A4y

HEW ALGORITHMS FOR THE BIN FACKING FROBLEM

by
ALt TAMER UNAL

B.8. in I.E. Bogazici University, 1986

Submitted Lo the Institute for Graduate Studies in
Bcience and Engineering in partial fulfillment of
the requirements for the degree of
Master of Science
in

Industrial Engineering

Bogazicl University

1988

‘O c.
Yaksekogretim Kurula
Dokiimantasyon Merkesl

i1

NEW ALGORITHMS FOR THE BIN PACKING PROBLEM

APPROVED BY

Dog.Dr. Giindiiz ULUSOY
(Thesis Supervisor)

Dog.Dr, Ilhan OR

Yard.Dog.Dr. Vahan KALENDEROGLU . X .-.éfL

DATE OF APPROVAL . A3 Y4988

iii

ACKNOWLEDGEMENTS

i would like +to express my deepest gratitude to Do¢.Dr. Glndiz
Ulusoy for his invaluable guidance as the supervisor of this thesis and
especially for his support, encouragement and understanding throughout

all phases of this study.

I also sincerely wish to thank Do¢.Dr Ilhan Or and Yard.Do¢.Dr.

Vahan Kalenderoglu for their comments and suggestions .

I also would like to thank my friends .OKktay Ginlik and Yavuz
Sakalli for their merciless counter examples in the early phases of

this thesis.

iv

ABSTRACT

-

Bin Packing is a well-Known NP-complete problem which has many
real-life applications. In this study, an eztensive literature survey
is followed by a number of new heuristic and optimal algorithms
developed using a new general procedure called " Similar Tree Search
Algorithm " to golve zero-one integer programming prohlems,

Besides, a new special case of the bin packing problem, smooth
packing, is defined and algorithms to solve this new problem are

generated and tested,

GZET

Tek Boyutliu Yerlegtirme problemi genig bir wuygulama alani olan
taninmis bir NP-kapsar problemdir. Bu ¢alismada, bir literatir taramas:
yapiimis ve problemin NP-Kapsar olmasindan dolayy O&ncelikie baz:
sezgisel algoritmalar Gzerinde durulmus ve bunun yani sira sifir-bir
tam 8ayi problemleri ¢&dzebilen bir prosediir kullanilarak, iyi
cbzulebilir ve en iyi ¢bzimt bulan bir algoritma gelistirilmeye
calisrimigtipr.

Ayrica, Tek Boyutlu Yerlestirme probleminin yeni bir 8zel durumu
olarak yerlestirmenin dengeli yapilmasi problemi tanimianmis ve gene bu
problemi ¢Szmek i¢in bazi algoritmalar tzerinde c¢alisilmis ve bu

algoritmalar denenmigtir.

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTSc0vvuuoens C e e e iii
ABSTRACT .. hvvivnnnnennn e e e st e iv
OZET e e C e e e . v
LIST OF FIGURES e Ve e . vii
1. INFTRODUCTION ...ovvirverinirnannrenns e e e 1

II. LITERATURE SURVEYvovvvvenrrvennses et e e 4

2.1. Classical Bin Packing 4

2.2. Variable Sized Bin Packing 8

2.3. Dual Bin Packingieevivinnnn 9

111. FORMULATIONS OF BINPACKING FROBLEMS 10

1V, SIMILAR TREE SEARCH ALGORITHM (STSA) - ... 13

4,14, The Algorithmt i ineoroonnas 14

4,2, An Example on How to Use STSA 16

4,3, Solving the Bin Packing Problem Using STSA . 21

4.4, An Optimal Smooth Packing Algorithm (OSF) .. 27

V. HEURISTIC ALGORITHMS e e N 30

5.1. Algorithm &8BT for Bin Packing 30

5.2. Algorithm HEUSTSA for Bin Packing 32

5.3, Heuristic Algorithms for Smooth Packing 33

VI, HESULTS ... eiinvorrnrorernnnsonsaos ey 35

V. CONCLUSION e Veneee e 41
REFERENCES e ea Ceee e 42

REFERENCES NOT CITED e Veer e 4y

vi

vii

LIST OF FIGURES

_Page
FI1GURE 1, Representation of the Solution Space 13
FIGURE 2. Reconfiguration of the Solution Space 14
FIGURE 3. Solution Space of the Bin Packing Froblem 22
FIGURE 4. Flow Chart of Optimal Smooth Packing Froblem ... 28

FIGURE 5. Flow Chart of Algorithm SBT P e 31

[. INTRODUCTION

In general, the bin packing problem can be defined as the problem
of packing a number of "pieces" into a number of "bins" so as to attain
some objective(s) subject to the constraints on the size of the bins
and/or number of the bins and/or the number of the pieces.

Some special cases of the problem can be listed as

(1) the classical bin packing problem,
(2) the variable sized bin packing problem,

{(3) the dual bin packing problem,

These problems will be defined and discussed in Chapter 2.
Bin packing problem is a special case of the cutting stock problem
and the assembly line balancing problem, and it can be used to model a

number of real world applications such as [1,2,3] :

Cutting standard size stock (cable, steel bar, etc.) into

usable size,

- placing files of varying sizes on as few tracks of a disk as
possible,

- prepaging,

~ packing of variable length strings into fixed length words,

~ minimizing number of machines necessary for completing all tasks

by a given deadline.

T. C.
Ytksekogretim Kurulu
Dokiimantasyon Merkezi

Further application areas of bin packing problems can be found in the
above references ,

Bin packing problem is HNP-hard in the strong sense. NP-hard
problems leave very little hope for finding polynomial time algorithms
for exact solutions, The reason is that they are proven to be " just as
hard as " a large number of other problems that are widely recognized
as being difficult and that have been confounding the experts for
years |4). Therefore, it is wise to search for "good" solutions using
heuristic algorithms instead of searching for the optimal solution
to these kinds of problems.

The heuristic algorithms do not guarantee to find an optimal
solution, however, they use some simple heuristics by which it is
possible to produce near optimal or sufficiently good solutions. Here,
the question is to be able to estimate and evaluate the behavior of an
algorithm given a string of input. To do this, three analytical methods
are available Worst-case analysis, ©probabilistic analysis and
statistical analysis,

The worst-case analysis establishes the maximum deviation from
optimality that can occur when a specified heuristic is applied within
a given problem class {5). The worst-case performance measure of a bin
packing algorithm 8 gives an upperbound to the ratio of the number of
bin used by that heuristic bin packing algorithm executed on a list of
elements L, say S(L), to the optimum number of bins L¥ . Let Rg (K) be
the maximum ratio S(L)/L* for any list L with L¥ = kK. The 'performance

ratio!, r(8), 1is defined as lim Rg(K).
K->

In the probabilistic approach, one assumes a density function for
the problem data and establishes probabilistic properties of a
heuristic such as the expected performance of the heuristic or a bound
on the probability that +the heuristic finds a solution within a
prespecified percentage of optimality.

