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ABSTRACT

In this study, the effects of various brocedures,'
Ordinary Method of'511cés, Bishop's Modified Method, Spéncerﬁs
Method, Janbu's Generalized Proéédure of Slices and.Wedée Method,
on factor of safety for a practical problem taken from Alaybey
Shipyard Construction are investigated. Soil profile used in the

analyses is a sand i1l on a soft clay foundation,

General slope stability considerations which are based
for stability analyses, the slope stability charts and detailed

sfabi]ity analysis procedures are given in each, subsequent séction.

The computer programs developed for comparing the influ-
ences df the methods mentioned above on factor of safety are em=
ployed and the charts giving the differences between the factors of .
safety of various procedures ére also deye]oped. Additiona]iy,the
effects of these methods on minimum factor df safety are performed.
For this purpose,the inf]uence§ of the shear strengfhs parameters
of the sand fill and the clay foundation on the factor of-safeiy

are investigated and the results are also given as the chart.

Stability of slopes during earthquakes is giveh in the
last section. A typical Soi] profi]e taken from Alaybey Shipyard
Construction with'the earthquake forces'and without considering
thése forces are analyzed using Wedge Method. For this purpose,

a computer prdgram is developed.



OZET

Bu ¢a11$ma, Afaybey Tersanesi'nin insas1 sirasinda karsi-
lasilan bir zemin.pkofili ve dairesel b]mayan bir seQ kayma ylizeyi
alinarak cesitli metotlarin, basit di]im1er'metodu; Bishop Modifiye
Métodu, Spencer Metod,Janbu‘gene11esfiri]mis dilimler metodu ve:
Kama metotlarinin, bu prob1eme uygulanmasi ve sev emniyet‘katséy1-
s1na etkilerinih ara$t1r11ma$1 izerine yapilmistir. Stabilitesi
incelenen zemin profili yumusak bir kil temel zemini Uizerine kum

dolgudur,

Stabilite analizlerine esas teskil eden genel sev sta-
bilite kavramlarinin yanisira sev stabilite abaklari ve stabilite

analizleri il1gili bolumlerde detayl: olarak aciklanmistir.

Yukarida sozi edi]éh metotlarin éev emniyet‘katsay1s1na
| etkilerini mukayese etmek lizere gelistirilmis bi]gisayar programla-
rindan yarar]an11m1$.ve sonuclar abaklar ha]inde verilmistir. Ayr-
ca yine bu metotlarin minimum emniyet katSay1s1na etkileride ince-
lenmistir. Bu amac¢la, kum dolgu ve'yumusak kil temel zeminin kayma
mukavemetlerinin emniyet katsayilarina fesir1eri 1n¢e1enerek sonUc-

lar yine abaklar halinde verilmistir.

Son boliimde deprem sirasinda sevlerin stabilitesi veri]—
mektedir. Alaybey Tersanesi'nin insasi s1ra§1nda karsilasilan diger
bir tipik zemin profili Grnek alinarak deprem kuvvetleri altinda
ve deprem kuvvetleri gozoniine alinmadan stabilitesi Kama metodu
ile incelenmistir. Bu amag¢la bir bi]gisayar\brogram1 gelistiril-

mistir.
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‘radius of a circle

distance

undrained shear strength of a soil

shear force on the base of a slice

mobilized shear force

distance from the depth of sliding to the surface

of the slope, measured normal tothe surface of the

slope
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Meaning

pore water pressure

weight of an entire soil mass bounded by an
assumed shear surface and the slope surface;
or, the weight of an individual slice

width of a slice

distancé from the depth of sliding to the

.surface of seepage, measured normal to the

surface of the s]ope shear force between

slices

'vert1ca] force act1ng on the left of the

first slice

vertical force acting on the right of the

last slice; vertical shear force on the sec-
tion n

vertical shear force on the,section n+1

rate of increase in foundation shear strength
y coordinate of a point on the shear surface_f
y coordinate of the Tine of thrust

i

depth of foundation from which the failure.

surface passes

. depth of the tension crack

resultant of all forces act1ng on an interslice
boundary

angular measure

- angular measure

unit weight of soil

unit weight of fi]] material
unit weight of water
angular measure

surcharge correction factor

tension crack correction factor
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~ Meaning

submergence correction factor

seepage correction factor

scaling factor for side force inclinations, used
in the Morgenstern and Price procedure for slope
stability analysis

dimensionless parameter used to describe a
particular slope in terms of c,¢,y and H.

modified dimensionless parameter used in making

stability analyses with pore pressures

normal stress bn a selected plane

average value of shear stress mob111zed along a
shear surface

the angle of internal friction for a soil in
terms of total stresses

mobilized angle of internal friction
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CHAPTER |
INTRODUCTION

Embankments are COnstruéted for many’différént purposes :
including ‘highways, railroads, dams, levees and stockpiles; fn |
~ each instance the deSigneramust check to see that the embankment
hasvadequate factor of safety against stability. Stability failure
occurs when an outer portion of an embankment slides downward and
outward with respect to the remaining part of the embankment, f

generally along a fairly well defined s]ip'surface.

A detailed investigation of slope stability includes a
geological study; field observations;fnsitu:'testing:test borings,‘
‘laboratory testing, and detai]ed sTope stability calculations. The
analysis éan be performed usfng a Eomputer oridetaiied hand calcu- |
lations as described in subsequent séction§. Slope sﬁabi]ity charts

- may be used for preliminary studies or to check the final analysis.

~In Chapter 2, the method of plane failure surfaces
(Culmann,1866), Circular Arc Method of Analysis, Frictjon Circle

method,and Logarithmic Spiral method are discussed.

The slope stability éhérts which have been described in

Chapter 3 assume simple slopes and uniform soil conditions. These



charts can be used to obtain reasonably accurate answers for most

complex problems.

The procedures of slices are discussed in Chapter 4;
These procedufes are The Ordinary Méthod of S]ices,'Bishop's
Procedure (1955), Bishob's Modified Procedure; Sbéncer's Procedure
(1967), Janbu's Generalized Procedure of Slices (1968), Wedge
Method, Morgénstefn and Price's Procedure (1965,1967), Fowe and

- Karafiath's Procedure (1960). Every procedure has different

assumptions in order to achieve statical determinancy.

In chapter 5, the different procedufes for stability
ana]ysis of embankmeﬁts on soft fbundations are aha]y;ed. The
purpose of this chapter 1s»td,show the'effects of the procedures
which are The Ordinary Method of Slices, Bishop's-Modified P}oce-_
dure,}Spencer's Procedure, Janbu's Genéra1i;ed Procedure of Slices
and Wedge Method on the ca]cu]atedAfactors}of‘safety for typical
: embankments on soft foundatfons. For this reason,the effects of
the strength parameters‘of fil1l -and foundation material on the
factor of safety are also 1nvest1gated Dur1ng these stud1es the .

: computer programs SLOPE 22R, SLOPE8R SLOPE 9, andwEDGEl deve]oped

for compar1son purposes are emp]oyed

Moreover, the effect of foundation shear strength on
minimum factor of safety calculated by different procedures as
 mentioned above is studied in Chapter 6. For this purpose, the

computer program WEDGE 2 is also developed in this study.

Stability of slopes during Earthquakes is discussed in

Chapter 7. An example problem taken from Alaybey Shipyard Construc-



tion is analyzed using the computer program*wEDGE 3 in this chapter.

Consequently, in this study various slope stability
procedures are given in details and a comparison of these methods -
on factor of safety for differentsoil characteristics and profiles

- is also given in each subsequent section..



CHAPTER 2
GENERAL SLOPE STABILITY CONSIDERATIONS

2.1 INTRODUCTION

The procedures given in Chapter 4 inclusive have broad appli-
cability. Solutions by these‘methods can be obtained for embankments_
under wide ranges of conditions, but such solutions often require much

time.

Solutions for simple cross sectioné of homogeneous soils,
within which no seepage is occuring, may be obtained somewhat more
easily and, once obtained, they may be made dvai]able in the form
of relatively simple charts. A number of solutions that haye been
presented in the past in the form bf equations or charts are mainly
of academic interest, since they contain QUeétidnable.assumﬁtions-abd
have no practical advantages over more logical methods. The highly
mathematical treatments known as the Resal-Frontard method and the
Jaky.method fall 1into this category and thus are not discﬁssed here-
in. Simple slope analyses based on plane failure surfaces, qnciréu]ar
failure surfaces, and on spiral failure surfaces are presented in this

chapter.



2.2 STABILITY OF SLOPES IN SOILS WITH UNIFORM STRENGTH
o THROUGHOUT THE DEPTH OF THE SOIL LAYER AND ¢ =

At the present time many different procedures of s]opé'stabi]ity
ana]yses are ava11ab1e whlch sat1sfy the cond1t1ons of stat1c equ1]1br1um
to calculate the average value. of shear strength requ1red to prevent fa1]-
ure. These various procedures of ana]ysxs have d1fferent assumpt1ons wh1ch
are made to satisfy the part1cu]ar conditions of equ1]1br1um and to

~achieve stat1ca].determ1nancy. The we]]-known methods may be written as
follows: - | o I o
1. Plane Failure Surfaces

2. Circular Arc Method and ¢=0 Analysis
2.2.1 Plane Failure Surfaces

Plane failure surfaces often occur when a soil deposit or embank-
‘ment has a specific plane of weakness. ‘Excavations into stratierd deposits
where the strata are difiping toward the excavation may fail along a plane
paralleT to the strata. VMethodsvof ana]ysTs that consider blocks or Wedges
sliding along. plane surfaces have been deve]oped,to analyze cases where there
is a spec1f1c p]ane of weakness (Seed and Su]tan 1967) A p]ane failure sur-
fice is a simple fa11ure mechan1sm. Such a p]ane fa1]ure surface ana]ysed

by Culmann (1886).

Consider the equiIbeium of the thaaQQTaf-wedgevformed:ey‘the -
assumed failure surface in Fig.Z.T.'The.thaee Tarces coﬁsidered‘afe‘the' |
weight ef the wedge W, a cohesive force Cr; parallel to the pdtentia]i
sliding surface, and the resultant P, of the normal and frictional forces.
The relationship of these forces is shown on the force polygon. The cohesiVe

force C. equals the requifed unit cohesive strength c, times the length of
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FIG.2.1 Slope Analysis Assuming a Plane Failure Surface



‘; the pqtential failure surface L. The unit cohesion‘and friction angle .
areythe values requfred for equf]ibrium and will be equal to or less
than‘the available cohesion and friction. A safety factor with respect
to cohesion, F. , is defined as the ratio of available cohesion to re-
quired -cohesion, and'a factor of safety with respect to friction,'F¢,
is defined as.the ratio tan¢(avai1ab]e) to tang (reqUired) If either
safety factor is assumed to be 1, the other will be greater than 1 if
A the slope is stab]e. The factor of safety with respect to strength

Fg, or correct: factor of safety for the assumed fa11ure mechanism oc-

' is‘determined by trial«

. For a c-¢ soil, Fg

. curs when F .= F¢ = Fg
and error. A value of F¢ is assumed and th1s estab]1shes a value of
¢r- The value of F. is then computed from the force po]ygon of Fig.2. lb
"and the definition of F, The procedure is then repeated unt11 F ¢
This safety factor represents the safety factor with respect tostrength,
Fé , for the assumed failure p]ane; |
The critical p]ane can be estab]lshed using the fo]IOW1ng
procedure. From the force po]ygon of Fig. 2-1b,
Cr i sin(6—¢r) i sin(6—¢r) | (2.1)
¥ ~ sin(90+¢ ) cosg,

and, from Fig; 2-la,
‘ ; L . o
x| r- | .. (2.2)
—%eyL(H/sinB)sin(Bfa)

Combining these expressions and solving for c./yH yields
c j sin(6—¢r)sin(8-8)

r_. , | ... (2.3)
YH ; 2cos¢rsin8 ' :
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| The critical failure p]ane(thé one that will yield the Towest
factor of safety) is defined by'fhe value of 6 that yields the maximum-

value of ¢, / yg . Differentiate Eq.2.3.with respect to 6 and set equal

to zero to find 6.

Cc

6 =,-§_(s+¢r), | PR ce (2.4)

- Substitution of this value into Eq.2.3 yields the maximum v

stability number for the s]bpe.'

c. _ 1 - cos(B-¢) ' | 2
YH / 4sinBcos¢ ' :

" Equation 2.5 and the iterative procedure justexp]ainedcan be used to

find the safety factor with respect to strength Fg

Equation 2.5 is the stability number for p]anejfai]uré'surfaces
for c-¢ soil. If ¢= 0, Eq.2.5 reduces to .
/ c 1 - cbsB 1 a
LY = = - tan — '..».(2.6) '
- \ yH 4sinf 4 2. :
mox : ) .

A plot of this function in Fig.2.2 shows that a plane failure
surface is not the critical failure surface but abproaches the results

for circular failure surfaces at.very’steep s]opes.:

2.2.2 Circular Arc Method And ¢= 0 Analysis

‘A more common problem is one in which the s]dpé is of finite exten%
“and in which failures occur on curved surfaces. The most widely used mefhod
of ana]ys1s of homogeneous, isotropic finite s]opes is the Swedish method

based on circular failure surfaces. It is be11eved that th1s method was first-
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- used by K.E. Petterson in the study of the failure of a quay wa]] in
Goeteborg in 1915 or 1976.

| ‘ Numerous slope fai]uhes thatvhad occuhred aTong Swedish rail- |

‘roads led to the setting‘up of an elaborate progham ih that counthv‘inA
1920 or earlier for the 1nvest1gat1on of s]ope stab111ty This work

'was carr1ed out by the Swedlsh Geotechn1ca] Comm1ss1on From bor1ng data
the shapes of the failure surfaces of humerous slides were determ1ned,
and one of the main contribUtions'of the program was the information'
that actua1 failure surfaces generally do not deviate great1y in shape
“from circle. This finding is the main Justification of the method of
analysis proposed by—this commissioh; it was deve]dbed by'N.Feilehiusl
" and others ahd is now widely used. In this method fai]urersuhfacesare _
- assumed to be of c]y]indrica]‘shape, ahd,they apoear on cross sections
as c1rcu1ar arcs. There are many possible circu]ah-arcs 'thhough a
cross sect1on, and the 1ocat1on of the cr1t1ca], or most dangerous s

arc ‘must usua]]y be determ1ned by methods of trial. Many procedures

of stab111ty analysis have been deve]oped which ut111ze the severa]
advantages afforded by such surfaces The most 1mportant advantage of |
-using circular surfaces,1s‘the1r s1gn1f1cant simplification of the mechanj

ics of stability analyses.

The AVeragé”éhéaf stress (ta) mobi]ized along the circular arc
bpd shown in Fig.2.3 can be determined from the summation of moments
about the center point (0). For a mass of soil in static equi]ibrium

this sum must be zero. Thus,

EM =Wa-T]lr=0 : ' . (2.7)
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. in which

the weight of the soil mass overlying bpd

-
a = the length of the moment arm of W about 0
1 = the length of the shear surface‘ -
r = the radiﬁs of the circle

By substituting a = r sina
where o = the inclination of the shear surface at its intersection with

the weight vector.

The average shear stress can be expressed as , .

Wsina .
) T = ———— s (2.8)
: 1

ThiS equation for the average value of shear stress required
for equi]ibriUm of a circular arc is free of any assumptions. Regardless
of what method is used to determine the equilibrium of the sliding .

mass shown in Fig.2.3, the average shear stress must be the same as that

given by Eq; 2.8 as long as static equi]ibrium.is satisfied.

While the earliest procedures of stability analysis for cir-
cular shear surfaces assumed thét the shearing resistance of the soil
was due entirely to friction, in:1917, Hellan suggéstedrthat the shear
strength of a clay could be treated entirely és a cohesion (Petterson,
1955; Bjérrum and Flodin, 1960). Combining this concept of the shear
strength and the assumption of circular shear surfaces; Fellenius in
1918 proposed what is today commonly known as the "¢=0" method of sta-
.biiity analysis, a procedure which iS'Widely used for analysis Qfshort-

term slope stability.



12

90BFINS I®¥3YS IPTNOIT) P BuoTe S9559135" £°7°9Id




13

From an examination of actual s]obe failures in clay soils
it waé'found'that»the slip surface was approximately cylindrical. In
the ¢=0 Method which is also known as ﬁhe Swedfsh.Method a verti-
cal section through the,siope is dfaWn,yénd it is assumed that failure
will take place a]dng an arc of a circle. Severall"slip'circles" ére

drawn from different centrés of rbtation, and by a brocess of trial and

error the slip circle giving the lowest factor of safety is found.

In many practical cases the clay soil 1nra cutting or embank-
ment w111 behave as a purely cohesive material with “zero" angle of
shea(ing resistance. The shearing résistance of the clay, if fully satu-
.rated’ » and hence the étabi]ity of the slope, will depend on the cohe-
sion of the clay only. ’The stability ana]ysis for such a case is .de-

scribed as a "¢=0- ana]ysis"l

The principle of the method is illustrated in Fig.2.4. A

slice of unit thickness of the s]bpe is considered.

In the simplest case the cohesion c of the clay is assumed
to be uniform throughout the material. The weight W of the sector is
calculated, acting at G, the centre of'gréVity of the sector. Moments
are taken about the centre of rotation 0. The "disturbing moment" is
Wxx. The "resist{ng moment" is the cohesion mu]tip]ied by the length

Il of the arc AB and the radius R,

i.e., ) _
CxlxR=CxR216 ... (2.9)
If stipping is‘just about fo take place the disturbing and

resisting moments will be equal, i.e., disturbing moment= resisting moment
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Wxx=Cx1rR-=CxR2x6 - _...(2.10)‘

In order to have a margin of safety the resisting moment
must be greater than the disturbing moment. The actual factor of
safety is thus: |

resisting moment | Cx sz 0 c x 1xR

F = - - (2.11)

disturbing' moment Wxx W xx

Several possib]é slip circles have to be drawn in order

to find the circle which results in the lowest factor of safety.

If the s]obe is not uniform and the cohesion of the clay
varies, the sector is divided into suitable parallel vertical or
horizontal strips. In case of failure a tension crack 15~1ike1y to
deve1op, and the iehgth of the arc 1 resisting s]iding will bé.‘
'measured from the bottom of fhe tension érack‘{’The method of making

the stability calculations is indicated in Fig.2.4b.

The disturbing moments are StWxx and the resisting moments
are RIcxl . The factor of safety is then calculated as before:
R.Zcexl - l 7
F = —— : , e (2.72)
I Wxx -

The lowest factor of safety is again found by trial and
error. An allowance should be made for the horizontal water pressure
which would develop in the tension crack if it fills up with water.
The moment of this lateral force about the centre of rotation of the

slip circle causes an additional disturbing moment. The depth of the



tension crack in a purely cohesive soil is:

2 = —2C | ‘, | ... (2.13)

Using a circular shéar,surface_simp]ifies the ¢=0 procedure’
because the normal stresses all acf’tﬁrdugh fhe center of the circle re-
gardless of their distribution and consequeht]yvare eliminated from the
equation for moments about the center point. In dddition,vthe shear
stresses all act at the same distance from the center of the circle
and therefore their moment arm is constant and independent of their
distribution. Thus, use of a circu]ér.shear surface, which is in it-
self an assumption,-resu]ts.in statical determinancy with respect to

.moment équi]ibrium and &jthoughthe shear stress distribution is not
knoWn from the ¢«0 ana]ysis procedure; the one unknown_va]ue of gverage

. shear stress may be calculated from the moment equilibrium engtiong

2.2.3 The Factor of Safety

in many procedures'foﬁ éﬁbpe analyses, stabi]ity is measured
in termsof an overall factor of safety'with reSpect to shear strength.
If the shear strength for the slope in Fig.2.3 is Sy the factor of

safety is defined by,

F=—32 ’ , o..(2.14)

which, upon substituting the expression for T3, gives the factor of
safety for a particular circular shear surface in terms of known geom-

etry. and soil conditions:

R S ... (2.15)
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‘Because the critical shear surface is usually unkonwn, several trial

surfaces must be analyzed until the minimum factor of safety for the

slope is found..

The factor of safety expressed by Eq. 2.15 corresponds to
the we]]-knoWn ¢=0 procedure of stabi]tty ana]ysis and is.free of any
assumptions regarding the stress diStributibns a]ong,the,failure sur-
face. A]thongh the factor ot safety at any point along the shear
surface bpd will be determined by the actual va]uesrot eheer-Strees and
shear strength at that point; the”distribution of sheer stresses can-
not be determined by the ¢= 0 method. Only when the’fector of»safety
is un1ty the shear stresses are known, in which case they are 1mp11ed
to be equal to the correspondlng shear strengths a]ong the hear syr-'

face.

2.3 STABILITY OF SLOPES IN UNIFORM SOILS WITH ¢20

In th1s sect1on Fr1ct1on Clrcle Method and Logar1thm1c Spr1a1

Hethod are d1scussed These methods of stab111ty ana]ys1s of s]opes are

particulary applicable to (c-¢) soils.

2,3.1 Friction Circle Method

A c1rcu1ar fa11ure arc. 1s drawn from a tr1a1 center in F1g 2 5
AAt the center a fr1ct1on c1rc1e is drawn at a rad1us rosin ¢y such that
all Tines tangent to the fr1ct1on circle and cutting the circular failure
_arc from the angle ¢r with the norma] These 11nes represent the direction
of the comb1ned norma] ‘and mobilized fr1ct1ona] forces dlstr1buted around
the failure arc. The resultant norma] and frictional force is assumed also
to be tangent to the ¢, circle. Actually, the resultant is'tangent to a
s]lght1y larger ¢ circle or radius Kr sin s where Kis a factor greater

than one. Values of K can  be est1mated from Fig.2. 6. Note that the two
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forces dP shown in Fig.2.5 intersect slightly outside the friction

circle

The equilibrium of the circular wedge is analyzed by consid-
ering three vectors; the weight, §, a resultant cohesive force, C. >

and the resultant normal and friction force, P.

The weight vector is equal to the area of the wedge times

the unit weight of the soil and acts through the centroid of the wedge.'

The cohesive force Cy acts parallel to.the'chord of the
failure arc and is equal to ¢y Lehord- The force ¢, is located a
distance s from the center 0, where

byee o +-(2.16)
- L

s=7T -
chord

or a distance slightly greater than the radius r.

- The intersection of the forces W and C,. establishes a point
through which the third force, P} must act. The direction of P is es-
tablished by drawing a line tangent to the adjusted ¢ circle from the

intersection of W ard C,

The weight of the wedge is known, but the magnitudes of P

and C, must be established by trial and érrbr similar to the method -

illustrated in the preceding section for plane failure surfaces. If
‘F¢ is assumed, the friction circTe'for P equal to-tan‘T(tan¢/F¢)
can be drawn and the equilibrium triangle completed for the reduired

cohesive force, C,. The factor of safety with respect to cohesion

Fe = C/C. s then compared with the assumed F¢;

‘Byrplottihg F¢ ‘can Ee made and .

the process repeated until F. = F¢ = Fg .

versus F_, a new estimate forAF¢



{ntersection
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FIG.2.5 Friction circle Method
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~ Additional centers énd arcs must'bévanalyzéd to determine
the minimum factor of safety. The iterative procedure can be shorténed
somewhat by finding thé critical circle as that which yields the mini-
mum safety factor with respect to cohesion. Iteration to find F  would

then be required on the critical circle.

