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A FORECASTING IMPLEMENTATION OF 

BOX-JENKINS TIME SERIES ANALYSIS 

ABSTRACT 

iv 

rhe ultimate effect of a decision generally depends on the outcome 
of factors that can not be foreseen at the time decision is made. Among 
wide variety of forecasting methods, the Box-Jenkins approach is known 
as the application of the more general and statistical based methods of 
time series analysis. 

This thesis covers the implementation of Box-Jenkins approach by 
using computer. A computer software is developed for building univariate 
and bivariate models, and for making the forecasts. The underlying 
principles of the Box-Jenkins approach are presented, and a methodology 
of using the approach is suggested. 



BOX-JENKINS ZAMAN SERisi ANAliZiNiN 

BiR TAHHiN UYGUlAHASI 

DZET 

v 

Bir kararln nihai etkisi genellikle sonu~larl onceden kestirile­
meyen bir taklm sebeplerin sonu~larlna baglldlr. Gelecegi tahmin etmek 
amaCl ile pek ~ok metod geli~tirilmi~tir. Bunlar araslnda Box-Jenkins 
yakla~lml zaman serileri analizinin genel ve istatistige dayall yontem­
lerinin tahmin yapmak i~in uygulanmasl olarak bilinir. 

Bu ~all~ma Box-Jenkins yakla~lmlnln·bilgisayar aracIIIQl ile uygu-
lanmaslnl kapsamaktadlr. Bu ama~la tek zaman serileri ve ~ift zaman se­
rileri modelleri olu~turmak ve tahmin yapmak i~in bir bilgisayar yazlll­
ml geli~tirilmi~tir. Box-Jenkins yakla~lmlnln kullanllabilmesi i~in bir 
metodoloji onerilmi~tir. 
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I. INTRODUCTION 

1.1 Forecasting and Planning 

Forecasting may be defined as the estimation of the future based 
on the past by using the methodologies which are developed for this 
purpose. It is used by decision and policy makers as an aid to determine 
goals and targets, to understand the environment and causal factors that 
affect it, and to understand the uncertainities in the future and to 
force decision about the level of risk appropriate. 

Planning on the other hand may be defined as attempts at purposeful, 
future oriented decision making (1). A firm is generally exposed to 
uncontrollable external events, and controllable internal events. Fore­
casting applies directly to uncontrollable external events, while decision 
making applies directly to (ontrollable internal events. Planning is 

. considered the link that integrates them. 

1.2. Current Status of Forecasting 

1.2.1. Theory and Applications 

As a result of increasing uncertainty of the environment, a number 
of estimation and prediction methods are developed both in theory and 
practice for organizational forecasting. The current forecasting 
literature can be classified into two groups with regard to the theory 
and practice of the forecasting methods • 

. In the first group, the works on forecasting have generally been 
written by the specialists who have accomplished the theoretical 
formulation and verification of specific methods and who are trying to 
convey the state of the art knowledge to a group of specialists. In this 
area, the work of Box and Jenkins (2) does an excellent job in developing 
and providing statistical properties of specific classes of forecasting 

methods. 
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The second group of the literature is concerned on translating what 
is theoretically possible and computationaily feasible into a form that 
can be easily understood and applied. In this area, the work of Makridakis 
et al (3) is a complete study on forecasting where they put abroad range 
of forecasting methods into a form that can easily be understood and 
applied by nonspecialists. :The work of Nelson (4) is related with the 
essence of the application of Box-Jenkins models and their'forecasting. 

There are many research articles on forecasting. Two important 
applications of Box-Jenkins method are worth to mention. First is the 
univariate application of the method to actual time series. It includes 

, . 

the comparison of the method with the exponentially smoothed method. It 
is concluded that two methods perform equally well on the given data (5). 

Secondly, in a recent study, the procedural steps in the Box-Jenkins 
transfer function method are demonstrated in an application to the 
advertising and sales relationship with particular focus on the advertising 
lag structure (6). 

1.2.2. Forecasting Methods 

To deal with the incre~sing variety and complexity of managerial 
forecasting problems, a wide variety of forecasting methods are developed 
that originated from several major fields of study. Although various 
classification schemes are possi6le depending on the framework chosen, 
the generally accepted classification is given here for describing the 
methods. According to this classification, the existing forecasting 
methods fall into two major categories: quantitative methods, and 
qualitative methods. 

Quantitative methods can be applied when sufficient information about 
the past is available in the form of nu~erical data, and it can be, 
assumed that some aspects of the existing patterns will continue into the 
future. These methods are further divided into two categories. 

(1) Causal methods. The objective of forecasting using causal 
methods isto determine the cause-effect relationship of the factors 
to be forecasted with one or more independent variables by assuming that 
this relationship will hold into the future. 



(2) Time series methods. The objective of these forecasting 
methods is.to determine the pattern in the historical data series and 
extrapolate that pattern into the future. The system is treated as a 
black box an~ as a result ~he factbrsaffecting its behavior are not 
considered. 

3 

. Qualitative methods require subjective estimation, intuitive thinking, 
judgement, and accumulated knowledge through the opinions of the experts. 

Another useful classification is to divide forecasting approaches 
into two groups: statistical methods, and filtering methods. 

ARIMA schemes. which were first introduced by Box and Jenkins are 
quite sophisticated mathematical models. Their work also includes an 
extension of ARIMA scheme into multivariate models which is known as 
transfer function analysis. Regression methods and ARIMA schemes are 
accepted as statistical approaches to forecasting. 

Filtering methods, first introduced by Kalman (7), are engineering 
approaches. The name of Kalman filter is used synonymously with Bayesian 
forecasting. In this approach, it is assumed a fixed model with varying 
parameters and variances. 

1.2.3. Selection of the Forecasting Method 

The selection of the forecasting method for a given situation is a 
decision problem. The information supplied from this system is to be used 
to improve the decision process. There are several useful criteria that 
are used to select, to compare, and to evaluate the competing methods. 
The first problem to be solved is to define the variables of the forecast 
to be analysed and predicted. 

An overview of decision criteria will clarify the interrelationships 
among criteria and need to select a forecasting method that best meets 
all the requirements of a given situation. 

Level of detail is related with the decision on what level the 
forecast to be made such as regional or market demand, or product or 
product group demand. An important class of decisions involves the time 
elements: forecast period, and forecast lead time or forecast horizon. 
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The form of the final forecast .is also an important consideration. 
Various methods provide different outcomes such as mean, an estimate of 
the standard deviation of forecast error, or a probability interval. 
Technical sophistication is a determinant on the applicability of a 
method for a given situation, because the application of a method will 
be restricted with the capabilities and interests of the people who will 
make and use forecasts. 

Before choosing a method, the extensiveness, ~ccuracy, currency, and 
representativeness of the available data must be considered, because the 
ability of many forecasting methods is limited with the amount of 
available data. The type of data series is another factor on the selection 
of a forecasting method. The more general classification is macro series 
and micro series. The pattern of the data must be taken into consideration, 
because, there are many methods that can only cope with a certain data 
pattern. Four types of data patterns can generally exist in the data 
series: horizontal, trend, seasonal, and cyclical. The variability of 
data series 1s a result of the process generating the variable unde~ 
study. A number of simple methods are available for the stationary series, 
but more sophisticated methods are developed to handle nonstationary 
series. 

The element of cost depends on the developement, installation, 
maintenance and operation. of the method, data requirements, computer 
requirements, and human sources requirement. 

Forecast accuracy have an important impact on the selection of the 
forecasting method. Altough there are several statistical measures of 
accuracy, it is not possible to propose a robust measure of a specific 
method in common use for all situations. The relative importance of a 
decision criterion depends on the forecasting situation. The criteria 
mentioned above have interrelationships, therefore the trade offs for a 
given situation must be correctly established. The costs and benefits 
of a forecasting application must be considered in the evaluation of 
alternative forecasting methods. 

Chambers et al propose that the stage of the product life cycle 
for which it is making the forecast is an important consideration. Their 
approach is based on matching methods with the forecasting need as 
determined by product life cycle (8). 



