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A FORECASTING IMPLEMENTATION OF
BOX-JENKINS TIME SERIES ANALYSIS

ABSTRACT

The ultimate effect of a decision generally depends on the outcome
of factors that can not be foreseen at the time decision is made. Among
wide vériéty‘of Fforecasting methods, the Box-Jenkins approach is known
as the application of the more general and statistical based methods of
time series analysis. -

This thesis covers the implementation of Box-Jenkins approach by
using computer. A computer software is developed for building univariate
and bivariate models, and for making the forecasts. The uhderlying
principles of the Box-Jenkins approach are presented, and a methodology
of using the approach is suggested.



BOX-JENKINS ZAMAN SERiSi ANALIZININ
BIR TAHMIN UYGULAMASI

0ZET

Bir kararin nihai etkisi genellikle sonuglar:i onceden kestirile-
meyen bir takim sebeplerin sonuclarina baglidir. Gelecedi tahmin etmek
amac1 ile pek ¢ok metod gelistirilmistir. Bunlar arasinda Box-Jenkins
yaklasimi zaman serileri analizinin genel ve istatistige dayali yontem-
lerinin tahmin yapmak ic¢in uygulanmasi olarak bilinir. ’

™ Bu calisma Box-Jenkins yaklasiminin bilgisayar araciligi ile uygu-
lanmasini kapsamaktadir. Bu amagla tek zaman serileri ve ¢ift zaman se-
rileri modelleri olusturmak ve tahmin yapmak ig¢in bir bilgisayar yazili-
m1 gelistirilmistir. Box-Jenkins yaklasiminin kullanilabilmesi igin bir
metodoloji onerilmistir.
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I. INTRODUCTION
1.1 Forecasting and Planning

Forecasting may be defined as the estimation of the future based
on the past by using the methodologies which are developed for this
purpose. It is used by decision and policy makers as an aid to determine
goals and targets, to understand the environment and causal factors that
affect it, and to understand the uncertainities in the future and to
force decision about the level of risk appropriate. ‘

Planning on the bther hand may be defined as attempts at purposeful,
future oriented decision making (1). A firm is generally éxposed to
uncontrollable external events, and controllable internal events. Fore-
casting applies directly to uncontrollable external events, while decision
making applies directly to controllable internal events. Planning is
~considered the link that integrates them. ‘

1.2. Current Status of Forecasting

1.2.1. Theory and Applications

As a result of increasing uncertainty of the environment, a number
of estimation and prediction methods are developed both in theory and
practice for organizational forecasting. The current forecasting
literature can be classified into two groups with regard to the theory
and practice of thevforecasting'methods.

"In the first group, the works on forecasting have generally been
written by the specialists who have accomplished the theoretical
formulation. and verification of specific methods and who are trying to
convey the state of the art knowledge to a group of specialiéts.rln this
area, the work of Box and Jenkins (2) does an excellent job in developing
“and providing statistical properties of specific classes of forecasting

methods.
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The second group of the literature is concerned on translating what
is theoretically possible and computationaily feasible into a form that
can be easily understood and applied. In this area, the work of Makridakis
et al (3) is a complete study on forecasting where they put a broad range
of forecasting methods into a form that can easily be understood and
applied by nonspecialists. The work of Nelson (4) is related with the
essence of the application‘of Box-Jenkins models and their forecasting.

There are many research articles on forecaSting.rTwo_important.
applications of Box-Jenkins method are worth to mention. First is the
univariate application of the method to actual time series. It includes
_the comparison of the method w1th the exponentlally smoothed method. It
is concluded that two methods perform equally well on the given data (5).

Secondly, in a recent study, the procedural steps in the Box-Jenkins
transfer function method are demonstrated in an application to the
advertising and sales relat10nsh1p with part1cu1ar focus on the advertising

lag structure (6).

1.2.2. Forecasting Methods

To deal with the increasing variety and complexity of managerial
forecasting problems, a wide variety of forecasting methods are developed
that originated from several major fields of study. AlthoUgh various
classification schemes are possible depending on the framework Chosen,
the“generally accepted classification is given here for describing the
methbds. According to this classification, the existing forecasting
methods fall into two majortcategories: quantitative methods, and.

qualitative methods.

Quantitative methods can be applied when sufficient information about
the past is available in the form of numerical data, and it can be-
assumed that some aspectis of the existing patterns will continue into the
future. These methods are further divided into two categories.

(1) Causal methods. The objective of forecasting using causal
methods is to determine the cause-effect relationship of the‘factors
to be forecasted with one or more independent variables by assuming that
this relationship will hold into the future.
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(2) Time series methods. The objective of these forecasting
methods is.to determine the pattern.in the historical data series and
extrapolate that pattern into the future. The system is treated as a
black box and, as a result ,the factors affecting its behavior are not
considered. ' ‘

Qualitative methods require subjective estimation, intuitive thinking,
judgement, and accumulated knowledge through the opinions of the experts.

Another useful cla551f1cat1on is to divide forecastlng approaches
1nto two groups: statlstlcal methods and filtering methods.

ARIMA schemes which were flrst introduced by Box and Jenklns are
qu1te sophisticated mathematlcal models. Their work also includes an
extension of ARIMA scheme into multlvarlate models which.is known as
transfef function analysis. Regression methods and ARIMA schemes are
accepted as statistical approathes to forecasting.

Filtering methods, first introduced by Kalman (7), are'engineering
approaches. The name of Kalman filter is used synonymously with Bayesian
forecasting. In this approach, it is assumed a fixed model with varying
parameters and variances. ' ‘

1.2.3. Selection of the Forecasting Method

“The selection of the forecasting method for a given situation is a
decision problem. The information supplied from this system is to be used
to improve the decision process. There are several useful criteria that
are used to select, to compare, and to evaluate the competing methods.

* The first problem to be solved is to define the variables of the forecast
to be analysed and predicted. '

An overview of decision criteria w111 clarify the 1nterrelatlonsh1ps
among criteria and need to select.a forecastlng method that best meets
all the requirements of a given situation.

Level of detail is related with the decision on what level the
forecast to be made such as regional or market demand, or product or
product group demand. An important class of decisions involves the time

elements: forecast period, and forecast lead time or forecast horizon.
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The form of the final forecast is also an important consideration.
Various methods provide different outcomes such as mean, an estimate of
the standard deviation of forecast error, or a probability interval.
Technical sophistication is a determinant on the'applicability of a
method for a given situation, because the application of a method will
be restricted with the capabilities and interests of the people who will
make and use forecasts. '

Before choosing a method, the extensiveness, accuracy, currenéy, and
representativeness of the available data must be considered, because the
ability of many forecasting methods is limited with the~amoUnt of |
available data. The type of data series is another factor on the selection
of a forecasting method. The more general classification is macro series
and micro series. The pattern of the data must be taken into consideration,
because, there are many methods that can only cope with a certain data
pattern. Four types of data patterns can generally exist in the data
series: horizontal, trend, seasonal, and cyclical. The variability of
data series is a result of the process generating the variable under
study. A number of simple methods are available for the stationary series,
but more sophisticated methods are developed to handle nonstationary
series. ' ‘

The element of cost depends on the developement, installation,
maintenance and operation.of the method, data requirements, computer
requirements, and human sources requirement.

Forecast accuracy have an important impact on the selection of*thé
forecasting method. Altough there are several statistical measures of
aécUracy, it is not possible to propose a robust measure of a specific
method in common use for all situations. The relétive\importance of a
decision criterion depends on the forecasting situation. The criteria
mentioned above have interrelationships, therefore the trade offs for a
given situation must be correctly eétablished. The costs and benefits
of a forecasting application must be considered in the evaluation of
alternative forecasting methods. ' | )

Chamberé et al propose that the stage of the product life cycle
for which it is making the forecast is an important consideration. Their
approach is based on matching methods with the forecasting need as

determined by product life cycle (8).
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In-another study, several different criteria for evaluating
alternative forecasting methods are described and those criteria are
used to matéh the situation with the most appropriate forecasting method.
It is concluded that simple methods can do as well in a wide variety of
cases, therefore the mathematically sophisticated methods should not be
selected, unless there is a strong evidence that those methods will do
better (9). -

~ In a recent study, it is proposed that each method has strengths and
weaknesses, every forecasting situation is limited by constraints. An
evaluation of twenty common forecasting methods are arrayed against .
sixteen evaluative dimensions. It is concluded that extrapolations can
be improved by combining forecasts, or simulating a range of input
assumptions, or selectively applying judgement (10).

