01)
DIM E{(S@1)W{s4.2) NR{SG), IR(20)
INPUT"ENTER THE NUMBER OF ITERATION " jNM
PRINT
PRIMT"ENTER THE NUMRER OF DATA "
FRINT"IN ONE ITERATION"
IMPUT" &4 z 1& 8 "iN
CLSIPRINT&(S,0),
INFUT"ENTER ADAPTIVE STEP 5175 " 5AR
PRINT
PRINT"FOR VARIABLE ADAPTIVE STEP SIZE"
INPFUT"ENTER 1 OTHERWISE @ “;DS
PRIMNT '
INPUTYENTER INITIAL WEIGHT "jWW
PRINT ' \ :
GOSUPR 2610 .
FRINT&(18,8), -
PRIMT"DESIRED SIGMAL EVALUATION ";
K=N/8 -
FOR I=1 TO NiD(I)=1: NEx1
FOR I=12 TO N )
¥{I)=—1 _ ‘ : ' -
NEXT I ’
FOR I=12 TO N STEPR &
D{II=D{IN*X(I)
DI+1)=D{I+1)%X{1)
D<1+L)—u\1+*>*X(1> :
NEXT .
PRINT™ WALSH TRANSFORM CUMPUTINu (D) "5~
TR=1 :
FOR I=1 TO N :UxI):D(I) SNEXT I
GOSUR 2940 : :
FOR I=1 TO N tDW(I)=U{I) INEXT I
CLS '
FOR J=1 TO NM
CLG1 _
PRINTA(17,@), . '
PRINT"ITERATIOMN MUMBER = ";3;J
PRIMT"DESIRED SIGNAL"S ‘
GOSUR H080 '
PRINT
PRINT" INPUT SIGNAL EVALUATIUN"'
REM ADD SOME NOISE

FOR I=1 TO N



1540
15703
1580
1596
1660
1510
16260
15636
14640

\....'@

1670

1580

1590
1700
1716

1720

1730
174@
1756
1760
1770
1780
1790
18006
1810
1830
1840
1850

1850
1870
188u
1890
1900
1910
1920
1920
1948
1950
1960
1970
19806
1990
200
2010
2020
2030
2040
2050
20560
z2070
z0sa
2090
- 2100
z11e

74

U{I)=RND{17/23)

IF DN<U{I) THEN DN U{I) -

NEXT I -

FOR I=1 TO N tUCI)=UCT) /DN INEXT 1
FOR I=1 TO M :U({IM)=U{I)—.5 :NEXT I
FOR I= 1 TO N :

AZ=U{I)*1.0}

AZ=INT(ATAD)/AQ

X{D)=D{I)+A3

NEXT I . | |
GOSUR &17@ _ ‘ ’
TR=1 : |

PRINT® WALSH TRAMSFORM COMPUTING (X)"3

FOR I=1 TO M :UCI)=X(I) sNEXT I
GOSUR 2940 -
FOR I=1 TO N :X(I)=U{I) :NEXT I
PRINT | ‘
PRINT"ADAPTIVE FILTERING";
IF DS«<>1 THEN GOTO 1800
FOR I=1 TO N’

S1=X(I)#X(I)
U(I)=5%AR/SGR(S1)
NEXT I
GOTO 1810 4
FOR I=1 TO N fU(I)=Z¥AR :NEXT I
FOR I=1 TO N
Y(I)=W(I,1)%X(I)

R=DW{I)=Y{I) ' -

W(I,2)=W(1, 1)+UCT) #%(T)*R

NEXT I- ,

For I=t TO N:w<1,1>=w(1,2):NExT 1

PRINT" $IFOR LL=1 TO 100Q:MNEXT LL:PRINT
PPINT"INVERQE HALCH TRANSFORM CHMPUTING (Y)"' s
TR=~1

FOR I=1 TO M sUCI)=Y(I) :NEXT I

GOSUE 2960

FOR I=1 TO N :¥{(I)=U{I) NEXT I

GOSUER 4250 _

FRINT

PRINT"ERROR COMPUTING";

E(J)=0

FOR I=1 TO N

ER=D(I)~Y(I)

E(J)=E(J)+ER¥ER

NEXT 1.

E(J)=E(J) /N . .

