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. ABSTRACT 

The purpo~e of this study is to investigate t~e behaviour of the! 

transform domain .adaptive filter in the Walsh domain. As it is well· 

known, because of the binary nature of the basis functions, the I 

computationally intensive frequency do~ain adaptive filter algorithm I 

lends itself to easier implementation if Walsh transform is employed. 

This thesis starts with a brief review of Walsh functions, Walsh 

transforms and adaptive filtering. The Walsh domain adaptive filter has 

been simulated on the digital computer. Simulation results for various 

input signals embedded in noise are given. It is shown that better! 

convergence can be achieve~whenthe adaptive filter is operated in thel 

Walsh domain, rather than time domain. 

The effect of initial. weight on convergence has been investigated. 

It has been observed that small values of the initial weight are 

necessary for better convergence performance. Although the theoretical 

basis of the effect of small initial weight on convergenc~ 

characteristics has not been established yet, simulation results 

indicate improved performance with a small initial weight. 

Since the Walsh transform requires only additions and subtractions. 

the digital implementation of Walsh domain adaptive filter is easil~ 

achievable, and can be thought as the scope o.f a further study. 
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ileti~im sistemlerinde haber i~aretine gurliltli kar1~mas1 ka91n1lmaz . ' , 

bir olayd1r. ileti~im sonucunda elde edilen i~aretten glirliltunun aY1rd 

edilmesi olduk9a zor bir i~ olarak kar~1m1za 91kar. Haber i~aretinden 

glirliltuyu ay1rma i~lemi dikkatlice yap1lmazsa, sonu9 olarak daha da 

bozulmu~ bir i~aretle kar~1la~abiliriz.' Buna ragmen, eger haberin 

gurliltuden ar1nd1r1lmas1 uyarlan1r (adaptive) bir sistem 

vas1tas1yla yap1l1rsa glirultlinun haber uzerindeki etkisi 

azalt1labilir. 

Uyarlan1r bir sistemde, slizme i~lemi gelen i~arete bagl1 ,olarak 

parametreleri kendi kendine :ayarlanan slizge9 devreleri ile yap1l1r. 

i~aretteki duzelmenin daha k1sa bir surede saglanabilmesi i9in uyarlan1r 

suzme i~lemi zaman uzaY1 yerine frekans uzaY1nda yap1labilir. 

Walsh donli~Umli katsaY1lar1 yaln1zca gergel saY1lardan olu~maktad1r. 

Fourier donli~Umli yada diger ba~ka donu~Umlerle kar91la9t1r1ld1g1nda 

Walsh donli9Umunun daha az hesaplama i9lemi gerektirdigi gorlilmu~tur. ,Bu 

gal1§mada Walsh uzaY1 uyarlan1r suzge9lerin benzetimi yap1lm1§ ve 

benzetim sonu9lar1 incelenmi9tir., 

Walsh fonksiyonlar1 belirli- bir kurala gore dizilerek birbirini 

takip eden ve sadece +1 ve -1 degerlerini alabilen i 9aretlerden meydana 

gelmektedirler. Bir Walsh fonksiyonunun tan1mlanabilmesi igin indeks 

numaras1 ve zaman aral1g~ olmak uzere iki degi9kene ihtiya9 vard1r. 

Walsh fonksiyonllar1 Wal(n,t) §eklinde yaz11mak suretiyle ifade~' 
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edilmekte olup n indeks numaras~n~, t de zaman aral~g~n~ temsil 

etmektedir. Walsh fonksiyonlar~n~n ilk tan~mlanmas~nda s~ralan~9 

numaralar~n~ belirleyen etken olarak i 9aret d~gi9tirme say~s~ goz onune 

al~nm~§t~r. Daha sonralar~ muhtelif ozellikleri goz onune al~narak Paley 

ve Hadamard s~ralamalar~ yap~lm~§t~r. 

Hadamard s~ralamas~ndaki Walsh fonksiyonlar~n~n orneklenmi9 hali 

Hadamard matrisleriyle de.tan~mlartmaktad~r. Bu sebeple Walsh donu9Umune 

ayn~ zamanda Hadamard donu9Umu de denilmektedir. Bir. fonksiyonun Walsh 

donu§Umu al~n~rken ikinin tam kat~ herhangi bir say~da orneklenmi9 

halinin Hadamard matrisiyle ~arp~m~ ornek miktar~na bolunur. Ters 

donu§Um al~n~rkende ayn~ i§lem yap~l~r ancak ornekleme miktar~na bolme 

i§lemi yap~lmaz. Hadamard matrisinin elemanlar~ sadece +1 ve -1 lerden 
_J 

olu§tuklar~ndan ger~ekte ~arp~m yerine toplam i9lemi yap~lmaktad~r. Bu 

ozelligi itbar~yla i9lem kolayl~g~ saglamas~ bir yana say~sal olarak 

ger~ekle§tirilmeye de uygundur. 

Uyarlan~r suzme i§leminde uyarlama algoritmas~ olarak en ku~uk 

kareler (least-mean square) algoritmas~ se~ilmi§tir. Bu i§lemde rastgele 

bir ba§lang~~ ag~rl~g~ se~ilir ve giri9 i§aretinin bu ag~rl~kla ~arp~m~ 

~~k~§ i 9areti olarak tan~mlanir. ~~k~9 i§aretinin istenen i§arete olan 

uygunlugu ara§t~r~l~r ve 0 andaki uygunsuzlugu giderecek yonde bir 

duzeltme ag~rl~k uzerinde yap~l~r. Degeri yeniden belirlenmi9 olan 

ag~rl~k bir sonraki i~lemde giri~ i§aretiyle ~arp~l~r ve en uygun ~ozumu 

bulmaya ~al~§arak bu i~~emler devam eder gider. -

Benzetim ba~lang~c~nda programlama dili olarak FORTRAN se~ilmi~-
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ancak grafik neticeler elde edeoilmek amac~yla daha sonra BASIC dilinde 

program yeniden diizenlenmilltir. illaretler i~in benzetim 

sonuglar~ gozlenmill ve bunlardan bir k~sm~ sonu~lar k~sm~nda 

sunulmulltur. 

Beyaz giiriiltii ( white noise ) taraf~ndan bozulmull olan bir. siniis 

illaretinin iyilelltirilmesi uyarlama ad~m. genillligi O. 005 al~nd~g~nda 

ortalama 60 ad~m sonucunda ballar~lm~ll ve giiriiltiiniin genliginde yaklall~k 

30 dB lik bir azalma saglanm~llt~r. Kareselbir illaretin iizerirideki 

giiriiltiiniin temiilenmesinde ise daha iyi sonu~lar elde edilmi§tir. 

Uyarlama ad~m geni§ligi 0.0025 olarak se~ildiginde yakla§~k 40 ad~m 

sonunda i§aretin iyilellmesi saglanm~§ ve genelde 40 dB nin iizerinde bir 

giiriiltii bast~r~m~ saglanm~§t~r. pyarlaman~n saglanmas~ndan sonra hat a 

genligindeki degillmenin 8 -dB. den daha az s~n~rlar i~inde oldugu 

gozlenmi§tir. 

kiigiik balllang~~ ag~rl~g~ se~ildiginde daha iyi yak~nsama etkinligi elde 

edildigi goriilmiilltiir. 
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I. INTRODUCTION 

The problem of detecting a signal ~nd its paramaters finds 

applications in signal processing systems such as radar, sonar, 

biomedical, digital commununications, etc. In many cases, the presence 

of noise which is inevitable brings out serious problems. Subtracting 

noise from a received signal would seem to be a dangerous procedure. It 

could result in an increase in output noise power if it is done 

improperly. However, when subtraction of noise from a received signal is 

controlled by an adaptive algorithm which does not require statistical 

information about the received signal, noise reduction can be performed 

with little risk of distorting the signal or increasing the output noise, 
" . 

level. 

In an adaptive system, enhancement of the output signal can be 

,performed after many operations. In order to obtain rapid convergence, 

adaptive filtering can be done in a transformed domain rather then~ time 

domain. The Walsh transform of a signal consists of only real numbers. 

This brings less computational requirements in comparison with other 

transform techniques, such as Fourier ,transform. 

The main objective of this study is to set up a computer, model of 

Walsh domain adaptive filter and investigate the performance of it for 

the signal enhancement problem. 

Walsh functions are complete and orthogonal functions and they are 

characterised by assuming only two states +1 and -1, thus matching the 
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behaviour of digital logic. When the sine functions are used to analyze 

time variable circuits, they often lead to unnecessary complications. It 
, 

was found that Walsh functions were excellently suited for the analysis 

of sampled signals and the design of equipment for such signals. 

In chapter II we mainly deal with .the Walsh functions and Walsh 

transforms. It has been shown that the Walsh functions were originally 

suggested, in a different manner, by Hadamard at first. Although the 

Walsh functions are ordered according to the number of zero crossings 

for the first time, they can be ordered in some different ways. The 

orderings and the relationship between them are investigated. When the 

Walsh functions are ordered in Hadamard order, Hadamard matrices 

represent the sampled version of the Walsh functions. 
-.~-

We can obtain the Walsh transform of a function by multipliyi~g, the 
/ 

sampled version of the function with the Hadamard matrix of appropriate 

order followed a'division of sample number. The sample number should be 

taken as an integer power of two. 

The basic concept of adaptive filtering and transform domain 

adaptive filtering are introduced in chapter III. The subject of 

adaptive processors has been a research topic since the 1960s and these 

have subsequently been applied. in many practical systems mainly as 

adaptive filters. Conventional signal processing systems for the 

extraction of noise from an incoming signal such as a matched filter 

operate,in an open loop fashion. That is, the same processing function 

is carried out in the present time interval regardless of whet~er that 

. I 
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function produced the correct result in the preceeding time interval. In 

other words, conventional signal processing techniques make the basic 

assumption that the signal degradation is a. known and time invariant 

quantity. Adaptive processors, on the other hand, operate with a closed 

loop arrangement. The incoming signal is filtered or weighted in a 

programmable filter to yield an output which is then compared against a 

desired, conditioning or training, signal to yield an error signal. This 

error is then used to update the processor weight.fng paramaters using an 

algorithm such that the error is progressively minimized, i.e., the 

processor output more closely approximates to the training signal. 

Adaptive filters are concerned with the use of a programmabl~ 

filter whose frequency response or . transfer function is altered, or 
.J 

adapted, to pass without degradation the desired cqmponents of the 

signal and to attenuate the undesired or interfering signals, or to 

reduce any distortion on the input signal. In an adaptive system an 

absolute minimum'of a priori information is necessary about the 1ncoming 

signal. The adaptive filter operates by estimating the statistics of the 

incoming signal and adjusting its own response in such a way as to 

minimize some cost function. This cost function may be derived in a 

number of ways depending on the intended application, but normally it is' 

derived by the use of a secondary signal source or conditioning input. 

This secondary signal input may be defined as the desired output of the 

filter. In this case, the task of the adaptive algorithm is to adjust 

the weights in the programmable filter device in such a way as to 
I 

minimize the difference between the filter output and the secondary 

input. 
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The common realisation of an adaptive filter is a transversal 

filter where the weights are updated iteratively using an adaptive 

algorithm. In the transformed domain applicat,ion, the adaptation is done 

in a transformed 'domain rather than in the time domain. In the 

transformed domain adaptation, the incoming data is processed in blocks 

and adaptation is done once for each block. By this way, the input data 

block is converted from serial into parallel form. Thus, the transform 

domain filter can be thought of as tap transversal filters in 

parallel. 

The computer simulation of the Walsh domain adaptive filter is 

introduced in chapter IV. Programming language was FORTRAN at the 

beginning of the study. In order to evaluate graphical results it was 

rewritten in BASIC. The computer programs are appl~cable with RADIO 

SHACK TRS-80 MODEL 16 digital computer. 

The results are investigated through an extensive simulation' study 

with" many types of input signals. The convergence behaviour of the Walsh 
;' ) 

domain adaptive filter studied with sine and square waves are given in 

chapter V. The enhancement of a sine wave corrupted by white noise is 

,performed after about 60 iterations with an adaptive step size of 0.005. 

The reduction in the noise amplitude is generally greater than 30 dB. 

Better convergence performances' are obtained for the square wave 

application. The enhancement of a square wave corruted by white noise is 

performed after about 40 iterations with an "adaptive step size of 

0.0025. After the adaptation is completed the variation in the 

: 
amplitude of the mean-square error is less than 8 dB. The value of the 
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adaptive step size is changed automatically according to the power of 

the input sig~al for the mentioned applications. It has been observed 

that small values of the initial weight are necessary for better 

convergence performance. 
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II. WALSH FUNCTIONS AND WALSH TRANSFORMS 

2. 1 INTRODUCTION TO WALSH FUNCTIONS 

The basis for the development of electrical engineering in many 

areas is a system of sine and cosine functions. Whenever the term 

-

frequency is used, reference is made implicitly to these functions. This 

is due to the desirable properties of frequency dom~in representation of 

a large class of functions encountered in the theoretical and practical 

aspects of engineering design. 

In recent years more general classes of complete systems of 

orthogonal functions have been used for theoretical investigations as. 

well as equipment design. Furthermore, semiconductor devices have made 
.. -' 

it possible to use linear. time variable circuits instead of linear 

time-invariant ones. While sine and cosine functions have indisputable 

advantages for linear time-invariant circuits, they often lead to 

unnecessary complications if they are used to analyze time-variable 

·circuits. With the application of digital techniques and semiconductor 

technology to the area of electrical systems, the Walsh functions have 

corne into use since they are characterised by assuming only two states, 

thus matching the behaviour of digital logic. 

