g009

DEADLOCK DETECTION PROBLEM IN COMPUTING SYSTEMS -
A Simulation Approach Using a Priority Based

~ Deadlock Detection Algorithm

by
éema E. Akgin
BS. in° CMPE,, Bogazici University, 1987

Submitted to the Institute for Graduate Studies in
Science and Engineering in partial fulfiliment of
‘ the requirements for the degree of
Master of Science
: . in
Computer ‘Bngineering .
T. C.

Yoksekogretim Farula
Dokiimantiasyon Merkez!

Bogazici University
1989

DEADLOCK DETECTION PROBLEM IN COMPUTING SYSTEMS :
A Simulation Approach Using a Priority Based -

Deadlock Detection Algorithm

APPROVED BY

Dog. Dr. Ofuz Tosun - ' W

(Thesis Supervisor)

Do¢. Dr. Selahattin Kuru

Doc. Dr. Ali Riza Kaylan N %7

DATE OF APPROVAL .. (kt..4,138%..

ACENOWLEDGEMENTS

_,I am grateful to Dr. Oguz Tosun for his gmdanoe and help 1 would like to thank Dr Ufuk
| Caglayan who proposed the topu: of Lhe thesis. Thanks to Dr. Selahaum Euru, Ali Riza
Kaylan for their oomments ‘Valuable editorial mpmvements and help of Fedon Kadxfeh
are gratefully acknowledged Thanks to A. C. Cem Say, my ideas are deeply mfluenoed .
by discussions with him. Special thanks go to Gurol Oktug.

Sema F. Akgin

iv

ABSTRACT

In this thesis, the deadlock detection problem in computing systems is examined in
detail. ;Deadlo‘ck{ models and some published algorithm# on deadlock dg'tectioh are

discussed. A modified priority based a!gorithl;l is introduced and some more

modifis:\aﬁogs are offered to make thé algorithm correct and more efficient. The final

version of the algorithm is simulated for a single-site system. To show the effects of

these m;)difications. the simhlation results obtained with modifications are compared

with the results obtained without them. 1t is observed that after the nodifications, the

system performed bener. For furthek‘ simulation studies, édistributed system mo&el is
offered.

: Bu tezde bilgisayar sistemlerindeki ‘kili.tlenme yakalama sorunu incelenmektedir.
Eilitlenme modelleri ve konu hakkinda yaymlanmns bazi algoritmalar tammm)aktadm
Daha once: dizeltilmis ;‘Oncelige Dayali ﬁir Kilitlenme Yakala;ma Algoritmast”
agiklanmaktadir. Algoritmay: daha verimli ve dogru yapmak icin bazi degisiklikler
lﬂnerilmektedir‘ Algoritmanin son hali tek ‘islemciﬁ bir sistem icin
'benzétimlenmekteﬂir‘ Degisikliklerin etkisini gostermek amaci ile, alinan sonuglar
degidkliklé; yvapiimadan ' alinan sonuglarlia karsllasﬁrdmakmdlr. , Yé,ptlan
degisiklikleﬂe sisteﬁxin daha basarili bldugu gozlenmektedir. Ayrica ileride yapilacak.
olan lgenietim gcaligsmalar: igin dagitﬁmu:- bir sistem modeli snerilmektedir.

’ B N . eee
. ACENOWLEDGEMENTS : R “ wneenidid

ABSTRACT : iv

om“nnuuuuuuuuunuu“ L N O R YR RNN ses s 50080800 sa0stantsasassniorsssssees W

' i -

LIST OF FIGURES ...

e Tt 1 N TNt 0 o0 ST <+ 2400 Sa s e i raesassesssassansanssassanns LK

LIST OF TABLES......... B conooooooo INOTRERIIN. . TR ORI ¢

LIST OF sYMmIoSsnnunnusnuu“uugunuuv'uuuunnuu 5058400005404030000840800408 000000080000

.
RETVEIPNIRTIRERNNeIn | §

L. INTRODUCTION.......ocooooeoeeeecsneennnene et R |

i

2.1.1. Definition of Deadlock.............ooceerinrervarenne.
2.1.2. Examples of Deadlock et ssteseete "

N N

o

-

2.1.3. Resource Types

22. The General Model..................... stesenen NPT RTU VIR T TSTRrIRrOrvRTTevRTRRe:

22.1. General Resource Graph. e b sasasssasssssssses D

.
. 2.2.2. Operations on ReSOULCES.......nmiiinissssssssssssssssssses 1

2.2.3. Existence of a Deadlock in System......nnnniannnd

2.3. Deadlock Polici 12
3. 1] B LB 1 otutiiitiiaiistseisansesaasassssssssssssessssssssetsnsssssssasestssassssassasnesesessesssssssssssssane

2.3.1. Deadlock Detection and RECOVELY ... 12

2.3.2. Deadlock Preventi 1
232, DCE PREVEILIDIcooooienierseenenisnanssssssssnssssinssassssssssaasssassssess L3

-2.3.3. Deadlock Avoidance............nennn

uuuuuu.uuuuunununnunu‘u}uunls

o

3.1. One-Resource MOMEL ... oiieccnnetnssssssissmsssssssssssessssssssssssssssssssasesssss L3

CB20 AND ML csniissiisissssssssssinssssagasssssesssssnstsssssssssssssassssassssssssassassssanssassasess LB

' f

34. AND OR Model..........ooinniinsiinsssnsnsinsssssssssssssssssisssissssssssssssssssssssssssss b

33. k) MOGEL ... ssssssssssesssessssssasaesssasassssssasnasesassssasasnesinsses 9

5. U icted Madel... . 4 .19
34. Unrestrict

. .

Iv. DEADLOCK DETECTION IN DISTRIBUTED SYSTEMScovvvvvvvvvvvsvvmrmvsmrmsssssesssesesessssesssensses

21

4.1. A Brief Introduction to Concurrency Problemccocoorvervcrrvorirnrernsiiinen 21

- o
uununununnnnozz

q
*24 cent! a\l«‘zed Deadlock Detecuon 0000000000000000000000000000000050000000000200000000
42
4;3: HlemChlcal Deadlock Detecuon 000000000000000000000000000000000000600000000000000000000000009000000000000 4

4, Distributed Deadlock Detecti . 2
44, Distribu oc tection wrvsssveserssresssssosarossrassisnrasserdd .

45. Lock Granularity .. . recseersesecererrrreiboseeseeeesnierserieessertreristetsrevess

46. The ResourceModel vevterrersssesseseossossssorssrsarasrersessil

V. DISTRIBUTED DEADLOCK DETECTION ALGORITHMSoooooeevevevevvvvssivrevsncvivrsrrernesro @B
' d - .
1. .Path-Push Algorithms ; . . 28
1. shing Alg

5.2. Edge-Chasing Algorithms..... wvosssssorsssssrssessssssassossosessossssosslod

Diffusing Co. i 0
5.3. USINE COMPULALIONS.......coccvvrrvorormvrirrirnrinssissnronssssnivssssssssssssososososssssssososssosossssssd
.

5¢ *o Globavl State Detecnﬂn PP IO N0 PIIE NP PIIIIePIR0N000000000000000000800000000000000000

VI. STUDY ON AN EDGE-CHASING ALGORITHM.............................

......a......,....,...‘....,..........36

6.1. A Priority Based Distributed Deadlock Detection Algorithm .36

36
. 6.1.2. Distributed Deadlock Detectionccoovvvvrvvvvvvvsvvvrvrorsriviririnies 38

' ~ 6.1.1. The Distributed Resource Model.............ccococvvverervvrvriiorivirrrcrioiororsrons

6.1 Deadlock Resoluti 40
1.3. DCE RESDIULIDM ..o nnncnassssssssssssnassssssssssassssssasssanasssanaed

6.2. Errors and Deficiencies Detected by Choudhary etal.coonnenneninn il

65.2.2. False Deatlocks ..o ciinnencnsiiinsinssisessssssessssssssassassasssisassessessasss 2

S More Modificati ‘
6.3. Some More Modifications esersstesasssaanassansssassanssansesassarassanaese B

VIL. ASIMULATION USING THE NEW PRIORTTY BASED PROBE ALGORTTHM FOR
DEADLOCK DETECTION AND EXTENSIONFOR DISTRIBUTED SYSTEMS............. 50

7.1. Simulation Model of 2 Single-Site SYStem.cccocinminnnsmmonsssssssssssssssssesese 30

7.3. Data Structures 0F The Model.........oioieemsnessisssossesseseressmseseseeescnns 36
7.4, RESULLS OBLAINOU. ... cnnenenseneerssismesmssnsnes s 39
75. Extension)
General Distributed System Model for The Further Studies........................63
75.1. Simulation Model of a Site in Distributed System..............cccoocrvvrrrnrn 83
752. Ordering of Eventsin the SYStemcccoooovevvvvvvvvvvevvesrrsvrsrrrrrrresri 57

>
U III. CONCLUSION V00000ssrercsesirssresessstrns bers00ets00es 000 00000060000000000000000000000000200000000000000900000000000 .u69

APPENDIX B. MODIFIED PROBE ALGORITHM BY CHOUDHARY €4 8L.....ococrrvrcsrrrcrsrsreenT3

BIBLIOGRAPHY covversesrrvsusessesess vooneerere vorsrorsereesees ceteesererectessesretossssesssrsnessreresnssteseesararessversnrnres 104

RMENCB ~No‘l‘ cm 200000002000030000000 vese0 o 0oooo:oooooooooooo'oooocol000:oo00104550050000000000000106

ix
* LIST OF FIGURES
_ | ‘ . | ‘A Page
FIGURE2.1 System statesof the example..........cooermen - o
FIGURE22 A general [ESOULLE GrAPH ..o w0
FlGUﬁE 3.1 WFG of an example syste‘m. ... A8ornne 17
FIGURE 4.1 For@aﬁon of phantom deadlock ... R4, §
FIGURE 5.1 Mapping transaction agents £0 PrOCESIESmissssensssesssssisssssssessssesssee 31
PIGURE‘52 A cut of 2 diStrIBULEd SYSIBILicceroneeesseeessesnesssssssenessseesssessasssens SRR 34
FIGURE 6.1 AR undetocted deatlock. ... ol
I"lGﬁRE 6.2 Example of a false deadlock - irrenissssssssessssssesssssse B
FIGURE 6.3 Another false deadlock example........covvnnninnnnnne i B4
"FIGURE 64 An unresolved deadlock eXRMPLe ..o
FIGURE 7.1 Logical queuing model for a single-site system................. et aaes 52
FIGURE 7.2 Physical queuing model for asingie-site system RO, 3.
FIGURE7.3 A record i reSource bl .
FIGURE 74 A record in transaction table ... 37
FIGURE75 Structure of 2 probe qUete....... s 38
FIGURE 76 Structure of wait queus............cooonn. e s 59
FIGURE77 Simple model of the distributeq SYSIBIML.....covvinirinrininsassassssssssssssssrssssssssssssend 64
FIGURE 7.8 Logical queuing model for a distributed system site...........nninnnainnd 66

FIGURE 7.9 Physical queuing model for a distributed System site.......cc...cvevsrrernns R .Y

LIST OF TABLES

) Page
TABLE 7.1 Model pammeters. ceverestese . eeamenens 54
TABLE72 Slmulauon pmmeter sethings S— O _

. TABLE7.3 Simulation resultstaken with different mpl Values ... R

TABLE?7. 4 Sxmulauon results taken with different mpl values when priority has

no nmportance in handling PEQUBSESiecovnneornnssesasnssones . ' .61
TABLE 75 Simulation results taken when pmbe_Q‘s for data managers are not
BINPIOYEL........oc st ssrssssssssssssessassssssssasssssassssssssssssssss D8

TABLE76 Simulation resultstaken with different think-time values ..o 63

LIST OF SYMBOLS

current value of local clock at site i
controller at site i
data manager of R; »

set of events in a system

‘event i

future of cut ¢ in a distributed system
identity of T; B
past of cut ¢ in a distributed system

process i in a single-site system |

process i in site j of a distributed system

resoupce-of type i

current number of available units of R;

sequence of processes

site j in a distributed system

‘global state at time t

transaction i ata single-site system
total number of unitsof R;

transaction agent i in site j of adiStributed system

transaction manager of T;

wait for graph of a single-site system

wait for graph of site i in a distributed system

xi

set of processes in asyszém}
set of resources in a system

set of consumable resources in a system

set of reusable resources in a system

all possible allocation states of all system resources

null set .

happened before relation
reachability relation

1. INTRODUCTION

Deadlock detection is an importaat problem of multiprogramming environments, in
which several processes may compete for a finite number of resources. A- process
" requests resources, and if the resources are not available at that time, it enters a wait
state. It may happen that waiting processes will never again cha.nge state because the
resources they have requested are held by other processes which are du'ectly or
transmvely waiting for them. Ilns situation is called a deadlock. In other words itisa
permanent blocking of a set of processes that either compete for sysiem resources or
communicate with each other. |

If deadlock is ignored in the design state, it must be detected Iater by some
means, and then a process must be terminated and restarted to recover from it. It is also
. possible that a deadlock, containing all the processes in the system, occurs.

Methods for coping with deadlock fall into three categories, The first policy is
detection and recovery. Here no action is taken to prevent deadlock from occurring.
When a group of deadlocked processes is identified, some of them are terminated in
order (o break the deadlock. In connection with this policy the selection of the so-
called victim is another interesting component. The second policy is prevention. 1t is
. accomplished by preventmg at least one of the conditions, all of which are necessary
- for deadlock to happen. And the third pohcy is avoidance. This refers to methods that
rely on some knowledge of future process behavior to constrain the pattern of
resource allocation. -

The topic of the thesis is deadlock detection and resolution. First the problem is
introduced. Then, survey analysis is done and deadlock detection algorithms in
distributed systemﬁare grouped according to the methods they use. A single-site system
vses basic and simple methods for deadlock detection because there is no
communication problem within a single-site system. After this general study, a
deadlock detection algorithm is studied. A situation under which the algorithm is
unable to resofve the deadlock is found. Some structural modifications are suggested to
make the algorithm more efficient and correct. To show the performance of the

algorithm, it is simulated on a single-site system. The simulation results are discussed.
Finally a distributed system model is introduced for further simulation study.

The thesis consists of eleven parts (including this part). In the next three parts,
the deadlock problem is explained in detail. The fifth part introduces deadlock
detection algorithms in distributed systems. In the remaining parts, a priority based
deadlock detection algorithm is introduced, its structure is changed, and simulated for a
single-site system. The aim of the simulation is to show that the algorithm works under
deadlock conditions. ’

Part Il introduces the deadlock problem, gives examples of deadlocks, describes
what a general resource graph is, explains the necessary and sufficient conditions for
deadlock to happen, and gives information about deadlock policies.

© Part 11 discusses models of deadlock according to resource request model of the
processes. '

Part IV explains the methods of deadlock detection in distributed systems. It is
known that deadlock is important problem in distributed systems too.

Part V makes a classification of distributed deadlock detection algorithms and
explains each class. It also gives example algorithms for some classes.

Part VI explains an edge-chasing algorithm that i§ developed by Sinha and
Natarajan [1]1", discusses the errors and the deﬁcie_ncies of the algorithm detected by
Choudhary ez 2/12]. Also some modifications are prdposed to improve the algorithm,

Part VII introduces a single-site. system simulation using the algorithm
explained in Part VI both to test the algorithm and to show the effect of the some
system parameters on the performance of the system. For the future studies, it offersa
distributed system simuiation model. '

Part VIII contains conclusion of the thesis.
Appendix A explainstwo-phase locking protocol in concurrency control.

Appendix B gives the deadlock detection algorithm modified by Choudhary ef 2/
21

*

References enclosed in brackets refer-to the bibliography.

Appendix C contains the listing of the simulation program which is introduced
in Part VII. ‘

Bibliography gives a list of references used in this study and cited in the text of
the thesis. References nat cited are listed separately.

I1. DEADLOCK

Deadlock is the permanent blocking of 3 set of processes either competing for system
resources or communicating with each other. The problem of deadlock is not unique to
the operating system environment. Generalizing our interpretation of resources and
processes, we can see that the deadlock problem may be a part of our daily
environment.

In this part, first, the problem is introduced. Examples of deadlock é,re given. .
Secondly, the general model of a system is explained. Methods of dealing with deadlock
are introduced. ‘

2.1. The Deadlock Problem

In this section, we define some terms used in the rest of the chapter, introduce the
problem, give examples of deadlock, and explain the characteristics of resource types.

2.1.1. Definition of Deadlock
’ A computer system may be abstractly represented by a pair of sets (3, [1), where
% ={ All possible allocation states of all system resources } |
Tl =(Processes }

Each element in T represents one possible state in the distribution of the
resources, Each process in [] is a function that, for each system state in 3, maps to
another sei of states. That state, possibly, can be empty.

For example, let T = {S, T, 1], V) and [T = (P, Py). In this system there are only

four possible system states. Suppose the possible actions by the two processes are:

P,(5)=(T, U} P,($) = (1)
P,(T) -2 P,()={5,V)
Py} = (V) P,(1) =2
Py(V) = (1) Po(V) =@

where, for example, PI(S) = {T, 1]) means that when Pl is in state S, it may operate

changing system state to T or U. When the range is @ (null set), the process may not
operate to change the system state from the given state. A system can be shown
graphically, by using nodes for the possible states and arcs for the possible state
changes. The above example can be defined by Figure 2.1.

1

FIGURE 2.1 System states of the emﬁple

u v

An operation by process i changes the system state from, say, S to T. It is
abbreviated by writing $S—i-T. If a sequence of operations by processes Lj,. . .k is
possible (S—i-+T, T—j-1,.. ,V-+k—W), the sequence is abbreviated by S—+*-W.

With these settings, some terms related to deadlock can be defined. A process P;
is blpcked in state S if there exists no T so that S—i—T. In the figure, P, is blocked in

With these settings, some terms related to deadlock can be defined. A process P,
is blpcked in state 5 if there exists no T so that $3—+i~T. In the figure, P, is blocked in
state T because there is no arc labelled 1 starting at node T. Process Pi is dewdlocked In
state § if P, isblocked in S and, for all states T with S—+i—T, P, is blocked in T. No matter
how other processes can change the system state, there will be no opportunity for Pi to
perform an operation. In the figure, P, is deadlocked in the states U and V. Pl is not
deadlocked in T because T-+2—S unblocks Pl. If there is a process Pi deadlocked in S,
then S is a deadlock state. In the figure U and V are deadlock states. If all processes Pi

are deadlocked in S, then $ is a toeal deadlock state. There is no total deadlock state in the
figure. State § is secure (safe state) if it is not a deadlock state and, for any state T
reachable from S, T is not a deadlock state.

2.1.2. Examples of Deadlock

Deadlocks can be different from each other. Depending on the number of resources
and processes, they can be simple or complicated.

Asa first example, consider the two processes competing for disk file D and tape
drive T. Deadlock occurs if each process holds one resource and requests the other.
Strategies to deal with this kind of | problem include imposing constraints on system
design so that certain resources are requested in particular order.