In-another study, several different criteria for evaluating 
alternative forecasting methods are described and those criteria are 
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used to match the situation with the most appropriate forecasting method. 
It is concluded that simple methods can do as well in a wide variety of 
cases, therefore the mathematically sophisticated methods should not be 
selected, unless there is a strong evidence that those methods will do 
better (9). 

In a recent study, it is proposed that each method has strengths and 
weaknesses, every forecasting situation is limited by constraints. An 
evaluation of twenty common forecasting methods are arrayed against 
sixteen evaluative dimensions. It is concluded that extrapolations can 
be improved by combining forecasts, or simulating a range of input 
assumptions, or selectively applying judgement (10). 

The research articles on this subject are numerous, only a few of 
'the studies are included here (11),(12),(13),(14),(15). 

1.3. Overview and Framework for Thesis 

The need to carry out this study has been arisen from the sales 
forecasting problem of an eXisting group of companies. A marketing 
company, which markets hundreds of glass products, has been chosen within 
this group in order to define forecasting problem, to establish objectives 
and determine contents of. the study, a~d to apply resulting model to the 
chosen sales forecasting situation. Although this study is originated 
from a specific forecasting situation, the forecasting model developed 
can be applied to any univariate and bivariate time series forecasting 
situation. 

1.3.1. Definition of the Forecasting Problem 

The forecasts are made for product groups which are formed by . 
aggregating the products within the same product class. The unit of 
measure is determined as units of product sold during a month. Forecasts 
are made by using only internal data sources. 

The data sources are investigated in two dimensions. The first is 
sales series or as it is frequently called output series. Secondly, the 
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factors that affect sales, which are called input series or leading 
indicators., are sought out. These are price,-advertisement·expenditures, 
and sales promotion expenditures. It. is found out that about fifteen 
years of monthly data available for sales series, price data are also 
available for the same length of time, but it is not possible to determine 
the expend i tures ofadvertisarent and promoti on on product group bas is. 

At this point, it is better to distinguish the difference between 
aggregate and point data. Aggregate data represent the value of a variable 
accumulated over a period of time, while point data indicate the value 
of a variable at specific· points in time. Of the data mentioned above, 
price data are pOint data. 

The changes in price series do not exactly match with sales series 
in this·forecasting situation, consequ~ntly to e~tablish a proper 
relationship between price and sales will not be efficient. 

Time series data must be ~ollected in equispacedtime intervals. 
In this respect, a month can not be assumed to be a period. A trading. 
days adjustment on data is recommended to increase forecast accuracy (16). 

Another fact is that the available data do not properly represent 
actual demand, because it is collected on delivery basis. Actual demand 
may be best represented by collecting data on order basis. 

The investigation on sales data by using tools, such as graph of 
-

data, autocorrelations, differencing; etc., has exhibited horizontal, 
trend or seasonal patterns. Also, many of the series have shown the. 
indications of nonstationarity. 

The problem may be stated as to find and implement a forecasting 
method that meets all the requirements of the given situation. 

1.3.2. Objectives of This Thesis 

The main objective of this study is to develop an interactive 
computer software that is used to build, and to forecast with univariate 
and bivariate Box-Jenkins models. 

The other objective is to explain statistical conc~pts and underlying 
Box-Jenkins modelling procedures in a comprehensive \oJay, and to provide 
guidelines for building Box-Jenkins models properly and quickly. 
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1.3.3 •. Evaluation of Box-Jenkins Approach 

Box and Jenkins have effectively assembled in a comprehensive way 
the re~evant information required to understand and use time series 
ARIMA (Autoregressive/Integrated/Moving Average) processes, their names 
have frequently been used as synonymous with the general ARIMA processes 
applied to time series analysis, forecasting, and control. Their work 
includes univariate time series analysis, multivariate time series analysis, 
and deSign of discrete control schemes. The theoretical aspects of Box~ 
Jenkins time series are quite sophisticated. The relative development 
time of the method and to build a forecasting model take time, but the 
forecasts can be made quickly. Box-Jenkins approach to forecasting is 
apparently the most accurate with regard to mean square error, and the 
most developed statistical method presently available. 

The time series are fitted with a mathematical model which is 
optimized on parameters in order to assign smaller errors to history than 
any other model. Box and Jenkins propose a general class of models for 
forecasting, their approach is appropriate to handle various data patterns. 

Box-Jenkins philosophy of model building for time series includes 
two prin~iples (17). First is the prinCiple of parsimony that can be 
described as the smallest number of parameters that should be employed 
for adequate representation of underlying model of a series. 

The second principle is to apply iterative procedure in the selection 
of a model. There are three stages in their approach to model building. 

(1) Identification. The methods are proposed to define models which may 
be good representation of underlying generating mechanism. 

(2) Estimation. The model selected is fitted to data and the parameters 
are estimated by minimizing sum of squares of errors. 

(3) Diagnostic checking. Adequacy of the fitted model is tested by using 
available statistical measures; and then, causes of lack of fit, if it exists 
are diagnosed. 

These three stages of the approach are iterated unti I a-n appropri ate 
representation is found. The selected model is then applied to make the 
forecasts. 
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-
In·this study, the basic theory, modelling procedures, and relevant 

algorithms. are largely drawn from the work of Box and Jenkins. The basic 
notation and terminology are also adopted from their work. 
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II. BOX-JENKINS MODEL BUILDING AND FORECASTING 

In this chapter, first the underlying theory of Box-Jenkins models 
is presented. Then, the statistical tools used in time series analysis, 
and methods for building, identifying, fitting and checking models for 
time series are illustrated in accordance with the three stage Box­
Jenkins approach to model building: identification, estimation, and 
diagnostic checking. Finally, the forecasting version of the developed 
model is briefly explained. 

A phenomenon that evolves through time according to probabilistic 
laws is called stochastic process, it is simply referred as process'in 
this study. The time series to be analysed may thenbe considered as one 
particular realization of a variable, from an infinite population of 
such realizations of that variable, produced by the underlying probability 
mechanism which is generally called generating mechanism of the process. 
The three stage Box-Jenkins procedure is designed to find a model that is 
a good representation of the unknown-underlying process. 

'2.1. Univariate Box-Jenkins Models 

ARIMA is an acronym for Autoregressive/Integrated/Moving Average. 
An ARIMA process refers to the particular generating mechanism which 
describes the evolution of observations through time, and the derivation 
of the conditional distribution of future realizations. The general 
nonseasonal model is represented by ARIMA (p,d,q), where p denotes order 
of the autoregressive process, d denotes degree of differencing to 
achieve a stationary mean, and q denotes order of the movi~g average 
process. There is no limit to the variety of ARIMA models; p,d, and q 
are nonnegative integers. 
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2.1.1. Fundamentals of ARIMA Processes 

The underlying logic in Box-Jenkins approacp is to exploit the 
dependency relationships in successive observations of the time series. 
Thus, a time series of that type may be'considered as generated from a 
time series of random "shocks" ut . These shocks are random dr'awings from 
a fixed distribution, and they are usually assumed to be normally, 
independently, identically distributed having a mean zero and a constant 
variance 0u 2. The sequence of random variables ut ' ut _1' ut -2' ... is 
often called white noise process. 

The white noise process ut is supposed to be transformed to the 
process Zt' which represents time series observations, by a linear filter 
so that 

where 

(1) 

= II + 'l'(B) ut 

B is backward shift operator such that BmZt = Zt-m' m is 
nonnegative integer, 'l'(8) = 1 +'l'lB + 'l'2 B2 + ... is the linear 
operator, II is a parameter that represents the level of the 
process. 

If this sequence of 'l'1' 'l'2' .•. weights are fi~ite, or infinite and 
convergent, the filter is said to be stable and the process Zt to be" 
stationary. The parameter II is then the mean about which the process 
varies. Otherwise, Zt is nonstationary andll can be regarded as a reference 
point for the level of the process. Box-Jenkins models are based on this 
idea of linear filtering. 

