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EVALUATION OF INSPECTION POLICIES AND 
PROCESSES FOR DETERIORATING SYSTEMS 

SUBJECT TO CATASTROPHIC FAILURE 

A B S T RAe T 

iv 

The purpose pf this thesis ~s to study deteriorating 

systems subject to catastrophic failure in order to evaluate 

deterministic inspection policies and stochastic inspection 

processes. The underlying deterioration process is assumed to 

be an increasing Markov renewal process so that the system 

deteriorates over time. An important feature of the model is 

that the true state of the system cannot be known by simple 

observation; instead, some tests have to be carried out in 

order to detect if the system has positive deterioration or 

not. However the results of the tests are not perfect so that 

the probability of true and false detections depend on the 

unobserved state of the system. 

The system can be inspected in two ways. Inspections 

are done either deterministically at some prespecified" points 

Ln time which constitute deterministic inspection policies. 

On the other hand, inspections at random times are also 

possible and they constitute stochastic inspection processes. 

These inspection policies and processes are evaluated in 

various ways; explicit expressions to compute the expected 
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number of tests are presented and some practical applications 

of our results are illustrated with some interesting 

examples. 



KATASTROFIK $EKILDE BOZULAN SlSTEMLERDE 
MUAYENE pOLITIKA VE SORECLERININ DEGERLENDIRILMESt 

tj Z E T 

vi 

Bu ~a11~man1n amaC1 katastrofik ~ekilde a~1nan sistem-

lerin deterministik muayene politikalar1n1 ve stokastik mua-

-
yene slire~lerini degerlendirmeye yonelik olarak incelemektir. 

Sistemin_a~1nma slireci artan bir Markof yenileme slireci ola-

rak a11nm1~t1r ve dolaY1s1yla sistem zaman i~inde bozulmakta-

d1r. Modelin onemli bir ozelligi sistemin aS11 durumunun bi-

linmemesi ve sadece baz1 testlerle sistemde a§1nma olup olma-

d1g1n1n belirlenebilmesidir. Ancak, gozonline a11nmaS1 gereken 

onemli bir nokta test neticelerinin kesiri dogru olmaY1§1 ve 

gozlen~meyen ger~ek sistem durumuna gore baz1 olas111klarla 

dogru veya yan11§ tesbitler yap11abilmesidir. 

Sistemin iki §ekilde muayene edilmesi mlimklindlir. Deter-

ministik muayene politikalar1yla sistem onceden belirlenmi~ 

deterministik zamanlarda muayene edilebilir. Veya kesinlikle 

bilinmeyen rassal zamanlarda yap11an muay~nelerle bir stokas-

tik muayene slireci soz konusu olabilir. Bu tezde determinis-

tik muayene politikalar1 ve s~okastik muayene slire~leri de~i-

§ik metotlarla degerlendirilmekte, beklenen test saY11ar1 

i~in a~1k ifadeler sunulmakta ve boylece elde edilen ~e§itli 

uygulama sonu~lar1 bir~ok ilgi ~ekici orneklerle a~1klanmak-
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I, INTRODUCTION 

The purpose of this thesis is to evaluate determinis­

tic inspection policies and stochastic inspection processes 

for deteriorating systems which are subject to catastiophic 

failure. This section includes an overview of the research 

together with a detailed literatur~ survey of related main­

tenance models~ 

1.1. OVERVIEW OF THE RESEARCH 

It has become a common experience Ln reliability 

theory to represent the evolution of the state of a reli­

ability system by a deterioration process. A ~echanical part 

developing cracks or an individual developing cancer can be 

given as examples of deteriorating systems sharing two 

important features. First, the true state of the system can­

not be known by simple observations. However, some tests can 

be carried out in order to detect if the system has positive 

deterioration or not, and then corrective action can be taken 

to reduce the likelihood of failure. Moreover the results of 

the tests themselves are not perfect so that the probability 
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of true and false detections depends on the unobserved state 

of the system. Secondly, when failure occurs, it is 

catastrophic; that ~s the failed system cannot be repaired or 

replaced. The cost of failure is so great that it cannot be 

compared with the cost of inspection~ and corrective actions. 

The objective of this thesis is to propose and evaluate 

inspection or testing policies or processes for deteriorating 

systems subject to catastrophic failure. Our model will have 

two significant features. First the underlying deterioration 

process will be taken to be a Markov renewal process. This 

is a reasonable choice since these processes are well-known 

for their applicability in many fields of pure and applied 

sciences. Moreover, the stochastic structure of Markov renewal 

processes is of sufficient complexity and generality to be 

an actual model of deterioration. For example, these 

processes can be used to model the configuration of cracks ~n 

a mechanical part or the size of a tumor. We shall se~ in the 

next section that most inspection/decision models in the 

literature involve discrete-time and discrete-state Markov 

chains which are Markov renewal processes with a rather 

restrictive special form. Thus, the Markov renewal process 

representation of deterioration treated in this thesis will 

provide sufficient generalization to the literature. 

The second fsature of our model is that it allows for 

imperfect observations during inspections. This is important 
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for many applications, because inspections usually g1ve in­

accurate estimates of the underlying state. For example, a 

mammogram in breast cancer screening mayor may not reveal 

the presence of the tumor, and the detection is further 

complicated by the possibility of false positive and false 

negative results. The literature survey presented in the next 

section indicates that the amount of research carried out so 

far which involves imperfectinform~tion about the underlying 

state of the system is quite limited. 

As a result of these important features, our model is 

anticipated to have considerable utility for a variety of 

applications. Mechanical systems involving parts which are 

subject to catastrophic failure where the cost of failure 

cannot quantitatively be compared with the inspection and 

.repa1r costs, or cancer screening problems in medicine where 

failure is equivalent to the death of a person can be given 

as examples·. 

In the next section a review of the literature is 

presented. The deterioration process and the inspection 

problem is formulated in Chapter II. A brief review of Markov 

renewal processes will be presented together with formal 

definitons of deterministic and stochastic inspections. 

Chapter. III and Chapter IV are devoted to the analysis of 

deterministic inspection policies and stochastic inspection 

processes respectively. The main emphasis in these chapters 
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is placed on the computation of the measures of effectiveness 

like the expected number of tests performed, the expected number of 

tests with positive, negative results, etc. Chapter V treats some 

examples where the results of Chapters III and IV will be 

used to evaluate certain policies. In' particular, a mana-

gement problem to determine the optimal inspection schedule 

to maximize the probability of detection before failure will 

be analyzed. Finally, Chapter VI concludes this thesis by 

summarizing the main points emphasized and by indicating 

problems and areas for further research. 

1.2. LITERATURE SURVEY 

There is an extensive literature ort the optimal control 

of deteriorating systems, especially on the optimal main­

tenance of systems subject to failure. In 1965, Mc Call(l) 

presented a survey with 88 references in scheduling policies 

for stochastically failing equipment. A survey, reviewing the 

area of maintenance models and including 259 references was 

done by Pierskalla and Voelker(2) in 1976. Sherif and 

Smith(3) updated this survey in 1981 by providing 524 

references. A more recent survey which listed 243 references 

was provided by Bosch and Jensen(4,5) in 1983. 

Much of this literature deals with classical main-

tenance models on the inspection of systems subject to 

stochastic deterioration. Each time, the deteriorating system 
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is inspected in order to decide whe~her to replace it, repair 

it or let it continue as it is. Hence the main issue is the 

decision on the time of repair or replacement, not the time 

of inspection. The true state of the system being known at 

each decision epoch, these optimal replacement/repair models 

are generally solv~d using 'Markov decision theory as 1n 

(6) .. . .(7) 
Derman or Ozek1c1 " or renewal theory as 1n Barlow and 

proschan(8). Our interest lies in the models where the issue 

is not only to determine the time when to take corrective 

action for a deteriorating system, but also to decide on when 

to inspect it. The problem is further complicated by the fact 

that the true state of the system cannot be known with 

certainty even after the inspections which are costly; so 

there is a trade-off b~tween the inspection cost arid the 

accuracy of the information about the true state of the 

system. For this reason, conventional Markov decision theory 

cannot be used to analyse such models. Instead it is usually 

necessary to use what is called a partially obse~vable Markov 

'. (9) 
decision process (POMDP) model. Monahan provides a survey 

of POMDP models where he presents properties of these models 

as summarized below. 

One of the main characteristics of the POMDP is the 

transformation of the information vector ·from period to period 

via Ba,es' rule. 'There is considerable literature on Bayesian 

control of sequential decision processes 'which is only 

indirectly related to POMDP mod~ls. In this literature, 



elements of the decision process are unknown. For example, 

the decision maker may not know the transition probability 

matrix governing the movement of the process, as treated in 

Satia and Lave(lO). In a POMDP, however all the elements of 

the decision process are assumed to be known. Only, infor-

mation regarding the current state of the nonobs~rvabl~ 

underlying process is obtained. 

6 

There is also literature dealing with the acquisition 

of information for various continuous time partially obser-

vable stochastic processes. For example, Anderson and 

. (11 12) 
Fr~edman ' made a comprehensive study of a continuous 

ti~e model where the und~rlying state is taken to be a 

Brownian motion process. 

The quality control models in the literature can be 

classified on the basis of the source and degree of partial 

information. Many studies are carried on the two-state model 

where the system or the process is either in good or bad 

states. In general the underlying process represents the 

condition of a machine which is deteriorating over time. The 

true condition of the machine is not known with certainty, 

but information can be obtairied either by observing the 

machine's output or by directly inspecting the machine. 

