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EVALUATION OF INSPECTION POLICIES AND
PROCESSES FOR DETERIORATING SYSTEMS
SUBJECT TO CATASTROPHIC FAILURE

ABSTRACT

The purpose of this thesis is to study deteriorating
systems subject to catastrophic failure in order to evaluate
deterministic inspection policies and stochastic inspection
processes. The underlying deterioration process is assumed to
be an increasing Markov renewal process so that the system
deteriorates over time. An important feature of the model 1is
that the true state of the system cannot be known by simple
observation; instead, some tests have to be.carried out in
order to detect if fhe syétem has positive deterioration or
‘not;-Howéver the results of the tests are not pérfect so that
the probability of true and false detections depend on the

unobserved state of the system.

The system can be inspected in two ways. Inspections
are done either detérministically'at some prespecified  points
in time which constitute deterministic inspection policies.
On the other hand, inspections at random times are also
possible and they constitute stochastic inspection processes.
These inspection policies and processes are evaluated in

various ways; explicit expressions to compute the expected



number of tests are presented and some practical applications
of our results are 1llustrated with some interesting

examples.
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KATASTROFIK SEKILDE BOZULAN S1STEMLERDE \
MUAYENE POLITIKA VE SURECLERININ DEGERLENDIRILMESI .

- OZET

'.Bu ga11§maﬁ1n amaci katastrofik sekilde asinan sistem-—
lerin deterministik muayene politikalarini ve stokastik mua-
‘yene siireclerini degerlendirmeyé y8nelik olarak incelemektir.
Sistemin,aslnﬁé sireci artan bir Markof yenileme siireci ola-
.rék alinmistir ve dolayisiyla sistem zaman icinde bozulmakta-—
dir. Modelin Bnemli bir 6zelligi sistemin asil durumunun bi-
1inmemesi ve sadece bazi testlerle sistemde agsinma olup olma-
diginin belirlenebilmesidir. Ancak, gdzOniine alinmasi gereken
- Snemli bir nokta test neticelerinin kesin dogrﬁ olmayls; ve
gbzlenemeyen gercek sistem durumuna gdre bazi olasiliklarla

dogru veya yanlisg tesbitler yvapilabilmesidir.

Sistemin iki sekilde-muayene edilmesi miimkiindiir. Deter-
ministik muayene politikalariyla sistem &nceden belirlenmis
deterministik zamanlarda muayene edilebilir. Veya kesinlikle

bilinmeyen rassal zamanlarda yapilan muayenelerle bir stokas-
tik mu;yene siireci sz konusu olabilir; Bu tezde determinis-
tik muayene politikalari ve stokastik muayene siiregleri degi-
sik metotlarla degerlendirilmekte; beklenen test sayilara
i¢in acik ifadeler sunulmakta ve bBylece elde edilen ¢esitli
uyguléﬁa sonuglary birgok ilgi éekici orneklerle agiklanmak~—

tadir.
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- 1. INTRODUCTION

The purpose of this thesis is to evaluate determinis-
tic inspection policies and stochastic inspection processes
for deﬁeriorating systems which are subject to catastrophic
failure. This section includes an overview of.the,réséarch
togéther with a detailed literature survey of related main-
tenance models.

/
1.1. OVERVIEW OF THE RESEARCH

It has become a common experience in reliability
theory to represent the evolution of the state of a reli-
ability system by a deterioration process. A mechanical part
devgloping_cracks or an individual developing cancer can be
given as examples of deteriorating systéms sharing two
important features. First, the true state of the system can-

not be known by éimple observations. However, some tests can
be carried out in order to detect if the system has positive
- deterioration or not, and then corrective action can be taken

to reduce the likelihood of failure. Moreover the results of

the tests themselves are not perfect so that the probability



of true and false detections depends on the unobserved state
of the system. Secondly, when failure occurs, it is
catastrophic; that is the failed system cannot be repaired or

‘replaced. The cost of failure is so great that it cannot be

compared with the cost of inspections and corrective actions.

The objective of this thesis is to propose and evaiuate
inspection or testing policies or proéesses for deteriorating
systems subject to catastrophic failure. Our model -will have
two signifiééﬁt features. First the underlying deterioration
_process will be taken to be a»Markov,renewal process. This
is a reasonabie choice since these pfocesses are well-known

for fheir applicability in man§ fields of pure‘and applied

- sciences. Moreover, the stochastic structure of Markov renewal
processes is of suffiéientvcomple#ity and generality to be

an actual model of deterioration. For éxample, tﬁeée
processes can be used to model the configuration of cracks in
a mechanical part or the size of a tumor. We shall see in the
next sectién that most inspection/decision models in the
literature involve discrete-time and discrete-state Markov
chains ﬁhiéh are Markov renewal processes with a rather
restrictive special form. Thus, the Markov renewai process
representafion of deterioration treated in this thesis will
providé sufficient geﬁeralizationbto the li;eraturg.

The second feature of our model is that it allows for

imperfect observations during inspections. This is important



for many applications, because inspections usually give in-
accurate estimatesrof the underlying state. For example, a
mammogram in breast cancer screening may or may not reveal
‘the presence of the tumor, and the detection is further
complicated by the possibility of false positive and false
negative results. The literature survey presented in the next
section indicates that the amount of research carried out so
far which involves imperfect ‘information about the underlying

state of the system is quite limited.

As a result of these important features, our model is
anticipated to have considerable utility for a variety of
applications.;ﬁechanical systems ‘involving parts which are
subject to catastrophic failure where the cost of faiiure
cannot quantitatively Be compared with the_inspection and
Zrepair costs, or cancer screening problems in medicine where
"failure is equivalent to the death of a person can be given

as examples.

In the next section a review of the literature is
presented. The deterioration process and the inspection
problem is formulated in Chapter II. A brief review of Markov
renewal procésses will be presented together with formal
‘definitons of deterministic and stochastic inspections.
Chapter. ITIT and Chapter IV are de&oted to the analysis of
~deterministic inspection policies and stochastic inspection

processes respectively. The main emphasis in these chapters



is piécedrén the‘compﬁfatiqn of the measures of effectiveness
like the ex‘pet.:tévd number of tests performed, the expected number of
tests with positive,. negative results; ete. Chapter V treats some
examplesrghere the results of Chapters III and IV wi11 5e
used to evaluate certain policies. In particular, a mana- .
gement problem to determine the optimal inspection schedule
"to maximize the probability of detectién before failure will
be analyzed. Finélly, Chapter VI cqncludes this thesis by
summarizing the main'points emphasized and by indicating

problems and areas for further research.

1.2. LITERATURE SURVEY

There is an extensive literature omn the 6ptima1'control
of deteriorating systems, especially on the optimal main-
tenance of systems subject to failure. In,i§65; Mc Call(l)
presentedla survey with 88 referencés in scheduling poiicies
for stochastically failing eﬁuipment. A survey, reviewing the
area of maintenance models and including~259 references was

done by Pierskalla and Voeiker(z)

(3)

in 1976. Sherif and

Smith updated this survey in 1981 by providing 524

references. A more recent survey which listed 243 references

(4,5)

was provided by Bosch and Jensen 1983.

~

Much of this literature deals with classical main-
tenance models on the inspection of systems subject to -

stochastic deterioration. Each time, the deteriorating system



is inspected in:ordgr to decide whether to replace it, repair
it or let it cbntinue,as it is. Hencé the main issue is the
decision on the time of repair or replacement, not the time
of inspection.vThe true state of the system being known at
_éach decision epoch, these‘optimalifeplaéement/repair models
are generally solvédrusing "Markov decision theory as in

(6) -(7)

or Ozekici

_(8)

Proschan

Derman , 0r renewal theory as in Barlow and

. Our interest lies in the models where the issue
is not only to detérmine.the”time when to take corrective
action for a deteriorating system, but‘also to decide on when
to inspect it. The problem is further complicated by the fact
that the.trug state of the systeﬁ cannot be kﬁown with
certainty even after the inspecfions which»are costly; so
there 1is a~trade—off.5etween the inspection cost and the
accuracy of the information abouf the true state of the
system. For this reason, conventional Mérkov decision theory
cannot be used to analyse such models. Instead it is’uéually
necessary to use what is called a partially observable Markov

(9)

decision process (POMDP)-modgl;zMonahan provides a survey
of POMDP models where he presents properties of these models

as summarized below.

One of the main characteristics of the POMDP is the
transformation of the information vector from period to period
via Bayes' rule. There is considerable literature on Bayesian -

control of sequential decision processes which is only

indirectly related to POMDP models. In this literature,



elements of the decision process are unknown. For example, -
the decision maker may not know the transition probability

matrix governing the movement of the process, as treated in
(10) |

Satia and Lave . In a POMDP, however all the elements of

the decision process are assumed to be known. Only, infor-
‘mation regarding the current state of the nonobservable

underlying process is obtained. .

There 1s also literature dealing with the acquisition
of information for various continuous time partially obser-
vable stochastic processes. For example, Anderson and

(11’12)'made a comprehensive study of a continuous

Friedman
time model where the underlying state is taken to be a

.Brownian motion process.

The quality contrbl models in the litérgture can be
classified on fhe basis of the source and degree of partial
information.vMahy'studies are -carried on thé two-state modél-
where the system or the process is either in good or bad
states. In general the underlying process represents the
condition of a machine which is deteriorating over time. The
true condition of the machine is not known with certainty,
but information can be obtained either by observing the

~

machine's output or by directly inspecting the machine.