The research articles on this subject are numerous, only a few of
'the studies are included here (11),(12),(13),(14),(15).

1.3. Overview and Framework for Thesis

The need to carry out this study has been arisen from the sales
forecasting problem of an existing'group of companies.‘A mafketing
company, which markets hundreds of glass products, has been chosen within
this group in order to define forecasting problem, to establish objectives
and determine contents of. the study,'énd to apply resulting modél to the
chosen sales forecasting situation. Although this study is originated
from a specific forecasting situation, the forecasting model developed
can be applied to any univariate and bivariate time series forecasting

situation.

1.3.1. Definition of the Forecasting Problem

The forecasts are made for product groups which are formed by
aggregating the products within the same produot class. The unit of
measure is determined as units of product sold during a month. Forecasts
are made by osing only internal data sources.

The data sources are investigated in iwo dimensionso The first is
sales series or as it is frequently called output series. Secondly, the
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factors that affect sales, which are called input series or leading
indicators, are sought out. These are price, advertisement expenditures,
and sales promotion expenditures. It.is found out that about fifteen

years of monthly data available for sales series, price data are also
available for the same length of time, but it is not possible to determine
,the expenditures of advertisement and promotion on product group basis.

At this point, it is better to dlst1ngu1sh the dlfference between
aggregate and point data. Aggregate data represent - the value of a variable
accumulated over a period of time, while point data indicate the value
of a variable at specific points in time. Of the data mentioned above,
price data are point data. L '

The changes in price series do not exactly match with sales series
‘in this forecasting s1tuat1on consequently to establish a proper
relationship between price and sales will not be efficient. ’

Time series data must be collected in equispaced‘time‘intervals.
In this respect, a month can not be assumed to be a perlOd. Aytrading(
days adjustment on data is recommended to increase forecaSt‘accuracy (16).

Another fact is that the available data do not properly represent '
actual demand, because it 1s collected on del1very ba51s ~Actual demand
may be best represented by collectlng data on order bas1s.

The 1nvest1gat10n on sales data by us1ng tools, such as graph of
data, autocorrelatlons, d1fferenc1ng, etc., “has exhibited horizontal,
trend or seasonal patterns ‘Also, many of the series have shown the .
indications of nonstationarity. ' '

The proolem may be stated as‘to'find and implement a forecasting
method that meets all the requirements of the given situation. |

1.3.2. Objectives of This Thesis

The main objective of this‘study is to develop an interactive
computer-software that is used to build, and to forecast with univariate
and bivariate Box-Jenkins models.

The other objective is to explain statistical concepts and underlying

Box-Jenkins modelling procedures in a comprehensive way, and to provide
guidelines for building Box-Jenkins models properly and quickly.



I~

1.3.3. . Evaluation of Box-Jenkins Approach

Box and Jenkins have effectively assemblédvin a comprehensive way
the re}evant information required to understand and use time series
ARIMAv(Autoregressive/Integrated/Moving Average) processes, their names
have frequently been used as synonymous with the general ARIMA processes
applied to time series analysis, forecasting, and control. Their work -
includes univariate time series analysis, multivariate time series analysis,
and design of discrete control schemes. The theoretical aspects of'Box;
Jenkins time series_aré quite sophisticated. The relative development
time of the method and to build a forecasting model take time, but the
forecasts can be made quickly. Box-Jenkins approach to forecasting is
apparently the most accurate with regard to mean square error, and the
most developed statistical method presently available.

The time series are fitted with a mathematical model which is
optimized on parameters in order to assign smaller errors to history than
any other model. Box and Jenkins propose a general class of models for
forecasting, their approach is appropriate to handle various data patterns.

Box-Jenkins philosophy of model building for time series includes
two prinéiples (17). First is the principle of parsimony that can be
described as the smallest number of parameters that should be employed
for adequate representation of underlying model of a series.

The second principle is to apply iterative procedure in the selection
.of a model. There are three stages in their approach to model building.

(1) Identification. The methods are proposed to define models which may
be good representation of underlying generating mechanism.

(2) Estimation. The model selected is fitted to data and the parameters
are estimated by minimizing sum of squares of errors.

(3) Diagnostic checking. Adequacy of the fitted model is tested by using
available statistical measures ; and then, causes of lack of fit, if it exists

are diagnosed.

These three stages of thé approach are iterated until an appropriate
representation is found. The selected model is then applied to make the

forecasts.
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In-this study, the baSic theory, modelling procedures, and relevant
algorithms. are largely drawn from the work of Box and Jenkins. The basic
notation and terminology are also adopted from their work.
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II. BOX-JENKINS MODEL BUILDING AND FORECASTING

'In this chapter, first the underlying theory of Box-Jenkins models
is presented. Then, the statistical tools used in time series analysis,
and methods for building, identifying, fitting and checking models for
time series are illustrated in accordance with the three stage Box-
Jdenkins approach to model building: identification, estimation, and
diagnosfic checking. Finally, the forecasting version of the developed
model is briefly explained.

A phenomenon that evolves through time according to probabilistic
laws is called stochastic process, it is simply referred as process in
this study. The time series to be analysed may thenbe considered as one
particular realization of a. variable, from an infinite population of
such realizations of that variable, produced by the underlyihg pfobability
mechanism which is generally called generating mechanism of the process.
The three stage Box-Jenkins procedure is desighed to find amodel that-is
a good'representation of the unknown- underlying process. . :

-2.1. - Univariate Box-Jenkins Models

ARIMA is an acronym for Autoregressive/Integrated/Moving Average.
An ARIMA process refers to the particuiar generating mechanism which
describes the evolution of observations thrbugh time, and the derivation .
of the conditional distribution of future realizations. The general
nonseasonal model is represented by ARiMA (p,d,q), where:p denotes order
of the autoregressive process, d denotes degree of differencing to
achieve a stationary mean, and q denotes order of the moving average
process. There is no limit to the variety of ARIMA models; p,d, and q

are nonnegative integers.



2.1.1.  Fundamentals of ARIMA Processes -

The underlying logic in Box-Jenkins approach is to exploit the
dependency relationships in successive observations of the time series.
Thus, a time series of that type may be considered as generated from a
time series of random "shocks" U - These shocks are random dfawings from
a fixed distribution, and they are usually assumed to-be normally,
independently, idehtically distributed having a mean zero and a constant
variance o *. The sequence of random variables ‘ut, Ui _qs Up_ps--- 1S
often called white noise process.

The white noise process Uy is supposed to be transformed to the
process Zt’ which represents time series observations, by a linear filter

so that

L Hd U ¥y F ¥y o+ (1)

B+ ¥(B) Ut

where .
B is backward shift operator such that BmZt = Zi o M s
nonnegative integer, Y¥(B) = 1 + ¥,B + ¥, B2 + ... is the linear
operator, u 1is a parameter that represents the level of the

process.

If this sequence of Y¥,, wz,.Q. weights are finite, or infinite and

| convergent, the filter is said to be §§gglg and the process Z, to be,
stationary. The parameter y is then the mean about which the process
varies. Otherwise, Zt is nonstationary and.u can be regarded as a reference
point for the level of the process. Box-Jenkins models are based on this

idea of linear filtering.

An ARIMA(p,0,0) or AR(p) process is called autoregressive proceés
of order p so that the current value of the deviations from mean of the
process is represented by a linear combination of previous values of the
process and current shock u.. Let z, be deviationsifrom My Zyp o= Zy - m.

Then AR(p) process can be written as

Zp = @y gt 02 Ly ot e H 0 zt_p +ouy (2)



o |
9(B) Z, = u

where #(B) = 1 - 98- 9B - ... - o BP is the

autoregressive operator of order p. ,
It is required that ¢(B) must be stationary.