Girshick and Rubin(13) were fi~st to consider the two-state 

model under the assumption that perfect information is 

available after inspection and no information can be 

obtained without inspection. They showed that the optimal 



decision should be based on the probability that the system 

is in the bad state, and so the optimal policy can be 

specified by the regions of the unit interval that corres-

pond to the three possible actions, .namely inaction, inspec-

tion and replaceme~t. Furthermore, they conjectured that the 

region corresponding to an individual action is a single 

interval, and so the unit interval is divided into at most 

three subintervals, one for each possible action. But, this 

three-subinterval conjecture was shown to be false by 

1 (14) °d d 0 Tay or who prov~ e a four-sub~nterval counter-example, 

where the "inaction" region consisted of two subintervals 

7 

separated by the inspection region and the replace subinterval 

included probability one, which is indeed very logical since, 

if the system is in the bad state with probability one, the 

decision maker has only the choice of replacing the system. 

Swallwood and Sondik(15), Eckles (16), Ross (17), and 

o (18) 0 d 0 01 d 1 R (17) d h Albr~ght exam~ne s~m~ ar mo e s. oss p·rove tat, 

the most general optimal 

(14) 
structure of Taylor • 

policy is the four-subinterval 

Eckles(16) investigated a closely 

related model, he organized however the structure of the 

optimal policy ~n a different way without focusing on the 

, 0 (19) 
probability distribution of the underlying state. Rosenf+eld 

considered another variation of the model and obtained 

similar results for the optimal maintenance policy. 

In practically all of the optimal inspection models 

~n the literature an inspection, when it occurs, reveals the 
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true state of the. system with perfect information. An 

•• 0 O· 0 (20 21) 
~mportant except~on ~s the model by Wh~te '" who allows 

the decision maker to receive imperfect information about the 

true state of the underlying deterioration process. As a 

special case, he considered a,model where perfect info~mation 

was obtained by inspection and imperfect information was 

b Od 0 h 0 0 h 0 0 ,(17) o ta~ne w~t out ~nspect~on, t us general~z~ng Ross . 

model. He came out with the same results by proving that the 

optimal policy has the four-subinterval structure. However, 

in the discussion of the general partially observable model, 

where only imperfect information can be obtained with or 

without inspection, the ~hata~ter{zation of the optimal 

policy remained an open question. 

Virtually all of the models ~n the literature are 

presented in the context of a maintenarice problem, usually 

one where the system can be restored to be.as good as new. 

(22,23) 0 d 0 0 0 1 dOff 0 1 0 Eddy stud~e a s~gn~f~cant y ~ er~nt opt~ma ~nspec-

tion situation: a problem of preventive medicine that seeks 

for the optimal schedule to screen for a disease. In his 

problem, the system ~s identified by the person on whom 

screening tests are to be applied and failure is the sickness 

and consequently the death which can occur at most once for 

a system and is usually more catastrophic than in maintenance 

context. An important objective may be to identify a diseased 

state as early as possible thereby maximizing the probabili~y 

(24) 0 

of a cure. In 1982, Eddy and Shwartz presented screen~ng 
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problem in cancer and explained the application of 

mathematical models in their paper where they especially 

emphasized the difference between so-called deep and surface 

models. 

The surface models consider only clinical events that 

can be observed directly and are on the surface. The basic 

function of these models is to tabulate observations and 

estimate the consequences of existing screening programs.~' 

They do not attempt to describe the underlying disease 

pathophysiology or screening dyna~ics that caused the observ-

edevents, and therefore cannot be used to estimate the 

consequences of screening programs that have not yet been 

. (25) 
conducted. Ba~lar gave a good example for a surface model 

that used data from the Health Insurance PI.an of Greater New 

York to estimate the number of new cases of breast cancer 

generated by the x-rays delivered in performing mammograms 

versus the number of cancer deaths prevented by the addition 

of mammography to yearly screening programs. He estimated 

that the five years of screening with mammography prevented 

not more than 12 to 14 breast' cancer deaths, while the 

radiation was expected to induce about 16 new cases of 

breast cancer. 

Deep models, on the other hand, exp1icite1y consider 

the pathophysiology of the underlying disease and how the 

course of the disease is affected by screening. The impor-

tance of this difference is that deep models can be used to 
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estimate the value of screening programs that have never been 

d · d· 1·· 1 . (22 23) stu 1e 1n c 1n1ca tr1a1s. Models proposed by Eddy , , 

Kirch and K1ein(26), and Schwartz(27) can be given as 

examples for deep models. Most of the important questions 

asked of deep models concern the time factor: What is the 

effect of screening a population for a certain number of 

years? What is the optimal frequency of screening? At what 

ages should screening be started and stopped? To answer these 

and similar questions one must be able to describe first, how 

a disease progresses or develops over time, how detecting a 

disease at a particular time in its development affects 

important outcome measures such as mortality, and how the 

detection capabilities of screening tests vary as the disease 

(22 23) . progresses. In the models developed by Eddy , ,K1rch and 

. (26) d h (27) h d· . . k K1e1n ,an Sc wartz, t e 1sease progress10n 1S ta en 

. . dd' (22,23) d 1 k h to be cont1nuous over t1me. E y s mo e trac s t e 

change in mortality as the disease develops, Kirsh and 

K1ein's(26) and Schwartz's(27) models are concerned with the 

growth of cancer in size and the probability of spread to 

axillary lymph nodes. In most cases, discrete disease states 

. (27) d f· d 21 d· are def1ned. For example, Schwartz e 1ne 1sease 

states consisting of seven tumor-size categories defined 

through the tumor diameter and for each size category three 

lymph node involvement levels. Moreover, he formulated 

quantitatively some hypothesis concerning the rate of disease 

progression, the tendency of the disease to be detected 

without benefit of scheduled screening examinations. He 
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estimated parameters by fitting his model statistically to 

published data on breast cancer. On the basis of the model, 

he calculated the benefits of screening under alternative 

assumptions about the women screened, the number of screens 

given,and the ages at which the screens are given. 

The detection capability of screening tests, which is 

one of the main components of deep models, is defined in 

terms of true positive and false positive rates. The 

probability that a test ~illdetect an existing cancer, or 

the true positive rate, obviously varies with the state of 

development of the cancer~ For a cancer that is in its first 

week of life and consists of only a few cells, that proba-

bility is almost zero. On the other hand, for a cancer which 

is decades old with considerable tumor size, the true 

positive probability is virtually one. Since the state of 

development varies with time, and one of the main purposes of 

a deep model is to analyse time-related problems, it is 

desirable to model the detection capability of screening 

tests as a function of the state of development of the cancer. 

However, only in a few m~dels, such as those of Eddy(22,23) 

(27) .. b b·l· . and Shwartz ' the true pos~t~ve pro a ~ ~t~es vary as the 

disease progresses. 

Many of the models differ also in the outcome measures 

that can be estimated. Some models such as those of 

Shwartz(27) Kirch and Klein(26) estimate the probability of , 

detection before a terminal state such as axillary lymph node 
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involvement is reached. Shwartz's(27~ model can estimate the 

probabilty that a woman will have a recurrence of her disease 

. (22 23) . 
whereas Eddy's ., model est~mates the probability that 

she will die of a recurrence. 

In many of t~e models, there are also differences in 

the screening programs that are analyzed. Kirch and Klein(26) 

were concerned with whether a non-periodic schedule, invol­

ving the same expected number of examinations per patient as 

a periodic schedule, could reduce the average time to detect 

a given disease; or whether a non-periodic schedule involving 

fewer expected ~xaminations per patient could, on the 

average, lead to disease detection as early as a given 

periodic schedule. Kirch and Klein(26) show that an optimal 

examination schedule which minimizes the expected detection 

delay would be non-periodic, and that the frequency of 

examinations would either be approximately or exactly 

proportional to the square root of the age-specific incidence 

probability of the disease. They also derived optimal 

schedules for breast cancer examinations; they found that 

optimal non-periodic schedules result in a savings of 2 % to 

3 % in the expected number of examinations when periodic and 

non-pariodic schedules have the same detection delays. 

W
• (28) 

Lincoln and e~ss considered the efficiency of 

different policies for scheduling medical examinations; the 

formal problem is to evaluate the effects of random delay 

between examinations on the diagnosis and outcome of the 
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disease. They treat both periodic and random examinations and 

allow for imperfect diagnosis depending on how long the 

disease has been present. The examination times {T.} form a 
~ 

renewal process. Their problem, as usual, ~s the determination 

of an examination schedule that is optimal in some sense or 

if not optimal satisfies certain reasonable constraints. 

They use two"different criteria to measure the effectiveness 

of the policy. The first, and perhaps simplest criterion that 

one can think of involves the setting of a level E<l, such 

that no more than a fraction Eof those people who eventually 

have a tumor will have an undetected tumor for more than a 

specified time. The second criterion is to require that the 

mean undetected time of tumor growth exceed a given time. 

Lincoln and Weiss(28) also derived formulas concerning 

periodic and non-periodic policies and applied the results 

they have found to data on cancer of the cervix. 

Another deep model on screening for cancer is given by 

Eddy(22~23). Rather than being based on a detailed mathema-

tical description of pathophysiologic characteristics of the 

disease such as tumor size, growth rate, and lymph node 

involvement, this model is concerned only with the detecta-

bility,of the cancer as a function of the age of the cancer 

at the time it is detected and treated. In this model there 

are three states: healthy, diseased or sick. The untreated 

person proceeds from healthy to diseased and then to sick 

where he remains forever. Superimposed on this underlying 
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process 1S a schedule of costly testa. The outcome of a test 

during the healthy state can be positive, in which case a 

false positive cost is incurred. In the diseased state, the 

person is not aware of the disease, and the outcome of a test 

while in this state can be negative. But if a test here is 

positive then treatment commences and due to earliness of 

detection, cure is enhanced. If the process reached the sick 

state then the disease becomes apparent to the persbn and 

there is no need for additional tests. 