(13)

Girshick and Rubin were first to consider the two-state
model under the assumption that perfect information is

available after inspection and no information can be

obtained without inspection. They showed that the optimal



decision should be based on the proﬂability that the system
is in the bad state, and so the optimal policy can be
specified by the regions of the unit interval that corres-
pond to the three possible actions, namely inaction, inspec-—
tion and replacement. Furthermore, they conjectured that the
region corresponding to an individual action is a single
interval, and so the unit interval is divided into at most
three subintefvals, one for each possible action. But, this
three-subinterval conjecture was shown to be false by

(14)

Taylor who provided a four-subinterval counter-example,

where the "inaction" region consisted of two subintervals
separated by the inspection region and the replaée subinterval
included probabfﬁty one, which is indeed very 1ogicai since,
if theysystem is in the bad state with probabiiity.ohe, the

decision maker has only the choice of replacing the system.

(15) (16)  pogs (17

(17)

examined similar models. Ross proved that,

Swallwood and Sondik
(18)

, Eckles , and

Albright
the most general optimal policy is the four-subinterval

(14) (16)

structure of Taylor Eckles

investigated a closely
related model, he organized however the structure of the
optimal policy in a different way without focusing on the
probaﬁfﬁty distribution of the underlying state. Rosenfieldug)

considered another variation of the model and obtained

similar results for the optimal maintenance policy.

In practically all of the optimal inspection models

in the literature an inspection, when it occurs, reveals the



true state of the system with perfect information. An
. » . . . .. (20,21)
important exception is the model by White ., who allows
the decision maker to receive imperfect information about the
true state of the underlying deterioration process. As a
special case, he considered a model where perfect information
was obtained by inspection and imperfect information was

. . . . . . ,(17)
obtained without inspection, thus generalizing Ross
model. He came out with the same results by proving that the
optimal policy has the four-subinterval structure. However,
in the discussion of the general partially observable model,
where only imperfect information can be obtained with or

without inspection, the characterization of the optimal

policy remained an open question.

Virtually all of the models in the literature are
presented in the context of a maintenance problem, usually
one where the system can be restored to be.as good as mnew.

Eddy(22,23)

,studied a significantly different optimal inspec-
tion situation: é problem of preventive medicine that seeks
for the optimal schedule to screen for a disease. In his
problem, the system is identified.by the person on whom
écreening tests are to be applied and failure is the sickness
and consequently the death which can occur at most once for

a system and is usually more catastrophic than in maintenance
context. An important objective may be to identify a diseased
state as early as possible thereby maximizing fhe probability

(24)

of a cure. In 1982, Eddy and Shwartz presented screening



pfoblem in cancer and explained the application of
mathematical models in their paper where they especially

emphasized the difference between so-called deep and surface

models.

The surface @odels consider only clinical events that
can be observed directly and are on the surface. The basic
function of these models is to tabulate observaﬁions aﬁd‘
estimate the conséquences of existing screening programs.'
ﬁThey do not attempt to descriﬁe the'underlying disease
pathophysiology or screening dynamics that caused the obsérv—
ed events, and therefore cannot be used to esfiﬁate‘the
consequences of screening programs that have nét yet been
conducted. Bailaf(zs) gave a good example for a surface model
that used data from the Health Insurance Plan of Greater New
York to estimate the number of new cases of breast caﬁcer
generated by the x-rays delivered in performing mammograms
versus the number of cancer deaths prevented By the addition
" of mammography to'yearly screening programs. He estimatéd
that the five years of screening with mammography prevented
not more than 12 to 14 breast cancer deaths, while the
radiation was expected to induce about 16 new cases of

breast cancer.

Deep-models, on the other hand, explicitely consider
the pathophysiblogy of the underlying disease and how the
course of the disease is affected by screening. The impor-

tance of this difference is that deep models can be used to
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estimate the value of screening programs that have never been
P . . . ' (22,23)
studied in clinical trials. Models proposed by Eddy ,

Kirch and Klein(26) and Schwartz(27)

R can be given aé
examples for deep models. Most of the important éuestions
asked of deep models concern the time factor: What is the
effect of screeningﬂa population for a certain number of
years? What is the optimal frequency of screening? At what
ages should screening be started and stopped?'To answer these
and similar questions one must be able to deséribe first, how
a disease progresses or develops over time, how detecting a
disease at a pérticular time in its development affects'
'important outcome measures such as mortality, and how the
detection capabiiities of screening tésts vary as the disease

progresses. In the models developed by Eddy(zz’zs)

(26) (27)

Klein , and Schwartz

, Kirch and

, the disease progression is taken

(22,23)

to be continuous over time. Eddy's model tracks the

change in mortality as the disease develops, Kirsh and

(26) and Schwartz‘s(27)

Klein's models are concermned with the
growth of cancer in size and the probability of spread to
axillary lymph nodes. In most cases, discrete disease states

(27)

are defined. For example, Schwartz defined 21 disease

states consisting of seven tumor-size categories- defined
through the tumor diameter and for each size category three
lymph node involvement levels. Moreover, he formulated
quantitatively some hypothesis concerning the rate of disease

progression, the tendency of the disease to be detected

without benefit of scheduled screening examinations. He
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" estimated parameters by fitting his modél Statistically fo
published data on breast cancer. On the basis of the model,

he calculated the benefits of sgreening‘un&er alternati&e'
assumptions about the women screened,bthe number of screens ’

given, and the ages at which the screens are given.

The detection capability of screening tests, which is
one of the main components of deep models, is defined in
terms of true positive and false positive rates. The
probability that a test will detect an existing cancer, or
the true‘positi§e rate, obviously varies with the_state of
development of the cancer. For a cancer that is in its first
week of 1ife and comnsists of only a few cells, that proba-
Bility is almost zero. On the other hand, for a cancer which
isbdecades old with considerable'tuﬁpr size, the true
positive probability is virtually one. Since the state of
development yaries with time, and one of the main purpéses of
a deep model is to analyse time—related problems; it is
desirable to model the detection capability of screening
tests as a function of the state of deVelopment of tﬁe cancer.

However, only in a few models, such as those of Eddy(22’23)

27),

and Shwartz the true positive probabilities vary as the

disease progresses.

Many of the models differ also in the outcome measures

that can be estimated. Some models such as those of

(27) (26)

Shwartz Kirch and Klein estimate the probability of

?

detection before a terminal state such as axillary lymph node
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involvement is reached. Shwartz's(27} model can estimate the
probabilty that a woman will have a recurrence of her disease
(22,23)

whereas Eddy's model estimates the probability that

she will die of a recurrence.

In mahy of the models, there are also differences in
the screening programs that are analyzed. Kirch and Klein(26)
were concerned &ith whether a non-periodic schedule, ievol—
ving the same expected humber of examinations per patient as
a periodic schedule, coﬁ1d~reduce the average time to detect
a given disease; or whether a non—periedic schedule invelving
fewer expected examinations fer paeient could, on the
average, lead to disease detection as early as a given

(26)

periddic schedule. Kirch and Klein show that an optimal

examination schedule which minimizes the expected detection
&elay would be non-periodic, and that the frequency of
examinations would either be approximately or exactly
proportional to the square root of the age-specific incidence
probability of the disease. Thej alse derived optimal
schedules for breast cancer examinations; they found that
optimal non-periodic schedules result in a savings of 2 % to
3 %2 in the expected number of examinations when periodic and

non-periodic schedules have the same detection delays.

(28)

Lincoln and Weiss considered the efficiency of
different’policies for scheduling medical examinations; the

formal problem is to evaluate the effects of random delay

 between examinations on the diagnosis and outcome of the
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disease. They treat both'periodic and random examinations and
allow for imperfect diagnosis depending on how long the
disease has been present. The examination»times-{Ti} form a
renewal process. Their problem, as usual, is the determination
.of an examination schedule that is oétimal in some sense or
if not optimal satisfies certain reaéonable constraints.

They use two different criteria to méasure the effectiveness
of the policy; The_fi;st, and perhaps simplesﬁ criterion that
one can think of involves the setting of a level e<1l, éuch
that no more than a fraction € of those people who eventually
have a tpmor will have an undetected tumor fér more than a
specified time. The second criterion is to require that the
mean undetected time of tumor groﬁth exceed a given time.

(28)

Lincoln and Welss also derived formulas concerning
periodic and non-periodic policies and applied the results

they have found to data on cancer of the cervix.

Another deep model on screening for cancer is given by

(22’23). Rather than being based on a detailed mathema-

Eddy
tical description of pathophysiologic ch;racteristics of the
disease such as tumor size, growth rate, and lymph node
involvement, this model is concerned only with the detecta-
-bility.of the canéer as a function of the age of the cancer
at the time it is detected and treafed. In this model there
are three states: healthy, diseased or sick. The untreated

person proceeds from healthy to diseased and then to sick

where he remains forever. Superimposed on this underlying
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process‘is a schedule of costly tests. The outcome of a test
during the heélthy state can be positive, in which case a
false positive cost is incurred. In the diseased state, the
person is not aware of the disease, and the outcome of a test
while in this state can be negative..But if a test here is
positive then treatment commences and due to earliness of
detection, cure 1is enhanéed. If the process reached the sick
state then the disease becomes apparent to thé person and

there is no need for additional tests.

- As a function of a specified inspection schedule
(22,23) ' : . .