PRIMT" ‘ C M.S.E.= "3E(J);
NEXT J ' ’ ’

PRINT

PRINT" INVERSE WALSH TRANSFORM-COMPUTING (X)";
FOR I=1 TO N :U(I)=X(I) :NEXT I o ‘
GOSUR 2960 R ' '
FOR I=1 TO N :X(I)=U(I) :NEXT 1

IF PR$="Y" THEN GOTO 2280

DE=@ :DD=@ :DS=0 :1DY=0 . B



2196
2130
2140
21568
21560
2170
2186
2190
2200
221@

”3@
2240
2250
2260
2270
2280
2296
2300
231
2320
233a
2340
2358

23460 .

2370
2386
2390
Z400
2416
2420
2430
2440
2450
2460
S Z247TH
2430
L2490
Z500
2510
2520

2530

2540

2550

.&.5"‘@_

2570
2580
”“9@
2500
. 2610
2620
2H30
2640
25656
2560
2670
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FOR I=1 TQ N

IF DD<ABS(D(I)) THEN:DD=ARS(D(I))
IF DS<ABRS(X(I)) THEN DS=ARS(X(I))
IF DY<ARS(Y(I)) THEN DY=ARS(Y(I))
NEXT I ' ’
IF DD<DS THEN DD=D§

‘IF DbD<DY | THEN DD DYy

FOR I=1 TO N

D(I)=D(I)/DD

X(I1)=X{(I)/DD

Y(I)=Y(I)/DD

MEXT I-

FOR I=1 TO NM:

IF DE<E{I) THEN DE=E(I)

NEXT I S
FOR I=1 TO NM:E(I)=E(I)/DE:NEXT I
CLSZ

PRINT&(Z3.@)," "

PRINT"TO DISPLAY THE DESIRED SIGNAL"
INPUT"ENTER Y OTHERWISE N ";AGS
IF AGE="Y" THEN GOSUER 3270

cLS R

PRINT&(Z23,@)," *

PRINT*TO DISFLAY THE INPUT SIGNAL"
INPUT"ENTER Y  OTHERWISE N "3;AGS
IF AGH="Y" THEN GOSUP 3510 :
cLs ST
PRINTR{Z3,0)," * .. B ‘
PRINT*TO DISPLAY THE OUTPUT SIGNAL"
INPUT"ENTER Y OTHERWISE N "j5AGS
IF AGE="Y" THEN GOSUR 3950

cLs

PRINT(Z3,0)," *

PRINT*TO DISPLAY THE RESULT AUAIN "
INPUTYENTER 'Y OTHERWISE - N " ;AGS
IF AGE="Y! THEN GOTO 2280

CLS

PRINTO(ZZ,@)," "

PRINT"TO DISPLAY THE ERROR"

IMPUTHENTER Y  OTHERWISE N "iAGS

IF AGHE="Y" THEN GOSUR 5560
cLs : /
PRINTA(1@,@)," "

PRINT" TG STOP THE FROGRAM EXECUTION®
INPUT"ENTER Y OQTHERWISE N "3;AGS
IF AGH<>"Y" THEN GOTO 2280

LSz :

END ‘

REM *%¥%%SUBROUT INE&% %%
CLS:PRINT(14,0),

PRINT"BIT REVERSE SEQUENCE ";

IT=0 *TAKE LOGARITHM AS BASE Z

I.J=N

IJ=1J/2

IF 1J=0 THEN GOTO 2690 | o
IT=IT+1 A ‘



2480
2690
2700
2716
L.Am

730
274@
2750
2760
2778
Z780
2790

2800

2810
2820
2830
2840
2850
2860
2870
2880
2894

2900

2910
2920
2930
2940
- 2950
C 7960
2970
2580

- 2990

2200
3Q1@
29za
2@a3Q
F2040Q
2050
2060
3070
2090
3094
3100
2118
3120
3138

2140

3150
31460

3178

3180

3190
3200
3210
3z

- 323A

GOTO 2650 ‘
FOR I=1 TO N *RIT REVERSE

IA=I—1

1c=1 ' -
ID=1IA/Z -
IPCIC)=1

IF IA=(ID*Z) THEM IR(IC)=0
IF ID=@ THEMN GOTO 279@
IA=ID ‘
I1C=IC+1

GOTO 2720

1E=1 ‘

1G=M

FOR Ii=1 TOQ IC

1G=1G/2

IE=1E+IG#IP(I1)