In the statistical approach, one usually applies the heuristic on a
large number of randomly generated problems performing a deterministic
simulation to draw some statistical inferences on the algorithm [5].

Although, in general, the algorithms with exponential time
complexity functions do not yield satisfactory results in regard of
computation time when input string is large, some exponential
algorithms, on the average, may be able to solve sufficiently large
problems. Being an algoritim which has an exponential time complexity
function, simplex algorithm which is used to solve linear optimization
problems constitutes a good example 1o exponential algorithms that work
well on the average. 80 it may worth +trying to generate optimal
algorithms to solve NP-hard problems, |

In this study, an optimal algorithm for the "bin packing” problem
will be developed.Besides, a new bin packing problem will be defined as
packing a number of pieces 1into bins Keeping the level of bins as
smooth as possible, " Smooth Packing Problem ", and the previous
optimal algorithm will be modified to solve this newly defined bin
packing problem . In addition to +these optimal algorithms , some
heuristics to solve both of the problems will be developed and compared

against existing ones.

2. LITERATURE SURVEY

Depending on the type of application they are meant for, various
definitions and formulations of the bin packing problem have appeared
in the literature. Classical bin packing, dual bin packing and variable
sized bin packing problems are the main topics of the following survey.
In this chapter, these different definitions will be discussed using

examples taken from the literature.

2.1, Classical Bin Packing

The bin packing problem can be defined as the problem of placing
the elements of a given list L of real numbers between 0 and { into a
minimum number, L* of "bins" so that no bin contains numbers whose sum
exceeds one [1}.

In analyzing bin packing problems, because they are NP-hard, main
interest is concentrated on finding efficient heuristics to solve the
problem and analyzing the performance of these heuristics compared to
the optimal solution.

Mainly, there are two types of bin packing algorithms. If the
numberg in list L are available one at a time and the algorithm has to
assign each number to a bin before the next one becomes available, this
kind of algorithms are called the !’ on-line ! algorithms [6]. However,
if there 1is no such requirement, then the corresponding algorithms are

called ' off-line ' algorithms.

Worst-case performance bounds for simple on-line heuristics
First-Fit (FF) and Best-Fit (BF) ; and off-line heuristics First-Fit
Decreasing (FFD) and Best-Fit Decreasing (BFD) are discussed in [1]
The definitions are given as follows :

First-Fit : Let the bins be indexed as By, Bp, ..., with each
initially filled to level zero. The numbers ag, ap, ..., ap will be placed
in that order. To place aj, find the least j such that BJ is filled to
level B¢i-aj and place aj in BJ. BJ is now filled to level B+ajy.

Best-Fit : Let the bins be indexed as By,Bp, ..., Wwith each
initially filled to level zero. The numbers a4, ap, ..., ap Will be placed
in that order. To place aj, find the least J such that BJ is filled to
level B¢1-a; and B is as large as possible, and place aj in BJ. BJ is
now filled to level B+aj.

First-Fit Decreasing : Arrange L = (a4, 3p ...,3p) into non-
decreasing order and apply First-fit algorithm to the derived list.

Best-Fit Decreasing : Arrange L = (ay, ap ...,ap) into non-
decreasing order and apply Best-fit algorithm to the derived list.

The main results concerning the performance of the above heuristics

can be summarized as follows ({1]:

(1) r(FF) = 17/10,
r(BF) = 17/10,
r(FFD) = 11/9,
r(BFD) = 11/9,

(2) for L. [1/6,1), BFD(L) ¢ FFD(L),

(3) for L. [1/5,1}, BFD(L)

FFD(L),

(4) for L (U, 1/2), FFD(L) $ T1/60 L* + 5,

The algorithms dicussed in {i] are simple list processing
algorithms. A possible ‘'one step further' improvement in these
algoritims is to split the list L into some sublists and treat them
accordingly. 'Two such algoritims are presented in {6} : The on-line
algorithm Refined First-Fit (RFF) and the off-line algorithm Refined

First-Fit Decreasing (RFFD). In that paper it is shown that

(1) r(RFF) ¢ 5/3 and

(2) r(RFFD) ¢ 1179 - € for € = 1077 .

Furthermore, a lower bound for on-line bin packing algoritims are
derived and it'’s proved that for any on-line bin packing algorithm S,
r(S) z 3/2 . It is also shown that for € = 10~9 there is an O(n log n)-
time algoritim S for bin packing such that if a list L has all numbers
in (0, 1/2) then S(L) ¢ (71/60 - €) L* + 5. Besides, the question ' how
well can an O(n log n)-time algorithm perform' is discussed. It is
shown +that for an algorithm S8 for the generalized d-dimensional bin
packing, S must have r(S) 2 d.

An off-line algorithm offBP is discussed in (6] and it's shown
that for any list L, offBP(L) ¢ 4/3 L*¥ + 2 and offBP should be faster

then O(n log n) algorithms .

Another way of evaluating the bin packing algorithms is to analyze
the probabilistic performances of the algorithms. The recent studies

are mostly done in this field.

A probabiliy model of the bin packing problem is given in [5). It
concentrates on the so called HNext-Fit (NF) algorithm and develops
expected values for the comparative performance of this rule and an
optimization rule. In this paper, a markov model! is used to represent
the behaviour of the algorithm and after deriving general formulas for
the expected performance, some numerical results are obtained for
uniformly and exponentially distributed piece sizes.

Instead of representing the algorithms by a markov model in which
the expected performance 1is bounded by the unknown expected optimal
number of bins as in [5), it is possible to estimate the expected
number of bins packed by a heuristic as a function of the number of
pieces to be packed . Such an analysis for +the NF algorithm is
done in [7] and numerical results are obtained for the uniformiy and
exponentially distributed piece sizes. Besides, the marginal
performance and average performance ratios of a number of bin packing
heuristics (NF, BF, FF, FFD) are compared statistically and
coefficients of a linear regression model relating the number of pieces
to the expected number of bins packed are presented,

Another important work is reference [8] which addresses the
asymptotic probabilistic behaviour of OPT(I)/n as n->po where instance I

is a vector of n independent random variables, with common distribution

function (CDF'), F(x), 0 ¢ X £ i, analysis are done for symetric, convex
and concave CDF's seperately and some general formplas to show
convergence of OPT(Ip)/n when I is an observed distribution are given.
Besides, in this paper , the author represents the calculation of
covergence rate as a problem to be solved.

A general problem with the probabilistic analysis of the Dbin
packing algorithms is +that the analytical results are very hard to
obtain, even for the simplest algorithms and the simplest piece size

distributions, because of the complexity of the calculations.

2.2 Variable Sized Bin Packing

The variable sized bin packing problem is that of packing a list
of pieces into bins so as to minimize +the total space used in the
packing where bin sizes need not to be equal! in size {9]). In [9) a
model representing the problem and three algorithms are discussed
extensively.

