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ABSTRACT

System analysis 1is an important topic for many
scientific disciplines. By a system, we mean an orderly,
interconnected arrangement of parts describing a phenomenon.
The formal representation of systems 1is done through
mathematical modeling. Thus the analysis of a system is
performed by analysing the mathematical model of the system.

The mathematical model of a system contains implicit
information about the system it describes - how the system
behaves under various conditions, what are the relaticnships
between the variables, how the cause-effect sequence of the
variables be arranged, etc. Currently, the exposition of this
information in order to understand the system truly is
usually performed by humans. This thesis is a step towards
the automation of this process and introduces for this
purpose some techniques. These techniques are based on the
use of some. well-known mathematical tools: partial
derivatives and total differentials of the closed form
functions defining a system. Partial derivatives and total
differentials are analysed to make the causal relations
implied by the model explicit. The mathematical models
addressed by our work are restricted to models of the form of

algebraic equations.

iv



We can classify the process of system analysis into
two; Quantitative analysis and qualitative analysis. The
techniques introduced in this work are mostly qualitative in
nature, but they also take into account the quantitative

information available in a model.



GZET

Sistem analizi pekcok bilim dalim ilgilendiren bir
konudur. Bdlimleri arasinda diuzenli baglantilar bulunan
herhangi bir olay: bir sistem olarak tarif edebiliriz. Bir
sistem matematik modelleme yoluyla ifade edilir. Bbylece bir
sistemin analizi sisteme ait matematik modelin analizi ile
vapirlir.

Bir sistemin matematik modeli sistem hakkinda Snemli
bilgiler ic¢cerir: degisik durumlarda sistem nasi:1 davranir,
degiskenler arasindaki iliskiler nelerdir, dediskenlere ait
sebep—-sonu¢ sirasi ne sekilde dizenlenmistir, vb. Guntimtizde
sistemi dogru olarak anlayabilmek icin bu bilgilerin ¢rkarim
genellikle insanlar tarafindan yap: lmaktadir. Bu tez, bu
is lemin otomasyonu ySntinde bir adim atmay: amaslamaktadir ve
bu sebeple bazi teknikler ortaya koymaktadir. Bu teknikler
yvaygin olarak kullamilan Dbirtakim matematik metotlara
dayanmaktadir: bir sistemi tarifleyen kapalr fonksiyonlarin
kismi tirevleri .ve toplam tlrevleri. Kismi wve toplam
tirevler modeldeki degiskenler arasindaki sebep-sonug
iliskilerini ortaya ¢ikarmak amaciyla kullan:imaktadrr. Bu

calismada yer alan matematik modeller cebirsel denklemlerden

olusmaktadir.
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Sistem analizi iz lemini iki gruba ayirrabiliriz:
Sayisal analiz wve niteliksel analiz. Bu =alxzmada ortaya
atilan teknikler genel olarak nitelikseldir, ancak bir

modelde bulunan saylsal bilgi de dikkate alinmaktadir.
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I. INTRODUCTION

System analysis 1is an important topic for many
scientific disciplines. By a system, we mean an orderly,
interconnected arrangement of parts describing a scientific
event. Almost everything in the world around us can be
regarded as a system or as a part of a more complicated
system. Therefore it is inevitable for science, whose main
aim is to explain the real world truly, to base its grounds
on the systematic analysis of systems.

The formal representation of systems is done through
mathematical modeling. Thus the analysis of a system is
performed by analysing the mathematical model of the system.
We can classify this process into two: Quantitative analysis
and qualitative analysis.

There has been tremendous work in the literature for
the analysis of mathematical models. This work is almost
entirely based on quantiﬁative techniques and the literature
is full of a rich set of theories for this purpose. For
example, the dynamic systems theory (e.g. [1]) concerns with
the quantitative solution of models that can be expressed in
terms of difference and differential equations. Figure 1
shows the stages of the quantitative approach. Once the
problem under consideration is defined and converted into a
mathematical mo§el, it is solved gquantitatively by using

several techniques. The solutionas are then interpreted, the



validity of the model is questioned, and the model is
improved if necessary. The process of modeling, computation,
and interpretation continues until the analyst is satisfied
with the level of detail included in the model.

Besides these large amount of guantitative technigues,
recently researchers have begun to focus their attention
towards methods which are gqualitative in nature. Artificial
intelligence literature includes several approaches to study
causal behavior of (especially physical) systems by using
gualitative versions of quantitative methods, such as
gualitative arithmetic, qualitative causal calculus, and
gqualitative physics. Figure 2 shows the stages involved in

the qualitative approach. In this case we are saved from the

Improvement
‘l’ Modeling Computation Interpretation
Definttion Mathemotical Analytic Commonsense
; 7
of problem model soluttons description

FIGURE 1. Stages of guantitative analysis

Improvement
‘l' Madeling salve ]
Definition 3 Mathematical quo.uto.tlvel!’ Commonsense
of problemn model description

FIGURE 2. Stages of qualitative analysis



rather expensive computation step and the computation and the
interpretation steps are replaced by a single step which
solves the model qualiﬁatively. What constitutes the phrase
"solving qualitatively” is the topic of research. '
The major advantage of a qualitative approach is that
it parallels the way people solve problems in everyday life.
It is well-known that a human being, when encountered with an
analysis problem, does not +try to generate the solutions
quantitatively (which may indeed be very difficult or almost
impossible for complex systems), instead he/she tries to
capture the important parts of the problem, ignoring the
irrelevant details, and makes deductions on these. This is
referred to as commonsense reasoning. This explains why the
field of artificial intelligence, whose ultimate goal is to

simulate the functions of a human being, is interested  in

qualitative analysis.

1.1. Mathematical Models and Qualitative Analysis

Nearly all observed phenomena in our daily lives or in
scientific investigation are based on mathematical models.
Typical examples inolude physical, economical, and social
systems as well as many others. It is absolutely essential
that an adequate mathematical model of the system be
generated if a meaningful understanding of the system is to
be obtained.

A mathematical model 1is a specification of the
interrelationships of the parts of a system, sufficiently
explicit to enable us to study its behavior under a variety

1
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of circumstances and, in particular, to control it and to
predict its future. There may be various models for the same
system, differing in their amounts of detail. The degree of
detail incorporated in the model depends on the choice of the
model-builder, the amount of data available, and the
application.

A major decision, often taken at the very onset of
modeling, concerns the nature of the variables involved.
Basically variables are of one of two types. Those variables
whose values can be set frsely by mechanisms that are outside
the particular model under consideration are called exogenous
variables. Those variables whose values are to be determined
by the model are called endogenous variables. The exogenous
variables are treated as independent variables and the
endogenous. variables are treated as dependent wvariables in
the mathematical sense.

One important aspect of a mathematical model 1lies in
the arrangement of the equations. It has been found by
experience that if the equations are arranged in a logical or
cause-and-effect sequence £he model is stable. This sequence
is termed the natural order, for it invariably closely
parallels the cause-and-effect seguence found in nature. The
key to understanding the internal mechanism 1lies in being
able to define this natural cause-and-effect seguence.

Simultaneity, linearity. sufficiency and redundancy
are some of the important properties of equations. The
concept of simultaneity refers to the fact that the equation
set must be solved simultaneously in order to determine the

4



values of the dependent variables. Here we call an equation
linear if the relationship between the variables can be shown
as a straight line on the graph. In order to obtain a
solution to a set of equations, it is necessary to specif& as
many independent equations as there are dependent variables.
Independent equations mean that no redundant egquation derived
from the other equations can be used as an independent
equation.

A mathematical model can be constructed using
different kinds  of mathematical notations, including
algebraic equations, differential equations, difference
equations, integral equations, and partial differential
eguations. For example, a model may be purely algebraic (that
is, represented as a set of simultaneous algebraic
equations), or a mixture of algebraic and differential
equations.

There is a growing amount of research in the area of
gualitative analysis of systems, although often under
different titles (e.g. qualitative physics, gqualitative
process theory, quali£ative simulation, commonsense
knowledge, or causal ordering). All propose formalizing the
commonsense knowledge about the everyday world, but each
views this task rather differently.

The work by de Kleer and Brown [2,3] on gqualitative
physics is motivated by the desire to identify the core
knowledge that underlies people’s physical intuitions. Their
interest in causality includes both the causal ordering among
variables (what variables affect what other variables) and

5



the direction, positive or negative, of causal effects
(whether an increase in variable x causes the value of
variable y to increase or decrease). They describe behavior
by a set of qualitative differential equations called
confluences. Confluences are constraint equations written in
terms of qualitative derivatives of variables, whose values
are +, -, or O.

In the theory of qualitative physics as developed by
de Kleer and Brown, two types of behavior are discussed:
Intrastate behavior, or action within a state of the system;
and interstate behavior, or the transformation of the system
from one state to another. Boundaries between states are
characterized by critical values of certain variables.

They propose a method, called mythical causality, to
discover the causal relations in the system. The system,.
which is presumed to be at equilibrium initially, is
disturbed by a change in the value of a variable and the
effect of this disturbance is then propagated through the
confluences until all the variables are assigned new values
and equilibrium is restored. During propagation, if an
equation is encountered in which there remains more than one
variable whose values are unknown, then some assumptions are
made to reduce the number of unknowns to one. These
assumptions are based on some heuristic rules relevant to the
properties of physical systems.

The key to mythical causality is the design of
heuristics. They must be good enough to prevent the method
from generating unreasonable solutions.

6



Iwasaki and Simon [4]1 propose a method for causality,
somewhat different from that of de Kleer and Brown. It is
called causal ordering. What causal ordering accomplishes is
to make the asymmetric relationship among wvariables impiied
by the model explicit. Establishing a causal ordering
involves finding subsets of variables whose values can be
computed independently of the remaining variables, and using
these wvalues to reduce the structure to a smaller set of
equations containing only the remaining variables. In this
way, by knowing which variables can be computed outside the
system and by wusing the modeling equations, a causal
structure is generated for the system.

RKuipers [5,8] follows a quite different approach to
describe the behavior of systems. His work is based on
qualitative simuiation which is a key inference processrin
qualitative‘causal reasoning. A system is described by a set
of qualitative constraint equations and an initial state is
given. Then qualitative simulation is used to predict the
possible behaviorsﬁof the system. An important aspect of the
method proposed by Kuipers is that it allows new qualitative
values indicatingﬂcritical points, in addition to +, -, and
0, to be discovered during the analysis. The basic idea
behind qualitative simulation is that a parameter can change
state only in specific directions defined by transition
ordering rules and restricted by consistency filters. In this
way a set of possible future behaviors of a system is

generated.



Weld [7] describes comparative analysis, which can be
seen as the complement of qualitative simulation, and
proposes a method called differential qualitative (DQ)
analysis. Whereas gualitative simulation takes a descriptibn
of a system and predicts its behavior, comparative analysis
takes as input this behavior and a perturbation and outputs a
description of how and why the behavior would change as a
result of the perturbation. DQ analysis uses inference rules
to deduce qualitative information about the relative change
of system parameters. A trace of the rules used in solving a
problem is then translated into an intuitive explanation of
the answer.

Qualitative process theory, developed by Forbus [8],
is based on the concept of process. A process is defined as
something that acts through time”to change the. parameters in
a situation. The method reasons qualitatively about
processes, when they will occur, their effeqts, and when they
will stop. Studying naive physics reasoning about everyday
physical situations, he determines the current set of active
processes. The constraint equations are derived from the
complete set of cuérently active processes. In tbis way,
qualitative process theory provides the means to model
aspects of commonsense reasoning about physical domains.

Weld [9] describes an abstraction technigue, called
aggregation, to dynamically create new descriptions of a
system’s behavior. Aggregation works by detecting repeating

cycles of processes and creating a continuous process



description of the cycle’s behavior. The importance of the
method is that it generates a higher-level abstraction for
the behavior of a system by combining repeating processes.

In addition to these works, several other researchers
‘have contributed to the literature for qualitative analysis,
such as Hayes [10,11] and Williams [12]. As indicated at the
beginning of this section, all these aim to formalize the
commonsense knowledgef usually in different directions, such
as deriving causal relations in a system, predicting how a

system behaves, and explaining changes in system behavior.

1.2, Summary of Our Approach

The aim of this thesis is to analyse the mathematical
model of a system and to generate causal relations about the
dynamics of the system.

The mathematical model of a system contains implicit
information about the system it describes - how the system
behaves under various conditions, what are the relationships
between the variables, how the cause-effect sequence of the
variables is arranged, etc. Currently, the exposition of this
information in order to understand the system truly is
usually performed by humans. Our work is a step towards the
automation of this process and introduces for this purpose
some techniques. These techniques are based on the use of
some well-known mathematical tools: partial derivatives and
total differentials of closed form functions defining a

system. Partial derivatives and total differentials are
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analysed to make the causal relations implied by the model
explicit.

The mathematical models addressed by our work - are
restricted to models of the form of algebraic equatiéns.
Furthermore, it is assumed that the equation set constituting
the model does not include any redundant equations. The
equations may be linear or nonlinear. The extension of the
techniques to other types of mathematical models (models
expressed in terms of differential egquations, difference
equations, etc) is an area left for future research.

The outline of this thesis is as follows: Section 2
gives the definitions and the notation that will be used
throughout the thesis and explains the fundamental assumption
on which all this work is based. Sections 3 and 4
des&rige two techniques, referred to as sign analysis and
value analysis. Section 5 illustrates what has been explained
in previous sections by an example. Section 6 describes a
prototype program which was implemented based on these
techniques. Section 7 is a conclusion; it includes a
comparison of our work with the previous works and discusses
the possible futuée extensions of the techniques we have
introduced. The appendices are reserved for the supplementary
information about the program. Appendix A explains the
Newton-Raphson method used in the program. Program messages
are given in Appendix B. Appendix C is for the specifications
and limitations of the program. In appendices D and E, a

sample run and the listing of the program are given.
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IXI. DEFINITIONS, NOTATION AND THE FUNDAMENTAL ASSUMPTION

This section explains the definitions and the notation

that will be used throughout the thesis.

Definition 2.1. A system, in its broadest sense, 1is an
orderly, interconnected arrangement of parts describing a

scientific event.

This definition is general enough that nearly all
natural phenomena can be described in the language of
systems. Specific examples may arise, as well as many others,
in (a) a physical system, such as a circuit, a traveling
space vehicle, or a home heating system; - (b) a social system,
such as the behavior of an economic structure; or (c) a 1life
system, such as population growth.

The techniques introduced in this work can well be
applied to systems from any domain, although we mostly take

our examples from physical systems.

Definition 2.2. A—Subsystem is a distinct conceptual part of
a system. The working of the whole system is to be explained
in terms of the functions of the subsystems that constitute

the system.

As an example, a complex electrical circuit system can
be divided into different subsystems. Each subsystem

describes one distinct self-contained part of the system, and

11



the principles about how the subsystems should communicate

with each other are extracted.

This modular approach to mathematical modeling, that
is combining subsystems to form a single system, is referred
to as assembling of systems. It simplifies both the
formulation and the analysis of the problem since it allows
the analyst to investigate the system at different levels of
detail. At the beginning the system can be viewed as a rough
approximation, consisting of only a few subsystems, of the
corresponding natural phenomenon by suppressing the details.
Then as the analysis progresses, we can turn this system into
a subsystem, assemble it with other relevant subsystems and
thus form a more complicated system for a better
approximation. The process continues in this way. At a
particular stage of the process we can add more detail into a
subsystem by breaking it into sub-subsystems or remove those
subsystems that are proved to be inadequate in order to make

the system more resemble to its real world counterpart.

Definition 2.3. A mathematical model® of a system (or of a
subsystem) is the description of the system (or of the
subsystem) in the mathematical language in terms of the
following:

(1) A set of simultaneous equations, and

(2) A set of parameters.

i'x‘he term . mathematical model will be abbreviated o
modal heraaofter.

12



The terms eguation and function will be used
interchangeably throughout the thesis. A function denotes a
relation between the parameters (see Definition 2.4) of the
system and is written in the form of an eguation while
defining the model of the system.

As indicated in Section 1.2, the basic restriction
imposed on the equations in this work is that the equations
must be algebraic in form.

We will occasionally use the term submodel to indicate

the mathematical model of a subsystem.

Definition 2.4. A parameter denotes either a variable or a

constant. This is called the type of a parameter,

Definition 2.5. The tvpe of a variable is either exogenous or
endogenous. An exogenous variable is one whose value can be
set freely by mechanisms that are outside the particular
model under consideration. An endogenous wvariable 1is one
whose value is to be determined by the interactions between

the parameters in the model.

Exogenous variables and endogenous variables are
sometimes called independent variables and dependent
variables, respectively.

The choice of the type of a variable in a model
depends on several factors, including the properties of the
system under consideration, the level of detail incorporated
into the model, and the taste of the model-builder. There is

no clear-cut rules valid for all asystems in this issue.

13



At this point it is worthwhile to state an important
property of the wvariables which is applicable to most
systems. A variable included in the model of a system which
is termed as endogenous stays as endogenous if the model is
enlarged by adding models for new subsystems. On the other
hand, a variable which is termed as exogenous may either stay
as exogenous or become endogenous after the same enlargement.
This is basically due to the fact that, in the latter case,
the value of the exogenous variable, which we can set freely,
is now determined by a (newly incorporated) subsystem, thus
the type of the variable becomes endogencus in the enlarged
model. On the contrary, in the former case, the addition of a
new subsystem does not enable us to set freely the wvalue of
an already endogenous variable.

7 A constant, as it name suggests, is a parameter of the
model whose value remains constant throughout the analysis.
In this work we treat constants as exogenous variables for
all cases because of their similarity. Thus, in contrast to
the above definition of a constant, we will +talk about the
"change"” in the value of a constant. Also, as is the case for
an exogenous variéble, a conastant is allowed to change its
type to an endogenous variable in case new subsystems are
added to the model. This approach is more flexible than
fixing the value of a constant because a constant may be
replaced by another one, similar to the change of the value
of an exogenous variable, and it may be interesting to

examine the variations in the system behavior in such a

14
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aituation.

Definition &2.6. The difference between the number of
parameters and the number of equations in a model is called

the degrees of freedom of the model (or of the system).

Definition 2.7. A system whose degrees of freedom is equal to
the number of exogenous variables and constants 1is called
singular if, when the values of the exogenous variables and
constants are given, the determinant of the resulting

equation set is zero. The system is nonsingular otherwise.

Singularity is a mathematical (numerical) issue. It
may arise for different reasons. A common reason is that a
model may be wrong in the mathematical sense. That is, either
the model contains redundant equations or a number of
improper equations are added to the model in order to reduce

the degrees of freedom of the system.

Definition 2.8. If the degrees of freedom of a system is
equal to the number of exogenous variables and constants and
the system is nonsingular, then the equations can be solved
uniquely for the Qalues of the endogenous variables for a
given set of values for the exogenous variables and
constants. The resulting set of values for the parameters is
called the state of the system, or the =system state. The

system state is a complete description of the system.

Definition 2.9. The operating region of a parameter 1is the

range of values that the parameter may take on.
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Definttion 2.10. The union of the operating regions of all
the parameters in a model (or system) is called the space of

the system, or the system space.

The degrees of freedom of a system being greater than
the number of exogenous variables and constants denotes the
number of additional equations that can be given about the
system. This is usually done by fixing the values of a number
of endogenous variables to reduce the degrees of freedom,
thus making those variables exogenous. This must be done in a

way such that the resulting system is nonsingular.

Definition 2.11. The sign of a, denoted as [a], where o may
be a parameter, a total differential, a partial derivative,
or an arithmetic expression, is defined as follows:

[al=+ iff «>0,

[¢]1=0 iff a=0,

[al=— iff a<O.

Definition 2.12. The inverse of the sign of a, denoted as
[a], where « is as in the previous definition, 1is equal to

the sign of the negative of a. That is, [=]=[-o].

Definition 2.13. The direction of change of a parameter p,
denoted as {p}, indicates in which direction the value of p
changes. It is defined as follows:

{p}=+ iff the value of p increases,

{p}=0 iff the value of p does not change,

{p}=- iff the value of p decreases.
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Since the total differential of a parameter P,
represented as dp, indicates mathematically the magnitude of
the change in the value of p, we can state that {p}=[{dpl. In
other words, p is increasing iff dp>0, the value of p does

not change iff dp=0, and p is decreasing iff dp<O.

Definition 2.14. The inverse of the direction of change of a
parameter p, denoted as {p}, is defined as follows:

{p}=+ iff {p}=-,

{p}=0 iff {p}=0,

{P}=- iff {pl}=+.

Definition 2.15. A function is said to be in clesed form if
it is written in such a way that the value of the function is

equal to zero.

An ordinary function can easily be converted to a
closed form function. For example, the closed form of the

function y=x is y-x=0.

Below is a listing of the notation that will be wused

throughout the thesis:

x, an endogenous variable

Y, an exogenous variable or a constant

z, a parameter (i.e. either an endogenous variable, an

exogenous variable, or a constant).

dzi total differential of the parameter z, -

F1C21,~~-»zn) a function of parameters z ,...,z . The
parameter list will be dropped and the function symbol will

be denoted simply as Fi when no confusion arises.
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dFiCzi,...,zn) total differential of the function FL

(abbreviated as dFi).

aFi(ZI,. . .,Zn)

o

partial derivative of the function Ft with
3F.

respect to (wrt) the parameter pj (abbreviated as EEL).
J

=—— partial derivative of parameter z, wrt the parameter z, .

[l the sign of & (Definition 2.11).

<z> the direction of change of the parameter =z (Definition
2.13). The braces {} will also be used to represent the
elements in a set. The distinction will be clear from
the context.

s the inverse of s, where s represents either a sign or a
direction of change. The distinction will be clear from

the context.

At this point, the definitions given above will be
illustrated by an example.

Consider the system shown in Figure 3, which
illustrates a simple valve. The model of the system can be

described as follows2:

-

“We will describe a model informally by listing the
equations and parameters. For aach  porameter, FN¥-9 LY A
abbreviated form: exo for EBRTY BT wariable, =ndo for
endogenous variable, and const for constant? and i

applicable) a brief explanation are displayed.
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Equations
Q:Cv 1 - 2
Parameters .
Q , flow rate (endo)
Cv, valve constant (const)
Pl, pressure at the left-hand side of the valve (exo)
PZ

, pressure at the right-hand side of the valve (exo)

It is assumed that P1 is greater than P2 and thus the
flow is from left to right. (Pi—Pz) is called the pressure
drop across the valve.

There is one equation and four parameters. The degrees
of freedom of the system is three, thus the equation can be
solved to determine uniquely the value of @ given the wvalues
of other parameters.

Since Cv represents the valve constant, physically it
can take on only positive values. Therefore we can denote the
operating region of Cv by the interval (0,c] for some value
c.

Now consider the system shown in Figure 4, which is an

extension of the previous system in having a vessel

]
R C Py f & Py
L DR l ? DT
—Q —Q

FIGURE 3. A valve system FIGURE 4. The valve attached to a
‘ vessel
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containing liquid at the left-hand side. The model of this

new system can be described as follows:

Equations
Q =CY P -P
v 1 T2

P1=h6+Po

Parameters
Q@ , flow rate (endo)
C , valve constant (const)
pressure at the left-hand side of the valve and at the

bottom of the liguid (endo)
pressure at the right-hand side of the valve (exc)

P
h , height of liquid (exo)
& , density of liquid (const)

pressure above liguid surface (exo)

Note that the type of the variable P1 is changed from
exogenous to endogenous. This means that in the first system
the value of P is set freely by the analyst in order to find
the value of @, but in the extended system P1 is determined
by the model itself (i.e., by the second equation, given the
values of h, e, and P ) which in turn determines Q given C,

and P, .

The system can be thought of as being composed of two
subsystems, say the valve system and the liguid system. We
can construct the models of these two subsystems separately
and then assemble them to form a single system by defining
the mappings between the parameters. The model of ethe valve

system is given above; the ligquid system can be modeled as

follows:
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Equations
P=he+P
O

Parameters )
P , pressure at the bottom (endo)
h , height of liquid (exo)
& , density of ligquid (const)

Po’ pressure above liquid surface (exo)

The two can then be mersged into a single system by indicating
that the type of P1 changes to endogenous and Pi of the valve
model and P of the ligquid model denote the same quantity.

The technigques introduced here are based on a
fundamental assumption: A relation expressed in the form of
an algebraic equation between the parameters of a system
implicitly represents the causal relations between the
parameters as well.

Consider the following closed form function
F(x,y)=x+y=0 (2.1)

Suppose that x is an endogenous variable and y is an
exogenous variable. It is customary to write the equations in
a model explicitly for endogenous variables to denote the
fact that the endogenous variables are to be computed from
the model for a given set of wvalues for the exogenous
variables. Following this recipe, the relationship between
the two variables in the above function can be shown more

clearly in the following form

x=F(y)=-y
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which states that the endogenous variable x is a function of
the exogenous variable yv and the function maps the negative
of y to x. This relation between x and y may also be
interpreted that if the wvalue of y is increased then rthe
value of x will decrease to satisfy the equation and vice
versa. This interpretation of the function implies the

following causal relations between x and y:

an itncrease in the value of y causes g decrease in the value

of x.
a decrease in the value of y causes an increase in the uwolue

of x.

These relations may be rewritten as follows using an tf-then

construct keeping in mind ° that the <{f-then construct

represents causality.

1f v changes in positive direction then x changes in negatiuve

direction

i1f y changes in negative direction then x changes in positive

direction

On the other hand, considering the form of the
function shown in (2.1) and assuming that we have imposed no
distinction between the wvariables from the point of being
either endogenous or exogenous, it is possible to treat the
variables in a uniform way and to generate the following four

relations between the variables:
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1f v changes in postitive direction then x changes in negative
dirsction ’

if v changes In negative direction then x changes in posiltive
direction — -

tf x changes in posttive direction then y changes tn negative

direction

if x changes in negative direction then y changes in positive

direction

Note that two of the relations above would be invalid
if one of the variables was indeed an endogenous variable as
in the first case. This means that we will treat all of the
variables as if they are all exogenous variables for the sake
of uniformity, but then we will make use of any information
available on their being endogenous or exogenous. In case
there is no such information we will assume that any of the
variables can be changed freely. In this case all four of the
relations will be assumed to hold and the relations will be

interpreted as representing mathematical causalities.