Another useful representation is moving average process of‘ordér q,
ARIMA(0,0,q) or MA(g). The current value of Zt is expressed as a finite
number of previous shocks plus current shock Uy - That is

2y = Up - By g - Byl - el - 0q Ut_q (3)
or '

2t = 9(B) Ut
where 6(B) = 1 - €,B - 8,B% - ... - eq’Bq s the moving average

operator of order q. It is required that ©(B) must be invertible.

It is interesting to note that an AR process of infinite order can
~ be represented by an MA process of finite order. Also, an MA process of
infinite order can be represented by an AR process of finite order. This
_ characteristic of ARIMA process sufficesto explain how to build .

-parsimonous models.

The general ARIMA process of order (p,d,q) is defined by

¢(B) vd Z; »eo + ©8(B) uy | | (4)

where
vd - (1-B)d is the differencing operator,
8, is a constant which denotes the deterministic shift in the

process.

Letting wy = vd Z, then Equation (4) can be written as

¢(B) mt = Q,+ G(B) Ut
(5)

or

=

‘ jvel
o

1
£

1

Q(B) Uy



where .

o o - u

w =
t t w - o
Another useful representation is provided by letting z(B) = ¢(B)v%.
Then the process becomes

The process defined by Equation (6) can be repreéented as a linear
filter of infinite order such that

or
z ¢ (B) 6(B) u

ot
1

t

2.1.2. 1ldentification of ARIMA Models

The statistical tools for the analysis of time series are proposed
as autocorrelation function (acf), partial-autocorrelation function (pacf),
-and differencing. Box and Jenkins also propose that‘spectrél'analysis is
a useful device of analysing time series (18).

Estimates of autocorrelations of any time seriés“are'COmputed'from
the sample data. Let ¢, be the autocovariance coefficient at lag k, it
can be written as ‘

N-k -

e 3 Uz - Dz, - D1 o ®

(C =.
k t=1

for k = 0,1,2,...,K
where z denotes the sample mean

N | D
bX Z . . . (9)

- 1
CETTW t

t=1

N is the number of observé{ions in the series. Let rk be the
autocorrelation coefficient at lag k, it is computed as follows:



o
T > k=012,..., K (10)
0 .
A graph of autocorrelation coefficients is caIled autocorrelation

function (acf).

Partial autocorrelations are used to measure the degree of association
between Z; and z, ., but the effects of-intérvening z's are somehow
partialled out. A plot of partial autocorrelation coefficients is called
partial autocorrelation function (pacf).

ARIMA processeé provide a general class of models. The selection of
the most appropriate model for the given time series requires experience.
In general, there are several useful guidelines for stationary series.

(1) A pure stationary AR process has a theoretical acf that drops off to

zero, but it has a pacf that cuts off to zero after lag p, the order
of AR process. The standard error of the partial autocorrelation
coefficients after lag p is approximated as |

se, = 1NT . | : (11)
Kk ; _

(2) A pure MA process has a theoretical acf that cuts off to zero after
lag q, the order of MA process, but it has a theoretical pacf that
drops off to zero. The estimated autocorrelations of order g+,
and higher, are approximately, independently distributed with

~ variance 1/n. ' ] '

(3) A stationary mixed ARMA process has ,
a) a theoretical acf that tails off toward zero after the first

q-p lags; : _
b) a theoretical pacf that tails off toward zero after the first

g-p lags.

5 1.3. Estimation of ARIMA Models

At the estimation stage, the values of the parameters, of the model
selected at the identification stage that seems promising to provide
parsimonous and statistically adequate representation of the given time
ceries, are computed by minimizing conditional sum of square of errors

so that



SSE(g,8) = gL [ut | ¢.6,0 12 (12)

where :
g 9. w,_ . + 3 0. U, . (13)

The minimization of sum of squares function is accomplished on a
computer by using a nonlinear least squares estimation method developed
by Marquardt (19). A back forecasting procedure 1s proposed to approximate
unconditional sum of squares of erros (20).

2.1.4. Dlagnostlc Checklng of ARIMA Models

After having the estlmated parameters of the spec1f1ed ARIMA model
diagnostic checks are applled to verify the model adequacy. There are
two general factors of interest for diagnostic checking.

(1) The residuals or errors left over after fitting an ARIMA model are
expected to be a white noise process. Any recognizable pattern in
the estimated autocorrelation function of errors could point out the
model inadequacy. A lack of fit test is proposed to test whether the

~autocorrelation estimates rk(u) for the residuals are significantly
different from zero. The statistic for this purpose is called Q
statistic and it is computed as follows:

K

Q= 12 I | - (14)

where K is maximum time lag considered.

Q statistic is approx1mately d1str1buted as X2 with K- -p-q degrees
of freedom (21), (22).

(2) The sampling statistic of the current optimum solution are studied
.- to see if the model is Qverfitted.-There are two summary statistics
provided :
(a) standard errors of the estimated parameters;
(b) correlation matrix of the estimated parameters.
High standard errors of'the estimated parameters, and high correlation
between parameters may be the signs of overfitting. '



2.1.5. Seasonal Models
The general seasonal ARIMA model is repfesented as ARIMA(p,d,q)(P,D,Q)S

where
denotes order of seasonal AR process,

denotes degree of seasonal differencing,
denotes order of seasonal MA process, and

v o O o

is period of seasonality.

It can be written as

o(8) 2(8) v v0 2. - o(B) 6(B) u, (15)
where “¢(B) and o(B) are nonseasonal operators as previously idéntified,
¢(B) is seasonal AR operator of order P, ’

8(B) is seasonal MA operator of order Q, and
P is the differencing operator so that W - (1—BS)D.

The general seasonal ARIMA model is in multiplicative form. Thus,
it can be‘represented as a two stage filtering operation on the process.
First-is the nonseasonal filtering such that

-] » )
at =6 (B) ¢(B) wy ' (16)
_gd D
where wy = Vo v Z,

Then, applying seasonal filtering on‘at,
®(B) a, = 8(B) u, | (17)

which has the same meaning with Equation (15).

Although the mathematics of seasonal ARIMA processes seems
sophisticated, it should be kept in mind the the fundamentals of
seasonal model building are similar to nonseasonal model building,
considering the fact that it takes place at the second stége of the
filtering procedure. At the model identification stage, the autocorre-
lations and partial autocorrelations should be axamined for a seasonal

pattern at spikes S lags apart.



2.2. Transfer Function Models

A transfer function model describes the dynamic response of input
variables or leading indicators of a system on the output of "that system. -
In this study, only the bivariate case is studied, namely there is one
input series. After a brief explanation of transfer function models, the
model'building is described in terms of three main stages: identification,
estimation, and diagnostic checking.

2.2.1. Fundamentals of Transfer Function Models

A very'general form of the transfer function can beAwritten as

Vo X .+ N

N
1

= v
t gt R t
or ' (18)
Zt = v(B) Xt f Nt ‘ '
where
Z, " denotes output series for t = 1,2,...,N,-
denotes input series for t = 1,2,...,N,
denotes the sum of all effects of all variables
other than Xt, usually called noise,
v(B) is-called the transfer function of the system,
| the weights vo Vi1,... are called impulse
response function of the system.
The infinite series vo +V1B +v2B? + ... must be convergent for

the system to be stable. The stability condition implies that a finite
incremental change in the input results in a finite incremental change in
the output. Sometimes, there is a delay of the effect of input to output.
Impulse response weights for the periods that input effect lags output
are theoretically zero. ' :

It is not practical to represent the system with a high order of
transfer function. The parsimonous form of the model is represented by the

ratio of two polynomials, such that

v(B) B , ’ (19)



is a polynomial operator of order s,
is a polynomial operator of order r,
is a dead time operator of order b

representing the number of periods before any
effect is discernible.

Thus, the model becomes -

where

6(B)

6(B)

r,s,b

z; = w(B) Xgp * Ny

1-68-6,B2-...-6 B" |,

=wo-wlB-szz_ ese = W B Py

d

v Z. , the differehced output series, -

t

vd Xy .» the differenced‘input series,

is the'noise of the model, ng = Vd Nt

are nonnegatiye integer constants.

b

An ARIMA model is applied to the noise series so that

¢(B) n, = 8(B) ay

Then, the output 2t can be written in the following form

which is the general form of bivariate transfer function for the

o(B) o(B)

X + ——— u(t)
t-b o(B)

transformed series.