The algorithms presented are HNext-Fit using Largest bins only
(NFL), First Fit Decreasing using Largest bins at end Repack the
smallest possible bins (FFDLR), First Fit Decreasing using Largest bins
but Shifting as necessary (FFDLS). By analyzing the worst-case

performance bounds for these algorilms it is shown that

NFL(L) <2 L*+ 1,
FFDLR(L) < 3/2 L* + { ,

FFDLS(L) < 4/3 L* + 3

for any list L., [t is also observed that the time complexity functions
of NFL, FFDLR, and FFDLS are O(n), O(n logn + h log k), O(n logn +n
log k), respectively, where h denotes the number of bins packed and Kk

denotes the number of distinct bin sizes.

2.3 Dual Bin Packing

The dual bin packing problem is defined in [10] as follows
"Suppose you are given a set I - (ay, ap, ..., ap) of items, a size
s(a) > 0 for each item a and a threshold, T > 0. What is the maximum
number m such that I can be partitioned into sets Xi,...,kn. where each
set X has total size s(X) = L s(a) 2 T, and hence can f£ill a one
dimensional bin to at least tiii threshold ?" . Algorithms NF, FFD
and Lowest-Fit Decreasing (LFD) are discussed with respect to dual
binpacking and a statistical analysis is performed to analyze the
average-case behaviour of dual bin packing algorithms (410].

The First-Fit Increasing heuristic for dual bin pacKking is studied

under the assumption that piece sizes are choosen uniformly over

(0,1) and it is shown that
P(L*¥/FFI(L) <1 + (1/n)) 21 -¢€

given a desired degree of confidence i-€ [i1].

io

I1i. FORMULATIONS OF BIN PACKING FROBLEMS

The classical bin packing problem as defined in Chapter 2 can be

formulated as follows:

m
(1) min JH Yj

j=t

n

E cyXj3 $yy » J=1...m
i=1 ! J

m

E x33 =1 , i=1...n
J=1

where Xjj and Yj can be defined as

1 if ith piece is packed into the jth pin
i=4...n, j=141...m

L 0 otherwise
Yj € (0,1) and integer, j = 4{..m .

Because the main concern of the problem is to minimize the number
of bins packed, the same problem can be formulated by assigning some
weights to the bins and eliminating the variable Y J =1..m from the

formulation as follows:

11

m n
(2) min L LA B CiXj j

J=1 i=1

n

B CiXij <1 , J=1 m
i=1

m

IH xu =1 , 1=z 4,..n

J=1

where Xjj yi=41...n J=1...m is defined as in the above formulation
and Wi J=1...m being the weight assigned to bin j. In this
formulation, assigning the weights, LAT is very important., They should
be choosen in such a way that packing a piece to a bin with a lower
index value should absolutely be profitable compared to packing it to a
bin with a higher index value. In general, Wi << Wiy is a valid
choice .

A further improvement in all the formulations can be attained by

considering an obvious fact.

OBSERVATION 3.1. If the capacity of each bin is taken to be the

unity , then pileces with sizes larger than i/2 should be put into

seperate bins, that is they can not be put into the same bin.

i2

Taking Observation 3.1 into consideration, (2) can be formulated as

m n-%A
(3) min I LA CiXjij
j=1 i=1
n
}H ¢ X <4 , J = |A|+1...m
i=1 11l
m
}H X =1 , 1= 1...n—|A|
,j:i i3
n
B c X <1-1 , 3= |A|+1,..m
izt 11 d

1f Xij is defined as in the previous formulations, the. pieces having
sizes in (0, 1/2)} are put into set A and |A| represents the size of this
set; and lJ is defined as the level of bin j after pieces in set A are
packed into seperate bins. This modification decreases the number of
decision variables by |A| ¥ m and transforms the classical bin packing
problem into a special case of the variable sized binpacking problem
where bins with capacities less then the unity are counted as packed

bins.

13

IV, SIMILAR TREE SEARCH ALGORITHM (STSA)

in this chapter, a new procedure will be introduced to solve

zero-one integer programming problems stated in the form

max f(x) =
s.t.
Ax ¢ Db
x € (0,1) and integer,

STSA utilizes a forest representation of the solution space of
zero-one integer programming models . Figure 1 graphically shows
this way of representation. Every node in the forest represents the
solution which is obtained by setting the variable associated with this
node and +the variables in the upper level nodes but on the same path
equal to one and setting all the other variables to zero. For example,
in Figure 1, Node A represents the solution obtained by setting xy and

X3 equal to one and all the other variables to zero.

@ S0 Tognd

Figure t. Representation of the Soluticnh Space

i4

4.1. The Algorithm

STSA uses a search mechanism on the <forest shown in Figure |
ﬁaking use of the similarity between some trees in the forest.

Let us define t; as the tree having the node which is related to
variable i as the root node.A solution S can be represented by a set of
indices whose related variables have the value of one in that
particular solution, and V(tJ) as the optimal value attained in this
solution. Besides, the set notation W(t;) = { 1 \ K] will be used to
indicate that the first element of set W(t;) is i and K = W(t;) - {i},
and Val(i,j) will denote the value of the solution
Sol(i,J) = (i \ S(tJ) } . Using these definitions we reconfigure the
forest shown in Figure 4 as it 1is in Figure 2.

Figure 2 inspires us to use a backsearch algoritlm to implicitely
enumerate all the possible solutions. Therefore, the following
algorithm can be used to calculate the optimal values of all the

trees and thus the overall optimal solution.

Figure 2. Reconfiguration of the Solution Space

15

Algorithm STSA

(input :

output :

STEF 1 ¢

STEF 2 :

STEP 3 :

STEF 4 :

STEP 5 :

STEP 6 :

Termination Node, Fre-Assigned

Optimal Value , Optimal Solution)

Set {1 =1,
V(ty) = ¢4 + L C i
JeEPre-Assigned
8(ty) = { 1 \ Pre-Assigned }.

IF 8(ty) is infeasible then Optimal Value = 0O
Optimal Solution = {}
Set i = 1 + 1.

Calculate Val (i, Jj)

1n

V(ty) + ¢y and
Sol(1,J) = £ 1 \ 8(ty) } for all j, j<i.
IF Sol(i,h) is infeasible for any h < i, then
run STSA(K, NewFre-Assigned, NewV(ty), MNewS(ty))
where NewPre-Assigned = Pre-Assigned + {i} and

K=max { h | Sol(i, h) is infeasible 1}

Set Vval (i, h) = NewV(h) ,
8ol(i,h) = NewS(h) for all h .

Set V(t;) = max { ¢y, max Val(i,J)

e
-

Jet
IF V(ty) = c;, then set S(ty) = {i}.
IF V(t;) = Val(i, k), then set 8(tj) = Sol(i,K).

IF {1 ¢ Termination Node, then go to STEP 2.

Optimal Value = max V(tJ) 1.
J=1..n

Optimal Solution = S(ty), if V(ty) = Optimal Value.

16

To run STSA the initial values for the Termination Node and Fre-

Assigned should be n and null set , respectively.