23



ITII. SIGN ANALYSIS

The first technique that will be introduced here is
called sign analysis. Sign analysis examines how a system
will react to perturbations in its parameters.

The idea can be explained as follows: The model of a
system is given. This model may only contain the equations
and the parameter names. It is not necessary to state whether
the type of a parameter is variable or constant and whether
the type of a variable is exogenous or endogenous, since the
sign analysis technique treats all the parasmeters in a
uniform way and leaves the interpretation of the results to
the analyst. The values of the parameters (i.e. a particular
system state) need not be known, either.

When the model to be examined is given, we state a
perturbation in one or more of +the parameters. 1In other
words, we state the directions of change of those parameters.
The model is then analysed and the result is the directions
of change of the remaining parameters.

We will examine the application of the fechnique on
two gquantities: Sign analysis of total differentials and sign
analysis of gains. The technique is pased on the use of what

we name as sign tables, which is the topic of the following

section.
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3.1, Sign Tables

) In this section we will examine in detail the sign
tables for total differentials of closed form functions. In
Section 3.3, we will briefly discuss the application of =sign
tables to gains.

For each equation (function) in a model, we form a
two-dimensional matrix called the sign table of the egualion
(function). The sign table of an equation has as many columns
as the number of parameters in the equation. A column for a
-parameter z is titled with the sign of the total differential
of z, that is [dz], and each element under the column is the
sign of a partial derivative representing a sign for the
total differential of z. Since we know that [dzl={z}, the
elements can also be interpreted as denoting the directions
of change of the parameter z. Each row represents a
combination of the signs of total differentials of the
parameters (i.e. directions of change of the parameters) in
the eguation. The number of rows in a sign table depends on
the number of parameters in the equation, as will be
described below.

et us consider the following closed form function of

two parameters
F(zi,zz)zo

The total differential of +this function expressed

symbolically is
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_SF SF _
dF=5;— dz, +5,~ dz,=0

Note that dF 1is equal to zero since it 1is the total
differential of the constant zero, i.e. the change in the
value of the function (dF) must be zero regardless of the

changes in its parameters. For simplicity, let us denote the

a 2 ’

signs of the partial derivatives 5£~ and —E;, [22_] and
zZ oz 2z
1 2 1

[gg— » 848 8 and S, respectively. Then possible combinations

for the signs [dzi] and [dzz] of the parameters z, and z, may

be given in the following sign table:

[dz,]1 [dz,)

O ul w
o w wml

As indicated above, [dz] denotes the same identity as
{z}. Therefore we could as well <title the columns in the
above table as {z, } and {zz} instead of [dzi] and [dz_].

Note that the elements in the table correspond to the
signs of partial derivatives.

Each row of- the table represents a possible change in
the values of the parameters. The first row says that a
change in z, in the same direction as s, and a change in z,
in the opposite direction of S, is compatible with the model.
Likewise, the second row corresponds to a change in z, in the
opposite direction of s, and a change in z, in the same

direction as 8,3 and the third row corresponds to a change in

none of the parameters.
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If we consider that each parameter has three possible
directions of change, there are 3" sign combinations for a
function of n parameters. This corresponds to nine for a
two-parameter function but as indicated above and as will Dbe
derived below only three of these are valid. For egémple, a
change in z, in the same direction as s, and a change in z,
in the same direction as s, is not possible.

It is important to emphasize that the above discussion
is valid regardless of the values of the parameters, 1i.e.
regardless of the system state.

Now let us give an example to make the point clearer.

Consider the following two-parameter closed form function
F(zi,zz)=z1+22=0

The total differential of the function is

_dF LOF _
dF-az dz1'az dzz—O
1 2
The partial derivatives are
aF _1 6F _1
32: = 32; =

Putting these into the above equality, it becomes

dF:dzi+dz2=0

. _ - , _r 9F . _
Since s = 52—]-+ and sz—[gzzl-+, the table for a
two-parameter function given above in its general form

reduces to the following particular table for this example
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[dz,]1 [dz,]

Thus we conclude that the parameters of the function
can change in one of three ways (regardless of the values of
z, and zz): z, increases and z, decreases, z, decreases and
z, increases, or z, and z_ remain unchanged. The remaining
sign combinations are not valid. For example, it is not
possible for both z, and z, to increase (that is, a change in
z, in the same direction as s, =+, and a change in z, in the
same direction as szz+) and still the equation to hold. This
can also be easily seen from the function.

Tables 1, 2, 3, and 4 give the sign tables for

functions of one, two, three, and four parameters,

respectively. As in the above discussion, s, denotes [gg—]
i

for the parameter z, -
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TABLE 1. Sign tabkle of F(z)=0
[dz]

0

TABLE 2. Sign table of F(zi,zz):o
[dzi] [dzzl

z

1

1 2

O al n
o v wl

TABLE 3. Sign table of F(zl,zz,za)zo
[dz, ] [dz,] [dz_]

s s )
1 2 3
s

F o S, 3
8 s s
1 2 3
s, s, 0
s 0 s
1 3
si SZ SS
= =
Si 82 SB
s, s, 0
s.‘L 82 83
8, o s,
0 s, s,
0 s, S,
0 0 0
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(dz,] ([dz 1 [dz,]

[dzil

Ldz ]

21

[dzz3 [dz

TABLE 4. Sign table of F(zi,zz,za,z4)20
{dz, ]
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In the following proposition we will explain the

mathematical foundation of sign tables.

Proposition 3.1. The sign table of an equation includes «ll
the possible directions of change of the parameters in the

eguation.
Proof We give the. proof for the general case. Consider the

function F of n parameters Z,s-enZ

F(zl,...,zn)zo

The total differential of the function is

_3F F _
dF—aZ1 dz1+.-.+3z: dzn_o (3.1)

By referring to the mathematical meaning of partial

derivatives and total differentials we can state the

following facts: [gg—]:+ (i.e. gg— >0) means that the wvalue
i

of the function F changes in the same direction as the value

of the parameter z ; that is, either increasing z, causes F

8F . _
82.1——
v .

to increase or decreasing z, causes F to decrease. [

SF . . . .

(52- <0) means that F changes in the opposite direction of
i .

Z, 3 that is, either increasing z, causes F to decrease or

decreasing z, causes F to increase. We do not consider the

case [zg 1 =0 (gg =0), since z, is a parameter that appears

t

in F with a nonzero coefficient, thus the partial derivative

of F wrt z, cannot be zero.
Now consider the total differentials of parameters.

[dzt]=+ (dzi>0) means that the value of the parameter z, is
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increasing. [dzi]:- (dzi<0) means that z, is decreasing.

[dz, 1=0 (dz, =0) means that z, does not change.

L

If [gg—]:[dzt]’ then [gg— dz ] =+. In other words,. if
i- o .

2 .
both 5%— and dzi are positive or both of them are negative,
i

then the multiplication of these two quantities is positive.

This means that a change in z, , no matter whether it is an

increase or a decrease, causes F to increase. If .
SF .. . .
[a, 1=[dz, 1=+, then z, is increasing and F and z, change in

i

the sameadirection, thus F increases.‘If (gg—]:[dzi]z—, then
i

z, is decreasing and F and z, change in the opposite

directions, thus F increases. If [gg—]=[dzt], then
‘ 2y
[gz dz£]:—. In other words, if one is positive and the other

L

is negative,then the multiplication is negative. This means
that a change in z, , no matter whether it is an increase or a

decrease, causes F to decrease. If [%g—]=+ and [dzt]z—, then
i

z, is decreasing and F and z, change in the same direction,

thus F decreases. If [gg— =— and [dzt]=+, then z, is
i

increasing and F and z, change in the opposite directions,

thus F decreases. If [dzi]=0, then [gg— dz£]:0. ‘In other

1
words, if the total differential of z, is zero, then the
multiplication is zero regardless of the value of §§~.
i
We require the total differential shown in (3.1) be

equal to zero. In order for this equality to hold, either

none of the parameters change or there are at least two-
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rarameters, one causing F to increase and one causing F to

decrease. In the former case, [dz£]:0 (dzL:O), so [ggf dzi]:O
T

(Zg dz, =0) for each i=1,...,n and thus the eguality holds.

L
The row of the sign table corresponding to this possibility
contains [dzt]:O‘for each i=1l,...,n. In the latter case,

there are at least two parameters, say z, and Zj’ i#j, such

aF
ez,
i

that [ 52— dz 1=+ ([ 3o =[dz, 1) and [ 52— dz,]=- ([ 51 =[dz D).
i i ’

i
The row of the table corresponding to this possibility

contains [dztlz[ggf] and [dzj]:[ngl. There is exactly one

v 1

row in each table corresponding to the former case, usually
shown as the last row of the table. The other rows correspond

to the second case. O

- As can be seen from Tables 1 through 4, all the rows
are in accordance with the definition given in the proof of
the proposition. For example, consider the sign table for a
two-parameter function given in Table 2 and the table, given
in Table 5, of the same function showing all of the nine sign
combinations. Each of the six rows that appear in Table 5 but
not in Table 2 has the common property that either it
contains at least one element in the same direction of the
corresponding partial derivative but lacks of an element in
the opposite direction, or vice versa. For instance, the
first row of Table 5 says that both of the wvariables change
in the same directions as the corresponding partial

derivatives. That is, [Zg ]:[dz1] and [gg—lz[dzzj. So,
1 2
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TABLE 5. Table of all sign combinations for F(zi,zz)=0

[dz ] {dz_]

N

%Y
I w

[
N

PR R R
N N M

ONO‘II(O O uluw o n

© O O nlw vl v n

[ggz dzilz+ and [gg— dz,] =+. This means that gg: dz,>0 and

gg— dz2>0. Putting these gquantities into the  total
2
differential of F (where the notation (+) indicates that the

gquantity is positive),

_dF aF _
dF—‘s—z: dZ1+a—Z-; ‘ de—O

= (+#) + (+#) =0

leadé to an inconsistency since the addition of two positive
quantities cannot 'be equal to zero.

Figure 5 gives a Pascal procedure for constructing the
sign table of a function. The inputs to the procedure are the
number of parameters in the function and the pgrtial
derivatives of the function wrt the parameters. We left how

to represent the derivatives unspecified. The array Mcode

indicates whether the sign of the partial derivative, the
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Const

MazPar = ... ; { maxizum number of parameters }
Barﬁan e = | .. HaxPar ; { garametet range }
Derivative = Rrray [Parﬁange

{ partial derivatives of the function wet _parameters ;
each element of the array is an expression

Procedure SignTable (n ParRang
Deriv : Derivative ) ;

Yar
Mode : Array %ParRange] 0f 1.,
odes of parameters in the following senge :
or a [arameter 2,

{ number of parameters in the function i
partial derivatives for the function

b gz = sign of partial derivative of the fuaction wrt 2z i
) " 3 [dz] = inverse of the sign of partial derivative of the function wrt z }
i : ParRange ;

Function ModesConsistent : Boolea
this function checks whether the modes of the parameters are valid, i.e.
gither all must be 2 or there must be at least two parameters, one
having mode 1 and the other having mode 3

HodeSet Set 0f 1..3;
1 ParRange ;

§odeSet =[] ;
For i:21 To n Do
KodeSet := HodeSet + [Mode [1{] : % ModeSet holds the union of modes }
EgodesConsxstent = (ModeSet * (1,3} = (]) Or (ModeSet * (1,31 = [1,3])
ad ;

Procedure DisplayRow ;
{ this procedure ouEputs a row of the table }

: ParRange ;
ﬁor i:=1 Ton Do

Qase Mode [i] Of
1 : Write {Deriv [i]) ;

2 : Write {0) ; i,
* Write (Inverse of Deriv [il)
End
End ;
Begin
ode [1] =0; [ initialize mode of first parameter i
begin with the firat parameter
thle fl > 0}
If Yode [i] < 3 Then { continue with the next mode of the parameter }
eﬁode [1] = Mode [i] + 1 )
th e (1< n) Do ! initialize modes of following parameters }
e{xn
g Hode [1] : 1
nd ;
If ModesConsistent Then
fud DisplayRow
!
Rise { all nodes of the parameter examined, i
fud i:=21- continue with the previous paraneter
e ;

FIGURE 5. A procedure for constructing the sign table
of a function
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inverse éf the sign of the partial derivative, or the sign O
will be used as an element of the table. We begin with mode 1
for a parameter and increase its mode until reaching 3. The
procedure generates all 3" sign combinations for a function
with n parameters, which are then filtered by the function
ModesConsistent to agree with the condition defined in the
proof of Proposition 3.1. The procedure DisplayRow outputs a
row of the table in an informal way.

The number of rows in the table of a function depends
only on the number of parameters in the function. Therefore
two functions with the same number of parameters will have
tables with the same number of rows. The formula to calculate
the number of rows in the table of a function is

n .
N=E (D (2°-2) + 1
i=2

where
N : number of rows in the table_

n : number of parameters in the function.

The calculation is shown in Figure 6 for functions up to 10

parameters.

N I 1 3 13 51 181 603 1933 6051 18661 57003

FIGURE 6. Number of rows, N, in the sign table of an
n-parameter function
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One important point that must be indicated here is
that, since the elements in a sign table correspond to the
signs of partial derivatives, we must know in advance these
signs before starting the analysis in order to be able to
reduce the sign table to one in which each element is either
+, 0, or ~. The expression of a partial derivative may or may
not directly lead to a sign symbol when we take the partial
derivative. In such a case, it 1is necessary to supply
sufficient information about the parameters appearing in the
partial derivative in order to find the sign of the partial
derivative. This does not mean that we must specify the state
of the system (i.e. the values of the parameters), instead we
restrict the system space.

As an example, suppose that the partial derivative of

a function F with respect to a parameter z is found to be

aF _
3z -272

In order to be able to specify [g§~] uniquely, we must
know whether z>2, 2=2, or 2z<2. These three possibilities
correspond to [gg—] being +, 0, or -, respectively. By making
such a statement, Qe restrict the system space. For instance,
_if we say that z>2, this amounts to leaving nearly half of
the operating region of z out of consideration (assuming that
z can take on all the values on the real line) and the result
of the sign analysis will only be valid for this region of

the space.
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On the other hand, if a partial derivative evaluates

to a constant such as

4%

—_—1

dz

or to an expression whose sign can be calculated directly

such as

F _ =2
-67'-2 +1

then we do not require any information about that parameter.
In most systems, a large number of partial derivatives
would either be constants or their signs would be readily
determined from their expressions for most functions
even though the values of the parameters are not specified.
This would greatly simplify sign analysis. For example,

consider the following equation

F=P -he-P_=0

which was used in 8Section 2 for the valve and liquid model.

The partial derivatives are

8F _ aF _ oF _ aF _

a3t @ ° il 5?;-‘1

Since only positive values are meaningful for the
parameters o (density of the liquid) and h (height of the
liquid) in the system they take place (i.e. operating regions
of & and h do not contain negative values), the signs of all
four of the partial derivatives would be easily determined

without imposing any restrictions on the system space.
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It must be noted that even though we are sometimes
forced to partition the system space into regions in order to
be able to evaluate the signs-of partial derivatives, we can
perform sign analysis on different regions of the system
space and then merge the individual results into results
which are valid for the whole system space (or wvalid for a
subset of the system space which we are satisfied with).

As a final point, if one is interested in performing
sign analysis for a particular state of the system, then the
values of the partial derivatives will be evaluated first,
from which their signs will be determined.

The above discussion leads us to the following

definition.

Definition 3.1. A pure sign table is a sign table in which
each element corresponds to a sign symbol, i.e. +, 0, or -.
We can convert the sign table of a function into a pure sign
table by supplying information about the signs of parameters
and expressions in the table and computing the signs of those

expressions.

3.2, Sign Analysis of Total Differentials

Sign analysis is based on the fact that the equations
in the model satisfy a particular system state at a time. We
can disturb this state in specific directions and the
egquations reach a new state. In between the o0ld and the new

states, the closed form equations always evaluate to zero
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regardless of in which direction the system is disturbed. The
idea behind sign analysis is that it always keeps this
principle in mind. When a parameter is being changed, it
changes another parameter in such a way that the equations

always hold.

Consider a set of m functions Fi,...,Fm of n
parameters z ,...,Z as given below
F,(Z,,---2,)=0
: (3.2)
F, (2, ,--..3,)=0

where nzm. To perform sign analysis on such a system, we
first form the sign table of each function showing the
possible sign combinations. (Although we have written the
equations as though each function is a function of n
parameters, a function need not contain all the parameters.
The table of an equation will only contain columns for the
parameters it includes). Given a perturbation in the system
(i.e. directions of chaﬁge for some of +the parameters), we
join the individual tables (see Definition 3.3) with respect

to the perturbation to obtain the result of the analysis.

Definition 3.2. Suppose we have a model consisting of a set
of m functions Fi,...,Fm and n parameters Z »---5% as given
in (3.2). A gerturbation formula, denoted by &, for the model
is a logical formula in the form of

— i —_ <l =
{ri}—siA{rz}—szA...A{rk}—sk, where O0£kZn; r € {zi,...,zn},
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i=1,...,k; rizrj iff i=j, i,3=1,...,k; and s, represents a
direction of change symbol, 1i.e. 8 = {+,0,-3}, i=1,...,k.
Informally, a perturbation formula is the logical conjunction

of the directions of change for some of the parameters.

Definition 3.3. Suppose that we have two functions

F,(P,,---,p,)=0
and

F (a,,--.,9,.)=0
where P,»---sP, are parameters occurring in F1 and Q,s---29,

are parameters occurring in Fz. P, and qj may denote the same
parameter for any i=l,7..,n and j=1,...,m. Suppose that we
represent the pure sign tables of F1 and F2 by the symbols T1
and Tz, respectively. Let & be a perturbation formula for F1
and Fz, i.e. a conjunction of the directions of change for
some of P,s---sP 59 5-.-59 - Then the e—-Jjoin of sign tables

T! and T2, denoted as Ticzfﬁrz, is defined as follows:

(1) Form the cartesian product of T1 and Tz, i.e. combine
each row of T, with all the rows of T,. Call the
resulting table T;.

(2) Remove those rows of T; which contain different
directions of change for the same parameter. That is,

[drilzsi and [drj]:sj are two different columns on the

same row such that rizrj and si#sj. Call the result T;.

41



(3) For each column of T;, if there is another column for the
same parameter then project out (delete) one of those
columns. Call the result T;.

(4) Remove those rows of T; which do not agree with . A row
does not agree with © if e contains a conjunct {ri}:s.L
and the row contains a column [drj]:sj such that r, =r,

and si#sj. The result is the &-join of T1 and Tz.

Property 3.1. For any sign tables Tl, Tz, and Ta, and any o,
(L) T1E253T2=T2E251I1 (commutativity of join)

(2) (TiczfaTz)EzfiTa=Ticzfj(Tzczfﬂrs) (associativity of Jjoin).

As an example, Figure 7 shows two sign tables. Figure
8 is the e-join of these tables where e:({zi}:+).

Let us call the join operation T1c§ﬂT2 where o is
empty, the e—join of Tt and TZ’ and ‘represent it by the
notation TicifﬂTz' Note that the first three steps of the
above definition do not make use of . © is used only in the
fourth step. If © is empty then the fourth step will have no
function. Therefore TichaTz also represents an qperation
which is defined by the first three steps of the above

definition.

[dz,1 [dz,] [dz,] (dz,]
+ + + -
- - - +
0 0 o 0

FIGURE 7. Two sign tables for the join example
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[dz 1 [dz 1 [dz ] (dz_] [dz ] [dz 1 [dz 1 [dz]

+ + + - + + + -
+ + - + - - - +
+ + 0 0 o o0 0 0
= - + - Step 2
- - - +

- 0 0
0 0 + -
0 0 - +
0 0 0 0

Step 1

[dz,] [dz,] [dz,] “ [dz,1 [dz_ 1 [dz]
+ + - + + -
- - + Step 4
0 0 0
Step 3

FIGURE 8. Example of join operation

Definitionn 3.4. Consider a model whose functions and
parameters are given as in (3.2). The Information matrix,

denoted by I, of this model is defined as follows:

1 n
- OF 8F
F 1 1
1 oz b oz
1 »
I = : :
8F IF
F m m
m L FA azn
-l

That is, the Information matrix is the matrix of partial

derivatives of functions wrt parameters. When the above
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matrix is formed from partial derivatives of functions wrt
endogenous variables only, we will refer to it as the

Jacobian matrix of the system and denote by J.

PDefinition 3.5. A sign matrix is a matrix 1in which each

element represents a sign.

We will denote by Is the sign matrix formed from the

Information matrix I.

Definition 3.6. A pure sign matrix is a sign matrix in which

each element is a sign symbol, i.e. 4+, 0, or -.

The importance of the Information matrix is that it
contains the elements that will be used in forming sign
tables. If we convert the Information matrix of a model into
a pure sign matrix by restricting the system space, as
axplained in Section 3.1, then the sign tables of the model
will be pure sign tables.

Now let us give an example on  how to perform sign
analysis on a simple system. Suppose we have a system which

can be modeled as follows:

Eguations

2
Fi_zi—zz—o
=2 4z =
F2 Z,+zZ 0

Parameters
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The partial derivatives are

and the Is matrix is

Since both F1 and F_ are functions of two parameters,
we use Table 2, which is the general form of the sign table
for a two-parameter function. Substituting the signs of
partial derivatives into the table, we obtain Tables 6 and 7
as the sign tables for F1 and Fz, respectively.

Table 6 contains elements that are expressed in terms
of the sign of z, - We must know whether z1>0, z1:0, or z1<0,
in order to evaluate £21] as +, 0, or -, respectively.

Suppose that, for the purpose of the analysis, we let

21>0' Then Table 6 results in Table 8.

TABLE 6. Sign table of F=z:—z2=0
[dzll [dzzl

{z, 1] +
(z,1 -
0 0

4

TABLE 7. Sign table of Fzzz+23=0
[dzzl [dzal

+ -
- +
0 o
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TABLE 8. Pure sign table of F:zi—zz=0 for [21]:+

[dzil [dz,]

+ +

0 0

Now using the pure sign tables shown in Tables 8 and 7
of functions F1 and Fz, respectively, we answer the following
questions. Let T1 represent table of F1 and T2 represent
table of F_ . e denotes the perturbation formula. Keep in mind
that the following results are valid only for the region of

the system space where z, is positive.

Example 3.2.1. How z, and z_ change if we increase zi?

o=({z }=+)
TiczfaTz is shown in Table 9. There 1is one row (one

possibility), so we conclude that

zi being positive Lf 31 {5 increased then z, increases ocnd =z

decreases.

Example 3.2.2. How z, and z, change if we decrease zz?
e=({zz}=—)
Ticg:ﬂz is shown in Table 10. The result is

=4

being positive If z, i5 decrecsed then =, decreases ard Zg

z
increases.

Example 3.2.3. How z, changes if we increase z, and decrease

)
Zz.

e=({z1}=+A{z2}=~)
The operation TiczfaTz ieads to an empty table so we conclude

2z, being positive It is nol passihle to increase 2, and

H

decrease 22 at the same time.
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TABLE 9. Result of Example 3.2.1 for =

[dzi] [dzz] [dzs]

+ + -

>0
1

TABLE 10. Result of Example 3.2.2 for z1>0

[dz,] [dz,] (dz,]

- - +

Let us also consider the case when z1<0. In this case,

Table 6 results in Table 11. Using Tables 11 and 7 as T1

T

z’

respectively, we answer the above guestions which

and

result

in Tables 12, 13, and 14. Thus we conclude that

Example 3.2.1. = 6 being nsgaiive,

{

decreases and =z_ increases.

2

Example 3.2.2.
both =

=, being negative,
and =_ increase.
F “3

Example 3.2.3. =z, being negative,

b4

is decreased then =

2 itncreases.

i 4 Z, is Tncreased ther 32

is decreased then

Lf z5

2.,

i f =z, i3 increased and .
<

TABLE 11. Pure sign table of F=z.-z,=0 for [z, 1=-

[dz, ] [dz, ]
- +
+ -
0 0

TABLE 12. Result of Example 3.2.1 for z1<0

(dz, ] [dz.1] [dz,]

+ - +
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TABLE 13. Result of Example 3.2.2 for 21<O

[dz,]1 [dz 1 ([dz,]

+ — +

TABLE 14. Result of Example 3.2.3 for z1<0

[dz,] [dz 1 [dz_]

+ - +

The two sets of results for the cases zi>0 and z1<0

can be merged, if desired, to yield the following:

Example 3.2.1. If Z, is ifncreased then z, increases and Z,

decreases if z, ls positive, z, decreases and z, increases tf

2, is negative.

1

Example 3.2.2. If zé is decreased then zg increases and z,

&

decreases Tf Z, is positiwe, 4 tncreases L§F Z, 15 negal e,

Example 3.2.3. We can increase z, and decrease Z, only if z,

is negative, Iin which case Z5 increases,

Although all of ‘the above questions resulted in
single-row tables (Tables 9, 10, 12, 13, and 14), in general
there may be several possibilities. The number of
possibilities is determined in part by the number of
conjuncts in the perturbation formula - the more the number
of conjuncts, the less the number of possibilities. This is
obvious if we consider that the number of rows removed from a
table during the join operation increases if the number of
conjuncts increases, thus resulting into a smaller table. For

example, if the perturbation formula is empty, the result
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will contain all the possible directions of change for all
the parameters, that is, a summary of the possible &ehaviors
of the system. Table 15 shows such an analysis on the
previous example for the case zi>0. We see from the table
that this particular system can change its state in only one
of two directions (excluding the case in which all parameters
remain in the same state; this possibility, of course, is
valid for all systems).

