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ABSTRACT

Automatic speech recognizers which were once considered as “a dream
' of méd scientists" ﬁave shown considerable success in the last decade.
Wﬁat has made this suocess‘pbssiblé has been the use of sophisticated
mathematical tools along with speeCh knowlédge at various levels. Future
success seems to,depénd on the exhaustive use of the latter. |
This thesis is an attempt at using prosodic information; which
conveys speech knowledge at various levels, in recognition systems;
Progréms have been developed to extract physical corfelates of prosodic
features from the speech signal; Results of analyses with Turkish words
and sentences point out some methods to detect 1inguistic cues f?oﬁ the
%pee&h signal. Based on these results, strategies are outlined for a

Turkish speech réoognizer._Some of these are integrated in an isolated

word recognizer and improvements are obtained.



S6ZETCE

Son on yilda sdz tanima élamnda bliyik bir atilim ;‘a—;{;;s, somut
basarilar eide edilmistir. Bu basarinmin altinda geligmis matematik
modellerin  kullanim ile birlikte insan ka%rama51n1n ¢esitli
evrelerindeki ses bilgisinin s$z taniyicilara uyarlanmas: yatmaktadir.
Gelecekﬂeki bagarilara ses Bilgisinin' daha c¢ok kullanilmas: ile
ulasilacag anlas11maktad¥r.

Bu tezde gesitli dﬁieylerdé ses bilgisi tasiyan biiriin bilgisinin stz
tanimadaki kullamim alanlari arastirilmaktadir. Biirin 6zeliiklerinin
fiziksel . karsiliklarimi sesten elde etmek igin izlenceler
gelistirilmistif. Degisik sbzcik ve tiimcelerle yapilan qazﬁmiemeler
sonucunda dilbilimsel yapilarin bulunmas: iqin> bazi1 yordamlar ve
bunlarin Tiirkge sz taniyicilarda kullamim yollari 6nerilmis, baz:
yordamlar> ayrik bif s6z tanmiyicida kullanilms ve ilerlemeler elde

-~ edilmistir.
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" I. INTRODUCTION

Speech  is the basic: device humans use for -ccm;;;;;ation. The
information to be transmitted is first encoded .at a discrete level
according to the rules of the language used by the speakef, and then,
thfough the complex process of physiological speech production, this
informafion is converted to an acoustic signal. This signal,. when
received by another speéker qf the same language, .is converted to
another discrete sequence and_'decoded to extract +the information
transmitted. |

Speech production mechanism in humans is better understood than the
pérception meohénism. There are many mathematical models of .speech
production which enable the ~construction of synthesis systems. It is
generally accepted:that the message is conveyed both locally by spectral
features aﬁd globélly} by a hierarchy of structural features. Thel
relationship of these spectral and structural featureé to linguistic
units aﬁd concepts' has been tﬁoroughly investigated and fairly well
understood.

'The perception mechanism, on thé dther hand, is not fully understood
yet. Models that use abstract formélisms instead and physical and
éhysiolégical correlates-are-used;

Autoﬁétic speech recognition .13 the prooess of transforming the
acoustic speech QaVéform into_a sequence of discrete representations and

assignment of meanings to these sequences by a machine. The first



attempts for machine recognition of speech dgte back some 30 years. The
first attempts ordinarily reflected speech production viewpointé, for
this was the best understood. These systems could recognize with a fair
rate of performance a small vocabulary of words spoken in . isolation by a

trained speaker.. With the advent of mathematical tqols in the 70's,

systems capable of recogniziﬁg larger vocabularies of words igdepéndent
~of the speaker with good rates of performance were built. Recent trends
have - added successes in recognition‘of continuous speech such as strings
of digits and spoken sentences related to a restricted task domain, and
the teéhnology is currently expanding . rapidly . What has made this
success possible may have been the integration of more speech knowledge
into the system. The main trend in some recent systems (21] is makiag
use of all linguistic’informatiqn at various levels. 'Among fhese, the
prosodic level is one level which gives cues to the other levels as
well, and is eaéy to extract from the acoustic waveform.

_Prosodio features are parts of the way humans encode informafion in
the speech Signal;’As contrasted to the sounds which occupy short time
Segments’eéch, proéodic féatures are of longer duration, and they are’
imposed an the souﬁds that follow each other. For this reason, they are
sometimes called "suprasegmgnfal features". The main prosodicvfeatureS'
are stress, tope, intonation, durafion and harmony. These features have
functions specific to the language.

Haﬁy recognition systems have aftempted 1o use prosodic information
in their systems, mainly for the purpose of error detection. When used
in this Qay, prosodié information can help'iﬁprove.the performance of a
systém, but to fully take the benefit of this information, it should be

. used. much earlier in the recognition process,- at the step of
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hypomhesization. Some strategies for this task were outlined [22],[34]
and a part of these were integrated in the Sperry Univac recogkition
system [35]. There is still much to do in this field. It is agreed by
the specialists of this field that prosodic cues to linguistic.
structures needs further iﬁvestigaticn and effort to use this knowledge
‘in real systems [36]. T

The purpose pf this thesis is fto investigate the prosodic features
of Turkish, develop algorithms rfor their detection and outline
strategies to incorporate this knowledge to automatic recognizers of
Turkish speech. For this purpose, algorithms have been developéd to
detect the main physicél correlate of prosodic structures, namely,
fundamental frequency of speech. Vith the help of these algorithms, some
linguistic structures of Turkish arefinvéstigated and some étrategies
developed for use in an ‘isolated word recognition system. Other
strategies are éuggestéd for use in connected recognition sysfems of
Turkish speech.

The speech pfoduction and perception mechanisms in humans will be
summarized and tﬁo ﬁmdels will be given in Chapter II. In Chapter III,'
some units and rules of the Turkish linguistic system will be
summarizéd. The conbept of .pgoéody will be introduced, and prosodic '
features will ‘be discussed. Chapter IV presents the. description of
aigdrithms tb detect fundamental frequency and energy. In Chapter V,
- after a review of some concepts'in‘ASR (Automatic Speech Recognition),
- use of ?rosodic features-in fecognition systéms is discussed. Chapter VI
is a preéentation of -the results and Chapter VII; conclusions and

possible areas of future research in this field.



I1. THE SPEECH SIGNAL
Speech signals are composed 0f a sequence of sounds. These sounds
and the transitions between them servé as a representation of
information. In processing speech signals to extract infofmation, it
would be useful to have knowledge about the production and perception of

speech-in humans.
2,1. SPEECH PRODUCTION

2.1.1. Human Natural Speech Production

The accqusticél speech waveform is an accoustic pressure wave which
originateé from the> voluhfary movements of the human vocal syétem
(Figure 2.1).-Speéoh is the  acoustic wave that is radiated from this
system Qhen>air is éxpellea from the iungs and the resulting flow of air
"is perturﬁed by a cbnstriction somevhere inAthe‘vocal tract. During the
generatidﬁ of voiéed sounds, fhé air pushéd toward the lipsAcauses the
vocal cords to .open and close at a‘rate dependent upon the air pressure
in the trachea and thellength, thicknéss and éepsion of the vaocal cords.
- The g:eéter the tension, the higher the perceived pitch of the voice.
.kThé'opeﬁing between the vocal cords is défined as tﬁe glottis. The
subgiottié -air ,pressﬁré and thev time variafions in the glottal area

determine the glottal volume velocity'waveform which defines the driving

.funofion to the. vocal tract.



Palate

Alveolar ridge

- Lips, teeth ——>2

Tongue -

'
Larynx
{containing the vocal cords) -

Windpipe

Figure 2.1. Anatomical structures involved in speech production

The vocai tract is a nonuniform accoustic tube which extends. from
the glottis to the 1ips‘and varies in shape as a function of time. The
compohents causing this change'are the lips, jaw, tongue, and velum. For
, example, the cross éectional area of the 1lip opening can be varied from
0 cm® to about 20 pﬁ?. The nasal cavity which begins at the velum and
ends at the nostrilsvcongtitutes.an.additional'accoustic tube  for sound
transmission used in the géneration of the nasal sounds. As sound
propagates in tge voéal and nasal tracts,  its frequenéy spectrum is
' shaped by the resonances of fheéé tracts. The resonance frequencies of
the vocal tract are called formantrfreéuenoieé. The formant frequencies
depeﬁd upon the shape aﬁd dimensiéns of the vocal tract; each shape is
charaéterized. bfv a set' of formants. Different sounds are formed by

varying the shape of the vocal tract. Thus, the spectral properties of

the speech signal vary with timezasvthe vocal tract shape varies.



ADeta.iled mathematical representations of the accoustics of speech
production have been derived [11,[2], These models mimic the physics of
speech production. Here, we will consider a slawly timé var&ing linearv
system excited byna signal whose basic nature changes from-quasiperiodic

pulses for voiced speech to random noise for unvoiced speech.

PITCH ,
: 1 | Av
4 |

| Impulse | | Glottal 1

I train  |----- | pulse |--®--
| genarator | | model |
------------- | &z |

PERIOD

VOCAL TRACT PARANETERS

[ENERNRE

i e T anan - e 5 e o e e

‘ ' I Vocal | | Radiation’|
VOICED/URVOICED  ===--- | Tract model [--=-- | Model  1----4
SYITCH | V(z) | I R(z) |

| Randos |
I noise |--®=--
| generator | 1

+ i o e I

Figure 2.2. General discrete-time model for speech production

*- In the model shown in Figure 2.2, the changing mode of excitation is
médelled by switching between the ‘voiced apd unvoiced excitation
- generators. In the case of véicéd épeech, the impﬁlse train generator
.produéeé a sequencé Df_ﬁﬁit'impulses which'are spaced by tﬁe desired
pitcﬂ periodl This signal in turﬁ éxcites a linear syétem whose impulsé
response g(n)‘has the desired.glottaliwave shape. For unvoiced sounds a

source of random noise 1s all thét is required.



The effect of the vocal tract is modelled by an all-pole digital
filter V(z) which has the formants as its poles. V(z) relates volume
velocity at the source to-volume velociéy'ét the lips and finally, the
rédiation model t;kes care of the radiation at the lips.

The parameters of the model are assumed to be constant” over time
iﬁtervals typically 10-20 ms. long. This model is quite appropriate for
sounds whose parameters change slowly with time, namely, vowels. it
fails to represent voiced fricatives, for which both sources are
involved at the same time. A second limiﬁation is in the representation
of nasals, because of the lack of zeros in V(z). Against all its
limitations, this is a model that works sufficiently well and is widely

used.
2.2, SPEECH PERCEPTION

Peroeptiog of speech in hﬁméns is a complicated process; it 1nvolves
the perception of éccoustid quantities at the ear and transformation of .
. those into learned qﬁantities like phonemes, syllables, words, phrases,
sentences, and the association of £hose with certain meanings. Ve will
not study these individually.but wili see a model [2] which will give a
view of the progess of speech perception. |

The development of a nmdél for human speeoﬁ perception is the same
problem as the development of an automatié épeech recognizer. The
propésal for such a'mo&el invol%es the hierarchial structure shown in
Figufe 2.3. fhelmodel i; envisioned as a chain of +transformations in
which each stage acts as ‘an information filfer to reduce the

dimensioﬁality df' the signa1. -For example, the first three blocks



transform an accoustic signal into a succession of words where each wad
is described by a set of lexical and grammatical features énd >by
proéodic,characteristics. Syntax and finally semantic analysis complete
the transformations necessary for nessagé understanding. The natures of
the tfansformatidns are not known, but perceptual expggigg#t? suggest

certain characteristics of the first two stages.

- ACOUSTIC - VORDS
| FEATURES |
| |
SPEECH___ | Auditory |--4| Phonetic | __ | Morphological {__ . Syntactic .__ | Semantic ‘
INPUT analysis j-*4| analysis analysis analysis analysis
- ¢
1
| LINGUISTIC
f___ DISTINCTIVE

FEATURES

\‘Figure 2.3, Kodel of stages in speech perception

AThe peripheral auditory analysis is such that features of the short-
time spectrum, 1i.e. changés in spectral distribution, periodicity <(or:
non-periodicity) an& intensity of ﬁhe-input signal are preserved. This
is shown by experiments on perception of bhahges in pitch, formants or.
intensity of gpeech.and spéech—like sounds. That this information is
reduced in dimensipnality‘ for later . processing is supported by
experiments which show that consonant perception is influenced only by
the rate and direction of the change in formént transitions, and not by
their absolute valhés.;Similar perceptioﬁs of the direction and rate of
6hange of fun&amental frequency have also beep observed in other

experiments.



The reduction of dimensioﬁality perforﬁed in the phonetic anélyéis
is likely to be a feature analysis than one of comparison to a stored
reference pattern. This view is supported by data on syllable
recogqifion where features such as manner of production may bé cprrectly
perceived while piaoe of production is perceived incorrectly..-Similarly,
pfospdic features may be perceived without discriﬁination of phonefio
factors. Experiments show that somek‘phonematic features can be
recognized and produced even before a listener hears a whole syllable.

Experiments also point out that ‘the phonémic analygis window is
shorter than average word 1length. In. an experiment with nonsense
syllables, it was observed that a man cannofrremember sequences longer
than 7 to 10 syllables. This fact gives an idea of the size of the time
window through which the message is seen by the nmrphologiCal anaiysis
stage.

On the other side it is clear that a listener does not make seperate 1
decisions about every phoneme'in continuous speech. The units with which
he operates is likely to 'correspond to words or phrases. Information
handed from the morphological analyéis to the syntactic and semantic
Anglysis_can, consequently be reduéed in dimensionality to this extent;
auditory segments need not coincide with the phonemes.

“_Experimenté'on recall show t?at a listemer remembefs phonemes as a
set of features. Therefore,.thg phonemic information at the output of
the phonetic analysis block should bé"represented by abstract,
'.disfinct1Ve»features. Seve;al different accoustic features may contain

infofmation aboﬁt one and the same distinctive feature.



III. THE SOUND SYSTEM

The arrangement of the sounds of speech is governed by the rules of
language. The study of these rules and their implications in humén
communication is the domain of linguistics. In processing speech signals
to extract information, it is helpful to have as ‘muéh vknnwleage as
poésible about the way in which information 1s encoded in thé signal, so
it will be useful to give a brief review of the classification and

arrangement of the sounds of Turkish,
 3.1. PHONEMES

Host 1angqagés can be described in terms of a set of distinctive
sounds, or phonemes. The phoneme is an abstract symbol that is used to
_represent the_total'éollection of sounds that function simiiarly and do
not make meaningful distinctions- among thémselﬁes within a .given
languége. With.this definitidn, a phoneme encompasses a group of sounds,
each called an éllophﬁne, that do not causé’a change in £he meaning of a
- word when substituted for each other in that word. The study and
classification of these sounds.is called phonétiés. For our purposes it
is ﬁost appropriate to. discuss ‘the aco@stié characterization of the
variaus sounés withlthg place and manner of articulation.

The sounds of Turkish can Be.broken into phoneme classes as shown in

Table 3;1‘ (For cngeﬁience, letters of the alphabet have been used
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instead of the actual phonemic symbbls). The four broad classes of
sounds are vowels, diphthongs, semivowels and consonants. Each of these
classes may be broken down into sub—clasées; which are related to the

manner and place qf articulation of the sound within the vocal tract.