Historically, the Walsh functions were defined in 1923 by the 

American mathematician J. L. Walsh. These functions formed a complete 

orthonormal set taking only two values +1 and ~1. Almost at the same 

time. (in 1922), but independent of Walsh, the German mathematician, H. 

Rademacher, presented another set of two level orthogonal functions, 
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which were found later to form an incomplete but true subset to the 

Walsh functions. 

In his original paper [1], Walsh gave a recursive definition of the 

Walsh funtions that orders the functions according to the average number 

of zero crossings in the time interval. In 1931, an entirely different 

definition of the Walsh functions was described by R.E.A.C.Paley [2,3]. 

His definition is based on finite products of Rademacher 
-, 

functions and 

the order obtained was quite different from that of the Walsh. 

A much earlier approach to the Walsh function's definition is 

through the application of certain orthogonal matrices, containing only 

the entries +1 and -1, and known as Hadamard matrices [4]. The Walsh 

functions obtained throug~~ Hadamard matrices represent another order 

which will be explained later. 

A new theory is not generally accepted unless its advantages can be 

demonstrated convincingly. In engineering, a convincing demonstration 

means'a working equipment. Walsh functions were virtually completed, by 

the 1930's. However, publications referred to engineering and other 

applications did not appear until semiconductors and the digital 

computers had come into use. The theory of Walsh functions related to 

practical engineering problems is still being developed.- The recent 

areas of application are; electromagnetic radiation, radar systems, 

multiplexing, data proce~sing, voice communications, pattern 

recogni tion" random 
I 

access communications, TV picture processing, and 

seismic event detection [5,6,7,8]. 
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2.2 RADEMACHER FUNCTIONS 

Rademacher f,unctions are an incomplete set of orthogonal functions. 

They were developed in 1922 by the German'mathematician H. Rademacher. 

R(O,t) 

R(1,t) 

.'" 

I I 
R(2,t) 

./ 
0 , 

R(3,t) 

I I II I I 1_ 
R(4,t) 

~~----------~------------------~+) t 
o 0.5 1 

Figure 2.1 A set of Rademacher functions 
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They represent a series of rectangular pulses or square waves having 

unit mark-space ratio. The first five of them are shown in Fig.2.1. The 

Rademacher function of index n is denoted by R(n,t). Thus, they have 

two arguments n and t such that R(n,t) has 2
n- 1 . d pen.o s of 

square-wave over a normalised time base 0 ~ t ~ 1. The first function, 

R(O,t), is equal to for the entire interval. The next and 

subsequent functions are square waves and "the.ir amplitudes are limited 

between +1 and -1 [8]. 

They can be derived from sinusoidal functions, as 

R(n,t) = sign(sin(2nnt» (2.1) 

The generation of Rademacher ~unctions may be obtained from a sinusoidal 

waveform of appropriate frequency by amplification followed by hard 

limiting. They are important principally since the Walsh functions can 

be derived from them. 

2.3 WALSH FUNCTIONS 

The term frequency is defined as the parameter f that distinguishes 

the functions cos2nft and sin2nft. Generally, practical interpretation 

of f is the number of cycles per second. The general definition of 

frequency can be given as one-half the average number of zero-crossing 

per second. Harmuth introduced the term sequency to describe the 

generalised frequency. He applied the term sequency to describe 

functions whose zero-crossings are not uniformly spaced over an~" . 
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interval, and which are not necessarily periodic [9]. The definition of 

sequency coincides with the definition of frequency when it is applied 

to sinusoidal functions.· Then, the sequency of a periodic function 

equals one-half· the number of sign changes per period and the sequency 

of an aperlodic function equals one half the number of sign changes per 

unit time. 

The incomplete set of Rademacher functions was.. completed by Walsh 

in 1923, to form the complete set of rectangular functions known as 

Walsh functions. Walsh functions form an ordered set of rectangular 

waveforms taking only two amplitude values +1 and -1. Unlike Rademacher 

functions, the Walsh rectangular waveforms do not have unit mark-space 

ratio. They are defined over a limited time, T, known as the time base. 

Like sine-cosine functions, --two arguments are required for complete 

definition [10]. These are, a time period, t, (usually normalised to the 

time base as t / T ) and an ordering number, n, related to sequency~ The 

function is writt~n as 

Wal(n,t) (2.2) 

The Walsh functions can be defined by a difference equation rather than 

a differential equation. In terms of Rademacher functions they can be 

defined as 

m+1 
Wal(n,t)-=n g'_1R(i,t) 

i=1 ~ 

where n is expressed as a binary number 

(2.3) 



1 1 

Wal(O,t) 

Wal(1,t) 

I 

Wal(2,t) 

Wa1(3,t) 

I 

Wa1(4,t) II' I I 
Wal(5,t) 

Wal(6,t) I I I I I I 
Wal(7,t) II II III "--

o 0.5 1 
/ 

FIGURE 2.2, A set of Walsh functions '\ 
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n = b 2
m 

+ b 2m- 1 + +b 20 
m m-1 •••.• 0 (2.4) 

and g is the Gray code equivalent of the binary decomposition of the 

number n. The first 8 ones of Walsh functions arranged in increasing 

value of the number of zero crossings are shown in Fig.2.2. As it is 

shown in Fig.2.2 Walsh functions are symmetrical about their mid or zero 

point. 

The product of any two Walsh functions yields a third Walsh 

function [11]. 

Wal ( i , t ). Wal ( j , t) = Wal ( k , t ) (2.5) 
.. , 

... .,. 

where 

/-

k = i m j (2.6) 

The sign m represents modulo-2 addition, and modulo-2 addition is a 

Binary addition with no carry, as 

o + 0 = 0 0+1 = 1 + 0 = 1 + 1 = 0 

Since the modulo-2 addition of a number with itself is equal to zero, 

the product of- a Walsh function with itself yields Wal(O,t) written 

as 

: 
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Wal(i,t) • Wal(i,t) = Wal(O,t) (2.7) 

Since, Walsh func~ions are complete and orthogonal 

1 waJ.(i,tl.wa1(j,tl {: 
if i=j 

dt = (2.8) ,.. . if i!j 

Since C=1, for the case where i=j, Walsh functions are said to be an 

orthonormal set [11]. 

2.4 FUNCTION ORDERING 

The set of Walsh functions is generally classified into three 

groups [12]. These groups differ from one another in such a way that· 

their appearances having the same index number are different. The three 
•. ..1 

types of orderings are; Walsh ordering, Paley ordering, and Hadamard 

ordering. 

2.4.1 WALSH ORDERING 

This is the ordering which was originally defined by Walsh. In this 

order, the functions are arranged in increasing number of zero crossings 

(Fig.2.2). It has the advantage of having resemblance of the sine and 

cosine functions when we define cal and Sal functions [13], as 

cal(n,t) = Wal(2n,t) (2.9a) 



Wal(O,t) 

Sal( 1 ,t) 

Cal(1,t) 

Sal(2,t) 

Cal(2,t) 

Sal(3,t) 

Cal(3,t) 

Sal(4,t) 

I '1' I 

II. I I I I 

II 11111 '---

6 t 

0.5 

FIGURE 2.3 A set of Cal and Sal functions , 

I ) t 
1 

1 4 
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Sal(n,t) = Wal(2n-1,t) (2.9b) 

Using the two equations above , the first 8 ones of the Walsh functions 

are shown in Fig.2.3. It is appearent from'Fig.2.2 that the sequency of 

a Walsh function is greater than the sequency of the preceeding Walsh 

function and has exactly one more zero crossing in the same time 

interval. 

2.4.2 PALEY ORDERING 

We can evaluate this ordering when we obtain the Walsh functions 

from Rademacher functions. It is stated that the Walsh transforms 

possess a better convergence when they are arranged in Paley order [12] •. 

The relationship between Walsh and paley orderings can be formalised as 
.J' 

Pal[g(n),t] = Wal(n,t) (2.10) 

where g(n) is a function based on the Gray code. If we consider the 

Binary equivalent of order number, n, as 

(2.11) 

then g(h) can be evaluated as 

(2.12) 

Thus, for n=6 we obtain g=5 and we can write 
" · 
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Pal(5,t) = Wal(6,t) 

The relationship between Wal and Pal ordering is also 

formalised as 

Wal ( b ( n ) , t) = Pal ( n , t ) (2.13) 

where b(n) is evaluated from Gray code to Binary conversion of the order 

number, n. The firstS ones of Walsh functions 'in Paley order 'are show.n. 

in Fig.2.4. 

2.4.3. HADAMARD ORDERING 

The set of Hadamard ordered Walsh functions is obtained when we 

evaluate the Walsh functions from the Hadamard matrices [14]~ The 

. 
relationship between Walsh ordering and Hadamard ordering of the W?lsh 

functions can be formalized as 

Walh(g«(n»,t) = Wal(n,t) (2~14), 

where g«n)7 stands for the bit reversed value of . the Binary to Gray 

code conversion of the order number n. Thus, in a sequence consisting of 

S elements, for n=l we get.b(n)=001 and g(n)=001. After bit reversal 

operation, we get g«n»=100, and this is equal to 4 ip decimal system. 

Then, we can write as 

Wal
h

(4,t) = Wal(l,t) 
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Pal(O,t) 

pal(l,t) 

Pal(2,t) I I 
pal(3,t) I I 
Pal(4,t) I I I l I I I 

I I I I I I 
/ ' 

Pal(S,t) 

Pal( 6,t) I I I 
Pal(7,t) I I I I I 

I )I t 
0 0.5 1 

FIGURE 2.4 A set of Walsh functions in Paley order 
, 
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The relationship between Walsh ordering and Hadamard ordering of a 

Walsh function can be formalised as 

Wal(b«n» ,tJ = wa~ (n,t) (2.15) 

where <n~ is obtained from the bit reversal of nand, b«n» is the Gray 

code to Binary conversion of <n). The first:8 ones of the Walsh fuctions 

in Hadamard order are shown in Fig.2.5. 

One can easily deduce that the relationship ·between Paley and 

Hadamard orderings is simply a bit reversal operation,as 

Pal«n),t) = Walh(n,t) (2.16) 

Walh«n),t) = Pal(n,t) (2.17) 

\ 

2.5 BIT REVERSAL OPERATION 

The bit reversed sequence of a given series can be evaluated 

finding the mirror appearance of its sequence number represented in the 

Binary system •. This can be summarized as, 

Decimal Binary Binary Decimal 
bit-reversed bit-reversed 

0 00 00 0 

01 10 2 

2 10 01 1 ~ 

.3 11 11 3 
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wa~(O,t) 

wal
h 

(1 ,t) 

Wa~(2,t) 

.. -' 

I II ""--------I I I I 
Wal

h
(6,t) I I 

/ 

Wal
h

(7,t) L..-..--.--II I I 
I> 

o 0,5 1 

FIGURE 2.5 A set of Walsh functions in Hadamard order 
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or 

Decimal Binary Binary Decimal 
bit-reversed bit-reversed 

a 000 000 0 

1 001 100 4 

2 010 010 2 

3 011 110 6 

4 100 001 

5 101 101 5 

6 110 011 3 

7 111 111 7 

As it is shown above ,the rearrangement is made by taking into 

account the largest sequence number. In this study, the number of data 

in a sequence is always taken as an integer power of two. The 

rearrangement of a series into bit reversed order can be made through a 

suitable routing in the case of hardware derivation or a bit reversal 

software routin~. Program-l is written to rearrange a given series into 

bit reversed order. The flow diagram of this computer program is shown 

in Fig.2.6. 

2.6 GENERATION OF WALSH FUNCTIONS 

The Walsh functions can be evaluated in several different ways, 

each of which has its own particular advantages. In this study, we are 

going to evaluate the Walsh functions from the. product of the Rademacher 

functions for the continuous case, and from the Hadamard matrices for 

the discrete case. 



FIGURE 2.6 

IA= 10 
IC=\C+l 

IA= I-I 
Ie: 1 

18(1CI:! 

IE = I 
IG = N 
11 = 1 

Flow diagram for bit reversal operation 
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2.6. 1 WALSH FUNCTION GENERATION FROM THE RADEMACHER FUNCTIONS 

The Rademacher functions form an incomplete series having odd 

symmetry [8]. In particular, a complete set of Walsh functions in Paley 

order can be obtained from the selected Rademacher function products 

[15]. The product series for the Rademacher functions is expressed as 

m+1 
Pal(n,t) = IT 

i=1 
b. 1'R(i,t) 
~-

(2.18) 

We have ,seen that the relationship between' Walsh and Paley 

orderings is simply a Binary to Gray code conversion of the sequence 

number. In order to find the value of bit position i of the sequence 

number n to be expressed in the Gray code we need to add bit i to bit 

i+1 of the original binary number. Thus, from Eq.(2.11), by expressing 

n, as a string of binary bits and expressing this in ,the Gray code, we 

can write 

where 

Then, we can write 

m+1 
Wal(n,t) = IT 

, i=1 
(b. ED b. 1)' R(i,t) 

~ ~-

/' 

(2.20) 

If we use 0 instead of -1 in the representation of the Rademacher 

.' .. 



functions, this product becomes a modulo-2 summation written as 

m+1 
Wal(n,t) == IB L (bi IB b

i
_

1
) • R(i,t) 

. i=l 
(2.21) 
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Hence, to find Wal(6,t), we first express it in the Binary code as 

b(n)==110. Then, by rearranging this in the Gray code we get g(n)==101. As 

it is seen from the Gray code equivalent, the second bit position is 

equal to zero. This means that (from Eq.2.20) 

Wal(6,t) := R(3,t) . R(l,t) 

or (from Eq.2.21) 

Wal(6,t) == R(3,t) IB R(2,t) 

A graphical illustration of this function's derivation is shown in 

Fig.2.7. 