Note that, in the above analysis, we did not
distinguish between the types of parameters nor Dbetween the
types of variables. If this classification is to be done
prior to the analysis, an analyst will normally be interested
in finding the signs of the endogenous variables for a given
set of signs of the exogenous. variables and constants. In
this case, the analysis will usually result in a few number
of possibilities.

Sign analysis is completely a qualitative technigue.
It does not require to know the quantitative aspects of the
model. In other words, the values of the parameters are
immaterial in the analysis. Actual values of the parameters

in the equations can remain unspecified because all that

TABLE 15. Result of e-join for z1>0
[dz ] [dzz] [dz_]
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matters is which parameters appear in which equations with
nonzero coefficients. That is, sign analysis is performed by
uging the directions of change of the parameters, not. by
using their values. (Here we must note that the ,restrictions
we impose on the system space that are necessary to evaluate
the signs of partial derivatives do not interfere with the
gualitativeness of the technique).

As we give the model of a system and indicate a
perturbation on the model, the analysis may or may not result
in a unique combination of signs for the parameters (i.e. a
single row in the resulting table).p We may be -encountered
with a table containing more than one possibility. This is
basically due to the fact that sign analysis depends entirely
on qualitative information. However, this situation should
not be regarded as a disadvantage of the technique. This
simply means that the system behaves differently in different
states, since sign tables generate all the possible solutions
for the remaining parameters regardless of the values of the
given parameters. This situation simply is a property of the
technigque and should be perceived as an advantage, rather
than a disadvantage, of the technique over quantitative
techniques. Why it is an advantage becomes clear if we
consider that the analysis allows us to see all the solutions
that are possible for the given system without forcing us to
choose a particular system state. This is not possible to.
achieve using quantitative techniques unless we exhaustively

explore all numerical combinat%gns of values of the
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parameters of the system and all possible amounts of the

changes of the parameters in the perturbation.

Definition 3.7. An actual solution for a model is .a solution
(a combination of directions of change of parameters) which

is indeed a solution for the system the model represents.

Definition 3.8. A spurious solution for a sign analysis of a
model is a solution that participates in the sign table
resulting from the analysis but is not an actual solution for

the model.

Using the -above definitions we will prove two
important aspects of the sign analysis technique in the

following propositions.

Proposition 3.2. Suppose that we have a model of n functions
Fi,...,Fn. Let T1""’Tn denote the pure sign tables of these
functions Fi,...,Fn, respectively.'Let & be a perturbation
formula for the model. Call the table resulting from the
operation T1C253T2sza...ciiaTn_1szﬂTn, I. (That is, T is the
table resulting from performing sign analysis indicated by

the formula ® on the model). Then T contains all the actual

solutions of the analysis.

Proof. The proof follows directly from Proposition 3.1.
According to Proposition 8.1,T1,...,Tn include all the actual
directions of change of the parameters appearing in their
respective equations. Since T is obtained by performing a

join operation on Ti,...,Tn wrt o, we must examine this
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operation. In step 2 of the definition of Jjoin (Definition
3.3), the rows that contain different directions of change
for the ~same - parameter are excluded from the cartesian
product of the tables. These rows indeed cannot participate
in an actual solution since a parameter cannot change in
different directions at the same time. In step 4, the rows
which do not agree with e are removed. These rows also cannot
participate in an actual solution since they are inconsistent
with the desired perturbation. The Jjoin operation does not
remove any other rows, thus it does not prevent any actual
solution from taking place in T. Therefore we conclude that T

includes all the actual solutions. o

Proposition 3.3. Suppose that we have a model of n functions

F ,Fn. Let Ti,.‘..,Tn denote the pure sign tables of these

17 °°°
functions Fi,.--,Fn, respectively. Let @ be a perturbation
formula for the model. Call +the table resulting from the
operation TiczdezE?fn...Ezf?Tn_lczfaTh, T. (That is, T 1is the

table resulting from performing sign analysis indicated by

the formula & on the model). Then T may include spurious

solutions.
Proof. We will prove the proposition by giving an example
without resorting to details. Consider a system modeled by
the following two functions

F1=zi—zz—-z3 =0

Fa=321'222-7=0
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The Is matrix is

The sign tables of these functions, say T1 and Tz’ are
shown in Tables 16 and 17. We wish to analyse the directions
of change of z, and z, in case z, is increased. To answer
this question, we perform the operation Tlcg:ﬂz where
ez({za}:+). The resulting table is shown in Table 18. We see
that there are two solutions which can be stated as follows:
If z5 igs tncreased then etther both z, and z5 increagse or
both z, and Z5 decrease.

However, only one of these solutions is actual: =z and z,
both decrease. The other one is a spurious solution. To see
this, suppose that v,, v_, and v_ constitute a particular
state of the system, 1i.e. wvalues of Z,» Z,s and Zo s
respectively. Now suppose that all three parameters are
increased. Let i , ia, and i3 stand for the amount of
respectively, (ii>0, iz>0,

increases in z,, 2z and =z

2’ 3’

i3>0)- Then for the equations to hold, we have

F1=(v1+i1)-(v2+iz)—(va+is)=0
F2=3(v1+il)—2(v2+iz)~7 =0
After rearranging the terms, we get
F1=v1-v2—v3+ii—iz—13=0
F2=3v1—2v2—7+311—212=0
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TABLE 16. Sign table of F:zl—zz—zszo
[dz, ] [dzz] {dz ]

+ - +
+ + -
+ + +
+ + 0
+ 0 +
- - +
- - 0
- + -
- 0 -
0 = +
0 + -
0 0 0

TABLE 17. Sign table of F=3z -2z_,-7=0
[dz,] [dz,]

TABLE 18. Result of example in Proposition 3.3

[dz, 1] [dz,] [dz_]

+ + +
- - +
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Since the values Vs Vo and v_ constitute a state of the

P

aystem , we have

VTV, =0

3v1~2vz—7=0
Substituting these equalities, we find that

{5 i =
i-i -1, 0O

811—212 =0
Written explicitly for»ii,

iiziz+i3

i =—2-i

17 3 =z
The first equality says that the increase in zZ, is the sum of
the increases in z, and Z,» i.e. the increase in z, must be
greater than the increase in Z, since ia>0. On the other
hand, the second equality says that the increase in z, must
be less than the increase in 2z, , which leads to a
contradiction. Thus the solution where 2z, and z, both
increase as a result of an increase in z, does not represent
an actual soclution although it takes place in Table 18.
Therefore we conclude that a sign table resulting from sign

analysis may contain spurious solutions. o

The main reason of getting spurious solutions is that,
as can be seen from the example in the proof, sign tables do
not contain any information about the amounts of change of

the parameters. That is, we do not know how much a parameter
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increases or how much it decreases. All we know 1is that it
increases or decreases. This is simply because we do not
exploit the gquantitative information that is available
implicitly in the modeling equations, but we only use kthe
qualitative part of this information. For example, what
causes one of the solutions in the above example to be
spurious are the coefficients of z, and z, (namely, 3 and 2)
of the second equation. If +these two coefficients were
interchanged, then that soclution would be actual.

This situation results from the ambiguity inherent in
qualitative techniques, as discussed in (2,3,4,5,7]1. However,
we emphasize that the quantitative information that must be
used to prevent spurious solutions is already present in the.
model, and we believe that it 1is possible (and not so
difficult) to make use of this implicit information in thié
direction. This is an area left for future work.

In [5], a solution that is actual but cannot be found
by the technique is called a false negative, and a solution
that is not actual but is found by the technigue (i.e. a
apurious solution) is called a false positive, As indicated
by Propositions 3.2 and 3.3, there can be no false negatives
but there can be false positives in sign analysis.

Before closing this section, we want to point out

another important property.of sign analysis.

Definition 3.9. The i{nverse of a row of a pure sign table is
obtained by replacing each element of the row (which is a

gign) by its inverse.
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Pefinition 3.10. The itnverse of a pure sign table T is a pure
sign table obtained by replacing each row of T by its

inverse.

Definition 3.11. The inverse of a perturbation férmula e is a
perturbation formula obtained by replacing each direction of
change symbol in ® by its inverse. That is, the inverse of

denote parameters, 1is

k

{ri}zsiA...A{rk}zsk, where r ,...,r

{ri }-’-'S:LA. . .z*.{rk}:sk .

Proposition 3. 4. GSuppose that we have a model of n functions

F ..,Fn. Let Ti,...,Tn denote the pure sign tables of these

17"
functions Fi,...,Fn, respectively. Let © be a perturbation
formula for the model. Call the table resulting from the

ogT ., T. (That is, T is the

operation T Ce==T co=3...05=aT | O

table resulting from performing sign analysis indicated by
the formula & on the model). Let & be the inverse of . Then
the result of the operation Tg%gﬂTZDZ:L..Ezfiﬂhdcgzﬂ“ is the
inverse of T.

Proof In the first part of the proof we will show, by
referring to the proof of Proposition 3.1, that each row in a

sign table of a function has an inverse in the table.

Suppose we have a function F of n parameters ZyseesD

F(Z1’ ---,Zn)‘—"O

The total differential of F is

_OF OF _
dF—-az—i' dZi+. . ."'a—z: dZn-o
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Let TF denote the sign table of F. Let us represent a row of
the table made up of signs s,,...,s for [dzil,...,[dzh],

-respectively, by the notation <S8, 5. ..,8 >

Suppose the contrary of the above claim: TF contains a

row <s ,...,s_>, but does not contain a row <E;,...,sr>. T,
= r

containing a row <8,,...,8 > means that either all st:O,

i=l1l,...,n, or there are at least two signs in the row, say S,
aFr aF .
E —— = nd ——— d = .

and sj, i#j, such that [azt dzt] + a £azj Zj] , i.e the

change in z, causes F to increase and the change in zj causes

F to decrease (from Proposition 3.1). In the first case,
<8,,...,8_ ><0,...,0>, so <§1,...,§n>:<0,...,0>, i.e. the
n times n times

inverse of the row is itself, already in the table. For the
second case, consider the inverses of s, and 8, gi and §j.

Then [QE_ dz. ] =~ and [25— dz.] =+. This means that the change
5ZL i dzj i

in z, causes F to decrease and the change in z, causes F to
increase. Since we have at least one parameter causing F to
increase and at least one parameter causing F to decrease,
this row must participate in the table regardless of the
signs of other parameters (frém Proposition 3.1). According
to this, for the signs of other parameters, 8, k=1,...,n,
k=i, k=3, in this row, let us use the inverses, i.e. E;. Then
all the signs in this row are the inverses of s ,...,8 . So,
<§1,...,§n> is a row of T_.

Now having proved that each row of the table Ti,
i=1,...,n, has an inverse in Tt’ we will show that the

operation T;tzfﬂT;, (i.e. the first three steps of the join
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operation T;czfifé), for any two tables T; and T;, preserves

this property. The first step is the cartesian product of the

two tables, say T . If T; has a row <8, ,...,5> and T; has a
row <t1,...,tm> then T will contain the row
<si,...,sk,t1,...,tm>. Since T; must also contain the row
<§1,...,§;> and T; must contain the row <E¢""’Em> (by the
above discussion), then T will also contain
<§1,...,§k,fl,...,€m>. Thus the first step preserves the
property. In the second step, if we remove a row <51""’Sk>
from T because 8, and sj, i,jJ=1,...,k, are the signs for the
same parameter such that stisj, we also remove the row
<§1,...,§k> since Etﬁgj. Thus the second step also preserves

the property. Call T the table resulting after the

application of the second step. In the third step, if we

. .th s o
project out the i column of T , then any two inverse rows
<8, 5...,8 > and <§1,...,§k> will result in
= = = —\
<81""’Sa—i’st+1""’sk> and <51’""St—i’st+1""’8k”’
i=1,...,k, which are still inverses. So, after Ticzfdfz, each

row will have an inverse.

Suppose that we have computed
’T1c2§dT2E§§3...cz;aTn_iczfaTn, call this table T . Let us apply
the fourth step to T using & and &, call the resulting

tables T and T s respectively. Let

e:({zi}zsiA...A{zk}=sk) where Z,5---5%, Aare some of the

parameters of the model. Suppose there is a row <t1,...,tm>

in T which agrees with o, i.e. s, =t, ».--58, =8, where tt
1 k i

is the sign for [dzj], Jj=1,...,k. Then this row will

‘ - 89



participate in T . T must also contain the row <?1,...,tm>
and this row agrees with &. To see this, note that

é:({zi}=§1A...A{zk}=§k) and gizfii,...,gizziy, j=1,...,k.

Thus this row will participate in T . Therefore T is the
inverse of T”

It remains to show that, for any perturbation formula
a, T =T =1, . =T =T results in the same table as

14 O 2 & o n—-4 & n

applying  the fourth step wrt I to the table
T1C§§3T2E§§3...szﬂrn_lczijh. But this is intuitive since the
only difference between the two operations is that in the
latter case the rows that are inconsistent with a are removed
at the end instead of during each operation.

Therefore we conclude that T1C§§3T2E%?n...C§§3Tn_1c§?ﬂTh

. . _ Yy . . -
is the inverse of Til:e::szt:g':), c:ezaTn_lt:e:aTn

3.3. Sign Analysis of Gains

We have explained sign analysis technique in detail in
Section 3.2. In the present section we will discuss the
application of the technigque to gains.

Consider a set of functions

Fo(x,,..00% 5V,5...,y,)=0
: (3.3)
Fn(xi,.--,xn,yl,...,ym)=0

where X,s.--3X represent endogenous variables and V,y2---2¥,

represent exogenous variables and constants. Suppose that we
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change the value of one of the exogenous variables, say yr
j=1,...,m, while keeping the values of other exogenous
variables A i=1,...,m and i#j, unchanged. As will be
derived in Section 4.1, we can write |

oF, ayj 9F, ox, oF, axn_o

oy dy 8% oy T---tax Iy -
v °v; 9%, 9V, % %Yy

(3.4)

F dy J8F &x oF ox
i n 1

n n
—t + —=0
3y 3y 9x 9y ---tex 3
v, 9y, 9x 3y, n 9V,

The partial derivative ;;% represents the ratio of the
change to be occurred in the value of the endogenous variable
X for a change specified in the value of the exogenous
variable/constant v, and it is called the gain of X, with
respect to v :hf the control literature and the margiral
value of x, with respect to yj in the economics literature.
We will prefer to use the term gain because we will be mostly
interested in physical systems.

For each of the equations in (3.4) we form a sign

table. In this case the columns of the sign tables will be

Ix. 3y .
titled as 53513’ i=1,...,n, and [g;i]. That is, the columns
j i

3y .

represent signs of gains. We note that 551 is unity, thus
ay . !

[5§i =+. Therefore we will only consider those rows of the

tables in which this condition holds, i.e. a subset of the
tables will be used. (Of course, this is applicable to tables

whose functions include the parameter yﬂ.



Ix.
The sign of a gain, EE;L], represents the direction of
i

change in the wvalue of the endogenous variable X for a
3x

change in the value of the exogenous variable yf [5§L]:+
J

means that X, and yj change in the same direction. That is,

increasing yj causes X to increase and decreasing yj causes

ax.
X - to decrease. [5511:— means that X, and yj change in

opposite directions. That 1is, increasing yj causes X to
ax.
. 1

decrease and decreasing yj causes X, to increase. [6—y—] =0

means that the change in Y, has no effect on X, -
When the sign tables are formed, converted to pure
oy

sign tables, and the rows in which [53i1¢+ are eliminated,
j

using these reduced pure sign tables (call these Ti,...,Tn),
we compute T, CodT Cz=2...Cz<aT =T .This shows us in which
direction the endogenous variables KiosenosX change for a
change in the exogenous variable ;-

As an example, consider the model of Section 3.2,
Equations

2
Fi—zi-zz—o

F2=z2+za:O

Parameters
z, (exo)
z z_ (endo)

2z’ “s

For the sake of illustration, we have made the types of the
parameters explicit (This was not necessary for the sign
analysis of total differentials). Converting the equations

\

into the form of (3.4) for the exogenous variable z,, we get
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@F @z @8F @2z JAF Az
1 E S 4 2 i

4. g
dz Oz POz Iz 'z Iz
1 1 2 1 3

) (3.5)
sz 5z1 an 322 an az

8z 8z Jz_ 3z dz Iz
1 2 z kA =z

The partial derivatives are shown in the Information matrix,

Substituting into (3.5), we get

azi

oz
2

=0

22 g——m—=
1621 az1

(3.6)

az ez
2 3

= oo e
821 az1

F1 + - 0
IS.: (3.7)
F 0 + +

Now we form the pure sign tables of the equations shown in
(3.8) using the signs of partial derivatives (3.7). The

tables are shown in Tables 18 and 20. Note that the columns

oz
1

are titled with the signs of gains. We also note that [az 1
1

must be +, so only the first row of Table 19 is wvalid.
Therefore Table 19 reduces to Table 21. The -join of Tables
21 and 20 results in Table 22, which leads wus to the

following result:



TABLE 19. Sign table of gains of Fzzi—zvﬁO wrt z,

821 6z2
[az.] [82 ]
1 T4

+ +

0 0

TABLE 20. Sign table of gains of F:zz+za:0 wrt z,
azz aza

Loz L3z

1 1

+ .
- +
0 0

TABLE 21. Reduced form of Table 19

6z1 azz
[55—] [az ]
1 1

+ +

TABLE 22. Result of sign analysis for gains

oz az ez

1 3

2z
1

1

+ + -

z, being positive, when we change the value of = =z, changes

£’ 72
in the same direction as zt and 23 changes in the opposite

direction of Z,.

Let us examine the relationship between sign analysis

of gains and sign analysis of total differentials. In Section

3.2, we asked the question

How 22 and 23 change 1f we increase zI?
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on the same model for the case z1>0, and arrived at
answer

being positive, If =, ts increased then =z, lncreasaes
[

= P}

H

23 decreases.

From Proposition 3.4, we also know that

=, beitng positive, (f z, is decreased then Z, decreases

23 increases.

The combination of these two clauses is identical to the

extracted from Table 22.

the

xracd

and

one

It must not be surprising that sign analysis of gains

and sign analysis of total differentials yield identical

results. To see this, let us write the total differentials of

the functions in (3.3)

(3.8)

oF, aF1 6F1 oF
dF =z—— dx +...+z= dxn+ay dy1+...+5§— dy, =0
1 n 1 m
8F aF aF ar

n

_ n n
an—axl dxi+...+53<:- an‘*’Wi— dy1+...+

dym:O

As we did above, suppose that we change the value of yr

J=1,...,m, while keeping the values of AP i=1l,...,m and i=j,

unchanged. SO'deO and (3.8) becomes

aFi aFi aFﬂ.
dF:L:??_y—_ dyj+ 5% dX1+. . .+ax dxh:O
J i n
: (3.9)
aF oF aF

n n n _
an~3_37j_ dyj+ a—x—i- dx1+. - .+3-x—n- dxn—O
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Now we form the sign tables of functions in (3.9). The
columns will be titled as ([dx 1, i=1,...,n, and [dy}L The
point is that the sign tables for gains in (3.4) and the sign
tables for total differentials in (3.9) will be exactly.the
same since the equations have the same coefficients. The only
difference is in the titles of the columns of the sign
tables. For instance, compare Tables 8 and 7 with Tables 19
and 20.

3y .
In sign analysis of gains we require [gii]:+ and
i

reduce the tables. On the other hand, in sign analysis of
total differentials, we perform the same analysis first for
[dgﬁ:+ then for [dyﬂ:—, and combine the results (or, for
either [dyﬁ]:+ or [dy5]=—, and then use Proposition 3.4).

In the method of sign analysis of gains as described
above, we can change only one exogenous variable. Now let us
expand the method. If we remove the restriction on (3.4),
i.e. 1f all the exogenous variables are allowed to be
changed, it reduces to the following equations in terms of
signs (the use of y; is arbitrary here, we could use any

other exogenous variable as well)

OF ax @F 9x 3F @y 8F Jdy

1 n 1 1 4 m
[ 2 1]+...+[ =] +H = =—] +...+[ —_—1 =0
ax, ayj x ayj dy, ayj gy, 9y
. (3.10)
8F 9x aFﬁ gx th ay aFn aym
Lox, oy 1 *--*"ox v i *lay, oyt oy oy 1=0
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As before we form the sign tables of these eguations. The

<'9x.L 6yk
columns will be titled as [5371’ i=l,...,n, and [gvf],
' 3y .
k=1,....m. We again require [5§i]:+, soc remove rows which

disagree with this condition. What this analysis is about can

be summarized as follows:

We change yj. We can also change other exogenous variables.
In which dirsection wrt yj the endogenous variables change?

ay.
Note that [5511, i#3j, does not correspond to the phrase

In which direction Yy changes [ f we charnge yjﬁ
instead it corresponds to the phrase
In which directicr, wrt yj, de we change yi?

because both are exogenous wvariables and a change in yj does

not affect V., i.e. we can change v, independent of yja.

qy. )
[5§i]=+ means that we change v, in the same direction as yr

ay.
[5;L =— means that we change v, in the opposite direction of

3y.
y&, and [zgfﬂ =0 means that we do not change v, -
i

of course, iof ve do not impose any distinction
batwean the L pras of tha s et ers, tham wa can write {3. 109

oz,
i

for any parameter =, and perform the analysia for any {a 7.
1 z .
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As an example,

Equations
2 —
Fi_yi—xi—o
Fzzx1+xz+y2:0

Parameters
X, . X, (endo)
v,» v, (exo)

consider the following model

Suppose that we ask the following question:

We change yz and Vo in oppostite directions. How do x

change?

Using (3.10), we write

OF Ox
1 1

oF ox_ 8F, oy, oF, oy,

[ax1 6y1] [ax 3y, =1+ [6y 3y ]+[ay2 3y,

éF ax

2

IF _ ox gF_ oy, 8F_ ¥y

1=0

Lo 77 ]+[6k 75 ]+[é,y 57 =1+ gy 77 =0

The I matrix is

Substituting into (3.11), we get

[y e J+t:ay

ax 3y
—21 =0
1

1

3x ax dy
1 =0
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and x

2

(3.11)

(3.12)



Assuming y, >0, the I_ matrix evaluates to
1 s

Ry Xz Yy VYg

' F1 - 0 + 0
IS = (3.13)

F + + 0 +

The sign tables of the equations in (3.12) using (3.13) are

: oy
shown in Tables 23 and 24. Since [ay11:+, Table 23 reduces to
1
ay
Table 25. We set [ay2]:~ from the question. Thus
1

oy ,
o=C[ z]:_)4 The e-join of the two tables, Tables 25 and 24,
ay1

results in Table 286.

Thus we conclude that

A being positive, f vy and. W, are changed in oppasiie
= .
dirvections, ther x} changes n the same direcltior as Yy ard

X My change in any Jdirecticorn Cwrtl yt.).

Note that we could perform the same analysis wrt v,

instead of v, - That is, we could write (3.11) wrt v, - Then

6x1 ax2 ey

the tables would be titled with [5;—], [5§"]’ [5531, and
2 2 2

3y oy
[553]; we would set [E;i]:—; and the results would indicate
2 2

directions of change wrt v, - Since v, and v, change in
opposite directions, it is not hard to see that the analysis

in this case would result in the following clause:

4 . . .
In atgn analysis of gaine, a perturbation forrmala i
formed from the conjunction of siygns of partial derivatives

instead of directions of change of parameters.
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TABLE 23. Sign table of gains of F:yz~x1:O wrt y,

ax1 6y1
[ 5—1] { 1
0y1 6y1

+ +
0 0

TABLE 24. Sign table of gains of F=x1+x2+y2:0 wrt v,

5x1 axq Jy
[ 551 [ 51 [ 5=—1
_ay 3y, gy,

+ + -

+ - +

+ —_— -—

+ = 0

+ 0 =

- + +

- + —_

- + 0

- - +

- 0 +

0 + -

0 = +

0 0 0

TABLE 25. Reduced form of Table 23

ox dy
R B
ey, oy,

+ +

TABLE 26. Reéult of opposite changes in v, and v,

[ffi] [f31] [ffi] [fZE]
ayi ayﬁ. ayi ayﬂ.
+ + + ~
+ + - -
+ + 0 -
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Yy beitng positive, f v, and v, are changed Iin oppostie

directions, then'xt changes tn the opposite direction of y.,

and X5 may change in any direction Cwrt ye)

which is identical with the previous one.

As a final note let us point out that this extended
form of sign analysis of gains 1is also similar to sign
analysis of total differentials. The reason is, as in the
previous case, that the two equation sets of (3.8) and
(3.10) have the same coefficients, so produce the same sign

tables. In sign analysis of gains, we change yj and indicate

3y.

[ayt], i=z1,...,m, i®*j. On the other hand, in sign analysis of
J

total differentials, we perform the sign analysis first for

[dyﬂ:+ then for [dyﬂ:—, and combine the results. For
oy, 3y,

{dy. 1=+, [dy. l=[ s—] . For ([dy.]=-, (dy.1=[ 5—3} . Therefore the
i i ey f J i oy i

two methods will produce the same results.
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Iv. VALUE ANALYSIS

Another technique that will be introduced here is
called value analysis. Value analysis is based on the use of
gains and examines in which amounts the parameters change due
to a perturbation in the system. In this respect it can be
regarded as the quantitative complement of sign analysis.

The idea can be explained as follows: The model of a
system 1is given. We specify a state of the system (i.e.
values of the parameters). Then we compute the gains for the

given state and examine the total differentials of the

parameters.