R

DIPHTHONGS  SEMIVOVELS

vowels + y /y/
Front Back :
/el £V ' Flaps Laterals
/i/ /1/ /r/ /1/
/6/ /o/ ‘ : ‘Fasals
/G/. /u/ /m/
/n/ Affricatives Stops
/c/ . /vl /p/
/¢/ /ar 1t/
g/ [k/
Fricatives
1£7  /v/
/sl /z/
=T AT
/hf I8/

Table(S.l Phonemes of Turkish

3.1.1. Vowels
- Vowels are produced by exciting the vocal tract with quasi-periodic
pulses of air éaused by the Qibration of the vocal cords. The position
of the tongue,.jaw, and lips changes thevoross sectioﬁal area of the
vocal tract, which, ia turn detérmines the resonant frequencies of the
tract (forﬁants), and thus the.sound that is pfodﬁced.

in Turkish, vowels ;re classified aocofdiﬁg to (see Table 3.2):

; Angle of tﬁe Jjaws i wide (a,e,0,8 or close (1,1i,u,)

- Shape of the.lips : : rounded (0, 0,u, ) or_unrounded(a,e,i,i)

—,Poéition of the fongue :- back (a,1,0,u) or front <e, 1,0,
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! i | |

I |  UNROUNDED |  ROUNDED 1

| | | I

[ | I | | !

I | WIDE | CLOSE | VIDE | CLOSE |

I o D ! | ! [ .
3 i I | ! !

I BACK | A I I- 1 ©O 41 U 1
| | 1 ! ! I

[ I Lo o |

| FRORT! E | I 1+ O 1 T 1

i I ! | | !

Table 3.2 Vowels of Turkish

A dipthong is a gliding monosyllabic speech item i:hat starts at or‘
mnear the articulary position for one vowel and moves to the position for
another. The dii)thongs are produced by varying the vocal tract smoothly
between vawel configurations. In Turkish, vowels‘gliding to /y/ can be

classified as dipthongs [41. (e.g., oy, bay)

Semiv

Semivowels  are transiti‘onal,. vowel-like sounds . which . are
charaoterized by a gllding transition in vocal tract area function
between adjacent phonemes. /y/ is a semivowél of Turkish and its nature
is influenced by where it occurs; it is voiced in the beginning and in

the middle of words, and semi-voiced in the end. (e.g§., yine,1yl,say)

;s. 1.4, Iﬂa-’:‘alﬁ --
The nasal consonants /u/ . and /n/ are prodqoed with glottal

excitation and the vacal tract constricted at a point along the oral



paasageway with the velum lowered so that the nasal tract is coupled.The
effect of this coupling is to produce zeros of the transfer function of
- the vocal tract. Furthermbre. nasal consonants and vowgls preceding or

folldwing nasél ponsonants are characterized by resonances which are‘
spectrally bfoader,Adue to the fact that the nasal tract"ha?“a'different
afea function. The two nasal consonants are distinguished by the place
along the vdcal tract at which a constriction is made. For /m/, the
. constriction 1s' at the lips, and for /n/, the constriction is at the

back of the teeth,

3.1.5, Fricatives

Fricatives are produced by exciting the vocal traét bj a steady air
flow which becomes turbulent in the region of a constriction. For the
voiced fricati&es, the vocal cords®are also vibrating; two excitation
sources are. involved in their production, thus, the spectra of voiced
fricétives’ displéys two distinct components. /v/,/z/,/j/,/§/ are the
voiced fricatives and /f/, /s/,/s/,/h/ are the volceless fricatives af -
Turkish. The location of the constrictlon serves to determlne which
f%icative.sound is produced. The piaces of comstriction are, lips and
teeth for /v/ and /f/, nnar.the middle of the vocal tract for /z/ and
/s/y alveloar rldge and the palate for /j/ and /g/, back of the tongue

- for /%&/, and the back of the vocal tract for /h/.

3.1.6. Stops
Stops are transient sounds produced by building up pressure behind a

- constriction in the oral tract, and suddehly releasing the pressure.

During the‘period when there ié3a total constriction in the tract there
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ls no sound radiated from the lips. In voiced fricatives, the' vocal
cordsrare able to vibrate during this closure and a small amount of low
frequency enrgy is radiéted through the walls of fhe throaf. For
voiceless fricatives, the vocal cords do not vibrate, and follqﬁing the-
period of cioéure,‘there is a brief intervél of friction—followed by a
périod of aspiration. Since  the stop sounds are dynamical in natu?e,
theif properties are higﬁly influenced by the vowel which follows the
stop consonant. /b/,/d/ and /g/ the are voiced stops and /p/,/t/ and/k/
afe the Qoiceless stops of Turkish. The places of constriction are,.lips
for /b/ and /p/, alveloar ridge for /d/ and /t/, and the velum for /g/

and /k/.

3. ,‘1, ( . Aﬁf[ .[g:agg;jvgg |

Affricativés‘Can be modelled as the concatenation of a stop gnd a
fricative. There are two affricatives in Turkish, /¢/, voiced, and /¢/,
voiceless, The blaoe ofbconsfriction fpr both is at the middle of the

oral tract.-

3.1.8. Flaps

/r/ 1is produced by flaéping the tongue to the front of the oral
cavity. It is Qoiced, and the place of constriction is at the back of

the teeth.

The voiced lateral /1/ is produced by flow of air on both sides of

the tongue. The place of constriction is at the back of the teeth.
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3.2. SYLLABLES

In Turkish, we can roughly define the syllable as a unit containing .-

one vowel onlj, ‘which may be preceded and followed by a number of

cpnsdnant units. In Turkish, all combinations of 0 to 1 consonant.units
preceding the vowel unit with 0 to 2 following are found. Howevef, the
" types of consonant combinations are festricted to the order of their

appearance in a word; initial,middle, or final. (V:vowel, C:consonant):

.V : 0, o-(yun), u-(yum
¢V . : bu, su, ge-(lim
vC 1 al, at, in—(di)
vee  : oalt, ilk
Ccve : gir, tut
CVCC  : kurt, sarp

Table 3.3. Turkish initial syllables

vC : (bil-di)~(¥)in-(den).
cv -1 (se)-vi-ne-mi~yo-{rum)
CcVC . ¢ (se)-vin-(ce)

cvec  : (uw-curt-(ma)-

Table 3.4. Turkish middle syllables

VvV i (gel-di)-F1

cv 1 (ol)-du, (git)-ti
CcvC ¢ (ge)-len, (ya)-tak
CVCC 1 (u)-tang, (se)-ving

Table 3.5. Turkish final syllables

‘There are other types of syilables,.usually in loan words, of the
form CCV, CCVC, or CCCV, but these are rather rare, as indicated by the
frequency of occurance datavin Table 3.6. The data in ﬁhis table are the

resuits'of a stﬁdy on a Turkish text consisting of 59000 syllables [15].
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Syllable type Erequency of occurance
v 4,950 %
ve 4,201 %
cv 52.912 %
VCC _ : 0,124 %
Cve ' : 37.144 %
- CVCce - - 0.502 %
ccv ' - 0.070 % ——
Cccve 0.097 %
ccCv : ' 0.002 %

Table 3.6. Frequency of occurance of syllables in Turkish

In the first syllable of a word, any of the 8 vowels may appear,
whiie .in the second syllable, 4 of them (0,8, (u,W)) are rﬁled 6u§
because of vowel harmony. In the suffixes, the number of vowels which\
may appear further reduces to twd éroups within which the vowel may be
predicted (with the exception of the suffix -yor), If Consondntg are
considered, in the iﬁitial position of a syllable, the number is 20;-
Awhilé in_the_fiﬁal position 5 are ruled out (b,c,d,g and j>. In the
suffixes, these numbers further reduce to give 15 consonants in the .
‘;nitial position and 11 in the final position. It has been observed that
in the -phonemic represantation éf polysyllabic words, there is a
redundancy of about 50 % [4]; |

In many laﬁguages, syllable divisioﬁ is not uniqﬁely defined. In
Turkish, rules for syllable diyision are clearly set. In general, there
will be as many syllables as vowels in a word. For syllable division in
pol&syllabic words,‘thé C unit is-taken with the following V, e.g. CV-
CVC; Vhere twoACs'come together, the syllable division comes between
them, e.g. CVC—CVCVand-whep fhree Cs come togethef,'the division comes

_ between the second and third C of the group, e.g. CVCC-CVC,
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3.3. PROSODY

Although much of the message in speech is conveyed by the segmentalb
phonemes, additional .information 1is carried by the supfaségmental’
phéneﬁes. Prosodié features, or, suprasegmental phonemes_atefproperties
of ;rticulation that encompass more than one phoneme. Duration; streés,
tone, intonation and harmony are the prosodic features used in Turkish.
The.physical parameters of tﬁe speech wa%e which signal the prosﬁdy of
anbutterance are the durations and intensities of the syllables, and the

fundamental frequency contours.

3.3.1. Duration

Each sound has a certain average duration, but this may change
according to the eﬁvironment of tﬁaé sound. The consonant following a
vowel influences the vowel duration, with ‘voiced consonanté in
particular causiﬁg a lengtheﬂing of their preceding vowels. in Turkish,
@® 19- é spécial case: It is considered not as a sound but as a
lengthening of the.VOQel 1t is next to, e;g. the duratioﬁiofj/a/ is
short in_(akyyak? and'much longer in (dag, yag@- , |

Another fabtor.which must be taken’into account when predicting
pﬁdnetic durations is the stress of the éyllable. A stressed /i/ is
1onéer than an unstressed_bli(r_ Siﬁilarly;. at fast speaking. rétes,
. stressed syllables will be sdﬁewhat shortér; and unstressed syllabies

" will be substantially shortened.
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3.3.2. Stress

Stress is associated With the relafive prominence of a syllable in
ISPeech. Inv Turkish, stress on base forms 1is usually on the final
syllable with quité oleérlyidefined‘éxoeptions [14],[16]4[20];

One commbn class of exceptions is the names of plécééf*ﬁiéﬁ~a éommon
word which has stress on the lasf syllablg 1s used as a place name, thé
location of the s;ress is changed, the newllooation being uéually the
1n1tidl syllable:

ulus . Ulus

kumla v ‘ Kumla

.Another class of exceptions'is the>loan—words. In phis.class, stress
is usually placed on . the middle syllables:

abone | : siﬁgma

.5empafi' o gikolata

Vith inflected forms, stress usually stays in the final position,

somun ) - somunlarinliz
' somunlar . = . somunlarinizda
somunlari

with the exception.of some suffixeé (-ca, ¥ybr, -mi, etc), which cause
fhe placement of stress on the syllable preceding them:

.yapacak | _'yapmayacak

yapiyor ' _ga;muyur

the how stress becomes a vdistinguisﬂing feature for the two
bom&pyms "konusma" aﬁd fkunusma".‘

The physical correlates of stress are duration, intensity and
fundapmental frequency; ‘In a .sentence, the syllable with the longest

_duration and higheét-fundamentai frequency is perceived as stressed.
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3.3.3. Tone and intonation

~Tone refers to the pitch variation over a single syllable. In some
languages called tone languages, there are several fitch‘ levels or
patterns, and thg'lexibal meaning of a word changes according fo which.
tone is used. For example, = certain words which are-represen£ed by
identical phonemic strings will have different meanings depending ufon
whether they are spoken with a rising or falling pitch. |

There are 12»patterns of pitch variation which usually appear in

one-word sentences [4]. These are:

-decrease from low pitch —increase with large slope
‘-decrease from high pitch - ' —decrease/increase
—decrease from middle pitch ~increase/decrease
-decrease with pauses ‘ -decrease/increase/decrease
~increase with pauées' -neutral tone

—1ncrea§e} . —long neutral tone

'Thesg pa#terﬁs are usually associated with the mood of the speaker,
Such_as interest, indiffefence, anger,“confusion, impatience, etc. One.
can give a positive meanipg tg a negafive sentence or express a question
with a declarative sentence usingbtﬁe appropriate tones.

Intonation.is the pitch.variation over the whole.sentence or a part
of it. In ali- lanéuages, intonation has a grammatiéal or syntactic
function. The distinction/befween a statement and a question, betweep a
question and a command and,sé on, can be s;gnalled by a difference of
pitéh contour. TheAérémmatioal function>of’intonation is an important
' part. of 1$ﬁguage ‘strQCture, parf of thé common knowledge shared by
speakers of the language. |

In bTurkish,' for- declarative sentences and YES/NO - questions
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(questions with the suffix -mi), a falling pitch at the end ef' the
sentence is observed: |

Bu kitabi okudum. ¢

Denize' girdin mi?4
Vhile for questions with interrogative words (kim, ne, hangi,-etc.) and

v

and the phrases (degxil mi?, Oyle mi?, pitch increases at the end.

Onu sevdiniz, degil mi?r

Bunu kim getirdi?t

Ancther function of intonation is ocmnected much more _kith
individual psychology. Far example, a decrea'sing' pitch contour at the
“end of the sentence indicates 'the end of conversation, while an
increasing pitch contour at the end of a sentence wouid mean -that more
is going to be said.

Sabahleyin (¢ okula ) gittim. |

Sabahleyin okula ¢ gittim 1), Derslere ( girdim ..,

Intonation pafterns, _like' stresses, serve also to designate certain
syllables-b as .prominent relative to otbhers. This prominence may or may .
' not coincide with that of the stresses. The interference of intonational
pﬁenomena and stress may be oon,fusing, but it seems to bring one very
- interesting peculiarity. Turkish sentence rythe seems +to assign
aéﬁroximately eéual fime to each syllable as contrasted ;to the Germanic

system which seems to assign equal time to stress groups clustered about

each successive strong stress [5].

3.3, '4 Vowel hermonv

' Any phonemically based analysis of Turkish recognizes eight vowels:

/a,e,1, i 0,0,u,i/. Any one of these vowels _may occur in monosyllabic
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words. In words of more than one syllable, however, there are systemaQ;c
restrictions on the co-occurance of the several vowel phoneﬁes. Thﬁs, in
words of native Turkish origin,- front  vowels, /i,u,e,®/, and back
Yowels, /1,u,a,0/, do not occur together. And then, there are the-
rounde& vowels /b,b,u;ﬁ/. and unrounded vowels /a,e,llili_”{f. a word
cpntains an unrounded vowel in its first syllable, it cannot contain
rounded vowels in its other syllables (However, there is a clearly
défined class of exoeptions.to this case, e.g. bhaviw. Moreover, the
phonemes /o/ and /8/ oceur generally only in the first syllable of a
word (with the exoeption‘of the suffix ;)mnﬁ. This 1s gemerally called
"vowel harmopr' in Turkish. A phonemic represantation of polysyllabic
words is therefore highly redundant, since it represeﬁts each vowel 1h
the structure as a selection from eight contrasting units, whereas all
but two of{the.eigﬁt vowel phonemes are excluded from occurance by the
occurance of any other given vowel phoneme of the word.

A different épproaoh to this problem is by prosodic analysis which
introduces A ‘ two - binary prosodic contrasfs of front/back and
rounding/non-roﬁnding,.-and admits only two contrasting segmental
' phonematic units, .high/low. This . way, a .much more economic‘ and
satisfying descripfion of the language 1is obtained-one based on the
pétterns actually operative in the language [7].

‘Let.us clearly definé the prosodies:.