(20)

(21)

(22)



2.2.2. ldentification of Transfer FunctiontModels

~ If the estimated autocorrelation and cross correlation functions of
Xy and Zi series fail to damp out quickly, then a degree of differencing
d is necessary to induce stationary. The stationarity assumption implies
that the constituent prdcessesxt and z£ have conétant means and variances.
The estimates of cross covariance coefficients ¢ (k) are computed by the

Xy
following formula.

n-k - - . _ _
ti1 (xt" x)(zt+k -2z) , k=0,1,2,...,K (23)

Cry(K) =

o=~

Let Cy (k) and c, (k) be the autocorrelations of 1nput and output series

respect1ve1y, and S and S be the estimates of qk and (E respectlvely.

The cross correlatlon coeff1c1ents rxy(k) are estimated as follows:

ny(k) :
Pyt = —— 1 ke0,1,2,0K (28
Sx Sy : .

—
-

A plot of r y(k), k=0, 1,.;.,K is called cross correlation function.

The first step at the 1dent1f1cat1on stage 1s the d1fferenc1ng
"operatlon to achieve statlonarlty in the series.

Secondly, 1nput series Xt and output series y, are prewh1tened
Prewhitening of the serles is accompllshed by fitting an ARIMA model to
input series Xp s such that

6, (B) & (B) x; = o B - (25)

which transforms the correlated input series Xy into the uncorrelated
white noise series o, . The same. prewhitening operation is applied to

output series zy as follows:
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(26)

Then, autocorrelations r, (k) and rgg(k), and crosscorrelations ryg (k)
are computed so that ' |

Ky =— ., k=0,1,2,....k (27)

where _
g (k) is cross covariance coefficient at lag k,

So = ¥ Cue(0) ,  and
Sg = ¥V Cyg0)

Finally, impulse response weights estimates v are computed as

Sg

Vi = S ras(k) , k=0;1,2,...,K $28)

o

The preliminary estimates Vi are statisticélly inefficient, but it can
provide a rough basis for selecting appropriate operators 6(B) and
w(B) of the transfer function model. '

Knowing the Vi values, r,s, and b may be guessed by employing the
following guidelines:

(1) First b values of impulse responsé weights, Vo, Vi,... Vo1
will not be significantly different from zero.

(2) If r <'s then a further s-r+1 values, Vp, Vp yseees Vp o s Will
not show any clear pattern.

(3) value vj with j > b+s-r+1 will follow a fixed pattern.

It is possiblé to find a rough/estimate of number of impulse response
weights which are significantly different from zero except first b-1
values. Let h be this estimate, then the noise series n, can be estimated

as



or
N =z - v(B) x

2.2.3. Estimation of Transfer Function Models

Haying specified transfer function model for the given series, the
estimates of parameters can be obtained by minimizing the conditional sum
-of squares of errors function: |

‘ n
SSE(b,6,9,8) = T [ut | x, z,ul? (31)
1=a+p+1 ]

where a is the larger of r and s+b. Marquardt's nonlinear least squares
estimation method is employed to solve iteratively for the best values of
the parameters. ‘ 2

The calculation of u's is accomplished in the following way:
First, the output yt'from_transfer function is computed as

v =o' B) w(B) x,, (3

Secondly, having calculated'yt series, the noise series ny can be obtained -

from

ng =2z - Yy | . (33)

Finally, u's can be obtained from

u, = 97'(B) @(B) n, o (34)



2.2.4. Diagnostic Checking of Transfer Function Model

The residuals, ut, are assumed to be normally, independently,
identically distributed having mean zero and variance GG' If the
autocorrelation function fuu(k) shows a clear pattern, this indicates
model inadequacy. Quu statistic to test residual autocorrelations is
computed as

Qu=(-a-p) z rj,k) (35)
k=1 .
Quu is approximately distributed as x? with K-p-q degrees of freedom.

If the cross correlation function ruu(k) shows any significant spikes,

then transfer function model is suggested to be inadequate. The statistic
to test cross correlations rau(k) is computed as

Q= (n-a-p = 1 (K - (36)
k=0 ' _ ‘

qu is apbroximately distributed as x? with K-r-s degrees of freedom (23).

The same summary statiétics given for theunivariate model checking
are also provided to test overfitting.

2.3. Fdrecésting

The model fitted to the time series may not be the forecast function.
-The minimum mean square error forecasts are obtained from the difference
equation form of the model. Also, probability limits of the forecasts are

provided.




2.3.1. Forecasting with ARIMA Models

The exact forecast function is computed From the fitted function in

Equation (5). Assuming a deterministic shift 8, exists in the process,
it is written as

90'—'_(1-‘?1-(92—'..'.-(?13)(3 : ’ (37)
The model fitted to the series can be written as

(1 - B -8 - ... -9 _BP) (1-8)92

D t = 0, + e(B)U_t (38)

which is the final form.

By doing necessary multiplications in Equation (38), the model can be
-written as - ‘ '

BP*0) 2. = o, + 6(B) u (39)

(1 -T,B-2,B* - ... -¢C .

p+d
/

Finally, the forecast function can be written as

d | (40)

+
=1 , J

p
i

O1 Ye-i

n MO

zZ =
. t 1
On the other hand, the forecast function may also be represented as

a linear combination of current and previous shocks Ups Up_qoee- That is

N\

Zigg = (Upgg +¥a Upgg + eee v ¥ qup g) + (Y oup + ¥ 0 g g+ (41)

2) + 2,(2)

e -t(

+(

where

e (2) denotes the forecast error for lead time £,

it(ﬂ) denotes forecast made at origin t for lead time £.

From Equation.(41) et(z) can be written as

e, = + ¥

t 7 Uiy 1 Uppog T T Y Ui



Since the expected value of‘et(ﬁ), E[et(ﬂ)j, is zero, forecasts are
unbiased. The variance of the forecast error is then obtained as

v(8) = varley ()] = (14 ¥+ ¥3+ v ¥2 ) o (43)

The upper and lower probability limits ére computed as-

Zeon (8) = 2,(2) £ ¢ W(¥) . (44)

where c_is the value of standard normal distribution depehding on the -
probibility that a future value lies in the interval.

2.3.2. Forecasting with Bivariate Transfer Function Models

The model fitted to the series in Equation (22) may be reorganized to
obtain the following form of the model:

o(8) 8(8) vz, = o(8) w(B) v x_, +0(B) 6(B) u, (45)

By doing necessary operations in Equation (45), the final forecast function

becomes

+r+d ' pts+d q+r oy
L Bizy (4% Xy - 3 By Xep g+ oz 05 Uy (46)

"z
t i=1 ) j:1 k=1

The variance of the forecast error for lead time £ is given by
2-1 G 251 .w? | (47)
j=b j=0 ‘ '
The probability 1imits are then computed in the same way as in Equation

(44).



IT1I. METHODOLOGY FOR THE IMPLEMENTATION

The three basic analytical stages of Box-Jenkins approach comprise
several procedural steps in the computer implementation of the method.
In this chapter, the analysis is presented in terms of procedural steps.
-Illustrative outlines are given in order to demonstrate how to operate ‘
the computer model during the application of the method.

The computer model does not provide automatic model;selection, there—
fore external intervention is necessary at decision points during the
execution of the program. The user should stricily follow the procedural
steps, which are given in the following sections, during model building

and forecasting. \

3.1. Methodology for ARIMA Models

The methodology of using ARIMA proceéses includes six procedural
steps. The complete analysis is outlined in Figure 3.1.

Step 1. The user has facilities such as to enter new data series, to
access existing data series, or to update existing data series. The data
series are saved for later use, the maintenance of data files is the

responsibility of the user.

| Step 2. The analysis of data is performed in this step. The'computer
software will provide autocorrelation function and partial autocorrelation
function. It is recommended to apply an iterative process to achieve a
stationary mean in the series by proyiding values of d, S, and D. A
subclass of models, which,.are candidates for a good representation of the
process under study, is determined in this step.

Step 3. The user will spetify p, g and P, Q parameters of ARIMA(p,d,q)
(P,D,Q)° model. If a deterministic shift is recognized in the series, the
control parameter M is set to one. The computer program will provide
starting values of the parameter ¢, 6, 2, 8, 8, for the optimization.