As a second example, suppose the main memory space required for activation
records of processes is dynamically allocated. Suppose total space consists of 20K bytes
and two processes require memory in the following way:

PII . Pz
Request SE bytes Requests 7K bytes
Requests 6K bytes Requests 8K bytes

As in the previous example, if both processes progress their second requests, deadlock
occurs. Strategies to cope with such deadlocks include preemption of main memory
through paging or requiring processes to declare maximum amount of memory space
required in advance,

Consider two communicating processes having the [ollowing structure is
another example.

pI: sz
Receive (Py, M) Receive (Py, M)
Send (P, M') Send (P;, M)

Design errors such as these may occur at isolated places in very large programs and .
may be difficuit to detect.

For a fourth example, consider that we have two processes sharing resource R.
After some period of time both processes want to hold the resource R exclusively by
upgrading their locks. Each process begins to wait for the other one to release the lock.

P 1 . Pzi
req-shared-lock (R) req-shared-lock (R)
acquire-shared-lock (R) | acquire-shared-lock (R)
‘reg-exclusive-lock (R) req-exclusive-lock (R)

A solution for this problem is that if there are more than one users of a resource,
processes are not allowed to upgrade their locks without releasing the resource first.

In each of these examples, deadlock occurs because processes request resources
held by other processes and, at the same time, those processes wait for the resources
held by former processes. This is the fundamental characteristics of deadlock.

Deadlock is similar to séarvation, since each of these involves one or more
processes that are permanently blocked and waiting for the availability of the

resou'rce‘ The two, however, are distinctly different phenomena. A deadlocked process
waits for resources that will never be released. Starvation occurs when some process
waits for a resource that periodically became available, but it is never allocated to that
process.

2.1.3. Resource Types

There are two types of resources: reusable and consumable. Each class has distinct
properties that are refiected in the various strategles desxgned to deal with the deadlock"
problem.

Reusable resources have fixed total inventory. Additional units are neither
-created nor destroyed. Units are requested and acquired by processes from a pool of
available vunits and, after use, théy are returned to the pool. Examples of reusable
resources are processors, 1/0 channels, main and secondary memory, devices, busses,
and mformatxon such as files, databases and mutual exclusion semaphores. In the first
two and the fourth examples, processes use reusable resources.

Consumable resources have no fixed number of units, Units may be created
(produced) or acquired (consumed) by processes. An unblocked producer of a resource
may release any number of vnits. These umts mmedlatety become available to the
consumer of the resource. An acquired unit ceases to exit. Examples of consumable
resources are interrupts, signals, messages and information in I/0 buffers.

In general, deadlock may involve any combination of classes of resources, The
classes of resources present in any system or subsystem affect the manner in which
deadlock problem can be handled. '

2.2. The General Model

A general system consists of nonempty sets of processes, [1, and resources, [}

N=(Py.....Py)

P-ml,. .o .Rm)

The set p is partitioned into two disjoint seis which are p. and p,, representing
consumable and reusable resources. For each resource Ri' the current number of
available units of R, is greater than or equal to zero (£ 0). The total aumber of each
reusable unit is greater thap zero (1, >0). For each consumable resource, there is a

nenempty set of processes which produce units for that resource.

2.2.1. General Resource Graph

A Mwlar state of the general resource system maodel is described by the number of
units of each resource that each process requests, the number of units of each reusable
resousce held by each process, and current available inventory of each process Each
state can be explained by a bipartite digraph (directed-graph).

Nodes of the system are resources and transactions. To distinguish them, squére
boxes, O, are used to represent processes and circles, 0, to represent resources. For
reusable resources, the inventory of the resource is represented by placing small
tokens into the circle of the resource. For consumable resources, the tokens represent
the current number of available units.

There are three types of edges in the system. Reguest edges (P, Ri) are used {0

connect processes to resources and represent the requests which are not granted yet.
Assignment edges (Ri. P,) connect resources to processes indicating that the resource

is allocated to the corresponding process. Producer edpes (Rj, Pi) coanect consumable

resources to processes that produce them. This edge is the permanent identifier of the
producer. In Figure 2.2, the producer edge is shown using a dashed line.

There are some restrictions which a general resource system model should
obey. For reusable resources: '

(a) The number of assignment edges directed from Ri cannot exceed ti(total number of

resources type j)..

(b) At any time the number of available vnits is r; = 4 - (number of edges directed

]
from Rj).

10

FIGURE 2.2 ‘A general resource graph

(c) For each process P;, [number of request edges (Pi. Ri)f + [number of assignment
edges (Ri. pi)l < ti‘

For consumable resources:

(a2} Edge v(Ri. P,) exists if and only if P, produces Ri'

(b) The inventory of £ al any time is constrained only to be nonnegative. This means
that systems containing consumable resources may have infinite numﬁer of states.

2.2.2. Operations on Resources

In this part, operations which are performed by processes on resources are explained.
These operations are reguest, acguisiion, and reledase,

If process P; is execdtable. then it may request any number of resources
Ri' Ry, . . . For each request, an edge is inserted, eg. (P, Ri)'
(pi' Rk.).\°§

If 'process Pi has a request, for the resource Ri and the number of requested
units are not more than current inventory T then Pi may acquire the resource. As a

result of this, the graph must be modified. Request edge

i1

(Pi. Ri) for o reusable resource becomes (Ri, Pi) indicating an allocation. Each request
edge o a consumable resource disappears, simulating the consumption of units by P;.

Process Pi may release any subset of resource it is holding or produce any

number of units of consumable resource. Assignment edges disappear from the graph,
but producer edges are permanent. When new units of Ri are produced or released,

current inventory of the resource is increased by that amount.

2.2.3. Existence of a Deadlock in System

To check the existence of deadlock in a graph, the graph reduction method can be used.
In particular a reduction by a process P; simulates the acquisition of any outstanding
request, the return of any allocatéd units of a reusable resource, and if P; is a producer
of a consumable resource, the production of sufficient number of units to satisfy all '
subsequent requests by consumers.

Formally, a graph can be reduced by a nonisolated node, representing an
unblocked process, in the following way:

(a) For each resource Ry, delete all edges (Pj, Rj) and if Rj is consumable decrement r;
by the number of deleted request edges,

(b) For each resource R;, delete all edges (Rj, P If R; is reusable, then increment rj by
ithe number of deleted edges. If R; is consumable, then set rj to infinity.

A reduction of a graph by a process node P; may led to the unblocking of
another process node Pj, making Pj a candidate for the next reduction. A graph is
completely reducible if there exists a sequence of graph reductions that reduces the '
graph to a set of isolated nodes.

~ Aprocess P; is not deadlocked in state §, if there exists a sequence of reductions
in the corresponding graph that ieaves P; unblocked. ’

Another method of deadlock checking is searching for the existence of cycles
in the graph. Cycles show that there are some processes waiting for some resources. If
deadlock happens there must be a cycle. On the other hand, if there is a cycle the
system may or may not be in a deadlock state, depending on the resource request model
of the processes. Some resources have multiple instances. A resource with multiple
instances is involved in deadlock, iff all the instances of it are involved in cycles.

12

2.3. Deadlock Policies

Methods of dealing with deadlock fall into three categories. These -are detection and
recovery, prevention, and avoidance. Each policy has its advantages and disadvantages,
and also they are used under different conditions. ‘

2.3.1. Deadlock Detection and Recovery

If a.system does not employ a protocol to prevent deadlocks, then it needs a defection
and recovery scheme. When a group of deadlocked processes is identified some of them
must be terminated (aborted) to resolve the deadlock. Either a deadlock detection
algorithm examines the state of the system periodically, or system events may trigger
the execution of the algorithm. The process which is selected to be aborted is called
victim. The algorithm should select the one whose termination costs the least. Factors
that are commonly used to make this determination include:

(a) The amount of effort that has already been invested in the process, This effort will
be lost if the transaction aborted.

(b) The cost of aborting the process. This cost generally depends on the number of
updates the process has already performed. ‘

(c) The amount of effort it will take to finish executing the process. The scheduler
wants to avoid aborting a process that is almost finished. To do this, it must be able to
predict the future behavior of processes.

{d) The number of cycles that contain the process. Since aborting a process breaks all
cycles that contain it, it is best to abort processes that are part of more than one cycle.

A process can be repeatedly involved in deadlock. In each deadlock, the same
process is selected as the victim. It aborts and restarts its execution, only to become a
part of deadlock again. To aveid such ¢rolic restarts, the victim selection algorithm
should also consider the number of times a process aborted due to deadlock. If it has
bheen aborted too many times, then it should not be a candidate for victim selection,
unlessall processes involved in deadlock have reached this state.

13

The thesis is on deadlock detection and resolution. So, this topic is examined in
detail in the following parts.

2.3.2. Deadlock Prevention

A second class of deadlock policy is plfﬁ?ﬂ”bn‘ Here the system design prevents entry
into a state which leads to deadlock. This is accomplished by denying at least one of the
four conditions which are necessary for deadlock to happen:

(a) Mutual l:rdmbn: Processes hold resources exclusively, making them unavailable
to other processes.

{b) Nanpreemptmn Resources are not taken away from a process holdmg them; only
processes can release resources they hold.

(¢) Resource Waiting. Processes that request unavailable units of resources block until
they become available, '

(d) Partial/ Allocation: Processes may hold some resources when they are waiting for
ather resources.

Deadlock is prevented by designing the resource management section of an
operating system so that one of the conditions cannot occur. Denying any condition
inevitably degrades utilization of the system resources, but it is appropriate in the
systems for which deadlock carries a heavy penalty (real-time systems controlling
chemical or nuclear processes).

2.3.3. Deadlock Avoidance

Avoidance refers to methods that rely on some knowledge of future process behavior
to constrain pattern of resource allocation. Once again degradation in the resource
utilization is inevitable. Often, a subset of resources for which deadlock is especially
expensive is managed with an avoidance policy.

There are various algorithms which differ in the amount and type of
information required. The simplest and most useful model requires that éach process
declare the maximum number of resources of each type that it may need. Given a priori
information for each process, it is possible to construct an algorithm that ensures, the

14

system will never enter a deadlock state. A deadlock avoidance algorithm dynamically.
examines the resource allocation state to ensure that there will never be a circular-
wait condition.

Given the concept of a safe state, we can define avoidance algorithms which
ensure that the system will never enter an unsafe state . The idea is that the system
will always remain in the safe state. Initially the system is in a safe state. Whenever a
process }equests a resource that is currently available, the system must decide whether
the resource can be immediately granted or not. The request is granted only if it leaves
the system in a safe state. As long as the state is safe, the operating system can avoid
unsafe states. In an unsafe state, processes are not prevenied from requesting
- resources in such a way that a deadlock occurs. '

Note that in this scheme, if a process requests a resource which is currently
available, it may still have to wait.

15

111. MODELS OF DEADLOCK

Depending on the‘applimﬁ'on. resource systems allow a number of different kinds of

resource requests. For example, a process may need to access cbmbination} of some

resources, such as resource A and resource B, resource A or resource B, etc. This part

introduces a hierarchy of request models used in the literature, starting from very

_ restricted forms and going to models with no restriction. We also mention about some
algorithms which are designed for those models.

In Part 11 the deadlock problem is studied in detail. The theory can be directly
applied to all system resources. Not to complicate the system, we can consider all
respurces as ‘single unit reusable® resources. As a consequence, each resource is
either not in use or allocated to a single user . This shows that resource nodes are
redundant and can be eliminated from reusable resource graph.

In such a graph, edges are different than the ones we used. If R is a2 resource
and P and Q are processes such that (P, R) and (R, 0) are edges in the graph, then the
transformed graph will have an edge (P, Q). This new graph is called wadi-for-graph
(¥FG) because an edge represents one process waiting for another to release the
resource. Since all resources are single unit, a cycle in WFG is the necessary and
sufficient condition for a deadlock to exist. For this reason, deadlock detection
algorithms are based on finding a cycle in the WFG.

3.1. One-Resource Model

It is the simplest model, in yhich a process can only make one outstanding request at a
time. Finding a deadlock in such a WFG corresponds to finding a cycle in the graph. The
outdegree of 2 node, which is the number of edges leaving a process node, is not more
than one.

16

A very simple algorithm for deadlock detection in the one-resource model
appears in Sinha and Natarajan [1]. It is an edge-chasing algorithm in which probes
are sent in the direction of the edges of WFG. In the simplest case, a probe consist of a
natural number which is unique to the nodes in the graph, node id, and the id of the
node which will be the victim in case of deadlock.

The algorithm has véry nice featurés. It is very simple. Exactly one process in
the cycle detects the deadlock and simply informs the victim to take necessary actions
before being aborted. Spontaneous aborts are allowed and it does not detect phantom
deadlocks.

Although the algorithm seems to> be correct Choudhary ef a/ |2] show the
missing parts of the algorithm and improve some of them without changing the main
structure of the algorithm. This is explained in detail in Part VI.

3.2. AND Model

In this model, processes are allowed to request more than one resource at a time and
. then, they wait all requests to be granted. The nodes of such a system can have
outdegree greater than one. The problem of finding the deadlocks is equivalent o
finding cycles in the WFG.

Consider the WFG given in Figure 3.1. Node P11 has two outstanding resource

requests. Because the system is an AND model system, both of the requests must be
satisfied.» ‘

We define deadlock in the AND model, using the lines of Chandy and Misra [51. A
process p; is said to be dependent on process p; if there isa sequence seq = Py, Py, - - . P;

of processes such that each process in seq is idle and each except the first holds a
resource for which the previous process in seq is waiting. We define p; to be locally

dependent on P if all the processes in seq belong to the same controller. p; is
deadlocked if it is dependent‘on itself or a process that is dependent on itself.

17

FIGURE 3.1 WFG of an example system

Deadlock detection algorithms for the AND model declare that deadlock exists.
only if cycles exist. Generally, you cannot say that p; is deadlocked, if it is not involved

in the cycle but waiting P which is a part of the cycle. As you can see in Figure 3.1
node Ps3 is not part of a cycle, but because it is waiting for node Pyg3 which is part of a

cycle, it is also deadlocked. Deadlock in the one-resource system can be defined in the
same way, with additional restriction that a transaction can have at most one
outstanding request at a time. It is seen that the AND model is a more general form of
the one-resource n;odel.

3.3. OR Model

Another modef of resource request is the OR m(_:del'. A request for many resources is
satisfied by granting any requested resource. An example of this model can be a read
request for a replicated data item. It can be satisfied by reading any copy of it. In the
OR maodel, detection of a cycle is insufficient for deadlock detection. For example in

Figure 3.1, there is a cycle in the WFG, but we cannot say that there is a deadlock,
because node p i1 is transitively waiting for node P22 which is an active node. We can

say that it is a deadlock situation, if all the edges leaving from p {1 are involved in
cycles,

18

In the OR Model, a £z#o¢ in the WFG indicates existence of deadlock. By
definition, a vertex v is in a2 knot if v w such that w is reachable from v —» v is
reachable from w. S0, no path originating from a knot has "dead ends.”

We define a deadlock in an OR model as follows: A process is blocked 1f no one of
its outstanding requests is granted. Each dlocked process has a set of procesﬁes called
its dependent set. A set S of processes is deadlocked if all processes in S are permanently

. blocked. More clearly, a set S of processes is deadlocked if

(a) all processes in S are blocked,
(b) the dependent set of every processin $ isa subset of S, and
(c) there are no grant messages in transit between processes in S.

Presence of a deadlocked set of processes is equiyalént to the existence of a knot
in the WFG. Therefore, deadlock detection in the OR model can be reduced to detecting
knots in the WFG. A blocked processp is deadlocked if pisinaknotor p can reach only
deadlocked processes.

AND model deadlock detection can be simulated by repeated applications of the
OR model deadlock computations, where each invocation operates on a subgraph of the
AND model WFG according to Enapp [6]. But it becomes a very inefficient method to
handle deadlocks. '

3.4. AND-OR Model

As the name implies, it is the generalization of the previous two models. Requests can
be combinations of the ones in AND and OR models, For example, (a and (b or ¢)) may be
a request of this model. For this mode! we can use repeated application of the OR model
deadlock computation as explained in the previous section. As explained before, using
the algorithm in this way is very inefficient.

A better deadlock detection methM for this model }s developed by Hermann and
Chandy [7]. The algorithm is explained in Section 5.3. ~ ~

19

3.5. () Model

The (E) model allows the specification of requests to obtain any k available resources

out of a pool of size n. It is the generalization of the AND-OR model. So every request in
the (i: ﬁodel can be expressed using the AND-OR model.

To find a deadlock in such a model, the requesting process should be checked. If

out of k requests, more than (n-k) are involved in cycles, it is said, the process is
deadlocked.

An example alg(;rithm for this model is Bracha and Toueg's Algorithm 18l A
transaction can have as a request an arbitrary and-or combination of (: réquests.

A process becomes blocked, when it issues an (2) request. It does so by

sending out n request messages. It becomes executing again when it receives k grant
messages. In this case, it sends relinguish messages to the remaining (n-k) processes,
informing them that the edge created by sending the request message no longer exists.

Gafni [9] suggests improvements to this algorithm, without giving any
correctness proof or simulation results.

3.6. Unrestricted Model

Initially no resource request structure is assumed. Instead the stability of the deadlock
is the only assumption made meaning that deadlocks cannot go away by themselves; we
must detect and resolve them.

The advantage of this model is that it works under every resource request
model. But, because it is designed considering all resource request structures, it has a
Iot of overheads. So, it is preferred just for the systems in which resource requests do
not have a general structure.

; | %

However, in the context of deadlock detection in computing systems, these
algorithms seem to be of more theoretical value. Since the fact that no further
assumptions are made about the underlying structure of the system, computation leads
to a great deal of overhead that can be avoided in algorithms for the simpler models.

21

1V. DEADLOCK DETECTION IN DISTRIBUTED SYSTEMS

In general, a distributed system consists of a number of sites, each of which is actually
a centralized system. This brings additional problems to the system such as dealing with
replicated data, single process executing in parallel at different sites, etc. As it can be
imagined, it is more difficult to detect the deadlock in a distributed system. This is
because each site has only a local view of the whole system.

Both resource (in this case, we refer to 2 device such as disk, tape, etc.) and
communication deadlocks can be distributed. In distributed systems, processes that
‘access nonlocal data, migrate to other sites creating a subprocess at that site.
Subprocesses may run concurrently with each other. The originating process is
blocked until all subprocesses terminate. A communication deadlock can occur, if a
process in replicated database requests the value of some nonlocal data item and is
blocked until one of the sites that hold a copy of this data responds.

4.1. A Brief Introduction to Concurrency Problem

A nice place to see a group of resources is a database. In a database, we can call each
data item a resource. When concurrency or multiprogramming is allowed, a
mechanism must be developed to control the access of processes to data items. This
mechanism is called wacurrency control mechanism. The proper definition of
concurrency control is given using the terms of Bernstein ef #/ [3]. Concurrency
control deals with the prdblem of coordinating the actions of processes that operate in
parallel, access shared data, and therefore potentially interfere with each other.