Eddy derived formulas for some quantities of ‘interest
such as the expected number of false positives, the probabi-
lity that the disease will be detected before entering the
sick state and the probabilty of getting sick. One main
assumption, called the progression assumption is used in
deriving these formulas: Once a cancer has grown to the point

that it is detectable by a test, it is always detectable by

that test.

" In many of the models in literature, there exist glso
interesting cost analyses by which the effectiveness of the
screening program can be evaluated. Some of the important

costs considered are the costs of delivering the tests, the
costs of checking by a more definitive work-up, whether a

positive result obtained is true or not.

It is clear that the most important feature of
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deteriéréting models involve the stochastic structure of the
underlying process. Almost all deterioration models in the
literature satisfy a Markovian structure in one form or other.
An excellent account of deteridration models with comntinuous
Markov, continuous semi-Markov, right;continuous Markov,
Markov additive, and general semi—Mafkov sfructures is given

by-Glnlar‘zg).

This review on the studies of deteriorating systems
reveals the novelty of this thesis. In addition to the three-

étate-model examined by Eddy(22,23)’

a model with a countablé
number of states will be treated by déséfibing the deterioration
‘process through a Markov renewal.process which géneralizes
most of the papers surveyed above. Deterministic inspection
policies and stochastic inspection processes will bé examined
offering more generality to literature, since stochastic and
deterministic inspections cover respectively random inspec-
tions and periodic examination schedules. Many formulas will

be derived using Markov renewal theory and evaluations of the

results obtained will be made.
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I1. FORMULATION OF THE INSPECTION PROBLEM

In this chapter the Markov renewal structure of the
deteriorating systém will be explained together with a brief
review of the theory of Markow rénewal processes. Then the
definition of deterministic ihspection policies will be given
and the structure of stochastic inspection procésses.will be
formulated. Finally,-sbmevimportant measures of effectiveness

in the evaluation of inspection policies and processes will

be explained.

2.1. STOCHASTIC STRUCTURE OF DETERIORATION PROCESS

We are interested in a system which detefiorates ovér
time, the deterioration level increasing as time goes on to
reach finally a failing or terminal state. Since the.true
state of the system is not directly observable, the aim of
‘the inspector is to detect the disorder by carrying out some

tests, as early as possible, so that he could somehow find a

remedy for it.

We define Xt as the deterioration level at time t and

call X = {Xt :t 20} the deterioration process.
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X is increasing, has state space E, = EU{A} where

‘ A
4E§{0J”2,“.} and A is an absorbing state called the terminal
s;ate. In medical applicatioms such és screening for cancer,
state 0 corresponds to the caée where tumor is not present,
while states 1,2,3,... correspond to.increasing sizes of the

tumor and state A is a terminal state where it is no longer

possible to cure the disease. Define

T =20, T = inf{t 2 T : X_ 2 X_ }

so. that Tn is the time of the n'th jump and Z is the n'th

stage of deterioration.

The relation between the processes X and Z is .also

given by
; <
Zn 1f Tn £t < Tn+1
X, = (1.1)
A if t 2 sup T
n
n

We now state the main assumption on the stochastic

structure of the deterioration process.

ASSUMPTION (1.1) (Z,T) is a Markov renewal process

where X is the minimal semi-Markov process associated with

it.
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We now include a brief survey of Markov renewal

(30) :

processes as presented in Cinlar . .

DEFINITION (1.1) The stochastic process

(z, T) = {(Zn,Tn) : nEW} is said to be a Markov renewal

process with state space EA provided that

= 1 - < . = 1 S =T <
P{zn+1 j, T T St |z°,...,zn, 1= 3 T Tn=t| zn}

i+l TO,...,Tn} = p{z

for all ngN, jeEA, and teR, , where IN = {0,1,2,...1} and

R}_= [O’w)'

The process (Z,T) is assumed to be time-homogeneous:

that 1is

. = . ) _ S = . . .
P {zn+1 _J’ Tn+1 Tn"tlzn i} Q (i,5,0)

for any i,je EA,teR+, independent of n. The family of
probabilities Q = {Q(i,j,t): i,jEE, teR_} is called a
semi-Markov kernel over E. We assume Q(i,j,0) = 0 for all

i,jeE and defining

oo

P(i,j) = lim Q(l,j’t) lsjeEA

it follows that P is a Markov matrix. Furthermore Z is a
Markov chain with state space E, and transition probability

matrix P. Since X is increasing, the matrix P is upper tri-

angular, that is
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P(i,j) = P{Zn+1 = i | z =i} =0, j £ i, neN

1f P(i,j) = 0 for some_pair (i,j) then Q(i,j,t) = 0 for all
t. We then define Q(i,j,t)/P(i,j) = 1. With this convention
we define G(i,j,t) = Q(i,j,t)/P(i,j), i,j€E, t€R,. Then, for
each pair (i,j) the- function t + G(i,j,t) is a distribution
function of the sojourn in state i given that the next state
is j, since

G(i,j,e) = plr . -T stlz =i, z_ ., =j} igE, EE, (1.2)

This explains the stochastic structure of the (Z,T) process.

‘The increments {T —Tn} are conditionally independent given

ntl
)} and

Zys Zy,... with‘respective distributions {G(Zn, Zn+1"
the Markov chain evolves according to the transition probabi-
lities specified by P. Hence, we can see that the evolution

of the deterioration level X of the reliability system is such
that the sequence of states visited form a Markov chain with
transiﬁion matrix P where the sojourn in a given state has a
distribution whigh depends on the state being visited and the
next state to be visited. Thus the sojourn in some state i has
the distribution G(i,j,.) if j is the next level of deteriora-

tion. This explains the applicability of this model to many

real life situations. For example, it is reasonable to assume

that the stages of a disease, tumor, etc. evolve as a Markov

chain with sojourns satisfying(l.2).

For simplicity of notation we will let Pi{.} denote

the conditional probability P{.IZO = i} and E, be the corres-
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ponding expectation. If we define

n,. . , : . .. ' ‘
Q(i,i,t) = p.{z_ =1, T st} i,J€E,, tE€R,, meN,
Then
‘ . 1 if i =3
o,. . : . .
Q (1’J’t) = I(la'J) =
0 if i# ]
and
1 T
Q" = Q by definition.

Furthermore, a renewal argument'shows that

| . | |
Q™ (i,k,t) = T S Q(i,i,du) Q(§,k,t-u)
: jE€E o ’

and the expected number of visits to state j, by the process
Z until time t, given that the initial state is i, can be

computed by

R(i,j,t) = E;

W™ 8

. : © o ) -
1 =5 < = I Q (13j:t)
{Zn 3, Tn=t} -

0 0

n

where R is called the Markov renewal kernel corresponding to
. Q. Since, in our model, each state is visited at most once by
the process X, the number of visits to any state j, from any
initial state i, is either zero or one. Hence, the expecﬁéd‘

number of visits from an initial state i, to any state j,
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during the time interval [p,t], is nothing but the cumulative
probability distribution of the entrance time to state i,

starting from state i. If we let

) = inf {£20: x_ = j}

denote the time of entrance to state j, we can write
R(i,j,t) = P{Tdst | z, = i} = Pi{TJSt}

The state of the deteriorating system at any time can-
not be determined by simple observation. However, information
about the state of the system can bé obtained by carrying out
some tests, and the results of the tests are only probabilis-
tically related tbkthe true state of the system. The results
of a test is either positive (+) or negative (-), where +

shows that the deterioration level is different from zero,

that is, the system-is in EA\{O}.
Associated with any test time t, we define

1 if test at time t is positive

t 0 if test at time t is negative

We assume that the probabilistic relation between the

true state of the system and the test results can be deter-

mined from statistical data, so that

P{y = 1| X =i} = p, i€E, t 2 0



22

are known beforehand. Note that“po is the probability of a

false positive, and Pi, i€EN{0} is the probability of detec-

ting the deterioration when in state i 21.

Note that the detection probabilities may be taken to

lncrease as the deterioration level increases which implies

This is a reasonable assumption since one cannot always
expect a test to detect a disorder which has just started its
development, while a disorder which has progressed for a long
ﬁime is more likély\to be detected by the same test.,This is

S(22,23) (27)

also consistent with Eddy' models

and Shwartz's
where the true positive probabilities vary as the disease

progresses.

It is also asgumed that a false pésitive outcome does
not interrupt the sequence of tests. Each time a positive
test result is obtained, a more elaborate tesﬁ is.éarriéd so
as to detect false positive results. Hence, inspection and
testing is stopped whenever all inspection times scheduled
are exhausted or when a true positive detection is made,
whichever occurs first.

~

2.2. DETERMINISTIC INSPECTION POLICIES

The deteriorating system as described by the deteriora-

tion process X is such that the underlying state 1is not
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directly observable; so the systenm has to be inSpected.in

order to obtain information about its true staté.

The inspection policies to be analyzed in this thesis
will have considerable generality. They will permit one to
realistically model many new and interesting real-life
problems. They will be appropriate for health screening
problems as well as maiﬁtenance applicétions,_and‘for systems
degrading in time as well as foernes that abruptly fail.
However, most of‘the examples will be related to cancer

screening problems in order to provide interesting and

appropriate motivations.

An inspection policy is an increasing sequence of
inspection times where the inspector has to apply some testé.
These inspection times and - the maximum nﬁmber of in;pections
that have to be perfdrmed are predetermiﬁed by the: inspector,
after considering historical data. For-example, the decision
of a pﬁysician upoﬁ a particular inspection policy depend§
on some specific conditions like age, sex, heredity, environ-

ment, on the results of some preliminary tests and on

statistical data.