NEXT It

NR(I)=IE

NEXT I

FOR I=1 TO M:W(I,1)=WWINEXT I
RANDGM

AD=10000

Al=(360%, a174%329>/m

NP=INT (6407 (N-1))
NL=INT(&40/ (NM=1))

NS=IMT (15007 (N-1))

NME=INT( 1620/ (NM— 1))

RETURN

REM WALSH TRANSFOQRM

FOR I=1 TO N *RIT REVERSE
VINB(I))=U(TI)

NEXT I

FOR I=1 TO N :UCI)=V(I) :NEXT I
FOR Ji=1 TO IT ?COMPUTE TRANSFORM
IF Ji=1 THEN Jda=1

IF J1<>1 THEN JA=JA%Z
JP=INT (N/JA)

JC=INT(JR/2)

AlL=1

FOR Jz=1 TO JA
JE=(J2-1)*%JP

FOR J3=1 TO.JC
JD=JE+J3+JC

JG=JE+J3

V(JGE) = U(JG)+AL*U(JD)
V(JID)=U{JGE) —AL*U(JD)

NEXT J3

AlL=—AL

NEXT JZ2

FOR I=1 TG N

U1 =v(I1)

NEXT 1

NEXT J1

IF TR=-1 THEN RETURN
RR=1.0/N

FOR I={ TO N

76



3240 UCI)=U{I)#RR
3750 NEXT 1 '
3260 RETURN

3I27H REM DISPLAY D
328@ IF PR$="Y" THEN GOTO 3430
3290 CLS:GOSUR 6070
3300 PRINTA(Q.50),"SCALE FACTOR = "3DD

3310 PRINT@(22,@),"TO SCALE THE PAPER "

332@ INPUT"ENTER Y OTHERWISE N "jAG$

33308 CLS _

3340 IF AGS="Y" THEN GOSUP 47 9@

335@ PRINTQ(Z3,Q),"TOQ PLOT THE DESIRED SIGNAL"
336Q INPUT"ENTER Y OTHERWISE N "3AGS

337V CLS

3380 IF AGEHE="Y" . THEN GOSUR 497

3390 PRINTA(Z3.@),"TO CLEAR THE qCREEN"

34@0 INPUT"ENTER Y OTHERWISE N  "j;AGS

3410 IF AGH="Y" THEN CLSZ

3420 GoTo-344@

3430 GOSUR 345

3440 CL° RETHRN

3450 REM PRINT D

3460 PRINT .

3470 PRINT®  THE DESIRED SIGMNAL"

3480 PRINT ‘ :

3490 FOR I=1 TO N STEP &

350Q PRINT USING" -+, ##4# " 5D(I) DCI+1) §D(I+2) iD(I+3) 3
3510 PRINT USING"+4#4Hb, #3844 iD(I+4) 5DCI+9) 5D(I+6)5D(I+7)
3520 NEXT I > .

3530 ILPRINT - .

3540 LPRINT" THE DESIRED SIGMAL"

3550 LPRINT

356@ FOR I=1 TO N STEP 8

2570 LPRINT USING" +##, #3838 sD(I) D I+1) sDCI+2) 5D(TI+3) 3
3580 LPRINT USING” #4844, #4844 " iD(J+4) ;D(I+5) sD(I+6) 5DCI+7)
3590 NEXT I

3600 RETURN

3610 REM DISPLAY X

362@ IF PR$="Y" THEN GOTO 3770

3630 CLS1GOSUR &17@

3640 PRINT&(@, 5Q), "SCALE FACTOR = "3DD

J363@ PRINT&(ZZ,@),"TO SCALE THE PAPER"

366@ INPUT"ENTER Y OTHERWISE N "3AG%

367Q CLS

3680 IF AGSH="Y" THEN GOSUR 4290

3690 PRINT(23.Q),"TO PLOT THE INPUT SIGNAL“
3708 INPUT"ENTER Y OTHERWISE N "3;AG$

3710 CLS ’ :

3720 IF AGEH="Y" THEN GOSUPR 517@

3730 PRINT&(2Z3,0),"TO CLEAR THE SCREEN"

3740 INPUT™" ENTER Y OTHERWISE N ""3;CS8%
3750 IF CS$="Y" THEN ¢CL&Z ' .
3760 GOTO 3780 :

377@ GOSUR 3790

3780 CLSIRETURN

3790 REM PRINT X



280
- 381@
3820
383a
2840
3850
28460
387a
2886
289
290Q
3910
392
3730
374@
3950

32460

3978
39an
3990
4000
4Q1@
4220
4030
4Q4@
4050
- 40460
4872
498a
4Q9RA
4100
4110

41200

4130
#5140
4150
416@
4170
4186
419
4206
421@

4220

423Q
424Q
4250
4260
427Q
4280
4290
43200
431@
4320
4330
4340
435Q

PRINT .