The main component of the systems that offer concurrent processing is the
i‘mnmbn. A transaction is defined as a process thal accesses a shared database.

22

When two or more transactions execute concurrently, their operations on the
respurces in database are performed in interleaved fashion. Such an interleaving can
cause the resources to be in an inconsistent state. So, not to face with such situations,
resource requests of processes working concurrently are controlled, before granting
them.

When a transaction (process) successfully terminates, the transaction is said to -
be committed. Successful termination means that the process acquired all the resources’
it requested and finished. A process is aborted, if its execution is terminated by the
operating system, before it completes.

The main difficulty in deadlock detection in distributed systems lies in the
efficient construction of the global WFG. Construction of the global WFG is required to
detect global deadlocks. Even though each WFGi is acyclic, the global WFG may contain

a c&cle. To discover such deadlocks, all sites mbst put their local WFG's together.

In distributed systems, if a process requests a resource at a remote site, a remote
agen! is created at the remote site to implement the actual request, access, and release
of the resource.

In distributed deadlock detection algorithms, usually database objects are used as
respurces. :

4.2. Centralized Deadlock Detection

In centralized deadlock detection, one site, the central detector, is responsible for the
detection of global deadlocks. There are two basic approaches. ln a periodic deadlock
detection, as the name implies, various sites are polled periodically to check the
occurrence of any deadlock. In the watinvouscase, each local site informs the central
detector when an edge inserted to or deleted from local WEG.

Once the centralized detector finds a deadlock, it selects a victim by using the
rules explained in Section 2.3.1 . Therefore in addition to WFG's, the centralized detector
needs some information about transactions to make a good victim selection.

23

Transferring this information creates more message traflic in the system (makes the
traffic heavier).

Although ceniralized deadlock detection is conceptually simple, there are some
problems involved in the approach. The first problem is phaniom (false) deadlocks.
Assume a continvous deadlock detection and sﬁppose initial states of site A and site Bare
asshown in the Figure 4.1(a). Initially, process 1 requests a resource held by process 2,
process 2 and process 4 respectively wait for process 3 and process 1.Afler a while
process 3 requests the resource held by process 4. The local WFG's of site A and site B
are sent to the central detector—Figure 4.1(c). At that moment process] releases its
resource request-Figure 4.1(b). But before the new WFG is sent, the central detector
detectsa deadlock, but it is a false deadlock. ‘ :

d}*@—*——-——**@ 4

Site A Site B

(a) Initial system state

(b @—»— (34

Site A Site B
(b) Subsequent system state
(f}*@f
(c) Phantom deadlock

FIGURE 4.1 Formation of phantom deadlock

24

To prevent the detectinn of such a false deadlock, different concurrency conteol
algorithms such as two-phase locking can be used. For more information about two
phase locking refer to Appendix A. In case of two-phase locking, phantom deadlocks
again occur when a process that was involved in deadlock, spontaneously aborts.

A second problem with centralized deadlock detection is related to the high
volume of message traffic between the local sites and the central site. The lines leading
towards the central detector can be bottlenecked. If continuous checking is used, too
much overhead is encountered. The tradeoff is between rapid detection of deadlocks
and reduced message traffic. There are several variations of periodic deadlock detection
to reduce the number of messages required for deadlock detection.

A third problem is their vulqerabiliiy to failure of the central site, causing
failure of the entire system. Such faults result in long delays until a new central agent
is determined and supplied with up-to-date WFG information. One method for the
solution of this problem is to provide 2 backup central site. But this solution brings
other side problems with it, such as its cost, need for backup time, etc.

One reason for the popularity of the centralized deadlock detection methods is
its conceptual simplicity. Moreover, some practical problems, such as removal of false
deadlocks, are easily solved. For example, whenever a global deadlock is detected, the
central controller can reconstruct the deadlock cycle using new information received
from local controllers. If the deadlock cycle remains, then the deadlock is a genuine
deadlock.

4.3. Hierarchical Deadlock Detection

The centralized deadlock detection requires that all information to construct the global
WFG must be requested by one site and kept in that site. Hierarchical deadlock
detection is in between centralized and distributed deadlock detection.

Asin the centralized approach each site maintains its local WFG. In contrast to
the centralized approach, the global WFG is distributed over a number of different
deadlock detectors, These controllers are organized in a tree, where each leaf contains

the local WFG of a single site. A site is reported to its parent deadlock detector. Each ="

25

parent deadinck detector is in charge of detecting and resolving any deadlock that is
local to itseif and the set of its descendent sites. The process terminates at some central
deadlock detector.

Hierarchical deadlock detection partially solves the problem of high cost of
constructing the global WFG. But it is still vulnerable to failure of central deadlock
detectors and the phantom deadfock problem is not eliminated.

4. 4. Distributed Deadlock Detection

Using this method, any site can detect the deadlock given enough information.
Distributed deadlock detection has been the subject of intensive research in recent
years and a lot of algorithms have been published on the subject. In this part, we will
see why distributed deadlock detection is needed.

Most WFG cycles are of length two. Let's see why it is 50. Suppose we start with
all active processes, so the WFG has no edges. When processes become blocked, edges
are added to the graph. Farly in the execution, more processes afe not blocked, so new
added edges are from wailing processes to the ones which are actually holding the
resource {an unblocked process). As more processes become blocked, there is more
chance that a process P; will be blocked by a lock owned by process Pi which is also

blocked, creating a path of length twa,

Suppose all processes access to the same number of data items with equal
probability. Then on the average, blocked and unblocked processes hold the same
number of locks. All processes are equally likely to block an unblocked process. Then
the probability that an edge creates a path of length two (three, four, elc) is
proportional to the number of processes that are on the ends of paths of length one
{two, three, etc). Because initially there is no edge, short paths must dominate. So an
edge that completes a cycle has higher chance to wait a process which is on the end of
a shorter path. Therefore most WFG cicles are of the length two.

Because most WFG cycles are of length two, many times only two sites will be
involved in deadlock. S0 we do not need (o construct the global WFG to see the existence
of a deadlock. In this case trying to construct a global WEG, such as in centralized

26

deadlock detection, will be both useless, and time consuming. Communication of only
those sites which are involved in the deadlock is enough to detect the deadlock. In this
way, deadlock is detected faster without causing unnecessary communication.

Ay

4.5. Lock Granularity

The choice of granularity of the database (when data files are used as resources),
represents a tradeoff between increased concurrency and system ovefhead. Finer
granularity, at the record or field level, provides more opportunity for concurrency,
but more locks to be dealt with. It may be desirable to allow different objects with
different granularities, such as a record, a disk page, or an entire file, making the
system more complex. This method usually called mal&ma&ri&,&*lacfiagz

In multigranularity locking protocols, deadlock can occur for more than one
reason. First, a transaction that obtains too many locks on data items of small
granularity wants to increase the granularity of its subsequent lock requests. Another
problem arises when granularity of the resources is organized as a tree. In this case a
locking protocol may require a transaction that wants to lock some set of granules to
lock a majority of parents of these granules first. If two transactions happen to try
focking the same set of granules, they may reach to a level where both hold locks on
exactly half of the parents of the set, so none of them succeed. |

4 6. The Resource Model

To study deadlock detection algorithms for distributed systems, the model of Menasce
and Muntz [4] is going to be used. According to the model, a distributed sysiem consists
of a collection of N sites, S{. S, . .. Sy, connected by a communication network. The
network is assumed to be fully connected. It is also said that the communication
network is connected using star topology. Each site is a centralized system that stores

27

some portion of the resources. Data objects in the databases are accepted as resources in
the distributed system. There are M transactions, T Ty ey TM running on distributed

data. A transaction sends reswurce requesis to a transaction manager (TM). There is
one controller (c,) for each site (sil A transaction is blocked from the time it requestsa

respurce until the acquisition of the resource. A transaction can request a resource
which is residing at a remote site. A distributed transaction Ti implemented by
lrsasaciion agents tii' each of which is the local agent for transaction Ti at site 8j. In
case transaction agent tii requests a resource which is cqntrolled by controller Cm’
controller ¢, transmits the request to agent t; via controller ¢ . When t, = acquires

I

the resource it sends a message to b via c;. As it can be seen, intersite requests are

always between two agents of the same transaction.

When agenls in transaction Ti no longer need a resource controlled by Conr they
communicate with agent b which is responsible for releasing the resource. It is

assumed that messages sent between two sites arrive seqﬁentially and in a finite time.
And also it i5 assumed that if a single transaction runs by itself in the distributed
system, it will terminate in a finite time and deadlock does not arise.

A transaction agent is said to be Affe if it is waiting o acquire a resource,
otherwise, it is execuiiag. If an agent never acquires a requested resource, it is
permanently idle,

In part V, this model is taken into account when explaining some algorithms.

28

V. DISTRIBUTED DEADLOCK DETECTION ALGORITHMS

The distributed deadlock detection algorithms in the literature come from four
different classes which are path-pushing, edge-chasing, diffusing computations, and
global state detection. Each class has its advantages and drawbacks.

The correctness of a deadiock detection algorithm depends on two conditions
without looking at the class which it belongs to. First, every deadlock must be detected
eventually. Second, if a deadlock is detected it must exist. This condition means that
there should not be incorrectly detected deadlocks (phantom deadlocks) because of out-
of-date information. But in case of spontaneous aborts no algorithm can guarantee to
detect only genuine deadlocks.

5.1. Path-Pushing Algorithms

The basic idea under this class of algorithms is to build some simplified form of global
WFG at each site. For this purpese, it is allowed that all sifes can exchange deadlock
information without causing too much message traffic. Using path-pushing, each site
faoks for cycles in its local WFG and lists all paths in the graph. It selectively sends
some portions of paths to other sites that may need them to find cycles. When a site
receives a path, it adds the edges of the received path to its local WFG, and checks for
cycles. If there is no cycle, then the paths that neither the sender nor tl;e receiver
have seen before are listed and sent to other sites which may have more edges to add to
these paths. The deadlock is detected by the site that adds the final edge to the path
making it a cycle. And then, it is reported to the other sites involved in the cycle. If
cycle lengths are short, this method is bettef than centralized deadlock detection.

Path-pushing is a nice method, if every site knows where (o send its paths. The
best method is sending them to all sites, if you want deadlock to "be detected faster.

29

Although it makes detection Faster, it causes heavy traflic in the system. Using this
approach, every site will end up detecting the deadlock, which is more than necessary.
And also, two or more sites that detect the deadlock might choose different victims.

To reduce the traffic and still make enough detections another method is
developed. Suppose that

(a) each transaction, T;, has a unique identification, /(7 and

(b) 1ds are totally ordered.

In every cycle, at least one path Ti" ves —’Tj has Id(Ti) $ Id(’l'j). If we only send around

the paths that have this property, we still find every cycle b? reducing the number of
transferred path in the system. So, when a site produces new paths, it sends them to
sites having this property.

One important point on the subject is that many path-push@ng algorithms are
found to be incorrect. For example Gligor and Shattuck [10] show that the algorithm
developed by Ménasce and Muntz [4] is incorrect. Another example‘ is Obermarck’s
algoriihm [111. It is thought that one reason of such incorrect algorithm development
is that at that time the notion of snapshots and consistent global sites in asynchronous
systems were not well understood.

5.2. Bdge-Chasing Algorithms

The existence of a cycle in a distributed WFG can be checked by sending special
messages called probes along the edges of the graph. Probes are distinct from resource
request and grant messages and are only used for the detection of a cycle in the system,
When the initiator of a probe receives that probe, it knows that there is a cycle in the
system and it is on the cycle. Then deadlock resolution is initiated.

Only blocked processes propagate the probe along their outgoing edges.
Executing processes simply discard probes or do not put the probes into operation,
depending on the algorithm.

30

An edge-chasing algorithm which is developed by Sinha and Natarajan [1} and
modified by Choudhary o2/ [2), is examined and improved in the following parts.

5.3. Diffusing Computations

In this class, the basic idea is a Jdiffusing wwmputation which is activated by a
transaction manager that suspects a deadlock. If this computation terminates, the
initiator declares deadlock. The characteristic feature of the superimposed computation
in the case of distributed deadlock detection is that the global WFG is implicitly
reflected in the computation. The actual WFG is never built explicitly. The diffusing
computation expands by sending guwery messages and shrinks by receiving replies
These messages are distinct from request and grant messages. When a diffusing
computation shrinks back to its originator it terminates.

Nodes different from the root are called /zfernal nodes. Each node in the
diffusing computation has an initial state called the mewiral state. The root sends
queries to its successors to start diffusing computation. After receiving the First query,
a node leaves the neutral state and becomes active. This query is called the eagaging

-query for that node. The process that sent the engaging query is called the vagagerof
that node. The edge along which the query is sent is called the eagagement edge of the
node,

After receiving engaging query, an internal node can send queries to its
successors, and also send replies to its predecessors and receive replies from its
successors, (ueries travel in the direction of edges and replies travel in the opposite
direction.

The difference between the number of queries and replies sent over an edge is
called the deffcitof this edge. The deficit of an edge is greater than or equal to zero.

Now we can define that the neutral state of a node is the state in which the
deficits of all edges are zero. The diffusing computation terminates when the root
returns to its neutral state. A node sends back its engaging reply only after it has
received replies from each query it hassent, -

31

We say that diffusing computation has terminated if and only if all internal
nodes are in their neutral state, and also the root returns to its neutral state.

In general thisapproach results in shorter messages and less deadlock detection
overhead as compared to path-pushing algorithms.

1f we examine Hermann and Chandy's AND-OR model algorithm [7]) which uses
diffusing computatlons we see that it is a &ree computation. A tree computation
consists of a hierarchy of dlffusmg computations. Transaction agents are mapped to
the processes in the following manner: A process may have an AND request or an OR
request; an AND-OR request issued by some transaction agent is mapped to a tree of
processes. The mapping is a representauon of the AND-OR request. ina regular form.
Figure 5.1 showsan example of this mapping. Processes like p' 1 are AND processes, and

the others are OR processes.

FIGURE 5.1 Mapping transaction agents to processes

32

When a grant message is received an edge in the WFG disappears. For the
receiving blocked process:

(a) Either no outgoing edges remain, and the process becomes active,

(b) or if outgoing edges remain, there are two possibilities: If it is an AND process it
remains blocked. If it is an OR request, all outgoing edges disappear and the process
becomes active.

The main idea is that any time a diffusing computation reaches a blocked OR
process, the diffusing computation is propagated to the dependent set of this process; if
the engaged procéss is blocked AND process, it initiates a separate tree computation for
each outgoing edge. In order to start a deadlock computation, an initiating process
sends a query to the hrocess that is suspected of deadlock. A tree computation
terminates when- its initiator receives a reply from the suspeétéd process.

According to ihe definition. a blocked process p is deadlocked if:

(a) Either p is an AND process and will never receive a grant for at least one of the
requested resources, .

(b) or p is an OR process, and will never receive a grant message.

Queries have the form guery(seq, £) where seq is the sequence of processes and

k is the sender of the query. If an engaging query(seq, m) arrives at a blocked AND
process pp, a new set of computations is initiated by Py- And, after appending its

outgoing process Pi sends to all dutgoing edges of the WFG. If a blocked OR process

receives an engaging query, it propagates the query to all processes in its dependent
set. These actions are referred as extension.

If query(seq, m) is not engaging and receiving process Py has been blocked, a

reply(seq, k) is sent to the sender proceés. This action is called reflection.

When a reply(seq, m) is received by an AND process, it sends its engaging reply
back, if it has been continuously blocked from the time it received the engaging query.
An OR pracess sends back its engaging reply when it receives replies from all the
elements of its dependent set, and if it has not been executed since it received the
engaging query. These actionsare called collision.

To keep track of the queries sent and the replies received by each process, two
different message lists are used. These are incoming query list /@-Z/s¢ and-outgoing

33

query list A7-2is¢ Those lists are updated when a new query is received or sent. The
important point is the receipt of a grant message.

A deadlock computation is started by some controller, creating a process called
Indigator. Initiator sends a gquery to the process which is checked for deadlock. And 2

tree computation starts. A tree computation terminates iff for every i and j, query(seq,
i}issentto P and reply(seq,j) arrives at p, with no grants within this time interval.

5.4. Global State Detection

An important point here is having a consistent global state without freezing the
‘undeclring compulations. Underlying computations can be considered as the system,
processes, transaction agents, and transaction managers.

Eveats in the system are sending and receipt of messages. The set of events in
the system is denoted by £ The fww/ ~ate of a process p consists of the history of all

events occurred on p. Using Lamport's lines {12], Knapp (6] makes 2 definition of
- partial o;dering. Let ey and €y € E.Then g ey (el happened before ez) if either

- (a) ey and &5 are both on the same process p, and e, occurred earljer in p than ey;
(b) ey isa send event and e is the corresponding receive;
(c) (3¢ e €E: e; Se'ae’ Sey).

The first condition says that events in a single process are totally ordered. The second
condition implies that each message is received afier it is sent. And according to the
third condition, we can say that ordering is transitive. Since an event cannot occur
before itself, partial ordering is irreflexive.

We can represent the history of a system and iis happened-before relation by a
diagram in Figure 5.2. The dots represent the events and the horizontal lines are the
time axes of the processes.

34

P . L @
9 °m‘

FIGURES2 A cutof a distributed system

The following formalization is from Chandy and Lamport [13). A cutcof Eisa
partition of E into two sets Pc and Fc. meaning the past and future of c. A cut is

consisent if l"c is closed under <. A consistent cut defines a consistent state. It can be

said that consistent cuts are the ones that do not contain a send event in the future with
the corresponding receive event in the past,

A special type of consistent state is S, which is the global state at time t. 5, isa

purely theorétical construct that cannot be observed, because it is impossible. In

conirast, consistent states can be obtained within the system. We can extent the
relation < to consistent states as follows: Let § 1 52 be consistent states. Then § 1= Sz, if

the pastofSl is a subset of the pasto[’Sz.

A reachability relation, t-, is defined between the states. Let S be a consistent
state and e € E, such that P_ n{e} defines a consistent state S'. Then S +° §' denotes that
S' is reachable from S. If there is a sequence of events, o, and if we can reach from state
S to $' by following those events , we can write S =% $'. Chandy and Lamport show that S
<$' implies (3 schedule 0 :S+°$').

In deadlock detection, the state of a system can be identified by the WFG, and for

schedules we can cqnsider sequences of information. A transaction is deadlocked, if it
is deadlocked in WFGt, WFG at time t. And we can also say that if a transaction is

deadlocked in WFG, it is also deadlocked in WFG’, under the condition that WFG < WFG'.
This is the main point on which deadlock detection algorithms can be bqsed.

35

Chandy and Lamport [13] show how (o oblain a consistent global state of a
distributed system. A consistent global state in this way is called a sagpshot of the
system.

V1. STUDY ON AN EDGE-CHASING ALGORITHM

In this part, first we examine the original algorithm of Sinha and ANataraia,n 1l
Then, the modified version of the algorithm by Choudhary ezaf [2] is discussed. Finally,
new modifications and structural changes are offered to make the algorithm more
efficient and correct. ln this part, terms “transaction” and "process” are used
interchangeably.