‘ The friction circle method is primarily limited to homogeneous
~ soils and a total stress analysis. The influence of pore pressure or

~'bouhdary water forces can be included.

Stability numbers based on friction circle analyses are p1otted'

in Fig.2.2 and compared with numbers based on a plane failure for ¢=25°,

2.3.2 Logarithmic Spira]>Method

When ¢ is not equal to zero, the assumption of a ciréuiar
"shear surface is insUfficient to satisfy statical determinancyL‘In this
case by assuming a logarithmic spiral surface the statical determinancy

‘may be achieved. A logarithmic spiral surface has the following form.

= 1 ¢0taN%n L (207)

0

where
r =the radial distance from the center point to a point on
the spiral
ro=the‘reference radius
eéthe angle between r and o
¢m=the mobilized friction angle for the shear surface
In this method, all the resultants of the normal stresses (o) and

frictional components of shear strength (Witantgn) pass through the center



—

= | - ‘ » .22
point of the spiral. For this reason their contributions to the
moments are zero. Consequently the moment equation will only in-

volve the weight force and cohesive resistance of the soil.

By éummation of moments about thé center of the spiral, the
average mobilized cohesion required for equilibrium may be ca]cu]afed;
however, since a value of ¢, Must be‘assumgd beforelé shear surface
may be defined‘by £q.2.17, the mobilized cbhesion which is calculated
may result in a different'factor of safety with respect to coheéion
than was assumed in Ca]culating ¢p. Several trials must be made until

a balanced factor of safety with respect to shear strength can be found

which satisfies the relationship.

_ _ ¢ _ _ fand '
F = c = tand)m ... (2.18)

It may be recalled that for.a non-circu]ér shear surface, Tike
the log spiral, it was‘nécessaryvto know thévdistribution of shear stress-
es along the surface in order to calculate moments about any point; how-
ever, by assuming'that the factor of safety was éonstanf along the log
spiral surface the unknown shear stress distribution was replaced by the

“single unknown value of averagebshearvstress. Nevertheless, because the
normal stress distribution is not knbwn for the log spjral shear sufface,
the available shear strength and distribution of shear stresses is inde-

terminant, as in the case of the ¢= 0 method
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2.4 SUMMARY

There are sevgra1 theories available for analyzing the stability

of slopes, for example:
plane failure surfaces
circular failure surfaces

logarithmic spiral failure SurfaceS‘

In a homogeneous soil failure in shear along a plane surface
may be assumed to take.place in a surfacé such that the acting shear
stresses are greater than the shear strength of‘the soil. The stability
calculation is thus based on a shéar plane. It should be mentioned that
stability analyses of slopes on plane failure surfaces were studied by

Coulomb.

One of fhe most commonly used type of_fai1ure surface in
stability analyses of slopes is the circular failure surface.. The cir-
cular is merely a conventional one in order to ;implify mathematical
computations involved in.the stability analysis. Because bf'the early
extensive studies of failures of slapes made by Swedish engineers , the

circular failure surface is often referred to as the Swedish circle

- method.

A method based on the assumption that the fai]ure surface is a
Togarithmic spiral was deve]oped\by Rendulic. The use of the logarithmic
‘spiral is in some ways more inconvenient than the use of the circle as the
fai}ure surface, but satisfactory graphical procedures for the spiral :
method have been déve]oped. The main advantage of the spiral method is ,'
that all intergranular forces with the obliquity ¢r_(as shown in Fig.2.5)
are directed toward fhe center of the spiral. Because of this condition
the analysis is statically determinate without an assumption relative to

the pressure distribution.



The friction-circle method of slope analysis is a convenient
~approach for both graphica] and mathematical-solutions. It is given
this name because the characteristic assumpt1on of the method refers

to the ¢ c1rc]e

When ¢ is not equal to zero; the assumption of a circular
shear surface ‘is insufficient to achieve statical determinancy. In this
case assuming a logarithmic spiral surface satisfies the statica} de-

terminancy.

ATl the methods mentioned above are discussed and given in
details in this,ehapter. A]though some of these -procedures are suita-
ble fdr analyzing ndn-cf}cu1ar shear shrfaces, ofhers are restricted to
circular surfaces. Examination of the mechanicé of the various pro-
cedures of analysis shows that some of the. ear11est procedures deve]op-
‘ed are virtually identical to many of the recent techniques for analyz-

ing non-circular shear surfaces.

24
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CHAPTER 3
SLOPE STABILITY‘CHABTS

3.1 INTRODUCTION

The}practising engineer and the designer frequently require
a rapid means of estimating the factor of safety of a cut, an embank-
ment, or a natural slope. A detailed analysis fs'often impracticable
in thepfe]iminanystages when a number of alternatiQe schemes &ré under
consideration. Stability charté are used in these circumstances.
Stability charts provide perhaps the most convenient method of analy-
éis for simple homogeneous slopes. ’However, chafts are now avai]éb]e
whfch make it possible to perform.quite accurate analyses.for many'con-
ditions. The stability of slopes can be analyzed quickly using the-
stability charts. A]though the charts assume simple $1opes and uni; |
form soil conditions, they can Be used to obtain reasonab]y accurate
-answers for most complex problems %f irregular slopes are approximated
by’simp]e slopes, and average values of unit weight, cohesion, and
friction angle are used. Charts which include the effects of surcharge,
tensidni cracks, submergence, seepage, and ihcreasfng strength with
depth allow a wide range of variables to be considered in the design

of a slope by this method.

T&osAzI,ci UNIVERSfTES] KUTGPHANE]



26

3.2 CHARTS FOR SOILS WITH CONSTANT STRENGTH, AND ¢ = O

Slopes that approximate simple sections of relatively uni-
form soil may be ana]yzed using the slope stability charts which were

given by Taylor(1948) and Janbu (1968).

3.2.1 Tay]or‘s Charts

| Tay]or‘(1948) has. prepared two curves giving stability num-
bers whose solutions are valid only for the slopes that approximate
“simple sections of uniform soil. Three of the parameters, Cprs Y» and H,
are combined into a dimensionless stability number, which is plotted as

a function of the slope g for various values of ¢p.

Taylor proposed developed shear strength parameters ¢p and
¢ in terms of ¢ and ¢,
where

¢y = the developed cohesion

n

or

are defined respectively as:

the developed friction angle

.= | | o . (3.1)
tand .
tang . = . eoe (3.2)

The criticé] circle for steep slopes passes through the toe
of the slope with the lowest point on the failure arc at the toe of the
slope; this is shown by key sketch (A) in Fig. 3.1. This condition

holds throughout zone A of this figure. In zone B the low point of the
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critical circle is not at the.toe of the slope, and three cases that
will be considered are shown in key sketch (B).“ For small slope angles
or smai] friction angles the critical circle may pass beibw rather.than
through the toe of the siope, as is shbwn in Case 2. For all ranges in-
which this éase holds, stabilityrnumbers~are given in the chart by
dotfed curves. Stability numbers for the most dangefous circles passing
through the toe are given by so]idnlines in the chart both when there

is and when thére.is not a more dangerou§ circle that passes below the
toe; where a solid line does not appear in the chart the most dangerous
circle passes bé]ow the toe, and the qut dangerous circle through the

toe does not have a perceptibly different stability number.

The case wherein the shearing strength is assumed constant
is an importaﬁt one, and it is représented ih,stabi]ity charts by a zero
friction angle. For this case the critical circle paéses be]bw‘the toe
for slopes with inclination of less than 53°. Theoretically thé'critical
slope for this case is at an iﬁfinite.depth. In slopes encountered in
practical problems, however, the depth to which the rupture may pass is
usually limited by other underlying strong material. Thus the stability
number for the zero-¢ case is greatly dependent dn the limiting value
of the depth. Tb represent this condition the variable used is the -
ratio of depth of failure mass to height of slope; it is‘designated.by

' D/H and is shown in Fig.3.2.

For various values of D/H and for the zero-¢ case the chart
in Fig.3.2 supp]ements~Fig.3.1.' The coordinates used in>Fig.3.2 a]]dw
a réasbnab]y simple présehtation of a nUmbef of items of practica] in-
formatfon. As shown by the key sketches, circ]es passing below the toe
are represented by full line curves and n values are represented by

short dashed 1ines. Cases wherein there are loadings outside the toe,
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which prevent the circle from passing below the toe, are represented

by dotted lines.

~ If there is strong mater1a1 at the e]evat1on of the toe of the
slope, the case is represented in Fig.3.2 by a D/H value of unity,
and it is also covered in Fig.3.1 by case 3. For D/H equal to unity
and ¢ greater than zero'the solution has been carried out only for
15° slopes; therefore the short dashed lines for the 1ar§er friction

angles are of short length ih-Fig.3.1,

The factor of safety for a ¢=0 soil may be obtained directly
from Fig.3.2, but a trial and error procedure is reqeired for a c-¢
~soil. A1l points in the charts represent a factor of safety unity.
In trial error precedure, a factor of safety with respect to friction,
¢ » is initially assumed and is compared w1th the resu]tlng factor
' of safety with respect to cohe510n F . The assumed F¢ 15 adJusted

until Fy= F¢ = FS

3.2.2 Janbu's Charts

Janbu (1968) has deve]oped the stab111ty charts for slopes in-

in soils ¢=0 wh1ch are given in Flg 3.3. Charts g1v1ng correct1on fac-

tors for surcharge loading at the top of the slope, submergence, and

tension cracks are given in Fiés.3.4-and 3.5.

Steps for use of charts:

1. Using the charts at the bottom of Fig.3.3, determine the
position of the center of the critical circle, which is
located at X,, Y,. For slopes flatter than 53°, the
critical circle passes tangent to the top of firm soil or

- 30
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‘rock. For slopes steeper than 53°, the critical circle

passes through the toe.

Using this estimated critical circle as a qpide, estimate
the average value of strength, c. This can be done by
calculating the weighted average of the strengths along

the failure arc, using the number of degrees intersected

- by each soil ‘layer as the weighting factor. An example

3.

is shown in Fig.3.6. -

The depth factor, d, can be calculated using the formula
D . '
d = . : cee (3.3)

in which D=dept from-fhe toe of the slope to the lowest point on

in which

~the slip circle, (L; Tength)

‘H=s1ope height (L)

. Calculate Py using the formula below

P, = A N ... (3.8)
IR
Y= average unit Weight of soil (F/ﬁ,{’force/1engtﬁﬁ
H= s]ope‘height (L) ‘ | o 4
q= surcharge (F/L?)

Yw=uﬁit weight of water(F/L®)

Hw=depth of‘water outside slope (L)

uq=$urcharge correction factor ( Fig.3.4, top)}
um=submergence correction factor (Fig.3.4, bottom)

u =tension crack correction factor (Fig.3.5)
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FIG.3.6 Figure S)gowing the Calculation of Caye and ¢$gye
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" If there is no surcharge, uq-], 1f there is no submergence, U, =13

and if there are no tension cracks, u.=1.

5. Us1ng thechartat the top of F1g 3.3, determ1ne the value
of the stab1]1ty number, Nj, which depends on the slope

angle, B, and the value of d.

6. The factor of safety, F, can be obtained as follows

.. (3.5)

“in which N°=stabi]ity number

€ =average shear strength (F/L?)

7. If a slope contains more than ohe soil layer, it may bé'
necessary to calculafe thevfactor of safety for circles at
more than one depth. The following criteria can be used to
determine which possibilities shdﬁ]d be examined:

- If a soil 1ayer_js weaker than the}]ayer above, the crit-
ical circle will be tangent to the bése_of fhe Tower
layer. |

- If a soil layer is stronger than the layer above, the |
critical circTe may}bé tangent to the'base;of eithef the
upper or the lower layer, and both possibi]ifies should

be examined.

3.3 CHARTS FOR SLOPES IN SOILS WITH STRENGTH LINEARLY
INCREASING WITH DEPTH, AND ¢=0 '

In this section the ca1cu1at1on of the stab111ty number,N, for

a var1ab1e shear strength case, by means of Hunter and Schuster (1968)

I's



s shown.
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In general the shear strength of the soil for normally

consolidated clays is not constant‘throughout of the layer and it is

necessary to take into the account whether the shear strength of the

soil is constant throughout of the layer or is 1ncreas1ng with depth

in the stability analysis. The chart for slopes in so1ls with strength

linearly increasing with depth,and»¢-0, is shown in F1g.3.7.

Steps for use of chart:

1.

in which

Select the linear variation of strength with depth which

 best fits the measured,Strength data. Extrapolate this

linear variation upward to determine H,, the height at
which the Strength profile intersects zero, as shown in

Fig.3.7.

. Calculate M=Hp/H, where H=slope height.

. Determine the dimensionless stathity number, N, from the

chart in Fig.3.7.

. Determine the value of strength, cp, at the elevation of

the bottom of the slope

. Calculate the factar of safety, F, using the formula

C ‘ : )
F=N b ... (3.6)
CY(H + HO) '
'y= totai unit weight of soil for s]ooes above wéter,
Y= buoyant un]t weight for submerged s]opes and

weighted average unit weight for partly submerged s]opes

<
i

/
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3.4 CHARTS FOR SLOPES IN UNIFORM SOILS WITH ¢>0

For this type of soils Taylor's Charis-which is given in
section 3.2.1 and Jahbu's Charts are aTSo'applicable only to the ex-
‘tremely simple conditidns for which they wére derived. However, many
siopes that approximate the simple section and that are composed of
more or less heterogeneoué soils may be subjectéd to an approximate

ana]yéis by entering the charts with average values.

3.4.1 Taylor's Charts

The chart in Fig.3.1 developed by Taylor (1948) and discuss-

ed bn'section 3.2.1 fs also app]itéb]e for uniform soils with $>0.
For‘steeper slopes the failure arc goes through the toe of the slope

as shown by key sketch A in Fig.3.1. In zone B the low point of the
critical circle is not at the toe,of-the slope, and fhree case§ that

will be considered are shown in key sketch B 1n'Fig.3.1. For sma11

slope angles and for c-¢ soils the critical circle may pass below

the toe of the glope. For all ranges in which this case hﬁ]ds, stability
‘numbers are given in the chart by long dashedvcurves. Stability nuhbers
for the critical circles passing through the toe are given by solid

lines in the chart.

3.4.2 Janbu's Charts

The stability chart for slopes in soils with ¢>0 is shown in
Fig.3.8. Correction factors for surcharge loading at the top of the
slope, submergence, seepage,'and tension cracks are given in Figs.3.4

and 3.5.
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Steps for use of charts:

1. Using judgment, estimate the locatfon of the critical"”
circle. For most conditions of simple slopes in uniform
soils with ¢>0,the critical circle passes through the toe
of the slope, and the stabi]ity numbers given in Fig.3.8

have been developed by aha]yzing;toe éirc]es.

However, whére the conditions are not uniform and there

is a weak layer beneath the toe of the slope, a circle
‘pagﬁing Beheath the toe may be more ckitfca] than a. toe
circle. The charf shown in Fig.3.8 may be used to calcu-
late the faétor of safety-fdr such cases provided the
values bf c and ¢ used represent the correct éverageva]ues

for the circle considered.

If there is a weak layer above the toe: of thevs]opé, a
circle passing above the toe of the slope may be more
critical. Similarly, if there is water outside the toe of
the élope, a circ]e passing above the water may be more
critical. When these types of cirpleslare analyzed, the
value of H should be taken»equa] to the height from the
_ base of the weak layer, or the water level, to the top of

the slope.

2. Using tﬂis circle as a quide, estimaté the average values
of ¢ and tan ¢ . This can be done by calculating the weight-
ed avérage values of ¢ and tan ¢ along the failure arc,
using the number of degrees intérsected along the arc by

each soil Tayer as the weighting factor which is illustrated

before.
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3. Calculate Pdvusing’the formula below.

in which

in which

YH+q-yH |
P, = ww ’ vee (3.7)

d
RN

y=average unit weight of soil (F/L®,

force/length?®)

“H=sTope height (L)

q=surtharge (F/L?)

w;;unit weight of water (F/L®)

H,=depth of water outside slope (L)

llq=

Hw

He

If

surcharge correction factor ( Fig.3.4,top)
submergence correction factor (Fig.3.4, bottom)

tension crack correction factor (Fig.3.5)

there is no surcharge, p_=1; if there is no submergence,

q

um=1; and if there are no tension crécks; ut=1.

H'=
W

. Calculate P, using the formula

YH + q - y H ' '
P = w W .. (3.8)
4 .
MMy,

height of water within slope (L)

u.= seepage correction factor (Fig.3.4, bottom)

and the other factors are as defined previosly.

If the.surcharge is applied so quickly that there is not

sufficient time for the soils to consolidate under the

surcharge, take q=0 and uq=1 in the formula for P_.If

there is no surcharge, pq=1, and if there is no seepage,



5. Calculate the dimension]ess parameter Ac¢

'uSing the formula

P tan¢ | . ’
X = ——E————— ) ’ ) (3.9)
cp c '

in which  tan¢= average value of tan ¢

- c= average value of ¢ (F /L2)

For.c=0, Ao is infinite. In this case, skip step 6.

6. Using the chart at the left in Fig.3.8 , determine the
value of the stability number, ch, which depends on the

slope angle, B, and the value of AC¢;‘

7. Calculate the factor of safety, F, using the formula

F=N,—S—  (for c>0) ... (3.10)
P

For c=0, Ac¢ is infinite, and the factor of safety ﬁé cal-
culated using the formula.
| P
F = —=2% btanp (for c=0) - Coeee (3010)

. Pd

in which b=slope ratio=cotB and the other factors are as defined

previously.

S.Determine the actual ]ocatjon of the critical cifcle, using
the chart on the_right side of Fig.3.8. The center of the |
circle is located at X,, Y,, and the circle paéses through
fhe toe of the slope. One exception is the case where a
weak layer beneath the toe makes a circle passing beneath
the toe‘more Eritical} as exp]ainéd»in connection with

- step 1. In this case the critical circle passes tangent to

the base of the weak layer. A second exception is for
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Acg= = » in which case shallow sliding is the critical -

failure mechanism.

" If the critical circle is much different from the one
assumed 1in step 1 for the purpose of determining the

average strength, steps 2 through 8 shou]d be repeated

9. If a e]ope'.EOhteihs mofe‘thah one soil Teyer, it may ber
necessary to’calee]ate the faetor of»satety fok‘circ]es
at more than one depth. The following criteria can be
used to determine which possibilities should be examined.
- If a soil layer is weaker than the ]ayerhabove,,the :
critical circle will extend into the Tower layer, and
either a toe circle or a deep circ]e within this layer
will be critical. | .

- If a soil layer is stronger than the ]ayer above, the |
critical circle may or.may‘not'eXtend inte the lower
layer, depending on the relative strengths of the two

layers. Both possibilities should be examined.

3.4.3 Log Spiral Slope Stability Charts

The Log.Spiral Analysis procedure provides a convenient means
of calculating values of the stability number(ch) for homogenebus
s]oees, because for'all values of ¢ the procedure fully satisfies all
conditions of equilibrium independently of any assumptions kegarding
the normal stress distribution along the shear surtace. The stebi]ity
numbers given by wright'(l969) for the critical log spiral shear
surfaces passing through the toe of the slope are shown by the chart

in Fig.3.9.

44
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. For relatively flat slopes having low values of the dimensionless
' ~ YHtan ¢ :
parameter, Ac¢,-, _—

which is defined By Janbu in the previous
section a more critical spiral méy}be found which}ihterseCts the surface
somewhat beyond the toe of the slope. The stabi]fty numbers for these ,
most critical surfaceé are tabu]ated in Tab]e'3:] together with the values
calculated for the critical toe spirals as givén by Nright (1969). From}
this table it may be noted that even for siopes as-flat as 5:1 and for
values of Ac¢ }35‘]°W as 1 the difference in the stability numbers -for

these two surfaces is less than 1-1/2 %. For higher values of Acq and

| | ¢
steeper slopes the most critical spiral passes through the toe and the

difference in stability numbers becomes zero.

If Ac¢ is zero it can be theorética]]y shown that the'critiﬁa]
shear sukface for slopes flatter than 53°(=0.75:1) will extend infintely
deep and have a stability number of 5.53 as indicated by the dashed line
in Fig.3.9. However, the critical shear surface usually will Be prevented
from extending infinitely déep by thé presence of some harder 1ayer; and
thus the appropriate stability number will lie somewhere between the

values for an.infinitely deep surface and one passing through the toe.

Although it was assumed that a]i critical toe spiralérrepresent-
ed by the chart in Fig.3.9. could extend as deeply as népessary, in
many instances they wi]i be preveniéd from doing S0 by the presence of
a firmer soil layer at relatively shallow depth. 1f the spirals cannot
extend below the tae elevation, as representative of a slope on a rigid
base, the stability numbers may‘be considerably higher. This is analyzed
by Wright and illustrated in Fig.3.10. It is shown by Wright that for
relatively flat slopes having low values of Ac¢the critical surfaces
intersect the slope above the,toe; However, for steeper slope inclina-

tions and'higher values of A, , the critical spirals pass through the
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TABLE 3.1 Stability Numbers(N.f) for Most Critical and Toe Log,Spirals

:1

Slope: Vertical 1.1 2:1 3:1 5:1
Ac¢ Toe Crit, Toe Crit. Toe Crit. Toe Crit. Toe Crit. |Toe. ‘Crit.
4,74 | 4.74 | 8.1 8.1 | 10.3 |10.2 | 12.0 |11.9 | 13.6 | 13.4 | 15.0 | 14.8
5.50 | 5.50 [10.0. | 10.0 |13.4 (3.4 | 16.3 [16.3 | 19.1 | 18.9 | 21.7 | 21.5
4 6.77 6.77 13.3 13.3 18.9‘ 19.0 24.1 24.1 29.1 29.1 33. 33.9
6‘ 7.83 7.83 116.3 16.3 24,2 24,2 31.5 31.5 -] 38.6 38.6 45. 45.5
8 8.76 | 8.76 |19.2 | 19.2 [29.1 [29.2 38.6 [38.7 | 47.9 | 47.9 | s6. 56.9
10 9,61 9:61 22.0 22.0 34.0 34.1 45.6 45.6 56.9 56.9 ' 68.( 68.0
15 11.45 |11.45 28.6 28.6 45.8 45;8 62.6 62.6 79.1 79.1 95. 95.4
20 13.03 {13.03 34.9 34.9 57.2 57.2 79.2 79.2 101 101 122.3 . 122
30 115.72 [15.72 |47.0 |47.0 [79.5 |[79.6 |111.8 [l11.9 | 144 | 144 (175, 175
50 - - 70.2 70.2 [123.0 123.2 176 176 228 A228 280 280
100 - - 25.6 125.6 - - - - - 435 537 -

IAY
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toe of the slope, and thus, stability numbers for»slopés on a rigid
base, which are given by the chart in Fig.3.11,. correspond exactly to

the stability numbers'given in Fig.3.9 for éritic51 toe.circles.