PRINT” THE INPUT SIGNALY

PRINT :

FOR I=1 TO M STEP 8 .

PRINT USING"+#84, #4388 XD XTI+ 5 X(I+2) 5 X 1+3) 5
PRINT USING"-+#d, #3##" i X (I+4) 5N (I4+5) X (I+6) 5 X (1+7)
NEXT 1 : :
LPRINT

LPRINT" . THE IMPUT SIGNAL"

LPRINT _
FOR I=1 TO M STEP &
LPRINT USING" 4, #3841 13X (1) s XCT+1) X (T+2) 5 X (143) 3

LPRINT USING” +3Hb, #3847 X (I4+4) X (I+D) s X (I+6) §X(I+7)

MEXT I

RETURN

REM DISPLAY Y

IF PR&="Y" THEN GOTO 4110

CLS :GOSUR &230 ’ o
PRINT&(Q,53@)," SCALE FACTOR = "35DD
PRINTa(Z2,0),"TO SCALE THE PAPER"

INPUT"ENTER Y OTHERWISE N "35AG%

CLs :

IF AGS="Y" THEN GOSUR 4290

PRINT&(Z3,@),"TC PLOT THE QUTPUT. SIGNAL"
INPUT"ENTER Y OTHERWISE N " 3jAGS

CLE '

IF AG$="Y" THEN GOSUR 5360

PRINTa(23,Q)," TO CLEAR THE SCREEN"

INPUT" ENTER Y OTHERWISE "I AGS

IF AGs="Y" THEN CL3Z S

GOTO 412@ ’ :

GOSUR 413@

CLS:RETURN

REM PRINT Y

PRINT

PRINT" THE QUTPUT SIGNAL"

PRINT

FOR I=1 TO N STEP 8 _

PRINT USING" -+ #3##" Y (D) 3Y(I+1) 5Y(I+2) 5Y(1+3) 3
PRINT USIMG"+3#4t. #3875 Y (I44) Y (I+5) 3Y(I+6) Y (1+7)
MEXT I ' :
LPRINT :

LPRINT". THE OUTPUT SIGNAL"

LPRINT »

FOR I=1 TO N STEP @ _

LPRINT USING" +i43#, " Y (1) sYCI+1) 5Y(I+2) YCI+3) 35

APRINT USING”+###.#%##"}Y(I+4)§Y(I+5)§Y(I+6)iY(I+7)

NEXT I

RETURN

REM SCALE PAPER

LPRINT" 53 P& HA 15@,50 D 150, 1200 "
LPRINT" 14@,117@ 15@, 1200 16@,1170 U "

LPRINT” 140,550 D. 185@0,550 1820,5&60 "
LPRINT" 1849,550 182,540 U " :

LPRINT" 142,950 D 138,930 U 9@, 945 S11 1.Q"CHR$(95)
LPRINT" 142,870 D 158,870 U 2@,845 G111 @.8"CHR%(5)

N
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43260
4370
4380
4390
4400
44160
4420
4430
4440
454370
4468
4470
A480
HH490

- 4500

4510
4524
4532a
454@
4550
4560
457Q
4580
4590

4600
4610

4620
4630
4640
H 450
44660
L&6TR
H 680
44690
4700
4710
4720
4730
4740
475Q
4766
4770
4780
4790
480
4810

482@ .