An ARIMA(p,O,O) or AR(p) process is called autoregressive process 
of order p so that the current value of the deviations from mean of the 
process is represented by a linear combination of previous values of the 
process and current shock ut · Let 2t be deviations from ~, 2t = Zt - ll. 
Then AR(p) process can be written as 

(2) 



or ' 

where 

autoregressive operator of order p. 
It is required that cp(B) must be stationary. 

cp BP is the p 

1 1 

Another useful representation is moving average process of order q, 
ARIM~(O,O,q) or MA(q). The current value of Zt is expressed as a finite 
number of previous shocks plus current shock ut . That is 

or 

where 8(B) = 1 - 81 B - 82 B2 
- ••• - 8q Bq is the moving average 

operator of order q. It is required that 8(B) must be invertible. 

It is interesting to note that an AR process of infinite order can 
be represented by an MA process of finite order. Also, an MA process of 
infinite order can be represented by an AR process of finite order. This 
characteristic of ARIMA process suffic~sto explain how to build 
parsimonous models. 

The general ARIMA process of order (p,d,q) is defined by 

where 

(4) ~ 

vd = (1_B)d is the differencing operator, 
8~ is a constant which denotes the deterministic shift in the' 

process. 
d Letting wt = v Zt then Equation (4) can be written as 

or (5) 



where 

iii =W -ll t t w· 

Another useful representation is provided by letting ~(B) = ,(B)Vd. 
Then the process becomes 

~(B) ~t = 8(B) ut (6) 

The process defined by Equation (6) can be represented as a linear 
filter of infinite order such that 

8(B) 
(7) 

or 

2.1.2. Identification ofARIMA Models 

The statistical. tools for the analysis of time series are proposed 
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as autocorrelation function (acf), partial autocorrelation function (pacf), 
and differencing. Box and Jenkins also propose that spectral analysis is 
a useful device of analysing time series (18). 

Estimates of autocorrelation~ of any time series are computed from 
the sample data. Let ck be the autocovariance coefficient at lag k, it 
can be written as 

1 N-k - . . -
ck =--N-- t~1 [(Zt - z)(Zt+k - z)J 

for k = O,1,2,.~.,K 

where z denotes the sample mean 

- 1 
Z =-

N 

N 
L 

t=1 

N is the number of observations in the series. Let rk be the 
autocorrelation coefficient at lag k, it is computed as follows: 

(8) 

(9) 



k = 0,1,2, ••• , K. 

A graph of autocorrelation coefficients is called autocorrelation 
function (acf). 
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(10) 

Partial autocorrelations are used to measure the degree of association 
between Zt and Zt+k' but the effects of intervening ZI S are somehow 
partialled out. A plot of partial autocorrelation coefficients is called 
partial autocorrelation function (pacf). 

ARIMA processes provide a" general class of models. The selection of 
the most appropriate model for the given time series requires experience. 
In general, there are several useful guidelines for stationary series. 

(1) A pvre stationary AR process has a theoretical acf that drops off to 
zero, but it has a pacf that cuts off to zero after lag p, the order 
of AR process. The standard error of the partial autocorrelation 
coefficients after lag p is approximated as 

ser = 11m . 
k 

(11 ) 

(2) A pure MA process has a theoretical acf that cuts off to zero after 
lag q, the order of MA process, but it has a theoretical pacf that 
drops off to zero. The estimated autocorrelations of order q+1, 
and higher, are approximately, independently distributed with 
variance 1/n. 

(3) A stationary mixed ARMA process has 
a) a theoretical acf that tails off toward zero after the first 

q-p lags; 
b) a theoretical pacf that tails off toward zero after the first 

q-p lags. 

2.1.3. Estimation of ARlMA Models 

At the estimation stage, the values of the parameters, of the model 
selected at the identification stage that seems promising to provide 
parsimonous and statistically adequate representation of the given time 
series, are computed by minimizing conditional sum of square of errors 

so that 



( 12) 

where p q 
ut = wt - L ~. wt . + L 8. Ut . 

. . 1 -1 . 1 J -J 
1=1 J= 

(13) 

The minimization of sum of squares function is accomplished on a 
computer by using a nonl inear least squares estimation method developed 
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by Marquardt (19). A back forecasting procedure is proposed to approximate 
unconditional sum of squares of erros (20). 

2.1.4. Diagnostic Checking of ARIMA Models 

After having the estimated parameters of the specified ARIMA model, 
diagnostic checks are applied to verify the model adequacy. There are 
two general factors of interest for diagnostic checking. 

(1) The residuals or errors left over after fitting an ARIMA model are 
expected to be a white noise process. Any recognizable-pattern in 
the estimated autocorrelation function of errors could point out the 
model inadequacy. A lack of fit test is proposed to test whether the 
autocorrelation estimates rk(u) for the residuals are significantly 
different from zero. The statistic for this purpose is called Q 
statistic and it is computed as follows: 

(14 ) 

where K is maximum time lag considered. 

Q statistic is approximately distributed as x2 with K-p-q degrees 
u 

of freedom (21), (22). 

(2) The sampling statistic of the current optimum solution are studied 
to see if the model is overfitted. There are two summary statistics 

provided: 
(a) standard errors of the estimated parameters; 
(b) correlation matrix of the estimated parameters. 
High standard errors of the estimated parameters, and high correlation 
between parameters may be the signs of overfitting. 
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2.1.5.' Seasonal Models 

The g~neral seasonal ARIMA model is represented as ARIMA(p,d,q) (P,D,Q)S 

where 

P denotes order of seasonal AR process, 
D denotes degree of seasonal differencing, 
Q denotes order of seasonal MA process, and 
S is period of seasonality. 

It can be written as 

(15 ) 

where '~(8) and a(8) are nonseasonal operators as previously identified, 
~(8) is seasonal AR operator of order P, 
8(8) is seasonal MA operator of order Q, and 
vD is the differencing operator so that vD = (1_8S)D. 

The general seasonal ARIMA model is in multiplicative form. Thus, 
it can be'represented as a two stage filtering operation on the process. 
First is the nonseasonal filtering such that 

( 16) 

where 

Then, applying seasonal filtering on at, 

( 17) 

which has the same meaning with Equation (15). 

Although the mathematics of seasonal ARIMA processes seems 
sophisticated, it should be kept in mind the the fundamentals of 
seasonal model building are similar to nonseasonal model building,­
considering the fact that it takes place at the second stage of the 
filtering procedure. At the model identification stag~, the autocorre­
lations and partial autocorrelations should be axamined for a seasonal 
pattern at spikes S lags apart. 
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2.2. Transfer Function Models 

A transfer function model describes the dynamic response of input 
variables or leading indicators of a system on the output of "that system.· 
In this study, only the bivariate case is studied, namely there is one 
input series. After a brief explanation of transfer function models, the 
model building is described in terms of three main stages: identification, 
estimation, and diagnostic checking. 

2.2.1. Fundamentals of Transfer Function Models 

A very general form of the transfer function can be written as 

or 

where 
Zt denotes output series for t = 1,2, ... ,N,· 
Xt denotes input series for t = 1,2, ... ,N, 
Nt denotes the sum of all effects of all variables 

other than Xt , usually called noise, 
v(8) is·called the transfer function of the system, 

the weights VO,Vl, ••• are called impulse 
response function of the system. 

( 18) 

The infinite series v 0 +v 1 8 +v 2 82 + ... must be convergent for 
the system to be stable. The stability condition implies that a finite 
incremental change in the input results in a finite incremental change in 
the output. Sometimes, there is a delay of the effect of input to ou~put .. 
Impulse response weights for the periods that input effect lags output 

are theoretically zero. 

It is not practical to represent the system with a high order of 
transfer function. The parsimonous form of the model is represented by the 

ratio of two polynomials, such that 

w(8) 
v(8) = 8b ( 19) 

6(8) 



where 

w(B) is a polynomial operator of order s, 
6(B) is a polynomial operator of order r, 
Bb is a dead time operator of orde~ b 

representing the number of periods before any 
effect is discernible. 

Thus, the model becomes 

where 

w(B) - w1B - w2 B2 
-

S = Wo ... - w B s 

Zt = vd Z t , the differenced output series, 

xt = vd X t , the differenced input series, 

d is the noise of the model,nt = v Nt ' 

r,s,b are nonnegative integer constants. 