The hardware scheme to generate any Walsh function with an index in 

the range o < n ~31 is shown in Fig.2.8. A Binary counter is used to 

generate Rademacher functions. The'Binary equivalent b4b3b2b1bO of the 

desired index, n, is loaded into the input register. The Binary 

equivalent of the index number n is converted to the' Gray code 

equivalent g4g3g2g 1g0 by the modulo-2 adders. The output of the modulo-2 

adders controls the transfer of the Rademacher functions through the AND 

gates. The output of the AND gates controls the final modulo-2 adder. 



R(l,t) 

R(3i t ) 

Wal(6,t) 

Input 
Register 

I 

I Ia----.....II r I r 
*~----~----------~~--------~------~>t o 0.5 

FIGURE 2.7 Derivation of Wal(6,t) from 
the Rademacher functions 

.. ' 

g" 

g~ 

Binary Counter 

Clock 

FIGURE 2.8 / A scheme for generating Wal(n,t) from Binary 
equivalent of its index number, n 

24 
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The output of the final modulo~2 adder is the desired Walsh function of 

index n. 

2.6.2 WALSH FUNCTION GENERATION FROM ~AMARD MATRICES 

The Hadamard matrix is a square array whose array coefficients 

consist of only +1's and -1 's-, and whe.re its rows (and columns) are 

orthogonal to one another. Ina symmetrical Hadamard matrix, it is 

possible to interchange rows and columns or to 'change the sign of each 

element in a row without affecting the orthogonality properties. This 

makes it possible to obtain a symmetrical Hadamard matrix whose first 

row and first column contain only positive 1's. The matrix obtained in 

this way is known as the "normal form" for the Hadamard matrix [14]. The 

lowest order Hadamard matri~ .... is of'the order 2 written as 

(2.22) ,-

Higher order matrices, which are restricted to having integer power? of 

two, can be obtained from the recursive relationship given by 

(2.23) 

where the sign ~ denotes the direct or Kronecker product and N is an 

integer power of two. The Kronecker product can be defined as the 

replacement of each element in the matrix to be evaluated by the matrix 
, I 
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Thus, to evaluate the H4 matrix, we can write as 

(2.24) 

Then, we replace each of the 1's and -1's of the matrix 

by the complete matrix of H
2

, _or by its inverse. Thus, we can 

evaluate H4 as 

-1 -1 
H4 = 

-1 -1 
(2.25) 

-1 -1 

Furthermore, if we now replace each element in the H4 matrix by 

an H2 matrix, we obtain an HS matrix. 

-1 -1 -1 -1 

-1 -1 -1 -1 

-1 -1 . -1 -1 

HS = (2.26) 
-1 -1 -1 -1 

-1 -1 -1 -1 

-1 -1 . -1 -1 

-1 -1 -1 -1 

Each row of a Hadamard matrix of order N represents a sampled ·Walsh 

function in the Hadamard order. Program-2 is written to evaluate the. 
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Hadamard matrices of any order restricted.having the integer powers of 

2. The flow diagram of this computer program is shown in Fig.2.9. 

2.7 WALSH TRANSFORM 

It can be stated that every function f(t), which is integrable, is 

capable of being represented by a Walsh 'series defined over the open 

interval (0,1) [11], as 

f(t) = a o + a 1Wal(1,t) + a 2Wal(2,t) + •.••. (2.27) 

where the coefficients are given by 

f (t). Wal (n,t )--dt (2.28) 

Therefore, we can define a transform pair as 

F(n) = / f (t). Wal (n, t) dt (2.29) 

and 
00 

f(t) =L F (n). Wal (n; t) (2.30) 
n=O 

This definition is applied to a continuous function limited in time 

over the interval 0.(: t "1. For numerical use, it is convenient to 

consider a discrete series of N terms which are set up by sampling the 

continuous /functions at N equally spaced points over the open interval 

(0,1). In order that the properties of the continuous and discrete . 



.' 

FIGURE 2.9 

AII,I): ARII,I):I 
All,2): AR (1,2)= I 
AI2,1): ARI2,1): I 
A(2.2): AR(2.2):., 

NA: NA)(-2 

FK: FL:I 
lI=JJ:K=l=1 

Flow diagram for hadamard matrix evaluation 
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systems should correspond, we must take N equal to an integer power of 

two, i.e. N=2
n

. The integration shown in Eq.(2.29) may then be 

\ 
replaced by summation. Then, we can define ,the finite discrete Walsh 

transform pair as 

and 

N-1 
X(n) =-

N L· x ( n) • Wal ( n , i ) 
n=O 

N-1 
x(n) = L X(n). Wal(n,i) 

n=O 

.. -' 

i = O,1,2,3, •.•. ~ .•• ,N-1 

i = O,1,2,3, •.•.•••. ,N-1 

(2.31) 

(2.32) 

As it is seen appearently, the Walsh transform involves only 

additions and subtractions. Therefore it has distinctive advantages in 

adaptability to digital implementatlon and also computer analysis. /~ 

2.7.1 MATRIX DEFINITION OF WALSH TRANSFORM 

A Walsh matrix can· be evaluated from appropriately sampling of 

continuous Walsh functions, or directly from the Hadamard matrices. Then, 

we can/represent the Walsh matrix as W(n), where n is an integer 

number. This should have a certain order, N, that must satisfy 

n = log2" N . (2.33) 

Let a continuous function be sampled over a time interval at. N. 
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equidistant points and the discrete function be represented by means of 

a vector x(n), where 

x(n) (2.34) 

Then, the Walsh transform of a sampled function can be defined [16], as 

1 
X(n) =N""0 W(n). x(n) (2.35) 

where, the product X(n) is a vector consisting of the Walsh coefficients 

as 

x (n) = [X
O 

Xl ....•.....•.••. XN_1 ] T (2.36) 
.. -' 

The inverse Walsh transform can be defined as 

x(n) = W(n) • X(n) (2.37) 

In fact, the matrix cited above is the Hadamard matrix in Walsh 

order. In computer applications, it is more convenient to use Walsh 

matrix in the Hadamard order rather than any other order. Program-3 is 

written to compute the Walsh transform of a given series. To compute the 

inverse transformation, TR should be set to -1. Fig. 2.10 shows the flow 

diagram of Program-3. 

Example /: Let N be equal ~o 8, and x (n) be· 

x(n) = [0.7 1.0 0.7 0.0 -0.7 -1.0 -0.7 



COMPUTE 
HADAMARD 
MATRIX 

V(J} : 0 

I ~ 1 

r---~-I\uI:VUhlXl})(HA(I, J) 

U(I): V(I) U(I):V(l)l N I--+-~ 

FIGURE 2.10 Flow diagram for Walsh transform 

3 1 
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Then, the transform coefficients are found as 

0.7 0.0 

-1 \, -1. -1 -1 1.0 0.6 

-1 -1 -1 -1 0.7 0.25 

1 -1 -1 -1 -1 1 0.0 0.0 
X(n)=- = 8 

-1 -1 -1 -1 -0.7 0.0 

-1 -1 -1 -1 -1.0 -0.25 

-1 -1 -1 -1 -0.7 0.1 

-1 -1 -1 -1 0.0 0.0 

In order to verify that the transformation in Eq.(2.35) is unique, 

we substitude X(n) , in Eq.(2.37) to obtain 

. ./ 
0.0 0.7 

-1 -1 -1 -1 0.6 1.0 

-1 -1 -1 -1 0.25 0.7 

-1 -1 -1 -1 0.0 0.0 
x(n)= = 

-1 -1 -1 -1 0.0 -0.7 

-1 -1 -1 -1 -0.25 -1.0 

-1 -1 -1 -1 0.1 -0.7 

-1 -1 -1 -1 0.0 0.0 

2.7.2 FAST WALSH TRANSFORM 

Fast Walsh Transform can. be derived using matrix factoring or 

matrix partitioning techniques (14]. Now, we are going to illustrate th~ 
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matrix partitioning technique for the case N=8. For N=8, Eq.(2.3S) 

yields 

1· . 
X(3) =8' W(3).x(3) 

Using Eq~(2.23), W(3) is expressed in terms of W(2) to obtain 

1 
X(3) =8 

[ 

W(2) 

W( 2) 

W(2) ] 

-W(2 ) 
x( 3) 

Using matrix partitioning it follows that 

X(O) x1 ~ 0) 

X( 1) .. .; xl· ( 1 ) 
= W(2) • 

8 
X(2 ) xl (2) 

X(3) x
1 

(3) 

X(4) x
l

(4) 

X(S) x
1

(S) 

=- W(2) . 
8 

X( 6) 

X(7) 

where 

x (1) = x(l) + x(4+1) 
1 

x (1) = x(1-4) - x(l) 
1 

x
1 

(6) 

x
1 

(7) 

1 = 0, 1, 2, 3 

1 = 4, S, 6, 7 

(2.38) 

(2.39) 

(2.40) 

/j' 
, 

(2.41 ) 

(2.42) 

(2.43) 
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The sequence of additions and subtractions in Eqs.(2.40) and (2.41) are 

shown in the signal flow graph in Fig. 2.11, and are indicated by 

Iteration if 1. Again, the application of Eq.(2.23) to Eqs.(2.40) and 

(2.41) results in 

X(O) x
l

(O) 

X( 1) 
[W(lI W(ll 1 .x,.( 1 ) 

= 8" (2.44) 
X(2 ) W( 1) -we 1) x

1
(i) 

X(3) x
1

(3) " 

X(4 ) x l (4) 

X(5 ) [well W(ll ] x
1

(5) 
= '8 (2.45) 

X(6 ) W(1) -we 1 ) x1(6) 

X(?) x
l

(7) . ./ 

From matrix partitioning indicated in Eq.(2.44) and (2.45), we obtain 

[
X(O)] 1 [X1(O) + Xl(2)] 

= if W( 1) 
x(l) x

1
(1) - x l (3) 

= - W( 1) . 
[

X(2)] 1 ,[ x1 (0) - xl (2)] 

x(3) 8 x
1
(l) + x

1
(3) 

~[X(4)] 1 [Xl(4) 
=- W(1) 

8 
x( 5) xl (6) 

+ xl (5)] 
- x

1
(7) 

=- W(l) 

[
X(6)] '1 [X1 (4) - Xl (5)] 

,x(7) 8 x
1 

(6) + xl (7) 

l' [X2 (0) ] = '8 W(1) 
x

2 
(1 ) 

(2.46) 

= + W ( 1) [X2 ( 2) ] 
x

2
(3) 

(2.47) 

_ + W(ll [X2 (4) ] 

X
2

(5) 
(2.48) 

(2.49) 



Iteration.# 1 Iteration it 2 Iteration # 3 ..L 
8 

X( 0) r----~_,I. Xl (0) ~---+-. x
2 

(0 )~----+---, x3 (0 )-~)- X( 0) 

X ( 1 ) r--\---/4-_, Xl ( 1 ) ~--+--~ x
2 

( 1 ) "------.-.,. ..... x3 ( 1 l ---i)""" X ( 1) 
-1 

or--------"-+..,,. x3 (2)-~~- X (2 ) 

X( 3) x
l

(3) x2(3l x
3

(3) , X(3 ) 
-1 -1 

lot; 

.. -' 

x(4) x2 (4) x
3

(4) ) X( 4) 

r , 
/ 

xes) x2 (S) x
3

(S) ) . X(S) 
-1 

X ( 6 ) '--+-_-'-:~..l. 

X (7) L------r>-x
l 

(7) ~---..,...... x
2 

(7 )"-----~ ..... x3 (7 l --7'-' - X( 7 ) 
-1 -I -i 

FIGURE 2.11 Fast Walsh transform signal flow graph 
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The sequence of additions and subtractions in Eqs. (2.46) through (2.49) 

are indicated by Iteration # 2 in Fig. 2.11. Since 

W( 1) = [: _:] 

these equations reduces to 

X( 0) = ..l[ x (0) 8 2 + x2 ( 1 )] = + x3 ( 0 ) 

X( 1 ) = "!'[x (0) 8 2 - x (1)] = ..!.. x (1) 283 

X(2 ) = ..l[x (2) 8 2 + x2 (3)] = i x3 (2) 

X(3 ) = ..l[x (2) - x (3)]=.!..x (3) 8 2 2, '8 3, 
(2.50) 

X(4 ) =..l[x (4) 8 2 + x2 ( 5 ) l~ + x3 ( 4 ) 

X(5 ) =2.[x (4) 8 2 
- x (5)]=2.. x (5) 283 

X(6 ) =...l[x (6) 8 2 + x2 (7) 1 = + x3 (6) 

X(7) :::J..[x '(6) - x (7)]=...!-X (7) 8 2 283 

The sequence of additions and subtractions in Eq.(2.50) are 

indicated by Iteration # 3 in Fig. 2.11. From the signal flow graph, 'it 

is apparent that apart from the 1/8 multiplier, only additions and, 

subtractions are performed. The number of additions and'subtractions 

required to compute the eight Walsh Transform coefficients is 

I 

It should be mentioned that there is a drowback with the Fast Walsh 

" 
Transform. Since the Hadamard matrices possess a simple recursive 
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formula, it is necessary to rearrange the input into bit reversed order 

before the transformation. The output coefficients are in bit reversed 

order compared wi,th the .coefficients of an increasing ordered sequency. 