4.1. Gains

Let us consider a model of the form of

F (%,,.-.5X 5V, ...,y )=0
F(X,,.--5%,¥,5.-.,v,)=0
where KisomesX represent endogenous variables and Vyse-a¥V_

represent exogenous variables and constants. The number of
endogenous variables is equal to the number of functions, so
the degrees of freedom in the system is equal to m. Thus the
system can be solved unigquely for the values of the

endogenous variables for a given set of wvalues of the
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exogenous variables and constants, provided that the system
is nonsingular.

Suppose that we change the value of one of the
exogenous variables, say v j=1,...,m, while keeping the
values of other exogenous variables v, i=1l,...,m and i#j,
unchanged. We want to examine the change in the values of the
endogenous variables.

The total differentials of the functions are

oF, oF, SF, oF,
dF max, WX, *--taxs ntay, AV te - tey YT
1 n 4 m
: (4.1)
dF “aFn dx_+ +f§2 dx 4552 dy, + -l-ff“-2 dy =0
n~ o X, L axn n ayi PR 6ym Y™

As we know, the total differential of a parameter =z
indicates the change in the value of z. Thus dylzo, i=1,....,m
and i®”j, since we do not change the wvalues of exogenous

variables except V- So, (4.1) becomes

6}5‘1 aFi aFi

axi dx1+...+5§: dx = -3 j dyj

: (4.2)
th th 6Fn

3x, dx1+...+5§: dx, = _35? d%

This is a set of n linear equations in n unknowns
dxi,...,dxn. Solving for unknowns and after a little bit of

algebra, we get
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ax

T
dx, =zy— dv;
3

ax

(4.3)

- n
dxn —3-&—'; dyJ

Putting these terms into (4.2) and cancelling dyj terms, we

get in scalar form

or in vector form

[ 3F1

m——

ax1

aF
n

ax1

The above matrix

OF, ox, oF, ox  IF
axi ay1+ .+5§: ayj: —5§:
: (4.4)
8F Ix, OF ox  OF_
3x, dv, " TIx_ By, Iy,
SF ox, ] [ 9F, ]
y axn aya 55:
. = - : (4.5)
OF ax_ 8F
. ax" J L 55: J ! 55? ]

is the Jacobian matrix of the system. By

denoting the column wvector at

the left-hand side of the

equality by x, and the one at the right-hand side by £, the

notation can be simplified as

Jx=-f (4.8)

These equations constitute a set of simultaneous linear

eguations in n unknowns

ax axn
b—}—,?... ,a—y—j- and can be solved by any
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method used for solving simultaneous linear equations, such
as Gaussian Elimination or Cramer”s method, for a given state
of the system.

As explained in Section 3.3, the partial derivative
— represents the ratio of the change to be occurred in the
3
value of the endogenous wvariable X, for a sufficiently small
change5 specified in the value of the exogenous variable/
constant v and is called the gain of xi‘wrt Y-

The above derivation is performed for a single ;-
What we have done is that we specify a particular state of
the system (i.e. the values of the parameters
xi,...,xn,yi,...,ym) and a parameter Vs j=1,...,m, whose

value is to be changed. We then compute the nxn partial

3F.
derivatives 521, i,k=1,...,n, and the n partial derivatives
a}?i k ox,
3 i=1l,...,n. Then by using (4.4), we solve for 5;—
J
=1,...,n. This gives wus the gains of the endogenous

variables wrt the exogenous varlable V-

The same analysis can be performed for any exogenous
variable by simply replgcing the term v, in (4.4) with the
name of the desired parameter. In the notation of (4.5), the
Jacobian matrix remains the same, only the elements of the

vector f are to be changed. In this way we obtain all the

Gsince the derivation involves the s of
differentiation, it is only valid in the Limit, L. @, for an
infinitesimal chargpe . Thiz = < to the nonlinearily in ey
equations; for a Linear gt or e LYy RYNoYe thix
restriction. However, as we deal with nonlinear equations in
general, this point muat brer Lept iry mind whrers interprating

the results obtained from gains.
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ax.
gains for that state of the system, 3—L, i=1,...,n, j=1,...m.

i
Gains can be used to.-compute the total differentials
of endogenous variables for a given set of wvalues of 'the
total differentials of exogenous variables. The total
differential formula can be easily derived from (4.1) by
letting Y,»---5Y,  to change (i.e. the terms dyi,...,dym do
not vanish). This evaluates to

3Ix Ix

T 1
X Tay, Wt tay W

(4.7)

6xh 6xn
an:'-a—yl' dy1+. N .-i-g;; dym

which is an extended form of (4.3) and means that the total
differential of an endogenous variable is simply the sum of
the contributions of each of the exogenous variables.

Now we will illustrate the point by a simple example.

Consider a system modeled as follows

Equations
F1= x1—8y1+y2 =0

Fz—-x1+x2+y1y2

1
o

Parameters

X,,» %, (endo)

v,» v, (exo)
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Suppose that the system state is given as follows®

x1:5 x_=2 y =1 y2=3 (4.8)

The partial derivatives for endogenous variables are

calculatéd as

oF aF aF 3F
1oy - 2.1 =2=1
axi - ax ﬁxl - ax

So, the Jacobian matrix is

The partial derivatives for v, and y, are

8F oF oF 8F
1 1

2 2
=—=—8 =1 F—=V,=3 z—=v,=1
v, o, Yq Yz Y2 Ya

that can be represented by the column vectors fi and fz as

fi is the vector of the partial derivatives of functions for

v, and f£_ 1is the vector of the partial derivatives of

functions for v,- If we denote by v, and v, the column

vectors of gains for v, and v, respectively, as in

-] .
The system atate can bo apacifiad sither by glving

the values of all the parameters as in the example or by
giving the values of BRI AR vorioblass arad corstants from
which we can asolve for the values of the endogonoua
varicables. In this second approach, o method for solving o
set of stmultanacua nontinear equationa maat be waed aAnce

the modeling equations are ronlirear irr gereral.
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1
3 Y, ayz
M3. = ax ‘Yz = ax
‘2 2
6y1 ayz

we arrive, by using (4.5), to the following two sets of

simultaneous equations

i 1T ax1
1 O - -8
ayl -
ax2 -
-1 1 3y 3 '
I J L ] 8 J
8xi
1 0 3y 1
6x2 =g
-1 1 6y2 1
or in matrix form (by using (4.6))
inz—fﬂ.
Jyzz_fz
Solving these separately we get
3x &% &% %
5o>= 5==5 yo—=-1 Feo=-2 (4.9)
v, v, v, v,

The results can be interpreted as follows:

While keeping ye constant, an increase in the wvalue of v,
-
causes an 8 times increase in the wvalue of xt and o 5 times

increase in the value of X o
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While heeping y, constant, an tncrease in the value of v,

& =
causes o egual anowt decresass in the valus of ;v.:'f ared o &
times decrease in the value of X 5

The interpretation in the opposite direction is also valid:

While keeping A constart, a decrease ir the value of y,

&
causes an 8 times decrease in the value of X, and a 5 times
decrease in the value of X 5

While kesping constoant, a decreasse In the valus of
& J)z 2
o

f x, and a 2

causes an egual amount itncrease in the wualue 1

times increase in the value of X 5

The two can be combined into a general form:

While keeping Vo constant, a change in the value of vy, causes
an 8 times change in the value of >, in the same direction s
vy and a 5 times change in the wvalue of X5 in the same

direction as V-

While keeping Yy caonstant, a change in the walue of Yo COuses
an egual amount chonge tn the value of x tnn the opposite
dirsction of Vo and @ & times change itn the value of x5 T
the opposite direction of Vo

The results can be used to calculate the total
differentials of endogenous variables. From (4.7) and (4.9),

we can write
3){1 6x1
Xmzgyi dy1|6y2 dyz

axz ox
dxzzay1 dyi ayz dyz

and

dx =8dy,- dy
ﬂ.’ 4, 2 (4.10)

dx2=5dy1—2dy2
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4.2. VYalue Analysis of Total Differentials

Suppose we have a set of n functions

Fi(xig-~-ﬂxn’y1,---’ym):o
F(x ,....% ,y,,...,y,)=0
where X ,..-,X are endogenous variables and V,>---5Vy,  are

exogenous variables and constants. Suppose also that a system
state 1is specified. Then we can compute the gains as

explained in Section 4.1 and, similar to (4.7), we can write

6x1 Ix
dx1_5§r—1' dyi,-—. - ."‘3—3"— dy =
ax ax
dx - dy, - —=—— dy =0
n 3y1 Ay - 5ym m

This is a set of n simultaneous linear equations in n+m
unknowns dxi,...,dxn,dyi,...,dym, and can be solved by
specifying the values of m of the unknowns. Normally we will
be interested in solving for dx,,...,dx  (the amounts of
changes in the wvalues of the endogenous wvariables) given
dyi,...,dyﬁ (the amounts of changes in the values of the
exogenous variables).

As an example, consider the model of Section 4.1,

which was reproduced below
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Equations
F,= x1—8y1+y3 =0
F2=~x1+xz+y1y220
Parameters
X, X, (endo)

y_, (exo)

v 2

1’
For the system state given in (4.8),

X1=5 X2=2 y:l.:l v, =

the gains were computed and the total differential equations

are (from (4.10)),

dx -8dy_ + dy_=0
1 1 2 (4.11)
dx2-5dy1+2dy2:0

Now we can answer questions such as the following:

Example 4.2.1. We increase v, and 7 such that the increase in

v, is twice that of Y, - How do X, and X, change?

2
Substituting dyizl (a unit increase) and dy_=2, we get

§x1=6

dxz=1
x, increases 6 times the ilncrease in y} and x_, increases an

1
amount egual to the increase in V-

Example 4.2.2. We change v, - We want to change v, in such a way
that the value of X, does not change. How must y_ be changed

and what is the effect on xz?
Substituting dyizl and dx1=0 into (4.11), we get

dy.= 8

2

dx_ =-11
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v, must be changed 8 times the chonge in W and in the sane
< X
direction., x 1 remains the same and x_, changss 11 times the
[ =4
change in Yy in the oppostte direction.

Example 4.2.3. We want X, and X, to increase in the same

amount. wa must y, and v, be changed?

Substituting dx1:1 and dx2=l, we get
1

dy,= 37

_ 3

dy,=—11
We must increase yl times and decreoase ye 1? times the

1
11
desired increase in xz.

Example 4.2.4. We want a unit increase in E How can we change

v, and v, for this purpose and what is the effect on xz?
Substituting dxizl, we get

--8dyi + dy2 =-1

dx2~5dy1+2dy2: 0
Since there remains three unknowns, the equations have
infinite number of solutions. Let us perform sign analysis
for this guestion. Without delving into details, we show the
result of the sign analysis on the model for the perturbation
e:({x1}=+) (and using the assumptions that y1>0 and y2>0), in
Table 27. The table can be summarized as follows:

If we decrease v, or keep 1t unchanged then we must decrease
Vo and x5 tncreases. [ f we increase Wy then we can chonge v,

in any direction and x

> changes in any directior.

Suppose we decided to decrease v, in the same amount of the

increase in X, - So, dyi=—1, and we get

14

dx_=13

As expected from Table 27, v, decreases and X, increases. So

we can conclude that
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TABLE 27. Result of sign analysis for Example 4.2.4

[dx, ] [dx_] fdy, ] (dy_]

+ + - -
+ + + +
+ - + +
+ 0 + +
+ + + -
+ - + -
+ 0 + -
+ + + 0
+ - + 0
+ 0 + 0
+ + 0 -

If we decrease A I unit and decrease y2 9 units, then we

will observe a f unit increase in xt and a 13 units i(rncrecse

in xX.,.
2

What this example tells us that in some circumstances sign
analysis and value analysis must go hand in hand for a better

understanding of the system.

As a final note, the technique we have presented here
is based on the use of gains. The method to compute gains (or
marginal values) has been well-known and used widely in the
economics literature for a long time (e.g. [1,4,13]1). It is
known as the method of comparative statics. Comparative
statics presumes that the system is initially at equilibrium
and examines how the equilibrium wvalues of endogenous
variables respond to a change in one or more of the
parameters, that is in which direction they change and
establish a new equilibrium to match the new configuration of

the parameters.
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4. 3. Elasticities

In addition to gains, another value that can be of
interest is called elasticity. Elasticities can be computed
from gains. Elasticity of an endogenous variable x with

respect to an exogenous variable vy, E;y, is defined as

=Y (4.12)

and it represents the relative change fg_ in the value of x
for a relative change 2%— in the wvalue of y.

As an example, we can calculate elasticies for the

example of Section 4.1 by using (4.8) and (4.9) as

vy ax
E :-—4'- 3 1: %z 1.8
lei xi yl
B oaa s 7—5 = 2.5
xzyi XZ eyl
E —yz ffi—__g_ 0.6
xiyz xi ayz
y. 9x
By :§£ 8 *=-3
zyz 2 y::

For example, elasticity of X, wrt y, means that
although the change in X, is 8 times the change in v, (from
(4.9)) for the particular system state given in (4.8), the
corresponding relative change is only 1.6.

Elasticities are useful in cases where the parameters
represent quantities that are very different in magnitude.

For example, 1if +the typical wvalues +that an endogenous
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variable, say x, can take on are in the order of 0.1, the
typical values that an exogenous variable, say y, can take on
are in the order of 100, and if a change in y causes a chgnge
in the same amount in x, the gain g.i;. is 1 although the
elasticity of x wrt y is almost 1000. In this case the value
of the elasticity is more useful than the value of gain. This
becomes clear if we consider that, for instance, a change of
0.1 in y causes a change of 0.1 in x, but such a change is
almost negligible for y (compared to 100) although it doubles

the value of x.
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V. ILLUSTRATION OF THE TECHNIQUES

In this section, we will illustrate the techniques
presented in the previous sections by using a complete system
taken from [14]. Consider the system shown in Figure 8. This
is a piping system of the form of a T junction with a pump at
the left-hand side supplying a constant flow rate QF to two
locations through two valves, discharging intoc pressures P1

and Pz, respectively. The mathematical model of the system is

given as follows:

Equations
QF' :Qd. +Q2
Q:I. :CV 1 PF —Pi
Q.=C v P_-P
2 v ¥ 2

2
Parameters
QF constant flow rate of the pump (exo)
Q flow rate of the first valve (endo)
Q flow rate of the second valve (endo)
C valve constant for the first valve (const)

PF discharging pressure of the pump (endo)

P, pressure at the right-hand side of the first valve
(exo)

2 valve constant for the second valve (const)

P2 pressure at the right-hand side of the second valve
(exo)

The first equation above can be considered as the
material balance for the T junction and the last two as the

material balances for the two valves. We assume that P_ is
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FIGURE 9. Example system used in Section 5

greater than P1 and P2 and the flows through the valves are
in the directions as indicated on the Figure. (PF—Pi) and
(PF—PZ) are called pressure drops across the valves 1 and 2,
respectively.

The functions can be written in closed form as

Fi(QF',Ql,QZ) :QF—Q.']._QZ :0
FZ(Qi’cvl’PF’Pl):Qi-Cvl PF—P1 =0

Fa(Qz’Cvz’PF’Pz):Qz_Cvz PF—PZ =0

Note that the determination of the types of the
prarameters and the types of the variables depends on the
choice of the model-builder. For this system, QF, P1’ and Pz

are treated as exogenous variables; Ql, Q and PF as

2’
endogenous variables; and Cvi and Cv2 as constants for

rhysical considerations.
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Now as the system is given, we can begin the analysis.
However, before this process let us discuss the application
of the assembling concept which was explained in Section 2 on

this example.

5.1. Assembling

Suppose that a valve system, shown in Figure 3, is

modeled as follows

Equations
Q= Cv P1 —Pz
Parameters

Q@ flow rate through the valve (endo)

Cv valve constant (const)

P, pressure at the left-hand side of the valve (exo)
P, pressure at the right-hand side of the valve (exo)

We assume that P1 is greater than P2 and the direction

of the flow is from P1 to Pz.
Now suppose that a pump system made up of two

branches, as shown in Figure 10, is modeled as follows

Equations
=Q

in out 1

+Q

out 2

Parameters
Q. flow rate of the pump (exo)

n

Q flow rate of the first branch (endo)

outi

Qmuz flow rate of the second branch (endo)

For the purpose of reference, let us name the valve

model and the pump model as Valuve and Pump, respectively.
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FIGURE 10. A pump system of two branches

Having these two subsystems, we can now construct the

model of the system shown in Figure 9 as

informal notation:

Subsystems : Pump
Q. _=Q +Q

in outi out 2

Valve (call it Valve-£2

Q=C Y P _-P_
Valve (call it Valve-22
Q=C 7 P_-P_
Parameter names & types
Pump : Qin > QF
Qout:l. » Q:L
Qoutz Qz
Vatve—-f : @ > Q1
C, »C,,
P1 > Pr (endo)
P, > P,
Valve-2 : Q > Q
Cv > Cvz
P, » P
P, » P
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We use the pump model and two copies of the wvalve
model, referred to as Valve-i and Valve-2. The parameters are
renamed as shown above. Also the types of those parameters
whose types are different in the submodel and in “the
resulting model are changed, the other parameters use their
original types. The result of this assembling process is the
model given in the previous section.

Note that the identification of the parameters is
implicitly done during renaming. For example, by giving the
same name for Q&A of Pump and Q@ of Valve-f, we indicate

i

that the two refer to the same identity.

5.2. Sign Analysis of Total Differentials

To begin sign analysis, we first form the sign tables
for each of the modeling equations. For this purpose we
calculate the partial derivatives and express them in terms

of the Information matrix of the system,

QF' Q.‘l. Qz Cv 4 Cv 2 PF Pi PZ
F L -1-1 0 0 0 0 0 T
* o C
Flo 1 o -vF_=P, 0 - - 0
I= 27 PF—P1 2y P —Pi
Cv 2 Cv 2
FS o 0 1 0 —¥§F—P2 - 0
2v PF-P2 2 PF—PQ
aF,
which is an m¥n matrix of elements 521 with i=1,...,m and
j=1,...,n, where m (number of functions) is 3 and n (number

of parameters) is 8 for this example.
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We assume, as indicated above, that (PF~P1) and
(PF—PZ) denote positive dquantities because otherwise the
square roots would have no real values. Based on this

assumption, the I matrix is converted to the Is matrix

Q‘F' Q:l. QZ CV 1 Cv 2 PF Pi PZ

F1 + - - 0 0 0 o 0

1=F]0o + o - o ([T,1 fc,l O
Flo o + o - (T,1 o [c,,

based on the fact that [V”P;:F:" 1=+ and [fpﬁ;:?;“ 1=+.

The first equation has 3 parameters and the other two
equations have 4 parameters each. Making use of Tables 3 and
4 for a three- and a four-parameter function, respectively,

we can construct the sign tables of these functions as in

Tables 28, 29, and 30.

TABLE 28. Sign table of F=Q_-Q -Q_=0
[dQ.1 [dQ,1 [da,]

+ - +
+ + -
+ + +
+ + 0
+ 0 +
- - +
- - 0
- + -
- 0 -
0 - +
0 + -
0 0 0
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Tables 29 and 30 contain entries expressed in terms of
C and Cvz' In order to be able to convert - -these into pure

vi

sign tables, we must know the signs of Cv1 and Cvz. Suppose
that Cvi and Cvz are both positive7, thus [Cv1]=+ and
[Cv2]:+. Substituting these into Tables 29 and 30 résults in
Tables 31 and 32.

Now we can perform sign analysis by using Tables 28,
31, and 32. Call these tables Ti, Tz, and Ta, respectively,
for functions Fl, Fz, and Fa. Let wus first generate a
notation for ease of presentation. We will use, for a
parameter z, the following terms

{z}=+ : the value of z is increased

{z}=— : the value of z is decreased

{z3}=0
{z}=? : the direction of change of z is unknown.

the value of z remains unchanged

The first three represent terms we have already been
using and the last one represents a parameter whose direction
of change is to be determined by the analysis. A perturbation
formula, e, is formed by taking the conjunction of the
parameters whose signs are known.

Below we give some examples together with their
interpretations. Keep in mind that all the following results

are valid for the case Cv1 and CV2 are positive.

?
In fact, in the system haing examined, these are the

only posasibilities that make seNsSe since c and | c
vai va

reprasent valve conatants which can not be negative

physically. Therefore this assumption doesa not bring any

restriction into the system space.

92



=0

;._Pi

PF'

vai

:Ql—C

TABLE 29. Sign table of F

[dP, ]

[dP_]

[dQ,1 Cdc_,]

[dp, 1

[dP_]

[dQ,] [dC,,]
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—Pz

PF

:QZ _CV 2

TABLE 30. Sign table of F

[dP,]

[dP_]

[d@,1 [dC,,]

[dP, ]

[dP_]

[dQ,] [dC, ]
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F 1 :

Q1-Cv1

TABLE 31. Pure sign table of F

[dP, ]

[dP_1]

[dQ,] [dC,,]

[dP, ]

[dP_]

[dQ,1 [dC,,]

o+ 1O 4+ + + 1 O 4+ 4+

| I+ + + + + O ©O © O ©

I+ + 4+ O 1t 1 1 4+ 4+ 4+ O

+ o+ + + 4+ o+ 4+ o+ 4+ o+ o+ 4+
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=0

PF'—PZ

Qz_Cvz

TABLE 32. Pure sign table of F

(dP,]

[dP_]

[dP,]

[dP_]

[dQ,] [dC,,]

[dQ,1 (dC,,]

o+ 1 O+ + + 1 O + +

I+ 4+ 4+ + 4+ O O © ©O ©

+ 4+ 4+ 0 1 1 1 + 4+ + 0

+ + + + + + + + + + o+
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Example 5.2.1. We increase QF while keeping other exogenous
variables and constants unchanged. How do the endogenous
yariables change?

{QF}=+ {Cv1}={Cv2}={P1}={P2}:0 {Q1}={Q2}={PF}=?
e=({QF}=+A{CV1}=0A{Cv2}=OA{Pi}=OA{P2}=0)

Tic;ﬂTZCg:ﬁa is shown in Table 33.

So, there is one solution: {Qi}:{Qz}:{PF}:+.

Let us give an explanation of how the result is found. T1 has
5 rows satisfying {QF}=+, T2 has 3 rows satisfying
{Cvi}ZOA{Pi}:O, and T3 has 3 rows satisfying {CV2}=OA{P2}:O,
as shown in Figure 11 and the tables formed by these rows are
named as T;, T;, and T;, respectively. [inl and [dQZJ must
be the same in order for [dPF] of T; and [dPF] of T; do not
conflict. That is, [in]:[dQ2]=+, (dQ, 1=0dQ, 1=-, or
[in]z[sz]:O. Only the first one of these exists in T;.'Thus
Q1 and Q2 both increase, and it 1is found from the
corresponding row of either T; or T; that PF must also

increase.

TABLE 33. Result of Example 5.2.1
[dQF] [inl-[szl [deil [dPF] [dPil [dezl [dPZJ
+ + + 0] + 0 O 0

[dQ_1 [dQ 1 [dQ,]

+ - +
+ + -
+ + +
+ + 0
+ 0 +

[inl [deil [dPF] [dPil [szl [dez] [dPF] [sz]
+ 0 + 0 + 0 + 0
- 0 - 0 - 0 - 0
0 o 0 0 0 0 0 0

FIGURE 11. Reduced tables for the increase in QF
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Example 5.2.2. We decrease CW while keeping other exogenous

“*

variables unchanged. How do the endogenous variables changé?
{C,, == 1{Q 1={C__}={P, }={P_1}=0 {Q, 1={Q_ }={P_1}=7
©=({Q_}=0A{C  }=-A{C__}=0A{P }=0A{P_}=0)

T,Cz<IT,C=aT_ is shown in Table 34.

QI decreases while Q. and P_ increase.
34 B

Example 5.2.3. We increase QF and decrease Cv1 while keeping
other exogenous variables unchanged. How do the endogenous

variables change?

{Q =+ {C,,}- {C,,}={P,}={P,}=0  {Q }={Q_}={P_}=?
o=({Q.}=+A{C_, }=-A{C,, }=0A{P }=0A{P_}=0)

T1C253T2E253T3 is shown in Table 35.

Q2 and PF increase vhile QI nay change in any direction.

The existence of three solutions in this example means that
with different system states and with different amounts of
perturbation (i.e. dQF and dei), it is possible for Q1 to

change in any one of the directions.

TABLE 34. Result of Example 5.2.2 )
[dQF] [dQll [dQ2] [de1] [dPF] [dPil [dezl [sz]
0 - + - + 0 0 0

TABLE 35. Result of Example 5.2.3
[dQF] [inl [szl [de1] [de] [dPil tac, .1 [dP,]

+ + + - + o 0 0
+ - + - + 0 0 0
+ 0] + - + 0 0 0
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Example S.2.4. Suppose that we are able to increase the
endogenous variable Q1 without affecting the exogenous

variables. How do Qz and PF change?

{Q1}=+ {QF}={Cv1}={Cv2}={P1}={P2}=0 {QZ}Z{PF}=?
6=({QF}:0A{CV1}=0A{Cv2}=0A{P1}=OA{P2}:OA{Q1}=+)
T1E253T2E253T8 results in an empty table.

This means that, in a particular system state (i.e. without
changing the wvalues of exogenous variables and constants),
even if we are able to change the value of Qi, it will return
immediately to its original value. In other words, given the
values of the exogenous variables and constants, there is a
unique solution for the values of the endogenous variables
and we cannot alter those values without changing the wvalues

of the exogenous variables and constants.

It is worth noting here that if the value of Cvi were
declared as negative at the beginning of the analysis (in
which case [Cv1]=—_so,T2, which was produced from Table 29,
would be different) then the above join operation would
result in a single solution: Q, and P_ decrease. This means
that without changing the values of the exogenous variables
and constants, endogenous variables may take different

values. In other words, the system is not stable.

Example 5.2.5. We increase QF while keeping other exogenous
variables unchanged and we want Q1 to increase. Is this

possible, and if so how do Q2 and PF change?