To give a formal and mathematical definition of a

deterministic inspection policy as such, let

+ .
...éﬁﬁ HﬁR , i=1l,...,n} n 21

o
A
T
A

T, = {(tl,...,tn) :

be the set of all n-tuples with positive valued increasing
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o]
coordinates and let T = | T_ be their union. So any element
n=1
t = (tl,...,tn) of T is an inspection policy or a schedule

since it belongs to one andvonly one of the,Tn's where n is
the maximum number of inspections that can be performed and
the coordinates of the n-tuple represént the corresponding
inspection times. In other words ts is the time of the i'th
inspection. For notational convenience we will represent an
inspection policy or a schedule & = (tl...,tn)'et by a right-
continuous step function s(.) which increases by jumpévof

size one only defined on R, by

0

s (0)

_ (2.1)
s(t)

sup {n: tn.gt}’ t

w
o

Note that s(t) is the total number of tests scheduled until
time t. We also define s = sup s(t) = lim s(t) as the total

‘ t t>oo.
number of tests scheduled. It can eadasily be established that
any element t = (tl,...,tn) €T can represent a step function
s(.) as described in (2.1). Similarly, if S the set of all
right-continuous positive valued step functions s(.) on R

and increasing by jumps of size one only with s(0) = 0, then

for any s€S, we can find the corresponding element

t = (tl,...,tn) €T by defining recursively
t =20
)
= 1 4 * —_ k < o]
sl inf{e>e, @ s(t) s(t=)}, s ()

So, in the following chapters a deterministic inspec-—

tion policy will be represented by a step function s as
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described‘above and the necessary calculations will be

carried out accordingly.

2.3. STOCHASTIC INSPECTION PROCESSES

In general, tpe examination or inspection schedule for
the deteriorating system is prepared deterministically by the
inspector as explaihed in the previous section. However, in
some cases the inspection times may be random so that the

~patient decides on thé time of the inspections in some
probabilistic way possibly depending on many social, psycho-

logical and environmental factors.

Let V,, V,, V3,;.. be random variabies representing
the times of afrivals in an arrival process S = {s,: t 2 0}
where St is the numbér of arrivals until time t. The
stochastic pfocess S is called an inSpection process where
Vi V2, V3, ... correspond to random inspection -times. The
stochastic structure of S may depend on the state of

deterioration and on time so that the conditional distribution

is given by
p{s ., -S,_ =k|X_ =X =i} = h(j,t,u,k) (3.1)

‘where h is a distribution function in k for fixed j, t and u.
As it can be seen from (3.1) the distribution of the process
S depends on the state of deterioration j, and on the time t

where the dependence on t shows the non-stationarity of the

process.

sl DNIVERSITESY VTUPHANESE
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If we assume the function h(j,t,u,k) takes on the

following form

e PULEW s Lk
k!

h(j,t,u,k) =

then the random inspection times constitute a possibly non -
stationary Poisson process with an expectation function

~depending on the state of deterioration.

The following special cases where

b(j,t,u) = Au | (3.2)
b(j,t,u) = b(t,u) : (3.3)
b(i,e,u) = A(i)u | (3.

canrbe-considered.Note that (3.2) and (3.3) correspond to
stationary and non-stationary Eoisson processeé respectively.
Non-stationary inspections are more realistic than stationary
inSpecﬁions,_especially when we think in terms of medical
applications. The random visits of an individual to a
physician may depend on so many differeﬁt factors that the
rate of these visiﬁs cannot be assumed constant. For example,
a perfectly healthy looking woman, 40 to 45 years old, may
want to have a breast cancer examination (mammogram for
example), and starting from that time may continue to have
screening examinations at randomly chosen times depending on

many factors such as her psychological state or her environ-

ment.
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The case where the rate of inspections depends only on
the state of the system as in (3.4) is also realistic since
it is logical to assume that a person who does not feel well

will visit the physician more frequently than a person who is

in perfect health.

2.4, MEASURES OF EFFECTIVENESS TO EVALUATE INSPECTION

POLICIES AND PROCESSES

Having specified the model, the next step is to
compute various measures of interest so that deterministic
inspection policies and stochastic inspection processes

could be evaluated.

We consider TA, the time of entrance to the failing

" state, so that
8 = inf {t 2 0: X_ = A}

and we let D be the minimum of TA and the time of the first
true positive test result, that is

\ A
D = inf {tiet: Xti > 0, Yti = 1} AT

where t = (tl’°"’tn) is an inspection policy.

~

An important evaluation criterion for any inspection
policy or process is Pi{D<TA} since this is the probability
that the testing strategy will detect deterioration before

catastrOphié.failure given that the initial state is i. More-
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over, Pi{XD = i}, 21 is also an important measure since it
!

yields the distribution of the state of the system at the

time of detection given that the initial state is 1i.

The probability distribution of the earliness of the
detection of the deterioration, given that the initial state
.. { A o ‘ .
1s 1, Pi T -Dst}, or the expected value of the earliness,
given that the initial state is i, Ei[TA—D], are also

important evaluation criteria for inspection policies or

processes.

Finally, the last measures of effectiveness to be
mentioned are on the economics of a strategy. They concern
the expected number of tests performed and are denoted by
AUREACREENCANENCSS BEA BN R A

N N
b b b b
F,> "F_* T, T

of tests performed, the number of tests with positive, nega-

" where N, N+, N , N denote the total number
tive, false positive, false negative, true positive, true
negative results reSpectiver. We also note that the expected
number of tests with true positive results is nothing but the
probability that a true positive detection is made before
catastrophic failure so that
. = P.{D < T
\El[NT+] P {

In the following chapters, some of the measures of
effectiveness mentioned above will be computed for deter-
ministic inspection policies and stochastic inspection

processes.
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I11, ANALYSIS OF DETERMINISTIC INSPECTION POLICIES

In this chapter, deterministic inspectién policies
will be considered and computational formulas on the totalv.
number of tests performed, the number of tests with positive,
negative,'trué positive,vtrue negative, false positive. and

false negative results will be derived.

3.1. EXPECTED NUMBER OF TESTS

Let s be a deterministic inspection policy so thatv
the maximum number of_tes;s s that can be carried out and the
times when they have to be performed, are known with certainty.
Since testing_stops when a tfue positive detection is madé,
the total number of tests performed will be less than or equal
to s; in fact if the initial state is zero, and all the tests

are scheduled, before Ty, time of the first jump, then exactly

s tests will have to be performed.

We shall first compute £(j,m), the expected number of
tests during a sojournm in state j, given that the total
number of tests scheduled during that sojourn is m. Note that

£(j,0)=0 for all j, and £(A,m)=0 for all m since no tests are
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performed once state A ig entered. For m 2 1

£GG,m) = E[Np ;- Mg | 2= 3, s(T_

+1) - S(Tn)-= uﬂ

where Nt denotes the total number of tests performed until

time t. We can easily see that, for a non-zero state ji>0

PINT q = Npy = k[Z) =4, s(T ) - s(T) = n} = Pj(l—Pj)k—l
for k = 1,..,.,m - 1, and

: D - = = 3 : m—-1
PUNLyq ~ Npy = w2 =3, (T ,0) - s(T) = m} = (1-?,)
Then
' y ' w1 k-1 m-1
E[Ny - Nr, 02 =3, s(T_, ) -s(T) =n] = R e )
Letting l—pj = qj, we obtain

. ) . m-1

‘ - = i - = = k-1 m-1 _ m
E[NTn+1 N |z §a 8T ) -s(T) m] P k§1 a5 +mgy = (1)) /P

so that £(j,m) = (1—q?)/pi for j > 0.

If the initial state is zero, then all the tests ////////7

scheduled for the sojourn in that state have'to/pe/performed

e

: . » . /
because of the fact that a false p051t129/resu1t does not

e

stop the testing procedure; so thét*”"
f(osm) = M.

Hence

£(j,m) (1-q™ /P, if i >0
: b (1.1)
m if j =20
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Let N be the total number of tests performed, then N

can be written as

0 (NTn+1 - NTn),

2
]
I ™ 8

n

so that, for all igE

‘ 0
Ei [N] = I Ei[NTn+1 = Nt ]
n=0

n (1.2)
where
Ei[NTn+1 B NTn] - EiEiINTn+1 - NTn|Tn’ Tn+1? Zn]]
= E, [f(zn, s(T_,1) - s(Tn))]
= £ fQ"(i,j,dz) S F,(du)f(j,s(z+u)-s(2))
i€E o o 3 .
'where
F.(w) =P. {T, £u} = ¢ Q(j,k,u) for jJEE,
A
Now, from (1.2)
B[N = I £ JQ%i,i,d2) [ F, (awE,s(aru)-s(2))
* n=0 j€E o o 1
But since I Qn(i,j,z) = R(i,j,z) we finally obtain
n=0
Ei[N] = I JR(,j,dz) S Fj(du)f(j,s(Z+u) - s5(z)) (1.3)

jEE o o

for any igE.
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3.2. EXPECTED NUMBER OF TESTS WITH POSITIVE RESULTS

We shall first compute f+(j,m) defined to be the
expected number of tests with positive resﬁlts, during a
sojourn in state j, given that the total number of tests
scheduled during that sojourn is m. Note that f+(j,0) = b

for all j, and f+(A,m) =0 for all m. For m 2 1

. + + '
£,.G,m = E[NTn+1 -8, |2 =3, s ) ~s(@) =u]

n

+ * 3 .
where Nt denotes the total number of tests with positive
results, performed until time t. For a non-zerxo state j > O,

we can obtain either one positive result or none, so that

P{N;n+1 - N;# = 0|Zn = j, s(Tn+1) - s(Tn? =>m} = (I—Pj)m = Q?
and

?{N;n+l - N;n =1{z = i, S(Tn+1) - s(Tn) =m} =1 - q?
Then |

E@iﬁl’NillZn=j,5@md)—50%)=ﬁy=lﬂ€
so that f+(j,m) = l—q? = pjf(j,m) for j>0.