F:B prosody characterizing' words having front/back vowelé and
' consonants with palatéliéatién/without palatdlization{

R:N prdéody where theré is 1lip 1abia1ity (1ip ronding) throughout
~ the articulation of.thg whole syllable, e.g. kol /there is absence of

labiaiity thordughout the whole syllable or vhere lébiality is initial

+
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or final only, e.g.‘ba1 
,.A two-term vowel system is set up by defining: A (denoting openness)
and T (dénoting closeness). Fow rules can be defined as:
F,Band U prosodies operate over‘fhe whole word with A or.F, e.g.

bekletmek UF: CaC-CaC-CaC iétek - " UF: TC-CcaC

i &

-~

azalmsk  UB: A-CAC-CAC 1linmak UB: T'-CIC-CAC

R prosody operates with T in all syllables of the word but with A
only in the first syllable, e;g. |

yolumuz RB: CaA-CI-CTC- yollaranuz RB: CAC-Ca-CT-CTC

onlt RF: a-Cr ) 4 Bnbnden”' RF: A-Crc-CaC

‘Another advaﬁtage of phosodic representation 1s its wuse  in
predicting the form of‘suffixes..There are six typé-z frosodies; aﬁ&\
these and the type-1 prosodies stated above enable one to handle all
suffixed forms of the word [71. |

Tﬁe prosodic appfoaoh, by rejecting the phonemicist view‘thaf the -
phqnology of aﬁy language' is a uniform system to Dbe analyzed
independeﬁtly.of its graﬁmar, considers the phonology of a 1anguage as a
set of subsyétéms, éaoﬁ reievant for different phonologicai étructtres.
' The segmentation iﬁ prosodic .qnaiysis reveals a horiéontal type of
segmentation whichAhas the advantage of preserving the syllabic pattern
of.the ianguage:analféed. Turkish seems to exhibit such a structure that
by épplying prosodic analysié, bpth clarity énd economy of phonological -

. elements is achieved in its’fepresentationf For this reason, 1t hés

o repeatedly been an exémple for phbﬁologists .édopting prosodic ahalysis

(71,0137,



23

IV. EXTRACTING ACOUSTIC PROSODIC FEATURES

In this chapter tools developed to measure accoustic praosodic
parameters like pitch, energy, and duration will be discussed. Among
those, pitch is the most difficult pafaﬁeter to measure, and- many
methods have been developed fér its extraction from the accoustic spéech
vwaveform. HMeasurement of energy and duration.is a trivial task, but -
rather sophisticated approaches -must be wused to incorporate +these

findings to explore the underlying prosodic structures.
4.1. PITCH PERIOD DETECTION METHODS

As discussed infthe previous chapter, the speech waveform can be
modelled as the response of the vocal tract filter to a source which is
a periodic sequencé of pulseé during voiced segments or a random noise

dﬁring unvoiced .segments. The periodic pulsés_occur as a consequence of

. the 'opening and closing of the glottis, and the frequency of the

" periodicity is often referred-td,és the pitoh..v‘

Accufate and'reliablé negsurementhbf‘the_pitch period of a speech
signai frém"the -accoustic .pressufe wavéfofm is often difficult for
several reasons: |

_Thé'glottal excitation’wﬁveform is not a perfeof-train of periodic
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pulses, Measuring the pefiod of a épeech waveform, which varies both in
period-and the detailed strueture of the waveform within a period can be

quite difficult.

-In some instances the formants. of the vocal tract can’ alter the -

'structure of. the glottal waveform so that the actual pitch period is'

)

difficult to detect.

—Disfinguishing between unvoiced speech and low-level voiced speech, and
tﬁe defection of the pitch pefiod during transitions between voiced and
vunvoiced sections is often hard.

A pitch detector is a device which makes a voiced-unvoiced decieion,
and during periods of voiced epeech, provides a measurement of the pitch
period. As a result of the numerous difficulties in pitch meaeurements;’
© many pitch‘detection methods have been developed. Seme ‘methods. which
have been esedAin thisfstudy will,be discussed here.

The usual realization of a pitch detector may be Considered.te be
consisting of three main blocks which are ?assed through successively:

~the prepfocessqr

;tbe basic extractaf

—tbe‘postprboessor

The Vfunction of‘ the preproeessor is data reduction in' order to
increase the ease of‘pitch'extractionf Some examples of preprocessing
afe eomputation of the AMDF, Computatien of the cepstrum, etc. The basic
'extractor operates on this altered signal to convert it into a sequence
'Df pitch estimates. The.postprocessor is a block whloh performs the
tasks. of jefror‘ detection and correction,. smoothipg of an obtained

contour, time—to—fréédency conversion and display of the parameters.
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4.1.1. Autocorrelation Method

One of the difficulties in pitch period estimation is the effect of
the formant structure on measurements relatedvto the periodicity of the
wayeform. Thus, it is desired to remove the spectral shaping in the. '

waveform due to the formants. A way to achieve this spectral iléttening

is using centre clipping by which signal values below the clipping level
are set to>zero and those above the clipping level are offset 5y the
ciipping level. If the clipping 1é§e1 is appropriately chaosen, most of
the waveform structure due to the formants can be eliminated. AUTOC [44]

uses this approach combined with autocorrelation analysis. (Figure 4.1)

! |
_.1 FIND PEAK OVER |
| FIRST PORTION |

..... | LEVEL
1 FIND PEAK GVER | e !
| LAST PORTION | I
LR ! I
________________ ! !
_______ ! o |
| |1 SECTION INTO |- | B
- LPF I===1 300 SAMPLE [---1 {
O b1 SECTIONS 1~ 1 | P I FINO |
: {1 | CENTER CLIPPER | |  AUTG- |  IPOSITION &l---1 VOICED |
{===1 b [-~=1 CORRELATION !---1 VALUE OF | | UNVOICED (4
| e-PEAK CLIPPER | | COMPUTATION | 1 PEAK  {---1 DECISION |

| | T o o |
Figure 4.1, Block diagram of the AUTOGC pitch detector
The analog speech signal is sampled at a 8 kHz. sampling rate using

a 12—bit A/D-converter. The digital signal is 10w~pass filtered to a

bandwidth of 900 Hz‘using a 99-point FIR filter. The output of the

G e e o teseneirrrl |I|"|Ti.anAMC(.‘
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filter is then sectibngd into 300 éamples dverlapping by 100 sampl?s fér
proqessing. Each section of 500 samples- is called a frame.

The first stage of processing is the computation of the clipping
7 level. Because of the wide dynamic range of speech, the olibpiﬁg.levél"
must dbe carefullj‘choégnbso as to prevent loss of information_ when the
wéveform is either rising or falling in‘amplitudé within a frame. Such
cases occﬁr when voicing is just beginﬁing or ending, as well as_durihg
voicing transitions, e.g., ffom a vowel td a’voiced fricétive,’or a
knasal. For the selection of C., the clipping level, the first and third
v;OO samples of the frame_is‘éearohed fof maximum absolute peak levels.
The 'clipping levei is then set as 80 percent of the smaller of these two
levels. | |
Following the determination of the clippiné level, the 'speéch
section ‘is tﬁen both center clipped, and infinite peak clipped,
resulting in a signal which assumes one of three possiblé values; ;i if
the sample exceéds the positive clipping level, -1 if the sample falls
below théAneSAtive clipping level, and O otherwise. The use of infinite
peak clipping ‘greatlf reduces the computational comple#ity of the
éutocorrelation measurement, beqausé no multiplications are required in
the compﬁtatioh.
| The next sfage in processing is the autocorrelation bomputation. The
shoft—time autocorrelation fﬁnct;qn of the 360—samples frame is defined
as: v |
. 299-n o

Re(m =% x(mxtm =My, Maer,y ooy e ' 4.1
=0 L

wheré M, is tﬁe initial lag ‘and Mr is the final lag for which the
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autocorrelation function is computed. For the frequency range of 100 to-
500 Hz, these values are 16 and 80 réspectively. Additionally, Rx(05‘is
computed for the normalization of the autocorrelation funétion.

Figure 4.2 shows an example of an anlysis frame, the infinite peak
and center clipped version, and the short ~time autocorrelation function.
For this example the pitch period of the section is at 64 samples, which
corresponds to 125 Hz at 8 kHz sampling rate. | |

- In the computation of the autocorrelation function (Eq'n 4.1), it is
assumed that samples oﬁtsi&e the current frame are assumed to be zero.
Thié effectively weigﬁts the autocorrelation function by a linear taper
which starts at 1 at m=0 and goes to 0 at m=300. That property is

desired, because it enhances the peak at the pitch period with respect

x
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Figure 4.2. Example of voiced speech and its autocorrelation

function
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to peaks at multi?les of the pitch period, thereby reducing thé
possibility of doubling or tripling the pitch period estimate.
for ?Diced-unvoiced deéision, the autocorrelation peak is compared
rto the energy, R.€0), If this ratio exceeds a voiced-unvoiced threshold -
of aroﬁnd 30- %, The frame is classified as voiced and tggﬂgipgﬁrperiod
is the position of the autocorrelation peak. If the peak value falls
beloﬁ the threshold, the interval 1S'classif1ed as unvoiced.
| The decision for the currént interval is modified by the decisions
for the preceding and succeeding intervals. If these are both vqiced
(unvoiced), then the current;interval ié forced to be declared voiced

(unvoiced).

v o e C

The AMDF (éverage magnitude difference function) is a variation on
autocorrelation analysis where, instead of correlating the 'input spéech
at various delayé, a difference signal is formed between the delayed
speech and theioriginal aﬁd; at each delay, the absolute magnitude df the
differenoe.is féken.;Thé difference function is always zero at.delay =0
and exhibits deep nulls at delays dorresponding to the pitch period of

voiced sounds. - |
An approximate expression that prqvides a relationship between the
4" AﬂDF'and_the autocarrelation function will be developed. The AMDF for a

'sequenCe of samples {x(m} is defined‘by the relatibn

R o |
Do = X Ix(-x-m1 D= (-1, e, +(E-D) 4.2)
k=n ' :
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Ve can approximate Dn in the form

Dnz = Ix@®-xU-ml = Bn ¢ = (x()-x&-n))= > 4.3
ok . ok ' ,

where the coefficient $n 1s a scale factor. By expanding-the squared
term in braces under the square root sign in (4,3) we can express Dn in

the form,

Dn = Bn ( Zk: x(K)=Z + Zk: x(k-n)2 - 2% xOxG-n) d* 4.4
':, ' ok

The third sum in the braces can be identified as —2Rn. Assuming that the
sequehce {x)} corresponds to a stationary process, it is evident that the
first two sums are simply the autocorrelation function evaluated at n=0.

Then, we can rewrite Dn as
Dn = Bl 2(Ro - RO % . 4.5)

‘The'properties of the AMDF are accufately characterized by (Egq'n
.4.5). Figure 4}3 shows a frame ﬁf speech samples and their ANDF, which
is seen to be zero at zero delay and varies as the square root of the
éutbcorrelation function that has been negated and dc shiftea by Ro.
Nullsfwill appear in Dn at those points where Rn is large compared with
Ro..This occﬁrs when the ééquence {x} 1s.§aken from a voiced speech
sound. Tﬂe"separatioﬁ~of the nulls is a aifect measure of the pitch

period.
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Figure 4.3. A frame of voiced speech and its AMDF

The bloék diagram of a method of pitch detection using the AHDF.is
given ‘in Figure 4.4 [(45). The Ifirst stage in processing is A/D
>conve;sion, followed by lowpass filtering. At the output of the filter,
the input speech sampleé are divided into frames consisiing of 300
- samples thatboverIap-by'ZOO‘samples. The samples are then summed up to
find'thevenergy of thé section. If this value exceeds a fixed threshold,
the frame is classified as voicéd. The next step is thé computation of

the AMDF in the range of the pitch period.

At this step; the effect of the formants is still inheremt in the
spectral énvelope of the sigﬁai bécaﬁse no preprocessing has been done
prior.toicomputation of the ‘A¥DF. - For this.reason,deciéion logic aﬁd
prior,knowlédge QfAvoiéing a;e used along with the fﬁnction 1tsé1f.fo

help make the pitch'decisioh.mqre reliéble. Figure 4:5 sh0ws the set of

.logicél ruleé deﬁeioped for ektraction of pitch information from the
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Figure 4.4. Block dizgram of the AMDF pitch detector -

A¥DF. There are five sepgraté logic patﬁs, each of which are selected,
based on the three most receht voiced/unvoiced (VUV) décisions. |

In path A, the present vuv deéision is unvoiced’'and the logic aské
whether this decision should be changed to §Diced. A changé is justified
by the presenée of a strong periodic waveform within the intervalt

In path B, the present VUV deéision is voiced. Howevéf, .this E
decision can be'cﬁanged 40 unvoiced, if either the maximum AMDF value is
not sufficignfly strong or the ratio of the maximum to minimum AMDF
value is belaw é certaiﬁ threshold.

In pafh C, the ﬁth and (n—l{t“.VUV deoisiéns are voiced but the (o~ .
2)*" interval was. unvosced., This is an indication of the onset of
vﬁicing; the pitch ektractor changes to voiced and chooses the minimum
‘valﬁe of the AMDF as therpiﬁoh. .

In path D, voicing 1is ngended an additional>fraﬁe when the VUV
" decision indiéates unvoicing'aftef an extended period of voicing. |

Path E.ié_the nérméi péth for sustéined voicing and uses a feature

,for.pitCh trackiné iﬁ a wiﬁdow_of 12 samples about the last measured

pitch.period. The.lgsic will change to the nontracking position if the
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"émplitudé of the minimum outside the tracking range is less-than 1/2 of.
the_trécking amplitude minimum. For higher frequencies, more nulls are1
pfééeﬁt iﬁ the AMDF, so é hull outside the tracking window is required -
to be less than 1/8 the minimum in the tracking window to ﬁe chasen.
There is also a path for changing the VUV decision f{gpw;yoiced_ to

unvoiced, and for extending the previous pitch value.

FIND KAX,MIN ' ' |
e WY =1 ; vaIcED E
' VUV = ¢ : UNVDICED FIND TRACKING WINDO
NRAT = MAX/NIN - 0D P

L = VUVu2VUVn-
+4VVn-2

FIND win AND IPOS
IN TRACKING WINDOY

NRAT<ID}

KR =xin /HIN

|

nan 106\ N0
?
N YES P=p
P: .
] RRAT<ID
? ; oo VUs

| . ‘ S a S i
Uy=0 ?' - e : - . o -
| ; . L . ) - . [EEE]
: L=80R 7 S S

Fiéuré 4.5, AMDF pitch extraétion logic flow chart



4.1.3 Parallel Processing Method

The basic idea in parallel processing is that an improvement in

accuracy can be obtained by combining the outputs of more than one
elemenﬁary pitch period'estimatbrs. The speech signal is processed so as
to create a numbe£ of impulse trains which retain the éeriodicity bf the
ofiginai signal and disqard features which aré ifrelevantvto the piteh
detection process. A pitch estimate is obtained using a simple pitéh
detector from each of the impulse trains. These estimates are tﬁen
logically combined to infer the period of the spéech wavefarm,

The block diagram of the pitch deteétor in [46] is given in Figure
4.6. After A/D conversion, the speech is laowpass filtered with a éutoff
of about 906 Hz. Following the filtering, local minima and maxima are
located, and from their locations and amplitudes, several impulse trains
are derived from the filtered signal (Figure 4.7).

‘The impulse trains p: are generated at the location of peaks (local’
maxima) and the in@ulse‘trains vy are generated at the locations of

valleys (local minima). These are defined as [1]:

----------------

''''' T
-1 VALLEY PITCH 1 ‘
| EXTRACTORS 1_______I

_____ | PEAK PITCH | !
|1 EXTRACTORS I.___ I i___I I
i S F bl f____1 PARALLEL 1 | |
: | | PEAKAND I 1 A | PROCESSING | | VOICED
. === LFF 1---1  VALLEY  [-—-I o e | PITCH [--=1 UNVOICED |--4
| I, | MEASUREMENTS | I ESTINATION | | DETECTION !
| |
| !