As a function of a specified inspection schedule 

dd (22,23) d . d f 1 f . . . E Y er1ve ormu as or some quant1t1es of 1nterest 

such as the expected number of false positives, the probabi-

lity that the disease will be detected before entering the 

sick state and the probabilty of getting sick. One main 

assumption, called the progression assumption is used in 

deriving these formulas: Once a cancer has grown to the point 
• i 

that it is detectable by a test, it is always detectable by 

that test. 

_ In many of the models in literature, there exist also 

interesting cost analyses by which the effectiveness of the 

screening program can be evaluated. Some of the important 

costs considered are the costs of delivering the tests, the 

costs of checking by a more definitive work-up, whether a 

positive result obtained is true or not. 

It is clear that the most important feature of 
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deteriorating models involve the stochastic structure of the 

underlying process. Almost all deterioration models in the 

literature satisfy a Markovian structure in one form or other. 

An excellent account of deterioration models with continuous 

Markov, continuous semi-Markov, right-continuous Markov, 

Markov additive, and general semi-Markov structures is given 

by C1nlar(29). 

This review on the studies of deteriorating systems 

reveals the novelty of this thesis. In addition to the three-

. . (22 23) 
state model exam1ned by Eddy , , a model with a countable 

number of states will be treated by describing the deterioration 

process through a Markov renewal process which generalizes 

most of the papers s~rveyed above. Deterministic inspection 

policies and stochastic inspection processes will be examined 

offering more generality to literature, since stochastic and 

deterministic inspections cover respectively random inspec-

tions and periodic examination schedules. Many formulas will 

be derived using Markov, renewal theory and ev~lriations of the 

results obtained will be made. 
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II. FORMULAiIONOF THE INSPECTION PROBLB~ 

In this chapter the Markov renewal structure of the 

deteriorating system will be exp1ain~d tog~ther with a brief 

review of the theory of Markow renewal processes. Then the 

definition of deterministic inspection policies will be given 

and the structure of stochastic inspection processes will be 

formulated. Finally, some important measures of effectiveness 

~n the evaluation of inspection policies and processes will 

be explained. 

2.1. STOCHASTIC STRUCTURE OF DETERIORATION PROCESS 

We are interest~d in a system which deteriorates over 

time, the deterioration level increasing as time goes on to 

reach finally a failing or terminal state. Since the true 

state of the system is not directly observable, the a~m of 

the inspector is to detect the disorder by carrying out some 

tests, as early as possible, so that he could somehnw find a 

remedy for it. 

We define X as the deterioration level at time t and 
t 

call X = {X
t 

: t ~ O} the deterioration process. 



x is increasing, has state s~ace E~ = EU{~} where 

E={O,1,2, ... } and ~ is an absorbing state called the terminal 

17 

state. In medical applications such as screening for cancer, 

state 0 corresponds to the case where tumor is not present, 

while states 1,2,3, •.. correspond to increasing sizes of the 

tumor and state ~ Is a terminal state ~here it is no longer 

possible to cure the disease. Define 

To = 0, T = inf{t ~ T : X t 
;c XT 

} 
n+l n 

n 

Z = X Z = X 
0 0' n T n 

so that Tn is the time of the n'th jump and Z is the n'th 
n 

stage of deterioration. 

The relation between the processes X and Z is also 

given by 

Z 
n 

if 

if 

T :;; t < T 1 n n+ 

t ~ sup T 
n 

n 

(1.1) 

We now state the maLn assumption on the stochastic 

structure of the deterioration process. 

ASSUMPTION (1.1) (Z,T) LS a Markov renewal process 

where X is the minimal semi-Markov process associated with 

it. 



We now include a brief survey of Markov renewal 

d 
. . . (30) 

processes as presente ~n C~nlar .• 

DEFINITION (1.1) The stochastic process 

(Z, T) = {(Z ,T ) : n€M} is said to be a Markov renewal 
n n 

process with state space E~ provided that 

for all n€!N, j€E~, and t€IR+, where IN = {0,1,2, •.. } and 

IR+ = [0,00). 

The process (Z,T) is assumed to be time-homogeneous: 

that is 

{ . < I i} P Zn+l = J, Tn+l - Tn = t Zn = Q (i,j,t) 

for any i,j€ E~,t€~+, independent of n. The family of 

probabilities Q = {Q(i,j,t): i,j€E, t€~+} is called a 

semi-Markov kernel over E. We assume Q(i,j,O) = 0 for all 

i,j€E and defining 

pC i , j) = lim Q ( i , j , t) i, j 6 E ~ 
t-+oo 

it follows that P is a Markov matrix. Furthermore Z is a 

18 

Markov chain with state space E~ and transition probability 

matrix P. Since X is increasing, the matrix p' is upper tri-

angular, that is 
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P(i,j) = p{Z = J. 
n+l Z = i} - 0 n ' J 

If P(i,j) = 0 for some pair (i,j) then Q(i,j,t) = 0 for all 

t. We then define Q(i,j,t)/P(i,j) = 1. With this convention 

we define G(i,j,t) = Q(i,j,t)/P(i,j); i,j€E, t€R+. Then, for 

e a c h p air (i, j) the - fun c t ion .t + G ( i , j , t) i sad i s t rib uti 0 n 

function of the sojourn in state i given that the next state 

is j, s~nce 

= P{T l-T :i3 t lZ = i, Z 1 = j} i€E, j€E" (1.2) n+ n n n+ . u 

This explains the stochastic structure of the (Z,T) process. 

The increments {T
n

+l -Tn} are conditionally independent g~ven 

Zo' Zl~ ... with respective distributions {G(Z , Z I'.)} and n n+ 

the Markov chain evolves according to the transition probabi-

lities specified by P. Hence, we can see that the evolution 

of the deterioration level X of the reliability system is such 

that the sequence of states visited form a Markov chain with 

transition matrix P where the sojourn in a given state has a 

distribution which depends on the state being visited and the 

next state to be visited. Thus the sojourn in some state i has 

the distribution G(i,j,.) if j is the next level of deteriora-

tion. This explains the applicability of this model to many 

real life situations. For example, it is reasonable to assume 

that the stages of a disease, tumor, etc. evolve as a Markov 

chain with sojourns satisfying(l.2). 

For simplicity of notation we will let P i {.} denote 

the conditional probability p{.lzo = i} and Ei be the corres-
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ponding expectation. If we define 

Then 

[ : if i J 
QO(i,j,t) = I(i,j) = 

if i ;c j 

and 

Ql = Q by definition. 

Furthermore, a renewal argument shows that 

t 
n+l (. ) ~ J (. n Q ~,k,t = t... Q ~,j ,du) Q (j ,k,t-u) 

jEE 0 

and the expected number of visits to state J, by the process 

Z until time t, given that the initial state is i, can be 

computed by 

R(i,j,t) = E. 
~ I{Z =' n J, 

00 

l: Qn (i,j,t) 
n=O 

where R is called the Markov renewal kernel corresponding to 

Q. Sin~e, in our model, each state is visited at most once by 

the process X, the number of visits to any state j, from any 

initial state i, is either zero or one. Hence, the expected 

number of visits from an initial state i, to any state j, 



21 

during the time interval ~,tJ, is nothing but the cumulative 

probability distribution of the entrance time to state j, 

starting from state i. If we let 

TJ = inf {t~O: X
t 

= j} 

denote the time of entrance to state j, we can write 

R(i,j,t) = P{TJ~t 

The state of the deteriorating system at any time can-

not be determined by simple observation. However, information 

about the state of the system can be obtained by carrying out 

some tests, and the results of the tests are only probabili~-

tically related to the true state of the system. The results 

of a test is either positive (+) or negative (-), where + 

shows that the deterioration level is different from zero, 

that is, the system is in E~~{O}. 

Associated with any test time t, we define 

\ 1 if test at time t is positive 

t 0 if test at time t is negative 

We assume that the probabilistic relation between the 

true s'tate of the system and the test results can be deter-

mined from statistical data, so that 

p{y = 1 I X =i} = p. ieE, t ~ 0 
t t ~ 
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are known beforehand. Note that-po is the probability of a 

false positive, and Pi' i€E'{O} is the probability of detec­

ting the deterioration when in state i ~ 1. 

Note that the detection probabilities may be taken to 

increase as the deterioration level increases which implies 

This is a reasonable assumption since one cannot always 

expect a test to detect a disor~er which has just started its 

development, while a dis~rder which has progressed for a 16ng 

time is more likely to be detected by the same test .. This is 

(22 23) (27) 
also consistent with Eddy's ' and Shwartz's models 

where the true positive probabilities vary as the disease 

progresses. 

It is also assumed that a false positive outcome does 

not interrupt the sequence of tests. Each time a positive 

test result is obtained, a more elaborate test is carried so 

as to detect false positive results. Hence, inspection and 

testing is stopped whenever all inspection times scheduled 

are exhausted or when a true positive detection is made, 

whichever occurs first. 

2.2. DETERMINISTIC INSPECTION POLICIES 

The deteriorating system as described by the deteriora-

tion process X is such that the underlying state is not 
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directly observable; so the system h~s to be inspected in 

order to obtain information about its true state. 

The inspection policies to be analyzed in this thesis 

will have considerable generality. T~ey will permit one to 

realistically model many new and interesting real-life 

problems. They will be appropriate for health screening 

problems as well as maintenance applications, and for systems 

degrading in time as well as for ones that abruptly fail. 