If the initial state is zero, then all the tests
scheduled for the sojourn in that state have to be performed
and a positive result is obtained with probability P,

Hence, this becomes a Bernouilli process with success
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probability P, so that

f+F0:m) = p,m = pof(O,m)
Hence
1-q7 - if  j>0
. ) J
£,G,m) = piE(i,m) = (2.1)
- P o if j=0

If N is the total number of tests performed with positive

results then

‘and carrying out the same calculations as in the previous

section we obtain

E;(N] = I SRGE,i,d2) S F @£, (§,5(z+u)-s(2)) (2.2)
: JEE o o

for any 1gE.

Note that if the initial state i is non-zerxo, then the
expected number of tests with positive results, Ei[N+]’ and
the expected number of tests with true positive results,
Ei[NT+] are the same, since é}positive result obt;ined in a
non—zero state is in fact a true positive result. Hence
fT+(j,m), the expected number of tests with true positive
results, during a sojourn in a state j, given that the total
numbervof tests scheduled during that sdjourn is m, is equal

to f+(j,m) for j > 0, and fT+(0’m) = 0. So
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£ (j,m) = (2.3)
+
: 0 if - §j=0

As a result, Ei[NT+J = Ei[N+] for 1 > 0 and using (2.3)

we can write

Ei[NT+_ = L [R(,j,dz) [ F.(du)fT+(j,s(z+u) - s(z)) - (2.4)
Jj€E o o 7 -

for any i€E.

Note that false positive results are only obtained if
the initial.state is zero..So, letting fF+(j,m) be the .
expected number of tests with false positive results, during
a sojourn in state j, given that the total number of tests

scheduled for that state is m, we can easily deduce that

0 if  j>0
RACED £5(i,m) if  §=0
so that
0 if - §>0 :
fF+(j,m) o e ge0 (2.5)

Clearly Ei[NF+] =0 if i > 0 and using fF+(J,m), we

can write

Ei[NF ] = T R(i,j,dz) [ Fj(du)fF+(j,s(z+u)—S(z)) (2.6)
+ jEE o o

for any igE.
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3.3. EXPECTED NUMBER OF TESTS WITH NEGATIVE RESULTS

If the initial state i is non-zero thenm the expected
number of tests with negative results, Ei[N:], and the
expected number of tests with false'negative results,'Ei[NF ]
are the same, since a negative result obtained in‘a non-—zero
state is in fact a false negative result, Moreover, since the
only true negative results are obtained in the interval

[O,Tll when the initial state is zero, then

Ei[NT ] f 0 for i#0

We shall first compute as usual, £.G,m), £ (G,m),
fT‘(j,m).the expected number of tests with negative, false
negative, true negative results respectively, during a sojourn

in state j, given that the total number of tests scheduled

during that sojourn is m. We can easily see that, for a non-

zero state j>0.

- - . ' ~ K
P{NT - N, = k[anJ, S(Tn+1) - s(Tn) m} P4d;
n+l n

- for k=1,...,m-1, and

- - . - = - m = .m

P{NT - N, =m|zn=3, s(T_,) s(T ) m} = (1 pJ.) 4
n+l n

where N; denotes the total number of tests with negative

results performed until time t.



Then

m-1 X o
P. % kq. + mq.
J k=1 J J

Tn+1

E[N

- N'Enlzn::j’ S(Tn+1) - S(Tn) = m]

m
(qj/pj)(l qj)

so that £_(j,m) (qj/pj)<1éq?) = q;£(j,m) for j>0, JEE.

Clearly, f,_(j,m) £ (j,m) if  j>0,

and

£ (i,m) =0 -~ if  j=0.

If the initial state is zero, all of the tests
scheduled for the sojourn in that state have to be performed

"and a negative result is obtained with probability q- Hence
f:(Q,m) = q.m = qof(O,m)
Clearly fT (0,m) = £_(0,m)

and

fT (j,m) = 0 for j>0 -

Hence, we have shown that

m o .
@l A=) if $0
f_(j ’m) = qu(j ,m) = (3 . 1)

q,m
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(qj/Pj)(l—q?) if >0

fp Ghm) - - | (3.2)
0 if  j=0 ‘

[

£p Gom) =~ (3.3)

Then by similar calculations as in the previous sections we

obtain
Efn] =z T RGi55d2) fF @ E_(§,s(z*u)-s(2)) (3.4)
) JEE o o . .
E [N, | = I JRG,i,d2) f P, (du)f, (J,S(z+u) s(z)) (3.5)
T jE€E o . o
Ei[NT ] = ¢ TR3,j,dz) f F (du) £, (J,s(z+u)—3(z)) (3.6)
B jEE o .

for all i€E.

Note that, for notational simplicity, the results in
(1.3), (2.2), (2.4), (2.6), (3.4), (3.5), (3.6) can be

combined in a single identity as

E[N] = ¥ [ R(i,j,dz) f F (du)f (J,s(z+u) - s(z2)) (3.7)
1tk
JEE o

where kg {wo, +, T F., -, T_, F_} with

N_ =N and £_(j,m) = £(j,m)

o]
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So, as it can be seen in (3.7) all the previous
results can be summarized in a compact form. Note that the
results obtained in this chapter have conéiderable imporfance
from an economical point of view, since eéch test pefformed

has a particular cost.
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IV. ANALYSIS OF STOCHASTIC INSPECTION PROCESSES

In this chapter, we will consider stochastic>inspection
processes in general and extend the results obtained for
deterministic inspection’poiicies to stochastic case. Since
the steps in the dérivation'of some of the formulas are
éimilar to the ones of Chapter III, only the important points
will be emphasized. Special cases of stochastic inspection
processes which are stationary and non-stationary Poisson

processes will be comnsidered.

4.1. EXPECTED NUMBER OF TESTS

Let S = {S : u 2 0} be a stochastic inspection
u

process for which

P{St+u - St = let = Xt+u = j} = h(j,t,u,k} where
h:E x R_x R x N+ [b,l] is a distribution function in k for
fixed j, t and u. Here S, is the total number of tests
performed until time t, and in medical applications for

example, it represents the stochastic behavior of the visits

of an individual to a physicianf
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We will first compute £(j,t,u) or the expected number
of tests performed during the time interval [t,t+u) given
that the deterioration level is j during the same time

domain. Hence.

£(j,t,u) = E[ﬁt+u.- Ntl X, = X, = j]

From the previous chapter we know that

S -5
t+tu t
1—qj
E[Ntfu_Nt|Xt=Xt+u=J_’S]=—_}T
for a non-zero state j, and hence
© 1-q. )
. _ B - o s j .
f(J,t,u)_— E[Nt+u ;Ntlxt Xt ta J] E 7 h(j,t,u,k)
k=0 *j
If j=0, then it is clear that
o]
£(0,t,u) = I k h(0,t,u,k)
k=0
As a result,
o 1—q]L.c
y —3 n(j,t,u,k) if  i>0
k=0 Pj
£(GLt,u0) = | o |
£ k h(0,t,u,k) if  j=0
k=0 ) .

So, the expected number of tests performed, Ei[N], for any

initial state i€E, can be computed as follows.
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[sv)
E (8] = = E[N., -N
* n=0 l[ Tn+1v Tﬁ]

o0
L K5, [NTn+1 - NTn[zn]]

n=0
= n-.z-.o ElfG, 1,1, - 1)]
=L I an(.i:J',dt)-fF.(du)f(j,t,u)'
n=0 j€E o o ] 4
Hence
E-[N = 3 SR(i,§,de) S OF.(dw) £(j,t,u) (D
" . J
~JEE o o ,

for any i€E.

4.2. EXPECTED NUMBER OF TESTS WITH POSITIVE RESULTS

The analysis made in the preceeding section can be
duplicated to obtain the expected number of tests with
positive, true positive and false positive results. We shall

not present proofs to avoid repetition.

Defining £ _(j,t,u) , £r,(i,t,u), and £y _(j,t,u) as the
expected number of tests during [t,t+u) with positive, true
positive and false positive results respectively given that

Xe = Xt+u = j omne can obtain
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f'l'(j’t’u) = pjf(j ’t:u)

£,.G,t,0) if i>0
£, (3,t,u) =
T+ ? b
0 if j=0
0 if j>0
fF+(j,t’u) = . '
£,(0,t,u) if j=0
and that
«© =)
.Ei[hkv = L [R(i,j,dt) f Fj(du)fk(j,t,u) (2.1)
-~ JEEo o ’

for ke{+, T,, F+}

4.3. EXPECTED NUMBER OF TESTS WITH NEGATIVE RESULTS

To find the expected number of tests with negative,
true negative and false negative results one can simply

define

f_(j,t’U) = ij(j,t,u)

. 0 if ji>0
fT (j,t,u)
- f_(O,t,u) 1f j=0
£ (,t,u) if  j>0
fF (j,t,u) =
- 0 if §=0

and the end result for the case of stochastic inspection

processes can be summarized as



Ei[Ngl = I JR(,j,d0) [F (@w £ (,t,u0)
JEE o 0.1
for all  k€{w, +, -, T, T_, F_, F_}

+?