4H8360
4840
4850Q
486Q
497@
48230
- 4890
C 4900
416

SoooDDoo

LPRINT" 142,790
LPRINT" 142,710
LPRINT" 142,630
LPRINT" 147,550
LPRINT" 142,470
LPRINT" 142,390
LPRINT" 142,310
FOR LL=1 TO z0000:
LPRINT" 142,230
LPRINT" 142,150
LPRINT" 310,558
LPRINMT" 47@,558
LPRINT" &3@,558
LPRINT" 790,558
LPRINT" 950,558
LPRINT" 111@,558
LPRIMNT" 127Q@,558
LPRINT" 142(,55%
LPRINT" 1590,558
LPRINT" 175@,558
LPRINT" 1820,500
LPRINT" Z0@,111@
LPRINT"

DoooogD

158,790
158,710
158, 630
158,550
158, 470
158, 390
158,310
MEXT LL

158, 150
310,542
470, 542
630,542
790,542
50, 542
D

jRw iR e

Sz

S11

J

P@ HA 306,5Q T "
PRINTQ(Z3,8)," "

138, 230

U
U
U
U
U
U

CCC

U

1110,542
1270,542
1430, 547
1590, 542
1750, 542
T"CHRS (95)
MAGNITUDE" CHR$ ( 95)

7@, 783
9@, 705
98, 625

-90, 545

an, 465
8a, 385
8a, 305

8@, 223

8@, 145

295,520
$55,520
615,520
775,520
935, 520

U 1255,
U 1415,
U 1575,
U 1735,

511
511
S11
511
511
811
S11

St
511

511
S11
S11
S11
\ 811
U 1895,520

520
520
520
520

79

@, &"CHRE(25)

@.4 "CHR$(95)
D.2" CHRE(?5)

@.0 "CHR%(?25)
-~Q. 2"CHR%(95)
~B0.4"CHR$(?95)
-0, 4" CHR%(93)

—-@.8"CHR%(93)
-1.@Q"CHR$(93)
@, 1" CHR%E(25)
A, 2" CHR$(?25)
@.3" CHR%(93)
D.4"CHR$(25)
B.5"CHR$(95)
S11 @.6"CHR%(95)
G911 Q.7"CHRE(95)
S11 Q.8"CHRE(?%)
511 @.9"CHR%(95)
811 1.@"CHR$(95)

INPUT" AFTER THE PLOTTER STOPPED PRESS ENTER”;
CLS:RETURN

REM E SCALE N '

LPRINT" 5% P& HA 15@, 51400 D 150, 1200 "

LPRINT" 148,117Q-12Q,120Q 1&@,117@ v

LPRINT" 14@,150 D 1850,15@ 1820, 160 "

LPRINT" 185@,15@ 1820, 142 U"

LPRINT" 1790,120 S11 X 161"CHR%(23)

LPRINT" 152@,40 811 NUMBER OF"CHR%(94)

LPRINT" ITERATIONS" CHR&(93) ~
LPRINT" 22,1110 811 MAGNITUDE "CHR%(93)

LPRINT" 142,95@ D 158,950 U 90,945 Si1 1.0"CHR%(95)
LPRINT" /158,878 D 142,87@ U 92,865 Si1 0.F9"CHR$(95)
LPRINT" 158,790 D 142,79@ U 92,785 &11 @.8"CHR$(93)
LPRINT" 158,710 D 142,710 U 20,705 811 Q.7"CHR$(93)
LPRINT" 158,630 D 142,630 U 98,4625 S11 0.6"CHR$(93)
LPRINT" 158,550 D 142,550 U 96,545 G511 @.3" CHR$(93)
LPRINT" 158,47@ D 142,470 U 90,4653 S11 Q. 4" CHR%(95)
LPRINT" 158,390 D 142,390 U 90,385 S11 @.3"CHR$(95)
LPRINT" 158,310 D 142,310 U 90,302 811 @.Z"CHR$(93)

FOR LL=1 TO 2Q0OQ:NEXT LL

LPRINT" 158,23@ D 142,230 U 90,225 811 @,1"CHR$(93)
LPRINT" 158,132 D 142,150 U 98,141 S11 @.@"CHR$(95)
LPRINT" 310,158 D 310,142 U 295,120 S11 @.1"CHR$(95)
LLPRINT" 47@,1538 D 470,142 U 455,120 &11 O.Z"CHR%(95)
LPRINT" &30, 158 D 630,142 U 615,120 511 Q. 3"CHR$(93)
LPRINT" 79@,158 D 790,142 U 775,120 511 Q.4"CHR$(?3)
LPRINT" 938,158 D 75@,142 U 935,120 Sl Q.5"CHR$(93)
LPRINT" 1116,158 D 111@,142 U 1095,128 811 0.&6"CHRE(95)
LPRINT" 127@,158 D 1278,142 U 1255,120 S11 @.7"CHRS(95)
LPRINT" 1430,158 D 1430,142 U 1415,120 511 0.8"CHR$(95)
LPRINT" 1598, 158 U 1575,120 S11 @.9" CHR$ (9%

