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AESTRACT

In this thesis, pole assignment problem, one of the
most commonly used control schemes, is considered and
special emphaSis is given on the application of available
pole assingment algorithms in multi-input systems.

Various methods such as AcKkermann’s Procedure,
Modal Control, Direct Design Procedure and Phase-Variable
Canonical Form are explained for determining thé
required feedback gains for arbitrary pole assignment in
single—input systems. Chapter II which includes also the
methods developed for the multivariable systems.

In Chapter I11, the squeeze film-bearing theory is
presented. Sgueeze-film bearing equations, oil-film
coefficients and the coordinate transformations are derived.

In Chapter IV, the selected | models and
their characteristics are discussed. State feedback
control is applied to a rotor bearing system and the
computer program is developed.

In Chapter V, the general conclusions of thesis

are given.



OZET

Bu tez ¢alismasainda , en ¢oK Kkullanilan Kontrol
ybntemierinden biri olan durum degiskKen geri beslemelil Ku;up
yerlestirilmesi yontemi incelenmistir. Calismanin biiyik bir
Kismi kutup vyerlegtirilmesi ydnteminin ¢ok girdili
sistemlere uygulanmasina ayrilmistar.

Bolim I1I* de tek girdili sistemlerin Kutuplarinain
yerlestirilmesinde gereKli besleme Kazang¢larini belirlemek
i¢gin kullanilan Ackermann’s Yontemi, Modal Kontrol, Dogrudan
Dizayn Yontemi ve Phase~Variable <Canonical Form gibi
Kullanilan ydntemler incelendi ve genellestirilerek ¢ok
girdili sistemlere de uygulanabilecek duruma getirildi.

Bolim I1I* de squeeze-film bearing teorisi sunuldu.
Sgqueeze-film bearing denKklemleri, yvyag-film katsayilari ve
koordinat dOnﬁsﬁm;eri ¢ikarild:.

Bslaom IV de segilen modeller ve bunlarain
dzellikleri tartaisildl. Geri beslemeli Kontrol rotor-yatak
sistemine uygulandl ve bilgisayar programinin ag¢iklamasa
yapild:y.

Bolim V! de tezin genel sonuglari verildi.
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1. INTRODUCTIOR

4.1 General BacKground

The study of rotor dynamics has In recent years
become of increasing importance in the engineering design of
power systems. With the increase in performance requirements
of high-speed rotating»machinery in various fields such as
gas turbines, process equipment, auxiliary power machinery
and space applications, the engineer is faced with the
problem of designing a unit capable of smooth operation
under various conditions of speed and load.

At the turn of the century, Jeffcott [41] developed
the fundementals of dynamic response of the single-mass
unbalanced rotor on a massless elastic shaft mounted on the
rigid bearing supports. The Jeffcott analysis of the
single-mass model showed that operating speeds above the
first critical speed were possible.

Any increase in the rotational speed causes the
build-up of the vibration amplitude until the systém falls,
This new insight led to the need to consider the effects of
the oil-film bearings on the rotor dynamic, S5todola [2] was
the first to attribute stiffness coefficients to the oil-
film bearings but neglected the damping properties. Since
then a number of researchers have investigated the dynamics

T. C.

Yliksekdgretim Kurula
Dokiimantasyon Merkez{



of the oi1l-film bearings. The most usual approach is to
represent the o1l filn journal bearing by eight linearised
stiffness and damping coefficients.

In 1963 Cooper [3] was given the patent for the
design of the squeeze-film bearing which is a special type
of oil-film Jouynai bearing. In the squeeze-film bearing
applications the shaft 1s usually mounted in a roller-
bearing whose outer race is prevented from rotating. The
static load is supported by retainer springs, figure 1.1.1,
The <clearance region between the bearing housing and the
outer race of the roller-bearing is filled with oil. In the
case of sqgueeze- film bearing the four stiffness
coefficients disappear and the bearing is characterised by
the four damping coefficients which are a function of the
bearing dimensions (l, R, ¢}, the oil-viscosity (m), journal
static eccentricity ratio (€,) and the film extend along the
Journal. However, the effect of the 0il supply pressure on
the linearized coefficients does not appear in the
theoretical reiationships.

Oil-film journal! bearings are frequently employed
in turbomachinery. The stiffness and“damping‘properties of
the oil-film was examined by Smith [4] in 1969, This
properties were used to provide an effective method for the
passive control of vibration by correct selection of bearing
parameters by Morrison [5] in 1976. However, these bearings
may also cause rotor instability. The various types of

unstable vibrations excited in the bearings are discussed by



Smith [4]).

Eearing-induced instabilty can often be remedied by
introducing a different design for the bearing, but Smith
has noted that no single design provides a universal
solution to the problem. This limitation is common to all
passive forms of vibration control and has led to
interesting techniques for ‘the active control of rotor
vibrations. The instability associated with oil-film
bearings can be avoided if they are replaced by magnetic
bearings. These elements can be used for the active control
of 'vibrations and this is particularly significant in
machines which are required to operate in excess of one or
more critical speeds. These are examined by Schweitzer [6]
in 1975.

The characteristics of a magnetic bearing for the
active control of rotor vibrations were examined by
Schweitzer and Lange {71} in 1976, who derived a ﬁulti—
variable representation for these elements relating the
outéut control force vector to the input vector. Bleuler
and Schweitzer [8] In 1983 examined the use of two magnetlic
bearings to support a rigid shaft.

Stanway and Burrows [9] have evaluated the relative
merits of various passive and active schemes for controlling
the lateral Qibrations of {flexible rotor. The work was
extented by Burrows and Sahinkaya [10] to consider the open-
loop control of multi-mode rotor-bearing systems. They

highlighted +the problems of designing close-loop control



systems for multi-mode rotor-pearing.

1.2 Object ©Of The Work And Presentation Of The

Thesis

The purpocse o¢f the work is to investigate
possibility of being a state-feedbacK manner for multi-input
systems wh;ch could be applicable to rigid rotor supported
on squeeze-film bearing while the shaft rotates at a
constant angular velocity and computer simulation program
of selected manner.

Tné thesis consist of two parts.

In the first part ( chapters II and III ), the
pole-placement problem of multi-variable systems in state-
space representation is discussed in detail and Dbasic
methods developed in this field are introduced.

The second part of the thesis ( chapter III and IV }
deals with +the squeeze-film bearing dynamics theoretically
.aﬁq simulation of state-feedback control to a rigid rotor

supported on sdqueeze-film bearings.



11. STATE-FEEDBACK CONTROL

2.1 Introduction

One of the most popular techniques for altering the
response characteristics of a control system is the
application of linear state feedback. In the past decade,
considerable effort has been made to understand exactly what
feedback has offer and what its limitations are.

The fact that, one can use state feedback to assign
the closed- loop system any desired self conjugate set of
eigen values, provided +that the open-loop system is
controllable, is a well Kknown and commonly used result [11].
For single-input system, this result is simple to derive and
‘has been Known for some time. Eigenvalue placement in
multi-input systems was studied by Lagenhop [i2], wWonham
{13), Simon and Mitter [14]}, and BrunovsKy [15]. Wonham was
the first to prove the property of state- feedback and he
applied to controllable multi-input systems.

Numerous eigenvalue-assignment algorithms have been
devised for controllable multi-input time invariant linear
systems. However, most of these algorithms proceed by
reducing multi-input systems to eguivalent single-input
systems in the interest of computational tractability but

thus unfortunately introduce diffuculties (;uch as the need



to consider the <cyclicity of plant matrices [16]) not
associated with +the original multi-input system. It is
accordingly the purpose to present an assignment aigorithm
which deals directly with multi-input systems and which also
relates eigenvalue-assignment directly to the fundamental
structural properties of controllable mnmulti-input time{

invariant linear systems [17].

2.2 Some Aspects Of State-Feedback Control

2.2.1. Definitions
System A system is a combination of components tithat act
together and perform a certain objective. A system is not
limited to physical ones. The concept of the system can be
applied to abstract, dynamic phenomena such as those
vencountered in economics. The word system should therefore,
be interpreted to imply physical, bioliogical, economics,
etc., systems.
Disturbance : A disturbance is a signal which tends to
adversely affect +the wvalue of the output system. If &
disturbance is generated within the system, it is called
internal; while an external disturbance is genarated outside
the SYStem and is an input.
State : The state of a dynamic system is the smallest set of
variables (called state variables) such that Knowledge of
these variables at t=t,, . together ﬁith an input dfor t2t,,
completely determines +the behavior of the system for any

time t2t,.



Thus, the state of a dynamic system at time t is
uniquely determined by the state at time t, and the input
for této and it is independent of the state and input before
to.

State Variables @ The state variables of a dynamic system
are the smallest set of variables which determine the state
of the dynamic system. It at least n variables
Xy (), %p(t), ....,¥q(1) are needed to completely describe the
behaviour a dynamic system and then such n variables
X4{t), %p(2), ..., ¥p{1) are a set of state variables,

State Vector : If n state variables are needed to describe
the behaviour of a given system, then these n state
variables can be considered to be the n component of a
vector x{t). Such a vector is called a state vector. A state
vgctor is thus a vector which determines uniquely the systenm
state x(t) for any t:2t,, once the input u(t) for t2t,, is
specified.

Feedback Control : Feedback control is an operation which in
the presence of disturbances, tends to reduce the difference
between the output of a system and the reference input ( or
an arbitrary varied, desired state) and which does so on the
basis of this difference. Here only unpredictable
disturbances (i.e., those unknown beforehand ) are
designated <{for as such, since with predictable or Known
disturbances, it is always possible to include compensation
within the system so that measurements are unnecessary .

FeedbacKk Control Systems : A feedback control system is one



which tends to maintain a prescribed relationship Dbetween
the output and +the reference input by comparing tbese and
using the difference as a means of control.

Open-Loop Control Systems : Open-loop control systems are
control systems in which the output has no effect upon the
control action. That 1is an open-loop control system, the
output neither measured nor feedback for comparison with the
input. Figure 2.1.1 shows the input-output relationship of
such a system.

Closed-Loop Control Systems : A closed-loop control system
is one in which the output signal has a direct effect upon
the control action. The actuating error signal, which is
the difference between the input signal and feedback signal
(which may be the output signal or a function of the output
signal and its derivatives), is fed to the controller so as
10 reduce the error and bring the output of the system to a
desired value. In other words the term closed loop implies
the use of feedback action in order. to reduce system error,
Figure 2.1.2 shows the input-output relationship of the

closed-loop control systems [18].

2.2.2 Eigenstructure Assignment Via Linear
State-Feedback Control.
Consider the state space representation of a multi-

variable system

Ax + Bu
Cx (2.1)

»
"o



here and in the following, all vectors and matrices have
real valued elements and all matrices are constant. In
eguation (2.1) A and B are matrices of dimension nxn and nxm
respectively; ¥ is an n-dimensional vector denoting the
state and uw is an m-dimensional input vector. Hence the
matrix C is of dimension (pxn) where y is a p dimensional
cutput vector. From now on, we will assume that all the
states of system (2.1) are available and therefgre the
output equation will not be used.

The free response of the uncontrolled plant, i.e.,
when u{t) is equal to a zeroc vectonr, is given by a lineanr
combination of the dynamical modes of the system, where the

mode shapes are determined by the eigenvectors and the time

7

domain characteristics by the pole locations of the ystem
[19}. It is possible that for some reason or another the
hesponse of the uncontrélled plant is unsatisfactory. The
system response may be too slow for a particular purpose or
it may even be unstable due to positive real parts of its
poles.

However, if control loops are introduced which
generate the input vector by linear,feedbéck of the state
vector 0of the plant then the response characteristics of the
resulting closed-loop system will no longer be determined by
the eigen properties of A matrix, but by those of some new
closed-loop plant matrixz whose eigenproperties and its

values will depend upon the precise nature of the feedback

loops. It transpires that, by introducing appropriate
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feedback loops, it 1is possible +to design a closed- loop
system whose plant matrix 1is such that those of its
eigenvalues which <correspond to the controllable modes of
the uncontrolled system can be assigned new values which

lead to the closed-loop response characteristics that are

superior to the corresponding characteristics of the
original uncontrolled plant. If all the elements of the
state vector x(t}), somehow <c¢an Dbe measured then it 1is

possible {10 modify the external input u(t) such as ;

u{t) = EKx(t) + v(t) (2.2)

where v{t) is a new external input an m-dimensional vector
and K is a (mxn) feedbackK matrix , such that the closed-loop

system equation becomes

X = (A+BK)x + Bv (2.3)

The main c¢oncern of the modal control theory is to choose an
appropriate <feedback gain matrix K so that the new dynamic
matrix (A+BK) has a desired set of eigenvalues, In this
chapter we want to answer the following guestions:

i) Under which conditions is it possible to find an
appropriate X matrix, such that a desired closed-loop
characteristic polynomial is obtained 7?7

ii) What are the possible approaches to pole
assignment problem if all of the state variables are not

accesible ?



The procedure used to determine the K mairix will
be discussed in the next chapter. Equation (2.3) indicates
that the effect of the input variable defined by eguation
(2.2) is to change .the plant matrix A to a new matrix

{A+BK).

2.2.3 Controllability of Linear Systems

It is shown that the controllability of an open-
loop system is equivalent to the possibility qf assigning an
arbitrary set of poles to the transfer matrix of the closed-
loop system, formed by means of suitable linear feedback of
the state. As an application of this result, it is shown
that an open-loop system c¢an be stabilized by linear
feedback if and only if the unstable modes.of its system
matrix are controllable [13].

When one thinks about the conditions which have to
be satisfied, so that the existence of X is guaranteed and
one 18 immediately led to the idea, that the possibility of
existence depends upon the controllability of the state X
with respect to the external! input u. The property of’ pole
assignability which is shown to be -equivalent to
controliability of (2.1) in the usual sense.

To be precise, consider the following. Let be an

arbitrary set of n complex numbers i

Az § Ay Apyeeenian. Anl (2.4)



such that any Aj with Im ki#O appears in A in a «conjugate
pair. The necessary and sufficient condition for the
existence of an (mxn) real matrix K, such that the closed-
loop system métrix (A+BK) has the set A as its eigenvalues
is the controllability of +the pair {A, B}, i.e., the
existence of K impllies that the {n¥mn) controllability

matrix of the system (2.1)
Gz={ B, AB, .« ... Ap-4¢B} {2.59)

is of full rank n. Then the main result to be proved is the
following.
THEOCREM (2.1{): For the n-th order dynamical system given
in (2.1}, let A (2.4) be an arbitrary desired set of complex
numbers Aj, such that any A; with Im k1+0 appears in as a
conjugate pair. The closed-loop system {(2.3) has A for its
set of eigenvalues if and only if (A, B) is controllable.

Linear state wvariable feedback is an important
compensation technique in the synihesis of Jineér dynamical
systems. However one should be aware of one important
;factor concerning linear state variable <feedback, which
€can in many cases prevent its direct employment for closed-~
loop pole assignment.

In particular, on c¢loser inspection of figure
{(2.1.3), it 1s appearent that the feedback path from the
state %(t) through the gain matrix K crosses the boundary

which encloses the original system. This clearly implies
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the ability to directly measure. the entire internal n-
dimensional state vector. In general, however, only the
external input u(t) and output y(t) are directly measurable
50 tnaf the control scheme given in figure (2.1.3) is not
directly realizable. Since all the states of the system are
required to implement the control law, we can initroduce a
state estimator {(observer) into the system, such that the
states are estimated using only the external input u(t) and

output y(t). Hence in the realization of the control law

~

(2.2) the n dimensional estimated state vector x(t) will be
used in place of x(t). Obviously this idea of using a state
estimator to reconstruct the unavailable states at the
output, reguires tbe system to be completely observable,. It
has been shown [20] that complete obéervability of the pair
{A,;C) 1is necessary for the realization of an estimator,.
Certainly the convergence rate of the estimator must be fast
compared to the time constant of the system, such that no
significant delay 1is added to the system performance. The
block diagram of the system with an estimator causes a
slight modification on figure {(2.1.4). Under these
conditions we can modify the stﬁtement of theorem (2.1) as

follows:

THEOREM (2.2): Consider the n~-th order system in {2.1) and
assume that initially not all the states are available. Let
A (2.4) be an arbitrary desired set of n complex number \j,

such that any Aiwith Im xi%o appears in A in cohjugate pair.
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The <closed-loop system (2.3) has for its set of eigenvalues
e.l., complete and arbitrary pole placement is realizable
if and only if (A, B) is <controllable and (A,C) is
observable.