Steps for use of the charts:
1. The slope ratio, cot B, is célculated

2. The dimensionless parameter Ao is obtained from the

v ¢
following equation.
YHtan¢ : ' .
>\c¢ = —c_—— ) (3.]2)

where : :
y= unit weight of the fill

H=slope height
¢=internal friction-angle

c=cohesion intercept

3. Using the chart in Fig.3.9, the value of the stébi]ity
number is determined for the critical log spiral shear

surfaces péssing through the toe of the slope.

4. The factor of safety is calculated, using the formula

c

F=ch

...(3.13)
YH -

3.5 SLOPE STABILITY CHARTS FOR INFINITE SLOPES

. Two types of conditions can be analyzed}accurate]y using the
charts shown in Fig.3.12, which are based on infinite slope analyses

and presentéd by Duncan and Buchignani (1975). These conditions are:

1. Slopes in cohesionless materials, where the critical



failure mechanism is shallow sliding oﬁ surface raveT]ing.

. Slopes in residual soils, where a relatively thin Tayer of

soil overlies firmer soil or rock, and the critical failure

mechanism is sliding along a plane parallel to the slope,

at the top of the firm layer. -

Steps for use of the charts for effettive,stfess analyses:

in which

in which

u

1. Determine the,pofe\pressure ratio ry, which'is defined by

the formula
. | (3.14)
r =  ees .
= pore-pressufe (F/L% , forcé/lengthé)r

y= total unit weight of soil (F/L3)

H

depth corresponding to pore'pressure, u (L) -

For an existing slope, the pore pressure'can be determined

from field measurements, using piezometers installed at the

‘depth of sliding.

For seepage parallel to the slope, which is a frequently’
encountered condition, the value of r, can be calculeted

using the following formula:

R R .. (3.15)

u T Y -

X = distance from the depth of sliding to the surface of
seepage, measured nohna] to the surface.df the slope(L)

T = distance from the depth of sfiding to the surface of
the slope, heasured_norma] to the surface of the slope
(L)

Y,= unit weight of water (F/L?)

- 51



total unit weight of soil (F/L3)

=
] "

slope angle

- For seepage emerging from thevslope, which is more critical
than seepage parallel to the slope, the value of r, can be
calculated using the following formula |

Y A TR st
r = Y : :  ve. (3.16)
Y 1 +_tanB tanb '

in which 6= angle of seepage measured from the horizontal d1rect1on,

and the other factors are as def1ned preV1ous1y

2. Determine the values of the dimensionless parameters A

and B from the.charts at the bottom-of Fig.3.12.

3. Calculate the factor of safety, F, using the formula

tang’ c’

F=A + B o _ ... (3.17)
tanf YH ’ : ‘

in whichj ¢'=angle of internal fr1ct1on in terms of effect1ve stress
- ¢'=cohesion 1ntercept in terms of effect1ve (F/Lz)
B =slope angle
H =depth of s1iding mass meésured vertically (L)

and the other factors are as defined previously.

Steps for use of charts for total stress analyses:

1. Determine the value of B from the chart in the lower right

corner of Fig.3.12.

2. Calculate the factor of safety, F, using the formu]a

tand c -
" Fz—————+B
tanpf yH

. (3.18)
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| Steps:

Parameler A

(@ Determine r, from measured

53

~7 Surface of
‘ . seepage

{ .

y * total unit weight of soil Seépoqe porallél to slope
*unit weight of water SRR Y. S L o4

‘7w 9 U T y B

[ N 1
- C'szohesion '"'efcep’}Effective
Stress

¢ = friction angle
[!]

fy-* pOre pressure ratio ® o '

U ® pore pressure of depth H

pore pressures or formulas Seepo)?e emerging from siope
. 8 ‘ !
ot nqht. ’ ' fu® -;L | +tanf tond
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charts below , )
® cColculate Fs ale0d" | 5 C
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FIG.3.12 Stability Charts for Infinite Slopes

(after Duncan and Buchignani, 1975)
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in which = ¢= angle of internal friction in tefms of total stress

.¢= cohesion intercept in terms of total stress (F/L*)

and the other factorsare as definéd preVious]y.

3.6 STABILITY CHARTS FOR ANALYSES WITH PORE PRESSURES

In this section Bishop's and Morgéhstern's Procedure (1960),

Janbu's Approximate Procedure(1967) and wright's Chart (1969) are

discussed.

3.6.1 Bishop and Morgenstern's Procedure

.'Bishop and Morgenstern‘(1960) have shown that the presenta-
tion of stability charts for analyses with pore pressures is_considérab]y
simplified by the observed linear relationship between the féctpr‘of
‘saféty and the value of the pore pressure coefficient, r. Thiéiinearity~
'apparently exists in all procedures of s]opé anélysis-including the
Modified Bishop solution. As illustrated in Fig.3.13, by Wright (1969),
which shows the relationships between stability numbers and the value
of r, for the Ordinary Method of Slices, Lowe and Karafiath, Spencer,
and Modified Bishop procedures, the'only exception to linearity occurs
for high values of ry and steep slopes analyzed by the Ofdinary Method
of Slices procedure. The deviation from a sfraight‘line fs'the,result
of setting negativé normal stresses éﬁua]'tO‘zero,'and it may be noted
that such a modificétion tends to partially offset the underestimate in

stability which occurs by using the Ordinary Method of Slices.

The stability charts presented'by_BishopgndMorgenstern
require the determination of the two dimensionless parameters, m and

n are termed the stability coefficients, from which the factor of
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safety is calculated using the relationship,

F=m-nr o ... (3.19)

The values of the stabi]ity coefficients have been plotted
against B,.the cotangent of the slope angle,for ¢' varying between
10%nd 40%in Fig.3.14 to 3.16 with values of c'/YH and D specified
for4each.figure.‘ The bdld 1ines show values of m and n at intérvais
of 10°, whereas the lighter 1ine$indicate the intermediate values that
have been obtained by interpolation. The broken 1lines aferthose of

equal ry, (detoned by r,,)

If one wishes tordetermine the mininum,factor of safety for
sections not located directly on a hard stratum with specified values
of c'/YH,'B, ¢', and rys one enters the appropriate graph for the given
C'/YH value and for D=1.00, initially (eithér Figs.3.14a or 3.15b).
‘The values of B and ¢' then define a point on the curves 6f n with
which is associated a value of’rue given by the broken 1ines. If that

value is less than‘thé design value, the next depth factor, D=1.25 ,

will give a more critical value of”factor of safety. If one is operating

With c'/yH=0.05 a set of rye Curves is available to determine in a

similar manner whether the level given by D=1.50 is even more critical.

3.6.2 Janbu's ApproXimate Procedure

The stability charts shown in Figs 3.8, 3.9 and 3.11 were
obtained for total stress analyses. (r,=0); however, Janbu‘(1967) has
suggeétéd an approximaté procedure by which these charts may be used-
for ana]jsesvwith pore pressures. By'Janbu's'proceduEe a modified

parameter, , is calculated from the relationship

A(':q)
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Nep ™ Mgl .. (3.20)

The value of Aé¢,is then used to obtain the stability number
from a chart for zero pore pressure, such as that shown in Fig.3.8. |

In determining the stability number from this chart, the value of

co is used as if it were equivalent to Ac¢ . Although Janbu (1967)
-has shovn that for many s]opes this procedure is acceptably accurate,
a s1gn1f1c1ant overest1mate in the factor of safety may result from

the use of this approach for some cases.

To investigate the magnitude of the overestimate in the
factor of safety by Janbu's approach, stability numbers were caﬁcu-.

lated by Wright (1969) for various values of A'f corresponding-to

co
~ zero pore pressure and to a pore pressure coeff1c1ent (r ) equal to 0 6
The results are shown in Fig.3.17 for Lowe and Karaf1ath s analysis
procedure. It may be noted from this figure that the curves represent-
ing the stability numbers correspond%ng to a‘value of ry equal to

0.6 in many cases lie considerably below the curves for no pore
pressures. For example, if an analysis was made, by Janbu's approach
for values of 'A%¢ equal to 20 and r, equal to 0.6, the stability .

. Number would be represented by the solid line in the upper part of
Fig.3.17, corresponding to zero pore pressure stability numbers. ,
However, for all but very flat slopes, the correct stabi]ity number,

indicated by the dashed line in this figure, would be considerab]y

Tower.
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3.6.3 Wright's Chart

An additional simplification to the Stabi]ity charts breéented
by Bishop and Morgenstern,may be achiéved by making use of the 1inear
relationship betweeq the féctor of safety, and ru‘using Lowe and
Karafiathfs (1960) procedure. Such a'simpTified_chart‘developed by
Wright (1969) is illustrated in Fig.3.1s.

Steps for use of the chart:

1. First, for a given slope rati0~and xc$ value the sfabi]ity

numbers corresponding. to va]ues.bf r, equal to zero and

u
1.0 are determined from the left and right sections of the -

chart respectively as shown by the dashed lines in Fig.3.18

2. Next,‘a straight line is drawn on the Centér portion of the
chart connecting the values of the_stabi]ity numbers

corresponding to r, equal to 0 and 1.0.

| 3. The value of N.¢ corresponding to the desired ry value may
then be found as indicated by the arrows on the center

portion of the chart.

The calculation of the factor of safety from such a chart
may be illustrated by the following example for a S]ope of 2.5:1, a
value of Ac¢ equal #b 20, and a vgjuénof ru equa1 tO'O.AT Fdrrthis ekémp]e
the stability number is equal to 43.
The prepération‘of sfabi]ity charts. such as shown in
Fig.3.18 provides a conQenient’means of'graphica11y determining the

stability number for analyses with pore pressures.
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3.7 SUMMARY

Using slope sfabi]ity'charts, the fector of safety for a slope
can be calculated within on accuracy of 15% in most cases. Thus, when
the available data on site conditions and soil strengths are not extenﬁve s
“calculations using s1ope stab111ty charts prov1de suff1c1ent accuracy for
des1gn S1ope stab111ty charts are also veny usefu] for pre11m1nary ,
design calculations, to compare a]ternat1ves which can be examined more
thoroughly subsequent1y usiné detailed ana]ysfs procedures.~Chart su1u-
tions also provide a rapid means of checking the results of detai1ed

analyses.

| A fufthereuse for slope stabiiity ehants is to beek-ca1cuiate

strength‘va1ues for fai]ed:slopes to aid in planning remedial measures.
ThlS can be done by assuming a factor of safety of unity for the cond1-.
tions at failure and solving for the unknown shear strength. S1nce so11
strength usually 1nvo1ves both cohesion and fr1ct1on there is no
unique value of cohes1on (c) and ang]e of internal fr1ct1on (¢)wh1ch
“wWill give a factor of safety equa] to un1ty, therefore, severa] pairs of

values should be calculated and Judgment used to select the most
| reasonable values. If the material in the«s1ide_zone is clayﬂand'the B
slide occurred'undenkund}ained,epnditions,be unique sp]ution:fer.shearf.
strength can be obtained by assuming ¢=0 and back Calculating.a value

‘of cohesion.
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CHAPTER 4
" MECHANICS OF STABILITY ANALYSIS OF FILLS ON SOFT
'CLAY FOUNDATIONS

4.1 INTRODUCTION

f-Many different methods of slope stability analysis have been |

developed based on the mechanics of 1imiting equilibrium. In most of
these methods, the soil massvis divided into a number of verticalslices.
To be in complete equilibrium, the forces acting on each slice mﬁstsatisfy
three conditions of equilibrium, namely: | | -

(1) moment equi]ibfium

(2) horizonta] force equi]ibridm

(3) vertical force equi]ibrium
In this type of analysis the factor of safety with regard to the s]ppe
sfabi]ity is estimated by'eXamining¢ﬁhe c6ndi£ions'df éqﬁf]ibrium‘whén
incipient failure is postulated. a]ong a'predefinéd fai]uré plane, and
then comparing the strength necessar} fo maintain equilibrium with the
avaijlable strength‘of the soil. A1l limit equi]ibrium problems are
statically indeterminate and, since the stressfstfain relationship
along the aséumed failure surface is not known, it‘is necessary to make
enough assumptions so that a solution using only the equations of equi~
librium is possible. The number and type of assumptions that are made

leads to the major difference in the various 1imit equilibrium methods
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of analysis.

In thié chapter the proéedures of s]ices“hhich are'Ordinary
Method of slices, Bishop's Procedure, Bishop's Modified proCedUre,
Spencer's procedure, Morgenstern and Price's procedure,'uedge procedure,-
Janbu's Generalized Procedure of Slices,'Lowé and Kérafiath's procedure

~ are discussed.
4.2 NUMERICAL FORMULATION OF SLICE EQUILIBRIUM

A number of numerical procedures of .stability analysis, which
are very similar to the graphica1‘technfques, have been developed.
Because of their increased simplicity and adaptability to computer
‘so]utioh, these numerical prdcedhres have gained a wider -acceptance
than the graphical teChnidues..For the purpose of examining these
various numerical solutions it i§ convenient to cqnsider fhe three
equations of equilibrium for an individua1 slice such'hS!thatJShOWn,in

Fig.4.1. Thgse equations may be expressed as:

a) Vertical Force Equilibrium :

o 7 R . V‘ = | e s 0 4 L] .l
W o+ (,)\n+1 - Xn) + Ss‘ma + Ncosa. 0 ( )

b) Horizontal Force Equilibrium :

(E - En) + Scoso - Nsina = 0 ‘ AN ('472)

n+l
and  c) Moment Equilibrium about-Point M :

- X ) —5—+ B Ay, te (43)

Xn Ax + (Xn+1
“(Bpeq - B+ 8y - — ) -

+ (Nbg) = 0
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FIG.4.1 Forces and Locations Involved in the Equilibrium

" of an Individual Slice
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For simplicity in deﬁiving Eq.4.3 the weight force has been
assumed to act at the’center-oftheslice with fhe normal force being |
‘ offset a distanée, Ag, along the base. In addit{on to fhese three
equations of equi]ibrium it is sometimes convenient to émp]oy an
~alternate pair of force eqdi]ibrium equations for a seéond get of
orthogona] axes. By resolving forces in the d1rect1ons norma] and par-
a]]e] to the base of each slice the fo]low1ng equat1ons of force equi-

librium can be wr1tten

a) Equilibrium Normal to Base of Slice :

N = Weosa - (X

nel " Xn)cosa.} (En-l - En)sina | R (4-4)

b) Equilibrium Parallel to Base of Slice :

S = -i(En_l - E Jeosa - (X ; - X )sina -'r'l\lsma"-. .o (4.5»)

Satisfaction of any two of these force equilibrium equations
~as well as the moment equilibrium equation for every slice is a necessary
and sﬁfficient condition for complete equi]ibrium. In the absencevof 3
any external loads on the slope the boundary. conditions which the solu-

fion to these three seté of equations must satisfy may be expressed as:

X - X)) =0 . (4.6)

Z(En-l - En) =0 - (47

e ZM‘,.z . ) (4,8)
n

An a]ternéte way of stating- these same requirements is that
the side forces and moments on the extreme ends of the shear surface

are zero. In other words,



Cxo=x o o R ee (4.9)

Q n )
E, = E, S C e (4270)
Mq =M | o oo (41)

For this reason the unknown forces acting on the sides of

the slices are not n+1 corresponding to the total number of sides but

rather are n-1 corresponding to the number of boundaries between slices.

“A11 procedures of slices assume that S and N are related. by
the Mohr-Coulomb strength criterion and a constant factor of safety
expressed as,

"1

{:c' Al + (N - uAl) tang' ... (4.12)
F o |

By employing this expression for the shear force (S) on the
base of each slice, this force is reduced from anAindependent'uﬁkonwn

to a dependent quantity defined in terms of the unkonwns F and N.-

It is interesting to note the‘simi]grity‘between Eq.4.4 and
the expression'for the normal forces which is employed in the Ordinary
Method of Slices. Bishop(1955) has shown that these two expressions
involving the normal .forces are identical if the resultant ofbal] side
forces acts parallel to thé base of each slice. rThus, the Ordinary
Method of Slices assumption of no interslice forces is equivé]ent'to
assuming that their resultant is bara]]e] to the base; however, the
magnitude of this resultant cannot be calculated without additionally

satisfying moment equilibrium.




4.3 SOLUTIONS OF SLICE EQUILIBRIUM EQUATLONS

| In order to ach1eve statical determinancy the 5n-2 unknowns
whxch are shown in Tab]e 4 1 must be reduced to 3n by mak1ng 2n-2
assumptions. The most commonly emp1oyed assumption is that the loca-
tion of the normal forces on the base of éach slice is known. This
force is usually assumed to be located at the centek of the base or
the point at which the weight force intersects the base. However,
evén with this assumption n-2‘assumptions still must be made beforé
statical determinancy is achieved, The hature of these additibna]
aésumptions varies‘from procedure to procedure and for this reason it
is appropriate to consider the specific techniques for solution on an

individual basis.

4.4 METHOD OF SLICES

With this method the trial failure arc is divided into a
reasonable number of slices, as shown in Fig.4.2. The overturning
moment is determined by summing the moment of the weight of each
slice about the trial center 0. Note that slices to the left of 0

have a negative moment.

The overturning moment is

OM = Ewnanb=_r2wnsinan : ....(4;]3)

The side fdrcesion each slice are not included in‘the moment
equations, since, when all slices are considered, the net moment of the
side forces will be zero. The moment réquired for equilibrium is due
to the tangential forcé T = S)/F on the base of each slice. The force

8, is the sum of the cohesive and frictional strength-at the base of -

each slice. For stability



TABLE 4.1 Equations and Unknowns Associated with Complete

Slice Equilibrium

Equations
n Moment Equilibrium EqUations for Each Slice
n Vertical Force EqUi]ibridm Equations for
- Each Slice
n Horizontal Force Equilibrium Equations for
Each Slice ’
3n Total Equations
Unknowns
1 Factor of Safety
n- Normal Forces on the Base of Each Slice(N)
n Locations of the Normal Forces on the
Base of Each Slice '
n-1 - Interslice Normal n-1 Resultant Inter-
forces (E) slice forces (Z)
or
n-1 Intersiice Shear n-1  Inclinations of
Forces (X) Resultant Inter-
: slice forces (B)
n-1 Locations of Interslice Forces (yt) - (Liné’of

“Thrust)

5n-2 Total Unknowns
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FIG.4.2 Method of Sliges
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Sn rl (cn1n+Pntan¢n)

rIN sino = rIT = 1l = - .. (4.14)
. F F
‘and the safety factor F is
RM A‘Z('c1+Ptan¢) ‘
F = - nn n_'n ... (4.15)
OM - LW _sino )
n n

The safety factor is defined as the ratio of resisting moment
to overturning moment. When the ana]ys1s is based on tota] stress

parameters c and ¢, the equation forl=1s Eq 4.15.

If effect1ve stresses c¢' and ¢' are used,the normal force

is reduced by the water force U=un1 where un is the average pore |

pressure on the bottom of the slice. The factor of safety based on

effective stress parameters’is Eq.4.16.

F = o = z:l:cnln+(pn"unln)tmlq)n] 3 (415)
oM ' ansinozn ‘ o

Although the side forceéwcance] out pf fhe overall moment
equation, they do influence the magnitude of the normal reaction Pn
on the base of the slice and thus the frictional shear strength at the

base of the slice.

The side forces are actually indeterminate but can be
'approximated in vapious ways. Johnson (1975) has presented a summary
of methods that consider side forces. Two commonly used methods of
analysis, the Ordinary Method of Slices and Bishop's Simplified

Method, are described in the f0110w1ng sections.
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4.5 THE ORDINARY METHOD OF SLICES

The Ordinary Method of Slices can be used to'ealcu1ate fhe
factor of safety for a circular slip,surfacevin.soils whoseAstrengths
are governed by any of the following equations:

s=c($=0) |
»s=ctanq>
or s=c +o tang
in which s =shear strength

o =normal stress on the failure plane

c==¢ohesion intercept
o ¢ =friction ahgle

To be ab]e to determ1ne the strengths of soils w1th ¢>0,;he>ggr@§1

s;ress.on the fa11ure plane must be known. Therefore to analyze the
stability of slopes in suchvsoi]s;vit is necessary to determ1ne the
normal stress on the shear surface ana]yzed.

'Fer anaiysis byrfﬁe 0rdihery>Metﬁod efr511ces, the. mass
above a triel circular slip surface is divided into a number of vertical
slices. The most commonly employed assumptions in the procedures of
slices are associated with the inters]ice forces‘ The basic assumption
in the method can be made with regard to these forces is that they are
zero. Therefore does not influence the normal stress on the base of

the slice.

Each slice was considered to be in equilibrium under three
forces,the weight Wq, the normal reaction Pp=W, cosay,, and the tangential
force Tn=wn sinay. The factor of safety by the Ordinary Method of

Slices may be expressed as
i(Wcosa ~ ul) tan¢ + Zcl

e (4.17.)

IWsino



in which F=factor of safety, c=cohesion ,¢=friction angle, W=slice

we1ght, o= inclination of base of slice, U= pore pressure on base of

slice, and 1=

1enght of base of slice

- The factor of'safety defined by this'equation can be shown

to be exactly the same as the ratio between the shear strength of the

soil and the shear stress required for equilibrium of the slobe.

The factor of safety of a slope is calculated using the following

procedure:

. Select a tria]'é]ip surface.

L™

. Divide the mass bounded by the circular arc into a number

of vertical slices. The slices should be chosen so that
the base of ‘any slice 1ies wholly within a single soil
layer. If there is water outside the slope, it should
be represented by one or more slices, just as if ﬁt was a

soil with weight but no strength.

. Calculate the weight of’each‘vertical slice. When a slice

crosses more than one layer having different unit weights,
the weights within each layer are summed to determine the
fota] weight of the slice. This may be done convénient]y '

using the tabular computation form in Fig.4.3.

. For each slice, determine the length of the base(1), the

angle of inclination of the base (o), the cohesion of the
soil at the base(c), the fricfion angle of the soil at the
base (4), and the pore pressure at the base(i). (If the
analysis is being done with total stresses, use u=0)

Enter these values, along with the weight of each slice,
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Yi =unit weight of loyer i

Layer i{ RN hi 'hi: height of loyer ot center of slice
: ‘ B - - . . )
/:J Wi =partial weight = bh{y;
I W=total weight of slice
Siice | , | |
No. b hl : y'lv ‘ wl ‘ 2wl

"FIG.4.3 Tabular Form for Computing Weights of Slices
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¢ = friction angle
u = pore pressure
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in the tabular computation form shown in Fig.4.4

5.Ca1cu1ate the factor of safety following the procedure

indicated qn the computation form;

6.Repeat steps(]) through(S) for a number of c1rc1es tangent
"~ to the same e1evat1on as the f1rst unt11 the most critical

circle (the one with the 1owest va]ue of F)-tangent~to this

elevation has been located.