Figufe 4.6, Block diagram,of the parallel»processing pltch detector



34

P2

Pi

-.ﬁ}

v2

V2

. - P2
- pz )

--?I; - V2 P

+v P
LT
pate +vi [pad
4. V3

pa

VAR

Figure'4.7. Input signal and the impulse trains generated from the

-p1 (W

-p={(mw
) -p= (W

=v, ()

—v=(n

-vz{(n)

Am

An

An

An

An

An

peaks and valleys

impulse equal to

impulse equal to

impulse

‘and the
equal to

and the

impulse equal to

impulse

impulse

equal to

the peak amplitude.

the'differemce between the peak amplitude
preceding valley amplitude.

the difference between the peak amplitude
preceding peak amplitude; '
the negative ofithe amplitude of a valley.

the negative of the amplitude at a valley

plus the amplitude at the preceding peak.

equal to

the negative of the amplitude at a valley

plus the amp]itude at the preceding valley



35

The six sets of pulse trains are épplied ko the six individual pitch-
detectors. The operation of the detector is illustrated in Figure‘4.8;
Foildwing each detected pulse, there is a blanking interval <(during
which no pulses'can be detected), followed by an exponential decay.
Whepevef a pulse exceeds the level of the exponentially'decayingioutput,
the process is repeated. The rate of decay and the blanking interval are
dependent'upon the most recent estimates of the pitch period. The result
‘ is.a kind of smoothing of the impulse train, broducing a quasi-periodic
sequenoe_of pulses as shown in Figure 4.8. The length of each inter-

- pulse interval is an estimate of the pitch period.

Variable
blanking
tige

' Variable exponential decay

Figure'4.8; Operation of the pitch period estimator

This technique 1is applied‘ to’ éach of  thev six impulse <trains
producing six estimafes of the pitch period. These six estimates are
coﬁbined with two df the most recent estimates of each of the six pitch
.deteét&rs. These estimates are then combined and the one with the most
‘coincidences within a specified-£olerance is declared the pitch peridd
‘at that time. |

For un§dibed'speéch{ thére is a distinof lack of consistency among
the estimates. For ééch §na1ysisbinterval, the coincidence count of the

pitch beriod estimate with the greatest number of occurances is tested
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against a certain threshold. The value of this threshold is lowered if
the preceding frame is voiced. A final voiced-unvoiced decision is given
on the basis of the VUV decisions of the preceding and following frames
- Isolated voiced and unvoiced‘framesAare not allowed. These principles

are illustrated in the flowchart in Figure 4.9.

INPUT
FRAME K

FRAME K
1§ VOICED

FRAKE K
IS URVDICED

FRANE K-1
IS VDICED

FRAME K-1 ' o '
IS UNVOICED | o , ~

Fiéuré.4;9. Flowchart of the voiced-unvoiced decision
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4.1.4 Simplified Inverse Filtering_lgghnLQQﬂ

Before describing the SIFT (simplified inverse filtering technique)

pitch detection, let us review some basic principles of linear

predictive analysis.

The digital speech production model of section 2.1.2_canwbe.fdfther
simplified to represent the accoustic speech waveform as thevconvolution
of the voice source with the impulse response of an all-pole digitél

filter whose steady-state transfer function is of the form

Sz) _ G

H(z) = = 4.6?
Udz) Cop
1 -2 akz™k
k=l

The speech'samples s(n) are related to the excitation u(n) by the

difference equatién.

s(n) = Z aksfn-kK)+Gun) 4.7
' k=1

A iinear predictor with prédiotion ooeffiéients, o is defined as a
system whose output is
P

& = % awsta-k - ' 4.8
k=l . |

The prediction error e(n) is defined as

‘ o . P .
a(p) = s(m - &8m) = s - T osn-k o 4.9)
I - k=l ' ,
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) .

It is seen that the prediction error sequence is the output. of a

system whose transfer function is

AZ) =1 -2 aez*. 4.10)

k=1 : —

The basic problem of LPC analysis is to determine a set of predictor
coefficients {oa.)} directly from the speech signal in such a manner as to
obtain a good estimate of the spectral propertiés of the speech signal.
The basic approach is to find a set of pmediotor coefficlents that will
minimize. the meam—squared prediction error over a short segment of
speech waveform, It can be seen that 1f ox = ax, then e(n) =,Gu(n).Fof-
voiced speech this means that e(n) would consist of a train of impuises;
i.e., e(n) . would be small most of the time.

Thus the purpose of the linear predictive analysis is to spectmally ‘
flatten the inpot signai, ,similar to the clipping method discussed
before. Based.on.the reasoning that e(n) is a good approximation to the
excitation source, it is expected that the prediction error will be
large at the beginning of each pitch period, so that the pltoh period -
can be estimated by performing an avtocorrelation apalysis on e(n) and
detecting the iargest peak in the appropfiate range. Figure 4.10 shows
the block diagram of the SIFT pitch detector which is based on- these
ideas [471,131. | | |

The input signal is first “piréfutere‘d by a lowpass filter with a
cutoif at ébobﬁz. Them, the samplihg rate 1s reduced to 2 kHz by a
decimation process:;The samples are differenced to accentuate the region

of the second formant ) and multiplied by a Hamming window. A fourth
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Figure 4.10. Block diagram of the SIFT pitch detector

order inverse filter A(z) is then designed using the autocorrelation
method. A fourth order filter suffices to remove the formant struo.ture '
because only two formants cén be present in the frequency, range
0,1 kHz)A, ‘Af;(;er inverse filtering, the signal is then multiplied by a
second hamming window. | |

| The autocorrelation functien of the frame is oomputéd and the peak
of the sequenée is searched in the ramnge in which pitch period is
exfeoted. Para.‘bolic- interpolation is applied to provide greater
resolution. A variable thréshqld i's defined. As the peal; location
becomes. smaller, the threshoid is raised, since proportionally mﬁre
. pitc'h periods will be obtained.‘per 'analyéis interval. As the péak
locai.;ionA 1ﬁ<$reaées, | thé threshold is lowered. If a peak crosses the
variable thre.sholdb,‘_ -its_loca.tioq becomes the vpitch. perigd candidate for

that frame. Otherwise the frame is defined as unvoiced. An attempt at
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error detection and correction is made by storing several pitch period’
candidates, The algorithm for the voiced-unvoiced decision and the érror
correction step can be seen clearly in Figure 4.11., After this

operation, the pitch period estimate with maximum delay is output. .

INPUT
FRAKE K

1ES FRAME K

1§ VOICED

PEAK } 4
7

Frake k| N0

I UNvoICED [ \

Y

FRAKE K-1
IS VOICED

“LEXIT

Figuré 4.11, Decision algorithm for voiced-unvoiced decision

and error correction



In its most basic form, the system for producing voiced speéch

sounds consists only of the vocal source and the vocal tract. The output

speech signal s({) is given by

s(t) = het) * uct) 4.11.a)

S{w)

Hw . T : 4.11.»

where the sorce signal is denotéd by u(t), the impulse response of the
vocal tract is h(t), and *%' represents convolution,

The source signal, and fherefore, the speech signal are Qﬁasi-
periodic for voiced speech sounds; If the period is T seconds, then thé
spectfum of the speech signal consists of harmonics spaced +~' Hz. Thus,
the - spectrum of a voiced speech signal is periodic along the frequency
axis with period equal to the reciprocal of‘thé period of the fime
signal being anaiyzed. The obvious way to measure this 'periocd' in the
spectrum is.tb téke the Fourier transform of the spectrum. This will
result in a waﬁeform héving a peak corresponding to the 'period'. But
the effect of the vocal tract is still superimposed on the-signal. The
solution is to také‘the logarithm‘of the amplitude uf.the spectrum and
take another Fourier transform. This function,defined as the ‘cepstrum'
sepefates the effécts of the vocal source and tract. The reason for this
" is the property that ﬁhe logarifhm of a product equals the sum.of_the

" logarithms of the mulfiplioands:

log 1S = log |H. UG = log 1HWI + log 1T 4.12)



The Fourier transform of the logdrithm of the spectrum preserves»thé
add;tive property and the source and tract effects become additivé. The
effect of the vocal tract is to produce a low freqﬁency ripple in the
logarithmAspect;um[ vhile the source. produces a high frequency ripple;
Therefdre, fﬁe cepstrum haé a shérp peak corresponding to thg ‘high
frequency source ripple and a broader peak correspondiﬁg to the low
frequénoy fofmant strﬁ&ture in the logarithm spectrum.

Another difficulty arises from the fact that a time limited speech

signal is.used. The effect of time limiting the speech signal with a

. multiplicative time window w(t) is a convolution of the corresponding

speciral window W(w). Hence, the complex spectrum is not strictly
frequency - limited, but can ‘be> described as Dbeing approximately'
‘frequéncy—limited if ¥(w) has very small side lobes. Ihe Hamming window
which has a maximum side lobe 44 dB below its peak response is a good

choice.

| o . o
! SECTION INTO 1

~————| 512 SAMPLE |--——-| HAMMING |--———- | 512 POINT |--——1 LOG X! |
' { SECTIOFS | | VINDOW | |  FET | ! |
1__ ! ! - | ! ' | i
. !
I
I
!
!
. 4
! o , i I |
| VOICED I ! PEAK I " | 512 POINT |
¢-—-—| UNVOICED |-———— --1 DETECTOR  |-------1 = IFFT |

| DECISION | - -
- . | _ _

Figure 4.12. Blbck'diagram of the CEP pitch detector



These propert;es of the cepstrum have beeﬁ used as basis for pitch-
detection algoritms [481,[3%8). The block diagram of a cepstral ﬁitch
detector is given in Figure 4.12. The speech signals are first-sectioned
into 512 sample frqmes, and then multiplied by a Hamming window. The

'cepstrum of the windowed sigﬁal is computed uéing FFT techniépes. Dué to
the effect of the time window,‘the‘cepstral peaks decreas;’ig'ésplitude
with increaéing quefrency. To overcome this effect, a 1linear
muitiplicative weighting is applied;.The range that is searched for the
peak of the cepstrum is 1-15 ms., since pitch periods outside this range

. Vafe not usually encountered. Figure 4.13 shows the cepétrum of the frame
in Figure 4.3. Since no wéiéhting is applied, a decrease in amplitude

can be seen as the quefrency indreaées.
The peak value of the cepstrum is searched and comparéd to a
threshold. The‘cepstral peaks at the end of a vpiced speéch segﬁenﬁ

usually decrease in amplitude and would fall below the peak threshold.

The solution is .to decrease  the +threshold by some factor over the

\

WA_A W

Figure 4.13. Cepstrum of the frame in Fig. 4.3.
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quefrency range of il msec of tha~immediately preceding pitch Bériad
when_ tracking the pitch in a series of voiced speech seguments. Tﬁe
threshold reverts ta its'normal value over the whole'cepstrum range
after the end of the series of voiced: segments.

There is also the possibility that an isolated cepstral peak might
- ex'cead the fchreshold, resulting in a  false indication of a voicéd
Speech'segment. Such peaks are disregarded.

Another problém often enaounterad is pitch doubling. The second
rahmonic of a‘cepstral peak sometimes exceeda the fundamental, and the
second rahmonic éhould not be chosen as.representing the pitch period.
Thus;, the peak picking algorithm should eliminate false pitch daubling
caused by a second rahmonic but. should also allow legitimate pitch
doubling. For legitimate doubling, there is no cepstral peak at one-half
quefrenoy,,but'for erroneous doubling, there is such a peak at one-—half
quefrency since this is the fundamental.

A flow—chart ‘of the peak piching algorithm is given in Figure 4.14.
The algorithm determlnes whether the cepstral peak of the N*" cepstrum
represents a voiced speach segment.vInformatiDn about the N—i?“ cepstrum
“is stored, and tﬁe F+1em cepstrqm is peak picked before deciding about
the N*M cepstrum...lf pifch"ﬁracking is in effect, the threshold is
reduced if the quefrency of tha peak is within +1 msec of the quefrency
of £he previous pitch peak. The peak.is compared with the threshold, and
. bitch doubling is investigated' whether the: peak exceeds or does not
" exceed the thfeshold}_Tﬁe information about the N+1th cepstrum and N-1*r
cepstrum 1é'fhen used to dacide if the Nt cepsral peak represents an

isolated voiced segmént or an'isalated absence of voicing in a series of

voiced Speech segments.
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'Figﬁré‘4.14;‘F16wchart of the peak picking algorithm.
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4.1.6 Harmonic Pattern'Matohing_Mgﬁth
In the Fourier répresentation, the- excitation for voiced speech is
manifested in sharp peaké that occﬁr in integer multiples of the
‘fundamentai frequency. This. fact has'served as the basis of é number of
pitch ‘detection schemes. The harmonic pattern matching——apéroach' ofi
Mértin digcussed in [39] will.be reviewed here. Figuré 4,15 presenfé tﬁe
block diagram of the pitch deteotor.lv |
| Since onlyvfrequency components below 2 kHz are taken into account,
the signal is firsf downsémpled in the time domain to a sampling rate of
4 kHz. A frame -qf 32 ms length (128 samples) is then windowed and
transformed into the frequency domain. In the amplitude spectrum all the
values are set to zero except the peaks that exceed.a threshold of -35\
dB relative to the global maximum of the spectrum, and their immediate

neighbors. The original spectral resclution of 33 Hz guarantees that the

1 b S B o o (I !

| DOUNSANPLE | | COMPUTE | ISELECT PEAKSI  IINTERPOLATEI | COMPUTE | 1 SELECT 1
---|  SIGNAL  1---] ANPLITUDE I---] SUPPRESS I---1 AROUND 1---1 HARMONIC {---{ PEAK OF {--4
"} TOAKHz | | SPECTRUM | | EVERYTHING | - | SPECTRAL | | ESTIMATOR | "I Ac(p) |

| N { f ELSE . | ! PEAKS | [ FUNCTION 1 ... !
: 1 o [ |

Figure 4.15. Block diagram of the bharmonic pattern matching method

pitch detector.

information. on fundamental frequency is present in the spectrum for
values of .Fo down to 70 Hz. This resolution is then increased to 1 Hz

interpoiating the missing pdints. From this short-time amplitude
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spectrum, a harmonic estimator function is derived by applying a co;ﬁ
filter, The principle behind the comb method consists in the search for
values of the spectrum situated at harmonic frequencies, and whose sum
is a naximum for a g;ven frequenoy interval. The vfundamenta1' 
corresﬁonding to the harmonic structure giving the largggz_gpgjis_thenb
taken to be the fundamental frequency of the signal, as long as this sum
differs sufficiently from the values obtained for other structures im

L3

the same spectrum (which woﬁld. correspond to the case of voiceless
signals).

The spectral comb ishgiﬁen as an in@ulse sequence provided with
weights that decrease with increasing frequency; the distance bf the
individual.pulses equalé the trial'fundamental frequency p,

k-1/= w=kp; k=1,2,...

0 otherwise 4.13)

Cm,p) = <

For each value pf p of the amplitude spectrum A(m is wéighted by the
spectral comb C(m,p), and the spectral components that pass the comb are

added up to form the harmonic estimator fumction Ac(p),

N/2p ' |
Ac(p) = = ACkp)C(kp, p) : (4.14)
k=1

_ The value of p where Ac reaches its maximum is then taken as the

estimate of the fundamental frequency Fo.