An ARIMA model is applied to the noise series so that 

Then, the output Zt can be written in the following form 

w(B) 

6(B) 

8(B) 

cp(B) 
u(t) 

which is the general form of bivariate transfer function for the 

transformed series. 
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(20) 

(21) 

("22 ) 
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2.2.2. Identification of Transfer Function Mpdels 

If. the estimated autocorrelation and cross correlation functions of 
xt and Zt series fail to damp out quickly, then a degree of differencing 
d is neces?ary to induce stationary. The stationarity assumption implies 
that the constituent processes xt and Zt have constant means and variances. 
The estimates of cross covariance coefficients c (k) are computed by the xy 
following formula. 

, k=0,1,2, ... ,K (23) 

Let c x(k) and c (k) be the autocorrelations of input and output series x . zz 
respectively, and Sx and S be the estimates of 0 and 0z respectively. 

Z x· 
The cross correlation coefficients rxy(k) are estimated as follows: 

where Sx =!cxx (0) 

Sz =jCZZ(O). 

k=O, 1 ,2, ••• , K (24) 

A plot of r (k), k=0,1, ... ,K is called cross correlation function. 
xy .' . 

The first step at the identification stage is the diff~rencing 
·operation to achieve stationarity in the series . 

. Secondly, input series xt and output series Yt are prewhitened. 
Prewhitening of the series is accomplished by fitting an ARIMA model to 

input series xt ' such that 

(25) 

which transforms the correlated input series xt into the uncorrelated 
white noise series at. The same prewhitening operation is applied to 

output series Zt as follows: 
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" et = e-tB) ~ (B) z 
x x t (26) 

Then, autocorrelations r (k) nd (k) d I t" (k) ~a a ree ' an crosscorre a Ions rae 
are computed so that 

rae (k) = 
Cae(k) 

k = O,1,2, ••. ,K (27) 
Sa SB 

where 

cae(k) is cross covariance coefficient at lag k, 

Finally, impulse response weights estimates vk are computed as 

k = O,1,2, ... ,K (28) 

The preliminary estimates vk are statistically inefficient, but it can 
provide a rough basis for selecting appropriate operators 6(B) and 
w(B) of the transfer function model. 

Knowing the vk values, r,s, and b may be guessed by employing the 
following guidelines: 

(1) First b values of impulse response weights, Vo, VI, ••• , vb-1 ' 0 

will not be significantly different from zero. 

(2) If r ~ s then a further s-r+1 values, vb' vb+1'···, vb+z- r ' will 
not show any clear pattern. 

(3) Value Vj with j ~ b+s-r+1 will follow a fixed p"attern. 

It is possible to find a rough estimate of number of impulse response 
weights which are significantly different from zero except first b-1 
values. Let h be this estimate, then the noise series nt can be estimated 

as 



or 

h 
nt = Zt - LV. Xt . . 0 1 -1 

1= 

An ARIMA model for the noise series is then specified so that 

2.2.3. Estimation of Transfer Function Models 
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(29) 

(30) 

Having specified transfer function model for the given series, the 
estimates of parameters can be obtained by minimizing the conditional sum 
of squares of errors function: 

SSE( b,~,.!,~) = (31) 

where a is the larger of rand s+b. Marquardt's nonlinear least squares 
estimation method is employed to solve iteratively for the best values of 
the parameters. 

The calculation of u's is accomplished in the following way: 
First, the output Yt'from transfer function is computed as 

(32) 

Secondly, having calculated Yt series, the noise series nt can be obtained 
from 

(33) 

Finally, u's can be obtained from 

(34) 



2.2.4. Diagnostic Checking of Transfer Function Model 

The residuals~ ut ' are assumed to be normally, independently, 
identically distributed having mean zero and variance o~. If the 
autocorrelation function r (k) shows a clear pattern, this indicates uu 
model inadequacy. Quu statistic to test residual autocorrelations is 
computed as 
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K = (n - a - p) L r~u(k) (35) 
k=1 

Quu is approximately distributed as x 2 with K-p-q degrees of freedom. 

If the cross correlation function ra (k) shows any significant spikes, 
'. . . '. u... 

then transfer function model is suggested to be inadequate. The statistic 
to test cross correlations rau(k) is computed as 

K 
Q = (n - a - p) L 
au k=O 

(36) 

n is approximately distributed as X2 with K-r-s degrees.of freedom (23). 
"cc.u 

The same summary statistics given for the univariate model checking 
are.also provided to test overfitting. 

2.3. Forecasting 

The model fitted to the time series may not be the forecast function. 
The minimum mean square error forecasts are obtained from the difference 
equation form of the mqdel. Also, probability limits of the forecasts are 

provided. 
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2.3.1. Forecasting with ARIMA Models 

The exact forecast function is computed from the fitted function in 
Equation (5). Assuming a deterministic shift 8 0 exists in the process, 
itis written as 

8 0 = ( 1 - cP 1 - CP2 - cP ) W 
P 

(37) 

The model fitted to the series can be written as 

which is the final form. 

By doin~ necessary multiplications in Equation (38), the model can be 
written as 

Finally, the forecast function can be written as 

p+d q 
L ~. Zt . + 80 + ut - L 

1 -1 
1=1 j=1 

8· ut . 
1 -1 

(40) 

On the other hand, the forecast function may also be represented as 
a linear combination of current and previous shocks ut ' ut _1' ... That is 

where 

et(i) denotes the forecast error for lead time i, 

Zt(i) denotes forecast made at origin t for lead time i 

From Equatibn (41) et(i) can be written as 

(42) 



Sin~e the expecte~ value ofet(f), i[et(f)], is zero, forecasts are 
unbIased. The varIance of the forecast error-is then obtained as 

The upper and lower probability limits are computed as 

23 

(43) 

(44) 

where c is the value of standard normal distribution depending on the 
probibility that a future value lies in the interval. 

2.3.2. Forecasting with Bivariate Transfer Function Models 

The model fitted to the series in Equation (22) may be reorganized to 
obtain the following form of the model: 

,( 45) 

By doing necessary operations in Equation (45), the final forecast function 
becomes 

The variance of the forecast error for lead time £ is given by 

V(f) 
f-1 

= 0
2 L v~ 
ex J 

j=b 

f-1 
L 'l'~ 

J 
j=O 

(47) 

The probability limits are then computed in the same way as in Equation 

(44). 
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I I I . METHODOLOGY FOR THE IMPLEMENTATION 

The three basic analytical stages of Box-Jenkins approach comprise 
several procedural steps in the computer implementation of the method. 
In this chapter, the analysis is presented in terms of procedural steps. 
Illustrative outlines are given in order to demonstrate how to operate 
the computer model during the application of the method. 

The computer model does not provide automatic model 'selection, there­
fore external intervention is necessary at decision points during the 
execVtion of the program. The user should strictly follow the procedural 
steps, which are given in the following sections, during model building 
and forecasting. \ 

3.1. Methodology for ARIMA Models 

The methodology of using ARIMA processes includes six procedural 
steps. The complete analysis is outlined in Figure 3.1. 

Step 1. The user has facilities such as to enter new data series, to 
access existing data series, or to update existing data series. The data 
series are saved for later use, the maintenance of data files is the 
responsibility of the user. 

Step 2. The analysis of data is performed in this step. The computer 
software will provide autocorrelation function and partial autocorrelation 
function. It is recommended to apply an iterative process to achieve a 
stationary mean in the series by providing values of d, S, and D. A 
subclass of models, which~.are candidates for a good representation of the 
process under study, is determined in this step. 

Step 3. The user will specify p, q and P, Q parameters of ARIMA(p,d,q) 
(P,D,Q)S model. If a deterministic shift is recognized in the series, the 
control parameter M is set to one. The computer program will provide 
starting values of the parameter ~, ~, !, ~, 8 0 for the optimization. 
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1. Data Procedures 

2. Model Identification 
(Analysis of Data) 

3. Preliminary Estimation 
of Model Parameters 

4. Final Estimation of 
Model Parameters 

and 
Diagnostic Checking 

5. Unscrambling the 
Operators 

6. Forecasting 

Figure 3.1 Outline of Methodology for ARIMA 
Processes Applied to Forecasting 
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Step.4. Having starting points of the parameters, the computer wili 
carry out the minimization procedure to fit the chosen model to the given 
data series. The stationarity of AR process, and invertibility of MA 
process should be checked on the resulting values of the parameters. 

