FOR REFERENCE

IOT UBE , AKEN FROM THIS ROOM

THREE DIMENSIONAL ANALYSIS OF POINT-BEARING PILE GROUPS

Submitted to the Institute for Graduate Studies in Science and Engineering in partial fulfillment of the requirements for the degree of

Master of Science

in

Civil Engineering

Boğaziçi University

THREE DIMENSIONAL ANALYSIS OF POINT-BEARING PILE GROUPS

APPROVED BY :

Prof. Dr. Vedat YERLİCİ (Thesis Supervisor) Dog. Dr. Erol GÜLER

H.M. J.LA

1 .

Doç. Dr. Vural ALTIN

DATE OF APPROVAL : January 22, 1986

ACKNOWLEDGEMENTS

I would like to express my deep appreciation to Prof. Dr. Vedat Yerlici for his invaluable advice, supervision and tolerance throughout the course my study.

I also wish to thank to Doç. Dr. Erol Güler his invaluable suggestions and encouraging help.

I would also like to express my sincere thanks to Mr. Jeff Young for his kind help and suggestions.

THREE DIMENSIONAL ANALYSIS OF POINT-BEARING PILE GROUPS -ABSTRACT-

Piles in the foundation of structures like bridge piers, quays, retaining walls and the like are usually installed in groups resulting in a group reaction. This brings about the problem of determining the distribution of this reaction among individual piles in the group. Especially, if a group of piles consists of both vertical and battered piles, if there are both horizontal and vertical loads or if the loads on the group are eccentric with respect to the pile group, the question of what load is carried by each pile in the group naturally arises. This study attempts to develop a computer program providing the three dimensional analysis of such systems. Here it is assumed that external loads from the superstructure are transferred to the piles through an infinitely rigid pile cap, and piles reach the bearing strata. Each pile is idealized as a beam having a uniformly distributed linearly elastic spring reaction in the lateral direction. Thus; shears, axial forces and moments acting on the piles within the group are determined. The displacements and rotations of each single pile are also calculated. The results of the analysis are checked against the solutions of some particular examples given in the literature.

SAĞLAM ZEMİNDE OTURAN KAZIK GRUPLARININ ÜÇ BOYUTLU ANALİZİ - ÖZET -

Köprü tabliyeleri, rıhtım ve istinat duvarları ve benzeri yapıların temellerinde, kazıklar genellikle gruplar halinde kullanılmakta bu da grup reaksiyonunun doğmasına neden olmaktadır. Ayrıca ortaya çıkan grup reaksiyonunun kazıklar arasındaki dağılımının belirlenmesi problemi de ortaya çıkmaktadır. Özellikle, eğer kazık grubu düşey ve eğik kazıklardan meydana gelmişse ve bu grub yatay ve düşey yükler etkisi altındaysa, veya bu yükler eksantrik olarak etkiyorsa; her kazığın ne kadar yük taşıdığı sorusu daha da önem kazanmaktadır. Çalışmada bu tip sistemlerin üç boyutlu analizi ele alınmıştır. Üstyapıdan etkiyen dış yüklerin sonsuz rijit bir tabliye tarafından kazıklara aktarıldığı ve kazıkların sağlam zemine ulaştıkları varsayılmıştır. Her kazık yatay yönde eşit sayılı lineer elastik yay reaksiyonlarıyla desteklenmiş bir kiriş olarak idealize edilmiştir. Böylelikle gruptaki her bir kazığa etkiyen kesme ve eksenel kuvvetlerle momentler bulunmuştur. Ayrıca yükler altında ortaya çıkan deplasman ve dönmeler de hesaplanmıştır. Literatürden verilen bazı örnekler geliştirilen programdan elde edilen neticelerle karsılaştırılmıştır.

TABLE OF CONTENTS

a sentence a la construcción de la construcción de la construcción de la construcción de la construcción de <u>la</u>	Page
ACKNOWLEDGEMENTS	iii
ABSTRACT	iv
ÖZET	v
LIST OF FIGURES	viii
LIST OF TABLES	xi
LIST OF SYMBOLS	xii
I. INTRODUCTION	1
II. ANALYSIS OF PILE GROUPS	6
2.1 Analysis of Piles Versus pile Groups	6
2.2 Groups of Vertical Piles	9
2.3 Groups With Vertical and Inclined Piles	11
2.4 Graphical Method for Piles in three Direction	13
2.5 Method Based on Elastic Theory	15
III.PROGRAMMING	17
3.1 Formation of the Element Stiffness Matrice	17
3.2 Formation of the Pile Stiffness Matrice	26
3.3 Gaussian-Elimination of pile Stiffness Matrice	e 28
3.4 Calculation of Direction Cosines	30
3.5 Formation of Translation Matrice	33

•		Page
	3.6 Formation of the Rotation Matrice	34
	3.7 Formation of the Transformation Matrice	36
· · ·	3.8 Formation of the Gaussian-Eliminated pile Head	37
	Stiffness Matrice	
	3.9 Formulation of the Equivalent Pile-Group Stiff-	39
	ness Matrice	•
	3.10 Solution for the Displacements of the Equivalen	t 40
	Pile	
•	3.11 Determination of pile head reactions	41
-	3.12 Determination of nodal displacements and	42
	reactions	
IV.	COMPARISON BY OTHER CALCULATION METHODS	43
V.	CONCLUSION AND REMARKS	55
VI.	REFERENCES	58
ΊΙ.	APPENDIX	60
•	APPENDIX 1 - LIST OF THE PROGRAM	60
	APPENDIX 2 - INPUT DATA FORMAT	76
	APPENDIX 3 - NUMERICAL EXAMPLES	79

VI

vii

LIST OF FIGURES

		Page
FIGURE 1.1	Three dimensional modelling of point-bearing	5
	pile groups and the external forces and mo-	
	ments applied from the superstructure.	:
FIGURE 2.1	A pile group subjected to bending moments	12
	in two direction	
FIGURE 2.2	The pile layout for a retaining wall foun-	14
	dation of piles	
FIGURE 2.3	Graphical method for pile inclined in three	14
	directions in one plane	
	a. diagram showing the position and direction	-
	of forces	
	b. Bow's diagram for forces	•
FIGURE 3.1	A schematic representation for forces and	18
	displacement of a pile element	х
FIGURE 3.2	Stiffness matrice of a pile element	22
FIGURE 3.3	Re-arranged stiffness matrice of a pile eleme	nt24

	· · ·	Pac	je _
FIGURE	3.4	One dimensional order of element stiffness	25
		matrice	
FIGURE	3.5	Location of the one dimensional element	26.
		stiffness matrice in a file.	•
FIGURE	3.6	One dimensional order of pile stiffness	27
		matrice	
FIGURE	3.7	Gaussian-elimination of symmetrical band	28
		matrices	•
FIGURE	3.8	Direction cosines of a vertical pile	32
FIGURE	3.9	Gaussian-eliminated pile head stiffness matrice.	32
FIGURE	3.10	Re-arrangement of pile head stiffness matrice.	38
FIGURE	3.11	New order of pile stiffness matrice	38
FIGURE	3.12	A schematical representation of the	42
		relation between element stiffness matrices	÷
		and node numbers.	
FIGURE	4.1	Example from "Grundbau Taschenbuch" /	46
FIGURE	4.2	Example from "Foundation Analysis and	52
		Design" (Bowles)	•

ix

					Page
FIGURE A-1	. Example	number	one	- -	80
FIGURE A-2	Example	number	two		83
	•				
FIGURE A-3	Example	number	three '	· · · · ·	87
FIGURE A-4	Example	number	four		90
FIGURE A-5	Example	number	five		93
					• .
FIGURE A-6	Example	number	six		96
FIGURE A-7	Example	number	seven		99

LIST OF TABLES

		Page
TABLE 4.1	The axial reactions of the piles for the	44
	example from "Grundbau Taschenbuch"	
TABLE 4.2	The axial and lateral reactions of the	45
	piles given in the example by Bowles	-
	(Foundation analysis and Design) for	
	three different interference ratios.	
TABLE 4.3	The axial and lateral forces computed	50
	by the programme developed by Bowles.	
TABLE 4.4	The axial and lateral forces computed	51
	by the developed programme.	

LIST OF SYMBOLS

A	:	Cross sectional area (L ²)
A _{ij}	:	Elements of the stiffness matrice
A _i	:	Transformation matrice
a _i	:	Pile head location matrice
α.	:	Torsional factor (L ⁴)
b _{ij}	:	Coefficients of the second side (elements
	-	of the loading matrice)
BG	:	Width of the band matrice
C	:	Coefficient of subgrade reaction
c_1, c_2, c_3 and c_4	:	Integration constants
C(I)	:	Sequence of soil modulus (Coefficient
	•	of subgrade reaction)
CO(I)	:	Sequence of direction cosines
d _o		Pile head displacements matrice in the
	· · ·	'global axis
d	:	Pile head displacements matrice in pile axis
E	:	Modulus of elasticity of the pile material
		(F.L ⁻²)

ce

EL(I)	: Sequence for lengths of pile elements (L)
ER _i	: Element stiffness matrice
EX	: Stiffness against moment in x direction
	for each pile element
EY	: Stiffness against moment in y direction
	for each pile element
G S S S S S S S S S S S S S S S S S S S	: Shear modulus of elasticity of the pile material (F.L ⁻²)
Ŷ	: Pile stiffness factor = $\left(\frac{cb}{4EI}\right) * * 0.25$
ĢJ	: Stiffness against torsion for each pile
	element
GL(I)	: Sequence for Gamma (L) for each element
H	: Horizontal force (F)
I	: Moment of inertia of the section of the
	pile (L ⁴)
1	: Identity matrice
IDKR i	: Gaussian-eliminated and re-arranged pile
	head stiffness matrice
IDKRT	: Equivalent pile group stiffness matrice
ikr _i	: Re-arranged pile stiffness matrice
ITS	: Number of columns on the second side of
	the equation (number of loadings)
i	: Row number in the element stiffness matri

j :	Column number in the element stiffness
$\frac{1}{2} \sum_{i=1}^{n} \frac{1}{i} \sum_{i=1}^{n} \frac{1}$	matrice
KS (i,j) :	Function that transfers two dimensional
	matrice into one dimensional one.
1 :	Length of the pile element (L)
M :	Moment (F.L)
ND :	Total number of node number in one
	pile element
NI :	Node number
NIKR i :	New-order pile stiffness matrice
NLOAD :	Total number of loadings
NPILE :	Total number of piles in a group
p :	Lateral subgrade reaction at any point
	(F.L ⁻¹)
$P_1, P_2, P_3, P_4, P_5, and P_6$:Elements of the loading matrice
POC _i :	Pile head reactions matrice
Q :	Axial force (F)
q ₀ :	External pile head loading matrice in
	the global axis
q _i :	Pile head reactions matrices in the
	pile axis
R :	Resultant force (F)
T ₁ ₁ :	Translation matrice

$ \mathtt{T}_2 _{\mathtt{i}}$:	Rotation matrice
V	:	Vertical force (F)
W	:	Lateral deflection of pile (L)
X(I)	:	Sequence of x, y, z coordinates
YBG	:	Width of the half-band matrice

I. INTRODUCTION

Design and analysis of pile foundations has become an important area of research and several approaches have been developed to tackle them. Its importance arises not only because pile foundations constitute a large proportion of substructures but a better understanding of their behaviour helps the analysis of superstructures as well.

Due to the complex nature of the problem, with variation of subgrade reaction from one site to another, and along the length of the pile, and also diversity of pile group arrangements a definitive general solution is not possible. Modelling the problem mathematically is difficult. Rather than developing a mathematical model for a direct solution experimental studies have been carried out for single piles with different soil properties. As a result of these, charts have been developed giving the individual pile stresses for different soil properties. After Broms, many charts have been developed determining subgrade reaction and resultant pile stresses for single piles under vertical and horizontal. forces and bending moments (4). Although engineering codes and specifications specify capacities for single piles, no assistance is provided for determining the reaction capacity of different piles located in the same group (1). Yet pile configuration in a group influences the magnitude and distribution of indivudual pile reactions.

With the help of microcomputers representative models for pile groups can be analized to determine individual pile stresses within the group (5). A recent study including the previous works of three-dimensional analysis has been done by Bowles and a computer program has been developed. A successive approximation analysis may be performed by this method if the soil data are sufficiently reliable. This method of pile group analysis makes the following assumptions.

 The load carried by any pile is proportional to the displacement of the pile head. The displacement consists of an axial, transverse and rotational component,

2. The footing (pile cap) in infinitly rigid,

3. The footing undergoes only small displacements,

4. The pile heads are pinned to the pile cap. Although these assumptions do not strictly represent the true situation, they do not introduce serious errors. The program analyzes the group under vertical and a horizontal loads and for any pile the axial and transverse forces are computed. However it is not possible to compute either settlements of the pile groups or the bending and torsional moments exerted in each single pile. Inorder to overcome all these difficulties, another approach is adopted in this study by modelling the piles as an elastically supported beam in the lateral direction. This implies that the objective of this study is to present the three dimensional analysis of pile groups giving the forces and displacements developed in individual piles in each of the six-degrees of freedom in space as shown in figure 1.1. A program is developed considering point-bearing piles only. The skin friction acting on the piles is ignored. It is assumed that load effects from the superstructure are transferred to the individual piles by a rigid pile cap. In practice piles groups of this type constitute a significant proportion of total number of piled foundations. It is also assumed that subgrade reaction is proportional to the lateral displacement at any point along the pile based on "Winkler hypothesis" (7). Any other model than the Winkler's can easily be used in the program if desired.

Inorder to serve the needs of engineering design offices a simple data input is formulated, and effort is made to use a minimum number of memory locations. In the program, piles may individually be defined by the user as vertical or inclined. The subgrade reaction may be defined along the pile length to simulate actual soil properties encountered at the site of the foundation. The program

analyzes the group and determines displacements and rotations as well as axial forces, shears and moments generated in each pile.

Once the analysis is complete, it will be necessary to establish the acceptability of the individual pile stresses and displacements both from structural and geotechnical view point. The overall group reaction capacity should also be investigated.

Finally, solutions of some particular examples given in the literature are compared to the ones obtained from the proposed method and computer outputs of these study.

FIGURE 1.1 - Three dimensional modelling of point-bearing pile groups and the external forces and moments applied from the superstructure.

II. ANALYSIS OF PILE GROUPS

2.1. ANALYSIS OF PILES VERSUS PILE GROUPS

Piles are seldom used singly; generally a foundation is made up of a group of piles installed under a cap distributing the load. Where the cap is cast on the ground the system is called a pilled foundation. Where the cap is formed above the ground it is called a free-standing group.

The settlement of a group of vertical piles subjected to a given average load per pile may be very different from the settlement of a comparable single pile. Similarly, the ultimate load that can be carried by a group of piles is not necessarily the ultimate load of a single pile multiplied by the number of piles in the group. This behaviour and the mechanism which causes it, is usually referred to as "group action". It is important in the case of friction piles in clay, not quite so important with point-bearing piles in dense or gravel and generally unimportant where piles are driven to rock. Pile groups of this type are object of this study. The pile ends are assumed to reach the hard bearing strata and interference among adjacent piles in neglected. In such a case the bearing capacity should be calculated as the load per pile multiplied by the number of piles in the group. The settlement of the foundation is usually little more than the elastic shortening of the pile under load.

Another aspect of the study for piled foundaitons is the resistance of such foundations against horizontal forces. In many applications these forces are small enough to be neglected, but with large buildings and bridges to resist to wind forces, and in earthquake areas the resistance to horizontal forces caused by shocks are of considerable importance. In the case of a bridge the forces due to traffic acceleration, breaking and turning may also be important. For the design of retaining walls, quays and dolphins horizontal forces form a major part of the loading system.

When a vertical pile is deflected from its initial position by a horizontal force applied to the pile head, the deflected form of the pile depends on the head conditions, the pile length, and the stiffness of both pile and the soil. The differential equation for the flexure of a uniform pile embedded in the soil is

$$EI \frac{d^{4}W}{dx^{4}} + p = 0$$
 (2.1)

where,

- W = The deflection of the pile at any point
- X = The depth of that point from the soil surface
- P = Lateral subgrade reaction per unit length at any point.
- E = The modulus of elasticity of the pile material

I = The moment of inertia of the section of the pile In uniform clay it is often assumed that c, the coefficient of lateral reaction is constant, so that p=cw. For granular soils c is usually considered to vary linearly with depth, so that $c=n_hx$, and therefore $p=n_hxw$ where n_h is the constant of horizontal subgrade reaction, as defined by Terzaghi (4). Palmer and Brown (5) examined the case where the value of c varies according to the equation $c=c_1(x/L)^n$, where c_1 is the value of c at the depth L, L being the pile length. They found that values of the parameter n in the range 0 < n < 1 agreed best with test results.

For the case where p=cw and for a pile with no head restraint, and with a horizontal force P applied at the ground level.

$$W = \frac{H}{2 \text{ EIB}^{3}} e^{-\beta x} \cos \beta x \qquad (2.2)$$
$$M = -\frac{H}{\beta} e^{-\beta x} \sin \beta x \qquad (2.3)$$

where M = the moment on the pile at depth x

$$\beta = (c/4EI)^{1/4}$$

$$W = \frac{H}{4 \text{EI } \beta^3} e^{-\beta x} (\cos \beta x + \sin \beta x)$$
(2.4)

$$M = \frac{\pi}{2\beta} e^{-\beta X} (\sin \beta x - \cos \beta x)$$
(2.5)

Although there are many approaches of calculation for laterally loaded single piles, the application of the theoretical solutions to practical design is handicapped by the difficulty of obtaining the value of c. However the value assigned to the parameter c is considerable importance. It is known to vary with the type of soil, the confining pressures, the width of the face, the amount of deflection and the duration of loading.

2.2 GROUPS OF VERTICAL PILES

The following approximate methods are commonly used for groups of identical piles subjected forces and moments for practical design purposes. The pile cap is assumed to be rigid and the reaction of any pile is assumed to be proportional to the displacement of the pile head.

If the vertical load V is applied at the centre of gravity of the pile group, the displacement of the head of each pile will be the same and load distribution is therefore assumed to be equal. Thus V = nQ where Q is the load per pile and n the number of piles :

$$Q_1/x_1 = Q_2/x_2 = \dots = Q_n/x_n$$
 (2.6)

so that

$$Q_1 = Q_1 x_1/x_1, Q_2 = Q_1 x_2/x_1, \dots = Q_n = Q_1 x_n/x_1(2.7)$$

It is obvious that

$$M = Q_1 x_1 + Q_2 x_2 + \dots + Q_n x_n$$
 (2.8)

Thus,

$$M = Q_1 x_1^2 / x_1 + Q_1 x_2 / x_1 + \dots + Q_n x_n^2 / x_1$$
(2.9)

Therefore

$$\Omega_1 = Mx_1 / \sum_{i=1}^{n} x_i^2$$
 (2.10a)

Similarly

$$Q_2 = Mx_2 / \sum_{i=1}^{n} x_i^2 \dots Q_n = Mx_n / \sum_{i=1}^{n} x^2$$
 (2.10b)

Thus the total load Q on pile 1 due to a vertical force and a moment applied at the center of gravity is.

$$Q_1 = V/n + M x_1 / \sum_{i=1}^{n} x^2$$
 (2.11)

If a rectangular group of piles is subjected to moments about both axes xx and yy through the centre of gravity of the group as well as a vertical force acting at the centre

of gravity, then

$$Q_1 = V/n + Myy x_1 / \sum_{i=1}^{n} x^2 + Mxx Y / \sum_{i=1}^{n} y^2$$
 (2.12)

The sign of the second term will be positive for piles to the left of yy and the third term will be positive for piles above xx for the moment directions in right-handed coordinate system.

2.3 GROUPS WITH VERTICAL AND INCLINED PILES

When a piled foundation is subjected to a horizontal force or a moment as well as a vertical force, it is usual for some of the piles to be inclined in order that the resultant of the external forces will be appliced approximately axially to some of the piles. The calculation of the forces and moments transmitted to the each pile in the group is an extremely complicated problem for which no true solution exists. The usual approach to the subject has been made from the direction of structural engineering, in which the piles are treated as members of a frame, the cap is assumed to be rigid. There is a high order of indeterminancy and various simplifications are introduced to make a solution possible.

Mostly piles are regarded as hignes at their upper ands and carry axial loads to hignes on rigid bearings

FIGURE 2.1. A pile group subjected to bending moments in two direction.

at their points. The axial displacement of piles due to compression of soil and the effect each pile has on its neighbours are ignored in all case.

As an example a repeating pattern of retaining wall piles is considered. The foundation is of such a length that it is only necessary to determine the forces for a width b as shown in figure 2.2

The magnitude and line of action of the external forces R is assumed to be known and R intersects the base of the pile cap at X, at a distance a from the center of gravity o. V and are the vertical and horizontal components of R at the point X.

The effect at the pile heads of a vertical force V at X is equivalent to a vertical force V at o plus a moment Va. It is also assumed that H is taken only by the horizontal component of the axial force in the inclined piles and the vertical piles do not offer any resistance to horizontal forces.

2.4 GRAPHICAL METHOD FOR PILES IN THREE DIRECTION

If the piles in a group are inclined not more than three different directions, a graphical solution may be used. The cap on the piles is assumed to be rigid and all the piles and the applied forces are assumed to act in the same plane. The resultant R of the forces is known in magnitude, direction and position. Lines P, Q and S are drawn representing the lines of action of the rows of piles inclined in the same direction through the centers of gravity of their respective rows.

The direction of R meets line P in X. Lines Q and S meet in Y. Using Bow's notation as shown in figure 2.3 the forces on the lines XY and P are first determined from these the forces on lines Q and S are calculated. It is also assumed that the force in each of the three directions is equally shared among the piles inclined in that direction.

2.5 METHODS BASED ON ELASTIC THEORY

The method proposed by Vetter (1939) provides a means of estimating pile loads when there are more than three rows or when piles are fixed headed. It is confined to two dimensional systems and the following assumptions are made(11).

- 1. The pile cap is rigid
- 2. The piles are elastic
- 3. The whole load is carried by the piles

4. The resistance of a pile is concentrated at its base in the case of an end-bearing pile and at one-third of the length of the pile up from the base in friction piles.

5. The soil provides rigid axial bearing but gives no other support.

The methods proposed by Asplund and Francis introduced the lateral resistance of the soil to the calculations to approximate to reality in a better way although they require the knowledge of pile soil interaction.

However all the methods put forward ignore the displacement of the supporting soil, the influence of individual pile on its neighbours and the effect of pile cap when it is flexible or exerts a vertical pressure on the ground. It is assumed that all the piles act independently in all the methods, but if they are closely spaced they do influence each other. Jampel (1949) and Francis (1964) suggest to reduce the value of c for groups of closely spaced piles and group action can be as important in any given instance for horizontal as well as for vertical forces (11).

In the design of retaining walls, bridge abutments or quays, the use of complex design method does not seem to be easily applicable because of the uncertanties involved regarding c coefficient.

III. PROGRAMMING

Inorder to analyze pile groups each pile is assumed to act as a beam elastically supported in the lateral direction. The related stiffness matrix is produced out of the mathematical model obtained using "Winkler hypothesis" (7).

3.1 FORMATION OF THE ELEMENT STIFFNESS MATRICE :

It is assumed that the reaction force for a unit length is directly proportional to the displacements for each element. Thus, the horizontal reaction p, is equal to a constant times horizontal displacement.

p(x) = cbw(x), c > 0

(3.1)

where, b is the width of the element.

The degrees of freedom and resultant reactions for an element is shown in figure 3.1

FIGURE 3.1. A schematic representation for forces and displacement of a pile element.

The elastic curve for a span of *l* is governed by the differential equation

$$\frac{d^4 w}{dx^4} = - \frac{P(x)}{EI} = - \frac{cb}{EI} \quad w(x)$$
(3.2)

For a homogenous solution;

 $W = C_1 \cosh \gamma x \cdot \cos \gamma x + C_2 \sinh \gamma x \cos \gamma x + C_3 \cosh \gamma x$ sin $\gamma x + C_4 \sinh \gamma x \cdot \sin \gamma x$

Where C_1 , C_2 , C_3 and C_4 are integration constrants and

$$= \frac{1}{4EI}$$

Moments and shear forces can be written out of the solution

for displacements as

$$M(x) = -\frac{d^2 w}{dx^2}$$
(3.4)

and

$$T(x) = -EI \frac{d^3 w}{dx^3}$$
 (3.5)

Therefore the reactive forces will be

$$P_{1} = M(0) = EI \frac{d^{2}w(0)}{dx^{2}}$$
(3.6)

$$P_2 = M(\ell) = - EI \frac{d^3 w(\ell)}{dx^2}$$
(3.7)

$$P_{\iota} = T(\ell) = - EI \frac{d^{3}w(\ell)}{dx^{3}}$$
(3.8)

$$P_{6} = T (0) = -EI \frac{d^{3}w(0)}{dx^{3}}$$
(3.9)

and the related displacements are

dx

$$D_{1} = -\frac{dw}{dx} (0)$$
(3.10)
$$D_{2} = \frac{dw}{dx} (1)$$
(3.11)

$$D_{\mu} = W(\ell)$$

$$D_{e} = -w(0)$$

Betti's reciprocal theorem is also applicable for this case therefore the, flexibility matrice should be symmetrical to its diagonal. Thus some elements of the flexibility matrice will be,

$$f_{11} = f_{22}, f_{66} = f_{44}, f_{24} = f_{16}, f_{26} = f_{62} = f_{14} (3.14)$$

Furthermore, considering that the pile is a straight prismatic beam, it can be stated that

$$f_{13} = f_{24} = f_{34} = f_{36} = 0, \quad f_{33} = \frac{\ell}{E\Delta}$$
(3.15)

where

l is the length of the element

A is the cross-sectional area

Inorder to determine the other elements of the flexibility matrice two different loadings are made on the beam.