- 7. Repeat for other tangent elevations until the overall

critical circle has been located.

4.6 BISHOP'S PROCEDURE

In 1955 Bishop presented a procedure for slope analysis which
sat1sf1es the 3n conditions of static equ111br1um Although Bishop
restricted his formu]at1on to a c1rcu1ar shear surface Nonve111er (1965)‘
has shown that Bishop's approach may also be applied to a surface of .
any shape. In this procedure more genera]]y the "s]1ces“ method is
used, with a simplifying assumption about the effect of the forces

between the slices.

Thesign{f{cancecf this assumption may be exemined by-consider- ’
1ng the equ1]1br1um of the mass of soil (of unit thlckness) bounded by
' the c1rcu]ar arc ABCD, of rad1us R and centre at 0 (F1g 4 5(a)). In the
case where no externa] forces act on the surface of the slope, equi-.
librium must exist between the weight of the soil above ABCD and the

resultant of the total forces acting ABCD.

Let E,, E,,q denote the resultants of the total horizontal
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\FIG.4.5 Forces in the Slices Method



- forces on the sections n and n+] respectively.
xn,xn+l = the vertical shear forcés,_
W = the total weight of the slice of soil,
P = the total normal force acting on its base,
= the shear force acting on its base,

the height‘of the element,

(= = wy
]

= the breadth of the element,

1 = the 1ength;BC,

a = the angle between BC and the horizontal B

x = the horizontal djstance of the slice from the

centre of rotation

The factor of safety (F)vis defined as the ratio of the
available shear strength of the soil tb that required to maintain
equi]ibkium; The shear strength mobilized is,_therefdre, equal to s,
where: | o | o

s = -L-{c' + (cn - u) tanq)'] . ... (4.18)
F v
| where c'= cohesion in terms of}effectiQe stress,
¢'= angle of shearing resistance in terms of
effective sﬁress, ‘

cn= total normal stress,

u = pore pressure
The total normal stress is cn,where

eee (8.19)

Hence, from Equation (4;18), the magnitude of the shear
strength mobilized to satisfy the conditions of limiting equilibrium

is s where:
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s = {c‘ + ( - u)tanq)'} ' ... (4.20)

Bishop assumed that the normal and weight forces act through

‘a point on thevcenter of the base of each slice. The shear force S
acting on the base of the slice is equé] to sl andiihus,equating the
moment about O of the weight of soil within ABCD with the moment of

the external forces acting on the s]idiﬁg surface, we obtéin: 
TWx=ILSR=2%sIR cee (4.21)
It follows, therefore, from equation 4.20 that: '

-F = )II:c'l + (P - ul) _tan¢] L e (4.22)

T ZWx

From the equilibrium of the soil in the slice above BC, we

obtain P, by resolving in a direction normal to the slip surface:

P= (W+X -X,) cosa - (E - E,) sine ... (4.23)

The expression for F thus becomes:

R

z [c’l + tand (Wcoéa -ul) + ... (4.24)
Wx R .

Since there are no external forces on the face of the slope,

it follows that:

“tand' {()(n - X ,q) cosa - (E, - E ,;) sino }:l
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X -X )= .. (4.25 a)

n - n+l

[
o

| - -0 3 | 4.25 b
EE - E L) =0 e )

| However,'except in the case where ¢' is constant a]bng the
slip surface and a is also constaﬁt'(i.e, a~p]ahe slip sufface),the
terms in equation (4.24) containfng Xy -and E, do not disapper. A -
simplified form of ana]ysis 'suggested by Krey (1926)iand Terzaghi
(1929) and also presented by May (1936) as a graphical method, implies

that the sum of these terms

s 1N

. tand {(Xn - n+1) cosa - (E - n+1) 51na}
may be neglected without serious loss in accuraqy[

Putting x = Rsina, the simplified form may be written:

1 1
F = z [ ¢l + tang (W coso- ul)} .o (4.26)

L W sino

In earth dam design the constnuctidnvpore'pressures are often
expreSSed as a function of the total weight of the column of soil

above the point considered, i.e.

b= v >“ ' '“szn
. U\ b | o

where r, is a soil parameter based either on field data or laboratory -

tests.

. In this case,putting 1=bseca, the expression for factor of

safety ean be further simplified to:



_ 1 , )
F = Z[?lv+ tan¢' W (cosa - r seca)| ... (4.28)
£ W sina v i

This expression permits the rapid and direct computation of

‘the value ole which is necessary if sufficient trial circles ake to

be used to locate the most critical surféce. The values of F are,

in general, found to be conservative, and may lead to uneconomical

design. This is especially marked where ConditionS'permit;deep slip |

circles round which the variation in a is large.

To dekive a method‘of'ana1ysié which largely avoids this
error it is conven1ent to return ‘to equation. (4. 22) If we denote
‘the effective normal force (P-ul) by p! (as shown in F1g 4. 5(b)), and
resolve the forces on the slice vertically, then we obta1n on re-

arranging:
' o - ¢ .
o W+ )(n - Xn+1 - 1(u cosa + -—F-—’sma) . (4.29)
\ . tan¢' sina
F

cosa +

Subst1tut1ng in equat10n (4.22) and putting .1=b.seca and

X = R.sina,ian express1on for the factor of safety is obta1ned

1: ’ seco ) -I
F= ?1-7—0‘—2Bemam(wu-ruh(xn-xml))J1 Tand’ Tana J (4.30)
¥S1n ——— . )
The values of the interslice shear forces_( n+1) in th1s
equation must also satisfy the boundary condition:"_ '
S X -%X . )=0 .. (4.253)

n n+l
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A solution to Eq.(4.30), however, is not necessariTy a solu-
tlon sat1sf1y1ng a]] cond1t1ons of equ1]1br1um. In order to assure.
sat1sfact1on of comp]ete equ111br1um it 1s necessary, 1n add1t1on, to
satisfy force equ111br1um ina d1rect10n other than vert1ca1 For th1s
purpose B1shop chose to consider equilibrium in a direction parallel

to the base of each slice which may‘be expressed in Eq.4.31 as,

n " n+1) = S seco - ( W+ X - Xn+1) tana ...‘(4s31)

(E

Summing this equation for all slices and introducing the
boundary condition that the sum of the E forces for all slices must be
zero yields,

£ Sseca - (W+X - Xn+1) tano = 0 L e (4,32)

If the values of the X forces satisfy Eq 4,32, then the
1mp]1ed E forces will sat1sfy the1r boundary cond1t1on and the system W111
be in hor1zonta1 as well as vert1ca1 equ111br1um. If Eq 4, 32 is not
satisfied a new set of values of X must be assumed until one is found

which-.satisfies both Eqs. 4.30 and 4.32.

Even though these two equations may be satisfied, their |
‘particular solution may not be resonable. So far the n moment equi-
1ibrium equatfonS‘for individual slices have not been considered;
however, since the overall moment equi]ibrium equation which has been
'emp1oyed makes one of these equations redundant, only n-1 independent
equations remain to be satisfied. From these equations the n-1 un-.
known coordinates for the line of thrust (y¢), whicn define the loca-

_tions or the side forces, may be calculated. Even though it is not |
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‘necessary to solve these remaining equations to find a solution for the
factor of safety which satisfies all conditions of equilibrium, the
reasonableness of the solution may be judged from the poéition of the
line of thrust. If an unreasonable Tine of thrust is calculated from
these equations, 1t is necessary to find .another of the infinite number

of poss1b1e solutions to Eqs.4.30 and 4.32 by assuming new sets of

values for X.

4.7 BISHOP'S MODIFIED PROCEDURE -

The simplest solution satisfying Eq.4.31 fs obtainéd by
assuming that there are no interslice shear forces (£=0). For this
\assumption the boundary condition (Eq.4.25a) is satisfied and Eq.4.30
may be solved for the single unknown factor of safety. Alhough the
normal forces (N) need not be evaTuaied to cé]cu]ate'the'factor of
safety, they may be determined from Eqs.4.1.and 4.12 . The assumption
that there are no interslice shear forces was made by Bishop to simplify |
the so]ut1on and is common]y referred to as the Modified B1shopProcedure
The balance of equations and unknowns which are involved in the solution

by this procedure are:

Equations
1 Overall moment equilibrium equation
n Vertical force equilibrium equations for individual

slices

n+] Total equations




Unknowns.
1 | Factor of Safety
n Normal forces on the base of each slice
n+1 , Total unknowns

Seldom will the assumpt{oh;thet X=Q: eyer result inﬁahebldtioh<_
satisfying complete equilibrium and having a reasonable 1line of thrust.
Therefore, the solutions satiéfyihg complete equilibrium will generally

have non-zero values for X and give a sdmewhat different value for the
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factor of safety than the value calculated by sthop's Modified Procedure.

4.8 SPENCER'S PROCEDURE

In app]ication, the rigorous analysis propoéed by BiSﬁdp'was
extremely lengthy and , as the intention was to examine a large number
of problems extending over a wide range of soil properties in embank-
ments'of various slopes, it was necessary to derive an alternative meth-
od which would satisfy both force and mdment'equi]ibrium conditions and

which would take the ihter-s]ice forcesinto account.

. Spencer (1967) has presented a procedure for sat1sfy1ng
comp1ete s]1ce equilibrium for a c1rcu1ar shear surface Assum1ng that
the normal forces were 1ocated at the center of the base of each slice,
Spencer ach1eved statical determ1nancy w1th the additional assumption

.that all s1de forces (z) are para11e1 Although the so]utlon presented
by Spencer was only d1rect1y applicable to a c1rcu1ar shear surface R

his procedure may be readily extended to slip surfaces of a general

shape.



Figure 4.6(a) shows a section through an embankment of

height H and slope B. The slope of the embankment is 1n the form cotg:1.
In the same figure, a circular slip surface and a typ1ca1 s11ce of mean
height h and width b are shown, An enlarged sketch of the slice with
'the forces acting upon it is given in Fig.4.6(b). The five forces can
be described as fo]]ons: o |
| | (a) the weight (w); v _
(b) the tote] reaction (P)Jnohma] to the base of‘the S]ice§

this force will have two components:

(i) the force (P') due to the effect1ve or inter-granular

stress,

(i1)the force (ubseca) due to the pore pressure (u);
thus
P =P+ ub secq ' - oo (4.33)

: : S v
(c) the mobilized shear force (Sp= — )» where
’ F

S=c'bseca + P'tan ¢', i.e.

g = Cb oy s ptand oo (4.38)
m F F o :

(d) the inter-slice forces (z, ) and (Z )' for'equi1ibrium,
the resultant (Q) of these two forces must pass through

the po1nt of 1ntersect1on of the three other forces.

If the presence of the intereslite forces is ignored, the
three remaining ferces are, of course, concurrent and in this case
both cond1t1ons of equilibrium can be satisfied e1ther by reso]v1ng ‘
or by taking moments. In either case the foIIOW1ng expression is

obtained for the factor of safety of the embankment:
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VFIG.4.6 Dimensions of Slip Surface and Forces

on a Slice
v



89

1
z[w sina] '

F =

Tor

The value for F given by th]S expre551on is apprec1ab]y 1ess than

that obtained when the effect of the inter-slice forces is taken into

account

Returning to the consideration ef the inter-slice forces,
these forces in a fully rigorous so]ution would be separated into two |
components 1ike force P. One of these components would Se defivedbfrbm
effective stress and the other from pore pressure. In this analysis;

for the sake of simplicity, the total force is used.

_ By resolving normal.and‘paralle] to the base of the slice
the five forces shown in Figs.4.6(b) and 4.6(c), the following expression

is obtained for the resultant (Q) of the two inter-slice forces:

c;) secq + _tand (Wcosa - ubseca) - Wsina

Q.:’ — i e (4.36)

cos(d - 8) [:1 + ta2¢ -tan(a - 6)]

In this expression, u is the mean pofe"bbessurehen'the base
of the slice of weight W. If the soil is assumed‘to'be uniform and of
density vy, the weight of a slice of mean height h and width b can be
written: - N o ' ' o

W= th ’ . coe (4-37)
Fubthermore, asSuming a homogeneous pore-pressure distribuf
tion as proposed by Bishop and Morgenstern (1960), the mean pore-

pressure on the base of the slice can be written:

werah | | cer (4.38

'Z[ébseca + tand ( WcoSa - ubseca ):l (4.35)
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where ry is a pore-pressure coefficient.

Mak1ng these assumptions, equation 4 39 can now be transposed

and re-wr1tten in a dimensionless form as fol]ows

¢ , 1 h tany .. 1

_— - ' h . :
Fy 2 H F (1‘ru+c°520)_- - T SinZa

cosacos (a-6) 1+ -Egﬁtan (a-0) " ', (4.39)
Now if the ekterna] forces on the embankment are in equi-
1ibrium, the vectorial sum of the interstice forces must be zeko. In
other words, the sum of the hor1zonta1 components of the inter-slice
forces must be zero and the sum of the1r vertical components must
also be zero. |

(4 40a)

1] -
o

£ Qcosb

(4 40b)

]
o

L Qsind

Furthermore, if the sum of -the moments of the externa1 forces
about the centre of rotation is zero, the_sum of the'moments of the inter-

slice forces about the centre of;rotation’mbst’a1so be zero:

z [QRcos(a - B)]= 0
~ And since the s1ip surface is assumed to be circular, the radius of
curvature (R) is constant and:

. [Qcos(a e)]= 0 cee (8.81)

In a given problem, there are thus three equations to be
so]ved:'two in respect of forces (4.40a, 4.40b) and one in respect of
moments (4.41). Values of F and of 9 must be found wh1ch sat1sfy a]]
three equat1ons and it must be noted that a]though s for a g1ven s11ce,

the value of o will be the same in each equation, the inter-slice forces
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will not necessarily be paraliel throughout.

It has been shown by Morgenstern and Price(1965) that, within
]1m1ts the var1at1on in can be assumed arbitrarily. They a]so found,

however, that the range of values obtan1ed for F for different types

of distribution in a was quite small . The ]1m1t1ng factor wh1ch contro]s
the variation 1in 8 is that soil is able to withstand only a small
intensity of tensile stress. - Consequently, the point of app]icatidn

of an inter-slice force must not be far outside the m1dd]e th1rd of the v

vertical boundary on which the force acts

If it can be assumed that the 1nter—s11ce forces are para1le1 A
(i.e. that 6 is constant throughout), equat1ons (4.40a) and (4,40b)_

becomes 1dentica1:
$Q=0 o | o : oo (4.40)

In this case, there are only two équations to solve .(4.40) .

and (4.41), and the solution is therefore greatly simplified.

The result of assuming that the inter-slice forces are
parallel was checked in a few trial cases in which the procedure was

as follows.

1. A circular slip surface was chosen arhitrarily, the area
inside it divided into vertical Strips 0f_equa1 width
and the mean height (h)and base slope (o) of each slice

determined graphica]]y.'

2. Several values of 6 were chosen and , fdh each, the value
of F was found which would satisfy both equatiohs (4.40)

and (4.41). The values of F obtained using the force
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~equilibrium equation (4.40) are designated F¢ ,and those
obtained‘usingvthe moment equilibrium equation (4.41) as
F, - The value of the factor of safety obtained using
" the moment equation and taking 6 as zero is designated

’Fmo .

3.A curve was then p]otted showung the re]atlonsh1p between
e and 6 and on the same graph, a second curve was p]otted
show1ng the re]atlonsh1p between F and e The type of '
graph resulting is shown 1h Fig.4.7. The 1nterseetion of the
two curves gives the value of the factor of safety (F.) which

satisfies ‘both equations (4. 40) and (4. 41) and the corresponding

slope (85) of the inter-slice forces

4.The values of F; and 61 were- then subst1tuted in equat1on.
(4.39) to obta1n the values of the resu]tants of the 1nter-
slice forces. Hence, working from the f1rst sllce to the -
last, the values of the inter-slice forces themselves were

obtained.

*5,Then, working again fhbm the‘fihét slice to the last, the
| points of action of the interslice forces were found by
taking moments about the middle of the base of each slice
in turn. The positions of the points of action were then

marked on the section of the embankment.

Spencer's procedure of analysis satisfies all conditions of

~ equilibrium and may be used to obtain an unique solution in a re]at1ve1y
stra1ght-forward manner. However, there are two possible’ shortcom1ngs
of this procedure. First, the solution is not readily amenable to hand

calculation and, second, the assumption of parallel interslice forces may
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FIG.4.7 Variation of Fp and Fg with 6
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not a]ways}1ead to the most reasonable solution as judged from the
caicu]ated line of thrust. it is interesting to note that if the solu-
tion for the side fqrcé inclination is zéro (horizontal side forces)
then Spencer's and the Modified Bishop'procedures are identical and

the Modified Bishop solution will be one satisfying complete equi- |

Tibrium.

4.9 JANBU'S:GENERALIZEDVPROCEDURE OF SLICES

‘ An'expression for the factor of safety based on the require-
ments of force equi]ibrium for‘eaéh slice may be obtained by using the
. following equations of vertical force equilibrum and force equilibrium

parallel to the base of each's]ice as shown below.

5= -%55{c‘Ax . [\v SCHIER SRRt AX] tan¢} Ky oo (4:42)

in which, _
‘ k, = sect
1+ _tano tang
F
and

X[W - (Xn+1 - Xn)]tana -.ZSseQQEQO eos (4.43)

As pfevious]y explained the horizont@] force equilibrium boundary condi-
tion | [z (En-En+1)=0] is satisfied by the formulation of Eq.4.43.

These two equations of force equilibrium were combined by Janbu (1955)
to obtain the fo]]owing expressiqn fqr'the_fag;orng safety:

\Z[dAx+Dv-(Xn+1-Xn)-uA%]tanﬁ]seca ka | (4.44)

X W-(Xn+1-xn) tana
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‘This equation satisfies all conditions of force equilibrium providing
thét the values of the forces, X, satisfy the boundary condition:

_'x);oi L (4.8)

2(xn+l n

Janbu (1957,1968) has shoWn that values of the vertical side
for¢es for use in force equilibrium so]utidhs'may be obtained by system-
atic use of the reduiréments of moment equi]ibrium. These vertical
forces may be expreésed by the moment equation as:

S . s |

dx - t dx

X = -E

Thus, if the’va]ués of yt are assumed, the forces, X, are
given by Eq.4.45 aS a . function of E alone. However, although sétis-
faction of either this differential momentvequétion*on the moment
equation for a finite s1ice (Eq.4.3) 1is desirable, fhis cannotJBe QOne
in a straight forward manner'ifAthe n-]ﬂva1Ues of y{ are assumed. The
difficulty in using the above procedure may be readiiy seen from the
equations and unknowns given in Table 4;1. If the n locations of
the normal forcé on the base of each slice and the n-1 coordinates of

the line of thrust are assumed, the number of unknowns is-feduced to

3n-1. Thus, the system of 3n equations is overdetermined by one known.

- Statical determinancy for. fixed normal force, Tocations may
only be achieved by assuming a ré]ationship for the line of thrust

such as,

_ Caly ov) .. (6.86
hy = yemy = alyg-y) e (488)
n which a s 3 single unknown describing the fraction of the height
above the shear sur%ace at which the 1ine of thrust acts, and y¢, ¥

and ¥s are the y coordinates of the line of thrust,'shear surface, .and



~ slope surface respectively.

'Janbu (]957 1968) has presented a/more TOgical procedure for
us1ng the conditions of moment equ111br1um to est]mate values of the
vertical side force, X. A so]ut1on by Janbu's Genera11zed Procedure
~ of Slices (GPS) is begun byvassnmfng'thenvalues of X in Eq.4.44.These
values are commonly assumed zero for the first step of the ana]ys1s
‘Once the initial factor of safety (F ) has been ca]cu]ated Eqgs.4. 42
'and 4.31 are used to evaluate the magnitudes of the horizontal side
forces(é) using an assumed line of thrust. From‘these calculated values
of E a numerical or graphical approx1mat1on of EE_ is made for each
1nters]1ce boundary and new va]ues of X wh1ch argxnot equa] to zero,-
‘are ca]cu]ated using Eq.4.45. Th]S procedure is then repeated unt11 the
change in the calcuylated value of F is within the desired'accuracy on

consecutive iterations

Occasional convergence difficu]ties may arise in the applica-
tion of Janbu's GPS procedure-to some prob]emsf Because the. force equi-
1tbriumlequation (Eq.4.44) and differentia],mpﬁent equilibrium eduation
(Eq.4.45),are treated. independently at each‘step in the analysis it is
not possible to prove that the so]ution will converge. However in the
majority of practical cases convergence has been’foundnto occur within
a reasonabTe number of iterations. Janbu'stGeneralized Procedure of
Stices has been included with the fhrce‘equilibrium solutions because
for any caTEu]atedﬁvalues of X it always provides a convergent so]ution
satisfying force equiTibrium. it'has the advantage over other force
,equilibrium procedures .in that moment -equilibrium is a]soasatisfied at

least approximately.
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4.10 WEDGE METHOD.

The Wedge Method can be ysed to calculate the factor of
safety for a noncircular slip surface in soils whose strengths are

governed by any of the following equétions:

s= c(¢="'0)
- s= otand

s= CH 0 £an¢
in which s=shear strength,'c=norma1 stfeﬁs'on the failure plane,
c=}cohesidn intercept, and ¢=friction angle. To be able to determine
~ the strengths of soils with ¢>0 , the normal stress on the failure
plane must be known. Therefore, to analyze the stabi]ity of slopes 1in
: such soils, it is necessary to determine the normal stress on the shear

surface analyzed.

For analysis by the Wedge Method the mass above the:tria]
slip surface is divided by vertical Tines into a number of wedges or’
_s]iées as shown infﬁg.4.8; This method satisfies both horizontal and-
Vertica] force equilibrium. The basic assumption in the Wedge Method

is that the side forces between slices are:horizontal. This assump-
tion_is conservat1Ve, and . the method gives factors of safety which are
Tower than the values éa]cu]ated by more accurate methods. For most
cases the error due to this assumption i; no more than'15%._Greater
accuracy can be achieved.using méthods which satisfy a1] conditions
of equi]ibrium, ;uch as Janbu's Generalized Procedure of Slices
(Janbu, 1973), Spencer's Method (Wright, 1969) or Morgenstern and

Price's Method (Morgenstern and Pricé; 1965)

The Wedge Method is most appropriate for conditions where

the fajlure surface is not likely to be circular. For example, the



, . a8
o embankment shown in Fig.4;8 rests Qh a thin layer of weak clay, and

it is likety thét a considerab]e'portion of the critical féi]ure

| surface will 1ie within this layer. For this type of problem the

wedge mechanism may be more critical than a circular surface.

~The factor of safety ca1cu1ated by'thé'wedge Method is
defined as the ratio between the shear'strength.and;the shear stress
required for equilibrium. The factor of safety is the factor by
which the strength paraméters (c and tén¢) for each soil wdu]d have
to be divided to bring the slope into a state of’bare1y stable equi-
1ibf1um. The factor of saféty should é]ways bé at least as large as

the margin of uncertainty regarding soil strengths.