Therefore, the output needs the rereversing of the bits to reorder the 

coefficients in increasing sequency [17,18]. 

Program-4 is written to compute the Fast Walsh Transform of a 

sampled function. The number of data in the a~ray to be transformed 

should be an integer power of two. The flow diagram of Program-4 is 

shown in Fig. 2:12. 

n Generally, for the case N=2 the following remarks can be made: 

1. The total number of iterations is given by n=log2N. If IT is 

an iteration index, then IT = 1, 2, 3, •.••.. , n. 

2. The I~ iteration results in IT-1 
2 groups with 

N/2IT- 1 members in each group. Half of the members in each group are 

associated with an addition operation, while the remaining half are 

associated with a subtraction operation. 

3. The total number of arithmetic operations to compute all of the 

transform coefficients is approximately Nlog2N. 



FIGuRE 2.12 

.,-, 

J8= N IJA 
JC =JB 12 

AL=1 
J2 =1 

JD~JE+J3,tJC 
JG=JEtJ3, 

, V(1G) = U(JG)+AUtU(JDJ 
V(JD) =U(JG)-AL~UUD) 

J3 = Jh1 

12=J2+1· 

Flow diagram for fast Walsh transform 
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III. ADAPl'IVE FILTERS 

3. 1 ADAPl'IVE PROCESSING 

Conventional signal processing systems for the extraction of 

information from an incoming signal, such as matched filters, operate in 

an open-loop fashion, Fig.3.1. This means that, the same processing 

function is carried out in the present' time interval regardless of 

whether the resulted output is correct in the preceeding time interval. 

Input 

S_i_g_n_a_l~~ ______ '~1 Processor 

.-' 

)' 

" 

Output 
signal 

Figure 3.1 Open-loop processing system 

An adaptive signal processing system can operate in an open-loop pr 

in 'a closed-loop fashion with respect to the processed signals. In an 

open-loop adaptive signal processing system, the processing function 

I 
s 

o 
d 

nput 
ignal 

ther 
ata '-+-

Ott ? u pu 
signal 

Processor 

{ 
Adaptation' 
algorithm 

/. 3 2 Open-loop adaptive processin"g system Fl.gure • 
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changes while the incoming signals change, Fig.2.2. The incoming signals 

are applied to a computational algorithm and the results are used to set 

the adjustments of/ the adaptive system to improve the output signal 

characteristics. In a closed-loop adaptive signal processing system, on 

the other hand, the adjustments are changed by procesing both the inputs 

and resulted signals to optimize the system performance. A closed-loop 

adaptive signal processing system is shown in Fig. 3.3. 

Input J Output 
signal Processor signal 

t 
Adaptation 
algorithm 

Other -
data Performance 

calculation 

Figure ,3.3 Closed-loop adaptive processing system 

3.2 ADAPTIVE FILTERING 

The usual method of estimating a signal corrupted by noise is to 

pass it through a filter that tends to supress the noise while leaving 

the signal relatively unchanged. Subtracting noise from a received 

signal would seem to be a dangerous procedure. It could result in an 

increase in output noise power if it is done improperly. If, however, 

filtering and subtraction are controlled by an appropriate adaptive 
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source 

Noise 
source 

Primary 
input 

........... )' 
-+ 

1>-::---+--1 Adaptive 
n1 filter 

2 ) 

Reference 
input 

Filter 
output 

y 

Error 

. Figure 3.4 Adaptive noise cancelling system 

System 
output 

e 
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-process, noise reduction can be performed with little risk of distorting 

the signal or increasing the output noise level. Fig.3.4 shows the basic 

"problem and the adaptive noise cancelling solution to it. A signal,/c s: 

is transmitted over a channel to a sensor. This sensor also receives a , 

noise, nO' uncorrelated with the signal. The combined signal and 

noise form the primary input to the canceller. A second sensor receives 

another noise, n
1

, uncorrelated with the" signal but correlated in 

same unknown way with the noise nO' This sensor provides the 

reference input to the canceller. The noise is filtered to 

produce an output, y. This output is subtracted from the primary input 

s + nO to produce the system output. 

"e=s+n/-y o (3.1) 

.. , : 
+ • ' 



Assume that s, n 
0' and yare statistically 

and have zero means. Squaring Eq.(3.1), we can obtain 

2 e :2 
y) + 2 s (nO - y) 
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stationary 

(3.2) 

Taking expectation of both sides of Eq.(3.2), and taking into account 

that, s is uncorrelated with nO and y; it yie~ds 

E[e2 ] = E[s2] + E[(n
O 

= E[s2] + E[ (nO 

y)2] + 2 E[s(n
O 

- y)] 

y)2] 

The signal power E[s2] will be unaffected as the filter 

to minimize E[e2]. Accordingly, the minimum output power is 

•. J 

When the filter is adjusted so that is 

(3.3) 

is adjusted 

(3.4) 

minimized, 

is also minimized. Adjusting or adapting the filter 

to minimize the total output power causes minimizing the output noise 

power. Since the signal at the output remains constant, minimizing the 

total output power maximizes the output signal-to-noise ratio [19]. 

As it is seen from Eq.(3.3) that the smallest possible output power 

is E[e2 ] = E[s2]. When this is performed, we get 

(3.5) 



Input 
signals 
X( j) 

Xl ( j ) -.....".---1 

X l(j)-~~ n-

X (j) 
n 

Weights 
W( j) 
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y(j) = WT(j) X(j) 

Output 
r--7--~--------~---------signal 

Error. 

e(j)=d(j)-y(j) 

d(j) 

Figure 3.5 Adaptive linear combinatorial system 

Therefore, y = nO and e = s. In this case, minimizing the output 

power causes the output signal to be noise free. 

3.3 ADAPTIVE FILTER OPERATION 

The analysis of the adaptive filter can be developed by considering 
,. 

the adaptive linear combinatorial system shown in Fig. 3.5. In the' 
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system shown in Fig. 3.5, a set of stationary input signals is weighted 

and summed to form an output signal. The input signals in the set are 

assumed to occur simultaneously and discretely in time. The jth set 
I 

of input signals-can be represented by means of a vector X(j) as 

x (.) ]T 
n J . 

The set of weights can be represented by the vector W(j) as 

W(j) = [ w1(j) w
2
(j) •••••..••.••..• wn(j) ]T 

Then, the output is 

n 
y(j) ='" w. (j)~x. (j) L- 1. 1. 

i=1 

.. -' 

This can be written in matrix form as 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

f th J.th set of Assuming that d(j) is the desired response or e input 

signals, the error at the jth time is written as 

) - WT(J·).X(J·) e(j) = d(j) - y(j) = d(j 

-The square of this error is 

(3.10) 

.. .. 
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The expected value of e2
(j) is the-mean-square error. 

(3.12) 

Where, ¢(x,d) is the vector of cross-correlations between the input 

signals and the desired response, and ¢(x,x) is the correlation matrix 

of the input signals [20]. 

It can be observed in Eq.(3.12) that for stationa~y input signals, 

the mean-square error is a second-order function of the weights. The 

mean-square error performance function can be visualised as a 

bowl-shaped surface, a parabolic function of the weight variables. The 

adaptive filtering has the meaning of-continually seeking the bottom of 

the bowl where the error is minimum. The minimum of the mean-square 

error function can be found by differentiating Eq.(3.12) with respect to 

the weight vector. 
/ 

(3.13) -

To find the optimal weigth vector, should set the gradient 

equal to zero. Then, we get 

¢(x,d) = ¢(x,x),WLMS 
(3.14) 

and 

W
LMS 

= ¢ -l(x,x).¢(x,d) (3.15) 

Eq. (3.15) is the Wiener-Hopf equation in matrix form. The mean-square 
.' . 
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error can be obtained by substituting Eq.(3.15) into Eq.(3.12), as 

(3.16) 

3.4 'THE LMS ADAPTATION ALGORITHM 

The purpose of the adaptation process is to find an exact or 

approximate solution to the Wiener-Hopf equation. In practice it is -not 

possible to find a perfect solution of Eq.(3.15) because of the fact 

that an infinite statistical sample would be required to estimate 

perfectly the elements of the correlation matrices. The LMS algorithm 

can be used to find an approximate solution to Eq.(3.15). This algorithm 

does not even require squaring, averaging, or differentiating in order 

to make use of gradients of mean-square error functions. 

When using the LMS, changes in the weight vector are made along the 

reverse direction of the estimated gradient vector. Accordingly 

W(j+1) = W(j) - f:\. V [~2(j)] 

Where 

W( j) 

W( j+1 ) 

= Weight vector before adaptation 

= Weight vector after adaptation 

= A scalar constant controlling the rate of 

- convergence and stability 

,. 2 . 2] ~2 V[e (j)] 1= Estimate of gradient of E[e = e with 

respect to W,with W = W(j) 

(3.17) 

" . 



47 

One method for obtaining the estimated gradient of the mean-square 

error function is to take the gradient of a single time sample of the 

squared error; that is 

(3.18) 

From Eq.(3.10) 

(3.19) 

. Thus, 

(3.20) 

.. -' 

Using the gradient estimating formula above, the weight iteration rule 

given by Eq.{3.17) becomes 

W{j+1) = W{j) ,+ 2 t1e{j).X(j) (3~21) 

and the weight vector is obtained by adding the present weight vector to 

the input vector scaled by the value of the error. This is the LMS 

. algorithm and the convergence is guarantied only if ~ is chosen as 

0<C"'<_1_ 
/\ max (3.22) 

Where ~ is the largest eigenvalue of the input correlation 
"max / 

matrix [21]. 



N
x poin 
-~-I 

WT 

x, 

N-point WT 

d 

Figure 3.6 Transform domain adaptive filter 

3.5 TRANSFORM DOMAIN LMS ALGORITHM 

N
point 

IWT 
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y 

A block diagram of the transform domain adaptive filter is shown in 

Fig.3.G. The input, x, is sampled at N equidistant points to form an 

input signal vector x(n) where 

x(n) = 
T 

Xo x, x
2 

••••••••••••••••• xN_,] (3.23) .' . 
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Then, the input vector is transformed into.another vector, X(n) 

X(n) = X X X ]T O! 1 2 ~ ••••••••••••••••• ~-1 (3.24) 

using an orthogonal transformation, as 

X(n) = W(n). x(n) .' (3.25) 
N 

where W(n) is a unitary matrix of rank N. That is 

(3.26) 

The elements of the vector X(n) are multiplied by the elements of the' 

transform domain weight vecto~ 

H(n) = [ HO H, ••••••••••••••••.•••••••• (3.27) 0 

/ 

to form the adaptive filter output, Y(n). The output and the 

corresponding error signal are given as 

Y(n) = [ YO Y1 
Y2 

................ YN- 1 
]T (3.28) 

and 

EN_
1 

] T 
(3.29) E(n) = [ EO E1 E2 ................. 

where 

Y. = H .• X. 
1 1 /1 

(3.30) 
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and 

E. = D. - Y. 
~ ~ ~ 

(3.31 ) 
i = 0, 1, 2, •••••• j N-1 

respectively. Eq.(3.31) denotes that, there are N orthogonal error 

outputs rather than single global error of the time domain approach. To 

minimize this error, the transform domainw~ight update equation for the 

kth iteration can be exressed as 

=W. k+ 2 ("'X ... E. 
'1, ~ 1 

(3.32) 

The system output is given as 

T yen) = W (n).Y(n) (3.33) 

and the error is 

e = d - Y (3.34) 

since the filter 'processes the data in N point blocks, each weight is 

updated once for each block. This provides superior convergence 

properties by comparison with time domain approach [22,23,24]. 
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IV. SIMULATION OF WALSH DOMAIN ADAPTIVE FILTER 

The implemen~ation of a transform domain adaptive filter can be 

done by transforming the input signal,. multiplying the transformed input 

signal by a set of stored transform domain weights, followed by inverse 

transform processing. Although this appears at first sight to be more 

complicated than time domain processing', the transform domain 

application re~uires many fewer multiplication when ~he filter length is 

large ( e . g ., > 16 ). 

Simulation of the Walsh domain adaptive filter is made by taking 

into account the transform domain LMS algorithm ( Fig. 3.6 ). The input 

signal and the desired response are accumulated in buffer memories to 

form N-point data blocks.·-' They are then transformed by N-point fast 

Walsh transforms. Each of the fast Walsh transform outputs comprises a 

set of N real numbers. The weighted input transform values ca~e 
/ 

subtracted from the desired response transform values to form Nerror 

signals. There are N weights, and each of them is independently updated 

for each data block. The weighted inputs form the output transform 

values and they are fed to an inverse fast Walsh transform operator to 

produce the output signal. 

~ 

A substantial reduction in computation is obtained with the Walsh 

domain adaptive filter as compared with conventional time domain 

adaptive filtering. This fact can be demonstrated by examining the 

number of multiply operations required to process a fixed amount of 

data. To produce N output data points with an N-tap, time domain LMS 
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adaptive filter requires 2N2 multiplications. To produce the same 

amount of output with this Walsh domain filter requires three N-point 

fast Walsh transforms and 2N multiplications for the weighting and 

updating. Then, the total number of multiplications is 3Nlog
2

N + 2N. 