{Q 3={Q,}=+ {C

vi

o=({Q_}=+A{C_, }=0A{C,_}=0A{P, }=OA{P_}=0A{Q, }=+)

}={C, }={P,}={P,}=0  {Q,}={P_}=?

TiczfaTzc%sza results in Table 33.

We conclude that this is possible and Q2 and PF increase as

well.

This qgquestion is similar to the first one. In the first
question we did not have a restriction on Q1 but the result
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has shown that Q1 being increased is the only solution. Thus

these two questions give the same signs'for Q2 and PP.

Example 5.2.6. . We want PF to increase and Q1 and Q2 remain .
unchanged. How must exogenous variables and constants be
changed in order to satisfy this condition? (or, It is

observed that PF is increasing while Q1 and Qz remain

unchanged. What can cause this?)

{PF}=+ {Qi}:{Qz}ZO {QF}={CV1}={Cv2}={P1}={P2}=?
92({Q1}:0A{Q2}=0A{PF}=+)

T1ﬁzfﬂTzczfﬂTa is shown in Table 36.

There are 25 possibilities. We can summarize the result as

follows:

TABLE 38. Result of Example 5.2.6
[dQ_] [inl [sz] [dell [dPF] [dPil [dCVZJ [dP2]

0 0 0 - + + - +
0 0 0 - + + - -
0 0 0 - + + - 0
0 0 O - + + + +
0 0 0 - + + 0 +
0 0 0O - + - - +
0 0 0 - + - - -
0 0 0 - + - - 0
0 0 0 - + - + +
0 0] 0 - + - 0 +
0 0O 0 - + 4] - +
0 0 0 - + 0 - -
0 0 0 - + 0 - 0
0 0 0 - + 0 + +
0 0] 0 - + 0 0 +
0 0 0 + + + - +
0 0 0 + + + - -
0 0 0 + + + - 0
0 0 0] + + + + +
0 0 0 + + + 0 +
0 0 0 0 + + - +
0 0] 0 0 + + - -
0 0] 0 0 + + - 0
0 0 0 0 + + + +
0 0 0 0 + + 0 +
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QF must not change. [If C”I s decreased then Pj can be

changed in any direction, otherwise Pf must be increased.

Simitarly, Uf Cve is decreased then F, can be changed in any

direction, otherwise Pé must be tncreased.

Example 5.2.7. We increase P1 while keeping QF, Cv11 and Cv2
unchanged. We want PF not to change. How must we change Pz‘to

satisfy this condition and how do Q1 and Qz change?
{Pi}:+ {QF}:{Cvi}:{Cv2}={PF}=0 {PZ}Z{Q1}={Q2}=?
9:({QF}=0A{CV1}:OA{CVZ}=OA{P1}=+A{PF}=0)
TiczdezczfﬂTa is shown in Table 37.

We must decrease PZ' Qf will decrease and QZ will itncrease.

Example 5.2.8. We decrease QF and increase Cv1 while keeping

Cvz unchanged. We want Q1 to decrease and PF not to change.

How must P1 and P2 be changed to satisfy this condition and

how does Qz change?

{QF}={Q1}=- {Cv1}=+ {CVZ}Z{PF}=0 {P1}={P2}={Q2}=?
9=({QF}=-A{CV1}:+A{CV2}=OA{Q1}=-A{PF}=0)

Tlr:g:nTzc;g:JTg is shown in Table 38.

We must increase PI and we carn changs Pé in any direction. Qé

will change in the opposite direction of P2'

TABLE 37. Result of Example 5.2.7

[dQ.1 [dQ,] [dQ,]1 [dC_,1 [dP_]1 [dP, 1 [aC_ .1 [4dP,]
0 - + 0 0 + 0 -

TABLE 38. Result of Example 5.2.8
[dQ, 1 [dQ,1 [dq,] [dC_,1 [dP_ 1 [dP,] [dC .1 [dP,]

- - - + 0 + 0 +
- - + + 0 + 0 -
- - 0 + 0 + 0 0
101 T. C.
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We can perform sign analysis in a different way also.
Suppose that Q. is increased, C_,, and C,, are kept unchanged,
and Q1 is decreased. Then Tables 28, 31, and 32 reduce to the
sign tables shown in Tables 39, 40, and 41, respectively. (We

assume, as above, that [Cv1]:+ and [Cv2]:+, so use Tables 28,

31, and 32). Wee see from Table 39 that there 1is one
possibility for Q,, namely, it increases. So, Table 41 can be
further simplified, yielding Table 42.

Using Tables 39, 40, and 42 (call Ti, Tz, and TB,
respectively), we can now extract the following rules, for

the situation where [Cvi]:+ and [Cvz]:+:

If QF 13 increased and Qt is decreased then Q_ will increase
o7

C from TI)'

If QI is decreased while keeping cvf unchanged then Lf PF

tncreases then PI should increase ( from Te).

If Qf is decreased while keeping Cv! unchanged then Uf PF

decreases then Pf may Increase, decrease, or stay unchanged

Cfrom TZ’)‘

If Qt is decreased while keeping cvi unchanged then Uf PF

increases or stays unchanged then P 4 should increase {from

Tz).

If Q2 15 increased while keeping Cv“ unchanged then f Pr@

g
(4 -

decreases then P2 should decrease {from T3).

If 02 15 itncreased whiles keeging Cvf unchanged ther (f P
4

increases then P_ may increase, decrease, or stay unchanged

2
Cfrom T3}.
If QE i itncreased while keeping Cvz unchanged then if PF
decreases or stays unchanged then PZ should decrease (from
T3).
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TABLE 39. Reduced form of T1
[dQF] [inl [dQ2]

+ - +

TABLE 40. Reduced form of Tz

[dQ, ] [dC,, 1 [dP_] [dP, ]

i
lo¥oXeRo R
++ 01 +

+
0

TABLE 41. Reduced form of Ta
[dQZJ [deZ] [dPF] [sz]

+ 0 = -
+ 0 + +
+ 0 + =
+ 0 + 0
+ 0 0 -
- 0 - +
- 0 = —_
- 0 - 0
- 0. + +
- 0 0 +
0 0 - -
0 0 T+ +
0 0 0 0

TABLE 42. Reduced form of Table 41
[dQ2] [dezl [dPF] {szl

+++++
ococooo
O+ + + |
Lo+ 1
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Iy C.‘F i increased and Q {s decreased then Q_ will increass
. 1 fust

ared LF C. is Rept wnchanged then {f F £ decreasas théer: F”S

ve
should decrease ( from TI and TB)'

This analysis 1is exactly identical to the one
presented earlier. The two both yield the same results. The
difference is that, in the latter one, the join operation is
done implicitly by reducing the tables first and then
searching for +the possibilities. In fact, once the sign
tables are formed, we can perform sign analysis on these

tables in any way we desire.

5.3. Sign Analysis of Gains

As explained in Section 3.3, to begin sign analysis of
gains, we write the equations in the form of (3.10), for an

exogenous variable. Suppose that we perform the analysis for

Q. »

8F 6Q_ 9F 8Q_ OF 0@,  OF oC, oF, oC, aF oP_
[aQFaQF] + 35 aQF] +H 35 aQF_]+[dC aQF 1+ 35 aQF ]”-ap 3 3q1+
aF o, aF oP,

(3. 5,30 * 3D, 3‘6‘] =0

9F_0Q_  OF 0Q_ OF 0Q  OF, oC, oF, oC, oF oP
[aQFaQ a1t 3g aQF] U 3q aQF] +L 3C, aQF S 3C_ 3, =1 +0 53 35 _3a_ 3o+t
anaP av}?zap2

L3p .39, aa- *L 35 GQF =0

aF aQF aF 6Q 8F 6Q éF ac aF 6C aF ap
=1 +[ == 21 +[ == 27 +[ == =221
6QF3QF 6Q GQF_ 6Q 6QF ac aQF 6C QF 6P 6QF
6F86P1 8F38P2 -0

[ 55551 + 55" 352] =
apiaQF _apzaQF
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Using the I matrix, these simplify to

aQ aQ aQ
[ sme] —[ mne] —[ 5=zl =0
3" ThIq_C Ttaq T

5q, ac, c,, P c,, @p,
Ko 2/P_-P_ 5o 2¥P_=P, o

2q, ac,_ c,, @p_ c,, @p,
[g@;] -L 'PF‘PZ m{, 1-L 2‘)’?33?" aQF] +L '/ETFTP—"_' %p} =0

Now we form the sign tables for gains of the above
equations. Assuming
[VPF—Pi ] =+ [V?F—Pz ] =+ [Cvl]:+ [Cv2]=+
as in the previous section, we get the pure sign tables shown
in Tables 28, 31, and 32, except the column titles; the title
oz
{dz] must be replaced by [-f%d for
aF‘
ze{Q_,Q,,Q,,C,

the equations for total differentials and gains possess the

1’PF’P1’Cvz’Pz}' As explained in Section 3.3,

same coefficients, thus the sign tables are identical.

aQ .
We require [3@53:+, so Table 28 reduces to Table 43.
F

Call Tables 43, 31, and 32, Ti, TE, and Ta, respectively. Now

let us answer the following questions. Keep in mind that Cv1

and Cv2 are positive.

TABLE 43. Reduced sign table of gains for F=QF—Q1—Q2=O

aQF ) 2Q aQ
[s—1 [301 [5s2]
3q_ 3q_ aq_

+++++
O+ + + |
+O+ 1 +
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Example 5.3.1. QF is changed. Other exogenous variables are

kept unchanged. How do the endogencus variables change?

BC 6C GP aP aQi an aPF
= = =9
ac ap opP

—ctaQF 35— OA[anzl=0A[5§§]:0A[5§3]=0)
F

qusﬂTzq;ﬂTa is shown in Table 44.

Q Q,, and P_ change in the same direction as QF'

1’ 2 F
Example S5.3.2. QF is changed. Cv1 is changed in the opposite
direction of QF. Other exogenous variables are kept

unchanged. How do the endogenous variables change?

aCV 1 aCV 2 aPi aPZ an an aPF
QF F F F tsQF ¢ F F
4 oP 5P

=-AL g s OAcaQ — OA[aQ

([oQF
T1:;faT2BEfaTa is shown in Table 45.

Qe and PF change in the same direction as QF’ Qf may change

in any direction.

Example S. 3, 3. QF is changed. C\“L is changed in the opposite
direction of QF. Cv2 is kept unchanged. We want Q1 to change
in the same direction as QF and PF not to change. How must Pi

and P2 be changed to satisfy this condition and how does Q2

changes?
2Q, ac . ac,_, aP_ ap, apP aq,,
[ aQF] =+ EGTQ:_— = [ 6Q ] :[ aQ ] :O [ 3 ] ‘:[ th] :[ 3 ~] =
F F QF 24 QF
ac aC ap

_ 14 _ vi, va, Fq
9~([5§;]—+A[5@;—]— A[g@;—]—OA[gﬁgl—O)

Tlc%ijchfiTS is shown in Table 46.
We must change PI in the opposite direction of QF' and we can

change P2 in any direction. Q2 will change in the opposite

directiorn of Pé.
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TABLE 44. Result of Example 5.3.1
taQ"] [6Q1] [anl [6“1 ap‘"”] [ap‘l] [ac”] t:aPZJ
3Q_ Q_ Q" " BQ_ 2Q Q. Q. © T oQ

. F F

L

+ + + 0 + 0 0 0

TABLE 45. Result of Example 5.3.2
aq Q. aQ ac

[osnm] [5om] [5e2] [ ot
3q_ 3q_ 3q_ 3q_

ap ap acC ap
[ o] [ el [ 3ol [ ezl
aQF 6QF 6QF aQF

+ + + - + 0 0 0
+ - + - + 0 0 0
+ 0 + - + 0 o 0

TABLE 46. Result of Example 5.3.3
Q 3Q aQ aC IP ap aC 3P

a -y -
) ey (WEGE gl )
dQF aQF aQF aQF é‘QF __aQF éQF aQF'
+ + - - 0 - 0 +
+ + + - 0 = 0 -
+ + 0 - 0 - 0 0

Note that the above examples are similar toc the
examples 1, 3, and 8, respectively, of Section 5.2. In fact,
the results of the above examples could be derived from the
results of the corresponding examples in Section 5.2 and by
using Proposition 3.4. In other words, we can solve any sign
analysis of total differentials question in which QF is

changed by the method of gains using Tl, T., and Ta.

2
The above discussion was for QF. We can do the same
analysis for another exogenous variable or constant as well

(or for an endogenous variable if it makes sense).
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5. 4., Galns

To begin value analysis, we must first compute the

gains of the model for a particular system state.

Let us consider a system state where the wvalues of

exogenous variables and constants are given as
QF:B Cc =2 C _=3 P1=8 P2:5

We substitute these values into the equations
F1=8—Q1-Qé=0
F =Q -2¥ P -8 =0
2 1 F
F =qQq -3¥ P -5 =0
3 2 F

and solve for the values of endogenous variables, yielding

Thus the system state is

Q=8 C,,=2 C,_=3 P,=8 P,=5 Q,=2 Q,=6 P_=9 (5.1)

The equations for gains are

aFi 6Q1 6Fi an api op aF

3q, 3y 'oa, dy 'op_ By  dy

an 5Q1L0F2 5Q2L3F2 ap a2F
oQ 9y 'an 3y 'OPF 3y 3y

aFS 8Q1¢8F3 6Q2L3F3 3PF 3F3
6Q1 3y 'OQZ 3y 'OPF 3y dy

where y € {QF’Cvi’Pi’Cvz’Pz}' This equation set can be shown

in matrix form as
I8, =f,
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where J is

column vectors

the Jacobian

L J

matrix,

Xy

and £
¥

are

the

aF,

L

for the exogenous variable y. The partial derivatives, v e

i=1,...,3, xe{Qi,Qz,PF}, are computed as
oF aF1 aF1
==—=-1 =-1 55— O
in an aPF
aF aF aF
2_ 4 2_ o 2__4
3qQ - Q. 3p_
1 2 F
aF oF 3F
3: 0 3: 1 a:_§
3q, 3q. 3p_~ 14
which constitute the Jacobian matrix
-1 -1 0
J=] 1 o -1
0 1 -3/4
The partial derivatives wrt exogenous
i=1,...3, are computed as
aFi-l OF, . aFi_o oF, .
aQF acvi 3P1 acva
6F2_0 3F2__1 3F2—1 an_ o
aiF acvi Pi Cvz
5F3_0 aFa_ o aFg_o aFS——z
@‘ 3c 3P ac _
vi 4 w2
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from which the vectors iy are formed:

1 0 07 0 0
f~ =|0} . £ ={-1} . £, =|1 f =10 £ =1 0
% lo Cos [ o] P, [o C, 2 [-2 P2 lara) .

Solving for xy, we get

4,7 3,7 -3/7 -8/7 3/7
2~ =13/7 g~ =|-3/7| %5 =| 3/7} 8~ =| 8/7}| Bp =}-3/7
Q. 1ay7| “Cus |-as7| Pa | ay7| "oz [-8s7) TPz | 3/7

Thus the gains are

%9, 3 %% 3 _.4
3c 7 dc 7 = Zi
AT S v vi
3Q 3 %, 4 BPF— 4
5?:- 7 3p_~ 7 3p ~ 7
°9, g 99, g 9% g
ac 7 3Cc 7 3C 7
v v2 v 2
aQi__ 3 °q, 3 a'PF_ 3
3p -7 3dP_ 7T IP_ 7
2 2 2

For example, the gains wrt QF say that 1if QF is changed then
Q, will change é times of the change in Q_, Q, will change %
times of the change in QF, and PF will change % times of the
change in Q_, all three being in the same direction as Q_.

The total differentials of endogenous variables are

110



oQ, q, 2q, aq, 2Q
dQ, =3~ 4@ tac_ 9 +ap‘ dp +“c— dC, 2 +ap- 9P,
r4

aQ aQ 2Q oQ aQ

2 2 2 2 2

dQ, :aQF dQ. +acv . dc, , +'(')P1 dp +acv' . dC,, +a“p2‘ dp,

ap op 3P ap ap

_F F F F
dPF_aQF dQ aC dcC 1+5§— dP +5E——(K%2+5§— sz
vi va 4

By substituting the gains, we arrive at

4 3 3 8 3 .
in—7 dQF+7 de1—7 dP1—7 dez+7 dpz
3 .o .3 3 8 3
sz—? dQF 7 de1+7 dP1+7 de2—7 sz (5.2)
_4 4 4 8 3
dPF_7 dQF = dei+7 dP1 = de2+7 sz

5.5. Elasticities

Once the gains are computed the elasticities can be
found easily. Using (4.12) where xe{Ql,Qz,PF} and

YE{QF’Cvi’Pi’CVZ’PZ}’ the elasticities are:

E = _ig_ E = __2_ E = _§g_
QiQF 7 QzQF 7 PFQF 63
3 1 8
E, ~= —— E =——s— Ep a =-
Qi Cv:l. 7 QZ Cvi v PF cvi 63
12 4 ' 32
E S—— E = — E = —
Q1P1 7 Q2P1 7 PFP1 63
12 4 8
E =——5- E = —— E ———
Qicvz 7 QZCVZ 7 PFCVZ 21
g =18 g ___ 5 g __5
Q1Pz 14 QZP2 14 P P2 21



3.8, VYalue Analysis

As the gains are computed for the system state given
in (6.1), we éan begin wvalue analysis. We repeat _the

equations of total differentials, shown in (5.2), below:

4 3 3 8 3 _
dQ1—7 dQF—7 de1+7 dP1+7 de2—7 dPa—O

3 3 3 8 3 _ .
sz -7 dQF+7 de1—7 dP:L_7 dez+7 sz =0 (6.3)
dP % dQF+$ dcvl_é dP1+g dez_g dp_ =0

In order to solve this set uniquely, we need to
specify the values of five of the unknowns.

Consider the following examples:

Example 5.6.1. We increase Q_ 1 unit, while keeping other
exogenous variables unchanged. How do the endogenous

variables change?

Substituting.dQF=1,de1=dP1:de2:dP2:O into (5.3), we get

4
in——7—
3
sz__7_
4
dP?—_7—
. 4 , , , . 3
Qj tncreases —— times the increase in QF’ Q., increases —
times the Iincrecse in QF’ arsd PF inRereases - times the
tnerease in QF'

Example 5.6.2. We increase QF and decrease Cv1, both in the
same amount, while keeping other exogenocus variables
unchanged. How do the endogenous variables change?
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Substituting dQ.=1, dC, ,=-1, dP =dC,_=dP_=0, we get

1

s,
_ 6

dQ,=—7—
_ 8

dPF_—7—

, 1 . , , ,
Qt increases —— times the increase in QF’ Q, increases
[

times the increase in QF“ and PF Lne roasss = times A

=
/
X,
=

increase in QF‘

Note that 1in Section 5.2, the sign analysis of the same
guestion has resulted in a table containing 3 possibilities.
For the particular system state and the amounts of
perturbations in Q. and C, , we arrive at the above solution.
Example 5.6.3. We increase P.1 1 unit while keeping QF, Cvi,
and Cv2 unchanged. We want PF not to change. How must we
change P2 to satisfy this condition and how do Q1~and Q2

change?

Substituting dP =1, dQF=dCV1=deE:dPF=O, we get

__ 4
sz- 3~
dQ, =-1
dQ,= 1
Pé must bhe decreosed ;;— times the increase in PI' Qi
decreases and 02 increases an amount egual to the increase in
P 1-

Example 5.6.4. We decrease QF 1 unit and increase CV1 2
units, while keeping Cv2 unchanged. We want Q1 to decrease 1
unit and PF not to change. How must P1 and P2 be changed to

satisfy this condition and how does Q2 changes?
Substituting dQdeQiz—l, de1=2, de2=dPF=O, we get
dP, =3
dpP_=0
sz=O
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F f must be increased 2 timesz the increase in (RF e PE must

be kept unchanged., As a result, &, doss not changs.
=

Example 5.6.585. We want PF to increase 1 unit and Q1 and Q
remain unchanged. How must exogenous variables be changed in

order to satisfy this condition?

Substituting dledQZ:O and dPF:l, there remains 5 unknowns in
3 equations, so the equations have infinite number of
solutions. Consider the sign analysis of this question, which
was done in Section 5.2 and resulted in Table 38. GSuppose
that we decided to decrease Cv1 and Cvz both in 1 units.
Substituting de =de

dQFz 0

=-1, we arrive at the answer

i 2

dP1= 0
__ 5
dpP_= 3
When we decrease C and € 1 units, decreasing P, -—.5=.— units
vt ve & 2

and keeping Q I and P 4 unchanged satisfy the cbove condilion,



VIi. IMPLEMENTATIOM

The techniques introduced in this work are coded as a
computer program named as KGMM (Knowledge Generation from
Mathematical Models). The program 1is written using Turbo
Pascal v.3.0 under the operating system MSDOS 3.1.

In this section we will describe the program.
Appendices D and E contain a sample run session and the

listing of the program, respectively.

- B.1l. Notes About the Program

A model consists of a name, equations, and parameters.
Naming of models is necessary for the purpose of reference.
Each equation is an array of characters, as will be explained
below. For each parameter, there are two items: the name of
the parameter and the type of the parameter (exogenous
variable, endogenous variable, or constant). A parameter name
consists of a letter followed by any combination of letters
and digits.

As explained in Section 2, a model can be formed from
several submodels, each submodel from sub-submodels, and so
on, called assembling. For this purpose the program maintains
a model library. Each record pf the library is a model. The
library is maintained in a file and it can be listed, new

models can be added, or existing models can be removed from
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it at will.

The model being examined by the program at any time is
referred to as the current model. Current model is the-one
that is loaded into memory. All the operations are performed
on the current model. The current model can be changed as
desired by loading another model as the current one.

The bottom line of the screen is reserved for
messages. A message may indicate either an error or the
successful completion of an operation. Each error message has
a number. When an error message 1is given the operation is
terminated and the execution returns to the main menu.
Messages will be explained in Appendix B. Also, on the top of
the screen, the name of the current model is displayed.

An operation may be terminated by the user by pressing
Ctrl-C at any time. In case long outputs are generated, the
Ctrl-S key can be used to pause the screen.

As will be explained in Section 6.2, main menu options
1 apd 11 require the user to give a model as input. First the
name of the model is given. The library is searched to see
whether it contains a model with the same name. If so, an
error occurs and the operation terminates. Otherwise, the
user is asked for the equations. This can be done in one of
two ways: When the program is waiting for an equation to be
given, the user may either write the equation explicitly or
write the name of a library model preceded by the symbol @.
In the first case, the equation is parsed and the user is

asked for the next equation. In the second case, the
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assembling process is activated: the model with the given
name, call it the submodel, is loaded from the library (if no
such model exists, an error occurs), the equations of this
submodel are added to the equations of the model, and the
names and types of the parameters of the submodel are asked
for. These are the names and types that will be used for the
model. That is, parameters are renamed as explained in
Section 2. If the name of a parameter is not given, it
defaults to the name in the submodel. Similarly, the default
for the type of a parameter is its type in the submodel. When
the assembling is completed, the user is asked for the next
equation. After all the equations are given, the types of
those parameters whose types are not already given are
requested. This completesrthe input of the model.

An equation is an arithmetic expression formed from
operands (parameter names, numbers, and function designators)
and operators. Operators fall into four categories, denoted
by their order of precedence:

(1) Unary minus (ﬁinus with one operand only)
(2) Power operator : ~
(3) Multiplying operators : % and /

(4) Adding operators : + and -.

Sequences of operators of the same precedence are
evaluated from left to right. Expressions within parantheses

are evaluated first and independently of preceding and

succeeding operators.
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A function designator is a function identifier
.followed by an expression enclosed in parantheses. The
occurrence of a function designator causes the function with
that name to be activated. The functions currently supported
by the program are (Num denotes an expression):

SinCNum
returns the sine of Num, which is expressed in radians.

Cos( Numd
returns the cosine of Num, which is expressed in radians.

ArctanCNum
returns the angle, in radians, whose tangent is Num.

ExpC Num

: < Num
returns the exponential of Num, i.e.

Log(CNum)
returns the common logarithm of Num.

LnCNumd
returns the natural logarithm of Num.

Sqr( Num
returns the square of Num, i.e. Num*Num.

Sqrt ¢ Num)
returns the square root of Num.