However, estimating the unavailable states via a
state estimatonr has the disadvantage of considerably
increasing ﬁhe system order. Let us assume that pole
placement is primarily used for plant stabilization. The
plant, however, may noet need as many feedback as there are
states {for its stabilization, since the response to the
normal range of input is often determined by a few dominant
pofes of the system. Therefore one may itry to construcit
feedback-loops only from +the available output variables.
Pole placement using only output feedbacK is certainly an
alternative approach to using an estimator to establish the
necessary state-feedback law., For pole placement using only
output {feedback the external input vector u(t} will be

modified, and then it is equal to,

u(t)=Koy (t)}+v(t)

u{t)=EKsCx(t)+v(t) (2.6)

the closed-loop system becomes:

x:= (A+BE,C)x + Bv (2.7)

the output feedback matrix K, must be chosen such that
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det (A+BK,C) will be equal to the desired characteristic
polynomial to the discussed. ﬁowever determining K,, such
that arbitrary pole placement is achieved, is not easy. It
has been proved [21,22] that 1t is always possible to locate
exactly p {p 18 the rank of the output matrix C) of the
closed-loop poles to arbitrary locations. If some other
additional constraints are also satisfied then all of the‘n
closed-loop poles can be arbitrary placed using only output

feedback [23).

2.3 State Feedback Controcl Methods

The theory of multivariable control system is well
advenced and several methods exist for cheoosing a feedback
law to achieve desired design objectives in choosing
feedback law for controllable multivariable systems to
achieve a desired dynamics for the closed-loop system poles

to particular locations.

2.3.1 AcKkermann's Procedure For Pole Assignment In
Single-Input System
It is assumed that the process to be controlled can

be described by the model

% = AX + bu (2.8)

where u(t) represents the control variable, ¥{t) represents
the state vector. A and b are system and input matrices

respectively. When a feedback law of the form
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uft) = Kz(t) {(2.9)
is applied such that,
det] AI-{(A+DEK)]) = A (X) {2.10)
where the roots of A(A) are the desired poles of the closed-
loop systéem subject to complex pairing. Then the feedback
gain vector K is given by the following egquation,

K = -(0.....0,1).a"1, Aaqa) (2.11)

Here G is a (nxn) controllability matrix of the controllable

pair (A, b} and is defined as

Q = (b,Ab, ..... . AN 1p) (2.12)

and A(A) is the characteristic polynomial evaluated at A=A,
The equation (2.11) is called AcKermann's fobmula (247 .
Under the feedback law as given by (2.9) the

closed-loop system equation becomes,

(A+DbK)x (1)
F.x(t) (2.13)

where F={A+bK)., Let A (X)) be the desired closed-loop
characteristic polynomial of the closed-loop systém matrix

(A+bK)
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A())

det (AI-{A+DbK))

n
>0
j]
-+
s3]
[
P
=
-
+

..... +an—1 }\“‘ar} (2¢ 14)

Since the pair (A, b) is controllable, the <controllability
matrix @, as given in (2.12), 18 invertible. It is possible

10 write the basic definition of the inverse of a matrix.

e t.a =1 (2.15)
Let h denotes the last row of G~ 1. Then,
h{b, Ab, ..... An—ib) = (0,0, ......1) {2.16)
which is egquivalent to the following equalities:
h.b = h.(AD) =..... ceve.z h(ANT2Dp)Y:0
h(al~ip) = 1 (2.17)

using (2.17) we obtain the set of equations,

nE h(A+DbK)

"

ha

111

hF2 =  (hF)F (hA) (A+bK):=  ha®

nFR~1- (nFM~2)F: (hAR~2 ) (A+bK)-hAan"1

hFRzhAl+ K

Furthermore, from the Cayley-Hamilton theorem, we Know that

every matrix satisfies 1its own characteristic equation,
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AF = FDsa,FR-14 ..., +apl=z0 (2.19)

Multiplying (2.19) by h and using (2.18) we get ,

h A(F)=h(AMj+h(asAn"1y+. . ..., +h(anl)+k=0 {(2.20)

solving for K we obtain,

| 4 ~h A{A) {(2.21)

1"

we have to note also the fact that h, the last row of G 1,

can be written as,

hence

K= -(0,.....0, 110”1 a(a) (2.22)

In the computation of the feedhack gain vector K, it is only
required to calculate the last row of G“if which saves much
from computation time. Furthermore, even if there are
multiple open-1o0p or closed-loop poles, the same theorem
can be again applied without any modification which is not
the case in most of the other pole assignment algorithms.
Although Ackermann's original procedure can only be

applied to single input and completely state controllable
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system, the procedure is later modified [25], so that it can

also be applied to partially controllable systems.

2.3.2 Modal Contreol For Single And Multi-lnput
Systems
In the continious-time domain consider multi-input

system equation

% = Ax + Bu (2.23)

where A, %, B and u were defined previously.

The free response of the uncontrolled plant is
given by linear combination of the dynamical modes of the
system, where the mode shapes are determined by the
eigenvectors and time-domain charactéristics by the
eigenvalues of the appropriate plant matrix A.

However, if the control loops are introduced which
generate the input vector by linear feedback of the state
vector of the plant, then the response characteristics of
the resulting closed-loop system will no longer be
determined by the eigen properties of A, but by those of
some new closed-loop plant matrix whose eigenvectors and
eigen values will depend upon the precise nature of the
feedback loops [19].

The egquation describing the dynamics of the system
is8 given by equation (2.23}). If a2 new state vector z(t) is

introduced into equation (2.23) by the transformation



%(t) = Mz(t) (2. 24)

where M is the modal matrix of A, then the new state

equation has the form

Mz - AMz + Bu (2.25a)
it follows from eguation (2.25a) that
z = M1AMz + M~ 1Bu (2.25b)

and therefore that

z = Az+ Bpu (2.26)

in view of equation (2.23), A=M"1AM is a diagonal (nxn)
matrix of A, its rank is n and Bn:M"iB igs the normalized

»
input matrix

A 0 0
1
0 A 0
2
Az Miam = = giag {A . A ,....A 1 (2.27)
1 2 n
) 0 0
0 . A
L n.J

and Aj’'s are the eigenvalues of matrix A. The importance of
equation (2.26) as compared with equation (2.23) is that A
is a2 diagonal matrix whereas A is, in general, non-diagonal.

Notice that, +the transformation matrix M, defined
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by into (2.24), modifies the coefficient matrix of =2 into
the diagonal matrix. Notice also that the diagonal elements
of the matrix M 1AM in {2.25b) are identical with the
elgenvalues of A, It is important to note that the
eigenvalues of A under a linear transformation, we must show
that the characteristic polynomials [kI—A1 and lAI-M“iAMl
are identical [18].

Since, the determinant of a product is the produqt

0of the determinants, we obtain,

[kI-M‘iAMj:’AM‘iM—M'iAMI
:}M’i(xI-A)M,
:{M’illhl-A[{M

SR FEARER ALY

noting that the product of determinants {M‘il and ;MI is the

determinant of the product 'M"i.MI. We obtain,

iAI—M"iAMI:}M'iM"AI—A'

:‘AI-A,

Thus, it has been proved that the eigenvalues of A are
invarient under a linear transformation.
Since, let’s apply control law (2.9) into eguation

(2.26)

a

Z = AZ'*BnKX
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2 = ( A+ BhKM)z (2.28)

The egquation {(2.28) gives the open-loop poles of system.
Suppose the desired closed-loop poles are specified by

(A = A). Then
z = ANz (2.29)

in the equation (2.29), A contains the closed-loop poles
which is a diagonal {n¥n) matrix. Then by combining

equation (2.28) and (2.29), we obtain

/

A + BpEM = A

-1 y _
K =By { A- A )Mt (2.30)

i

In eguation (2.30) Bp 1is not a square matrix, hence its
inverse c¢an not be calculated. In order to determine K, the

so called Pseudo-Inverse method is used,

T -1
K = ( By By )T By (K- A) Mt (2.31)

Meanwhile, it is possible to obtain canonical form
using modal analysis for single input systems which is
developed by Wonham and Johnson [26). It is not mentioned in
this chapter.

In the modal analysis, M is the modal matrix of the
system, usuvally in c¢omplex form. In this case, it is
required the more computational effort to obtain inverse of

the complex modal matrix M, At the same time the desired
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closed-loop eigenvalues must be in the same form with the
open—loop eigenvalues for obtaining feedback matrix which
only contains real part. This is the another restriction

for modal analysis.

2.3.3 Direct Design Procedure For Single-Input

Systems

The method proposed is based on the equivalence of
the closed-loop characteristic polynomial of a multi-input
and a corresponding single-input system. The latter is
first designed using the previously established direct
design method for single input system and the result is then
transferred back to the multi-input case.

The method has a number of attractive features, It
is computationally very fast and is well suited to the
computer-aided design of control system. It provides the
designer with complete freedom over the relative tightness of
the feedback to each input and hence also allows the design
with feedback to only some inputs, i.e., incomplete input
feedback. A {further important feature is that it permits
design with incomplete state feedback, when some of the
states are not accessible.

Since the method involves the use of the existing
pbocedure for sing1e~input systems, this is first summarised
[2713.

Consider a controllable single-input system

described by equation (2.8). The +transfer function
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representation of equation (2.8) 1is

X{(s8) = G{s)U(s) (2.32)
where G(s)=(sI-A) ib=tgi(s)i/F(s), 1i=f,....n, G(s) is the
nxiv open-ioop transfer-function matrix where F(s) the
characteristic polynomial of the open-loop system,

F(s):{sI—A{.
If the feedbacKk law (2.9) is applied, then the
transfer function representation of the c¢losed-loop system

becomes
X(s) = Gp(s8)V(s) (2.33)

where Gc(s):(sI—A-bK)'ib:{gi(s)}/H(s), i=1,....n, is the nxit
closed—iéop transfer function matrix from V(s) to X(s) and
H{(s) is the characteristic polynomial of the closed-loop
sysiem, H(s):]sI—A—bK{.

It has been shown that
n -
i-’-:313’-1»%’1(&) = H{(s) - F{(s) (2.34)

i.e., the scalar product of the feedback and the numerator
transfer function vectors is equal to the difference of the
characteristic polynomials of the closed-loop and open-loop

system. This direct relationship between the feedback
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vector and the closed-loop poles establishes a direét design
method whereby the feedback required to shift the open-loop
poles to desifed closed-loop positions can readily be
calculated.

The feedback vector K 1is simply calculated by
equating coefficients of like powers of s in equation

(2.34).

2,3.4 Direct Design Procedure For Multivariable
FeedbacKk Systems

Consider a controllable multi-input system
described by equation (2.23). The design problem is to find
the m¥n state-feedback matrix K such that thev closed-loop
system described by eguation (2.23) and the feedback law
uz=Kx has a prescribed behaviour characterised by n given
closed-loop system poles Ay, Ap, ...... Ap.

Now, the closed-loop system poles are the roots of

the characteristic equation
H(s) = |sI-A—BK| (2.35)

If we set K=qgp, where q is an m-column vector and p is a n-

row vector, equation (2.35) can be rewritten as

u
L=

[sI—A~qul
or

1l
Q

|sI-A-bp| (2.36)
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where b=Bg is an (nxi{) matrix.

Comparison of equation (2.35) and (2.36) yields the
followings:

The closed-loop poles of a multi-input system which
has a plant matriz A, a control matrix B and a feedback
matrix K are coincident with those of an equivalent single-
input system which has the same plant matrix A, a control
matrix b and the.feedback vector p, where b=Bq and K=qp.

| Making use of this equivalence, the design problem
can be solved in the fqllowing steps:
i- Cnobse an m-dimensional vector q. In geﬁeral,
g is arbitrary except for special cases,.

ii- Find the n—dimensional feedback vecior p
required to_ position +the poles of the equivalent single
input system (A, Bg) at the desired location Xy, Ap,.... Xp,
using the single-input direct design precedure based on
equation (2.34).

iii;.For the multi-input system (A, B) the required

state feedback matrix K=gp.

2.4 Phase-Variable Canonical Form For Eigenvalue
.vAsgignment
2.4.1 Introduction
The development of the phase-variable canonical
form for single-input linear controllable systems has been
an activé area of research [14], [15). Partly this is because

the phase-variable form has proved to be an extremely



convenient starting point for certain éontrol design
problems and partly it 1s because canonical forms are
mathematically intriguing in their own right.

UnliKke +the single-variable case, the corresponding
canonical forms for multivariable systems are not unique.
This lack of uniqueness not only tends to maKke their
derivations more difficult but also forced the design
engineer faced with a practical application to determine the
best form from the several possibilities.

Now in this chapter, we are going to introduce a
transformation which is examined in [21] to [23], [26]) and
[éag)] to {30], 80 that the transformed state equations will
be in phase-variable canonical form. The use this form 1in
pole assigment problem will be discussed and illustrated in
detail. The derivation given here, however, 1s more general
and notationally simpler since the computations are
expressed in terms of matrix algebra whenever possible.

2.4.2 Time - Variable Controllability Matrix In

Canonical Form For Single'— Input Systems.

Consider the problem of transforming to equivalent

canonical (phase-variable) form of the system

% = AX + bu (2.38)

where x is a n dimensional state vectior, u is a scalar input
function, A and b time variable matrices of appropriate

order.
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The phase-variable form 1is one of the several

usuful cancnical system representations and. it 1s defined as

ES ”

% = Ax + bu (2.39)

where ¥ 18 a n dimensional state vector.

- - - -
0 1 0 ... D 0
0 0 i1 ... 0 0
A= b= (2.40)
4] 0 o .. o 0
- ~a 060 oo o = &) 1
L n n-1 1 L |
The coefficient aj {in general time-variable)

completely characterizes {2.39) and will be represented by
the n vector whose i-th element is aj.