D 1590, 14Z2



4920
493Q
494Q
4950
4960
497@
49320
499Q
alatnin
501@
30za
5030
5040
5Q3@
. 5060
5Q7Q

5080

S@99
5100
5119
5120
5130
5140
5150
5160
317@
518
5190
3z0a
5z21@
- 5220
2230
3240
3250
5260
5270
5280
5290
530
533210
5320
53320

534Q-

5350
53360
S337A
5380
5390
5406
541@
5420
5430
5440
5450
5460
5470

80

LPRINT" 175@,158 D 1750,142 U 1735,120 S11 1.@"CHR$(95)
LPRINT" P@ HA 30@,5@ 7" C
PRINT&(Z3,0),

INPUT"AFTER THE PLOTTER STOPPED PRESS ENTER"
CLS:RETURN

REM D PLOT

FOR I=1 TO N :V(I)=D(I) =NEXT I

FOR I=1 TO N

V(1) =55@+INT(400%V (1))

UCI)=15@+INT(NS*(I—~1))

NEXT -1

LPRINT" 3: P2 HA "

LPRINT® 458, 1155 D S05,1155 U 518,1147 "
LPRINT" S11 DESIRED SIGMAL "CHR$(95)

FOR L=1 TO 1000@:NEXT L-

LPRINT U(1)5","5¥(1)

LPRINT" D *

FOR I=2 TO N

FOR L=1 TO 4@ :NEXT L

LPRINT UCI)5", "3V (1)

NEXT 1

LPRINT" P@ HA 300,50 7 *

PRINTR(Z3,@)," "

INPUT" AFTER THE PLOTTER STOPPED PRESS ENTER";
CLS:RETURN

REM X PLOT

FOR I=1.TO N :V(I)=X(I): tNEXT I

FOR I=1 TO N -

V) 55ﬂ+INT(40@*V(I))

UCI)=15@+INT(NS%(I~1))

NEXT I , ‘
LPRINT" 3: P3 HA 45@,11@5 D 5085,1105 U 518,107 "
LPRINT" S11 INPUT SIGNAL "CHR$(95)

FOR L=1 TO 10Q0@:NEXT L

LPRINT U(1)35",";V(1)

LPRINT" D "

FOR I=2 TO N

LPRINT UCI)3"," V(1)

FOR L=1 TO &0 :NEXT L

NEXT 1

LPRINT" P@ HA 300,50 Z "

PRINTR{Z3,@)," "

INPUT" AFTER THE PLOTTER STOPPED PRESS ENTER";
CL.S:RETURN

REM Y PLOT

FOR I=1 TG N :V(I)=Y(I) INEXT I

FOR I=-1 TO N

V(I)=550+INT (400%V(1))

UCT)=150+INT(NS*®(I1-1))

NEXT I . : '

LPRINT" 3t P4 HA 450,1055 D 505,105% U 518, 1047 "
LPRINT" S11 OUTPUT SIGNAL "CHR$(94)

LPRINT" "AFTER 1&1 ITEPATIONS"CHR$(95)

FOR L=1 TO 1500@:MEXT L

LPRINT UC3)35","5%(1) -

LPRINT" D " o vy



5480
5490
5500
5518

25267

5530
5540
5550

. 5568

5570
5580
5590
5400
5610
5620
| 5630
5640
. 5650
' 5660
5670
5480
5690
5700
5710
5720
5730
5740
5750
5760
5770
5780
5790
5800

5810
- 5820

5830
5840
. 585Q.
5860
5870
5880
5890
5900
5910
5920
5930
594@
L5950
5960
5970
5980
5990
. 6000
6010
602

6030

REM PRINT E

81

FOR I=2 TO N

LPRINT UCI)5","3V(I)

FOR L=1 TO 4@ TNEXT L

NEXT 1. [

LPRINT" P@ HA 300,50 Z "

PRINTa(Z3,@)," " ~

INPUT"AFTER THE . PLOTTER STOPPED PRESQ ENTER" §
CLS:RETURN . :

REM DISPLAY E

IF PR&="Y" THEN GOTQ 571@°
CLS:GOSUR 4330

PRINTQ{(Z1,@),"TQ SCALE THE PAPER"
INPUT"ENTER Y }OTHERWISE N  "5AG%
oLs . , ,
IF AG$="Y" THEN GOSUPR 4620
PRINT®(23,@),"TO PLOT THE ERROR"
INPUT"ENTER Y _OTHERNISE N "5AG%
cs C N
IF AG$="Y" THEN GOSUPR 5890 ‘
PRINTa(23, Z),"TO CLEAR THE SCREEN"~
INPUT"ENTER 'Y ~OTHERWISE N "3AG%"

'

;1F,AG$="Y"‘THEN,CL82
GOTO 57200

GUSUR 5730 .
CLS:RETURN . -

s

PRINT . & .