For $P_1 = P_3 = P_4 = P_6 = 0$ and $P_2 = 1$ integration constants C_1 , C_2 , C_3 and C_4 are determined using equations 3.6 through 3.9 By definition,

 $D_1 = f_{12}$, $D_2 = f_{22} = f_{11}$, $D_4 = f_{42} = f_{16}$, $D_6 = f_{62} = f_{14}$ which leads to

(3.13)

$$f_{11} = \frac{\ell}{EI} \cdot \frac{1}{\gamma \ell} \cdot \frac{\sinh \gamma \ell \cdot \cosh \gamma \ell + \sin \gamma \ell \cdot \cos \gamma \ell}{\sinh^2 \gamma \ell - \sin^2 \gamma \ell}$$
(3.17)

$$f_{12} = \frac{\ell}{EI} \cdot \frac{1}{\gamma_{\ell}} \cdot \frac{\sinh\gamma\ell \cdot \cos\gamma\ell + \cosh\gamma\ell \cdot \sin\gamma\ell}{\sinh^{2}\gamma_{\ell} - \sin^{2}\gamma_{\ell}}$$
(3.18)

$$f_{14} = \frac{\ell^2}{EI} \cdot \frac{1}{(\gamma \ell)^2} \frac{\sinh \gamma \ell \cdot \sin \gamma \ell}{\sinh^2 \gamma \ell - \sin^2 \gamma \ell}$$
(3.19)

$$f_{16} = \frac{\ell^2}{EI} \cdot \frac{1}{2(\gamma \ell)^2} \frac{\sinh^2 \gamma \ell - \sin^2 \gamma \ell}{\sinh^2 \gamma \ell - \sin^2 \gamma \ell}$$
(3.20)

In a second loading for P_1 , = P_2 , = P_3 , = P_6 , and P_4 = 1 the integration constants are determined using equations 3.6 through 3.9 Consequently, $D_4 = f_{44}$ and $D_6 = f_{46}$ are obtained.

$$f_{44} = \frac{\ell^3}{EI} \cdot \frac{1}{2(\gamma \ell)^3} \frac{\sinh\gamma\ell \cdot \cosh\gamma\ell - \sin\gamma\ell \cdot \cos\gamma\ell}{\sinh^2\gamma\ell - \sin^2\gamma\ell} (3.21)$$

$$f_{46} = \frac{3}{EI} \frac{1}{2(\gamma \ell)^3} \frac{\sinh \gamma \ell \cdot \cos \gamma \ell - \cosh \gamma \ell \cdot \sin \gamma \ell}{\sinh^2 \gamma \ell - \sin^2 \gamma \ell}$$
(3.22)

By definition stiffness matrix is the inverse of the flexibility matrice so the elements of the stiffness matrice are the reciprocals of the flexibilty elements. Thus,

$$k_{11} = \frac{EI}{\ell} \cdot 2\gamma\ell \cdot \frac{\sin\gamma\ell \cdot \cosh\gamma\ell - \sin\gamma\ell \cosh\gamma\ell}{\sinh^2\gamma\ell - \sin^2\gamma\ell}$$
(3.23)

$$k_{12} = \frac{EI}{\ell} \cdot 2\gamma\ell \cdot \frac{\sin\gamma\ell \cdot \sin\gamma\ell - \sin\gamma\ell \cos\gamma\ell}{\sinh^2\gamma\ell - \sin\gamma\ell}$$
(3.24)

$$k_{14} = \frac{EI}{\ell^2} 4(\gamma \ell)^2 \frac{\sinh \gamma \ell \sin \gamma \ell}{\sinh^2 \gamma \ell - \sin^2 \gamma \ell}$$
(3.25)

$$k_{16} = \frac{EI}{\ell^2} 2(\gamma \ell)^2 \frac{\sinh^2 \gamma \ell + \sin^2 \gamma \ell}{\sinh^2 \gamma \ell - \sin^2 \gamma \ell}$$
(3.26)

$$k_{44} = \frac{EI}{\ell^2} 4(\gamma \ell)^3 \frac{\sinh \gamma \ell \cosh \gamma \ell + \sin \gamma \ell \cos \gamma \ell}{\sinh^2 \gamma \ell - \sin^2 \gamma \ell}$$
(3.27)

$$k_{46} = \frac{EI}{\ell^3} 4(\gamma \ell)^3 \frac{\cosh \gamma \ell \sin \gamma \ell + \sinh \gamma \ell \cosh \gamma \ell}{\sinh^2 \gamma \ell - \sin^2 \gamma \ell}$$
(3.28)

and the resulting stiffness matrix will be as shown in figure 3.2

	1	2	3	4	5=3	6	
	K 11	K 12	0	K 14	0	K 16	1
	K 21	K 11	0	K16	0	K 14	2
	0	0	EA/L	0	EA/I	0	3
[n] -	K 14	K16	0	K44	0	K 46	4
	0	0	EA/1	0	EA/I	0	5=3
	K 16	K 14	0	K46	0	K 44	6

FIGURE 3.2 Stiffness matrice of a pile element

A subroutine is introduced to the program for the calculation of element stiffness matrix element. The subroutine is executed twice for each element. One for the reactions in the plane of the beam and the other for the reactions perpendicular to the plane of the beam. In the second execution the torsional stiffness Ga is substituted
for the axial stiffness EA, where

G is Shear modulus of elasticity

 α is the torsional factor

Some of the magnitudes are calculated at the beginning for the reasons of simplicity. By introducing some intermediate values stiffness matrice elements can easily be obtained. The calculation procedure is,

 $GL = L^* (C^*B/(4^*E^*I)) **0.25$

The magnitudes that are to be calculated once,

CH = $\cosh \gamma \ell$ C ϕ = $\cos \gamma \ell$ SH = $\sinh \gamma \ell$ SI = $\sin \gamma \ell$ SHCH = $\sin \gamma \ell * \cosh \gamma \ell$ CHSI = $\cosh \gamma \ell * \sin \gamma \ell$ SHC ϕ = $\sinh \gamma \ell * \sinh \gamma \ell$ SIC ϕ = $\sinh \gamma \ell * \cosh \gamma \ell$ PYD = $\sinh^2 \gamma \ell - \sin^2 \gamma \ell$ PYDT = 1/PYD

The coefficients calculated according to this magnitudes are

L11 = $(CHCH - SIC\phi) * PYDT$ L44 = $(SHCH - SIC\phi) * PYDT$ L12 = $(CHSI - SHC\phi) * PYDT$ L46 = (SHSI + SHC ϕ) * PYDT L14 = SH * SI * PYDT L16 = (SH * SH + SI * SI) * PYDT EI = E*I GJ = G* α CK1 = (EI * GL * 2)/L CK2 = CK1 * GL * 2/L CK3 = CK2 * GL/L

Hence the elements of the stiffness matrice are,

K11 = CK1 * L11
K12 = CK1 * L12
K14 = CK2 * L14
K16 = CK2 * 0.5 * L16
K44 = CK3 * L44
K46 = CK3 * L44

It is also possible to re-arrange matrice inorder to put the degrees of freedom of one node on the side and the second one on the other. Thus the new-order of the element stiffness matrice will be as given in figure 3.3

×

[K]

-		5	6	2	3	4	
	K 11	0	K16	K12	0	K14	1
	0	EA/I	0	0	EA/I	0	5
_	K16	0	K44	K14	0	K46	6
-	K12	0	K14	K11	0	K16	2
	0	EA/I	0	0	EA/I	0	3
	K14	0	K46	K16	0	K44] 4

FIGURE 3.3 Re-arranged stiffness matrice of a pile element

A further attempt is made to form the two dimensional stiffness matrice in a dimensional one. Using the property of symmetry the unnecessary elements are eliminated. A function transfers the row and column number into the related array number of the one-dimensional sequence as shown in figure 3.4.

FIGURE 3.4 One dimensional order of element stiffness matrice

The one dimensional |ER| sequence is formed for each element and kept in a file. The same procedure is repeated for the degrees of freedom perpendicular to the plane of the element. A record is reserved for each element and twenty-one elements are kept in each record as shown in figure 3.5

BOĞAZİÇİ ÜNİVERSİTESİ KÜTÜPHANESİ

FIGURE 3.5 Location of the one dimensional element stiffness

matrice in a file.

3.2 FORMATION OF PILE STIFFNESS MATRICE :

The node numbers are chosen consecutively from the bearing strata to the pile cap for each pile. Since the node numbers are consecutive; the pile stiffness matrix can be easily formed by the superposition of element stifnesses. Pile stiffness matrix is also formed in one dimensional sequence and kept in a file. For a pile having five elements and six node numbers the one-dimensional pilestiffness matrice is shown in figure 3.6.

→ KS = (18 - 13) #18 - (18 - 13 - 1) # (18 - 13) / 2 + 13 = 93

FIGURE 3.6 One dimensional order of pile stiffness matrice

The corresponding row number of the one-dimensional pile stiffnes matrice is calculated by a function, once the row and column numbers are determined. The function is

KS(IS, JS) = (JS-IS) * ND*3 - (JS-IS-1)*(XS-IS)/2+IS (3.28)

and

IS = (NI-1) * 3+IJS = (NI-1) * 3+J (3.29)

(3.30)

ND is the total number of node number in the pile, NI is the node number,

I is the row number in the element stiffness matrice,

J is the column number in the element stiffness matrice.

In the formulation of the pile stiffness matrice, the elements corresponding to the ith node of the ith element is added to the jth note of the (i-1)th element.

3.3 GAUSSIAN-ELIMINATION OF THE PILE STIFFNESS MATRICES

A subroutine is introduced to the program for the gaussian-elimination of symmetrical band matrices. An iterative method is carried out for a given half-band width. The iteration taken are shown illustratively on an example having N numbers of unknowns and ITS number of columns on the second side of the equation. It is obvious that the property of symmetry is preserved in each step. A graphical representation is shown in figure 3.7

where,

- BG = Width of the band matrice
- YBG = Width of the half band matrice = BG/2+1
- ITS = Number of columns on the second side of the equation.

and BG, YBG and ITS being integers

FIGURE 3.7 Gaussian-elimination of symmetrical matrices

The gaussian-eliminated elements of the element stiffness matrice will be calculated as shown in equations 3.31 and 3.32 and the iteration will proceeduntil the row number I reaches to the value N-YBG+1 Elimination will be applied until I reaches the value N-1. For I less than N-YBG+1, JS is the last iteration number of J indice whereas for the values between N-YBG+1 and N-1, JS equals N.

The elimination of the second side is also handled in a similar way.

$$\vec{b}_{21} = b_{21} - \frac{a_{12}}{a_{11}} * b_{11}$$

$$\vec{b}_{22} = b_{22} - \frac{a_{12}}{a_{11}} * b_{12}$$

$$J = 1, ITS$$

$$(3.33)$$

It is easily proved that the eliminated band matrice will be symmetrical as well. As an example,

$$\overline{a}_{32} = a_{32} - \frac{a_{31}}{a_{11}} + a_{12} = a_{23} - \frac{a_{12}}{a_{11}} + a_{13} = \overline{a}_{23}$$

3.4 CALCULATION OF DIRECTION COSINES:

A right-handed global coordinate system is choosen for each group which has an origin at the force of application with z-axis showing the vertical direction. The nodal coordinates of each pile is given to the program as input values. The axial direction of the pile is taken to be the axis of the pile coordinate system and the related direction cosines are calculated. Also direction cosines of the local y direction have to be given as an input value to the program. The direction cosines of the local z axis is found out from the other pre-determined direction cosines by the formula

(3.35) C_{ϕ} (7) = C_{ϕ} (2) * C_{ϕ} (6) - C_{ϕ} (3) * C_{ϕ} (5) (3.36)

 C_{ϕ} (8) = C_{ϕ} (3) * C_{ϕ} (4) - C_{ϕ} (1) * C_{ϕ} (6)

 C_{ϕ} (9) = C_{ϕ} (1) * C_{ϕ} (5) - C_{ϕ} (2) * C_{ϕ} (4) (3.37)

where

x	=	Cφ	(1)	<u>i</u> +	Cφ	(2)	j	+	Cφ	(3)	<u>k</u>	(3.38)
У	=	Cφ	(4)	<u>i</u> +	Cφ	(5)	j	+	Cφ	(6)	<u>k</u>	(3.39)
z	=	Cφ	(7)	i +	Cφ	(8)	j	+	Cφ	(9)	<u>k</u>	(3.40)

and $C\phi$ is the sequence of direction cosines. Direction cosines of a vertical pile and an inclined pile are given in figures 3.8 and 3.9 respectively.

3.5 FORMATION OF TRANSLATION MATRICE :

The translation matrice will be denoted as $|T_1|$. If two coordinate system is parallel to each other having different origin points, translation matrice is used transfer displacements and forces from one to another,

$$[T_{1}] = \begin{bmatrix} |I| & |a|_{i} \\ |0| & |I| \end{bmatrix} \qquad [a]_{i} = \begin{bmatrix} 0 & z & -y \\ -z & 0 & j \\ y & -x & 0 \end{bmatrix}_{i}$$

where x,y and z are the coordinates of the each pile head according to the global axis. By definition it can be stated that,

$$\begin{bmatrix} \mathbf{T}_1 \end{bmatrix} \cdot \begin{bmatrix} \mathbf{T}_1 \end{bmatrix}^{-1} = \begin{bmatrix} \mathbf{I} \end{bmatrix} \rightarrow \begin{bmatrix} \mathbf{T}_1 \end{bmatrix}^{-1} = \begin{bmatrix} \mathbf{T}_1 \end{bmatrix}^{\mathrm{T}}$$
(3.41)
$$\begin{bmatrix} \mathbf{T}_1 \end{bmatrix} \cdot \begin{bmatrix} \mathbf{q}_0 \end{bmatrix} = \begin{bmatrix} \mathbf{q}_1 \end{bmatrix}$$
(3.42)
$$\begin{bmatrix} \mathbf{T}_1 \end{bmatrix} \cdot \begin{bmatrix} \mathbf{d}_0 \end{bmatrix} = \begin{bmatrix} \mathbf{d}_1 \end{bmatrix}$$
(3.43)

where

- [d] is the matrice for displacements and rotations in
 global axis,
- [d] i is the matrice for displacements and rotations in
 pile axis,

 $[q]_0$ is the matrice of external forces in global axis, $[q]_1$ is the matrice of external forces in pile axis. To write it in explicit from,

$$\begin{bmatrix} 1 & 0 & 0 & 0 & z & -y \\ 0 & 1 & 0 & -z & 0 & x \\ 0 & 0 & 1 & y & -x & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} U_X \\ U_Y \\ U_Z \\ W_X \\ W_Y \\ W_Z \end{bmatrix} = \begin{bmatrix} U_X \\ U_Y \\ U_Z \\ W_X \\ W_Y \\ W_Z \end{bmatrix}_{I_1}$$

thus,

 $(Ux) i = (Ux)_{0} + Z (Wy)_{0} -y (Wz)_{0}$ $(Uy) i = (Uy)_{0} + -z (Wx)_{0} + x (Wz)_{0}$ $(Uz) i = (Uz)_{0} + y (Wx)_{0} - x (Wy)_{0}$ $(Wx) i = (Wx)_{0}$ $(Wy) i = (Wy)_{0}$ $(Wz) i = (Wz)_{0}$

3.6 FORMATION OF THE ROTATION MATRICE :

The rotation matrice will be denoted as $[T_2]$. If two different coordinate axis having the same origin are considered, rotation matrice transfers reactions and displacements from one coordinate axis to the other.

where λ_i is

	C¢(1)	C¢(2)	C¢(3)	
: =	C¢(4)	C¢ (5)	C¢(6)	
	C¢(7)	C¢(8)	C¢(9)	

and

 $C\phi(1)$, $C\phi(2)$, $C\phi(3)$ are the direction cosines of the x axis $C\phi(4)$, $C\phi(5)$, $C\phi(6)$ are the direction cosines of the y axis $C\phi(7)$, $C\phi(8)$, $C\phi(9)$ are the direction cosines of the z axis

It can be easily established that

$$\begin{bmatrix} \mathbf{T}_{2} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{T}_{2} \end{bmatrix}^{1} = \begin{bmatrix} \mathbf{I} \end{bmatrix} \Rightarrow \begin{bmatrix} \mathbf{T}_{2} \end{bmatrix}^{-1} = \begin{bmatrix} \mathbf{T}_{2} \end{bmatrix}^{T}$$
(3.44)
$$\begin{bmatrix} \mathbf{T}_{2} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{d}_{0} \end{bmatrix} = \begin{bmatrix} \mathbf{d}_{1} \end{bmatrix}$$
(3.45)
$$\begin{bmatrix} \mathbf{T}_{2} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{d}_{0} \end{bmatrix} = \begin{bmatrix} \mathbf{d}_{1} \end{bmatrix}$$
(3.46)

In the explicit form,

C¢(1)	C¢(2)	C¢(3)	0	0	0	Ux	Ux
C¢(4)	C¢(5)	C¢(6)	0	0	0	Uy	Uy
C¢(7)	C¢(8)	C¢(9)	0	0	0	Uz _	Uz
			1			No allo and and	
0	0	0	C¢(1)	C¢(2)	C¢(3)	Wx	Wx
0	0	0	C¢(4)	C¢(5)	C¢(6)	Wy	Wy
0	0	0	C¢(7)	C¢(8)	C¢(9)	Wz	Wz
							<u> </u>

thus,

 $(Ux) i = C\phi(1) * Ux_{0} + C\phi(4) * Uy_{0} + C\phi(7) * Uz_{0}$ $(Uy) i = C\phi(2) * Ux_{0} + C\phi(5) * Uy_{0} + C\phi(8) * Uz_{0}$ $(Uz) i = C\phi(3) * Ux_{0} + C\phi(6) * Uy_{0} + C\phi(9) * Uz_{0}$ $(Wx) i = C\phi(1) * Wx_{0} + C\phi(4) * Wy_{0} + C\phi(7) * Wz_{0}$ $(Wy) i = C\phi(2) * Wx_{0} + C\phi(5) * Wy_{0} + C\phi(8) * Wz_{0}$ $(Wz) i = C\phi(3) * Wx_{0} + C\phi(6) * Wy_{0} + C\phi(9) * Wz_{0}$

3.7 FORMATION OF THE TRANSFORMATION MATRICE

Transformation matrice will be denoted as |A|. Its a combination of rotation and translation matrices and obtained by multiplication of them.

It enables the transformation of displacements and reactions from one coordinate system to another having different direction cosines and origin points.Further, it can be stated that.

$ \mathbf{A} = \mathbf{T}_2 \cdot \mathbf{T}_1 $	(3.47)
$ A ^{T}$. $ q_{0} = q_{1} $	(3.48)
$ A \cdot d_0 = d_1 $	(3.49)

37

3.8 FORMATION OF THE GAUSSIAN-ELIMINATED PILE HEAD STIFFNESS MATRICE

A new subrouting "KURIKR" is introduced to the program, and elements corresponding to the head node of the gaussian -eliminated pile stiffness matrice are obtained inorder to form the pile head stiffness matrice. The execution is carried twice. One for the degrees of freedom in the plane of the beam and one for the degrees of freedom perpendicular to the plane of the beam.

Furthermore, the pile head stiffness matrices are re-arranged to make transformations to the force of application possible. Both matrices are sketched in figure 3.10 and 3.11.

	1.317	6	1	2	5	4	3	•
funci	6	(1, 1)	34 k (1,2)	⑤ k(1.3)	0	0	0	
	1	33 k (2,1)	k (2,2)	(2,3)	-0	0	0	Influences in the plane of the beam
	2	⑤] k (3.1)	(3,2)	18 k (3,3)	0	0	0	First execution
[IVK]	- 5	0	0	0	16 k(4,4)	34 k (4,5)	(5) k (4,6)	Influences perpen-
	4	0	0	0	34 k (5,4)	⑦ k (5,5)	(5,6)	of the beam Second execution
	3	0	0	0	5) [*] k(6,4)	(6,5) (6,5)	(18) k (6,6)	

FIGURE 3.10 Gaussian-eliminated pile head stiffness matrice

		1 ·	2	3	4	5	6
	1	k (2,2)	k(2,3)	0	0	0	k (2,1)
	2	k (3,2)	k (3,3)	0	0	0	k (3.1)
[[]	3	0	0	k (6,6)	k (6,5)	k(6,4)	0
[נאורערק]-	4	0	0	k(5,6)	k (5,5)	k (5.4)	0
	5	0	0	k (4,6)	k (4,5)	k (4,4)	0
	6	k (1,2)	k (1,3)	0	0	0	k (1,1)

FIGURE 3.11 Re-arrangement of pile head stiffness matrice.

3.9 FORMULATION OF THE EQUIVALENT PILE-GROUP STIFFNESS MATRICE :

The Gaussian-eliminated and re-arranged pile head stiffness matrices are rotated and translated to the point of application of forces from the superstructure. It will be denoted as |IDKR|_i. By definition,

$$IDKR|_{i} = |A|_{i} |NIKR|_{i} |A|_{i}^{T}$$
(3.50)

 $= |T_{1}|_{i}^{T} |T_{2}|_{i} |NIKR|_{i} |T_{2}|_{i}^{T} |T_{1}|_{i}$ (3.51)

[[1] [[0]] [[\lambda]] [0]	k(2,2) k(3,2) 0	k(2,3) k(3,3) O	0 0 k(6,6)	0 0 k(6,5)	0 0 k(6,4)	k(21) k(3,1) O	[[_{\label{intermation}}]	[0]		(1)	(ai)	
		0	0	145,6)	15,5)	H(5,4)	0			Π			
[[ai]] [1] [0] [Ŋ]	0 14(1,2)	0 K(1,3)	₩4,6) 0	k(4,5) 0	1444) 0	0 k0,1);	[0]	[λ _j]		[0]	(I)	i

The equivalent pile group stiffness matrice is determined by the summation of each individual transformed and gaussian-eliminated pile head stiffness matrices.

n pile $|IDKRT| = \Sigma |IDKR|_i$ i=1

(3.52)

3.10 SOLUTION FOR THE DISPLACEMENTS OF THE EQUIVALENT PILE

Once the equivalent pile stiffness matrice is formed, the relation between the external force and related displacements is established by,

i=npile
T

$$\Sigma$$
 $|T_1|_i |T_2|_i |NIKR|_i |T_2|_i |T_1|_i)|d_0| = |q_0|$ (3.53)
i=1

where the loading matrice, and the resulting displacements can be explicity stated as

$$q_{0} = \begin{bmatrix} Qx_{0} \\ Qy_{0} \\ Qz_{0} \\ Mx_{0} \\ My_{0} \\ Mz_{0} \end{bmatrix} \qquad d_{0} = \begin{bmatrix} Ux_{0} \\ Uy_{0} \\ Uz_{0} \\ Wx_{0} \\ Wy_{0} \\ Wz_{0} \end{bmatrix}$$

Six equations for six unknowns are solved for each loading and the displacement and rotations at the force of application of the infinitely rigid pile cap are obtained. For each loading six different loads can be applied, three forces and three moments in space. The loads and corresponding displacements are kept in a file.

3.11 DETERMINATION OF PILE HEAD REACTIONS AND DISPLACEMENTS :

The previously calculated $|A|_i$ and $|NIKR|_i$ matrices are taken back to the memory from the file and by transforming the original displacements pile head displacements and reactions are determined. Therefore it can be stated that ;

$$|\mathbf{d}|_{\mathbf{i}} = |\mathbf{T}_2|_{\mathbf{i}}^{\mathbf{T}} |\mathbf{T}_1|_{\mathbf{i}} |\mathbf{d}|_{\mathbf{o}}$$

$$= |A|^{T} |d|_{o}$$
(3.55)
|POC|_{i} = |NIKR|_{i} |d|_{i} (3.56)

where

|d|_i = Pile head displacements matrice

 $|A|^{T}$ = Transpose of the translation matrice

|POC| = Pile head reactions matrice

(3.54)

3.12 DETERMINATION OF NODAL DISPLACEMENTS AND REACTIONS :

The pile element stiffness matrices which have been kept in a file are taken back to memory for superposition and displacements and reactions are found out for each element in an iterative solution. Once the displacements of the jth node the top-most pile element is calculated; the reactions caused in the ith node due to these displacements can easily be obtained. Then the displacements exerted in the ith node due to the reactions in ith node of the some pile element are determined which are also the reactions of the jth node of (ND-1)th pile element. In an iterative solution; from nodal displacements the nodal reactions and from nodal reaction the nodal displacements are successively obtained until the ith node of the first pile element.In figure 3.12the relation between element stiffness matrices and nodal points are schematically shown.

FIGURE 3.12 A schematical representation of the relation between element stiffness matrices and node numbers.

IV. COMPARISON BY OTHER CALCULATION METHODS

IV.a Example from "Grundbau Taschenbuch"

A pile group of fifteen piles is subjected to a vertical load of 300 t as well as bending moments of 50 tm and 60 tm in x and y directions respectively as shown in figure 4.1. The pile material properties are assumed to be equal. All the piles are assumed to reach the hard-bearing strata. The axial reactions arised due to these external loads are given by the formula 2.12

Hence,

$$Q_{i} = \frac{300}{15} + \frac{50}{90} Y_{i} - \frac{60}{270} X_{i}$$

The resulting axial forces are indicated in table 4.1

ile No	1	2	3	4	5	6	7	8	9	10	11
x (m)	-6	-3	0	+3	+6	-6	-3	0	+3	+6	-6
y (m)	+3	+3	+3	+3	+3	0	0	0	0	0	-3
Q ₁ (t)	23.00	22.33	21.67	21.00	20.33	21.33	20.67	20.00	19.33	18.67	19.67

Pile No	12	13	14	15
x (m)	-3	0	+3	+6
y (m)	-3	-3	-3	-3
Q _i (t)	19.00	18.33	17.67	17.00

TABLE 4.1 The axial reactions of the piles for the example from "Grundbau Taschenbuch"

The same pile group is also solved by the developed programme and the resulting pile head axial reactions as well as shears, bending moments, torsional moments, displacement and rotations are obtained for each pile. The outputs are reasonably close to the results obtained by the rough calculation method as shown in table 4.2.

