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ABSTRACT 

Automatic speech recognizers which were once considered as Ita dream 

I of mad scientists" have shown considerable success in the last decade. 

What has made this success possible has been the use of sophisticated 

mathematical tools along with speech knowledge at various levels. Future 

success seems to depend on the exhaustive use of the latter. 

This thesis is an attempt at using prosodic information, which 

conveys speech knowledge at various levels, in recognition systems. 

Programs have been developed to extract physical correlates pf prosodic 

features from the speech signal. Results of analyses with Turkish words 

and sentences point out some methods to detect linguistic cues from the 

'speech signal. Based on these results, strategies are outlined for a 

Turkish speech recognizer .. Some of these are integrated in an isolated 
j 

word recognizer and improvements are obtained. 

-. \ ..... 
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Son on yllda soz tanllna alanlnda biiyiik bir atll1m yapllml~, somut 

basarllar elde edilmistir. Bu basarlnln altlnda gelismis matematik 

modellerin kullanlml ile birlikte insan kavramaslnln <tesi tli 

evrelerindeki ses bilgisinin soz tanlYlcllara uyarlanmas1 yatmaktadlr. 

Gelecekteki basanlara ses bilgisinin' daha <tok kullanllmasl ile 

ulaSllacagl anlaSllmaktadlr. 

Bu tezde <tesitli diizeylerde ses bilgisi taSlyan buriin bilgisinin soz 

tanlmadaki kullanlm alanlar'l arastlnlmaktadu. Biirlin ozelliklerinin 

fiziksel kars lilklarl nl sesten elde etmek i<;:in izlenceler 

gelistirilmi$tir. Degisik sozciik ve tiimcelerle yapllan <;:oziimlemeler 

sonucunda dilbilimsel yapllarln bulunmaSl i<;:in baZl yordamlar ve 

bunlarlnTiirk<;:e 'SQZ tanlYlcllarda kullanlm yollarl onerilmi$, baZl 

yordamlar ayrlk bi~ soz tanlYlclda kullanllmlS ve ilerlemeler elde 

edilmi$tir. 
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I. INTRODUCTION 

Speech is the basic device humans use for . communication. The 

information to be transmitted is first encoded ·at a discrete level 

according to the rules of the language used by the spea~er, and then, 

through the complex process of physiological speech production, this 

information is converted to an acoustic signal. This signal, when 

received by another speaker of the same language, is converted to 

another discrete sequence and decoded to extract the information 

transmi tted. 

SpeeCh production mechanism in humans is better understood than the 

perception mechanism. There are many mathematical models of speech 

production which enable the' construction of synthesis systems. It is 

generally accepted·that the message is conveyed both locally by spectral 

features and globally, by a hierarchy of structural features. The 

relationship of these spectral and structural features to linguistic 

units and concepts has been thoroughly investigated and fairly well 

understood. 

The perception mechanism, on the other hand, .is not fully understood 

yet. Kodels that use abstract formalisms instead and physical and 

physiological correlates are used.' 

Automatic speech recognition is the process of transforming the 

acoustic speech waveform into.a sequence of discrete representations and 

. assignment of' meanings to these sequences by a machine. The first 
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attempts for machine recognition of speech date back some 30 years. The 

first attempts ordinarily reflected speech production viewpoints, for 

this was the best understood. These syst~ms could recognize with a fair 

rate of performance a small vocabulary of words spoken in.isolation by a 

trained speaker. With the advent of mathematical tools in the 70' s, 

systems capable of recognizing larger vocabularies of words independent 

. of the speaker with good rates of performance were built. Recent trends 

have added successes in recognition of continuous speech such as strings 

of digits and spoken sentences related to a restricted task domain, and 

the technology is currently expanding. rapidly . What has made this 

success possible may have been the integration of more speech knowledge 

into the system. The main trend in some recent systems (21] is making 

use of all linguistic information at various levels. 'Among these, the 

prosodic level is one level which gives cues to the other levels as 

well, and is easy to extract from the acoustic waveform. 

Prosodic features are parts of the way humans encode information in 

the speech signal. As contrasted to the. sounds which occupy short time 

segments each, prosodic features are of longer duration, and they are 

imposed on the sounds that follow each other. For this reason, they are 

sometimes called "suprasegmentat features". The main prosodic features 

are stress, to~e, intonation, duration and harmony. These features have 

functions specific to the language. 

Many recognition systems have attempted to use prosodic information 

in their systems, main~y for th~ purpose of error detection. When used 

in this way, prosodic .information can help improve the performance of a 

system, but to fully take the benefit of this information, it should be 

used. much earlier in the recognition process, at the step of 

"\' . 
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hypoithesization. Some strategies for this ta~k were outlined [22], [34] 

and a part of these were integrated in the Sperry Univac recognition 

system (35]. There is still much to do in this field. It is agreed by 

the specialists of this field that prosodic cues to linguistic 

structures needs further investigation and effort to use this knowledge 

in real systems [36]. 

The purpose of this thesis is to investigate the prosodic features 

of Turkish, develop algorithms for their detection and outline 

strategies to incorporate this knowledge to automatic recognizers of 

Turkish speech. For this purpose, algorithms have been developed to 

detect the main physical correlate of prosodic structures, namely, 

fundamental frequency of speech. With the help of these algorithms, some 

linguistic structures of Turkish are investigated and some strategies 

developed for use in an isolated word recognition system. Other 

strategies are suggested for use in connected recognition systerris of 

Turkish speech. 

The speech production and perception mechanisms in humans will be 

summarized and two models will be given in Chapter II. In Chapter III, 

some units and rules of the Turkish linguistic system will be 

summarized. The concept of. prosody will be introduced, and prosodic 

features will ·be discussed. Chapter IV presents the. description of 

algorithms to detect fundamental frequency and energy. In Chapter V, 

after a review of some concepts in ASR (Automatic Speech Recognition), 

use of prosodic features in recognition systems is discussed. Chapter VI 

is a presentation of ·the results and Chapter VII, conclusions and 

possible areas of future research in this field. 

, ." .. ..,. .. \ 
. / -' ~ .' 
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II. THE SPEECH SIGNAL 

Speech signals are composed of a sequence of sounds. These sounds 

and the transitions between them serve as a representation of 

information. In processing speech signals to extract information, it 

would be useful to have knowledge about the production and perception of 

speech in humans. 

2.1. SPEECH PRODUCTION 

2.1.1. Human Natural Speech Production 

The accoustical speech waveform is an accoustic pressure wave which 

originates from the voluntary movements of the human vocal system 

<Figure 2.1).· Speech is the. acoustic wave that is radiated from this 

system when air is expelled from the lungs and the resulting flow of air 

is perturbed by a constriction somewhere in the vocal tract.' During the 

generation of voiced sounds,. the air pushed toward the lips causes the 

vocal cords to .open and close at a rate dependent upon the air pressure 

in the trachea and the length, thickness and tension of the vocal cords. 

The greater the tension, the higher the perceived pitch of the voice. 

The opening between the vocal cords is defined as the glottis. The 

subglottic. air. pressure and the time variations in the glottal area 

determine the glottal volume velocity waveform which defines the driving 

function to the vocal tract. 

'.,. ~ \ 
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Palate 

Alveolar ridge 

Figure 2.1. Anatomical structures involved in speech production 

The vocal tract is a nonuniform accoustic tube which extends. from 

the glottis to the lips and varies in shape as a function of time. The 

components causing .this change are the lips, jaw, tongue, and velum. For 

example, . the cross sectional area of the lip opening can be varied from 

o c~ to about 20 c~. The nasal cavity which begins at the. velum and 

ends at the nostrils constitutes .an additional accoustic tube for sound 

transmission used in the generation of the nasal sounds. As sound 

prop~gates in the vocal and nasal tracts, its frequency spectrum is 

shaped by the resonances of these tracts. The resonance frequencies of 

the vocal tract are called formant frequencies. The formant frequencies 

depend upon the shape and dimensions of the vocal tractj each shape is 

characterized by a set of formants. Different sounds are formed by 

varying the shape of the vocal tract. Thus, the spectral properties of 

the speech signal vary with time as the vocal tract shape varies. 
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2. ;. :z._Dig~tal model of the speech _Signal 

_ Detailed mathematical representations of the accoustics of speech 

production have been derived [1], [2]. Tliese models mimic the physics of 

speech production. - Here, we will consider a slowly time varying linear 

system excited by a signal whose basic nature changes from-quasiperiodic 

pulses for voiced speech to random noise for unvoiced speech. 

PITCH PERIOD 
-I 1 Au 

______ ~______ ___________ 1 

1 Impulse 1 1 Glottal 1 + 
1 train 1-----1 pulse I--®--
I generator 1 1 model 1 
------------- 1 G(z) 1 

VOl CEO/UNVOICED 
SWITCH 

VOCAL TRACT PARA~ETERS 

---~--------+-- -------------1 Vocal 1 1 Radiation' 1 
------1 Tract model 1-----1 ~odel I----i 

1 1 V(z) 1 1 R(zf 1 

1 --------------- -------------_____________ 1 

1 Random 1 1 
1 noise I--®--
1 generator 1 t 

- ------------- 1 

Figure 2.2. General discrete-time model for speech production 

In the model shown in Figure 2.2, the changing mode of excitation is 

modelled by switching between the voiced and unvoiced excitation 

generators. In the case of voiced speech, the impulse train generator 

. produces a sequence of. unit impulses which are spaced by the desired 

pi tch period-. This signal in turn excites a linear system whose impulse 

response g(n) has the desired.glottal wave shape. For unvoiced sounds a 

source of random noise is all that is required. 
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The effect of the vocal tract is modelled by an all-pole digital 

filter V(z) which has the formants as its poles. V(z) relates volume 
-. 

velocity at the source to volume velocity at the lips and finally, the 

radiation model takes care of the radiation at the lips. 

The parameters of the model are assumed to be constant·· over time 

intervals typically 10-20 ms. long. This model is quite appropriate for 

sounds whose parameters change slowly with time, namely, vowels. It 

fails to represent voiced fricatives, for which both sources are 

involved at the same time. A second limitation is in the representation 

of nasals, because of the lack of zeros in V(z). Against all its 

limitations, this is a model that works sufficiently well and is widely 

used. 

2.2. SPEECH PERCEPTION 

Perception of .speech in humans is a complicated processj it involves 

the perception of accoustic quantities at the ear and transformation of 

those into learned quantities like phonemes, syllables, words, phrases, 

sentences, and the association'of those with certain meanings. We will 

not study these individually but will see a model [2] which will give a 

view of the process of speech perception. 

The development of a model for human speech perception is the same 

problem as the development of an automatic speech recognizer. The 
. I 

proposal for such a model involves the hierarchial structure shown in 

Figure 2.3. The model is envisioned as a chain of transformations in 

which each stage acts as an information filter to reduce the 

dimensionality of the signal .. For example, the first three blocks 



transform an accoustic signal into a succession of words where each word 

is described by a set of lexical and grammatical features and by 

prosodic characteristics. Syntax and finally semanti9 analysis complete 

the transformations ne~essary for message understanding. The natures of 

the transformations are not known, but perceptual exper~~nt~ suggest 

certain characteristics of the first two stages. 

ACOUSTIC 
FEATURES 

__ WORDS 
1 
1 

SPEECH . l-A~dit~;Y-l-:11-Ph~~;ti~-1 l-H~;-Ph~i~-gi~;i-l ~ l-S-y~t;~ti~-l l-s;;;~ti~-l ----1 . --1 --1 --1 INPUT analysis -!1 analysis analysiS analysis analysis 
------------ ----------~- t ----------------- ------------- ------------

1 
1 

1_-
LINGUISTIC 
DISTINCTIVE 
FEATURES 

Figure 2.3. :Model of stages in speech perception 

The peripheral aUditory analysis is such that features of the short-

time spectrum, 1. e. changes in spectral distribution, periodicity (or· 

non-periodicity) and intensity of the input signal are preserved. This 

is shown by experiments on perception of changes in pitch, . formants or· 

i.ntensi ty of speech and speech-like sounds. That this information is 

reduced in dimensionality for later processing is supported by 

experiments which show that consonant perception is influenced only by 

the rate and direction of the change in formant transitions, and not by 

their absolute values. Similar perceptions of the direction and rate of 

change of fundamental frequency have also been observed in other 

expe:r:iments. 
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The reduction of dimensionality performed in the phonetic analysis 

is likely to be a feature analysis than one of comparison to a stored 

reference pattern. This view is supported by data on syllable 

recognition where features such as manner of production may be correctly 

perceived while place of production is perceived incorrectly_--Similarly, 

prosodic features may be perceived without discrimination of phonetic 

factors. Experiments show that some phonematic features can be 

recognized and produced even before a listener hears a whole syllable. 

Experiments also point out that the phonemic analy§is window is 

shorter than average word length. In an experiment with nonsense 

syllables, it was observed that a man cannot remember sequences longer 

than 7 to 10 syllables. This fact gives an idea of the size of the time 

window through which the message is seen by the morphological analysis 

stage. 

On the other side it is clear that a listener does not make seperate 

decisions about-every phoneme in continuous speech. The units with which 

he operates is likely to -correspond to words or phrases. Information 

handed from the morphological analysis to the syntactic· and semantic 

analysis. can, consequently be rE?duced in dimensionality to this extent i 

auditory segments need not coincide with the phonemes. 

Experiments on recall show that a listener remembers phonemes as a . 
set of features. Therefore, the phonemic information at the output of 

the phonetic analysis _ block should be represented by abstract, 

distinctive features. Several different accoustic features may contain 

information about one and the same distinctive feature. 
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III. THE SOUND SYSTEM 

The arrangement of the sounds of speech is governed by the rules of 

language. The study of these rules and their implications in human 

communication is the domain of linguistics. In processing speech signals 

to extract information, it is helpful to have as much knowledge as 

possible about the way in which information is encoded in the signal, so 

it will be useful to give a brief review of the classification and 

arrangement of the sounds of Turkish. 

3.1. PHONEMES 

Most languages can be described in terms of a set of distinctive 

sounds, or phonemes. The phoneme is an abstract symbol that is used to 

. represent the total collection of sounds that function similarly and do 

not make meaningful distinctions among themselves within a given 

language. With this definition, a phoneme encompasses a group of sounds, 

each called an allophone, that do not cause a change in the meaning of a 

word when substituted for each other in that word. The stUdy and 

classification of these sounds is called phonetics. For our purposes it 

is most appropriate to discuss the acoustic characterization of the 

various sounds with. the place and manner of articulation. 

The sounds of Turkish can be.broken into phoneme classes as shown in 

Table 3.1. (For convenience, letters of the alphabet have been used 
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instead of the actual phonemic symbols). The four broad classes of 

sounds are vowels, diphthongs, semivowels and consonants. Each of these 

classes may be broken down into sub-classes, which are related to the 

manner and place of articulation of the sound within the vocal tract. 

~ vowels + y 
EDm:t. ~ 
lei lal 
Iii 111 
101 101 
lui. lui 

Affricatives 
Icl 

Stops 
Ibl Ipl 
Idl It I 
Igi Ikl 

lei 

Table 3.1 Phonemes of Turkish 

3. 1. 1. Vowels 

Fricatives 
If I Ivl 
lsi Izl 
1,<;>1 Ij I 
Ihl 181 

Vowels are produced by exciting the vocal tract with quasi-periodic 

pulses of air caused by the vibration of the vocal cords. The position 
. . 

of ~he tongue, jaw, and lips changes the cross sectional area of the 

vocal tract, which, in turn determines the resonant frequencies of the 

tract (formants), and thus the sound that is produced. 