‘The Wedge Method factor of safety is calculated by trial and
error. A value for F is assumed, and then checked to determine if tﬁe
~assumed value satisfjes equilibrium. The dna]ysis'tan be perfbrmed
either gréphica]ly or numerica]ly.VTheffiYstjthree'stepsiafe-the-same :
‘whether the graphical~or the numerical method is used.

1. Select a trial slip surface.

2. Divide the mass above the slip surface into wedges. The
wedges should be chosen so that the base of ahy wedge lies
whally within a_sing1e soil layer. ‘Three to five wedges are
usually sufficient. {f there is water outéide the slope,
it'sﬁould be represented by a wedge, jﬁst as if it was d

~ so0il with weight but no strength.

3. Calculate the weight of each wedge.' If the top as well as
the bottom of each wedge is a straight line, the weights

can be calculated using the tabular computation form



described preyious]y for the Ordinary Method of Slices.

If the top boundary of a wedgé is a broken line, as for

wedge 2 in Fig.4.8, the weight of the wedge can be calcu-. .

lated by dividing it into two parts.
To sd]ye for the factor of safety graphically, follow
steps(4) through (9) below. | |

.Assume a value for the factor of safety, and calculate

trial values of mobilized cohesion and mobilized friction

angles for each soi] using thé'fol1owing formulas:

: c:_ ’ T

c_ = , , oo (4.47)

" F. S

and ‘ L tan¢
: rtan¢m

..;.'(4.48)
F - '

-~ in which F= assumed value for the factor of safety,
c= cohesion, cp=mobilized cohesion; ¢=Ffriction angTé;;and

¢p= mobilized friction angle.

.Conétruct the force polygon for wedge 1.. An example

is shown in Fig.4.8. Fikst draw the weight vector verti-

cally, to scale. Next, draw the mobilized cohesion vector,

which is equal to the mobi1ized cohesion multiplied by the

length of the base of a slice, and acts pakallel to the

base of the slice. The tail of this vector connects to

the head of the weight vector. ( In the example the cohesion

is zero on thefirstslice.) Then, if the analysis is done

in terms of effective stress, draw the pore pressure vector,

which is equal to the pore pressure on the base of theslice

99

multiplied by the length of the base, and acts perpendicular-

to the base. The tail of this vector connects to thé,head
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of'the cohesion vector. ‘If the anélysis ijs done in terms
of total stresses, as the example ih Fig.4.8, the pore
pressure is taken-as zero, and there is no pore pressure
force 1in any«of the force po]ygons;' Next, lay off the
direction of the resultant of the normal and frictional
forces on the base of.the s]fce.' This resultant acts at
-an angle of ¢y from the‘normal'direction, and the head of
this vector connecté to the tail of the weight vector;kThe
remaining force, which closes the po]ygon,vis the side force
- exerted on wedge 1. by wedge 2. This vector is assumed to
act hofizonta]]y, as discussed previous1y. The position of
the intersection of the resultant of the.normal and fric-.
tional forces with the side force determihes the lengths of
these two vectors, which are unknown until the intersection

point is determined. -

;Construct the force polygon for wedge 2. First draw the
weight vector.vertica]Ty, to scale. Then_draw the side
force exerted on wedge 2 by wedge 1. Note that this is
equal but opposite to the force exerted on wedge 1 by

s wedge 2, and that the Head of thisvvector connects to the
fai] of thé weight vector. Next, draw the mobilized cohesion
vector,yWhich is equal to the mobilized cohesion multiplied
by the length of tﬁe base of the sTice, and acfs paré]]e]

- to the base of the s]ice,kwith its tail connected to the
head of the weight vectdr; Then, if the analysis is done
in terms of effective stresSes, lay off the pore pressure
force, from thé head of the cohesion force, acting perpen-

dicular to.the base of the slice. Next, lay: off the .. -
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v d1rect1on of the resultant of the normal and fr1ct1ona1
forces on the base of the sllce Th1s resu]tant acts at

an ang]e of m from the norma] drect1on and the head of th1s
vector connects to the tail of the vector which represents
the side force exerted on wedge 2 by wedge 1. (In the
example, ¢=0 for the second s]1ce, and there is.therefore

no frictional force. In this:case the vector consistsAof
only the nofma] force and acts normal to the base of the
slice.) The remaining force, which c]oses the polygon, is
the side force exerted on wedge 2 by wedge 3. -This’vector
is assumed to act horiiontefly,? The oosftion of the inter-
section‘of the resultant of the normal and frictional forces
with the side force determines the lengths of these two
vectors; which are unknown until the intersection point is

determined.

.Construct the'force polygons fon the nemaining wedges‘in
sequence, us1ng the same procedures as for wedges 1 and 2.
If the assumed factor of safety is correct the force
polygon for the last wedge w11] c]ose,-w1th.no unbd]anced
force. Howeven, if.the~assumed factortof safefy'is not
correct, an additional force will be requfred to close
the polygon. If the forée requfred to close the polygon
would have to act in the. direction which would make the

slope more stable, the assumed factor of safety is too
high. If the required force would have to act .in the
direction which would make the slope less stable, the

assumed factor of safety is too low. This is true for the

trial solution with F=1.50 in Fig.4.8.
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8. Assume a new factor of safety and repeat steps (4) “

~ through (7). This has been done in Fig. 4.9. Try addi-
tional factors of safety until the unbalanced force on
the last slice is negligibly small éompared to the
magnitudes of the other forces. Then'ﬁhe assumed value
of F is thevqorrect one. for the assumed failure mechanism.
Usually no.more than two trials are needed to determine |
F. By plotting the assumed factor of safety Qagainst
the magnitude of thevunbalanced fofce for the first two
trials, a third trial value of F can ﬁsua]]y be estimated
which will be vefy c]osexfo the correct value, as shown
ih Fig. 4.10. If the value of F determined hy this-pro-‘
cedure dfffers'great1y from both of the’first two trial

values, a third trial may be necessary.

9. Select a new faiiure mechanism and repeat steps (1)
through (8). Try»seVera] different failure mechanisms in

‘order to find the one with the lowest factor of safety.

 To solve for the Wedge Méthod factor of safety numerica]]y,
use the tabular cbmputation form shown 1in Fig.4.11. Steps (1) through
(3), as describedvpreviously, are the same fof the numerical analysis
as for the graphical analysis. Steps (4) through (9) proceed asr

described below.

4.’Fdr-éach wedge, determine the inclination of the base (a),the
length of the base (1), the cohesidﬁ"of the soil-at the.
base(c), the friction ahg]e of the sail at the base (¢), .
and the pore pressure at the base (u). (If the analysis

is being done with total stresses, use u=0.) Enter these
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‘ A
B | © / y=120/113
IO ft ‘ Cs= 0
. | 4’ =' 300
’ .
: . - " 2
) $=0
D c
x /-Normol to A-B
R
'.? = (i)m for F=150
3 '

Resultant of normal
" and sheor forces on A—-8B

Side force batween slices D and @

Trial Solution for
Assumed F=1.50

5.10 k

—Normal forca on B-C

N

Cohesion force on 8-C =150k

ESide force between slices @) ond @
| }  Side force between

" slices and o
: . © ©) . —Unbalanced force on slice @)
(very small) . :

. - shows assumed F is not correct

w,s1.22

—Normal force on D-E

Cohesion force on D-E = .90k

laa—Normal forch on C-D

W3 = 16.23 k

Cohesion force on C-D =4.80k

FIG.4.8 Example of Graphical Procedure for Wedge Method
(after Duncan and Buchignani, 1975).
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Nesmal to A- 8

E 3
©
.
" (54" = ¢, for F= 210
3 g Resultant of normal
and shear forces on A-B
Side force between

: slices CD and
x> .
5 ; . .
= Normal force on B-C Trial Solution for
"‘.’ - Assumed F = 2.10
" == =
3| y

Cohesion force on B-C =1.36k
Side force between slices @ ond (@
-
3 o ,
— |—Side force between Very small unbalanced force
slices @ ond @ on slice (3 shows ossumed F
. » is very nearly correct
N >
- w
0 : Normal force on D-E
< I #
o \ v
- Cohesion force on D-E=1.36k
A _
; .
~—Normal force on C-D
| ]

Cohesion force op C-D= 3.43k

' FIG.4.9 Example of Graphical Procedure for Wedge Method

(after Duncan and “Buchi gzian,,i , 1975)
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FIG.4.10 Detez'}nining Factor of- Safety by Wedge Method
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values, along with the weight of each slide, in the tabular

computation form shown in Fig.4.11.

.Calculate the quantities c1/cosa,W tan¢ and ul tang/cosa

for each wedge, and enter these in the table.

_.Assume a tffa] value for the facfor ¢f safefy, and cal-
‘culatevthe value of AE for each wédge as indicated in the
table. AE is the difference between the side forces on the
left and right sides of each s]fce, and is given by the equa-

tion.

‘ cl ultang
FW tano- -Wtan¢+ ————
AE = cosa cosa ... (4.49)

F + tan¢tana

.Calculate the sum of the terms AE for all slices. If the assumed
factor of safety is correct, this sum will be zero. If its value
is less than zero, the assumed value of F is too low. If it is

greater than zero the assumed value of F is too high.

.Assume a new value of F and repéat steps (6) and (7). Try
additional values of F until the sum of the AE's is negligibly
small. Then the assuméd vélue of F is the correct one for the
assumed failure mechanism. Usually no more than two trials are
needed to determine F. By p]dttfng the assumed factor of safety
against the value of I AE for the first two tria]s; a value of
F can usually be estimated which will be very c105eyto the correct

va]ue;as shown in Fig.4.10. If the value of F determined by
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AE ®
- Ns N, N2 N3y
Slice cl uploné
No. w a £ c u cosa V¢ Teosa
Ng N
Trial Fo|Sice lrwiona|, ©* AE | ZAE
: No. A tan¢g tana _
: W
x P

C= cohesion intercep!

¢ = friction angle

u = pore pressure al

bose of slica

FIG.4.11 Tabular Form for Calculating Factor of Safety by

Wedge Method . (after Duncan and Buchignani, 1975)



~ this procedure differs greatly from both of the first two

values, a third trial may be necessary .

9. Select a new failure mechanism and repeat steps(1) through
(8). Try several failure mechanisms in order to find the

one with the lowest factor'of safety. -

4,11 MORGENSTERN AND PRICE'S PROCEDURtk

Morgenstérn and Price (1965,1967) have presented a somewhat

different approach to the solution of comp]ete s1ice equilibrium. While

Bishop and Spencér‘considered'the overall moment equilibrium.equations

for circular shear surfaces, Morgénstern and Price have considered
only the moment equations of individual slices. The advantage of the
latter épproach rests in its simplification of the numerical formula-

tions of equilibrium for a non-circular shear surface.

The assumption made by Morgenstern and Price is that the
shear and normal forces between slices are related by an expression

of the form,

y = | .o (4.50
X5 = AM(xX)E; | | (4.50)

in which the assumed function f(x) representsthe variational reiation-

shjp between the X and E forces along the shear surface. A]though the
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éssumption for f(x) may be made arbitrarily, only an assumption result- _

ing inlreasonab1e values for the unknowns is consideréd acéeptable. The
parameter A is an unknown scaling factor definihg the re]ationship
between X and E in terms of f(x). A]thoﬁgh_é continuous function, f(x),
is assumed, only the values of this function at interslice boundarTés

are directly used in the solution. This procedure assumes that f(x)
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varies linearly between each intérslice boundany‘at which its values
are specffied. By assuming this varfation for f(x), the locations

vof the normal forces on the base of each slice are thus fixed; however,
their exact Tocations may only be determined once the necessary equi-
1ibrium solution is fdund for the differential moment equilibrium equa-
tion which may be expressed frbm Eq;4.3 as, .

'dyt ; dE

+ h

-X = E t

: ... (4.45)
dx 7 dx | '
The complete solution to this moment equatioh for each slice and the

remaining equations of force equilibrium involves the following unknowns:

Unknowns

1 Factor of safety (F)

1 Side force scaling factor (1)

n "~ Normal forces on the base of.each slice (N) -
n-1 Interslice normal forces (E) | |
n-1 - Locations of theAihterslibe.forces (yt)»

(Line'ofthrust)' |

= 3n . Total unknowns

4.12 LOWE AND KARAFIATH'S PROCEDURE

Lowe énd Karafiath(1960) hé&é suggested that the inclinations
of the side forces méy be reasoqab]y assumed to bé equal to the_average 
inclinations of the shear surface and slope face. This assumption is
equivalent to assuming that the side forces are pardllel to}an imagihany
tangent line drawn at midheight through each interslice boundary. In |

general the lTine of thrust will be somewhat below this midheight line
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TABLE 4.2 Equations and Unknowns Associated with

Force Equilibrium for Each Slice

Equations

n Vertical Force Equilibrium Equations for
Individual Slices

n Horizontal Force Equ1]1br1um Equat10ns for
Individual Slices

2n Total Equatiohs

Unknowns
1 factor of Safety (F)
n Normal Forces on the Base of Each S]iée (N)
n-1 ~ Interslice Normé] n-1 Resultant Inter-
: Forces (E) slice Forces (Z)
or
n-1 Interslice Shear | n-1.  Inclinations of

Forces (X) e Resultant Inter-
' o slice Forces (B)

3n-1 TotaT Unknowns



sorpyang Iesys TeordAL ® I0F SuTT IYBTOYPIW PUP 3SNIYL JO SUIT ZT°'p°OId

1SNYHL 40 3NN

3NN LHOIIHAIN




112

TABLE 4.13 Force Equilibrium Pol ygdns
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- as illustrated in Fig.4. 12 and therefore it may be noted that th1s
m1dhe1ght line is somewhat flatter than 11ne of thrust above the
center of the shear surface and somewhat steeper than the line of
thrust along MUch or the lower portion of the shear surface. Thus ,

it may also be noted thet the inc]ination'of the side forces, which
are assumed tangent to the midheightlline, will have the same chorac-
teristics as those side forces satisfying noment equi]ibrium.’ Although
the side force assumption Suggested by Lowe and Karafiath cannot be
directly verified from the noment equation, -it appears that the assump-
tion is that 1easthqualitative1y correct over a major.portion of the

slope.

Lowe and Karafiath have presented a relatively simple procedure
for obtaining a force equt]ibrium solution. As-previous]y explained,
they assumed that the side forces act at the auerage'inclination of
the shear and slope surfaces; thus, e11m1nat1ng the n- 1 ‘unknowns relat-
ing to s1de force 1nc]1nat1ons wh1ch are shown in Tab]e 4 2 and mak1ng

the system of 2n_equatlons stat1ca11y determinant.

A solution by this procedure is commonly obtained graphically
by first assuming a factor of safety and drawing‘the force polygons
from slice to slice as illustrated in Fig 4, 13V If the polygon for the:
last slice fails to c]ose, then a new factor of safety is assumed and

the procedure repeated unt11 c]osure is obtained.

4,13 SUMMARY

The similarities and differences in the various procedures of
stability. analysis discussed in this chapter may be examined in terms

of the conditions of equilibrium which they satisfy and the assumptions
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 they employ to achjeve statical determinancy. Some of these procedures.

satisfy only one or two conditions of equilibrfum;.whereas others
satisfy all three conditions and they all involve'some'assumptions to
‘make the prob]em statically determinant. In making the assumpt1ons a
'ba1ance between the number of equ111br1um equat1ons sat1sf1ed and the
number of unknown quantities must be maintained. to ach1eve statical

determinancy in the solution.

Several .procedures may satisfy the same conditions of equi-
1ibrium, but due to the féct that‘they involve different assdmption§,
they may result in different véiué; forlthe'factor ofvSafety. Others
may satisfy the same conditions and émploy'thg same aSsnmptions;'but
diffen only in the manner in which the éolution‘is obfained; thus,
although the techniques nay be different, all such prqcednres shou]d

result in the same value for the factor of safety.

The number of equilibrium conditions satisfied does not

provide a sufficient basis for selecting the best procedure for analysis .

In"this respect the studies conducted show that the condition of. moment

equilibrium is more important than the cond1t1ons of hor1zonta1 or

vertical force equ111br1um

For example, in the Ordinany Method of Slices, overall moment

equilibrium is only satisfied. Bishop's Modified method (Bishop, 1955)

satisfies the conditions of overall moment and vertical force equilibrium.

The basic assumption3of this method is that the side forces are horizontal.

Morgenstern and Price's method (Morgenstern and Price 1965)
Sat1sf1es all conditions of equ111br1um Although 1t is more comp]ex
than near]y any other. method MorgensLern ‘and Prlces s method

has been used quite extensively. The ™ method has been
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v regarded by many engineers as the most accurate method of s]obe
stability ana]yéis_from the point of view of mechanics§ The basic
assumption made in this method is that theyinclinatiohs of the forces
between the slices & , varies in accordance with the equation 8.=Af(x),
in which the function f(X) is an assumed function which describes ther

patfern of variation of the side force inclinations.

vSpencer's method, described by Spencer(1967) and Wright |
(1969) also satisfies‘a11 conditions of equilibrium. . The basic assump-
tion is thét the side forces are.parqllel, or 6=constant. This cofres-
,pdnds eXact]y to Morgenstern and Price's méthod with f(x) = constant.
Spencer'§ method is equally as accurate from the point of view of

“mechanics.

In the Nedgé'method. The inclinations which are assumed.
for the side forces vary from paralel to the S]ope to horizontal. This

method satisfies both horizontal and vertical force equilibrium.

Janbu's Generalized Procedure of Slices has the advantage over
other force equilibrium procedures in that moment equilibrium is also

satisfied at least approximately.

The procedures may involve different assumptions to satisfy
a given set of equilibrium conditions, the relative accuracy of the
various procedures is best evaluated from the results of numerical

analyses.
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in the other methods.

In the non-circular failure surface analysis slip surface

is defined with respect to the terms of 6 , 8, and 6, where

¢faundation. ‘ % cundation | %inn
. : '» ) =
61=45' - 3 92-_- 45+ an_d 63 45*'-—2""'

The parametric study is performed using the computer
programs for each method. More than 200 runs are achieved, whence -

more‘than’2000 possible factor of safety values ére checked to solve

the problems.

5.2 THE COMPUTER PROGRAMS

The computer prdgramsSLOPE 22R, SLOPE;8R,:and SLOPE 9 were
written by Stephen G.wright at the University of California Berkeley.

SLOPE 22R consists of a main program and four subroutines
(CENER, OMS, BISHOP, and READER). This computer program calculates the
factors of safety for-spedified circles USihg both the Ordinary Method

of Slices and Bishop's Modified Method.

éLOFE 8R consis£5—0f1§ main prdgram and seve; SUbrouiihes
(EFLAG,_MESAGE, CGXY, BISRIG, EFOkCE,‘THRUéf;Vana,ﬁtADER).hit ca]cu]afes
the factor of §afety for specified non-circular s]ip sdrfacés by the
procedure developed by Spencer (1967)'hnd extended by Wright to non- -
circular surfaées.‘By assuming parallel side forces this procedure
satisfies all equilibrium conditions for each s]iée. The two unknown
Parameters, F(the factor of safety) and THETA(the side force inclina-
tion) are varied simultaneously by iteration until a convergent solu-

tion is found with net force and moment inba]ance;iess than specified

values.
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| SLOPE 9 consists of a main program_énd eight sobroutines,
NOTE, EFLAG, IN,INITL, OUT; GENER, SETUP and JANBU2. The program
calculates the factor of safety by Janbu's Génera]ized Procedure ‘
of S]ices (GPS procedure) for an arbitrarily assumed line of thrust.
The solution by the GPS procedure is by iteration ehd occasionally
a convergent solution cannot be obtained. If the solution for the
factor of safety diverges, the program will normally abort the -
“particular problem being solved and continue with the next probTem;
however, provisions are available in the programwto override the(
abort allowing the iterations to continue, add in some cases a |
'convergent solution may then be found even though divergency has
‘been once encountered. A provision for a tension crack of specified
depth js available when circular stip surfdce coordinates are oe; 5
nerate. by the program, and the specification of the tension crack

is described in ‘the data input description.

The computer program'wEDGEI is deve]oped in this Study.
it calculates the factor of safefy using Corps of Engineers' Wedge
Analysis. This computer program hasliteraccive characteristic and
reads the input data iteractively.ylt prints the factor of safety -
when the given accuracy is greater,than the eum of the difference
between the side forces. WEDGE 1also takes into the account the
effect of’]inear‘variation of fouodation shear strength. This comQ

puter program is developed on CDC Cyber 170/815 system.
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5.3 EFFECT OF UNIT WEIGHT AND FRICTION ANGLE OF COHESIONLESS
FILL B |

5.3.1 For Variable Fill Density

In order to find the factor of safety of~the typical case
of the soil prof11e and fa11ure surface shown in Fig. 5 2, the he1ght
of the embankment He, the fr1ct1on angle and the un1t we1ght of the
f111 mater1a1 are var1ed respectively while a]] other factors are -
held constant. The parameters wused in these ana]yses are shown in
Fig.5.2. The slope of the fll]_mater1a1 is taken.as,1/1.5 and is
kept'constant during the investigatidn.hAna]yses are»performed using
three different slope heights-4»m, 8 my, 12 m. For unit weight of the '
sand layer again three different values as y=1.9, 2 0, 2.1 t/m?", ’
for friction angle of the sand layer three d1fferent va]ues as
¢=35"» 40°, 45° are chosen" respect1ve1y The foundat1on mater1a]
is taken as norma]]y consolidated clay which has undrained shear‘
strength of 4 t/m? , and unit weight of 2.0 t/m®. The thickness of’
the foundation layer is constent'and equa]s.to_therheight of the fill,

He‘

The factors of safety corresponding to the given soil

profile and failure surface for each method are given in Table 5.1.

The values determined are-plotted as a function of the
slope height, He» and the fill material shear strength as shown in .-

Figs. A.1 through A.5 in Appendix A.

To make the comparison of various analysis procedures a
specific case (y=2.1 t/m®, ¢=45°) is studied. For this condition of

the soi1 profile and failure surface shown in‘Fig.S;Z the corresponding
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factors of safety are given in Table 5.1. The result of this study is
shown invFig.5.3. | 7 '

The effect of the unit weight (y) and the friction of angle
(¢) of cohesionless fill material ié studied using the typical embank-
ment shown in Fig.5.2.rThe fill was‘assumgd to consist of a homogenedUS
sand. It can be seen -from the Figs.& A.1. through A.5 in Appendix A
that a large change in the value of ¢ results 1nha re]étively small
chénge in the factor‘of safety for each method.‘If the resu]ts of fhe
study are consideréd, when thé unit weight and the friction angle of
the fil11 increases, the factor of safety decreases as shown in Figs
A.1 through A.5. At‘the same time, it is found that the factor of
safety'decreasés while the height of the fill which equals to the

foundation thickness increases.