Pile Number	Axial forces com- puted by the rough calculation method	Axial forces com- puted by the deve- loped programme
1	23.00	22.960
2	22.33	22.297
3	21.67	21.635
4	21.00	20.973
5	20.33	20.310
6	21.33	21.325
7	20.67	20.662
8	20.00	20.000
9	19.33	19.338
10	18.67	18.675
11	19.67	19.690
12	19.00	19.027
13	18.33	18.365
14	17.67	17.703
15	17.00	17.040

TABLE 4.2 The axial and lateral reactions of the piles given in the example by Bowles (Foundation Analysis and Design) for three different interference ratios.

FIGURE 4.1 Example from "Grundbau Taschenbuch"

AMPLE F	'rom "grundeau 1	TASCHENBUCH" (C=5	500t/m3)				17
DAL LOA	DS	10.512					47
NO NO:		P1	P2	82		_	
1		0.00		FJ	P4	13	. P6
1		0.00	0.00	300.00	50.00	60.00	0.00
ile head	DISPLACEMENTS		esta -			119	
DAD NO:	PILE NO:	D1 .	D2	D3	D4	D5	. 06
1	1	-0.974E-04	0.441E-04	0.179E-04	0.000E+00	-0.937E-06	-0.231E-05
1	2	-0.946E-04	0.441E-04	0.179E-04	0.000E+00	-0.937E-06	-0.231E-05
1	3	-0.918E-04	0.441E-04	0.179E-04	0.000E+00	-0.937E-06	-0.231E-05
1	4	-0.890E-04	° 0.441E-04	0.179E-04	0.000E+00	-0.937E-06	-0.231E-05
1	5	-0.862E-04	0.441E-04	0.179E-04	0.000E+00	-0.937E-06	-0.231E-05
1	6	-0.905E-04	0.441E-04	0.179E-04	0.000E+00	-0.937E-06	-0.231E-05
1	7	-0.877E-04	0.441E-04	0.179E-04	0.000E+00	-0.937E-06	-0.231E-05
1	. 8	-0.849E-04	0.441E-04	0.179E-04	0.000E+00	-0.937E-06	-0.231E-05
1	9	-0.821E-04	0.441E-04	0.179E-04	0.000E+00	-0.937E-06	-0.231E-05
1	10	-0.793E-04	0.441E-04	0.179E-04	0.000E+00	-0.937E-06	-0.231E-05
1	11	-0.836E-04	0.441E-04	0.179E-04	0.000E+00	-0.937E-06	-0.231E-05
1	12	-0.808E-04	0.441E-04	0.179E-04	0.000E+00	-0.937E-06	-0.231E-05
1	13	-0.779E-04	0.441E-04	0.179E-04	0.000E+00	-0.937E-06	-0.231E-05
1	14	-0.751E-04	0.441E-04	0.179E-04	0.000E+00	-0.937E-06	-0.231E-05
1	15	-0.723E-04	0.441E-04	0.179E-04	0.000E+00	-0.937E-06	-0.231E-05
ile head	REACTIONS			;			
OAD NO:	PILE NO:	TX	ΤΥ	TZ	МΧ	MY	HZ
1	• 1	-22.960	0.131	0.053	0.000	0.143	0.353
1	2	-22.297	0.131	0.053	0.000	0.143	0.353
1	3	-21.635	0.131	0.053	0.000	0.143	0.353
1	4	-20.973	0.131	0.053	0.000	0.143	0.353
1	5	-20.310	0.131	0.053	0.000	0.143	0.353
1	6	-21.325	0.131	0.053	0.000	0.143	0.353

1	7	-20.662	0.131	0.053	0.000	0.143	0.353
1	8	-20.000	0.131	0.053	0.000	0.143	0.353
1	9	-19.338	0.131	0.053	0.000	0.143	0.353
1	10	-18.675	0.131	0.053	0.000	0.143	0.353
1	11	-19.690	0.131	0.053	0.000	0.143	0.353
1	12	-19.027	0.131	0.053	0.000	0.143	0.353
1	13	-18.365	0.131	0.053	0.000	0.143	0.353
1	14	-17.703	0.131	0.053	0.000	0.143	0.353
1	15	-17.040	0.131	0.053	0.000	0.143	0.353

read line change is a big forge according to as interfaces.

0.00

/ :'

IV.b Example From "Foundation Analysis an Design, Bowles"

As a second example another pile group is solved by the developed programme. The group consists of thirteen vertical and batter piles and is subjected to a vertical force of 1000 kips as well as a horizontal load of 150 kips as shown in figure 4.2.

According to the results given by Bowles, three different solutions are possible depending on the interference ratio, r. The stiffness matrix elements and resultant axial and lateral forces are indicated in table 4.3. Although the reactions change in a big range according to the interference ratio, they are compatible to the ones obtained from the developed programme.

Matrix	:000			So	lution	n (-indic	ates comp	ression)	
For r	ratio =	= 0.226	16		0.000	Pile No	TX (K (axial fo	ips) TZ orce) (la	(Kips) teral for
-3.249	0.000	0.000	0.000	7.003	0.000	1	-64.81	17.65	
0.000	-3.559	0.000	-11.956	0.000	0.000	2	-74.09	13.70	
0.000	0.000	-12.071	0.000	0.000	0.000	3	-86.12	10.84	
0.000	-11.956	0.000	-388.569	0.000	0.000	4	-89.41	10.84	
7.003	0.000	0.000	0.000	-408.379	0.000	5	-82.84	10.84	
0.000	0.000	0.000	0.000	0.000	-202.641	6	-79.55	10.84	
						7	-83.86	7.71	
						8	-76.26	10.84	
						9	-79.55	10.84	
						10	-83.36	7.71	
						11	-74.09	13.70	
						12	-86.12	10.84	
						13	-64.81	17.65	
						13	-64.81	17.65	

					Contraction of the second	1 million and and			
For r	ratio =	0.0056	0			Pile No	TX (Kips) (axial force)	TZ (Kips))(lateral f	force)
-0.470	0.000	0.000	0.000	9.000	0.000	1	10.88	3.32	
0.000	-0.868	0.000	-15.364	0.000	0.000	2	-75.75	3.36	
0.000	0.000	-11.806	0.000	0.000	0.000	3	-135.69	3.15	
0.000	-15.364	0.000	-371.630	0.000	0.000	4	-186.68	3.15	
9.000	0.000	0.000	0.000	-397.087	0.000	5	-84.69	3.15	
0.000	0.000	0.000	0.000	0.000	-5.026	6	-33.70	3.15	
						7	-162.40	3.02	
						8	17.29	3.15	
						9	-33.70	3.15	
						10	-162.40	3.02	
				- 64.620		11	-75.75	3.16	
						12	-135.69	3.15	
					Les and Les	13	10.88	3.32	
For	r ratio	= 0.000	,	-118 2146	F	Pile No	TX(Kips) (axial force	TZ(Kij) (lateral	ps) force
For	r ratio	= 0.000)		F	Pile No	TX(Kips) (axial force	TZ (Kij) (lateral	ps) force
For -0.400	r ratio	= 0.000	0.000	9.050	P 0.000	Pile No 1	TX(Kips) (axial force 82.82	TZ(Kij) (lateral 0.0	ps) force
For -0.400	r ratio 0.000 0.8.800	= 0.000 0.000 0.000	0.000	9.050 0.000	e 0.000 0.000	Pile No 1 2	TX(Kips) (axial force 82.82 -21.87	TZ(Kij) (lateral 0.0 0.0	ps) force
For -0.400 0.000	r ratio 0.000 0.8.800 0.000	= 0.000 0.000 0.000 -11.800	0.000 -15.450 0.000	9.050 0.000 0.000	0.000 0.000 0.000 0.000	Pile No 1 2 3	TX(Kips) (axial force 82.82 -21.87 -197.15	TZ(Kij) (lateral 0.0 0.0 0.0	ps) force
For -0.400 0.000 0.000	r ratio 0 0.000 0 -8.800 0 0.000 0 -15.450	= 0.000 0.000 0.000 -11.800 0.000	0.000 -15.450 0.000 -371.200	9.050 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000	Pile No 1 2 3 4	TX(Kips) (axial force 82.82 -21.87 -197.15 -274.67	TZ(Kij) (lateral 0.0 0.0 0.0 0.0	ps) force
For -0.400 0.000 0.000 0.000 9.050	r ratio 0 0.000 0 -8.800 0 0.000 0 -15.450 0 0.000	= 0.000 0.000 0.000 -11.800 0.000 0.000	0.000 -15.450 0.000 -371.200 0.000	9.050 0.000 0.000 0.000 -396.800	0.000 0.000 0.000 0.000 0.000	2 No 1 2 3 4 5	TX(Kips) (axial force 82.82 -21.87 -197.15 -274.67 -133.25	TZ(Kij) (lateral 0.0 0.0 0.0 0.0 0.0 0.0	os) force
For -0.400 0.000 0.000 9.050 0.000	r ratio 0 0.000 0 -8.800 0 0.000 0 -15.450 0 0.000 0 0.000	= 0.000 0.000 -11.800 0.000 0.000 0.000	0.000 -15.450 0.000 -371.200 0.000 0.000	9.050 0.000 0.000 0.000 -396.800 0.000	E 0.000 0.000 0.000 0.000 0.000 0.000	Pile No 1 2 3 4 5 6	TX (Kips) (axial force 82.82 -21.87 -197.15 -274.67 -133.25 -55.73	TZ(Kij) (lateral 0.0 0.0 0.0 0.0 0.0 0.0 0.0	os) force
For -0.400 0.000 0.000 9.050 0.000	r ratio 0 0.000 0 -8.800 0 0.000 0 -15.450 0 0.000 0 0.000	= 0.000 0.000 -11.800 0.000 0.000 0.000	0.000 -15.450 0.000 -371.200 0.000 0.000	9.050 0.000 0.000 0.000 -396.800 0.000	0.000 0.000 0.000 0.000 0.000 0.000	Pile No 1 2 3 4 5 6 7	TX (Kips) (axial force 82.82 -21.87 -197.15 -274.67 -133.25 -55.73 -106.12	TZ(Kij) (lateral 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ps) force
For -0.400 0.000 0.000 9.050 0.000	r ratio 0 0.000 0 -8.800 0 0.000 0 -15.450 0 0.000 0 0.000	= 0.000 0.000 -11.800 0.000 0.000 0.000	0.000 -15.450 0.000 -371.200 0.000 0.000	9.050 0.000 0.000 0.000 -396.800 0.000	0.000 0.000 0.000 0.000 0.000 0.000	2 No 1 2 3 4 5 6 7 8	TX (Kips) (axial force 82.82 -21.87 -197.15 -274.67 -133.25 -55.73 -106.12 8.16	TZ(Kij) (lateral 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	os) force
For -0.400 0.000 0.000 9.050 0.000	r ratio 0 0.000 0 -8.800 0 0.000 0 -15.450 0 0.000 0 0.000	= 0.000 0.000 -11.800 0.000 0.000 0.000	0.000 -15.450 0.000 -371.200 0.000 0.000	9.050 0.000 0.000 0.000 -396.800 0.000	0.000 0.000 0.000 0.000 0.000 0.000	Pile No 1 2 3 4 5 6 7 8 9	TX (Kips) (axial force 82.82 -21.87 -197.15 -274.67 -133.25 -55.73 -106.12 8.16 -69.35	TZ(Kij) (lateral 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	os) force
For -0.400 0.000 0.000 9.050 0.000	r ratio 0 0.000 0 -8.800 0 0.000 0 -15.450 0 0.000	= 0.000 0.000 -11.800 0.000 0.000 0.000	0.000 -15.450 0.000 -371.200 0.000 0.000	9.050 0.000 0.000 0.000 -396.800 0.000	0.000 0.000 0.000 0.000 0.000 0.000	Pile No 1 2 3 4 5 6 7 8 9 10	TX (Kips) (axial force 82.82 -21.87 -197.15 -274.67 -133.25 -55.73 -106.12 8.16 -69.35 -128.34	TZ(Kij) (lateral 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	os) force
For -0.400 0.000 0.000 9.050 0.000	r ratio 0 0.000 0 -8.800 0 0.000 0 -15.450 0 0.000 0 0.000	= 0.000 0.000 -11.800 0.000 0.000 0.000	0.000 -15.450 0.000 -371.200 0.000 0.000	9.050 0.000 0.000 -396.800 0.000	0.000 0.000 0.000 0.000 0.000	Pile No 1 2 3 4 5 6 7 8 9 10 11	TX (Kips) (axial force 82.82 -21.87 -197.15 -274.67 -133.25 -55.73 -106.12 8.16 -69.35 -128.34 -58.64	TZ(Kij) (lateral 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	os) force
For -0.400 0.000 0.000 9.050 0.000	r ratio 0 0.000 0 -8.800 0 0.000 0 -15.450 0 0.000 0 0.000	= 0.000 0.000 -11.800 0.000 0.000 0.000	0.000 -15.450 0.000 -371.200 0.000 0.000	9.050 0.000 0.000 -396.800 0.000	E 0.000 0.000 0.000 0.000 0.000	Pile No 1 2 3 4 5 6 7 8 9 10 11 12	TX (Kips) (axial force 82.82 -21.87 -197.15 -274.67 -133.25 -55.73 -106.12 8.16 -69.35 -128.34 -58.64 -210.77	TZ(Kij) (lateral 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	os) force
For -0.400 0.000 0.000 9.050 0.000	r ratio 0 0.000 0 -8.800 0 0.000 0 -15.450 0 0.000 0 0.000	= 0.000 0.000 -11.800 0.000 0.000 0.000	0.000 -15.450 0.000 -371.200 0.000 0.000	9.050 0.000 0.000 -396.800 0.000	0.000 0.000 0.000 0.000 0.000	Pile No 1 2 3 4 5 6 7 8 9 10 11 12 13	TX (Kips) (axial force 82.82 -21.87 -197.15 -274.67 -133.25 -55.73 -106.12 8.16 -69.35 -128.34 -58.64 -210.77 157.04	TZ(Kij) (lateral 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	os) force

TABLE 4.3 The axial and lateral forces computed by the programme developed by Bowles

Pile	TX (Kips	TZ (Kips)
No	(Axial Force)	(Lateral force)
1	132.838	21.927
2	- 3.554	21.295
3	- 36.627	20.924
4	- 69.699	20.618
5	-113.922	20.618
6	- 80.850	20.924
7	-212.960	22.330
8	-158.146	20.618
9	-191.218	20.312
10	- 3.965	20.006
11	224.270	20.633
12	-146.995	20.312
13	218.623	21.105

TABLE 4.4 The axial and lateral forces computed by the developed programme.

FIGURE 4.2 Example from "Foundation Analysis and Design" (Bowles)

HPLE FROM "FOUNDATION ANALYSIS AND DESIGN, BOWLES" (C=43201b/ft3)

OAL LOADS

HD NO:		P1	P2	P3	P4	P5	P6
1		-150.00	0.00	1000.00	0.00	0.00	0.00
ile head) displacements				•	170.774	hair
OAD NO:	PILE NO:	D1 -	D2	D3	D4	05	.06
1	1	0.979E-05	0.555E-05	0.191E-03	-0.673E-06	0.279E-06	0.106E-05
1	2	-0.262E-06	0.164E-04	0.190E-03	-0.673E-06	-0.277E-06	0.106E-05
1	3	-0.270E-05	-0.101E-04	0.188E-03	-0.673E-06	-0.407E-06	0.102E-05
1	4	-0.513E-05	'-0.128E-04	0.185E-03	-0.673E-06	-0.407E-06	0.102E-05
1	5	-0.839E-05	-0.744E-05	0.185E-03	-0.673E-06	-0.407E-06	0.102E-05
1	6	-0.596E-05	-0.474E-05	0.188E-03	-0.673E-06	-0.407E-06	0.102E-05
1	7	-0.1575-04	0.205E-04	0.189E-03	0.866E-07	0.836E-06	0.1062-05
1	8	-0.117E-04	-0.205E-05	0.185E-03	-0.6732-06	-0.407E-06	0.102E-05
1	9	-0.141E-04	-0.474E-05	0.182E-03	-0.673E-06	-0.407E-06	0.102E-05
1	10	-0.292E-06	-0.283E-04	0.179E-03	0.673E-06	-0.279E-06	0.106E-05
1	11	0.165E-04	-0.151E-04	0.179E-03	0.6732-06	0.277E-06	0.106E-05
1	12	-0.108E-04	-0.101E-04	0.182E-03	-0.673E-06	-0.407E-06	0.102E-05
1	13	0.161E-04	0.266E-05	0.180E-03	0.279E-06	0.673E-06	0.106E-05
PILE HEA	D REACTIONS						
LOAD NO:	PILE NO:	TX	TY	TZ	MX	HY	MZ
1	1	132.838	1.685	21.927	-0.917	194.565	23.994
1	2	-3.554	2.920	21.295	-0.918	184.182	34.819
1	3	-36.627	-0.139	20.924	-0.918	179.792	7.643
1	4	-69.699	-0.445	20.618	-0.918	177.112	4.963
1	5	-113.922	0.167	20.618	-0.918	177.112	10.323
1	6	-80.850	0.473	20.924	-0.918	179.792	13.003
1	7	-212.960	3.385	22.330	0.118	202.947	38.892
1	8	-158.146	0.779	20.618	-0.918	177.112	15.683

•							
1	9	-191.218	0.473	20.312	-0.918	174.432	13.003
1	10	-3.965	-2.157	20.006	0.917	172.863	-9.673
1	11	224.270	-0.659	20.633	0.918	183.209	3.457
1	12	-146.995	-0.139	20.312	-0.918	174.432	7.643
1	13	218.623	1.356	21.105	0.381	190.791	21.113

gater in the differencere by the proposed model with dehige

Eache mus haph nevelored for the dealing of end-best and pile

1:

it can be stilled that a suitable proge

V. CONCLUSION AND REMARKS

Calculation of the compressive and tensile forces on a group of raking piles or combined vertical and raking piles under inclined loading is very complex, and there is no established procedure with any sound theoretical basis, since a piled foundation is a three-dimensional structure with a high degree of indeterminancy. Inorder to tackle the problem some analytical methods are proposed in the literature. However an exact solution is not available. This study is adopted elastic beam model for piles as a better approach for the group analysis of point-bearing piles. Comparison of some numerical examples given in the literature by the proposed model with other calculation methods has proved that the results obtained are in reasonable limits.

In conclusion, it can be stated that a suitable programme has been developed for the design of end-bearing pile groups which will turn tedious calculation into a practical and efficient aid to the needs of engineering design offices.

allable, Since the ALLET is consided

The computed axial, shear forces as well as bending and torsional moments for each single pile is also useful in the structural design of the piles. The cross-section of piles should be chosen in accordance with the reactive forces to which it is subjected to.

Another importance of the study is that the settlements of the piled foundation under the forces from superstructure can also be obtained, which gives the designer reliable information to make sure that the movements are within acceptable limits provided the pile is founded on a hard yielding strata.

The numerical computations with the developed programme has shown that the subgrade coefficient, c, does not effect the reactive forces and moments if the group consists of only vertical piles. However if the group includes or consists of battered piles the computed reactive forces and moments vary considerably due to the change in subgrade coefficient. Therefore if can be concluded that reliable subsoil properties are necessary for the threedimensional analysis of pile groups including raking piles, but not so adequate if the group consists of only vertical piles.

The analysis giving the maximum pile head reactions and moments is also useful for the design of pile cap.

Another important aspect of the study is the calculation of settlements and movements if detailed subsoil data is available. Since the study is confined to point-

bearing piles only, it is found out that the vertical settlements are little more than the elastic shortening of piles. The computation of movements approaching to exactness will enable the designer, to check the previously calculated support reactions which had been done assuming vertical and horizontal movements to be zero. If the movements are not within the acceptable limits, a modification of support reactions can be achieved by modelling fixed support as an elastic support undergoing the calculated amount of displacements.

The dynamic analysis of the pile groups or introduction of friction piles can be accepted as a continuation of research subjects to improve this programme for a complete analysis. The matrix methods used for this study is also very efficient in these research areas of pile group analysis.

VI. REFERENCES

- 1 "National Building Code" (American)
- |2| Anderson, P.; "Substructure Analysis and Design", 2nd eddition the Ronald Press Company, New York, 1956.
- |3| Blum, H.; "Grunbau Taschenbuch", Verlag von Wilhelm Ernest Sohn, Berlin-München, 1966.
- [4] Broms, B.B.; (1965), "Design of laterally loaded piles", proceedings, Am. Soc. Civ. Engns, May, pp. 79-99.
- [5] Bowles, X.E.; (1968); "Foundation Analysis and Design", Mc. Graw-Hill Kogakuşka, 1td.
- [6] Chellis, R.D.; "Pile Foundations." 2 nd edition, Mc.Graw-Hill Book Company, New York, 1961.
- [7] Çakıroğlu, A., Özden E. and Özmen G.; "Matrice methods for the calculation of structural systemsand Computer Programs", Dizerkonca Matbaası, Istanbul 1970.
- [8] Francis, A.J.; "Analysis of Pile Groups with Flexural Resistance", J.Soil Mech. Found. DIV - ASCE, vol. SM3-90, pp.1-32, May, 1964.
- |9| Terzaghi, K. and Peck. R.B. (1967); "Soil Mechanics in Engineering Practice" 2 nd edition, J. Wiley Sons, NewYork.
- [10] Winterkon, H.F. and Fang H.F.(1975); "Foundation Engineering Handbook", Van Nostrad Reinhold Company.
- |11| Whitaker, T.; "The design of piled foundations", Robert Maxnell, M.C.
- |12| Tomlinson, M.J.(1978); "Foundation design and construction", pitman Publishing Limited, London.