An ARMA(O,q) process is always stationary. For an ARMA(1,q) process, 
the absolute value of '1 must be less than one. The stationarity require­
ment for an ARMA(2,q) process consists of three conditions: 

(48) 

The stationary conditions are mathematically complicated for p > 2, at 
least, a rough check may be made 

p > 2 (49) \ 

The invertibility conditions of MAprocesses are similar to the stationarity 
requirements of AR processes. An ARMA(p,O) process is always invertible. 
An ARMA(p,1) process is invertible if IS11 <1. The invertibility require­
ments of ARMA(p,2) are a set of three conditions: 

(50) 

If q > 2 , then a rough check might be 

q 2 (51) 

The relevant statistics for diagnostic checking are provided in this 

step. 
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Step 5. If the current fitted model is decided to forecast future 
values of the series, the exact forecast fun~tion is computed by unscrambling 
the operators which are employed during model building stages. The model 
is saved for later use. 

Step 6. The forecasts of future values are provided with the upper and 
lower probability limits. Sum of errors, SOE~ is computed for tracking 
signal test (24). It is a measure of accuracy of the forecasting model. 

Let current time be N, the forecast error at time t be ut = Zt - Zt' 
thus 

N 
SOE = L ut (52) 

t=1 

If forecast is unbiased, E[ut ] will be zero, that is to say forecast error 
ut is considered a random variable having mean zero. A significant 
departure of SOE from zero may indicate the inadequacy of present model. 

The printouts are also designed for each step except step one. They, 
include detailed information about the process. 

3.2. Methodology for Transfer Function M6dels 

The analysis of transfer function method 'for bivariate time series 
resembles to that of ARIMA method in many respects. It includes eight 
~procedural steps. The complete analysis is outlined in Figure 3.2. 

Step 1~ The contents of this step· is the same with the univariate case, 
except there are two data series. 

Step 2. Prewhitening of input series is accomplished by employing steps 
two through five of ARIMA case on input series. It aims to remove systematic 
variation in the series. 

Step 3. Prewhitening of output· series is accomplished by using the 
model built in the last step, step 2. The cross correlation function and 
direct estimate of impulse response function are provided. Initial estim~e 
of noise series nt are computed depending on direct estima~es of impulse 
response weights. The user should specify candidate models for the 
representation of the given data series. 



1. Data Procedures 

2. Prewhitening 
. Input Series 

3. Prewhitening Output Series 
and Identification of 

Transfer Function Model 

4. Preliminary Estimation 
of Transfer Function 

Model Parameters 

5. Identification of 
ARIMA Model for 
Input Series and 

Preliminary Estimation 
of the Parameters 

6. Final Estimation of 
Parameters and' 

. Diagnostic Checking 

7. Unscrambling the Operators 

8. Forecasting 

Figure 3.2 Outline of Box-Jenkins Transfer Function 
Analysis Applied to Forecasting 
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Ste~ 4. Starting values of the specified transfer function model 
parameters ° and ~ are computed in this step. 

Step 5. This step basically includes steps two and three of ARIMA 
case which are applied to noise series n

t
. 
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Step 6. The minimization procedure is executed to estimate values of 
parameters ~, ~ " .!, and ~ of the specified transfer function model. 
The summary statistic is provided for dia~nostic checking. The stability 
of the transfer function model should be checked (25). The stability of 
the first order model requires absolute value of 01 must be less than one, 
and for the second order model, the parameters 01,02 satisfy 

(53) 

Step 7. The forecast function is computed by unscrambling the operators. 
The parameter values of the forecast function are saved for making the 
forecasts later. 

Step 8. This step is mainly the same with the Step 6 of ARIMA 
methodology. 

The printouts, which include detailed information about the process, 
are provided in steps two through eight. 
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IV. CONCLUSION 

The Box-Jenkins time series analysis is theoreticaly and statistically 
very powerful approach for making the forecast of the future. The forecasting 
application of the approach provides minimum mean square error forecast 
that there is no other forecast that ~onditioned oniy the same histriryof 
the series which can produce sum 6f squares of errors will on the average 
be smaller. Contrary to this fact there are a few difficulties hindering 
widespread adoption of the approach as a basis for forecasting. 

The Box-Jenkins methods are not suited to the handling of large 
number of series if the forecasts are needed quickly and cheaply. The 
methods perform well on situations where good data exist over a reasonable 
period of time, and where high accuracy of forecasts are necessary for 
an important planning issue. In certain cases, the method will be either 
uneconomic to perform, or inferior to some other time series methods, 
because it is not suitable for short series, and for longer forecast 
lead times. 

Application of Box-Jenkins time series analysis to operational fore­
casting requires a substantial amount ,of computing at each stage of model 
building and forecasting procedures. A computer program is 'designed with 
the objective of offering maximum flexibility and ease of use to nonprog­
ramming users. The program can be operated in a fairly mechanical manner, 
but time series model building considerably requires significant human 
judgement. The user of the computer program should understand both the 
methodology suggested and each aspect of the computer output. The computer' 
model for Box-Jenkins approach can not be applied meaningfully unless the 
methodology and the underlying principles are well understood. The level 
of understanding of the various steps in the procedures of applying Box­
Jenkins method will be a major determinant in its use. In addition, there 
is a subtantial need for experience and some trial and error in 

successfully applying the method. 
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In.this study. Marquardt's nonlinear least squares estimation algorithm 
is applied for iteratively minimizing sum of squares of residuals. A study 
of further development of the computer model~could be designing an 
efficient nonlinear optimization method to maximize likelihood function 
instead of using Marquardt's algorithm. It is generally expected that 
maximum likelihood estimates of the parameters on the average will be 
more efficient than least squares estimates of the parameters. 

This study may also be fu~r extended in two dimensions: 

(1) In this study. it has been dealt only with the bivariate case of transfer 
function analysis. The forecasting version of multivariate transfer 
function analysis may be applied for making the use of full capabilities 
of transfer function method. 

(2) Box~Jenkins time series analysis'can be applied for process control. 
The objective to design control schemes is to minimize overall measure 
of error! at the targeted output (26). This model may be developed to 
design discrete control schemes. 

The application of Box-Jenkins time series analysis to forecasting 
has considerably lagged behind its theoretical formulation and verification. 
This study should be granted successful if it provides any impetus on the 
application of Box-Jenkins time series analysis to forecasting. and if it 
encourages further study on the subject. 
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APPENDICES 

Appendix A COLLECTION OF TIME SERIES USED FOR APPLICATIONS 

A.1. Series 1 Monthly Sales of Glass Product A 
A.2. Series 2 Monthly Sales of Glass Product B 
A.3. Series 3 Monthly Sales of Glass Product C 
A.4. Series 4 Monthly Sales of Glass Product D 

Appendix B APPLICATIONS 

B. 1. Application 1 . Stochastic Model Building and Forecasting . 
for Series 1 

B.2. Application 2 Stochastic Model Building and Forecasting 
for Series 2 

B.3. Application 3 Stochastic Model Building for Series 3 

B.4. Application 4 Stochastic Model Building for Series 4 



APPENDIX A 

COLLECTION OF TIME,SERIES USED 
FOR APPLICATIONS 
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A.1 Series 1 : Monthly Sales of Glass Product A 

Period Observation Period Observation Period Observation 

1 3829 47 5998 93 5743 
2 2592 48 4860 94 5729 
3 3498 49 3953 95 9142 
4 3028 50 4860 96 9440 
5 3414 51 3366 97 1175 
6 3104 52 2424 98 2142 
7 4627 53 3678 . 99 3437 
8 2698 54 2729 100 6757 
9 2422 55 3800 101 9124 