In Turkish, vowels are classified according to (see Table 3.2): 

- Angle of the jaws : wide (a,e,o,o) or close (1,i,u,u) 

Shape of the lips rounded (o,o,u,u) or unrounded(a,e, 1, i) 

- Position of the tongue back (a,l,o,u) or front (e,i,o,u) 
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I 
I UNROUNDED ROUNDED 
I 
I I 
I WIDE CLOSE WIDE I CLOSE 
I I 
I I 

BACK I A I- 0 I U --_.'.'-
I I 
I I 

FRONT I .. .. 
I E 0 I U 
I I 

Table 3.2 Vowels of Turkish 

3.1,2, Diphthongs 

A dipthong is a gliding monosyllabic speech item that starts at or 

near the articulary position for one vowel and moves to the position for 

another. The dipthongs are produced by varying the vocal tract smoothly 

between vowel configurations. In Turkish, vowels gliding to Iyl can be 

classified as dipthongs [4]. (e. g., oy, bay) 

3.1.3. Semivowels 

Semivowels are transitional, vowel-like sounds _ which are 

characterized by a gliding transition in vocal tract area function 

between adjacent phonemes. Iyl is a semivowel of Turkish and its nature 

is influenced by where it occurs; it is voiced in the beginning and in 

the middle of words, and.semi-voiced in the end. (e.g., yine,iyi,say) 

3.1.4. Nasals 

The nasal consonants 1m! _ and Inl are produced with glottal 

exci tation and the vocal tract constricted at a point along the oral 
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paasageway with the velum lowered so that the nasal tract is coupled. The 

effect of this coupling is to produce zeros of the transfer function of 

the vocal tract. Furthermore, nasal consonants and vowels preceding or 

following nasal consonants are characterized by resonances which are 

spectrally broader, due to the fact that the nasal tract -ohas-oa different 
r 

area function. The two nasal consonants are distinguished by the place 

along the vocal tract at which a constriction is made. For ImI, the 

constriction is' at the lips, and for Inl, the constriction is at the 

back of the teeth. 

3.1.5. Fricatives 

Fricatives are produced by exciting the vocal tract by a steady air 

flow which becomes turbulent in the region of a constriction. For the 

voiced fricatives, the vocal cords' are also vi bratingi two excit~tion 

sources are involved in their production, thus, the spectra of voiced 

fricati ves displays two distinct components. lvI, Izl, I j I, I'g/ are the 

voiced fricatives and If/,o/s/,/~/,/hl are the voiceless fricatives of 

Turkish. The location of the constriction serves to determine which 

fricativeo sound is produced. The places of constriction are, lips and 

teeth for Ivl and If I , near the middle of the vocal tract for Iz/oand 

lsI, alveloar ridge and the palate for Ijl and 19/, back of the tongue 

for I~/,- and the back of the vocal tract for Ih/. 

3.1.6. Stops 

Stops are transient sounds produced by building up pressure behind a 

constriction. in the oral tract,_ and suddenly releasing the pressure. 

During the period when there is-a total constriction in the tract there 
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is no sound radiated from the lips. In voiced fricatives, the: vocal 

cords are able to vibrate during this closure and a small amount of low 

frequency enrgy is radiated through the walls of the throat. For 

voiceless fricatives, the vocal cords do not vibrate, and follo.wing the 

period of closure, there is a brief interval of friction-f~llowed by a 

period of aspiration. Since the stop sounds are dynamical in nature, 

their properties are highly influenced by the vowel which follows the 

stop consonant. Ibl,ldl and Igl the are voiced stops and Ipl,ltl andlkl 

are the voiceless stops of Turkish. The places of constriction are, lips 

for Ibl and Ipl, alveloar ridge for Idl and Itl, and the velum for Ig/ 

and Ik/. 

3.1.7. Affricatives 

Affricati ves can be modelled as the concatenation of a stop and a 

fricative. There are two affricatives in Turkish, Icl, voiced, and IQ/, 

voiceless. The place of constriction for both is at the llliddle of the 

oral tract. 

3.1.8. Flaps 

Irl is produced by flapping the tongue to the front of the oral 

cavity. It is voiced, and the place of constriction is at the back of 

the teeth. 

3. 1..9. Laterals 

The voiced lateral III is produced by flow of air on both sides of 

the ·tongue. ,The place of constriction is at the back of the teeth. 



15 

3.2. SYLLABLES 

In Turkish, we can roughly define the syllable as a unit containing 

one vowel only, which may be preceded and followed by a number of 

consonant units. In Turkish, all combinations of 0 to 1 consonant uni,ts 

preceding the vowel unit with 0 to 2 following are found. However, the 

types of consonant combinations are restricted to the order of their 

appearance in a word; initial,middle, or final. (v: vowel, e:consonant): 

.v 
'ev 

ve 
vee 

eve 
Gvee 

0, 0- (yun), u- (yum) 
bu, su, ge-(lin) 
a1, at, in-(dt> 
a1t, ilk 
gir, tut 

: kurt, sarp 

Table 3.3. Turkish initial syllables 

ve (bil-di)- (g) in- (den) 
ev (sej-:-vi-ne-mi-yo- (rum) 
eve .(se)-vin- (ce) 
evee (u)-{)urt- (ma) . 

Table 3.4. Turkish middle syllables 

V (ge1-di)-gi 
ev (ol)-du, (git)-ti 
eve (ge)-len, (ya)-tak 
evee ,(u)-tany , (se)-vin y 

Table 3.5. Turkish final syllables 

'There. are other types of syilables, usually in loan words, of the 
, . 

form eev, eeve,' or eeev, but these are rather rare,. as indicated by the 

frequency of occurance data in Table 3.6. The data in this table are the 

results of a study on a Turkish text consisting of 59000 syllables [15]. 
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Syllable type Frequency of occurance 

V ,4.950 % 
ve 4.201 % 

ev 52.912 % 
vee 0.124 % 

eve 37.144 % 
evee 0.502 % 

eev 0.070 % ---~.--

eeve 0.097 % 
eeev 0.002 % 

Table 3.6. Frequency of occurance of syllables in Turkish 

In 'the- first syllable of a word, any of the 8 vowels may appear, 

while in the second syllable, 4 of them (0, 0, (u, u» are ruled out 

because of vowel harmony. In the suffixes, the number of vowels which 

may appear further reduces to two groups within which the vowel may be 

predicted (with the exception of the suffix - yor) • If consonants are 

considered, in the initial position of a syllable, the number is 20, 

while in the final position 5 are ruled out (b, c, d, g and j). In the 

suffixes, these numbers further reduce to give 15 consonants in the, 

initial position and 11 in the final position. It has been observed that 

in the phonemiC represantation of polysyllabic words, there is a 

redundancy of about 50 % [4] . 

. In many languages, syllable division is not uniquely defined. In 

Turkish, rules for syllable division are clearly set. In general, there 

will be as many syllables as vowels in a word. For syllable division in 

polysyllabic words, the e unit is taken with the following V, e.g. ev-

eve. Where two es come together, the syllable division comes between 

them, e.g. eve-eve and 'when three es come together, the division comes 

between the second and third e of the group, e.g. evee-eve. 
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3.3. PROSODY 

Although much of the message in speech is conveyed by the segmental 

phonemes, additional .information is carried by the suprasegmental 

phonemes. Prosodic features, or, suprasegmental phonemeELar:e...properties 

of articulation that encompass more than one phoneme. Duration, stress, 

tone, intonation and harmony are the prosodic features used in Turkish. 

The physical parameters of the speech wave which signal the prosody of 

an utterance are the durations and intensities of the syllables, and the 

fundamental frequency contours. 

3.3.1. Duration 

Each sound has a certain average duration, but this may change 

according to the environment of that sound. The consonant foll~wing a 

vowel influences the vowel duration, with voiced consonants in 

particular causing a lengthening of their preceding vowels. In Turkish, 

<g) is a special case: It is considered not as a sound but as a 

·lengthening of the vowel it is next to, e.g. the duration of lal is 

short in. (ak,yak) and much longe:r: in (dag,yaH"). 

Another factor which mu·st be taken into account when predicting 

phonetic durations is the stress of the syllable. A stressed IiI is 

longer than an unstressed IiI. Similarly, at fast speaking rates, 

stressed syllables will. be somewhat shorter, and unstressed syllables 

will· be substantially shortened. 



16 

3.3.2. Stress 

Stress is associated with the relative prominence of a syllable in 

speech. In Turkish, stress on base forms is usually on the final 

syllable with quite clearly defined exceptions [14],[16]-[20]. 

One common class of exceptions is the names of pI ace s-;--When -a co~on 

word which has stress on the last syllable is used as a place name, the 

location of the stress is changed, the new location being usually the 

initial syllable: 

ulJJ.s. 

kumla 

lllus 

K1.urJla 

Another class of exceptions is the loan-words. In ~his class, stress 

is usually placed on.the middle syllables: 

a.b!2ne 

pemPi1ti 

siMJIJa 

9iko.l.iJ..ta 

With inflected formsl stress usually stays in the final position, 

S01llI.lll. 

sOl11unlill:. 

somunlan 

somunl arlIUZ. 

somunlarlnlzsk! 

with the exception of some suffixes (-ca, -yor, -mi, etc), which cause 

the placement of stress on the syllable preceding them: 

.yapaS&tir 7i1J2mayacak 

yaJll.Yor 7i1J2!Dl yor 

Note how stress becomes a distinguishing feature for the two 

homonyms "konu!?J11ii" and "ko~JIJa". 

The physical .correlates of stress are duration, intensity and 

funda.!Jl9ntal frequency. "In a sentence, the syllable with the longest 

duration and highest fundamental frequency is perceived as stressed. 
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3.3.3. Tone and intonation 

Tone refers to the pitch variation . over a single syllable. In some 

languages called tone languages, there are several pitch levels or 

patterns, and the "lexical meaning of a word changes according to which 

tone is used. For example, certain words which are-represented by 

identical phonemic strings will have different meanings depending upon 

whether they are spoken with a rising or falling pitch. 

There are 12 patterns of pitch variation which usually appear in 

one-word sentences [4]. These are: 

-decrease from low pitch -increase with large slope 

-decrease from high pitch -decrease/increase 

-decrease from middle pitch -increase/decrease 

-decrease with pauses -decrease/increase/decrease 

-increase with pauses -neutral tone 

-increase -long neutral tone 

These patterns are usually associated with the mood of the speaker, 

such as interest, indifference, anger, 'confusion, impatience, etc. One" 

can give a positive meaning t? a negative sentence or express a question 

with a declarative sentence using the appropriate tones. 

Intonation is the pitch variation over the whole sentence or a part 

of it. In all languages, intonation has a grammatical or syntactic 

function. The distinction. between a statement and a question, between a 

question and a command and so on, can be signalled by a difference of 

pitch contour. The grammatical fUnction of intonation is an important 

part of language" structure, part of the common knowledge shared by 

speakers of the language. 

In Turkish, for declarative sentences and YES/NO questions 
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(questions with the suffix -1111), a falling pitch at the end of the 

sentence is observed: 

Bu kitabl okudu111. t 

Denize girdin 11li?t . 

While for questions with interrogative words (ki111, ne, hang4",··etc.) and 

and the phrases (deHil 111i?, oyle 111i?) , pitch increases at the end. 

Gnu sevdiniz, degil 11li?t 

Bunu ki111 getirdi?t 

Another function of intonation is connected much more with 

individual psychology. For example, a decreasing pitch contour at the 

end of the sentence indicates the end of conversation, while an 

increasing pitch contour at the end of a sentence would mean·that more 

is 'going to be said. 

Babahleyin (t okula ) gitti111. 

Sabahleyin okula (gitti111 t). Derslere ( girdim 0 .•. 

Intonation patterns, like stresses,. serve also to designate certain 

syllables as prominent relative to others. This prominence mayor may 

not coincide with that of the stresses. The interference of intonational 

phenomena and stress :may be con.fusing, but it seems to bring one very 

interesting peculiarity. Turkish sentence rythm seems to assign 

approximately equal time to each syllable as contrasted to the Germanic 

system which seems to assign equ~l time to stress groups clustered about 

each successive strong stress [5]. 

3.3.4 Vowel harmony 

Any phonemically based analysis of Turkish recognizes eight vowels: 

fa, e,l, i, 0, 0, u, uf. Anyone of these vowels may occur in monosyllabic 
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words. In words of more than one syllable, however, there are systematic 

restrictions on the co-occurance of the several vowel phonemes. Thus, in 

words of native Turkish origin, front vowels, li,u,e,o/, and back 

vowels, 11, u, a, 0/, do not occur together. And then, there are the' 

rounded vowels lo,o,u,u/, and unrounded vowels la,e,1~.!! a word 

contains an unrounded vowel in its first syllable, it cannot conta'in 

rounded vowels in its other syllables (However, there is a clearly 

defined class of exceptions to this case, e. g. havlu). Moreover, the 

phonemes 101 and 151 occur generally only in the first syllable of a 

word (with the exception of the suffix -yar). This is generally called 

"vowel harmony" in Turkish. A phonemic represantatton of polysyllabic 

words is therefore highly redundant, since it represents eac~ vowel in 

the structure as a selection from eight contrasting units, whereas all 

but two of the eight vowel phonemes are excluded from occurance by the 

occurance of any other given vowel phoneme of the word. 

A different approach to this problem is by prosodic analysis which 

introduces two binary prosodic contrasts of frontlback and 

rounding/non-rounding, and admits only two contrasting segmental 

phonematic units, high/low. ,This way, a, much more economic and 

satisfying description of the language is obtained-one based on the 

patterns actually operative in the language [7J. 

Let us clearly define the prosodies: 

F:B prosody characterizing words having frontlback vowels and 

consonants with palatalizationlwithout palatalization. 

R: If prosody' where 'there is lip labiali ty <lip ronding) throughout 

the articulation of the whole syllable, e. g. kal Ithere is absence of 

labiali tythoroughout the whole syllable or where labiali ty is initial 
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or final only, e.g. bal. 

A two-term vowel system is set up by defining: 6 (denoting openness) 

and r (denoting closeness). Now rules can be defined as: 

F,B and U prosodies. operate over the wnole word with 6 or r, e.g. 

bekletmek UF: C6C-C6C-C6C istek UF: rC-C6C 

azalmak UB: 6-C6C-C6C ~l~nmak UB: r-crc-c~c 

R prosody operates with r in all syllables of the word but with 6 

only in the first syllable, e.g. 

yolumuz RB: C6-Cr-Crc 

onD RF: 6-Cr 

yDllar~1Dl.z 

onunden 

RB: C6C-C6-Cr-Crc 

RF: 6-CrC-C6C 

Another advantage of prosodic representation is its use in 

predicting the form of suffixes. There are six type-2 proso.dies, and 

these and the type-l prosodies stated above enable one to handle all 

suffixed forms of the word [7]. 

The prosodic approach, by rej ecting the phonemicist view that the 

phonology of any language is a uniform system to be analyzed 

independently of its grammar, considers the phonology of a language as a 

set of subsystems, each relevant for different phonological structures. 