The system described in (2.38) is said to De
'equivalent Lo a s?stem of the form (2.39) if and'dnly if, a
non-singular continuously differentiable matrix T exists
such that z = Tx. In the <fixed case the necé#sary and
sufficient condition for such an equivalence to ex1s8t 1is
that the system of equation (2.38) Dbe completely
controilable [30}. |

\Eefore we obtained the system equivalence
praoblem, several properties of the contfollability mairix of
a time-variable system will be reviewed. The controllability

matrix of the system in (2.38) is defined as
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<
"

[ Po.Pi,a-ncoan—\i] (3.41)

where

-Apg + d/dt.Py , Py = Db

Prs1
the controllability matrix & of the system of (2.40) is
defined similarly and the system of (2.38) 1is uniformly
controllable if QG has rank n everywhere is proved at theorem
(2.1},

Matrices & and ;n will now be examined more
“closely, for it will be shown that they serve to determine

the transformation form (2.38) to (2.40) when it exists, It

can be verified by direct construction that

_ - . -
1o o 0 (-1)n-1 q
‘n,n
0o o0 (- (EEER ¢ q
n-i,n-4 n, n-4
& - P - (2.42a)
n
0 -1 ... q q q
n-2, 2 n-1, 2 n-1, 2
1 q .. q q
L 11 n-2,1 n-1,1 | . 'n-1,2
where
ik="9i-1, k-1*9i-1, K i<k<itn
. i-2 .
=(“1)1an-1+1‘J§0 an-jdi-1, j+1+9i-1, 1 K=1<i<n
=(-1)ta, 1<k=1¢n (2.42Db)

~

from the form of @ it is clear that any system of the form

(2.40) 1is uniformly controllable, A more informative

-
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relation or g g can be easily derived from (2.42b) as

i pik+1
qig = ("1) ap-j4k + (1) J§O an-j9i-k, j+1

(-1)3*1a 5 kg4t 1¢K<i<n
b (2.43)

K
+L
J=
and
gji=(-1)ta, t<i¢n
it follows by a simple introduction argument that

qjg=(-t)lap-j.k

terms involving only the

coefficients a ,...a 1£i<Kén (2.44)

L n n-j+k+t ;
For notational cohvenience, the bracketed expression in
(2.44) will be represented by the symbol 8;_y. That is, any
function that can be expressed solely in terms of the
coetficients ap, ...ap-p;y Will be replaced by ﬁhe symbol 68p
wherever. no other information about the fuhction is

needed. With this notation equation (2.44) becomes

qig = (~1)lap-jeg + Oj-g = Oj-gat 1$1$K<n

8,20  (2.45)

THEOREM (2.3}: The system in (2.38) is equivalent to a
system of the form in (2.40) if and only 1if {2.38) is

unifohmly controllable.
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The necessity of the controllability condition is
easily established, since if the equation (2.38) is

equivalent to the equation(2.40) where z = Tx,

G = TQ (2.46)

But @G and T have rank n everywhere, therefore G must have

rank n everywhere, which implies that the system (2.38) is
uniformly controllable.

If the system (2.38) is uniformly controllable, the

matrix
T = q.a"1 (2.47)

is non singular when QG is the controllability matrix of any
system of the form (2.40). Moreover, (2.45) shows that
(2.47) must be the form of the transforming matrix if it
exists [30]. Thus, 10 prove that the unifqnm
controllability condition is sufficient, let z=Tx where T is

given by (2.47). In other words, the nxn matrix T is

~

obtained from controllability matrix @ by setting ty,, the
first row of T, equal to the last (n-th) row of Q'l and
recursively computing the remaining rows of T by succesive
post multiplication of each preceding row of T by A. In

particular,
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T = |. 1 (2.48)

-;»‘ An—i

4 4

where t, is the n-th row of G !. it is thus readily apparent
that

tyb=tyAbz. . . . . . . t AR"2p=0D
but (2.49a)

1A ip=y

which immediately implies the relation
T = [o,o ........ 1]T (2.49b)

if 2z is defined as Tx, it is seen that the first element of
Z, namely 24, when differentiated with respect to
time, yields the relation (dropping the time arguments for

convenience}

24 = (tyA)x+(tyb)u (2.50a)
which in turn equal to zp=tpx. Furthermore,
Zp = (tyA%)x+ (LyAb)uzz3 (2.50Db)

and so forth, or in genaral

0}

21 = 21.',1 ’. 111,3,.‘...(n“1) (2.500)

therefore, it <folldws that the equivalent single-input

~ ~ ~

system representation. {A,b) or z = Az(t) + bu(t) where

~

A=T.A.T"! and b=T.b is in a particular structural canonical
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form (2.40).
Some immediate benefits are derived from the
reduction of (A, b) to controllable canonical form. In

particular the characteristic polynomial, det( AI-A), of the

~

system is apperant from the last row of A. Expanding the

~

det( AI-A} along any but the last row, we obtain the

A ~

characteristic polynomial of the pair (A, b} or (A,b), i.e.,

A(A) det{ AI-A) = det( AI-A)

1

AMra,  ARTle L Llapog A +ay (2.51)

11}

-~

furhermore, the input u only effects the last row of b, due
to i1ts special structure obtained through the transformation

z = Tx.

2.4.3 Extension 0Of Contrallable Canonical Form To
Multivariable System.
Consider a system governed by the set of first

order differential equation :

% = AxX + Bu (2.52)

where
®¥{t) is a {(nxi) state vector,'u(t) is a {(mx1) input
vector, A 1s a {(nxn) matrix and B is an {n¥m} input matrix.
The notation of controllable canonical form is not
confined only to scalar systems and can be extended to more
general multivariasle cases. In particular, consider any

completely state controllable system pair {A, B}, with B
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assumed to¢ Dbe of full rank mén. This later assumption
implies that all m available inputs are mutually
independent, which usualiy is the case in practice.

The fundamental assumption imposed on the system is
that of system controllability i.e., it 1s assumed that the

{nxnm} controllability matrix
@ = { B,AB, . ........Ap-(B} (2.53)

has Eank n. In addition, it is generally assumed that the m
columns of b are linearly independent.

The controllability index p, of the system (2.52)
is defined as the smallest positive integer for which the

matrix.
ay - { B,AB,A%B.........AV 1B} (2.54)

has rank n.Generally, for multivariable controllable systems
Peén.

Canonical forms for the system {(2.52) are
constructed by ‘“transforming to state vector to a new
coordinate system in which +the system equations take a
particular <form. The transformation employed to affect the
coordinate change is essentially always constructed from

independent columns of the controllability matrix (2.53).
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The first step in the development of a canonical
form of the class discussed in this part, is the section of
n linearly independent vector from the n.m columns of this
controllability matrix (2.53). It will be required that the
selection procedure be so devised that the n chosen linearly
independent vectors comprise the cclumns of a matrix P of

the form.

P={b ,Ab ,...AP1-1p ' p ,Abp ,...AP2"1p  p , . . . aPm-1p (2.55)
: 1" "2 2 2" m m ,

The esssential restriction, then, is that no vector
of the form Akbj is selected uniess all lower powers of A

1 imes bJ are also selected.

2.4.4 Selection of Independent Vectors Controllable

| Canonical Form

As will be shown below, it is possible to maKe a
selection of the required form, but in general, it is not
unique. The real difficulty is in determining which of many
possible P matrices leads 10 the best canonical form.

The selection of +the vectors comprising the P
matrix is straight forward (but still somewhat arbitrary) if

it is done according to the following precedures.
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Scheme

I: Search the linear independent vectors.

1- S8elect one of the columns of B (without loss of
generality be assumed that by is selected).
2-8elect either another column of B (sgay bp) or the
vector Aby. If the selected wvector is linearly
independent of by, retain it, otherwise omit it from
the selection.

3- At any stage of the process, select the new vector
to be of the form AJDK where all lower powers of A
times by have already been retained. If the new
vectors is linearly independent of all previously
selected vectors, retain it, otherwise omit i1t from
the selection,

4- The selection process terminates when n linearly
independent wvector are found. Arrange the n vectors

in their proper order to form the matrix P [27].

II: Search the crate by columns.

We first select by and indicate this by putting an X
in the A°by cetl. HNow if Aby is linearly independent
of by, we put an ¥ in this cell as well and continue
down the first column of the crate until we either
put x in all the cells or we find a vector, say Allp,
that is linearly independent on the earlier vectors
in the columnA[31]. We denote this fact by putting 0
in the corresponding (ly4,1), then note (by a now

familiar argument) that when this
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X! x| x| o a0:=1

X | x|o A

x| o | Al

X | A3

0 A¥
AS
A6

Table 2.4.14 Typical c¢crate diagram. filled 1in by
searching by columns. We have l4:=4,
1p=2, 13=1, 1y=0

happens -all the remaining vectors in those columns
will Dbe linearly independent on the previously
selected vectors. We 1indicate this by leaving the
corresponding cells blank. If we have not found n
linearly independent elements in the first column, we
go to the second column. If Dbp 1is linearly
independeﬁt of all previously selected vectors
{by, Aby, ... AP1"1p,1, we put an x in the corresponding
cell. Now repeat this procedure with Abp, and
continue in +this way with succesive columns if
necessary until n linearly independent vectors have
been found. With this scheme, the crate diagram will
have the genera} form shown in table (2.1). The cell
with 0's correspond to the vectors (Allbp;, i=t,...m}.
The pattern depends on the order in which the inputs

are arranged, since the tendency is to have a few
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long chains of x's and not all inputs may be called
upon. A more uniform treatment of the system inputs
is provided by another natural search procedure.

ITI: Search the crate by rows.

Now we search the rows until we find a vector, say
AKlp o, that 1is linearly dependent on all the
previously selected wvectors. We put a ¢ in the
corresponding cell and note again that all vecteors
below it in the same column will also be linearly
dependent on the already-selected vectors. Therefore
we leave all the corresponding cells blank and go on,
if necessary to the next linearly independent vector
encountered in the row search (18). (We may remark
that searching the crate by rows corresponds to
searching the columns of the c¢ontrollability matrix
from left to right). A typical crate diagram produced

by this scheme will

x| x| x| o] aP=1

x| o] X A

X X Al

0 0 Al
Al
AS
Ab

Table 2.4.2 Typical crate diagram filled in Dby
searching by rows. We have K,:=3, Kpo=1, Kk3=3 .
The set of length {3,1,3] will be the same even
if the order of the {by} is permuted.

-
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appear as in Table (3.2). The tendency now is to have
several chains of nearly equal lengths
{Kys «..«... Kypl.It can be shown that the length we get
here will remain the same, even if the columns are
permuted.
IV: Search the possible indices .

Let us define the controllability matrix (2.53) as
the (n¥n) matrix obtained by selecting from 1left to
write as many as n linearly independent columns of
the controilability matrix (2.53). Since the system
(2.52) 18 assumed to be controllable if @ (2.53) has
full rank n, we can construct the nonsingular (nxn)
matrix P (2.55) by simply reordering the n{=n)
columns of Q@ (2.53}, beginning with a power ordering
of the first Py columns of Q (2.53) which involves by
is first column of B, and then employing those pp
columns of @ (2.53) which involve Djp, next and so
forth [32]. HNow we can define the m integers P; as
the controllability indices of the system and denote
by W, Max(pj) for (i=%,.......,m}, which we further
define as the controllability of the system i.e.,
max(d;)=p. It should now be noted that all m columns
of B are present 1in P since we assumed that B was

full rank m. We now set

.Pj s i=t, ... 00 {2.56)
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which implies that

Ky = py
K3 - p1+p8+........-.-+Pm:n

It is shown in Appendix I that this process does
not terminate before R independent vectors have been
selected. It may happen that, as a result of the selection
scheme I , not all columns of the original B matrix occuring
the P matrix. In this case, the corresponding input
components play no special role in he associated canonical
forms and will appear in an arbitrary fashion in the final
result. The other input components enter the canonical forms
and will input components enter the canonical system in a
special way.

Although there is a certain amount of freedom in the
selection process, there are two specific -plans for
selection that have special interest. In the first plan, one
starts with the vectors by and then proceeds to Aby,
Azbi,;‘........An‘ibi‘ is obtained. In this case the system
is controllable from the first input alone, or until a
dependency arises. If more independent vectors are required,
one then selects bp,Abp,...... until a dependency arises.
The prqdecure continues in this manner through the Dbyg’s
until n linearly independent vectors are obt;ined. The
tendency 1s to develop a few long chains in this case. The P

matrix (2.55) obtained in this fashion has the property that
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APKp, 15 linearly dependent on vectors of the form Alb; with
i¢k in the scheme I,

The crate is a table with m columns in table (3.1)
and table (2.40), representing the columns of input matrix B
and n rows corresponding to the power of A matrix; the
(i, J)-th cell of the crate phen‘ represents the column of
vector Ai"ibJ, and choosing n linearly independent columns
of P matrix {(2.55).

Scheme IV is used to solve our problem which is
very convenient in multi-input system for computer

computation, It will be discussed in detail,.

2.4.5 Canonical Forms Of The System Matrix

In a part (2.4.4) it has been concerned about
development of transformation to put the system under
consideration into controllable canonical form. This
particular canonical form was then used to develop a simple
design prodecure by many authors [26)-{32)]. A construction
prodecure for the required transformation, for the general
case will be presented in this part.

A change of the coordinates from state vector x to
2z defined by z = Tx transforms the system (2.52) which

becomes.

z =-T.A.T"! z +7TBu (2.58)

Appropriate choices of T lead to canonical forms

of the system {(2.52).



Two basic canonical forms are developed from the
matrix P (2.55) constructed in this part. Of course there
are possible variations within each of two basic forms since
there are possible variations 1in the choice of P. Each
choice of P, however, leads to two basically different
canonical forms.

Scheme I

The first canonical form 1is produced by setting
T=p"1 simple matrix booKKeeping verifies that the system {s

then transformed to the form

Zz = Az + Bu (2.59)
_ - r -
0 0...% b4 e 10 ...0
1 0...x% % X 00 .
0 ..1 ¥ . . . 9
0 0...%2 . .4
X 1 0...% 0
. 0 ..1 x )
A= e B= (2.60)
)4 .
. X
X
0....%
1
1 X 0
0..1 x 0
= -t L -
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The system may be considered as composed of

fundamental companion matrices located in blocks along the

diagonal. The %'s in the matrix represent possiple nonzero
elements and except for the indicated 1°'s, these occur only

in the columns corresponding to the right-hand edge of a
fundamental companion matrix. |

Different choices of P lead to different sizes and
number of companion matrices as well as different values for
the nonzero elements. If P were chosen according to the
first special plan of the last section, the x*'s in a given
column of A would be zZero below the companion matrix
corresponding to the column. Each of the companion matrices
can be considered to present a subsystem coupled to other
systems. For the special choice of P mentioned above, the
coupling between two subsystem is in one direction only.

Scheme I1I

The second kind of canonical form is more useful
than the first but is somewhat more diffucult to derive.

Again start with a P matrix of the form (2.55),

write P-! in terms of its vectors.

p-t - |, (2.61)

L mpm,
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Actually, only the m*’s of these rows play a direct
role in the canonical form. These are the last rows of each
of the m groups of rows, i.e., the (row) vectors €ipis
1=1,2,...m, For simlicity of notation these vectors are now

labelled as
ey = eipi (2.62)

The. vectors €4y €0, «..8p are used to construct the

transformation matrix.

T = eiAp1’1 (2.63)

It 15 shown in Appendix II that T defined by (2.43) is
nonsingular.

| It is again a simple matter of bookKeeping to
verify that the transformation T defined by (2.43) reduces

the system (2.52) to the form (2.43)} where now,
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(2.64)

(2.65a)



00 .....0
00 .....0
1 X .... %
00 .....0
Bz {00 .....0 (2.65b)

~ ~

The m diagonal biocks Ajj of A are each an upper right
identity companion matrix of dimension pj while Lthe off
diagonal blocKks, ;ij for 1=3 are each identically zero
except possibily for their respective final rows. We
tnerefpre note that al; information regarding.the equivalent
state matrix ; can be derived from Knowledge of the m
ordered controllébility indices pj and m ordered kK rows of

A, The same can also be said of B, since we note that only

-~

these same ordered K rows of B are nonzero.