1. Data Procedures

4

2. Model Identification
(Analysis of Data) «
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3. Preliminary Estimation
of Model Parameters

f
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5. Unscrambling the
Operators

l

6. Forecaéting

Figure 3.1 Outline of Methodology for ARIMA
Processes Applied to Forecasting
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Step.4. Having starting points of the parameters, the computer will
carry out the minimization procedure to fit the chosen model to the given
data series. The stationarity of AR process, and invertibility of MA
process should be checked on the resulting values of the parameters.

An ARMA(0,q) process is always stationary. For an ARMA(1, q) process,
the absolute value of @1 must be less than one. The statlonarlty requ1re-
ment for an ARMA(2, q) process consists of three conditions:

I‘le < 1
P, - 9, <1 ' (48)
92 + ¢, <1

The stationary conditions are mathematically complicated for p > 2, at
least, a rough check may be made -

¢, + éz taee togp < 1, p>2 (49)\
-The invertibility conditions of MA processes are similar to the stationarity
‘requirements of AR processes. An ARMA(p,0) process is always invertible.

An ARMA(p,1) process is invertible if |e,| < 1. The invertibility require-
ments of ARMA(p,2) are a set of three conditions:

|ez|A< 1
8, - 8, <1 ~ (50)
0, +6;, <1

If q>2 |, then a rough check might be

B, +6, + ... + eq’< 1, q 2 (51)

The relevant statistics for diagnostic checking are provided in this

step.



step 5. If the current fitted model is decided to forecast future
values of the series, the exact forecast function is computed by unscrambling
the operators which are employed dur1ng model building stages. The model
is saved for later use.

Step 6. The forecasts of future Values~are'provided with the upper and
lower probability limits. Sum of errors, SOE, is computed for tracking
signal test (24). It is a measure of accuracy of the forecasting model.

Let current time be N, the forecast error at time t be Uy = Zy - it’
thus ' ) '
" :
SOE= £ u (52)
t=1

t

If forecast is unbiased, E[ut] will be zero, that is to say forecast error
u, is considered a random variable having mean zero. A significant
departure of SOE from zero may indicate the inadequacy of present model.

The prlntouts are also designed for ‘each step except. step one. They .
include detailed 1nformat10n about the process

3.2. Methodology for Transfer Function Models

The énalysis of transfer function method for bivariate'time‘series
resembles to that of ARIMA method in many respects. It includes eight
sprocedural steps. The complete analysis is outlined in Figure 3.2. ’

‘Step 1. The contentS'of this step7is the same with the‘univariate Case,
except there are two data series. | )

Step 2. Prewhitening of input series is accomplished by employing steps
two through five of ARIMA case on input series. It aims to remove systematic
variation in the series. = \

Step 3. Prewhitening of.output'series is accomplished by using the
model built in the last step, step 2. The:cross correlation function and
direct estimate of impulse response function are provided. Initial estimate

of noise series n, are computed depending on direct estimates of impulse
response weights. The user should specify candidate models for the

representation of the given data series.
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Step 4. Starting values of the specified transfer function model
parameters 6 and w are computed in this step

Step 5. Thls step basically includes steps two and three of ARIMA

case wh1ch are applied to n01se series Ny -

Step 6. The minimization procedure is executed to estimate values of
parameters 6, w' ¢, and @ of the specified transfer function model.
The summary statistic is provided for diagnostic checking. The stability
of the transfer function model should be checked (25). The stability of
the first order model -requires absolute value of 6, must be less than one,
and for the second order model, the parameters 6,6, satisfy

6, +6, <1
6, - 6, <1 (53)
-1<6, < 1

Step 7. The forecast functioh is computed by unscrambling the operators.
The parameter values of the forecast function are saved for making the

forecasts later

Step 8. This step is mainly the same with the Step 6 of ARIMA
~methodology.

The printouts, which include detailed information about the process,
are provided in steps two through eight.




~IV. CONCLUSION

The Box-Jenkins time series analysis is theoreticaly and Statistically
very powerful approach for making the forecast of the future. The forecasting
application of the approach proVides‘minimum mean square érror forecast
that there is no other forecast that conditioned onIy:the‘same histdry.of‘
the series which can produce sum of squares of errors will on the average
be smaller. Contrary to this fact there are a few difficulties hindering
widespread adoption of the approach as a basis for forecasting. '

The Box-Jenkins methods are not‘suited to‘the handling’of large
number of series if'the forecasts are needed quickly and'cheably. The
methods perform well on situations where good data exist over a reasonable
period of time, and where high accuracy of forecasts are necessary for
an important planning issue. In certain cases, the method will be either
uneconomic to perform, or inferior to some other time series methods,
because it is not suitable for short series, and for longer forecast

lead times.

Application of Box-Jenkins time series analysis to operational fore-
casting requires a substantial amount of computing at each stage of model
building and forecasting procedures. A computer program is designed with
the objective of offering maximum flexibility and ease of use to nonprog-
yamming users. The program can be operated in a fairly mechanical manner,
but time series model building considerably requires significant human
judgement. The user of the computer program should understand both the
methodology suggested and each aspect of the computer output. The computer’
model for Box-Jenkins approach can not be applied meaningfuily unless the
methodology and the underlying principles are well understood. The level
of understanding of the various steps in the procedures of applying Box-
Jenkins method will be a major determinant in its use. In éddition, there
is a subtantial need for experience and some trial and error in

successfully applying the method.



In this study, Marquardt's nonlinear least squares estimation algorithm
is applled for iteratively minimizing sum of _squares of residuals. A study
~of further development of the computer model could be designing an
efficient nonlinear optimization method to maximize likelihood function
instead of using Marquardt's algorithm. It is generally expected that
maximum likelihood estimates of the parameters on the average will be
more efficient than least squares estimates of the parameters

ThlS study may also be further extended in two dimensions:

(1) In this study, it has been dealt only with the bivariate case of transfer
-function analysis. The forecasting version of multivariate transfer
function analysis may be applied for making the use of full capabilities
of transfer function method. |

(2) Box-Jenkins time series analysis can be applied for process control.
The objective to design control schemes is to minimize overall measure
of error(at the targeted output (26). This model may be developed to
design discrete control schemes. '

The application of Box-Jenkins time series analysis to forecasting
has considerably lagged behind its theoretical formulation and verification.
This study should be granted successful if it provides any impetus on the
application of Box-Jenkins time series analysis to forecasting, and if it
encourages furthér study on the subject. / ' '
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APPENDIX A

COLLECTION OF TIME SERIES USED
FOR APPLICATIONS



A.1 Series 1 : Monthly Sales of Glass Product A

Observation

Period  Observation Period Observation Period

1 3829 47 5998 93 5743
2 2592 48 4860 94 5729
3 3498 49 3953 95 9142
4 3028 50 4860 96 9440
5 3414 51 3366 97 1175
6 - 3104 52 2424 98 2142
7 4627 53 3678 . 99 3437
8 2698 54 2729 100 6757
9 2422 55 3800 101 9124
10 4196 56 3677 102 4811
11 4627 57 3922 103 2719
12 4762 58 3846 104 6662
13 3295 59 3073 105 3504
14 2521 60 3810 106 6318
15 2988 61 3890 107 5327
16 2878 62 3013 108 3092
17 2846 63 2406 109 2086
18 4809 64 2978 110 ' 4266
19 3128 65 3083 11 3262

20 2495 66 - 4165 112 5155

21 2906 67 4722 113 4796

22 3453 68 - 4065 114 3680

23 4905 69 2704 115 7197

24 5302 70 2392 116 7398

25 3384 71 4039 - 117 14374

26 3014 72 5487 118 8265

27 2350 73 5010 119 6181

28 2295 74 4022 120 4939

29 2655 75" 6133

30 2613 76 . 4818

31 3169 77 3589

32 3845 78 3648

33 3983 79 3417

34 2906 80 4247

35 2471 81 4639

36 2630 82 6091

37 2665 83 6005

38 2459 84 - 4816

39 3876 - 85 2371

40 3623 86 3302

41 3559 87 4477

42 4143 88 4598

43 3317 -89 8998

44 "~ 3586 90 1534

45 2976 91 6186

16 - 4552 92 5987



A.2 Series 2 : Monthly Sales erGlass Product B

Period Observation Period Observation Period Observation
1 1728 41 1830 81 ' 1641
2 1306 42 1662 82 1716
3 1528 43 2344 83 2214
4 1491 44 1502 84 1386
5 1489 45 1400 85 © 1066
6 1600 46 1825 86 1247
7 1291 _ 47 1702 ’ 87 1513
8 1164 48 1931 88 1783
9 1147 49 1915 89 3638