However, most of the examples will be related to cancer 

screening problems in order to provide interesting and -

appropriate motivations. 

An inspection policy is an increasing sequence of 

inspection times where the inspector has to apply some tests. 

These inspection times and- the maximum number of inspections 

that have to be performed are predetermined by the inspector, 

after considering historical data. For example, the decision 

of a physician upon a particular inspection policy depends 

on some specific conditions like age, sex, heredity, environ-

ment, on the results of some preliminary tests and on 

statistical data. 

To gLve a formal and mathematical definition of a 

deterministic inspection policy as such, let 

~t , t.€R+, i=l, ... ,n} n?; 1 
n L 

be the set of all n-tuples with positive valued increasing 
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00 
coordinates and let T = U T be their 

n 
unl.on. So any element 

n=l 
t = (t 1 , ... ,tn ) of T is an inspection policy or a schedule 

since it belongs to one and only one of the T 's where n is . n 

the maximum number of inspections that can be performed and 

the coordinates of the n-tup1e represent the corresponding 

inspection times. I~ other words t. is the time of the i'th l. 

inspection. For notational convenience we will represent an 

inspection policy or a schedule t = (t 1 ... ,t n ) €T by a right­

continuous step function s(.) which increases by jumps of 

size one only defined on B+ by 

s (0) = 0 
(2.1) 

s (t) = sup {n: t ;?; t} , t ;;: 0 
n 

Note that set) is the total number of tests scheduled until 

time t. We also define ~ = sup set) = lim set) as the total 
t t-KlO 

numb~r of tests scheduled. It can egsi1y be established that 

any element t = (t
1

, .•. ,t
n ) €T can represent a step function 

s(.) as described in (2.1). Similarly, if S the set of all 

right~continuous positive valued step functions s(.) on ~+ 

and increasing by jumps of size one only with s(O) 0, then 

for any s€S, we can find the corresponding element 

t = (t
1

, ... ,t
n

) €T by defining recursively 

o 

= inf{t>t
k

: set) ~ s(t-)}, k < s (00) 

So, in the following chapters a deterministic l.nspec­

tion policy will be represented by a step function s as 



described above and the necessary ca1~u1ations will be 

carried out accordingly. 

2.3. STOCHASTIC INSPECTION PROCESSES 
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In general, the examination or inspection schedule for 

the deteriorating system is prepared deterministically by the 

inspector as explained in the previous section. However, in 

some cases the inspection times may be random so that the 

patient decides on the time of the irispections in some 

probabilistic way pos~ib1y depending on many social, psycho-

logical and environmental factors. 

Let V1 , V2 , V3'~ .• be random variables representing 

the times of arrivals in an arrival process S = {St: t ~ O} 

where St is the number of arrivals until time t. The 

stochastic process S is called an inspection process where 

V1 , V2 , V3 , ..• correspond to random inspection times. The 

stochastic structure of S may depend on the state of 

deterioration and on time so that the conditional distribution 

is given by 

p{S -S = k I X = X = j} = h(j,t,u,k) 
t+u t t t+u 

(3.1) 

where h is a distribution function in k for fixed j, t and u. 

As it can be seen from (3.1) the distribution of the process 

S depends on the state of deterioration j, and on the time t 

where the dependence on t shows the non-stationarity of the 

process. 



If we assume the function h(j,t,u,k) takes on the 

following form 

h(j ,t,u,k) 
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then the random inspection times constitute a possibly non -

stationary Poisson process with an expectation function 

depending on the state of deterioration. 

The following special cases where 

b(j ,t,u) = AU (3.2) 

b(j,t,u) = b(t,u) (3.3) 

b(j,t,u) = A(j)u (3.4) 

can be considered. Note that (3.2) and (3.3) correspond to 

stationary and non-stationary Poisson processes respectively. 

Non-stationary inspections are more realistic than stationary 

inspections, especially when we think in terms of medical 

applications. The random visits of an individual to a 

physician may depend on so many different factors that the 

rate of these visits cannot be assumed constant. For example, 

a perfectly healthy looking woman, 40 to 45 years old, may 

want to have a breast cancer examination (mammogram for 

example), and starting from that time may continue to have 

screening examinations at randomly chosen times depending on 

many factors such as her psychological state or her environ-

mente 
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The case where the rate of in~pections depends only on 

the state of the system as in (3.4) is also real~stic since 

it is logical to assume that a person who does not f~el well 

will visit the physician more frequently than a person" who is 

in perfect health. 

2.4. MEASURES OF EFFECTIVENESS TO EVALUATE INSPECTION 

POLICIES AND PROCESSES 

HaVing specified the model, the next step is to 

compute various measures of interest so that deterministic 

inspection policies and stochastic inspection processes 

could be evaluated. 

We consider T~, the time of entrance to"the failing 

state, so that 

T~ inf {t ~ 0: Xt = ~} 

and we let D be the minimum of T~ and the time of the first 

true positive test result, that is 

D = inf {t
i
6t: X

t
. > 0, Yt . = I} AT~ 
L L 

where t = (tl, ... ,t
n

) is an inspection policy. 

An important evaluation criterion for any inspection 

policy or process is Pi{D<T~} since this is the probability 

that the testing strategy will detect deterioration before 

catastrophic failure given that the initial state is i. More-
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over, Pi {XD = j}, J ;;: i 1.S also an important measure since it 
f 

yields the distribution of the state of the system at the 

time of detection given that the initial state is i. 

The probability distribution of the earliness of the 

detection of the de~erioration, given that the initial state 

is i, Pi{T~-D~t}, or the expected value of the earliness, 

given that the initial state is i E.[T~-D] are also 
'1. ' 

important evaluation criteria for inspection policies or 

processes. 

Finally, the last measures of effectiveness to be 

mentioned are on the economics of a strategy. They concern 

the expected number of tests performed and are denoted by 

Ei [N}, Ei [NJ, Ei [NJ, Ei [NF) , Ei[NF J' Ei [NT)' Ei [NT) 

where N, N+, N_, NF ' NF ' NT ' NT ' denote the total number 
+ + 

of tests performed, the number of tests with positive, nega-

tive, false positive, false negative, true positive, true 

negative results respectively. We also note that the expected 

number of tests with true positive results is nothing but the 

probability that a true positive detection is made before 

catastrophic failure so that 

~ 
E. [NT 1 = P.{D < T }, iEE. 

1. + 1. 

In the following chapters, some of the measures of 

effectiveness mentioned above will be computed for deter-

ministic inspection policies and stochastic inspection 

processes. 
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III. ANALYSIS OF DETERMINISTIC INSPECTION POLICIES 

In this chapter, deterministic inspection policies 

will be considered and computational formulas on the total 

number of tests performed, the number of tests with positive, 

negative,· true positive, true negative,' false positive and 

fals~ negative results will be derived. 

3.1. EXPECTED NUMBER OF TESTS 

Let s be a deterministic inspection policy so that 

the maximum number of tests 5 that can be carried out and the 

times when they have to be performed, are known with certainty. 

Since testing stops when a true positive detection is made, 

the total number of tests performed will be less than or equal 

to 5; in fact if the initial state is zero, and all the tests 

are scheduled,before Tl, time of the first jump~ then exactly 

·5 tests will have to be performed. 

We shall first compute f(j,m), the expected number of 

tests during a sojourn in state j, given that the total 

number of tests scheduled during that sojourn is m. Note that 

f(j,O)=O for all j, and f(6,m)=O for all m since no tests are 



performed once state ~ is entered. For m ~ 1 

f(j,m) = E[NT - NT I Z = J. s(T 1) - s(T ) = mJ 
n+1 n n ' n+ n . 

where Nt denotes the total number of tests performed until 

time t. We can easily see that, for a non-zero state j>O 

for k = 1, ••• ,m - 1, and 

Then 

= P. (l-P.) k-1 
J J 

= (l-P. )m-l 
J 

m-1 
E[NT +l- N't Iz =j, s(T

n
+

1
)-s(T

n
)=m] = E kP.(1_P.)k-1+ m(1.;..p.)m-1 

n n n k=l l J J 

Letting 1-p. = q., we obtain 
J J 

E [NT +1- NT I z :::: j, s (T 1) - s (T ) = m] n n n . n+. n 

m-l 
k-1 m-1 m 

= P. E q. +mq. = (l-q.)/P. 
J k=l J J J J 

so that f(j,m) = (l-q~)/p. for j > O. 
J .1 
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If the initia~ stat~ is zero, then all the te:~~~~~-~-
s ched u led for the s OJ ourn l.n that stat e have to be/per formed i 

.~ 
. .. ~~.---' 

because of the fact that a false pOS1.t1.v~/resu1t does not 
/' 

/ 

stop the testing procedure; so that 
" 

f (0, m) = m. 

Hence 

f (j , m) = f (1- q '?) I P . if j > 0 
J J 

m if J = 0 
(1. 1) 
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Let N be the total number of~ tests performed, then N 

can be written as 

00 

so that, for all icE 

00 

E. [N] = I: E. [NT 1 - NT T 
1 n~O 1 n+ n 

(1. 2) 

where 

= E. [ f (Z , s (T 1) - s (T »] 
1 n n+ n 

00 00 00 

= E f Qn(i,j,dz) f F.(du)f(j,s(z+u)-s(z» 
j€E 0 ~ 0 J 

where 

F.(u) = P. {Tl ~ u} = E Q(j,k,u) 
J J k€Ell 

for j€E. 