4.2. An Example on How 1o Use BTSA

In this section , a special case of the well-Known " Knapsack
Froblem " will be solved to demonstrate the use of Similar Tree Seahcn
Algorithm (8TSA), The formulation of the general zero-one Knapsack

problem is as follows :

n
max L cyxj
i=1
n
8.t L bijry % GOAL
i=4

Xy € (0,1) and integer,

In this formulation ¢y is the cost and by 1? the weight
parameters ., Available optimal solution procedures to this well-known
problem is presented in reference [i2].

In this study, the cost and the weight parameters will be assumed
to be equal, and this problem will be called as the Selection Routine, in
the sense that this is the formulation of the question " how to select

a number of pileces among a given set { Xy, 4i=1...n} which will sum up

17

to a value as close to a prespecified GOAL as possible," and in Section
5.1 this routine will be used to generate a heuristic algoritlm to
solve the bin packing problem.

STSA requires a feasibility check and a value function to be able
to compare +the alternative solutions. In this example the feasiblity
check and the value function are stated as follows:

The wvalue of a solution set 8, say V(S), is obtained by the
summation ¥ c¢j and this solution set 8 is said to be feasible if this
sum does éif exceed GOAL.

The steps to solve a given problem 1is demonstrated belove.
The matrix Val(i,j) shows the values of the solutions { i \ S(t;),
J=1,...,i-1 1, where Val(i, 1) equals cj. If infeasibility occurs in any
entry of Val(i, j), this infeasible value and the new value calculated
for this node are given in the same entry separated by a comma. The
alphanumeric codes at the right of infeasible entries specify the
place where the calculations for a new value for that entry are done.

In this particular example , where GOAL is taken to be 40, the
optimal value is 40 which is the maximum of the node values and the
optimal solution yielding this value is { 1,2,3,5 }. Although the GOAL
is achieved at node 5, in order to catch the multiple solutions the
algorithm did not terminate.

This procedure is coded in Pascal and run on an IEM compatible FC.
In this application a lowerbound is used to shorten the bactracking

mechanism. The lowerbound is given in Observation 4.2.1.

i8

Example Problem : Pre-Assigned = null set Termination Node = 6
Piece(i) 6 7 9 10 i1 12
J i 6 5 4 3 2 1
0 6 7 9 10 i1 i2
1 18 i9 21 22 23
2 29 30 3e 33
3 39 40 42, 31 A
X' 38 39
5 46, 36 B
Node Value 39 40 32 33 23 12
Pre-Assigned = {4)

Termination Node = 3 19 20 21
31 32
42 30 Al
31 32 21
Pre-Assigned = {4, 3} Al
Termination Node = 2 30 31
42, 00 Ali
30 31
Pre-Assigned = {4, 3,2} Altl
Termination Node = 1} 42, 00
00
Pre-Assigned = {6}
Termination Node = 5 13 15 16 17 18
25 27 28 29
36 38 39
44, 35 48, 37 Bi
45, 34 B2

" e o o, ot S g B, o o ot S S S St St S i . e (et i it 8 B S (o T T) o ot St U U P T) S o e G P S S e el P e S, S o ot S

i9

Piece(i) 6 9 10 i1 i2
i 6 4 3 2 i
Pre-Assigned = {6, &} B1
Termination Node = 3 25 26 ef
37 38
48, 36 Bl
37 38 27
Pre-Assigned = {6, 4, 3} Bi1
Termination Node = 2 36 37
43, 00 Biit
36 37
Pre-Assigned = {6, 4, 3, 21 Bili
Termination NHode = 1 43, 00
00
Pre-Assigned = {86, 5}
Termination Node = 4 22 £3 24 25
34 33 36
45, 33 45, 34 B2 46, 00 B21M
44 33 B23
34 35 36 25
Pre-Assigned - {6, 5 2} B2
Termination Node = 1 46, 00
00
Fre-Assigned - {6, 5, 3} Be2
Termination Node = 2 34 35
46: 00 B2l

ot v 1 e s B B > " S P o T ek At o T T, P T P i)) . Pt D T AR R G P R S At b A S S S o o et G S ot e S Py (S Y e A (e P s i S

20

Fiece(1i) 6 7 9 10 11 12
i 6 5 4 3 2 i
Pre-Assigned = {6, 5, 3, 2} B221
Termination Node = 1 46, 00
00
Pre-Assigned = {6, 5, 4} B23
Termination Node = 3 32 33 34
4y 00 45, 00 B231
43, 00 B232
32 33 34
Pre-Assigned = {6,5, 4, 2} B2314
Termination Node = 1 45, 00
00
Pre~Assigned = {6, 5, 4, 3} B232
Termination Node = 2 - 44, 00
00

(OBSERVATION 4.2.1. Arrange pieces in nondecreasing order of piece

L+4 L

sizes, If © ¢y > GOAL and ¥ c; ¢ GOAL then L is a lowerbound to the
iz1 i=1

number of pieces that an optimal solution will posess.

Also, an upperbound to the number of pieces in the optimal

solution can be imposed in the same manner as follows.

(OBSERVATION 4.2.2, Arrange pieces as ln Observation 4.2,1, If

n n
Y cy » GOAL and ¥ ¢y % GOAL, then (n-U) is an upperbound to the number
1=U 1-U+4

of pieces that an optimal solution will possess.

Although the lowerbound should explicitly be stated in the
algorithm, the upperbound 1is impiicitly overtaken i(n the algorithm

S1SA by terminating the recursion if {1 \ Fre-Assigned]} ls infeasible.

4,3, Solving the Bin Packing Froblem Using STBA

As formulated in Chapter 3, Bin Packing problem 1is a 1two
dimensional zero-one integer programming problem. This section will be
devoted to apply STSA to solve this well-Known problem,

First of all, 8STSA as 1t i8 presented in Section 4,1, depends on
calculation of Val(i, J) where indices i and J represent root nodes of
trees related 1o each variable. However, bin packing 1is a two
dimensional problem and a transformation function should be set to find
out the bin and the piece related to every node . The following
functions may be used for this purpose .

Given a Hode

(Node - 1)
Bin (Node)

n

Piece (Node) Node - (Bin - 1) # n ,
Therefore, the first n nodes will he related to the first bin and

the second n Qf them to the seond bin, etc, as shown in Figure 3.

22

SEET NN N

Figure 3. Solution Space of the Bin FPacking Problem

The second step may be to define the feasibility check procedure
and the value function. In this application, the value of a solution is
determined by two distinct measures: The number of pieces packed into
bins and the total value of the pieces packed (that is 5 Cij)~
While comparing two alternative solutions, the first(é;izgiion is the

number of pieces packed in each solution because our main concern is to

maximize the number of pieces pacKked into the existing bins (This

23

duality will be discussed extensively later). I[f two solutions donot
compete on this measure, the solution in which the summation of the
vaiues of the pieces packed is larger should be prefered.

in 81TSA, beginning from the first node, all the nodes are
calculated in turn. In this particular case, this corresponds to
tilling up the bins in turn beginning trom the first one. Therefore, if
the duai problem, maximizing the number of pieces packed to a given
number of bins, is solved at each node, the number of bins at the
present node when all the pieces are packed will be the optimal.