2.4.6 Extension Of Controllable Campanion Form
To Partially State Contrgllable Systems.

We can consider certain implication and extensions
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S

0f the proceding results when the multivariable system is
only state controllable. In particular, we still assume
that rank (B)=m<n but we consider +the <case when rank
(@)=n<n. Note that it is still possible to define the (nxn)
matrix & consisting of the first n linearly independent
columns of @G, as well as the (nxn) matrix P as given by
(2.55) but with Ki:§:1PJ = n instead of n. The n linearly
independent columns of P c¢learly {form a basis of some
subspace W of EP. If we define Wy as the orthogonal
complement.of i.e., the subspace of EM c¢onsisting of all
vectors in +the sense of a zero inner product, it follows
that the any vector v in EB can be expressed as a linear
combination of the same vector w in W and some vector wi 1in
Wy. In particular, v:=aw+Bwy; for all v in EP wnich implies
that EP can be defined as the direct sum of W and Wy. It 1s
thus clear that the dimension g oé Wy is n-n, since EU is of
dimension n. We let By,Bp, ....,Bg be any basis of Wy and

consider the extended state representation

X = AX + Bgu, (2.66)

where By 1t the nx(m+q) matrix obtained by appending to B
the q basis vectors of Wy, 1i.e, Be;[B,Bi,...,Bq] while u, iIs
an ((ﬁ+q)x1) input vector obtained by appending to u,q
additionai input elements 1i.e. ue:[ui,.‘.,um,um+1,...,um+q]T.
The extended system (3.39), thus defined 18 clearly a
contrqllable .one and 18§ therefore possible té employ the

algorithm  presented  earlier, to  obtarn o n daamenzyonal
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equivalence transformation which reduce the extended system
to controllable companion form., We denote the appropriate

transformation matrix T, and utilize it to reduce the

” ”

original system to be equivalent representation é:Az+Bu,

~ ~

where A=To.A.T, and B=T,.B. Due to the specific choice of

~ ~

Te, it follows that the .equivalent pair (A,B) partially

resembles the multivariable companion form. In particular

>
1]
W
1]

(2.67)

~ ~

where the pair (Aqc,Bg) 1is the n dimensional controllable

companion form, i.e., the pair (;c:éc) assumes the structure
indicated by (3.38) with k;= J?i P; = Tn. Furthermore the
lower left (qun) block of ; as well as the final q row of é
are idenitically zero. On <closer inspection it becomes
apparént that the controllable and the completely
uncontrollable portioﬁ of the system have been separated.
More specifically, the n dimensional supsystem defined by

~ ~ ~ “~ ~

the first n rows of the pair (A, B) namely ﬁc:Aczc+Acgzg+ﬁcu
is qlearly controllable, since ;CEZE ¢an be tpeatéd as a
Known disturbance. Furthermore, the g-dimensional subsystem
defined by the remaining rows of (;,é), namely EC:ACZC is
completely uncontrollable. We further note that in view of
{2‘51):and (2.é7) the characteristic polynomial det{(AI-A) of

A (and hence of A) can be written as the product of the
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characteristic polynomials of the controllable and

completely uncontrollable portion of the system, i.e.,

det{ AI-A) = det( AI-;) = det( kI—gc)det( AI—RE) (2.68)

2.4.7 Pole Assignment Via The Caontrollable
Companion Form

We will now consider +the general employment of

1inéar state feedback {for arbitrary assignment of the

closed-loop of the multivariable system as given in (2.52}).

In particular i1f the linear state variable feedbacKk control

law
u(t) = Ex(t) + v(t) ' (2.69)

is employed to alter the pole configuration of the open-loop
system, we can readily obtain a state space representation
for dynamical behaviour of the compensation system by simply

substituting (2.69) for u into (2.68):
X = (A+BK)x + Bv (2.70)

In general it is not all clear what effect the control law
(2.69}) has on the system (2.68), since consider any
arbitrary unstructured open-loop system pair (A, B).
However, if the open-loop system 1is in controllable
companion form; the effect of the feedbacKk law in (2.69) on

pole locations can be easly ciapif{ed, Let us give a main

-
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result of this section as a theorem.

THEQREM (2.4): Consider the system (2.52) and the linear
state variable feedback law (2.69). All n controllable
poles of the closed-loop system (2.70) can be completely and
arbitrary assigned via linear state variable feedback while
the n-nn uncontrollable poles of the system are.uneffected by

{(2.69).

PROOF ': Assume that we have already transformed the given

system into controllable companion form (2.67). The pair

~ -~

(Ag, Be) is an n-dimensional controllable companion form,
whileﬂkc represents the completely uncontrollable portion of

the state matrixu As we have previously noted all (m}) Kj

~ -~ ~

rows of A-+BgK. <can be completely and arbitrarily altered

~ ~

via K, { K is the required feedback gain matrix in the

»~ »~

transformed éoordinate system and K, is the portion of K

corresponding to the n-dimensional <controltlable system

~ ~ ~ -~

(Ac,Bg). We can choose the first m columns K¢ of K, such

that
0 1 0 .......0 ]
o 0 1 .. ..0
A +B K - (2.71)
c c C
0 0 D ...t
—a Ta t 4 ¢ ¢ ¢ ¢ ‘-a-
l n n-1 1

is an n-dimensional companion matrix, where the scalers
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a4, .., .ay represent  the coefficients of the desired

characteristic polynomial, i.e.;, the coefficients of the

-~ ~ -~

polynomial det(AI-Ac-BcK¢).  Since the remaining n-n columns

~ ~ -~

of K affect only Ag;, the final n-n rows of A are completely
uneffected by ﬁ, which implies that the n-n eigenvalues ;c»
or equivalently the uncontrollable poles of the
system, remain wunaltered by linear state feedback. This
follows formally from the fact that all the n poles of the
closed-loop systeh are equivalent to the zeros of :

~ N

det({ AI-A-BK)

1)

det({ AI-A-BK)

-~ o -~

det( AI-Ac-BgKg)det( AI-Ag) (2.72)

In order to explicitly determine a K which yields the
controllable part of the <closed loop system matrix as
*

represented by (2.71), we let Ap denote the m ordered Kj

”» ~ ~ ~ ~

rows of A +B. K. as given by (2.71) and define Agy and Bqp as

»~ -~

the same ordered k; rows of A, and B;, respectively. It

therefore follows that

¥ ~ - "

or that the control law (2.69), with the first n columns of

~

K given by

”

~ _1 %

vyields the .desired n-dimensional closed-loop system

submatriz (2.71).



52

~

The final n-n column of K play no part in closed-
loop pole assignment, since they affect only ;cg which in
turn, has no effect on the eigenvalues of the closed-loop
system matrix. We can therefore say the final n-n columns
of é equal to zero in order to compliete our assignment of
all (mn) entries of an appropriate. The state feedback gain

matrix K, associated with the original system is given by

u = Kz+v = KT + v= Kz + v (2.75)
where ~
E = KT {(2.76)
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I11. THEOQORETICAL ANALYSIS OF QIL FILM BEARINGS

3.1 Introduction

"The technical and industrial growth in the 19th
century led to the widespread development in turbomachinery.
The use of oil-film journal bearings to support the rotors
led many people to investigate the characteristics of o0il
films, and their effect on the dynamics of rotor/bearing
systems.

In 1886, Reynolds [33])] published his classical work
to establish the well Known Reynolds equation. This defines
the hydro-dynamic pressure distribution in an oil-film.

In 1925, Stodola [2] modeled a shaft supported on a
Journal bearing as a mass-spring system and he investigated
the effect of the oil-film stiffness on the critical speed.
This model was used to show the discrepancy Dbetween the
observed critical speed.and that predicted by assuming the
bearing as a point support. Howevér, because the damping
ability of the bearing was ignored, he was unable to predict
the amplitude of vibration at the c¢critical speed, Later
investigations in this field have shown that it is
convenient to represent the shaft and the oil-film as a
mass-damper-spring §ystem are represented by four stiffness

coetf 1cients.
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Theoretical works to determine these coefficients
have produced formula which are valid under certain physical
conditions and assumptions [4].

In 1963, Cooper [3] performed a series of
experiments on a rigid shaft supported in oil-film bearing.
The smooth running of the rotor was limited by the on set of
the so-called ’oi;-whip’ phenomenon. The shaft was then
supported using rolling element bearings whose outer. races
were prevented from rotating. He observed that the oil-whip
phenomenon disappeared. This configuration where the
Journal does ndt rotate is termed a squeeze-film bearing,

These devices are commonly used in conjuction with
a rolling element bearing. A ring is firmly attached to the
outer race of the roller bearing and the annulus between the
outer diameter of the damper ring and the bearing housing is
filled with o0il in Figure 1.1.1. Although squeeze-film
beariﬁgs have a relatively short history they are now being
extensively used in applications where it is necessary to
Jdimit rotor vibration and their effect on the suppobting
structure (e.g. turbine engines).

The dynamics of the squeeze- film bearing are

mR(1/¢)3
dependent upon the bearing parameter and the

mw
supply pressure. These ftactors effect the extend of the

oll-film in the annulus.

Squeeze-fiim bearings can be designed to
incorporate end seals and in many applications retainer
springs are u#ed to support the static locad. In many

particular configuration, the Reynolds equation is modified

-
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accordingly and solved to obtain the oil-film coefficients
[34].

Most of the literature <c¢oncerning squeeze-film
bearings 18 devoted to +the 1identification of oil-film
coefficients and to their design, when they are used to
support rigid or flexible rotors [(35].

In +this thesis, a squeeze-fllm damper withoui end
seals and supported by retainer springs is investigated for

state feedback control.

3.2 Dynamic Equations and Transfer Function Models
A squeeze-film bearing can be regarded as a special
case of a journal bearing. The dynamic equations governing
- the dynamics of squeeze-film bearing are given 1in the

following section.

3.2.1 Sgueeze~-film Hearing Equations

Assuming that the journal ddes not rotate, the four
stiffness terms which are a function of the journal angular
velocity, disappear.’ Tne static load capacity may then be
provided by an external spring. HNeglecting the cross-
stiffness effects, the dynamic equations of motion for a

squeeze-film bearing become

mx + cxxk +Kgx +CXY§ = fy
.. . . (3.1)
my + CyxX +Kg¥ +Cyyy = fy
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Wnere x and y represent the dispiacements in x and
y direction respectively.It is assumed that the stiffness Kg
is equal in both % and y directions.

The damping coefficients in local coordinates and
the coordinate transformations are derived in [36].

In practice £y and fy are the components of the
mass unbalance force along the x and y axis., However, the
dynamics of ihe squeeze-film bearing c¢an be simulated DYy
applying external perturbations without the rotation of

rotor.

i.a.2 Squeeze-film Bearing Oil-film Coefficients

The Jjournal bearing is characterised by elght
linear oil-film coefficients which were derived by Holmes
t37}. The dynamics of the squeeze-film is characterised by
cdnsidering the journal bearing when the journal rotation is
suppressed. Then the four stiffness terms in oil-f}lm
disappear.

Assuming that the oil-film exists over an arc of
1809 in Figure 3.2.1,the linearized ¢amping terms in the

local r-s coordinate system may be written as

2
m1IR (1+2€4)
Cpp = k1| )
2c3 (1-€2)5/2
: n13R €5
Cps = Csr = w (3.2)
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m13R t
Cgs * n
2¢3 (1-¢2y3/2

The coefficients in equation (3.2) are expressed in
dimensional form and they may be non-dimentionalised by

defining non-dimensional terms such as

Cprr

Cpr = , etc. (3.3)

nnR(l/cj3'

Then the noen-dimensional coefficients may be exXpressed as

. 2
(1+2€4,)
CI‘I‘ 5 ) -
2(1-€5)9/2
2€,
Cps = Cgp = (3.4)
m(1-€8)2
i
Cgs =

2(1-€5)3/2

However it 1s normal practice to operate the
squeeze-film bearing with a full 360° film in the annulus.
Under these circumstances, the cross-damping terms Cprg and
Cgpr vanish, while the two direct terms double in value, such

that



2
m13R (1+2€4)
c l = n 5
Tr360 c3 (1-€4)3/8
m13R 1
c .| w "
$5360  ¢3 (1-€5)3/2
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(3.5)

Then the non-dimensional form of the coefficients

in equation (3.5) may be written as

2
(1+2€,)
Cpp = :
(1‘65)5/8
1
Css =
(1-63)3/3

3.2.3 Coordinate Transformations

The oil-film forces are genarally derived in
local axes coordinate system which 1s related to
attitude angle ¢, Figure 3.2.1 When formulating
equations of motion of a totor supported in oil
bgarings, it is convenient to write the equations in
fixed axes (X,y) coordinate system.

From figure~3.2.1 the displacements along r-s

may be written as

(3.6)

the
the
the
-film

the

axes



"3
"

Y sin ¢, + % cos &y

§ = y cos ¢5 - X sin ¢,

and the velocities are

r =y sin ¢4, + % cos ¢,

§ = y cos &5 - ¥ sin ¢,

The oil~-film forces along the x-y axes are

the x and y axes as

fy tp C08 ¢4 - fg sin ¢,

"

ty fp sin ¢y + £g CO8 ¢4

The squeeze-film bearing <forces
coordinate r-s can be expressed in terms of

damping coefficients as

fn

Cgpl + Cgg$

tg

and foﬁ the X-y axes they may be written as

fx - chX + nyy

Y = CYX{( + nyi’

59

(3.8)

resolved along

(3.9)

along the local

the linearized

(3.10)

(3.11)
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By algebraic manipulation of equations (3.8) to
{(3.11) the oil film coefficients in stationary ¥x-y axes may
be obtained in terms of the original coefficients in pr-s

coordinate system.

Cyx = Cppc088dy + Cgg51in8dy - (Cpg + Cgp) COSPosind,

Cxy = €pscos@dy - cgpsinfey + (cpp - cgg) cosdysing,
(3.12)
Cyx = Cspt0sPdy - Cpgsinfd, + (Cpp =~ Cgg) COSdosingg

Cyy = CgsC08%¢g + cppsinfd, + (Cpg + Cgp) COsdysing,

As described before , for 360V film in the annulus,
Cpg and cgp Dbecome zero and cpp and cgg double in value.
However, from equation (3.12) it is seen that the cross
damping terms 1in X-y axes are non-zero. To explain the
circumstance under which cyy and cyy tend to zero, 'a second
constraint 18 considered. When the journal is centralised
in the bearing, or when the displacement is along the
vertical or horizontal axes, then coefficients cyy and cyy
tend to zero [38). This situation occurs when the attitﬁde
angle &, 15 set to 0° or 90°, In this case the cross
damping terms in x-y axes disappear and horizontal and

vertical motions of the journal centre are coupled.
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J.2.4 Rotor - Bearing Transfer Function Mocdels

For convenience equation {3.1) can be non-
dimensionalised and the transfer fuhctions can be derived as
follows [39]):

Rewriting equation (3.1) in non-dimensional form

e [ . e ]
X" | z ¥ X
+ L |C + C —_— + K — =zu
cw?e L XX cw XY cw J $ ¢ X
(3.13)
e r . O .]
¥ y x oy
+ L C + C —_ + K — =zu
cw? L YY cw YX oy J S ¢ Y
where Uy = fyx/mcw?
L = fy/mcwa
Kg = Kg/mwe

and L = maR(1/¢)3/mw

By introducing a suitable set of state variables,

for example
Xy = X/C, Xp = Q/CW s X3 = Y/C , Xy = &/CW

then equation (3.13) can be written in the state space as

X = AX + Bu (3.14)

where
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_ -
0 1/L 0 0
-k /L -C 0 -C
A - WL s XX XY
0 0 0 1/L
0 -C -k /L -Cyy
t YX 8 §

is the system dynamic matrixg,

X = [ X , ¥ , X , X% ]T is the state vector
L 1 2 3 4
) W 0 o |T
B =
0 0 4] W
1s the input transducer matrix, and u = u , u_ | is the
X Y

input vector.

The corresponding ocutput equation may be written aS

y = Cx (3.15)

where y = [ Y , Y .Y . Y 1T 18 the output vector,
1 2 3 4

The output transducer matrix C, may be taken as.the
identity matrix since all elements of the state vector x are
directly available for measurement.