Now, from (1.2) 

00 00. 00 

E. [Nl 
1 

= I: E f Qn(i,j,dz) J F.(du)f(j,s(z+u)-s(z» 
n=O jEE 0 0 J 

00 

But since I: Qn(i,j,z) = R(i,j,z) we finally obtain 
n=O 

00 00 

E.[N] = I: f R(i,j,dz) f F. (du)f(j ,s(z+u) - s(z» 
1 jEE 0 0 J 

(1. 3) 

for any iEE. 



3.2. EXPECTED NUMBER OF TESTS WITR POSITIVE RESULTS 

We shall first compute f+(j,m) defined to be the 

expected number of tests with positive results, during a 

sojourn in state j, given that the total number of tests 

scheduled during that sojourn is m. Note that f+(j,O) = 0 

for all j, and f+(~,m) = 0 for all m. For m ~ 1 

J, s(T 1) - s(T ) = m} n+ n 

+ 
where Nt denotes the total number of tests with positive 
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results, performed until time t. For a non-zero state j > 0, 

we can obtain either one positive result ~r none, so that 

and 

Then 

[ + + 
E NTn+l - NT Z = n n 

f+ (j, m) 
m 

so that = l-q. = 
J 

s(T 1) - s (T ) = m) j, .=. 
n+ n 

p. f (j ,m) for j>O. 
J 

) m m (I-P. = q. 
J J 

m 
= 1 - q. 

J 

m l-q. 
J 

If the initial state is zero, then all the tests 

scheduled' for the sojourn in that state have to be performed 

and a positive result is obtained with probability po· 

Renee, this becomes a Bernouilli process with success 
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probability Po so that 

f+(O,m) = p m f(O) o = Po ,m 

Hence 

if j>O 
f+(j,m) = p.f(j,m) 

_J 
= t 1-

qj 
(2. 1) 

p m 
o 

if j =0 

If N+ is the total number of tests performed with positive 

results then 

00 

2: 
n=O 

and carrying out the same calculations as in the previous 

section we obtain 

00 00 

2: fR(i,j,dz) fF.(du)f (j,s(z+u)-s(z)) 
j6E 0 0 J + . 

(2.2) 

for any i6E. 

Note that if the initial state i is non-zero, then the 

expected number of tests with positive results, E. [N ], and 
~ + 

the expected number of tests with true positive results, 

Ei[NT+] are the same, since a positive result obtained in a 

non-zero state is in fact a true positive result. Hence 

fT (j,m), the expected number of tests with true positive 
+ 

results, during a sojourn in a state j, given that the total 

number of tests scheduled during that sojourn is m, is equal 

to f+(j,m) for j > 0, and fT+(O,m) = O. So 
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~ 
m 

if l-q. j >0 
J 

fT (j ,m) = (2.3) 
+ 0 if j =0 

As a result, E. rNT J Ei [N+J for i > 0 and using (2.3) 
~ - + 

we can write 

00 00 

E f R(i,j,dz) f F.(du)fT (j,s(z+u) - s(z)) 
jEE 0 0 J + 

(2.4) 

for any iEE. 

Note that false positive results are only obtained if 

the initial state is zero. So, letting fF+(j,m) be the 

expected number of tests with false positive results, during 

a sojourn in state j, given that the total number of tests 

scheduled for that state is' m, we can easily deduce that 

if j>O 

if j=O 

so that 

if j>O 
(2.5) 

if j=O 

[ ] 0 if Clearly Ei NF+ = i > 0 and using fF+(j,m)~ we 

can write 

00 00 

E. [NF ] 
~ + 

= E f R(i,j,dz) f F.(du)fF (j,s(z+u)-s(z)) 
J + 

jEE 0 0 

(2.6) 

for any iEE. 
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3.3. EXPECTED NUMBER OF TESTS WITH ~EGATIVE RESULTS 

If the initial state i is non-zero then the expected 

number of tests with negative results, Ei[N~], and the 

expected number of tests with false'negative results, Ei[N
F 

] 

are the same, since a negative result obtained in a non-zero 

state is in fact a false negative result. Moreover, since the 

only true negative results are obtained in the interval 

[0 ,TIl when the-initial state is zero, then 

for i#O 

We shall first compute as usual, f_(j,m), fF_(j,m), 

fT~(j,m) the expected number of tests with negative, false 

negative,true negative re~ults respectively, during a sojourn 

in state j, given that the total number of tests scheduled 

during that sojourn is m. We can easily see that, for a non-

zero state j>O 

P{N~ 
n+l 

NT = klzn=j, s(Tn+l ) - s(Tn) = m} 
n 

for k=l, .•. ,m-l, and 

P{N~ 
n+l 

NT = mIZn=j, s(Tn+l ) - s(Tn) = m} 
n 

k 
= p.q. 

J J 

= (l-p.) 
J 

m m = q. 
J 

where Nt denotes the total number of tests with negative 

results performed until time t. 
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Then 

[
- ~1 k m 

E NT - N; I Zn= j, s (T 1) - s (T ) = m 1 = p. E kq. + mq. 
n +1 n n+ n J J J J k=l 

= (q./p.)(l-q~) 
J J J 

so that f_ (j ,m) = (q./p.)(l~q~) = q.f(j,m) for j>O, j€E. 
J J J J 

if j>O, 

and 

fF (j,m) = 0 if j =0 • 

If the initial state is zero, all of the tests 

scheduled for the soj ourn in that state have to be performed 

and a negative result is obtained with probability q • Hence 
o 

= q m = q f(O,m) 
o 0 

and 

fT_ (j ,m) = 0 _ for j >0 • 

Hence, we have shown that 

= q.f(j ,m) = J . t 
(q ./p. )(l-q~) 

J J . J 

qm 
o 

if j>O 

(3. 1) 

if j=O 
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if j>O 

(3.2) 

if j=O 

= l: m 

if j>O 

fT (j ,m) (3.3) -
if j =0 

0 

Then by similar calculations as in the previous sections we 

obtain 

00 00 

Ei[N.-1 = 2: f R(i,j,dz) f F.(du)f_(j,s(z+u)-s(z» 
j€E 0 0 J 

(3.4) 

00 00 

E.[NF ] =2: f R(i,j,dz) f F.(du)f
F 

(j,s(z+u)-s(z» 
1. - j €E 0 . 0 J _ 

(3.5) 

00 00 

2: 'f R(i,j,dz) f F.(du)fT (j,s(z+u)-s(z» 
j€E 0 0 J -

(3.6) 

for all ieEe 

Note that, for notational simplicity, the results in 

(1.3), (2.2), (2.4), (2.6), (3.4), (3.5), (3.6) can be 

combined in a single identity as 

00 00 

Ei[N
k
] = 2: f R(i,j,dz) f F.(du)fk(j,s(z+u) - s(z» 

j€E 0 0 J 
(3.7) 

where k€ {oo, +, T+, F+, -, T_, F } with 

Noo = Nand f (j,m) = f(j,m) 
00 
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So, as it can be seen in (3.7) all the previous 

results can be summarized in a compact form. Note that the 

results obtained in this chapter have considerable importance 

from an economical point of view, since each test performed 

has a particular cost. 
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IV. ANALYSIS OF STOCHASTIC INSPECTION PROCESSES 

In this chapter, we will consider stochastic inspection 

processes in general and extend the results obtained for 

deterministic inspection policies to stochastic case; Since 

the steps in the derivation of some of the formulas are 

similar to the ones of Chapter III, only the important points 

will be emphasized. Special cases of stochastic inspection 

processes which are stationary and non-stationary Poisson 

processes will be considered. 

4.1. EXPECTED NUMBER OF TESTS 

Let S = {S : u ~ o} be a stochastic inspection 
u 

process for which 

= X = j} = h(j,t,u,k} where 
t+u p{St+u - St = kjX t 

h:E x R+ x R+ x ~ + [0,11 is a distribution function in k for 

fixed j, t and u. Here St is the total number of tests 

performed until time t, and in medical applications for 

example, it represents the stochastic behavior of the visits 

of an individual to a physician. 



40 

We will first com~ute f(j,t,~) or the expected number 

of tests performed during the time interval [t,t+u) given 

that the deterioration level is j during the same time 

domain. Hence. 

f(j ,t,u) = -E rN - N I X = X = J'1 ~ t+u t t t+u 

From the previous chapter we know that 

s -s 
I t+u t -q. 

E[N
t

+
u 

- Nt I Xt = Xt+u = j, S} = _ ....... J":'"'"p_. -

J 

for a non-zero state j, and hence 

f (j , t, u) 

00 l-q~ 
= j1 E __ J h(j,t,u,k) 

k=O Pj 

If j=O, then it is clear that 

As a 

00 

f(O,t,u) = E k h(O,t,u,k) 
k=O 

result, 
k 

00 l-q. 
E _1- h(j ,t,u,k) 

k=O 
p. 

J 

f (j , t , u) = 00 

E k h(O,t,u,k) 
k=O 

if j>O 

if j =0 

So, the expected number of test~ performed, Ei [N1, for ~ny 

initial state i6E, can be computed as follows. 
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(Xl 

E. [N} = L Ei[NT - NTJ ~ 
n=O n+l n 

(Xl 

= L EJEi [NT -NT lz]1 
n=O n+l n n 

(Xl 

= L E.[f(z , T , Tn+l - Tn) J 
n=O ~ n _n 

(Xl (Xl (Xl 

= L L [ Qn(i,j ,dt) [ F. (du)f(j ,t,u) 
n=O jEE 0 o J 

Hence 

(Xl (Xl 

L [R(i,j,dt) [F.(du) f(j,t,u) 
jEE 0 0 J 

(1. 1) 

for any iEE. 