As will be explained iﬁ Section 6.2, main menu option
3 reguires the calculation of signs of expressions. To
calculate the sign of an expression, without knowing the
values of parameters, we use qualitative arithmetic. Figure
12 shows the tables for operators and functions used in
qualitative arithmetic (& denotes unary minus). The operators
~, ¥, /, +, and - take two expressions; the operator unary

minus and all the functions take a single expression. On the

upper left-hand corner of the table is the symbol of the
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+ + 0 - - + 0 - % | + 0 -
+ + o+ ? + 7?7+ 4+ + + 0 -
0 + 0 - 0 - 0 + 0 0 0 O
- 7?7 - - - - - 7 - - 0 +
/ + O - - + 0 -
+ + b= + + + +
0 o ! 0 0 o ¢t !
- - b+ - ? 0+ 7
=3 + 0 - Sin + 0 - Cos + 0 -~
- 0 + ?7 0 7 ? 0+ 7
Expl + 0 - Ln + 0 - Log + 0 -
+ + + ? 0t ? b1
Saqr} + 0 -~ Sart} + 0 - Arctanf + 0 -~
+ 0 + + 0 ! + 0 -

FIGURE 12. Operator and function results in
qualitative arithmetic

operator or the name of the function. For a binary operator
a®b

where a and b are expressions, and ®<{",X%,/,+,-}, the rows of
the table correspond to [a], the columns to [b], and an entry
in the ip’ row and .jth column, i,j=1,...,3, corresponds to
[a®b] for [a] is the sign in the i row and [b]l is the sign

. th
in the J column. For a unary operator
® (a)

"where a is an expression and @ is the unary minus operator or

any one of the functions, the columns of the table correspond
. h

to [a] and an entry in the it column, i=1,...,3, corresponds

to [@ (a)] for [a] is the sign in the fh column.
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An entry 1is one of the following:

+ : the result is positive
- : the result is negative

the result is zero

~ QO

the result is indeterminate

the result is not defined

The sign of an expression 1is computed by using these
tables and by getting from the user as much information as
necessary to determine the sign uniquely. The calculation is
done recursively, beginning from the operator/function having
the lowest precedence. For a parameter, the sign of the
parameter is given by the user. For an operator or a
function, tables in Figure 12 are used. This is explained
below for each operator and function, where a and b denote
expressions, and Sgn (c), where ¢ is an expression, denotes a
function that returns a positive number if [cl=+, a negative

number if [c]l=—, and the number zero if [c]=0.

a+b
fal] and [b] are computed. If one is positive and the other
is negative then [a+b] 1is given. Otherwise [a+b]l is
[Sgn(a)+Sgn(b)].

a=b
[a] and [b] are computed. If both of them are positive or
both are negative then [a-b] is given. Otherwise [a-b] is
[Sgn(a)-Sgn(b)].

a*b
fa]l] is computed. If [a]l=0 then [a*b]=0. Otherwise [b] is
computed and [aXb] is [Sgn(a)*Sgn(b)]. (We can as well
compute [b] first and evaluate [aXb] as 0 if [b]=0, since
multiplication is commutative).
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asb
[a]l and [b]l are computed. If [bl=0 then [a/b] is undefinedf
Otherwise [a/b] is [Sgn(a)/Sgn(b)].

a“b
[a] is computed. If [al=+ then [a"bl=+. Otherwise (b] is
computed. If [al=- and [ble{+,-} then [a"b] is given. If
[al=— and [bl=0 then [a"bl=+. If [a]=0 and [bl=+ then
[a"b]=0. Otherwise the operation is undefined.

-—a
[a] is computed. [-al is [al.

SinCad
[a] is computed. If [al=0 then [Sin(a)l=0. Otherwise
[Sin(a)] is given.

CosCa>
[a] is computed. If [a2a]=0 then [Cos(a)l=+. Otherwise
{Cos(a)] is given.

ArctanCad

[a] is computed. [Arctan(a)] is [a].
ExpCad
[Exp(a)] is +.

LogtCad
[al] is computed. If [al=+ then [Log(a)] is given. Otherwise
the operation is undefined.

LnCad
[a] is computed. If [al=+ then [Ln(a)] is given. Otherwise
the operation is undefined.

Sqrcad
[a]l is computed. If [al=0 then [Sar(a)]=0. Otherwise
[Sar(a)]=+.

Sqrtcad
{al is computed; If [ale{+,0} then [Sagrt(a)l=[al. Otherwise

the operation is undefined.
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Consider the following example:
Sqrt(zi+Exp(zz))*(Zi/10)

To find [Sqrt(z1+Exp(zz))*(21/10)] we must compute
[Sqrt(z1+Exp(zz))] and [21/10] since * is the operator having
the lowest precedence. For [Sqrt(zi+Exp(z2))] we must compute
[zi+Exp(zz)]. Now we must compute [21] and [Exp(zz)]. Since

z, is a parameter, [Z1] is given by the user, call it s, -

[Exp(z,)] is + regardless of [zzl. Thus [zl+Exp(z2)] is found
from the table of addition with one sign s, and the other +.
Call the result s, - Then [Sqrt(zi+Exp(zz))]=s2 unless 8=
in which case the operation is undefined. For [zi/lO] we must
compute [21] and [10]. [21] is already given as s, - [10]
evaluates to +. Then [z /10] is found from the table of
division with the first sign s, and the second one +, call it
s, - Finally we use the table for multiplication, with one

sign s, and the other 8, for the result.

6. 2. Options

The main menu is shown in Figure 13. To execute an
option, enter the number shown on the left-hand side and then

press <Return>.

The first option is used to input a mathematical model
as the current model. When this option is selected, the
current model, if any, is deleted from memory and the model
given by the user as explained in Section 6.1 becomes the
current model. If the number of endogenous variables is not
equal to the number of equations, then an error occurs. Note
that if an error is encountered during the process, no

current model exists in memory.
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Analysis of Algebraic Mathematical Models ver 1.00
Main _Menu

New model (from useri

. New model (from library)

. Sign of Information matrix

Sign analysis of total differentials

Sign analysis of gains

Parameter values

Value analysis

Gains

O O N O O b W N

Elasticities

[
o]

List library

-
=

Insert to library

-y
N

Delete from library

[y
W

Save current model
14. Exit

FIGURE 13. Program main menu

Option 2 is used to load a model from library to the
memory as the current model. When this option is selected,
the current model, if any, is deleted from memory and a model
of the library becomes the current model. The user is asked
for the name of a library model. The library is searched and
the model with the given name is loaded to memory and becomes
the <current model provided that the model exists in the
library. Otherwise an error occurs and the option is
terminated (but the current model, if any, continues its

existence).
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Option 3 is used to reduce the Information matrix, I,
of the current model into a sign matrix. This matrix is used
to form the sign tables of the modeling equations-' As
explained in Section 6.1, in order to reduce this matrix into
a sign matrix, we must compute the sign of each entry in the
matrix. For this purpose the user is asked for the necessary
information about the expressions. This process must precede
the sign analysis (options 4 and 5). It restricts the system
space of the current model. Once this process is completed,
all the sign analysis resulta will Dbe wvalid for this
restricted system space until this option is selected again
and the system space is changed.

If no current model exists when this option is
selected, an error occurs.

Option 4 is used to perform sign analysis of total
differentials for the current model. The user is asked for
the direction of change of each parameter as in the following
format:

+ : the parameter is increased

0 : the parameter is kept unchanged

the parameter is decreased

? : the direction of change of the parameter is unknown and

will be determined by the analysis
The perturbation formula is formed from the parameters given
in the first three cases, and the analysis results the
directions of change of the parameters given in the last
case. Finally the number of possibilities found is displayed.

The analysis uses the system space given by option 3.
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If no current model exists or if option 3 has not been
selected before this option then an error occurs.

Option 5 is used to perform sign analysis of gains for
the current model. The user is asked for the name of the
exogenous variable or constant, say z, whose value is to be
changed. Then the directions of change of other exogenous
variables, relative to z, are given in the following format:

+ : the parameter is changed in the same direction as z

-

0 : the parameter is kept unchanged
: the parameter is changed in the opposite direction of =z

The result is the directions of change of the endogenous
variables relative to z. The analysis uses the system space
given by option 3.

If no current model exiéts or if option 3 has not been
selected before this option then an error occurs.

Option 6 is used to give the values of the parameters,
i.e. the system state of the current model, before performing
value analysis. The values of all the parameters are given.
Then the user is asked whether he/she wants the equations to
be solved for the values of the endogenous variables. If so,
the values given for the endogenous variables are treated as
the initial wvalues and the equations are solved by using
Newton-Raphson method. This iteration method is explainéd in
Appendix A. If the equations converge, then the values of the
endogenous variables are found for the given set of the
values of the exogenous variablea and constants. If the
equations do not converge, then an error occurs and the

parameter values become undetermined. In this case, the user
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may repeat the process with different initial values. If the
user does not want the equations to be solved, then the
values given are treated as the system state, i.e. ﬁhey
satisfy the equations.

Once this process is completed, all the wvalue analysis
results will be valid for this system state until this option
is selected again and the system state is changed.

If no current model exists when this option is
selected, an error occurs.

Option 7 is used to perform value analysis on the
current model. The user is asked for the directions and
magnitudes of change of the parameters in the following
format:

+ : the parameter is increased

0 : the parameter is kept unchanged

as

the parameter is decreased
? : the direction of change of the parameter is unknown and

will be determined by the analysis
Magnitude is needed only if the direction is + or -. The
number of unknown parameters must be equal to the number of
equations. The result is the magnitudes of the unknown
parameters. The analysis uses the system state given by
option 6.

If no ourreﬁt model exists or if option 6 has not been
selected before this option then an error occurs.

Option 8 is used to display the gains of the current
model for the system state given by option 6. The user is

asked for the name of the exogenous variable or constant
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whose gains are to be displayed. If no parameter name is
specified then the gains wrt all exogenous variables will be
outputted.

If no current model exists or if option 6 has not been
selected before this option then an error occurs.

Option 9 is used to display the elasticities of the
current model for the system state given by option 8. The
user is asked for the name of the exogenous variable or
constant whose elasticities are to be displayed. If no
parameter name is specified then the elasticities wrt all
exogenous variables will be outputted.

If no current model exists or if option 6 has not been
selected before this option then an error occurs.

Option 10 is used to list the models in the library.

Option 11 is used to insert a new model into the
library. The model is given by the user as explained in
Section 6.1. Note that the current model, if any, is not
affected by this process.

Option 12 is used to delete a model from the library.
The name of the mcodel is given. Then the library is searched
to see whether the model with the given name exists. If so,
the model is removed from the library. If no such model
exists, then an error occurs. Note that the current model, if
any, is not affected by this process.

Option 13 is used to insert the current model into the
library. If the model 1is already in the 1library, then an

error occurs. This process is useful when one wants to
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continue the analysis of a model at a latter time. He/she
inserts the model into the library and loads it again from
the library by using option 2 at another time and analyses
it. |
Option 14 i=s used to terminate the execution of the

program and return to DOS.
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VII. CONCLUSION

In this work we have introduced several technigques to
generate causal relations from mathematical models of the
form of algebraic equations. The techniques are based on the
use of partial derivatives to analyse the signs of total
differentials of parameters, and to compute the gains and the
elasticities of parameters, which are then converted into
causal relations between parameters.

Our work is a step towards the automation of analysis
of systems. System analysis is a broad concept concerning
many- scientific disciplines; and we have attempted to
formalize only one aspect of the problem, which is to extract
causal relations regardless of the domain. There remains
several questions which require additional work. Below we
discuss briefly possible future extensions of our work.

Causal relations are expressed in terms of the
parameters of the original mathematioél model. On the other
hand the domain of the mathematical model may not be so
suitable for use directly in the reasoning ©process.
Transformation of causal relations from the domain of the
mathematical models to a domain used in commonsense reasoning
is one of the most challenging areas requiring future work.
One strategy is to make some simplifying assumptions,
possibly by using domain-dependent knowledge, on the causal

relations for typical cases and extreme cases of a system and

129



to express these assumptions as either preconditions for the
causal relations or as probabilities.

Another area to work on is to extend the sign analysis
and value analysis techniques to other types of mathematioal
models. In that sense models expressed in terms of
differehtial equations, difference equations, and mix of
algebraic, differential and difference equations can be
considered. Some new techniques may as well emerge for these
types of models.

In their work [2], de Kleer and Brown discuss two
types of ©behavior: Intrastate behavior and interstate
behavior. The work in this thesis has considered only the
first one of these. The equations of a model are in fact
valid for a certain region of the values the parameters may
take on. As the parameter values go outside of this region
for some reason, the form of the egquations change and we
continue the analysis with a new set. of equations. The work
can be extended in this direction to take into account the
transformation between states by using methods that are
similar to those of other researchers.

In Section 3.2, we have shown that sign analysis
technique can generate spurious solutions, 1i.e. solutions
that are not actual for the system. Since a mathematical
model, as in the form discussed in this thesis, contains
complete information about its parameters, it must be
possible to prevent spurious solutions. We think that the

most plausible way to do this is to extend the sign tables in
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the sense that each element of a sign table will have a
magnitude in addition to the sign of the partial derivative.
In fact, for sign analysis,lthe equations in a model need not
be quantitative in form. For instance, the constraint
equations suggested in [5] include certain relationships
between parameters such as monotonically increasing and
monotonically decreasing. In such a case the ambiguity in the
solutions 1is unavoidable. To prevent this the model must
contain sufficient quantitative information.

One of +the attractive application areas of the
techniques is the diagnosis of faults. Possible behaviors of
a system can be generated, particularly to warn of surprising
or disastrous events. Also the techniques can be used for the
generation and synthesis of fault trees. A fault tree is used
to explain the possible causes of an undesirable event
associated with the system [15]. The construction of a fault
tree requires a structure, such as a directed graph, that
represents the causal relations between the parameters in the
system, where our techniques may prove useful.

An expanded form of value analysis is interval
analysis. Instead of assigning a single value to a parameter,
we can represent the typical values the parameter may take on
by an interval. In that sense interval analysis is in between
sign analysis (analysis on system space) and value analysis
(analysis for a particular system state). The same principles
used in value analysis can be applied to interval analysis.

However, &s is well-known, interval arithmetic is expensive
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and ambiguous (e.g. [16]). For example, solving a set of
simultaneous linear equations by using different methods may
give different results. Also obtaining results that are
precise enough for the analysis to make sense may require
excessive computation time.

The techniques presented in this work may seem
expensive in terms of computation time. However this is not
exactly the case. The most time-consuming one is the sign
analysis. This becomes clear if we consider that the sign
table of a medium-size function contains thousands of rows
and the sign analysis of a question regquires the cartesian
product (for Join) of several such functions. This process
far exceeds the memory and time limits. For instance, in the
program described in Section 6, no sign tables are created
and the Jjoin operation is done implicitly. So the computation
time is reduced to a reasonable limit. For example, each of
the results of Appendix D is obtained in a_few seconds on an
8 Mhz computer.

Finally we want to point out that the key to the
techniques introduced in this work is2 the use of the
simultaneity in the equations. We think that processing all
the equations at a time is more efficient than processing
them one by one, because, in the latter case, while
generating a solution for an equation, the interrelations
between that equation and other equations are overlooked,

which may cause an unreasonable solution for the system and

force us to backtrack.
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APPENDIX A. NEWTON-RAPHSON METHOD

This appendix describes the Newton-Raphson (e.g. {(17])
method as it is wused in the program for sclving a set of

simultaneous nonlinear equations.

Consider a system modeled by the following functions

_Fi(xi,---’Xh,yij-'~’ym):0
Fn(xi,...,Xh,y1’-~~’ym):o
where KioseeosX represent endogenous variables, and Vyse-s¥,,

represent exogenous variables and constants.
. <k th

The notation « denotes the value of &« at the k
iteration, where o may be a matrix, a column vector, an
endogenous variable, a partial derivative, or a function.

The Newton—-Raphson method solves a set of simultaneous
nonlinear equations, shown above, for the values of the
endogenous variables given the wvalues of the exogenous

variables and constants and the initial wvalues of the

" {O) {O)
endogenous variables, L R .

2l

The iteration formula is

ST OF o B Ge+1) O OF 1 o a0 £ o
___f'. __1, 1 1 < F
3x, " "Ix Xy i . .
n n % n n N .
ox, " ax, ¥ " "
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which can be expressed in matrix form as

ey (kv

Jx =J

g o (45N
®x -

£
where J is the Jacobian matrix, X 1is the column vector of

endogenous variables, and f£f is the column vector of function

values.
This is a set of n simultaneous linear equations and
(k+1) (k+2y .
can be solved for the n unknowns X, see e X ., 1.e.
)

tk+1) . . .

s by any method for solving simultaneocus linear
equations.

The iteration continues until either the solution
converges or it 1is understood that the solution will not
converge. It is accepted by the program that the solution
converges if the number of iterations is equal to or less
than 10. Since Newton-Raphson provides fast convergence,
usually in three or four steps, it is almost impossible for
the solution to converge if convergence has not already been
established within 10 steps.

The convergence criteria used by the program is

h 2] n 1\'
/ T (T xR oo and / T (F )2 <T
i=1 t v i=1 h

where T indicates the tolerance, which is equal to 1%10°°.
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APPENDIX B. PROGRAM MEZSAGES

The following is a listing of error messages the user
may get during the execution of the program. Many error
messages are self-explanatory, but if one feels to get some
explanation, he/she can refer to the following listing via
the error number.

An error causes the active process to terminate. The
user is required to press the Esc key and then the execution

returns to the main menu.

1 : unexpected end of source (Position=xx>

The equation cannot end the way it does. It must contain some
other operands and/or operators. The number xxX specifies the
position of the error relative to the beginning of the

equation string.

2 : unexpected character in equation (Pasition=xxd

An unexpected character is encountered while expecting a
parameter name, a number, an operator, a function identifier,
(, or ). The number xx specifies the position of the error

relative to the beginning of the equation string.

3 : improper equation syntax (Position=xx)

The syntax of the equation is wrong. Check the syntax to
agree with the rules of ordinary arithmetic expressions. The
number xx specifies the position of the error relative to the

beginning -of the equation string.

4 ¢ unmatched ) (CPosition=xx>

The right paranthesis does not have a corresponding left
paranthesis (. The number xzx specifies the position of the
error relative to the beginning of the equation string.
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S5 31 3 expected (Position=xxd

The number of left parantheses ( is greater than the number
of right parantheses ). The number xx specifies the position
of the error relative to the beginning of the equation

string.

6 : sign of Information matrix entry cannot be zero
CEqn: xx, Par: yy)

During the process of reducing the Information matrix, I,
into a sign matrix, the signs of all the entries of the I
matrix (except those entries for which the parameter does not
appear in the equation) must be either positive or negative.
However, the sign of the indicated entry is computed as zero
for the given signs of the expreséions. The number =xx
specifies the number of the equation and the symbol yy

specifies the name of the parameter.

7 3 # of equations must be equal to # of endogenous  vars
In order to be able to perform value analysis on a model, the
number of equations must be equal to the number of endogenous

variables.

8 : cannot execute selection before a model is given
Before this option, load a current model by using main menu

options 1 or 2.

9 : cannot execute selection before sign of I matrix given
The Information matrix, I, of the current model must be
reduced into a sign matrix by using main menu option 3 before

sign analysis.

10 : cannot execute selection before par values are given
The parameter values, i.e. the system state, must be given by

using main menu option 6 before this option.

11 : equations do not converge for the given initial wvalues
The program cannot find the wvalues of the endogenous
variables by solving the equations for the given values of
the exogenous variables/constants and the initial values of
the endogenous variables. Either change the initial values’
and try again or solve the equations outside the program.
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12 : singular matrix encountered in analysis
While solving a set of simultaneous linear equations, a
singular matrix is encountered which means that the set

cannot be solved uniquely.

13 ¢ error in division operator

Division by zero attempted, the operation is undefined.

14 : error in power operator

The power operation, a"b, is undefined for the values of the
numbers a and b.

15 ¢ error in 1ln operator

The argument of an 1In operator is found to be negative or
Zero.

16 : error in log operator

The argument of a log operator is found to be negative or
Zero.

17 ¢ error in sqrt operator

The argument of a sgrt operator is found to be negative.

18 : model does not exist

The library does not contain a model with the given name.

19 : model already exists

The library already contains a model with the given name.

20 3 invalid selection
No option with the given number in the main menu.

21 : number of equations cannot be greater than S5

Number of equations in a model is limited by 5 (Appendix C).

22 : number of parameters cannot be greater than 20

Number of parameters in a model is limited by 20 (Appendix
C).

23 ¢ number of parameters is zero

The model does not contain any parameter. .

24 3 no such parameter in the current model

The model does not contain a parameter with the given name.
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25 : parameter must be an exogenous variable or a constant
This is necessary for value analysis, gains, and

elasticities.

26 : # of unknowns must be equal to # of equations
This condition is needed to obtain a unique solution in value

analysis.

50 ¢ user break, command aborted
This is actually not an error. It indicates that the process

is aborted by the user by pressing Ctrl-C.

In addition to these error messages, there are
messages that indicate the successful completion of a
process. These are listed below. Each message corresponds to

one of the menu options.

When a message is given, the user is required to press

the Esc key, after which the main menu is displayed.

Model given by user is loaded as the current model.
Model from library is loaded as the current model.
Signs of I matrix entries are initialized.

Sign analysis of total differentials completed.
Sign analysis of gains completed.

Parameter values are initialized.

Value analysis completed.

Listing of gains completed.

Listing of elasticities completed.

Listing completed.

Current model is inserted to the library.

Model is deleted from library. .
Model is inserted to the library.
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APPENDIX €. SPECIFICATIONS

The program can be run on IBM PC, XT, AT and
compatibles; either on the hard disk or on one of the floopy
diskets. It requires approximately 200 KB of memory.

The program disket contains the following files:

KGMM. COM
This file includes the executable code of the program.

MODELLIB
This file contains the models in the model library.

KGMM. PAS
This is the program source file. It is heavily commanded
for ease of understanding.

INCLUDE. PAS
This is the iclude file containing additional subroutines.

Among these four files, only the first two need to
reside on the disket. If the file MODELLIB is absent, an
empty library file will be created.

To execute the program, enter the command
KGMM
at the terminal. The program will log on and the main menu
will be displayed.

The program has some limitations imposed by the
program structure. Some of these are due to the memory
management method used by the compiler. The program is coded
as a prototype for the techniques introduced in this work and
it is not intended to analyse large systems. Its main aim is

to demonstrate that the techniques work and produce useful



results.

using better programming tools.

The
The
The
The
The
The

The limitations are as follows:

maximum
maximum
maximum
maximum
max imum

maximum

number
number
length
length
length

number

of
of
of
of
of
of

equations in a model

parameters in a model
a parameter name : 20
a model name : 20

an equation : 70

models in the library

A more complete implementation can be written

5
20

: 32767.

by



APPENDIX D. A SAMPLE RUN

In this appendix, we give a sample execution of the
program on the example model of Section 5. The analysis will
be similar to the one performed in that section.

Before the execution of the program, the library is

assumed to be empty.
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Hain Menu Current model :
New model (from user)
Hew model {from llbrar{).
Sign of Information matrix _
Sign analysis of total differentials
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Parameter values

Value analysis

Gaing

Elasticities

List library

. Ingert to library

. Delete from library

. Save current model
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Choice : 11

Insert to library Current model :
Add a new model to the library
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. Q-CVSQRT(P1-P2)
Parameter types (1:Endo 2:Ex0 3:Constant)
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P2 -2

nodel is inserted to the library
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. Delete from library
. Save current model
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5. Sign analysis of gains
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1 8 Endo var
2. GV Constant
3. P Exo var
4. P2 Exo var
SV --> Q2

--> (V2
T{pe {0:Defanlt,i:Endo,2:Ex0,3:Constant) : 0
P --> P¥

P2 ==

Type (0:Default,!:Endo,2:Ex0,3:Constant) : 0
Eqn :

Parameter types (1:Bndo 2:Exo 3:Constant)

nodel given by user is loaded as the current model

Analyais of Algebraic Mathematical Models ver.1.00

Main Menu Current model : MODELL
New model {from uger)

New model (from library)

Sign of Information matrix

Sign analysis of total differentials

Sign analysis of gains

Parameter values
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Elastic1t1es
. List 11brar¥
. Insert to library
12. Delste from library
13. Save current model
14. Exit

Choice : 3

Sign of Information matrix
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signs of I matrix entries are initialized
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Analysis of Algebraic Mathematical Models ver.1.00
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3. Sign of Information mabrix
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12. Delete from library
13. Save current model
14. Exit

Choice : 4

oign analysis of total differentials . )
Sign analysis of tot difs on current model, signs of ? pars are determined
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Possibilities found : 1
sign analysis of total differentials completed

Analysis of Algebraic Mathematical Hodels ver.1.00
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4. Sign analysis of total differentials
5. §Sign analysis of gains

8. Parameter values
7. Value analysis

8. Gains

9 E}astigities

. List library
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14, Exit
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Analysis of Algebraic Mathematical Models ver.1.00
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Inconsistent, no possibilities

sign analysis of total differentials completed

Analysis of Algebraic Mathematical Models ver.1.00
Main Menu Current model : MODRLL

New model (from ugser)
New mode]l (from library)
Sign of Information matrix .
Sign analysis of total differentials
Sign analysis of gains
Parameter values
Value analysis
Gaing |
Elasticities
. List library
. Ingert to library
. Delete from library
. Save current model
14. Exit

Choice : 4

Sign analysis of total differentials )
Sign analysis of tot difs on current model, signs of ? pars are determined
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Choice : 4

Sign analysis of total differentials . .
Sign analysis of tot difs on current model, signs of ? pars are determined
QF -0+7?) 7
1 -0 +2) 0
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QF=0 CVi=- Pl=+ CV2:=+ Pl:=+
@F=0 CVl=- PL=0 CV2=- P2:-+
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sign analysis of total differentials completed
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Analysis of Algebraic Mathematical Models ver.1.00
Hain Menmu Current model : MODELL
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Parameter values
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sign analysis of total differentials completed

Analysis of Algebraic Mathematical Models ver.1.00
Hain Menu Current model : MODEL!

[2eT 1

1. New mode] (from ugser)

2. New mode}l (from librar{)

3. Sign of Information matrix

4. Sign analysis of total differentials
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Sign analysis of gains
Parameter values
Value analysis
Gains,
Elasticities
. List library
. Ingert to library
. Delete from library
. Sayg current model
. Bxi

Choice : 5

Sign amalysis of gains . .
Sign analysis of gains on current model,gains of endos wrt a exo/cst determined

[=-2-T=r 1< 4
D)

A et e ok e €L
b Cad PN bt €S0

ot o ot i e o e T Ot 0 B L b 8 0 T 1 om0

Name of exo var/constant : QF

v -0+ 0
P1 -0+ :0
(v f— 0 +§ : 0
P2 -04):0
Pogsibilities

Ql=+ Q2=+ PF=+

Passibilities found :

Analysis of Algebraic Mathematical Models ver.1.00
Main Henu Current model : MODELL

New model (from user)

New nodel (from 11brar{)‘
Sign of Information matrix
Sign analysis of total differentials
Sign analysis of gains
Parameter values

Value analysis

Gaing

. Rlasticities

. List library

11. Ingert to library

12. Delete from library

12. é;ye current model

COCO ~JCI3 N CAB NIt
a0t e s s s 4 .