Taking Laplace transformations of equations (3.14)
and (3.15), and assuming zero initial <conditions, the

transfer function matrix can be obtained as
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Y(s)
G(s) = ——— = | s1-a)"! B (3.17)
U(s)
where
r -
s@ s s
— 4 LC  + K - — LC
w2 W YY s W Xy
s st 8 se
| + LC + K | - LC
1 W w w Yy $ we XY
G(s) = e
A(s)
s s? s
- —— LC + LC + Kk
W ¥YX wE W XX s
s2 s g@ s
-~ — LC , + LC + K |
i we  YX W W W XX s
The characteristic equation 1is
g4 g3 : s@ -
A(s) = 4 —— + (C + C )+ ,La(C C_-C C )+2k |
w4 wB XX Yy WB XX YY Xy YX s
S - -
+ L(Cxx + Cyylks + Kg = O (3.18)

Denoting an element of G(s) as gij(s), the response
of the four states when a force 1is applied sequentially to

each of the two input channel 1is,

- Bijis)
A (s8)

-



where Tj; is the transfer function between the ¥R input,
i=t,2 and ith output, i=1, 2,3, 4.
The transfer {functions relating the vertical and

horizontal displacements to horizontal forcing are,

Typ(s) = z (3.20)
U(s) A (s)
Y3(s) (s2/WE )+ (8/W)LCyy+Kg

T3p(8) = z {3.21)
U(s) A (s)

When the journal is centralised in the bearing, or
when the displacement 18 along the vertical or horizontal
axis, then coefficients ny and ny tend to zero [38].
Under these conditions the coupled model reduces to second

order uncoupled model as follows

1
T3p = : for ¢, = 0° (3.22)
52 + sLCgg + Kg
t
T32 = for ¢, = 90° (3.23)

s2 + SLCpp + Kg
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IV. STATE-FEEDBACK CONTROL OF SQUEEZE-FILM BEARING-

ROTOR SYSTEM AND COMPUTER PROGRAMMING

i1 State-feedback Modelling of Squeeze-film
Bearing-Rotor System

It is well Known that the state wvariable feedback
can be us}d.to control system modes of vibration. The object
in eigenvalue assignment in rotbr—bearing system would be to
stabilize an unstable system or to obtain a better operating
system which would be physically difficult to design,

In this work, the equations used are in dimensional
form. The dynamic equations of motion for a rigid rotor

supported at the ends by squeeze-film bearing are given by:
Mx + Cygg X + Kg X + Cyxy ¥ = Uy
MY+ Cyg x+ Kg ¥+ Cyy ¥ = Uy (4.1)

By introducing a suitable set of state variables,

for example
g = X, Xp = X, X3 = Y, Xy = ¥
then the equation (4.1) can be written in the state space as

% = AX + Bu (4.2)

where



- 7
0 1 0 0
-K /M -c /M 0 -c /M
A - s XX XY
0 0 0 1
0 -C /M -KE /M -C /M
L YX s Yy
r i
0 1 /M 0 0
B =
0 0 ) 1 /M

4.1.1 Selection of Models For Squeeze-film Botor-
Bearing System

For the simulations four types of models are
‘selected which have different configurations of eigenvalues,
Datas of these models are given in Table #4.1.1. These models
are tabulated in table 4.1.2. The eigenvalues of the
uncontrolled models are shown on Figure 4.1.1 and given in
table 4.1.3.

As it 1is seen in Figure 4.1.1 all the eigenvalues
of each model are located at the left hand side of the s~
plane. Hence the original (open—-loop) models are stable.
Cbviously, their behaviour in the time domain are dependent
upon the eigenvalues.

In Model I, the first two eigenvalues are complex
conjugates and the other two are distinct real. It is
poscible to find out the eigenvalues corresponding to the x
and y-directions respectively. Considering the system
equations it is observed that the displacements in x and y-
directions are weakly coupled by the c¢ross-damping

coefficients ny and ny which are edual and small.
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Therefore, it is possible to treat the system as uncoupled.
In this case, the system can be reduced to two uncoupled
second order models in x and y-directions. For a second
order model, general characteristic equation is of the form
s& 4 ay4s +ap = 0 in which a4 represents the addition and ap
is the multiplication of eigenvalues respectively.

For Model I, we can find the coefficients of the
characteristic equations in ¥ and y-direction as ayy=20000 ,
axp=85.532 , ay1=20000 and ay25429.840. First, let us
consider two poles from Figure 4.1.2, namely, Ay, 2 = -39
113% and try to find out to which direction these poles will
correspond. It is clear that , the multiplication of these
poles 1is 19746 and the addition is 78. These numbers are
very «close to aygy and ayp and therefore these poles are the
eigenvalues of the displacement in x-direction.

It is also possible to reach to the same conclusion
for the y-direction. LiKe the yyjtiplication of the other
two poles 1is 20228 and the addition is 441. Therefore,
there 1s enocugh proof that these poles lie in the vy-
direction.

In order to maKe a time domain analysis we can make
use of the dominant root concept. The time constant,
z=1/;wn, is the reciprocal of the distance from the root to
the imaginary axis. All roots lying on a given vertical
line in the s-plane have the same time constant and the
greater tlhe distaﬂce‘ of the line from the imaginery axis,

the smaller is‘the time constant. This leads us to the
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concept of the dominant root. For a given characteristic
equation, this is the root that lies nearest to the
imaginary axis. therefore, if the system is stable, the
dominant root is the root with the largest time constant.
The usefulness of the dominant root is that it allows us 1o
approximate the speed of response for the system.

The free response curves in ¥ and y directions of
the uncontrolled Models [, II,III and IV are given in Figure
4.1.2 to 4.1.9 respectively. In Model I, oscillation occurs
only in x-direction and not in y-direction, because in x-
direction the eigenvalues have imaginary parts whereas in y-
direction, they are distinct real.

If 2% settling time c¢riteria is used, then the
settling time (tg) is »approxim$te1y four times the time
constant of the system. In Model I, the settling times of
the ¥ and y-directions are calculated as 0.102 sec. and
0.076 sec. respectively. When these are compared with
Figures 4.1.2 and #.1.3, it is seen that ;he results are
reasonable., Similar results can be obtained for the other
models.

In order to apply the state-feedback control to the
rotor-bearing system, a set of desired eigenvalues should be
chosen. The choice 3nould be such that the motion in x and Yy
directions are overdamped. However, for the sake of
application two set of desired eigenvalues given below are

chosen.
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1 &t set of desired eigenvalues
Ay o —Lo+ i0.5 Ap = -1 -~ i0.5 X3= -1.25 Agz ~1.5
2 nd set of desired eigenvalues

Ay o—2 Apz -3 Ayz —& Ayg= =5

The response of the closed-loop system for the
first set ¢f desired eiéenvalues is given in Figureg #.1.10
-4.1.11 and for the éecond sét 0of desired eigenvalues 1n
Figure 4.1.12-4,1.13 for ¥ and y-directions respectively.
From these figures, it is seen that the assignment of a
complex conjugate pair of elgenvalues causes oscillatory
motion in x-direction 1i1n Figure 4.1.10, but a smooth
response in y-direction in Figure 4,1.11. For the second set
of distinsct desired eigenvalues, the expected displacements
are smoother than those of the original uncontrolled system.
Therefore these results verify the correctness of the phase-
varlable cancnical method for eigenvalue assignment and also
the correctness. of the computational work. Hence the
perfnrmance of any given system can be improved using state-
feedback control. State-feedback wmatrices for first and

gecond degsired eirgenvalues are obtained as

500000.,00 5.86 25.00 3.12

-339.84 -589.05 499634.00 89.2¢6 J
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500000, 00 5.86 25.00 3.12 1
E = A
2 | ~3000.00 -3846 .87 598225, 00 "320.05 |

4,2 Computer Programming

In this thesls, the phase-variapble canonical method
is programmed for state-feedback control application. The
program named THESIS1 is written in FORTRAH language
according to the mathematical models presented In section
4.1. The computer program 18 listed in Appeﬁdix I11. The
computer program THESIS1 is modular and user friendly. In
main program there are 18 subroutines, some of them being
called IMSL library. The {flowchart ¢f the programming logic
is given in figure &.2.1. The program after asking for the
inputs interactively, creates the dynamic matrix of the
system using oi;—film coetficients which are given in
Chapter III and then finds 1its eigenvalues. Followingly, it
imtegrates the system equations using Runge~Kutta method and
then draws x-y displacement responses of the system. Then,
it computes the controllability matrix of the system and
subsequently i1t continues for calculations of obtaining
phase-variable canonical-form, At the end of these
calculations, THESISt computes the state-feedbacK gain
matrix which are to satisfy for +the desired eilgenvalues.
Finally, THESIS{ computes tne‘cloSed-loop dynamic matrix and
1t  sclves the new state-space egquations for the controlled

responsesare drawn on the screen.
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4.2.1 Subraoutines

The main subroutines which are used are given
below:
Subroutine INTER : This subroutine asks interactively for
parameters which are necessary to design rotor bearing
coefficients.
Subroutine ABMAT : This subroutine computes the state-space
representation matrices A and B after calculating the oil-
film damping coeff;cients‘
Subroutine TRANS : This subroutine renamed the A and B
matrices for following steps.
Subroutine EIGEN : The eigenvalues of dynamic matrix A are
computed using subroutine EIGRF in IMSL library.
Subroutine RUNi : This subroutine solves the open-loop
system equations using Runge-Kutta method using subroutine
DVERK in IMSL library. The subroutine FCNf is called in
subroutine RUN! is used for writing system equations which
are to be solved. The subroutine GRAPH in RUN! draws
graphics using the points obtained with the Runge-Kutta
method. In addition, there are two more subroutine in GRAPH
called as AXIS and G which are used for piotting~purpose.
Subroutine COM : This subroutine computes the time variable
controllability matrix in canonical form using the method

explained in part 2.4.3.
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Subroutine INV : This subroutine computes the inverse matrix
of a given input matrix using subroutine LINViIF in IMSL
librgry.

Subroutine TTRA : The transpese of matrices are computed
using TTRA subroutine,

Subroutine TMAT This subroutine  computes the T
transformation matrix in ¥ = T2 using ;he inverse
controllability matrix.

Subroutine ATRA : This subroutine computes the transformed
matrices A and B in phase-variable canonical form.
Subroutine SEIG This  subroutine computes  the
characteristic coefficiehts of the system in matrix form.
Subroutine DEIG : This subroutine arranges the desired
matrix respect to desired eigenvalues and computes the
coefficlients of desired characteristic equation in matrix
form.

Subroutine GAIN : The state-feedback gain matrix is computed
using the transformations which are explained in Chapter II.
Subroutine COE This subroutine computes the closed-loop
dynamic matrix after state-feedback control.

Subroutine RUNZ : This subroutine integrates the closed-loop
system equations using Runge-Kutta method using subroutine
DVERK in IMSL library. The subroutine FCN2 in RUN2 is used
for writing equations Whicn are to be solved., . Then it is
called to subroutine GRAPH for graphics §1milar1y as in

subroutine RUN1.
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V. CONCLUSIONS

In this study various approaches to pole assignment
problem and its application to a rigid rotor supported on
squeeze-film bearings have been discussed. However, there 1is
not a unique state-feedback control! method due to the
ambuiguity of +the problem in multi-input -multi-output
systems. Furthermore most of the available algorithms
proceed by first transforming the system equations into a
canonical form in the interest of computational
tractability. The most attention deserving part of this
study is the generalization of AcKermann's [24%] procedure to
multivariable systems,. A trick 1s wused 1o generalize
Ackefmann?s procedure to multivariable systems of interest
into an eguivalent single input system which was given
direct design procedure in chapter II. Direct design
procedure is extremely convenient to use with multivariable
systems, since it requires no explicit transformation of the
system equations into a canonical form and it considerably
reduces the number of computaiions required in determining
the feedback gain matrix K. As explained in detail in the
second chapter, th}s transformation into an equivalent
single input system 18 establised by choosing 1the feedback

matrix’ ¥, namely by setting K = gp, where q is arbitrary
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chosen, with the only restriction of preserving the system's
controllability characteristics. However, additional
flexibili1ty can be introduced into the control system design
if ¢ can be chosen appropriately.’ Therefore, an interesting
point which still deserves speciral attention is the way in
which g must be chosen,

Another point which 1s still open for further
research 18 the modification of Ackermann’s original
procedure such that it will also cever pole assignment
through only output feedback. Use of the output
controllabitity matrix to derive a formula similar to
Ackermann's original one will be a logical step to start
thisz further research.

Finally, it is concluded that the phase-variable
canonical method 1is successfully applied for eigenvalue
assignment in rotor beafing systems. The performance of
1hese systems can be improved In certain cases or they can
be stabilized if they are unstable. For exgmple, it is well
Known that  Jjournal bearings become unstable whep the
opergtional speed is twice the first critical speed [2y.
S8uch theoretically a system has been stabilized using state-
feedback control approach {49].

However, the proof presented in this study makKe use
0f the canonical system equations and is general enough to

include all possible systems.
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Lemma 1
Unless n vectors have already been selected {and
retained in the process (2.15)-(2.18) in chapter 2, there is
a vector of form AJbK, where all! lower powers of A times Dby
have been retained, which is linearly independent of all

previously selected vectors.

Proof: Suppose that the selected vectors are:

Dy, Aby, .. .A94by, bp, ADp, .. A9CD,, by, .. . ATWDy (Ata)

and that each of the vectors

A9,+1by, A9041Dp, oo .. .. A9+ iby

is linearly independent on the selected vectors, so that the
process terminatesf‘ It then fo;lows by the induction
argument sKetched below that all other vectors in the
controllability matrix (2.16). This in turn implies that
either the controllability matrix is less than n or there
are n independent vectors in the selection (Afa).

A sKetch .of induction proof is as follows: The

vector A9;+2.by is A.A94+1 , since A94+1.by is a

linear combination of A times the selected vectors.
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A9,+1.bgy is the same linear combination of A times selected
vectors. However, by hypothesis, A times any selected vector
is also a linear combination of selected vectors, thus
A94+2.py is a linear combination of selected vectors.
Proceeding in this fashion one proves that all remaining
vectors in the controllabilify matrix are depend on the

selected vectors.
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APPENDIX II
It is8 shown that the matrix T defined by {(2.26) is
nonsingular. To this and it is sufficient to show that the
rows of T are linearly independent or equivalently that any
null linear combination of the rows must be the linear

combination consisting of zeros.

Suppose there are constants ajj such that

m Pj
L L ajjejal™! =0 (A2a)
i=t j=1

Taking the inner product of both sides of the this

equation with by produces

akpk:o {A2Db)

since by definition of the a;'s each term in the inner
linear product is zero except the one involving eygAPp-1.by

which 1s unity.

In view of (A2a), (A2b) can be written equivalently

as-
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m Pi-i
Z L ajjejall =0 (A2c)
i=1 j=1

Taking the inner product of both sides of this with

Apg produces
ak,pk-izo ' (Aad)

continuing in tis mannenr, by induction, it is proved that

each aij:o which completes the proof.
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APPENDIX III

18 PROGRAM ARPLIES THE ! TE~FEEDREACE CONTROL
AORIGIIN ROTOR BEARING SUPPORTED OM SOUEEZE~FILM

.....................................................