VII. APPENDIX

APPENDIX 1 - LIST OF THE PROGRAM

POP-11 FORTRAN-77 V5.0-0 11:01:25

30-Nov-85

PILFON.FTN;1		/F77/OP/TR:BLOCKS/WR	
0001		PROGRAM PILFON	
	C****	***************************************	Ht.
	C	PILE :NUMBER OF PILES	*
	С	NLOAD :NUMBER OF LOADINGS	*
	С	(1) :SEQUENCE OF X.Y.Z COORDINATES OF A SINGLE PILE	*
	C	C(1) :SEQUENCE OF SOIL MODULUS FOR VARIOUS DEPTHS FOR EACH PILL	Et .
	C	E :ELASTICITY MODULUS FOR EACH GIVEN PILE	*
	C	W :POISSION'S RATIO FOR EACH PILE	*
	C	G :ELASTICITY MODILUS FOR TORSION: G=E/(1+2+EMU)	*
	c	EL(I) SEQUENCE FOR THE LENGTHS OF FACH ELEMENT FOR FACH PILE	*
	C	GL(1) :SEQUENCE FOR GAMMA(L) FOR EACH PILE	*
	C	EX STIFFNESS AGANIST MOMENT IN X DIRECTION FOR EACH PILE	*
	c	EY STIFFNESS AGANIST MOMENT IN Y DIRECTION FOR EACH PILE	*
	C	GI STIFFNESS AGANIST TORSION FOR FACH PILE	*
	C	P(1.J) SEDUENCE OF LOADING MATRICE	*
	CHAN		**
0002		COMMON/RINCK1/SR(200) TRR ISS NO TKR/S S)	
0002		COMMON/REOCK2/FR(21) PN	
0003		COMMON/RIOCK2/ NELLE NICAD	
0005		COMMON/DIOCKA/ID IDEC COE	
0005		DIMENCION ATDANCIE EN DEDIE 10) DIE 10) DEDDDIE 10) DOCIE 10)	
0000		PEAI + A TKP NIKP(C C) TOKPM(C C) TOKPT(C C)	
0007		PEAI + 4 COE(C C) DIG(C 10) DOE(C 10)	
0000		INTEGED DN DOLLC	
0010		CHAPACTER+A RAC(17)	
0010		NATA DALIS 1 2 5 4 2/	
0012		OPEN/INIT- 1 CILC-/CLOWIT/ ACCESS-/DIDECT/ DECI-21 TYDE-/SCOATCU	1
0012		OPEN(INIT= 2 FILE= 2011 ACCESS= DIRECT ARCH-21, TIPE= SCRATCH	1
0013		OPEN(INIT= 2 FILE= TILE ,ACCESS= DIRECT, RECE-SO,TTLE SCRATCH	1
0015		OPEN(INIT- 7 EILE- MINHS , ACCESS- DIACCI , RECE-SO, TITE- SCRATCH	1
0015		DENIMIT- 9 EILE- MIAN , HOLESS- DIACUT, ACCESS, MICH	1
0017		ADEN(INIT-10 EILE- DEION ACCESS- DIRECT RECE-00,THE- SCRICH	1
0019		OPEN(INIT-11 FILE- FORCES , ACCESS- DIRECT , RECE-00, TIPE- SCRATCH	1
0019		OPEN(INIT-12 FILE- DISF ,HULESS- DIRECT, REUL-SO, TIFE- SUMICH	1
0015	C	OPEN CATT-IE, FILE- FREAC , HOLESS- DIRECT , RECE-SU, I, IFE- SCRATCH	,
	c	A DEGRAM FOR THE CALCULATION OF CROUP CARACITY OF BUILD	
	c	A FROMAN FOR THE CALCOCATION OF BROUF CAPACITY OF FILES	
0020		NTI -1	
0020	75(READ (A ((A) 1704) (D)D-(50) TOD DAG	
0021	731	IE(TOP NE 104) CO TO 750	
0022			
8024		UDITE(C //10V 1704)/) 000	
0025		PEAD (A (1515)() NOTIC NI OAD NO ITO NTO	
0025		$\frac{1}{10} \frac{1}{10}	
0020	11	PCAD(A //CC10 0)/)/P(I I) I-1 C)	
0027	1	ON-1	
0020			
0020			
0030			
0031	1.		
0032			
0033		10K0T/1 1)-0	
0034	1		
0035		DU 13 IPIL=1,NPILE	
0036		REAU(2, KEU=1P1L)((10KKM(1,J),J=1,6),I=1,6)	
003/		DU 13 1=1,6	

PUP-11 FURINA	N-11 V3.0-0 11:01:23 30-Nov-83 Page 2
PILFON.FTN;1	/F77/OP/TR:BLOCKS/WR
0028	00 13 J=1 6
12 0000	IDKOL(I T)=IOKOL(I T)TIOKOM(I T)
0035 13	CALL SOLUE/S NI OAD LOKET D OCDY
0041	$\frac{1}{1}$
0042	UPITE/6 //// 10V 2000 MATION OF DUE OTIEDUECE MATRICEC.)//
0042	WRITE(0, (//, 10X, 30H30HTHITUN UP FILE STIFFNESS MRIKICES:))
0043	MRIIE(0, (0(/10X,0E13.3))))((10KK)(1,3),1=1,6),3=1,6)
0045	WRITE(6, (//, IUX, ISHDISPLACEMENTS)')
0045 640	MKIIE(0, (0(/10X,0E10.0)))((DEP(1,0),1=1,0),0=1,NLUAD)
0047	JREL=1
0047	NRELEI
0048	DU 20 IPIL=1,NPILE
0049	READ(3,REC=191L)((AIRANS(1,J),J=1,b),1=1,b)
0050	KEAU(7, KEU=IPIL) ((NIKK(1,J),J=1,6),I=1,6)
0051	CALL MATCAR(6, NLUAD, ATRANS, DEP, DEPUR)
0052	CALL MAICAR(6,NLOAD,NIKR,DEPOR,PDC)
0053	DU 21 JLUAD=1,NLUAD
0054	WRITE(9, REC=JREC) (DEPOR(1, JLOAD), 1=1,6)
0055	WRITE(10, REC=JREC) (POC(1, JLOAD), I=1,6)
0056 21	JREC=JREC+1
0057	DO 20 IK=1,2
0058	IREC=2*IPIL*(ND-1)+IK-2
0059	00 211 1=1,3
0060	DO 211 J=1,NLOAD
0061 211	DIS(I,J)=DEPOR(ROW(I+3*(IK-1)),J)
0062	CALL READER(3,ND)
0063	CALL MATCAR(3,NLOAD,COF,DIS,POF)
0064	WRITE(11, REC=NREC)((DIS(I, J), I=1, 3), J=1, NLOAD)
0065	WRITE(12,REC=NREC)((POF(I,J),I=1,3),J=1,NLOAD)
0066	NREC=NREC+1
0067	DO 212 ID=1,ND-1
8300	CALL READER(2,ND)
0069	CALL MATCAR(3,NLOAD, COF, DIS, POF)
0070	CALL READER(1,ND)
0071	CALL SOLVE(3,NLOAD,COF,POF,DIS)
0072	WRITE(11, REC=NREC)((DIS(I, J), I=1, 3), J=1, NLOAD)
0073	WRITE(12, REC=NREC)((POF(I, J), I=1, 3), J=1, NLOAD)
0074	NREC=NREC+1
0075 212	IREC=IREC-2
0076 20	CONTINUE
0077	CALL OUTPUT(P,ND,ITR)
0078	NTL=NTL+1
0079	GO TO 750
0080 650	CLOSE(UNIT=8,DISP='DELETE')
0081	STOP
0082	END

PROGRAM SECTIONS

Size		Attributes
003562	953	RW, I, CON, LCL
000760	248	RW.D.CON.LCL
000010	4	RH.D.CON.LCL
004110	1060	RH, D, CON, LCL
	Siz 003562 000760 000010 004110	Size 003562 953 000760 248 000010 4 004110 1060

PDP-11 FORTRAN-77 V5.0-0 11:01:25 30-Nov-85 PILFON.FTN;1 /F77/0P/TR:BLOCKS/WR Page 3

~ ~

STEMPS	000010	4	RH, D, CON, LCL
BLOCK1	001666	475	RW, D, OVR, GBL
BLOCK2	000126	43	RW, D, OVR, GBL
BLOCK3	000004	2	RW, D, OVR, GBL
BLOCK4	000224	74	RW, D, OVR, GBL

Total Space Allocated = 013136 2863

.

PDP-11 FC	ORTRAN-77 V5.0-0	11:02:05	30-Nov-85	Page 4
PILFON.FT	IN;1 /F77/	OP/TR:BLOCKS/	WR	
•				
0001	SUBROUTINE PILR	I(IPIL)		
0002	DIMENSION X(300),C(100),EL(1	UU),GL(1UU),CU(1	2) () ATRANO(5 (
		C C) TONCLT/C),10KKM(6,6),A(6	, b) , AI KANS(b, b
0000		0,0), INVSLI(0	ID)	
0003	COMMON/PLOCK2/E	P(200),100,13	5,190,1KK(0,0)	
0004	INTEGER RN. ROW	6)		
0005	REAL MU	.,		
0007	REAL+4 IKR.NIKR	.IDKR.IDKRM		
0008	CHARACTER*5 KP,	KPILE		
0009	DOUBLE PRECISIC	N PI, ALFA, ALF	AY	
0010	DATA KPILE, PI/	PILE:',3.1415	92654/	
0011	DATA ROW/6,1,2,	5,4,3/		
0012	KS(I,J)=(J−I)*	D*3-(J-I-1)*(J-1)*0.5+1	
0013	READ(4, '(12, 3X,	A5)') IROW, KP		
0014	IF(IROW.NE.IPIL	.OR.KP.NE.KPI	LE) THEN	
0015	WRITE(6, '(5X, 12	,3X,23HPILE H	ead card is wron	G)') IPIL
0016	GO TO 75			
0017	ENDIF	IL GALL VOT UT		
8100	KEAU(4,61)U,E,F	U,C(1),KSI,KI	Y,(CU(1),1=4,6)	
0013	PEAD(4, (0F10.0	$))(\lambda(1), 1=1, \dots, 1)$	NUX3,3)	
0020	READ(4 / (RE10.0	(X(1), 1-2, 1)	ND+2 21	
0022	IF(KTY F0.0) TH	(A(1),1-3,	140×3,3)	
0023	DO 12 I=2.ND-1			
0024	12 C(1)=C(1)			
0025	ELSEIF(KTY.EQ.1) THEN		
0026	READ(4, '(8E10.0)')(C(I),I=1,	ND-1)	
0027	ENDIF			
0028	G=E/(2*(1+2*MU))		1.1.1
0029	IF(KST.EQ.0) Th	EN		
0030	EF=E*PI*D**2/4	in with a		
0031	EIX=E*PI*D**4/6	;4		4
0032	EIY=EIX			
0033	GJ=G*PI*D**4/32			
0039	ELSEIF(KSI.EU.)	.) THEN		
0033				
0030	EIX-EXVAX4/12			1
0038	GJ=GtD+t4/6			1:
0039	ENDLE			
0040	J=1			
0041	DO 20 I=1.3*(NO	-1).3		
0042	EL(J)=SQRT((X()	+3)-X(I))**2		
	1 +(X(1	+4)-X(I+1))**	2	
	2 +(X()	+5)-X(1+2))**	2)	
0043	GL(J)=EL(J)*SQF	T(SQRT(C(J)*D	*1000/(4*EIX)))	
0044	20 J=J+1			
0045	IL=3*ND-5			
0046	SS=KS(IL, 3KND)			
0047	188=1			
0048	155=3			
0050	00 20 1-1 200		Street Bringhouse	
	00 30 1-1,200			

PILFON.	FUN	;1 /F77/0P/TR:BLOCKS/WR
0051		30 SR(I)=0
0052		00 9 NI=1,ND-1
0053		IF(K.EQ.1) THEN
0054		CALL ELRI(EF,EL(NI),EIX,GL(NI))
0055		ELSE
0056		CALL ELRI(GJ,EL(NI),EIY,GL(NI))
0057		ENDIF
0058		IS=(NI-1)*3+1
0059		JS=IS
0060		LS=6
0061		LM=1
0062		DO 10 L=1,6
0063		KL=KS(IS,JS)
0064		DO 11 M=1,LS
0065		SR(KL+M-1)=SR(KL+M-1)+ER(LM)
0066		11 LM=LM+1
0067		LS=LS-1
0068		10 JS=JS+1
0069		9 CONTINUE
0070		CALL ELE
0071		CALL KURIKR
0072		I88=4
0073		ISS=6
0074		8 CONTINUE
	C	
	C	NEW ORDER OF PILE STIFFNESS MATRICE
	C	
0075		DO 21 I=1,6
0076		DO 21 J=1,6
0077		21 NIKR(I,J)=0
0078		DO 22 I=1,6
0079		00 22 J=1,6
0080		22 NIKR(ROW(I), ROW(J)) = IKR(I, J)
0081		WRITE(7,REC=IPIL)((NIKR(I,J),J=1,6),I=1,6)
	C	
	C	CALCULATION OF DIRECTION COSINES
	C	
0082		CO(1)=X(1)
0083		CO(2)=X(2)
0084		CO(3)=X(3)
0085		MS=ND*3-2
0086		CO(10)=X(MS)
0087		CU(11)=X(MS+1)
8800		CO(12)=X(MS+2)
2800		DO 31 I=1,3
0090		31 CO(1)=CO(9+1)-CO(1)
0091		DELTA=1/(SQRT(CO(1)*CO(1)+CO(2)*CO(2)+CO(3)*CO(3)))
0092		00 32 1=1,3
0093		32 CU(1)=CU(1)*DELTA
0094		IF(CU(3).EQ1) THEN
0095		CU(4) =0.
00056		CU(5)=-1.
0097		CU(6) =0.
8600		ENDIF
0099		(117)=(17)=(17)=(17)=(17)=(17)=(17)=(17)

Page 5

PDP-11	FOR	r ah	1-77 V5.0-0	11:02:05	30-Nov-85	Page 6
PILFON.	FTN	1	/F77/0	P/TR:BLOCKS/W	1	
0100			CO(8)=CO(3)*CO(4	1)-CO(1)*CO(6)		
0101			CO(9)=CO(1)*CO(5	5)-CO(2)*CO(4)		
0102			REWIND 08			
0103		-	WRITE(8. (12E10.	4)')(CO(I),I=	.12)	
0104			REWIND 08	, /(00(1/)1.		
0105			PEAD (9 /(12510	4)/)(CO(1) 1-	12)	
0105	c		UDITE(6 //2515	1)/)((0(1) 1-1	12)	
	c		MULLO (0113.	*))(((1),1-1	,12)	
	C.		FORMATION OF TH	DOTATION MAT		
	5		FURNALIUN UP IN	KUTATION MAI	RILE	
	L					
0106			00 41 1=1,6			
0107			00 41 J=1,6			
0108		41	ROTA(I,J)=0			
0109			DO 42 K=1,4,3			和"如果"的"不是是不是是是
0110			DO 42 I=K,K+2			
0111			DO 42 J=K,K+2			
0112		42	ROTA(1,J)=CO(3*)	(I-K)+(J-K+1))		
·	C					
	C		FORMATION OF THE	TRANSPOSE OF	THE TRANSLA	TION MATRICE
	C					
0113			00 51 I=1.6			
0114			DO 51 J=1.6			
0115			IF(I NE J) THEN			
0116			TRNSIT(I J)=0			
0117			FICE			
0117			TONCLT/I IN-4			
0110			TRNSLI(1,J)=1.			
0119		-	CNUIF			
0120		21	CUNTINUE			
0121			$1 \times 1 \times 1 \times 1 \times 1 \times 1 \times 1 \times 1 \times 1 \times 1 \times$	(11)		
0122			TRNSLT(5,3) = -CO((10)		
0123			TRNSLT(6,1) = -CO((11)		
0124			TRNSLT(6,2) = CO((10)		
	С					
	C		FORMATION OF THE	TRANSFORMATI	ON MATRICE	
	С					
0125			CALL MATCAR(6,6	TRNSLT, ROTA, A)	
0126			DO 52 I=1.6			
0127			00 52 J=1.6			
0128		52	ATRANS(I.J)=A(J	.1)		
0129			WRITE(3 REC=IPI) (ATRANS(1 .I) .I=1 6) I=1	6)
	C			-)((()))))(1)0	,,0-1,0,,1-1	101
	c		DOTATION AND TO	NICIATION OF C		INATED DILE CTIEDIECO MATDICE
	5		NUTHITON HOU IN		HUSSIAN ELIM	INHIED FILE STIFFNESS MAIKILE
01.00	L		CALL MATCARUE C	WIND ATOWN		
0130			CALL MATCAR(6,6	MIRK, AIRANS, I	UKR)	
0131			UALL MATCAR(6,6	A, IDKR, IDKRM)		
0132			WKITE(2, REC=IPI	(IOKRM(I,J))	,J=1,6),I=1,	6)
0133		61	FORMAT(4E10.0,2)	(5,3E10.0)		
0134		75	RETURN			
0135			END			

PROGRAM SECTIONS

Size

Nane

66

POP-11 FORTRAN-77 V5.0-0 11:02:05 . 30-Nov-85 PILFON.FTN;1 /F77/OP/TR:BLOCKS/WR

\$CODE1	005166	1339	RW, I, CON, LCL
\$PDATA	000210	68	RW, D, CON, LCL
\$IDATA	000032	13	RW, D, CON, LCL
SUARS	006766	1787	RW, D, CON, LCL
STEMPS	000014	6	RW, D, CON, LCL
BLOCK1	001666	475	RW, D, OVR, GBL
BLOCK2	000126	43	RW, D, OVR, GBL

Total Space Allocated = 016446 3731

.

1.1.1.1.1.1.1

. .

Page 7

.

•

PDP-11 FORTR	AN-77 V5.0-0	11:02:49	30-Nov-85	Page 8
PILFON.FTN:1	/F77/0	P/TR:BLOCKS/W	R	
0001	SUBROUTINE ELRI(EF,EL,EI,GL)		
0002	COMMON/BLOCK2/ER	(21),RN		
0003	INTEGER RN			
C				
С	FORMATION OF THE	ELEMENT STIF	FNESS MATRICE	ON ELASTIC FOUNDATION
С				
0004	CH=COSH(GL)			
0005	CO=COS(GL)			
0006	SH=SINH(GL)			
0007	SI=SIN(GL)			
0008	SHCH=SH*CH	المحر سل أقبر المصمو سال		
0009	CHSI=CH#SI			
0010	SHCO=SH*CO			
0011	SICO=SI*CO			
0012	PYDT=1./(SHASH-S	(tst)		
C.				
c	MEMBERS OF THE S	TIFFNESS MATE	ICE	
c	HEIDEND OF THE C	111111200 11111		
0013	CK1=2+FI+GI /FI			
0014	CK2=2+CK1+GI /FI			
0015	CK3=CK2+GI /FI			
C				
č	FORMATION OF FLE	MENT STIFFNES	S MATRICE IN	ONE DIMENSIONAL LEDI SEOUSNEE
č	TOWPHICK OF LEE		S INITICE IN	are principation [EN] seconde
0016	FR(1) =CK1+(SHCH	-SICO)+PYDT		
0017	FR(2) =FF/FI	0100/-1101		
0018	ER(3) = CK3t(SHCH)	+SICO) +PYDT		
0019	FR(4) = FR(1)	10100/11/01		
0020	ER(5) = ER(2)			
0021	FR(6) = FR(3)			·
0022	ER(9) =CK2t(SHtS	I+PYDT)		
0023	FR(12)=CK2t0.5t(SHXSH+SIXSI)X	PYDT	
0024	FR(15)=FR(12)			
0025	FR(16)=CK1*(CHSI	-SHCO) *PYDT		
0026	ER(17)=FR(2)	011007-1101		
0027	ER(18)=CK3t(CHSI	+SHCO) *PYDT		
0028	ER(21)=ER(9)			
0029	WRITE(1.REC=RN)F	R		
0030	RN=RN+1			1.
0031	RETURN			· · · · · · · · · · · · · · · · · · ·
0032	END		-	

PROGRAM SECTIONS

Name	Size			Attributes	
\$CODE1	000650	212	,	RW, I, CON, LCL	
\$IDATA	000014	6		RW, D, CON, LCL	
\$VARS	000060	24		RW, D, CON, LCL	
BLOCK2	000126	43		RH, D, OVR, GBL	

POP-11 FORTRAN-77 V5.0-0 11:02:56 30-Nov-85 PILFON.FTN;1 /F77/OP/TR:BLOCKS/WR

Page 9

1.

69

0001		SUBROUTINE KURIKR
0002		COMMON/BLOCK1/SR(200), IBB, ISS, ND, IKR(6,6)
0003		REAL*4 IKR
0004		M=3+ND-2
0005		ME=M
0006		K=1
0007		DO 10 I=IBB,ISS
0008		ART=ND*3
0009		00 20 J=I,ISS
0010		IKR(I,J)=SR(ME)
0011		IF(I.NE.J) IKR(J,I)=IKR(I,J)
0012		ME=ME+ART
0013	20	ART=ART-1
0014		ME=MHK
0015	10	K=K+1
0016		RETURN
0017		END

PROGRAM SECTIONS

Name	Size		Attributes
\$CODE1	000314	102	RH, I, CON, LCL
\$VARS	000016	7	RW, D, CON, LCL
BLOCK1	001666	475	RW, D, OVR, GBL

Total Space Allocated = 002220 584

0P-11	FORTRAN-77	V5.0-0	11:03:00	30-Nov-85
ILFON.	FTN;1	1	F77/OP/TR:BLOCKS/W	R

0001			SUBROUTINE ELE
0002			INTEGER YBG, BG
0003			COMMON/BLOCK1/A(200), IB8, ISS, ND, IKR(6,6)
0004			K(I,J)=(J-I)*N-(J-I-1)*(J-I)*0.5+I
0005			N=3*ND
0006			NS=N-3
0007			YBG=6
8000			IL=N-YBG+1
0009			KS=K(IL.N)
1999	C		attailed and the second and the
	C		ELEMINATION
	C		nergeneret forther transferinging for an
0010			DO 10 I=2.NS
0011			IF(I.GT.IL) GO TO 19
0012			JS=I+YBG-2
0013			GO TO 20
0014		19	JS=N
0015		20	ORAN=A(K(I-1.I))/A(K(I-1.I-1))
0016			DO 11 J=I.JS
0017		11	A(K(I,J)) = A(K(I,J)) - ORAN + A(K(I-1,J))
0018		10	CONTINUE
0019			RETURN
0020			END
A STATISTICS IN COMPANY			The second second second second second second second second second second second second second second second se

PROGRAM SECTIONS

. .

P

Name	Siz	1000	Attributes
\$CODE1	000622	201	RW, I, CON, LCL
\$PDATA	000014	6	RH, D, CON, LCL
\$IDATA	000022	9	RH.D.CON.LCL
SWARS	000026	11	RH.D.CON.LCL
STEMPS	000004	2	RW.D.CON.LCL
BLOCK1	001556	439	RW, D, OVR, GBL

10111 (6,1913 (SH) OH ADEP

ALLAND AND ALL CONTRACTORS (S. P. P. S. D. M. M. D. D.

NUTE (C. 101) (J. D. CONST. C. D. P. N. J. C. M. W. W. S.

Total Space Allocated = 002470 668

MICEMPECHNE

Page 10

.