4.2. EXPECTED NUMBER OF TESTS WITH POSITIVE RESULTS 

The analysis made in the preceeding section can be 

duplicated to obtain the expected number of tests with 

positive, true positive and false positive results. We shall 

not present proofs to avoid repetition. 

Defining f (j,t,u) , fT+(j,t,u), and fF+(j,t,u) as the + . 

expected number of tests during [t,t+u) with positive, true 

positive and false positive results respectively given that 

Xt = X = j one can obtain 
t+u 



= t f+, (jo't,u) fT (j ,t,u) 
+ 

and that 

00 00 
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if j>O 

if j =0 

if j>O 

if j =0 

E f R(i,j,dt) f F. (du)fk(j ,t,u) 
j6E 0 0 J 

(2. 1) 

4.3. EXPECTED NUMBER OF TESTS WITH NEGATIVE RESULTS 

To find the expected number of tests with negative, 

true negative and false negative results one can simply 

define 

f_(j,t,u) = q.f(j ,t,u) 
J 

~l 
0 if j>O 

fT (j,t,u) 
- f (O,t,u) if j=O 

if j>O 

fF (j,t,u) 
if j=O 

and the end result for the case of stochastic inspection 

processes can be summarized as 



for all 

co co 

k€{co, +, - T T F F} 
+' -' +' -

where Nco = N and ~co(j,t,u) =f(j,t,u) 

4.4. SOME INSPECTION PROCESSES 
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An important and interesting inspection process can be 

obtained by assuming that S ·is a conditionally and possibly 

non-stationary Poisson process gi~en th~ deterioration 

proce,ss X. This implies that h must be of the form 

h(j ,t,u,k) 
= e-b(j ,t,u) (b(j ,t,u»k 

k! 

In this special case the functioni fk(j,t,u) for any 

ke{co, +, - T+, T_, F+, F_} take on simple forms. For example, 

So, 

co 

E 
k=O 

co 
E 

k=O 

l-q~ -b(j,t,u)(b(' t »k 
( __ J)(e , J, ,u ) 

p. k. 
J 

k e-b(O,t,u) (b(O,t·,u»k 

k! 

b(O,t,u) 

if j>o 

if j=O 

if j>O 

(3.2) 

if j=O 
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Similar expressions can be obtained "for the functions 

Note that if b(j,t,u) = b(t,u) independent of the 

state of deterioration j, then 8 is °a non-stationary Poisson 

proce ss. Simi larly-, if b (j , t , u) =. AU indep·endent of j and t,· 

then the inspection process 8 is an ordinary Poisson process 

with rate A. As an illustration, we p~esent for this case the 

expected number of tests with true positive results. 

80 if b(j,t,u) = AU then 

if j >0 

if j=O 

Hence 

co co 

2: f R(i,j ,dt) f F. (du) (l-e -APjU) 
j€E 0 0 J 

if i>O 

and 

E [NT] = 
o + 

co co co 

2: f R(O,j,dt) f F.(du) (l_e-APju) - f F (du)(l-e-APOu) 
J 0 

j€E 0 0 0 

This concludes our analysis of inspection processes. 

Now, ~n Chapter V we will use some of the results obtained 

in this and in the previous chapter to evaluate certain 

policies or pjocesses. 



V. EVALUATION OF DETERMINISTIC INSPECTION POLICIES 

AND STOCHASTIC INSPECTION PROCESSES 

In the preceeding chapters, various formulas were 

derived to compute expected number of tests to be performed 
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for deterministic inspection policies and stbchastic inspec­

tion processes. Of course, it i~ important to know how and 

where these results can be used. In this chapter, applications 

of the results obtained will be illustrated with many 

examples, and measures of effectiveness other than those on 

the number of tests will be considered. Numerical examples 

will be solved for some interesting cases. It should be 

mentioned that our aim in this thesis is to evaluate deter­

ministic inspection policies and stocha~tic inspectibn 

processes and not to deal with the optimal inspection problem. 

Therefore we will 6nly mention how our results can be used 

rather than work on a general optimiz~tion problem. 

5.1. SOME IMPORTANT MEASURES OF EFFECTIVENESS 

Perhaps the most important measure of effectiveness 

for inspection policies is the probability that a true positive i 

detection is made before catastrophic failure. We have seen 

that this probability is nothing else but the expected number 

of tests with true positive results, or 
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for any initial state iEE. So, given the total number of tests 

that can be performed one may be interested to find the 

optimal schedule which maximizes P"{D<T~}. 
l. 

An economic model can be constructed where c is p the 

cost of each test performed, c
f 

is the cost of each false 

positive res ult obtained and c 
V 

the cost of catastrophic 

failure. The objective here may be to minimize the total 

expected cost C, where 

by choosing an inspection policy. 

The probabilty distribution of the state of the system 

at the time of detection, the distribution function.of the 

earliness of detection and the expected value of the earli-

ness of detection denoted by 

respectively are other measures of effectiveness that have 

considerable importance since they concern the time of the 

true positive detection and the state of the system at that 

time. 

5.2. MODELS WITH SINGLE INSPECTION 

This section will be devoted to the analysis of the 

case where the inspector l.S limited with one inspection. In 

other words, he can perform only one test to obtain 

. b h lderlYl."ng state of the system. informatl.on a out t e Ui 
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5.2.1. A General Model 

If initially there is no deterioration or X =0, then 
o 

scheduling the test too early will not be desirable since the 

chance to detect a possible deterioration will be lost. More-

over, even if the-initial state is non-zer~, scheduling the 

test at time zero, cannot guarant~e that the disorder will 

certainly be detected since there 1S always a probability of 

obtaining false negative results. 

To analyze the problem with single inspection at a 

time t, let s(u) be defined as: 

~ 0

1 
s (u) = ( 

u<t 
(2.1) 

u~t 

Hence, only one inspection is available at time t 

which determines our inspection policy. 

We will first simplify the expression for the expected 

number of tests with true positive results when s(.) has the 

form given in (2.1). In Chapter III, Ei[NT 1 was found to 
+ 

have the following form: 

00 00 

E f R(i,j,dz) f F.(du) fT (j,s(z+u)-s(z)) 
j EE 0 0 J + 

where 

t
l..;.q~ 

fT (j ,m) = J 
+ 0 

j >0 

j =0 

Note that s(z+u)-s(z)=l if and only if zE(O,t) and 

u€ ( t - z ,(0). So, 



h (i ,t) 

= 

t 
l: f R(i ,j ,dz) 

j €E 0 

t 

co 

f f~. (j ,I) F . (d u) 
t-z + J 

l: f R(i,j ,dz) (l-q.) (I-F. (t-z» 
j €E o. J J 

t 

48 

l: f R(i,j,dz)p.F.(t-z) 
jeE 0 J J 

(2.2) 

where F. (u) = l-F. (u). 
J J 

The expression for Eo[NT ] will be different since 
+ 

fT (O,n)=O. One can easily see that 
+ 

h ( 0 , t ) = E [NT ] = 
o + 

where E =E\{ O}. 
o 

t 
l: fR(O,j ,dz)p.F. (t-z) 

j€Eo 0 J J 

Now letting R.;(Q) = R(i,j,u) 
~J 

(2.3) 

and assuming R .. and F. are differentiable with respective 
1. J J 

derivatives r .. and f. we can find a necessary condition which 
1. J J 

has to be satisfied by t to maximize P.{D<T~} by differen­
~ 

tiating h(i,t) with respect to t. 

dh(i,t)/dt = l: 
j€E 

t 
p.r .. (t)- l: f p. R(i,j ,dz)f. (t-z) 

J 1. J j €E 0 J J 

for any initial state i>O. 

Therefore setting this expression equal to zero we 

obtai n 



p.r .. (t*) = 
J 1.J 

t* 
~ f p. 

jEE 0 J 
R(i;j ,dz)f. (t*-z) where t* 

J 

denotes the value of t wh1.· ch .. {f:::.} maX1.m1.zes P. D<T 
1. 

Since r .. (t) = 
1.J o for J·~i, we ·let pt. = P / ~ p .>1.. • t... k,] 

J J k>i 

Clearly 

~ 
j >i 

p ! = l, and we get 
J 

t* 
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~ 
j >i 

p!r .. (t*) = 
J 1.J 

~ f p! R(i,j ,dz)f. (t*-z) 
j>i 0 J J 

(2.4) 

Now, r .. (t) can be interpreted as the probability that the 
1.J . 

time of entrance to state j is t if the initial state isi, 

or 

r .. (t) ~ P. {TJ=t} 
.1. J 1. 

t 
and f ~(i,j ,dz) f.(t-z) can be interpreted as the probabi­

J o 
lity that the time of exit from state j is t given that the 

initial state is i. Let Uj be the time of exit from state 

j, then 

t 
~ P. {UJ=t} f R(i,j ,dz)f. (t-z) 

J 1. 
0 

and (2.4) can be written as 

~ p! P.{Tj=t*} = ~ p! P.{Uj=t*} 
J 1. 

jEE. J 1. jEE. 
1. 1. 

(2.5) . 

for any non-zero initial state 1., wher e E. =E \ {O , 1 , ••• ,i } • 
1. 
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Clearly (2.5) is a mixture o~ probability density 

functions. So, the necessary conditions to be satisfied by 

t* can be written as 

(2.6) 

where K is a random variable satisfying 

P{K=j} = p! 
J 

j €E .• 
1. 

Note that the expression obtained in (2.6) will also 

be the same if the initial state is zero. 

Roughly speaking (2.6) implies that the inspector has 

to choose a random state K and schedule the test at a time 

where the system i~ in that state. Hence, a necessary 

condition for a time t* to be optimal, is that it has to be 

a time where the system should be in that random state K. 