PSR REmm R mEmE e me

GiFab COMT CINPUT, GUTFUT, QUT L, QLT 2, QU
TaAPEA=QUITRUT, TAFES=0UTL, TAPES=0UTZ, TAPE1O=00ITZ, TAPEL 1=011T4)
al, GINVILO, 107, HEAREACLIO) 010, 100

o LUICTIO, 100, 0L, D2, BT LD WA

EEAL A010,100,41010,100,42010, 103, A010, 10}

sl BO1O, 100, BLO10, 100, 82010, 10y, B2010, 1)

REAL APF1010,10),a8F2010,100,4P301G, 102

FEAL Coil0,10), 02000, 10, 03010, 100, 0401aG, 103

FESL Cofdlo, 10, COFEX L0, 10y, CON LD, 107, COINY LG, 1)

FEsL TROLO, 10) ,TTOOL0, 106, TON{1O, 10

Febmak, TYCLO, 100, TIOL0, 100, TEOLG, 10y, TOO10, 10
FEAL ATILIO, 100, BT 10,107, AMTO10, 103

FEAL 28010510, 8B010, 10, BTINVILO, 10)

AL Malil 10, 10),480010, 100

Al BELO1I0, 103, Ta(lo, 10

= L0, 1) ,ET L0, 1Oy, ETIGILG, 1)

W24, RZ(22) , RATED

Gl Wioq, 100, T, Tol., TERD

FEAL 10007, ¥Y11000)

FEAal ZL01000), X2 01000, X201000) , X4 01000

el LE, Mé&, BE

INTEGER IND, MW, K

IMTEGER N, T4, TDGET, IER

ITNTEGER IFYT(4)

COMPLE L WS, (3,8, 7N

ERUIVALENCE (WOLY,RWiL1YY, (241,10, RZ{41y:
COMMON S QWER/CRA, XY, SV, TYY, Ma, BE
COMMONACOEFL/CALL, CALZ, CALS, CAalL4
COMMON/COEF2 /0821, Ca22, CARZ, CAZY

COMMON/ COEF2/CAZL, CARR, CAZE, CARA
COMMON/COEFA /T84, Cada, Cad42, CAL4

CHARACTER=1 CH-

REWIMD 2

REWINMD ®

REWININ 10

FEWINMD 11

SPEOTF LD VALLES GIVEN FOR WHICH THE SOoLUTION 1
DX l=—1.

[ g= 25

[ H=—1, 25
Df b=y, 5
L=, QO
Pres, O
Tlo=. 0004
WY, 03
EF=Q, &
=%
M=
LA RS b

L—4

i

SEARCHEDR

[



Talks

e

32

- 80
frpn ‘;{

M T =28

0= D=2

Call THMTER (LE,R,CL,FLLEF RS, MA, VI LM, 1D, 1T,
BOUNL, D2, DOUE, X4, NOWUT, ToaRA, TFLT, CHED

Tall ABMAT (A, B, LE, R, CL,VILER, FL L, M)

Call. TRANS (A, B, AL, RBL, 42, B2, 43, B3, L, M)

Call EIGEN (&3, L, M, NOUT Y

PRIMT=, “=EMTER 1 TO DONTINLEES

FEADIS, s 3 00NT

Calbl RUNLICL, QL FI, TGRA, TRLT, NOHIT)

el POWS (a1, 82, 8F1, P2, ARZ LM

Call. COM (R, ARL, AP2, APZ, COEX, TOL, TOEZ, L, M, MNOUT )
Dbl TRY S Ol TOEX, COIMY, NOUIT)

CAaLL TTRA (COIMY, TR, TR, T2, LM, NOLITY ,
CaLL TMAT (TR, APL, AFR, APS, T TDL, T0E, T, TR, TO, L, M, MO
Cabl. TRV L, TR, TINY, NOUT)

Call. ATRAITI, AL, TINV, AT, BL BT, L, ¢, NOLT )

Call SEIG (AT,BT,SA, SR, TOL, L, M, NOUT) .

Catl DETGOMAL, TR, L, M, DEL, OX2, DXE, TX4, NOUT)
CALL TMNY (M, SR, BTINY, NOLT)

Dbl GATM (MALDL S8, BTINY, 1, T, BRI L, M, NOUT )
Call COE (AR, BE ERLLEL, LM, NOWIT?

cabl, ETGEMN (ET, LM, MOUT)

FRIMT®, "sWHICH aARE ZAME AS DESTRED ONES-
BRI, TwIF O YEXD ENTER 17

FRIMT=, “=1F h EMTER O

FEATLE, = 3 CONTY

PFOQDONTLLER, G0 G TO 50

Coll RUNZCL, L, FIL, TGRA, TRLT NOLIT)

=0 LR

BRI

THE VallE OF VARTABRLEE

SUERCUTINE INTER (LE.R,CLLFL ERES, MA, VI LM, 10, TDE,
FOE L, DX, DXE, D4, NOUT, TERA, IPLT, CHED

FEAL LE,MA, S

CHARACTER=] CH

TE OO, B, G0 TO S0
I FRINT=, " 1-ENTER THE LapD LENGTH OF BEARING
% (MY

READCE, « 3L E

IFOCkECER, 1600 TO S0
2 PRINT=,  Z-EMTER THE RADIUE OF JQOURNAL BEARING Ty
% (M

FEaniS, =R

IF(DPRLER LYGD TO 50
ZOPRINT®, 7 Z-ENTER THE CLESRAGNCE BETWEEMN HOUSING AMDU O,
BORMAL SEARING (MT)”

REATICE, s 0L

[F (L ER. IGO0 TO S0
FRINT=, "~ 4-ERTER THE ATTITUDE ANGLE ITHN COORDIN&ATE SYSTEM-
A =3 T
AR LESDYGD TO 56
THT®, < S-ENTER THE STaTIC ECCENTRICITY RATIOS
s, =y ER

TE (R ERL G0 T 50
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s PRINTS, © A-ENTER THE RETAINER SPRIMG STIFFNESS COEFFICT,
£ TEMT (NAMY ‘
REATH S, s S
TF (UMK CER, LyGED TO SO0
SOPRIMTS, < 7-ENTER THE MAZS PER LAND 0F THE BEARINGS,
E . (i) :
READHE, 2)MA
IF (OHELEG. a0 TO S0
S OPRINTS, © S-ENTER THE VISCOSITY OF OIL-,
& (MM Eeup)
RESLE, 53V
TF QMR Ef LG TO S0 |
g OPRIMTE, S P-ENTER THE REAL FART OF DESIRED DOMINANT POLES-”
FEATHS, &) 0%
TF(OHELERL 160G TO 50
10 FRIMT®, " 10-ENTER THE IMAGINER FART OF DOMINANT POLESS,
£OIMN (+) BTGNS
BEALE, = DIX2
IFCCHELER. DGO TO S0
11 PRIMTs, "11-ENTER THE THIRD REAL DESIRED POLE-
RE&L(S, =) 0%2 ~
TFOOHELEGD, GO TO S0
FRIMT:=, “12-ENTER THE FOURTH REAL DESIRED POLE-
FEATHE, = DIX4
TF {OHELER. 1YE0 TO S0
15 PRIMTS, " 12-NUMERICAL OQUTPUTS REQUIRED 77
PRIMNTS, “1F YEZ EMTER &~
FRIMNTS, “IF MO ENTER &7
FEALCS, =) NOUT
TF(DHEER, 1G0 TO S0
14 PRIMT®, " 14-GRAPHICAL OUTPUT REOUIRED 77
PRIMTS®, “IF YES EMTER 1~
FRIMTs, < IF NO ENTER ¢
REATICE, 2 TGRS
PFOOHEERL IGO0 T S0
18 PRIMTS, "1S-FLOTTER OUTPUT REDUIRED 7
PRINTS, “IF YES ENTER 1~
FRIMTE, “1F MO EMTER O
RE&LCS, =) TRLT
TF(OHELER, 1¥G0 TO S0
SRECIFIC VALLES FOR SYSTEM
L=DNEGREE OF SYSTEM
M=NEGREE OF INFUT MATRIX }
IDL=DECREE OF FIRST DIAGON&L MATRIX IN JOURDAN FORM
TO2=0EGREE OF SECONT DIAGONAL MATRIY IN JOURDAM FIORM
[ (l B
M=
Tol=g

Izag

-
u

=00 PRIMTSE, © 1-LAaND LENGTH OF BEARING s 7y LE
FRINT=, © 2-RADIUE OF JOURNAL BEARING ' TR
PRIMT=, 7 S3-CLEARANCE . PR
FRIMT=, " 4-aTTITUDE ANGLE IN COORDINATE SYSTEM M
PRINT=, S-STATIC ECCENTRICITY 7 ER
FRIMT:, © S-RETATHER SPRING STIFFMESS COEFFICIENT o7, KE
FRIMTE, 7 7-MATE PER LAND OF BE&RING

e

B: e

e A



FRIMT:, © S-0IL VISCOSITY ‘ 7, VI
FRINT=, " #-REAL PART OF DESIRED DOMINANT POLES ¢, TXD

» TLO-THMAGINER PART OF DL DOMINANT POLES
FRINT=, “11-REAL THIRD DESIRED POLE

PRINTS s, DX

s, DK
PRINTS, “12-REAL FOURTH DESIRED POLE s ¢, DX4
PRINTS, © 13-NUMERICAL OUTFUT 2, NOUT

1 4-GRAPHICAL OUTRLT ‘ s, LRA
s, TPLT

PRIMTS

FRINTS, * 1S-PLOTTER OUTFUT

we

FRINT=, “=00 YOU WaNT TO CHANGE ANY VARTARBLE & Y/N-
READ(S, 2010H )
0 FORMAT (a1
ITFICH. EQ. "M YED T &40 ) .
CED HRITE(&,“(“%HR}TE THE HNUMBER OF VaRIABLE THAT Yol WamMT v,
FUTO CHAMGE" Y )
FE Al S, e NU
ITF ML GT. 1S G0 TO 85
k=1
GO 1,234,586, 7 8,9, 10,010,102, 03, 14, LE MU
HEOWRITE (S, T ("sTHERE IS NO VARIABLE THaT MATCHES YOUR CHOISE®, /77,
huPLEAZE THRY AGAINM")T)
G0TO 80 '
&0 CONT IMUE
CORETURN
ML

SUBROUTINE COMPUTES THE STATE-SPACE REFPREZEMTATION
MATHIX

PR R R R R S SR R R R R R R R R R R R R R L TR R R R R R R R R R T R F TR R TR S R R R s R SR R
SLIEROLT INE ARMAT(A, B, LE, R, DL VI ERPFI, LM

RE&L &010,10),B010,103

REAL LE,Ma,EZ

COMMON/DWER /KXY, XY, OV X, TYY, Ma, KE

lel, 1415927 ' .

CRR=VI s (LEss2) sR/(2s (ChesR) ) aP Is (L +2s (EPssD) ) /
FOL-(Erewd) )end, 5)
D=V s (LEssR) 2R/ {2 {CLee) iedeER/{ (1~ EFessd) J8e2)

Rt R )
mEma ] s (L ExeI) sR/ (28 (CLesi) dwR sl / ({1~ (EfseR) Yeel, 5)

CE¥s (ORRe (COS(F Iy =82y )+ (0ES= (S INI(F L y==Z) 1~

£ (DERHCRE Y 2OOS(F DI INIFLY )
CRY=UREs(COS(FI)#e2) -CEReE (SINIF L Y =82+
FLORR-CES) =C0S(F I =2 IN(FI)

CYE=lEY

CYY=0EEe (COS(F D) sed ) +CRR&E(SIN(F T ) #=l) +
ELCRSFDER) #COE(F DI =S IN(F I

WERTTE {MOUT, 7%) -

WRITE (WOLIT, 789 !
WRITE (WOLT, 75)

WETTE CNOLT, 730

WRITE (WL, 30)

WRTTE (HOUT, 1Y DRF, T, DER, CXY, CRE, OY X%, DE3, OYY
WL TE (MOIT , 209 ,




.

i
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A1, LimAll, 3 =A0L, 4 =A0R, 3)=0,0
AOE, 13 mALE, BI=ALE, B =A4, 19=0.0
A1, 2 =803, 4) =1, 0

AR, 1= -KE/MA

B2, 2 mDXX /A

AR, 40 =-DXY /MA

A, 2)E-TYE/MA

A4, 3)=-KE/MA

B Ch, 4y =DV Y /A

Bl Do=ROl, 20=002, 2)=B(3, 1I=B(E, 2y=R4, 11=0,0
WRITE (&, 75) .

WRITE (8. 74

WRITE (4 75)
ool Isld
WRITE (4. 10) (ACT, ), 0=1,4)
WRITE (&, 75)

WRITECS, 77)

WHITE (L, 75)

ooo@ I=1,4
WRITECA. L0 (RCT, ), J=1, 2)

L9

10 FORMAT (401X, E15.8))
TE FORMATIZ7X, "CRR7, 44X, FLE. 8, 8%, "CXX 7, 44, F15.8,/,

BTE, TURET LAY FLS R, 8, TOXY S 4R FLS. s, S,
GTY

WS Ay »

7L, RS 44FIS. 8, 8%, TOYY 4, FLS. 8

(T, A%, F15.8, 8X, “CYX7, 4X,F15.8, 7,

T AT (53, 7 o o o o s o s e s o e i e i o i 5 e o s e e e e s e s

;i OYNaMID MATRIY 2
FORMAT (13X, < ses INMPUT M&aTRIX E
FORMAT (0X, “ses DAMFING COEFFICIENTS e
FrmmaT (ayY, “=sPOLaR COORDINATE Sz, 4Y, “==5UaRTASTAN COORDINATES=:-

i

SOy FORMAT (Y ’ 5 s b i s i s s s s st 4 ot i s i+ ks v s o o % . &YX s L O S

E1OWRITE (R, 10) (A201,.00, 4

RETLIRN
ERl

E=E R RS TR R R e e R R R R e R R R R R R e R R RS R S R R )
SUBROUTINE TRANS (A, B, AL, BL, A2, B2, AT, B3, L, M)
REAL A(10,107,81(10,10), 42010, 10), 42010, 10)

FEAL B(10, 100, BL010, 100, B2(10, 107, BR(10, 10)
REWIND &

moo1 I=1,L

Dy 1 =i, L

ALCT, Jy=A(T, D

L, D=ACT,0

L AL Jy=AlT, )

OO T=i, b
ooz oJd=1,M
BT, JyaliT,.
B2 (I, 0=R(1,.0)

2 BEEOL, =R,

|1l I=4,0
WRITE (S, 1M (al(l, 0, t=
WRITES, 103 (A2¢1,.0),.d

1,10
lyL«}
1,13

in i

-
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I D s R
WRTTE(R, 10Y(BL 0T, J), Jd=1, M
WRITECR, 103 (B2, 1), d=1, M
HEOWRITE(S, 1OX(BRICT, Jd =1, M)
10 FORMATOLIOOLK, EL1S5.80)
FETLIFEM

ERD

il I S St Sy S S s S T e S S S S S S S e o

SLUBRCUTIME POWA (AL, AZ, &F 1, AFP2, AF3, L, M)
BEaAL A0, 100,82010,10)
FREAL AFLOLO, 103, APZOL0, 10), API(10, 1)
REWIND &

e 1 I=1,4
D1 wd=1,1

TARITOT, =101, 40

o &1 I==1, 1

S1OWRITE(S, 103 (AFLOL, 10, d=1 L) .

Oy 2 T=31,L.

= oJd=1, L

EeOWRITE (R,
o 3 I=1,0
[T T - R o
ARZOT =0, 0
oo = k=1, , .
BOAPIZOL, D =ARILL, DAL U, By a2 (F, D
oy o= Is=1, 0. :
EEOWRITELS, 1Oy (AP, 00, J=l 1)
10 FORMATOLO(LY, E1S.80)
FETURRN
ER

.................................................................................................................