For large filters, the computational savings produced by Walsh domain 

filter is substantial. 

Program-5 is written to filter a signal, corrupted by white noise, 

adaptively in Walsh domain. Fig. 4.1 shows the. '·flow diagram of this 

computer program. The whole program is given in the Appendix as 

. Program-5. It consists of two main parts, one is the basic routine and 

the other is the subroutines. Although the filter length can be chosen 

as any number being an integer power of two, the computer memory 

restricts the maximum to 64. Because of the plotter capacity, .the 

maximum number of iterations is limited at 1600. 



FIGURE 4.1 
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WRITE 
DESIRED SIGNAL 
INPUT SIGNAL 
OUTPUT SIGNAL 
MEAN-SQUARE ERRO R 

Flow diagram for Walsh domain adaptive filter 
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v. RESULTS AND CONCLUSIONS 

I 

5.1 ADAPTIVE ~ILTERING OF A SINE WAVE 

The results of the Walsh domain adaptive filtering of a sine wave 

are shown in Fig. 5.1. The input signal is a sine wave corrupted by 

white noise. Fig. 5.1(b) shows the mean-square error versus iteration 

number. As it is shown in Fig.5.1(b), the mean-sq~are error decreases 

very rapidly at first. With an adaptive step size of 0.005, the 

adaptation process is completed after about 60 iterations. After the 

adaptation process is completed, the change in the rate of decrease of 

the mean-square error becomes insignificant. The waveforms of the input, 

desired, and output signals are shown in Fig. 5.1(a) for the last 
.-' 

iteration. Although there is quite a difference between the input and 

the' desired signal, the output signal is almost the same as the desired 

'signal. Walsh spectra of the waveforms in Fig. 5.1 (a) are shown;,irY 

Fig.5.2. Fig. 5.2(a) shows that there are only a few Walsh transform 

coefficients to represent the desired signal in the Walsh domain. Lots 

of the Walsh transform coefficients of the desired signal are equal or 

very close to zero. In order to make the output noise free, we have to 

eliminate the Walsh transform coefficients of the input signal which are 

not present in the Walsh spectrum of the desired signal, and try to 

evaluate the Walsh transform coefficients of the desired signal from the 

Walsh transform coefficients of the input signal. This is performed by 

the transform domainLMS algorithm. At the begining of the adaptation an 

arbitrary val~e is chosen as tqe elements of the weight vector (initial 

weight). The products of the input signal Walsh transform coefficients : 
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FIGURE 5.1 Transform domain adaptive filtering of a sine wave 
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and the corresponding weight vector elements form the output signal 

Walsh transform! coefficients. After comparing the output signal Walsh 

transform coefficients with the corresponding desired signal Walsh 

transform coefficients, the elements of an error vector are evaluated. 

This error vector is used to update the present weight vector elements 

and the .first iteration process is comple"ted. Then, the updated weight 

is used to compute the following output signal, and the same process 
'. 

goes on. The reduction in the noise amplitude is generally. greater than 

30 dB. After the adaptation is completed, the variation in the magnitude 

of the mean-square error is less than 10 dB. 

5.2 ADAPTIVE FILTERING OF A RECTANGULAR WAVE 

.. ..' 

The results of the Walsh domain adaptive filtering of a rectangular 

wave are shown in Fig. 5.3. The input signal is a rectangula~,wave 

corrupted by white noise. The waveforms of the input, desired and, 

output signals are shown in Fig.5.3(a). Fig.5.3(b) shows the mean-square 

error versus iteration number. As it is shown in Fig.5.3(a) the effect 

of noise on the output signal is eliminated but there is still a 

difference between the input and output signal. With an adaptive step 

size of 0.0025, the adaptation is completed after about 70 iterations. 

At the end of the last iteration the reduction in the noise amplitude is 

greater than 30 dB. After the adaptation is completed the variation in 

the magnitude of the mean-square error is generally less than 10 dB. 

Fig.5.4 shows the Walsh sp~ctrum of the desired, input, and output 
I 

signal. As it is shown in Fig.5.4, the Walsh transform coefficients of 

the input signal which are not present in the desired signal Walsh . 
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FIGURE 5.3 Transform domain adaptive filtering of a rectangular wave 
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spectra are eliminated. Although they have the'same index number, :there 

is a difference between the magnitude of the corresponding desired 

I 

signal and the output signal Walsh transform coefficients. Because of 

the differences between the magnitudes of the desired signal and the 

output signal Walsh transform coefficients, the output signal waveform 

is not same as the desired signal. Sin~e the whole signal is represented 

by only a few Walsh transform coefficients, a small change in the 

magnitude of any Walsh transform coefficient can strongly change the 

shape of the output waveform. The difference between the magnitudes of 

the output and desired signal Walsh transform coefficients can be 

minimized but there will be always a small error because of the nature 

of the adaptation process. 

...J 

5.3 ADAPTIVE FILTERING OF A SQUARE WAVE 

The results of the Walsh domain adaptive filtering of a square wave 

are shown in Fig .5,.5. The input signal is a square wave corrupted by 

white noise. Fig.5.5(b) shows the mean-square error versus iteration 

number. As shown in Fig.5.5(b) the reduction in the magnitude of the 

mean-squre error is sig~ificant. As it is shown in Fig.5.6, a square 

wave can be represented by only 'a single Walsh transform coefficient. 

Since ther~ is only a single Walsh transform coefficient to be evaluated 

after the adaptation, all of the other Walsh transform coefficients 

should be eliminated. After the unwanted Walsh transform coefficients 

are eliminated,- the output signal becomes noise ,free. With an adaptive 

step,size of 0.0025, the adaptaticin process is completed after about 40 

iterations. The reduction in the noise amplitude is greater than 40 dB. 
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After the adaptation is completed, the variation in the amplitude of the 

mean square error is less than 5 dB. The output signal is almost the 

same as the desired signal. There is only a small difference between the 

magnitudes of the desired signal and the output signal. This error is 

inevitable because of the nature of the adaptation process. However, the 

result is quite satifactory. 

5.4 EFFECTS OF INITIAL WEIGHT AND ADAPTIVE' STEP SIZE ON 

CONVERGENCE CHARACTERISTICS. 

The effects of the initial weight, bias weight, and the adaptive 

step size on the mean-square error are shown in Figs. 5.7 and 5.8. As it 

is shown in Figs. 5.2, 5.4, and 5.6, the Walsh spectra of the desired 
.. ,.... 

signal comprises only a few Walsh transform coefficients. After setting 

an element of the initial weight vector equal to zero, if the 

corresponding Walsh transform coefficient of the desired signal is equal 

to zero, the related Walsh transform coefficient of the output signal 

will be directly evaluated without taking into account the Walsh 

transform coefficient of the input signal (3.30). 

The choice of the adaptive step size effects both the number of 

'iteration to complete the adaptation and the magnitude of the 

mean-square error. The adaptive step size is chosen emprically for. 

optimum convergence in the plots. When the adaptive step size is chosen 

very close to 1 .no convergence can be obtained. As the value of the 

adaptive st.epsize decreases 'the number of iteration to complete the 
• < 

adaptation increases, but the final value of the mean square error also' 

decreases. 
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5.5 CONCLUSIONS 

After setting up the computer model of the Walsh domain adaptive 

filter, the convergence performance has been investigated through an 

extensive study with many types of input signals embedded in white 

noise. Although no rigorous theoretical proof about the convergence 

properties has been given, a great deal of emprical evidence 

-
illustrating the stability of the Walsh domain adaptive filter has been 

presented using computer simulations. It should be mentioned· that the 

Fourier transform is favourable when we deal with the continuous 

waveform analysis. On the other hand, a discontinuous waveform, a 

rectangular waveform, is more easily reconstructed when the Walsh 

transform is employed. The Wal$h 'transform and its inverse can be 
.. -' 

obtained by matrix multiplication using the digital computer. Since the 

matric'es are symmetrical for the Walsh transform, ( unlike the Fourier 

transform then both the transform and its inverse are identical, 

except for a scaling factor, 1/N. Consequently, the use of Walsh domain 

brings out computational savings and easy implementation over the 

Fourier domain techniques. 

The discrete Fourier transform is invariant to the phase of the input 

signal so that the same spectral decomposition can be obtained 

independently of the phase or circular time-shift of the ihput signal. 

This is not possible for the discrete Walsh transform. 

Since the sine and cosine functions cannot be represented exactly 

by a number of bits, a source of truncation noise is introduced by the 
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discrete Fourier transform which involves repeated multiplication by a 

complex number. The Walsh transform, on the other hand, involves only 

addition and subtraction and precise representation is possible. This 

can be interpreted'., that the Walsh transform does not bring a truncation 

noise. 

For the case of sinusoidal inputs embedded in white noise, it has 

been shown that many of the Walsh transform coefficients of the desired 

signal are equal to zero. This brings out rapid -
conve~gence performance 

when the initial weight is chosen relatively small or very close to 

zero. 

Special interest was given to the square waves and it has been 

demonstrated that almost a noise' free output is evaluated when the 
........ 

desired signal is represented by a singie Walsh transform coefficient. 

The effects of initial weight and adaptive step size on convergence 

performance were studied in detail. If one sets an element of the 

initial weight vector equal to zero, the corresponding output signal 

Walsh transform coefficient can be obtained independently for the input' 

signal when the related Walsh transform coefficient of the desired 

signal is equal to zero. Smaller adaptive step size brings small 

variations on the magnitude of the mean square error after the 

adaptation is completed, but the number of iteration to complete the 

adaptation increases. 
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5.6 SUGGESTIONS FOR FURTHER STUDY 

A hardware implementation of the Walsh domain adaptive filter is 

practical and can\ be performed in a further study. Since the Walsh 

transform depends on Modulo-2 addition, it possesses dyadic convolution. 

The effect of dyadic convolution on convergence performance can be 

investigated analytically. Further study might concentrate on the bounds 

of the adaptive step size which is an open problem in the Walsh domain 

adaptive filtering for the time being. The effect of zero intial weight 

on the mean-square error should be investigated and analytical results 

should be established if possible. The initial phase dependency of the 

Walsh transform for the case of sinusoidal signal can also be 

investigated analytically. 

..-' 

. , 
I ;. 
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APPENDIX· 

A number of programs referred to earlier in the study are given 
I 

\ 
here. The programs are all written in BASIC for the RADIO SHACK TRS-80 

MODEL 16 digital computer. Program-1 can be used to rearrange a series 

into bit reversed order. Program-2 is written to evaluate Hadamard 

matrices of any order restricted having tn~ integer power of two. 

Program-3 can be used to compute Hadamard ordered Walsh transform. 

Program-4 can be used to compute fast Walsh transform. Computer 

simulation of the Walsh domain adaptive filtering is presented in 

Program-5. The input medium is the keybord of the computer. The output 

medium is either a printer or a plotter. After the run command, the 

explanation promts apper where they are necessary. More specific 

information about the plottet ..... commands can be found in the user's manual 

of the computer. The important variables of Program-5 are l-isted below. 

D Desired response 

DW Transformed desired response 

E Error 

N Number of data in one iteration 

NB Bit reverse order index 

NM Number of iteration 

X Input~signal 

TR Transform key 

U Dummy argument 

V Dummy argument 

y Output signal 

W Weight vector 



100 REM** 
110 REI"1** 
120 REI"1** 
130 CLS 

PROGRAM-1 ** 
THIS'PROGRAM REARRANGES A~IVEN ** 
SERIES INTO BIT REVERSED ORDER ** 

140 DEFINT I-N, 
150 DIM X(32).~(32),IB(10) 
160 PRINT@(10,0), 
170 PRINT"ENTER THE NUMBER 
180PRINT"TO BE REARRANGED 

OF DATA IN THE SEQUENCE" 
INTO BIT REVERSED ORDER" 

190 
200 
210 

INPUT"IT SHOULD BE A POWER OF 2 ";N 
CLS 

220 
230 
240 
250 
260 
270 
280 
290 
300 
310 

FOR 1=1 TO N 
INPUT XCI) 
NEXT I 
PRINT"THE ORIGINAL SE~UENCE" 
PRINT 
FOR 1=1 TO N STEP 8 . 
PR I NT US I NG II +~.4tU:tt. ##" ; X ( I ) ; X'( 1+1 ) ; X ( 1+2) ; X ( 1+3) ; 
IF I+4)N THEN GO TO 310 
PR I NT US I NG II +#ft#ft. ##" ; X ( 1+4) ; X ( 1+5) ; X ( 1+6) ; X ( 1+7 ) 
NEXT I 
PRINT 