This optimization problem requires further research 

since one needs assumptions on the structure of F .. (.) and 
J 

R .. (.) to make characterizations on t*. We will study a 
1.J 

special case in section 5.2.2 where we will investigate the conditions 

necessary to make (2.6) a sufficient condition of optimality. 

In the general model with single inspection the 

expres.sions for Ei[Nl, Ei[N+l, Ei CN_1, EilNF+l, Ei[N F 1, 
Ei[N

T 
] can be simplified as 
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t 
L J R(i,j,dz) F.(t-:-z) 

jeE 0 J 

Ei[N+J= 
t 

L J p. R(i ,j ,dz) F.(t-z) 
jeE 0 J J 

Ei [N_l = 
t 

L - J q. R(i,j ,dz) F.(t-z) 
jeE 0 J J 

i>O 

F (t) 
o i=O 

t 

L J q. R(i ,] ,dz) F. (t-z) i>O 
jeE 0 J J 

t 

L J q. R (0 ,j ,d z )F . (t - z ) 
j €E 0 J J 

o 

i=O 

i>O 

i=O 

An optimization problem can be modeled to minimize the 

total expected cost. Recall that c is the cost of perform-
p 

~ng a test, c
f 

the cost of obtaining a false positive and Cv 
the cost of catastrophic failure, with cp~cf~cV. Then the 

total expected cost c(i,t) where i is the initial state and 

t the time of the single inspection, has the following form. 

i>O 
(2.7) 

i=O 
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By differentiating c(i,t) with respect to t and sett­

ing the derivative equal to zero we obtain the necessary 

condition to be satisfied by optimal t*. 

t 
dc(i,t)/dt = E (c -cvp.)r .. (t) - E (c -c"p.) f R(i,j,dz)f.(t-z) 

j€E p . J l.J j€E P v J 0 J 

so that dc(i,t)/dt = 0 implies 

E 
j €E. 

1. 

for i€E . 
o 

(c -c P.)P.{Tj=t*} = 
p V J 1. 

For i=O, a similar analysis yields the following 

necessary condition to be satisfied by t* which minimizes the 

total expected cost. 

E 
·€E J 0 

E 
·€E J 0 

The similarity between (2.5) and (2.8) should be 

(2.9) 

pointed out. Note that if c =0 then (2.5) and (2.8) are the 
p 

same. Otherwise, assuming c <c"p., for all j€E we can take 
p v J 

p! = (c p. - c ) /. E ( c" p . - c ) 
J "J P j €E. J P 

1. 

so that (2.8) reduces to (2.5). The assumption c <c"p. for p v J 

all j€E is a logical assumption since it implies that the 
o 
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cost of catastrophic failure c is so great that it remains 
. V 

bigger than c , the cost of performing a test, even when it p 

is multiplied by p. the probability of getting a true 
J 

positive result. 

Note also that, c f ' the cost of a false positive 

result appears only ~n (2.9) which gives the condition to 

be satisfied by t*, if the initial state is zero, since one 

cannot talk of a false positive outcome for a non-zero 

initial state. 

5.2 .. 2. A Simplified Model 

In this subsection we consider a simplified model 

where E~ = {O,l,~}with 

A typical sample path of the process X is given in 

Figure 1 where 

. f{ >0 X l} TA =inf{t~O:Xt=~} Tl = ~n t~: t= , D 

are the first passag~ time to states 1 and A respectively. It 

follows that 
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1 

Ol~---------+----____ -+ ________ --+ 
t 

FIGURE 2.1. A Typical Sample Path of X. 

This model is similar to the one examined by 

Eddy(22,23) with state 0 being the healthy state, state 1 the 

defective state and state ~ the state where the sickness 

becomes evident. From the transition matrix P of the process, 

we can see that only state 1 can be reached from state 0, and 

state ~ is to be reached from state 1. 

We let 

= P {Tl~t} 
o F(t) = R(O,l,t) 

G(t) = R(1,~,t) = Pl{T~~t} 

. . . f . f Tl d T~ t' 1 be the d~strLbutLon unctLon 0 an respec Lve y. 

If we let t be the time of inspection, then (2.3) reduces 

to 

t 
E [NT ]= f PI R(O,l,dz) (l-G(t-z))=PlF*O-G) (t) 

o + . 0 

(2.10) 

No~v, assuming that F is differentiable with derivative 

f, (2.10) implies ,that the necessary condition of optimality 

is 



t* 
f(t*) = I f(u)g(t*-u)du 

·0 

which can be interpreted as 

P{T =t*}=P{T =t*} 
1 11 

and this is a special case of (2.6). 
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(2.11) 

We next present a theorem which gives the properties 

to be s~tisfied by f and G so that (2.11) becomes a sufficient 

condition of optimality. 

THEOREM.(2.l). If f isa unimodal differentiable function and 

G has increasing failure rate (IFR), then F*(l-G) is unimodal. 

Proof. By the differentiability of f we can write 

t 
d(F*(l-G) (t)/dt) = If' (u) (l-G(t-u)du 

__ ) l-G

O

( t-u) 
where K(t ,u) l 

o 

t 
= I f'(u)K(t,u)du 

o 

u~t 

u>t 

K is totally positive of order 2(TP 2) since G is IFR by our 

assumption. Moreover, unimodality of f implies that f' changes 

sign from plus to minus so that by the variation diminishing 

property (F*(l-G»' also changes sign from plus to minus. 

This clearly implies that F*(l-G) is unimodal and that 

F* (I-G) '=0 has a maximum val ue. 
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~s 

Thetefore, under the assumptiDns of the theorem, (2.11) 

both necessary and sufficient for optimality. 

As a numerical applictaion if F and G both have the 

exponential distribution 

F(t) = l_e- at 

G(t) -bt = l-e 

t~O 

t~O 

with rates a>O and b>O respectively, then optimal t* can be 

obtained by solving (2.11) as 

t* = 0/ a-b) inCa/b) 

for a F b, and if a = b then, 

lim (l/a-b) inCa/b) = l/a 
b+a 

(2.12) 

so that t* = l/a which is the expected time of the first 

jump or the expected time at which the disorder starts to 

develop. 

The computation of the probability distribution and 

mean of the earliness of detection can easily be made for 

this simplified model. We first compute 

P {T~-D~Z, D=t} where t is the time of the scheduled ~nspec­
o 

tion. 
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= P {T 6SZ+tID=t}P {D=t} o . 0 

6 . 
= P {T ~z+tIX =1 Y =l}P {X =1 Y =l} 
0-· t' tot 't 

t 
= PI f F(du)(G(z+t-u)-G(t-u)) 

o 

It is clear that 

and since 

6 6 6 6 6 P {T -DSz,D=T }=P {T -DSzID=T }p {D=T } 
o . 0 0 

6 =P {D=T }=l-P {D=t}=l-p F*(1-G) (t) o . 0 1 

we obtain 

6 t 
Po{T -DSZ}=P

l 
f F(du)G(z+t-u)-P l F*G(t)+l-P l F*(1-G) (t) 
o 

t 
= I-PI F(t)+P l f F(du)G(z+t-u) 

o 
t 

= l-p f F(du) (l-G(z+t-u)) 
1 

o 
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Now, the expected earliness can easily be computed as 

b. co 

E [T -D1= f P {Tb.-D>z}dz o 0 
o 

t co 

= PI f F(du) f(l-G(t+z-u»dz (2.13) 
o 0 

Another objective 1n the optimal inspection problem 

may be to find an optimal t which maximizes E [Tb.-D]. 
o 

Differentiating (2.13) with respect to t, and setting the 

derivative equal to zero we obtain 

f ( t * ) = (F* (1-G) (t *) ) / m 

co 

whe·re m = f (l-G(t»dt = E[T 2-T l }, so (2.14) is the 
o 

necessary condition of optimality to .be satisfied by t* 

. whi ch maximiz es E r Tb.-D] . 
0-

(2.14) 

Note that although (2.11) and (2.14) are different, 

we obtain the same t* given by (2.12) when F and G are both 

exponential functions with rates a .and b respectively. 
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5.Z.3. An Extended Model 

In this subsection we take E~ = {O,l,Z, ... ,M-l, M} 

where state M ~ ~ is the terminal state, and P(i,i+l) = 1 so 

that the stages of deterioration increase deterministically 

to the adjacent st~te. Letting T l , TZ ' ... , TM represent the 

times of the jumps to states 1, Z, ... , M we assume that the 

interarrival durations Tl , TZ-T
l

, T3 -T Z ' T -T are ... , M M-l" 

independent with distributions F 0' ••• , F
M

- l respectively. 

Moreover, the distribution of Tk is for any k = l~ ~, ... , M 

Gk = F 0 * ... i:F k-l 

We can easily show ~hat 

M-l 
E 

k=l 
P (Gk(t)-G (t» 

k k+l 
(Z.15) 

where t ~s the time of inspection. Then a necessary condition 

! to be satisfied by optimal t* maximizing (Z.lO) is given by 

M-l 
E Pkgk(t*) = 

k=l 

k = 1, ... , M-l 

Then, (Z.16) can be rewritten as 

where K is a random variable satisfying 

/ 

(Z.16) 

(Z.l7) 
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P{K = j} = I j = 1, M-1 P . ... , 
J 

M-1 
p! = p.1 E Pk J J k=l 

Note that (2.17) 1.S a special' case of (2.6). 