Forbthe example slope shown in Fig.5.2, the values of the
factor of safety calculated by the Modified Bishop prbcedure are
about 7-9 % higher than the values obtained by the Ordinary‘Method
of Slicés. Due to differenqeé in the corresponding normal stress dis=-
tributions along the shear surface, the differences between the values
of the factor of safety calculated by the Modified Bishop and Ordinary
Methdd of Slices procedures should be considerably larger for inhomo-
geneous slopes of the type shown in Fig. 5.2 than fbr é]opes in
homogeneous soi1 conditions. On the other hand, the diffefence
between the values of the factor of safety calculated by the Modi-
fied Bishop and Spencer's procedure is small. The,va]des of the
factor of safety obtained by Janbu's GPS procedure are similar fd
the values of the factor of safety calculated by the other methods.
The values of the factor of safety obtained by Wedge Method is

tbout 30 % Tess than the Janbu's GPS procedure value.All results
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TABLE 5.1 Sumﬁary of Results

(for Variable Fill Density)

o Factor of Safety
o /)]
ol B :

Lyl £ Height of Fill, He, m

—~ 0 o -

cod = .

BB 4.0 8.0. 12.0
D | omst 2,551 '1.313 0.900
il
< | pu2 | 2.736 1.434 0.984
E | gM3 2.299 (o4 0,807
4
()Y
—~ | eps® 2.951 1.577 1.123
L S 2.288 1.238 0.867
T |omMs | 2.442 1.265 0.873
I -
< | BM 2.639 1.385 0.950
"§ SM 2.866 1.487 1.014
2. GPS 2.860 1.561 1.090
o | WM 2.236 1.210 0.845
o | oMs 2.347 1.226 0.853
& | BM 2.552 1.340 0.919
= | s 2.176 1.120 0.758-
\u
:I GPS 2.798 1.526 1.064
- | WM 2,194 1.183 0.821

1. Ordinary Method of Slices

2. Bishop's Modified Method

3. Spencer's Method :
4, Janbu's Generalized Procedure of Slices

5. Wedge Method

* . .
Solution did not converge
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FIG.5.3 Variation of Factor of Safety with Embankment Height

for Different Procedures (Variable Fill Density)
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Ajﬁéntjonedfébove'hre“given,1n‘Fig;5.3;v
&3.2 For Censtent Fill bensity

In this analysis,the same soil cross-section and properties
with the previous study which is shown in Fig. 5. 2 are used. The only
exception is that the‘f111 material has a constant unit weight which is
taken as v=2.0 t/m® while the friction ahg]e of the fill material is
varied. 7

The safety factors corresponding to the given soil profile
and failure surface for each method are given in Table 5.2. The values
determined are plotted as a function of the fill heiéht; H, and the

fi11 material shear strength as shown in FiQS«A;s' through A.10in

Appendix A. .

The differences in the values of the factor of safety
calculated by various procedures -of analysis for e specific case
( y=2.0 t/m and ¢= 45°) may be conven1ent1y represented by a fam11y

of curves. Such a family of curves is shown 1n F1g 5.4.

The effect of the unit weight (Y) and the friction of
angle (¢) of cohesionless fill material:is again studied for constant
fill density. The factor of safety.increases while the internal fric-
tion angle of the fill increases as presented in F1gs A.6- through
- A.10 in ‘Appendix A: . At the same t1me, it can be seen that the factor

of safety decreases rap1d1y with increase in the height of the fill.

In‘th%s study, for the Ordinary Method of Slices and Bishop's
Modified procedure similar results are obtained as mentioned previous
subsection. The values of the factor of‘safety'calculated by Spencer's
procedure are slightly less than the value calculated by Janbu -'s
GPS procedure. The lowest values of the factor of safety in the analy-

sis.are obtained by the Wedge.method.



TABLE 5.2 Summary of Results

{for Constant Fill Density)

o Factor.of Safety
Q u -
— - o
S| 2 Height ‘of Fill
mEl oS ‘Height ‘of Fill H,, m
51 2
je 4.0 8.0 | 12.0
% | ovs 2.427 | 1.251 0.858
& | B 2.608 1.367 0.938
& | sv | 2.83; 1.469 1.003
&
| eps 2.810 1.504 1.072
o wm 2.186 1.183 0.828
% | oMs 2.442 1.265 0.873
S | B 2.639 1.385 0.950
< | su 2.866 . 1.487 1.014
< | eps 2.860 1.561 |  1.090
" . i
= | W 2.236 | 1.210 | 0.845
noloMs | 2.459 1.282 0.890
1t -
= | B 2.670 1.403 0.962
£ | o 2.898 1.505 1.023
o | cps 2.933 _ | 1.598 1.117
I ,
L w 2.291 1.236 0.859
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FIG.5.4 Variation of Factor of Safety with Embankment Height

for Different Procedures (Constant Fill Density)
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5.4 EFFECT OF FOUNDATION DEPTH | | 28

/ Th1s case study 1s performed to study the effect of the
foundat1on depth on the factor of safety The. foundat1on th1ckness «
He and the height of the fill, H,» are var1ed wh1]e all other factors
are held constant. Ana1yses are performed us1ng three different founda-
tion depth 4 6,8 m. For the he1ght of the f111 mater1a1 three va]ues
as H HE/Z He /3, He /4 -are chosen:. The un1t welght of both the fill
material and foundation c]ay>]ayer'are taken as 2’0't/m3' The friction
angle of f1]1 mater1a1 as ¢ 40° and the cohesxon 1ntercept of the founda-
tion c]ay 1ayer as c= 3 t/m are taken The geometry of the f11] and the
foundat1on the propertles of the f111 and foundatlon mater1a1 are
shown in Fig.5.5. The safety factors correspond1ng to the g1ven so1]
prof1]e and failure surface for each method are given in Table 5.3
The values obtained during the 1nvest1gat1on are plotted as a funct1onv‘
of thickness of the foundatfon;Hf, and the height of fi]I,He; as-given -

in Figs.A.11 through A.13 in Appendix A.

To present the variation of the factors of safety calculated
by various procedures a specific case (He-Hf/Z and ¢= 40°) is studied.

A family of curves is shown in Fig 5.6.

The effect of the th1ckness of the foundat1on is stud1ed us1ng
three d1fferent depth va]ues as ment1oned above As the th1ckness of the.
foundation increases, the factor of safety decreases On the other hand
the factor of safety‘rap1d]y increases with decreasing height of the em-
bankment. However,’for Spencerfs Method and Janbu's Generalized Procedure

of Slices the reasonable solitions are not obtained because of the non-

convergence.

It can be seen from Fig.5.6 that the va]ues of the factor of
Safety ca]cu]ated by the ‘Modified Bishop procedure are about 3-5%
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TABLE 5.3 Summary of Results .

(for the Effect'of Foundation' Depth)

" Factor of--Safety
Yt [}
1l © ]
Las) o]
eqal S Foundation Depth Hg,.m
X9 BT -
B = — .
3 4.0 © 6.0 8.0
OMS 3.913 2.623 1.975
JBM 4.055 2,735 2.067
< :
="| SM 32963 2,666 1.999
n
u| GPS NC 3.411 NC
= -
W 3.121 2,137 1.634
oMS 6.141 4.069 3.074
- | BM 6.254 4.162 3.151
Q|
o SM NC NC - NC
n
"o| GPS NC NC 1.775
m
WM 4,558 3.085 2,352
OMS 8.415 5.586 4.181
BM 8.505 5.663 4,248
N
Wi SM NC NC NC
= -
"1 eps NC NC NC
[
o
WM 6.003 4.054 3.068
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higher than the values obtained by the Qrdinary,Method of Slices. The
values of the‘factor of eafety ohtatnedvby the hedge procedure.are |
great1y less than the Modified Bishop va]ue.'?or Spencer's procedure
and Janbu's GPS procedure a reasonabiy convergentvso1ution could not

be obtained.

5.5 EFFECT OF VARIABLE SHEAR STRENGTH OF FOUNDATION

In order to find the factor of‘safety ef:the typical case of
the soil profile and failure surface shown in Fig,5;7;‘the.frjction
ang]e of fi11, ¢, and the cohesion intercept of the foundation, c,
are varied while all other factors are held constant The parameters
‘used in these ana]yses are shown in Fig 5.7. Analyses are performed
using three different intehna] friction angie of the fill material-
35° , 40° , 45°, For shear strength of the clay layer again four
values as c=1,2,4,6 t/m? are chosen. The unit weight of beth the
fi1l material and foundation clay ]ayer are taken as 2.0 t/md. The
s]ope he1ght H,, is taken as 4 m and the foundatlon c]ay 1ayer'depth

He 1s constant and equak to the slope helght He.

The safety factors corresponding tovthe'given soil profile
and failure surface foh each method are given inhTab1e 5.4. The
values obtained during the investigation are plotted as‘a-fUnétibn
of the shear strength of the foundation, c, and the friction angle
of fill, ¢, as shown in Figs 'A.T# through -A.18  in Abpendii A..

On the other hand for ¢ 35° a famt]y of curves show1ng
the var1at1on of the factor of safety for each method is given in

Fig.5.8.
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TABLE 5.4'Summary of Results

" (for Variable Shear Strength of Foundation)

Factor.bf Safety ‘

Yo
231 o
TR
© o
b= = . ' , 0
“g o Friction Angle of Fill, ¢
Ho .t -
7
OMS | 0.662 - 0.677 0.694
N BM 0.718 0.727 0.735
E : . :
S| sM 0.749 10.752 NC
—i -
w | GPS 0.836 ©0.854 0.875
. A
WM. 0.643 0.653° 0.661
oMs | 1.251 1.265 1.282
o | B 1.367 1.385 1.403
3 :
S| s 1.469 1.487 1.496
N .
w | eps | 1.504 1.561 1.598
J
WM 1.183 1.210 1.236
OMS 2.427 2,442 2.459
~ | BM 2.608 2.639 2.670
~
o | su 2.831 2.866 2,898
. | aps 2.810 2.860 2.933
WM 2.186 2.236 2.291
OMS 3.606 ‘| 3.619 3.636
E | B 3.819 3.858 3.900
Ew)
o | sM 4,163 4,218 4.277
. |ces 4.096 4.170 4.256
W 3.150 3,125 3,294

134



Factor of Safety,F

=40

- 20

10

=05

12 4 : 6
A

® ®OO®

._ Sheaf Strength of Foundation , c, timt

FIG.5.8 Variation of Factor of Safety with Variable Shear

Strength of Foundation for DPifferent Rrocedures

135



The effect of variable shear strength of foundation is

vstﬂdﬁed using four differént shear strength values asmentioned

above. As the variable shear strength of fouhdation increases,the
factor of safety rahid]y increases. At‘the_same time; the factok
‘of safety also increases with 1n¢reasing:frfctioh angle of the

fi11.However, it can be seen that a 1afge change in the value of-
¢ results in a relatively small change in the fact0r~of safety.l
As shown in Figé A;]4‘thr0u§h A.18 the factor of ;afety increases
in dirett proportion‘to~the'5héar strength of foundation befween

the values of 2 and 6.

The results in Fig.5.8, show that the values of the
'factor of safety:ca]cu]ated by the Ordinary Method of Slices are
almost 6-9% less than the values calculated by Bishop's Modifieq

method. The difference between the values of the factor of safety

obtained by Spencer's procedure and Janbu's GPS pfoceduré is small.

Wedge method appears to give very similar results.
5.5.1 The Use of Dimensionless Parameter

- In these analyses, it is observed the variation of the

factor of safety with respect to a dimensionless parameter in order
to obtain directly the value of,thé‘factor of safety when foundation

shear strength is known. The dimensionless parameter, d, is given as

follows :
' ¢ L v
d s —— o - e (5.1)
where Yeﬂe . |

c foundationzshear'strength-
%.= unit weightof the fill material
He = height of the fill material
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For each‘va]ue of which is shown in Table 5,4 the dimensionless
paramefer is calculated by the equation mentioned above and is given
in Table 5.5. The friction angle of fill, ¢, and the cohesion inter-
cept of the foundation, c, are varied whiTe all other factors are
held constant. These parameters are shown in Fig.5.7. Analyses are
performed using three‘different internal friction angle of the fill
material-35°, 40°%, 45%, For shear strength~6f thé clay layer again =
four/va1hes as ¢c=1,2,4,6 t/m* are choseﬁ;- The unit weight of both
the fill material and foundation clay layer are taken as 2.0 t/m3;
“The slope height, Hg, ié takeﬁ as 4 m and the foundation clay layer

thickness, He is held constant being equal to the slope height, He.

The graphs which are given in Figsl(;]é?'through_A.23
ﬁn;Aphendix A show the variafion of the factor of safety, as a
function of the dimensionless parameter, d, and the internal friction

angle of the fill material.

-

The comparison of the various procedures is shown in

Fig. 5.9. These curves are given for the case which ¢=35°,

The results of the analyses afe shown in Figs A9 .
through A;ZB . It is found that as the dimensionless parameter

increases, the factor of safety increases. It is also seen that while

the friction angle of the fill increases, the factor of safety increases.
Between the diménsion]ess pakameter,valpes of 0.25 and 0.75 the factor

of safety increases in direct proportion to the dimensionless parameter.

Moreover, it decreases with the increasing values of the slope height

and the unit weight of the fill material.

It can be seen from_Fig. 5.9 that the variation of the
factor of safety for each method is the similar with the previous

study.
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- TABLE'5.5L Summary of Results

(for ‘Dimensionless Parameter)

w
o Factor of Safety
"é?u ) T '
5812 | -
2% § ~Friction Angle of Fill, ¢’
.m‘s | = 0 ‘ 0 0
Er& 357 ;40 45° -
S | oms 0.662 | 0.677 0.694
S | m 0.718 | 0.727 0.735
'U .
N Y 0.749 | 0.752 NC
5] - - :
s 1 eps 0.836 0.854 | 0.875
o | w 0.643 0.653 0.661
12 | oms |  1.251 1.265 1.282
o .
[ BM 1.367 1.385 | 1.403
s SM 1.469 1.487 1.496
~
S | cps 1.504 1.561 1.598
o | 1.183 1.710 1.236
S | ous 2.427 | 2.442 2.459
© BM 2.608 2.639 2.670
I
© SM 2.831 2.866 2.898
g
E GPS 2.810 2.860 | 2.933
o | 2.186 2.236 | 2.201
[ew]
| oMs 3.604 | 3.619 3.636
°© | B 3.819 '3.858 | 3.900
o
- | sm 4.163 4.218 4,277
£
o | cps 4.096 4.170 4.256
5 WM 3.150 '3.215 | 3.294
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5.6 EFFECT OF LINEAR VARIATION OF FOUNDATION SHEAR STRENGTH

In this case for investigation of the effect of the linear
variation of foundation shear strength on the factor of‘safety using
different methods this barametric study is .performed. The rate of the :

shear strength of the C]ay layer is shown as the following expression.:

dc

. V = ' .oc(5.2)
. dz '
where ~
c= cohesion intercept of the foundation material
z= depth of foundation.from which the failure surface
passes.

~ In order to obtain the factor of safety, cross-section of the

typical embankment analyzed is shown in. Fig.5.10
&&1Cohesioh Intercept at the Fohndatiohhgu}face,:c=05

The soil profile -and failure surfate censidered in this study
aneshown in Fig; 5.10. The values of the interha] friction angle, ¢,
of the fill material and the rate of the cohes1on 1ntercept w1threspect
‘to ‘the depth of the foundat1on v are var1ed Ana]yses are performed‘
~again using three different ‘internal fr1ct1on angle of the £l |

material 35°, 40°,45°, For the rate of the increase in shearstrength

of the clay layer four values v=1,5, v3 4.5,6 t/m?/m are'chosen by

considering that the cohesion 1ntercept va]ue of the foundat1on at the -

foundation surface 1s taken as c= 0. t/m? for each v va]ue

The unit weight of both the fill materia] and foundation clay

]ayer are'taken as 2.0 t/m3 The s]ope he1ght He, is taken as 4 m and

140

the foundation c]ay layer th1ckness, Hf is constant and equa] to the s]ope |

height, He.
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TABLE 5.6 ,SL.zmma;'y of Results (c=0)-

142

(for-Linear Varié:tibn‘fofifjou_ndétion Shear Strength -

E a Fé.ctor of Safety
o~ (e} .
E = : "
~ + L
“1og Friction Angle of Fill, ¢
.'; 359 \400 Co 450
- oMs 2.385 | 2.399 2.416
BM 2.563 . | 2.59 2.625
v | sM 12,974 "3.014 | 3.055
— .
GPS . 2.951 ~ 3.005 3.088
WM - 2.096 2.146 5 2.200
OMS | 4.696 4710 | 4.727
BM 4.931 4.975 5.024
o :
o | SM 5.791 5.858 5.935
GPS 5.677 5.746 NC
WM 3.925 | 4.000 4,090
oMS 7.006 7.020 7.038
BM | 7.268 7.320 7.379
N | sM 8.599 8.685 - 8.791
- !
GPS 8.327 8.468 | NC
WM 5.710 5.803 - 5.920
oMs | 9.317 | 9.331 9.349
" BM 9.594 9.652 9.716
S| sM 11.420- | 11.516 | 11.641
O
GPS | 11.039 NC - NC
WM 7.480 7.587 7.720
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- The safety factors correéponding to the given soil profile -

ahd failure surface for each method are given 1n‘Tab]e 5.6. The values
obtained are plotted as aAfuhction of the interna1'frictibn angle of
the fi11l, ¢, and the rate of increase jh thevcohesioniintercept with
respect to the depth of the foundation ,V; as shown in Figs. A.24
through A.28 in Appendix A.’ | | »
The values of the factors of safety calculated for a
specific case using various procedures bf ana1y§is are also shown
in Fig.5.11. | |
When both the rate‘bf the cohesion 1nfercept with respect
to the depfh of the foundation'and the friction.ang1e of the fill
1hcrease, the factor of safety increases. As shown in Figs. A. 24
through A.28, the factor of‘safety increases in direét proportion to
the rate of the cohesion intercept with respect to the depth of fhe
foundation. | |
The results in Fig.5.11 show: thatAthe maximum difference
between the Ordinary Method of Slices and Bishop's procedure does not
exceed 7 % for the case studied. The values of the factor of safety
calcuiated by Spencer's procedure ake‘virtua]1y'identica1 to the |
values calculated by Janbu's GPS procedure; The similar results are
also obtained by Wedge method.
5.6.2 Finite Value of Cohesion»Interéépt at the Foundation
Surface
| This case study is also perférmed on a typical embankment
with the same cross-section shown in Fig.5.10:'The values of the in-

ternal friction angle ,¢, of the fill material and the rate of the cohe-

sion intercept with respeCt‘tothe_depth of the foundation ,v, are varied.

Case study is performed for three different internal friction angle of
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the fill material 35°, 40°, 45°, For the rate of the shear strength
of the foundation fourvalues v = 1.5,3,4.5,6, t/m2/ m are chosen,
The cohesion intercept value of the foundation q]ay layer at the

foundation surface is assumed as c=2 t/m? for each-vivalue.

The unit weight of both the fill matgriél and foundation
clay layer are taken as 2.0»t/m3. The slope height, He, is taken as
4 m and the foundation clay layer depth, Hf is constant and equals.

“to the slope height,Hé.

For the given slip circle of thé embankment-showh-in Fig.
5.10 the vé]qe;kdf_factor of safety_c&]éu]ated by various methods are
summarized in Table 5.7. The values obtained are plotted as a function
of the internal_fkictioh angle of the fill, ¢ , and the rate of the
cohesion intercept with respect to the depth of the foundation, v, as

shown in Figs. A.29 through A.39 in Appendix A.

For the case which ¢=3S the comparison of the various pro-

cedures iskgiveningFiglﬁ.IZ.

The resu]tsvof these aﬁa]yses, wh{th‘are shown in Figs.
A.29 through A.33, show that the greater the friction angle of the
fill; thelgreater thékfactbrkof safety; It is also seen that the rate |
of the cohesion intercept with respect to the fOundatibn depth is
directly proportional to the factor of safety. The results of this

ana]ysis are the similar with the results of the analysis for c=0.

‘ It can be seen from Fig.5.12 that the values of the factor
of safety calculated by the:Modified Bishop procedure are almost 3-6%
greater than the values obtained by the Ordinary Method of Slices.The
values -of the factor of safety cé]cu]ated'by Spencer procedure and

Janbu's GPS procedure are identical to the values obtained by the other
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- (for L_.inea.r"r}'ariation_ of Foundation Shear Strength)

E Factor of Safety

& ° :

> 2 ~ Friction Angle of Fill, ¢
]

[ m N

> ,
= 350 400 450
OMS 3.561 3.576 3.593
BM | 3.775 3.814 3.855

n | s 4.304 |- 4.359 4424

- -
GPS 4,223 4,320 ANATA
WM 3.062 3.127 3.205
OMS 5.872 5.886 5.904
BM 6.123 6.172 6.226

o SM 7.125 7.193 7.288

™ N

' GPS 6.932 7.046 NC
WM 4.861 4.950 5.054
OMS 8.183 8.197 8.215
BM 8.453 - 8.509 . 8.571

" SM 9.928 | 10.016 10,134

< : ,
GPS 9.625. NC NC
WM 6.642 6.740 6.860
oMs | 10.494. " | 10.508 10.525
BM | 10.777 10.836 10.903

it SM 12.730 12.849 12.983

O
GPS 12.315 NC NC
WM 8.410 ~ 8.510 8.650
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methods. The values calculated by Wedge method are greatly less than

the Spencer's procedure.
5.6.3The Use of Dimensionless Parameter

The purpose of this study is to obtain the var1at10n of the

factor of safety with respect to a d1men51on1ess parameter,

a =‘_1§l____ ‘ . ' ... (5.3)
Vel '
where . ;
v=rate of the foundation shear strength
~ h=depth within the fdundation from which the failure
\surface passes. :
Y =unit weight of the fil1
H_=height of the i1l

In order to obtain directly the value of the factor of safety
when the rate of the foundation shear strength is known, for each

va]ue of which is shown in Table 5 6 the d1mens1on1ess parameter; a,
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~ is calculated by the equation mentioned above and is given in Table 5 8.

The parameters-which are used in thjs ana]ysis;are the same as the
study thch is given in section 5.5.1The soi]‘profi1e is also shown
in Fig.5.10.The results are plotted as a function of thevinterna1

friction angle of ?he fill, ¢, and fhe dimension]ess'paraméter,‘a ,

as presented in Figs A.34 through A.38in Appeadix A.

For the variation of the factors of safgtyvcalcu1ated by
various procedures a specific:case'(¢=35°) is investigated. A family

of cdrves‘is shown in Fig 5.13.