48

~

4.2, MEASUREMENT OF ENERGY AND DURATION

N

Measurement of  the total energy of a speech signal, either by -

-

digital or analog techniques, is straightforward. This contour eione

servee as an important cue to the'determination‘of word or syllable
endpoints,lor 1t can be used in combination with other data to give more

) AN

reiiable results.
Othef energy components that prove useful are the energy contours in
. certain frequency bands [21]. The energy in the band 60 to 3000 He is
called sonorant energy. Sonorant energy bas been shown to be more useful
for prosodic'analysis than the broadband total energy since total energ& 
remaiﬁs high during obstruents while the 'sonorant‘ energy dips at
obstruentsﬁ(which eccur at syllable boundaries). Other bandwidth-1imited
energy functions have also been shown effective. The energy in the band
650 to 3000 Hz is.useful»for'seperating vowel nuclei from surrounding
nasals, 1iquide and(glideen A very low freéuency energy fﬁnotion in the
bandwidth>60 te~4OQ»HZ>can provide an independent decision about the
~ voicing state of the speech. o
Duratibn is usuéily nﬁasuree as the seperation between itwo marked

poihts on the speech waveform, and these pbints are usually marked by an

. energy ar pitch measurement of the waveform. Some durations that are of

'importance are the duration of sounds, duration of syllables, duration
"of worde, and duration of phfases. The averages of these durations may
give information about the speech rete of the speaker.

The algoriths .that combine these measurements to identify the

underlying prosodic phenomena will be discussed in the next chapters.
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V.. PROSODY IN SPEECH RECOGNITION

Ihe human speeoh perception system is such that a native speaker
uses, subconciously, his knowledge of the Ianguage, the environment,»and
the context in understanding a sentence. These sources of knowledge
include the characteristics of speech sounds (phohetics), variability in
e pronounciationsv (phonology?, dthe stress. and idtonation patterns of
speech (prosodics), the. sound patterns of words (lexioon), the
'grammatical structure of 1anguageA(syntax), the n@aﬁing of words andd
sehtenoes (semantics), and the context of conversation (pragmatics). To
approach human performance, a machine must also use all the available
knowledge sources'effectively. The prosodic feetures in speech oerry_
valuable informarion that can be used in this process. Up to date, very
little .of _tﬁis informstion has been 'used in automatic speech
recognition. InA'this ohapter, after a brief review of ‘reoognition
systems, strategies to inoorporaﬁe'this knowledge source into various

recognition systems will be discussed.
5.1 SPEECH RECOGNITION SYSTEMS

Speech recognition dan be described as the process of transforming
the continuous acoustic speech signal into discrete representations
which  may .be assigned‘ proper meanings. The ultimete goal 1is to

undersiahd the ihput sufficiently to select an appropriate response.
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and only those parts that convey the message, and ignore the rest.

50

Speech signals‘convey'informationvabout who spoke what message in

7 what manner and what environment. There is an extensive amount of

information in the speech signal, only some of which is related to

selecting correct machine responses. The critical task is to extract all

-~

-

- Some dimensions of performancevin speech recognition are the size of
the command vocabulary, whether or not the system can accommadate any
talker, or only those who have trained the system, and whether or not

input speech can be continuous connected utterances, or must be isolated

. :individual commands. These dimensiOns are illustrated in Figure 5.1.

CONMECTED  (ndep endent
T LARGE
‘ VUC??YE?E!//A ,

SPEAKER DEPENDENT / | /

‘////’///,/" : SPEAKER INDEPENDENT
i
| . onaLL . ISOLATED

Shal Small
Dep:ndent VOCABULARY Independent

solated o _ solate

" Figure 5.1, Dimensions of performance in speech recognition

At present,»highly reliable automaticbrecognition can be achieved

-.for relatively small vocabularies of single words spoken in isolation by

a talker to whom the system is trained. -By- contrast, automatic
recognition of unconstrained fluent ‘speech by any talker on- any subject

is nowhere near reality

Approaches to speech recognition are differentiated by whether or

not recognition is effected by a template matching to vocabulary items



that originally were measured and derived from human speech, or whether
or not recognitiun is effected purely -by computation . using programmed
rules that analyze the unknown input and which utilize no vestige of
storedAhuman speech. Most practical success to date are with the former -
because it is eaeier. But the greatest promises may be_giggmfhe.more
sdphisticated latter.

In teﬁplate matching, human spoken ﬁtterances (typically phrases,
words, syllables; or phoneﬁesi are typically represented in the form of
spectral sequences as a 'function of time. Recognition is achieved by
using a pre-defined similariﬁy measure . to compare the annown token
against stored feﬁplates. In many cases, time-alignment algorithms are
used to account for some variability in speech rafe; While.‘template
matching systems can achieve high performance with a smail sef of
accoustically.eistinct words, they are limited in their ability;

Tn the feature-based approach te epeech recognition, a ‘sei of
acoustic featuree that oapture the phoﬁetically relevant information in
the speech 51gna1 are identified. With this knowledge, algorithms can be
developed to extract the features from the speech Signal A classisfier
is then used to combine the. features and arrive at a recognition
decision, |

h Drawing a eharp'division between theee two approaches is somewhat
arbitrary and perhaps uﬁneoeeeary. Actuel syétems may make use of both
techniques with a varying migtufe. What is mqst important is whether and
" to ‘what . extent speeéh—specifiba knowledgé. is being ufilized for

recognition.
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5.1.1. Isolated Word Recognition Systems

~In these reeognition systems, the human must command the machine 1m
single utterances. The vocabulary is usually small (in the order of 20,
100, or 1000 words depending on the application). They can be made ‘
talker 1ndependent at the cost of computational complexity. Figure 5.2

shows the block diagram of a typical word recognition system.

LEARN - | Add unknown [ -
--==3¢ +-4] {0 reference |
| | pattern list | -

| Digitize 1+ 1 Detect | | Noise and 1 | ‘ ¥
1---4land analyze [-~----- 41 beginning [------- 4l amplitude =44 { REFERENCE PATTERNS )
| utterance | | andend | - Inormalization! | . i
e e ! b oeeeie S 1
I I Time [
--==4¢ 4-13] alignment | |
RECOGRIZE. I T I
| | I
_______________ ISR, S
! | ! Selact the | [ I
! fpmmmmm=- | reference pattern l¢=----- 41 Compare . | |
| Qutput | 1 with mininum 1 N S I
| : ! | distance . | | |
| P ! I i
I

Figure 5.2. Block diagram of a word recognition system

A common approach is to measure a time pattern of features of the
._ frequency spectrum for the input human utteranoes, and compare these to
.a vooabulary of human derived stored pattepne, one for each single
acceptable Autterance If - the .system .is- talker dependent, these
vocabulary patterns have been provided previously for the given talker.

The linear prediction coefficient (LPC) parameters are the most common
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features and prove to be a useful set. The vocabulary péttefﬁ
corresponding most closely to the unknown ipnput is judged by the machine -
to bave been the spoken command. Various distance measures may be used
for the closeness of fit judgement, but une. of iparticular '
appropfiateness for speech 1s the so called maximum likelihood LPC ratio
[491. In mak;ng the distance measure, to take account of different rates
of speech, a procedure called dynamic time warping (DTW) is applied
(501. Often the output of the.model is a set of estimates of the words
in the output, ordered by similarity, allowing‘the final decisioﬁ of
what was actually spoken toy be deferréd to a higher 1level in the
recognition system.

By storing multiple patferns that oﬁaracterize a lérge population of
talkefs for ‘each utterance in the vocabulary, the system can be made
speakef indepeﬁdent. Statistical clustering analyses then determipe the

set of multiple patterns.

cted i t

In the production 'of continuous speech, pronounoiati@ﬁ is less
careful, speaker differences are hﬁderlined, speaking rate 1is less
constant, Co—articuiétion effects exist between words as well as within
théh. There is even little evidence of. Qord bqundariés. Stress and
) intoﬁation change due to the importance of a‘word in the message. Thus,
‘the task of recognition beoomeé impossible tp'achieve with the weapoﬁs
"of isolated word recognition; Notétthat in aﬁ attempt to recognize the
utter;nce aé:a whole, one would be faced with storing 10'® reference
teﬁplates even wifﬁ a.”lO—word. vocabulary and givep a 90 % word

recogﬂifion accuracy, the 'ove:all performance would drop to 35 %.
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Instead, an act;ve systeﬁ which mak;s use of all the known constrginﬁé
of language and varies its analysis in-the iight of this knowledge is
required.

Sysﬁéms which . recognize words: with the pattern- récognition
techniéues of isolated word recognition and group these tqgggggg\%o form
larger units have been proposed; but as the number of wofds in the
vocabulary and ﬁhe number of different contextual variations per word
get large, the storage and cémputation time become enormous. However,
taking into account the advances in the VLSI feohnolbgy, this is a
- . solution to be considered.forkvery small-sized vocabularies or speaker-
dependent systems.v

For more sophisticated systemé, whaf is needed is a more compact\
represéntation of the sound patterns of the words such as those used by

linguists, . i.e; repesentation of wofds as a sequence of phonemes,
allophones, or syllables. This change from signél space representaéion
of the words toia symbol spaée'representation requires segmenting the
continuous-speéch_signal into discrete acoustically invariant parts and
labeling éach éegment 'with phonemic or feature 7labels. iA phonemic
’diotionafy of the wvords coﬁld thgn be used to match at a symbolic level
and determine whichAword was spoken.

~.Fea“l:ure detection ' usually representé‘ the detection of silence,
voicing,,strese, LPC or spectrum'parameters,band so on. The purpose of
-segmentation is to diQide the.Continuous spéech signal into discrete
“units based on some ﬁedéurerf ab@ustic similarity. Energy in certain
bands is thé:mOSt 1m§0r£ant‘measure in éegmentation.,There is no simple
algopithm that giyeé.phopemio‘bo§ndaries. Usually boundaries associated

with éignificanf changes in acoustic characterisﬁics are used for
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segmentation. LabelingA schemes assoeiate aei phonemic (or some other)
symbol with each segmental unit. Before -this symbol sequence can be used
in matching, it 1is necessary to -apply phonological rules to combine
segments, change labels .base_d, on context, delete segments, and- so on.

One of the most important problems in continucus speech recognition
is that of detecting the boundaries‘ of words. In systems that operar.e
without this knowledge, the analysis proceeds from left to righ’i‘..
matching at each step. In t.his case, one must find techniques for
" terminating the match when.an optimalb match is found. -

Matching and veri:fica_tion of hypothesized words is basic to all
recognition systems. Three different word verification techniques are

~Heuristic matching, | .

—-Stochastic matching,

—Analysis—hy—synthesis. -

Heuristic ma'(:ching involves aligning the phonemic spelling of-the
word to be matched with the.segmental labels while allowing for the.
possibilify thet errors mey- have occured. Alignment is usually based on
the notion of anchor.'podnts in which stressed vowels which ar_e muoh less
likely to be missed are aligned‘ first, followed by other vowels and
consonants. Degree of similarity is defined as a weighted sum of the
ind1vidua1 phoneme versus segment label snnllarity values which are
. available as a confusion matrix generated by experiments. In stochastic
'matching, given a f_inite-state representation  of alternatirre
'pronounciations of a- word with'assooiated transitionAprobabilities, a
dynamic programming vtechnique is used to perform. matching left-to-
right.The best phonemic match and the corresponding 1ike11hood are

determined by matohlng all the possible phonemic variations of the word
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with the unknown segmental phoneme string. The basis for the analysis-

by-synthesis method 1s the observation that phonoibgical phenomena such

as vowel reduction, flapping, palatalization, etc. are basically

generative in nature and cannot be easily captured in terms of analytic

rules. In this‘ ﬁethod,’ the . abstract repfesentation of —a..word is
trénsformed inta an acoustic represéntation suitable for matching wifh
‘the‘acoustic parametrization of the unknown utterance.

Human listeners make use of 1linguistic cues and constraints in
recognizing coﬁtindous speech. - A lisfener's application of linguistic

" - knowledge often enables him to guess the remainder of a sentence after

hearing the first few 'words, If machines are to approach human

performance, this linguistic expertise must be bu11t~into them. Such
systems are sometimes referred to as spéecb understanding systems. In
addition to the problems of having to recognize connected speech, these
systeﬁs tend to have the additional requirement that they must dé s0
even when- the ut£eranoe is nbt grammatically well formed, and in the
' presence 6f sﬁeech—like noise. Tﬁe requirement is somewhat relaxed by
the fact that wﬁat matters in the end is not the recognition éf each and
e?ery word in the Qtterance but-:atﬂer the intent of the message. Figure
5.3 shows the érocesées inﬁblved in recognition and understanding.
Syﬁfactic analyéis réfers to testing . whether a hypothésized word is
. syntéctically Qonsistent wifh 'words already recognized,and vusing
>syntactic constraints to predict 1iké1y upcoming  words. The
.meaninngIness of hypatﬁesized wofd ééqUénoe$ are then tested (semantic
analysis) aﬁé likely future words are predicted based on prior discourse

and the specific task (prégmatic.analysis).

v
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5.2. PROSODIC AIDS TO SPEECH RECOGNITION

Vhile discussing recognition systems, it has already been outlined

that prosodic featqres give many cues to the speech knowledge at various =

layers. In the present recognition systems, some of this knowledge is

being utilized, but still, prosodic analysis is one of the gaps in
speeéh recogﬁition technology.

There are certain prosodic features, like étress, timing; and
intonation, which give very usgful‘cues to the inherent structures of
the speéch waveform, and are felatively easy to extract from the sbeech
waveform. However, since fhe linguistic functions of these features may
change in each language, a stratégy specific to theﬁlanguage mst be
used. These features, when utilized by any isolated or connected
recognition syétem, lead to an improvement in performance at various
steps of the recognitidn process. This section Qill be an accoﬁnﬁ on

present and poteﬁtial uses of these features in recognition systems.

5;2.1. Stzeﬁﬁ

Stress is usually.considergd to be the most basic abstragt prosadic
feature.A81nce'the iinguistic fﬁnctions of stress may change in each
ldnguage, there "1s no absolute way of defihing.how stress may be used in
vreéognition. bHowever, some qotions that are common may be adbpted,
"directly, while others must Be devised according to the stfeés
) charactefistics of the sﬁecific language.

Oﬁe ofttﬁe most common uses of stress is>its providing "an island of
phonetic rel;abiiiﬁj"{ Stress.usualiy has the effect of lengthening a

 vowel " and énhancing its pronounciation, so that stressed vowels are



expected to be clearer. Furthermore, it is known that as the rate or
style of speech changes, it is unstressed syllables that experienee.the
largest variations, stressed syllables remain more or less constant in
their pronounciatien. For this reason, they have been accepted as anchor

polnts around which the alignment process is usually dome in heuristic

matching methods.

Phonological_distortinhs and errors in automatic phonetic anelysis
get more frequent as time intervals.between etresses are shortened. Thie
obserﬁation has been a 'justification of the hypothesis that - the
interstfess intervals serve as e direct correlate of the speech rate.

Stress patterns are‘.closely associated with specifie syntactic
structures. This is true in general for English, where certain words
like the articles and propositions are pronounced reduced end' other
groups like the command verbs and quantifiers are stressed all the time.
This is not the case in Turkish, where each word can be said to have one .
strong stress [5];[14],[16-20]. Vhat can make a distinction here may be
the place of the stfees; For example, adverb particles are one class of
worde that -take- stfese on their first syllables (e.g. artik, ﬂgnuz,.
hemen), while words usually take it .on their fdnal syllables.