MEHBEEnEgsridOiesREteridddddRdBrrnEossnrkssseonaRamanen®

THIS SLUBROUTINE CALCUHLATES CONTROLLABILITY MATRIX OF SYITEM

SURBROUTINE COM (Bl,APL, &aF2, APZ, COEY I, T02, L M, MO
FEAL BLOIO, 100, 6P1 010,100, AP2010, 100, 4F3010, 107
FEAL CLOIO, 10), 02000, 10, 03010, 10 ,124010, 140)
FEAL CCOCI0, 100, CREX(LO, 10), CONCLO, 1O
REWIND 2 '
o 1 I=1,L
| W S i o
1 oy, =R,
oo =i Is=i, bl
WRITE(S, 100010, Jy, =1,
O 2 I=1,L
RSl S
C{l, Jy=0.0

oy 2 w=i, Lk

LA
[



S

L
£

i

11

CEOL, D=0, DHAPL (T, ) =R, D

il

o =2 I 1,

WRITE (R, 100 (201,00, Jd=1,M)

oz 1
o o=
CE0L,
o o=
USCH G
oo s5
WRITES
o4 I
o 4 .
Ca0T,
oy 4 f“l L

CAT, =401, di+APE
1 54 T=1,1L

1,L
,M

"'"n

rn—:u’;;'v m
i
i

el

[ S
o~

4

<

1;H+4: oo o
Zr o
<

i

T, 03+aP2(T, By =R (k,

(L30T, 40 =1, M)

I EYERLOKE, WD

WRITE(S, 103 (0401, .0, Jd=1,M)

By s I=1,L

S R o R |

RN R S B N
oD, 2=, .00
T, g =0T, 0
Sy, sy =04 (1, )
THD s T 1 L, 4

WRITE (S, 10 (000I, Jd

Shme ]

=L

bl o

il

o

1

oA ITER=1,M
R A O o

S L

my 7 I=1,L

oy 7 =1,
Ll=2s b= 2= 1) +kE

-

¥yudml, LEMD

CONL T, JHEY =000l T, LU

COMT INLE
WRITE (MOWT , 75)
WRITE (NCLIT, 740
WRITE (MOUT, 75)
oo Is=1,0

WRITE (S, 10) CCONCT, J), J=1, s
WRITE(NOUT, 1O (CONCT, J) d=1, L=

EE ID, 102

noow =1, 101

iy ow I=1,L
L;Easl,l>~rﬁmil,d>
oy 11 Jd=1, 102

O 11 I=1,04

CREY(TL, I =00MOT, g )

WRTTE (HOUT, 753
WRITE (NOUT, 77
WRTTE CMOUT, 75)
12 Is=1,0

WRITE(S, 107 {COEXCT, .

-

sod=1, L0
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COWRITE MO, 105 (COEX (T, D, =1, L

FORMATILOOLEEVDL 2D
gQRMQTilgxf3MMMmmwMMW”WMWMMMWWMWMmmWmmwmmmwWWWWMWMMMWWWMMw)

A FORMAT (123, “ss=CONTROLLABILITY MATRIY (B, BA, .. (BL,B2) @=8s7)

FORMAT{LRY, Tnes SELECTED CONTROLLABILITY MATRIX SRR

RETURN

B

mEsETREEssEsdgesdsnBhotSnBhklEodlRegant

TIME COMPUTES THE INVERSE MATRIX WUSIMNG BY IMSL

SLUBRDUTINE TNV (NN, ASATNY, MOUT)
INTEGER NM, I4, TDGYT, IER .
FEMAL A010, 107, ATNVILO, 10) , WEAREACLO) , D10, 107
Do 10
TS Tl

CWRTTE MDY, TED

WFCTE (NEHIT, 7a
WRTTE CHOUT, 75)
By 1 I=1,.0MM ,

1 OWRITECHDT, L0Y 00T, 00, J=1, NN

Call LINVLFCA, MM, TA, AINY, IDGT, WEAREA, TER)
WRLTE {NOLT, 75
WERITE CNOUT , 77)
WRTTE (RNOLIT, 750
O 2 I=1,0M
W TTECROUT, 10 CATNV (T, ), =1, NN
oOWRITE R, 1O (ATNY T, ), =1, M)
10 FORMAT(A(LL,E15.8))
T ETUIERIRANT L BT, e o o s o e 1 . 0 i s st s s e
TEOFORMAT{LRY, “use THNFUT  MATRIY wi )
FORCRMAT (12X, Tess INVERSE MATHIX wEE )
RETURN
EpT

e 0% 00 20 R o 3o 00 T R S T e et T S e o e e e T e e b e S T e e 0% O 0 o o S el ok b 2 R e ok b b e R

SUBROUTIME TTRA (A, TR, TDL, 1O, L, M, NOUT)
FEal &010, 103, TROLO, 100,

FEWINMD =
I=1811

oo L =1

WRLTE (CNOLIT, 7£0
WRITE {NOUT, 75
o 51 I=1.0
WRITE R, 10T ITROL, QY J=1, L)
TLOWRITENOUT, 10y (TRUT, Jd), Jd=1, L
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10 FORMAT AL ELS. 20

;:; F'.; I} Fay “[’ { 13 ';,/‘ . % s o ot st 1003 B St et Sk St s SRS s B B0 34 A1 AR S0 0330 IS e b s A OV e e et e b ik o8 e e o o s s
7E FORMAT (12X, s TRAMEZFOEE MATRIX R
FUETLWRR

F L

Al TRO1G, 100, AFL(10, 100, 4FP2C10, 10), AP2(10, 10)
SEAL TLOL0, 10, 24010, 103, TEL0, 10, 74010, 13
Eal, TTOCLO, 1O)Y, TONCLID, 103
PRt TXCL0, 107, TG, 10y, TROLG, 10y, ToLd, 103
REWIND & ‘
o1l I=1,M™
Dy 1 Jd=1, L
1 T3¢l =TR{T, D
o 51 I=1,HM
B1OWRITER, LG (TI(T b, =l LY
Dy 2 T=1,M
D 2 Jd=1,1.

Tt
i
T241,. =00
.
i

i

EA ]

W

a2 k=1, L .
2 OTEL L dy=T2(L, D +TROT By =aP1 (B, D)
oo oE2 I=1,M
EROMRITE(R, 1O (T2{Y, 40, Jd=1,4)
i 2 I=1,M
Ty =1, b
TR, di=0.0
Ooo3 k=i, L
SOTEOY, Ay ETACL, D ETRIT, EysaPadl, )
my 52 I=1,M
B OWRITE(R, 103 (T2, .0y, d=1, 13
o4 I={,M
o 4 =1,
TA4{L, 1y=0,0
oo o4 ke, L . , ,
4 T4l D=T40T, +TRIT, ) #2aF2K, D »
oo 54 Is=1i,M ‘
k! HRITE D10 T4, =1, 00
S I=1,M
[ T E R
TTOT o dos=T1 (T, 0
TYOLL+2, D =T2(1,.5
TTOI+4, D=TE(I,.0)
EOTTOLD+é . 1e=T4(1, .
[ S5 el s

EE OWRITECS 103 UTTOCL, J), Jd=1,00

KN é.."lxti.;ﬁm
A TR, Jo=TTO T, J0)

LEROUTINE TMAT (TR, APL, AP, AF3, T%, 100, 102, T, TE, 79, L, M, NOUT)
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TOM (koL D =TTOCD, )
ARITE CHOUT, 75)
WRITE (NOUT, 7467
WECTTE (HOLT , 75)
DO SE =1, Ls

WRITE (8, 10 TOMCT, J) =1, L)

G W TTE CHOLT, 103 CTONCT, 00 Jd=1,10

O, T
LooE Isl, 1D

oo el L

THLD, L =TONCT,
DooF T, 10O

P ood Bed e
[

NN

SRS B S

%]

COTRLIAAIT, A =TOM DL, D

i1 ey

pary

El

- FORMAT (12X, 7

W I TE (NOLUT, 75)

WRITE(MOUT, 773

WRITE(MOUT, 75)

o 57 I=1,1
WRITECS, 1O (TX(T, ), =110
WRITEAMOLT, 103 (TX (L, ) =110

i 11 dw)

FE T I SR £ R

TICT, Jr=TX(I, 0}

T, A =TYE T, JdY

L=THIT, )

: 1=1,1.
SR, EyCTICL, ),

FimMaeT 4 (1%, ELS.8))

P@RH&T(lEXrFNWMWMMMMW“WWMmwmmmwm@mmwwmmmwmmwammmwmemmMmﬁ)
sTRANSFORMED MATRIX (T, TaY (TL,Tla FORMI=
: ' T-MaTRIX P

FORMAT (12, 7
FETURN
NI

[ IME ATR&ACTI, AL, TINV, AT, BL, BT, L, M, NOUT
PEaAL TIOLO, 103,413 030, 10), TINV(LO, 103, AT(LD, 1O
REAL BLOIO, 10, BTOLO, 100, 8MTOLO, 10)

FEWIND 2

1 I=1, L

a1 =1, 0.

AT, i=0,0

ool k=1L

APTT O, Gr=aMT oL, D FTI (T sl (K, )

PR T hi T, < AT

PR N
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AT, Dy =0,0
e
S ATUE, ) =ATOL, D +aMT (L, ED s TINVIE, )
WRITE (MIUT, 7%5)
ARTTE (HMIUT, 74)
f

(3, DO (AT, 00, =111
WO, 100 (AT L, 1y, 0=, L)
ZoT=1,0

o=, M

BT(I, 0 =0.0

3 k=1, L

ZoRTOL, =BT L, 0TI, v sEL O, D)
WRITE(NIUT, 753
WRTTE CRUT, 77 7

=
A EE
pd
—3
iff

CMIIAT, 7550
[ EE Isi,)
WRETE(S, 10) (BT(I, J), J=1, M)
53 OWRITECNIUT, 10) (BT(I, ), J=1, M)
10 FORMAT (401X, E1S.8) )
Frg
F
me

AT (LT 7 s o o e i s e k0 o ot 2 e s e s s s e
MAT (12X, “=5us A-TRAMEFORMED MaATRIY  (A=TsaTMNY) . mEg
ABT (LY, Tene E-TRAMNSFORMED MaTRIX

o
~d i

LIEROUTIME SEIG (AT, BT, 84, 5B, ID1, L, M, NOUT)
GEal ATOI0, 103, BTOL0, 16, ZAC10, 100, 8R{10, 107
REWIND = '
LI N 5 R
SARCL Iy =RT IR,
1ToEs2, r=aTiL, .1
OO F =1, M 4
SEOL, D=RTCIDL, .
HOomBEE, N =RET(4, .0
WRTTE CRILT, 75)
WREITE(NGIT, 740
WRTTE (MILT, 75)
DooEy I=1,M

SLOWRITE(MNOUT, 10 (3A0T, ), el L)
FRIMT=, "INPUT B-MATRIX OF SVYSTEM-
o852 I=1,HM

EE WRITECS, LOVISE(I, Ji, =1, M)

10 FORMAT (3 CLE, BE15,.08)) ,

T FEIATT L L M, o v oo o s o s ot et s e e s i 1 s i i s 3 2 s 20 s

& FORMAT (12X, < se=C0EFF, OF CHARACTERISTIC MATRIX(SYSTE
RETURRN o
L




=1

AL, Be DXL TOAS LaMa=nYE LaMa=0Y4

S LY L (IR OX 4 ) .

(TR sede T e ) 280K 1 s (DY T4 T Bsli 4
XA s (OX L eua DX a2 -2l LeX3=0X4

E (1] eIl TEET ) B0 TR0Y 4

o1 I=4,3

AT, T41 =1,

ADCE, 11 =—F4

a4, o) =—P2

S, B =-PD

ATV, 4wl

WRTTE CMOUT, 75

L l,«x; I TE.” { N !:‘ l,,,l .i . _7":. )

WRTTE CMOLIT, 750

oo ®1 T=1,L

WRTTECE, 10 (ADCT, ), J=1,07

WRITE CMOUT, LOY (ANCT, 1), ude=1 L0

iy o2 =10

AL, D =ATCTDL, LD

(AT,
RO, 7ED
1=1,M

LR, LY (MADCT ), Jd=1 L)
WERTTECMOIT, 10 (NaDL I, 1y, =1, L7
FORMAT (4 (1%, E1S,80)

& ;:g P ,{';.‘ T { 1 :! X s % v e e vt 1m40 200 svna s s e en 8 83 e e ke e Sur e T2 a3 st Sens o 8o AR EPR S s RS St st e 94 Rt e e st OB st s e by

FORMAT {12%, < wes DESTRED MATRIX

FORMAT (12X, e COEFFICIENT OF DESIRED MaTRIX
RETLRR

M

sl MADCL0, 1O)Y, SEAC10, 10, Tallo, 10,01 010, 107
REAL TOOLIO0, 10, BELTO10, 100, BTINVOLO, 100 '
FEWIMD =
o1 I=l, M

DN R 5 AP

Tés T dr=Nan(l, Jr-24¢7, .47
WRITE (RO, 75}

WETTE CMOUT, 740

FRTTE (MDY, 753

oo s 1=1,M

AR TTE S, LG ATACT, W, Jd=1, 00
WEITE(MOUT, 100 (TACT, J), d=1, L0

i

90
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o2 I=1l.mM

[T D o R

T1iL, =0

2 kE=1,M
= ul Toudd=iaf, Jr+BTINVIT, ErsTaE, D)
li ”l\! IH!" )‘;:::})
l“'-.JY??;;
TEONMIT, A5
£} Iul,M
Tﬁéa,iﬁﬁ (10T, 0, d=1, 00
TEAMMIIT, L0y (010, A =100
Al AT
H“ 2o i1, M
1x1 .

b
i

:‘_‘_‘,.s"}

ek LT, Jre DL T L s TR, LD

NGHF T

ORI, TR

CRHIT, TED

T=1,M

N R 1 R G OF 4 N AU B I 3 N B

TTECRINT, 100 (FVI’E:J);JWl;L)

‘.ﬂrt 4f1X f“l WP

ENCE OF EIGEN v L mam
I MATRITY ki ]
TRAMEFOFRMED GAIM MATRIX e

P N

I
: bt
S LJI"

3

é ééUTENE LUE (&hyfh,}il FI L. M,HDUT)
REAL AZTL0, 100, BEL0, 100, 00010, 10),HH1{16710)

Al ETI10,10)

COMMON/COEFL/CALL, CALR, TALE, CALY
LN F”/‘MMLYMM—-,CAL CAz4
COMMONCOEFR/0ARL, CATD, CATE, CARA
COMAON/COEFA/CAAL, CAAR, CAAE, CA4A

P}

1 I=L,1L
Toal=i, L

(T B2 0L, B ekl Ok, 40

510G (T, ), d=, L)



g2

CALI=EL(L, 3]
> ! 1’174}
=12, 10

Sl E,

B SCFRCD)

(2,4

SCP A

REPpEy

(3,5
CaRd=EY O3, 4)

Coadi=E> (4, 1
CadE=EY (4,3
A q et

WRITE CMOT, 73

WIRTTE (ROIT, 729

WRITE(MOLT, 75

oo ® Isd,L

HETTE(S, 1OX(ET (T, B, =1, 00

WRITE(MOUT, 1O (ET(L, D, d=1,10

FORMATIAOLE, EL1S.8)

FEITUELIL 5 T L 2 I, oo s o et o s o o e o i i 2 e e )
FORMAT (12X, “=eeDlOEED LOOF MATRIX AFTER FEEDRBADE (A+DBR) se)
FETURM

Mk

eI Y]

¢

SRR,
H

O

mEAL EIGECLO, 100, WRLC ;’_4 Y, RI(E2Y, R =)
COMPLEY W{R)y, 208, 85, 2N
EITVAL ENCE (WL, RWOLY Yy, (Z0L, 1y, RECLY D
BEWIHD &
Rt
Timl0
WRTTE (MO, 753
WRITE CRMOLT, 780
WRITE(MOIT, 755
s I=1, N
WRITE(NOUT, 1013 (ETGLT, S, J=1, NN

o DONT IHMUE

101 FORMAT(4(1X, E15.8))
COMPUTE  THE EIGENVALUEZ/VEDTORS OF A

100 ZOMTIMUE
T AE=2
Call EIGRF{EIG, NN, I&, LIOE, W, Z, 14, WK, TER)
WRITE THE EIGEMVALUES/VECTORS OF A
WRITE (£, 72)
WRITE (S, 772
WRITE (e, 7H)
WRITE (&, 150y

180 FORMAT (L4 BETIGENVALLUE NO, 10X, ZHRE, 14X, 2HIM

)



AR IR

Ry

L
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L 20 I=1, NN

T Rm2e]

WRITE (£, BOOKT,RWITZ-1) , RECTZ)

CONTIMNUE
FORMAT 10X, 12, 2F18. &)

FORORMAT 1S , v o v s e 1 1 1 £ S S 5

OFRMAT O 12X, 7 INFUT MATRIY

FTOFORMAT (12X, 7 ETGEN SOLUTION

oo SOEMAT L LY ;7 e s st Sttt 18 1 S S0 1 st Aot e et 1 T AR e e Ak A A 0 i A S St A R St 8 140

FRINTS,

FRINT:, “#CHECE THE EITGEN ValUEDZ OF SYITEMS

e e S e?