320 FOR 1=1 TO N'BIT REVERSE 
330 IA=I-1 
340 IC=1 
350 ID=IA/2 
360 IBIT \I C) =1 
370 IFIA=(ID*2) THEN IBCIC)=0. 
380 IF ID=0 THEN GOTO 420 
390 IA=ID 
.400 I C=I C+l 
410 GOTO 350 
420IE=1 
430 IG=N 
440 FOR 11=1 TO IC 
450 IG=IG/2 . 
460 IE=IE+IG*IBCll) 
470 NEXT 11 
480 YCIE)=X(I) 
490 NEXT I 
500 FOR 1=1 TO N 
510 X(I)=Y(I) 
520 NEXT I 
530 PRINT" THE BIT REVERSED,SEQUENCE " 
540 PRINT 
550 FOR 1=1 TO N STEP 8 . 
560 PRINT USING"+####.##";X(I);X(I+l);X(I+2);X(I+3); 
570 IF I+4)N THEN GOTO 600 ' 
580 PRINT USING"+####.##";X(I+4);X(I+5);X(I+6>;X(I+7) 
590 NEXT I . 
600 END 
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100 REM**PROGRAM-2 ** 
110 REM** THIS PROGRAM EVALUATES HADAMARD MATRICES ** 
120 DEF~NT I-N 
130 DIM A(2~2),AR(32,32),HA(32,32) 
140 CLS :PRINTNENTER THE MATRIX DIMENSION U 

150 INPUTuIT SHOWLD BE AN INTEGER POWER OF 
160 AC1,1)~I:A(I,2)=I:A(2,1)=I:AR<I,I)=1 ' 
170 ARC1,2)=I:AR(2,1)=I:A(2,2)=-I:AR(2,2)=-1 
180 1''11=-1: IA=N' 
190 IA=IA/2:IF IA=0 THEN GOTO 210 
200 MT=MT+l=GOTO 190 
210 NA=2 
220 FOR 1"1= 1 TO t'11 
230 NA=NA*2 
240 FK=I=FL=I:II=I:JJ=I:K=1 
250 FOR 1=1 TO'NA 
260 L=1 
270 FOR J=1 TO NA 
280 HA(I,J)=ARCK,L)*ACII,JJ) 
290 IF JJ~2 THEN GO TO 310 
300 JJ=2:GOTO 320 
310 JJ=1 
320 FL=FL+0.5:LI=FL 
330 IF LI=FL THEN L=L+l 
340 NEXT J 'w 

350 IF 11=2 THEN GOTO 370, 
360 II=2:GOTO 380 .~ 
370 11= 1 
380 FK=FK+0.5:KI=FK 
390 IF KI=FK THEN K=K+l 
400 NEXT I 
410 FOR 1=1 TO N 
420 IF M=MT THEN GOTO 450 
430 FOR J=1 TO N:AR(I,J)=HACI,J) 
440 NEXT J:NEXT I:NEXT M 
450 CLS :PRINT"THE HADAMARD MATRIX OF ORDER";N 
460 FOR J=1 TO N'WRITE THE DESIRED MATRIX 
470 FOR 1=1 TON STEP 16:PRINT 
480 ,PRINT USING"+####";HA(I,J);HACI+l,J); 
490 PRINT USING"+####";HACI+2,J);HA(I+3,J); 
500 IF I+4)N THEN GOTO 600' 
510 PRINT USING"+####";HA(I+4,J);HA(I+5,J); 
520 PRINT USING"+####";HA(I+6,J);HA(I+7,J); 
530 IF I+8>N THEN GOTO 600 

,540 PRINT USING"+4t#*~:U" ;HAC I+8,J) ;HA( I+9,J); 
550 PRINT USING"+####";HA(I+10,J);HA(I+l1,J); 
560 IF I+12>N THEN GOTO 600 
570 PRINT USING"+####";HA(I+12,J);HA(I+13,J); 
580 PRINT USING"+####";HA(I+14,J);HACI+15,J); 
590 NEXT_ I , 

,600 PRINT:NEXT J 
'610 END" 

" ; N 
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100 REM** PROGRAM-3 ** 
110 REM** THIS PROGRAM C(~PUTES THE WALSH TRANSFORM ** 
120 REM** OF A GIVEN SERIES. TO COMPUTE THE INVERSE** 
130 REM** WALSH TRANSFORM TR MUST BE SET TO -1 ** 
140 DEFINT I-N 
150 DIM A(2.2),~RC32~32),HA(32,32),X(32),Y(32) 
160 CLS:INPUT"E~TER TR"~TR . 
170 INPUT"ENTER THE NUMBER OF DATA";N 
180 FOR I=i rd N:INPUT XCI):NEXT I 
1 90 GOSUE~ 340 
200 FOR J=1 TO N:Y(J)=0 
210 YCJ)=0:FOR 1=1 TO N 
220 YCJ)=YCJ)+X(I)*HA(I,J) 
230 NEXT I:NEXT J' 
240 IF TR=-1 THEN GOTO 270 
250 FOR 1=1 TO N:XCI}=Y(I}/N:NEXT I 
260 GOTO 280 
270 FOR 1=1 TO N:XCI}=Y(I}:NEXT I 
280 FOR 1=1 TO N STEP 8 
290 PRINTUSING"+###.####";X(I};X(I+l);X(I+2);X(I+3); 
300 IF I+4>N THEN GOTO 330 
310 PRINTUSING"+###.####";X(I+4);X(I+5};X(I+6);X(I+7) 
320,NEXT I 
330 END 
340 A ( 1 , 1 ) = 1: A ( 1 , 2) = 1 : A ( 2, 1 ) = 1':' A R ( 1 , 1 ) = 1 
350 AR <" 1,2} = 1 : AR (2, 1 ) = 1 : A (,2,2) =-1 : AR (2,2 )=-1 
360 MT=-I:IA=N 
370 IA=IA/2:IF IA=0 THEN GOTO 390 
380, MT=MT+l:GOTO 370 
390 NA=2 
400 FOR M=1 TO MT 
410 NA=NA*2 
420 FK=I:FL=I:II=I:JJ=I:K=1 
430 ~OR 1=1 TO N~:L=1 
440 FOR J=1 TO NA ' 
450 HA(I,J)=AR(K,L)*A(II,JJ) 
460 IF JJ~2 THEN GOTO 480 
470 JJ=2:GOTO 490 
480 JJ=1 
490 FL=FL+0.5:LI=FL 
500 IF LI=FL THEN L=L+l 
51ID,NEXT J 

.520 IF 11=2 THEN GOTO 540 
530 II=~:GOTO 550 
540 11=1 
550 FK=FK+0.5:KI=FK 
560 IF KI=FK THEN K=K+l 
570 NEXT I 

'580 FOR 1=1 TO N 
590 IF M=MT THEN RETURN 
600 FOR J=l TO N:AR(I,J}=HA(I,J) 
610 NEXT J:NEXT I:NEXT M 
620, RETURN 
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100 REM** PROGRAM-4 , _ ** 
110 REM** THIS PROGRAM COMPUTES FAST WALSH ** 
120 REM~* TRANSFORM OF A GIVEN SERIES. TO COMPUTE ** 
130 REM** THE INVERSE WALSH TRANSFORM SET TR=-1 ** 
140 CLS:DEFINT I-N 
150 DHl U(64)\VC64)' IB(20) 
160 INPUT"ENTER -1 TO'GET INVERSE TRANSFORMN.;TR 
170 INPUT"ENTER THE NUMBER OF DATA ";N 
180 CLS:FOR 1=1 TO N:INPUT U(I):NEXT I 
190 IT=0:IJ=N 'TAKE LOGARITHM AS BASE 2 
200 IJ=INT(IJ/2) 
210 IF IJ=0 THEN GOTO 230 
220 1T=IT+l:GOTO 200 
230 FOR 1=1 TO N'BIT REVERSE 
240 1A=I-l:IC=1 
250 ID=INTC1A/2) 
2601BIT(IC)=1 
270 IF IA=(ID*2) THEN IB(IC)=0 
280 IF 10=0 THEN GOTO 310 
290 IA=ID:IC=IC+l 
300 G01.O 250 
310' IE=1 :IG=N 
320 FOR 11=1 TO IC 
330 IG=INT(IG/2) 
340 IE=IE+IG*IBIT(Il) 
350 NEXT 11 
360 V C IE) =U ( I ) 
370 NEXT I 

.. ~. 

..... 

380 FOR 1=1 TO N=UCI)=VCI):NEXT I 
390 FOR Jl=l TO IT 'COMPUTE TRANSFORM 
400 IF Jl=l THEN JA=l 
410 IF Jl<)1 THEN JA=JA*2 
420 JB=INT(N/JA) 
430 JC=INT(JB/2) 
440 AL=l 
450 FOR' J2=1 TO JA 
460 JE=(J2-1)*JB 
470 FOR J3=1 TO JC 
480 JD=JE+J3+JC:JG=JE+J3 
490 veJG)=ueJG)+AL*ueJD) 
500 V(JD)=U(JG)-AL*U(JD) 
510 NEXT J3 
520 AL=-AL:NEXT J2 
530 FOR 1=1 TO N:ueI)=V(I):NEXT I 
540 NEXT Jl 
550 IF TR=-l THEN GOTO 570 
560 FOR 1=1 TO N:U(I)=UCI)/N:NEXT I 
570 PRINTuTHE TRANSFORMED SEQUENCE " 
580.FOR 1=1 TO N STEP 8:PRINT 
590 PRINT USINGH+###.####";U(I);U(I+l);0(I~2);UeI+3); 
60a ·PRINT ·USING"+###.####~;U(I+4);U(I+5·);U(I+6);U(I+7) 
610 NEXT I ' 
620 END 
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1000 CLS2:REM**** PROGRAM 5 *** 
1010 PRINT"TO GET A PLOTTER OUTPUT" 
102(2) INPUT"ENTER Y OTHEHvJISE N 1I,·PL$. 
1030 IF PL$="N" THEN GOTO 1090 
1040 PRINT"PRESS ENTER OR RETYPE LINE 4670 AND 5440 " 
1050 PRINTuTO THE NUMBER OF ITERATION WILL BE DONE II 

1060 INPUT* 
1070 PR$= U N" 
H180 ·GOTO 1100 
1090 PR$="Y" 
1100 CLS:DEFINT I-N 
1110 DIM X(64).Y(64).D(64).DW(64).U(801).V(801) 
1120 DIM E(801).W(64.2).NB(64),IB(20) 
1130 INPUT"ENTER THE NUMBER OF ITERATION"";NM 
115(:) PRINT 
1160 PRINT"ENTER THE NUMBER OF DATA II 
1170 PRINTIIIN ONE ITERATION" 
1180 INPUT" 64 32 16 8 ";N 
1190 CLS:PRINT@(5,0), 
1200 INPUT"ENTER ADAPTIVE STEP SIZE ";AR 
12H1 PRINT 
1220 PRINT"FOR VARIABLE ADAPTIVE STEP SIZE" 
1230INPUT"ENTER 1 OTHERWISE 0 ";DS 
1240 PRINT 
1250 INPUT"ENTER INITIAL WEIGHT ";WW 
1260 PfUNT 
1280 GOSUB 2610 
1290 PHINTa)( 18,0), --' 
1300 PRINT"DESIRED SIGNAL EVALUATION "; 
1385 ~\=N/8 

1310 FOR 1=1 TO N~D(I}=I:NEXT 
1312 FOR 1=12 TO N 
131i~ X(I}=-l 
1316 NEXT I 
1320 
13312) 
1332 
1333 
134(3 
139123 

FOR 1=12 TO N STEP 6 
DC I )=D( I).;."X( I) 
D(I+l)=D(I+1)*X(I) 
D(I+2)=D(I+2)*X(I) 
NEXT 
PRINt" WALSH TRANSFORM COMPUTING (D) "; 

l':f12J0 TR=1 
1410 FOR 1=1 TO N :U(I)=DCI) :NE~T I 
1 if20 GOSUB' 2960 
1430 FOR 1=1 TO N :DW(I)=U(I) :NEXT I 
1440 CLS 
1450 FOR J=l TO NM 
1460 CL:.Sl 
1470 PRINT@(17,0), 
1480 PRINT"ITERATION NUMBER = ";J 
1490 PRINT"DESIRED SIGNAL"; 
1500 GOf3UB 6080 
15H1 PRINT 
1520 PRINT"INP~T SIGNAL EVALUATION"; 
1530 REM ADD SOME NOISE 
1540 'D1'J=0 
1550 FOR 1=1 TO N 
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U ( I ) =RND ( 17/23) 
IF DN<U(I) THEN DN=U(I) 
NEXT I 

1560 
1570 
1SB0 
1590 

.1600 
1610 
·1620' 
1630 
16":;0 
1650 

FOR 1=1 TO N :U(I)=U(I)/DN :NEXT '1 
FOR 1=1 TO N :UCI)=U(I)-.S· :NEXT I 
FOR 1= ITO N 
A3=U ( I ) * 1 .0 i. 