10 1150 ' 50 2453 90 738
1 1884 51 1646 91 818
12 1627 52 1217 92 1647
13 2163 53 1029 93 1250
14 1485 54 1700 - 94 1704
15 1732 55 1400 95 3355
16 1109 56 1300 96 2335
17 1362 57 1400 97 540
18 1839 58 1301 ~ a8 928
19 1395 59 1470 99 1519
20 877 60 2434 100 2262
21 1035 61 1451 101 2786
292 1204 62 1642 - 102 1303
23 1383 63 1404 103 1213
24 1639 64 1769 104 : 2447
o5 1793 65 1484 105 . 1442
2 1844 - 66 1683 ‘ 106 1676
27 1330 67 © 1243 7 107 1718
28 1696 , 68 2519 108 . 863
29 1788 : 69 1906 109 1064
30 1871 70 -1418 - 110 1282
31 4980 N 1570 " 1511
32 1215 72 1437 112 ' 2037
33 729 73 - 1611 113 1428
34 1240 74 922 114 . 1153
3 1572 75 2405 115 1670
37 2235 77 2113 117 ‘ 2935
38 2031 ‘ 78 1816 118 1974
39 1592 79 1571 119 2241 -

40 2103 80 - 1402 120 1469



A.3 Series 3 : Monthly Sales of Glass Product C

Observation

Period Period Observation Period Observation
‘ 27
1 2790 37 3395 73 30
2 2143 38 4071 74 gggg
3 2809 .39 2693 75 3176
4 - 2513 40 2869 . 76 3388
5 2910 41 3022 77 e
6 3962 42 5868 /8 2949
7 2100 43 4925 79 3352
8 1960 44 - 4762 80 3535
) 2031 -45 3385 81 teet

10 3305 46 3199 gg E716
1 3358 47 3222 8 3784
12 3365 48 2254 ot 2934
13 3060 49 2813 ot 3907
14 4102 50 3828 87 7928
15 3492 51 2739 o Eo7¢
16 3072 52 2855 89 3850
17 3198 53 3193 50 1549
18 3509 54 4947 o1 3788
19 2763 55 4050 0o 9384
20 2489 56 3358 o5 e
21 2606 57 3749 o1 2169
22 3242 58 3308 o8 2602
23 2429 59 3576 o0 6420
24 2880 60 5400 57 1788
25 2732 61 5015 o gty
26 2973 62 2764 %9 1193
27 2453 63 2328 100 9114
28 2354 64 270 101 2386
29 2966 65 - 2397 107 220
66 3366
30 3188 ’ 103 3925
67 2683 :

31 2928 ‘ oot 101 7212
32 2490 68 oy 10 1167
33 2589 - 69 3139 106 " 5577
34 2827 7<1) e 107 5853
35 2811 7 S0ce 108 2015
36 3111 72




A.4 Series 4 : Monthly Sales of Glass Product D

Period Observation
1 329
2 308
3 262
4 242
5 551
6 200
7 284
8 - 35
9 140
10 584
1" 936
12 594
13 314
14 293
15 258
16 381
17 406
18 618
19 391
20 619
21 709
22 187
23 127
24 52
25 65
26 10
27 23
28 30
29 22
30

Observation

Period
31 25
kY .33

33 28
34 28
35 33
36 29
37 225
38 252
39 301
40 512
41 957
42 218
43 400
44 625
45 442
46 473
47 550
48 405
49 155
50 218
51 223
52 343
53 381
54 278
55 649
56 586
57 778
58 437
59 313
60 715



APPENDIX B APPLICATIONS

In this appendix four univariate applications'iof the Box-Jenkins
approach are presented for the time series given in Appendix A.




B.1. Application 1 : Stochastic'ModeI BUilding and Fdrecasting for

Series 1

Model Identification

Number of observations, N : 108

Mean of the observations, z = 3975

Degree of nonseasonal differencing, d = 1

Period of seasonaiity, S=6

Degree of seasonal differencing, D =1

Number of observations in the differenced serfes, n=101
Mean of the differenced series, o = -24.9

Variance of the differenced series, ¢ = 6.078 x 10°

%% Autocorrelations of the Series %X

Approximate standard error : 9.950E-02
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! -1.8E-02
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* % Par'.tial Autocorrelations of the _Series *¥
Aprproximate standard error : 9.950E-02

Lag ---m--mmmmmmrr e ittt ‘Partials
1 L EESREIEETREES SRS IS SR 2SS -3.9E-01
2 oA R E KRR KK | : -2.9E-01
3 3 HOE R KR E0R ROoRKKOF K8 koK K | -3.1E-01
4 Ok ok A AR KK ! ' -1.7E-01
5 ’ ppkkorkkntoRkokkr 1, 95E-01
6 bbb koo A sk ok sk skob ok HRORR S ok Aotk FOR ¥R R 0K | -4 .8E-01
7 LSRR RN TR L L s S -2.4E-01
8 Aok otk ok 4 kok | -1.5E-01
9 %Kok H KK o KK | -1.5E-01

10 $Ok 4Ok | -5.8E-02

11 . Uk o KoK 1.00E-01

12 K SH SRR R AR AR A kA KK | -2.2E-01

13 Hk ok | -6.1E-C2

14 ' 4.35E-03

15 Ak R HOFF ) -1.0E-01

16 ' 1.15E-02

17 EEEZE S ERS . 1.40E-01

18 F A0k ! : -5.8E-02

ARIMA(1_,1,1)(0,1,1)6 model is specified for Series 1. It cah be
written as follows:

(1 - ‘Px,B) ‘”t =8, + (1 - 9186)(1 - 8,B) ui'.
or

(1- 92 B)(1 - B)(1 - B%) z, = 0 + (1 - 8,8°)(1- 0,B) u,

B.1.2. Model Estimation and Diagnostic Checking Results

~(a) Preliminary estimates:

8, = -19.24
9, = 0.2280
6, = 0.5913
6, = 0.2398
SSE = 3.743 x 108

2 = 4.377 x 10°

Q
1n



(b) Final estimates:

Standard Error

Chi-square statistic for residual autocorrelations,

Q = 6.311, Degrees of freedom = 14

Parameter Value
8o -5.1219 3.8380
2 0.1751 0.1180.
e, 0.9060 0.0534
8, 0.8039 0.0796
8
SSE = 2.335 x 10
g% = 2.407 X 10°
(c) Residuals:
*¥ Residual autocorrelations xx
Aproximate standard error : 9.950E-02
Lag - - Autocor. .
0 T ERskokskokskok Kok k ok KKk skokokok sk sk kskskskskkokkkokkoskokokkskokokkkkk - 1, 00E+00
1 : ‘ 1.38E-02"
2 ¥k ! -6.1E-02
3 kkxkkx| -1.3E-01
4 - k! -3.3E-02
5 LXKk 8.26E~-02
B ; -4,4E-03
T b xskokk 1.05E-01
8 | KKK K 9.47E-02
9 Lk 5.66E-02'
10 x| -3.1E-02
11 i - 6.72E-03
12 % 2.59E-02
13 1% 3.51E-02
14 %1 -3.2E-02
15 ! -6.9E-04
16 %k | -5.8E-02
17 X 4.02E-02
18 |k

3.05E-02



(d) Correlation matrix of the estimated parameters ¢

9, 9y -0, R
9 | 1.000 0.011 0.057 -0.088
e, | 0.011 1.000 0.520 -0.170
e, | 0.057 0.520 1.000.  -0.360
8, |-0.088 -0.170  -0.360 1.000