2

where N_ = N and ?m(j,t,u) = £(j,t,u)

4.4. SOME INSPECTION PROCESSES
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(3.1)'

An important and interesting inspection process can be

obtaiﬁed‘by assuming that S is a conditionally and possibly

non-stationary Poisson process given the deterioration:

process X. This implies that h must be of the form

_ e"‘b(j,t,u) (b(j,t,u))k .

h(j,t’u’k) k!

In this special case the functions fk(j,t,u) for any

T F

ke{m, +, =, T_l_a - T4

k : '
o 1-q. —b(J,t,u)(b(j,t,u))k) if. j>0

I (DE o
. . =0 i )
f,(j,t,u) = i I
oo | - .
D ke b(o,t_,uz (b(O,t,U.))k if 3=0
So, o

fco(j ,t,u) =

b(0,t,u) if  j=0

F_} take on simple forms. For example,

(3.2)
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Similar expressions can be obtained for the functions

£.0,t,0), kel+, -, 1, T_, F, F_}.

Note that if b(j,t,u) = b(t,u) independent of the

state of deterioration j, then S is 'a non-stationary Poisson

process. Similarly, if b(j,t,u) . = Au independent of j and t,

then the inspection process S is an ordinary Poisson process

with rate A. As an illustration, we present for this case the

expected number of tests with true positive results.

So

Hence

and

Now, in Chapter V we will

in this an

if .b(j,t,u) = Au  then
1_e—iju if ji>0
£p (G,e,u)
v 0 if §=0
o2} o« k .
E N, ] = I JR(,5,d8) JF, (du)(l-e PiYy
B JEE o o 3

E [N
0[ T+] JjEE o o

L JR(0,],dt) S Fj<du><1-e'kpju) i,

if 1i>0

s Fo(du)(1-e'*Po“)
o

This concludes our analysis of inspection processes.

policies or processes.

use some of the results obtained

d in the previous chapter to evaluate certain
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V. EVALUATION OF DETERMINISTIC INSPECTION. POLICIES
AND STOCHASTIC INSPECTION PROCESSES

In the preceeding chapters, various‘formulas were
derived to compute expected number of tests to be performed
for deterministic inspection policies and stOghastic inspec-
ﬁion processes. Of course, it is iﬁportant to know how and
where thesé results can be used. In this chapter, applications
of the results obtained will be illustrated with many
examples, and measures of effectiveness other than those on
the number of tests will be comsidered. Numerical examples
will be solved for some interesting cases. It should be
mentioned that our aim in this thesis is to ‘evaluate deter-
ministic inspection policies and stochastic inspection
processes and not to deal with the optimal inspection problem.
Therefore wé will 6n1y.menfion how our results can be used

rather than work on a general optimization problem.

5.1. SOME IMPORTANT MEASURES OF EFFECTIVENESS

Perhaps the most important measure of effectiveness

for inspection policies is the probability that a true positive

detection is made before catastrophic failure. We have seen
that this probability is nothing else but the expected number

of tests with true positive results, or

Pi{D<TA} = E. [NT*:[
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for any initial state i€E. So, given the total number of tests

that can be performed one may be interested to find the

" optimal schedule which maximizes P.{D<TA}.
i

An economic model can be constructed where ¢ is the

cost of each test performed, c; is the cost of each false

positive result obtained and < the cost of catastrophic

failure. The objective here may be to minimize the total

expected cost C, where

E;[N] + c.E, [N } (1-E, [y ]
by choosing an inspection policy.

The probabilty distribution of the state of the system
at the time of detection, the distribution function of the
earliness of detection and the expected value of the earli-

ness of detection denoted by

_: A_ A_
p. (3=}, P {T -pst}, E; [1°-]

respectively are other measures of effectiveness that have
considerable importance since they concern the time of the
true positive detection and the state of the system at that

time.
5.2. MODELS WITH SINGLE INSPECTION

This section will be devoted to the analysis of the
case where the inspector is limited with ome inspection. In
other words, he can perform only one test to obtain

information about the underlying state of the system.
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5.2.1. A General Model

If initially there is no deterioration or X =0, then
Séheduling the test too early will not be desirable since the
. chance to detect a possible deteriotration will Be lost. More-
over, even if the:initial state is non¥zerd, scheduling the
test at time zero, cannot guarantee that the disorder Vill
céftainly be detected since there is always a probability of

obtaining false negative results.

To anaiyie the problem with single inspection,at a

time t, let s(u) be defined as:

s(u) = : , (2.1)
1 uzt . -
Hence, only one inspection is available at time t

which determines our inspection policy.

We will first simplify the expression'for the expected
number of tests with true positive results -when s(.) has the
form given in (2.1). In Chapter III, Ei[NT;l was found to

have the following form:

. [oe) o
g v, ] = £ JRG,j,d2) S F (du) £, (§,s(z+u)-s(2))
1 T . J T+
+ jEE o o
where .
1-q; j>0
£, (G,m) = .

Note that s(z+u)-s(z)=1 if and only if z€(0,t) and

ue(t—z ,°°) . So,
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. t : bt
bli,e) =B [N, ] = 5 S RG,j,dz) S £, (i, 1)F, (dw)
+ JEE o t-z "+ J
t
= L S R(i,j,dz)(1-q.)(1-F.(t-2))
JEE o : J J
t -
= ¥ J R(i,j,dz)p.F.(t-z) (2.2)
JEE o 33 -

where §j(u) = l—Fj(u).

The expression for EO[NT ] will be different since

£o (0,n)=0. One can easily see that
+

. t
h(o,t)=E0[NT 1l = © [Rr(0,j,dz)p.F. (t-2) (2.3)
+ JEE_ o 13 S

WhereiEo=E\{0}.
Now letting Rij(u) = R(i,j,u)

and assuming R,: and Fj are differentiable with respective
derivatives 53 and £. we can find a necessary condition which

has to be satisfied by t to maximize Pi{D<TA} by differen-

tiating h(i,t) with respect to t.

t .
dh(i,t)/dt = I p,r..(t)- L J p, R(i,j,dz)f, (t-z)
jee 3 jeE o ’

for any initial state i>0.
Therefore setting this expression equal to zero we

obtaln
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t*
T p.r..(t*) = 3§ [ .-
. p; R(i,j,dz)f, (t*- h t*
JEE J 1] jeE o i 23 i Z).W ere

denotes the value of t which maximizes P.{D<TA}
i

Since rij(t) = 0 for j<i, we 'let p! = p./ & Pk’j>i

I k>i
Clearly
L pi=1, and we get
j>i
t* ' ‘
' pfri.(t*) = L J p! R(i,j,dz)f.(t*-2) (2.4)
i>i i>i o 3 . ]

Now, rij(t) can be interpreted as the probability that the

time of entrance to state j is t if the initial state is ‘i,

or
A i_
€ .
and S R(i,j,dz) fj(t—z) can be interpreted as the probabi-
o

1ity that the time of exit from state j is t given that the

initial state is i. Let U3 be the time of exit from state

j, then

t . A ‘j
i) R(i,j,dz)fj(t—z) = Pi{U =t }
(o]

and (2.4) can be written as

: p! e lri=ex} = 1 p! P{ul=ex) (2.5) -

. j i .
JGEi JeEi‘

for‘any ﬁon—zero initial state i, where Ei=E\{0’1""’i}f
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Clearly (2.5) is a mixture of probability density

functions. So, the necessary conditions to be satisfied by

t* can be written as

Pi{TK=t*} = Pi{UK=t*} (2.6)

where K is a random variable satisfying
P{r=j} = p! jEE, .
] PJ JeEl

Note that the expression obtained in (2.6) will also

be the same if the initial state is zero.

Rougﬁly speaking (2.6) implies that the inspector has
to éhoosg a fandom state K and schedule the test at a time
where the system is in that state. Hence, a necessary
condition for a time t* to be optimal, is that it has to be

a time where the system should be in that random state K.

This optimization problem requires further research
since one needs assumptions on the structure of Fj(') and

R..(.) to make characterizations on t*. We will study a
ij :

special case in section 5.2.2 where we will investigate the conditions

necessary to make (2.6) a sufficient condition of optimality.

In the general model with single inspection the

expressions for Ei[Nl, Ei[N+], Ei[N—]’ Ei[NF+1, Ei[NF ],

Ei[NT ] can be simplified as
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t
B [N] = I S RG,i,d2) F, (e=2)
~ JEE o ]
- 1 J
E.IN.{= I J p. R(i,j,dz) F.(t-
iV ieE o T3 j,dz) FJ(t z)
- t
Ei[N_]= L[ q, R(i,j,dz) F.(t-2)
jEE o I ]
0 i>0
E. [N ] = |
1 F+ 7 (t) .
Py "ot 1=0
t B -
L J q. R(i,j,dz) F.(t-z) . i>0
jJEE o T J
EI[NF_] = t
2 [ q. R(0,j,dz) F.(t-z) i=0
jEE_ o ] ) J
[ ] 0 1>0
E. |N = :
1= T - o =
quo(F) 1=0

An optimization problem can be modeled to minimize the
total expected cost. Recall that cP is the cost of perfofm—

ing a test, Ce the cost of obtaining a false positive and c,’

the cost of catastrophic failure, with cp§cf§cv. Then the

total expected cost c(i,t) where i is the initial state and
t the time of the single inspection, has the following form.