6.1. A Priority Based Distributed Deadlock Detection Algorithm

by Sinha and Natarajan

The deadlock detection scheme presented by Sinha and Natarajan does not construct
any WFG, but follows the edges of the graph to search for a cycle. It is assumed that
each transaction is assigned a priority in such a way that according to priorities all
transactions are totally ordered. When a transaction waits for a data item which is
locked by a lower priority transaction, an anlagonistic . conflict occurs. If an
antagonistic conflict accurs for a data iteh, the waiting transaction suspects from
deadlock and initiates a message to find- cycles. If the message comes back to the
initiator, a deadlock cycle is detected.

6.1.1. The Distributed Resource Model

In the disu'ibuted system, each site has a system-wide unique identifier, called sie_id
in short. And each site communicates through messages.

37

1t is assumed that all messages senl arrive at their destinations in linite time
and also messages are error-free. The site-to-site communication is pipelined, meaning
that messages arrive in the order they are sent.

Within a site, there are several processes and resources (dese stems). Every
process has a system-wide unique name, called process sd. To access one or more iz
flems (resources), which may be distributed over several sites, a user creates a
transaction process at the local site. A transaction process coordinates actions on all
data items participating in the transaction and preserves the consistency of the
resources.

Data items are passive entities that represent some accessible piece of
information. Each data item is controlled by a data manager. If a transaction wants to
operate on a data item, it must send a request to the corresponding data manager.
Locking and unlocking of data items are performed via data managers. A data item can
be in one of twa modes: free or exclusive (no shared access is allowed). Data manager
grants the data item to requesting transaction, if the corresponding data item is free.
Otherwise, the lock request is inserted in a queue, called reguest_¢ and a transaction in
‘the request_(is called the reguesterof the data item. A transaction which has locked a
data item is called the 4o/derof the data item. ' '

Transactions can be in one of two states: active or wailing, If a transaction is in
a request_Q of 2. data manager. it is in waiting state, otherwise it is active. The state of a
transaction changes from waiting to active when the data manager schedules ‘its
pending lock request. In case of state changes, data managers inform the transactions
about the changes. |

Each transaction is assigned a priority in such a way that priorities of all
transactions are totéﬂy ordered, To assign priorities to transactions, Iimeslamp
mechanism is used. When a transaction is initiated, it is assigned a unique timestamp.
So the transaction with the least timestamp value has the highest priority. This
condition implies that the oldest transaction within a site has the highest priority. If
transactions are created at different sites, first, the priorities of corresponding sites
are compared to decide which transaction has higher priority.

A timestamp generated by a site whose site-id is i for a transaction is a pair (C, i)
where C is the current value of the local clock. Greater than, > and less than, ¢
relations for timestamps are defined as follows:

Lett; -(Cy, i1) and t5-(C, i2) be two timestamps. Then
tyty iff C:Cp or (C1=Cp and il»i2);
tdy iffCy<Cyor (Cy=Cy and il<i2).

Transactions use two-phase locking protdcol. while making their resource
requests.

6.1.2. Distributed Deadlock Detection

Deadlock is detected by circulating a message, called probe, through the deadlock cycle.
The occurrence of an antagonistic conflict for a data item triggers the initiation of a
probe. A probe is an ordered pair (initiator. funior), where the initiator denotes the
requester which is confronted with the antagonistic conflict. A junior denotes the
transaction whose priority is the least among transactions on the cycle.

A data manager sends the probe only to the holder of the data item. Transactions
send probes only to resources they are waiting for. Transactions and data managers
cannol communicate among themselves for the purpose of deadlock detection.

The basic detection algorithm has three steps.

(a) A data manager initiatesa probe in the following two situations: The first situation
is when the data item is locked by a transaction and there is an antagonistic conflict.
The second situation is when a holder releases the data item, the manager schedules a
waiting lock request and there are other lock requests for which the priority of
requester:the priority of new_holder.

When a data manager initiates a probe it sets .

initiator = requester;
junior := holder.

(b) Each transaction maintains a queue, called prode ¢ where it stores all the probes it
has received. So, the probe_(of a transaction contains the information on the
transactions that are directly of transitively waiting for it.

39

When transactions enter the second phase of two phase locking protocol they
are never involved in deadlock so they can discard their probe_(Q and ignore any probe
or message which is related to deadlock detection.

When a transaction requests a data item and waits for it to be granted, it goes
from active to wait state and transmits a copy of each probe stored in its probe_(Q to the
corresponding data manager. :

When a transaction T receives probe(initiator junior), it performs the
following.

if junior:T
then
junior :=T;
save the probe in the probe_Q;
if T is in the waiting state
then .

transmit a copy of the probe to the data manager where it is wailing;

(c) When a data manager receives probe(initiator junior) from one of its requesters, it
performs the following.

if holder-initiator
then
discard the probe
else
if holder<nitiator
then
propagate the probe to the holder
else declare deadlock and initiate deadlock resolution;

When the deadlock is detected, the detecting data manager has the identities of the
highest and the lowest priority transactions. Junior (lowest priority transaction) is
chosen to be aborted.

6.1.3. Deadlock Resolution
Resolution consists of three steps.

(a) The data manager sends an abort message to the victim which is junior of the probe.
The identity of the initiator isalso sent in the message,

On receiving an abort message, the victim initiates a message, clean(victim initiator),
sends it to the data manager of the resource that it is waiting for and enters the abort
phase. Sinha and Natarajan thinks that probe_Q's of transactions, from initiator to
victim in the direction of probe traversal, will not contain any probe having victim
either junior or initiator. So, there is no need for the clean message to traverse in that
part.

In the abort phase, the victim releases all the locks it owns, and withdraws its pending
fock requests, and aborts. During this phase, it discards any message it receives.

(b) When a data manager receives a clean message, the message is propagated to the
holder of the resource.

(c) On receiving clean(victim initiator), transaction T performs the following
operations.

purge from the probe_Q every probe that has the victim as its junior
or initiator;
if T isin waiting state
then
if T=initiator
then
discard the clean message
else
propagaie the clean message to the data manager where it is wailing
else
discard the clean message;

After cleaning up their probe_(Q's, transactions on the broken cycle keep the
remaining probes in their probe_Q for the detection of later deadlocks.

41

;

6.2. Errors and Defliciencies Detected by Choudhary ez 2/

1t is detected by Choudhary &f af {2) that the algorithm of Sinha and Natarajan [1]
either fails to detect deadlocks or report deadlocks which do not exist in many
situations. They proposed a modified version of the algorithm. Their full a,l,gorithm can
be found in Appendix B. 1n the following subsections these errors and deficiencies are
discussed.

6.2.1. Undetected Deadlocks

Consider the situation shown in Figure 6.1(a). Assume that DM(X,) initiated a probe (T,
T5) and propagated to TS‘ then to T4 and finally to T3. These transactions keep the
. probe in their probe_Q's. Now suppose T3 commits and releases its locks. If T, is first in
the request_Q of DM(X3), it will acquire the lock. This sitvation is shown in Figure
6.1(b). Now, if T, requests a resource which is held by T, as shown in Figure 6.1(c)
using a bold line, a deadlock cycle will be formed. Using the original algorithm this
cycle cannot be detected, because the only probe that can detect the cycle is probe (Tl‘
TS) which will never be propagated to T;.

, %, Ty

T, X, T .
¢ ™ x
\ 2 .,
! T‘i T4
X, |
X =
&
‘ T T T
2 3

2

(a) (b) (¢)

FIGURE 6.1 An undetected deadlock

42

According to Choudhary &£ 2/ [2], the following extension must be added to the
original algorithm. When a transaction completes or aborls, it releases the resources
that it is holding. The data manager associated with each released resource assigns the
resource to some transaction waiting in the request_Q (if one exists). Each data
manager then requests from all remaining transactions waiting in the request_Q to
transmit their complete probe_Q's to itself. The data manager forwards each received
probe to the new_holder of the resource for which initiator exceeds the priority of the
new_holder. .

If the algorithm is modified as suggested above, when transaction T, is granted
to resource X3, transaction T,‘ transfers a copy of each probe in its probe_(to data
manager DM(X3). Because the initiator of the probe (T, TS) has higher priority than

" transaction Tz, that probe is sent to transaction Tz by the data manager. When
transaction Tz requests a resource which is held by transaction TI* the probe (Tl‘ ’l'5) id
is transferred to transaction T, which detects the deadlock cycle.

6.2.2. False Deadlocks

Other missing part of the original algorithm is that it detects false deadlocks. False
deadlock detections depend on external probes and old probes left in the probe_('s.’
Now, we will examine each situation separately.

(A) False Deadlock Due to Fxternal Probes. Consider the case shown in Figure 62(a).
Transactions'l‘l and Tz are holding resources X 1 and X“ respectively, and _1'4 is holding

resources Xz and X3. In addition TI' Tz and T,* have requested resources X3, Xz and X4,
respectively. Ty's probe (T T4) is stored in the probe_Q's of T, and Ty When the
deadlock cycle is detected by Tz, T4 is selected as victim and aborted. A clean message is
initiated in the cycle to remove probes that contain Té, According to the algorithm the
clean message is discarded by the initiator, Tz, considering that 'l‘z shopld not have any
probe in its probe_() containing the victim, T4, as its initiator or junior, because Tz is
the highest priority transaction on.the deadlock cycle. This argument is only valid

when there is no transaction in the system waiting transitively a transaction on a
deadlock cycle. In the example, although transaction T4 is aborted, probe (Tl' T“)

remains in the probe_Q of Tz . Later, in Figure 6 2(c), when Tz requests a resource held
by Tl' the probes, which come from probe_Q of Tz with higher initiator prierity, are
sent to T, causing it detect a false deadlock.

43

(a) (b) {c)
' FIGURE 6.2 Example of a false deadlock

The algorithm shouid be modified such that once a transaction is chosen to
abort, it should initiate a clean message which should not be discarded until it returns
to the transaction to be aborted. And the information of the clean message should be
used by each transaction on the cycle.

(B) False Deadlocks Due to Ofd [nformation. Now, consider the example in Figure 6.3(a).
A deadlock exists between transactions T, and T,. Transactions T, T3, and .‘1‘5 are

waiting transitively on T, The probe (Tl, Tj) is transferred to Tz via other
transactions. When T, aborts, the probe (TI'TS) remains in the probe_Q of T,, although
there is no wait-for relation between Tl and Tz, Later when T, requests a resource held
- by Ty, the necessary probesare sent to Tl' including (T, T5), In this situation as shown
in Figure 6.3(c), T, detects a false deadlock.

To avoid this type of false deadlock, the probe_Q's of all the transactions
involved in the deadlock cycle should cleansed of all the probes upon receipt of the
clean message. Unfortunately. this cleansing can prevent the detection of some future
deadlocks. To avoid this situation, all of the transactions involved in the deadlock cycle
or waiting for data items held by the transactions involved in the deadlock cycle should
retransmit and/or reinitiate the probes. Another solution to this problem is just
ignoring such deadlocks, because they occur very seldom. In the algorithm of
Choudhary e z/ [2], the former method is used. It can be seen easily that in this case,
the number of messages in the system increases drastically.

T3 Tg o T, T, 01
- ®
e . S
X{ x3
I,
T5 § T 3
X
X 1
. .
Tl . TI
{a) (b)

FIGURE 6.3 Another false deadlock example

6.3. Some More Modiflications

Choudhary e2aZ (2] proposed a better version of the alkorithm of Sinha and Natarajan
[1}, considering errors and the deﬁciencies,in the algorithm. But there are some more
modifications to make the algorithm correct and more efficient. Since some of these are
structural modifications, we can call the new algorithm as a new edge-chasing
deadlock detection algorithm. |

(A) The Problem of Unresofved Deadlocks. Consider the situation shown in Figure
6.4(a). Transactions T and T3 have locked resources Xj and X3 respectively. Transaction
T2 hasalso locked resources Xz and X4. Transactions Ty and T3 request resources Xz and
X4 respectively. Because Ty has higher priority than Ty, DM(X2) sends probe (1, 2) to T2,
In Figure 6.4(b), T2 requests resource X3. Because X3 has been locked by T3. and also
there is an antagonistic conflict, DM(X3) sends probe (2, 3) to T3. T2 transfers a copy of
each probe stored in its probe_Q to the DM(X3). This indicates that a copy of probe (1, 2)
is sent to Ty, Because Ty's priority is lower than the junior of the probe, it assigns itself
as the junior of the probe and sends both probes to DM(Xy). When DM(Xy) receives

43

probe (2, 3), it declares deadlock and ;yends a message to the victim to make it create the
corresponding clean message. It alsn transmits probe (1, 3) to Ty, While probe (1, 3) is

moving in the cycle, clean (3, 2) reaches T and it purges every probe from its probe_(.
However probe (1, 3) is ahead of the clean message; it passes Ty before its abortion and
reaches Tp. In Figure 6.4(c), after the abortion of T3, T2 requests X;. Because it is held
by Ti. the request of the transaction is put into the wait_Q of the corresponding data
manager.Then, T3 transmits a copy of its probe_Q to DM(X;). On receiving probe (1,3),
the data manager declares a deadlock with a false victim. Although there is a cycle, no
information about the real victim is received. Because the identity of the real victim is
not known, deadlock cannot be resolved.

T 0 Ty

S

xz[. | XZO L |
T, T 1,
X, X, X
T, |

L4

T,

(a) (b) ' (c)
FIGURE6.4 An unresolved deadlock example

Our modification is that all transactions store the probes received with the
identity of the data manager sending it. We need to add a seader field into probes. The
field contains the identity of the node (data manager or transaction) sending the
probe. When a clean message is received, not all probes but the only the ones
transmitted by the data manager which is also on the cycle are purged from the
probe_Q. The victim discards all the messages received, after initiating a clean message.

(B) Picking the Highest Priority Transaction from Regquest 0. As it is explained each
data manager has a request_Q to hold the information related to transactions which are
currently waiting for the corresponding resource. In both the original and modified
algorithms, priority of the requesting transactions has no importance on deciding the
new_holder of the data item when the data item is released by the current holder. A

data manager can assign the lock to any transaction waiting in the requesLQ. Then, For
each requester in the probe_Q for which requester:new_holder, the data manager
injitiates a. probe and sends it to the new_holder.

Since it is a priority based system, it will be more logical to pick the transaction
with the highest priority from the request_Q as the new_holder. Otherwise, there is
always a chance for the new_holder to be aborted by a higher priority transaction
which is waiting in the request_Q. This modification will reduce the number of probes
sent and the number of deadlocks in the system. The only drawback of this modification
- is the extra computation to find the transaction with the liighest priority in the
probe_Q. On the other hand, when assigning a resource, creation of probe is not
required, because all other transactions waiting for the resource have lower priority.

(C) 4 Probe @ for Data Managers. 1n the modified version of the algorithm, after
allocating a resource to one of the transactions wailing in the request_Q (if any), data
manager sends messages to the remaining transactions in the request (§ to transfer
their probe_Q's. When data manager receives those probes, it transfers them to the
new_holder, after checking priorities of the initiators. As it can be imagined, the
number of messages transmitted increases in such situations.

If each data manager keeps the probes that it receives, there will be no such
overhead. When the above condition occurs, instead of sending messages to the
transactions and waiting for them to transfer their probe_Q's, data manager picks the
necessary probes from its probe_Q and seads a copy of them to the new_holder. A Probe
is deleted from the probe_Q of a data manager when its sender, which is also requester,
becomes the holder of the data item or when the sender is aborted, or when deadlock
happens. In case of deadlock, the probes which are sent by the transaction, and
waiting for the corresponding data item and also on the cycle, are pljrged from the
queue. When the holder changes, the probes which are sent by new_holder are deleted
from the queus.

This modification also reduces the number of messages and probes sent. But,
there is always a tradeoff; In this case, it increases the amount of space consuined.
Additional space is required for the probe_(of each data manager.

It can be easily seen that the aim of the last two modifications is to reduce the
number of messages and probes sent. Since this is an algorithm for distributed systems,
the amount of messages transmitted is very important. It has a negative effect on the

47

completion time of transactions and it creates heavy traffic in the system. For the first
modification, we can say correction, instead of modification, of the algorithm.

6.3.1 Modified Algorithm

In this subsection, we will introduce a new version of the algorithm that contains the
improvements explained in the previous section. The structure of probes is changed. A
new field seader is added to the fields of the probe—probdelinitistor,junior.sender). The
sender contains the identity of the unit (data manager or transaction) sending the
probe. In the same way, the structure of the clean message is also changed-
clean(victim,initiator,sender), The function of the sender is the same as abave.
Another structural modification is that data managers also have probe_('s. The probes
received by a data manager are kept in their probe_Q‘s.

(A) Modified Deadlock Detection slgorithar. This part of the algorithm is explained in
three steps:

(1) A data manager initiates a probe if there is an antagonistic conflict. It
means that the requester of a data item has higher priority than its holder. In such a
case, probe(initiator victim sender) is created and sent to the holder.

v When the holder releases a data item, .and if there are some

transactions waiting for it, the data item is granted to the one with the
highest priority. Because all other waiting transactions have less priority
than the new holder, no probe is initiated under such a situation—unlike
the previous two algorithms.

When a transaction completes or aborts, it releases its locks, As explained above,
the data item is granted to another transaction. The probes which are sent by the new
holder are purged from the probe_Q of the data manager—if any. Then the probe_Q of
the data manager is checked, a copy of the probes of which initiator is greater than the
new haolder is sent to the new holder. The sender field of the probe is changed before
sending it.

(2) A transaction saves the probes received in its probe_(Q's before it enters the
second phase of the two-phase locking. After it enters the second phase, all the probes
received are discarded.

When a transaction T recelves pmbe(lnlﬁg&or,]unlor,sender), it performs the
following:

if (junior»T)

then
junior :=T;

save the probe in the probe_g;

if Tisin wait state

then
transmit a copy of the saved probe to the data manager where it is waiting,
after changing the sender field '

4 When a transaction is vmtmg to acquire a data item after changing the sender
part, it transmits a copy of each probe received to the data manager where it is waiting.

(3) When a data manager receives a probe(iniﬁator,irictim.sender). it performé
the following:

save the probe in the probe_(;
if (holder < initiator)
then
send a copy of the probe to the holder, after changing the sender field
else
declare deadlock and initiate deadiock resolution;

When the holder of a data item changes, the data manager purges all the probes
which are sent by the new holder from its probe_(. Then the probe_Q of the data
manager is checked, a capy of the probes of which initiator is greater than the new
holder is sent to the new holder. The sender field of the probes is changed before
sending them.

(B) 7he Deadlock Resolution Algorithar This part is also explained in three steps.

(1) When a deadlock is declared, the detecting data manager chooses the junior
of the probe as the victim and sends an abort signal to it. The aim of the abort signal is
to give necessary information to the victim transaction. This information contains the
identity of the inmitiator. On receiving an abort signal the victim initiates a
clean(victim initiator sender) message and sends it to the data manager where it is
waiting. After initiating an abort message, the victim discards any probe or clean
message it receives.