PRINT" - THE MEAN SUUARE ERROR" .
PRINT

FOR I=1 TO NM qTEP 8

PRINT USING" +i3, #3#4#" EC 1) 5 E(I+1) E(I+ Y SECI+3) 3

PRINT USING"+### HHEH" SECI+4) 5ECI+5) SE(I+6) SE(I+7)
NEXT I S , L . SR
LPRINT . . = ‘ S - .

LPRINT" THE MEAN SQUARE ERROR"

LPRINT =t ; : :

FOR 'I=1 TO NM STEP 8

LPRINT USING" +3#4. #i# "'E(I) E(I+1)SE(I+Z)JE(I+3) S

LPRINT USING"+### H# "'E(I+4) E(I+5) E{I+6)SECI+7)
MEXT I =

RETURN ° :

REM PLOT E- _ ‘

FOR I=1 TGO NM iV(I) E(I) NEXT_I

FOR I=1 TO NM . '
V(D)= 15@+INT(8@B¥V(I))

UiI)= 15®+INT(NE*(I 1))

NEXT I : o :

LPRINT" i P2 HA 45@ 1155 D 5Q@5, 1155 U 518,1147 "
LPRINT" S11 MEAN SQUARE ERROR"CHR%(95) '

FOR LL=1 TO 12000:NEXT LL

LPRINT UC1)3", "'V(l) PO ) o A -
LPRINT" D " = . e e - Coar
FOR I=2 TO MM ; o S o ‘

LPRINT U(I)3", ")

FOR L=1 TO 60 :NEXT L= .

NEXT 1 R S



HQ46)

6050
6860

65870
- 630
&LA7a

6100
H11@

. 6120
6130

6140
6150

6170

6186

6190
L2600

6218
L2220
- A230
L6240
L2

LH260

y-vardn
H280
&2en
&30
6310
6320
H33@
6346
6350
6360
H3IT0
- A380

- 6390 .

6400
6410,

LPRINT"” PO HA 300,00 Z "
CLS:PRINT&(2Z,0),

INPUT"AFTER THE PLOTTER qTOPPkD PREGS EN1ER"'
CLSTRETURN - 7

REM SCREEM CURRENT REquTS ,

FOR I=1 TO N :U{I)=D(I) :MNEXT I

FOR I=1 TON - I

UeI)= Qm—(INT(AD*U(I)))i

NEXT I~ :

FOR I=@ TO N-2~

LINE¢(NP%I, U(I+1))~(NP*I+NP U(I+°)),a,&HF1F1

NEXT I
6160

RETURN

FOR I=1"T0O N tUCI)=X(I) :NEXT I

FOR I=1 7O M . L

UJ(I1)=80- (INT(4@*U(I))):

MEXT T - :

FOR I=@ TO N-Z. .
LIME(NP%I, U(I+1))—(NP+I+NP U’I+n))111&H3333
NEXT I L '

RETURN

FOR I=1 TO N U(I) Y(I) tNEXT I
FOR I=1 TO N . ' '
U({I)=80~ (INT(4Q+U(I)))

NEXT I S

FOR I=0 TO N=2

LIMNE(NP*I, U(I+1))—(NR*I+NP U(I+A)),,,&HFFFF
NEXT I . L

RETURN ~ - 0 -

FOR I= 1 TH NM: U(l) E(I) NEYT I

FOR I=1 TO NM

(1) =200~ (INT(Z B@*U(I)))

NEXT 1 ‘ : L )

FOR I=@ TO NM-—" ’ . -

LINE(NL*I, U(I+1))—(NL*I+NL U(I+ )),,,&HFFFF
NEXT I

PRINT& (@, 5@),"qCAl FACTOR ="3DE

RETURN

s
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