TABLE 5.8 Summary of Resillts /
. - (for Dimensionless Parameter)
U .
O N
=3 Factor of Safety
[e 1Y ] /)] .
- B o -
0w o) . :
é;‘;j‘ ;E Friction angle of Fill, ¢
a = 35° - 40° 450
OoMS 2.385 2.399 2,416
| BM 2.563 ©2.594 2.625
" N
~
ol sM 2.974 3.014 3.055
g GPS 2.951 3,005 3.088
WM 2.096 2.146 2.200
oMS 4.696 4,710 4.727
BM 4.931 4.975 5,024
Tl s 5.791 5.858 5.935
: GPS 5.677 5.746 NC
WM 3,925 | 4.000 4.090
OMS 7.006 7.020 7.038
o | BY 1 7.268 7.320 7.379
~ | SM 8.599 | 8.685 8.791
/]
@ | GPS 8.327 8.468 NC
WM 5.710 5.803 5.920
OMS 9.317 9.331 9.349
BM 9.594 9.652 9.716
? SM 11.420 11.516 11.641
“ | aps 11.039 | NC | NC
WM - 7.480 7.587 7.720
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" From the results it canvbe seen that the factor of safety
increasés'in direct’proportion to the dimensionless parameter, a,
while the friction ang]e.of the i1l increases. fhe increase of the unit
weight and the height of the fill material have décreasihg effect on the

factor of safety.

The differences in the values of théifactor of safety cal-
culated by various procedurés for a specific'case which are shown in

Fig. 5.13, follow a pattern very similar to that shown previously..
5.7 SUMMARY

~ The sfabi]ity of fill sTopeS»built on soft subsoils depends
on (a) strength of‘the'fi11, as characterized by the pakameteré c. and
by (b) the unit weight of the fill, (c) the héigﬁt of the fill, (d)
the s]ope'angle, (e) the étrength of the foundation, as charactérized
by the parameters.c and ¢. The critical failure mechanism is usually
sliding on a deep surface tangent to the top of a fifm layer within the
foundétion. A large part of the failure sdrféce 1ies within the founda-
tion, especially in cases where the soft subsoils extend:to great depths,

and the stability of the embankment depends to a large extent on the

strength of the foundation soils.

| The purpose of this chapferistoshbw; by means of various
examples, the effect of embankmeht and foundation'shear\strength on
factor of safety calculated by varioys procedures for a typical?Case
~of the soil profile and failure surface. In these studies the embank-
ment is a sand fill on a normall consolidated cTay foundation. Addi- |
‘tiona]ly,a comparison of various procedureé and the effécts of these

methods on factor of safety are also made in each subsequent section.
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When the results of the Chapter 5 are.examined it can be
seen that while the friction ang]é of the fi]]lincreases for variable
fill dehsity, the factor of safety decreaées, buf for consfant fill
dehsity the factbr of'Saféty'increases; On the'other hand,for both
.the‘variab1e and conﬁtant fill density as the height of the fill in?

creases, the factor of safety decreases.

As the thickness of the foundation increases, the factor
of safety decreases. On the other hand, the factor of safety rapidly

increases with decreasing height of the embankment.

If one considers the effect of the variable shear strength
of foundation it is found that the factor of safety increases with
| increasing foundation strehgth and a]sd increases while the friction

angle of the fill increases.

The findings of the studies for given slope profile for
variable foundation shear strength result lower factor of safety
when compared to the linear variation of foundation shear sﬁrength.
As shown in this chapter, the factor of safety increases in direct
pfoportion to the rate of the cohesion ihteééept with reépect,to

“the depth of foundation.

The comparisoh of various procedures for d:speCific casé
indicates that relatively large differences in the values of the
factor of safety may exist even fd} éna]yses by procedures satisfying -
comb]ete equi]ibéium. The most important factor influencing the values
of the‘factor of safety appears to be the result of different in the

normal stress distributions along the shear surface.

In these analyses,the computér programs which are SLOPE 22R,
SLOPE 8R, SLOPE 9, WEDGE 1 are used and the results obtained from the

analyses are given at each subsequent section.
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| * CHAPTER 6
EFFECT OF FOUNDATION SHEAR STRENGTH ON MINIMUM
FACTOR OF SAFETY

6.1 INTRODUCTION

In the previous chapter, using various procedures the
effect of embankment and foundation shear strength on the calculated
factors of safety for typical embankments on soft foundations have

been performed and the results have been discussed in detail.

| | The studies preSentea in this chapter were performed
so as to determine the effect of foundation shear strength on the
minimum factors of safety for a given embankmenf, The case studies
in this chapter are given in two sections. In the firstsection ,
case aha]yzed for the effect of constant shear Strength of foundatibn
on minimum factor of safety, are presented. In the.second section,
other case study is given, in which,pthe effect of linear variation
of foundation shear\strength on minimum factor of ééfétyiﬁéiinVéstigéféd{.
For this purpose, the computer program WEDGE 2 is also developed in

this study.



6.2 FOR CONSTANT SHEAR STRENGTH OF FOUNDATION

The effect of the constant shear st}ength (c) of foundd-
tion is studied using the embankment shown -in Fig. 6.1. The height
of thé i1l is given as 4 meters and the depth of the bedrock is
.]ocated at 8.0 meters below ground sufface. It is assumed that an
average shéar strength of fhe foundatfoh material is given as
Cave=3 t/m?, The parameters used in this ana]ysis are.shown in
Fig.6.1. Analyses are performed using three different internal fric-
tion angle of the fi11 material 35°, 40°, 45°. For unit weight of
the sand layer again three different values as Y;=1.9, 2.0, 2.1 t/n’
are chosen- respective]y.7The foundation méteriai has unit weight of

2.0 t/m?.

The results of the study are tabulated in Tables B.1-
8.3 which are given in Appendix B-  for Ordinary Method of Slices

and Bishop's Modified Method.

For Spéhcer's Method, Janbu's Generalized Procedure of
Slices and Wedge Method,to investigate the minimuﬁ factor of safety,
the cross-sections typical of the émbankménts'ana1yzéd are shown in
Fig. 6.2. In each of theée cases, thevproperties of the fill and the
foundation material are the same shown in Fig.S.T.'The‘results of

these analyses are tabulated in Table B.4 for these methods.

The results for all methods are summarized in Table 6.1.

The values obtained during’the’investigation are plotted as a function

of thé-friction angle of the fill material, ¢, as shown in Fig. 6.3.
It can be seen that a large change in the va]Ue of ¢ results in a
relatively small change in the factor of safety for each method.

Reducing ¢ from 45 to 35 results in an increase of only about 5 %
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FIG.6.2 Dimensions and Profiles of the Embenkment and Foundation,

and the Failure Surfaces Used in the Analyses



TABLE 6.1 Summary of Results

(for Constant Shear Strength of Foundation)

Fill Factor of Saféty

Properties OMS BM SM GPS WM
Y =1.9t/m’ B |
y = 350 1.882 2.084 1.695 - 2.271 1.764
Y =2.0t/m° ,
b = 40° 1.833 2.015 1.976 2.150 1.726
Y= 2.1t/ 1.780 1.952 '1.379 | 2.162 1.690
¢:= 450 . R
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on the factor of safety. The factor of safety.decreases in direct

proportion to the friction angle and unit weight of the fill.

Variation of the factor of safety wiih the friction angle

of the fill is almost the Similaf exhibiting straight Iinés throughout V
the analysis except for the resu]ts of thevSpencer'sAMethod and Janbu's
Generalized Procedure of S]fces. It is observed that the deep circles
give sma]]ef.factor of safety than the toe circles for the Modified
Bishop's Method and Ordinary Method .of Slices. It' can be seen fromk_
Tables B.] through B.3 the‘circ1es.stUdied By‘the Modified Bishop's
Method gowdeeper than .circles obtained by Ordinary Method of Slices.

On the other hand, for wedge Methoa.the deeper.fai1ure su?faces give

the smaller factor of safety as shown in Table B.4
6.3 FOR LINEAR VARIATION OF FOUNDATION SHEAR STRENGTH

In the analysis described iq the previous seCtions; it
was assumed that the foundation material has constant shear strength.
In this study the foundation shear strength varies Tinearly with depth
but the case result in average shear strength of Cave =3 t/m? for the -
s]opé which is shown in Fig.6.4. The parameters used in the ana]ysis'
are also given in Fig.6.4. Analyses are performed using three differ-
ent . internal friction angle of the fill material 35°, 40°, 459,
For unit weight of the sand layer again three different values as
¥=1.9,2.0,2.1 t/m® are chosen: respective]y.’The foundation material
Ahas unit weight of 2.0 t/m® and the rate of the cohesion intercebt of

the foundation is 1.5 t/m%/m.

The results of .the study are tabulated in Tables B.5-

B.7 [ which are given in AppendiX‘B for Ordinary Method of Slices and
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Bishopfs Modified Method.

For Spencer's Methdd, Janbu's'Generalized Procedure of
Slices and wedge_Method to investigate the minimum factor of safety
the ckoss-sections typiéa] of the embankments analyzed are shown in
Fig.6.2. In each of these cases,-the'pfoperties bf.the fill and the
foundation material are the same as shown in Fig;6.4. The'fesujts'of

‘the analyses are tabulated in Table B.8 for these methods.

The results for a]]imethods are summafiZed in Table 6.2
 The,va1ues obtaihed during the investigation~afe plotted as a function
of the friction angfe of the fill maieria], ¢ as shown in Fig. 6.5.

It is found that the»factor of safety increases in direct_propqrtidn

to the friction angle and unit weight of the fi11,

If the results of the analysis are considered, variation
of the factof of safety with the'fricfion,ang]e of the fill is almost
- the similar exhibiting straight Tines throughout the analysis except

for Spencer's Method.

When the linear variation’of foundation: sheai strength ‘is
investigated,it is 6bserved that the critica]‘circ]es{for the Modified
Bishop's Method and Ordinary Method of Slices and the failure surfaces
for Spencer's Method, Janbu's GPS Procedufe, and Wedge Method pass
from the higher ]ayers when compared to the constant shear strength
of foundation but result lower factor of safety values as presented in

Table B.8.
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b =459

1.093

TABLE 6.2 Summary of Results
' (for Linear Variation of Foundation Shear Strength)

Fill ' Factor of Safety
Properties | gyg BM SM GPS W
Y= 1.9t/m ;

; 0 0.791 0.907 1.120 1.148 1.018
¢= 35 ‘ vl
Y= 2.0t/m] o ggs 1.005 | 1.223 1.151 1.033
. d) = 400 . ) .
Y=2.1t/m? :

0.975 1.200 1.155 1.047
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FIG.6.5 Variation of Factor of Safety with Friction Angle
of Cohesionless Fill Material for-Different Proce-

dures (Linear Variation of Foundation Shear Strength)
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6.4 SUMMARY

~ In this chapter, a parametric study has been conducted in
order to establish the effect of foundation shear strength on minimum

factor of safety. For- this reason, two groups of analyses;are discussed.

As the results for constant shear strength'foundation tnf
dicate, a large change in‘the value of ¢ resdlts_in a relatively small
change in the factor of safety for each method. Reducing'¢ from 45 to
35 results in an increase of only about 5 % on the factor of safety.
The factor of safety decreases in direct proportiph to the friction
ang]e’and unit weight of the fill. Variation of the factor of safety
with the frictton angle of the fill is almost the similar exhibtting'
straight lines throughout the analysis except for the resu]ts of the -

Spencer's Method and Janbu's GPS procedure.

On the other hand, for linear variation of foundat1on
shear strength it is found that the factor of safety increases in
direct proportion to the friction ang]e and unit weight of the fill.
If the results of the analysis are_cohsidered; variation of the
factor of safety’with}the friction angle of the fil11 is almqst the

similar for each method except for Spencer's methdd.;

When the constant shear strength case is replaced by the
varying shear strength case it can be seen that the critical circles
and the failure surfaces go less deeper and the associated factor

of safety decreases.

~In these ana]yses, the computer programs wh1ch are
SLOPE 22R, SLOPE B8R, SLOPE 9, and NEDGE 2 are also used. and ‘the
resu]ts,obtalned‘from the analyses are g1ven atweach subsequent» ‘

Section,
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 CHAPTER 7
* STABILITY OF SLOPES DURING EARTHQUAKES

7.1 INTRODUCTION

~ Earthquakes may cause the failure of'earth-embankments which

under ordinary conditions would be amply safe.

The genera]‘practise of'assessingvﬁiope stébi]ity of embénk-'
ments in earthquaké zones is based on an equivaTent sfatié approach.
The method involves the computation of the'faétor of safety agaihst |
sliding, when a horizontal fbrce equal to thé product 6f seismic -
coefficient and the weight of the‘potential failure wedge acts in
additon to the already existing static forces.\Ahy of the conven-
tional static methods of analysis is- used to ensure a minimum value

of factor of safety.

Thus, ény pseudo-static analysis involves the fo]]owfng steps{'
1. Steps'involved with respect to the choseh proceduré af

analysis.

2. Evaluation of the seismic coefficient values.

Additionally, at the end}bf this chapter,a illustrative example
Using the computer prograh WEDGE 3 is a]sd preseﬁted for the Wedge -

Method-Earthquake case,
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7.2 ACTION OF EARTHQUAKES ON SLOPES

Sudden'ground disp]acemenfs durihg earthquakes induce large
inertia forces in embankmeﬁts. Thus, for eXampie, in a Eigid embank-
ment such as that shown in Fig.7,],‘a grqundvaéce1eration to the
right would induce inertia forces acting to the left on all elements
of the embankment. These forces wbh]d tend td increase the stability
of the right slope of the embankment but would decrease the stability
of the left s]bpé. However, the reduction in stabi1ity would only
exisf during the short period of fimgvfbr which fhe inertia force
vis induced. As Soon és the ground acée]eration is revéréed; which
might occur after abproximateiy, 0;25 sec during an»earthquake, the
direétion of‘thevinertia forces iéja]so revérsed with a corréSpond}ng
increase in stability of the right s]ppe.'Thus, any one}slope of an
embankment will be subjected to inertia forces that alternate . in
direction man& times durihg an earthquake and it is necessary:to
assess the effects of these pulsating streéses, superimposed on the

initial dead load stresses, on the embankment configuration.

7.3 PROCEDURES OF ANALYSIS

The véribus stéps'invo1Ved in the coﬁpﬁtation of mihimum”
factor of safety vary with the addpted procedure of aﬁa]ysis.Diffefent
conventional procedures are availab]é foki evaluating the'siopesta‘
bi]ity. In this Chapter the efféctfof>‘earthuakes‘ using pseudo-
static analysis for Wedge method fs studied. FOrmu]affon of the problem -
is used on a practical problem. For thisipurpdse,a typiéaT slope profile

is taken from Alaybey Shipyard Construction . for the analysis.

‘During_construction from the subsoil conditions, it is clear

that the critical failure surface would be non-circular. Therefore,
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FIG.7.1 Inertia Force on Rigid Embankments
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| lledge method of analysis is performéd'for thé‘determination of proper

factor of safety against the stability of the fi]].

7.4 SELECTION OF SEISMIC COEFFICIENT IN PSEUDOSTATIC ANALYSIS

One of the major problems facingvthe_engineer using this
type offépproach is that of selecting the value of the seismic

coefficent to be used'fbr design purposes.

~ The -adopted practices in the world may be classified into
three gqups. | | \
. Empirica] Approacﬁ
2. Rigid Body Response Consideration

3. Elastic Response Considerations
7.4.1 Empirita1 Approach

Most engineers in the United Statés, who adopt a pseudostatic
method of seismic stability analysis, adopt some empirical‘Qé]ue fér‘-
the design seiémic coefficient; typically this lies iﬁ the é;nge of 0.05
to- 0.15. These values are taken to be constant along the heighf of the

dam.

It is interesting to note that, whereas the design seismic
coefficient is typically on the order of 0.1 in the United States >

somewhat higher values are used in Japan. They range between 0.12 to
0.25, - |
1.4,2 Rigid Body Response Consideration

If an embankment is assumed to behave as a rigid body, the

- accelerations will be uniform throughout the section ahd equal at all



169
times to the ground accelerations. This assumption simplifies the
| problem to a great extent. Thus,it is sometimes aqued that the
design seismic coefficient should be equal to the maximum ground

acceleration.

7.4.3 Elastic Response Considerations

The deficienciesin the uée of empirical rules or-the assump-
tioh of rigid body response ﬁave led a number-oflinvestigétors:to
propose the use of elastic reSponse-501Ution§.for the detérmination .
of design seismiC'coefficieﬁts.'In effect; the embankment is considered
to consistiof a series of infinitely thin hdrizonta] slices, the slices
' ' beihg connécte& by ]ineak]y'e1astic shear springs and viscous damping
devices, and the response at different 1evels{kesu1ting from a uniformly

distributed base motion is determined.

7.5 NUMERICAL TECHNIQUE FOR WEDGE METHOD

Most current practice in the ana]yéis of embankment stabi]ity
against earthquake forces involves the comphtation of the mimimum factor
'of safety against sliding, when a static,,horizdntaT force of sdme
magnitude is included in the analysis. The analysis is treated as‘a
static problem and the horizontal force is expressed as the pfoduct
of a seismic coeffiﬁient, k, and the weight, W, of the potentiel slid-
ing mass. If the factof of safety approaches unity, the section is
genekal]y considéred unsafe, although there is no generally recognized
‘ limit for the minimum acceptable fa;for of safety. In effect; the
dynamic éffects afé replaced by a static force, and the approach might

therefore be termed a pseudo-static method of analysis.



This horizontal force can be at the middle of the slice
or at the basevof the slice. Even though the horizonta] force is
considered at the middle of the s]ice in this section for both case -

the numer1ca] formulat1on of the factor of safety is the same in the

Nedge method of ana]ys1s.

If it is considered thefdimensidns of slip suhface'and
forces on a slice as shown in Fig.7.2, from the equilibrium in a.
direction normal to the base of the s]ice,the'fo110wing'equation'is

',obtained.

0.1 = W cosa + AE sina « Wk sina el (7.0)

The magn1tude of the shear strength mob111zed to sat1sfy

the equ111br1um conditions 1s S where

s = +{ (0 - wtang'| e (4.18)

The shear force S acting on the base of the slice may be

. expressed as

s=s1 . - », e (7.2)

Substituting Eq.4.18 1nto Eq 7 2 one may obtain the ’

fol]ow1ng equat1on {

S =

rl‘.‘ (¢l + oltan¢ - ultand) | e (7.3)
If the'group of terms in Eq 7.1 are substituted into Eq.7.3,
this equation can be expressed in terms of the forces which act on an

1nd1v1dua] slice.

S = Il: (¢ 1+Wcosa.tang+AEsina. tan¢ -Wksino tan¢-u1tan¢) .. (7.4)
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(a) |

Inertia Force

Ground Acceleration

(b)

En.c ‘ i . ' ‘ En
Wk
. F—
AE

FIG.7.2 Forces and Locations Invglved inkthe,Eguilibrium
of an Individual Slice for Wédge Method-Earthquake

Case
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The value of AE obtained from Eq 7.5 can be written as

cl ultand .’ | o
- 1 ————. + Wktanatan
WFtano - —oo - Wtang + —o o wtang .. (7.5)

AE

F + tanatang

If the quantities in Eq-7.6 are written with respect to the

terms whichape given in Fig. 4.11,‘thé following eqdation may be obtained.

SN -N 4N, =N ' |
NN Mt )
N

AE = ‘
In this equation, the earthquake force is also introduced

into the analysis as used in the solution of the example problem in

-the following section.

7.6 THE EXAMPLE PROBLEM

A typical slope taken from Alaybey Shipyard Construétion
is investigated in this section. As shown in Fig. 7.3,the sTope prdfi]e
has fo&r different layers. The pérametéfs dsed in'fhe analysis are a]ﬁo
given in Fig.7.3. The results whiéh aré obtaihed;by using Wedge method
seem to be reasonabie. They compare well with the results performed by
the designer. If the earthqﬁake force is not considered (k=0),the factor
of safety is found as'3.002.when.;he earthquake fOrceiéintrodutédintoﬁhe
analysis (k=0.1),the factor of safety has the value of 1.672.

7.7 SUMMARY

There can be no doubt that major and catastropic slope
failures have occurred during medium and large earthduakes, and the
development of reliable methods for- preventing such failures is a major

Cause for concern to the soil engineer working in seismically active -
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FIG.7.3 Dimensions and Properties of Embankment and Foundation, and Failure surface used in the Example
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Dékeas.rduAIitatiVé aééésgmeﬁté 6f s]oﬁe.stéb{i{ty dufing eérfh&hékés“
can often be made on the basis of expefiehce,and’judgment. Pseudostatfc
methods of analysis provide a means for comparing the merits of different
embankment sections and for assuring increased conservatism in design
sections on an empiricé] basis. However, there is little to quide the‘
design éngineer in selecting an appf@priéte value fdf the seismic coef-
ficieht and furthermore, this method of ahélysié ih inadequate  to
exp]aih the mechanics of a . considerable number of ehbankment fai]ureS .

Thus,the method leaves much to be desired.

In recent yearé cohéiderab1e~prbgres§ has been made in the
deve]opment of‘hew concepts in éarthquake resistanf design of embank-
ments. These deQe]opmenfs proVide a framework for evé]uating previous
failures and thereby offer the possibi]ity”forAd a more meaningful
categorfzation of égperiencevand‘én {hbrerd qdidé.tg'engineeffﬁé

Judgment in the evaluation of slope stabi]ity.during earthquakéé.'“
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CHAPTER 8
SUMMARY AND CONCLUSIONS

| ' The slope stability methods which are plane failure surfaces,
Circu]ar‘érc method of analysis, ¢=0 analysis, Friction circle method, -

and Logarithmic Spiral method are provided in Chapter 2.

The solutions of the slope Stabi]ity'pkoblems have been
obtéined for simple slopes and unifqrm soil conditions and are available
in the form of charts. A considerable amount of labor is required to
obtain such charts but, once obtained, solutions by theif use afe simple.
Many slopes that approximate. the simple éectioh and that are composed
of more or less hetefogeneous soils may be subjected to an approximate
analysis by entering the charfs with aQeragg values. Such estimates in
some cases give no mofe than rough results, but in other instances the
dependability of results is essentfa]Ty as good as can be obtained by
long and detailed analyses. These S]ope stability charts are giveh in

Chapter 3.

The s]opé stability methods in which the mass of.soil enclosed
by the slip surface is divided into vértica] s]icés are discussed in
Chapter 4. Whitman and Bai1ey~(1967) and Wright (1969) have shown
that if the soil mass is divided into n slices, there will be 5n;2
unknoWns.to be evaluated, butronly 3n equations‘can be obtained from

the three conditions of.equilibriﬁm. Thus, the prob]ém is indeterminate,



176

'In'order.to find a solution, 2n-2 assumptions are needed. Becanse
aesumptions are inevitably inVo]ved, the so]ut{on‘is not unique.
Some of these procedures satify only one.or two conditons of equi-
librium, whereas others satisfy all three conditions, and they-all
involve some assumpt1ons to make the prob]em statlca]]y determ]nant
The number of equ111br1um conditions satisfied does not provide a
sufficient basis for se]ecting‘the'best prpcedqre for analysis. In
this respect the studies conducted show that the condition of moment
equi]ibrium is more impbrtant than the conditions of horizontal or
verfical»force equi]ibrium._For this reason,the Ordinary»Method of
Slices and Biéhdp's Modified MethodandSpencer's Method'are used in
the investigations in-Chapter 5. On the other hand,additionally,Janbu’'s
Generalized Procedure  of Slices and Wedge method are also used in

these calculations for COmparison purposes.