49

The victim aborts when its abort message returns to itself,

(2) When a data manager receives a clean message, it purges every probe sent
by the sender of the clean message from its probe_Q. It propagates the clean message to
its holder after changing the sender field.

It reinitiates probes for each requester with a higher priority than the holder.
A copy of the remaining probes with an initiator having a higher priority than the
holder is sent to the holder.

(3) When a transaction T receives a clean(junior,initiator,sender), it performs
the following:

if T is in wait state
then
if T = junior
then '
enter the abort phase, release all locks and purge every probe from its
probe_{} |
else
purge every probe, of which sender is eqoal te the sender of
the clein message, from its probe_(;
after changing the seader of the clean messige,_ propagate it
to the data manager where T is waiting
else :
discard the clean message; '

Modifications in the algorithm are shown vsing bold characters,

50

VII. A SIMULATION USING THE NEW PRIORITY BASED PROBE
ALGORITHM FOR DEADLOCK DETECTION AND EXTENSION FOR
DISTRIBUTED SYSTEMS

The aim of this simulation study is to show the performance of the new algorithm
which is exblained in Part VI. Listing of the simulation program can be found in
Appendix C. In this part, the simulation model of the algorithm is explained. The results
are given. The algorithm is fot compared with any other deadlock detection algorithm.
‘The simulation results are given to show that it works under deadlock conditions. And
as an extension to simulate the algorithm on a distributed system, a distributed system
model is introduced.

7.1. Simulation Model of a Single-Site System

A single-system consists of processors, channels, n}emories, resources, etc. all of which
are controlled by a central unit. Before going into the detail of the system model, it is
better to give the assumptions we make on the system:

(a) Basic two phase locking is used to solve the problem of synchronizing access to a
data item, All locks on a data item are considered to be exclusive locks, no shared access
is allowed. '

{b) Each transaction may make at most one outstanding request at a time, one resource
madel. So detecting a cycle in the system is necessary and enough condition for
deadlock declaration.

51

(c) All transactions in the system are assumed to be designed properly, ie. no
transaction in the system contains infinite loops or similar errors.

(d) It is also assumed that there is no memory problem, such as, partitioning files into
pages because they do not [it into the main memory. We can put any data into the
memory when required.

(e) Each transaction is a batch process: Interactive processes are not used in the model.

For the modelling of a single-site system the approach of Agrawal ef 2/ [14] is
used. Their approach is simplified in some respects. A great deal of interest is paid for
the modelling of concurrency control part.

There are three parts of a concurrency control model: a a'atabasa system model,
a user model, and a Lransaction model The database syétem model capturesthe relevant
characteristics of the system’s hardware and software, including physical resources
and their associated échedulers, the characteristics of the database, such as its size or
granularity, the load control ‘mechanism for controlling the number of active
transactions in the system and the concurrency control algorithm. The user model
deals with the arrival process for users, assuming either an opén sysiem or a closed
sysiem with terminals. The type of the processes, batch-style or interactive, is related
- to this part. The transaction model captures the behavior and processing requirements
of the transactions in the workload.

(ueving mode! of the system is shown in Figure 7.1. There area fixed number of
terminals from which fransactions originate. There is a limit to the number of
" transactions allowed to be active at any time in the system, the multiprogramming
level mp/ When a new transaction originates, if the system has a full set of active
transactions, it enters the ready gueve where it waits for the currently active
transactions to ferminate successfully or abort. When there is enough space,
transactions move from the ready queue to the coacurrency controf gueue (cc queue),
begin to execute and make their first requests. These requests are handled by the
concurrency conltrof unit. When a request is granted after an amount of time, the
transaction is placed into the cc queue for new requests, The duration between each
data item request is uniformly distributed between one and mar reg time. The delay to
transfer a transaction from ready queue to cc queue is computed by using the uniform
distribution between one and mx move. lime. '

52

TERMINALS

/delz,

y H

ready
queue

RESTART

€C queue

, blocked

queue I ' B
acc.
delay

FIGURE 7.1 Logical queuing model for a single-site system

If the result of a request is that the transaction must be blocked, it enters the
blocked gueve until the requesting data item becomes available. If a request leads to a
decision to abort a transaction, it goes back to the ready queue, possibly after a
randomly determined restart delay period of mean restart delsy. During that period,
the other transactions which cause the abortion of the transaction leave the system. It
then makes all of the same requests again. When a transaction is restarted, -its
Nart_time does not change. Start_time is the value of the local clock when the
transaction is initialized. Since the priorities of the transactions are measured with
their start_time's, aborted transactions have higher priorities than the transactions
initiated after their abortion. This method is called gwining priority by ageing.
Restart_delay can be arranged according to respoase_time. Response_time is measured
as the difference between when a terminal first submits a new transaction and when
the transaction returns to the terminal following its successful completion, including
any time spent waiting in the ready queue, time spent before (and during) being
. restarted, etc. It is better if we make the duration of restart_delay adaptive, depending

53

on the observed average response time. Actually, the importance of restart delay
depends on the load of the system. If the system is heavily loaded, restart_delay loses its
importance {a restarted process has to wait, anyway). In lightly loaded systems,
restart_delay should be adjusted well. Short restart_delay causes deadlock to happen
again. A long restart_delay is waste of time for restarted transactions.

When a transaction completes, all the data items requested by it are updated and
the locks are released, and then a new transaction is transferred from the ready queue
to cc queue. The size of the ready queue is limited with the number of terminals,

because only one job can be sent from a terminal at a time. The size of cc queue is
limited with mpl.

TERMINALS

think 3
disk ™
disk

queue

EIRO
SIRO,
o

FIGURE 7.2 Physical queuing model for a single-site system

O._
o)

54

Parameter Meaning

num_of_res Number of database objects

num_of_term ' Number of terminals

max_res Maximum number of resources
(database objects) requested

min_res Minimum number of resources
(database objects) requested

mpl Multiprogramming level

context_switch_time Time required for context
switching

max_move_time Transfer delay from ready queue
to cC queue

think time Mean time between transactions
created from a terminal

min_acc_dur Minimum disk access time for a

database object

max_acc_dur Maximum disk access time for a
database object

max_req._time - Mazimum duration between each
resource request

TABLE 7.1 Model parameters

CPU and 1/0 resources underlie the logical model of Figure 7.1. The amounts of
1/0 and CPU time per logical service are specified as model parameters. To make the
model simpler, the number of CPU servers is restricted to one, and there are multiple
170 servers. The physical queuing model is shown in Figure 7.2, and Table 7.1
summarizes the associated model parameters. When a transaction requests CPU, itis
put into the CPU gueue. Requests in CPU queue are serviced FCFS (first-come, first-
served), except that concurrency control requests have priority over all other
service requests. The service discipline for the I/0 requests is also FCFS. Another
parameter which is needed to define at this point is context switch time which is the
amount of time required to save all the registers for the old transaction and to load the
registers for the new transaction.

7 The 2hink time parameter is the mean time delay between the completion of a
transaction and the initiation of a new transaction from a terminal. It is assumed that
think_time is exponentially distributed.

A transaction is modeled according to the number of data items that it requests.
The parameter tran_size is the average number of objects requested by a transaction.
The amount of data item that a transaction ‘requests is defined by the uniform
distribution between min size and max size (inclusive). Because it is a uniform

35

distribution, we do not need the mean value as an input. The data objects are randomly
chosen (without replacement) among all of the data items in the database.

7.2. Application of The Algorithm to The Model

Before going into the details of the algorithm, it is better if we make a definition of a
transaction for this system. In the system, a transaction can be defined by using the
number of data items it requests, the period of time between the requests, and the
initialization time. The number of data items is selected using a uniform distribution
between the maximum and the minimum number of requested resources. The period of
time between each request is also defined by another uniform distribution. In these
distributions the upper and the lower bounds can be changed depending on the type of
the transactions. In our simulation, all transactions are of the same type. Initialization
lime (start _time) is the value of the clock when the transaction is initialized. In the
system, transactions can be in one of four modes: ac&ive, wading, restarted, restarted -
amd- waiing. lnitially all of the transactions are in the active mode. Active means that
the transaction is either executing or waiting for the CPU. If a request of a transaction
is not allocated, it enters waiting mode. A transaction goes [rom waiting mode to active
mode when it gets the resource that it is waiting for. When an aborted transaction
‘restarts, its mode becomes restarted and does not change until it acquires all the
resources that it requested in previous activation. If a restarted transaction waits, its
mode is changed to restarted-and-waiting. For both waiting and restarted-and-waiting
transactions, we will use the term waiting throughout this part.

The probe sending mechanism works as explained in the previous part. There is
a special process (sp-process) in the system which wakes up when a transaction is
blocked. Because waiting transactions cannot access the CPU, they do not know if the
other transactions have sent them any probe or not during their wait periods. The
purpose of the sp-process is to check the probe_Q's of such transactions and (if any,
and if necessary) to transmit the probes to the necessary data managers. When
sp_process wakes up, it checks the probe queues of all the blocked transactions and the
probe queues of the data managers for which blocked transactions wait. 1t, also,
performs the probe transfer operations on behalf of blocked transactions. Cycles are
detected by this process. Deadlock resolution is also performed by it.

56

In a multiprogramming environment, every working process is not actually
active at any time (even though it seems so). An active transaction can capture the CPU
when its turn comes, according to the scheduling algorithm. In our system, a
transaction can not know about the probes it received when it does not hold the CPU,
for example when waiting in the ready queue to hold the CPU. We can call this period
wstit_in_ready-—q period. The probes which are received during wait_in_ready_q
period, are kept in w4¢_pr list. When a transaction captures the CPU, it first checks
witg_pr list and places the probes (if any) into pr/is, which is the main probe queue of
the transaction. Then it continues to its regular work. The transactions which are
waiting for data items, also, receive probes dut:ing their waiting period. Such
transactions cannot hold the CPU, before they acquire their requests. But by some
means the probes sent during the wait period must be handled, otherwise deadlocks
cannot be detected. sp_process does this job and checks the wtg_pr lists of waiting
transactions. It transmits the probes to pr_list and to the data managers they are
waiting for.

When a deadlock resolution is initiated, sp_process does not terminate before
abortion of the victim. During that period no other process can capture the CPU. :

7.3. Data Structures of The Model

There are some basic units which should be implemented using proper data structures
in the model mentioned in the previous sections. The structure of those units are
explained below.

(A) Resource ITable : Resource table is an important component which keeps
information related to the data items (resources) at a site. It has a linked list structure.
For each resource there is a corresponding record in the list. The structure of each
record is shown in Figure 7.3.

As it can be understood from the figure, r_/d contains the identity of the
resource, and Z /4 contains the identity of the transaction, currently holding the
resource, Faslg is also a linked list containing the information about the transactions
currently waiting for the resource.

57

r_id

tid

waityg

nextr —p—9

FIGURE 7.3 A record in resource table

(B) Transaction Table : Transaction table contains the information about the
transactions which can be initialized by the terminals. It has a linked list structure.
The strucwre of 2 node in the list is shown in anure 74,

tid

mode

start_time

resnum

hold_list

focus

restart_arr

rst. time_arr

mark

mes

prlist

wig_pr
nextt B m—

FIGURE 74 A record in transaction table

Lad contains the identity of the transaction. mode contains the current mode of
the transaction. st Lime is assigned when the transaction is initialized. res aum
contains the number of data items the corresponding transaction will request. It is a.
random and predetermined value. Zold_Iixt is a set containing the identity of data items
that the transaction is holding. resart_arr, r<_time_arr, and mark are the parameters
used when the transaction restarts and contain the information about requested

38

resources and request times. priitand wig_prare lists containing the probes received
by the transaction. If the probes are sent when the transaction is not active, they are

- kept in wtg_pr.

(C) Probe Queuves:Each transactioq and data manager has a probe gueue in the system,
which is actually a linked list. Probe queues are used to keep the probes sent by the
transactions that are directly or transitively waiting for that unit. Tra_nsac'tions receive
probes from data mahagers and data managers receive probes from {ransactions.
Probes are kept with the identity of the sender to make the life easier during deadlock
resolution activities. The structure isshown in Figure 7.5.

init

vic

sender

next — &

FIGURE75 Structure of a probe queue

Init isthe short form of initiator. It shows the initiator of the probe. Fic (stands
for victim) contains the identity of the transaction that has the lowest priority among
the visited transactions by the probe. In a transaction’s probe queue sender contains
the identity of the data manager that has sent the probe. In a data manager’s probe
queue, on the other hand, seader contains the identity of the transaction who has sent

it.

(D) Pait Queue : Each data manager has a wait queve to store the information related to
the transactions requesting the corresponding data item. It has a linked list structure.
While assigning a data item to a transaction if there are more than one transaction, the
data manager considers the priorities of the requesting transactions. So both the
identities and the priorities of the waiting transactions are kept in. Figure 7.6 shows
the structure of a wait queue.

Requests in the wait queue are ordered according to the priorities of the
requesting transactions, £ /4 contains the identity of the requesting transactions.
Start_time keeps the initialization time and shows the priority of the transactions.

59

tid

start_time

nextw >

FIGURE 76 Structure of wait queue

The queues in the system are simple linked lists just keeping the information
required.

7.4. Results Obtained |

The main performance metric used in this thesis is Zhroughput Throughput is taken as
the number of completed transactions per ten thousand units of time. Number of
probes sent per a period of time can ‘be considered as another performance metric.
Response_time can be a good performance metric, for the systems in which it has
importance. In our simulation throughput, number of deadlocks per ten thousand units
of time,’number' of prabes per ten thousand units of time, and response_time are used
as performance metrics.

Context_switch_time is accepted as a unit of time in the system. When assigning
time values to the parameters, the ratio of the assigned value to context_switch_time is
taken into account. Some parameters have fixed values, such as num_of_res,
num_of_term, max_res, min_res, context_switch_time, min_acc_dur, max acc_dur and
max_req_time. The value of mpl is changed. Simulation parameter settings are shown
in Table 7.2

To get the simulation results, the program is executed until a thousand
transactions complete. With each different setting this execution is repeated.

The value of mpl is changed from time to time and differences in the results are
observed. In these simulations adaptive restart delay is used. The behavior of the

Parameter Value
num_of_res 200
num of_term 50
max res 8
min_res 2

mpl 2,5.7,10, 15, 30,50
context_switch _time 1
max_move_time 4
think time 200
min_acc_dur 15
max_acc_dur 63
max_req_time 23

TABLE 7.2 Simulation parameter settings

system under different mpl valuesare shown in Table 7.3.

Think_time = 200;

Restart_delay = adaptive;

mpl response: p %}?:ﬁ " dead! :‘;’f%{sﬁs throughput
2 7400 19 1 64
5 435 112 5 107
7 4285 247 12 109

10 4476 6.3 TH 104
15 5018 780 38 93
30 8037 264.0 8.1 53

50 11671 3202 85 34

TABLE 7.3 Simufation results taken with different mpl values

61

Think time is set to two hundred. As it can be seen [rom the table, the best throughput
is taken when mpl is equal to seven. After that level because of heavy load in cc queue,
throughput decreases gradually and the number of deadlocks begins to increase.

- Some simulation results are taken to show the effect of the ordering of requests
in the request. (. We repeat the above simulation with the system for which the
priority of requesting transactions has no importanoe' in assigning the resource. The
results can be seen in Table 7.4. The effect of the modification is not clearly seen until
mpl reaches to fifteen. Because mpl is low, there are not many requests in request_Q's
of data managers—so the ordering of requests has no importance on the performance
of the system. After mpl reaches to fifteen—we can call it threshold level for this
system—, the number of conflicts begin to increase so the length of request_Q's. Then
the result of the modification can be seen clearly. If Table 7.3 is compared with Table

.74, it is seen that the number of deadlocks in Table 7.4 is more than the number of
deadlocks in Table 7.3, after the threshold level. Depending on the number of deadlocks,
the number of probes sent, and response time in Table 7.4 are greater than the ones in
Table 7.3. As a result of greater response time, the throughput in the Table 74 is less
than the one in Table 7.3.

Think_time =201;
Restart_delay = adaptive;
mpl r esugggse- nﬁ(ﬁg d&‘(ﬂné’{s‘ throughput
/1 units /1 units
2 7302 20 2 65
5 4379 13.1 6 106
7 4268 24.1 12 109
10 4405 - 471 2.3 104
5 5027 %2 42 9
30 8139 303.2 89 50
50 12484 476.1 99 26

TABLE 7.4 Simulation results taken with different mpl values when priority has no
importance in handling requests

62

To show the result of the modification which is explained in Section 6.3(C)-
Probe_Q for data managers—, the system is simulated using the deadlock detection
algorithm with no probe_Q's for data managers. In that case, after the detection of

_deadlock, data managers on the cycle should send the messages to the transactions
waiting for them to reinitiate the probes (as in Choudhary & #/'s algorithm). And also
alfter the termination or abortion of a process, the data managers whose holder has
been the aborted or terminated transaction perform the same thing. The results are
shown in Table 7.5. To see the performance of the modified algorithm, the results can
be compared with the ones in Table 7.3. When data managers do not have probe_Q's, the
message traffic becomes heavier because they should send a message to each
transaction in their requést._Q. and wait for the transactions to transmit a copy of their
probe_Q's. This pmceé; takes time and creates extra delays in the system. Such delays
are the cause of an increase in response time and in the number of deadlocks.
Depending on these two conditions, throughput of the system decreases.

Think_time = 200;
Restart_delay = adaptive; |
A Ciime /1§og£bg§rms /‘fg?:‘:l)%%{fm N
2 7435 23 A 64
5 4450 155 10 104
7 4342 309 17 105
10 512 620 32 103
5 5141 1194 5.1 88
30 8637 333.1 9.3 46
50 14740 532.3 102 21

TABLE75 Simulation resulis taken when probe_Q's for data managers are not employed

The effect of think time is shown in Table 7.6, mp! is set to seven and simulation
results are taken for different think time wvalues. As think time increases,

63

response_time decreases. When think time becomes very large, throughput starts to

decrease, because CPU stays idle.

mpl =7;
Restart_delay = adaptive;
th‘ink- response- throughput
time time :
200 4285 . 109
950 3633 107 .
1500 2975 107
-3500 840 108
4000 790 102
4500 666 94
- 5000 548 9%

TABLE 7.6 Simulation results taken with different think-time values

7.5. Extension : General Distributed System Model for The Further

Studies

This study can be extended as a simulation of a distributed system using the priority
based probe algorithm for deadlock detection. The deadlock detection algorithm
remains the same, but some modification is required to adopt the single-site system
model to a distributed system model. In this section, these modifications and 2 general
distributed system model are introduced. A simple model of the system is shown in

Figure 7.7.

64

Resources A Resources

B

Resources

FIGURE 7.7 Simple model of the distributed system
The assumptions made are:

(a) Resources in the system are not replicated, They are single-copy resources. Each
site is responsible from its own unique resources. To reach a remote resource, a -
message indicating the reqixest is sent to the corresponding site. Then, allocation is
performed by the site which contains the data item.