—
<

it
Choice : 5

Sign analysis of gains . .
Sign analysis of gains on current model,gains of endos wrt a exo/cst determined

Name of exo var/constant : QF

eVl -0+): -
Pl -0+ :0
oy i- 0 +z : 0
P2 ~0+):0
Possibilities
Ql=- Q=+ PF=+
81 =0 Q-+ PF:=+
1=+ Q=+ PR:=+

Possibilities found : 3
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sign analysis of gains completed

fnalysis of Algebraic Mathematical Models ver.1.00
Main Henu * Current model : HODELL

New model {from user)
New model from 1brarz)
Sign of Information matr
Sign analysxs of total dlfferentlals
Sign analysis of gains
Parameter values
Yalue analysis
Gains
Rlasticities
10. List library
11. Ingert to library
2. Delete from library
3. Save current model

. Exit

“BOD*QCDCHJSQDEOF*
o & s & 4 4

Choice : 6

Parameter values
Par values ngen by the user & equatlons solved, if desxred for endo vars

o
=1
8? = 10
=2
144 = 10
Pl = 8
¢v2 =
P2 =)
Will the equations be solved for endogenous variables ? (Y/N) Y
1 = 2.00
2 = 6.00
1] = 9.00

parameter values are initialized

Analysis of Algebraic Mathematical Models ver.1.00
Main Menu Current model : MODELL

e ————————

New model (from library)
Sign of Information matrix
Sign analysis of total differentials
Sign analysis of gains
Parameter values

Value analysis

Gaing

Rlasticities

. List library

. Ingert to library

. Delete from library

. Save current model

Bxit

Hew model ifron user)

———
e e b P i S e B
b

Choice : 8

Gains
Display gains for a single exo var/constant or for all exo vars/constants

Name of exo var/constant :
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Gains for QF

a1 0.57
82 : 0.43
B s 0.57

Gains for CV1

Q1 0.43

32 -0.43
¥ -0.57

1l -1.14

32 : 1.14

F. : -1.i4
Gains for P2

0.43

2 -0.43

F 0.43

listing of gains completed

Analysis of Algebraic Mathematical Models ver.1.00
Main Menu Current model : MODELL

1. Nev model (from user)
2. New model (from llbrarz)‘

3. Sign of Information matrix )
4. O5ign analysis of total differentials
5. Sign analysis of gains

§. DParameter values

1. Value analysis

Gains

Klasticities

0. List library

11. Ingert to library

12. Delete from library

13. Save current model

14. Exit

Choice : §

Klasticities
Display elasticities for a single exo var/const or for all exo vars/constants

Name of exo var/constant :
Gains for QF

-t e ot

1 2.29
2 o 0.57
3 : 0.51
Gains for CV1
1 v 0.43
2 : -0.14
3 : -0.13
Gains for P1
81 -1.11
2 0.57
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PF s 0.5
Gaing for €V2

Qi -1.7¢
32 : 0.57
F : -0.38
Gains for P2
1 1.07
§ -0.36
F 0.24

listing of elasticities completed

Analysis of Algebraic Mathematical Models wver.1.00

Kain Menu Current model : MODELL
New model {from user)

New model {from llbrar{).

Sign of Inforhation matrix .

Sign analysis of total differentials

Sign analysis of gains

Parameter values

Value analysis

ains
Elasticities

. List library

. Ingert to library

. Delete from library

. Save current model

. Kxit

Choice : 7

Pt et ot s ok €L O > F (I3 € e CaIEND ot
e e e e s s e e

i Cad NG P E 0

Value anmalysis ) )
Value analysis of tot difs on current model, magnitudes of ? pars determined

8? + 1
1 ?
8% ?
1 0
PR ?
3 0
cv2 0
P2 0
Results
§1 = 0.57
2 = 0.43
F = 0.57

value analysis completed

Analysis of Algebraic Mathematical Models ver.1.00
Hain Menu Current model : MODELL

-

New model {from user)
New model (from library)
Sign of Information mabrix .
Sign analysis of total differentials
Sign analysis of gains

Parameter values

Value analysis

Gains

OO ICH N COND e
e e e e e e,
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f
s et it [ s €L

. RBlasticities
0. List library
1. Insert to library
2. Delete from library
3. Save current model
4. Exit
Choice 1 T

Value analysis . \ .
Value analysis of tot difs on curreat model, magnitudes of 7 pars determined

gF + 1
{ ?
8% ?
{ - 1
13 ?
P1 0
cv2 0
P2 0
Results
Q1 = 0.4
32 = 0.8
F = 1.44

value analysis completed

Analysis of Algebraic Mathematical Models ver.1.00
Main Menu Current model : MODEL1

New model (from user)
New model (from library)
gign of Information matrix .
Sign analysis of total differentials
Sign analysis of gains
Parameter values
Value analysis
Gains
Klasticities
. List library
. Insert to library
12. Delete from library
13. Save current model
14, Ezit

Choice : 7

Yalue analysis , . .
Value analysis of tot difs on current model, magnitudes of ? pars determined

2 O 00 0 GV o Ca END s
EDe s s e e e e e e

-
—

Sign (- 0 + ?) Magnitude

|4 : 0

1 : ?

2 : ?
1 :

9
0
P 0
Pl + |
£v2 0
P2 ?
Results
1) = -1.00
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¥ 1%

value analysis completed

1

Analysis of Algebraic Mathematical Models ver.1.00
Hain Memu Current model : MODELL

New model (from user)

New mode]l {from librar{
oign of Information matrix
Sign analys1a of total differentials
Sign analysis of gains
Parameter values

Yalue analysis

Gains

Blasticities

List library

. Insert to library

. Delete from library

. Save current model

. Bxit

Choice : 7

Value analysis
Value amalysis of tot difs on current model, nagnltudes of 7 pars determined

= £0 O =Y T3 CT Ve CaI NI p=t
s 8 4 s e ¢ s e

P e ot
o CAS DD Pt 0
.

Sign (- 0 + 7} Magnitude
1
1
2

1

sRaRes

Ve
P2

Results

DDA 3 1§

0.00
3.00
0.00

value analysis completed

T
=D
MmN

Analysis of Algebraic Mathematical Models wver.1.00
Main Menu Current model : MODELL

1. New mode] (from user)
New model (from llbrar{

3. Sign of Information matrix

4. Sign analysis of total differentials
5. Sign analysis of gains

8. Parameter values

1. Valve analysis

8. Gains

9. Elast101t1es

10. List lib rar¥

11. Insert to library

12. Delete from library

13. Save current model

14, Bxit

Choice : 7
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Value analysis . . X
Value analysis of tot difs on current model, magnitudes of ? pars determined

1] ?
1 0
2 0
{ - 1
P + 1
P ?
¢V - 1
P2 ?
Resqlts
qF = 0.00
P1 = 0.00
P2 = -1.687

value analysis completed

Analysis of Algebraic Mathematical Models ver.1.00
Main Henu Current model : MODELL
New model (from user)
New model {from librarg).
Sign of Information matrix )
Sign analysis of total differentials
Sign analysis of gains
Parameter values
Value analysis
Gains
Klasticities
. List library
. Ingert to library
. Delete from library
. Save current model
. Kxit

Choice : 13

Save current model
Add the current model to the library

caoo-qmm:mcown—
o o s« s e

o Y Swyery
B CD NI e D ¢

current model is inserted to the library

Analysis of Algebraic Mathematical Models ver.1.00
Main Henu Current model : MODELL

{. MNew model (from user)

2. New mode]l (from librarg).

3. Sign of Information matrix ,
4. Gign analysis of total differentials
5. Sign analysis of gains

6. Darameter values

1. Value analysis

8. Gaims |

9. Klasticities

10. List librari

11. Ingert to library

12. Delete from library

13. Save current model

14, Exit

Choice : 14

o
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APPENDIX E.. PROGRAM LISTING

i

Progranm KnowledgeGenerationFrooMathematicalModels (Input, Output) ;

Ty
Baraneterﬂame
ParameterRange
ParameterRangeW
ypelfParaneter

Const
MaxBquation = 5 { max ¥ of equations in a model
NaxParameter =20, { max # of parameters in a model
ParameterNameLen =10 ; { t of characters in a parameter’s name
MazPostfixEntry =30 ; { max # of entries in a postfix expression
HodelNamelen =10 # of characters in a model’s name
HodellibraryFileName = "MODELLIB" ; { name of file containing model library }
LogOfe = 0.4342044 ; { common logarithm of e }
Bsc = 827 ; { code of Esc key }
LR = "W ; { linefeed }

Strlnﬁ [ParameterﬂameLen] { string for parameter name }
axParameter ; ;
MaxParameter ; P

ﬁEndo Ezo, Cnst)

0o s N

Parameterinfo 2Cor
Name Paraneterﬂame 2
i gype : TypeOfParameter
ParameterType = Record { record holding parameters in the model }
Parlo : ParameterRange ;
q garlnfo : Array [ParaneterRange] 0f ParameterInfo
nd
EntryType = {0 erator_, Parameter_, Number_) ;
OperatorType = ﬂ Hxnus_, UHlnusT, Mult_, 51v_, Power_, Sin_, Cos_, ArcTan_, Bxp_,
-:0 , Sqrt_) ; ‘
PostfixEntryRange =1. E.bt ixEn trg ;
PostfixEntryRangeW =0 . HaxPostflentry ;
PostfixEntry = Recor
Cage Type_ : EntryType Of )
QOperator_ : Operator OperatorType; ; .
Parameter_ : (Index : ParaneterRange ; { vhich parameter in array Parlnfo }
guaber Number :
PostfixType = Re rd . f record holding information about an ;
EntryNo PoatfxxEntr¥RangeH expression in postfix form
1 gntry : Array {Post 1xEntryﬁange] 0f PostfixEntry
n
SignTypel = (_neg, _zero, _pos undef) ;
SignType = (neg_, zero_, pos_
IMatrixRowType = Array [ParameterRange] 0f PostfixType ; { one row of information matrix }
InfixType = String [255] ; i expression in infix fora - {
Jjust an array of characters
EquationRange = 1 .. MaxRquation ; ;
EquationRangeW = 0 .. MaxEquation ;
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BquationInfo = Record .
Exgresaion : PostfixType
Infix : Infleyﬁe ;
IMatrixRow : IMatrixRowType
nd
EquationType = Record : { record holding equations in the model }
Ranfo EquationRan%e ;
g gqnlnfo : Array [BquationRange] Of EquationInfo
na ;
ModelNameType = String [ModelNamelen] ;
ModelType = Record { record holding information about a model }
Name : Mode]NaneType ;
Kquations : EquationType ;
Parameters : ParameterType
Bnd ;
ModelTypePtr = * HodelType ;
ModellibraryFileType = File Of Modellype ;
IMatrixSType = Array [BquationRange, ParameterRange] Of SigaType ; L. .
{ I matriz in sign matrix fora }
BquationVectorType = Array [EquationRange] Of Real ; { vector type }
BquationMatrixType = Array [EquationRange] Of EquationVectorType ; { matrix type }
ExoEndoMatrixType = Array [ParameterRange] Of BquaticnVectorType ; { matrix of gains }
Cr¥odellnfo = Record { additional info about the current model }
THatrixd g IHatrixSTipe g
RxoBndoMatrix : ExoEndoHatrixType ;
ExoPar¥o , i $ of exo vars/constants }
RndoParNo : ParameterRange¥® # of endo vars
BxoParlr , 8 indirect index into array Parlnfo for
EndoParAr : Array [ParameterRangel f ParameterRange ;  { exos and endos
Y galue : Array [ParameterRange] Of Real { systen state
nG ,
CrModelType = Record
Hodel : HodelTige ;
Modellnfo : CrModelinfo
End ;
SignArrayType = Array [ParameterRange} Of SignTypeW ;
StringType = String [255) ;
Set0fChar = Get Of Char ;
Var
ModelLibFile  : ModelLibraryFilelype ; { file of model librar l
Créodel : CrModelType H { current mode
(rModelGiven , { current nodel loaded ?
[MatrizSGiven, { I matrix reduced to sign matrix ?
ParValuesGiven : Boolean ; { system state specified ?
SPReg , integer variable holdin€ stack goin@er (P}, l
used when error occurs to directly junp to main memu .
HeapPtrleg , segnent & offset of heap pointer, used to allocate space on heap in
HeapPtrOfs : Integer ; specific locations, Because when error occurs,we return to main menu
without disallocating heap, so New causes heap to grow infinitely

§u*‘* returns ngg

nction UpCase

er case of string "s" %% }
r {8 : Stringlype) : Stringlype ;
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Var
: Byte ;

Beﬁ

or izl To Length (sl
g [i UpCase (s [i]} ;
UpCase tr =

End ;

X%t remgves leadln blanks in st in 21
sunctlon Trinl {5 : étr%ngTyp gtr%ngType ; ;

e (s 0> ") dad (s (1] = ) D
legegg (s, ? ? ’(s = )
Trink := 8
End ;

} $tx removes traxlxng blanks in strlng 5" Kk}
unction Trinl (s : StringType) StrlngType ;

§h1le (s ¢ ") Ang ls [Length (s}l ="") Do

Delete (s, Length (8), 1) ;
Trinf = s
End ;

5 33 returus a strlnﬁ of length Len formed from character Ch *%* }
unction Spe (Ch
Byte ) StringType ;

ar .

: StringType ;

1 Byte g
Begln ..

For 1 1 o len Do
Ch

(]

S c g
Rndp; .

xxx gutputs the strlni 8 and controls if Ctrl-§ is pressed. ¥*x i
xxx If so, waits until a key is pressed kxx
rocedure WriteSc {5 : Stringlype) ;

Const
CtrIS $19 ;
Ch Char ;

&rltelu (5) ;
If KeyPressea Then

ﬁa
£ (- CfrlS)Tﬁen

Read (Kbd, Ch

End
Bod

s1x displays the error message corresponding to ErrorCode, waits until ¥*x
£x% Rac is preessed, and returns to main menu directly. Number 334
*xx additional information for some errors 344
rocedure GiveBrror (ErrorCode,
q Number : Byte) ;
ap

Ch Char ;
alndow {1, 1, 80 25)

GotoXY 1 %) ;
Write (‘Eeror , BrrorCode, * : ) ;

Cage RrrorCode 0f
1 : Write (“uzexpected end of eguation’) ;
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: Write { unexpected character in equation’) ;
: Write {“improper equation syntax’ ?
: Write { unmatched ?
: ¥rite () expected') ;
: Write {’aign of I matrix entry cannot be zero®) ;
: Write {'# of equations must be qua to ¥ of endogenous vars’) ;
: Write (’cannot execute selection before a mode]l is given®) ;
: Write ( cannot execute selection before sign of I matrix given’) ;
: ¥rite { cannot execute selection before par values are given®)
: Write {’equations do not converge for the §1ven initial values’
: Write {’singular matrix encountered in analysis’) ;
: Write (’error in division operator’) ;
: “error in {ower operator”) ;
< Write {‘error in ln operator’} ;
: Nrite (‘error in log operator’) ;
: Write (’error in sqrt operator’) ;
: Write { model does not exist’) ;
19 : Write {’model already exists’) ;
20 : Write {’invalid selection’) ;
21 : Write {’number of equations cannot be greater than ° , MaxRquation) ;
22 : Write {’number of parameters camnot be greater than °, Hax arameter} ;
23 : Write (’number of parameters is zero’) ;
24 : Write (’no such parameter in the current model’) ;
29 : Write garameter must be an exogenous var or a constant’) ;

.
1

o bt b b it o s ek 6L XD 3N T Ve B CAD D
~
—
o
@

O A3V b LO DI &
.
~
ol
or
[+ -]

26 : Write of unknowns must be equal to # of equations’) ;
g 30 : Write (“user break, command aborted®)
ng ;
Cage ErrorCode 0f
1 : Write (° 3P081t10n- , Number, °)°} ;
: With CrHo 1 Model, Parameters Do
Write ( %n s {Numher-l) Div ParMo + 1
2 Trinf (Parlnfo [(Number-1) Mod Parﬁo+1] ﬁame), ))
nd ;
GotoXY (88, 25& ,
Write ( Press e -
eﬁea
ead 6§bd, Ch
Until (Ch = Esc) And (Not KeyPressed) ;
Inline {$89/$KC/ L: MOV SB,BP oP is saved into BP when a procedure is called }
POP P is saved into stac
39/326/SPReg/ CMP SP,SPReg SPReg contains address of top of stack }
T5/381/ NZ L if not stack emptied yet, jump to L }
. now stack holds address of main nenu, }
End ; return to main menu }

k&% gucceasful completion of a main menu operation
rocedure Message (Msglode : Byte) ;

Ch Char ;
Befitiow (1, 1, 80, 25) ;
GotoXY (1, 25) ;

Case Ha Code of
rite ("signs of I matrix entries are initialized’) ; ;
: Write _parameter values are initialized’) ;
: Write {‘sign analysis of total differentials conpleted) ;
: Write {current mod e ia 1nserted to the library’) ;
: Write listin comf leted’) ;
: Write ( mode] 1s deleted fron library®) ;
: ¥rite (’model is inserted to the library g
: Write (’model from library is loaded as the current model’) ;
: ¥rite (“model given by user is loaded as the current model ) ;

g 1t displays a message corresponding to Msglode indicating the :;; i

LOO0 AT ET e LI DI =
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10 : Write Bl%ﬂ analysis of gains completed”) ;
11 : Write ( value analysis completed ;
12 : Write {’listing of gains complete 4
g 53 Write {“listing of elasticities completed } 3
n

GotoXY (68, 25&
Write ( Preas Bsc..

B eat
; gn il (éh Esc; And (Not KeyPressed)
nd ;
5 *kx line editor, inputs a string of length Len position of cursor %%t }

rocedure ReadInput
Var InputStr SzrlngType )3

)

Const

Mome :4TL; M :I9; OB :H3; Bkl
q Left = #75 ; ngﬁt = $77; Del =483 ; CtrlC =83 ;
ar

Rov, Col,

Endfnput Boolean ;

har
Procedure DeleteChar (CharNo : Byte) ;

Be
?ngutStr S Cgpy (InputStr 1,Charfo-1) + Copy (InputStr,CharNotl,Len-Charlo) ¢+ * ° ;
ol, Row) ;
Write {InpntStr
End ;

Beiin -
nputStr := Spe {* 7, lLen) ;
Row := Wherey ;
Col := Wherel ;
y :=Row
z =0l
BndInput := False i
Repeat
80 I (x, a
Read éKhd Cg
Cage ?
Bsc : If KeyPressed Then
ﬁead éKbd Ch)
aae of
If x O Col Then

-1;
Right If X <) Col+Len-1 Then

=x ¢
End_ : “Col + Len -1,
Home := Qol ;
Del Dele eChar {x-Col+l)
End { Case b of
End en

BackSp : If x ¢ Col Then

BeleteChar (x-Col) ;
X=X~

Bnd ;
(R : BndInput = True ;
E?rlc : G1veError (50, 0) ; { command aborted by user }
e Be
5h iz Bgase (Ch) ;
Write {
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InputStr {x-Col+l} := Ch ;
If x <> ColtLen-1 Then
ximxtl
End
End % Case }
Until EndInput ;

Writeln
End ;

L ¥¥% reads an inte%er, returns 1n Humber ¥xx )
rocedure ReadInputl {  Lean ;
Var Humber : Integer ) ;

Vaf tStr : String?
nputStr : StringType ;
Result : Integer

ﬁeadlnput Len, InputStr) ;
St v

Val (InputStr, Number, Result)

Bnd ;

5 tk% reads a real, returng in Number ¥tk }
rocedure ReadInpuf Len : Byte;

Var Number : Real ) ;

Yar
InputStr StringType ;
Result : Integgryp ;

ﬁeadlnput gLen, InputSte) ;
gal (InputStr, Number, Result)

5 13X reads a strlnE retutns in InputStt *xx }
rocedure Readlnput Bgt
Var InputStr StringType ) ;

. ﬁeadlnput (Len, InputStr)
nd §

5 kXX reads a character, returns in Ch. ChSet contains legal characters ¥¥% }
rocedure ReadChar (Var C : Char
ChSet SetOfChar ) ;

Var
In utStr : Stringlype ;
Rog, Col : Byte g H

ReadInput §i Inﬁu%RtEgSet) ;

Rnd ;

§ 0% Is Operator a blnara or unary pperator ¥x }
unction BlnaryOperator (Operator : OperatorType} : Boolean ;

Be
; §1nary0perator := (Operator IN [Plus_, BMinus_, Mult_, Div_, Power_})
nd ;

X Egnation NoEgn of model Model containg the parameter whose index is NoPar 7 %3¢ l
12x [t contains arameter a¥pears in the infix form of the equation kxx
unction Parinkqn (Var Ho el i
NoPar : arane erRange :
NoBqn : EquationRange ) : Boolean ;

ﬁarInEqn S (Poa {TrinT %Hodel Paraneters. Parlnfo [RoParA Nane),
Rquations. Equlnfo (Nofan]. Infix) <> 0)
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End ;
{ xtx The following five functions are for operators that may result in an error ¥## }

£ ¥% division qgerator x5x
unction Div0p (Dperand!, Operand? :-Real) : Real ;

Befln
f Operand2 = 0
Then GiveBrror (13, 0]
Bod Klse Div0p := Operand] / Operand?
nd ;

& $¥X power operator X% l
unction Power(p {Operandl, Operand? : Real) : Real ;

ar
Result : Real ;
Befln
f (Operandl > 0) Or ((Operandl <0) And (Operand2 = Int (Operand2))) Then

B
eﬁégult := Rxp (Operand? % Ln {Abs {0 erandl))) ;
If (Operandi < 0) And (0dd (Round (Abs (Operand3)))) Then
fud Result := - Result
n

Klge
If (Operandl = 0) And {Operand2 > 0)
en Result := 0
. Blse GiveRrror {14, 0)
End ;

£ *x% In operator XX }
unction LnOp (Operand : Real) : Real ;

Befln
f Operand <= 0

Then GiveBrror {15, 0)
fad Blse La0p := Ln (Operand)
nd 3

£ X1 log operator *¥% }
unction Log0p (Operand : Real) : Real ;

Befxn
f Operand <= 0
Then GiveError (16, 0)
fud Else Loglp := In (Operand) % Log0fe
nd §

% k3% square root operator ¥x }
unction SqrtOp (Operand : Real) : Real ;

Befln
f Operand < 0
Then GiveError §17 0&
fnd Blse Sqrtlp := art ( perand)
nd

{ 2x% returns the result of am operator ¥x }
unction OpResult {Operand] ,
Operand2 : Real ;
Bocl Operator : OperatorType ) : Real ;
egin
age (Operator Of

OMinus_ : OpResult := - Operand2 ;
Sin_-  : OpResult := Sin Operand?) ;
Cos : OpResult := Cos Operand?) ;
ArcTan_ : OpResult := ArcTan (Operand?) ;
Exp_  : OpResult := ExB Operand?) ;
Ln_ : OpResult := In Operand?) ;
Log_  : OpResult := Loglp (Operand?) ;
Sar_  : OpResult := Sqr Operand?) ;
Sqrt_  : OpResult := Sqrt0p {Operand?) ;
Plus_ : OpResult := Operandi + Operandﬁ ;
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BMinus_ : OpResult := Qperandl - Operand? ;
Hul : OpResult := Qperandl * Operand? ;
Div_  : OpResult := Div0p (Operandl, Operand?) ;
g gower_ : OpResult := Power(p (Operandl, Operand?
n
End ;

; ¥t returns the inverse of sign Sign *3x }
unction Signlnverse (Sign : SignType) : SignType ;

Beéln .
ase Sign Of
neg_ : Signlnverse := pos_ ;
zero_ : Signlnverse := zero_ ;
503_ . Sigalnverse := neg_
En
End ;

It Y

t3% the file index in Index, else Index is undetermined.

s x1% Library containg a model whose name is Name ? If so, return ::i i
unction ModelBxists ( Name : HodelNameType ;

q Var Index : Integer } : Boolean ;
ar

Model : ModelTypePtr ;

Found : Boolean H

Begin
ound := False ;
Reget (HodelLib?ile) g
odel := Ptr (HeapPtrSeg, HeapPtrOfs + $TFFF) ; { create space on heap for the model. Space is 32K

beyond the be 1nn1n§ of heap, since top of heap maY
contains another medel before this function is called

ghile (Not Found) And (Not Eof (ModelLibFile)) Do
in
_ e?ead (fodelLibFle, Hoiel") ;

0

Hodel®. Name = Name Then
egin
ound := True ; ’
Index := FilePos (ModellibBile) - 1
Eod
End ;
HodelBxists := Found

End ;

80, return its index in Index, else return ParNo + 1 #xxt

g f%rameter whose name is Name exists in Parameters ? 34 ;
unction ParameterExists (  Parameters : ParameterType ;

ame : ParameterBame ;
Yar Index : ParameterRange ) : Boolean ;

ar
Found : Boolean ;

Begin
aitb Parameters Do
Beéln
ound := False ;
Index := 1 ;

While (Het ?ound& And &Index ¢= Parlo) Do
if Parl%fo 5In ex]. Name = Name
Then Found := True
Blse Index := Index + 1 ;

ParameterBxists := Found
REnd
Rod ;
nx postfix expression Item is formed from a single number ¥¥¥ }

ﬁrocedure KumberEntry (Var Item : PostfixType ;
Num : Real :
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slth [tem, Entry [L] Do

Entryﬂo = 1
Type_ := = Huaber_ ;
Yumber := Num

End

End ;
S (ST 03t61x expression Item_is formed from a s1ngle operator ¥t }

rocedure OperatorEntry (Var Item PostfixT ¥pe ;
Ope : OperatorType 1}

51th Item, Entry [1] Do

ﬁntryﬂo = 13
Type_ = Operator ;
Operator := (Ope

End ;