The segmentation in prosodic. ~nalysis reveals a horizontal type of 

segmentation which has the advantage of preserving the syllabic pattern 

of the language·analyzed. Turkish seems to exhibit such a structure that 

by applying prosodic analysiS, both clarity and economy of phonological 

elements is achieved in its representation. For this reason, it has 

repe~tedly been an example for phonologists adopting prosodic analysis 

[7] ,[ 13] . 
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IV. EXTRACTING ACOUSTIC PROSODIC FEATURES 

In this chapter tools developed to measure accoustic prosodic 

parameters like pitch, energy, and duration will be discussed. Among 

those, pitch is the most difficult parameter to measure, and many 

methods have been developed for its extraction from the accoustic speech 

waveform. M:easurement of energy and duration is a trivial task, but· 

rather sophisticated approaches must be used to incorporate these 

findings to explore the underlying prosodic structures. 

4.1. PITCH PERIOD DETECTION METHODS 

As discussed in· the previous chapter, the speech waveform can be 

modelled as the response of the vocal tract filter to a source which is 

a periodic sequence of pulses during voiced segments or a random noise 

during unvoiced ·.segments. The periodic pulses occur as a consequence of 

the opening and closing of the glottis, and the frequency of the 

. periodicity is often referred to as the pitch .. 

Accurate and reliable measurement of the pitch period of a speech 

signal from· the accoustic pressure waveform is often difficult for 

several reasons: 

-The glottal excitation waveform is not a perfect train of periodic 
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pulses. Keasuring th~ period of a speech waveform, which varies both in 

period'and the detailed structure of the waveform within a period can be 

quite difficult. 

-In some instances the fqrmants, of the vocal tract can' alter the 

'structure of the glottal waveform so that the actual pitch .p~riod is 

difficult to detect. 

-Distinguishing between unvoiced speech and low-level voiced speech, and 

the detection of the pitch period during transitions between voiced and 

unvoiced sections is often hard. 

A pitch detector is a device which makes a voiced-unvoiced decision, 

and during periods of voiced speech, provides a measurement of the pitch 

period. As a result of the numerous difficulties in pitch measurements, ' 

many pitch detection methods have been developed. Some methods, which 

have been used in this study will be discussed here. 

The usual realization of a pitch detector may be considered to be 

consisting of three main blocks which are passed through successively: 

-the preprocessor 

-the basic extractor 

-the postprocessor 

The function of the preprocessor is data reduction in order to 

increase the ease of' pitch extraction. Some examples of preprocessing 

are computation of the AMDF, computation of the cepstrum, etc. The basic 

extractor operates on this altered signal to convert it into a sequence 

. of pitch estimates. The postprocessor is a, block which performs the 

tasks of error' detection and correction, smoothing of an obtained 

contour, time-to-frequency conversion and display of the parameters. 
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~. 1.1. Autqcorrelation Method 

One of the difficulties in pitch period estimation is the effect of 

the formant structure on measurements related to the periodicity of the 

waveform. Thus, it is desired to remove the spectral shaping in the 
, 

waveform due to the formants. A way to achieve this spectral flattening 

is using centre clipping by which signal values below the clipping level 

are set to zero and those above the clipping level are offset by the 

clipping level. If the Clipping level is appropriately chosen, most of 

the waveform structure due to the formants can be eliminated. AUTOe [44] 

uses this approach combined with autocorrelation analysis. <Figure 4.1) 

1 1 
____ I FIND PEAK OVER 1 _________________ _ 

1 1 FIRST PORTION 1 _____ 1 
1 1 ________________ 1 1 SET CLIPPING 
1 __________________ 1 

1 1 1 _____ 1 LEVEL 1 
1 ___ 1 FIND PEAK OVER I 1 ________________ 1 

I I LAST PORTION I I" 
I I ______ ~ _________ I I 

________________ 1 I 
I· I _______________________ J 

1 1 1 SECTION INTO I· 1 1 
--I LPF 1---1 300 SAMPLE 1-.--1· ________ ~ _________ ______________ ------------ ------------

'--__ -' I SECTIONS 1 1 I I FIND 1 
1 I 1 1 CENTER CLIPPER I I AUTO- I IPOSITION &1---1 VOICED 1 
-------------- 1---1 &.. 1---1 CORRELATION 1---1 VALUE OF I I UNVOICED Ii 

I II-PEAK CLIPPER I I COMPUTATION 1 I PEAK 1---1 DECISION 1 
1 ______ ----______ 1 1 _____________ 1 1 __________ 1 1 __________ 1 

Figure 4.1. Block diagram of.the AUTOe pitch detector 

The analog speech signal is sampled at a8 kHz. sampling rate using 

a 12-bit AID converter. The digital signal is low-pass filtered to a 

bandwidth of 900 Hz using a 9.9-point FIR filter. The output of the 



26 

filter is then sectioned into 300 samples overlapping by 100 sampl~s for 

processing. Each section of 300 samples· is called a frame. 

The first stage of processing is the computation of the clipping 

level. Because of the wide dynamic range of speech, the clipping level 

must be carefully chosen so as to prevent loss of infor.ma~on_when the 

waveform is either rising or falling in amplitude within a frame. Such 

cases occur when voicing is just beginning or ending, as well as during 

voicing transitions, e. g., from a vowel to a voiced fricative, or a 

nasal. For the selection of eL , the clipping level, the first and third 

100 samples of the frame. is searched for maximum absolute peak levels. 

The 'clipping level is then set as 80 percent of the smaller of these two 

levels. 

Following the determination' of the clipping level, the' speech 

section is then both center clipped, and infinite peak c~ipped, 

resulting in a signal which assumes one of three possible values; +1 if 

the sample exceeds the positive clipping level, -1 if the sample falls 

below the negative clipping level, and 0 otherwise. The use of infinite 

peak clipping greatly reduces the computational complexity of the 

autocorrelation measurement, because no multiplications are required in 

the computation. 

The next stage in processing is the autocorrelation computation. The 

short-time autocorrelation function of the 300-samples frame 1s defined 

as: 

299-11 
R,., (m) =,2: x(n)x(n~m) m=M:L, M:L ... , , .... , M~ (4.1) 

n=O 

where X:L is theinl tial lag and :M~ is the final lag for which the 
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autocorrelation function is computed. For the frequency range of 100 to 

500 Hz, these values are 16 and 80 respectively. Additionally, Rx<O) is 

computed for the normalization of the autocorrelation function. 

Figure 4.2 shows an example of an anlysis frame, the infinite peak 

and center clipped version, and the short-time autocorrelation function . 
... ---_ ... -... --

For this example the pitch period of the section is at 64 samples, which 

corresponds to 125 Hz at 8 kHz sampling rate. 

In the computation of the autocorrelation function <Eq In 4.1)., it is 

assumed that samples outside the current frame are assumed to be zero. 

This effectively weights the autocorrelati.on function by a linear taper 

which starts at 1 at m=O· and goes to 0 at m=300. That property is 

desired, because it enhances the peak at the pitch peri9d with respect 

-~r-------~--------~-+------~~----~~~~ 

Figure 4.2. Example of voiced speech and its autocorrelation 

fu-nction 
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to peaks at multiples of the pitch period, thereby reducing the 

possibility of doubling or tripling the pitch period estimate. 

For vOiced-unvoiced decision, the autocorrelation peak is compared 

to the energy, Rx(O). If this ratio exceeds a voiced-unvoiced threshold 

of around 30 %, The frame is classified as voiced and t~1~h period 

is the position of the autocorrelation peak. If the peak value falls 

below the threshold, the interval is classified as unvoiced. 

The decision for the current interval is modified by the decisions 

for the preceding and succeeding intervals. If these are both voiced 

(unvoiced), then the current interval is forced to be declared voiced 

(unvoiced) . 

4.1.2 Average Magnitude Difference Function 

The AMDF <average magnitude difference function) is a variation on 

autocorrelation analysis where, instead of correlating the input speech 

at various delays, a difference signal is formed between the delayed 

speech and the original and, at each delay,the absolute magnitude of the 

difference is taken .. ·The difference function is always zero at delay = 0 

and exhibits deep nulls at delays c·orresponding to the pitch period of 

voiced sounds. 

An approximate expression that provides a relationship between the 

AMDF and the autocorrelation function will be developed. The AMDF for a 

sequence of samples {x(m)}" is defined by the relation 

N-I 
Dn _ L Ix (k) -x (k-n) I n = -(N-l), ...... ,+(N-l) (4.2) 

k=n 



We can approximate Dn in the form 

Dn - :E 
, k 

I x(k)-x(k-n) I = ./3n ( :E 
k 
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(x(k)-x(k-n»2 )~ (4.3) 

where the coefficient ./3n is a scale factor. By expanding··the squared 

term in braces under the square root sign in (4.3) we can express Dn in 

the form, 

Dn = ./3n ( :E X(k)2 +:E x(k-n)2 - 2:E x(k)x(k-n) )Y.< • (4.4) 
k k , k 

The third sum in the braces can be identified as -2Rn • Assuming that the 

sequence {x} corresponds to a stationary process, it is evident that the 

first two sums are simply the autocorrelation function evaluated at n=O. 

Then, we can rewrite Dn as 

Dn =.6n[2 (Ro - R,,) ] ~ (4.5) 

The properties of the AlillF arB accurately characterized by (Eq' n 

4.5). Figure 4.3 shows a frame of speech samples and their AMDF, which 

is' seen to be 'zero at zero delay and varies as the square root of the 

autocorrelation function that has been negated and dc shifted by Ro. 

Nulls will appear in Dn at those pOints where Rn is large compared with 

Ro •. This occurs when the sequence {x} is taken from a voiced speech 

sound. The separation 'of the nulls is a direct measure of the pitch 

period. 
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23 64 100 

Figure 4.3. A frame of voiced speech and its AMDF 

The block diagram of a method of pitch detection using the AlIDF is 

given in Figure 4.4 [45J~ The first stage in processing is AID 

conversion, followed by lowpass filtering. At the output of the filter, 

the input speech samples are divided. into frames consisting of 300 

samples that overlap ?y200 samples. The samples are then summed up to 

find the energy of the section. If this value exceeds a fixed threshold, 

the frame is classified as voiced. The next step is the computation of 

the·AlillF in the r.ange of the pitch period. 

At this step, the effect of the formants is still inherent in the 

spectral envelope of the signal because no preprocessing has been done 

;prior. to· computation of _ theAJIDF ... For this reason, decision logic and 

prior knowledge of voicing are used along with the function itself to 

help make the pitch ·decision m~re reliable. Figure 4.5 shows the set of 

logica} rules developed for extraction of pitch information from the 
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1 1 ____ � ENER$V I ____________ ~ ___________ I 

1 1 CALCUL~TION 1 1 VOICED-
_______ 1 1 _________ ----1 1 UNVOICED 
1 1 1 1 BASED ON 

---I LPF 1---1 __________ --___ ________________ 1 ENERGY 1---; 
1-----1 1 1 1 1 1 & - __ J .... , 

1 ___ 1 ANDF 1 ___ 1 PITCH PERIOD 1 _____ 1 AMDF 1 
1 CALCULttTIDN IlLOGIC 1 1 1 1 _______ --____ 1 1 ______________ 1 1 ____________ 1 

Figure 4.4. Block di.8gram of the AMDF pitch detector 

AMDF. There are five seyerate logic paths, each of which are selected, 

based on the three most recent voiced/unvoiced (VUV) decisions. 

In path A, the present VUV decision is unvoiced'and the ~ogic asks 

whether this decision sh~uld be changed to voiced. A change is justified 

by the presence of a str~ng periodic waveform within the interval. 

In path B, the present VUV decision is voiced. However, this 

decision can be 'changed ·to unvoiced, if either the :maximum AMDF value is 

not suffici~ntly strong or the ratio of the :maximum to minimum AMDF 

value is below a certain threshold. 

In path C, the n~h and (n-l)~h ·vuv decisions are voiced but the (n-

2) ~h interval was unvo;'ced: This is an indication of the onset of 

voiCing; the pitch extrej.ctor changes to voiced and chooses the minimum 

value of the AMDF as the pitch. 

In path D, voicing is extended an additional frame when the VUV 

decision indicates unvoicing after an extended period of voicing. 

Path E i's the normal path for sustained voicing and uses a feature 

for pitch tracking in ~ window of 12 samples about the last measured 

pi tch period. The ·logic will change to the nontracking position\.! if the 
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amplitude of the minimum outside the tracking range is less-than 1/2 of 

the tracking amplitude minimum. For higher frequencies, more nulls are 

present in the AMDF, so a null outside the tracking window is required 

to be less than 118 the minimum in the tracking window to be chosen. 

There is also a path for changing the VUV decision from· voiced to 

unvoiced, and for extending the previous pitch value. 

RET 

FIND HAX,HIN,MINP 
OF AMDF 

NRAT = MAXIMIN 

L = VUVN+2VUVN-l 
+4VUVN-2 

VUY = 1 : VOICED 
YUY = 0 : UNVOICED 

RET 

L = 5 OR 7_ 

E 

Figure 4.5. AKDF pitch extraction logic flow chart 

.AROUND PH-l 

FIND lin AND IPOS 
IN TRACKING WINDOW 
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4,1,3 Parallel Processing Method 

The basic idea in parallel procE!ssing is that an improvement in 

accuracy can be obtained by combining the outputs of more than one 

elementary pitch period' estimators. The speech signal is processed so as 

to create a number of impulse trains which retain the per-iodicity of the 

original signal and discard features which are irrelevant to the pitch 

detection process. A pitch estimate is, obtained using a simple pitch 

detector from each of the impulse trains. These estimates are then 

logically combined to infer the period of the speech waveform. 

The block diagram of the pitch detector in [46] is given in Figure 

4.6.' After AID conversion,' the speech is lowpass filtered with a cutoff 
\ 

of about 900 Hz. Following the filtering, local minima and maxima are 

located,and from their locations and amplitudes, several impulse trains 

are derived from the filtered signal <Figure 4.7). 

The impulse trains Pi are generated at the location of peaks <local' 

maxima) and the impulse trains Vi are generated at the locations of 

valleys <local minima). These are defined as [1]: 

1 1 _______ _ 
_____ 1 PEAK PITCH 1 ______ 1 _______________ _ 
1 1 EXTRACTORS 1 ____ 1 1 ___ 1 1 _____________ _ 

________________ 1 1 ______________ 1 1 1 _____ 1 PARALLEL 1 
PEAK AND 1 1 L ______ I PROCESSING 1 1 VOICED 

----I LPF 1---1 VALLEY 1---1 ________ 1 PITCH 1---1 UNVOICED I--i 
1 ____ -' 1 MEASUREMENTS 1 1 ________________ 1 _____ -' ESTIMATION 1 1 DETECTION 1 

1 1 1 1 1 1 1 ___ I 1 1 ____________ 1 
-------------- - - ---. -1 ____ 1 VALLEY PITCH 1 _____ 1 1 1 ______________ 1 

1 . EXTRACTORS 1 _______ 1 
1 ______ --______ 1. 

Figure 4.6. Block diagram of. the parallel processing pitch detector 
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Figure 4.7. Input signal and the impulse trains generated from the 

peaks and valleys 

-Pl (n) 

-P2 (n) 

An impulse equal to the peak amplitude. 

An impulse equal to the difference between the peak amplitude 

and the preceding valley amplitude. 

An impulse equal to the difference between the peak amplitude 

and the preceding peak amplitude. 

An impulse equal to the negative of the amplitude of a valley. 

An impulse equal. to the negative of the amplitude at a valley 

plus the amplitude at the preceding peak. 

An impulse equal to th~ negative of the amplitude at a valley 

plus the amplitude at the preceding valley. 
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The six sets of pulse trains are applied to the six individual pitch 

detectors. The operation of the detector is illustrated in Figure 4.8. 

Following each detected pulse, there is a blanking interval (during 

which no pulses can be detected), followed by an exponential decay. 