0011 SUBROUTINE OUTPUT(P,ND, ITR) 0022 DIMENSION P(6,10), DISP(6,10), PREC(6,10) 0033 COMMON REDOKSAV PPILE, NLGAD 0044 INTEGER RGN(6) 0055 CHARACTERK2_SEQ(30), HDEP(6), HFDR(6), HLDAD(6) 0066 CHARACTERK2_SEQ(30), HDEP(6), HFDR(6), HLDAD(6) 0076 DATA RGM/6, 1, 2, 5, 4, 3' 0077 DATA RGM/6, 1, 2, 5, 4, 3' 0088 DATA TAM, LSM2, ISM3', LDAD ND: ',' PILE ND:',' NODE ND:'/ 0019 DATA RGM/6, 1, 2, 5, 4, 3' 0010 DATA RGM/6, 1, 2, 5, 4, 3' 0011 DATA SEQ(21), 252(2), 522(3), 552(3), 552(4)'.'ST', 'ND',' RD',' 0012 DATA SEQ(21), SEQ(2), SEQ(3), SEQ(4)'.'ST', 'ND', 'RD',' 0013 DATA SEQ(21), SEQ(2), SEQ(3), SEQ(4)'.'ST', 'ND', 'RD',' 0014 D 10 10 1-4, 30 D 0015 IF(1, LE, 20, OR.I. GE. 24) SEQ(1)=SEQ(4) 0016 ID CONTINUE D 0017 WRITE(6, 101) SM1, HLADAD 0021 D 0 10 J LADA-1, NLADA 0022 WRITE(6, 103) SM1, ISM2, HDEP 0033 MO 2 J LGAD-1, NLADA 0034 RED(6, S, LDAD, F	PDP-11 PILFON.	FORTRA	N-77 V5.0-0 11:03:05 30-Nov-85 /F77/OP/TR:BLOCKS/WR	Page 11
001 SUBROUTINE OUTPUT(P,NO,TR) 002 DIMENSION P(6,10),DISP(6,10),PREC(6,10) 003 COMMOX BLOCK3/ NPILE,MLOAD 004 INTEGER RGH(6) 005 CHARACTER*2_SEQ(30),HDEP(6),HFDR(6),HLOAD(6) 006 CHARACTER*2_SEQ(30),HDEP(6),HFDR(6),HLOAD(6) 006 CHARACTER*2_SEQ(30),FDEP(6),HFDR(6),HLOAD(6) 007 DATA RGM/61,2,5,4,3' 008 DATA TSM,LSM2,STAT,'TY','TZ','NX','PY','PS','PS',' 009 DATA HOP /'D',','Q2','P3','P4','PS','P6',' 0010 DATA HOP /'D',','Q2','P3','P4','PS','P6',' 0011 DATA SEQ(1),SEQ(22),SEQ(3),SEQ(4),'ST','ND','RD',' 0012 DATA SEQ(1),SEQ(22),SEQ(23),'ST','ND','RD',' 0013 DATA SEQ(1),SEQ(22),SEQ(23),'ST','ND','RD',' 0014 DO 10 JLADO-I,MLOAD 0015 IF(1,LE.20.OR.I.GE.24) SEQ(1)=SEQ(4) 016 MRITE(6,102),JLOAD,(P(1,JLOAD),I=1,6) 019 DO 10 JLADO-I,MLOAD 0101 DATA,SEQ(1),SEQ(22),SEQ(23),SEQ(1),SEQ(23),SEQ(1),SEQ(23),SEQ(1),SEQ(23),SEQ(1),SEQ(23),SEQ(1)				
0002 DIMENSION P(6,10), pISP(6,10), pREC(6,10) 0003 COMMON/BLOCK3/ NPILE, NLOAD 0004 INTEGER ROM(6) 0005 CHARACTERK2 0006 CHARACTERK2 0007 DATA ROM/6, 1, 2, 5, 4, 3/ 0008 DATA HOE//1, 192, 1SH3/ 0010 DATA HOE//1, 192, 1SH3/ 0011 DATA HOE//11, 192, 1SH3/ 0012 DATA HOE//11, 192, 1SH3/ 0013 DATA HOE//11, 192, 1SH3/ 0014 DOTA HOE//11, 192, 1SH3/ 0015 DATA HOE//11, 722, 'P3', 'P4', 'P5', 'P6'/ 0011 DATA SEQ(1), SEQ(2), SEQ(2), SEQ(3)/'ST', 'N0', 'R0', 'TH'/ 0013 DATA SEQ(1), SEQ(2), SEQ(2), SEQ(2)/'SEQ(4) 0014 D0 110 1=4, 30 0015 IF(1.LE.20.0R.1, GE.24) SEQ(1)=SEQ(4) 0016 IO CONTINUE 0017 WRITE(6, 101) SH1, HCADA 0018 WRITE(6, 102) JLOAD, (P(1, JLOAD), I=1, 6) 0021 DO 20 JLOAD=1, NLOAD 0022 WRITE(6, 102) JLOAD, PILL, (DISP(1, JLOAD), I=1, 6) 0023 D0 20 JLOAD=1, NLOAD 0024 D0 20 JLO	0001		SUBROUTINE OUTPUT(P,ND,ITR)	
0003 COMMON/BLOCK3/ NPILE,NLGAD 0004 INTEGER ROW(6) 0005 CHARACTERX10 15M1,15M2,15M3 0007 DATA 15M1,15M2,15M3/ LOAD ND: ',' PILE ND:',' NODE ND: ',' 0018 DATA 15M1,15M2,15M3/ LOAD ND: ',' PILE ND:',' NODE ND: ',' 0019 DATA HOLP /'D1','D2','D3','D4','D5','D6'/ OD1 DATA SEQ(1),SEQ(2),SEQ(3),SEQ(4)/'ST','M0','R0'/ 0011 DATA HOLP /'D1','D2','D3','D4','D5','P6'/ OD1',' PILE ND:',' ND','R0'/ 0011 DATA HOLP /'D1','D2','D3','D4','D5','P6'/ OD1',' PILE ND:',' ND','R0'/ 0012 DATA SEQ(21),SEQ(23),SEQ(3),SEQ(4)/'ST','ND','R0'/ PIL',' PIL','R0','R0'/ 0013 DATA SEQ(21),SEQ(22),SEQ(23)/'ST','ND','R0'/ PIL',' PIL','R0'/ 0014 D0 10 10 1-4,30 C1-1,50 C1-1,50 0015 IF(1.LE,010,R1,1,40AD LOADS)') OD18 MRITE(6,101)15M1,HADAD 0014 D0 10 JLGAD-1,NLGAD PILE PILE PILE 0014 D0 10 JLGAD-1,NLGAD PILE PILE 0021 DO 21 JLADA-1,NLGAD PILE PIL	0002		DIMENSION P(6,10), DISP(6,10), PREC(6,10)	
0004 INTEGER RCM(6) 0005 CHARACTERA2 SEQ(30), HDEP(6), HFCR(6), HLOAD(6) 0006 CHARACTERA10 ISM1, ISM2, ISM3 0007 DATA RCM/6, 1, 2, 5, 4, 3/ 0008 DATA HOP /017, '027, '037, '04', '057, '06'/ 0010 DATA HCM /17, '727, '747, '757, '74', '757, '76'/ 0011 DATA SEQ(2), SEQ(2), SEQ(2), SEQ(3), 'SEQ(4), 'ST', 'N0', 'R0', 'TH'/ 0012 DATA SEQ(1), SEQ(2), SEQ(2), SEQ(2), 'SEQ(4), 'ST', 'N0', 'R0', 'TH'/ 0013 DATA SEQ(1), SEQ(2), SEQ(2), SEQ(2), 'SEQ(4), 'ST', 'N0', 'R0', 'TH'/ 0014 D0 110 1-4, 30 IF(1.LE.20.OR.1.GE.24) SEQ(1)=SEQ(4) 0015 IF(1.LE.20.OR.1.GE.24) SEQ(1)=SEQ(4) IST 0016 IO TOMTHVE WRITE(6, 101) ISM1, HCADA 0017 WRITE(6, 102), JLOAD, (P(1, JLOAD), I=1, 6) IST 0021 IO CONTINUE IRTE(6, 102), JLOAD, (P(1, JLOAD), I=1, 6) IRTE(6, IOS), JLOAD = 1, NLOAD 0022 WRITE(6, 103), ISM1, ISM2, HDEP IST FACAUG, RECEREC) (DISP(1, JLOAD), I=1, 6) 0023 LARCE(IPIL-1) +MLOAD+JLOAD IRTE(6, 103), ISM1, ISM2, HDEP IST 0034 LADAD-1, NLOAD IRTE(6, 100, JLOAD - 1, NLOAD <td>0003</td> <td></td> <td>COMMON/BLOCK3/ NPILE, NLOAD</td> <td></td>	0003		COMMON/BLOCK3/ NPILE, NLOAD	
0005 CHARACTER#2 SEQ(30), HDCP(6), HFCR(6), HLCAD(6) 0006 CHARACTER#10 ISHI, ISH2, ISH3 0007 DATA RGM/6, 1, 2, 5, 4, 3/ 0008 DATA ISHI, ISH2, ISH3// LOAD ND: ',' PILE ND:',' NODE ND:'/ 0019 DATA HDEP /'DI','D2','D3','D4','D5','D6'/ 0010 DATA HDEP /'DI','D2','P3','P4','P5','P6'/ 0011 DATA HLCAD/'P1','P2','P3','P4','P5','P6'/ 0012 DATA SEQ(21),SEQ(22),SEQ(33),SEQ(4)/'ST','N0','R0','TH'/ 0013 DATA SEQ(21),SEQ(22),SEQ(33),SEQ(4)/'ST','N0','R0','TH'/ 0014 DO 110 I=4,30 0015 IF(I.LE.20.OR.I.GE.24) SEQ(1)=SEQ(4) 0016 110 CONTINUE 0017 MRITE(6,101)ISH1,HLCAD 0018 WRITE(6,102)JLOAD,(P(I,JLCAD),I=1,6) 019 D0 10 JLCAD=1,MLCAD 0021 10 CONTINUE 0022 HRITE(6,103)ISH1,ISH2,HDEP 0024 DO 20 LOAD=1,MLCAD 0025 DO 21 IPL=1,NPILE 0026 IREEC=(IPLL-1)#MLCAD+JLCAD 0027 READ(9,REC=IREC) (DISP(I,JLCAD),I=1,6) 0028 21 MRITE(6,106)JLCAD,IPIL,(OREC(I,JLCAD),I=1,6)	0004		INTEGER ROW(6)	
0006 CHARACTERTIC 1991, 1992, 1993 0007 DATA ROW(6,1,2,5,4,3) 0008 DATA ISMI, 1992, 1983/' LOAD NO: ',' PILE NO:',' NODE NO:'/ 0019 DATA HEDR /'TX','TY','TZ','NX','MY','YC/ 0010 DATA HEDR /'TX','TY','TZ','NX','MY','YC/ 0011 DATA HEDR /'TX','TY','TZ','NX','MY','YC/ 0012 DATA SEQ(1),SEQ(2),SEQ(3),SEQ(4)/'ST','ND','RD',' 0013 DATA SEQ(21),SEQ(22),SEQ(3)/ST','ND','RD',' 0014 DO 10 10 [4,30 015 IF(1.LE.20.OR.I.GE.24) SEQ(1)=SEQ(4) 016 110 CONTINUE 0015 IF(1.LE.20.OR.I.GE.24) SEQ(1)=SEQ(4) 016 100 CONTINUE 017 NRITE(6,101)ISHI,HLOAD 018 HRITE(6,102)JLOAD,(P(1,JLOAD),1=1,6) 019 DO 10 JLOAD=1,NLOAD 0102 NRITE(6,103)ISHI,ISH2,HDEP 024 DO 20 JLOAD=1,NLOAD 025 DO 21 IPIL=1,NPILE 026 IRECE(1PIL-1)#NLOAD+JLOAD 027 READ(9,REC=IREC) (DISP(1,JLOAD),1=1,6) 028 21 RRITE(6,103)JLOAD, IPIL,(IDSP(1,JLOAD),1=1,6) 029 20 CONTINUE <t< td=""><td>0005</td><td></td><td>CHARACTER*2 SEQ(30), HDEP(6), HFOR(6), HLOAD(6)</td><td></td></t<>	0005		CHARACTER*2 SEQ(30), HDEP(6), HFOR(6), HLOAD(6)	
0007 DATA RUM/5,1,2,5,4,37 0008 DATA HSM1,ISM2,ISM37' LOAD ND: ',' PILE ND:',' NODE ND:'/ 0019 DATA HEDR /'D1','P2','P3','P4','P5','P6'/ 0010 DATA HEDR /'TX','TY','TZ','MX','MY','M2'/ 0011 DATA HEDR /'TX','TY','TZ','MX','MY','M2'/ 0012 DATA SEQ(21),SEQ(2),SEQ(3),SEQ(4)/'ST','NO','RO','TH'/ 0013 DATA SEQ(21),SEQ(22),SEQ(23)/'ST','NO','RO','TH'/ 0014 D0 110 I=4,30 015 IF(I.LE.20.OR.I.GE.24) SEQ(I)=SEQ(4) 016 IO CONTINUE WRITE(6,101)ISM1,HLOAD 0013 DO 10 JLOADE1,MLOAD 0014 D0 10 JLOADE1,MLOAD 0015 IF(ILLE.20.OR.I.GE.24) SEQ(I)=SEQ(4) 016 IO CONTINUE WRITE(6,102)LOAD,(P(I,JLOAD),I=1,6) 0021 IO CONTINUE WRITE(6,102)LOADE1,MLOAD 0022 RRITE(6,103)ISIN1,ISM2,HDEP 0024 DO 20 JLOADE1,MLOAD 0025 D0 21 IPIL=1,NPILE 0026 IREC=(IPIL-1)MLOAD-JLOAD 0027 READ(9,REC=IREC) (DISP(I,JLOAD),I=1,6) 0028 21 WRITE(6,104)ISM1,ISM2,HOPR	0006		CHARACTER*10 ISM1, ISM2, ISM3	
0000 0414 ISH [ISH2] ISH2/: LOAD NO: ', 'PILE NU:',' NUDE NU:',' 0000 DATA HOEP //D1','O2','D3','D4','D5','D6',' 0110 DATA HOEP //D1','O2','P3','P4','P5','P6',' 0111 DATA HEOR /'TX', 'TT','TZ','RX','MY','NZ',' 0111 DATA HEOR /'TX', 'TY','TZ','RX','MY','NZ',' 0111 DATA SEQ(1),SEQ(2),SEQ(3),SEQ(4)/'ST','NO','RO',' 0113 DATA SEQ(2),SEQ(2),SEQ(3),SEQ(4)/'ST','NO','RO',' 0114 DO 110 I=4,30 0115 IF(I.LE.20.OR.I.GE.24) SEQ(1)=SEQ(4) 0116 IONTINUE 0117 WRITE(6,101,SH1,HADAD 0118 WRITE(6,102,JLADAD,(P(I,JLADAD),I=1,6) 0121 IO CONTINUE 0121 IO CONTINUE 0122 WRITE(6,103,JISH1,ISM2,HOEP 0123 WRITE(6,103,JISH1,ISM2,HOEP 0124 DO 20 JUCADE1,NLGAD 0125 DO 21 IIPL=1,NPILE 0126 IREC=(IPL-1)+#NLGAD+JLOAD 0127 READ(3,REC=IREC) (DISP(I,JLOAD),I=1,6) 0128 I HITE(6,104)/ISM1,ISM2,HOEP 0129 DO 31 IPL=1,NPILE 0120 INTINE	0007		DATA ROW/6,1,2,5,4,3/	
0009 DATA HORP / D1', D2', J3', J4', D3', J6', 0010 DATA HFUR //TX', TY', TZ', Y8', Y8', Y8', Y8', 0011 DATA HFUR //TX', TY', Y2', Y3', Y4', Y5', Y8', 0012 DATA SEQ(21), SEQ(22), SEQ(3), SEQ(4)/'ST', 'N0', 'R0', 'TH'/ 0013 DATA SEQ(21), SEQ(22), SEQ(3), SEQ(4)/'ST', 'N0', 'R0', 'TH'/ 0014 D0 110 I=4,30 015 IF(1.LE.20.OR.I.GE.24) SEQ(1)=SEQ(4) 016 110 CONTINUE 0017 WRITE(6,101)ISH1, HLOAD 0018 WRITE(6,102)JLOAD, (P(1,JLOAD), I=1,6) 019 D0 10 JLOAD=1, NLOAD 0020 WRITE(6,103)ISH1, ISH2, HOEP 0021 D0 10 JLOAD=1, NLOAD 0022 WRITE(6,103)ISH, ISH2, HOEP 0023 MRITE(6,103)ISH, ISH2, HOEP 0024 D0 20 JLOAD=1, NLOAD 0025 D0 21 IPIL=1, NFILE 0026 IREC=(IPIL=1) #NLOAD 0027 READ(3, REC=TREC) (DISF(1,JLOAD), I=1,6) 018 WRITE(6,104)ISH1, ISH2, HFOR 019 D0 30 JLOAD=1, NLOAD 019 D0 30 JLOAD=1, NLOAD 0103 WRITE(6,104)ISH, ISH2, HFOR 011 WRITE(6,104)ISH, ISH2, HFOR	8000		DATA 15M1,15M2,15M3/ LOAD NO: ',' PILE NO:',' 1	NODE NO: "
U010 U011 <th< td=""><td>0009</td><td></td><td>UATA HUEP / 'DI', 'D2', 'D3', 'D4', 'D3', 'D6'/</td><td></td></th<>	0009		UATA HUEP / 'DI', 'D2', 'D3', 'D4', 'D3', 'D6'/	
ODI DATA SEQ(1), SEQ(2), SEQ(3), SEQ(4)/'ST', 'ND', 'RD', 'TH'/ 0012 DATA SEQ(21), SEQ(22), SEQ(23), ST', 'ND', 'RD',	0010		DATA HFUR / IX', IY', IZ', MX', MY', MZ'/	
0012 DATA SEQ(1), SEQ(2), SEQ(3), SEQ(4), 'SI', 'ND', 'N	0011		DATA HLUAU/ P1', P2', P3', P4', P5', P6'/	
0014 D0110 I=4,30 0015 IF(I.LE.20.OR.I.GE.24) SEQ(I)=SEQ(4) 0016 110 CONTINUE 0017 WRITE(6,101)ISM1,HLOAD 0018 WRITE(6,101)ISM1,HLOAD 0019 D0 10 JLOAD=1,NLOAD 0020 WRITE(6,102)JLOAD,(P(I,JLOAD),I=1,6) 0021 10 CONTINUE 0022 WRITE(6,103)ISM1,ISM2,HDEP 0023 WRITE(6,103)ISM1,ISM2,HDEP 0024 D0 20 JLOAD=1,NLOAD 0025 D0 21 IPIL=1,NPILE 0026 IREC=(IPIL=1)+NLOAD 0027 READ(9,REC=IREC) (DISP(I,JLOAD),I=1,6) 0028 21 WRITE(6,(5,105)JLOAD,IPIL,(OISP(I,JLOAD),I=1,6) 0029 20 CONTINUE 0030 WRITE(6,104)ISM1,ISM2,HFOR 0032 D0 30 JLOAD=1,NLOAD 0033 D0 31 IPIL=1,NPILE 0034 IREC=(IPIL=1)+NLOAD/JLOAD 0035 READ(10,REC=IREC) (REC(I,JLOAD),I=1,6) 0036 31 WRITE(6,(104,REC=REC)(REC(I,JLOAD),I=1,6) 0037 30 CONTINUE 0038 IF(ITR.EQ.0) RETURN 0039 WRITE(6,(104,REC=REC)(REC(I,JLOAD),I=1,6) 039 WRI	0012		UATA SEU(1), SEU(2), SEU(3), SEU(4)/'ST', 'ND', 'KD', '	18.1
00110 1-4-30 0015 IF(I.LE.20.0R.I.GE.24) SEQ(I)=SEQ(4) 0016 110 CONTINUE 0017 HRITE(6,101)ISML,HLGAO 0018 HRITE(6,102)JLGAD,(P(I,JLGAD),I=1,6) 0020 HRITE(6,102)JLGAD,(P(I,JLGAD),I=1,6) 0021 10 CONTINUE 0022 HRITE(6,102)JLGAD,(P(I,JLGAD),I=1,6) 0023 HRITE(6,103)ISML,ISM2,HDEP 0024 D0 20 JLGAD=1,NLGAD 0025 D0 21 IPIL=1,NPILE 0026 IREC=(IPIL-1)+NLGAD 0027 READ(9,REC=IREC) (DISP(I,JLGAD),I=1,6) 0028 21 MRITE(6,103)ISML,ISM2,HFOR 0029 20 CONTINUE 0030 MRITE(6,104)ISML,ISM2,HFOR 0032 D0 30 JLGAD=1,NLGAD 0033 D0 31 IPIL=1,NPILE 0034 IREC=(IPIL-1)+NLGAD 0035 READ(10,REC=IREC)(PREC(I,JLGAD),I=1,6) 0036 31 HRITE(6,106)JLGAD,IPIL,(PREC(I,JLGAD),I=1,6) 0037 30 CONTINUE 0038 IF(ITR.E0,0) RETURN 0039 HRITE(6,'(//1,1/1,2,24,22,25,5HPILE:)') IPIL,SEQ(IPIL) 0040 IPIL=1,NPILE 0037 3	0013		DATH SEQ(21), SEQ(22), SEQ(23)/ ST , NO. , KU/	
0016 110 CONTINUE 0016 110 CONTINUE WRITE(6,'(//,11X,11HNODAL LOADS)') 0018 WRITE(6,101)ISM1,HLOAD 0019 00 10 JLOAD=1,NLOAD 0020 WRITE(6,102)JLOAD,(P(I,JLOAD),I=1,6) 0021 10 CONTINUE 0022 WRITE(6,103)ISM1,ISM2,HDEP 0023 WRITE(6,103)ISM1,ISM2,HDEP 0024 D0 20 JLOAD=1,NLOAD 0025 D0 21 IPIL=1,NPILE 0026 IREC=(IPIL-1)+NLOAD+JLOAD 0027 READ(9,REC=IREC) (DISP(I,JLOAD),I=1,6) 0028 21 WRITE(6,105)JLOAD,IPIL,(DISP(I,JLOAD),I=1,6) 0029 20 CONTINUE 0030 HRITE(6,104)ISM1,ISM2,HFOR 0032 D0 30 JLOAD=1,NLOAD 0033 D0 31 IPIL=1,NPILE 0034 IREC=(IPIL-1)+NLOAD+JLOAD 0035 READ(10,REC=IREC) (PREC(I,JLOAD),I=1,6) 0036 31 WRITE(6,'(LM1,//,11X,26HPILE ELEMENT DISPLACEMENTS)') 0031 IPIL=1,NPILE 0033 D0 31 IPIL=1,NPILE 0034 IRCE(F(IREC) (IDISP(RC(I,JLOAD),I=1,6) 0035 READ(10,REC=IREC) (PREC(I,JLOAD),I=1,6) 0036	0015			
0017 HR ITE(6, '(//, 11X, 11H, 0AAL LOADS)') 0017 HR ITE(6, 101) ISM1, HLOAD 0019 D0 10 JLOAD=1, NLOAD 0020 HR ITE(6, 102) JLOAD, (P(1, JLOAD), I=1, 6) 0021 10 CONTINUE 0022 HR ITE(6, 102) JLOAD, (P(1, JLOAD), I=1, 6) 0023 HR ITE(6, 103) ISM1, ISM2, HDEP 0024 D0 20 JLOAD=1, NLOAD 0025 D0 21 IPIL=1, NPILE 0026 IREC=(IPIL-1) *NLOAD-JLOAD 0027 READ(9, REC=IREC) (DISP(I, JLOAD), I=1, 6) 0028 21 HRITE(6, 105) JLOAD, IPIL, (DISP(I, JLOAD), I=1, 6) 0029 20 CONTINUE 0030 HRITE(6, 104) ISM1, ISM2, HFOR 0031 HRITE(6, 104) ISM1, ISM2, HFOR 0032 D0 30 JLOAD=1, NLOAD 0033 D0 31 IPIL=1, NPILE 0034 IREC=(IPIL-1) *NLOAD+JLOAD 0035 REAO(10, REC=IREC) (PREC(I, JLOAD), I=1, 6) 0036 31 HRITE(6, 106) JLOAD, IPIL, (PREC(I, JLOAD), I=1, 6) 0037 30 CONTINUE 0038 IF(ITR.EQ.0) RETURN 0039 HRITE(6, '(//, 10X, I2, A2, 2X, 5HPILE:)') IPIL, SEQ(IPIL) 0040 IPIL=1, NPILE <t< td=""><td>0015</td><td>110</td><td>17(1.LE.20.0K.1.0E.24) SEU(1)=SEU(4)</td><td></td></t<>	0015	110	17(1.LE.20.0K.1.0E.24) SEU(1)=SEU(4)	
0019 WRITE(6, (//) IIX, IIMMORE LOUS) / 0019 WRITE(6, 101) ISM1, HLOAD 0020 WRITE(6, 102) JLOAD, (P(I, JLOAD), I=1, 6) 0021 10 CONTINUE 0022 WRITE(6, 103) ISM1, ISM2, HDEP 0023 WRITE(6, 103) ISM1, ISM2, HDEP 0024 D0 20 JLOAD=1, NLOAD 0025 D0 21 IPIL=1, NPILE 0026 IREC=(IPIL-1)*NLOAD+JLOAD 0027 READ(9, REC=IREC) (DISP(I, JLOAD), I=1, 6) 0028 21 WRITE(6, 105) JLOAD, IPIL, (DISP(I, JLOAD), I=1, 6) 0029 20 CONTINUE 0030 WRITE(6, 104) ISM1, ISM2, HFOR 0031 WRITE(6, 104) ISM1, ISM2, HFOR 0032 D0 30 JLOAD=1, NLOAD 0033 D0 31 IPIL=1, NPILE 0034 IREC=(IPIL-1)*NLOAD+JLOAD 0035 READ(10, REC=IREC) (PREC(I, JLOAD), I=1, 6) 0036 31 WRITE(6, 106) JLOAD, IPIL, (PREC(I, JLOAD), I=1, 5) 0037 30 CONTINUE 0038 IF(ITR.EQ.0) RETURN 0039 WRITE(6, 103) ISM1, ISM3, HOEP 0040 D0 40 IPIL=1, NPILE 0041 WRITE(6, 101, NG 0144 WRITE(6, 101, NG	0010	110		
0019 D0 10 JLOADD=1,NLOAD 0019 D0 10 JLOADD=1,NLOAD 0020 WRITE(6,102)JLOAD,(P(I,JLOAD),I=1,6) 0021 10 CONTINUE 0022 WRITE(6,103)ISH1,ISM2,HDEP 0024 D0 20 JLOADD=1,NLOAD 0025 D0 21 JFIL=1,NFILE 0026 IREC=(IFIL=1)+NLOAD 0027 READ(9,REC=IREC) (DISP(I,JLOAD),I=1,6) 0028 21 WRITE(6,105)JLOAD,IPIL,(DISP(I,JLOAD),I=1,6) 0029 20 CONTINUE 0030 WRITE(6,104)ISM1,ISM2,HFOR 0032 D0 30 JLOADD=1,NLOAD 0033 D0 31 IPIL=1,NPILE 0034 IREC=(IPIL=1)+NLOAD+JLOAD 0035 READ(10,REC=IREC) (PREC(I,JLOAD),I=1,6) 0036 31 WRITE(6,106)JLOAD,IPIL,(PREC(I,JLOAD),I=1,6) 0037 30 CONTINUE 0038 IF(ITR.EQ.0) RETURN 0039 WRITE(6,'(//11X,12,A2,2X,SHPILE ELEMENT DISPLACEMENTS)') 0040 D0 40 IPIL=1,NPILE 0041 WRITE(6,103)ISM1,ISM3,HOEP 0043 D0 40 ID=1,ND 0044 NREC=2MDA(11,REC=NREC)((DISP(ROH(I),J),I=1,3),J=1,NLOAD) 0045 READ(11,REC=NREC)((IDISP(ROH(I),J),	0017		URITE(6, (//,IIA,IIANOUHL LUHUS))	
0010 0010 0020 WRITE(6,102)JLOAD, (P(1,JLOAD), I=1,6) 0021 10 CONTINUE 0022 WRITE(6,103)ISM1, ISM2, HDEP 0023 WRITE(6,103)ISM1, ISM2, HDEP 0024 D0 20 JLOAD=1, NLOAD 0025 D0 21 IPIL=1, NPILE 0026 IREC=(IPIL-1)*NLOAD+JLOAD 0027 READ(9, REC=IREC) (DISP(I,JLOAD), I=1,6) 0028 21 WRITE(6, 105)JLOAD, IPIL, (DISP(I,JLOAD), I=1,6) 0029 20 CONTINUE 0030 WRITE(6, 104) ISM1, ISM2, HFOR 0032 0031 WRITE(6, 104) ISM1, ISM2, HFOR 0032 0032 D0 30 JLOAD=1, NLOAD 0033 D0 31 IPIL=1, NPILE 0034 IREC=(IPIL-1)*NLOAD+JLOAD IREC 0035 READ(10, REC=IREC) (PREC(I,JLOAD), I=1,6) 0036 31 WRITE(6, 106)JLOAD, IPIL, (PREC(I,JLOAD), I=1,6) 0037 30 CONTINUE IPIL=1, NPILE 0038 IF(ITR.EQ, 0) RETURN ISPILACEMENTS)') 0039 WRITE(6, 103)ISM1, ISM3, HOEP I	010			
0021 10 CONTINUE 0022 WRITE(6, 102)GEURD, ((', 1, 0EURD), 1-1, 0) 0023 WRITE(6, 102)GEURD, ((', 1, 0EURD), 1-1, 0) 0024 D0 20 JLQAD=1, NLQAD 0025 D0 21 IPIL=1, NPILE 0026 IREC=(IPIL-1) #NLQAD+JLQAD 0027 READ(9, REC=IREC) (DISP(I, JLQAD), I=1, 6) 0028 21 WRITE(6, 105)JLQAD, IPIL, (DISP(I, JLQAD), I=1, 6) 0029 20 CONTINUE 0030 WRITE(6, 104)ISM1, ISM2, HFOR 0031 WRITE(6, 104)ISM1, ISM2, HFOR 0032 D0 30 JLQAD=1, NLQAD 0033 D0 31 IPIL=1, NPILE 0034 IREC=(IPIL-1) #NLQAD+JLQAD 0035 READ(10, REC=IREC) (PREC(I, JLQAD), I=1, 6) 0036 31 WRITE(6, 106 JLQAD, IPIL, (PREC(I, JLQAD), I=1, 6) 0037 30 CONTINUE 0038 IF(ITR.EQ.0) RETURN 0039 WRITE(6, '(//, 10X, 12, A2, 2X, SHPILE 1)') IPIL, SEQ(IPIL) 0040 ID=1, ND 0041 WRITE(6, 103) ISM1, ISM3, HOEP 0043 D 040 ID=1, ND 0044 NREC=2MDA(IPIL-1) #ND-ID+1 0045 READ(11, REC=NREC)((IDSP(RCM(I), J), I=1, 3), J=1, NLQAD)	0010		$ \begin{array}{c} \text{UPITE(S 102) II (AA) (P(I II (AA)) I-1 S)} \end{array} $	
0022 HRITE(6, ///, 11X, 23HPILE HEAD DISPLACEMENTS) ') 0023 WRITE(6, 1//, 11X, 23HPILE HEAD DISPLACEMENTS) ') 0024 D0 20 JLOAD=1, NLOAD 0025 D0 21 IPIL=1, NPILE 0026 IREC=(IPIL-1) +NLOAD+JLOAD 0027 READ(9, REC=IREC) (DISP(I, JLOAD), I=1, 6) 0028 21 HRITE(6, 105) JLOAD, IPIL, (DISP(I, JLOAD), I=1, 6) 0029 20 CONTINUE 0030 WRITE(6, 105) JLOAD, IPIL, (DISP(I, JLOAD), I=1, 6) 0031 WRITE(6, 104) ISM1, ISM2, HFOR 0032 D0 30 JLOAD=1, NLOAD 0033 D0 31 IPIL=1, NPILE 0034 IREC=(IPIL-1) +NLOAD+JLOAD 0035 READ(10, REC=IREC) (PREC(I, JLOAD), I=1, 6) 0036 31 HRITE(6, 106) JLOAD, IPIL, (PREC(I, JLOAD), I=1, 6) 0037 30 CONTINUE 0038 IF(ITR.EQ.0) RETURN 0039 WRITE(6, '(HI, //, 11X, 26HPILE ELEMENT DISPLACEMENTS)') 0040 D0 40 IPIL=1, NPILE 0041 WRITE(6, 103) ISM1, ISM3, HOEP 0043 D0 40 ID=1, ND 0044 NREC=2MD& (IPIL-1) +HO-ID+1 0045 READ(11, REC=NREC) ((IDISP(ROH(1), J), I=1, 3), J=1, NLOAD) 00	0020	10	CONTINUE	