To summarize +the procedure: Begin from the first node and
calculate the other nodes in turn., At each node try to maximize the
number of pieces packed. The bin number corresponding to the node at
which all the pieces are packed is the optimum number of bins.

Noticing that in this particular case we pack identical bins,

we can state the following observation,

OBSERVATION 4.3.1. Let the bins be indexed as By, Bp, ... Filling

up bin Bj while Bj is filled to level zero is meaningless if i > j.

S0, as shown in Figure 3, at t3’1 there is no need to consider the
trees related to the first bin.Besides, a fact can easily be seen about

the backtracking mechanism.

OBSERVATION 4.3.2. The recursive algorithm backtracks at most n

number of nodes.

24

This is true because there are n pieces to be packed and none of
them can be pacKed more than once. 8o, after n-1 backtiracks, at the
ntth trial, say at node i, the solution { i \ Pre-Assigned } will be
infeasible because { Pre-Assigned] set has n pieces packed , and at
the first check of Algorithm BACKTRACK the recursion will be
terminated.

Another improvement in the algorithm can be achieved by tracing a
lowerbound to the number of pieces pacKed into bins: If at any node,
say at node j, LB number of pieces are packed, and at node i, i>j, only
L number of pieces are packed where L < LB, and this solution is
infeasible, then there 1is no need to backtrack to find a feasible
solution to this node because it won't yield an optimal solution.
However, we have to Keep the information that the particular node was
left infeasible, because while backtracking in the following nodes we
may need the feasible solution +to this node. In such a case, the
feasible solution to this node will be calculated, That is, by
implementing this procedure we eliminate some unnecessary backtracking
and activate the backtracking routine only when generating a
competitive solution is promised.

Besides, further fathoming of nodes is possible by implementing a
lower and an upper bound on the number of bins packed. A strict upper
bound can be obta;ned by using the FFD heuristic algorithm presented in
Chapter 2. 1n algorithm STSA, any node i is an alternative solution to
the first BIN(i) number of bins, and by solving FFD using unpacked

pieces in that node, an upper bound, UB(i), for the number of bins that

25

will be packed using that solution can be found. The overall upper

bound upto node j will be OUB{J) = min UB(i) .
i<
I'ne lower bound to the number of bins that will be packed in any

node can be found by the following formula:

c - & c |,
1 J je€pieces J
packed

LB(i) = BIN(i) + [

1 Mo

J

where BIN(i) is the bin related to node 1i. The lower bound is
calculated at nodes numbered (nxk+i), kK = 2,...,m-i{, for +the nodes
{mk-1) + h, h=1,...,n and node i is fathomed if CUB(i) < LB(i).
The reason for not calculating the lower bound at every node is that
the solution obtained at that node may be used to generate solutions in
the preceding nodes related to +that bin. Therefore, lower bound
calculations of nodes related to a bin are done after the solution to
the last node of that bin is found.

The most time consuming part of the algorithm is the recursion
mechanism. So, prevention of recursion is an important time saving. For

this purpose a prevention rule can be implemented as follows :

If val(i, j) » Bin Capacity then calculate LB(i) by adding value
Bin Capacity - Val(i, j) into total value of pieces unpacked and donot

initiate recursion if QUB(i) ¢ LB(i).

In Chapter 3 using Observation 3.1 the variable number in the bin

packing problem was reduced. This fact can again be used to reduce the

26

problem size while implementing STSA. If we pack pieces with sizes
larger than one half before starting to the regular algorithm, this
will change the capacities of those bins pre-packed and change the
problem to a special case of variable sized bin packing problem, where
the bins with capacities less then one should not be left empty if it
is not necessary.

In this case, Observation 4.3.1 does not hold because the bins
are not identical any more and all the succeeding nodes should be taken
into consideration at every node, 1like in the previous example on the

Knapsack Problem.

4.4, An Optimal Smooth Facking Algorithm (OSP)

The Smooth Packing problem can be defined as packing a number of
pieces into bins Keeping the level of bins as smooth as possible. The
objective can be stated as maximizing the minimum or minimizing the
maximunm bin level. Which one to use depends on the area of application.
For example, if +the piece sizes stand for a physical weight, solving a
minimax problem leads to a more preferable solution. However, if the
levels represent the level of raw material in a deep container which
will be picked up by a laborer, it is wise to solve the maximin problem.
Below, the linear programming formulation of the problem is given for

the minimax case.

27

min Y

5.1,
n
B Ci¥jj 2 ¥ J =z t...0PT,
i=1
OFT
B Kyy =4 i=1...n
J=1

where
{ If i'th pilece ig packed into j*'th bin

X = ’
1 0 Otherwise

Y is a real variable , and OFT is the optimal
solutibn of problem (3) in Chapter 3,

In this section, an optimal algorithm, OSF, by which the maximum
bin level will be minimized when the pieces are packed into optimal
number of bins will be presented. This algorithm depends on solving the
algorithm 8TSA for binpacking as shown in Bection 4.3, repetitively
while changing the capacity of bins at each step. The flow chart of the
algorithm is given in Figure 4,

Example Froblem :

In this section, the problem with SEED = 14 and h = 10 will be
solved by OSF,

Iteration 1 . Bin Capacity = 1000

Bin Fieces Level
1 82a, 134, 40 996
2 761 761
3 745, 241 986
4 742 742
5 589 589
B 545, 412 957

Maximum Level = 996

STOP
S is the optimal
solution

Figure 4, Flow Chart of Optimal Smooth Packing Problem

Solve the bin packing
algorithm tfor the given
set of pieces

Set OPT = Optimum number
of bins that this given
set of pieces are packed

Set M = OPT
MAXLEV = the maximum
level of bins
attained in this solution

Yes
OFT < M

No

Set solution 8 to the
current available solution

Run the bin packing algorithm
for the given set of pieces
reducing the bin capacity
to MAXLEV - €, where € is a
very small number

Set M = the optimum rnumber
of bins that this given set
of pieces are packed into

28

29

Iteration 2 . Bin Capacity = 995

Bin Pieces Level
i 822, 134 956
2 761, 40 801
3 745, 241 986
4 742 742
5 589 589
6 545, 412 a57

Maximum Level = 986

[teration 3 . Bin Capacity = 985

Bin Pieces Level
1 gz2, 134 956
2 761, 40 801
3 745 745
4 742, 244 983
5 589 589
6 545, 412 957

Maximum Level = 983

Iteration 4 . Bin Capacity = 982

Bin Pieces Level
i 822, 134 956
2 761, 40 801
3 745 745
) 742 T42
5 589, 244 830
6 545, 442 957

Maximum Level = 957

Iteration 5 . Bin Capacity = 956

Pieces are packed into seven bins in iteration 5. Therefore, in the

optimal solution the maximum bin level is equal to 957.