(b) Sites are connected using star topology. This implies that a message can be directly
sent to any other site within the system. All messages sent arrive at their destination in
finite time without any error (error-free system). The delay experienced by a message
in a communication channel is constant for each channel.

(c) Site-to-site communication is pipelined, i.e. the receiving site gets the messages in
the same order that the sending site has transmitted them.

(d) When a transaction requests a data item from another site, the corresponding data

item is transmitted to the requesting site. After it is released by the requesting
transaction, it is transmitted back to its original site. Process migration is not used,
assuming that all the sites are heavily loaded.

{(e) To construct a global completeness within the system, events are partially ordered
using Lamport's approach [12].

65

(F) And all of the assumptions of the single-site system model are valid.

7.5.1. Simulation Model of a Site in Distributed System

In terms of data access, the main difference between a distributed system and a single-
site system is that in the former, transactions may request data items which are
residing at remote sites.

The logical quening model for a distributed system site is shown in Figure 7.8.
The previous model is modified according to inter-site requests. When a transaction
requests a data item at another site, a timestamped message (for ordering of events
among sites) containing the necessary information related to the transaction is sent to
the corresponding site and the requesting transaction is put into remote access hlock
gueve. The transaction stays there until the requested data item is transmitted to its site.
A site receiving such a message first arranges the global sysiem clock according to
the timestamp of the message (this point is explainéd in the following subsection in
detail). Such messages cause the system to create an agent of the requesting
transaction at the requested site, Such operations are called pre-process for a remote
request by the requested site. Then, this transaction agent is put back of the ready
gueue in the requested site. When processing time comes to that transaction agent, its
request is checked by the concurrency control unit. If the data item is available, it is
transmitted to the requesting site. When the reqpesting site completes its job with this
data item, it is sent back to the original site. During this period (transmission and
retransmission), all the transactions requested for the corresponding data item are
blocked. Transmission and retransmission periods for a file are fixed for each
transmission channel, Transactions are not allowed to migrate to remote sites. They
only create transaction agents at remote sites when they request data items at those

03

sites.

66

REMOTE/ ro" TERMINALS

queue

RESTART

. blocked
queue

remote access
block queue

SITE

FIGURE73 Logical queuing model for a distributed system site
Physical queuing model is also modified as shown in Figure 7.9.

Some new parameters are added, such as cwmmunication_delayiis)
remole_request_probability(iy). Communication_delay(i,j) contains the transmission
delay experienced by a message while traveling from site; to sitei.
Communication_delay(i,j) may be equal to communication_delay(ji), if both
transmission media are the same. For the simplicity of the model all
communication_delay's can be equal. Remote_request_probability(i,j) keeps the
probability of the request which is made by a transaction residing at site; for a

67

resource residing at sitei‘ Remote_request_probability can be equal for all sites or

change from site to site and also according to requested site.

TERMINALS

ready
queue

FIGURE 7.9 Physical queving model for a distributed system site

7.5.2. Ordering of Events in the System

Since it is a distributed system, there is no common clock to order the events within the
system. In a centralized system, events are totally ordered according to the system
clock. In a distributed system, partial ordering of events according to the messages sent
between sites is enough for the consistency of the system. For such ordering Lamport's
“happened-before” relation [12] which is explained in Section 54 is used. The
implementation of the relation to distributed systems is explained in the following
paragraph.

68

Let's give an example of the situation that causes problems. Assume that there
are two processes, at different sites, that communicate with each other {process A and -
process B). Process A sends a message to process B when its local clock is equal to 100.
Process B receives this message when its local clock is equal to 50. Because they are at
different sites, such a situation usually happens. But this is a contradictory situation.
Although the message sending event happened before, it seems as if it has happened
after receiving the message according to the local clocks of the- sites. To solve this
problem, we require the site to advance its local clock when it receives a message of
which timestamp is greater than the value of its local clock. In the above example, the
local clock of the receiving site becomes 101 when it receives the message. But with
this clock, you cannot measure the duration of time between two events at a site
correctly. ' '

The relation is simulated in the following way: Each site has a global clock
(logical clock) other than its own local clock. The purpose of the global clack is only
partial ordering of the events among sites. Global clock is updated by both the ticks of
the local clock and the messages sent from other sites. Because of this reason, the
global clock is not used for measuring the time between any two events. When a
transaction requests a remote data item, the request message is timestamped with the
value of the global clock of the requesting site. It can be understood that the global
clock of each site is different from each other, but partially ordered according to
messages received from other sites,

3

69

VI111. CONCLUSION

In this thesis the deadlock problem in computing systems is introduced in detail. The
policies used to deal with the deadlock problem are explained. Among these policies,
"Deadlock Detection and Resolution” is selected and studied. Deadlocks are modeled
according to the resource requirements of processes.

Distributed computing systems are introduced. Advantages and disadvantages of
centralized, hierarchical, and distributed deadlock detection in distributed systems are
discussed. It is seen that both centralized and hierarchical deadlock detection methods
transfer WFG's between sites. The classes of distributed deadlock detection algorithms
are presented. These classes employ. path-pushing, ‘ edge-chasing, diffusing
computations, and global state detection methods to detect deadlocks. Some algorithms
from different classes are examined.

A priority based deadlock detection algorithm is introduced. The modified
version of the algorithm is examined. A situation under which the algorithm cannot
resolve a deadlock is found. To sofve this problem and to make the algorithm better
some structural changes are offered. We called the modified algorithm “the new
priority based probe algorithm for deadlock detection.”

Lacking .of the formal proof, the algorithm is extensively tested ﬂimugh
simulation for a single-site system model. To simulate the algorithm, the model which is
used by Agrawal o a/ [14] for the performance analysis of the different concurrecy
controf algorithms is employed, with a few modifications, Giving different values to the
system parameters, the behavior of the system is observed.

To show the effect of modifications, the system is also simulated vsing the
algorithms without modifications. First, the importance of ordering of requests in the
request_(Q is considered and the system is simulated using the algorithm which does not
employ the ordering of events in request_Q. When the results are compared with the
ones taken using the new algorithm, it is seen that for all performance metrics, the
new algorithm performs better. Secondly, the same system is simulated using the
algorithm which dees not employ probe_Q's for data managers and the results are also

70

compared with the results obtained using the new algorithm. Again better
performance of the new algorithm is observed. The only disadvantage of using
probe_('s for data managers is that extra memory is required for the probe_Q's of data
managers.

For further simulation studies, the simulation model is extended for distributed
systems, Using this model, the new algorithm can be simulated for distributed systems
and performance results are compared with other deadlock detection algorithms for
distributed systems.

71

APPENDIX A. BASIC TWO PHASE LOCKING

To explain the subject Bernstein of &/ [3] is referred. Throughout the section, we can
replace the term transaction with the term process. Locking is a mechanism commonly

_used to solve the problem of synchronizing access to shared data. Each data item has a
fock associated with it. Before a transaction Ty may access a data, the scheduler first

checks the associated lock. If another transaction Tz holds the lock, then Tl has to wait
. until Tz releases the lock. The scheduler ensures that only one transaction can hold a

lock at a time.

A basic two phase scheduler manages and uses its locks according to the
following rules:)

(a) When it receives an operation on a data from the transaction manager, the
scheduler tests if the requested lock conflicts with the other lock that is already set. If
so, it delays the operation, forcing the corresponding transaction to wait until it can set
the lock it needs. If not, then scheduler sets the requested lock and sends the operation
to the data manager.

(b) Once a scheduler sets a Jock for a transaction, it may not release that lock at least
until after data manager acknowledges that it has processed the lock’s cqrresponding
operation, ’

{c) Once a scheduler has released a lock for a transaction, it may not subsequently
" abtain any more locks for that transaction.

Rule (a) prevents two ;.ransactioﬁs from concurrently accessing a data item in
conflicling mode. Rule (b) supplements Rule (a) by ensuring that the data manager
processes operations on data items in the order that scheduler submits them. Rule (c)
called the two phase rule, is the source of two phase locking. Each transaction may be
divided into two phases: growing phase during which it obtains locks, and shrinking
phase during which it releases locks. Its function is to guarantee that all pairs of
conflicting operations of two transactions are scheduled in the same order.

72

An important unfortunate property of two phase locking is that they are
subject to deadlocks.

73

APPENDIX B. MODIFIED PROBE ALGORITHM BY CHOUDHARY ez a/

In this part we represent the modified probe algorithm by Choudhary ez aZ [2]. The
algorithm makes no assumption about the scheduling policy of a data manager. When
two or more transactions are simultaneously waiting for a data item, the data manager
may assign the lock for that data item to any transaction.

(A) The Revised Basic Deadlock Detection Algorithm
The basic deadlock detection algorithm now has the following steps.

1) A data mnager initiates, propagates, or reinitiates a probe in the following
situations.

a) When a data item is locked by a transaction, if a lock request arrives from
another transaciion, and reguester > holder, the data manager initiates a probe and
sends it to the Ao/der.

b) When the current Aolder releases a data item, the data manager schedules a
“waiting lock request.” If there are more lock requests still in the i'equesLQ, then for
each lock request for which reguester> new holder, the data manager initiates a probe
and sends it to the new holder. | '

When a data manager initiates a probe it sets

Inftiator .= reguester;
Junior:= holder;

¢} When a transaction completes or aboris, it releases its locks. The data
manager associated with each released data item assigns the lock for the data item to
some transaction (heretofore referred to as new folder) waiting for that data item (if
one exists). Each data manager then requests all remaining transactions waiting on the
new lock to transmit their complete probe_Q's to itself. (The identities of these
transactions are obtained from the data manager’s request (.) The data manager

74

forwards each received probe (iadiiatorjunior) \o new holfer the lock for which
mniiatory new holder.

2) Each transaction maintains a queue, called a probe_(, where it stores all probes
received by it. The probe Q of a transaction contains information about the
transactions which wait for it directly, or transitively. Since a transaction follows two-
phase locking, the information contained in the probe_Q of a transaction remains valid
virtil it aborts or commits.

_After a transaction enters the second phase of the 2PL, it does not discard the
probe_Q. However, during the second phase, any probe received is i_g‘nored.

Othefwise,-a transaction sends a probe or a copy of its probe_Q to the data
manager, where it is waiting in the following three cases.

~ a) When a transaction 7 receives probe (initiator,junior), it performs the
following. -

if uaior> I

then sunior:=1T,

save the probe in the probe_Q;

if 7 is in wait state

then transmit a copy of the saved probe to the data manager where it is
waiting; ’

b) When a transaction issues a lock request to a data manager and waits for the
lock to be granted (ie., it goes from active to wait state), it transmits a copy of each
probe stored in its probe_Q to that data manager. ’

¢) If a transaction is waiting and receives a request for its probe_Q from the
data manager where it is waiting, it sends a copy of its probe_() to the data manager.

3) When a data manager receives probe (inftigtor,junior) from one of its requesters, it
performs the following.

if holder> indéator
then discard the probe
else if Aolder < inilivior
then propagate the probe to the Aolder
else declare deadlock and initiate deadlock resolution;

75

When a deadlock is detected, the detecting data manager has the identities of two
members of the cycle, inditor and junior, ie. the highest and lowest priority
transactions, respectively. The juaior is chosen as the deadlock rrctim.

(B) The Desdlock Detection and Post Resolution Computation
This consists of the following three steps.

1) To abort the v7clim, the data manager that detects the deadlock sends an abort signal
to the v7ciim. The identity of the initiator is also sent along with the abort signal:
abort{ victim, initiator). Since the victim is aborted, it is necessary to discard those
probes {from the probe_Q of various transactions) that have the viciim as their junior
or indiiaior. Hence, on receiving an abort_signal, the viciim does the following.

a) It initiates a message, clean(viciim, initiator), sends it to the data manager
where it is waiting.

b) The viciim enters an abort phase only when its clean message returns to
itself. Once it enters the abort phase, the viciim releases all the locks it held, withdraws
its pending request, and aborts. During this phase, it discards any probe or clean
message that it receives.

2) When a data manager receives a clean(wictim. initiator) message, it does the
following.

a) It propagates the clean message to its Aalder.
b) It reinitiates the probes for each reguesterfor which reguester: holder.
¢) It requests each transaction in the requesLQ to retransmit its pfobe_Q.
3) When atransaction 7 receivesa clean(/unsor.initiator) message, it acts as follows.
purge every probe from its probe_Q;
if 7 is in wait state
then if 7=junior
’then enter the abort phase and release all locks

else propagate the clean message to the data manager where 7 is waiting
else discard the clean message.

76

APPENDIX C. PROGRAM LISTING

This part contains the ﬁsﬁng of the simulation program. The program is written in
Pascal. It contains three include. files—var_init.pas, initialize.pas, and simu.pas. First
the listings of the include files are given according to their places in the main file. To
explain the program, comment lines are used.

" Listing of Include File VAR_INIT.PAS :

pfocedure

var_init({var data:data_pack_type};

{ initializes all the system parameters of a single-site system |}

begin

data”.
data”.
data”.
.minres:=sl_minres;
data”.
data™. _
.av_move_time:=s1_max_move time;
.maxregtime:=s1_maxreqtime;

data”

data”™
data”

data”.
.minacedur:=sl1_minacecdur;
.maxaccdur:=s1_maxaccdur,;
.res_q ptr:=nil;

data”™.
.req q ptr:=nil;
data”.
.cmpl:=0;
data”.
.elock:=0;
.cumm tr dur:=0;
.numofprobes:=0;
.numoftrans:=0;
.numofcomptrans:=0;
.mean_tr_dur:=0;
.numofdeadlock:=0;

data”
data”
data”®

data”
data”

data™
data”
data”
data”®
data”
data”®
data”®
end;

numofres:=sl1_pumofres;
numofterm:=s1_numofterm;
maxres:=sl maxres;

mpl:=s1 mpl,;

context_switch:=s1 context_switch;

think time:=sl1 think time,

tr_q ptr:=nil;

ready g ptr:=nil;

sys_clock:=0;

Listing of Include File INITIALIZE PAS :

prooedure initialize{var data:data_paock_type);
{ initializes all the queues used in the simulation of the system
and creates the first transaction of each terminal }
var ‘

req ptr,request:a_req typet;

rd_ptr:el rd g t; -

prev:tr_nodet;

pres:res_nodet;

last:el rd q t;

pre:a_req typet;

reg,i:integer;

procedure find_ term{tid:integer; var t:tr_nodet});
{ finds the record of the terminal whose identity is sent as
parameter } '
var
count 'integer;

begin .
if {data”.tr_g ptr<>nil)
then
begin
t:=data”.tr_qg ptr;
t:=t".nextt;
count:=1;
while ({t".t_id<>tid) and (t<>nil)
and (count<=data”.numofterm)}) do
begin
t:=t".nextt;
count :=count+l;
end; ' ,
if (count>data”.numofterm)
then
begin
writeln({ ERROR - in procedure find_term, initialize’});
halt;
end,;
end
else
begin
vriteln{ 'ERROR -~ in procedure find_term, initialize’);
halt;
end;
end; { find_term }

procedure insert_req{var req:a_req_typet);
{ inserts the received record into cc queue }
var

prel,pre2, ptr:a_req_typet,;

78

begin
if (data”.req g ptr<»>nil)
then
begin
req”.next:=nil;
ptr:=data”.req q ptr;
if {(ptr”.next=nil)
then
ptr”.next:=req
else
begin
pre2:=data”.req q ptr;
prel:=pre2”.next;
while ((pre1<>n11) and (prel”.req time<req”.req time)) do

begin

pre2:=prel;

- prel:=prel”.next;
end;

preQ“.next::req;
req”.next:=prel;
end;
end
else
writeln{ 'ERROR - in procedure insert_req, initialize'});
end; { insert_req }

proaedure transfer_bw_qgs;

{ moves transactions from ready queue to cc queue }
- var

fr rd,rptr:el_xd q t;

fr_req,nevone,ptr:a_ req typet;

tr:tr_nodet;

begin
if (data”.ready_q ptr<>nil)
‘then
begin :
fr_rd:=data”.ready_gq ptr;
fr_rd:=fr rd”.nextel;
fr_req:=data”.req q ptr;
fr_req:=fr_req”.next;
while ({fr_rd".req time<fr_req”.req time) or {fr_req=nil}))
and {(data”.cmpl<data”.mpl) and (fr_rd<>nil) do
begin '
data”.cmpl:=data”.cmpl+l;
new(newone);
ptr:=data”.req g ptr;
newone”.next:=ptr”. next;
ptr™.next:=newone;
newone”, t_id:=fr rd”.t_id;
find_term({newone”.t_id,tr};
if (tr”.mode=rst)
then : -
begin
nevone”.req time:=tr”. start_time;
newone”.mode:=rstopureq;
end

79

else
begin
newone”.req time:=fr rd”.req time;
newone” . mode : =new;
end;
rptr:=data”.ready_q ptr;
rptr”.nextel:=fr_rd”".nextel;
fr rd”.nextel:=nil;
dispose(fr_rd);
fr rd:=data”.ready g ptr;
fr_rd:=fr rd".nextel;
fr req:=data”.req q ptr;
fr req:=fr req”.next;
data”.clock:=data”.clock+data”.av_move_ time;
end;
end
else ‘ .
writeln('ERROR - in transfer_bw_gs, initialize'};
end; { transfer bw gs }

procedure insert_tr_rd_q(req:el_rd g t};