10 4196 56 3677 102 4811 
11 4627 57 3922 103 2719 
12 4762 58 3846 104 6662 
13 3295 59 3073 105 3504 
14 2521 60 3810 106 6318 
15 2988 61 3890 107 5327 
16 2878 62 3013 108 3092 
17 2846 63 2406 109 2086 
18 4809 64 2978 110 . 4266 
19 3128 65 3083 111 3262 
20 2495 66 4165 112 5155' 
21 2906 67 4722 113 4796 
22 3453 68 4065 114 3680 
23 4905 69 2704 115 7197 
24 5302 70 2392 116 7398 
25 3384 71 4039 117 14374 
26 3014 72 5487 118 8265 
27 2350 . 73 5010 119 6181 
28 2295 74 4022 120 4939 
29 2655 75 ' 6133 
30 2613 76 4818 
31 3169 77 3589 
32 3845 78 3648 
33 3983 79 3417 
34 2906 80 4247 
35 2471 81 4639 
36 2630 82 6091 
37 2665 83 6005 
38 2459 84 4816 
39 3876 . 85 2371 
40 3623 86 3302 
41 3559 87 4477 
42 4143 88 4598 
43 3317 89 8998 
44 3586 90 1534 
45 2976 91 6186 
46 4552 92 5987 
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A.2 Series 2 : Monthly Sales of Glass Product B 

Period Observation Period Observation Period Observation 

1 1728 41 1830 81 1641 
2 1306 42 1662 82 1716 
3 1528 43 2344 83 2214 
4 1491 44 1502 84 1386 
5 1489 45 1400 85 1066 
6 1600 46 1825 86 1247 
7 . 1291 47 1702 87 1513 
8 1164 48 1931 88 1783 
9 1147 49 1915 89 3638 

10 1150 50 2453 90 738 
11 1884 51 1646 91 818 
12 1~27 52 1217 92 1647 
13 2163 53 1029 93 1250 
14 1485 54 1700 94 1704 
15 1732 55 1400 95 3355 
16 1109 56 1300 96 2335 
17 1362 57 1400 97 540 
18 1839 58 1301 98 928 
19 1395 59 1470 99 1519 
20 877 60 2434 10·0 2262 
21 1035 61 1451 101 2785 
22 1204 62 1642 102 1303 
23 1383 63 1404 103 1213 
24 1639 64 1769 104 2447 
25 1793 65 1484 105 1442 
26 1844 66 1683 106 1676 
27 1330 67 1243 107 1718 
28 1696 68 2519 108 863 
29 1788 69 1906 109 1064 
30 1871 70 - 1418 110 1282 

31 1980 71 1570 111 1511 

32 1215 72 1437 112 2037~ 

33 729 73 1611 113 1428 

34 1240 74 922 114 1153 

35 1572 75 2405 115 1670 

36 2254 76 2410 116 1539 

37 2235 77 2113 117 2935 

38 2031 78 1816 118 1974 

39 1592 79 1571 119 2241 . 

40 2103 80 1402 120 1469 
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A.3 Series 3 : Monthly Sales of Glass Product C 

Period Observation Period Observation Period Observation 

1 2790 37 3395 73 3027 
2 2143 38 4071 74 2900 
3 2809 39 2693 75 3737 
4 2513 40 2869 76 3476 
5 2910 41 3022 77 .3385 
6 3962 42 5868 78 3345 
7 2100 43 4925 79 2949 
8 1960 44 4762 80 3352 
9 2031 -45 3385 81 3939 

10 3305 46 3199 82 4251 . 
11 3358 47 3222 83 5716 
12 3365 48 2254 84 3784 
13 3060 49 2813 85 2234 
14 4102 50 3828 86 3207 
15 3492 51 f 2739 87 4928 
16 3072 52 2855 88 5276 
17 3198 53 3193 89 8890 
18 3509 54 4947 90 4849 
19 2763 55 4050 91 3788 
20 2489 56 3358 92 9384 
21 2606 57 3749 93 6441 
22 3242 58 3308 94 4169 
23 2429 59 3576 95 7602 
24 2880 60 5400 96 6420 
25 2732 61 5015 97 1788 
26 2973 62 2764, 98 2686 

27 2453 63 2326 99 4193 

28 2354 64 2700 100 9114 

29 2966 65 2397 101 8386 

30 3188 66 3366 102 4404 
-

31 2928 67 2683 103 3925 

32 2490 68 2911 104 7212 

33 2589 69 4547 105 4167 

34 2827 70 . 3139 106 5577 

35 2811 71 3164 107 5853 

36 3111 72 2956 108 4015 
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A.4 Series 4 : Monthly.Sales of G(ass Product 0 

Period Observation Period Observation 

1 329 31 25 
2 308 32 33 
3 262 33 28 
4 242 34 28 
5 551 35 33 
6 200 36 29 
7 284 37 225 
8 35 38 252 
9 140 39 301 
10 584 40 512 
11 936 41 957 
12 594 42 218 
13 314 43 400 
14 293 44 625 
15 258 45 442 
16 381 46 473 
17 406 47 550 
18 618 48 405 
19 391 49 155 
20 619 50 218 
21 709 51 223 
22 187 52 343 
23 127 53 381 
24 52 54 278 
25 65 55 649 
26 10 (56 586 
27 29 57 778 
28 30 58 437 
29 22 59 313 
30 31 60 715 



APPENDIX B APPLICATIONS 

In this appendix four univariate applications of the Box-Jenkins 
approach are presented for the time series given in Appendix A. 

39 



B.1. Application Stochastic Model Building and Forecasting for 
Series 1 

B.1.1. Model Identification 

Number of observations, N : 108 
Mean of the observations, Z = 3975 
Degree of nonseasonal differencing, d = 
Period of seasonality, S = 6 
Degree of seasonal differencing, D = 1 
Number of observations in the differenced series, n = 101 
Mean of the differenced series, w = -24.9 
Variance of the differenced series, 02 = 6.078 x 106 

. w 

** Autocorrelations of the Series ** 
Approximate standard error: 9.950E-02 
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Lag ----------------~--------------------------------- Autocor. 
o ********************************1.00E+OO 
1 ************ -3.9E-01 

·2 ** -9.0E-02 
3 ** -7.9E-02 
4 *** 9. 44E-02 
5 ****** 2. 15E-0 1 
6 ***************** -5.4E-01 
7 ******* 2.36E-01 
8 * 6.09E-02 
9 ** 7. 48E-02 

10 * -5. 6E-02 
11 ** -7.3E-02 
12 *** 1.05E-01. 
13 -2.9E-02 
14 -1.8E-02 
15 ** -6.8E-02 
16 * 5. 8.4E-02 
17 * 5.16E-02 
18 * -3.1E-02 



~* Partial Autocorrelations of the Series ** 
Approximate standard error: 9.950E-02 

Lag -------------------------------- --------------
1 ~*t~**t**~*****~~************ 
2 ********************* 
3 ********.*************** 
4 ************ 
5 
6 
7 
8 
9 

10 
11 
12 
13 

*********t************~************ 
****************** 

*.* ******* ** 
*********** 

**** 
**************** 

I 
I 14 

15 
16 

*:>1-***** : 
I 
I 

************** 

17 
18 

: :.; :>I *)j.: * :>I-li :>t- * *' 
~-**lr. : 

ARIMA(1,1,1)(0,1,1}6 model is specified for Series 1. It can be 
written as follows: 

or 

8.1.2. Model Estimation and Diagnostic Checking Results 

(a) Preliminary ~stimates: 

8 0 = -19.24 
<Pl = 0.2280 
8 1 = 0.5913 
9 1 = 0.2398 

SSE = 3.743 x 108 

0 2 = 4.377 x 106 
u 
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Partials 
-3.9E-Ol 
-2.9E-Ol 
-3.1E-Ol 
-1. 7E-01 
1.95E-Ol 
-4.8E-Ol 
-2.4E-01 
-1.5E-01 
-l.SE-Ol 
-5.8E-02 
.1. OOE-Ol 
-2.2E-Ol 
-6.1E-OZ 
4.35E-03 
-1. OE-Ol 
1.15E-02 
1.40E-Ol 
-5.BE-02 



(b) Final estimates: 

Parameter Value 

SSE = 2.335 x 108 

02 = 2.407 x 106 
u 

(c) Residuals: 

8 0 -5.1219 
~1 0.1751 
8 1 0.9060 
8 1 0.8039 

Standard Error 

3.8300 
0.1180, 

0.0534 
0.0796 

** Residual autoeorrelations ** 
Aproximate standard ~rror : 9.950E-02 
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Lag ---------------------------------------------------Autoeor .. , 
i 

o ******************************************** 1.00E+00 
1 1.38E-02 
2 ** -6.1E-02 
3 ***** -1.3E-01 
4 * -3.3E-02 
5 *** 8.26E-02 
6 -4.4E-03 
7 **** 1.05E-01 
8 **** 9.47E-02 
9 ** 5.66E-02 

10 * -3.1E-02 
11 6.72E-03 
12 * 2. 59E-02 
13 * 3. 51E-02 
14 * -3. 2E-02 
15 -6.9E-04 
16 ** -5.8E~02 
17 * 4. 02E-02 
18 * 3.05E-02 

Chi-square statistic for residual autocorrelations, 
Q = 6.311, Degrees of freedom = 14 
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(d) Correlation matrix of the esti~ated parameters: 

6 0 !Pi 6 1 . - 8 1 

6 0 1.000 0.011 0.057 -0.088 
!Pi 0.011 1.000 0.520 -0.170 
6 1 0.057 0.520 1.000 -0.360 
8 1 -0.088 -0.170 -0.360 1.000 

(e) Forecast function: . 