30

V. HEURISTIC ALGORITHMS

5.1, Heuristic Algorithm SBT for Bin Packing

The well-known heuristic algorithms for the bin packing problem,
First-Fit (FF), Best-Fit (BF), First-Fit Decreasing (FFD), Best-Fit
Decreasing (BFD)were extensively discussed in Chapter a.Ih this section
a new heuristic bin packing algorithm Select the Best in Turn (SBT)
which uses the Selection Routine in Section 4.2, will be introduced.
The basic idea the algorithm stands on is that " among a given set of
pieces, select a group whose cumulative value 1is as close to the
capacity of the bins as possible but not exceeding it, and assign that
group as a bin ". It is for sure that SBT is an off-line algorithm just
like FFD and BFD, For selecting the best group, the algorithﬁ given in
Section 4.2. will be used. The flow chart of the algorithm is given in
Figure 5.

Example Problem

In this section, the problem with SEED = 16 and n = 10 will Dbe

solved by SBT.

Iteration t. L

{486, 298, 110, 67, 753, 464, 447, 478, 431, 7i4}

w
"

{486, 431, 67}

Iteration 2. L

i

{298, 110, 753, us4, 447, 478, Ti4}

w
i

{478, 4841

STOP

[teration 3.

Iteration 4.

Iteration 4.

Set of pleces L and
bin sizes are given

set L = 1

Using the Selection
Routine presented in
Section 4.2, select
set B with the
cumulative value
closest to bin
capacities

Assign B as bin i
and set L = L - B

Figure 5.
L = {298,
B = {110,
L = {753,
B = {753}
L = {714}

B = {714}

not

empty

Flow Chart of Algorithm SBT

110, 753, 417, Tidy
298, 471}

714}

31

32

Therefore, the solution is

Bin Pieces

486, 431, 67
478, 484

110, 298, 471
753

714

(@ LN SN FLE \ L I U

5.2. Algorithm HEUSTSA for Bin Packing

Another heuristic algorithm can be obtained by changing the
optimal algorithm STSA. STSA is an exponential time algorithm and the
bactracking mechanism is the routine where exponentially increaﬁing
number of operations are performed. In the heuristic algorithm HEUSTSA,
the backtracing mechanism of STSA is eliminated and the procedure is

reorganized as follows :

Algorithm HEUSTSA

STEP £ : Set i =,

Vi(ty)

Ci,

{11.

5(ty)

BTEF 2 : Set i = i + ¢,

V(ty) = 0, for all J, Jj<i, 1f { 1 \ s(tj) } is

infeasible .

11

V(t) =max { ¢, V(t) + ¢ I Jj<i 3.
1 i J i .
If the maximum value is cj then

set 8S(ty) = {i}.

33

If the maximum value is V(tyg) + c; then
set S(tj) = { 1 \ S(ty) }
STEP 3 ¢ If 1 < n then go to STEP 2.
STEP 4 : The solution is

8= {8(t) | V(t) 2 V(t), k=t...n]
J J k

HEUSTSA is of time complexity O (nm)2) if there are n pieces to
be packed and these pieces are packed into m number of bins.

Example Problem

wWhen the problem presented in the previous section is solved using

HEUSTSA the following solution is obtained.

Bin FPieces

1 468, 298, 110, 67
2 753

3 484, 471

4 478, 4314

5 714

5.3, Heuristic Algorithms for Smooth Packing

In this section , two heuristic algorithms will be presented
generated to solve the smooth packing problem by transforming the idea
behind the algorithms BF and BFD. These 1wo new algorithms will be
called Worst-Fit (WF) and Worst-Fit Decreasing (WFD) in the sense that
they proceed using arguments which are exactly opposite to that of BF
and BFD.

Worst-Fit : Let the bins be indexed as By,Bp, ..., with each

initially filled to level zero. The pieces ay,ap, ..., an will be placed

34

in that order. To place aj, find the least j such that Bj is filled to
level 0 < « £ 1-a; and « is as small as possible, and place a; in Bj if
possible. If it doesnot fit, find the least J such that Bj is filled to
level 0 and place a; in Bj.

Worst-Fit Decreasing : Arrange L = (a4,8p, ...,8n) into

nondecreaging order and apply Worst-Fit algorithm 1o the derived list,

35

V1. RESULTS

In this chapter, results obtained by running some randomly
generated problems to evaluate the performance of algorithm STSA and to
compare algorithms WF and WFD against the existing simple list
processing algorithms FF, BF, FFD, BFD are given as tables. The example

problems are generated by using the following random number generator:

For a given SEED ,

¢y = SEED

1

Cy [{(cy_4%25173) + 136849 } Mod 32767] / 32767 ,1 = 2..n.

In order 1o evaluate the performance of the £fathoming rules
applied in STSA besides the overall efficiency of the algorithm,
the number of nodes fathomed and number of prevented recursion
attempts versus total recursive backtracks and total nodes generated
are given below for some example problems. In the table, a problem is
represented by the number of pileces to be packed, n, and SEED used to

initiate the random number generator,

Nodes Total Total Rec. Prevented Rec.
SEED Fathomed Nodes Gen. Backtracks Attempts
n = 40
i0 3 6 0 6]
11 0 6 0 0
12 0 4 0 0
13 0 0 0 0 #
14 0 0 0 0
15 0 0 0 0 «x
i6 0 0 0 0 %
17 0 0 0 0
18 6 12 0 0
19 3 6 0 0

Nodes Total ‘Total Rec. Prevented Rec.
SEED Fathomed HNodes Gen., Backtracks Attempts
= {5
20 23 136 L 29
2l 0 0 0 0 =
e2e f] 0 4] 0 x
23] (] (] 0 «x
24 5 22 2 0
25 43 109 6 4
26 0 0 0 0 =
27 0 0 0 0 =
28 32 173 4 2e
29 63 626 56 4
= 20
30 ¢ 4] 0 0 «
31 0]] 0 x
32 i5 503 26 i0
33 7 480 3 4]
34 8 103 i3 0
35 0 (] (4] 0 =
36 0 0 0 0 «x
37 0 0 0 0 x
38 8 i6 0 0
39 10 46 i i0
= 30
40 13 127 7 2
31 88 1330 47 24
42 i42 1240 23 44
43 63 9036 301 28
44 12 88 3 0
45 63 1208 45 i
46 29 1969 71 46
a7 85 4uug 427 183
48 86 552 11 19
49 13 128 11 0
= 40
50 194 727 8 6
51 i7 34 0 0
52 37 76 4] 0
53 333 7963 321 553
54 18 36 0 0

37

Nodes Total Total Rec. Prevented Rec.
SEED Fathomed Nodes Gen, Backtracks Attempts

n

40 (Continued)

55 is 283 30 0
b6 87 258 i 63
57 163 9170 386 90
58 18 36 0 0
b9 87 749 9 95
n = 50
60 155 8406 6 21
61 500 22833 102 0
62 21 492 19 0
63 620 41012 217 g
o4 328 527 14 10
65 213 32789 ize 0
66 2l 42 0 0
67 21 42 ¢ 0
68 246 20599 95 0
69 476 39488 156 1
n = 60
70 57 145 0 0
74 26 52 0 0
T2 0 0 0 0 x
73 261 57998 243 0
T4 36 9003 116 2
75 0 0 0 0 »
76 23 91 i 0
77 370 9254 57 92
78 422 401y 356 0
79 723 23418 142 3

The lower and the upper bound of the problems with a star at the
right of the related rows are found equal at the beginning of the
algorithm , and the optimal solution is detacted before the recursive
procedure STSA is run. In these examples, it is interesting to notice
that the standard deviation of the number of nodes generated is very

high.