CpEi[N]+CV(1-Ei[NT+]) B i>0

Ce(i,t)= .
cpEo[N]+Con[NF+]+C\)(1—E0[NT+])’ 1=0

(2.7)
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By differentiating c(i,t) with respectvto t and sett-
ing the derivative equal to zero we obtain the necessary

condition to be satisfied by optimal t*.

/ t
~de(i,t)/dt = L (c - Jr.. _ _ . o i
c(i iex p CVPJ)rlJ(t) jéE (cp cva) g R(1,J,dz)fj(t z)

so that dc(i,t)/dt = 0 implies

pX (c -c p.)P.{Tj=t*} = I (c_ -¢c p.)P.{Uj=t*}(2 8)
. p Vvijili S p Vil )
JeEi JeEi

for 1€E0.

For i=0, a similar analysis yields the foliowing

necessary condition to be satisfied by t* which minimizes the

total expected cost.

i_,. . i
z (cp—cvpj)Pq{TJ=t*} = 7 (cp- v?j)Po{U =t*} (2.9)

JEE, JEE,

The similarity between (2.5) and (2.8) should be
pointed out. Note that if cp=0 then (2.5) and (2.8) are the

same. Otherwise, assuming cp<cvpj, for all jEE we can take

1 . -
p! = (e.p.-c )/ L (c,p.-c )

so that (2.8) reduces to (2.5). The assumption Cp<Cij for

all jEE_is a logical assumption since it implies that the
o
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cost of catastrophic failure cv'is so great that it remains

bigger than Cys the cost of performing a test, even when it

is multiplied by pj the probability of getting a true -

- positive result.

‘Note also that, Ceo the cost of a false positive
result éppears only in (2.9) which gives the condition to
be satisfied by t*, if the initial state is zero, since one
cannot talk of a false positive outcoﬁe»for a non—zero- .

initial state.

5.2.2. A Simplified Model

In this subsection we consider a simplified model

where Ep = {0,1,A} . with
0 1 O
P = 0 0 1
0 0 1

A typical sample path of the process X is given in

Figure 1 where

T, = inf{tZO:Xt=l} s TA =inf{tzo:xt=A}

are the first passagé time to states 1 and A respectively. It

follows that
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£4
A+
1+
0 % i —
1 A

FIGURE 2.1. A Typical Sample Path of X.

This model is similar to the one examined by

y 22,23 . .
Eddy( ,23) with state 0 being the healthy state, state 1 the
defective state and state A the state where the sickness
becomes evident. From the transition matrix P of the process,

we can see that only state 1 can be reached from state 0O, and

state A is to be reached from state 1.

We let
F(t) = R(0,1,t) = Po{Tlst}
c(t) = R(1,A,t) = Pl{TAét}

: . A .
be the distribution function of T1 and T  respectively.

If we let t be the time of inspection, then (2.3) reduces

to
: t
EO[NT+}=_£ D, R(0,1,dz) (1-G(t-2))=p F*(1-6) (£)  (2.10)

Now, assuming that F is differentiable with derivative
b

£, (2.10) implies .that the necessafy condition of optimality.

is
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t%
f£(t*) = [ f(u)g(t*-u)du
)

(2.11)
which can be intérpreted_as
= * = = ‘
P{T =t*}=p{T, =tx}

~and this is a special case of (2.6).

We next present a theorem which gives the properties

to be satisfied by £ and G so that (2.11) becomes a sufficient

condition of optimality.

THEOREM . (2.1). If f is a unimodal differentiable function and

G has increasing failure rate (IFR), then F*¥(1-G) is unimodal.

Proof. By the differentiability of f we can write

t
d(F*(1-¢) (£)/dt) = SE£'(u) (1-G(t-u))du
o
t .
= J £'(u)K(t,u)du
5 ,
1-G(t-u) ust
where K(t,u) =
. 0 u>t

K is totally positive of order 2(TP2) since G is IFR by our
assumption. Moreover, unimodality of f implies that £' changes
“sign frbm plus to minus so that by the variation diminishing
'propertf.(F*(l-G))' also changes sign from plus to minus.

This clearly implies that F*(1-G) is unimodal and that

F*(1-C) '=0 has a maximum value.
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Thereforg, under the assumptions of the thedrem, (2.11)

is both necessary and sufficient for optimality.

As a numerical applictaion if F and G both have the

exponential distribution

F(t) = 1—e_-at

G(t) = 1-o Pt

with rates a>0 and b>0 respectively, then optimal t* can be

obtained by solving (2.11) as
t*¥ = (1/a-b) 2n(a/b) : » (2.12)
for a # b, and if a = b then,

lim (1/a-b) &n(a/b) = 1/a
bra
so that t* = 1/a which is the expected time of the first

jump or the expected time at which the disorder starts to

develop.

The computation of the probability distribution and
mean of the earliness of detection can easily be made for
this simplified model. We first compute

P {TA-D§z, D=t} where t is the time of the scheduled inspec-
o

tion.




A
P {T7-Dsz, p = ¢t}

t
P, /
[o]

It is clear that

Pl Po

p1 P0

57 -
P {TA-D§Z|D=t}P {D=t}
(o] . o

P {TA§z+t|D=t}P {D=t}
o : o

A '
P {1% X =1, Y. = X =1,Y =
olT sz+e X =1, ¥ =1}p_{ (=1,Y =1}

{tlsz+t, T1§t<TA}

{T1§t, t<TAéz+t}

F(du)(G(z+t-u)-G(t-u))

PO{TA-Dgz}=PO{TA-D§z,D=t}+P0{TA—ﬁgz,D=TA}

and since

P {TA
o .

we obtain

A _
PO{T -Dég}—pl

[\

-D&z ,D=T

By

.S
=P0{D—T }=

[o}

=P{TA—D§Z|D=TA}P {D=TA}
[o] (o}

1-PO{D=t}=1—p1 F*(1-G) (t)

t
/ F(du)G(z+t-u)-p; F*G(£)+l-p, F*(1-G) (¢)

t
1--p1 F(t)+p1 J F(du)G(z+t-u)

(o)

1—p1
o

t
i) E(du)(l—G(Z+t-u))
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Now, the expected earliness can easily be computed as

A ©
EO [T "'Dl'_- J PO{TA-D>Z }dz
o .

t ©
Py J F(du) J (1-G(t+z-u))dz (2.13)
0 o '

Another objective in the optimal inspection problem
may be to find an optimal t which maximizes EOLTA-D]. _
Differentiating (2.13) with respect to t, and setting the

derivative equal to zero we obtain
(%) = (F*(1-6) (£%))/m (2.14)

o« .
where m = J (1-G(t))dt = E[Tz-Tll, so (2.14) is the
. o ‘ v
necessary condition of optimality to .be satisfied by t*

"which maximizes Eo[TA—D].

.Note that although (2.11)Aand (2.14) are different,
we obtain the same t* given by (2.12) when F and G are both

exponential functions with rates a and b respectively.
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5.2.3. An Extended Model

In this subsection we take B, = {0,1,2,...,M—1,.M}
where state M = A is the terminal state, and P(i,i+1) =1 so
that the stages of déterioration increase detefministically
to the adjacent state. Letting Tl’ T2, e vy TM'represent the

times of the jumps to states 1, 2, ..., M we assume that the

interarrival duratioms T T

1° Z—Tl’ T3—T2,v..., TM—TM_lnare
independent with distributions F s «es FM-l respectively.
Moreover, the distribution of Tk is for any k. =1, 2, ..., M
G = Fo*er#Fy g

We can easily show that

. P (G (B)-G . (£)) \ (2.15)

=
i e I
-

p {p<T,} = EO[NT+] = .

where t is the time of inspection. Then a necessary condition

to be satisfied by optimal t* maximizing (2.10) is given by

M-1 M-l .
I p g (t*¥) = ¥ p. g (t*) (2.16)
k=1 © K k=1 K K*l

- where g, (t) = dG (t)/dt k=1, ..., M-1

Then, (2.16) can be rewritten as
PO{TK = tk} = PO{TK+]_ = t“}_ (2.17)

where K is a random variable satisfying
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P{k = j} = P' 1 =1, » M-1
M-1
p: =p./ L p
J I g=1

Note that (2.17) is a special case of (2.6).

5.3. MODELS WITH MULTIPLE INSPECTIONS

In.these models, there are n inspections available at
times Eys +ees t , SO that the deterministic policy s(.) can

be written as

( 0 | u < t1 ‘
1 t, $ u< t

s(u) =

v

t
n

n u

It follows from III.(3.7) that E [N, ] for

kg{x, +, T,, F_, -, F_, T_} can be written as

0 . [o0]
Ei[Nk] = I [ R(i,j,du) [F.(dz) £ (§,s(z+0) - s(2))
jeE 0 o
n-1 n t +1
= I T R R(1,j,du) £, (§,0-m) (F.(t2+1—u)—F.(t2—u))
€E m=0 Lemtl ] J
(3.1)
where t, = 0 and tep =

We now consider the model of (5.2.2) under the assump-
tion that only two inspections are available to the inspector.