A3= I NT C A3*1,~)- / A0 
X(I)=D(I)+A3 
NEXT I 

1660 G0811J? 6170 
1670 TH=l 
1680 PRINT" ~;J/\LSH TRANSFORt'l COI'IPUTING C X)" ; 
16S'0 FOR 1=1 TO N :1I( I )=X C I) :NEXT I 
1700 GOSUH 2960 
17H:.1 FOHI=1 TO N :X(I}=lI(I) :NEXT I 
1720. PRINT 
1730 PRINT"ADAPTIVE FILTERING"; 
1740 IF DS<>l THEN GOTO 1800 
1750 FOR 1=1 TO N- . 
176081=X(I)*X(I) 
1770 UCI)=5*ARIS@RCSl) 
1780 NEXT I 
179[1 GOTO 1810 
18012.1 FOR 1=1 TO N :UCI)=2*AR :NEXT 1 
1810 FOR 1=1 TO N 
1830 Y(I)=WCI,I)*XCI) 
1840 R=DW(I)-Y(I) _J' 

1850 W(I,2)=W(I,1)+U(I)*XCI)*R 
1860 NEXT I· 
18712.1 FOR 1=1 TO N:WCI,1)=W(I,2}:NEXT I 
1880 PRINT" ";:FOR ~L=l TO 1000:NEXT LL:PRINT 
1690 PRINT"INVE~SE WALSH TRANSFORM COMPUTING (Y)"; 
1900 TR=-l 
19112.1 
1920 
19312.1 
1940 

.1950 

FOr< 1=1 TO 
GOSlIH 296(1 
FOR 1=1 TO 
GOSIJB 6250 
PRINT 

N : U ( i ) =Y C I ) 

N : Y C I ) =U ( I ) 

1960 PRINT"ERROR COMPUTING"; 
1970 E(J}=0 
1980 FOR 1=1 TO N 
1990 ER=D(I)-Y(I) 
2000 E(J)=E(J}+ER*ER 
2010 NEXT 1. 
2020 E(J}=E(J)/N 

:NEXT 1 

:NEXT 1 

2030 PRINT" M~S.E.= ";ECJ); 
2040 NEXT J 
2050 PRINT 
2060 PRINT"INVERSE WALSH TRANSFORM-COMPUTING (X)"; 
2070 FOR 1=1 TO N :UCI)=X(I) :NEXT I 
2080 GOSUB 2960 
2090 FbR 1=1 TO N :XCI)=U(I) ;NEXT 1 

. 2100 1 F PR$~" Y II' THEN GO TO 2280 
2110 DE=0 :DD=0 :DS=0 :DY=0 
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2120 FOR 1=1 TO N 
2130 IF DD(ABS(D(I» THEN,DD=ABS(D(I» 
2140 IF DS(ABS(X(I» THEN DS=ABS(X!I» 
2150 IF DY(ABS(Y(I» THEN DY=ABSCYCI» 
2160 NEXT I 
2170 IF DD(DS THEN DD=DS 
2180 IF DD(DY,THEN DD=DY 
2190 FOR 1=1 +0 N 
2200 DCI)=D(I)/DD 
2210 X(I)=X1I)/DD 
2220 Y(I)=YCI)/DD 
2230 NEXT I 
2240 FOR 1=1 TO NM· 
2250 IF DE(ECI) THEN DE=E(I) -
2260 NEXT I 
2270 FOR 1=1 TO NM:ECI)=E(I)/DE:NEXT I 
2280 CLS2 
2290 PRINT@(23.0)," " 
2300 PRINT"TO DISPLAY THE DESIRED SIGNAL" • 
2310 INPUT"ENTER Y .OTHERWISE N "iAG$ 
2320 IF AG$="Y" THEN GOSUB 3270 . 
2330 CLS 
2340 PRINT@C23,0)," " 
2350 PRINT"TO DISPLAY THE INPUT SIGNAL" 
2360 INPUT"ENTER Y OTHERWISE N";AG$ 
2370 IF AG$="Y" THEN GOSUB 3610 
2380 CLS . -- -
2390 PRINT@(23,0)," II ...r. 

2400 PRINT"TO DISPLAY THE OUTPUT SIGNAL" 
2410 INPUT"ENTER Y OTHERWISE N "iAG$ 
2420 IF AG$="Y" THEN GOSUB 3950 
2 L.30 CLS 
2440 PRINT@(23,0)," " 
2450 PRINT"TO DISPLAY THE RESULT AGAIN " 
2460 INPUT"ENTER ·Y OTHERWISE N "iAG$ 
2470 IF AG$="Y~ THEN GOTO 2280 
2480 CLS 
2490 PRINT@(22,0)," " 
2500 PRINT"TO DISPLAY THE ERROR" 
2510INPUT"ENTER Y OTHERWISE N ";AG$ 

2530 
IF AG$="Y" THEN GOSUB 5560 
CLS 

2540 PRINT@(10,0)," " 
2550 PRINT"TO STOP THE PROGRAM EXECUTION"-
2560 INPUT"ENTER Y OTHERWISE N ";AG$ 
2570 IF AG$<>"Y" THEN GOTO 2280 
2580 CLS2 
2590 END 
2600 REM *****SUBROUTINE**** 

_ 2610 CLS: PRINT@( 14, 0) ~ 
2620 PRINT"BIT REVERSE SEQUENCE "; 
2630 IT=0 '~AKE LOGARITHM AS BASE 2 
2640 IJ=N 
2650 IJ=IJ/2 
2660 IF IJ=0 THEN GOTO 2690 
2670 IT=IT+1 
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2680 GOTO 2650 
2690 FOR 1=1 TO N 'BIT REVERSE 
2700 IA=I-l 
27H.l IC=1 
2720 ID=IA/2 
2730 IH(IC)=l 
2740 
2750 
2760 
2770 

IF IA= (ID*2) 
I F I D=.0 THEN 
IA=ID \. 

THEN IIH I C) =0 
GOTO 2790 

IC=IC+1 
2780 GOTO·2720 
2-190 IE=1 
2800·16=1'1 
2810 FOR 11=1 TO IC 
2820 IG=IG/2 
2830 IE=IE+IG*IB(Il) 
28Lt0 NEXT 11 
285~?l I'll? ( I ) = I E 
2860 NEXT I 
2870 FOR 1=1 TO N:W(I,1)=WW:NEXT I 
2880 RANDOl'1 
2890 A0=10000 
2900 A1=(360*.01745329)/N 
2910 NP=INT(640/(N-1» 
2920 NL=INT(640/CNM-1» 
2930 NS=INTe1600/(N-1» 
2940 NE=INTC1600/CNM-1» 
2950 RETURN 

. 2960 REM WALSH TRANSFORM 

...... ' 

2970 FOR I~l TO N 'BIT REVERSE 
2980 VeNBCI»=U(I) 
2990 NEXT I 
3000 FOR 1=1 TO N :U(I)=V(I) :NEXT I 
3010 FOR J1=1 TO IT 'COMPUTE TRANSFORM 
3020 IF Jl=1 THEN JA=l 
3030 IF J1<>1 THEN JA=JA*2 
3040 JB=INTeN/JA) 
3050 JC=INT(JB/2) 
3060 AL=l 
3070 FOR J2=1 TO JA 
3080 JE=(J2-1)*JB 
3090 FOR J3=1 TO.JC 
3100 JD=JE+J3+JC 
3110 ~T6=JE+J3 
3120 V(JG)=U(JG)+AL*U(JD) 
3130 V(JD)=U(JG)-AL*ueJD) 
31 /+0. NEXT \.T3 
3150 AL=-AL 
31b0NEXT \..T2 
3170 FOR 1=1 TO N 
3180 UeI)=V(I) 
3190 NEXT I 
3:;!00 NEXT J1 
~210 IF. TR=-1 THEN RETURN 
3220 HR=1.0/N 

. 3230 FOR 1=1 TO 1'1 
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3240 U(I}=U(I}*RR 
3250 NEXT I 
3260 RETURN 
3270 REM DISPLAY D 
3280 IF PR$="Y" THEN GOTO 3430 
3290 CLS:GOSUB 6090 
3300 PRINT@C0.50},"SCALE FACTOR 
3310 PRINT@(22,0),"TO SCALE THE 
3320 INPUT"EN~ER Y OTHERWISE 
3330 CLS 
3340 IF AG$="Y" THEN GOSUE 4290 

= . " ; DD 
PAPER " 
N , ",; AG$ 

3350 PRINT@(23,1Z)},"TO PLOT THE DESIRED SIGNAL" 
3360 INPUT"ENTER Y OTHERWISE N ";AG$ 
3370 CLS 
3380 IF AG'="Y".THEN GOSUE 4970 
3390 PRINT@(23.0),"TO a_EAR THE SCREEN" 
3400 INPUT"ENTER Y OTHERWISE N ";AG$ 
3410 IF AG$="Y" THEN CLS2 
3'.20 GOTO 3'.40 
3430· GOSUB 34~,0 

3440 CLS:RETURN 
3 / .. 50 REM PRINT D 
3L.6t~ PR I NT 
3470 PRINT". THE DESIRED SIGNAL" 
3'.00 PRINT 
34910 FOR 1=1 TO N STEP 8 
3500 PRINT USING"+###.####";DCI};D(I+l);DCI+2);D(I+3); 
351.0 PRINT USING" +ft##. ##4W" ,DC 1+4) ; D( 1+5) ; DC 1+6) ; DC I +7} 
3520 NEXT I .-' 
3530 LPRINT 
3540 LPRINT" 
3550 LPRINT 

THE DESIRED SIGNAL" 

3560 FORI=1 TO N STEP 8 
3570 LPRINT USING"+###.##ft#";D(I);D(I+l);D(I+2~;DCI+3);_ 
35E.l0 LPRINT t.ISING"+MI#. H:tHHt" ;D( 1+4) ;D( I+5} ;D( 1+6) ;D( 1+7) 
3590 NEXT I 
360'-~ RETURN , 
3610 REM DISPLAY X 

IF PR$="Y" THEN GOTO 3770 
CLS=GOSUP,. 6170 
PRINT@C0,50), "SCALE FACTOR 
PRINT@(22,0),"TO SCALE THE 
INPUT"ENTER ~ OTHERWI~E 
CLS 

= ";DD 
PAPER" 
N· "; AG$ 

3620 
3630 
3640 
3650 
36610 
3670 
3680 
3690 
3700 
3710 

IF AG$="Y" THEN GOSUP,. 4290 
PRINT@(23,0),"TO PLOT THE INPUT SIGNAL" 
INPUT"ENTER Y OTHERWISE N ";AG$ 
CLS 

3720 IF AG$="Y" THEN GOSUE 5170 
3730 PRINT@C23,0),"TO CLEAR THE SCREEN" 
3740 INPUT" ENTER Y OTHERWISE N ·";CS$ 
3750 IF CS$="Y" THEN CLS2 
3760 GOT03780 
3770 GOSUB 3790 
:n80 CLS: RETURN 
37C?0 REl'l PRINT X 
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381010 PRINT 
3810 PRINT" THE INPUT SIGNAL" 
3820 PRINT 
38310 FOR 1=1 TO N STE~ 8 
3840 PRINT USING"+###.####";XCI);X(I+l);X(I+2);XCI+3); 
3850 PRINT USING"+###.####";~(I+4);XCI+5);XCI+6);XCI+7) 
38610 NEXT" I 
38710 LPRINT " 
3880 LPRINT". THE INPUT SIGNAL" , . 
3890 LPRINT 
39100 FOR 1=1 TO N STEP 8 
39110 LPRINT USING"+###.####"~XCI);XCI+l);X(I+2);XCI+3); 
39210 LPRINT USING"+###.####";X(I+4);X(I+5);X(I+6);XCI+7) 
3930 NEXT I 
39J~e RETURN 
3950 REM DISPLAV V 
3960 IF PR$="V" THEN GOTO 4110 
3970 CLS :GOSUB 62510 
3980 PRINT@C0,50)," SCALE FACTOR = ";DP 
39910 PRINT@(22,1O),"TO SCALE THE PAPER" 
410100 INPUT"ENTER V OTHERWISE N ";AG$ 
4010 CLS 
410210 IF AG$="V~ THEN GOSUB 4290 " 
41030 PRINT@(23,G),"TO PLOT THE OUTPUT SIGNAL" 
40410 INPUT"ENTER V OTHERWISE N ";AG$ 
4050 CLS 

·41060 IF AG$="V" THEN GOSUB 5360 
4070 PRINT@(23,0)," TO CLEAR'"THE SCREEN: 
1~080 INPUT" ENTER V (I.,THERWISE N " ; AG$ 
410910 IF AG$="V" THEN CLS2 
41(00 GOTO 1.120 
'.110 GOSUB l~ 1310 
'.1210 CLS: RETURN 
4130 REM PRINT V 
4140 PRINT 
4150 PRINT" THE OUTPUT SIGNAL" 
4160 PFUNT 
41710 
1-t180 
',190 
1-t20G 
42110 

42310 

FOR 1=1 TO N STEP 8 
PRINT USING"+###.####";VCI);VCI+l);YCI+2);V(I+3); 
PRINT USING"+###.####";VCI+4);VCI+5);VCI+6);v(l+7) 
NEXT I 
LPRINT 
LPRINT" THE OUTPUT SIGNAL" 
LPRINT 

4240 FOR 1=1 TO N STEP 8 
42510 LPRINT 1.-'SING"+n4t-#.~t4t4t4t"';V(I);V(I+l);VCI+2);V(I+3); 
42610 ,LPRINT USING"+n4t#.m~414t" ;VC 1+4) ;V( 1+5) ;V( 1+6) ;V( 1+7) 
1.2n:J NEXT I 
42810 RETURN 
42910 REM SCALE PAPER . 
43100 LPRINT ;: P6 HA 150,50 D 1510,12100 " 
43110 LPRINT 1410,11710 1510,1200 160,11710 U "" 
43210 LPRINT14G.55G D 18510,5510 18210,5610 " 
1.330,LPRINT 181,9,550 18210,5110 U " 

78 

43410 LPRINT 142,9510 D 158,9510 U 90,945 S11 1.0"CHR$(9S) 
43510 LPRINT 142,0710 D 1.58,870 U 90,865 Sl1 el.E.l"CHR'.fi(95),' ~ 