Whenever a pulse exceeds the level of the exponentially decaying output, 

the process is repeated. The rate of decay and the blanking interval are 

dependent upon the most recent estimates of the pitch period. The result 

is a kind of smoothing of the impulse train, producing ~ quasi-periodic 

sequence of pulses as shown in Figure 4.8. The length of each inter-

pulse interval is an estimate of the pitch period. 

Variable 
blanking 
tille 

Variable ~xponen\ial decay 

Figure 4.8. Operation of, the pitch period estimator 

This technique is applie~ to' each of the six impulse trains 

producing six estimates of t'he pitch period. These six estimates are 

combined with two of the most recent estimates of each of the six pitch 

detectors. These estimates are then combined and the one with the most 

coincidences within a sp~cified tolerance is declared the pitch period 

at that time. 

For unvoiced speech, there is a distinct lack of consistency among 

the estimates. For each analysis interval, the coincidence count of the 

pi tch 'period estimate with the greatest number of occurances is tested 
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against a certain threshold. The value of this threshold is lowered if 

the preceding frame is voiced. A final voiced-unvoiced decision is given 

on'the basis of the VUV decisions of the preceding and following frames 

- Isolated voiced and unvoiced frames are not allowed. These principles 
~ 

are illustrated in the flowchart in Figure 4.9. 

FRAME K 
IS UNVOICEO 

YES 

FRAME K-l 
IS UNVOICEO 

INPUT 
FRAME K 

FRAME K 
IS VOICED 

YES 

FRAME K-l 
IS VOICED 

NO 

Figure 4.9. Flowchart of thevbiced-unvoiced decision 
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4,1.4 Simplified Inverse Filtering Technique 

Before describing the SIFT (simplified inverse filtering technique) 

pitch detection, let us review some basic principles of linear 

predictive analysis. 

The digital speech production model of section 2. 1. 2.-ean. .. be. further 

simplified to represent the accoustic speech waveform as the convolution 

of the voice source with the impulse response of an all-pole digital 

filter whose steady-state transfer function is of the form 

H(z) = S(z) G ----
U(z) P 

1 - ~ akz-I< 
k=l 

(4.6) 

The speech samples s (n) are related to the excitation u (n) by the 

difference equati6n 

s(n) 
p 

= ~ aks(~-k)+Gu(n) (4.7) 

k=l 

A linear predictor with prediction coefficients, ak is defined as a 

system whose output is 

p 
g(n) = ~. aks(n-k) 

k=l 

The prediction error e(u) is defined as 

p' 
e(n) = s(n) -' s(n) = s(n) - ~ aks(n-k) 

k=l· . 

(4.8) 

(4. g) 
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It is seen that the prediction error sequence is the output: of a 

system whose transfer function is 

A(z) =1 (4.10) 

The basic problem of LPC analysis is to determine a set of predictor 

coefficients {ak} directly from the speech signal in such a manner as to 

obtain a good esti:mate of the spectral properties of the speech signal. 

The basic approach is to find a set of predictor coefficients that will 

minimize the mean-squared prediction error over a short segment of 

speech waveform. It can be seen that if ak = ak, then e(n) = .Gu(n).For 

voiced speech this means that e(n) would consist of a train of impulsesj 

i.e., e(n) would be small most of the time. 

Thus the purpose of the linear predictive analysis is to spectrally 

flatten the input signal,similar to the clipping method discussed 

before. Based on the reasoning that e(n) is a good approximation to the 

excitation source, it is expected that the prediction error will be 

large at. the beginning of each .pitch period, so that the pitch period 

can be estimated by performing an autocorrelation analysis on e tn) and 

detecting the largest peak in the appropriate range. Figure 4.10 shows 

the block diagram of the SIFT pitch detector which is based on'these 

ideas [47], [3], 

1:he input signal is first prefil tered by a lowpass filter with a 

cutoff at 800 Hz. Then, the sampling rate is reduced to 2 kHz by a 

decimation process .. The .samples !ire differenced to accentuate the region 

of the second formant, and multiplied by a Hamming window. A fourth 



j----------------------------------------------------------j 
1 1 

______________ I ___________ __________ ________________ _ ___ ~ ____ _ 

1 1 1 1 1 1 1 1 1 1 
----I PRE-FILTER 1--1--1 1 - Z-I 1-----1 WINDOW 1-----1 CALCULATE 1-----1 A(z) 1-----1 WINDOW 1 

I---~-------I I_~~ ______ I 1 ________ 1 1 COEFFICIENTS 1 1 ________ 1 1 ________ 1 
1 __ --___ -______ 1 I· 

1 
1 
1 
1 
1 
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---------- -------------- ------------- ----------------- ----------- --------+------1 1 1 1 1 1 1 
~--I UPDATE 1---1 ERROR 1----1 YARIABLE 1----1 PARABOLIC 1----1 PEAK 1---1 AUTO 1 

'--_____ -' 1 CORRECTION 1 1 THRESHOLD 1 1 INTERPOLATION 1 1 PICKING 1 1 CORRELATION 1 1 ____________ 1 1 ___________ 1 1 _______________ 1 1 _________ 1 1 _____________ 1 

Figure 4.10. Block diagram of the SIFT pitch detector 

order inverse filter A(z) is then designed using the autocorr~lation 

method. A fourth order filter suffices to remove the formant structure 

because only two formants can be present in the frequency, range 

(0,1 kHz). After inverse filtering, the signal is then multiplied by a 

second hamming window. 

The autocorrelation function. of the frame is computed and the peak 

of the sequence is searched in the range in which pitch period is 

expected. ParaboliC interpolation is applied to provide greater 

resolution. A variable threshold is defined. As the peak location 

becomes. smaller, the threshold is raised,since proportionally more 

pitc~ periods will be obtained per analysis interval. As the peak 

location increases, the threshold is lowered. If a peak crosses the 

variable threshold, its. location becomes the pitch period candidate for 

that frame .. Otherwise the frame is defined as unvoiced. An attempt at 
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error detection and correction is made by storing several pitch period·· 

candidates. The algorithm for the voiced-unvoiced decision and the error 

correction step can be seen clearly in Figure 4.11. After this 

operation, the pitch period estimate with maximum delay is output. 

FRAME K· 
IS VI/VOICED 

NO 

INPUT 
FRAME K 

NO 

YES 

YES 
FRAME K 

IS VOICED 

YES 

FRAME 1(-1 
IS VOICED 

NO 

Figure 4. 11. De~ision algor.i thm for voiced-unvoiced decision 

and error correction 
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4.1.5 Cepstrum Method 

In its most basic form, the syst~m for producing voiced speech 

sounds consists only of the vocal source and the vocal tract. The output 

speech signal s(t) is g~ven by 

set) = h(t) * u(t) 

sew) = H(w) U(w) 

<4.11.a) 

<4.11. b) 

where the sorce signal is denoted by u (t), the impulse response of the 

vocal tract is h(t), and '*' represents convolution. 

The source signal, and therefore, the speech signal are quasi­

periodic for voiced speech sounds. If the period is ,.'seconds,. then the 

spectrum of the speech signal consists of harmonics spaced ,.-1 Hz. Thus, 

the· spectrum of a voiced speech signal is periodic along the frequency 

axis with period equal to the reciprocal of. the period of the time 

signal being analyzed. The obvious way to measure this 'period' in the 

spectrum is to take the Fpurier transform of the spectrum. This will 

result in a waveform having a peak corresponding to the 'period'. But 

the effect of the vocal tract ~s still superimposed an the signal. The 

solution is to take the logarithm of the amplitude of the spectrum and 

take another Fourier transform. This function, defined as the 'cepstrum' 

seperates the effects of the vocal source and tract. The reason for this 

is the property that the logarithm of a product equals the sum. of the 

. 1 ogari thms of the mu 1 t i pI i cands: 

lag IS(w)1 = lag IH(w).U(w)1 = log IH(w)1 + lag IU(w)1 (4.12) 
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The Fourier transform of the logarithm of the spectrum preserves the 
) . 

additive property and the source and tract effects become additive. The 

effect of the vocal tract is to produce a low frequency ripple in the 

logarithm spectrum" while the source produces a high frequency ripple. 

Therefore, the cepstrum has a sharp peak corresponding to the high 

frequency source ripple and a broader peak corresponding to the low 

frequency formant structure in the logarithm spectrum. 

Another difficulty arises from the fact that a time limited speech 

signal is, used. The effect of time limiting the speech signal with a 

multiplicative time window wct) is a cOIivolution of the corresponding 

spectral window W(w). Hence, the complex spectrum is not strictly 

frequency limited, but can be described as being approximately 

frequency-limited if W(w) has very: small side lobes. The Hamming window ' 

which has a maximum side lobe 44 dB below its peak response is a good 

choice. 

1 
1 

---I 
1 

, I 

SECTION INTO ,I 1 I II 
512 SAKPLE 'I -----: I HAHKING 1-----1 512 POINT 1----,1 LOG IXI 

SECTIONS I I WINDOW'I I FFT I 1 ___ _ 
1 _____ _ 1 ____ 1 _______ 1 

fo----I 
I 

VOICED 
UNVOICED 
DECISION 

1_, ____ -

----.I.--
I II 

I, I PEAK I I 512 POINT I 
1--------1 DETECTOR 1-------1 IFFT I 
I 1 _________ 1 1 _______ 1 

Fi.gure 4.12. Block'diagram of, the CEP pitch detector 



These properties of the cepstrum have been use~ as basis for pitch 

detection algori tms [48], [39]. The block diagram of acepstral pitch 

detector is given in Figure 4.12. The speech signals are first sectioned 

into 512 sample frames, and then multiplied by a Hamming window. The 
, 

cepstrum of the windowed signal is computed using FFT techniques. Due to 

the effect of the time window, the cepstral peaks decrease in amplitude 

with increasing quefrency. To overcome this effect, a linear 

multiplicative weighting is applied. The range that is searched for the 

peak of the cepstrum is 1-15 ms., since pitch periods outside this range 

are not usually encountered. Figure 4.13 shows the cepstrum of the frame 

in Figure 4.3. Since no weighting is applied, a decrease in amplitude 

can be seen as the quefrency increases. 

The peak value of the cepstrum is searched and compared to a 

threshold. The cepstral peaks at the end of a voiced speech segment 

usually decrease in amplitude and would -fall below the peak threshold. 

The solution is to decrease- the threshold by some factor over the 

Figure 4.13" Cepstrum of the Irame in Fig. 4.3. 
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quefrency range of ±1 msec of the illlIIlediately preceding pitch period 

when tracking the pitch in a series of voiced speech segments. The 

threshold reverts to its' normal value over the whole cepstrum range 

after the end of the series of voiced segments. 

There is' also the possi bili ty that an isolated ceps~E~Lpeak might 

exceed the threshold, resulting in a false indication of a voiced 

speech segment. Such peaks are disregarded. 

Another problem often encountered is pitch doubling. The second 

rahmonic of a cepstral peak sometimes exceeds the fundamental, and the 

second rahmonic should not be chosen as representing the pitch period. 

ThuSi the peak picking algorithm should eliminate false pitch doubling 

caused by a second rahmonic but should also allow legi ti~te pitch 

doubling. For legitimate doubling, there is no cepstral peak at one-half 

quefrency, but for erroneous doubling, there is such a peak at one-half 

quefrency since this is the fundamental. 

A flow-chart 'of the peak picking algorithm is given in Figure 4.14. 

The algorithm determines whether the cepstral peak of the N~h cepstrum 

represents a voiced speech segment. Information about the N-1 t.h cepstrum 

is stored, and the N+1~h cepst~um is peak picked before deciding about 

the N~h cepstrum. If pitch' tracking is in effect, the threshold is 

reduced if the quefrency of the peak is within ±1 msec of the quefrency 

of the previous pitch peak. The peak is compared with the threshold, and 

pi tch doubling is investigated whether the peak exceeds or does not 

exceed the threshold. Tlie information about the N+1 ~h cepstrum and N-1 t·h 

. . 
cepstrum is then used to decide if the N~h cepsral peak represents an 

isolated voiced segment or an 'isolated absence of voicing in a series of 

voiced speech segments. 



PITCH 
RACKING 

VOICED 
AT NTH 

YES 

INVEST! GATE YES 
PITCH . 1---< 

DOliBLING '-

PITCHN = 
(PITCHN-l+ 
PITCHN+l )/2 l 

READ IN 
tl+IST 

.CEPSTRUK 

LINEAR 
YEIGHTING 
OF CEPSTRUH 

PICK 
MXIMUM 
PEAK 

YES NO 

NO 

INVESTIGATE 
PITCH 

DOUBLING 

STOP 
PITCH· 

TRACKING 

NO . 

Figure 4.14. Flowchart of the peak picking algorithm. 
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4,1,6 Harmonic Pattern Hatching Nethod 

In the Fourier r~presentation, the- excitation for voiced speech is 

manifested in sharp peaks that occur in integer multiples of the 

fundamental frequency. This fact has'served as the basis of a n~mber of 

pitch 'detection schemes. The harmonic pattern matching--approach of 

Martin discussed in [39] will be reviewed here. Figure 4.15 presents the 

block diagram of the pitch detector. 

Since only frequency components below 2 kHz are taken into account, 

the signal is first downsampled in the time domain to a sampling rate of 

4 kHz. A frame of 32 ms length (128 samples) is then windowed and 

transformed into the frequency domain, In the amplitude spectrum all ~he 
. . 

values are set to zero except the peaks that exceed a threshold of -35 

dB relative to the global maximum of the spectrum, and their immediate 

neighbors. The original spectral resolution of 33 Hz guarantees that the 

1 1 1 1 1 - 1 1 1 
1 OOWNSAMPLE 1 1 COMPUTE 1 1 SELECT PEAKS 1 1 INTERPOLATE 1 1 COMPUTE 1 . 1 SELECT 1 

---I SIGNAL 1---1 AMPLITUDE 1---1 SUPPRESS 1---1 AROUND 1---1 HARMONIC 1---1 PEAK OF I--~ 
1 TO 4 kHz 1 1 SPECTRUM 1 1 EYERYTHING 1 - 1 SPECTRAL 1 1 ESTIMATOR 1 . 1 Ac (p) 1 
1 ____________ 1 L __________ I 1 ELSE. 1 1 PEAKS I 1 FUNCTION 1 '--______ -' 

1 ____________ 1· 1 ___________ 1 1 ___________ 1 

Figure 4.15. Block diagram of the harmonic pattern matching method 

pitch detector 

information on fundamental frequency is present in the spectrum for 

values of.Fo down to 70 Hz. This resolution is then increased to 1 Hz 

interpolating the missing points. From this short-time amplitude 
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spectrum, a harmonic estimator fUnction is derived by applying a comb 

filter. The principle behind the comb ~thod consists in the search for 

values of the spectrum situated at harmonic frequencies, and whose sum 

is a maximum for a, gi ven frequency interval. The fundamental 

corresponding to the harmonic structure giving the larg~':l!1!. ~s. then 

taken to be the fundamental frequency of the signal, as long as this sum 

differs sufficiently from the values obtained for other structures in 
.. 

the same spectrum (which would correspond to the case of voiceless 

signals) . 