The.?lacement of stress mai be a distinguishing feature for homonyms
(é.g. yalniz : only ,. yalniz : alone), or words with high probability of
cenfusion (e.g. yarlim, Yarim. |

: Stress usually marks contraets; emphasis or in@ortant words in a
. sentence. However, this is usually accompanied by a reordering of the
words in a sentence. The word to be emphasized is brought in front of
the verb in addition to being more highly stressed: |

quun annen geliyor, : _Annem bugtn geliyor.
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9.2.2. Timing

~ One of the most important problems in speech recognition are that cf
finding boundaries, or segmenation. Timing information may be used to
help overcome these pronlems.

Phonemesiusuaily show a characteristic duration, for_example, /a/
uéually ten@s to»be 1onger then /1/, while all the vowels are usualiy
1cnger than most of the consonants. This property is used in labeling
schemes. The durations of detected phonetic segments are compared with
expected durations for various phones to aid labeling. f

It has been observed thatpphrase—finai and pre-pausal syllables he;e
vowels whose durations are lengthened by 20 to 50 % over their values in
other positions. Althongh this 'may. be a way forﬁ detecting phrase\

o , .
boundaries, it has not been used in any speech recognition system due to
the complexity involved in its implementation. A more practical device
for finding phrase boundaries has been the interstress intervals; as
mentioned above.i

One other'nmjor_factcr.that influences time intervals in speech is
the rate of speech.n'This information is crucial in a recognition system
' tc compensate the effects of. change in pronounciation or vary the
expected phone dnrations. "Rate of speech 1s also essential in
determining what phonological rules should apply at various regions of
an utterance, since some rules apply for fast speech while others are
. applicable only to slow Speech The f0110w1ng have all been referred to
"as a measure of speech rate: a .

The total duration of a specificvspoken’text;

-The average measure of the number of words per unit time;

_ihe-average number of étreeses per unit time;



-The number of syllables per unit time;
~ ~The average or local number of phonés per unit time.

‘The Germanic and English sentence rythms assign appfoximately,equal o
time to stress grbUps'clustered‘arbUnd each stressed syllaﬁle,>so for.
fhese languéges, the average number of stresses serves—as a: good
indication of speech rate. This is not tfue for Turkish, where each wofd
is stressed. However, it is claimed that the Turkish intonatiom aséigﬁs
longer time to unstressedrsjllables, thereby equalizing the time for
each syllable [5]. If this is the case, ?he avefage number of syllables
per unit time can serve as a good measure of speech rate.

The main method in finding clause and sentence bogndaries is by the
duration of pauses in speech. These pauées are the spoken equivalents of
~written puhctuation marks. Since épeech recognizers usually receive only
one.sentenée at a time, only clause boundaries are of importance 1n_this
.respeot. These can be detected from 200 millisecond or longer periods of

silehoe, or from 350 millisecond or longer periods of unvoicing.

: Y .
| Intonation is a vital aspect Ef speéch'which conveys information
about the type of sentenoe. spoken, the divisions ‘and categories in
phrase struothes, ‘Paragraphing and topic ' change, 'seﬁantics; and
emotion. Children learn infdnational cues to phrase structure ;nd
senteﬁce type even before_thej learn words, sd that they understand what
vis'A-questiqn and what is a_commahd.

ﬁach laﬁguaéé has its intonation system. The overall intonation of
English sentences has been characterized in termé.pf two  alternative

contoﬁré as shown in'Figure 5;4. Tune I contour has a characteristic
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rising pf Fo until the first stressed éyllable in the sentence is
reached, and a falling of the pitch from the first stressed syllable to
the 1last. Sentence final intonation falls rapidly. This type of

intonation accompanies declarative sentences, exclamations, ' and |

questions"with inﬁerrogative words. Tune II is like Tume—I;~ but is
terminated by a brief rise in pitch. Tune 1II narks yes/no questions,
‘uncertainty or indifference in expression, and 1ncomp1eteness.

Fo or | | : Fo or |

piteh 1 ' : piteh |
- . . |

] |
! !
| ‘ . ‘ .
! : ' |
! l

TUNE I CORTOUR ' TUNE II CONTOUR
Figure 5.4. Tune I and Tune II intonation contours

As diséusséd in sectidn-3.3, Turkish exhibits the samé ihtqnation
contours, Qith tﬁe différence that Tune I marks yes/nd questions and
Tune Ii, questions.with ihtérrogaﬁivé words., These contours may be used
either in the sentencé hypotheéizing‘orverror detection steps.

‘Observations of pitch contours of Engliéh sentences have shown that
- boundéries between clauses are détectable from very large (e.g.,bmorg
than 90 %) increases in Fq at»thé beginﬁingbof'the new clause and that
boundaries between major ,syntac%ic phraseé are detectable from‘
substan;ial (71Z dr mofe).incfeases in Fo [21]. Although exact locations
‘of the boundaries a;evdifficult to detect, this prépgrty can aid the

'synfactic parser in a speech uhderstanding system (Figure 5.5).
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[OUSRNIRSPSEE

" Put (.the money > ( on the table ( by the door >

Put (the money ( on the table >) ( by the déor‘)

Figure 5.5. Clause and syntactic phrase boundaries on Fo contours

5.2.4. Vowel Harmonv_

About 90 % of words in Turkish obey the "vowel harmony" rules that
have been outlined in sectlon 3.3 [4]. Those that do not obey these
rules are usually loan-words. So,Aa Teasonable approach would be to form
a vocabulary consisting only of words of native Turkish origin to
beﬂéfit from this feghlarity. If this is hot»possible,'one can still

.make~usevof these rules and handle the exceptions seperately.

Qut of ths 8 types of vowélsAin Table 3.1.gvowe1 harmony reduces the
'possible types in the non-initial syllable Df a word to 2. Table 5.1
shows these classes and summarizes the rules. Considering the fact that

"~ Turkish is a language which consists mostly of leysyllabic words, it is-

.clear that this will bring great amount of redundancy of ihe phonemic
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representation. The most common word type in Turkish is tri-syllabic

(151, vaqne takes this as an average word length, it can be concluded

that the saving introduced will be about 50 %.

GROUP OF THE POSSIBLE GROUPS FOR 1 |

| i
FIRST SYLLABLE | PRECEDING SYLLABLES | UNROUNDED |  ROUNDED |
l - | l__ |
1 | 1, 2 | | | | |
2 | 1,2 | VIDEICLOSE! VIDEICLOSE!
3 N 1, 4 [ | | | K
4 | 1, 4 ! | | | R
5 | 5, 6 I'BACK | 1 | 2 | 3 1| 4 |
6 | 5, 6 | n | : | |
7 ! 5, 8 ! | | | | |
8 | 5, 8 | FRONT! 5 | L7108
' ! | | | | |

Table 5.1 The regulations introduced by vowel harmony

5.3. PROSCDICALLY BASED SPEECH RECOGNITION

In most of the spéech recognition systems up to date, pfosodic,
syntactic, semanticl&nd pragmatic analyses have served an."after the
,f;ct" role of weeding out the unlikely word sequences, based on pre-
compiled information about _aécéptable, meaningful, and task—related
sentences. The hierarchy can be seen in Figure 5.2. Based on incoming
acoustic daté, words are hypothesized throﬁghout an utterance, to
»account.for the phonetic dété in ail regions of the signal, and thus
- WAnYy . of the hypothesizédb QbrdsA-overlapv i# position .or compete as
alterﬁatife-hypotheseé on the same portion of the utterance. To allow

for possible errbrs'that‘may have accurred, all combinations of these

are fed into lingulstic analysie which has to select the most likely
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ééquences of non-overlapping words which form grammatical, meaniﬂgful
and ?elevgnt strings. However, because -of the structural redundancy
présent in a listeper's linguistic knowledge, a speaker dées not have to
.encode into the acoustic waveform all of the features describlng an
utterance, and the features that are encoded can vary from- time to time.
In some utterances, whole phonemes ar syllables may be missing. A SPEEC£
reqognition system based on the acoustic manifestation of all phonemeé
or ail distinctive features would thus frequently fail.

In contrast, ‘prosodic analysis offers an  independent way . of
acaustically detecting some aspects of .sfntactic structure, without

depending upon the potentially errorful sentences of bhypothesized words

derived from the incoming acoustic phonetic information. In the system

I T T T T TErergy.Fusmmensat . T T T I
F requency, Constituert Boundaries i
SPEECH ! PROSOOIC :&:.l‘?gm PROSODIC ond Stregs Potierns PRELIMINARY R
= M paRAMETER STRUCTURE - > SYNTACTIC > !
| | Exvracion ANALYSIS l MY POTRESIZER | PRELIupGARY
. For- L Syrractic ATTETC
] .'Sf‘:gi PARTIAL Strocture | anxiyss
. (Specir: 1STINGUISHS b Hypotheses
PHONETIC lpgy 0 rzl;.'rua:s Possible |
PARAMETER > Semence
I EXTRACTION | ESTIMATION Structures |
: i
| Y IR
- - <4
P Y
- -+ R : GRAMULAR Outont
< PARSER Sexecs
AND Jeercity )
Accustic Phonetic . EXICON SEMANTIC SENTENCE [
Pattern i LEX MODEL HYPCTHESIZER
LYY Partiel |, (CONTRCL =P
. - Distingulshing N COMPONERT]
COMPARATOR . . Features Lex 3 . TASK
N Specificotion Fmrm MOOEL
Acoustle Phonetic . LEXICAL i Constraims
Pattern HYPOTHESIZER,
X . Lexical Insertio
v Error .
Slwnl .
GENERATIVE Hypothesized Sentence Structure
PHONOLOGICAL® -
RULES : ) _
* . > - * > Error $loral

Figure 5.6. Prosodically guided analysis—by—synthes;s.system (After

Lea et. al. [22])
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proposed in [221, prosodics is used throughout the system. The!bl&ck
diagram of this system is given = in Figure 65.6. In = the
preliminaryhypothesis stage, prosodic features are uéed to segment
continuous speech' into sentences"andv phrases and locate streésed
éyllables. Such prosodic information is coupled with. acoustic phonetic
and structural information in amn analysis—by—synthesis system. Here,
what 1is usually called the "preliminary analsis" black is’brokenkdan
into :

-a component fdr extracting'prosodic featureé (energy,pitch,voioing)

—a component for extracting phonetic parameters (formants, etc.)

-a prosodic structure analysis which obtains phrase boundaries,
rhythms, and stress patterns |

-a component for Dbtéining a partial representation of the phonetic
segment structure (distinguishing features) within stressed syllables

-a preliminary‘syntactic hypothesizer which uses phrase boundaries,
rythﬁs and stress‘patterns toApredict likely syntactic structures.

Following such - preliminary analyses, the lexical hypothesizer .
proposes possible 'iexical entries Afor insertion in tﬁe sentence
s£ructure, based on the closest matéh between the partial distinguishing
features repreéentation of fhe input and  the lexical entries in the
1e#icon. Contex%ual édnstraints, sucﬁ as 1exical categofies that could
occur at certain positions iﬁ the seﬂtence strdcture, and likely wor@s
in ceftain semantic and_task-éontexté, arefﬁsed to guide the lexical
hypothesizing Grammatical, éeﬁéntic and task constraints combine
together with the lex1ca1 and syntactic hypotheses to yield a total
hypothesis' about  the 1denti§y of the sentence spoken. The sentence

hypothesiZer contrblé the order.in which acoustic-phonetic patterns are
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generated, by phonological rules, for comparison with the ;input
acoustic-phonetic patterns. The error signal of the comparator is fed
back to the sentence hypothesizer to formulate new hypotheses or to

annouﬁqe an output: | |
- Only some aspécts of this strategy were implemented in3a"recogﬂition
system [35]. Although it hasvnot been realized, the overall recognitien
strategy deserves attention ip the sense that it shows how many.aspecfs
of recognition systems discussed so far can be combined to produce a
prosodically guided system vwhich operates inba sense which is . more

close to the perception in humans.
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VI. RESULTS

In this study, tools have been developed to investigate prosoddc
features of Turkish. Analyses have been made on a total of 200 s ef
speech, in the form of 2-s utterances by four different speakers. Some
of the curves froﬁ these analysee have been pfesented throughout the
text. The phenaomena observedeon these‘curves are discussed,vand some
recdgnitioﬁ strategies a;e outlined. Some of these strategies have been
integrated in an isolated word recognition system of Tdrkish speech. The
description of the sysfem is‘given together with performance scores

obteined.
‘6.1. PITCH DETECTION ALGORITHMS

The six pitch detection algoritﬁms described in sectien 4.1 have
been realized A comparisen ‘between these six algorithms had been |
intended but two of the algarlthms bhad to be discarded because their
memory requirements did not comply with the available user memory of the
system described in section 6.2. The remalning four algorithms were

tested using an artificial signal generated by a speech model.

'6.1.1. The Artificial Speech Signal

The model used is -a simplification of the general discrete-time

model of‘Figure 2.2, The modeliconsists of a glottal pulse generator, a
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vocal tract filter, and a vﬂﬁtening filter <(Figure 6.1). Fundament%l
frequenoy and vocal tract parameters are held constant. A whitening
filter H hgs been used to flatten the output spectrum. The contributions
of the.glottal pulse, vocal tract and radiation are all inolﬁded'inrthe

filter F. Finallj; an envelope has been used to simulate.the effect of

the alteration of voiced and unvoiced segments. Details of the model can

be found in [51].

Em
I vov
; : | ENVELOPE
I Glottal | whiteningl ! | !
|  pulse I-———- 21 filter |-—— 4l F(@) |- 3
|

generator | | H(2) | | 1

Figure 6.1 The artificial speech model
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To make a pefformance evéluation of the algoritms, there was need
for a speéch éignal.for which the true pitch contours were known. The
most adequate signalfto'use for this task would be the ouput @f a speech
s&nthesis_system. Sipcelthis was not available, the artificial signal
produced as described above was used. This signal 1is a rough
apbfoxiﬁation_td'the épeech signal, and thé‘results of this analysis may
- not ;eflect the true behaviour of the algorithms with real speech, but
'still,_they gave an idea abou# tﬁeir pefformanCes and speeds.

In Table 6.1, the error neaéﬁrements for the pitch detectors is
given; FourAéypeé 0f erfors were olassified as gross pitch errors, fine
pitch errors, vo;péa;tofunvoice¢.errors and uﬁvoiéedfto-voioed errors.

If pgim)»represénts the standard pitch for m*" frame, and p,(m), the
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pitch detected for the mer frame By the j”hvpitch detector, different
typéé of errors result from the following situations:

-p=(m = 0, ps(m) # 0 : Unvoiced-~to-voiced error

C —pa(m # 0, psm = 0 : Volced-to-unvoiced error

=P= (m) pr # 0, ps(m) = p= # 0 : In this case a vuiced frame is
Cérrectly classified as voiced bj the algorithm. For this case two types
of errors can exist, depending oh the values of aqd p=z. If we define
the voiced error e(m) as the the difference :

e(m =xp1 - pzv
then, if lelm! } 10 samples fhe error is classified as a gross pitch
efrdr. For such cases, the pitch_détectqr has failed in estimating the
bitch period. All of the gross errors encountered w:ere due’ to pitch
doubling. The second type of pitéﬁ error is fine pitch error in which
éasé te(m! < 10 samples. For this casé thé-pitch detector has estimated
the.pitch period suffioiéntly.