Previous stud1es have shown that. methods of slope stab1]1ty
ana]ys1s which satisfy all three cond1t1ons of equilibrium will give
accurate values of factor of safety from the point of view of’mechan1cs.
Although Bishop‘s Modified method has been found to be quite accurate
and efficient for many prob]ems; whftman and Bailey (1967) have shown
that numerical difficulties may occur because the normal force onpthe
base of a slice may become very large or negative_when\the‘failure
surface is steeply inclined. Convergence difficulties are often encoun-
tered for these types of problems 1n Chapter 5 When Spencer's method or
Janbu's Generalized Procedure of slices are used. Under these conditions,
the solutions py the Ordinary Method of Slices appears to be more
Are11ab]e than so]ut1ons of the other methods Consequently, in
Chapter 5,using different procedures the effect of embankment and

foundation shear strength on the factor of safety calculated for a
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given soi],profi]e is discussed. In addition to these, a comparison

of QarioUs procedures and the effects of these methods on factor of
safeﬁy are also made in each subsequent section. The computer programs
SLOPE 22R, SLOPE 8R, and éLOPE 9 developed for comparing the effect of
" these methods on factdr of safety are emp]oyed. Additiona]]y,the |

computer program WEDGE 1 is also deye]oped in this study.

As presented in Chapter 6, the effect of foundation shear
strength on minimum factor of safety using the various procedures as
mentioned above has also been investigated. ThHe computer program

WEDGE 2 is developed for this purpose.

»The effect of earthquakeson slope stability is discussed
in Chapter 7. Formulation of the problem for Wedge Method is shown
in this chapter. According;to numerical technique of Wedge Method,
the illustrative example which is taken from A]aybey.Shipyard

Construction is analyzed using the computer program WEDGE 3.
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FIG.A.1 Effect of Embankment Height for Variable Unit Weight

of Cohesicnless Fill Material on Factor of Safety of

the Typical Embankment Shown in Fig.5.2 by Ordinary
Method of Slices !
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Bishop's Modified Method

of Cohesionless Fill Material on Factor.of Safety of
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FIG.A.4 Effect of Embankment Height for Variable Unit Weight
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the Typical Embankment éhown in Fig.5.2 by Janbu's
Generalized Procedure of Slices
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FIG.A.5 Effect of Embankment Height.for Variable Unit Weight
of Cohesionless Fill Material on Factor of Safety of
the Typical Embankment Shown in Fig.5.2 by Wedge
Method . o
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FIG.A.6 Effect of Embankment Height for constant Unit Weight
of Cohesionless Fill Material on Factor of Safety of
the Typical Embankment Shown in Fig.5.2 by Ordinary

Method of Slices
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FIG.A.10 Eff_ect of Embankment Height for constant Unit Weight
‘ of Cohesionless Fill Material on Factor of Safety of

the Typical Efmbankment\ Shown in Fig.5.2 by Wedge

Method



Factor of Safety , F

194.

%0 Ordinary Method of Slices
e | Fill
He.m
Hf/ 2
H¢/ 3
- 70
: Hf/4
-50
- 30
~1.0
4 .6 8
i 1 i ‘
i Foundation Depth, Hs ,m
FIC.A.ll Effect of Foundation Depth for Variable Embankment

Height on.Factor of Safety of the Typical Embankment
Shown in Fig.5.5 by Ordinary Method of Slices



Factor of Safety, F

- 70

110

~50

Bishop's Modified Method -

Fill
- ¢° He,m
40 | H/2
40 | H/3
40 | H/4

8 .

-

Foundation Depth, H¢,m

FIG.A.12 Effect of Foundation Depth for Variable Embankment
"Height on Factor of Safety of the Typical Embankment
Shown in Fig.5.5 by‘Bishop's Modified Method

195



F

Factor of Safety,

196

- 50

-30

-1.0

Wedge ‘Method

Fill
¢° | Hesm
40 | H/2
40 | H/3
40 | He/4

4 6 - 8

- Foundation Depth ..‘ Hg, m

FIG.A.13 Effect of Foundation Depth for Variable Embankment

Height on Factor of Safety of the Typical Embankment

_ Shown in Fig.5.5 by Wedge Method

\ B



Factor of Safely , F

-10

; Ordinary Method of Slices
= 9.

Curve

25

- 20

-15

- 05 v
1 2 ‘ 4 6

Shear Strength of Foundation, ¢, t/m?

A

FIG.A.1l4 Effect of Varié_ble Shear Strength of Foundation on
Factor of Safety of the Typical Embankment Shown in
Fig.5.7 by Ordinary Method of Slices

197



Factor of Safety, F

Bishop's Modified Method

Fill

Curve +° H ,m

-35 1 | 35 | 4

2 40 4

3 45 4
- 30
25
FZO
=15
-10
~05

1 2 B 4 | 6
1

1 1 i |

“Shear Strength of Foundation ¢, t/mé

\ , »
FIG.A.15 Effect of Variable Shear Stiength of Foundation on
Factor of Safety of the Typical Embankment Shown in
Fig.5.7.by Bishop's Modified Méthod

198



Factor of Safety, F

Spencer's Method
. \
Fill
- 40
Curve ¢ Ha,m
1 35 4
2 40
45
-30
-20
- 10
1 2 4 6
1 1 1 |

Shear Strength of Foundation ¢, t/m

FIG.A.l6 Effect of Variable Shear Strength of Foundation on
Factor of Safety of the Typical Embankment Shown in
Fig.5.7 by Spencer's Method

199



Factor of Safety, F

Janbu's GPS Procedure

Fill

- 40

-30

20

-10

1 2 - 4 6
1

1 1 1

Shear Strength of Foundation ,c, t/m

FIG.A.l17 Effect of Variable Shear Strength of Foundation on
Factor of Safety of the Typical Embankment Shown in
Fig.5.7 by Janbu's Generalized Procedure of Slices

200



Factor of Safety, F

Wedge Method

30 Curve & He,m

1 3% | 4
2 40 4

|25

FLS

=10

- 05 - '
1 2 4 6

] ! 1 ' 1

Shear Strength of Foundation c, t/m?

FIG.A.18 E'ffect of Variable S‘hear \S'tre.r'zgth of Foundation on
Factor of Safety of the Typical Ebankment Shown in
Fig.5.7 by Wedge Method

201



202

Factor of Safety, F

Ordinary Method of Slices
Fitt
Curve | ¢° He,m
1 35 4
2 40 4
-3.0
-3 45 4
2.0
-1.0
-0.5
- 0125 O.|25
1

" 0.50 - 075
{

Dimensionless- Parameter |, d

FIG.A.19 Effect of Dimensiobless Parameter ,d, on Factor: of
Safety of the Typical Embankment Shown in Fig.5.7

by Ordinary Method of Slices



F .

Factor of Safety,

203

-3.0

1.0

-0.5

0125
1

-4 | .V eee |
0 Bishop's Modified Method

Fill

Curve - Ho,m
1 B | 4
2 40 4
3 455 | 4

0.25 -

0.50 - 0.75
\ | '

1

Dimensionless Parameter , d

FIG.A.20 Effect of Dimensionle Parameter, d,'on Factor of
Safety of the Typical Embankment Shown in Fig.5.7

by Bishop's Modified Method



204

Factor of Safety, F

Spencer's Method -

40 Fill
Curve | 4o |Hg,m
1 35 | 4
2 | 40 | &4
3 45 4
3.0
O
-2.0
-1.0
0,5 | S , -
0125 - 025 o 050 075
i i 1

Dimensionless Pcrame'ter, d

FIG.A.21 Effect of Dimensionless \Parameter, d, on Factor of
Safety of the Typical Embankment Shown in Fig. 5.7
by Spenger s Method .



Factor of Safety, F

205

Janbu's GPS Procedure

0125
1

4.0 Filt
Curve o° He,m
1 35 4
-3.0
-2.0
10
-0.5

050 075
1 - 1

Dimensionless Parameter , d

FIG.A.22 Effect of Dimensionless Parameter,d on Factor of
Safety of the Typical Embankment Shown in Fig.5.7
by Janbu's Generalized Procedure of Slices



Factor of Safety, F

20

Wedge Method

- Fill’

30 Curve 5 Hg,m .
1 35 4
2 | 40 4
3 45 4

050

0.75
|

206

FIG.A.23 Effect of Dimensionless Pérameter,d, on Factor of
Safety of the Typical Embankment Shown in Fig.5.7

by Wedge Method

\

 Dimensionless Parameter , d



207
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(for c=2 t/mz) ‘



Factor of Safety, F

217

Ordinary Method of Slice's' _

Fill
|Curve 9° | Hg,m
1 35 4
-10 12 40 4
3 45 4

-6

.2

075
- 1

225
1

.30

Dimensionless * Parameter , a

FIG.A.34 Effect of Dimensionless Parameter ‘,a, on Factor of
Safety of the Typical -Embankment Shown in Fig.5.10
by Ordinary Method of Slices

\



_Factor of Safety, F

218

Bishop's Modified -Method

Fill
Curve 9% | Hg,m
1 35 4
F10 - 2 L | 4
3 45 A

2

0.75 15
1

225
L

30

FIG.A.35 Effect. of Dimensionless Parameter ,a, on Factor of
~Safety of the Typical Embankment Shown in Fig.5.10

Dimensionless Parameter

by Bishop's Modified Method

\

a

4



Factor of Safety, F

219

Spencer's Method

-10

-6

0.75 15 225 . 30
i

Dimensionless Parameter , a

FIG.A.36 Effect of Dimensionless Parameter ,a, on Factor
of Safety of the Typical Embankment Shown . in

Fig.5.10 by Spencer's Metbod
\



Factor of Safety,' F

220

10

-6

Janbu's GPS Proc edﬁre

0.75 15
1

225

30

FIG A. 37 Effect of Dimensionless Parametr ,a, on Factor
of Safety of the Typical Embankment Shown in
Fig.5.10 by Janbu's Generallzed Procedure of

Slices

Dimensionless Parameter, a



Factor of Safety, F

‘ 221

Wedge Method

o Fill -
Cu‘rve ° He,M
1 35 4
-10 2 40 4
3 45 4

-6

30

225

15

~ Dimensionless Parameter , a

FIG.A.38 Effect of Dimensionless Paraméter ,a, on Factor
of Safety of the Typical Embankment Shown in .

Fig.5.10 by Wedge. Method
; - \



APPENDIX B



TABLE B.1 Factors of Safety Calculated for POSSlble Crltlcal Circles Shown in Flg 6.1
He = Hf = 4m, Y = 1.9 t/m°, ¢ = 35°
(for Constant Shear Strength of Foundation)

Circle 4 Ordinate of Lowest Point on the circle

centers
y(m) y=0 y=1 y=2 y &3 ‘Toe Circled
‘oMs | BM oMs | BM | oMs | @M oMs | BM ovMs | BM
12 11,972 |2.110 |1.979 |2.135 | 2.006|2:183 | 2.070 | 2.271 | 2.119 | 2.328

‘11,5, ] 1.959 [2.100 1.961 |2.121 | 1.980] 2.164 | 2.034 | 2.245 | 2.075 | 2.295

11 1.948 {2,092 {1.943 [2.109 | 1.955( 2.146 | 2.000 | 2.222 | 2.033 | 2.265
. 10.5 [1.938 [2.087 |1.928 [2.099 | 1.932| 2.131| 1.968 | 2.202 | 1.993 | 2.238
3 10 1.932 |2.084 ]1.916 |2.093 | 1.912| 2.120 | 1.938 | 2.186 | 1.956 | 2.216
y 9.5 |1.930 |2.085 |1.908 |2.090 | 1.896| 2.114 | 1.912| 2.177 | 1.924 | 2.201
9 1.932 {2.091 |1.905 {2.093 | 1.885| 2.114| 1.892| 2.177 | 1.899 | 2.195

8.5 1.941 2.102 |1.908 |2.103 § 1.882] 2.122] 1.883} 2.191 1.886 | 2.201

8 11.958 [2.121 |1.923 [2.121 | 1.892] 2.143) 1.890 2.225 1.890| 2.225
Ordinary Method of Slices, Minimum Factor of Safety = 1.882
Bishop's Modified Method, Minimum Factor of Safety = 2.084
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TABLE B.2 Factors of Safety Calculated for Possible Critical Circles Shown in Fig.6.1
He = Hp = 4m, ¥ = 2.0 t/m", ¢ = 40

(for Constant Shear Strengthvof Foundation)

0

. ’ " Ordinate of Lowest Point on the Cifcle
Circle :
centers y=0 . y=1 y =2 y=3 Toe Circle$
y(m) OMS BM OMS BM oMS BM OoMS BM OMS BM
12 1.904 | 2.047 11,927 |2.087 [1.980 |2.164 [|2.108 2.318 2.224 2.445
11.5 1.890 2.036 {1.906 |2.072 |1.952 |2.142 |2.069 [2.289 |'2.169} 2.401
11 1.877 | 2.027 {1.887 |2.058 |1.924 }2.123 |2.031 [2.262 2.115| 2.359
10.5 1.867 | 2.020 |1.870 {2.047 11.899 |2.106 |1.994 |2.239 2.062| 2.321
- : _ . 4
\ 10. 1.859 | 2.016 }1.855 §2.039 |1.875 |2.092 }]1.959 |2.220 2.012}) 2.287
ol
u 9.5 1.854 £2.015 }1.844 {2.034 |1.856 |2.083 |1.928 |2.207 1.966| 2.260
® —_— _ —
9 1.854 {2,018 |-1.838 2.034 1.841 [2.079 [1.902 }{2.203 1.927] 2.240
8.5 1.860 | 2.027 {1.838 |[2.040 }1.833 }2.084 [1.886 [2.212 1.898| 2.233
. 8 . 1.874 2.042 |1.848 |2.055 1.837 2.100 }{1.886 2.242 1.886f 2.242
| Ordinary Method of Slices, Minimum Factor of Safety = 1.833

Bishop's Modified Method, Minimum Factor of Safety

2.015
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TABLE B.3 Factors of Safety Caiculated for Possible Critical Circles Shown in Fig.6.1
‘He = Hf = 4m, Y = 2.1 t/m>, ¢ = 45°
(for Constant Shear Strength of Eoundation)

15 m

Circle . ‘ Ordinate of Lowest Point on: the Circle

centers y=0 y=1 y =2 'j =3 | Toe €ircles
y (m) oMs | BM oMS | BM | oMs | BM | oms BM | oOMS | BM
| 12 1.850|1.992 |1.888 |2.049 |1.972 |2.156 | 2.172(2.384 {2.363 |2.591

11.5° 1.834 | 1.980 |1.866 |2.032 |1.941 |2.132 | 2.128{2.351 [2.294 |2.534

11 1.819 | 1.970 |1.844 |2.016 [1.910 |2.110 | 2.085[2.321 |2.226 |2.479
10.5 |1.807 [1.962 [1.825 [2.003 [1.881 [2.090 | 2.043]2.293 [2.159 [2.427

10 1.796.11.956 {1.807 }1.992 |1.854 }2.073 | 2.002}2.269 2.094 12.379

9.5 1.789.1.952 §1.793 [1.985 |1.830 |2.061 | 1.96512.252 |2.033 {2.337

9 -11.787 ] 1.953 §1.784 |1.982 |1.811 }2.054 | 1.933)2.243 {1.977 [2.303

8.5 |1.790 |1.959 }1.780 }1.985 |1.798 |2.054 | 1.909|2.247 [1.931 |2.279

8 1.800 | 1.970 |1.786 1.995 ]1.796 [2.065 | 1.900}2.271 |1.900 }2.271
Ordinary Method of Slices,Minimum Factor of Safety = 1.780
Bishop's Modified Method, Minimum Factor of Safety = 1.952
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TABLE B.4 - Factors of Safety Calculated for Possible Critical Failure Surfaces Shown in Fig.6.2

. He = Hf,.= 4m (for Constant Shear Strength of Foundation)

’

Fill - ""Ordinate of Lowéét Point on the Failure Surface
Properties y=0 y=1 y =2 y =3
SM - 'GPS WM SM GPS WM SM. GPS WM ' SM ‘GPS WM -
Y = 1.9 t/ma' ' ’ - ) . l . 1. .
1.745}12.271 | 1.764 [1.695 NC 1.805 (2.141 NC 1.867 2.3471°2.2851 1.975
q)= 350 -
= 2 0t/m3 ; - ' :
Y= 2.0t/m% 5 4915011 1,726 |1.976 | nc |1.776 | wc |2.150 |1.855 | 2.164] 2.309] 1.994
¢ = 40°
_ 3 ~ : 1 .
Y= 2.1t/m 1.379( 2.162 |'1.690 ]1.918 NC 1.750 |2.084 NC 1.846 2.376 NC 2.019

9¢¢



TABLE B.5 Factors of Safety Calculated for Possible Critical Circles Shown in Fig.6.4
He = Hf = 4m, v = 1.9 t/m®, ¢ = 35°

(for Linear Variation of Foundation Shear Strength)

Circle Ordinate of Lowest Point on the Circle
centers _ —
3 (m) y=0 y = 1 y=2 y=3 Toe Cl?C1eS
' oMS | BM OMS BM OMS BM OMS BM OMS | BM
12 2.579 {2.740 |1.983 |2.141 }1.452 {1.590 ([1.095 | 1.175| 1.191 | 1.244

11.5° |[2.564 12.729 [1.965 [2.128 |1.430 '{1.574 [1.069 | 1.156 | 1.139 | 1.194

11 2.552 {2.721 [1.949 {2.117 |1.410 [1.560 [1.043 | 1.137 | 1.086 | 1.144
& 10.5 2.543 2.716 |1.935 {2,109 |1.390 [1.548 {1.017 | 1.119 | 1.033| 1.095
:S 10 2.537 [2.716 [1.923 |2.104 [1.373 [1.539 [0.990 | 1.102{ 0.979 | 1.047
L 9.5 2.537 |2.720 |1.916 |2.103 1f359 1.534 (0.963 | 1.087 | 0.927 ] 1.002
9 2.544 2.731 |1.915 }2.108 {1.348 ;1.533 |0.937 | 1.074 ] 0.876} 0.961
8.5 2.559 |2.751 {1.921 |2.120 |1.343 |1.539 |0.914 | 1.066 | 0.829 0.928
8 2.587 {2.780 {1.938 (2.143 |[1.348 [1.555 |0.895 1.064 0.791 § 0.907
Ordinary Method of Slices, Minimum Factor‘of Safety = 0;791»
Bishop's Modified Method, Minimum Factor of Safety = 0.907
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TABLE B.6 Factors of Safety Calculated for Possible Critical Circles Shown in Fig.6.4

He = Hp = 4m, Y = 2.0 t/m°, ¢ = 40°

(for Linear Variation of Foundation Shear Strength)

Circle _ Ordinate of Lowest Point on the Circle
centers ‘ ‘
y=0 vy=1 y =2 y =3 | Toe Circles
y(m) . .
OMS BM | OMS | BM oMs | BM oMs | BM | OMS BM
12 |2.481 |2.653 |1.931 |2.094 |1.455 |1.589 |1.186 |1.250 | 1.407]| 1.464
-11.5 * {2.465 {2.641 [1.911 [2.080 |1.431 [1.571 [1.156 [1.227 | 1.343 1,402
11 2.452 |2.632 |1.893 |2.067 |1.408 |1.555 |1.125 |1.204 | 1.278] 1.339
10.5 2,441 | 2.626 |1.877 [2.057 |1.386 |1.540 (1,094 |1.182 | 1.211| 1.276
\i 10 2.434 | 2.624 |1.863 |2.050 [1.365 |1.529 [1.062 [1.160 | 1.145| 1.213
~t - - :
" 9.5. 2.431 | 2.626 |1.853 |2.047 [1.347 {1.520 |1.030 {1.139 | 1.078| 1.152
" - - -
9 2.435 | 2.635 | 1.848 |2.049 |1.332 |1.516 |0.997 [1.121 | 1.012| 1.095
8.5 | 2.448(2.651 |1.851 {2.058 {1.323 |1.519 [0.966 [1.106 | 0.950| 1.044
2472 | 2.676 | 1.863 |2.077 |1.322 {1.530 [0.940 {1.098 | 0.895] 1.005

: Ofdinary Method of Slices, Minimum Factor of Safety

1}

" 0.895

Bishop's Modified Method, Minimum Factor of Safety = 1,005

fl
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'EZBLE B.7 Factors of Safety Calculated for Possible Critical Circles Showh in Fig.6.4
He = Hp = 4m, ¥ = 2.1 t/m > ¢ = 45 |

(for Linear Variation of Foundation Shear Strength)

‘Circle . . e '
Ordinate of Lowest Point on the Circle
centers
y (m) y=0 | y=1 o y=2 y =3 |Toe Circles
OMS BM OMS BM OMS BM OMS BM OMS - BM
12 2.376 {2.552 |1.870 12.029 |1.449 11.564 1.265]1.296 | 1.423 | 1.446
11.5 ., 12.358 |2.538 |1.846 [2.011 |1.421 1.542 1.22911.265 ) 1.358 |1.383
11 2.341 |2.525 |1.824 [1.994 [1.392 [1.521 | 1.1921.234|1.294 |1.322
10.5 2.326 [2.516 [1.804 [1.980 [1.365 [1.501 | 1.1551.204 |1.230 |1.264
Al 10 |2.315 [2.509 |1.785 {1.968 [1.338 [1.483 |1.117]1.175]1.168 | 1.210
— - - . . ’
I 9.5 - 12,308 }2.506 |1.770 }1.959 {1.313 [1.467 1.07911.149}1.109 | 1.163
E : ; -
2.306 [2.509 {1.759 [1.955 {1.291 {1.455 | 1.0421}1.125 1.055{1.125
8.5  12.312 |2.517 |1.753 |1.955 |1.272 [1.447 |1.0071.105 | 1.008 | 1.100
8 “12.327 }2.533. ]1.756 ]1.963 |1.260 |1.445 ] 0.975}1.093]0.975 1.093
Ordinary Method of Slicés, Minimum Factor of Safety = 0.975
Bishop's Modified Method, Minimum Factor of Safety = 1.093

62¢



TABLE B.8 Factors of Safety Calculated for Possible Critical Failure Surfaces Shown in Fig.6.2

He = Hf = 4m (for Linear Variation of Foundation Shear Strength)

I3

6rdinate of Lowest Point on- the Tailure Surface

Fill
Properties y =0 y=1 y=2 y=3
SM GPS WM SM GPS WM SM GPS WM "'SM "GPS WM
y=1.9t/n] - ; : ' . . , P L o
b= 35°. 2,402 13.099 | 2,183 1.846 NC 1.805 }1.657 | NC |1.423 1.120 |1.148 1.018
Y =2.0t/m? ‘ : - . .
¢ =40° 3.013 [3.005 |[2.121( 2.411] NC 1.776 11.821 {1.714 |1.416 }1.223 [1.151 {1.033
Y=2.1t/m?| . '
b =450 2.275 12.950:|2.087 | 1.993 | NC 1.750 11.615 {1.742 |1.411 }1.200 -j1.155 {1.047

0z
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