The spectral comb is given as an impulse sequence provided with 

weights that decrease with increasing frequencYi the distance of the 

individual pulses equalS the trial fundamental frequency p, 

m=kpi k=l,2, ... 
otherwise 

(4.13) 

For each value of pof the amplitude spectrum A (m) is weighted by the 

spectral comb .C(m,p), and the spectral components that pass the comb are 

added up to form the harmonic estimator function Ac(p), 

N/2p 
Ac(p) = ~ A(kp)C(kp,p) (4.14) 

k=l 

The value of p where Ac reaches its maximum is then taken as the 

estimate of the fundamental frequency Fo. 
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4.2. MEASUREMENT OF ENERGY AND DURATION 

:Measurement of the. total energy of a speech Signal, either by 

digital or analog techniques, is' straightforward. This contour alone 

serves as an important cue to the determination of word or syllable 

endpoints, or it can be used in combinatio~ with other data to give more 

reliable results. 

Other energy components that prove useful are the energy contours in 

certain frequency bands [21]. The energy' in the band 60 to 3000 Hz is 

called sonorant energy. Sonorant energy has been shown to be more useful 

for prosodic analysis than the broadband total energy since total energy 

remains high during obstruentswhile the sonorant energy dips at 

obstruents (which occur at syllable boundaries). Other bandwidth-limited 

energy functions have also been shown effective. The energy in the band 

650 to 3000 Hz is useful -for' seperating vowel nuclei from surrounding 

nasals, liquids and glides., A very low frequency energy function in the 

bandwidth 60 to 400· Hz can provide an independent decision about the 

voicing state of the speech. 

Duration is usually measured as the seperation between two marked 

pOints on the speech waveform, and these pOints are usually marked by an 

energy or pitch measurement of the waveform. Some durations that are of 

. importance are the duration of sounds, duration of syllables, duration 

. of words, and duration of phrases. The averages of these dUrations may 

give information about the speech rate of the speaker. 

The algoriths that combine these measurements to identify the 

underiying prosodic phenomena will be discussed in the next chapters. 
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V .. PROSODY IN SPEECH RECOGNITION 

The hUman speech perception system is such that a native speaker 

uses, subconciously, his knowledge of the language, the environment, and 

the context in understanding a sentence. These sources of knowledge 

include the characteristics of speech sounds <phonetics), variability in 

pronounciations <phonology), the stress and intonation patterns of 

speech <prosodics), the sound patterns of words (lexicon), the 

grammatical structure of language (syntax), the meaning of words and 

sentences <semantics), and the context of conversation <pragmatics).. To 

approach human performance, a machine must also use all the available 

knowledge sources effectively. The prosodic features in speech carry 

valuable information that can be used in this process. Up to date, very 

li ttle of this information has been used in automatic speech 

recognition. In this chapter, after a brief review of recognition 

systems, strategies to incorpora~e this knowledge source into various 

recognition systems will be discussed. 

5.1 SPEECH RECOGNITION SYSTEMS 

Speech. recognition can be described as the process of transfor~ng 

the continuous acoustic speech signal into discrete representations 

which may ,be assigned, proper meanings. The ultimate goal is to 

understand the input sufficiently to select an appropriate response. 
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Speech signals convey information about who spoke what message in 

what manner and what environment. There is an extensive amount of 

information in the speech signal, only some of which is related to 

selecting correct machine responses. The critical task is to extract all 

and only those parts that convey the message, and ignore the rest. 

Some dimensions of performance in speech recognition are the size of 

the command vocabulary, whether or not the system can accommadate any 

talker, or only those who have trained the system, and whether or not 

input speech can be continuous connected utterances, or must be isolated 

.individual commands. These dimensions are illustrated in Figure 5.1. 

CONNECTED 

. Figure 5.1. Dimensions of performance in speech recognition 

At present, . highly reliable automatic recognition can be achieved 

for relatively small vocabularies of single words spoken in isolation by 

a talker to whom the system is trained. By contrast, automatic 

recognition of unconstrained fluent speech by any talker on any subject 

is nowhere near reality; -

Approaches to speech recognition are differentiated by whether or 

not recogni t10n :is effected by a template matching to vocabulary i tellG 
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that originally were measured and derived from human speech. or whether 

or not recognition is effected purely .by computation using programmed 

rules that analyze the unknown input and which utilize no vestige of 

stored human speech. Most practical success to date are with the former 

because it is easier. But the greatest promises may be_witlL~he. more 

sophisticated latter. 

In template matching. human spoken utterances <typically phrases. 

words. syllables. or phonemes) are typically represented in the form of 

spectral sequences as a function of time. Recognition is achieved by 

using a pre-defined similarity measure to compare the unknown token 

agains:t stored templates. In many cases. time-alignment algorithms are 
, 

used to account for some variability in speech rate. While. template 

matching systems can achieve high performance with a small set of 

accousticallydistinct words, they are limited in their ability. 

In the feature-based approach to speech recognition, a set of 

acoustic features that capture the phonetically relevant information in 

the speech signal are identified. With this knowledge, algorithms can be 

developed to extract· the features from the speech signal. A classisfier 

is then used to combine the. features and arrive at a recognition 

decision. 

Drawing a sharp division between these two approaches is somewhat 

arbitrary and perhaps unnecessary. Actual systems may make use of both 

techniques with a varying mixture. What is most important is whether and 

to what extent speech-specific knowledge is being utilized for 

recognition. 
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5.1.1. Isolated Word Recognition Systems 

In these recognition systems, the human must command the machine in 

single utterances. The vocabulary is usually small (in the order of 20, 

100, or 1000 words depending on the application). They can be made 

talker independent at the cost of computational complexi.~.~. __ .. _Figure 5.2 

shows the block diagram of a typical word recognition system. 

LEARN I Add unknown I 
---il 
I _____________ _____________ _______________ I 

I Digitize I Detect I I Noise and I 
I---iland analyze I-------il beginning I-------il amplitude _ I-il 

I utterance I I and end I Inormalizationl I 
------------- ------------- --------------- I 

I-il to reference I 
I pattern list I 

~ 

( REFERENCE PATTERNS ) 

.----------~--------I ________ ~ _______ I 

I I I Tim~ I I 
----il I-Iii alignment I I 

RECOGNIZE I 1 _____________ -' I 
I I I 

______________ ______________________ I _______ ~ _____ ._ .1 

I Select the II I I 
I I~-------I reference pattern I~------il Compare I I 
I Output I I lIIith minimum I 1.. ___________ 1 I' 
I I I di stance - I I I 

.1 ____________ 1 1 ____________________ 1. --------------------

I 
~ 

Figure 5.2. Block diagram of a word recognition system 

A common approach is to measure a time pattern of features of the 

_ frequency spectrum for the input-human utterances, and compare these to 

. a vocabulary of human derived ~tored patterns, one for each single 

acceptable utterance. If the system is talker-dependent, these 

vocabulary patterns have been provided previously for the given talker. 

The Hnear prediction coefficient (LPC) parameters are the most common 
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features and prove to be a useful set. The vocabulary p~ttern 

corresponding most closely to the unknown input is judged by the machine 

to have been the spoken command. Various distance measures may be used 

for the closeness of fit judgement, but one of particular 

appropriateness for speech is the so called maximum l~kelihoog"~PC ratio 

(49]. In making the distance measure, to take account of different rates 

of speech, a procedure called dynamic time warping <DTW.) is applied 

( 50]. Often the output of the model is a set of estimates of the words 

in the output, ordered by similarity, allowing the final decision of 

what was actually spoken to be deferred to a higher level in the 

recogni tion system. 

By storing multiple patterns that characterize a large popu.1ation of 

talkers for . each utterance in the vocabulary, the system can be made 

speaker independent. Statistical clustering analyses then determine the 

set of multiple patterns. 

5.1,2, Connected Word Recognition Systems 

In the production of continuous speech, pronounciation is less 

careful, speaker differences ~re underlined, speaking rate is less 

constant, co-articulation effects exist between words as well as within 

them, There is" even little evidence of word boundaries, Stress and 

intonation change due to the importance of a word in the message. Thus, 

the task of recognition becomes impossible to achieve with the weapons 

of isolated word recognition. Not"e that in an attempt to recognize the 

utterance as a whole, one would be faced with storing 1010 reference 

templates even with a 10-word vocabulary and given a 90 % word 

recognition accuracy, the overall performance would drop to 35 %. 
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Instead, an active system which makes use of all the known constraints 

of language and varies its analysis in· the light of this knowledge is 

required. 

Systems which. rec.ognize words wi th the pattern recogni tion 

techniques of isolated word recognition and group these tqgeth~~_to form 

larger units have been proposed, but as the number of words in the 

vocabulary and the number of different contextual variations per word 

get large, the storage and computation time become enormous. However, 

taking into account the advances in the VLSI technology, this is a 

solution to be considered for very small-sized vocabularies or speaker­

dependent systems. 

For more sophisticated systems, what is needed is a more compact 

representation of the sound patterns of the words such as those used by 

lingUists, i.e. repesentation of words as a sequence of phonemes, 

allophones, or syllables. This change from signal space representation 

of the words to a symbol space representation requires segmenting the 

continuous speech signal into discrete acoustically invariant parts and 

labeling each segment with phonemic or feature "labels. A phonemic 

dictionary of the words could tpen be used to match at a symbolic level 

and determine which word was spoken. 

Feature detection usually represents the detection of silence, 

voicing, stress, LPG or spectrum parameters, and so on. The purpose of 

segmentation is to divide the continuous speech si~nal into discrete 

. units based on some measure of acoustic similarity. Energy in certain 

bands' is the' most important measure in segmentation. There is no simple 

algorithm that gives pho?emic ·bo~ndaries. Usually boundaries associated 

with significant changes in acoustic characteristics are used for 
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segmentation. Labeling schemes associate a phonemic (or some other) 

symbol with each segmental unit. Before-this symbol sequence can be used 

in matching, it is necessary to apply phonological rules to combine 

segments, change 1abe1s.based_on context, delete segments, and so on. 

One of the most important problems in continuous Spe(;L9.lLrecogni tion 

is that of detecting the boundaries of words. In systems that operate 

without this knowledge, the analysis proceeds from left to right, 

matching at each step. In this case, one must find techniques for 

terminating the match when an optimal match is found. 

:Matching and verification of hypothesized words is basic to all 

recogni~ion systems. Three different word verification techniques are 

-Heuristic matching, 

-Stochastic matching, 

-Ana1ysis-by-synthesis. 

Heuristic ~tching involves aligning the phonemic spelling of the 

word to be matched with the segmental labels while allowing for the. 

possibility that errors may· have occured. Alignment is usually based on 

tlle notion of anchor. pOints in which stressed vowels which are much less 

likely to be. missed are aligne~ first, followed by other vowels and 

consonants. Degree of simi1ai-i ty is defined as a weighted sum of the 

individual phoneme versus segment label similarity values which are 

available as a confusion matrix generated by experiments. In stochastic 

matching, given a finite-state representation of alternative 

prond~nciations of a word with associated transition probabilities, a 
. . 

dynamic programming technique is used to perform. matching 1eft-to-

right. The b~st phonemic_ match and the corresponding likelihood are 

determined by matching all the possible phonemic variations of the word 
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with the unknown segmental phoneme string. The basis for the analysis­

by-synthesis method is the observation that phonological phenomena such 

as vowel reduction, flapping, palatalization, etc. are basically 

generative in nature and cannot be easily captured in terms of analytic 

rules. In this method, the abstract representation oL.a ... word is 

transformed into an acoustic representation sui table for matching with 

the acoustic parametrization of the unknown utterance. 

Human listeners make use of linguistic cues and constraints in 

recognizing continuous speech. A listener's application of linguistic 

knowledge often enables him to guess the remainder of a sentence after 

.hearing the first few ·words. If machines are to approach human 

performance, this linguistic expertise must be built into them. Such 

systems are sometimes referred to as speech understanding systems. In 

addition to the problems of having to recognize connected speech, . these 

systems tend to have the additional reqUirement that they must do so 

even· when the utterance is not grammatically well formed, and in the 

presence of speech-like noise. The reqUirement is somewhat relaxed by 

the fact that what matters in the end is not the recognition of each and 

every word in the utterance but.~ather the intent of the message. Figure 

5.3 shows the processes involved in recognition and understanding. 

Syntactic analysis refers to testing whether a hypothesized word is 

syntactically consistent wi th words already recognized, and using 

syntactic constraints to predict likely upcoming words. The 

meani~gfulness of hypothesized wo~d sequences are then tested (semantic 

analy~is) and likely future words are predicted based on prior discourse 

and the specific task (pragmatic .analysis). 
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5.2. PROSODIC AIDS TO SPEECH RECOGNITION 

While discussing recognition systems, it has already been outlined 

that prosodic features ~ive many cues, to the speech knowledge at various 

-
layers. In the present recognition systems, some of this knowledge is 

being utilized, but still, prosodic analysis is one of the gaps in 

speech recogni~ion technology. 

There are certain prosodic features, like stress, timing, and 

intonation, which give very useful' cues to the inherent structures of 

the speech waveform, and are relatively easy to extract from the speech 

waveform. However, since the linguistic functions of these features may 

change in each language, a strategy specific to the language must be 

used. These features, when utilized by any isolated or connected 

recogni tion system, lead to an improvement in performance at various 

steps of the recognition process. 'This section will be an account on 

present and potential uses of these features in recognition systems. 

5.2.1. Stress 

Stress is usually considered tO'be the most basic abstract prosodic 

feature. Since the linguistic functions of stress may change in each 

language, there ·.is no' absolute way of defining how stress may be used in 

recognition. However, some notions that are common may be adopted, 

. directly, while others must be devised according to the stress 

. characteristics of the specific language. 

One of the most common uses of stress is its providing "an island of 

phonetic reliability'". ~tress. usually has the effect of lengthening a 

vowel' and enhancing its pronounbiation, so that stressed vowels are 
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expected to be clearer. Furthermore, it is known that as the rate or 

style of speech changes, it is unstress~d syllables that experience the 

largest variations, stressed syllables remain more or less constant in 

their pronounciation. For this reason, they have been accepted as anchor 

pOints around which the alignment process is usually done in heuristic 

matching methods. 

Phonological distortions and errors in automatic phonetic analysis 

get more frequent as time intervals between stresses are shortened. This 

observation has been a justification of the hypothesis that the 

interstress intervals serve as a direct correlate of the speech rate. 

Stress patterns are closely associated with specific syntactic 

structures. This is true in general for English, where certain words 

like· the articles and propositions are pronounced reduced and other 

groups like the command verbs and quantifiers are stressed all the time . 

. This is not the case in Turkish, where each word can be said to have one 

strong stress [5J., [14] ,( 16-20]. What can make a distinction here may be 

the place of the stress. For example, adverb particles are one class of 

words that take stress on their first syllables (e. g. Htik, l1.anuz, 

l1.amen) , while words usually take it ·on their final syllables. 

The placement of stress may be a distinguishing feature for homonyms 

(e.g. JlillnlZ : only, yalIllZ. : alone), or words with high probability of 

confusion <e.g. yaLLm, ~Tln). 

Stress usually marks contrasts, emphasis or important words in a 

sentence. However, this_ is usually accompanied by a reordering of the 

words in a sentence. The word to be emphasized is brought in· front of 

the verb in addi tien to being _more highly stres§ed: 

Bugun annem geliyoT; ADhem bugun geliyoT. 
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5.2.2. Timing 

One of the most important problems in speech recognition are that of 

finding boundaries, or segmenation. Timing information may be used to 

help overcome these problems. 

Phonemes· usually show a characteristic duration, fq!: __ ~~ample, lal 

usually tends to be longer then 11/, while all the vowels are usually 

longer than most of the consonants. This property is used in labeling 

schemes. The durations of detected phonetiC segments are compared with 

expected durations for various phones to aid labeling. 
\ 

It has been observed that phrase-final and pre-pausal syllables have 

vowels whose durations are lengthened by 20 to 50 % over their values in 

other positions. Al though this may. be a way for detectiI;lg phrase 
( 

boundaries, it has not been used in any speech recognition system due to 

the complexity involved in its implementation. A more practical device 

for finding phrase boundaries has been the interstress intervals, as 

mentioned above. 