38

The solutions of some example problems using the heuristics FF,
BF, WF, FFL, BFD and WFD are presented in the following table, The
number of bins packed and the maximum bin level achieved at that

solution are given seperated by a comma.

SEED FF EBF WF FFD BFD WEFD
n = 10
11 7T, 971 7, 988 7, 971 7, 988 7 , 988 T, 971
ig 8, 914 B8, 9i4 g, 914 8, 962 6, 970 8, 914
13 &, B93 6, 907 6, 924 S, 987 5, 995 5, 984
i4 7, 996 7 , 996 7, 822 6, 996 6, 997 G, 957
i5 5, 987 5, 987 S5, 987 5, 994 5, 994 5, 994
16 5, 957 5, 98¢ 5, 957 5, 970 5, 970 5, 970
17 8, 959 8, 959 8, 9359 7T, 996 7, 996 7, 990
18 &, 960 6, 960 6, 960 6, 960 6, 960 6, 960
19 T, 981 T, 998 T, 998 T, 998 T, 998 7, 981
20 5, 977 5, 977 5, 977 4 , 982 4 , 982 5, 977
n = 15
21 6, 957 6, 997 T, 957 &, 996 6, 996 6 , 897
2e 9, 99¢ 9, 996 9, 97 8, 996 8, 996 8, 996
£3 9, 976 8 ., 980 9, 924 6, 995 8, 995 g, 924
24 10, 949 40, 999 410, 983 410, 990 40, 999 410, 939
25 8, 986 B, 985 8, 957 B, 996 5, 996 8, 920
26 5, 996 5., 998 6, 916 5, 998 5, 998 5, 996
27 7T . 990 7, 990 7, 994 6 , 1000 6, 997 7, 891
28 86, 976 8, 976 8, 976 8, 997 6, 997 8, 976
29 9 , 1000 9, 978 9, 948 9 ,1000 9, 990 9, 912
30 7, 977 T, 977 8, 901 7 . 986 7T, 987 7, 957
n = 20
31 g , 1000 9, 996 9, 953 8 ,1000 8, 999 8, 949
de 12, 994 12, 998 12, 994 14 ,1000 11, 998 11, 994
33 14, 956 43, 981 14, 956 43, 993 13, 998 13, 956
34 13, 9TT 12 , 998 413, 932 12 ,1000 12, 999 12 , 961
35 12, 991 12, 991 12, 991 14, 9983 11, 996 12 , 954
36 11, 993 11, 998 11, 968 41, 999 11, 999 11, 968
37 42 , 987 11, 993 13, 979 11 ,41000 41, 996 11, 990
38 13, 9814 13, 981 413, 981 12 ,1000 12, 999 12, 9681
39 12, 967 12, 998 13, 951 41, 995 14, 995 11, 961
40 43, 997 13, 997 413, 997 12 ,1i000 12, 997 i2 , 997

SEED FF BF WF FFD BFD WFD
n=25
41 14, 998 14, 998 15, 987 43, 997 13, 997 13, 987
42 45, 993 15, 998 15, 993 14, 998 14, 998 14, 993
43 48, 992 18, 998 418, 992 17, 998 417, 998 17 , 997
gy 415, 971 15, 998 15, 971 414, 998 14, 999 14, 971
45 47, 999 46, 999 47, 992 16, 999 16, 999 16, 992
46 44, 989 14, 988 {4, 993 13,1000 13, 996 13, 958
47 48, 982 18, 982 19, 962 47, 998 iT7 , 998 41T , 962
48 15,1000 15, 991 416, 966 14 ,1000 44, 999 14 , 988
g 1%, 934 415, 995 45, 914 14, 999 414, 999 14 , 954
50 46,1000 16, 998 17, 995 15, 998 15, 998 15, 995
n = 50
54 32,1000 33, 999 33, 998 30,4000 30, 999 30, 994
52 31, 990 30, 999 341, 999 28, 999 28, 999 28, 994
53 26 ,1000 25, 999 28, 987 25, 999 25, 999 25, 992
sS4 27, 995 27, 997 29, 986 25,4000 25, 999 25, 999
55 27, 998 27 , 997 29, 976 26,1000 26, 998 26, 979
% 23, 999 23, 996 24, 993 22 ,1000 22, 999 23 , 993
57 29, 996 29, 998 31, 973 28,1000 28, 998 28, 995
58 30,1000 30, 998 31, 998 29,1000 29, 999 29, 998
50 26, 999 26, 999 28, 988 24 ,1000 24, 999 25, 999
60 26, 999 26, 999 27, 999 24 ,1000 24, 999 24 , 997
n = 100
64 55, 998 54, 999 o0, 980 52,1000 52, 999 52, 993
62 52, 999 51, 999 57, 999 49,1000 49 , 999 49 , 999
63 56 ,1000 56, 999 60, 993 55,4000 55, 999 55, 999
64 51,4000 54, 999 55, 998 49 ,1000 49, 999 49 , 997
65 58, 995 57, 999 62, 994 55,1000 55, 999 55, 997
66 59, 998 57, 999 63, 995 57, 999 57, 999 57 , 996
67 52 ,41000 54, 999 57, 995 S0 ,4i000 50, 699 51, 995
68 58, 999 58, 999 641, 999 56,1000 56, 999 56, 999
69 57, 999 57, 999 61, 998 56 ,1000 56 , 999 56 , 997
70 57 ,1000 56, 999 59, 992 54,1000 54, 999 54, 999
n = 250
71 126 , 1000 125, 999 436, 993 4119 , 1000 149, 999 120 , 999
7¢ 137 , 1000 135, 999 147 , 996 128 , 1000 128 , 999 128 , 999
73 139 , 1000 137 , 999 153 , 999 i32 , 1000 133 , 999 133 , 999
74 139 , 1000 138 , 999 152 , 999 132 , 1000 132 , 999 132, 998
75 141 , 1000 140 , 999 153 , 999 431 , 1000 131, 999 132 , 999
76 136 , 1000 135, 999 149 , 994 432 , 1000 4132 , 999 132 , 998

39

40

SEED FF BF WF FFD BFD WFD

n = 250 (Continued)