SOLVES THE OPEN-LOOF S

SLIEROUYINE RUMI(L, CL, FI, TGRA, TRLT, NOUIT)
FamAaMETER (FRE=1000)

EETERNAGL, FONL

REAL Cr24), W14, 1000, T, TOL, TEMD

RE&L X OEED Y1 RED

FEAL XL OREDY  X2ORE) X3 RE) , X4 (KD

REAL. LE; Ma, KZ -
THTEGER L, IND, MW, TER, K F
COPMONOWER AKX, CXY DY), OYY, Ma, kS

DTe=0. 0

EME L =0

T

M=l

Trl=0, 0001

JARICE

ITWITIAL VALUES FOR DIFFEREMNTIAL ESUATION
KL=l eSINIFD

$i2)=0.0

EiSy =l eslns(FD)

A4 )y=0,0

WRITE (MOLIT, 43

WRTTE (HIOLT, 5)

WRTTECMOLIT, 43

WRTTE(MOUT, 23

YLl i, 0

10l y=0leBInMNIFIY

ERi1y=0.0

ALY =0LsC0sFT )

4L =0, 0 .
WRITEAAMDUT, 201 L), AL 01, X2 1), K301y, 44C1)
WRITES, 2037101y, X101}

WRITE (2, 203YL L), {201
WRITE(IG, 200Y1L 01y X201
WRITES L, 20310310, 4401



Lt b e

T g
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Uik, DYERR L, FONT, T, X, TEND, TOL, ITND, ©, NW, W1, TER)
WRETTE CMOLT 2V TEND, (AT, I=1,10

1 iRALY=TEND

Alk+1=X{13

XRiE+R1 =402

EE{kA1 =X {3

EERE A S DESEE

WRITES, 2001 {H+1), X1 kLD
WRITECY, 2001 (K410, X2 (kK+1
WERTTECLO, 200Y 1 (41, X3k +1 )
WRITECLL, 2Q3Y L IE41) , X4 (+1)

COTIMLE
FORMAT O2Y, T, 11X, "X 01 7, 13X, 7X@y 7, 13X, 72037, 13X, "x{4) 7).
FIRMAT (8, 2, 404X, F13.110)
FURMAT{IE%n3wWWmemwmwwmmmwmmmmmwmmmwmmmmmmmmmmm .
FORMAT (L 2K, “aas CEN LOOF STATES OF SYSTEM waEE
FORMAaT ZF 1S 107

REWIND ¢
REWRIMNDD 2
REWING 1D
FEWINDG L1

Pl i) oe

]

Uit

o DFCLGRALERL O GO0 TO 25

Cabkl, GRAPH (YL, X1, ER, EMAX, TFLT)

Calle GRASPH (YL, X2, BE, EMAX, TRLT)
Call GRAFPH OY 1, X3, ER, EMaX, TRLT)
Calle GRAFH (YL, X4, BE, BEMaX, TPLTY
FETURN

Erp

SLEROUTINE FON1 (L, T, %, XPRIME)

IHTEGER RWNN

REAL XL, AFRIMELD T

REAL Ma, S
COMMON/GWER/ CAX, CAY, CY X, CYY, MA, ES

XFRIME L =X () ,

KPRIPE Cey= (ke (L) -DXXaX (2 ~0XY=R (40 ) /MA
APRIME (R =X (4) _ :
LPFRIME (4) = (~0XYa (2 -REsX{2)~0YY=aX{4) ) /MA
FETLIRN

EMT

b e e e e e e 0 e 2 B 0 3 S e T 200 26 I I o i e e 2 D 0 b e b 0 D

SUBROUTINE S0LVES THE CLOSED-LODP SYSTEM EQUATION
LSTNG THEL SURROUITINE DVERK ‘

........................................................................................................

SUBROUTIME RUMz (L CLL,FL, TGRA, TPLT, NOUT)
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FARAMETER (KE=1000)
EXTERMAL FLNZ
COMMONACOEFL/CALL, CALZ, CALE, CALY
COOMMON/COEFZ/CARL, CARE, TARE, CAZY
COMMON/ZCDOEFZ/CAZL, CAZZ, TAZR, CARY
COMMON/CDEF4 /0641, Cad2, Cad3, Ta44
RiEEadl., XOREEDY, YL (RED '
FEAL XL RE) , X2RED) , XBIEEDY , X4 (EE)
REAL CO24),W104,100), T, T, TEND
INTEGER L, IND NW, TER, ¥
T
M ==L,
K MA A =S000
IMITIAL VaLUES FOR DIFFERENTIAL EHHATIHN
YR =CLESINCFL)
X(2)y=0.0
KA1 y=C0al0e(FL)
Ei4y=0,0
TOL =0, Q0001
[IT=0.1
ITND=1
WRITE (MOLT, 4
WRITE (MOWIT, 39
WRITE(MIT, 4)
WRITE (MNOIIT, 237 w
Yi(1ly=0,0
X101 =0l sSINC(FLY
K2t y=0,0
X (1 =0l esnDE (FL )
1401 1=0,0
WRITECMOIT, 2IY101), X100, X2 (1) X341, %4C1)
WRITEM, 200101y, X1(1)
NhITEL'r'n)Vl(l),x {17
WRITECLO, 200Y101), X201
WRITE(LL,200YL01), X4(1)
oo 1 B=1,EMAX
TLJD FLOAT (B =0T
Call DVERK (L, FONS, T, X, TEND, TOL, TND, C, NW, W1, TER)
WRITEMOUT; ) TEND, (X (1), I=1,L)
Y1(k+1)=TEND .
Al{k+1 =X {13
2R AL =X (2
xa(ﬁ+1>mX(3)
A (E+1L =% (4)
Nﬁlft(n,hn)wl(}bl) KiI{K+1)
WRITE(?, 200Y1(E+1), X2 {E+1)
WRITE(LO, 2001 (k+1), XZ2(E+1)
WRITE(LL, 2O)YL1 (A1), X4 (E+1)
1 CONTINUE .
2 FORMATOOX, T, 11%, “X{1)Y 7, 13K, “X{z2}) TEOEYTLLEY, R4y
B OFORMAT(FA&. 2, 404, FL2. 110
S ETUE AT QL K, o e o o s s e s s i o s s s o s s 2 o 3 e o 2 1 o o e i 2 e s s s )
= FORMATCL2X, "= CLOSED LOOP STATES AFTER STATE FEEDRACZE =#=7)
20 FORMAT (2FLS.10)

b

i

vy



1000

W TN
BEWIMD
FEWINDG 1O

FEWIMD 11

[FOIGRE.ER, Q) GO TO 25

calls GRaPH (YL, XL EREMaX, IPLTY
Call, GRAPH (Y1, &, kR, EMAY, TPLT)
ALl GRaFH (YL, X3, ERE EMa, TRLTY

eyl

k]

Cald. GRAFH YL, X4, KR, EMAY, TRLT)
BORETURN
£rn

96

SYETEM EQUATION

it \ (L, T, %, XPRIMED
COMMON COEFL/CALL, CAL2,CALE, TALY

COMMON/ COEF2/CAZL, CARZ, TARE, CAZ4

ComMmlM s COEFZ/CARL, CARE, CARE, CAZ4
COMMOM/ACOEF 4 /CA4L, TA4E, TAAE, TAd4

IMTEGER L

sl XL, APRIMEL T

RERIMECL y=Ual 1= 01 ) +0al 2 (2) +0a1 B () +0AL4uX (4)
XKPRIME(2)=CAZ1eX (L) +0ARZESX () +0A] ALy +CAZA=X4)
APRIME (2 =082 (1) +0AREX (2)+0A X3 +LAZL=X (4)
EFRIME(4 ) =044 16X (1) +0A428 X (2) +0A43= X {2) +0Ad4=X (4)
FRETURM '
ElD

SLBROUT IMNE GRAFH(X, Y, KR, EMAX, IFLT]
DUIMEMSTON ¥R, Y (RED

REWIND &

REWINDG %

FREWIND 10

REWIND 11

SIFLT=0,

ST ZEX=0D, O

SIZEY=0.,04

IMAK=YP e =0, 0

0 1000 J=1, EMAK

TFOMAX LT AR XD Y ) XMAX=ARE (X () )
IF(YMAX LT ARSOY O ) IYMAY=ARS (Y {1
CORT IMUE

ITFCAMAY . B 0 XMax=1.0
IF{YMAX . EG. O3YMaX=1.0
DT=SlZEX/XMase10.0

CDw=RTIEY/YMARK=LO.0

oAl INITIG(nTRUE,,.THUEu,4HNDF1>‘
CEbl AXIRIRIZEY, BIZEY)



4
ES

et GoOT, Y, X, BR, EMax)
Césl
CAall, POSCUR T, 49

Call, FROMPYOLZ, TENTER AMNY KEY ")
CaLL PROMPTOLE, . TO CONTINUE
CALL AUTEEYCL, TJR, L, NG, T
IF(IPL7QEQ=1)THEN

Cabl WP

If-,tL. ARTS{STZEX, STZEY

Call, So0T, DY, X, Y RE EMAeY)

ALl LBITOFF

ENDOIF

ALl DLRZVE

TaLL BUTTIGO, TRUE., §

RETLIRM

ErI

'HDhHHTINL DR&N’

= Lh““iINF AXI“\;IZFK,»&&&?)

ORAGWING AX1S (X, Y

CAall. MOVES, O, .00

CALL DFAWA (.01, . 95)

ALl MOVEAC, “lqu)

CALL DR&HA(. 2, . 5)

RIE=A R HFKUW' oM X AXLE

Call, MOVESC, 25, ,5)

m!l.... I:lF:l'}tlfi‘l“:'x(ul._..yu 513
ALl DFaAWAC 22, 4%

CQLL OF&ls 285, 5

DRAWING ARROWE ON Y

Call, MOVESAC, OL, .95

Call, DEAHAT O, 23

Sl DRAMALLOZ, .93

CALL DRAWAC, 01, .95}

WRITIME VARTARLE ON ¥ aXIs

CALL MOVEA (L85, .5)

HETE

o

is

CALL TEXT(I0,10H  TIME J

WRITING VARIABLE ON Y AXIS
Call, MOVEA (.01, %73

ALl TEXTOLO, 1OM STATE }
SOALIMG ON X AXIS

1 A¥=.01, .80, .07

Call MOVESCXY, . S1)

ZaLL DR&WA(KY, 4%)

T T .

SrALIMG ON +Y AXIS

CALL MOVEAL.OL, .5

ooy 2 Yy=, 5, , 90, .07

Calde MOVEAC.G,YY

ALl DRAW&C, QR YY)

PRHOMPTOLS, "STATE VARTATION-

)

97



i

{

ER ]

]

CONT TRHLIZ

SUALTRG ON -Y AXIG
Call MOVEAT.OL, LS
O 3 ¥y, %, s 02, - 0F
Call. MOEAL.O, YY)
Call, DRAWHa .02, YY)
CONT ITHMLE

ALl SEETYL O

RETLIRN THE AXITZ ORIGIOM
CALL MOVEAC,OL, .50
FETLIRM

EMD

5 b e k3 i o S 0 0 ok Inh O ek R I KB M ik S b

SLBROITINE GODT, DY, %, ¥, Kl KMaxX)
DIMERSION X (RE)D) , YIREY
FEWINGD &

REWIND %

REWIND 1O

FEMIND 11

DY =Ty ey (13
DOT=0T=X (1)

Call DRaWR(DOT, DoY)

O 7 =i, EMAX+L
DOT=0Tw X (-4 00-11)
LY =DYs oy () =Y (=10
Call, DREWR CODT, DY)
SO T NLIE

B TR

EMI
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Oil inlet

N
77/

N

—td () p——

N \\\
~ -—— Damper
Y f & \ \ | g
Retainer — : | Ball
spring | // bearing I
"/ | R
Shaft

Figure 1.1.1 Schematic representation of squeeze-film

bearing in practical application.



100

Input Plant Output
4 Controller j=——— or
Process
Figure 2.1.1 QOpen-loop control system.
Input Plant Output
Controller (——————— or
Process
Measuring element
Figure 2.1.2 Closed-loop control system.
v(t) __u(t) x(t) x(t) y(t)

©

Figure 2.1.3 General structure of the linear state-variable

v(t)

feedback.

u(t)

®

y(t) STATE
SYSTEM ESTIMATOR
CONTROLLER |=

x(t)

Figure 2;1.4 The block diagram of the system with an
estimator.
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-Uncavitated
region Yy

Cp : Bearing Centre
Cjg ¢ Journal Centre

F, ¢ Static Load
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START

Set system parameters
interactively

Compute bearing cocefficients
C , etc. using eguation
XX (3.12)

Are the design
parameters
satisfactor

Form dynamic matrix A and
CALL EIGEN to compute elgen
values of system

CALL DVERK to integrate
system equations

Display graphs on VDU,

Compute controllability

matrix of equation (2.55)

maKe transformation of
{2.58)

115



Compute gain mairiz K
(2.76)

Compute new dynamic matriz
using (2.52)

CALL EIGEN to compute new
eigenvalues of controlled
system

Check
the desired
eigenvalues

CALL RUN2 Integration and
plotting subroutines for
the state-feedbacK case

STOP

Figure 4.2.1 Flowchart of computer program.
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MODEL I
0.00 1.00 0.00 0.00
-20000.00 -85.532 0.00 -45,622
0.00 0.00 0.00 1,00
0.00 -45.622  -20000.00 -423, 840
MODEL II
0.00 1.00 0.00 0.00
-20000.00 ~2.309 0.00 -1.232
0.00 0.00 . 0.00 1.00
0.00 -1.232 -20000.00 -11.607
MODEL III
0.00 1.00 0.00 0.00
~20000.00 -0.234 0.00 -0.125
0.00 0.00 0.00 1.00
0.00 - -0.125 =-20000.00 -1.179
MODEL IV |
0.00 1.00 0.00 0.00
-20000.00  -684.256 0.00 -364.981
0.00 0.00 0.00 1.00
0.00 -364.981 -20000.00 ~-3438.723

Table 4.'1.2 Dynamic matrices of selected models
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Eigenvalue no Re. Im.
Model I { -39.794 135.706
2 -39.794 -135.706
3 ~383.652 0.0
4 -52.130 0.0
Model II 1 -1.074 141,417
2 -1.,074 141,417
3 ~-5.883 141,298
4 -5.883 141,298
Mode! III 1 -0.109 141,421
2 -0.109 141,421
3 -0.597 141,420
4 -0.597 141,420
Model 1V { ~603.580 0.0
2 -33.135 0.0
3 -3480.518 0.0
4 ~5.746 0.0

Table #4.,1.3 Eigenvalues of selected models.
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