One other major factor. that influences time intervals in speech is 

the rate of speech .. ·This information is crucial in a recognition syste~ 

to compensate the effects of. change in pronounciation or vary the 

expected phone durations. . Rate of speech is also essential in 

determining what phonological rules should apply at various regions of 

an utterance, since some rules apply for fast speech while others are 

applicable only to slow spee.ch. The following have all been referred to 

as a measure of speech rate: 
. . 

-The total duration of a specific spoken text; 

-The average measure of the number of words per unit time; 

-The average number of stre~ses per unit time; 
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-The number of syllables per unit time; 

-The average or local number of phones per unit time. 

The Germanic and English sentence rythms assign approximately equal 

time to stress groups 'clustered around each stressed syllable, so for 

these languages, the average' number of stresses serves--as- a' good 

indication of speech rate. This is not true for Turkish, where each word 

is stressed. However, it is claimed that the Turkish intonation assigns 

longer time to unstressed syllables, thereby equalizing the time for 

each syllable [5]. If this is the case, the average number of syllables 

per unit time can serve as a good measure of speech rate. 

The main method in finding clause and sentenc~ boundaries is by the 

duration of pauses in speech. These pauses are the spoken equivalents of 

written punctuation marks. Since speech recognizers usually receive only 

one sentence at a time, only clause boundaries are of importance in this 

respect. These can be detected from 200 millisecond or longer periods of 

silencer or from 350 millisecond or longer periods of unvoicing. 

5.2,3 Intonation 

Intonation is a vital aspect of speech which conveys information 

a~out the type of sentence spoken, the divisions and categories in 

phr~se structures, paragraphing and topic change, semantics, and 

emotion. Children learn intonational cues to phrase structure and 

sentence type even before they learn words, so that they understand what 

is a.question and what is a command. 

Each language has its intonation system. The overall intonation of 

English sentences has been characterized in terms of two al ternati ve 

contours as shown in Figure 5.4. Tune I contour has a characteristic 
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rising of Fo until the first stressed syllable in the sentence is 

reached, and a falling of the pitch from the first stressed syllable to 

the last. Sentence final intonation falls rapidly. This type of 

intonation accompanies declarative sentences, exclamations, and 

questions' with interrogative words. Tune II is like Tune--I,- but is 

terminated by a brief rise in pitch. Tune~ II marks yes/no questions, 

uncertainty or indifference in expression, and incompleteness. 

Fo or ,I 
pitch 1 

1 

TUNE I CONTOUR 

Fo or 
pitch 

TUNE II CONTOUR 

Figure 5.4. Tune I and Tune II intonation contours 

As discussed in section, 3.3, Turkish exhibits the same intonation 

contours, with the difference that Tune I marks yes/no questions and 

Tune II, questions with interroga~ive words. These contours may be used 

either in the sentence hypothesizing or error detection steps. 

Observations of pitch contours of English sentences have shown that 

boundaries between clauses are detectable from very large (e. g., more 

than 90 %) increases in Fo at ,the beginning of 'the new clause and that 

ooundaries between major, syntactic phrases are detectable from 

substaritial (7'% or more) 'increases in Fo [21J. Although exact locations 

of the bounda~ies are difficul t ~o detect, this property can aid the 

syntactic parser in a speech understanding system (Figure 5.5). 
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. Put ( the money) ( on the table ( by the door » 

Put (the money ( on the table » ( by the door ) 

Figure 5.5. Clause and syntactic phrase boundaries on Fo contours 

5.2.4. Vowel Harmonv . 
About 90 % of words in .Turkish obey the "vowel harmony" rules that 

have been outl'ined in section 3.3 (4]. Those that do not obey these 

rules are usually loan-words. So, a reasonable approach would be to form 

a vocabulary consisting only of words of native Turkish origin to 

benefit from this regularity. If this is not possible, one can still 

. make use of these rules and handle the exceptions seperately. 

Out of the 8 types of vowels in Table 3.1,vowel harmony reduces the 

possible types in the non-initial" syllable of a word to 2. Table 5.1 

shows' these ciasses and 'summarizes the rules. Considering the fact that 

Turkish is a ,language which consists mostly of polysyllabic words, it is· 

clear that this will bring great amount of redundancy of the phonemic 
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representation. The most common word type in Turkish is tri-syllabic 

[15]. If one takes this as an average word length, it can be concluded 

that the saving introduced will be about 50 %. 

GROUP OF THE POSSIBLE GROUPS FOR 
FIRST SYLLABLE 1 PRECEDING SYLLABLES 
---------------I--------------------~-

1 
2 
3 
4 
5 
6 
7 
8 

1 ,2 
1 , 2 
1 , 4 
1 , 4 
5 , 6 
5. , 6 
5 , 8 
5 , 8 

1 
UNROUNDED ROUNDED 1 

__________ ----------_1 
1 1 

1 WIDEICLOSEI WIDEICLOSEI 
___ 1 __ 1 __ 1 __ 1 __ 11 
1 1 1 1 1 1 
I . BACK 1 1 1 2 1 3 1 4 1 
1 ___ 1 __ 1_--1 __ 1 __ 1 

I 1 I 1 1 
FRONT 1 5 1 6 1 7 1 8 1 

___ 1 __ 1_,--_1--_1_--1 

Table 5.1 The regulations introduced by vowel harmony 

5.3. PROSODICALLY BASED SPEECH RECOGNITION 

In most of the speech recognition systems up to date, prosodic, 

syntactic, semantic. and pragmatic analyses have served an," after the 
" 

fact" role of weeding out the unlikely word sequences, based on pre-

compiled information about . acceptable, meaningful, and task-related 

sentences. The hierarchy can be seen in Figure 5.2. Based on incoming 

acoustic data, words are hypothesized throughout an utterance, to 

account for the phonetic data in all regions of the Signal, and thus 

. many. of the hypothesi?ed words. overlap in position or compete as 

alter~ative hypotheses on the same portion of the utterance. To allow 

for possible errors' that may have occurred, all combinations of these 

are fed into linguistic analysiE which has to select the most likely 
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sequences of non-overlapping words which form grammatical', meaningful 

and relevant strings. However, because 'of the structural redundancy 

present in a listener's linguistic knowledge, a speaker does not have to 

encode into the acoustic waveform all of the features describing an 

utterance, and the features that are encoded can vary from··.time to time. 

In some utterances, whole phonemes or syllables may be missing. A speech 

recognition system based on the acoustic manifestation of all phonemes 

or all distinctive features would thus frequently fail. 

In contrast, prosodic analysis offers an· independent way of 

acoustically detecting some aspects of syntactic structure, without 

depending upon the potentially errorful sentences of hypothesized words 

derived from the incoming acoustic phonetic information. In the system 

- - - - -- - - - - - - - - - - - -- - - - - - - -- ---l I Encr;y, Fvndatr>ental 
Freq\,Otncl', Can.tit\.ler'lt 8CU"ldaritt J ~RELI"''''''RY I I I 

PRO$OOIC 
Voicir-g PROSOOIC and Stret' Pcnerns ~PEECH Furc:ionl SYPITACTIC I FARAI,IETE:! STRUCTURE r . rYPOTkESIZERj I EXTRACTOR ANALYSIS I PRELlUIKlilY 

Syrtclctic I 
:.::::..::~:= 

I rr!~.-& PARTIAL Str..c:.rre AN"LySlS 

l--+ . PHONETIC 
:Sp.ard DISTIHCUISHINC Possible Hypod'>nos I ~Cata: HATURES Se"u"c.e I PAR ..... ETER , 

ESTlWTION Str\olCtUrH I. EXTRACTION 
I I - -- ----- ---- --.J -- ---------

r GRA~Rt-L o.-.c: 
PARSER S .... ona 

AND I~'" ,1 Ac.cxn.lc Pha>dIC r LEXICON\ r SEWIfTIC J---:::! SENTENCE Pcn.m . 
IoOlEL J--r HYPCTHESIZE':--. Par.~ 

ICONT~OL , Diltlf91llhlng I CO ... PONENTJ Features Lt:r.Ic=1 TUI( CO ... PARATOR SpocJllortlc:n Entries IoOlEL ~ - -
Ac:.c:ut:tlc: Ph::::netJc ~ LEXICAL LC""'.'~""1 r ........ ,"'. 
Potlom HYPOTHESIZERj 

Error 
Lulc=l IMerticn& 

SII1"" 
CENERA TlV~~. HvDOthetlz:ed Senfenc.e Str1.lClUt"e 

PHO~'i.~ICl .. 

[,-rOf" STeye' 

Figure 5.6. Prosodically gui'ded analysis-by-synthesis. system (After 

Lea et~ al. [22J) 



proposed in [22], prosodics is used throughout the system. 

diagram of this system is given in Figure 5.6. 
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The: block 

In the 

preliminaryhypothesis stage, prosodic features are used to segment 

continuous speech into sentences and phrases and locate stressed 

syllables. Such prosodic information is coupled with acousti.c--phonetic 

and structural information in an analysis-by-synthesis system. Here, 

what is usually called the "preliminary analsis" block is broken down 

into 

-a component for extracting prosodic features (energy,pitch,voicing) 

-a component for extracting phonetic parameters (formants, etc.) 

-a prosodic structure analysis which obtains phrase boundaries, 

rhythms, and stress patterns 

-a component for obtaining a partial representation of the phonetic 

segment structure (distinguishing features) within stressed syllables 

-a preliminary syntactic hypothesiz~r which uses phrase boundaries, 

rythms and stress patterns to predict likely syntactic structures. 

Following such- preliminary analyses, the lexical hypothesizer 

proposes possible lexical entries for insertion in the sentence 

structure, based on the closest- match between the partial distinguishing 

features representation of the input and the lexical entries in the 

lexicon. Contextual constraints, such as lexical categories that could 

occur at certain positions in the sentence structure, and likely words 

in certain semantic and. task contexts, are used to gUide the lexical 

hypot.hesizing. Grammatical, semantic and task constraints combine 

together with the lexical and syntactic hypotheses' to yield a total 

hypothesis' about the identity .of the sentence spoken. The sentence 

hypothesizer controls the order in which acoustic-phonetic patterns are 
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generated, by phonological rules, for comparison with the. input 

acoustic-phonetic patterns. The error sIgnal of the comparator is fed 

back to the sentence hypothesizer to formulate new hypotheses or to 

announce an output; 

Only some aspects of this strategy were implemented in a-recognition 

system [35]. Al though it has not been realized, the overall recognition 

strategy deserves attention in the sense that it shows how many aspects 

of recognition systems discussed so far can be combined to produce a 

prosodically guided system which operates in a sense which is. more 

close to the perception in humans. 
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VI. RESULTS 

In this study, tools have been developed to investigate prosodic 

features of Turkish. Analyses have been made on a total of 200 s of 

speech, in the form of 2-s utterances by four different speakers. Some 

of the curves from these analyses have been presented throughout the 

text. The phenomena observed on these curves are discussed, and some 

recognition strategies are outlined. Some of these strategies have been 

integrated in an isolated word recognition system of Turkish speech. The 

description of the system is given together with performance scores 

obtained. 

6.1. PITCH DETECTION ALGORITHMS 

The six pitch detection algorithms described in section 4.1 have 

been realized. A comparison ·between these ·six algorithms had been 

intended, but two of the algorithms had to be discarded because their 

mem~ry requirements did not comply with the available user memory of the 

system described in section 6.2. The remaining four algorithms were 

tested using an artificial signal generated by a speech model. 

6.1.1. The Artificial Speech Signal 

The model used is· a simplification of the general discrete-time 

model of " Figure 2.2. The model consists of a glottal pulse generator, a 
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vocal tract .filter, and a whitening filter (Figure 6. 1) • Fundamental 

frequency and vocal tract parameters are held constant. A whitening 

filter H has been used to flatten the output spectrum. The contributions 

of the glottal pulse, vocal. tract and radiation are all included in the 

fil ter F. Finally, an envelope has been used to simulate .. the effect of 

the alteration of voiced and unvoiced segments. Details of the model can 

be found in [51]. 

1 Glottal whitening 1 
1 pulse 1------+1 filter 1------+1 

. 1 generator 1 1 H(z) 1 1 

Figure 6.1 The artificial speech model 

6.1.2. Compari~on of the Algorithms 

F(z) 

E(n) 
1 VUV 
1 ENVELOPE 
.j. 

1 --~---+® ------+ 
1 

To make a performance evaluation of the algori tms, there was need 

for a speech signal. for wMch the true pitch contours were known. The 

most adequate signal· ·to use for this task would be the ouput of a speech 

synthesis. system. Since this wa~ not available, the artificial signal 

produced as described above was used. This signal is a rough 

approximation to· the speech signal, and the results of this analysis may 

not reflect the true behaviour of the algorithms with real speech, but 

still, they gave an idea about their performances and speeds. 

In Table 6.1, the ·error measurements for the pitch detectors is 
. . 

given. Four types of errors were classified as gross pitch errors, fine 

pi tcll, errors, voiced-to-:unvoiced. errors and unvoiced-to-voiced errors. 

If p", (m) . represents the standar.d pitch for mt-h frame, and pj (m), the 
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pitch detected for the mt-h frame by the jt-h pitch detector, different 

types of errors result from the following situations: 

Unvoiced-to-voiced error 

,-p .. (m) "# 0, pj (m) =' 0 . Voiced-to-unvoiced error 

-p .. (m) = Pl "# 0, pj (m) = P2 "# 0 : In this case a vb-n:ed- ·frame is 

correctly classified as voiced by the algorithm. For this case two types 

of errors can exist, depending on the values of Pl and P2. If we define 

the voiced error e(m) as the the difference: 

e(m) = Pl - P2 

then, if le(m)1 ~ 10 samples the error is classified as a gross pitch 

error. For such cases, the pitch detector has failed in estimating the 

pi tch peri od. All of the gross errors encountered were due' to pitch 

doubling. The second type of pitch error is fine pitch error in which 

case le(m)1 < 10 samples. For this case the pitch detector has estimated 

the pitch period sufficiently. 

The parameters in Table 6.1 are, the mean e",v and the standard 

deviation ~e for the fine 'pitCh errors, and error rates for the other 

types of errors. 

1 1 
e .. v ~ .. 1 VUV 1 UVV Gross 

1 errors 1 errors errors 
1 1 

1 1 1 
'I AUTOC 0 0.46 I 0 I 0.0'1 0.0'1 
I 1 I 
I I I 
I AMDF 0.0'1 0.88 I 0.0'1 I 0 0 

- I I I 
1 I I 
I CEP 0.'1'1 1.12 - I 0 I 0.18 0 
I- I I 
I I I 
I PPROC 0.13 1. 1'1 I 0 I 0.13 0.13 
I I I 

Table 6.1. Pitch period errors for the algorithms 
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It is observed that the errors are often in the voiced-unvoiced 

transitions. However, it should be noted that there are no voiced-to-

unvoiced errors in three of the algorithms, while in the fourth one, 

there are no unvoiced-:-to-voiced errors, which shows that all of the 

algorithms are biased toward voiced or unvoiced. The meCl;l!~~:n<l.standard 

deviations for the fine errors are too small to be considered. There are 

few gross errors, which are due to pitch doubling. None of these are 

severe errors, and they can be corrected using logic similar to the 

error correction and tracking logic used in AMDF. So, the main criterion 

for selection is the speed.' Exact values cannot be given, but PPRae 

performed the fastest, with AUTae and AMDF about 10 times slower and eEP 

100 times slower. So, PPRae was chosen as a first alternative ~o be used 

in the analyses. The voiced-unvoiced detection log~c was developed as 

described in section 4.1. 3. However, during its use with real speech, 

problems arose because of the wide pitch frequency range required (100-

500Hz, for both' male and female speakers). The algorithm produced 

acceptable results when parameters were adjusted to a smaller interval 

for analysis with only male speakers, but since speech from both male 

and female speakers was to be analysed, this method had tolbe discarded. 