4360 LPRINT" 142,790 D 158~790 U 90,785 811 0.6"CHRS(95) 
4370 LPRINT" 142,710 0 158,710 U 90,705 811 0.4 "CHR$(95) 
4380 LPRINT" 142,630 D 158,630 U 90,625 
4390 LPRINT N 142,550 D 158,550 U-90,545 
4400 LPRINT" 142,470 D 158,470 U 80,465 
4410 LPRINT" 142,390 D 158,~90 U 80,385 
4420 LPRINT" 142,310 D 158,310 U 80,305 
4430 FOR LL=1 TO 20000:NEXT LL 

811 0.2"CHR$(95) 
S11 0.0 "CHR$(95) 
811 -0.2"CHRS(95) 
811 -0.4"CHR$(95) 
811 -1l\.6"CHR$(95) 

79 

4L~4(2) LPRINT"· lL~2,230 D 158,230 U ,80,225 811 -0.8"CHR1;(95) 
4450 LPRINT" 142,150 D 158,150 U 80,145 811 -1.0"CHR1;(95) 
4460 LPRINT" 310,558 D 310,542 U 295,520 811 0.1"CHRS(95) 
4470 LPRINT 470,558 D 470,542 U 455,520 811 0.2"CHR$(95) 
4480 LPRINT 630,558 D 630,542 U 615,520 811 0.3"CHRS(95) 
4490 LPRINT 790,558 D 790,542 U 775,520 811 0.4"CHR$(95) 
45~0.LPRINT 950,558 D 950,542 U ~35,520 811 0.5"CHR$(95) 
4510 LPRINT 1110,558 D 1110,542U 1095,520 811 0.6"CHRS(9S) 
4520 LPRINT 1270,558 D 1270,542 U 1255,520 811 0.7"CHR1;(95) 
4530 LPRINT" 143tl),558 D 11+30,542 UIAI5, . .520 511 0.f:l"CHRS(95) 
4540 LPRINT" 1590,558 D 1590,542 U 1575,520 511 0.9"CHR$(95) 
4550 LPRINT" 1750,558 D 1750,542 U 1735,520 811 1.0"CHR$(9S) 
4560 LPRINT" 1820,500 812 T"CHR1;(95) 
L~570 LPRINT" 200, 11 H) Sll 1'1AGNITtIDE" CHRS (95) 
4580 LPRINT" P0 HA 300,50 Z " 
4590 PRINT@(23,0).," " 
4600 INPUT" AFTER THE PLOTTER STOPPED PRESS ENTER"; 
4610 CL8:RETURN 
4620 REM E SCALE 
4630 LPRINT" ;: P6 HA 150,140 D 150,1200 " 
4640 LPRINT" 140,1170·~50,1200 160,1170 U " 
4650 LPRINT" 140,150 D 1850,150 1820,160 " 
4660 LPRINT" 1850,150 1820,140 U" 
4670 LPRINT" 1790,120 811 X 161"CHR1;(95) 
46~0 LPRINT" 1520,40 511 NUMBER OF"CHR$(94} 
4690 LPRINT ITERATIONS"CHRS(95) 
4700 LPRINT 200,1110 511 MAGNITUDE "CHRS(95) 
4710 LPRINT 142,950 D 158,950 U 90,945 S11 1.0"CHRS~95} 
4720 LPRINT ,1=,8,87(2) D 142,870 1I 90,B65 S11 0.9' CHRS(95) 
4730 LPRINT 158,790 D 142,790 U 90,785 811 0.8 CHR$(95} 
4740 LPRINT ·158,710 D 142i7~0 U 90,705 811 0.7 CHR$(95) 
4750 LPRINT 158,630 D 142,630 U 90,625 811 0.6 CHR$(95} 
4760 LPRINT 158,550 D 142,550 U 90,545 511 0.5 CHR$(95) 
4770 LPRINT 158,470 D 142,470 U 90,465 811 0.4 CHR$(95) 
4780 LPRINT .158,390 D 142,390 U 90,385 811 0.3 CHR$(95) 
4790 LPRINT 158,310 0 142,310 U 90,305 511 0.2 CHR$(95) 
4800 FOR LL=l TO 20000:NEXT LL 
4810 LPRINT" 158,230 0 142,230 U 90,225 811 0.1"CHRS(95) 
lt820/LPRINT" 158,150 D 11.2,150 U 90,141 811 0.0"CHRS(95) 
4830 LPRINT" 310,158 D 310,142 U 295,120 811 0.1"CHRS(95) 
4840 LPRINT" 470,158 D 470,142 U 455,120 811 0.2"CHRS(95) 
4850 LPRINT"630,158 D 630,142 U 615,120 811 0.3"CHRS(95} 
4860 LPRINT" 790,158 D 790,142 U 775,120 811 0.~"CHR$(95) 
4870 LPRINT" 950,158 D 950,142 U 935,1~0 811 0.5"CHR$(95) 
4880 LPRINT" 1110,158 D 1110,142 U 1095,120 911 0.6"CHR$(95) 
4890 LPRINT" 1270,158 D .1270,142 U '1255,120 811 0.7"CHRS(95) 

·4900 LPRINT" 1430,158 D 1430,142 U 1415,120 SI~ 0.8"CHRs(95) 
4910 LPRINT" 1590,158 D 1590,142 U 1575,120 811 0.9"CHR$(9~~ 
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4920 LPRINT" 1750,158 D 1750,142 U 1735,120 511 1.0"CHR$C9S) 
4930 LPRINT" P0 HA 300,50 Z" 
4940 PRINT@C23,0), 
4950 INPUT"AFTER THE PLOTTER STO~PED PRESS ENTER"; 
4960 CLS:RETURN 
4970 REI'1 D PLOT 
4980 FOR 1=1 TO N :VCI)=DCI) :NEXT I 
4990 FOR I~l TO N 
5000 VCI)=550+INT~400*VCI» 
5010 UCI)=150+INTCNS*CI-l» 
5'~20 NEXT· I 
5030 LPRINT" ;: P2 HA " 
5040 LPRINT" 450,1155 D 505,1155 U 518,1147 " 
5050 LPRINT" Sll DESIRED SIGNAL "CHR$(95) 
5060 FOR L=l TO 10000:NEXT L 
5070 LPRINT U(1);",";VC1) 
5080· LPRINT" D " 
5090 FOR 1=2 TO N 
5100 FOR L=l TO 40 :NEXT L 
5110 LPRINT UCI);",";V(I) 
5120 NEXT I 
5130 LPRINT" P0 HA 300,50 Z " 
5140 PRINT@C23,0)," " 
5150 INPUT" AFTER THE PLOTTER STOPPED PRESS ENTER"; 
5160 CLS:RETURN 
5170 REM X PLOT 
5180 FOR 1=1 TO N :VCl)=XCI)' :NEXT 1 
5190 FOR 1=1 TO N '.' 
5200 V(I)=550+INT(400~VCI»' 
5210 UCI)=150+INT(NS*(I-l» 
5220 NEXT 1 
5230 LPRINT" ;: P3 HA 450,1105 D 505,1105 U 518,1097 " 
5240 LPRINT" Sll INPUT SIGNAL'"CHR$(95) 
5250 FOR L=l TO 10000:NEXT L 
5260 LPRINT U(1);",";V(1) 
5:270 LPRINT" D " 
5280 FOR 1=2 TO N 
5290 LPRINT UCI);",";V(I) 
5300 FOR L=l TO 60 :NEXT L 
5310 NEXT I 
5320 LPRINT" P0 HA 300,50 Z " 
5330 PRINT@~23,0).," " 
5340 INPUT" AFTER THE PLOTTER STOPPED PRESS ENTER"; 
5350 CLS:RETURN 
5360 REI'1 Y PLOT 
5370 FOR 1=1 TO N :V(I)=Y(I) :NEXT I 
5380 ,FOR 1=·1 TO N 
5390 VCI)=550+INTC400*V(i» 
5400 UCI)=150+INT(NS*CI~I» 
5 i d (2) NEXT I . 
5420 LPRINT" ;: P4 HA 450,1055 D 505~1055 U 518,1047 " 
5430 LPRINT" 511 OUTPUT SIGNAL "CHRS(94) 
5440 LPRINT" AFTER 161 ITERATIONS"CHR$~95) 
5A50 FOR. L= 1 TO 15000: NE.XT L 
~ILI'60 LPRINT U(l);",";V(l)' 
5 1170 LPRINT" D ", ~ 



5480 FOR 1=2 TO N 
5490 LPRINT U(I);",";V(I) 
5500 FOR L=1 TO 40 :NEXT L 
5510 NEXT I 
5520' LPRINT" PO HA 300,50 l " 
5530 PRINT@(23,0)," " 
5540 INPUT"AFTER THE PLOTTER STOPPED PRESS ENTER"; 
5550 CLS:RETURN ' 
5560'REM DI~PLAY E 
5570 IF PR$="Y" THEN'GOTO 5710 
5580 CLS:GOSUB '6330 
5590 PRINT@(21,0),"TO SCALE THE PAPER" 
5600 'INPUT"ENTER Y,OTHERWISE N ";AG$ 
5610 CLS . 
5620 IF AG$="Y" THEN GOSUB 4620 . 
5630 PRINT@(23,0),"TO PLOT THE ERROR" 
5640 INPUT"ENTER YOTHERWISE N ";AG$ 
5650, CLS ' 

, 5660 IF AG$="Y" THEN GOSUB 5890 
5670 PRINT@C23,0),"TO CLEAR THE SCREEN" 
5680 INPUT"ENTER .y 'OTHERWISE N ";AG$-/ 

,5690 IF AG$="Y" THEN CLS2 
5700 GOTO 5720 
5710 GOSUB 5730 
5720'CLS:RETURN 
5730 REM PRINT E 
5740 PRINT .t . .,. ,-. 

'5750 PRINT". 
5760 PRINT 

THE MEAN. SQUARE ERROR" ...•. ." 

5770 FOR I=1 TO NM STEP 8 
5780 PRINT USING"+###.####";ECI);ECI+l);ECI+2);ECI+3); 
5790 PRINT USING"+###.####";ECI+4);E(I+5);ECI+6);ECI+7) 
5800'NEXT I . ' 
5810 LPRINT 
5820 LPRINT" 
5830 LPRINT 

THE MEAN SQUARE ERROR" 

5840 FOR 1=1 'TO NM STEP 8 
,5850 LPRINT USING"+###.####";ECI);ECI+I);ECI+2);ECI+3); 

5860 LPRINT USING"+###.####";ECI+4);ECI+5);ECI+6);ECI+7) 

8 1 

5870 NEXT I ' 
5880 RETURN . . 
5890 REM PLOT E . 
5900 FOR 1=1 TO NM :VCI)=ECf) :NEXT 1 
5910' FOR 1=1 TO NM 
5920 VCI)=150+INTC800*V(I» 
5930 UCI)=150+INTCNE*CI-l» , 
5940,/ NEXT 1 

, 5950 LPRINT" ;:, P2 HA, 450, 1155 D 505, 1155 U 518, 1147 " 
5960 LPRINT" S11 MEAN SQUARE ERROR"CHR$(95) 
5970 FOR LL=1 TO 12000:NEXT LL . 
5980 LPRINT UCl);",";V(l) 
5990 LPRI,,!T",D " 
6000 FOR 1=2 TO NM 
6010 LPRI~T U(I);",";V(U 
6020 FOR L=l T060:NEXT,L: 
6030 NEXT If' 



6040 LPRINT" P0 HA 300,0 Z " 
6050 CLS:PR!NT@(23,0), 
6060 INPUT"AFTER THE PLOTTER STOPPED PRESS ENTER"; 
6070 CLS:RETURN 
6080 REM SCREEN CURRENT RESULTS 
6090 FOR 1=1 TO N :U(!)=DCI) :NEXT 1 
6100 FOR 1~1 TO N 
6110 U(I)=8~-(INT(40*U(!») 
6120 NE>:T 1" 
6130 FOR 1=0 TO N-2' 
"6140 LINECNP*I,U(I+J»-(NP*I+NP,UC!+2»",&HFIFI 
6150 NEXT 1 
6160·RETURN 
617(l) FOR 1=1 TO I'f :U(J)=X(J) :NEXT 1 
6180 FOR 1=1 TO N 
6190 UCI)=80-(INT(40*U(I») 
6200 NEXT I 
6210 FOR 1=0 TO N-2 
6220 LINE(NP*I,U(I+l»-CNP*I+NP,U(!+2»",&H3333 
6230 NEXT 1 " ., , 
624~~ RETURN 
6250 FOR.I=1 TO N:U(J)=YCI) :NEXT 1 
6260 FOR 1=1 TO N 

·6270 UCI)=80-(iNT(40*U(!») 
6280 NEXT ! 
6290 FOR 1=0 TO N~2 / 
6300 LINE (NP* I, U (I +1 ) )'- (NP.*I+NP, U ( ! +2» , , , ~(HFFFF 
6310 NEXT"! / ~ .. -'~' 
6320 RETURN 
6330 FOR 1=1 TONM:UCI)=E(I):NEXT I 
6340 FOR 1=1 TO NM 
6350 U(I)=200-(INT(200*U(I») 
6360 NEXT 1 ' 
6370 FOR 1=0 TO NM-2 
6380 LINE(NL*I,U(I+l»-(NL*I+NL,U(!+2»",&HFFFF 
6390 NEXT 1 ' 
6400PRINT@(0,50),"SCALE FACTOR =";DE 
6410 RETURN 
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