ZN+fl. = -5.122 + 1.175 zN fl. 1 - 0.175 zN 2 + Z - 1.180 Z + + - +fl.- N+fl.-6 N+fl.-7 . 

0.175 zN+£_8 - 0.906 uN+fl.-1 - 0.804 uN+fl.-6 + 0.728 uN+fl.-7 

for £. = 1,2, ... , 

B.1.3. Forecasting 

Forecast base time 108 

Forecast lead time 12 

90% Probability Limits 
Time Actual Forecast Lower limit Upper limit 

------ -------------- -------------- -------------- --------------
109 2.086000E+03 3.282533E+03 7. 224050E+02 5.842660E+03 
110 4.266000E+03 4.432797E+03 1.781555E+03 7.084040E+03 
111 3. 262000E+03 4.200969E+03 1. 525212E+03 6. 876727E+03 
112 5. 155000E+03 5.243843E+03 2.550875E+03 7.936811E+03 
113 4. 796000E+03 . 6; 388686E+03 3.679726E+03 9.097646E+03 
114 3.680000E+03 . 4. 543673E+03 1.819004E+03· 7.268342E+03 
115 7. 197000E+03 3.431161E+03 5.931711E+02 6.269151E+03 
116 7. 398000E+03 4.348077E+03 1. 478152E+03 7.218002E+03 
117 1. 437 400E+04 4.070256E+03 1.177509E+03 6. 963004E+03 
118 8. 265000E+03 5.099952E+03 2.185939E+03 8.013966E+03 
119 6.181000E+03 6.237366E+03 3.302477E+03 9. 172255E+03 
120 4.939000E+03 4.385930E+03 1.430353E+03 7.341506E+03 
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B.2. Application 2 Stochastic Model Building and Forecasting for 
Series 2 

B.2.1. Model Identification 

Number of observations, N : 108 
Mean of the observations, z = 1629 

Degree of nonseasonal differencing, d = 1 
Period of seasonability, S = 6 
Degree of seasonal differencing, D = 1 
Number of observations in the differenced series, n = 101 
Mean of the differenced series, -

w = -0.03 
Variance of the differenced series, 02 = 5.523 x 105 

w 

** Autocorrelations of the Series ** 
Approximate standard error: 9.950E-02 

Lag --------------------------------------------~-----
o ********************************** 
1 *********** 
2 ****** 
3 
4 **** 
5 * 
6 *************** 
7 ******** 
8 * 
9 * 

10 * 
11 * 
12 * 
13 * 
14 * 
15 *** 
16 *** 
17 * 
18 

Autocor. 
1.00E+00 
-3.3E-01 
-2.0E-Ol 
1.69E-02 
1. 42E-Ol 
5.72E-02. 
-4.5E-01 
2.36E-01 
5.12E-02 
-4.2E-02 
-3.0E-02 
5.4iE-02 
5.63E-02 
-4.7E-02 
5.56E-02 
-l.lE-Ol 
1.06E-Ol 
-5.SE-02 
-2:7E-03 



** Partial Autocorrelations of the Series ** 
Approximate standard error: 9.950E-02 

Lag ----------------------------------~---------------

1 ****************************** 
2 ******************************** 
3 ********************** 
4 ** 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

*************************************** 
************* 

******************* 
***************** 

********* 
* ******************* 

**** 
*************** 

********** 

** 
****** 
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Partials 
-3.3E-Ol 
-3.5E-Ol 
-2.4E-Ol 
-3.1E-02 
1.07E-Ol 
-4.3E-Ol 
-1.4E-Ol 
-2.0E-Ol 
-1. 8E-Ol 
-1.0E-Ol 
-1.7E-02 
-2.1E-Ol 
-4.7E-02 
2.42E-02 
-1. 7E-Ol 
6.97E-02 
2.41E-02 
-2.6E-02 

ARIMA(1,1,1)(0,1,1)6 model is specified for Series 2. It can be written 

as follows: 

or 

B.2.2. Model Estimation and Diagnostic Checking Results 

(a) Prel iminary estimates: 

Cj>1 = 0.6116 

8 1 = 0.3907 

81 = 0.4909 
7 

SSE = 5.022 x 10 

02 
5 

= 5.415 x 10 
u 



(b) Final estimates: 

. Parameter 

<P1 

SSE = 2.748 x 107 

a~ = 2.804 x 105 

(c) Residuals: 

Value 

o. 1964 
0.8632 
0.6167 

Standard Error 

0.1283 
0.0702 
0.088 

** Residual autocorrelations ** 
Aproximate standard error: 9.950E-02 
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Lag - --- ------ --------------~--------_::_--.-:-----------:----Autocor. 
o ********************************************* 1.00E+00 
1 - 7.11E-03 
2 **** -1.1E-01 
3 * -2.7E-02 
4 5.06E-03 
5 *** "':8. 7E-'02 
6 * -3.6E-02 
7 *** 6. 97E-02 
8 * 3.05E-02 

. 9 -1.lE-02 
10 1.55E-02 
11 ** 5.12E-02 
12 *** 7. 42E-02 
13 ** 5. 84E-02 
14 ** 5. 35E-02 
15 * -4. OE-02 
16 * -2. 5E-02 
17 7.36E-04 
18 * -3. 7E-02 

(d) 

Chi-square statistic for residual autocorrelations, 
Q = 4.612, Degrees of freedom = 15 

Correlation matrix of the estimated parameters: 

<P1 8 1 8 1 

<P1 1.000 0.630 -0.230 

8 1 0.630 1.000 -0.350 

8 1 -0.230 -0.350 1.000 
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(e) Forecast function: 

ZN+ = 1.196 zN+n 1 - 0.196 zN + Z - 1.200 zN+n_7 + 
;c.- + £-2 N+ £-6' ;c. 

0.196 zN 8 - 0.863 U 0 617 U 0 532 +£- N+£-1 -. N+£-6 +. uN+£_7 

B.1.3. Forecasting 

Forecast base time 108 

Forecast lead time 12 

Time 
90% Probability Limits 

Actual Forecast Lower limit Upper limit 
------ -------------- -------------- -------------- --------------

109 L 064000E+03 7.529725E+02 -1.20757E+02 1.626702E+03 
110 1.282000E+03 1. 526588E+03 6.056317E+02 2.447545E+03 
11'1 1. 511000E+03 1.305219E+03 3.674625E+02 2.242975E+03 
112 2.037000E+03 1.663040E+03 7.126843E+02 2.613395E+03 
113 1.428000E+03 2. 228076E+03 1. 265984E+03 3.190169E+03 
114 1.153000E+03 1.096733E+03 1. 231777E+02 2.070288E+03 
115 1.670000E+03 7.425469E+02 -3.44556E+02 1.829650E+03 
116 1.539000E+03 1.468209E+03 3.503645E+02 2.586054E+03 
117 2. 935000E+03 1.237422E+03 9. 880754E+Ol 2. 376036E+03 
118 1.974000E+03 1.593393E+03 4.359598E+02 2.750826E+03 
119 2. 241000E+03 2.158067E+03 9.824136E+02 3.333719E+03 
120 1.469000E+03 1.026651E+03 -1.66886E+02 2.220189E+03 