AUTae and AHDF were taken as possible al ternati ves. With real speech, 

. . 
AMDF also presented some errors which were found to' be due to the 

tracking logic. Similar tracking logic was used with AUTae and it was 

observed that it produced the same type of errors. So, it was concluded 

that trac~ing was inadequate in-regions' of high-slope pitch changes. 

Since pitch peaks and valleys played an important role in the detection 

of many of the prosodic feature~, that was unacceptable. So, AUTae was 

chosen to be used· in the rest of the analysis. This selection agrees 
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wi th many comparisons of. pitch detectors. ([ 40] , [41]) in tha~ the 

autocorrelation method after center cllpping provides a simple and 

reliable way of detecting pitch. The pitch range searched was readjusted 

according to the pi tch ranges of the speakers and this reduced the· 

computation time by a factor of ~. A tracking logic wa~ilttegrllted to 

further reduce the computation time, but that was later discarded since 

this caused errors. The autocorrelation method with center clipping. as 

described in section 4.1.1 was used in the rest of the analysis. 

6.2 VOICE INPUT ANI> ANALYSIS SYSTEK 

The analysis is performed on a PDP 11/23 microcomputer. Voice input 

to the system is via analog circuitry which consists of a standard' 

carb~n microphone of the type used in telephones, a lowpass filte~ which 

has 6-dB point at 3.5 kHz, followed by an amplifier. The otput of the 

amplifier is designed to be between ± 10 V. The ouput of this analog 

system is fed to the 12 bit· AID converter of the PDP 11. The sampling is 

1------------, 
1 CONSOLE 1-----1 _________ .: __ 1 

,-----------, ------------- ,------------, 
1 LOWPASS 1 1 1 1 ANALOG 1 

)------1 FILTER 1-----1 AMPLIFIER 1-----1 TO DIGITAL 1-----MIC I _________ ~_I 1 ___________ 1 1 CONVERTER 1 
1 ____________ 1 

1------------1· 
1 PDP 11 CPU 1-----1 
I--------~---I I 
______________ 1 . 

I 1 1 
1 DISK 1-----1 1 ____________ 1 

Figure 6.2 Voice input and analysis system 
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performed at 8 kHz, the minimum allowed by the Nyquist cri terionj to 

make the most of the limited memory capacity. At this sampling rate, the 

maximum duration of speech that can be stored is 2 seconds. At a normal 

speech rate, single words or 2-3 word sentences can be uttered in this 

time. So, analysis was performed on those. The block -diagram of the 

voice input/analysis system is given in Figure 6.2. ' 

6.3 SYLLABLE 

6.3.1 Syllable As a Unit of Recognition 

There are several al ternati ves for a recognition unit: phoneme, 

allophone, diphone, syllable and word. All of these have been used as 

units in different recognition systems, but none of them has proved 

ideal. In fact, all have their advantages and disadvantages, ,and a 

recognition system may use a combination of these units. The advantages 

and disadvantages of these units have been summarized in Table 6.2. 

In present recognition 'systems, the most often used units have been 

the phoneme and the word. The syllable, being halfway between these two 

units, has the advantages of both to a degree. It is indeed the only 

unit which is easy to detect in continuous speech, and one in which the 

context dependence is somewhat eliminated. One additional advantage of 

using the syllable is its being a prosodic unit; it is the smallest unit 

that prosodic features are carried on. Stressed syllables are of great 

.impor:tance in recognition, and using the syllable as a unit enables one 

to get easy access to this information. For these reasons, attempts have 

been. made to use the syllable ,as a unit in some recognition systems 

[21]. The main drawback to using the syllable is its being a unit not 

... <: 



Phoneme 

Allophone 

Diphone 

Syllable 

Adyantages 

1. Total number is small 
2. Suitable representation 

for lexical entries 

1. Easily identifiable 
2. No rules needed at 

lower level 

1. Transitional information 
is included 

2. Some coarticulation rule 
is included 

1, Easy to locate 
2, Much coarticulation rule 

is included 
3, Phonological rules easier 

to apply . 
4, Easy access to prosodic 

features 

1. Eliminates an entire level 
of recognition activity 

Disadyantages 

1. Hard to detect acoustically 
- 2. Some sounds belong to more 

than one phoneme 
3. Many rules are needed at 

lower and higher levels 
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1. Total number is ~~~e~?iv~ly large 
2. Dependent on their 

environment 

1. Total number is large 

2. Phonological rules are 
not easy to apply 

.1, Total number rather large 
2, Precise boundaries are 

difficult to detect 

1, Matching is difficult 
with large vocabularies 

2, Junctural phonological rules. 
are hard to characterize 
in lexicon entries 

Table 6.2. Advantages and disadvantages of recognition units 

uniquely defined in English. In Turkish, syllable is a more basic unit 

and many rules of the Turkisn language act upon the syllable as a whole. 
. . 

A possible' disadvantage is that the syllable inventory can become 

very large with extensive vocabularies. The size does not approach that 

of allophones or words ordinarily, but it far exceeds that of phonemes. 

To gt.ve a~ idea on the size of the syllable inventory, some results of a 

stUdy on the count of units in a Turkish text [15] will be given. The 

text. consists of 22, 21~ words (58,992 syllables). In this text, the 

number of different syllables;. was found to be 1506, 807 of them 
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appearing in word initial position, 873 in the middle and 759 in' word 

final position. The frequency, of occurence of these syllables was such 

that a small number of them (60) forme;l about half of the text. The 
, ' 

amount of text that can be, formed with the most frequent syllables is 

tabulated in Table 6.3. If the probability of occurance or-syllables is 

used in the search process, it is clear' that the search time will be' 

much less than that required for 1506 syllables. Kore economy can be 

1t syllables amount of. :t.ext 1t syllables amount of.~ 

10 16.61 % 90 59.95 % 
20 26.81 % 100 62.26 % 
30 34.44 % 150 71.12 % 
40 41.56 % 200 77.21 % 
50 46.05 % 250 81. 41 % 
60 50.85 % 300 84.40 % 
70 54.01 % 400 87.01 % 
80 57.60 % 500 92.10 % 

Table 6.3. Frequency of syllables in text 

made if the knowledge of position in the word is used. It has been shown 

that some syllables exist only'in certain pOSitions in the word. Data on 

this knowledge is given in Table 6.4. 

Posit jon in the word # syllables amount of text 

'initial 10 24.04 % 
45 52.42 % 

middle 10 25.55 % 
40 51. 83 % 

final " 10 19.29 % 
40 51.37 % 

monosyllabic word 5 ' 44.22 % 
,10 56.28 % 

Table 6.4 Frequency of syllables in certain positions 
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':;:,:: The last disadvantage of using .the syllable in recognition has been 

the. lack of methods to detect syllable boundaries,. namely, syllable 

segmentatio~. A method has been developed for syllable segmentation. 

6.3.2 Syllable·Segmentation 

Syllables are usually defined as high energy chunks which corresp6nd 

to voiced sections. Detection of the syllabic nuclei is straightforward 

based on this definition; they are manifested as voiced regions which 

last long enough (30 ms or more). 

One existing system for finding syllables [32] locates syllabic 

nucl.ei by detecting high sonorant energy (energy in the 70-300 Hz band) 

regions bounded by substantial (4 or 5 dB) dips in. energy. It then' 

detects beginning and ending points of the syllabic nuclei as the 

halfway points in the dips~ This algorithm is reported to detect 91 % of 

the syllables with only.1 % false detections of nuclei. Another similar 

program which uses a spectrally weighted loudness function was reported 

to detect·92 % of the sylla~ic nuclei. 

A different approa·ch which is base~ on the same principles but 

instead of filtering the speech signal, makes use of the fundamental 

frequency in finding the syllabic nuclei has been used in this study. 

Tlie· syllable structure of Turkish is such that there will be a vowel at 

the nucleus of each syllable·, and these vowels will be manifested by 

. long sections of voiCing. The algorithm uses these sections as 

. candidates of syllabic - nuclei arid the energy waveform to find the 

syllable endpoints; it accepts each local minimum between two sections 

of voicing as a syiicible boundary point. This algorithm usually works, 

because . the voiced consonants. (y,hich are causes of possible false 
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detections of nuclei) are always next to a vowel, and during 

articulation of the vowel and the voiced consonant next to it, no 

discontinuity in voicing long enough to be detected occurs, and even if 

this occurs, there will be no local minimum in the energy waveform 

corresponding to this discontinuity. 

One example word is given in Figure 6.4, where the the fundamental 

frequency and energy curves are plotted for the utterance "birlestir". 

It is observed that the sections of voicing coincide with the syllabic 

nuclei. The algorithm detects the endpoints of the syllabic nuclei that 

last long enough, and the endpoints for each nucleus are used by another 

algorithm that uses these data to find the exact endpoints of syllables 

from the energy contour. The flowchart of the syllabic,nuclei detection 

routine is given in Figure 6.5. 

This algorithm has been used to segment. into syllables the 19 words 

(consisting of 37 syllables) of the vocabulary of the syllable-b'ased 

isolated word recognition system described in Section 6.5, where it 

detected 81 %'of the sylla~les (with no false detections), failing only 

in those words that consisted of all-voiced sequences, where all the 

consonants are voiced, and no discontinuity in voicing is detected. An 

example word where this ,occurs is in the word "cevir", for which the 

fundamental frequency and energy contours are given in' Figure 6.6. In 

this case, the syllable boundary is marked by a sharp increase in Fo. 

When this property is utilized by the syllable detection algorithm, the 

. performance increases to 89 %, with no false detections. 
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6.4 PROSODIC FEATURES 

The possible uses of prqsodic features in recognition systems was 

-_."-. 
discussed in Section 5.2. Here" methods will be described to detect 

those features in speech, and results will be presented. 

6.4.1 Intqnation 

Possible uses of intonation in recognition systems were outlined as: 

-Segmentation of continuous speech into phrasesj 

-Extracting grammatical cues about sentences. 

As continuous speech was not avaliable, segmentation could not be 

investigated. However, the . grammatical intonation contours (Tune I and 

II contours of Figure 5.4) were observed in short sentences. 

As noted in Section 5.2, Tune I contour marks yes/no questions 

(Figure 6.7),. and Tune II contour marks questions with interrogative 

words (Figure 6.8). 

6.4.2 Stress 

Stress is the most important prosodic parameter in use in 

recognition systems. It is being used in many present systems for the 

. purposes discussed in section 5.2. The main physical correlates of 

. stress are fundamental _frequenc~, duration and energy. It has been 

observed that stressed. syllables . are usually articulated with longer 

duration and higher intensity as well as an increasing fundamental 

frequ~ncy. Although energy and duration show a characteristic increase 

.in stressed syllables, these parameters have proved insufficient for the 
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detection of stressed syllables. It seems that the main characteristic 

that enables their detection is a local rise in the fundamental 

frequency contour which is naturally accompanied by increases in energy 

and duration. If isolated from the ·effects of intonation, stress will 

usually be revealed by a local rise in Fo. However, with_,~n~onation 

imposed on the stress patterns, the situation will slightly change; the 

intonation patterns will cause. the pitch contour to take the general 

form of Tune I or Tune II contours <Figure 5.4) . The stresses will then 

have the effect of increasing Fo locally at stressed syllables. If this 

happens during the time intonation contours are rising, this will show 

as a· sharp rise in Fo; and if this occurs during fall of intonation 

contours, stresses wil show as local rises above the gradually falling 

Fo contour; even if Fo does not rise absolutely near the stressed 

syllable. 

Figures 6.9 and 6.10 show the fundamental frequency and energy 

contours for the .two different pronounciations of the same· word, 

"konu!i;]]Ja". In Figure 6.9" the second syllable is stressed due to the 

negation suffix, while in Figure 6.10, the third syllable is.stressed, 

because the suffix in this word is 'a regular one. It is observed that 

both amplitude, duration and fundamental frequency contours are 

different in the two graphs. These values have been averaged for 

different utterances of the same words and the results are given in 

Table 6:5. 

It can be seen clearly that the amplitude and duration show cues to 

the stressed 'syllables, 'but these are hard to use in the detection of 

stressed syllables. In the word "ko~ma", although the amplitude and 
. 

duration of the second syllable is relatively higher than it is in 
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II kDnUS11Jil" ,the sy1lable with the highest amplitude and longest duration 

is still the third sy1lable; it is the fundamental frequency contour 

that shows useful for the detection of stressed syllables. 

j--------------------------j--------------------------j--------------------------j 
1 Average Duration ( S ) 1 Average Amplitude 1 Pitch Contour 1 
1 ______ --------------______ 1 ______ --------------------1 __________________________ 1 
1 1 1 1 I I 1 1 I 1 
1 syl, 1 1 syl, 2 1 syl, 3 1 syl, 1 1 syl, 2 1 syl, 3 1 syl, 1 1 syl, 2 1 syl, 3 1 

j-----------------I--------I--------I--------I--------1--------1--------1--------1--------1--------1 
1 syl, 2 stressed 1 26 1 29 1 45 1 0,8 I 0,8 1 1,0 1 fallingl rising 1 fallingl 
I-----------------I-~------\--------I--------I--------1--------1--------1--------1--------1--------\ 
1 syl, 3 stressed 1 28 1 25 1 47 1 0,7 1 0,5 1 1,0 I fallingl level 1 rising 1 
1 ______ -----______ 1 ________ 1 ________ 1 ________ 1 ______ --I ____ ~---I--------I--------I--------I------~-I 

Table 6.5. Variation of duration, amplitude, and pitch with stress 

An increase in fundamental frequency is taken as the main indication 

of a stressed syllable. There are cases where no significant increase in 

fundamental 'frequency is observed, and in these cases, taking the 

sy1lable that is highest in amplitude and longest in duration as the 

stressed syllable gives good results. 

6.4.3. Duration 

Duration information is used in segmentation and labeling schemes. 

The expected vaiues of sounds are important parameters that are/used in 

various steps of a recognition process. These values, however, are 

highly context-dependent. and must be obtained considering a1l sorts of 
. . 

envirpnments. In a syllable-based system, duration of syllables may be a 

more reliable measure because this dependency is included. 