{ inserts a transaction into ready queue }

var :
prel,pre2:el_rd q t;

begin

if (data”.ready_q ptr<>nil}

then

begin
prel:=data”.ready_q ptr;
prel:=prel”.nextel;
preZ:=data”.ready_q_ptr;
while ({prel<>nil) and (prel”.req time<req”.req time)) do

begin ’
pre2:=prel;
prel:=prel”. npextel;
end;

preZ”.nextel:=req;
req”.nextel:=prel;

end

else

begin
writeln('ERROR - in procedure insert_tr_rd g, initialize');
halt; ‘

end;

end; { insert_tr_rd q }

procedure job submission(j:integer;delay:real);
{ initiates a transaction from the corresponding terminal }
var

rdtrans:el rd g t;

begin
new(rdtrans);
rdtrans”.nextel:=nil;
rdtrans”®.t_id:=j;
rdtrans”.req time:=data”.clock-delay*ln{l-random);

insert_tr_rd_q{rdtrans);
end, { job_submission }
procedure init_trans_gq,
{ initializes all the terminals in the system }
var '
ptrans, ptr, trans:tr_nodet;
i,j:integer;

begin
new{ptr);
ptr”.nextt:=nil;
data”.tr_q ptr:=ptr;
ptrans:=data”.tr_g ptr;
for i:=1 to data™.numofterm do
begin
new(trans);
trans”™.t_id:=i;
trans”.mode:=act;
‘trans”.start_time:=0;
trans”.respum:=0;
trans”.hold_list:=[];
trans”.focus:=0;
trans”.prlist:=nil;
trans”.wtg_pr:=nil;
trans”.nextt:=nil;
for j:=1 to data”.maxres do
begin
trans”.restart_arr[j]:=0;
trans”.rst_time arr{j]:=0;
end;
trans”.mark:=0;
ptrans”.nextt:=trans,;
ptrans:=trans;
end;
end; { init_trans g }

procedure init_res_qg;
{ initializes all the resources in the system }
var

pres,ptr,resource:res_nodet;

i:integer;

begin

new(ptr);

ptr”.pextr:=nil;

data”.res_q ptr:=ptr;

pres:=data”.res_q ptr;

for i:=1 to data".numofres do

begin
new{resource);
resource” . r_id:=i;
resource”.t_id:=0;
resource”.waitq:=nil;
resource”.probes:=nil;
resource” . nextr:=nil;
pres”.nextr:=resource;
pres:=resource;

end;
end; { init_res_g }

begin { initialize }
init_trans_gq;
init_res_q,
new{rd_ptr),;
rd_ptr™.nextel:=nil;
data*.ready_q_ptr:=rd_ptr;
rd_ptr*.t_id:=0;
for i:=1 to data”.numofterm do :
job_submission(i,data™ . think_time);
data™.cmpl:=1; .
new{request);
rd_ptr:=data”.ready_q_ptr,
last:=rd_ptr”.nextel;
rd_ptr“.nextel:=1ast“‘nextel;
request”™.t_id:=last™.t_id;
request”.req_time: =last”. req_;lme,
request ™ .mode :=nevw;
request ”.next:=nil;
last™.nextel:=nil;
dispose{last);
new{req_ptr),
req_ptr”™.next:.=request;
data” .Leq_ q_ptr:=req_ptr;
writeln{’' all queues are INITIALIZED');
end; { initialize }

Listing of Include File SIMU.PAS :

procedure simulate(var data:data_pack_type):
{ simulates a sing-site system }

var
resource :res_nodet;
trans :tr_nodet;
request :a_req_typet;

call_check_wtg_trs:boolean;

procedure check clock{var req:a_req typet},
{ updates the system clock }

in
if {req”.mode <> wtgtrck)
then
if (data”.clock<req”.req time)
then
data”.clock:=req”.req time;
end; { check_clock }

81

procedure find term{tid:integer; wvar t:tr_nodet);
{ finds the terminal whose identity is given }
var

count :integer;

begin

if (data”™.tr_gq ptr<>nil)

then

begin
t:=data™.tr_q ptr;
t:=t".nextt;
count:=1, - _ ‘
while {(t".t_id<>tid) and (t<>nil)

and (count<=data”.numofterm)) do

begin

t:=t".nextt;
count ;=count+1;
end;
if (count>data”.numofterm)
then
begin
writeln('ERROR - in procedure find term'};
halt;
end;
end
else
begin .
writeln(ERROR - in procedure find term');
halt; s
end,;
end; { find_term }

procedure find res{rid:integer; var r:res_nodet};
{ finds the resource whose identity is given }
var

count:integer;

begin
if {(r<>nil).
then
begin
count:=1;

r:=data”.res_q ptr;
r:=r”.nextr;
while ((r”.r_id<>rid) and (r<>nil)
and (count<=data”.numofres)) do -
begin

r:=r”. nextr;
count:=count+1;

end;

if (count>data”™.numofres)

then

begin :
writeln{ 'ERROR - in procedure find res'});
halt;

end;

end

82

83

else
begin
writeln{ ' ERROR - in procedure find res'};
halt;
end;
end; { find_res }

procedure insert_tr_rd gq(req:el_rd g t);

{ inserts a transaction into ready queue }

var '
prel,preZ2:el_rd q t;

begin
if (data” ready g _ptr<>nil)
then
begin
prel:=data”.ready q ptr;
prel:=prel”.nextel;
pre2:.=data”.ready_q ptr;
while ((prel<»nil) and {prel”.req time<req”.req time)) do
begin
pre2:=pre1;
prel:=prel”.nextel;
end;
pre2”.nextel:=req;
req”.nextel:=prel;
end
else
in
writeln('ERROR - in procedure insert tr_rd q');
halt;
end;
end; { insert_tr_rd q }

procedure insert req(var req:a_req typet);

{ inserts a transaction into cc queue }

var '
prel,preZ, ptr:a_req typet;

begin
if (data” req_g_ptr<>n11)
then
begin
req”.next:=nil,;
ptr:=data”™.req q ptr;
if (ptr”.next=nil)

then
ptr”.next:=req
- else
begin
pre2:=ptr;

prel:=pre2”.next;
while {{prel<>nill and (prel”.rea time<rea”.rea timell} do
L
v—___
‘begin '
pre2:=prel;
prel:=prel”.next,;
end;

84

pre2”.next:=req,
req™.next:=prel;
end;
end
else
begin
writeln('req g ptr is nil - insert_req’');
halt;
end;
end; { insert_req }

procedure transfer_bw gs;
{ transfers transactions from ready queue to cc queune }
var

fr rd,rptr:el_rd q t; {from ready queue}

fr_ _req,newone, ptr:a_req typet;

tr:tr_nodet;

begin
if (data”.ready gq ptr<»>nil)
then -
begin
fr_rd:=data”.ready g ptr;
fr_rd:=fr rd”.nextel;
fr_req:=data” req_q_ptr;
fr_req:=fr req”.next;
while ({(fr_rd". req_t1me<fr req* req_tlme) or (fr_reg=nil}}
and {(data”. cmplc<data”.mpl) and (fr_rd<>nil)) do
begin :
data”.cmpl:=data”.cmpl+l;
new{newone);
ptr:=data®.req q ptr;
newone”.next:=ptr”.next;
ptr”.next:=newone,
newone”.t_id:=fr rd”".t_id;
find term{newone”.t_ id,tr);
if (tr”.mode=rst)
then
begin
newone”.req time:=tr”.start_time;
newone” .mode:=rstopireq;
end
else
begin
newone”.req time:=fr_rd”.req time;
newone” .mode: =new;
end;
rptr:=data”.ready_ q_ptr,
rptr”.nextel:=fr_rd”.nextel;
fr rd”.nextel:=nil,;
dispose(fr_rd});
fr_rd:=data”.ready q ptr;
fr_rd:=fr rd”.nextel;
fr _req:=data”.req.q ptr;
fr req:=fr_req”.next; -
data”.clock:=data”.clock+data”.av_move_time;
end;

8

end
else
begin
writeln(' ready q ptr is nil - transfer_bw gs'},;
halt;
end;
end; | transfer_bw_gs }

procedure job submission(j:integer;delay:real);
{ initiates a transaction from the given terminal }
var

rdtrans:el_rd q t,;

in
new{rdtrans};
rdtrans”.nextel:=nil;
rdtrans”.t_id:=j;
rdtrans”.req time:=data”.clock-delay*ln(l-random);
insert_tr_rd gq{rdtrans);
end; { job_submission }

procedure initiate probe(i,v,sndr:integer});

{ initiates the probe whose initiator, junior, and sender are
given as parameters }

var ‘
pr:probet;
tr:tr_nodet;

begin
find term(v,tr);
new{pr};
pr~.init:=i;
pr”.vic:=v;
pr”.sender:=sndr;
pr”.next:=tr”.wtg_pr;
tr”.wtg_pr:.=pr;
data”.numofprobes:=data”.numofprobes+l;
pr:=tr”.wtg_pr;
while (pr<»>nil) do
begin

pr:=pr”.next;

end;

end; { initiate_probe }

procedure dm to_tran{var pr:probet; var tr:tr_nodet});
{ sends the given probe to the specified transaction }
var

itra,vtra:tr_nodet;

begin
find_term(pr”.init,itra);
find_term{pr”.vic,vtra),;
if ((tr”.start_time > itra”.start_time)
or {tr”.t_id = pr*.init))
then
begin ,
if (tr".start_time > vtra”.start_time)

86

then .
pr*.vic:=tr*.t_id;
pr”.mext:=tr”.wtg_pr;
tr*.wtg_pr:i=pr;
data”.numofprobes:=data”™.numofprobes+1;
end
else
dispose(pr);
end; { dm_to_tran }

procedure sendprobe(pr:probet; r:res_nodet);
{ sends the given probe to the specified data manager }
var

tran:tr_nodet;

tpr:probet;

begin
new{tpr),
tpr™i=pr";
tpr~.gsender:=r".r_id;
tpr™.next:=nil;
pr”.next :=r".probes;
r*.probes:=pr;
data”.numofprobes:=data”.numofprobes+1;
find term{r~.t_id, tran};
dm_to_tran({tpr, tran}),

end; { sendprobe }

procedure insert_into_prlist(pro:probet; var tra:tr_nodet};
{ inserts the probe sent into probe Q of the specified
transaction }
var
prevl, prev2:probet;

begin
prevl:=tra”.prlist;
prevZ:=tra”.prlist;
while ((prevl<>nil) and ((prevl”.init<>pro”.init)
or {prevl”.vic<>pro®.vic))) do
begin

prev2:=prevl,;
prevl:=prevl”.npext;
end;
if {prevl=nil)
then
begin
pro”.next:=tra”.prlist;
tra”.prlist:=pro;
end
else
if ((prevl”.init=pro”.init) and (prevl”.vic=pro”.vic))
then :
begin
disposelpro); " ~
end;
end; { insert_into prlist }

87

procedure transfer_prlist{var tra:tr_nodet; var r:res_nodet});
{ transfers the probes of the transaction to the specified
data manager } :
var
loc:probet;
rpr:probet;

begin

loc:=tra™.prlist;

while {loc<>nil) do

begin
nev(rpr);
rpr*.init:=loc”.init;
rpr”.vic:=loc”™.vic,;
rpr”.sender:=tra”.t_id;
rpr”.next:=nil;

sendprobe(rpr,r);
loc:=loc™.next;
end;

end; | transfer_prlist }

procedure dispose list{var 1:probet});
{ disposes the given probe_Q }
var

ptrl,ptr2:probet;

begin
ptrl:=1;
1:=nil;
while (ptrl <> nil) do
begin
ptrZ2:=ptrl,;
ptrl:=ptrl®. next;
ptr2”.next:=nil;
dispose(ptr2);
end;
end; { dispose_list }

procedure remove_holders_probes{var r:res_nodet; holder:integer);
{ removes the probes which are sent by the holder of the data
item from probe 0 }
var
res_pr,prev_res_pr:probet;

begin
res_pr:=r” . probes;
prev_res_pr:.=res_pr;
while (res_pr <> nil) do
if (res_pr~.sender = holder)
then
if (res_pr = r“.probes)
then
begin .
r*.probes:=res_pr”.next;
prev_res_pr:=r”".probes;
res_pr”.next:=nil;
dispose(res_pr);

88

res_pr:=prev_res_pr;
end ’
else
begin
prev_res_pr”.next:=res_pr”.next;
res_pr”.next:=nil;
dispose(res_pr};
res_pr.=prev_res_pr,
.end
else
begin
prev_res_pr:=res_pr;
res_pr:=res_pr”.next;
end; ,
end; | remove_holders_probes }

procedure transfer from dm(res:res nodet; var tra:tr nodet};
{ transfers probes from a data manager to its holder }
var '

probe, pr:probet;

itra,vtra:tr_nodet;

begin
probe:=res”.probes;
while {probe <> nil} do

begin
new(pr);
pr”:=probe”;

pr”.next:=nil;
.find_term{pr”.init,itra};
find term{pr”.vic,vtra);
if ((tra”.starr_time > itra”™.start_time)
or {tra”.t_id = pr”.init})
then
begin
if (tra”™.start_time > vtra®.start_time)
then
prt.vic:=tra®.t_id;
- pr*.sender:=res”.r_id;
pr®.mext:=tra”.wtg_pr;
tra”.wtg_pr:=pr;
data”.numofprobes:=data”.numofprobes+l;

end
else
dispose(pr)};
probe:=probe”.next;
end;

end; { transfer_from dm }

procedure release_all{var tr:tr_nodet);

{ releases all the resources which are held by the specified
transaction }

var
res:res_nodet;
k:integer;

procedure release_it{var r:res_nodat);
var
temp,wt:w_req typet;
act_tr,tra:tr_nodet;
req:a_req typet;
prev_res_pr,res_pr:probet;
i:integer;

begin
if (r”.waitg=nil)
then
begin
r*.t_id:=0;
end
else
begin
temp:=r".waitq;
r*.waitq:=temp”.nextw;
temp”.nextw:=nil;
r*.t_id:=temp”.t_id;
new{req},
req“.t_id::temp”.t_id;
-req”.req time:=data”.clock
+random(data .maxaccdur—-data” .minaccdur+l)+data”.minaccdur;
req .mode: =cpureq;
req”.next:=nil;
dispose(temp);
fipnd term{req”.t_id,act_tr);
if (act_tr”.mode=wtyg)
then
act_tr”.mode:=act;.
if {act_tr”.mode=rstwtyg)
‘then
act_tr”~.mode:=rst;
act_tr” . hold_list:=act_tr”.hold_list + [r".r 1d]
act_tr” .foous:=0;
remove_holders_probes(r,act_tr‘.t_id);
insert req(req), -
transfer from dm{r,act_tr};
end;
end; { release_it }

begin { release_all }
for k:= 1 to data”.numofres do
if (k in tr”.hold list)
then
begin
find res(k,res);
release_it(res);
end;
end; { release_all }

procedure abort_phase{var tr:tr_nodet; var res:res_nodet);
{ puts the specified transaction into abort phase }
var

ptrl,ptr2:w_req typet;

i:integer;

rdtrans:el_ rd q t;

begin
griteln(‘ DEADLOCK -~ transaction ',tr”.t_id:2,' is aborted');
find_res(tr”.focus,res);
ptrl:=res”.waitqg;
ptr2:=res”.waitq;

i:=1;
while {{ptrl~.t_id <> tr”.t_id) and (ptrl<>nil))do
in
ptrZ:=ptrl;
ptrl:=ptrl”.nextw;
i:=i+l;
end;
if (ptrli=nil)
then
begin
writeln
('ERROR - transaction ',tr”.t_idi3,' is not in request 0');
halt;
end
else
begin
if (i = 1)
then
res”.waitq:=ptrl” . nextw
else

ptr2”.nextw:=ptrl”.nextw;

ptrl”. nextw:=nil,
dispose{ptrl);
tr”.focus:=0;
release_all{tr});
tr*.mode:=rst;
tr*.focus:=0;
tr”.hold_list:=[];
dispose_list{tr”.prlist};
dispose_list{tr”.wtg_pr);
tr”.mark:=0;
data”.cmpl:=data”.cmpl-1;
new{rdtrans);
rdtrans”.nextel:=nil;
rdtrans”.t_id:=tr”.t_id;
rdtrans”.req time:=data”.clock-data”.mean_tr_dur*ln{l-random);
insert_tr rd_gq(rdtrans};
end;

end; { abort_phase }

procedure dispose_prs_from_cycle(var l:probet; sres:integer);
{ disposes all the probes which has come from the cycle }
var

ptrl, ptri:probet;

begin
ptrl:=1;
ptra:=1;

while (ptrl <> nil) do
if (ptrl”.sender = sres)

then
begin
if {1 = ptrl)
then
begin
1: -ptrl“ next,;
ptr2:=1;
ptrl“.next:=nil}
dispose(ptrl);
ptrl:=ptr2;
end
else
begin

ptr2® . next:=ptrl”.next;
ptrl”.pext:=nil;

dispose{ptrl};
ptrl:=ptr2”.next;
end;
end
else
begin

ptra:=ptrl;
ptrl:=ptrl”, next;
end;
end; { dispose_prs from cycle }

procedure reinitiate_probes{var r:res_nodet; var t:tr_ nodet
wtr,vic: 1nteger),
{ reinitiates some probes after deadlock }
var
wreq:v_req typet;
pr, tpr:probet;
iterm, viterm: tr_ nodet;

begin

wreq:=r”.waitq;

while (wreq <> nil) do

begin
if (wreq”.start_time < t".start tlme)
then

initiate_ probe(wreq™.t_id,t".t_id,r".r_id);

wreq:=vwreq”.nextw;

end;

dlspose_prs from cycle(r .probes,wtr),;

pr:=r”.probes;

while {pr <> nil) do

begin
new{tpr);
tpr™i=pr”;

tpr™.next:=nil;
tpr”.sender:=r".r_id,
dm_to_tran(tpr,t},;
pr:=pr”.next;

end;

~end; { reinitiate_probes }

procedure resolution{var tid:integer);
{ starts the resolution of a deadlock }
var

vic_tr,cycle_tr:tr_nodet;

res:res_nodet;

previr:integer;

pr,tpr:probet;

procedure transfer prlist_to_wtg_pr(var prl,wtgl:probet);
{ transfers probes from wtg_pr list to prlist }
var .

ptrl, ptr2:probet;

begin
ptrl:=prl;
while (ptrl <> nil) do
begin
new{ptr2};
ptr2”:=ptril”;
ptr2”.next:=wtgl;

~ witgl:=ptri;
ptrl:=ptrl”.next;
end;

end; [transfer prlist to_wtg_pr }

begin { resolution }

find term{tid,vic_tr);

find res(vic_tr”.focus,res);

find term({res”.t_id,cycle tr});

prevtir:=tid;

while (cycle_tr”.t_id<>vic tr”.t_id) do

begin ’
data”.clock:=data”.clock+(data”.context_switch*4);
dispose_prs_from cycle(cycle_tr”.prlist,res”.r_id};
dispose_prs_from cycle{cycle_tr”.wtg_pr,res”.r_id);
transfer_prlist_to_wtg_pr{cycle_tr”.prlist,

' cycle_tr”.wtg_pr)},;
reinitiate_probes(res,cycle_tr,prevtr,tid};
previr:=cycle_tr*.t_id,;
find_res{cycle_tr™.focus,res});
find_term(res”.t_id,cycle_trj};

end;

data”.clock:=data”.clock+(data”. context_switch*4};
dispose_prs_from cycle{res”. probes,previr);
abort_phase(vic_tr,res);

92

if (res”.t_id <>0)

then

begin
find term{res”.t_id,cycle_tr);
pr:=res”.probes;
while (pr <> nil) do

in
new(tpr),
tpr”:=pr”;

tpr”.next:=nil;
tpr”.sender:=res”.r_id;
dm to_tran({tpr,cycle_tr);
pr:=pr”.next;
end;
“end;
end; | resolution }

procedure check _wtg_trs;

{ checks the wtg pr lists of waiting transactions, transfers
waiting probes into prlists and transmits a copy of them to
the necessary data managers }

var
tr,inittr,vietr:tr_ nodet
res: res_podet
pr,prs:probet;
req:a_req_typet;
stop:boolean;

begin }
tr:=data”.tr_q ptr;
tr:=tr”.nextt;
stop:=false;
while ((tr <> nil) and {not stop)) do
begin
if {(tr".mode = wtg) or (tr".mode=rstwtg))
then
begin
data”.clock:=data”.clock+({data”.context_switch*2);
pr:=tr”.wtg_pr;
wvhile (pr <> nil) do
begin
tr”.wtg_pr:=pr”.next;
pr”.next:=nil;
find term{pr~.init,inittr);
find_ term{pr”.viec,victr});
if {({inpittr”.start_time<tr”.start_time) or
{pr”.init=tr".t_id})
then
begin
; if (victr”.start_time<tr”.start_time)
then
pr*.vic:=tr*.t_id;