0023 WRITE(6, (/), IXX, SUM TELE HEAD DISPLACEMENTS) / 0024 D0 20 JLQAD=1, NLQAD 0025 D0 21 IPIL=1, NPILE 0026 IREC=(IPIL-1) #NLQAD+JLQAD 0027 READ(9, REC=IREC) (DISP(I, JLQAD), I=1, 6) 0028 21 WRITE(6, 105) JLQAD, IPIL, (DISP(I, JLQAD), I=1, 6) 0029 20 CONTINUE 0030 WRITE(6, 104) ISM1, ISM2, HFOR 0031 WRITE(6, 104) ISM1, ISM2, HFOR 0032 D0 30 JLQAD=1, NLQAD 0033 D0 31 IPIL=1, NPILE 0034 IREC=(IPIL-1) #NLQAD+JLQAD 0035 READ(10, REC=IREC) (PREC(1, JLQAD), I=1, 6) 0036 31 WRITE(6, 106) JLQAD, IPIL, (PREC(1, JLQAD), I=1, 6) 0037 30 CONTINUE 0038 IF(ITR.EQ.0) RETURN 0039 WRITE(6, '(//, 10X, 12, A2, 2X, 5HPILE ELEMENT DISPLACEMENTS)') 0040 D0 40 IPIL=1, NPILE 0041 WRITE(6, 103) ISM1, ISM3, HOEP 0043 D0 40 ID=1, ND 0044 NREC=2MND4(IPIL-1) HND-ID+1 0045 READ(11, REC=MREC)((DISP(ROH(I), J), I=1, 3), J=1, NLQAD) 0046 NREC=MRECHND 0047 READ(11, REC=MREC)((DISP(ROH(I), J)	0021	10	URITE(6 (/// 11Y 22UPILE UEAD DISPLACEMENTS)()	
0024 D0 20 JL0AD=1,NL0AD 0025 D0 21 IPIL=1,NPILE 0026 IREC=(IPIL=1,NL0AD+JL0AD 0027 READ(9,REC=IREC) (DISP(I,JL0AD),I=1,6) 0028 21 WRITE(6,105)JL0AD,IPIL,(DISP(I,JL0AD),I=1,6) 0029 20 CONTINUE 0030 WRITE(6,104)ISM1,ISM2,HF0R 0031 WRITE(6,104)ISM1,ISM2,HF0R 0032 D0 30 JL0AD=1,NL0AD 0033 D0 31 IPIL=1,NPILE 0034 IREC=(IPIL-1)*ML0AD+JL0AD 0035 READ(10,REC=IREC)(PREC(1,JL0AD),I=1,6) 0036 31 WRITE(6,106)JL0AO,IPIL,(PREC(I,JL0AD),I=1,6) 0037 30 CONTINUE 0038 IF(ITR.EQ.0) RETURN 0039 WRITE(6,'(//,10X,12,A2,2X,5HPILE ELEMENT DISPLACEMENTS)') 0040 D0 40 IPIL=1,NPILE 0041 WRITE(6,103)ISM1,ISM3,H0EP 0042 WRITE(6,103)ISM1,ISM3,H0EP 0043 D0 40 ID 1,ND 0044 NREC=2MREC)((DISP(RCH(I),J),I=1,3),J=1,ML0AD) 0045 READ(11,REC=NREC)((DISP(RCH(I),J),I=4,6),J=1,ML0AD) 0046 NREC=NRECHND 0047 READ(11,REC=NREC)((DISP(RCH(I),J),I=4,6),J=1,ML0AD) 0048	0022		URITE(6 102) IGM1 IGM2 UNED	
0025 D0 21 IPIL=1,NPILE 0026 IREC=(IPIL-1)*NLCADO+JLOAD 0027 READ(9,REC=IREC) (DISP(I,JLOAD),I=1,6) 0028 21 WRITE(6,105)JLOAD,IPIL,(DISP(I,JLOAD),I=1,6) 0029 20 CONTINUE 0030 WRITE(6,104)ISM1,ISM2,HFOR 0031 WRITE(6,104)ISM1,ISM2,HFOR 0032 D0 30 JLOAD=1,NLOAD 0033 D0 31 IPIL=1,NPILE 0034 IREC=(IPIL-1)*NLOAD+JLOAD 0035 READ(10,REC=IREC)(PREC(I,JLOAD),I=1,6) 0036 31 WRITE(6,106)JLOAD,IPIL,(PREC(I,JLOAD),I=1,6) 0037 30 CONTINUE 0038 IF(ITR.EQ.0) RETURN 0039 WRITE(6,'(141,//,11X,26HPILE ELEMENT DISPLACEMENTS)') 0040 D0 40 IPIL=1,NPILE 0041 WRITE(6,103)ISM1,ISM3,HOEP 0042 WRITE(6,103)ISM1,FSM3,HOEP 0043 D0 40 ID=1,ND 0044 NREC==NREC)((DISP(ROH(I),J),I=1,3),J=1,NLOAD) 0045 READ(11,REC=NREC)((DISP(ROH(I),J),I=4,6),J=1,NLOAD) 0046 NREC=NRECHND 0047 READ(11,REC=NREC)((DISP(ROH(I),J),I=1,6),J=1,NLOAD) 0048 WRITE(6,'(141,//,11X,22HPILE ELEMENT REACTIONS)')	0020			
0026 IREC=(IPIL-1)*NLCAD+JLOAD 0027 READ(9,REC=IREC) (DISP(I,JLOAD),I=1,6) 0028 21 WRITE(6,105)JLOAD,IPIL,(DISP(I,JLOAD),I=1,6) 0029 20 CONTINUE 0030 WRITE(6,104)ISM1,ISM2,HFOR 0032 D0 30 JLOAD=1,NLOAD 0033 D0 31 IPIL=1,NPILE 0034 IREC=(IPIL-1)*NLOAD+JLOAD 0035 READ(10,REC=IREC) (PREC(I,JLOAD),I=1,6) 0036 31 WRITE(6,106)JLOAD,IPIL,(PREC(I,JLOAD),I=1,6) 0037 30 CONTINUE 0038 IF(ITR.EQ.0) RETURN 0039 WRITE(6,'(141,//,11X,26HPILE ELEMENT DISPLACEMENTS)') 0040 D0 40 IPIL=1,NPILE 0041 WRITE(6,103)ISM1,ISM3,HOEP 0042 WRITE(6,103)ISM1,FSM3,HOEP 0043 D0 40 ID=1,ND 0044 NREC==NREC)((DISP(ROH(I),J),I=1,3),J=1,NLOAD) 0045 READ(11,REC=NREC)((DISP(ROH(I),J),I=4,6),J=1,NLOAD) 0046 NREC=NRECHND 0047 READ(11,REC=NREC)((DISP(ROH(I),J),I=1,6),J=1,NLOAD) 0048 WRITE(6,105)(J,ID,(DISP(I,J),I=1,6),J=1,NLOAD) 0049 40 CONTINUE 0050 WRITE(6,'('/111,//,11X,22HPILE ELEMENT	0025		00 21 IPII =1 NPII F	
1112 1112	0026		IREC=(IPIL-1) #NI (ADH-II (AD)	
111 1111 111 111	0027		READ(9, REC=IREC) (DISP(1, JLOAD), I=1, 6)	the a sta
0029 20 CONTINUE 0030 HRITE(6,'(/',11X,19HPILE HEAD REACTIONS)') 0031 HRITE(6,104)ISM1,ISM2,HFOR 0032 00 30 JLOAD=1,NLOAD 0033 D0 31 IPIL=1,NPILE 0034 IREC=(IPIL-1)*NLOAD+JLOAD 0035 READ(10,REC=IREC)(PREC(I,JLOAD),I=1,6) 0036 31 HRITE(6,106)JLOAD,IPIL,(PREC(I,JLOAD),I=1,6) 0037 30 CONTINUE 0038 IF(ITR.EQ.0) RETURN 0039 HRITE(6,'(//,10X,12,A2,2X,SHPILE:)') IPIL,SEQ(IPIL) 0040 D0 40 IPIL=1,NPILE 0041 HRITE(6,103)ISM1,ISM3,HOEP 0042 HRITE(6,103)ISM1,ISM3,HOEP 0043 D0 40 ID=1,ND 0044 NREC=2*ND*(IPIL-1)+ND-ID+1 0045 READ(11,REC=NREC)((DISP(RCH(I),J),I=1,3),J=1,NLOAD) 0046 NREC=NRECHND 0047 READ(11,REC=NREC)((DISP(RCH(I),J),I=4,6),J=1,NLOAD) 0048 HRITE(6,'(1H1,/',11X,22HPILE ELEMENT REACTIONS)') 0050 HRITE(6,'(1H1,/',11X,22HPILE ELEMENT REACTIONS)') 0051 D0 50 IPIL=1,NPILE 0052 HRITE(6,104)ISM1,ISM3,HFOR	0028	21	WRITE(6,105), IL OAD, IPIL (DISP(1, 1000), I=1,6)	
0030 HRITE(6,'(//,11X,19HPILE HEAD REACTIONS)') 0031 HRITE(6,104)ISM1,ISM2,HFOR 0032 D0 30 JLOAD=1,NLOAD 0033 D0 31 IPIL=1,NPILE 0034 IREC=(IPIL-1)*NLOAD+JLOAD 0035 READ(10,REC=IREC)(PREC(I,JLOAD),I=1,6) 0036 31 HRITE(6,106)JLOAD,IPIL,(PREC(I,JLOAD),I=1,6) 0037 30 CONTINUE 0038 IF(ITR.EQ.0) RETURN 0039 HRITE(6,'(1H1,//,11X,26HPILE ELEMENT DISPLACEMENTS)') 0040 D0 40 IPIL=1,NPILE 0041 HRITE(6,'(1H1,//,11X,26HPILE ELEMENT DISPLACEMENTS)') 0040 D0 40 IPIL=1,NPILE 0041 HRITE(6,(103)ISM1,ISM3,HOEP 0042 HRITE(6,103)ISM1,ISM3,HOEP 0043 D0 40 ID=1,ND 0044 NREC=2*ND*(IPIL-1)+ND-ID+1 0045 READ(11,REC=NREC)((DISP(RCH(I),J),I=1,3),J=1,NLOAD) 0046 NREC=NRECHND 0047 READ(11,REC=NREC)((DISP(RCH(I),J),I=4,6),J=1,NLOAD) 0048 HRITE(6,105)(J,ID,(DISP(I,J),I=1,6),J=1,NLOAD) 0049 40 CONTINUE 0050 HRITE(6,'(1H1,//,11X,22HPILE ELEMENT REACTIONS)') 0051 D0 50 IPIL=1,NPILE <td>0029</td> <td>20</td> <td>CONTINUE</td> <td></td>	0029	20	CONTINUE	
0031 WRITE(6,104)ISM1,ISM2,HFOR 0032 D0 30 JLOAD=1,NLOAD 0033 D0 31 IPIL=1,NPILE 0034 IREC=(IPIL-1)*NLOAD+JLOAD 0035 READ(10,REC=IREC)(PREC(I,JLOAD),I=1,6) 0036 31 WRITE(6,106)JLOAD,IPIL,(PREC(I,JLOAD),I=1,6) 0037 30 CONTINUE 0038 IF(ITR.EQ.0) RETURN 0039 WRITE(6,'(1H1,//,11X,26HPILE ELEMENT DISPLACEMENTS)') 0040 D0 40 IPIL=1,NPILE 0041 WRITE(6,'(1H1,//,11X,26HPILE ELEMENT DISPLACEMENTS)') 0042 WRITE(6,103)ISM1,ISM3,HDEP 0043 D0 40 ID=1,ND 0044 NREC=2MND*(IPIL-1)+ND-ID+1 0045 READ(11,REC=NREC)((DISP(ROW(I),J),I=1,3),J=1,NLOAD) 0046 NREC=NREC(HND 0047 READ(11,REC=NREC)((DISP(ROW(I),J),I=4,6),J=1,NLOAD) 0048 WRITE(6,105)(J,ID,(DISP(I,J),I=1,6),J=1,NLOAD) 0049 40 CONTINUE 0050 WRITE(6,'(1H1,//,11X,22HPILE ELEMENT REACTIONS)') 0051 D0 50 IPIL=1,NPILE 0052 WRITE(6,'(1H1,//,11X,2A2,2X,5HPILE;)') IPIL,SEQ(IPIL) 0053 WRITE(6,104)ISM1,ISM3,HFOR	0030	Radin	WRITE(6.'(//.11X.19HPILE HEAD REACTIONS)')	
0032 D0 30 JLQAD=1,NLQAD 0033 D0 31 IPIL=1,NPILE 0034 IREC=(IPIL-1)*NLQAD+JLQAD 0035 READ(10,REC=IREC)(PREC(I,JLQAD),I=1,6) 0036 31 WRITE(6,106)JLQAD,IPIL,(PREC(I,JLQAD),I=1,6) 0037 30 CONTINUE 0038 IF(ITR.EQ.0) RETURN 0039 WRITE(6,'(1H1,//,11X,26HPILE ELEMENT DISPLACEMENTS)') 0040 D0 40 IPIL=1,NPILE 0041 WRITE(6,'(//,10X,I2,A2,2X,5HPILE:)') IPIL,SEQ(IPIL) 0042 WRITE(6,103)ISM1,ISM3,HDEP 0043 D0 40 ID=1,ND 0044 NREC=2*ND*(IPIL-1)+ND-ID+1 0045 READ(11,REC=NREC)((DISP(RGW(I),J),I=1,3),J=1,NLQAD) 0046 NREC=NRECHND 0047 READ(11,REC=NREC)((DISP(RGW(I),J),I=4,6),J=1,NLQAD) 0048 WRITE(6,105)(J,ID,(DISP(I,J),I=1,6),J=1,NLQAD) 0049 40 CONTINUE 0050 WRITE(6,'(1H1,//,11X,22HPILE ELEMENT REACTIONS)') 0051 D0 50 IPIL=1,NPILE 0052 WRITE(6,'(//,10X,I2,A2,2X,5HPILE:)') IPIL,SEQ(IPIL) 0053 WRITE(6,104)ISM1,ISM3,HFOR	0031		WRITE(6,104) ISM1. ISM2. HFOR	
0033 D0 31 IPIL=1,NPILE 0034 IREC=(IPIL-1)*NLOAD+JLOAD 0035 READ(10,REC=IREC)(PREC(I,JLOAD),I=1,6) 0036 31 WRITE(6,106)JLOAD,IPIL,(PREC(I,JLOAD),I=1,6) 0037 30 CONTINUE 0038 IF(ITR.EQ.0) RETURN 0039 WRITE(6,'(1H1,//,11X,26HPILE ELEMENT DISPLACEMENTS)') 0040 D0 40 IPIL=1,NPILE 0041 WRITE(6,'(//,10X,12,A2,2X,5HPILE:)') IPIL,SEQ(IPIL) 0042 WRITE(6,103)ISM1,ISM3,HOEP 0043 D0 40 ID=1,ND 0044 NREC=2*ND*(IPIL-1)+ND-ID+1 0045 READ(11,REC=NREC)((DISP(ROW(I),J),I=1,3),J=1,NLOAD) 0046 NREC=NRECHND 0047 READ(11,REC=NREC)((DISP(ROW(I),J),I=4,6),J=1,NLOAD) 0048 WRITE(6,'05)(J,ID,(DISP(I,J),I=1,6),J=1,NLOAD) 0049 40 CONTINUE 0050 WRITE(6,'(1H1,//,11X,22HPILE ELEMENT REACTIONS)') 0051 D0 50 IPIL=1,NPILE 0052 WRITE(6,'(//,10X,I2,A2,2X,5HPILE:)') IPIL,SEQ(IPIL) 0053 WRITE(6,104)ISM1,ISM3,HFOR	0032		DO 30 JLOAD=1.NLOAD	
0034 IREC=(IPIL-1)*NLOAO+JLOAD 0035 READ(10,REC=IREC)(PREC(I,JLOAD),I=1,6) 0036 31 WRITE(6,106)JLOAD,IPIL,(PREC(I,JLOAD),I=1,6) 0037 30 CONTINUE 0038 IF(ITR.EQ.0) RETURN 0039 WRITE(6,'(1H1,//,11X,26HPILE ELEMENT DISPLACEMENTS)') 0040 D0 40 IPIL=1,NPILE 0041 WRITE(6,103)ISM1,ISM3,HOEP 0042 WRITE(6,103)ISM1,ISM3,HOEP 0043 D0 40 ID=1,ND 0044 NREC=2*ND*(IPIL-1)+ND-ID+1 0045 READ(11,REC=NREC)((DISP(ROW(I),J),I=1,3),J=1,NLOAD) 0046 NREC=NREC+ND 0047 READ(11,REC=NREC)((DISP(ROW(I),J),I=4,6),J=1,NLOAD) 0048 WRITE(6,105)(J,ID,(DISP(I,J),I=1,6),J=1,NLOAD) 0049 40 CONTINUE 0050 WRITE(6,'(1H1,//,11X,22HPILE ELEMENT REACTIONS)') 0051 D0 50 IPIL=1,NPILE 0052 WRITE(6,'(//,10X,I2,A2,2X,5HPILE:)') IPIL,SEQ(IPIL) 0053 WRITE(6,104)ISM1,ISM3,HFOR	0033		DO 31 IPIL=1.NPILE	
0035 READ(10, REC=IREC) (PREC(I, JLOAD), I=1,6) 0036 31 WRITE(6,106) JLOAD, IPIL, (PREC(I, JLOAD), I=1,6) 0037 30 CONTINUE 0038 IF(ITR.EQ.0) RETURN 0039 WRITE(6,'(1H1,//,11X,26HPILE ELEMENT DISPLACEMENTS)') 0040 D0 40 IPIL=1,NPILE 0041 WRITE(6,'(1/,10X,12,A2,2X,5HPILE:)') IPIL,SEQ(IPIL) 0042 WRITE(6,103) ISM1, ISM3, HOEP 0043 D0 40 ID=1,ND 0044 NREC=2*NO*(IPIL-1)+ND-ID+1 0045 READ(11,REC=NREC)((DISP(ROH(I),J),I=1,3),J=1,NLOAD) 0046 NREC=NREC)((DISP(ROH(I),J),I=4,6),J=1,NLOAD) 0047 READ(11,REC=NREC)((DISP(ROH(I),J),I=4,6),J=1,NLOAD) 0048 WRITE(6,105)(J,ID,(DISP(I,J),I=1,6),J=1,NLOAD) 0049 40 CONTINUE 0050 WRITE(6,'(1H1,//,11X,22HPILE ELEMENT REACTIONS)') 0051 D0 50 IPIL=1,NPILE 0052 WRITE(6,'(1H1,//,10X,12,A2,2X,5HPILE:)') IPIL,SEQ(IPIL) 0053 WRITE(6,104)ISM1,ISM3,HFOR	0034		IREC=(IPIL-1)*NLOAD+JLOAD	
0036 31 WRITE(6,106) JLOAD, IPIL, (PREC(I, JLOAD), I=1,6) 0037 30 CONTINUE 0038 IF(ITR.EQ.0) RETURN 0039 WRITE(6, '(1H1, //, 11X, 26HPILE ELEMENT DISPLACEMENTS)') 0040 D0 40 IPIL=1,NPILE 0041 WRITE(6, '(//, 10X, I2, A2, 2X, 5HPILE:)') IPIL, SEQ(IPIL) 0042 WRITE(6, 103) ISM1, ISM3, HOEP 0043 D0 40 ID=1, ND 0044 NREC=2MND*(IPIL-1) HND-ID+1 0045 READ(11, REC=NREC)((DISP(ROH(I), J), I=1, 3), J=1, NLOAD) 0046 NREC=NRECHND 0047 READ(11, REC=NREC)((DISP(ROH(I), J), I=4, 6), J=1, NLOAD) 0048 WRITE(6, 105)(J, ID, (DISP(I, J), I=1, 6), J=1, NLOAD) 0049 40 CONTINUE 0050 WRITE(6, '(1H1, //, 11X, 22HPILE ELEMENT REACTIONS)') 0051 D0 50 IPIL=1, NPILE 0052 WRITE(6, '(1H1, //, 11X, 22HPILE ELEMENT REACTIONS)') 0051 D0 50 IPIL=1, NPILE 0052 WRITE(6, '(1H1, //, 10X, I2, A2, 2X, 5HPILE:)') IPIL, SEQ(IPIL) 0053 WRITE(6, 104) ISM1, ISM3, HFOR	0035		READ(10, REC=IREC)(PREC(1, JLOAD), I=1,6)	
0037 30 CONTINUE 0038 IF(ITR.EQ.0) RETURN 0039 WRITE(6,'(1H1,//,11X,26HPILE ELEMENT DISPLACEMENTS)') 0040 D0 40 IPIL=1,NPILE 0041 WRITE(6,'(1/,10X,12,A2,2X,5HPILE:)') IPIL,SEQ(IPIL) 0042 WRITE(6,103)ISM1,ISM3,HDEP 0043 D0 40 ID=1,ND 0044 NREC=24ND*(IPIL-1)+ND-ID+1 0045 READ(11,REC=NREC)((DISP(ROH(I),J),I=1,3),J=1,NLOAD) 0046 NREC=NRECND 0047 READ(11,REC=NREC)((DISP(ROH(I),J),I=4,6),J=1,NLOAD) 0048 WRITE(6,105)(J,ID,(DISP(I,J),I=1,6),J=1,NLOAD) 0049 40 CONTINUE 0050 WRITE(6,'(1H1,//,11X,22HPILE ELEMENT REACTIONS)') 0051 D0 50 IPIL=1,NPILE 0052 WRITE(6,'(//,10X,I2,A2,2X,5HPILE:)') IPIL,SEQ(IPIL) 0053 WRITE(6,104)ISM1,ISM3,HFOR	0036	31	WRITE(6,106) JLOAD, IPIL, (PREC(1, JLOAD), I=1,6)	
0038 IF(ITR.EQ.0) RETURN 0039 WRITE(6,'(1H1,//,11X,26HPILE ELEMENT DISPLACEMENTS)') 0040 D0 40 IPIL=1,NPILE 0041 WRITE(6,'(//,10X,I2,A2,2X,5HPILE:)') IPIL,SEQ(IPIL) 0042 WRITE(6,103)ISM1,ISM3,H0EP 0043 D0 40 ID=1,ND 0044 NREC=24ND*(IPIL-1)HND-IDH1 0045 READ(11,REC=NREC)((DISP(ROH(I),J),I=1,3),J=1,NLOAD) 0046 NREC=NRECHND 0047 READ(11,REC=NREC)((DISP(ROH(I),J),I=4,6),J=1,NLOAD) 0048 WRITE(6,105)(J,ID,(DISP(I,J),I=1,6),J=1,NLOAD) 0049 40 CONTINUE 0050 WRITE(6,'(1H1,//,11X,22HPILE ELEMENT REACTIONS)') 0051 D0 50 IPIL=1,NPILE 0052 WRITE(6,'(1H1,//,10X,I2,A2,2X,5HPILE:)') IPIL,SEQ(IPIL) 0053 WRITE(6,104)ISM1,ISM3,HFOR	0037	30	CONTINUE	
0039 WRITE(6, '(1H1,//,11X,26HPILE ELEMENT DISPLACEMENTS)') 0040 D0 40 IPIL=1,NPILE 0041 WRITE(6, '(//,10X,I2,A2,2X,5HPILE:)') IPIL,SEQ(IPIL) 0042 WRITE(6,103)ISM1,ISM3,HDEP 0043 D0 40 ID=1,ND 0044 NREC=2*ND*(IPIL-1)+ND-ID+1 0045 READ(11,REC=NREC)((DISP(ROW(I),J),I=1,3),J=1,NLOAD) 0046 NREC=NREC)((DISP(ROW(I),J),I=4,6),J=1,NLOAD) 0047 READ(11,REC=NREC)((DISP(ROW(I),J),I=4,6),J=1,NLOAD) 0048 WRITE(6,105)(J,ID,(DISP(I,J),I=1,6),J=1,NLOAD) 0049 40 CONTINUE 0050 WRITE(6,'(1H1,//,11X,22HPILE ELEMENT REACTIONS)') 0051 D0 50 IPIL=1,NPILE 0052 WRITE(6,'(//,10X,I2,A2,2X,5HPILE:)') IPIL,SEQ(IPIL) 0053 WRITE(6,104)ISM1,ISM3,HFOR	0038		IF(ITR.EQ.0) RETURN	1 :
0040 D0 40 IPIL=1,NPILE 0041 WRITE(6,'(//,10X,I2,A2,2X,5HPILE:)') IPIL,SEQ(IPIL) 0042 WRITE(6,103)ISM1,ISM3,HDEP 0043 D0 40 ID=1,ND 0044 NREC=2*NO*(IPIL-1)+ND-ID+1 0045 READ(11,REC=NREC)((DISP(ROH(I),J),I=1,3),J=1,NLOAD) 0046 NREC=NREC+ND 0047 READ(11,REC=NREC)((DISP(ROH(I),J),I=4,6),J=1,NLOAD) 0048 WRITE(6,105)(J,ID,(DISP(I,J),I=1,6),J=1,NLOAD) 0049 40 CONTINUE 0050 WRITE(6,'(1H1,//,11X,22HPILE ELEMENT REACTIONS)') 0051 D0 50 IPIL=1,NPILE 0052 WRITE(6,'(//,10X,I2,A2,2X,5HPILE:)') IPIL,SEQ(IPIL) 0053 WRITE(6,104)ISM1,ISM3,HFOR	0039		WRITE(6, '(1H1, //, 11X, 26HPILE ELEMENT DISPLACEMENTS	5)')
0041 WRITE(6,'(//,10X,I2,A2,2X,5HPILE:)') IPIL,SEQ(IPIL) 0042 WRITE(6,103)ISM1,ISM3,H0EP 0043 D0 40 ID=1,ND 0044 NREC=2MND*(IPIL-1)+ND-ID+1 0045 READ(11,REC=NREC)((DISP(ROH(I),J),I=1,3),J=1,NLOAD) 0046 NREC=NRECND 0047 READ(11,REC=NREC)((DISP(ROH(I),J),I=4,6),J=1,NLOAD) 0048 WRITE(6,105)(J,ID,(DISP(I,J),I=1,6),J=1,NLOAD) 0049 40 0050 WRITE(6,'(1H1,//,11X,22HPILE ELEMENT REACTIONS)') 0051 D0 50 IPIL=1,NPILE 0052 WRITE(6,'(//,10X,I2,A2,2X,5HPILE:)') IPIL,SEQ(IPIL) 0053 WRITE(6,104)ISM1,ISM3,HFOR	0040		DO 40 IPIL=1,NPILE	
0042 WRITE(6,103)ISM1,ISM3,H0EP 0043 D0 40 ID=1,ND 0044 NREC=2*ND*(IPIL-1)+ND-ID+1 0045 READ(11,REC=NREC)((DISP(ROH(I),J),I=1,3),J=1,NLOAD) 0046 NREC=NREC+ND 0047 READ(11,REC=NREC)((DISP(ROH(I),J),I=4,6),J=1,NLOAD) 0048 WRITE(6,105)(J,ID,(DISP(I,J),I=1,6),J=1,NLOAD) 0049 40 0050 WRITE(6,'(1H1,//,11X,22HPILE ELEMENT REACTIONS)') 0051 D0 50 IPIL=1,NPILE 0052 WRITE(6,'(//,10X,I2,A2,2X,5HPILE:)') IPIL,SEQ(IPIL) 0053 WRITE(6,104)ISM1,ISM3,HFOR	8041		WRITE(6, '(//, 10X, 12, A2, 2X, 5HPILE:)') IPIL, SEQ(IPI	.)
0043 D0 40 ID=1,ND 0044 NREC=2#ND*(IPIL-1)+ND-ID+1 0045 READ(11,REC=NREC)((DISP(ROH(I),J),I=1,3),J=1,NLOAD) 0046 NREC=NREC+ND 0047 READ(11,REC=NREC)((DISP(ROH(I),J),I=4,6),J=1,NLOAD) 0048 WRITE(6,105)(J,ID,(DISP(I,J),I=1,6),J=1,NLOAD) 0049 40 0050 WRITE(6,'(1H1,//,11X,22HPILE ELEMENT REACTIONS)') 0051 D0 50 IPIL=1,NPILE 0052 WRITE(6,'(//,10X,I2,A2,2X,5HPILE:)') IPIL,SEQ(IPIL) 0053 WRITE(6,104)ISM1,ISM3,HFOR	0042		WRITE(6,103)ISM1, ISM3, HDEP	
0044 NREC=2*ND*(IPIL-1)+ND-ID+1 0045 READ(11,REC=NREC)((DISP(ROH(I),J),I=1,3),J=1,NLOAD) 0046 NREC=NREC+ND 0047 READ(11,REC=NREC)((DISP(ROH(I),J),I=4,6),J=1,NLOAD) 0048 WRITE(6,105)(J,ID,(DISP(I,J),I=1,6),J=1,NLOAD) 0049 40 0050 WRITE(6,'(1H1,//,11X,22HPILE ELEMENT REACTIONS)') 0051 D0 50 IPIL=1,NPILE 0052 WRITE(6,'(//,10X,I2,A2,2X,5HPILE:)') IPIL,SEQ(IPIL) 0053 WRITE(6,104)ISM1,ISM3,HFOR	0043		DO 40 ID=1,ND	
0045 READ(11,REC=NREC)((DISP(ROW(I),J),I=1,3),J=1,NLOAD) 0046 NREC=NRECHND 0047 READ(11,REC=NREC)((DISP(ROW(I),J),I=4,6),J=1,NLOAD) 0048 WRITE(6,105)(J,ID,(DISP(I,J),I=1,6),J=1,NLOAD) 0049 40 0050 WRITE(6,'(1H1,//,11X,22HPILE ELEMENT REACTIONS)') 0051 D0 50 IPIL=1,NPILE 0052 WRITE(6,'(//,10X,I2,A2,2X,5HPILE:)') IPIL,SEQ(IPIL) 0053 WRITE(6,104)ISM1,ISM3,HFOR	0044		NREC=2*ND*(IPIL-1)+ND-ID+1	
0046 NREC=NRECHND 0047 READ(11,REC=NREC)((DISP(ROH(I),J),I=4,6),J=1,NLOAD) 0048 WRITE(6,105)(J,ID,(DISP(I,J),I=1,6),J=1,NLOAD) 0049 40 0050 WRITE(6,'(1H1,//,11X,22HPILE ELEMENT REACTIONS)') 0051 D0 50 IPIL=1,NPILE 0052 WRITE(6,'(//,10X,I2,A2,2X,5HPILE:)') IPIL,SEQ(IPIL) 0053 WRITE(6,104)ISM1,ISM3,HFOR	0045		READ(11, REC=NREC)((DISP(ROW(I), J), I=1, 3), J=1, NLOA))
0047 READ(11,REC=NREC)((DISP(ROH(I),J),I=4,6),J=1,NLOAD) 0048 WRITE(6,105)(J,ID,(DISP(I,J),I=1,6),J=1,NLOAD) 0049 40 CONTINUE 0050 WRITE(6,'(1H1,//,11X,22HPILE ELEMENT REACTIONS)') 0051 D0 50 IPIL=1,NPILE 0052 WRITE(6,'(//,10X,I2,A2,2X,5HPILE:)') IPIL,SEQ(IPIL) 0053 WRITE(6,104)ISM1,ISM3,HFOR	0046		NREC=NREC+HD	
0048 WRITE(6,105)(J,ID,(DISP(I,J),I=1,6),J=1,NLOAD) 0049 40 CONTINUE 0050 WRITE(6,'(1H1,//,11X,22HPILE ELEMENT REACTIONS)') 0051 D0 50 IPIL=1,NPILE 0052 WRITE(6,'(//,10X,I2,A2,2X,5HPILE:)') IPIL,SEQ(IPIL) 0053 WRITE(6,104) ISM1,ISM3,HFOR	0047	P. A.	READ(11, REC=NREC)((DISP(ROW(I), J), I=4,6), J=1, NLOA))
0049 40 CONTINUE 0050 WRITE(6,'(1H1,//,11X,22HPILE ELEMENT REACTIONS)') 0051 D0 50 IPIL=1,NPILE 0052 WRITE(6,'(//,10X,I2,A2,2X,5HPILE:)') IPIL,SEQ(IPIL) 0053 WRITE(6,104)ISM1,ISM3,HFOR	0048		WRITE(6,105)(J,ID,(DISP(I,J),I=1,6),J=1,NLOAD)	
0050 WRITE(6,'(1H1,//,11X,22HPILE ELEMENT REACTIONS)') 0051 D0 50 IPIL=1,NPILE 0052 WRITE(6,'(//,10X,I2,A2,2X,5HPILE:)') IPIL,SEQ(IPIL) 0053 WRITE(6,104)ISM1,ISM3,HFOR	0049	40	CONTINUE	
0051 D0 50 IPIL=1,NPILE 0052 WRITE(6,'(//,10X,I2,A2,2X,5HPILE:)') IPIL,SEQ(IPIL) 0053 WRITE(6,104)ISM1,ISM3,HFOR	0050		WRITE(6, '(1H1, //, 11X, 22HPILE ELEMENT REACTIONS)')	
0052 WRITE(6,'(//,10X,I2,A2,2X,5HPILE:)') IPIL,SEQ(IPIL) 0053 WRITE(6,104) ISM1,ISM3,HFOR WRITE(6,104) ISM1,ISM3,HFOR	0051		DO 50 IPIL=1,NPILE	
0053 WRITE(6,104)ISM1,ISM3,HFOR	0052		WRITE(6, '(//,10X,12,A2,2X,5HPILE:)') IPIL, SEQ(IPI	L)
	0053		WRITE(6,104)ISM1,ISM3,HFOR	