The average durations of syllables for the vocabulary of the 

isolated word recogni t.ion system (Section 6.5) have been calculated and 

this information has been used in the matching step. 
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j----------j-------j-------j----------j-------j-------j----------j-------j-------
1 SYLLABLE 1 Dav 1 r 1 SYLLABLE 1 Dav 1 r 1 SYLLABLE 1 Dav 1 r 1 __________ 1 _______ 1 _______ 1 __________ 1 _______ 1 ______ -1 __________ 1 _______ 1 ______ _ 

I . I 1 1 I 1- I I 1 
1 1 - I 10' I 1 ,9 1 SAK - I 19 I 2, 1 I - TI 1 33 I 6 , 9 I __________ I _______ I _______ I _________ ~I _______ I _______ 1 __________ 1 _______ 1 ______ -

I I I I. I 1 I • I I 
I SI- 1 10 'I 2,1 I GIR- I 25 I 2,9 I -VIR I 33 1 4,9 I __ ~ _______ I _______ I _______ I __________ I _______ I _______ I----______ 1 _______ 1 ______ -

I .1 II 1 I 1 1 1 
I -Nl- J 12 I 1.1 I BA~- I 26 I 1,1 1 -/(1 1--35"--'1 2,2 

I----------I-------I--~---I----------I-------I-------I----------1-------1-------
I SE- I 13 1 1,7 1 AL- I 26 1 2,4 I -KUZ I 35 1 5,5 1 __________ 1 _______ 1 _______ 1 __________ 1 _______ 1 ______ -1 __________ 1 _______ 1 _______ 1 

I 1 1 I • I I I I 1 1 
1 GE- 1 13 I 0,7 1 -/(1Z I 26 1 8,1 I -LA I 36 1 6,6 I 1 __________ 1 _______ 1 _______ 1 __________ 1 _______ 1 ______ -1 __________ 1 _______ 1 _______ 1 

1 I I 1 I I I • I I I 
I DD- I 14 I 1,2 I -LE~- I 27 I 2,6 1 . -TIR 1 36 I 6,6 1 1 __________ 1 _______ 1 _______ 1 __________ 1 _______ 1 ______ -1 __________ 1 _______ 1 _______ 1 

1 1 I I 1 I. 1 I 1 I 
I -RA- I 14 I 0 , 9 I B 1 R 1 30 I 10,5 1 BE~ I 38 I 3 , 7 I 1 __________ 1 _______ 1 _______ 1 __________ 1 _______ 1 ______ -1 __________ 1 _______ 1 _______ 1 

1 I I 1 I I I.. I I I 
I YE- I' 17 1 2,4 I -FIR I 30 1 2,1 1 DORT 1 40 1 4,1 1 I ______ ~ ___ I _______ I _______ I __________ I _______ I _______ 1 __________ 1 _______ 1 _______ 1 

1 1 1 1 • 1 1 I.. 1 I I 
I CIK- 1 17 I 2,3 1 -Dl I 32 1 5,6 'I UC 1 40 I, 5,6 I 1 __________ 1_--____ 1 _______ 1 __________ 1 _______ 1 _______ 1 __________ 1 _______ 1 _______ 1 

1 I I 1 I I I I I I 
1 CE- I 18 1 2,0 1 -DEN 1 32 1 4,5 1 1 1 1 1 _____ , _____ 1 _______ 1 _______ 1 __________ 1 _______ 1 _____ -_1 __________ 1 _______ 1 _______ 1 

Table 6.6, Duration of syllables 

The average durations and standard deviations of syllables have been 

given in Table 6.6. All the figures, in the table are number of 12,5 ms 

frames. It is observed that the syllables shaw a characteristic duration 

with small standard deviations, Cases where the standard deviation is 

relatively high are generally the final syllables and this uncertainty 

, is due to final breath noise. Als'o, the syllables are slightly longer in 

. final position than in ~nitial po~ition. This has been the cause of the 

relatively large, standar.d deviation observed in the syllable "BIR". 

These regularities have been utilized in the matching step of the 

isolated ward. recognizer. The. average duration of each syllable is 
.J 

stared and the unknown utterance is nat tested against those syllables 

for which the ratio of unkown duration to syllable duration is outside 



69 

specified limits. It is assumed that the duration of a syllable can only 

change 40 % from the average and this ratio is used in matching. The use 

of durations in this way provides a time saving of about 52 % . 

6.5. PROSODICALLY AIDED ISOLATED WORD RECOGNI'[rO:tL SYSTEM 

A speaker independent isolated word recognizer based on the 

discussed ideas has been realized. The minimum recognition unit has been 

chosen as the syllable. Syllable segmentation has been performed by the 

technique described in ~he previous section. Dynamic time warping 

technique has been used in syllable verification. Duration and vowel 

harmony information have been used in syllable matching. l'he block 

diagram of the system is given in Figure 6.11. 

j-----------------------------------------------------------------------------
I ----------- -------------IT: TRAINING I TURKISH I 1 STORED 1 
1 1 VOWEL 1___ 1 REFERENCE 1 
1 R : RECOGNITION 1 HARMONY 1 \ 1 TEMPLATES 1 
I ----------- \ -------------
I \ t 
1 \ ·1 
1 --------------- ------------- ------------------
1 ___ I ENERGY '-_-' 1 __ I CLUSTER I NG & 1 

-------------- ------------ 1 1 I MEASUREMENT 1 1 SYLLABLE I ------------ Til CLASSIFICATION 1 "Ie __ 1 LPF 1 ___ ' AID 1 __ 1 __ 1 --------------- I 1 ____ 1 LPC 1 __ ' .-----------------
1 fc=3,5 kHz 1 1 fs=8 kHz 1 1 I -~-~------------ 1 ENDPOINT 1 1 ANALYSIS 1 \ ----------------
-------------- ------------ 1 ___ 1 PITCH-PERIOD 1 __ 1 1 ------------ R \ 1 DYNAMIC 1 

1 DETECTION 1 1 DETECTION 1 ---I TIME-WARPING 1 
---------------- 1 1 ----------------

------------- I I 
I + 

I -----------------
I 1 KNN 1 

I 1 DECISION RULE 1 
----------- I -----------------1 1 ___ -' 1 

PDP 11123 1 LEXICON 1 + 
MICROCOMPUTER 1 1 --------------

1 RECOGNIZED 1 
1 TEMPLATE. 1 

------------------------------------~----------------------.-----------------. 

Figure 6.11. Overall block d.iagram of the word recognition system 
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The vocabulary consists of 19 words, 10 digits and 9 polysyllabic 

COlIllnands.. The total number of syllables is 37, and the number of 

different syllables is 29. The redundancy is much less than it is 

normally, because ·of the small size of the vocabulary. The saving 

introduced in memory because of using syllables instead at-wards is 22%. 

Both a timesaving and improvement in performance is also achieved due 

to using syllable as a unit. These are summarized in Table 6.8. 

Syllable segmentation is performed with the technique described in 

Section 6.3. Syllables are classified in ~ groups according to the vowel 

they contain. Classification of syllables can be seen in Table 6.7. 

UNROUNDED ROUNDED 

I 
WIDE CLOSE WIDE I CLOSE 

I 
I -1- -2- -3- I -4-
I I 
I BAS elK DO I KUZ 
I BACK SAK FIR I 
I AL TI I 
I LA . SI I 
I RA I 
I I 
I -5- -6- -7- I -8-
I I 

KIZ DORT 
I 

U~ I I BES I 
I r LES .VIR I 
I I DEN TtR I 
I FRONT I YE B R I 
I I SE I G R I 
I I CE I Kl I 
I I GE I· gI I 
I I I I 
I I I I I 
I I I I 

Table 6.7. Classification of the syllables 

The system has two modes of operation; training mode and recognition 

mode. In the training mode,. recordings are made of the different 

utterances (by ·different speakers) of the vocabulary words. These are 

then analyzed; syllable segmentation is made and a feature set of LPC 

- , ' .'~ . '. 
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coefficients <p=10) is prepared for each syllable. Among the different 

sets representing seperate utterances of the same syllable, a subset 

which optimally represents the syllable is chosen. This process is 

called" 'clustering'. The feature sets of the chosen utterances are 

stored in memory and these are called 'reference templates~'.~-

In the recognition mode, an unknown utterance is input to the 

system. This unkown utterance is processed in the same way to segment it 

into its syllables and extract features to prepare a 'test temRlate'. 

This test template is then compared with the reference templates in the 

memory and a 'score' is associated with each according to a distance 

measure. Both Euclid distance measure and LPC log likelihood distance 

measure have been used. In the comparison, linear time warping" followed 

by dynamic time warping is used to perform time normalization. Duration 

and vowel harmony information is used to eliminate unlikely matches. 

This substantially reduces the computation time <Table 6.8). After the 

test template is compared with all permissible reference templates in 

memory, a decision is" made according to K-nearest neighbor decision 

rule; the K minimum distances for each compared syllable are added and 

the one with the total score is" announced to be the recognized syllable. 

j------------------j-----------------j-----------------j 
1 MEMORY SAVING 1 TIME SAVING 1 IMPROVEMENT IN 1 
1 INTRODUCED 1 IN DTW 1 PERFORMANCE 1 " _________________________ I __________________ I __ ~ ______ --______ 1 ______ -----______ 1 

1 1 1 1 1 
1 SYLLABLE AS A UNIT 1 22"~ 1 3-8 ~ 1 around 10 ~ 1 
I------------------------I--------~------~--I---~-----------~-I--~--------------I 
1 40~ DURATION"THRESHOLD 1 1 52 ~ I" 2-3 ~ 1 
I------"---------~-"---- ... --I-------..:----------I-----------------1-----------------1 
1 VOWEL HARMONY 1 " 1 35 ~ 1 around 5 ~ 1 
1 ______ ------------______ 1 ______ ------______ 1 ______ ---________ I __________ ~ ______ I 

"" 

Table 6,8. Improvements due to prosodic aids to recognition 

,'\ ''''', . 
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6.6. SOME STRATEGIES FOR CONTINUOUS SPEECH RECOGNITION 

In this study, analyses were made on 2-s utterances which consisted 

mainly. of single· isolated words and a few short sentences. The 

observations on these sentences led-to some strategies fcir-al-continuous 

speech recognition system. These will be shortly discussed here. 

However, extensive analyses must be made for their justification. 

In continuous speech, there is very little (if any) evidence of word 

boundaries. Due to the increased difficu~ ty of endpoint detection and 

increased size of the vocabulary, the word as a unit loses its appeal. 

The phoneme may be another alternative, but in addition to the 

disadvantages discussed before, there is the additional problem that in 

continuous speech, especially when the speaking rate is high, many 

phonemes may be missing. These considerations lead to the conclul?ion 

that syllable is the most convenient unit to be used in continuos speech 

recognition. Syllable boundaries can still be extracted from the energy 

waveform, so the speech can again be segmented into syllables using 

si.milar techniques. So, the syllable· can again be used as a unit with 

some methods to deal with the above problems. Rules must be incorporated 

into the system to account for missing sounds in fast speech. Allowing 

for .different pronounciations of the syllables might be one way of 

dealing with this problem. 

In continuous speech, since the word boundaries are not known, 

complicated procedures must be used for word matching; In a phoneme or 

syllable based system, word matching is done at a symbolic level. Once a 

sequen?e of syllables have been' recognized, these are compared at the 

symbolic level with the words in' lexicon. To do this, one has to find a 
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way to hypothesize nan-overlapping sets of wards from these sequences. 

What is usually dane is to proceed from, left to right and go an trying 

all possible sequences while allowing for missing or errorful segments. 

Then, assuming that sentence boundaries are known, competing hypotheses 

will be farmed for each sentence. These are tested so-as""to prove 

grammatically and semantically meaningful, and the ones that do are 

compared. The hypothesis with the minimum total distance is chosen to be 

the recognized sentence. The stress structure of Turkish has one 

regulari ty which can introduce a very . important convenience to this 

procedure. In Turkish, one strong stress is assigned to each word, and 

this is ordinarily piaced on the final syllable. So, a stressed syllable, 

usually marks the final syllable of a wordj and wards in a sentence can 

be segmented using this property. There are, of course, exception words 

which must be handled carefully, Exceptions are usually clearly defi.nedj 

the most common class is certain suffixes which cause stress to be 

assigned on the syllable preceding them. There are some ather classes of 

loan words or names 'of places which are more difficult to handlej so, a 

more convenient approach would be to again hypothesize words from left· 

to right; but to, score, the hypotheses according to' their stress 

st;ructures. Those hypotheses in which same words have more than one 

stress can be ruled out. This will reduce the number of hypotheses 

. substantially. In this context, vowel harmony can also be used, It is 

known that words of Turkish '. origin contain vowels from certain groups 

throughout·, If the syllables are grouped as dane in Table 6.7, this 

information can be, used in a syllable-based recognition system. If the 

structure of the vocabulary is suitable, hypotheses that contain words 

which do nat obey vowel harmony rules can be ruled aut, or some 
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convenient score may be assigned accordingly. The two properties 

proposed for use in word segmentation, .stress and vowel harmony, have 

also been classified by linguists as properties that define words [6]. 

Th~ rate of speech is another parameter that is used in a continuous 

speech recognition system to account for different rules· for fast 

speech. In English, the most common measure used for rate of speech is 

the number of stresses in unit time. As discussed above, each word is 

marked with a stress in Turkish, and for this reason, the number of 

stresses per unit time is a measure of word rate, not speech rate. Some 

linguists [5) point out· that syllables are assigned equal time in 

Turkish. If this is true, number of syllables per unit time can be used 

as an indication of speech rate. 

Prosodic aids are, in fact, part of a linguistic framework used for 

speech recognition system. They have proved to be very useful for the 

isolated word recognition system discussed. A linguistic framework in 

which all the prosodic aids discussed with the addition of many others 

is more essential in a continuous speech recognition system. A 

linguistic framework; in addition to improving system performance,makes 

the system easily expandable with the enhancement of syntactic and 

semantic analysis capabilities. 
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VI1. CONCLUSION 

In this study, algorithms have been developed to extract prosodic 

parameters from the speech signal .. The prosodic structures of Turkish 

have been investigated for use in speech recognition systems and some of 

the ideas have been realized in an isolated speech recognition system. 

The basic conclusions drawn in each step of the analysis can be 

summarized as follows. 

The Autocorrelation method using center clipping (AUTOC) provides a 

simple . and reliable method of pitch period detection. Parallel 

processing (PPROc) method is also remarkable for its spe.ed in 

implementation, but AUTOC has been favored in this study because of its 

reliability. 

Syllable is a very suitable unit for automatic recognition of 

Turkish. It has many advantages both in isolated and connected speech. 

The algorithm developed for syllable segmentation has shown considerable 

success; it has detected 89 % of the syllable endpoints. 

The prosodic structures of Turkish, namely, duration, stress, 

intonation, and vowel harmony. can be used in. automatic speech 

recognition of Turkish in the following ways: 

~Duration of. a syllable changes very little from an expected 

duration. This property can be used in word matching. 

-:-Stress can be detElcted 'us~ng fu~damental frequency, energy, and 

duration. This information can be used in word hypothesization. 
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-Intonation contours give cues about grammatical functions of 

sentences. 

-Vowel harmony can be used to group syllables. Matching and 

verification can· be ·made wi thin· these groups. This reduces the 

computation time substantially. Vowel harmony informati-on-can- also be 

used in word hypothesization. 

Some of the above prosodic aids have been incorporated in a 

syllable-based isolated word recognition system. Both time and memory 

savings and an improvement in performance have been obtained due to 

these. 

7.1. SUGGESTIONS FOR FURTHER WORK 

All of the above prosodic aids may be incorporated in a continuous 

speech recognition system. The method of word hypothesization suggested 

in Section 6.6 can. be tried in such a system. The method suggested for 

finding rate of speech in Turkish should be tested with carefully 

prepared test data to prove its validity. Intonation contours should be 

carefully. examined for possible. uses in. continuous speech recognition 

systems. Possible use of intonation contours in segmenting Turkish 

sentences into their grammatical constituents should be investigated. 

The performance of the syllable segmentation method may be improved 

if smaller segments of analysis are used. More complicated algorithms 

may a.lso be used to deal with those phenomena using the information on 

the energy waveform only. 
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