93

if {pr*.init = tr*.t_id)

then

begin
data”.numofdeadlock:=data”.numofdeadlock+];
resolution{pr”.vic);

dispose{pr};
stop:=true;
end’ '
else
begin
new{prs});

prs®.init:=pr”.init;
prs”.vic:=pr”.vic;
prs™.sender:=tr”.t_id,;
prs”.next:=nil;
insert_into prlist(pr,tr);
if {rr~.foous<>0)
then
begin
find res(tr”.focus,res),;
sendprobe(prs,res)
end;
end;
end
else
dispose(pr);
pr:=tr”.wtg_pr;
end;
end;
tr:=tr”.nextt;
end; }
end; | check wtg trs }

procedure check_res{var t:tr_nodet; rqr:integer);
{ checks the specified resource to see if it is available or not }
var.

res:res_nodet;

req:a_req typet;

procedure allocate;
{ allocates the resource to the transaction }
begin
res™.t_id:=t".t_id;
new(req);
req”.t_id:=t".t_id;
req”.req time:=data”.clock+
(random(data”.maxaccdur—data” . minaccdur+l)+data”.minacedur);
req”.mode:=cpureq;
req”.next:=nil;
t~. focus:=rqr,
t*.hold list:=t” hold list + [rqr];
insert req(req);
end; { allocate }

procedure put_in_wq;
{ puts the request of the transaction into request_Q of the
data manager because the resource is held by another
transaction}
var
£1,£2,neww:w_req typet;
i:integer;
notfound:boolean;
trl,rtr:tr_nodet;

begin
if {t”.mode=act)
then
t”.mode:=wty,
if (¢~ .mode=rst)
then o
£t~ .mode:=rstwtyg;
t*.focus:=rqr;
new({neww};
neww".t_id:=t".t_id,
neww”,start_time:=t". start_time;
neww” . nextw:=nil;
f1l:=res”.wvaityq;
f£2:=£1,; .
i:=1;
notfound:=true;
while {(fl<>nil) and notfound) do
if (f1”.start_time<neww”".start_time)
then
begin
£2:=£1;
£1:=£1" .nextw;
d:=i+l;
end
else
notfound:=false;
if (i=1)
then res”.waitq:=neww
else £2”. nextw:=neww,;
neww”.nextw:=£1;
find_term{res”.t_id, trl};
if (trl1”.start_time>t”.start_time)
then - :
initiate_probe(neww”.t_id,res”.t_id,res”.r_id);
transfer_ prlist(t,res});
call_check_wtg trs:=true;
end; { put_in_wq }

begin { allocate }
find res({rqr,res);
if (res™.t_id=0)
then
allocate
else
put_in_wq;
end; { allocate }

procedure count{hcldlist:resset; var result:integer);
{ counts the number of resource that the transaction holds }
var

iinteger;
begin
result:=0;

for i:=1 to data™.numofres do
if {1 in holdlist)
then .
result :=result+l;
end; | count }

procedure resource_request(var tra:tr_nodet);
{ requests a resource for the specified transactionm }
var '

regtime:real;

req:a_req _typet;

reqres,cnt:integer;

begin
regtime:=random{data”.maxreqtime)}+l;
data”™,clock:=data”.clock+reqtime;
repeat

reqres:=random{data” numofres)+1

until not(reqres in tra”.hold_list);
count(tra”.hold_list,eont);
tra®.rst_time_arr[cnt+l]:=reqtime;
tra”.restart_arr|cnt+l]:=reqres;
check_res(tra,regres);

end; | resource request }

procedure initial activation{var req:a_req typet};
{ initial activation of a transaction }
var
tr:tr_nodet;
reqres:integer;
begin ’
data”.numoftrans:=data”.numoftrans+l;
find_term(req“,t_id,tr);
tr*.start_time:=req”.req_time;
tr*.respum: =random{data” maxres—data m1nres+1)+data .minres;
resource_request{tr);
end; { initial_activation }

procedure terminate({var trm:tr_nodet);
{ terminates the given transaction }
var

req:a_req typet;

regtime:real;

i:integer;

begin
reqtlme'—random(data .mpaxregtime)+l;
data”.clock:=data”.clock+reqtime;

release_all{trm);
data”.cumm_tr_dur:=data”™.cumm_tr_dur
+{data”.clock-trm".start_time);
data”.numofcomptrans:=data”™ numofcomptrans+1
trm” .mode:=act;
trm”™.start_time:=0;
trm™. resnum:=0;
trm”. focus:=0;
trm™.hold_list:={],;
trm”.prlist:=nil;
trm™.wtg_pr:=nil;
trm”™ . mark:=0;
for ii=1 to data”.maxres do
begin
trm”.restart_arr{i]:=0;
trm”.rst_time arr[i]:=0;
end;
data”.cmpl:.=data”.cmpl-1;
"job_submission{trm”.t_id,data”.think time);

end; { terminate }

procedure move_wtg_prs(var tra:tr_nodet);

{ moves some of the probes from wtg_pr list to prlist }
var '

pr:probet;
ter:tr_nodet;

begin

pr:=tra”.wtg_pr;
while (pr<»>nil) do
begin
tra*.wtg_pr:=pr“.next;
pr”.next:=nil;
find term(pr”.init,ter),; '
if (({ter”.mode=wtg) or (ter” mode-rstwtg)) and
{ter”.start_time<tra”.start time))
then
insert 1ntQ_prllst(pr tra)
else
dispose{pr),
pr:=tra”.wtg_pr;
end;

end; | move_wtg_prs }

procedure re_started(var req:a_req typet);

[requests resources for restarted transactions }

var

tr:tr_nodet; -
cnt:integer;
reqres:l..sl_pumofres;

begin

find_term(req”.t_id,tr});
if (tr”.mark=0)
then

97

begin
dispose_list(tr”.prlist);
dispose_list(tr”.wtg_pr};
end
else
move_wtg_prs(tr);
tr®.mark:=tr” mark+l;
regres:=tr”*.restart_arrtr”.mark];
data”.clock:=data”.clock+tr” rst time_arr[tr”.mark];
check_res(tr, reqres)
if (regres in tr”.hold_list)
then
if (tr”.mark<>data”.maxres)
then
begin
if (tr".restart_arr[tr”.mark+1}=0)
then
begln
tr*.mark:=0;
tr”®.mode:=act;
end;
end
else
begin
tr”.mode:=act;
trt.mark:=0;
end;
end; { re_started }

procedure activate again{var req:a_req typet);
{ executes restarted transactions }
var '

t:tr_nodet;

res:res_nodet;

ont:integer;

begin .
find term{req”.t_id,t),
if ((t~. mode=rst) and (t* mark=data .maxres}))
then

begin
t”.mark:=0;
" .mode:=act;
end;

if ((t”.mode=rst} and (t".restart arr[t mark+1]<>0))
then
re_started{req)
else
begin
£ .mode:=actk;
move wtg_prs(t);
count(t”.hold_list,cnt),;
if {cnt=t”".resnum)
then
terminate(t)
else
resource_recquest(t);

end;
end; { activate_again }

procedure take_request{var req:a_req_typet),
{ takes a tramsaction from cc queue |}
var ‘ i

ptr:a_req typet;

begin :
if (data”.req g ptr<>nil)
then -
begin
ptr:=data”.req q ptr;
if (ptr”.next=nil)
then
req:=nil
else
begin
req:=ptr”.next;
ptr”.next:=req”.next;
req”.next:=nil;
end;
end;
end; { take request }

begin { simulate }
take request{request};
call_check_wtg_trs:=false;
while ({reguest<>nil) and
(data”.numofcomptrans<stop simulation}) do
begin '

check_clock(request);
write(chr(13), 'CLOCK :', sys_1".oclock:6:0};
case request”.mode of ‘

new : initial_activation(request);
cpureq : activate_again(request);
rstepureq : re_started{request};
wtgtrck : check wtg_trs;

end;

dispose(request);

if call_check_wtg_trs

then

begin

check_wtg_trs;
call check wtg_trs:=false;
end;
transfer_bw_gs;
take_request{request),;
if request=nil
then
while (request=nil) do
begin
check_wtg_trs;
take_ request{request);
end;
data”.clock:=data”.clock+data”.context_switch;

100

if {data” nnmofcamptrans¢,0)
then
data”™.mean_tr_dur:=data”™.cumm_tr dur/data”.numofcomptrans;
end;
end; { simulate }

Listing of The Main File :

{§U+,R+}
{5G512,P512,D-}
program deadlock;
B :
This program simulates the deadlock detection algorithm
which is modified by S.F.Akglin for a single-site system.
All the parameters are given in constant form. It is
written by S.F.Akglin -in Fall, 1989,
1 ' ‘
const
sl numofres =200
{ number of resources in the system }
51_numofterm=50;
{ number of terminals in the system }
sl maxres=8;
{ maximum pumber of resources requested by a process }
sl minres=2;
[minimum number of resources requested by a process }
s1l_mpl=50;
{ multiprogramming level }
sl_context_switch=1;
{ context switch time -~ unit of time in the system }
sl_max_move time=4;
{ time required to move cobjects from ready queue to co
queune }
s1_maxreqtime=35;
{ maximum duration between each resource request made by
a process }
sl_think time=200;
{ mean time between transactions created from a term1na1 }
sl_minaccdur=15;
{ minimum disk access time for a database object 1
sl_maxaccdur=65;
{ maximum disk access time for a database object }
stop_simulation=1000;
* { the program terminates when the number of completed
transactions reaches the value of stop_simulation }

101

“type
probet="probe;
{ points a probe }
probe=record
.init,vic, sender:integer;
next :probet
. end;
{ type of a probe }
w_req_typet="vw_req_type,
{ points an element in request_Q }
¥_req_type=record
t_id:integer;
start_time:real;
nextw:w_req_typet
end;
{ type of an element in request_Q }
regmode={new, cpureq, rstcpureq, wtgtrck};
{ modes of the objects in cc queue }
a_req_typet="a_req_type;
{ points an element in cc queue }
a_req_type=record
t_id:integer;
req_time:real;
mode : reqmode;
next:a_req_ typet;’
end;
{ type of an element in cc queue }
res_nodet="res_node;
{ points a resource record }
res_node=record
r_id, ,
t_id:integer;
waltq:v_req_typet;
probes:probet;
nextr:res_nodet -
end; :) ‘
{ contains information related to a resource }
resources=1..s1 numofres;
resset=set of resources;
modetype=(act,wtg, rst, rstwtqg),;
{ possible modes of a transaction }
tr_nodet="tr_node;
{ points a transaction record }
tr_node=record
t_id:integer;
mode : modetype,;
start_time:real;
resnum:integer;
hold_list:resset;
focus:integer;
restart_arr:array [l..sl maxres] of integer;
rst_time_arr:array [l..sl _maxres] of real;
mark:integer;
{ restart_arr,rst_time_arr, and mark are used
in case of restart. Arrays used to store the
resources requested and their request times }

T. C.
Yikseksgretim Kumm&
Dokfiimantasyon Merkez!

prlist,

[contains the probes received

wtyg_pr:probet;
{ contains the probes received by the transaction

when its waiting for CPU }

nextt:tr nodet
end; ‘
| contains information related to a transaction }
el rd g t="el_rd q;
el_rd_g=record
t_id:integer;
req time:real,;
nextel:el_rd g t:
end;
{ an element of ready Q }
data_pack_ type="data_pack;
data_pack=record

numofres,
numofterm,
maxres,

minres,

mpl,

ompl,
context_switch,
av_move_time,
qureqtime,
think time,
minaccdur,
maxacedur
sys_clock, .
clock,

cumm tr_dur,
numofprobes,
numoftrans,
numofcomptrans,

mean_tr_ dur,
numofdeadlock : real;
res_q ptr :res_nodet;
tr_gq ptr : tr_nodet;
req g ptr : a_req_typet,;
ready _q ptr : el_rd q t;
end;

integer; -

by the transaction }

102

{ contains all the parameters of a modeled single-site system }

var
sys_1

.- data_pack_ type;

{$1 var_init.pas}
{$1 initialize.pas}
{§1 simu.pas}

begin { main }

randomize;
new(sys_1)

.
¢

var_init(sys_1).
initialize(sys_1};

103

simlate(sys_1});

writeln,
writeln{ ' PARAMETERS :’);
writeln(’ N

writeln('total number of resources :°',sys_l1".numofres:4),;
vriteln(’'total number of termlnals ', 8ys_1" . numofterm:4);
vriteln{ ' max. _resource request :°,sys_ 1" .maxres:3,
min. resource request 1',8y5_1".minres:3),;

vriteln(’ multlprogrammlng level (mpl) :',sys_1".mpl:3);
writeln({’'think_time :’,sys_1". thlnk _time:4);
vrlteln(max. disk access time : ‘,8ys_l1".maxaccdur:3,

' min. disk access time :',sys_l".minaccdur:3);

writeln;
writeln{ RESULTS OBTAINED :°);
writeln(’ "),

writeln{’'response_time:’,
{sys_1".cumm_tr_dur/sys_1".numofcomptrans):6:0);

writeln('number of probes sent/10000 units of time:',
{sys_1".numofprobes*10000)/sys_1".clock:7:0);

wvriteln('number of deadlocks happened/10000 units of time :°,

) (sys_1".numofdeadlock*10000)/sys_1".clock:6:0});

writeln(' THROUGHPUT' },

writeln(' (number of transactions completed/10000 units of time}:'
{sys_1".numofcomptrans*10000)/sys_1".clock:6:0);

end. { main }

BIBLIOGRAPHY 104

BIBLIOGRAPHY

Mukul K. Sinha and N. Natarajan, "A priority based distributed deadlock
detection algorithm,” JEEF Transaction on Software Engineering, Vol. SE-11, No.
1, pp. 67-80, January 198)3.

‘Alok N. Choudhary, Walter H. Kohler, John A. Stankovic, and Don Towsley, "A
modified priority based probe algorithm for distributed deadlock detection and
resolution,” JEEF Transaction on Software Fagineering, Vol. 15, No. 1, pp. 10-17,

Januvary 1989.

Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. loncurrency
Controf and Recovery in Datsbase Systems. Reading, Massachusetts: Addison-
Wesley, 1987,

D. Menasce and R. Muntz, "Locking and deadlock detection in distributed
databases,” [FEF Transaction on Software Fngineering, Vol. SE-53, No. 3, May 1979.

K. Mani Chandy and J. Misra, "A distributed algorithm for detecting resource
deadlocks in distributed systems,” in Proceedings of the ACM Symposivm on
" Principles of Distributed (’omputz’ng (Otawa, Canada), ACM, New York, pp. 157-
164, August 1982, '

Edgar Knapp, "Deadlock detection in distributed databases," AC‘M Computing
Surveys, Vol. 19, Na. 4, pp. 303-328, December 1987,

T. Hermann and K. Mani Chandy, "A distributed procedure to detect AND/OR
deadlock,” Tech. Rep. TR LCS-8301, Dept. of Computer Science, Univ. of Texas,
Austin, Tex., 1983,

. Bracha and S. Toveg, "A distributed algorithm for generalized deadlock
detection,” Tech. Rep. TR 83-558, Cornell Univ., Ithaca, NY., 1983.

10.

IL

12.

13.

i4.

BIBLIOGRAPHY 105

E. vGafni. “Perspectives on distributed network protocols: A case for building
blocks,” in [EEE Military Communications (onference (Monterey, Calif.), 1EEE,
New York, pp. 1.1.1-1.15, 1986.

Virgil D. Gligor and Susan H. Shattuck, “On deadlock detection in distributed
systems,” ZFEE Tmsw:on on Soltware Engmaermg. Vol. SE-6, No. 5, pp. 435-
440, September 1930,

Ron Obermarck, "Distribut;ed deadlock detection algorithm,” ACH Transactions
on Database Systems, Vol.7,No. 2, pp. 187-208, June 1982,

Leslie Lamport, "Time, clocks, and the ordering of events in a distributed
system,” Communications of the ACH, Vol. 21, No.7, pp. 558-565, July 1978.

K. Mani Chandy and Leslie Lamport, "Distributed snapshots: Determining global
states of distributed systems,” ACH Transactions on Computer Systems, Vol. 3, No.
1, pp. 63-75, February 1985.

Rakesh Agrawal, Michael J. Carel, and Miron Livny, "Concurrency control
performance modeling: Alternatives and implications,” ACM Transaclions on
Database Systems, Vol. 12, No. 4, pp. 609-654, December [987.

REFERENCES NOT CITED 106

REFERENCES NOT CITED

Agrawal, R, M.]. Carey, and L. W. McVoy, “The performance of alternative stratégies
for dealing with deadlocks in database management systems,” JEEF Transactions
on Software Fngineering , Vol. SE-13, No. 12, pp. 1348-1363, December 1987,

Blazewicz, J., . Brzezinski, and G. Gambosi, “Time-stamp apprqach to store-and-forward
deadlock prevention,” JEEF Iransactions on Communications, Vol. COM-33, No. 5,
pp 490-495, May 1987.

Bochmann, G. V., "Delay-independent design for distributed systems,” /EEE Transactions
on Software Fngineering , Vol. 14, No. 8, pp. 1229-1237, August 1988.

Cidon, 1., J. M. Jaffe, and M. 5idi, “Local Distributed deadelock detection by cycle
detection and clustering,” JEEE Transactions on Software Fngineering, Vol.
SE-13, No. 1, pp. 3-14, Janvary 1987,

Elmagarmid, A. K., and A. K. Datia, “Two-phase deadlock detection algorithm,” JZZE
Transactions on Computers, Vol, 37, No. 11, pp. 1454-1458, November 1988,
)

Elmagarmid, A. K., N, Soundararajan, and M. T. Liu, “A distributed deadlock detection and
resolution algorithm and its correctness proof,” JZEF Transactions on .S‘oftwm
Fngineering , Vol. 14, No. 10, pp. 1443-1452, October 1987.

Hoare, C. A.R., "Communicating sequential processes,” Communications of the ACM, Val.
21, No. 8, pp. 3-11, August 1978.

‘Maekawa, M., Oldehoeft AE., Oldehoeft RR. Operating Systems: Advaaced Concept. The
Benjamin/Cummings Pub, Co,, 1987,

Peterson, J. L., and Abraham Silberschatz. Operating System C(oncepts.Reading,
Massachuites, Addison-Wesley Pub, Co., 1985, '

REFERENCES NOT CITED 107

Wuu, G. T.,and A, J. Bernstein, "False deadlock detection in distributed systems,” [JEEF
TIransactions on Software fngineering, Vol. SE-11, No. 8, pp. 820-821, August
1985,