00 50 ID=1,ND

71

PDP-11	FORTRAM	1-77 V5.0-0	11:03:05	30-Nov-85	P
PILFON	FTN;1	/F77	OP/TR:BLOCKS/	WR	
0055		NREC=2*ND*(IPI	L-1)+ND-10+1		
0056		READ(12, REC=NR	EC) ((PREC(ROH(I), J), I=1, 3), J=	1,NLOAD)
0057		NREC=NREC+ND			
0058		READ(12, REC=NR	EC) ((PREC (ROH (1), J), I=4,6), J=	1,NLOAD)
0059	1. La	WRITE(6,106)(J	.10.(PREC(1,J)	,I=1,6),J=1,NL0	AD)
0060	50	CONTINUE	AND AND AND A		
0061	101	FORMAT(//10X.A	10.21X.6(A2.13	X))	
0062	102	FORMAT(/15X,12	.12X.6F15.2)		
0063	103	FORMAT(//10X.2	A10,12X,6(A2,1	3X))	
0064	104	FORMAT(//10X.2	A10,13X,6(A2,1	3X))	
0065	105	FORMAT(/15X.12	.8X.12.5X.6E15	.3)	
0066	106	FORMAT(/15X.12	.8X.12.5X.6F15	.3)	
0067		RETURN			
0068		END			

1. ALL SPERSON

PROGRAM SECTIONS

Nane	Siz	e	Attributes
SCODE1	004050	1044	RH, I, CON, LCL
\$PDATA	000424	138	RW, D, CON, LCL
\$IDATA	000042	17	RW, D, CON, LCL
\$VARS	001170	316	RH, D, CON, LCL
\$TEMPS	000006	3	RW, D, CON, LCL
BLOCK3	000004	2	RH, D, OVR, GBL

Total Space Allocated = 005740 1520

No FPP Instructions Generated

•

1 385 - TALKA .. 201 .

Page 12

1: :

POP-11 PILFON.	FORTRA	N-77 V5.0-0 /1	11:03:34 F77/OP/TR:BLOCKS/	30-Nov-85 WR	Page 13
0001				1000 21	
0001	c	SUDROUTINE :	DULVE (N, I'D, CUEFI'H	,LUHU,A)	
	C	SOLUTION FOR	R LINEAR EQUATION	s by means of	GAUSSIAN ELIMINATION
0002		DIMENSION D	(6.16).X(6.10)		
0003		REAL*4 COEFT	4(6.6).LOAD(6.10)	
0004		00 100 I=1.	Ν		
0005		DO 100 J=1.1	HMD		
0006		IF(J.LE.N)	THEN		
0007		D(I,J)=COEF	'A(I,J)		
8000		ELSE			
0009		D(I.J)=LOAD	(I.J-N)		
0010		ENDIF			
0011	100	CONTINUE			
	С				
	С	ELEMINATION			
	С				
0012		DO 10 K=1.N-	-1 1.0.00.0		
0013		DO 10 I=K+1	N.N		
0014		OR=D(1.K)/D	(K.K)		
0015		DO 10 J=1.N	HMD		Provide States
0016	10	D(I,J)=D(I,	$J) - OR \pm D(K, J)$		
	С	Anderse a de	0448		
	C C	SUBSTITUTION	4		
0017		DO 80 I=1.N			
0018		DO 40 L=1,M	D		
0019		X(N,L)=D(N,N	HL)/D(N,N)		
0020		DO 40 M=N-1	,1,-1		
0021		TOP=0			
0022		DO 50 J=++1	,N		
0023	50	TOP=TOP+D(M	,J)*X(J,L)		
0024		D(M,N+L)=D(N	M,NHL)-TOP		
0025	40	X(M,L)=D(M,N)	HL)/D(M,M)		
0026	80	CONTINUE			
0027		RETURN			
0028		END			
PROGRAM	I SECTI	ONS			/:
Name	S	ize	Attributes		
SCODE1	00145	4 410	RU T CON I	CI	
SIDATA	00003	6 15	RUD CON L	CL	
SUARS	00062	2 201	RU D CON L		
			init of out the	Who is a second se	

Total Space Allocated = 002360 632

POP-11	FORTRAN-77	V5.0-0	11:03:44	30-Nov-85
PILFON.	FTN;1		/F77/OP/TR:BLOCKS/WR	

Page 14

•

1:

....

14

0001	S	UBROUTINE MATCAR(IM, IL, Q, R, S)
0002	R	EAL*4 Q(6,6),R(6,10),S(6,10)
0003	D	0 10 I=1,IM
0004	D	0 10 J=1,IL
0005	S	(I,J)=0
0006	D	0 10 K=1,IM
0007	10 5	(1, J) = S(1, J) + Q(1, K) + R(K, J)
8000	R	ETURN
0009	E	ND

PROGRAM SECTIONS

.

.

Name	Siz		Attributes
\$CODE1	000366	123	RH, I, CON, LCL
SIDATA	000036	15	RW, D, CON, LCL
SUARS	000006	3	RW, D, CON, LCL
STEMPS	000006	3	RW, D, CON, LCL

Total Space Allocated = 000440 144

PDP-11	FURIKAN	-// V5.0-0 11:03:48 30-Nov-85 Page
PILFON	.FTN;1	/F77/OP/TR:BLOCKS/WR
0001		SUBRUUTINE REAVER (NR, NU)
0002		LUMPLON BLOCK4/ ID, IREC, CUP
0003		DIMENSION CUEFFI(6,6), CUF(6,6), ER(21), INTI(3), INTJ(3)
0004		DATA INTI/0,0,1/
0005		DATA INTJ/0,1,1/
0006		(S(I,J)=(J-I)*6-(J-I-1)*(J-I)*0.5+I
0007		READ(1, REC=IREC)(ER(I), I=1,21)
0008		DO 10 I=1,6
0009		DO 10 J=I,6
0010		COEFFI(I,J)=ER(KS(I,J))
0011	10	COEFFI(J,I)=COEFFI(I,J)
0012		00 11 I=1,3
0013		00 11 J=1,3
0014	11	COF(1,J)=COEFFI((3*INTI(NR)+I),(3*INTJ(NR)+J))
0015		IF(NR.EQ.1.AND.ND.GT.2.AND.ID.LT.(NO-1)) THEN
0016		READ(1,REC=IREC-2)(ER(I),I=1,21)
0017		NR=3
0018		00 20 I=1,6
0019		DO 20 J=I,6
0020	20	COEFFI(I,J)=ER(KS(I,J))
0021		DO 21 I=1,3
0022		00 21 J=I,3
0023	21	COF(I,J)=COF(I,J)+COEFFI((3*INTI(NR)+I),(3*INTJ(NR)+J))
0024		ENDIF
0025		RETURN
0026		END

PROGRAM SECTIONS

.

....

Siz	8	Attributes	
001360	376	RW, I, CON, LCL	
000006	3	RW, D, CON, LCL	
000364	122	RW.D.CON.LCL	
000002	1	RW.D.CON.LCL	
000224	74	RW, D, OVR, GBL	
	Siz 001360 000006 000364 000002 000224	Size 001360 376 000006 3 000364 122 000002 1 000224 74	

. .

Total Space Allocated = 002200 576

Page 15

1. .

APPENDIX 2 - INPUT DATA FORMAT

EBADAG

INPUT DATA FORMAT

TITLE SMADL COUNSING ANALE OF THE MANT BATA

ROW NO	SYMBOL	COLUMN NO	NAME OF THE INPUT DATA	FORMAT
1	TOP	1	·*,	A1
2	BAS	2_77	Heading	19A4

1 1

SYSTEM PROPERTIES

ROW NO	SYMBOL	COLUMN NO	NAME OF THE INPUT DATA	FORMAT
1	NPILE	1_5	Number of Piles	15
2	NLOAD	6_10	Number of Loadings	15
3	ND	11_15	Number of Node Numbers	15
4	ITR	16_20	Key for Printing Element Displacements and Reactions	15
5	NTR	21_24.	Key for Printing Equivalent Pile Stiffness Matrix and Displacements	15

LOADINGS

ROW NO	SYMBOL	COLUMIN NO	NAME OF THE INPUT DATA	FORMAT
1	P (1)	1_10 .	Force in X direction	F 10.0
2	P (2)	11_20	Force in Y direction	F 10.0
3	P (3)	21_30	Force in Z direction	F10.0
4	P (4)	31_40	Moment in X direction	F 10.0
5	P (5)	41 _ 50	Moment in Y direction	F 10.0
6	P (6)	51_60	Moment in Z direction	F 10.0

PILE PROPERTIES

ROWNO	SYMBOL	сошми но	NAME OF THE INPUT DATA	FORMAT
1	D	Ť_10	Pile Diameter	E10.0
2	E	11_20	Elasticity Modulus	E10.0
3	MU	21_30	Poisson's Ratio	E10.0
4	С	31_40	Soil Modulus (If Constant)	E100
5	KST	41_45	0_ for Circle 1_ for Square	15
6	кту	46_50	0_If Soil Modulus is Constant 1_ If Soil Modulus is Variable	15

NODAL X COORDINATES

ROW NO	SYMBOL	COLUMN NO	NAME OF THE INPUT DATA	FORMAT
1_2_3_4 5_6_7_8	X(I), I=1,4,7,10	1_80	Sequence of Nodal X Coordinates	8F10.0

NODAL Y COORDINATES

ROW NO	SYMBOL	COLUMN NO	NAME OF THE INPUT DATA	FORMAT
1_2_3_4 5_6_7_8	X(I) I=2,5,8,11	1_80	Sequence of Nodal Y Coordinates	8F10.0

NODAL Z COORDINATES

ROW NO	SYMBOL	COLUMN NO	NAME OF THE INPUT DATA	FORMAT
1_2_3_4 5_6_7_8	X(I) I=3,6,9,12	1_80	Sequence of Nodal Z Coordinates	8F10.0

SEQUENCE OF SOIL MODULUS

ROW NO	SYMBOL	COLUMN NO	NAME OF THE INPUT DATA	FORMAT
1_2_3_4 5_6_7_8	C(I), I=1,2,3	1_80	Sequence of Soil Modulus if KTY = 1	8F10.0

APPENDIX 3 - NUMERICAL EXAMPLES

FIGURE A-1 Example number one

XAMPLE N	UMBER ONE(C=100	10 t/m3)					81
10001 1 00	Ω¢					-0.322.01	
OAD NO:		P1	P2	P3	P4	P5	P6
1		100.00	0.00	0.00	0.00	0.00	0.00
2		0.00	100.00	0.00	0.00	0.00	0.00
3		0.00	0.00	100.00	0.00	0.00	0.00
4		0.00	0.00	0.00	100.00	0.00	0.00
5	FILE ME	0.00	: 0.00	0.00	0.00	100.00	0.00
. 6		0.00 .	0.00	0.00	0.00	0.00	100.00
ile head	DISPLACEMENTS					-19,430	
			1				
DAD NO:	PILE NO:	01	. D2	D3	04	05	06
1	1	0.241E-03	0.000E+00	-0.850E-02	0.000E+00	0.241E-03	0.000E+00
1	2	-0.241E-03	0.000E+00	-0.850E-02	0.000E+00	0.241E-03	0.000E+00
1	3	-0.241E-03	0.000E+00	-0.850E-02	0.000E+00	0.241E-03	0.000E+00
1	4	0.241E-03	0.000E+00	-0.850E-02	0.000E+00	0.241E-03	0.000E+00
2	1	-0.241E-03	-0.850E-02	0.000E+00	0.000E+00	0.000E+00	0.241E-03
2	2	-0.241E-03	-0.850E-02	0.000E+00	0.000E+00	0.000E+00	0.241E-03
2	3	0.241E-03	-0.850E-02	0.000E+00	0.000E+00	0.000E+00	0.241E-03
2	4	0.241E-03	-0.850E-02	0.000E+00	0.000E+00	0.000E+00	0.241E-03
3	1 .	-0.106E-03	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
3	2	-0.106E-03	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
3	3	-0.106E-03	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
3	4	-0.106E-03	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
4	1	0.933E-04	0.145E-02	0.000E+00	0.000E+00	0.000E+00	-0.933E-04
4	2	0.933E-04	0.145E-02	0.000E+00	0.000E+00	0.000E+00	-0.933E-04
4	3	-0.933E-04	0.145E-02	0.000E+00	0.000E+00	0.000E+00	-0.933E-04
4	4	-0.933E-04	0.145E-02	0.000E+00	0.000E+00	0.000E+00	-0.933E-04
5	1	-0.933E-04	0.000E+00	0.145E-02	0.000E+00	-0.933E-04	0.000E+00
5	2	0.933E-04	0.000E+00	0.145E-02	0.000E+00	-0.9338-04	0.000E+00
5	3	0.933E-04	0.000E+00	0.145E-02	0.000E+00	-0.933E-04	0.000E+00

5	4	-0.933E-04	0.000E+00	0.145E-02	0.000E+00.	-0.933E-04	0.000E+00
6	1	0.000E+00	0.119E-02	-0.119E-02	-0.119E-02	0.000E+00	0.000E+00
6	2	0.000E+00	-0.119E-02	-0.119E-02	-0.119E-02	0.000E+00	0.000E+00
6	3	0.000E+00	-0.119E-02	0.119E-02	-0.119E-02	0.000E+00	0.000E+00
6	4	0.000E+00	0.119E-02	0.119E-02	-0.119E-02	0.000E+00	0.000E+00
ile head	REACTIONS		1.1.1				
DAD NO:	PILE NO:	ТХ	TY	TZ	MX	MY	MZ
1	1	56.899	0.000	-41.438	0.000	-99.430	0.000
1	2	-56.899	0.000	-41.438	0.000	-99.430	0.000
1	3	-56.899	0.000	-41.438	0.000	-99.430	0.000
1	4	56.899	0.000	-41.438	0.000	-99.430	0.000
2	1	-56.899	-41.438	0.000	0.000	0.000	-99.430
2	2	-56.899	-41.438	0.000	0.000	0.000	-99.430
2	3	56.899	-41.438	0.000	0.000	0.000	-99.430
2	4	56.899	-41.438	0.000	0.000	0.000	-99.430
3	1	-25.000	0.000	0.000	0.000	0.000	0.000
3	2	-25.000	0.000	0.000	0.000	0.000	0.000
3	3	-25.000	0.000	0.000	0.000	0.000	0.000
3	4	-25.000	0.000	0.000	0.000	0.000	0.000
4	1	21.992	6.353	0.000	0.000	0.000	13.430
4	2	21.992	6.353	0.000	0.000	0.000	13.430
4	3	-21.992	6.353	0.000	0.000	0.000	13.430
4	4	-21.992	6.353	0.000	0.000	0.000	13.430
5	1	-21.992	0.000	6.353	0.000	13.430	0.000
5	2	21.992	0.000	6.353	0.000	13.430	0.000
5	3	21.992	0.000	6.353	0.000	13.430	0.000
5	4	-21.992	0.000	6.353	0.000	13.430	0.000
6	1 · ·	0.000	6.251	-6.251	-12.497	-16.174	16.174
6	2	0.000	-6.251	-6.251	-12.497	-16.174	-16.174
6	3	0.000	-6.251	6.251	-12.497	16.174	-16.174
6	4	0.000	6.251	6.251	-12.497	16.174	16.174

FIGURE A-2 Example number two

. .