B.3 Application 3 : Stochastic Model Building for Series 3 

B.3.1. Model Identification 

Number of observations, N : 108 
Mean of the observations, Z = 3716 

Degree of nonseasonal differencing, D: 1 
Period of seasonality,S = 6 
Degree of seasonal differencing, D = 1 
Number of observations in the differenced series, n = 101 
Mean of the differenced series, w = 2.980 
Variance of the differenced series, 02 = 3.569 x 106 

w 

** Autocorrelations of the Series ** 
Approximate standard error: 9.950E-02 

Lag --------------------------------------------------
o :****************************** 
1 **: 
2 *******************: 
3 :* 
4 :*************** 
5 **' 
6 ***************** 
7 
8 
9 

10 
11 

******* 

* ** 
*' , 

* *********** 

* ***** 12 
13 
14 
15 
16 :* 
17 
18 

, 
I 

*' , 
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Autocor. 
1.00E+OO 
-7.3E-02 
-6.3E-Ol 
4.53E-02 
4.97E-Ol 
-7.0E-02 
-5.7E-Ol 
5.87E-02 
3.66E-Ol 
-1. SE-02 
-2.5E-Ol 
6. 38E-02· 
1. 8SE-Ol 
-3. SE-02 
-7: 1E-02 
-4.0E-02 
6.1SE-02 
3.8SE-03 
-3.3E-02 



** Partial Autoco~relations of the Series ** 
Approximate standard error : 9.950~~02 

Lag --------------------------------------------------
1 
2 
3 
4 -
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 -
18 

****: 
****************************************: 

******** 

*********************** 
********** 

*************~***** 
****** 

************ 
********* 

** 

********* 

* 

********. 
:* 

**: *****: 
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Partials 
-7.3E-02 
-6.4E-01 
-1.3E-Ol 
1.52E-01 
-8.7E-03 
-3.8E-01 
-1. 7E-Ol 
-3.0E-01 
-1. OE-Ol 
-1.2E-03 
2.39E-02 
-1. 9E-01 
-1. 5E-Ol 
-3.2E-02 
-1. 3E-Ol 
2.02E-02 
-4.7E-02 
-9.0E-02 

ARIMA(2,1,0)(1,1,0)6 model is specified for Series 3. It can be 

written as follows: 

or 

.B.3.2. Model Estimation and Diagnostic Checking Results 

(a) Preliminary estimates: 

!PI = -0.1190 

!P2 = -0.6350 

WI = -0.0885 

SSE = 1.950 x 108 

02 - 2.074 x 106 
u 



(b) Final estimates': 

Parameter Value Standard 

Cjll -0.322 0.0881 
Cjl2 -0.533 0.0869' 
q,l -0.633 0.0910 

SSE = 1.497 x 108 

0 2 = 1.528 x 106 
u 

** Residual autocorrelations ** 
Aproximate standard error: 9.950E-02 
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Error 

Lag ---------------------------------------------------Autocor. 
o :******************************************* 1.00E+00 
1 **: -5.5E-02 
2 *: -3.0E-02 
3 *****1 -1.2E-01 
4 -1.5E-02 
5 ****** -1.4E-Ol 
6 ** -4. 9E-02 
7 ***** -1~2E-01 
8 ****** 1.59E-Ol 
9 ** 5. 30E-02 

10 **** -9.5E-02 
11 * 3.57E-02 
12 ** -4.6E-02 
13 1* 2.64E-02 
14 :** 4.84E-02 
15 ***: -9.1E-02 
16 : -8.3E-03 
17 :**** 9.74E-02 
18 :* 2.'l3E-02 

(d) 

Chi-square statistic for residual autocorrelations, 
Q = 11.879, Degrees of freedom = 15 

Correlation matrix of the estimated parameters: 
Cjll Cjl2 q,l 

Cjll 1.000 0.170 0.230 
Cjl2 0.170 1.00 -0.120 
ell l 0.230 -0. 120 1.000 
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(e) Forecast function: 

ZN+f = 0.678 zN+f-1 - 0.211 zN+f-2 + 0.533 zN+f-3 + 0.367 zN+f-6 

- 0.249 zN+f_7 + 0.078 zN+f_B - 0.195 zN+f-9 + 0.633 zN+f-12 

- 0.403 zN+f-13 + 0.'34 zN+f-14 - 0.338 zN+f-15 

for f = 1,2 •.•• 
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B.4. Application 4 : Stochastic Model~Building for Series 4 

B.4.1. Model Identification 

Number of observations, N : 60 
Mean of the observations, Z = 654 

Degree of nonseasonal differencing, d = 
Peri6d of seasonality, S = 1 
Degree of seasonal differencing, D = 0 
Number of observations in the differenced series, n = 59 
Mean of the differenced series, w = 6.54 
Variance of the differenced series, 02 = 4.77 x 104 

w 

** Autocorrelations of the Series ** 
Approximate standard error: 1.302E-01 

Lag --------------------------------------------------
o ***************************************** 
1 ******** 
2 ******** 
3 
4 ** 
5 * 
6 ** 
7 *** 
8 ****** 
9 *** 

10 ** 
11 
12 ***** 
13 ** 
14 * 
15 ***** 
16 ********* 
17 ** 
18 ****** 

Autocor. 
1.-00E+OO 
-2.1E-01 
-2.0E-01 
7.88E-03 
-6.2E-02 
-2.6E-02 
4.94E-02 
8.57E-02 
-1. 5E-01 
8.56E-02 
6.19E-02 
5.08E-04 
-1.3E-Ol 
-5.3E-02 
4.79E-02 
-1. 4E-01 
2.34E-01 
-5.4E-02 
-1 .. 6E-0,! 



, ** Partial Autocorrelations of the Series ** 
Approximate standard error: 1.302E-01 

Lag ---------------------------------------~----------
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

******************************: 
*************************************: 

***************: 
**********************: 

*****************: 
*******: 

:******* 
********************: 

************** 
*************** 

****** ******************************** 
************ 

*********************** 

****** 
******* 
*********** 

************ 
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Partials 
-2.1E-Ol 
-2.5E-01 
-1.1E-01 
-1. 6E-01 
-1. 2E-01 
-5.0E-02 
5.17E-02 
-1. 4E-Ol 
4.25E-02 
4.82E-02 
8.04E-02 
-9.9E-02 
-1. 1E-01 
-4.BE-02 
-2.2E-01 
8.74E-02 
-8.8E-:02 
-1. 6E-Ol 

ARIMA(t,l,l) model is specified for Series 4. It can be written -as 

follows: 

or 

B.4.2. Model Estimation and Di~gnostic Checking Results 

(a) Preliminary estimates: 

<PI = 0.9544 
<P2 = -0.7560 

SSE '= 2.168 x 107 

o~ = 8.430 x 10
5 



(b) Final estimates: 

Parameter 

SSE = 3~916 x 106 

-2 4 0u = 6.870 x 10 

(c) Residuals: 

Value 

0.9629 
0.8032 

Standard Error 

0.0221 
0.0883 

.. 

** Residual autocorrelations ** 
Aproximate standard error: 1.302E-Ol 
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Lag --~------------------------------------------------Autocor. 
o ******************************************l.OOE+OO 
1 ***** -1.4E-Ol 
2 ***** -l.3E-Ol 
3 1.73E-02 
4 -1.9E-02 
5 7.78E-04 
6 **** 1.01E-Ol 
7 ***** 1.24E-01 
8 ****** -1.5E-Ol 
9 1* 3.84E-02 

10 * 4.40E-02 
11 1.91E-02 
12. **** -l.OE-Ol 
13 * -3.3E-02 
14 ** 5.00E-02 
15 ***** -1.4E-01 
16 .1******** 1.89E-Ol 
17 **: -6."1E-02 
18 *******: -l.8E-Ol 

Chi-square statistic for residual autocorrelations, 
Q = 11.452, Degrees of freedom = 16 

(d) Correlation matrix of the estimated parameters: 
cP 1 8 1 

1.000 
0.440 

(e) Forecast function: 

for £ = 1,2, ... 

0.440 
1.000 
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