5.3. MODELS WITH MULTIPLE INSPECTIONS 

In.these models, there are n inspections available at 

times t 1 , ... , t , so that the deterministic policy s(.) can 
n 

be written as 

( 0 u < t1 

1 t1 ~ u < t2 

( s(u) = 

n u ~ t n 

It follows from III. (3.7) that Ei[Nk1 for 

T } can be written as 

00 00 

E f R(i,j,du) f·.FJ.(dz) fk(j,s(z+u) - s(z» 
j6E 0 0 

n-1 
= E E 

j6E m=O 

(3.1) 

where to o and tn+1 = 00. 

We nOW consider the model of (5.2.2) under the assump-

.tion that only two inspections are available to the inspector. 

Hence 
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0 u < t1 

s(u) = 1 t1 ~ u < t2 

2 u ~ t2 

and the inspector has to choose two inspection times t1 and 

t2 so as to maximiz~ the probability of detecting the disorder 

before it becomes evident. Using (3.1) we can se that 

. t1 
= PI (F(t1)-F1:G(t1)+F*(1-G) (t2)-P1f F(du) (l-G(tiu») 

o 

t1 
= P1(F(t1)-F*G(t1)+F~':(1-G) (t2)-P1f F(du) (l-G(tiu») (3.2) ; 

o 

The necessary conditions to be satisfied by optimal tt 

and t~ maximizing Po{D<T6} are found by differentiating 

h(t
1
,t 2 ) with respect to t1 and t2 and setting the derivatives 

equal to zero. This implies that the conditions 

(l-p )f(t*)+p f(t*)G(t*-t*) = F*g(t*) 
111 1 211 

t* 
f(t*)+p f1 F(du)g(t~2d-u) 

2 1 

(3.3) 

o 
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must be satisfied by optimal tf and t~. 

As a numerical example we study the case when F and G 

are both exponential with respective rates a and b, (a,b>O) 

such that 

F(t) = 1 - e-at 

G(t) = 1 -
-bt 

e 

t ~ 0 

t ~ 0 

1n the special case where Pl = 1 so that the testing procedure 

gives no false negative results. Then (3.3) reduces to 

-at* -at* -b(t*-t*) -bt* -ae 1 - (b-a)Ple 1 e . 2 1 = -be 1 

-at* -at* -b(t*-t*) -ae 2 + be 1 e 2 1 = 0 (3.4) 

and this can be solved to yield 

ti = (lib-a) ~n (b/(a+(b-a) (b/a)b/a-b» 

2 2 b/a-b 
t~ = (lib-a) ~n (b I(a +a(b-a)(b/a) » 

as the optimal solution for b~a. When b=a, it can be shown 

that 

t* = (l/a) (e-l/e) 
1 

t~ = (l/a) (2e-l/e) 

is the optimal solution. 

Note that whenTi and T6 are exponentially distributed 

with the same rate a, and when no false negative result ~an 

be obtained, then the optimal schedule is such that 
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which ~s reasonable since testing detects the disorder for 

sure . 

. Now~ by similar computations as ~n (5.2.3) the 

probability distribution of earliness can be computed to be 

t2 tl 
+ PI [ F(du)G(t2+z-u)+Pl [ F(du) G(z+tl-u) 

o 0 

and 

t 00 tl 00 

Eo [T~-D] = PI [2 F(du) [(1-G(t2+z-u)dz+Pl [ F(du) [(l-G(tl+z-u» dz 
0 0 0 0 

tl 00 

2 (1-G(t2+z-u»dz - p [ F(du) [ 
1 

0 0 

Differentiating this expression with respect to tl ~nd 

t2 we obtain the following two conditions of optimality. 

mf(t~.) = F~·(1-G) (t*) + p f(t~··) L (t"·-t~··) 
1 1 1 1 2 1 

mf(t*) 
2 

00 

where m = E[T~-Tl] = [ (l-G(t'»dt' 
o 

00 

(l-G(x»dx 

(3.4) 



H(t* t~") . l' 2 
o 

Note that if t2 tends to infinity then we obtain a 

model with single inspection. 

Since 

lim L(t*-t*) = 0 
tl't+OO 2 1 

2 

lim H(t* t;',) 0 
t .':+00 

l' 2 
2 

then the conditions of (3.4) reduce to 

mf(tt) = F~'t(l-G) (ty) 

mf(oo) = 0 

so that we obtain the result of (2.14). 

5.4. MODELS WITH STOCHASTIC INSPECTIONS 

In case of stochastic inspections, an interesting 

optimization problem may be to find the optimal rate of 

inspections to minimize the total expected cost. 

64 

Consider a stationary Poisson inspection process with 

rate A. If c p ' c f and C v are the costs of performing a test, 

the cost of obtaining a false positive result and the cost of 

catastrophic failure respectively, the expected cost c(i,A) 

for a deterioration process with initial state i can be 

written as 
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\ 
C E. [N] + C (l-E. [NT 1) ~ > 0 p ~ v ~ 

c(i,A) 
+-

= 

C E [N1 + cfEo[NF ] + C (l-E fN T 1) i = po. + v 0 - + 

Using IV (3.1) , IV (3.2) we obtain 

00 00 

c(i,A)=c ~ fR(i,j,dz)!F.(du)(l-e-APju)(l/p.) 
p j€E 0 0 J J 

00 00 

( f ( -AUp· +cv 1- ~ fR(i,j,dz) F. du)(l-e J) 
j€E 0 0 J 

for i>O. The optimal rate A* can be found by differentiating 

c(i,A) with resp~ct to A and setting the deiivative equal to 

zero. Hence we obtain 

00 00 

~ fR(i,j,dz) f e-Ai:~Pj (c -cvP.) F.(du) = 0 
j€E 0 0 P J J 

(4.1) 

Similarly, if the initial state is zero then the necessary 

condition of optimality for the rate A is given by 

00 00 

~ f R(O,j,dz) f e-A*RPj (cp-CVPj) Fj(du) = 
j€E 0 0 

00 

-Cf f P uF (du) o 0 
o 

(4.2) 

0 

Now, consider the extended model of (5.2.3) with M=3. 

So E~ {O,1,2,3}~ Fo(t) = Po{Tl$t}, Fl(t) = P l {T 2$t} and 

F 2 (t) = P 2{T 3$t}. Then, assuming that initially the system is 

in state 1, (4.1) becomes 

ro ro 00 

~ e-Ai:~Pl (cp-CvPl)Fl (du) + ~Fl (dz) ~e-A7':RP2 (c
p 
-c

VP2) F
2

(du) = 0 
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and by taking Fl and F2 to be expo~ential distributions with 

rates a and b respectively, we obtain the condition to be 

satisfied by the optimal A* as 

(c -c P2)b 
p V = d 

(A,':p +b) 2 
2 

(4.3) 

The solution 1S g1ven by 

where D = (c P2-c )b 
v. P 

c VP 2 > c p > c vP l ' 

In case where our assumption d"oes not hold true, for 

example when c = 0, then the optimal rate A* will be in­p 

finite. In fact if performing a test has no cost then testing 

at an infinite rate is of course optim~l. 

o 
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VI, SUMMARY -OF RESULTS AND FUTURE RESEARCH TOPICS 

In this thesis the inspection problem of deteriorating 

systems subject to catastrophic failure is analyzed. Deter­

ministic inspection policies and stochastic inspection 

processes are evaluated under the assumption that the 

deterioration process possesses a Mark6v renewal structure. 

Chapter I presented an introduction to the problem 

with a review of past and current research on similar inspec­

tion models. The deterioration process and the inspection 

problem are formulated in detail in Chapter II. Chapter III 

and Chapter IV are devoted to the analysis and evaluation of 

deterministic inspection policies and stochastic inspection 

processes where various formulas are derived to compute the 

expected number of inspections. Some applications of the 

results are presented in the context of decision models in 

Chapter V. Interesting examples on finding the optimal 

inspection schedule which maximizes the probability of early 

detection are considered. The main purpose in our research 

has been to evalu~te inspection policies and processes with 

respect to some measures of effectiveness, and not to present 
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a general theory on the optimal inspection or control problem. 

Naturally, some possible extensions should be emphasized to 

point out future research topics. Of course, the optimal 

inspection problem mentioned throught the thesis needs 

analysis. Since the deterioration ~rocess is partially obser­

vable, the theory ~n partially observable Markov decision 

processes may be used or one may enjoy Markov renewal theory. 

Note that Ln our model the result of a test was either 

positive or negative so that the inspector could only 

identify the deterioration as being zero or non-zero. A 

natural extension could be to consider a model where testing 

gives information on the present unobserved state of 

deterioration Ln which case Yt would be a process with state 

space E such that 

for any i,j6E, gives the probabilistic relationship between 

the underlying process X and the information process Y~Reca11 

that in our model, the cost of a false positive result c f was 

needed only when the initial state was zero. However, this 

will not necessarily be true in this extension since many 

types of false results may exist even when the initial state 

is non-zero. 

Another extension of our model may be to consider 

deterministic and stochastic inspections simultaneously. This 

also would be more realistic since in medical applications a 
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patient who is under the control of a physician may also 

requ1re some extra tests done at some random points, in time. 

Note also that our model considers tests only as a 

means of obtaining some kind of information about the under­

lying state of the system. However, in some cases these tests 

may alter the system state to a higher deterioration level as 

in mammograms performed to screen for breast cancer where 

radiation may induce more deterioration. Hence the possibility 

of an immediate increase in the deterioration after each test 

has to be included in the model. 

Finally, there is a single deterioration process in 

our model which presents the state of the system. A natural 

extension of this model will be the case where the state of 

the system is represented by mUltiple dependent deterioration 

processes which are inspected through ieveral different tests. 

The determination of the inspection and testing times for the 

various deterioration processes and test combinations will 

indeed be very interesting because of the economies of scale 

involved in performing mUltiple tests at the same time. 
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