77 128 , 1000 126 , 999 137 , 997 i22 , 1000 122 , 999 123 , 999
T8 133 ,41000 131 , 999 147 , 999 128 , 41000 128 , 999 128 , 999
79 138 , 1000 135, 999 149 , 998 131 , 1000 1341 , 999 131, 998
80 137 , 1000 135, 999 146 , 992 129 , 1000 129 , 999 129, 999
n = 500
81 278 , 1000 274 , 999 300 , 999 268 , 1000 268 , 999 268 , 999
g2 265 , 1000 260 , 999 284 , 999 250 , 1000 251 , 999 252 , 999
83 266 , 1000 263 , 999 289 , 998 256 , 1000 256 , 999 256 , 999
84 275 , 1000 271 , 999 302 , 996 264 , 1000 265, 999 265, 999
85 266 , 1000 263 , 999 295, 999 255 , 1000 255, 999 255, 999
86 283 , 1000 279 , 999 308 , 999 275 , 1000 276 , 999 276 , 999
87 258 , 1000 255, 999 288 , 999 246 , 1000 247 , 999 248 , 999
88 275 , 1000 272 , 999 297 , 999 263 , 1000 263 , 999 263 , 999
89 273 , 1000 270 , 999 296 , 998 262 , 1000 263 , 999 263 , 999
90 260 , 1000 254 , 999 287 , 997 246 , 1000 246 , 999 247 , 999
SEED FF¥ BF WF FFD BFD WFD
n = 1000
91 504 , 1000 498 , 999 Se4 , 999 483 , 1000 483 , 999 486 , 999
92 521 , 1000 544 , 999 581, 999 504 , 1000 502 , 999 503 , 999
93 534 , 1000 531 , 999 584 , 999 509 , 1000 509 , 999 509 , 999
94 510 , 1000 502 , 999 569 , 999 494 , 1000 494 , 999 495 , 999
95 544 , 1000 507 , 999 577 , 999 497 , 1000 498 , 999 499 , 999
96 524 , 1000 546 , 999 582 , 999 507 , 1000 507 , 999 507 , 999
97 518 , 1000 512 , 999 573 , 997 500 , 1000 500 , 999 500 , 999
98 54T , 1000 540 , 999 602 , 999 526 , 1000 527 , 999 527 , 999
99 504 , 1000 498 , 999 569 , 999 488 , 1000 489 , 999 491 , 999
100 522 , 4000 545, 999 584 , 998 502 , 1000 502 , 999 502 , 999

As it is seen from the examples solved, WF is not a good algorifhm
for the smooth packing case. However, WFD pacKks pieces into same number
of bins as FFD and BFD do and reduces the maximum level of bins

considerably .

44

VII., CONCLUSION

in this study, some optimal and heuristic algorithms are generated
for the solution of ordinary bin packing and newly defined smooth
packing problems. Although, the optimal algorithms STSA, for the
ordinary bin packing case, and OSF, for the smooth packing case, are
algorithms of exponential time complexity, by the lower bounds
generated they work well in small sized problems but cannot hadle big
problems because they require large amount of computer memory. The
logic behind Similar Tree Search Method is the main cotribution of this
study to this area.

Besides, four new heuristic procedures are developed where two of
them, HEUSTSA and SBT, are related to the ordinary bin packing problem.
HEUSTSA and SBT are examples on how the similar tree search procedures
can be rectified to obtain heuristic algorithms. However, the existing
bin packing heuristics are superior with respect to time complexity
functions and these algorithms are presented to inspire new perpectives
in solution procedures to the bin packing problems.

WF and WFD algorithms are the smooth packing versions of the BF
and BFD algorithms. WF uses more bins then FF and BF does and seems to
be unsatisfactory in smooth packing problem. Besides, WFD performs well
and while packing the pieces into same number of bins as FFD and BFD
does, it reduces the maximum level of bins considerably for most of the
cases and can be represented as a good algorithm for the smooth packing

case.

e

4p

REFERENCES

Johnson, D. 8., Demers, A., Ullman, J. D., Garey, M.R., Graham R.
L., " Worst Case Performance Bounds for Simple One Dimensional

Packing Algorithms ", SIAM J. Computing, Vol.3, pp.299-325, 1974.

Charles, U.M., " A Linear Time Bin Packing Algorithm ", Operations

Research Letters, Vol.4, pp.189-192, 1985,

Brown, A.R., Optimum Packing and Depletion, American Elsevier, New

York, 1971.

Garey, M. R., Johnson, D, 8., Computers and Intractability, W. H.

Freeman and Company, San Fransisco, 1979.
Ong, H. L., Magazine, M. J., Wee, T. 8., " Probabilistic Analysis

of Bin Packing Heuristics ", Operations Research, V.32, pp.983-

998, 1984.

Andrew, C. Y., " New Algorithms for Bin Packing ", ACM, Vol.27,
pp.207-227, 1980.

Coffman, Jr. E. G., 8o, K., Hofri, M., Yao, A. C., " A Stochastic

Model of Bin Packing ", Information and Control, Vol.44, pp.105-

115, 1980,

Loulou, R., " Probabilistic Behaivour of Optimal Bin Packing
Solutions ", Working Paper # 82-29, McGill University, 41982.
Friesen, D. K., Langston, M. A., " Variable Sized Bin Packing ",

SIAM J. Computing, Vol.15, pp.222-230, 1986.

10,

i1.

12.

43

Assmann, 8, F., Johnson, D, 8., Kleitman, D, J., Lenug, J. Y. T.,
" On Dual Version of the One-dimensional Bin PacKking Problem ",

Journal of Algorithms, Vol.5, pp.502-525, 1984.

Bruno, J. L., Downey, F. J., " Probabilistic Bounds for Dual Bin

Facking ", ACTA Informatica, Vol.22, pp.333-345, 1985,

budzinski, K., Walukiewicz, 8., " Exact Methods for +the Knapsack

Problem and its Generalizations ", EJOR, Vol.28, pp.3-21, 1987,

Ly

REFERENCES NOT CITED

Cook, 8. A., " The Complexity of the Theorem-Proving Procedures ",
Proceedings Third Annual ACM Symposium on Computing, pp.i51-458,

1971.

Karp, R. M., " On the Computational Complexity of Combinatorial

Problems ", Networks, Vol.5, pp.45-68, 1975.

Brucker, P., " NP-Complete Operations Research Problems and

Approximation Algoritims ", Zeitshrift fur Operations Research,

Vol. 23, pp.73-94, 1979.

Lewis, H. R., Papadimitriou, C. H., " Efficiency of Algorithms ",

Scientific American, Vol.238, pp.96-109, 1978,

Graham, R, L., " The Combinatorial Mathematics of Scheduling ",

Scientific American, Vol.238, pp.i24-132, 1978,

Karp, R. M., " Reducibility Among Combinatorial Problems ",

Complexity of Computer Computations, R. E. Miller and J, W.

Thatcher eds., Plenum Pres, New York, pp.85-104, 1972.

yoksexogretim ﬁ:g;:tg
Dokﬁman tasyﬂn