(e) Forecast function:

z = -5.122 + 1.175 Zyppoq — 0-175 2

N+2 Ne2-2 ¥ Zypp- - 1-180 ZNge-7 T
0.1 - ' -
75 Zppp-g ~ 0.906 Upyg_q — 0.804 Unpg-g + 0-728 Uy o 5
for 2=1,2,...,
B.1.3. Forecasting

Forecast base time
Forecast lead time

WD -] W W

. 108

12

W OO0 00 B 0D O b s GO

Forecast

.282533E+03
.432797E+03
.200969E+03
.243843E+03
. 388686E+03
.543673E+03
.431161E+03
.348077E+03
.070256E+03
.099952E+03
.237366E+03
.385930E+03

HWNF O LN b =3

90% Probability Limits
Upper limit

Lower limit

.086000E+03 .
.266000E+03
.262000E+03
.155000E+03
. 7T96000E+03
.680000E+03 .
.187000E+03
.398000E+03
.437400E+04 -
.265000E+03
.181000E+03
.939000E+03

.224050E+02

.781555E+403

.525212E+03

.550875E+03

.679726E+03
.818004E+03"
.931711E+02

.478152E403

.177509E+03

.185939E+03
.302477E+03
.430353E+03

LOONTINIOIDH IO

.842660E+03
.084040E+03
.876727E+03
.936811E+03
.097646E+03
.268342E+03
.269151E+03
.218002E+03
.963004E+03
.013966E+03
.172255E+03
.341506E+03




B.2. Application 2 : Stochastic Model Building and Forecasting for

Series 2

B.2.1. Model Identification

Number of observations, N : 108
Mean of the observations, 7 = 1629

Degree of nonseasonal differencing, d = 1

Period of seasonability, S = 6

Degree of seasonal differencing, D = 1

Number of observations in the differenced series, n = 101
Mean of the differenced series, ® = -0.03

Variance of the differenced series, 8;» = 5.523 x 10°

¥ Autécorrelations of the Series %%
Approximate standard error : 9.950E-02

Lag =————=——m e o Autocor.
0 _ 1 KKKk skok bk Kok sk okok Kok kR kK kok sk sk sk ko kskokokok - 1 O0E+00
1 AkkRk KKKk Kk | ' -3.3E-01
2 kb ! -2.0E-01
3 T 1.69E-02

4 - kokokok 1.42E-01
5 e 54751}:.;—82 :

*3ok KKK KKK K KKK | -4.5E-01
? e E******** 2.36E-01
8 Lk 5.12E-02
g . S -4.2E-02

10 X1 -3.0E-02

11 Lk 5.41E-02

12 tx 5.63E-02

13 * | -4.7E-02

14 E 5.56E-02

k%% | -1.1E-01

1 ko 1.06E-01

18 - ~5.6E-02 .

%g ;' -2:TE-03



K Par?ial Autocorrelations of the‘Series XXk
Approximate standard error : 9.950E-02

Lag ——— e e e
1 ok ok Sk ok sk ok Sk Sk sk ok ok ok sk 3k K oK ok sk sk KK KO Kok K KRk |
2 . KK K K 3K oK K S KK K KK 3K K 5K ok 3K 3K K KKK oK oK KKKk koK |
3 sk 3K oK ok K oK 3K 3K K K oK K 3K ok sk KK Kk sk ko |

4 *x ! :
5 L okskokskkok ok
6 ***************************************'
7 F333333333 223 3

8 KooK oK K oK K Sk sk KoK K KK KKK KoK |
9 skokokokok ko sokokok Kk KK KK |

10 kxokkokkkokok |

11 3

12 3K 3K 3K 3K 5K 3K ok oK ok K 3K ok oK ok K ok ok K |

13 : ’ KoKk !

14 bk

15 ***************'

16 . - bokokokskok

17 Lok

18 **:

ARIMA(1,1,1)(O,1,1)6 model is specified for Series 2. It can be
as follows: ’ '

(1 - ¢1B)mt = (1 - 9186)(1 - 6,B) Ut'

or

- eB) (1 - B (1 - B) 7, = (1 - 8,B)(1 - 8,8) up

B.2.2. Model Estimation and Diagnoétic Checking Results

(a) Preliminary estimates:

o, = 0.6116
o, = 0.3907
6, = 0.4909

sof = 5.022 x 107
52 - 5.415 x. 10°

Partials

-3.3E-01
-3.5E-01
-2.4E-01
-3.1E-02
1.07E-01
-4.3E-01
-1.4E-01
-2.0E-01
-1.8E-01
-1.0E-01
-1.7E-02
-2.1E-01
-4.7E-02
2.42E-02
-1.7E-01
6.97E-02

- 2.41E-02

-2.6E-02

written




(b) Final estimates:

. Parameter Value - Standard Error
0 0.1964 0.1283
0, 0.8632 . 0.0702
e, ~  0.6167 0.088
SSE = 2.748 x 107
8 - 2.804 x 10°

(c) Residuals:

*% Residual autocorrelations *x
Aproximate standard error : 9.950E- 02 o

Lag -==--==----=--mmmmm e e
0 "***********************************x*********
1 \ '
2 - kkkx!

3 X
4 k
) XXX |
6 X
7 b KoKk

8 X

-9 A

10 i

11 R3S

12 1K

13 KK

14 1 kX

15 x|

16 X

17 i

[}
1

Chi-square statistic for residual autocorrelations,
Q = 4.612, Degrees of freedom = 15

(d) Correlation matrix of the estimated parameterss

9, 0, 8,
%1 | 1.000 0.630  -0.230
e, | 0.630 1.000  -0.350
6, |-0.230  -0.350  1.000

1.00E+00
7.11E-03
~1.1E-01

- -2.7TE-02

5.06E-03
-8.7E-02

-3.6E-02
6.97E-02

3.05E-02
-1.1E-02
1.55E-02
5.12E-02

7.42E-02

5.84E-02
5.35E-02

. -4.0E-02

-2.5E-02
7.36E-04
-3.7E-02



(e) Forecast function:

Z =
Ne = 1196 7, - 0.1%6 2

B.1.3. Forecasting

Forecast base time
Forecast lead time

AN DD b b D) e

Actual

.064000E+03
.282000E+03
.511000E+03
.037000E+03
.428000E+03
.153000E+03
.670000E+03
.539000E+03
.935000E+03
.974000E+03
.241000E+03
.469000E+03

e I N o ST ISP, ST TP |

: 108

12

Forecast

.529725E+02
.526588E+03 .
.305219E+03
.663040E+03
.228076E+03
.096733E+03
.425469E+02
.468209E+03
.23T422E+03
.593393E+03
.158067E+03
.026651E+03

N+g-2 ¥ 2Ny pg ~ 1-200 INpo-7
0.1 -
% 2y, - 0-863 Uy, - 0.617 uy , o+ 0.532 u

N+2-7

90% Probability Limits:
Upper limit

Lower limit

-1.2075TE+02

] WO O

3
9
4
9

-1.66886E+02

.0566317E+02
.B674625E+02
.126843E+02
. 265984E+03

231T7TT7T7E+402

.44556E+02
.503645E+02
.880754E+01
.359598E+02
.824136E+02

NWONDDHNDWDND N -

.626702E+03
.447545E+03
.242975E+03
.613395E+03
.190169E+03
.070288E+03
.829650E+03
.586054E+03
.376036E+03
.750826E+03
.333719E+03
.220189E+03



B.3 Application 3 : Stochastic Model Building for Series 3
B.3.1. Model Identification

Number of observations, N : 108
Mean of the observations, z = 3716

Degree of nonseasonal differencing, D: 1

Period of seasonality, S =6

Degree of seasonal differencing, D = 1

Number of observations in the differenced series, n = 101
Mean of the differenced series, w = 2.980

Variance of the differenced series, 8; = 3.569 x 10°

*% Autocorrelations of the Series ¥¥
Approximate standard error : 9.8950E-02

Lag ——======—=-—-~----mm s s m s s e
0 :*****#****************X*******
1 *% |
2 Sk oK 3K 5K 5K 3K ok 3K oK KK KK KKK KK )

13
3 I X
4 1KoK KoK ok ok K KKK KK KKK
5 : ¥k '
6 KKK K K K oK koK K KK K kKKK |
1
7 : ’
8 baoksk ok Kok K Kk K
9 H