The parameteré in Table 6.1 are, the mean ea. and the sténdard

deviation ¢ for the fine pitch errors, and error rates for the other -

types of errars.

! | . | | ] |

| €av | V= vuv | yvv | Gross |

:, : } errors-.: errors : errors :

| | | . | I | |

': AUTOC : 0 : 0.46 »: 0 { 0.07 : 0.07 :

| | | o | | |
;i' AMDE : 0.07 : 0.88 :» 0.07 } 0 } 0

| | | ' | i | |

} CEB : 0.77 ‘: 1.12 ': 0 : 0.18 : 0 :

| S A | | i |

‘ : PPROC ,: 0,13 : 1.17 } ¢ l 0.13 { 0.13 l

Table 6.1. Pitch period errors for the algorithms
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It 1s observed fhat the errcﬁ‘s are often in the voiced—unyoiéed
transitions. However, it should be noted that there are no voiced-to-
unvoiced errors in three of the algorithms, while in the fourth one,
there are no unvolced-to-voiced erfors, which shows that éll_ of the
algorifhms are biééed toward voiced or unvoiced. The means and standard
deviations for the fine errors are foo small to be considered. There are
few gross errors, which are due to pitch doubling. Rone of these are
.severe errors, and they can'be corrected using logic similar to the
error correction and tracking logic used in AMDF. So, the main criterion
for selection is the speged.'ﬁxaot valués cannot be -given", but PPROC
.perf'ormed the fastést, with AUTOC and AMDF about 10 times slower and CEP
100 times slower. So, PPROC was ch.osen as a first}alter’native to be used
in the analyses. The voiced-unvoiced detection logic was developed as
described in bsebtion 4.1.3. However, during its use with real §peech,
problenis arose because of the wide pitch frequenoj range required (‘100—
500 Hz, for both- male and female speakers). The algorithm produced
acceptablé reéults when i)arameters were adjusted to a smaller interval
for analysis with onlyi male speakers, but since speech frcn‘nv both male
and female speakers was tro be a_nf;lyéed, thié method had to, be discarded.
. AUTOC and AMDF weré taken as possible alternatives., Vith real speech,
AﬁlﬁF also presénted ‘s‘ome errbrs which wéfe found to be due to the
trac;liing logic. Similar txv‘acking"_logi‘c was uéed with AUTOC and it‘ was
obéerve@ that it producec} th(_a 's.ame type of 'errors. Sq, it was concludéd
‘_that"_tra_cl_{ing wag inadequate in .x:'egionS‘ of high-slope pitch changes.
Since pitch 'Apeaks_‘ and véllesrs played an important role in the detection
of many of the p_.réhsbdic_featuresv, that was unacoeptabl'e. So, AUTOC was

'chose1~1 to be used in the I;e.st'..of the analysis. This selection agrees
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with many . comparisons‘ nf- pitch -denectors _(C[401, [41]5 in ‘%na?\.the
:autocorrelafion< methed aften center - cl}pping” prnvides a simple and
reliable ﬁay of detecting pitch. The pitch range searched was feadjusted‘
| according to the pitch ranges of the speakers and this reduced the
computation time by a factor of %. A tracking logic waa_integrated to
fnrther reduee the coﬁputation>time, but that was later discarded since’
'fnis caused errors.The antocorreletion method with'center‘clippingans

described in section 4.1.1 was used in the rest of the analysis.
6.2 VOICE INPUT AND ANALYSIS SYSTEM

Tne analysis is performed onva PDP 11/23 microcompnter. Voice inputﬂ
to the system is via analog ’circuitry which consists of a standard’
canbgn microphone of the type used in telephones, a lowpass filter which
has 6-dB point at 3.5 kHz, followed by an amplifier. The otput of the
amplifler is designed to be between + 10 V. The ouput of this analog

system is fed to the 12 bit- A/D converter of the PDP 11. The sampling is

l | ] |
B | LOWPASS | - | _ANALOG |
R | FILTER {-—-=-| ANPLIFIER I----] 70 DISITAL |--—-

MIC e DD 1 CONVERTER |

Figure 6.2 Voice input and anaiysis system
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performed at 8 kHz, the minimum allowed by the Nyquist criterion; to
make the most of the limited memory capacity. At this sampling rate, the

maximum_duration of speech that can be stored is 2 seconds. At a normal

speech raté,,single words or 2-3 word sentences can be utferéd:in'this>l i

time. So, analysis was performed on those. The block-diagram‘of the

voice input/analysis system is giﬁen in Figure 6.2.
6.3 SYLLABLE

, i .
| There are several alternatives for a recognition unif: phonemeé
allophone, diphone,'syllable and word. All of these héve been used as\
units in differént recognition systems, but none of them has‘pfoved
ideal. In faot,. all have their advantages and disadvantages, .and a
recognition>system may use a CDmbinatiqn of these units. The advantages
énd disadvantages af thesg‘unitsvhave been summarized-in T;ble 6.2.

In present reoogniﬁion'systéms, the most often used units have been .
the phoneme and the'kord.lfhe syllablé, being halfway betweeﬁ'these two
.uﬁits, ﬁas the advantages offboth.to a degree. It is indeed the Dniy
unit which is easy to‘detect.ip odntinuuus speech; and one in which the
coﬂtext dependeﬁcé iéAsomewhatveliminated. Qpe~additioﬂal advantage of
- using the syllable is its beiﬁg a'proéodic unit; it is the smallest unit
.that prosodic features are caffied on. Stréééed'syllables are of great
.1mpoftance in recognifién{ and usiﬁg the syllable as a unif enables one
to gét easyAéccééé to tﬁis_informatidﬁ; Fof these reasons, attempts have
‘been. made té use the-SYilablé as. a unit in some'reoognition systems

- [211. The main drawback to usihg the syllable is 1its being a unit not
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Phoneme - . 1, Total number is small 1, Hard to detect acoustically
: 2, Suitable representation " 2, Some sounds belong to more

for lexical entries - than one phoneme
. - . ‘ 3, Many rules are needed at
lower and higher levels ‘ 

Allophone l;'Easily.identifiable _ ‘ 1, Total number is excessively large

2, No rules needed at .. 2, Dependent on their
lower level - environnent
Diphone 1, Transitional information 1, Total number is large
: is included - ' .
2, Some coarticulation rule 2, Phonological rules are
is included ' not easy to apply
Syllable 1, Easy to locate : .1, Total number rather large
2, Much coarticulation rule ' 2, Precise boundaries are
is included difficult to detect
3, Phonological rules ea51er '
to apply :
4, Easy access to prosodlc
features
Vord 1, Elininates an entire level 1, Matching is difficult
' of recognition -activity with large votabularies

2, Junctural phonological rules .
are hard to characterize
in lexicon entries

Table 6.2. Advantages and disadvantages of recognition units

'uﬁiqueljldefined in:English; In_Tufkish, syllableAis a nmreAbasic unit
and many rules of tﬁe Turkish’ianguage act upon the syllable as a whole.

. A possiblé'disa&Vantagé is that the éyllable inventory can become
ver} large Qith'extensivé‘voéabdquiéé. Tﬁe éize does not approach.that
of aliophoneé orbwordsbordinéfily;'buf'it far exceeds that of phonemés
To give an idea on the size of the Syllable 1nventory,_some results of a
study on the count of units in a Turkish text [151 will be given. The
-text consistg_ of 22,216f words _(58,992 syllables). Ini this text, the

number of different syllables.was found to be 1506, 807 of them
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~is

appearing in word initial position, 873 in the nuddle and 759 in word
final position. The . frequency\of occurence of these syllables was such
that a small number of them (60) formed about half of the text. The
amount of text that can be. formed with the most frequent syllables is .
tabulated in Table 6.3. If the probability of occurance of“syllables is :
used in the search process, it is clear that the search time will be‘

much less than that required for 1506 syllables. More economy can be

# syllables amount of text ~ # syllables  amount of text

10 16.61 % 90 59.95 %
20 : 26.81 % 100 . 62.26 %
30 34.44 % 150 71.12 %
40 - : 41.56 % 200 . 77.21 %
50 46.05 % 250 : 81.41 %
60 50.85 % . 300 84.40 %
70 54.01 % _ 400 87.01 %

80 : 57.60 % 500 92.10 %
.Table 6.3. Frequency of syllables in text
made 1f the knowledge of position in the word is used. It has been shown

that some syllables exist only in certain positions in the word. Data on

this knowledge is given in Table 6.4.

Eﬂﬁiilﬂn_L&JUELJﬂﬂll _ ﬁ_sgllahhﬂa axmuni_oi_iext
initial 10 . 24,04 %
: ... 45 . 52.42 %
middle T : 10 o 25.55 %
: : a0 L 51.83 %
fina - .. - .. 10 : 19.29 %
- : 40 . - 51.37 %
monosyllabic word = - - 5 - 44,22 %

.10 56.28 %

Table 6.4 FrequenCy'of syllables'in certain positions
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The last disadvantage of using the syllable in recognition haevbeen

- the. lack of methods to detect syllable boundaries, namely, syllable

isegmentation A method has been developed for syllable segmentation.

Syllables are usually defined as high energy chunks which correspond

to voicedfsectioos. Detectlon of the syllabic nuclei is straightforward
based on this definition; they afe manifested as voiced regions.which
last long enough. (30 ms or ﬁore?.

Onev existing system for 'finding syllables [32] locates syllabic
nuclei by detecting high eonorant energy (energy in the 70-300 Hz band)
regions bounded by subsvantial‘ (4 or 5 dB) dips in. energyt It vheﬂ‘
detects beginning and ending points of the syllabic nuclel as the
halfway poiﬁts in fhe dips, This algorithm is reported to detect 81 % of
the syllables with only 1 % false detections of nuclei. Another eiﬁilar '
program which uses a spectrally weighted loudness function was reported
to detect 92 % of the syllabic nuclei.

A different approach which is based on the same principles but

- instead of filtering the speech signal, makes use of the fundamental:

frequency in findiﬂg the syllabic nuclei has been used in this study.

' The syllable structure of Turkish is such that there will be a vowel at

the nucleus of each syllable, and these vowels w111 be nmnifested by

" long sections of voicing.‘ The 'algorithm uses these sections as

. candidates of syllabic; nuclei and the energy waveform to find the

syllable endpoints' itkaccepts each 10Ca1 minimum between two sections

of voicing as a syllable boundary point This algorlthm usually works,

because - the voiced consonants (which are causes of possible false
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detections of nuclei) are always next to a vowel, and durihg
articulation of the vowel and the voiced consonant next to it, no
disobntinuity in voicing long enough to be detected occurs, and even if
this occurs, there will be no local minimum in the emnergy waveform-
corresponding to this discoﬁtipuity.

One example word is given in Figure 6.4, where the the fundamental
frequency aﬁd energy curves are plotted for the utterance "birlestir®.
It is observed that the sections of voicing coinéide with the syllabic
nuclei. The algorithm detects the endpoints of the syllabic nuclei that
last long enough, and the endpoints for each nuoleﬁs are used by anéther
dlgOrithm that uses these-data to find the exact endpointé of syllables
from the energy contouf. The fldwdhart of the syllabic nuclei detection
routine is giveh in Figure 6.5. | |

This algérithm has been used to segment into syllables the 19 words
(consisting of 37 syllables) of the vocabulary of the syllable;bésed
isolated word recogﬁition system described in Section 6.5, where i%
detected 81.%'of the syliables (with no false detections?, failing only
in those wofds that.cdnsisted of all-voiced sequences, where all the
consonants are volced, and no Qiscontinuity in voicing is detected. An
example Qard where fhis,occurs is in the wdrd “cevir", for which the
fundamental frequency and energy cohtours-are given in- Figure 6.6. In
this case, the syllable boundary‘ié nﬁrked byba sharp increase in Fo.
"~ When this propefty is utilized‘bf the syllable detectibn algorithm, the

" performance increases to 89 %, with no false detectionms.
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6.4 PROSODIC FEATURES

- The possible uses of prosodic features in recognition systems was
.discussed in Section 5.2. Here, methods will be described to détec;t

those features in speech, and results will be presented.

6.4.1 Intonation

Possibie uses of intonatiovnAin recognition systems were outlined as:

-Segmentation of continuous ‘Speech" into phrases;

.-Extractingk grammatiéal cueé about sentences.

As continuous speech was not avaliable, segmentation oouid‘ not be

investigated. However, the grammatical intonation contours (Tune I and

II contours of Figure 5.4) were observed in short sentences.

As hoted in Section 5.2,’>Tune I contour marks yes/no questions
(Figuré 6.7), . and."I‘unek 11 contduf marks questions with interrogative

words (Figure 6.8),

6.4.2 Stress

.. Stress 1is the _most important prosodic parameter in wuse in
recognition systems. It is being used in ﬁany present systems for the
.. purposes' discussed in section 6.2. The main physical correlates of
_stress are fundamental-'freq'uency, duration‘l, and energy. It has been
obéer_'ved that s_tfesse'd; syllables are usuallj articulated with longer
duration and Ahigher. intensity as well as an increasing fundamental

frequency. Although energy and duration show a characteristic increase

in stressed syllables, these parameters have proved insufficient for the
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detection of stressed syllables. It seems that the main characteristio
that enables their detection is a 1local rise in fhe fundamental
freqﬁency contour which is naturally accoﬁpanied by increases in energy
and duration. If isolafed from the effects of intomnation, stress wiilv
’tsuallj be revealed by a laocal rise in Fo. However, with intonation
iﬁposed on the stress patterns, the situation will slightly change; the
intonation patterns will cause .the pitch contour to take the general
fofm of Tune I or Tune II contburs %Figure 5.4)> . The stresses will then
have the effect of inoreasing Fo locally at stressed syllables. If this
happens during the time iptbnation contours are rising, this will show
as a- sharp rise in Fo; and if this Dcéurs during fall of intonation
contours, stresses wil sﬁow<as 10§a1 rises above the gradually falling
Fo coﬁtour; even if Fo does not rise 'absolutely near the stressed
syllable.

Figures 6.9 and 6.10 show the fundamental fr;quency and enérgy
contours for the .tﬁo different pronounciations of fhe' same - word,
ﬁEDDU$md‘f In Figure 6.§,_the éeCond syllable is stressed due to the
negation suffix, while in Figure 6.10, the third syllable is.stressed,
because the suffix in this word is a regﬁlar one. it is observed that
both amplitude, dufation and fundamental Zfrequency contours are
different in vthe two graphs., These values have been averaggd for
,différent utterances of the same words and the results are given in
‘Table 6.5. |

It can be seen clearl& thét the amplitude_aﬁd duraﬁion show cues to
the stressedlsyllablés,'but-these are hard fo use in the detection of
stresged syllables{.in ﬁhe word " kopusma", although the amplitude and

duration of the second syilable is relatively higher +than it is in
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* konus, ";the syllable with the highest amplitude and longest duration

is still the third syllable; it is the fundamental frequency contour

that shows useful for the detection of stressed syllables,

Pitch Contour
]

fiverage Duration ( %)

[ [ i

! | I
| I |
{ | - I ] | , | |

syl, 1 I syl, 2 { syl, 3 : syl, 1 { syl, 2 { syl, 3 : syl, 1 = syl, 2 { syl, 3 = -

| | | | | | ! o | |
1 syl, 2 stressed 26 : 29 : 45 } 0.8 } 0.8 } 1,0 = fallingl rising { fallingi
| : i | | ! | | | | |
} syl, 3 siressed 28 ,= 25 : 47 { 0.7 : 0.5 { 1.0 : falling{ level { rising {

Table 6.5. Variation of duration, amplitude, and pitch with stress

An 1ncrease in fﬁndamental freQuenoy.is taken as the main indioation
of a stressed syllable. There are cases where no significant increase in
fundamental  frequency is observed, and in these cases, takingv the
syllablé that is highest»in émplitude and longest in duration as the

- stressed syllable gives good results.