Hence
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1
s(u) = 1 ty < u < t,
1 >
2 u 2 t2

and the inspector has to choose two inspection times t1 and
t, so as to maximize the probability of detecting the disorder

before it becomes evident.Using (3.1) we can se that

o et Byl- 2 1 @, Qi |
P {D< =E N, | = X I STFWE, (L,8-m) (6(t, . -u)-G(t,~u))
o o-'T, =0 Lem+l e T, 2+1 L
= [F(du)p,(G(t,~u)-G(t,-u)) +/ F(du) (1-q)) (1-G(t;u))+/ F(dw)p, (1-6(t5u)
o T ) t
_ 1

§= Py (F(£))-F4G(t))+F*(1-6) (£,) ~p;/ F(du) (1-G(tzu)))
| o
'So, letting h(tl’tz) = PO{D<TA} we obtain

- t ,
h(tl,t2)==P0{D<TA} = pl(F(tl)—F*G(tl)+F*(1—G)(tz)—plilF(du)(1—G(t§u))) (3.2)

The necessary conditions to be satisfied by optimal t?
and t% maximizing PO{D<TA} are found by differentiating
h(tl,tz) with respect to ty and t, and setting the derivatives

equal to zero.This implies that the conditions

(1—p1)f(;f)+glf(tf)c(t§—ti) ng(ti) -
- : (3.3)
1 o ofa
£(tx)+p, S F(duw)g(ti-u) - Frg ()
2 1 o 2 2
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must be satisfied by optimal tf and t%.

As a numerical examﬁle'we study the case when F and G

are both exponential with respective rates a and b, (a,b>0)

such that
F(t) =1 - gTat t 20
e(t) =1 - e Pt t 20

in the special case where Py 1 so that the testing procedure

gives no false negative results. Then (3.3) reduces to

- &% - V*_ Y
at at¥® R b(t2 tf)

~-ae 1 - (b—a)ple— 1 e_bt“

~b 1
- % - % - E N o = ‘ -
—ae 35 4 peTatf mb(E-tf) 0 (3.4)

and this can be solved to yield

(1/b-a) n (b/(a+(b-a) (b/a)P/37Pyy

ct
-
]

b/a-b

rr
2
]

(1/b-2) %n (b2/(a’+a(b-a)(b/a) )

as the optimél solution for b#a. When b=a, it can be shown

that

(1/a) (e-1/e)

rt
bl
[

(1/a) (2e-1/e)

t
h

is the optimal solution.

Note that when_Ti and TA are exponentially distributed
with the same rate a, and when no false negative result can

be obtained, then the optimal schedule is such that
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e} < E[1;] < 5 < E[1,]

which is reasonable since testing detects the disorder for

sure.

.Now, by similar computations as in (5.2.3) thé

probability distribution of earliness can be computed to be

C t _
A o1 _ 2 _2 _
PO{T 'D§Z} =1 plF(tl) PlF(tZ)fplF(tl) P] S5 F(du) G(t2+z u)

o
ot £,
* Py i F(du)G(t2+z-u)+p1 £ F(du) G(z+t1—u)
and
A t2 » o] t]_ ) o]
EOEI —D] =P i 4F(du) £(1—G(t2+z—u)dz+p1 £ F(du) g(l—G(t1+z-u)) dz
2 1 >
- p] S F(du) [ (1—G(t2+z—u))dz
o o

Differentiating this expression with respect to t. and

-~

t, we obtain the following two conditions of optimality.

mf (%) = F*(1-6) (£) + p £(t¥) L (c¥-t¥) (3.4)
mf(ey) = FH(1-G)(e5) + pyH(tf, t5)

‘where m = E[T,-T,] = [ o-a(en)ae!

(o0}
L(t*_t;';) = f (1_G(X))dx
2 1 ket ¥
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t%

H(t*,t%) = fl F(du) G(t%—u) - F(tf)
[o]

[
w
N

Note that if ty tends to infinity then we obtain a

model with single inspection.

Since

¥1m L(tﬁ-tf) =0
t ¥

2

lim H(t“i,t=2<) =0

t:é:-)oo
then the conditions of (3.4) reduce to

mf(t{) = ?*(1—G) (tf)

mf(e) = 0

so that we obtain the result of (2.14).

5.4. MODELS WITH STOCHASTIC INSPECTIONS

In case of stochastic inspections, an interesting
optimization problem may be to find the optimal rate of

inspections to minimize the total expected cost.

Consider a stationary Polsson inspection process with
rate A . LEf cp, Ce and c, are the costs of performing a test,
the cost of obtaining a false positive result and the cqét of -
catastrophic failurg respegtively, the expected cost c(i,})
for a dete:io;ation process with initial state i can be

written as
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c Bi[N] + e, (1-E; [NT+1) i>0
c(i,r) = . ' ‘
epEo [N * con[NF;] * ?v(l'Eo[NT+1) ’ i=20

Using IV .(3.1), IV (3.2) we obtain

~

[ee] oo

c(i,M=c. T JR(G,j,dz)SF.(du)(1-e *Pi%) (1/p.)
jeE o o3 J
e (1= £ JR(L,j,dz)F, (du) (1-e AUPjy
jEE o o3

for i>0. The optimal rate A* can be found by differentiating

c(i,\) with respect to A and setting the derivative equal to

zero. Hence we obtain : -
[ee] 00 ) )\ .
T SR(i,j.,dz) [ e ""@Pi (cp—cvpj) Fj(du) =0 (4.1)

jeE o o

Similarly, if the initial state is zero then .the necessary

condition of optimality for the rate A is given by

o0 [os) . o0
% f R(0,j,dz) S e MUPI (c -c p.) F.(du) = —c. [ p uF_ (du)  (4.2)
. P V'] ] £ o o
JEE o o o

Now, consider the extended model of (5.2.3) with M =3.

S
o EA

Fz(t) = P2{T3§t}. Then, assuming that initially the system is

2
{0,1,2,3}, F () = P_{Tlst}, F (t) = P {T"st} and

in state 1, (4.1) becomes

[oo] [oe]
—-A*upy _ —A*up - =
e M'u (cp cvpl)Fl(du)*'gFl(dZ) Se 7 uf2 (cp cvpz) Fz(du) = 0

(o}

038



66

and by taking Fy and F, to be exponential distributions with

rates a and b respectively, we obtain the condition to be

satisfied by the optimal A* as

(cp—cvpl) a (cp—qvpz)b

2 + - — 2 = 0 (4-3)
(A*p1+a) (A*p2+b)

The solution is given by
¢ = (a/B - b) [ (p, - B /D)

where D.= (gvpz—ép)b / (cp4é§p1)a under the assumpﬁion_that

> > .
CvP3 cp “VP1

In case where our assumption does not hold true, for
example whe’n,cp = 0, then the optimal rate A* will be in-
finite. In fact if performing a test has no cost then testing

at an infinite rate is of course optimal.
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VI, SUMMARY -OF RESULTS AND FUTURE RESEARCH TOPICS

In this thesis the inspection problem of deteriorating
systems subject to catastrophic failure is analyzed. Deter-—
ministic inspection policies and stochastic inspection
processes are evaluated under the assumption that the .

deterioration process possesses a Markov renewal structure.

Chapter I presented an introduction to the ﬁroblem
with a review of past and current research on similar inspec-
tion models. The deterioration process and the inspection
problem are formulated in detail in Chapter II. Chapter III
and Chapter IV are devoted‘to the analysis and evaluation of
deterministic inspection policies and stochastic inspection
processes where various formulas are derived to compute the
expected number of inspections. Some applications of the
results are presented in the context of decision models in
Chapter V. Interesting examples on finding the optimal
inspection schedule which maximizes the probability of early
detection are considered. The main purpose in oﬁr research
has been to evaluate inspection policies and processes with

respect to some measures of effectiveness, and not to present
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a general theory on the optimal inspection or control problem.
Naturally, some possible extensions should be emphasized to
point out future research topics. Of course, the optimal
inspection‘problem mentioned throught the thesis needs
analysis. Since the deterioration process i1s partially obser-

vable, the theory -on partially observable Markov decision

processes may be used or one may enjoy Markov renewal theory.

Note that in our model the result of a test was either
positive or negative so that the inspector could only
identify the deterioration as being zero or non-zero. A
natural extension could be to cdnsider a model where testing
gives information on the present unobsefved'state 6f-
deterioration in which cése Y, would be a process with state

space E such that

for any i,jEE, gives the probabilistic relationship between
the underlying process X and the information process Y.Recall

that in our model, the cost of a false positive result c_. was

f

needed only when the initial state was zero. However, this
will not necessarily be true in this extension since many

types of false results may exist even when the initial state

is non—zero.

Another extension of our model may be to consider
deterministic and stochastic inspections simultaneously. This

also would be more realistic since in medical applications a
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patient who is under the control of a physician may also

require some extra tests done at some random points in time.

Note also that our model considers tests only as a
means of obtaining some kind df information about the under-
lying state of the system. However, in some cases these tests
may alter the sysfém state to a higher deterioration 1gve1 as
in mémmograms performed to screen for breast cancer where
radiation may inducg more deterioration. Hence the possibility

of an immediate increase in the deterioration after each test

has to be included in the model.

Finally; there is a single deterioration process in
our model which presents the state of the system. A natural
extension of this model will be the case where the state of
the system is represented by multiple dependent deterioration
processes which are inspected through several different tests.
The determination of the inspection and testing times for the
various deterioration processes and test combinations will
indeed be very interesting becauée of the economies of scale

involved in performing multiple tests at the same time.
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