10 KA KKAOKK |

11 P X )

12 kKK

13 *)

14 %% |

15 * |

16 1 X

17 i

18 *

Autocor.
1.00E+0O
-7.3E-02
-6.3E-01
4.53E-02
4.97E-01
-7.0E-02
-5.7E-01
5.87E-02
3.66E-01
-1.9E-02
-2.5E-01
6.38E-02
1.89E-01
-3.9E-02

- =7.1E-02

-4.0E-02
6.19E-02
3.89E-03

-3.3E-02



%X Par?ial Autocofrelations of theASéries KK
Approximate standard error : 9.950E-02

i}

f

o~ bhWNHFD

I
= O

b e b
N U WN

KoKk |

sk oK ok ok oK ok Sk oK ok K ok S 3k 3K 3K 3K K ok oK 3ok KK K sk K ok KK ok oKk ok sk KKK |

KAKFKAAK |
B
:
SKAKAKAK KKK KKK KK A KA KKK |
‘ KAKKKKKAKK |
KK AR AR KK FK AR AR KKK |
: ' KRKFKK |
|
. X
KKK IORARRROKK |
KAKAKAKAK |
XK
KHHIKKAKK |
E
Xk |
KAKKK |

Partials
-7.3E-02

-6.4E-01

-1.3E-01

Kkxkkkkxk 1,52E-01

-8.7E-03
-3.8E-01
-1.7E-01
-3.0E-01
-1.0E-01
-1.2E-03
2.39E-02
-1.9E-01
-1.5E-01
-3.2E-02
-1.3E-01

2.02E-02

-4.7E-02
-9.0E-02

ARIMA(2,1,O)(1,1,0)6 model is specified.for Series 3. It can be"‘

written as follows:

(1- 0,85)(1 - 9.8 - 9:B7) v = up

or

(1 - 0,B%)(1 - 9B - @,B?)(1 - B®)(1 - B} z, = u;

B.3.2. Model Estimation and Diagnostic Checking Results

(a) Preliminary estimates:

n

1.950 x 10°
2.074 x 10°



(b) Final estimates: |

- Standard Error

Parameter Value
"N -0.322 0.0881
92 -0.533 0.0869°
0, -0.633 0.0910
SSE = 1.497 x 108
52 = 1.528 x 10°

*¥% Residual autocorrelations *x

Aproximate standard error : 9.950E-02

Lag =——m = e e e e Autocor.
0 sk ok koK oK ok KoK sk K K SR KoKk Kok Kok kKR sk skskok kR skokkokokk ek 1, O0E+00

1 KK | -5.5E-02

2 X! -3.0E-02

3 kkokkx | -1.2E-01
4 ! -1.5E-02

5 kxkkkk ! -1.4E-01

6 kXK : "4 . 9E_02

7 *okKokok | -1.2E-01

9 1k 5.30E-02
10 KKKK ! -9.5E-02
11 |k 3.57E-02
12 K ! -4.6E-02
13 1% 2.64E-02

- 14 }kok 4.84E-02
15 oKk | -9.1E-02
16 H -8.3E-03
17 b xokskk 9.74E-02
18 A L 2.73E-02

Chi-square statistic for residual autocorrelations,
Q = 11.879, Degrees of freedom = 15

(d) Correlation matrix of the estimated parameters:

P, P2 o,
@, 1.000 0.170 0.230
9, 0.170 - 1.00 -0.120
0, 0.230 -0.120 1.000




(e)'Forecast function:

Zyyp = 0.678 Zngppoq — 921z o 5+ 0.533 2, 5+ 0.367 2y ) 6
- 0.249 Zypgo7 + 0.078 AN 0.195 2y, 0 g + 0.633 zy, s 42
- 0.403 Znsg-13 * 0.134 ZNig-ta " 0.338 ZN42-15
for 2=1,2,...




B.4. Application 4 : Stochastic Model -Building for Series 4

B.4.1. Model Identification

Number of observations, N : 60 .
Mean of the observations, z = 654

Degfee of nonseasonal differencing, d = 1
Period of seasonality, S = 1

1 Degree of seasonal differencing, D = 0
Number of observations in the differenced series, n = 59
Mean of the differenced series, w = 6.54
Variance of the differenced series, o2 = 4.77 x.104

**% Autocorrelations of the Series kX
Approximate standard error : 1.302E-01

B om e e —
Og ! *****************************************
1 kkkkokkk ! -
2 kkokokkKokk )
3 |
4 *k !
5 x|
6 ok
7 KoKk
8 skkkkRk!
9 Lok
10 KK
11 P
12 Hokkokok |
13 *% |
14 X
156 AKX
16 kKK A KKK
17 x|

18 SAKHKKK |

Autocor.
1.00E+00
-2.1E-01
-2.0E-01
7.88E-03
-6.2E-02
-2.6E-02
4.94E-02
8.57TE-02
-1.5E-01
8.56E-02
6.19E-02
5.08E-04
-1.3E-01
-5.3E-02
4.79E-02 .
-1.4E-01
2.34E-01
-5.4E-02
-1.6E-01



%% Partial Autocorrelations of the Series *x
Approximate standard error : 1.302E-01

Lag -~ === e e Partials
1 KKK K KK K K K 3K 3K K 3K 5K KK S K K KKK KK oKk oKk K -2.1E-01
2 *************************************' " -2.5E-01
3 Kok 3K oK sk ok ok ok kK Kk kKK | -1.1E-01
4 skok ok ok sk Kok ok sk okakokokk koK kKK koK | -1.6E-01
5 KKK KKK KKK KKK KKK | -1.2E-01 -
6 KKK KKK | -5.0E-02
7 Lkskokokkokk © b5,17E-02
8 KKK K K K KK KK KK KK | -1.4E-01
9 1Kok KKKk 4.25E-02

10 ' : . o ok kokok K 4.82E-02

11 : Lokkokkkkokxkk  8,.04E-02

12 3K 3K 3K oK KK KKK KKK KK ) -9.9E-02

13 KAOKFKOKKOKKKKKAKKK | -1.1E-01

14 EEEF TN -4 GE-0%

15 . ********************************' -2.2E-01

16 - Daokskkokkokkxokk 8, 74E-02

17 ' . Sokok ok KKK -8.8E-02

18 ***********************: -1.8E-01

ARIMA(1,1,1) model is specified for Series 4. It can be written -as
follows:
(1 - (PlB) wt = (1 - elB) u-t
or

(1 - 9:B)(1 - B) z, = (1 - €:B) ut’

B.4.2. Model Estimation and Diagnostic Checking Results

(a) Preliminary estimates:

¢, = 0.9504

0, = -0.7560
SSE'= 2.168 x 107
5t = 8.430 x 10°



(b) Final estimates:

Parameter- Value Standard Error
-9y 0.9629‘ 0.0221
6, 0.8032 ©0.0883
6

SSE = 3.916 x 10

5t = 6.870 x 10°

(c) Residuals:

%% Residual autocorrelations %x
Aproximate standard error : 1.302E-01

Lag ——===-~—— e e Autocor.
0 § SRR AOK SRRSO R otk Kok R skok solok kR ok ok skkokokskkck -1, 00E+00
1 Ak kK | , -1.4E-01
2 - RRKKX| ‘ -1.3E-01
3 . ' 1.73E-02
4 ' -1.9E-02
5 ] v 7.78E-04
6 bkkokok , ' ~ 1.01E-01
7 EoKOK KK 1.24E-01
8 KKKk K : -1.5E-01
9 bx 3.84E-02

10 X 4.40E-02

11 ! \ 1.91E-02

12. KKK | o . -1.0E-01

13 %! ' ' -3.3E-02

i4 1Kk , '5.00E-02

15 Xokskokk | C o -1.4E-01

i6 CERkkokkKKK ‘ ' o , 1,89E-01

17 | XK | ‘ -6.1E-02

18  skkkskkokk ! ' -1.8E-01

Chi-square statistic for residual autocorrelations,
- Q = 11.452, Degrees of freedom = 16

(d) Correlation matrix of the estimated parameters:.
" 31 8,

91 | 1.000 0.440

8, 0.440 1.000

(e) Forecast function:

for 2=1,2,...
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