XAMPLE NUMBER TWO(C=1000t/m3)

NDAL LOADS

DAD NO:	P1	P2	P3	P4	P5	P6
1	100.00	0.00	0.00	0.00	0.00	0.00
2	0.00	100.00	0.00	0.00	0.00	0.00
3	0.00	0.00	100.00	0.00	0.00	0.00
4	0.00	0.00	0.00	100.00	0.00	0.00
5	0.00	: 0.00	0.00	0.00	100.00	0.00
6	. 0.00 .	0.00	0.00	0.00	0.00	100.00
					· A Edderine	

06

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.000E+00

0.234E-03

0.234E-03

PILE HEAD DISPLACEMENTS

PILE NO: LOAD NO: D1 02 D3 04 05 1 1 0.234E-03 0.000E+00 -0.744E-02 0.000E+00 0.234E-03 1 2 -0.234E-03 0.000E+00 -0.744E-02 0.000E+00 0.234E-03 1 3 -0.234E-03 0.000E+00 -0.744E-02 0.000E+00 0.234E-03 1 4 0.234E-03 0.000E+00 -0.744E-02 0.000E+00 0.234E-03 0.000E+00 1 5 0.000E+00 -0.744E-02 0.000E+00 0.234E-03 2 1 -0.234E-03 -0.744E-02 0.000E+00 0.000E+00 0.000E+00 2 2 -0.744E-02 -0.234E-03 0.000E+00 0.000E+00 0.000E+00

2	3	0.234E-03	-0.744E-02	0.000E+00	0.000E+00	0.000E+00	0.234E-03
2	4 -	0.234E-03	-0.744E-02	0.000E+00	0.000E+00	0.000E+00	0.234E-03
2	5	0.000E+00	-0.744E-02	0.000E+00	0.000E+00	0.000E+00	0.234E-03
3	1	-0.849E-04	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
3	2	-0.849E-04	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
3	3	-0.849E-04	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
3	4	-0.849E-04	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
3	5	-0.849E-04	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
4	1	0.906E-04	0.141E-02	0.000E+00	0.000E+00	0.000E+00	-0.906E-04
4	2	0.906E-04	0.141E-02	0.000E+00	0.000E+00	0.000E+00	-0.906E-04
4	3	-0.906E-04	0.141E-02	0.000E+00	0.000E+00	0.000E+00	-0.906E-04
4	4	-0.906E-04	0.141E-02	0.0005+00	0.0005+00	0.0005+00	-0.9065-04

4	5	0.000E+00	0.141E-02	0.000E+00	0.000E+00	0.0002+00	-0.906E-04
5	1	-0.906E-04	0.000E+00	0.141E-02	0.000E+00	-0.906E-04	0.000E+00
5	2	0.906E-04	0.000E+00	0.141E-02	0.000E+00	-0.906E-04	0.000E+00
5	3	0.906E-04	0.000E+00	0.141E-02	0.000E+00	-0.906E-04	0.000E+00
5	4	-0.906E-04	0.000E+00	0.141E-02	0.000E+00	-0.906E-04	0.000E+00
5	5	0.000E+00	0.000E+00	0.141E-02	0.000E+00	-0.906E-04	0.000E+00
6	1	0.000E+00	0.106E-02	-0.106E-02	-0.106E-02	0,000E+00	0.000E+00
6	2	0.000E+00	-0.106E-02	-0.106E-02	-0.106E-02	0.000E+00	0.000E+00
6	3	0.000E+00	-0.106E-02	0.106E-02	-0.106E-02	0.000E+00	0.000E+00
6	. 4	0.000E+00	0.106E-02	0.106E-02	-0.106E-02	0.000E+00	0.000E+00
6	5	0.000E+00	0.000E+00	0.000E+00	-0.106E-02	0.000E+00	0.000E+00
ile hea	D REACTIONS						
CAD NO:	PILE NO:	ТХ	TY	TZ	MX	MY	MZ
1	1	55.238	0.000	-35.958	0.000	-85.479	0.000
1	2	-55.238	0.000	-35,958	0.000	-85.479	0.000
1	3	-55.238	0.000	-35.958	0.000	-85.479	0.000
1	4	55.238	0.000	-35.958	0.000	-85.479	0.000
1	5	0.000	0.000	-35.958	. 0.000	-85.479	0.000
2	1	-55.238	-35.958	0.000	0.000	0.000	-85.479
2	2	-55.238	-35.958	0.000	0.000	0.000	-85.479
2	3	55.238	-35.958	0.000	0.000	0.000	-85.479
2	4	55.238	-35.958	0.000	. 0.000	0.000	-85.479
2	5	0.000	-35.958	0.000	0.000	0.000	-85.479
3	1	-20.000	0.000	0.000	0.000	0.000	0.000
3	2	-20.000	0.000	0.000	0.000	0.000	0.000
3	3	-20.000	0.000	0.000	0.000	0.000	0.000
3	4	-20.000	0.000	0.000	0.000	0.000	0.000
3	5	-20.000	0.000	0.000	0.000	0.000	0.000
4	1	21.349	6.168	0.000	0.000	0.000	13.038
4	2	21.349	6.168	0.000	0.000	0.000	13.038
4	3	-21.349	6.168	0.000	0.000	0.000	13.038

4	5	0.000	6.168	0.000	0.000	0.000	13.038
5	1	-21.349	0.000	6.168	0.000	13.038	0.000
5	2	21.349	0.000	6.168	0.000	13.038	0.000
5	3	21.349	0.000	6.168	0.000	13.038	0.000
5	4	-21.349	0.000	6.168	0.000	13.038	0.000
5	5	0.000	0.000	6.168	0.000	13.038	0.000
6	1	0.000	5.557	-5.557	-11.109	-14.378	14.378
6	2	0.000	-5.557	-5.557	-11.109	-14.378	-14.378
6	3	0.000	-5.557	Š.557	-11.109	14.378	-14.378
6	4	0.000	5.557	5.557	-11.109	14.378	14.378
6	5	0.000	0.000	0.000	-11.109	0.000	0.000

· ·

8

8

0.1.258-62

FIGURE A-3 Example number three

ODAL LOADS

OAD	NO:		P1	P2	P3	P4	P5	P6
	1		0.00	0.00	2927.26	4258.74	0.00	0.00
ILE	HEAD	DISPLACEMENTS					2.64	
.0AD	NO:	PILE NO:	D1 ·	D2	D3	04	05	. D6
	1	1	-0.331E-03	0.125E-02	-0.114E-09	-0.442E-19	0.903E-11	-0.990E-04
	1	2	-0.331E-03	0.125E-02	-0.114E-09	-0.442E-19	0.903E-11	-0.990E-04
	1	3	-0.331E-03	0.125E-02	-0.114E-09	-0.442E-19	0.903E-11	-0.990E-04
	1	4	-0.331E-03 '	0.125E-02	-0.114E-09	-0.442E-19	0.903E-11	-0.990E-04
	1	5	-0.628E-03	0.125E-02	-0.114E-09	-0.442E-19	0.903E-11	-0.990E-04
	1	6	-0.628E-03	0.125E-02	-0.114E-09	-0.442E-19	0.903E-11	-0.990E-04
	1	7	-0.628E-03	0.125E-02	-0.114E-09	-0.442E-19	0.903E-11	-0.990E-04
	1	8	-0.628E-03	0.125E-02	-0.114E-09	-0.442E-19	0.903E-11	-0.990E-04
	1	9	-0.925E-03	0.125E-02	-0.114E-09	-0.442E-19	0.903E-11	-0.990E-04
	1	10	-0.925E-03	0.125E-02	-0.114E-09	-0.442E-19	0.903E-11	-0.990E-04
	1	11	-0.925E-03	0.125E-02	-0.114E-09	-0.442E-19	0.903E-11	-0.990E-04
	1	12	-0.925E-03	0.125E-02	-0.114E-09	-0.442E-19	0.903E-11	-0.990E-04
	1	13	-0.122E-02	0.125E-02	-0.114E-09	-0.442E-19	0.903E-11	-0.990E-04
	1	14	-0.122E-02	0.125E-02	-0.114E-09	-0.442E-19	0.903E-11	-0.990E-04
	1	15	-0.122E-02	0.125E-02	-0.114E-09	-0.442E-19	0.903E-11	-0.990E-04
	1	16	-0.122E-02	0.125E-02	-0.114E-09	-0.442E-19	0.903E-11	-0.990E-04
ILE	HEAD	REACTIONS						
			1.1					
DAD.	NO:	PILE NO:	TX	TY	TZ	MX	MY	MZ
	1	1	-77.965	8.745	0.000	0.000	0.000	14.676
	1	2	-77.965	8.745	0.000	0.000	0.000	14.676
	1	3	-77.965	8.745	0.000	0.000	0.000	14.676
	1	4	-77.965	8.745	0.000	0.000	0.000	14.676
	1	5	-147.957	8.745	0.000	0.000	0.000	14.676

1	6	-147.957	8.745	0.000	0.000	0.000	14.676
1	7	-147.957	8.745	0.000	0.000	0.000	14.676
1	8	-147.957	8.745	0.000	0.000	0.000	14.676
1	9	-217.950	8.745	0.000	0.000	0.000	14.676
1	10	-217.950	8.745	0.000	0.000	0.000	14.676
1	11	-217.950	8.745	0.000	0.000	0.000	14.676
1	12	-217.950	8.745	0.000	0.000	0.000	14.676
1	13	-287.943	8.745	0.000	0.000	0.000	14.676
1	14	-287.943	8.745	0.000	0.000	0.000	14.676
1	15	-287.943	8.745	- 0.000	0.000	0.000	14.676
1	16	-287.943	8.745	0.000	0.000	0.000	14.676

FIGURE A-4 Example number four

)T

IDOAL	IDADS
ULTE	LUNUJ

Ì

CAD NO:	P1	P2	P3	P4	P5	P6
1	0.00	0.00	2927.26	4258.74	0.00	0.00

.

PILE HEAD DISPLACEMENTS

LOAD NO:	PILE NO:	D1	D2	D3	D4	05	1D6
1	1	-0.295E-03	0.118E-02	0.000E+00	0.000E+00	0.000E+00	-0.942E-04
1	2	-0.295E-03	0.118E-02	0.000E+00	0.000E+00	0.000E+00	-0.942E-04
1	3	-0.295E-03	0.118E-02	0.000E+00	0.000E+00	0.000E+00	-0.942E-04
1	4	-0.578E-03	0.118E-02	0.000E+00	0.000E+00	0.000E+00	-0.942E-04
1	5	-0.578E-03	0.118E-02	0.000E+00	0.000E+00	0.000E+00	-0.942E-04
1	6	-0.719E-03	0.118E-02	0.000E+00	0.000E+00	0.000E+00	-0.942E-04
1	7	-0.719E-03	0.118E-02	0.000E+00	0.000E+00	0.000E+00	-0.942E-04
1	8	-0.860E-03	0.118E-02	0.000E+00	0.000E+00	0.000E+00	-0.942E-04
1	9	-0.860E-03	0.118E-02	0.000E+00	0.000E+00	0.000E+00	-0.942E-04
1	10	-0.114E-02	0.118E-02	0.000E+00	0.000E+00	0.000E+00	-0.942E-04
1	11	-0.114E-02	0.118E-02	0.000E+00	0.000E+00	0.000E+00	-0.942E-04
1	12	-0.114E-02	0.118E-02	0.000E+00	0.000E+00	0.000E+00	-0.942E-04
PILE HEAD	REACTIONS		•				
LOAD NO:	PILE NO:	ТХ	TY	TZ	MX	MY	MZ
1	1	-100.112	17.344	0.000	0.000	0.000	28.996
1	2	-100.112	17.344	0.000	0.000	0.000	28.996
1	3	-100.112	17.344	0.000	0.000	0.000	28.996
1	4	-195.996	17.344	0.000	0.000	0.000	28.996
1	5	-195.996	17.344	0.000	0.000	0.000	28.996
1	6	-243.938	17.344	0.000	0.000	0.000	28.996
1	7	-243.938	17.344	0.000	0.000	0.000	28.996
1	8	-291.880	17.344	0.000	0.000	0.000	28.996
1	9	-291.880	17.344	0.000	0.000	0.000	28.996

28.996
28.996
28.996

10.52 50

FIGURE A-5 Example number five

EXAMPLE NUMBER FIVE(C=1000t/m3)

NODAL LOADS

LOAD	NO:		P1	P2	P3	P4	P5	P6
	1		0.00	0.00	2927.26	4258.74	0.00	0.00
PILE	HEAD	DISPLACEMENTS						
LOAD	NO:	PILE NO:	01	D2	D3	04	05	. D6
	1	1	-0.231E-03	[:] 0.889E-03	0.194E-11	-0.564E-12	-0.307E-12	-0.572E-04
	1	2	-0.231E-03	0.889E-03	0.194E-11	-0.564E-12	-0.307E-12	-0.572E-04
	1	3	-0.231E-03	0.889E-03	0.194E-11	-0.564E-12	-0.307E-12	-0.572E-04
	1	4	-0.231E-03	0.889E-03	0.194E-11	-0.564E-12	-0.307E-12	-0.572E-04
	1	5	-0.231E-03	0.889E-03	0.194E-11	-0.564E-12	-0.307E-12	-0.572E-04
	1	6	-0.375E-03	0.889E-03	0.335E-11	-0.564E-12	-0.307E-12	-0.572E-04
	1	7	-0.375E-03	0.889E-03	0.335E-11	-0.564E-12	-0.307E-12	-0.572E-04
	1	8	-0.375E-03	0.889E-03	0.335E-11	-0.564E-12	-0.307E-12	-0.572E-04
	1	9	-0.375E-03	0.889E-03	0.335E-11	-0.564E-12	-0.307E-12	-0.572E-04
	1	10	-0.375E-03	0.889E-03	0.335E-11	-0.564E-12	-0.307E-12	-0.572E-04
	1	11	-0.518E-03	0.889E-03	0.476E-11	-0.564E-12	-0.307E-12	-0.572E-04
	1	12	-0.518E-03	0.889E-03	0.476E-11	-0.564E-12	-0.307E-12	-0.572E-04
	1	13	-0.518E-03	0.889E-03	0.476E-11	-0.564E-12	-0.307E-12	-0.572E-04
	1	14	-0.518E-03	0.889E-03	0.476E-11	-0.564E-12	-0.307E-12	-0.572E-04
	1	15	-0.661E-03	0.889E-03	0.617E-11	-0.564E-12	-0.307E-12	-0.572E-04
	1	16	-0.661E-03	0.889E-03	0.617E-11	-0.564E-12	-0.307E-12	-0.572E-04
	1	17	-0.661E-03	0.889E-03	0.617E-11	-0.564E-12	-0.307E-12	-0.572E-04
	1	18	-0.661E-03	0.889E-03	0.617E-11	-0.564E-12	-0.307E-12	-0.572E-04
	1	19	-0.661E-03	0.889E-03	0.617E-11	-0.564E-12	-0.307E-12	-0.572E-04
	1	20	-0.804E-03	0.889E-03	0.759E-11	-0.564E-12	-0.307E-12	-0.572E-04
	1	21	-0.804E-03	0.889E-03	0.759E-11	-0.564E-12	-0.307E-12	-0.572E-04
	1	22	-0.804E-03	0.889E-03	0.759E-11	-0.564E-12	-0.307E-12	-0.572E-04
	1	23	-0.804E-03	0.889E-03	0.759E-11	-0.564E-12	-0.307E-12	-0.572E-04
	1	24	-0.804E-03	0.889E-03	0.759E-11	-0.564E-12	-0.307E-12	-0.572E-04
E HEAD REACTIONS

AD NO:	PILE NO:	ТХ	TY	TZ	MX	MY	MZ
1	1	-54.538	3.896	0.000	0.000	0.000	8.236
1	2	-54.538	3.896	0.000	0.000	0.000	8.236
1	3	-54.538	3.896	0.000	0.000	0.000	8.236
1	4	-54.538	3.896	0.000	0.000	0.000	8.236
1	5	-54.538	3.896	0.000	0.000	0.000	8.236
1	6	-88.253	3.896	0.000	0.000	0.000	8.236
1	7	-88.253	3.896	0.000	0.000	0.000	8.236
1	8	-88.253	3.896	0.000	0.000	0.000	8.236
i	9	-88.253	3.896	0.000	0.000	0.000	8.236
1	10	-88.253	3.896	0.000	0.000	0.000	8.236
1	11	-121.969	3.896	0.000	0.000	0.000	8.236
1	12	-121.969	3.896	0.000	0.000	0.000	8.236
1	13	-121.969	3.896	0.000	0.000	0.000	8.236
1	14	-121.969	3.896	0.000	0.000	0.000	8.236
1	15	-155.685	3.896	0.000	0.000	0.000	8.236
1	16	-155.685	3.896	0.000	0.000	0.000	8.236
1	17	-155.685	3.896	0.000	0.000	0.000	8.236
1	18	-155.685	3.8%	0.000	0.000	0.000	8.236
1	19	-155.685	3.896	0.000	0.000	0.000	8.236
1	20	-189.401	3.896	0.000	0.000	0.000	8.236
1	21	-189.401	3.896	0.000		0.000	8.236
1	22	-189.401	3.896	0.000	0.000	0.000	8.236
1	23	-189.401	3.896	0.000	0.000	0.000	8.236
1	24	-189.401	3.896	0.000	0.000	0.000	8.236
No. Martin							

96

example NL	MBER SIX(C=1000)t/m3)					97
Nodal Load)S						
LOAD NO:		P1	P2	P3	P4	P5	P6
1		0.00	0.00	2927.26	4258.74	0.00	0.00
						1.279	
PILE HEAD	DISPLACEMENTS			1.000			
LOAD NO:	PILE NO:	D1 ·	D2	03	D4	05	. 06
1	1 1	-0.209E-03	:0.103E-02	0.643E-11	-0.114E-12	-0.382E-12	-0.564E-04
1	2	-0.209E-03	0.103E-02	0.643E-11	-0.114E-12	-0.382E-12	-0.564E-04
1	3	-0.209E-03	0.103E-02	0.643E-11	-0.114E-12	-0.382E-12	-0.564E-04
1	4	-0.209E-03	0.103E-02	0.643E-11	-0.114E-12	-0.382E-12	-0.564E-04
. 1	5	-0.3388-03	0.103E-02	0.670E-11	-0.114E-12	-0.382E-12	-0.564E-04
1	6	-0.338E-03	0.103E-02	0.670E-11	-0.114E-12	-0.382E-12	-0.564E-04
1	7	-0.389E-03	0.103E-02	0.680E-11	-0.114E-12	-0.382E-12	-0.564E-04
1	8	-0.389E-03	0.103E-02	0.680E-11	-0.114E-12	-0.382E-12	-0.564E-04
1	9	-0.479E-03	0.103E-02	0.698E-11	-0.114E-12	-0.382E-12	-0.564E-04
1	10	-0.479E-03	0.103E-02	0.698E-11	-0.114E-12	-0.382E-12	-0.564E-04
1	11	-0.569E-03	0.103E-02	0.717E-11	-0.114E-12	-0.382E-12	-0.564E-04
1	12	-0.569E-03	0.103E-02	0.717E-11	-0.114E-12	-0.382E-12	-0.564E-04
1	13	-0.620E-03	0.103E-02	0.727E-11	-0.114E-12	-0.382E-12	-0.564E-04
1	14	-0.620E-03	0.103E-02	0.727E-11	-0.114E-12	-0.382E-12	-0.564E-04
1	15	-0.750E-03	0.103E-02	0.753E-11	-0.114E-12	-0.382E-12	-0.564E-04
1	16	-0.750E-03	0.103E-02	0.753E-11	-0.114E-12	-0.382E-12	-0.564E-04
1	17	-0.750E-03	0.103E-02	0.7538-11	-0.114E-12	-0.382E-12	-0.564E-04
1	18	-0.750E-03	0.103E-02	0.753E-11	-0.114E-12	-0.382E-12	-0.564E-04
PILE HEAD REACTIONS							
LOAD NO:	PILE NO:	ТХ	TY	TZ	МХ	MY	HZ
1	1	-70.827	6.841	0.000	0.000	0.000	17.537
1	2	-70.827	6.841	0.000	0.000	0.000	17.537
1	3	-70.827	6.841	0.000	0.000	0.000	17.537

.

					1		· · · · ·
1	4	-70.827	6.841	0.000	0.000.	0.000	17.537
1	5	-114.814	6.841	0.000	0.000	0.000	17.537
1	6	-114.814	6.841	0.000	0.000	0.000	17.537
1	7	-132.026	6.841	0.000	0.000	0.000	17.537
1	8	-132.026	6.841	0.000	0.000	0.000	17.537
1	9	-162.626	6.841	0.000	0.000	0.000	17.537
1	10	-162.626	6.841	0.000	0.000	0.000	17.537
1	11	-193.225	6.841	0.000	0.000	0.000	17.537
1	12	-193.225	6.841	0.000	0.000	0.000	17.537
1	13	-210.437	6.841	0.000	0.000	0.000	17.537
1	14	-210.437	6.841	0.000	0.000	0.000	17.537
1	15	-254.424	6.841	0.000	0.000	0.000	17.537
1	16	-254.424	6.841	0.000	0.000	0.000	17.537
1	17	-254.424	6.841	. 0.000	0.000	0.000	17.537
1	18	-254.424	6.841	0.000	0.000	0.000	17.537

FIGURE A-7 Example number seven

040 NO:	P1	P2	P3	P4	P5	P6
1	100.00	0.00	0.00	0.00	0.00	0.00
2	0.00	100.00	0.00	0.00	0.00	0.00
3	0.00	0.00	100.00	0.00	0.00	. 0.00
4	0.00	0.00	0.00	100.00	0.00	0.00
5	0.00	0.00	0.00	0.00	100.00	0.00
6	0.00	0.00	0.00	0.00	0.00	100.00

ILE HEAD DISPLACEMENTS

DAD NO:	PILE NO:	D1 .	02	03	D4	05	06
1	1	0.326E-03	0.431E-03	-0.452E-02	-0.114E-06	0.329E-04	-0.152E-04
1	2	-0.341E-03	0.429E-03	-0.451E-02	-0.243E-05	0.332E-04	-0.152E-04
1	3	-0.338E-03	-0.135E-03	-0.447E-02	-0.271E-05	0.309€-04	-0.194E-04
1	4	0.321E-03	-0.134E-03	-0.447E-02	-0.396E-06	0.306E-04	-0.194E-04
2	1	-0.157E-03	-0.404E-04	-0.467E-04	0.314E-06	-0.786E-06	0.340E-05
2	2	-0.164E-03	-0.397E-04	-0.467E-04	0.777E-06	-0.791E-06	0.340E-05
2	3	-0.163E-03	-0.540E-04	-0.416E-04	0.782E-06	-0.328E-06	0.347E-05
2	4	-0.157E-03	-0.546E-04	-0.414E-04	0.319E-06	-0.323E-06	0.347E-05
3	1	0.198E-03	0.281E-01	0.182E-02	0.139E-03	0.138E-03	-0.171E-02
3	2	0.141E-03	0.284E-01	0.182E-02	-0.881E-04	0.139E-03	-0.171E-02
3	3	-0.121E-03	0.318E-01	-0.212E-02	-0.884E-04	-0.889E-04	-0.171E-02
3	4	-0.702E-04	0.315E-01	-0.212E-02	0.139E-03	-0.892E-04	-0.171E-02
4	1	0.744E-04	0.982E-02	0.631E-03	-0.730E-04	0.599E-04	-0.738E-03
4	2	0.497E-04	0.966E-02	0.616E-03	-0.173E-03	0.600E-04	-0.738E-03
4	3	-0.407E-04	0.112E-01	-0.744E-03	-0.173E-03	-0.396E-04	-0.739E-03
4	4	-0.209E-04	0.113E-01	-0.762E-03	-0.731E-04	-0.396E-04	-0.739E-03
5	1	0.370E-04	0.563E-02	0.376E-03	-0.205E-02	0.497E-04	-0.593E-03
5.	2	0,166E-04	0.148E-02	0.970E-04	-0.215E-02	0.498E-04	-0.593E-03
5	3	-0.279E-05	0.295E-02	-0.196E-03	-0.215E-02	-0.481E-04	-0.593E-03

	5	4	-0.198E-04	0.709E-02	-0.474E-03	-0.205E-02	-0.481E-04	-0.593E-03
	6	1	0.140E-03	0.484E-03	-0.281E-03	-0.454E-06	0.116E-03	-0.541E-04
	6	2	-0.128E-03	0.478E-03	-0.267E-03	-0.872E-05	0.117E-03	-0.541E-04
	6	3	-0.117E-03	0.577E-03	-0.110E-03	-0.972E-05	0.109E-03	-0.692E-04
	6	4	0.120E-03	0.582E-03	-0.125E-03	-0.145E-05	0.108E-03	-0.692E-04
PILE	HEAD	REACTIONS						
0AD.	NO:	PILE NO:	TX	ΤΥ	TZ	MX	MY	MZ
	1	1	51.000	1.947	-21.936	-0.001	-52.840	4.318
	1	2	-53.390	1.938	-21.912	-0.017	-52.773	4.298
	1	3	-52.923	-0.904	-21.719	-0.019	-52.370	-2.807
	1	4	50.129	-0.897	-21.744	-0.003	-52.441	-2.790
	2	1	-24.620	-0.159	-0.240	0.002	-0.614	-0.286
	2	2	-25.581	-0.155	-0.240	0.005	-0.614	-0.278
	2	3	-25.528	-0.225	-0.210	0.005	-0.525	-0.447
	2	4	-24.543	-0.228	-0.209	0.002	-0.522	-0.454
	3	1	30.970	118.199	10.664	0.973	30.365	238.413
	3	2	22.038	119.687	10.700	-0.615	30.460	242.065
	3	3	-18.954	136.528	-11.563	-0.617	-31.076	283.300
	3	4	-10.984	134.891	-11.566	0.971	-31.088	279.282
	4	1	11.639	39.592	3.848	-0.510	11.261	74.818
	4	2	7.770	38.809	3.775	-1.205	11.085	72.895
	4	3	-6.368	46.183	-4.159	-1.206	-11.408	90.951
	.4	4	-3.264	46.901	-4.248	-0.511	-11.627	92.714
	5	1	5.780	20.657	2.461	-14.323	7.548	32.720
	5	2	2.604	0.131	1.083	-15.006	4.167	-17.659
	5	3	-0.437	7.398	-1.550	-15.006	-5.261	0.173
	5	4	-3.090	27.860	-2.929	-14.323	-8.646	50.395
	6	• 1	21.844	1.736	0.023	-0.003	3.586	2.621
	6	2	-19.948	1.706	0.107	-0.061	3.821	2.548
	6	3	-18.307	2.012	0.783	-0.068	5.231	2.843
					and the second second second second			

TOT