_ .'4. | |

Duration informatioﬁ is hsed in segmentation and labeling schemes.
Thé expected vaiues of spunds‘areAimportant'parameters.that are’uséd in
- various steps of a reoognifioﬁ_ prbcéss. Theéé values, however, are
highly context—dependent_and:ﬁﬁét be obtained considering all sorts bf
envifpnments. In a sylldblefbased‘éystem, duration of syllables may be a
ﬁoreireliabié meééure bécause this depeﬁdehcy is included.

~The average ”duratioﬁs of #yllables for the vocabulary of ‘the
isolaéea_wordlrécogﬁition sysfém (Section 6.5)‘have been calculated and

this inférmation has been used in the matching step.
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] T | ] ] T T | I T
| SYLLBLE | Dav | ¢ | SWLLABLE | Dav | ¢ [ SYLLGBLE | Dav | ¢ |
R | | | - | | | |
[ i~ 110 | 1,90 K- 119 | 21 1 -TI [ 33 | 69 |
| | [ | | | | | [ |
| | | I T | |
| s- 110 1 21 1 6IR- 1 25 1 29 1 -~ViR | 33 | 4.9 |
I l o | | | | | | |
T | 1 | | 1 .
bo-NE- 112 0 v BAs- 126 1 1,1 =k 1TIETT 2,2 |
| | | | | | | ! | | -
| | A | | | | | |
| SE- 1 13 | 1,7 1 AL~ | 26 | 24 1 -kuz | 35 [ 55 |
| | | | | | | | | |
| | | I | | | | |
| 6- 113 1 07 1 iz 12 {811 -L& 1 3% | 66 |
| | | | | | | | | |
| | | | | | (T | n
i D0~ | 14 | 1,2 | -LES- 1 27 | 2.6 1 --TIR | 3 | 6,6 |
| | | | | | | | | |
| | | | | I | | | |
| -RA- 1 14 1 09 | BR 1 3 (105 | BES | 3 | 3,7 |
| | ! | | | | | | |
| | | u | [ I | |
| Y= 117 | 2.4 1 -FIR 1 30 | 21 | OORT 1 40 1 4,1 |
| _— | | | | | | | |
| | | [ T | R | |
| ¢IKk- 117 | 23 1 =i 1 32 | 56-1 O [ 40 1 56 |
| | | | | | | | | |
| | —— | | | | | |
| CE- | 18 | 2,0 | -DEN | 32 | 45 | | | l
o | | | | | | | |

Table 6.6. Duration of syllables

The average durafions aﬁd standard deviations of s&llables have been
given in Table 6.6. All the figures. in the table are number éf 12.5 ms
frames. It is observed that the-éyllables show a characteristic duration
with small standard deviations. Cases where the standard deviation is
relatively high are generally the final syllables and this uncertainty
- is due to final breath noise. Also, ﬁhe syllables are élightly longer in
. final p081tion than in init1al position. This has been the cause of the
relatively large. standard deviation observed in the syllable "BIR".

These regularities have bgen utilized in the nﬁtching step of thé
isolated word ,recognizef. The average duration. of - each syllable is
‘stored and fhe unkndwn utterahoé is not tested against those syllables

for which the ratio of ﬁnkoﬁn duration to syllable duration is outside



specified limits, It is assumed that the duration of a syliable can only
change 40 % from the average and this ratio is used in matching. The use
of durations in this way provides a time éaving of about 52 % .

1

6.5. I?IQCJESCJI)I[(leI;IJST AIDED ISOLATED WORD RECOGNITION SYSTEM

A speaker independent isolated word . recognizer based< on the
discussed ideas has been realized, The minimum recognition'unit has been
chosen as thevsyllable. Syllable segmentation has been performed by the
technique described in the >previous éeotion. Dynamic time warping
technique has beén used in syliable verification. Duration and vowel
harmony information have 'been uéed iﬁ syllable matching. The block

diagram of the system is given in Figure 6.11.

-t = e - et o o

[
| :
I T 1 TRAINING 1 TURKISH | | STORED |
| : | VOWEL |___ | REFERENCE |
{ R ¢ RECOGNITION | HARMORY | \\ | TEMPLATES |
|- \
} \ !
i _..1 ENERGY [...1 I ' -1 CLUSTERING & |
. I || HEASUREMENT | | SYLLABLE |  =--m-s=mm=ee- T/ | CLASSIFICATION |
pIC._L  LPF L T T B | S B ¥
P fe=3 5kHz | [ fs=8 kHz | | | =feoemmeccoecaee { ENDPOINT | | ARALYSIS |\ mecscommcccocee-
: I I...1'PITCH-PERIOD {__1 | mmemmmmeeeee RA___I _ DYNAMIC |
= | DETECTION I : DETECTION | | TIME-VARPING |
et / |
| / +
| /
| / KNN
{ /1 DECISION RULE |
! ' ! (- I
i POP 11/23 ‘ | LEXICON | ¢
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I © | TENPLATE. |
|
I
|

Figﬁre 6.11; Overall block diagram of the word recognition system
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The vocabulary comsists of 19 words, 10 Aigits and 9 polysyllabic
commands. The .total number of syllables is 37, and thé number of
different syllables is 20. The redundancy 1is much less than it is
normally, because_'of the small size of the vocabulary. The wsaving
introduced iﬁ memory because of using syllables instead of-words 1s 22%.
Bo£h a time saving and improvement in performance is also achieved due
to'using syllable as a unit. These are summarized in Table 6.8. |

Syllable segmentation is performed with the technique described in
Section 6.3. Syllables are classified in 8 groups according to the vowel

they contain. Classification of syllables can be seen in Table 6.7.

1 u |
: UNROUNDED : - ROUNDED :
! 1 [ [
: VIDE l CLOSE : VIDE } CLOSE l
T
| | BAS | CIK | DO | KUZ |
| BACK | SAK | FIR | [ 3
I |- AL | TI | | |
| i LA 1 "SI | [ 1
I I RA | | [
. I - | l |
I I~ 5= 1~ =6- | -7- | -8- |

e I | | N [
[ | BES | Kjz 1 DORT 1 U¢ 1
I ' LES | VIR | | !
I | DEN | TIR | I - |
| FROST | YE | BIR | I [
I I SE 1| GIR | I [
I 4 CE | KI 1 | |
s
I . |1 [ [ I
! I ! | I |

Table 6.7, Classification of the syllables

The systém has two modes of operation; training mode and recognition
mode. In the traiﬁing mode,. recordings are made of the different
utterances (by ‘different speakers) of the vocabulary words. These are

‘then analyzed; syllable segmentation is made and a feature set of LPC
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coefficients (p=10) is prepared for each s}ll&ble. Among the different
sets representing seperate utterances of fhe same syllable, a subset
which optimally representé the syllablé“is chosen. This process is
called 'clustéring‘. The feature sets of the chosen uttefancés are
stored in memory aﬁd these are called 'reference templates——m--~ .

In the recognitioﬁ mode, aﬁ unknown utterance is input to tﬁe
system. This unkown utterance is processed in the same‘way to segment it
into its syllables and extract features to prépare a 'test template'.
This test template‘is then compared with the reférenée templatéé in the
memory and a 'score' is associated with each according to a distance
measure. Both EBuclid distance measure and LPC log likelihood distancg
measure have been used. In'ﬁhe comparisbn, linear time warping:followedb
by dynamic time warping is used to perform time normalization. Duration
and vawel harmony information is used to eliminate unlikely natqhes.
This sﬁbstantially reduces the computation time (Table 6.8). After the
test'template is co@pared wi%h all permissible reference templates in
memory, a decision is‘ made according to K-nearest neighbor decision
rule; the K minimmn distances for eadh compared syllable are -added and

the one with the total score is-announced to be the recognized éyllable.

MEMORY SAVING |  TIME SAVING IMPROVEMENT IN
IN DTV

I | | |
E INTRODUCED i | E PERFORMANCE i
E SYLLABLE A5 A UNIT E 23 . i Rl i around 10 ¥ E
1: 40% DURATION THRESHOLD i - » E TR E 23y E
E VOWEL HARMOKY i - i 3% i around 5 $ i

Table 6,8, ImprdQenents due to proéodic aids to recognition



6.6. SOME STRATEGIES FOR CONTINUOUS SPEECH RECOGNITION

In this study, apalyseé were made on 2-s utterances which consisted
mainly = of 'single_'isolated’ vwords kénd a few short sentences. The
observations on these sentences led to some strategies de“E“Eéhtiﬁuoqs
speech recognition system. Theée will be shoftly discussed herg.
However, extensive analyses must be made for their justification.

In continuous speech, there is'very little (if any) evidence of word
boundaries. Due to the increased difficulty of endpoint détectlon and
increased size of the vocabulary, the wbrd as a unit loses its appeal.
7 The lphoneme may be . another alternativé, but in additibn to the
disadvantages discussed before, there is the additional problem that in
continuous speech, especially whén the épeaking rate is high,‘ many
phonemes may be nﬁssing. These considerations lead to the conclusion
that syllable is the most convenient unit to be used in continuos speech
recogﬁition. Syllable boundaries can still be extracted from the energy
wéveform, so the speech can again be segmented into syllables using

similar techniques. So, the syllable can again be used as a unit with

some methods to deal with the above problems. Rules must be incorporated

into the system to account fér missing sounds in fast speech. Allowing
for different pfonounoiations of the syllables might be one way of
~ dealing with this problem. | |

In continuous speech, since the word bbundaries are not known,
complicated procedures ﬁust be uséd forvwérd ﬁatching; In a phoneme or
syllable based s&étem, word matching 1s done at a symbolio level. Once a
sequence of syllables'have beén‘recognized, these are compared at the

symbolic ‘level with the words in' lexicon. To do this, one has to find a
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way to bypothesize non-overlapping sets of words from these sequences.
Vhat is usually done is to proceed frommleft to right apd go on trying
all possible sequences whiie allowing for'ndssing or errorful segments.
Then, assuming thaﬁ Senﬁénce boundariés are knowﬁ, competing hypétheses
will be forﬁed for each sentence. These are testéd sﬁ“ﬁé“"to\‘prove
grammatically and semantically ﬁeaningful, and the ones that do are
compared. The hypothesis with the minimum total distance is chosen to Be
the recognized sentence. iThe stress structure of Turkish has one
regularity ﬁhich can-introduce' a very important convenience to this
~ procedure. In Turkish, one strong stress is assigned to each word, and
this‘is ordinarily placed on the final'syllablé.'SO, a stressed syllable -
usually marks the final syllable of a word; and words in a sentence can
be segmented»USingrthis érdperty..There are, 0f course, exception words
whidh must be haﬁdled carefully. Exceptions are usualiy clearly defined;
the moét common class is ce;tain suffixes which cause stress to be
assigned on the Syilable preceding them. There are some other classes of
loan words or names of placés which are more difficult to handle; so, a
more convenient appfﬁaoh would be to again hypothesize wordé from left .
rto right;, but to score  the hypotheses aoéording to their stress
structures. Those hypotheses. in which some words have more than one
stress can be fuled éut. This will reduée_the number of hypotheses
’_substantially. In this context, &owel harmony can also be used. It is
.known that words of Turkish:origip contain vbwels from certain groups
throughout;_;f the éyliables aré grouped as done in Table 6.7; this
information Canibe,used in a syllable—based recognition system. If the
structurexof the vbcabulary ié suitablé, ﬁypotheses that contain words

which do not Dbey ‘vowel harmony rules can be ruled out, or some

~
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convenientv score may be assigned accordingly. The +two properties
proposed for use in Qord segmentation, stress and vowel harmony, bhave
also been classified by liﬁguists as properties that define words [61.

The rate of speédh is another parémeter that is used in a continuous
speech reooghitioﬁ system to account for different rules- for fast
spéech. In English, the most common measure used for rate of speech is
the number of stresses in unit time. As discussed above, each word ié
marked with a stress in Turkish, and for this reason, the number of
stresses per unit time is a'méasure of word rate, not speech rate. Some
linguists {5] point out -that syllables are assigned equal time in
Turkish. If this is ttue, number of syllables per unit tiﬁe can be used
as an indication of speech’rate.

Prosodic aids are, in fact, paft of a linguistic framework used for
speech recbgnitibn system. They have proved to be very useful for the
isolated word recognition system discussed. A 1iﬁguistic framevwork in
whiéh.ail_thelprosbdic aids disoussed with the addition of many others
is more essential in a continuous speech recognition system. A
linguistic framework;-in addition to improving system performénce,-ﬁakes
the system easily expandable with. the enhancement of syntactic and

semantic analysis capabilities.
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VII. CONCLUSION

In this study, algorithms have been developed to extract prosodic
parameters from the speech signal. The prosodic structures of Turkiéh
have been investigated for use in speech recognition systems and some of
the ideas have been realized in an isolated spéech recognition system.
The - basic ccnclusioné drawn in each étep of the -analysis can be
summarized as foliows.

»The Autocorrelation method using center- clipping (AUTOC) provides a
simple  .and reliable method of pitch period detection. Parallel
processing (PPROC) method 1is also remarkable for its speed in
imglementation, but AUTOC has been favored in this sfudy because of ite
reliability. |

Syllaﬁle -is a .very suitable unit for automatic recognition of
Turkish. It haé many advantages both in isolated and connected speech.
fhe algdrithm developed for syllablé segmentation has shown éonsiderable'_
success; it has detected 89 % of the syllable endpoints.

B The prosodic Stfuctures of Turkish, namely, dufation, stress,
intanation, and- vowel harﬁony. ¢an be uééd in . automatic speech
recognition of Turkish in the féllowing wﬁys; |

- ~Duration of. a :sfllable‘ cﬁénges véryA'little from an expected
duration. Tﬁis property.can be used in word matching.

-Stress can_bé &etected using fundamental frequency, energy, and

duration. This information can be used in word hypothesization.



—Intoﬁation contours give cues about grammatical functioﬁs of
sentences,. )

~Vowel bharmony can be  used to group syllables. Matching and
verifipation can ~be 'made within these groups. This réduces the.
computation time.éubstantially. Vowel harmony information—can- also be
uéed‘in word hypothesization. |

Some of +the above prospdic aids have been incorporated in..a
syllable-based isolated word recognition system. Both time and memory

savings  and an improvémént' in performance have been obtained due +to

thése.
7.1. SUGGESTIONS FOR FURTHER WORK

All of the above prosodic aids may be incorporated in a contiquous
speech recognition system. The method of word hypothesization suggested
in Section 6.6 can. be tried in such a system. The method suggested for
finding rate of épeech in Turkish should be tested with carefully .
Pprepared fest data to prove its validity. Intonation contours should be
cérefully examined for possible_usés in. continuous speech fecognition
systems. Possible use of intonation contours in segmenting Turkish
seﬁtences into éheir érammatical constituenﬁs should be investigated.

The perfqrmance of the sylléble segmentation method may be improved
if smaller segments of analysié are usea..Hbre complicated algorithms
may also be used to deal with thﬁée phendmena using the information on

the energj wavefdrm only.
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