§ *x% golves Ax=b for x by Gauss E11m1nat10n No is ¥ of unknowns ¥k¥ }
rocedure GaussElimination (A : BquationMatrixlype ; ;
EquatlonVectorType ;
o : EquationR ang
Var x : BquationVectorType ) ;

Var
i, §, & : EquationRange ; ;
Max owNo : EquationRange ; ;
Hultiplier : Real H

Procedure InterchangeRows (Rowlol ,
RowNo2 : EquationRange) ;

Var
Jector : BquationVectorType ; ;
Ngnher : Real ;
Beé
ector . [RowNol
Rowﬂol 1= A [RowNo2
A Rowlo2] := Vector ;
© = b ERowNol
b RowHol := b {RowNo?2
RowNo2] := Number
End ;

Be
éor i:=1 To ¥o-1 Do
ﬁaxRowNo =i
For j:=i+l
If ibs (A [j 1]) > Abs (A [MaxRowNo,i]) Then

MaxRouwlo := j ;

If MaxRowNo <> i Then
InterchangeRows (MaxRowNo, i} ;

If A [i,1) =0 Then
Givefrror (12, 0) ;

For j:=itl To Ko Do
eﬁ;n L . .
1tiplier := 4 [J il / & [i,i];

For k:=itl To N
A[jk]:=A [j k] - Multiplier ¥ A [i,k] ;

b [§] := b [j] - Multiplier % b [i]
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End
End ;

For i:=No DownTo 1 Do
egin
x[i] :=b [i];

For j:zitl To No Do . .
X il] = x [i] - A [1,§) * x [j];

If A [i,1] = 0 Then
GiveBrror (12, 0) ;

Enﬁ [i] :=x [i] / A [i,i)
Bnd ;

§ ¥x pultiplies matriz A by vector x, returns result in b ¥xx }
rocedure MatrixVectorMult ¥ No : Equat;onRangg H

A Equat}onﬂatrleype ;

x : EquationVectorType ;
. Var b : EquationVectorType ) ;
ar
i, j : RquationRange ;

Begin
ﬁor'izzl To No Do
Begin

{i] :=0;

For j:=1 To No Do \
b HT s b Thl ¢ & [4,51 % x 3]
End

Bnd ;

} *t*_congutes the value of the postfix exsreasion. Por parapeters, system state is used ¥tk }
unction BvaluateExpression (Exzpression : PostfixType) : Real ;

onat
MaxStackItem = 50 ;

Type
ygtackltemRange = 1 .. MaxStackIten ;
StackItemRangeW = 0 .. MaxStackItem ;
StackType = Record
' Top : StackItemRanfeW :
Item : Array [Stack temﬁange] 0f Real

End ;

Var
Stack : StackType H
HoRntrg : PostfixﬁntryRange ;
Operand} ,
Operand? : Real H
Procedure Push (Var Stack : StackType ;
Number : Real ) ;
Beein
ith Stack Do
Begin
op :=Top+1;
[tem [Top] := Number
End
End ;

gnngtion Pop (Var Stack : StackType) : Real ;
egln
6itb Stack Do
B - Ttea [Top]
:= Item [Top] ;
Top 1= Top 17

End
End ;
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Bea' é BvaluateExpression }
tack, Expressxon Do

iop z

For HoEntry =} To Entry¥o Do
Wlth Entry {NuEntry] Do

ype_ = Parameter_ Then
Pusg {Stack, CrHodel HodelInfo Valuve [Index])

If Type_ = Number Then
Pug {Stack, Nuber)
Else Begin
Operand? := Pog {Stack)
¥ Binar Opera or Ogerafor) Then
Operan 1 = Pop (Stack) ;

g gush (Stack, OpResult (Operandl, Operand2, Operator))
nd ;

BvaluateExpression := Pop (Stack)
gnq { With }

B ¥% parses equation string, 1n5erts garameters into the podel *xx }

rocedure ParseEquation {Var Hodel odelType ;
g guatlonRange ;
an te : Stringlype )

Con
HaxStackItem = 50 ;

¥okenType = ( Plus, BMinus, UHlnus, Hult, _Dlv, Pover,
Cbs rcTan, _Fxp, € Sqr, Sqrt,

Lef£ Pr % tPr, Parametet, _Nuaber) ;

StackItenRange = 17 uaxétac

StackItemRangeW = 0 . HaxStackItem ; -

StackType = Recor

Top : StackItenRanfeﬁ

éten Array [Stack temﬁange] 0f TokenType

Prlount - : Integer
EqnPos : Byte

StateType =0..'3;

Token : TokenType o
Stack StackT { ;
TokenSymbol : * Darameterfane ;
State : StateType H

Pracedure DelStr (Var g osl, : StringType ;
PosZ Byte ) ;

Belete (s, Pogl, Posl) ;
anPos z Eanos + (Posé Post + 1)

nd
Functlon Teinl (s : StringType) StringType ;

Ehil O And 1] = D
Defs(g o) pils ="
Trinl := 8
Bnd ;

Fuuctxon GetToken : TokenType ;
TokenLen : Integer ;
Begin
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BqnStr := Trimh (EqnStr) ;
Tokenlen := 13

If EquStr = °” Then
GiveBrror (l EqnPos) ;

Case Eqngtr [1] Of

1le {Tokenlen ¢ Length {Eantr)) And (EqnStr [Tokenlent1] IN ["4".
TokenLen iz Token en +
oken ymbo : opg kSEantrl,1 1, Tokenlen) ;

f TokenSymbol = Then Getloken := an Rlse
f TokenSymbol = Then GetToken := Rise
f TokenSymbo] = ARCTAN Then GetToken := ArcTan Rlze
f TokenSymbol = Then Getfoken := Kxp  Klse
f TokenSyabol = ° Then GetToken := Ln  Else
f TokenSymbol = 'LOG"  Then GetToken :: Log Rlse
f TokenSymbol = 88 Then GetToken := Else
f TokenSymbol = “SQRT"  Then GetToken := Sqrt Else

GetToken := _Parameter
) Knd ;

éhxle {Tokenlen < Length {Eantr) ) And (EqnStr {Tokenlentt] IN [°0".
Tokenlen := Tokenken +
If EqnStr [TokenLentl] = ' Then

Be
%okenLen := TokenLen

+1:
While (Tokenlen ¢ Length iEantr)) And (EqnStr [Tokenlentl} IN [70°..

ud Tokenlen := Tokenlen +

If Eantr {Tokenlent1}] = “E" Then
§okenLen := Tokenle
it EgnStr [TokenLen+1] IN [*-","4"] Then

okenlen := Tokenlen

$1;
While (TokenLen < Length iEantr)) And (EqnStr [Tokenlen+1] IN [°0°..

| Tokenlen := Tokenlen +
GetToken _Number

Bnd ;

it : GetToken = Plus

- : If State = 0
Then GetToken (Minus
Else GetTok en = _B Minus

¥ : GetToken := Mu ;
e : GetToken := Jiv
o : GetToken := Power
L : GetToken := _LeftPr i

: GetToken := “RightPr ;
Rlise Giverror (2 Eanos)
End ; { Case }

TokenSymbol := Copy (EqnSte, I, Tokenlen) ;
ge§8tt {EqnStr, 1, Tokenlen)

Functlon StackEapty (Var Stack : StackType) : Boolean ;

§tackEmpty := (Stack. Top = 0)
nd ;

Procedure Push {Var Stack  : StackType ;
Operator : TokenType ) ;

Beéin
ith Stack Do

Begin
opsTopt1;
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1
End ;

Function Pop (Var Stack

ﬁuh Stack Do

ﬁop = Iten [Top] ;
:= Top -
n
Ead ;

; 2tk precedence of operators ¥*x
unction Pred (Operatorl, Operator

éase Operatorl 0f

y M08,
_Arc an, _Kxp ,
TSar . Sggt'
‘Ugmr’ - b
inus
“Power : P
Malt, Div ¢ Pre
Plus, “BMinus :
Ead
Bnd ;

3 gtem [Top} := Operator

“e ss erre au e
[ I A S B Y]

Pred

: StackType) :

False ; ;

go

alse ;

OperaﬁorZ I
perator
Operator?
Operator? I¥

Procedure AddToPostfixExpr (T*peOfEntry

Yar
ResultCede :

Integer ;

Procedure ProcessParameter {

Var
Found : Boolean

.
’

No  : ParameterRange ;

Bei .,
arName := ParName + Spc {* °,
With Model, Parameters Do

okenStr

TypeOflperator :

ParName :
Var Index

TokenType ;

; TokenType) : Boolean ;

{ Operator2 may only be { }

2 IN [ _RightP
IN [R

RightPr, _Plus,
ightPr, _Plus,
ightPr, _Plua,

_RightPr, _Plus, _

KntryTy 8 3

: ParameterName ;

i

OperatorType

ParaneterNane ;

: ParamsterRange ) ;

ParameterNamelen) ;

BMinus,
_BMinus,
“BMinus

BMinns))

it

ult, _Div,
u t. _va
Div])

If Yot Parameterfxists (Parameters, ParName, Index) Then { assigns index }

?f Parlo = HaxParameter Then

GiveBrror
ParNo := ParNo +

En
End ;

Bea § 4ddToPostfixExpr }
odel. Equations. Eqnlnfo [NoBqn]. Expression Do

Enttyﬂo 2= EnteyNo + 1 ;

With Entry [EntryNo] Do

Begin
ype_

Caaeeryg

araneter
unber_.

yBeOfEntry ;

Operator : T{peOfOperator ;
er {TokenStr, In ex} ;
: fal {TokenStr, Fumber, ResultCode

ProcesaParane

garlnfo {ParNo]. ﬂa;e := ParName
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Beﬁxn { ParseEquatlon }
qnPos :

Hodel. Equat1ons. Bqninfo {MoBgn]. Expression. EntryMo :

H;tb Stack Do
fop =0

State

=0 ;
PrCount := 0 ;

Repe
%oken = GetToken ;

0 - (80 1
§ -5 (§0 |
§ > )52 |
53 > (&0

"
<
-

Parameter §2 i Number §2 i Sin .. Sqrt §3 | - St
Eagﬁmegfr §2 : Number §2 , Sin .. Sqrt 53

If ((State=0) And (Not (Token IN [ LeftPr, Parameter, Number, Sin, Cos,_ArcTan,_ Exg, _In, Log,_,S(})S 5
qrt r

,_Ulinus

{(State=1) And (Not (Token IN [_LeftPr, Parameter, Number,_Sin, Cos, ArcTan, Exp,_Ln,_Log,-
z{State 2} And (Not (Token IN £ RxghtPr,_Plus,_Bﬁlnus Mult, Div, Power]))) O

State=
GiveError

Cagse State Of
0 : Case Token Of
_LeftPr
_Parameter,
unber
inus

Klse

Bnd ;
1 : Case Token Of
Jefthr

_Parameter,
“Humber

Else
End ;
2 : Case Token Of
Klse
End ;
State :
End
End ; { Case }

And (Token < _lLeft
3, EqoPos) ;

"SI or
t)) Then

: PrCount := PrCount + 1 ;

: State := 2 ;
: State := | ;

State := 3

: Begi
ngount = PrCount +1;

End :
: State := 2 ;
State := 3

RightPr : PrCount = PrCount - 1 ;
State := 1

ﬂrCount := PrCount + 1 ;

If Token = Parameter Then
AddToPost ixRxpr (Paraneter_, TokenSymbol, Plus_) { _Plus dumay }

If Token = _Number Th

AddToPost 1xExpr (Runber , TokenSyabol, Plus_) { Plus dusmy }

Begin

1ze r}
T Rt seergror  tack by Beed (4en (To], Toon
AdﬁTt‘)Pgstﬁ;ﬁxp?p(a( sok)) dpd {Brod {lgen [ood: Bo

(Pop (ggack)))) ;

perator_, ° ratorType (Or

1



If Token = RightPr Then

ff StackEmpty (Stack) Then
leeError %4, Ean 0s) ;
matching % fron stack

Top delot } |

P o e et e o e} eos, Arclan, Exp. L, Log, Sar, Sart]) Th
ASdToPos%%1x§§p¥ (Operazor s ggergtorType (Sra Pop StggiT)xg ! og_ ar,Sart1) Then

1

Else
i Sush {Stack, Token)
n
Until (Trisl (EqaStr) = °°) ;

If State <> 2 Then
GiveReror {1, EqnPos) ;

If Prlount <> 0 Then
GiveRrror (5, EqnPos) ;

While Not (StackEmpta (Stack))
AddToPostfixExpr (Operator_, OperatOtType {Ord (Pop (Stack))})
g gnd { With }
nd ;

11k signg of expressions are asked for when nesded
rocedure Sign0finforaationMatrix ;

nst
HaxExpr 250 ;

ExeroRange =1 .. MaxExpr ;

KxprioBangeW = 0 .. MaxExpr ; )

ExprSignType = Regord { holds expressions whose signs are asked }
Exprio : BxzprNoRange¥ ;
ExprAr : Array [Exprﬂoﬁange] 0f Record

Rxpr : InfixType ;

glgn : SignType

g 21X converts | matrlx into a s1ﬁn matrix by restricting system space :;; 1

- En
End ;
Var
ExgrSlgn : ExprSignType ;
: KquationRange i
NoPar : ParameterRange ;
Procedure SignOfExpression (  Expression : PostfixType ;
q Var Sign : SignType )
ap
Exprl, Exprd Postfleype ;
15 , 8ign2 : Signlype
N ntry PostflentryRangeV
Counter : Integer H
Procedure ShiftEntries ( Exgrl : Postfizlype H
IndexZ : PostfixEntryRangeW ;
Var Expr2 : PostfizType ) ;
: PostfixEntryRange¥ ;

ﬁxpr? BotryNo := Index2-Indexi+i ;
For i:=1 To Expr2. EatryNo Do
i | Expr2 Bntey [i] := Exprl. Entry [Indexi+i-1]
ad
Functxon NumberSign (Number : Beal) : SiznType ;
ff Nugber < 0 Then
NumberSign := neg_
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Els
If Humber = 0
Then NumherSlgn = zero_
g Elee NumberSign := pos_
na

Functlon SignNumber (Sign : SignType) : Integer ;

5ase S1gn 0f

neg_ : Signflumber := -1 ;
zero_ : SignNumber := 0 ;
gos : SignNumber := 1
En

Rad ;

Function ReadSign (Expression : PostfixType) : Signlype ;
ar
InfixExpr : InfixType ;
No : BxprloRange ;
Found : Boolean ;
SignCh  : Char H
InfixType ;

anctlon ConvertToInfix (Expression : PostfixType) :

HaxStackIten =50 ;

EtackltemRange = 1 .. MaxStackltenm ; ;
StackItenRangeW = 0 .. MaxStackltenm ;
StackType = Record
Top : StackItemRan%
Array [Stack tenﬁange] 0f StringType

Itenm :
nd ;
Var
Stack : StackTyEe ;
NoEntr : PostfixKntryRange ;
Numberst
Strl, Str2 StringType g
Procedure Push (Var Stack StackT¥p ;
Str Stringlype ) ;
eﬁ;n
ith Stack Do
Begin '
ap := To :
Item [Top] := Sir
End
End ;

Function Pop (Var Stack : StackType) = Stringlype ;
§1th Stack Do

ﬁop := Iten [Top] ;

Top := Top -
End
End ;
Functlon OperatorStr {Operator : OperatorType) : StringType ;
Begi
éase Operator Of ..
Plug_  : OperatorStr := "¢ :
BMinus_, ..
Uﬂlnus, : OperatorGtr := '-° H
¥ult_ ~ : OperatorStr := '%’ ;
Div_  : Operator§tr := °/° ;
Power_ : Qperator§tr := °°° =
Sin_  : QOperatorStr := ‘Sin’
08 (Operator§tr := ‘Cos H
ArcTan_ : OperatorStr := ‘ArcTan’ ;



Bxp_  : Operator§tr := ‘Exp” ;
In_ : QperatorStr := ‘In",
log_  : OperatorStr := ‘log’
Sqr_  : OperatorStr := ‘Sqr’
Sqrt_  : OperatorStr := “Sqrt’
End
RBnd ;

Beé gtacgveﬁgzg;ggign)Do
ﬁop :

For NoKntry =] To Entryo Do
With Entry [NoBEntry] Do

Cage Type_ 0
Parameter_ : Push (Stack, TrimT (CrModel. Model. Parameters. Parlnfo [Index]. Name)) ;
umber_  : Be
§tr fNumber :1:2, NumberStr) ;
Push Stack HumberStr
Operator_

: Be
étrZ = Pop (Stack) ;
Blnar Yerator (Ogerator)
en S = Pop (Stack)

Iflgpgra§0fllﬂ [Sln_, Cos_, ArcTan_, Exp_, Ln_, log_, Sqr_, Sqrt_] Then
Then Push {Stack, OperatorStr {Gperator; + §tr2)
Else Push (Stack, OperatorStr (Operator) + “(° + Str2 + °}°)

Push {Stack, “(" + Strl + OperatorStr (Operator) + Str2 + °}°)
Bnd ; { Case } !
ConvertTolnfix := Item [1]
-Engn? { With }
i, L)
inflexpr = ConvertTolnfix (Expression) ;

Pound ;= False ;
Ko := 1

While (Not Found) And (No <= BxprNe) Do
If Bxprir (N o] Bxpr = InfixExpr
Then Found := True
Blse Ko := Ho + 1 ;

If Found Then

ReadSign := ExprAr [No]. Sign
Else egin 3
Write ( S1§n of *, ;nglgﬂgp;,. {-0+¢):7);
BeadCh lgn ', (=505 %D

Xpr o Exprio +
Hx h Expr&r Bzprio] ﬁo
Ease SlgnCh 0f
‘-1 Sign := neg_ ;
‘0‘ Sign := zero_;
° ¢ Sign := pos_
!xpr z InfixExpr ;

Read$
Ea e
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End { Else Begin }
nd { &ith i e

nd ;

Begin & Sign0fExpression }
1th X re351on Do
ntry¥o = 1 Then
Case Entry (1. Type 0f )
Parameter_ @ §ign := ReadSign Exgre351on ;

{ signs of parameters are given by user }
Humber : Sign := Number ign (Entry [li.’Nunber)

Else Begin
goKntry = EntryNo -1
ount
ﬂhlle (Counter > 0) Do { find the operator with lowest precedence }

ff Entry [NoEntry] Type_ <> Operator_ Then
Coun ter := Counter - 1

Ii BinaryOperator (Entr{ [NoBntry). Operator) Then
Counter := Counter +
KoEntry : NoEntry -1

End ;
ShiftBntries {EXPPESSIOn, i s NoEntry Exprl} [ first & second Eatts If a unar ;
ShiftEntriea (Expression, NoEntry + 1 Entry¥o - 1, Expr? operator, then Exprl is not useg
Cage Entry [EntryNo]. Operator Of
Plus_ : Begin ot Reprt, Signl
ignOfEzpression (Exprl, Si
SlgnOfogresslon {Exgr §i gnz ;
(Sigal = pos_ (SlgnZ = neg_)) Or ((Signl = neg_} And (Sign2 = pos_))

Then dign := ReadSign (Ex ression)
Else Sign := Numberbign (SignNumber (Signl) + SignNumber (Sign2))

BMinus_

SignOfkxpression (Expr2, Sign2) ;
(81 nl = pos (Slgnz pos )) Or ((Signl = neg_) And (Sign2 = neg_))
ign := Read 1§n (Ex ressxonT
Else Sign := Numberdign ({SignNumber (Signl) - SignNumber {Sign2))

: B
élgnOfExpre851on {Exprl Signl

Minus_ Beé
1gn0fEx resgion (Expr2, Sign?) ;
g Slgn ignInverse f 1gn2)
1 :

: Be 5
1gn0fBxpression (Bzprl, Signl) ;
fgg gnlp' ZBT0_ éh 4
= zero_
Else eg
SignO Exﬁresslon (Ex§r2 S1§
uaberSign (SignNumber (élgnl) x SignNusher (Sign2))

Mult_

. Knd

51gn0fExpressxon &Exprl Slgul

SlgnOfEx ression 8 15
Sign unberSign ( 1vép { 1gnHunber (Signl), SignNusber (Sign2)})

Div_

Power_ Be
§1gn0f8xpression (prrl Signl) ;
If Signl = pos_ The
Sign := pos

Si 0tExpression (Bxpr2, Sign2
gn lgng = neg ) ( g 91 ﬁ a tpos , neg_])
en Sign := HéadSlgn (Expression)
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Else Sign := NumberSign (PowerOp (SignNumber (Signl), SignNumber (Sign2}))
End

Sin_ . Begi
§1gn0fExpresslon (Expr2, Sign2) ;
If Sign2 = zero_
Then Sign 12 zerg
Else Sign := ReadSign {Expression)
Cos_ : Be
§1gn0fExpresslon (Bxpr2, Sign2) ;
If Sign? = zero_
Then Sign :=
Else Sign := eaaSLgn (Bxpression)
Bx : Sl n
%rgTan : ngnOfExpreSSLOn (Rxpr2, Sign) ;
r : B
! §1gn0fExpre531on {Expr2, Sign2) ;
If Sign2 = zero_
Then Sign := zero_
Else Sign := pos_
Sqrt_ B
! §1gn0fEx§re551on (Ex§r2 Sign
lgn = NumberSign (Sqrtlp %Slgnﬁumber {Sign2)})
[n_, Lo Be
8-+ §1gn0fExyre831on (Expr2, Sign2) ;
If Sign2 =
Then Slgn z Read81§n (Ex8r8351on}' y .
$id Else Sign := NumberSign (OpResult(0, SignNumber{Sign2), Eatry{EatryNo].0perator))
n
End é Case }
End { Else Begin }

End ;

Beﬁxn { SlgnOfInformatlonHatrlx }
xproign. Kxprio := 0 ;

[MatrixSGiven := False ;

¥ith CrModel, Model, Modellnfo, Equations, Parameters Do
Ror NoKgn: 21 To anRo Do
For NoPar:=1 To Parfo Do
If ParlnRqn (Model, NoPar, NoBgn) Then

§1gn0fExpress1on (Eannfo [NoEqn] IHatrlxRov [NoPar], IMatrixS [NoEqn, NoPar]) ;
If THatrix§ % n, NoPar] = zero_

fud | GiveRrror {6, NoEqn-l) % Parlo + BoPar)

nd

Message (1) ;

[MatrixSGiven := True
End ;

33 51gn analysis on the current model. In this grocedure exo and endo means parameters ¥k i
t1% whose snﬁna are given and garameters whose signs are unknown, respectively 22
ignArraylype) ;

rocedure SignAnalysis (Signs :

EndProc ;

ﬁodeTy =1. { 1:derivative sign ; 2:zero ; 3:inverse of derivative sign }
Node$ egType = et Of ﬁodeType H

TableRnteyType = Regar

[
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ParameterRange] Of TableKntryType ;

ParameterRange¥ ;
Array [Parameter

TableT¥ = Array [EquatlonRange
EndoInfoType = Array EquatxonRangel Of Record
RndoNo :
EndoAr :
ParE alloType = Array ParameterRange] Of EquatxonRangeH
ge ypg = Set Og ParameterRaﬁge ;

Table : TableT¥ H

Endo : Rudoln oType ;

ParKqnlo : Parf qn oType ;

ExoSet : ExoSetT yﬁ ;

okqn : RquationRangeW ;

oPar : ParameterRange ;

SignCh : Char ;

PossibilityNo : Integer ;

[nitialized ,

InitOkey

Continue : Boulean ;

Procedure TableEntry (Var Entry TableEatryType ; ;

gn : 8i snType ;
. Hode : ModeIype )
egi
ﬁntry ngn =z Sign ;
Entry Mode := Node
End ;

Ptocedure WritePossibility ;

HoPar :

ParameterRange ;

éxth Criodel. Hodel Parameters Do
Por NoPar:=1 To
If {Signs [NoPar] : undef) Then

arlte {TrinT {Parlnfo &Ng?ail Kﬂgme} ° g
oPar], NoPar

Case Table [Park
neg_ : Write
zero_ : Wrile

03_ : Write

Hrlte :

Bnd ; y

WriteSe (°°) ;

il

nfo [

?
1

PossibilityNo := PossibilityNo + 1

End ;

8 2tk finds next
unction NextPoss

ar
HoPar

KxitLaop,
Found

: Boolean

ility (No

: ParameterRangeW ;
: ParameterRange ;

.
4

Slgn

&

gossible s1En combinations using Table #3x }
b n

BquationRange) : Boolean ;

ﬁange 0f ParameterRange

kxx podes consistent if all modes are zero or if there are at least tx: I

t Tkt two

unction

VYar
NoPar
HodeSet

Begln set o= 11 ;

With CrModel, Model. Parameters Do
For NoPar:1 To ParNo Do

odesConasistent (NoEgn :

arageters one with mode 1

: ParameterRange ;
* NodeSetType

.
’

and

i

the other with mode 3

EquationRange} : Boolean ;



If ParInEqn {Model, NoPar, NoEqn) The
ModeSet := ModeSet + {Table HoEqn HoPar] Hode] ;

g godesConsxstent 2= ({1,3] % ModeSet = (1) Or ([1,3] * HodeSet = {1,3])
nd ;

Begin
ﬁxitLoop := Balse ;

With Criodel. ModelInfo, Endo {NoEqn] Do
Repeat
x1tLoop = True ;
Found = False ;
NoPar  := EndolNo ;

thle (Not Found) And {NoPar >
Table [NoEqn, EndoAr [NoPar ] Hode <3
Then Found := True
Klse NoPar := NoPar - 1 ;

If Found Then
%able [NoEqn Endoﬂr NoPar ] ode ;= Table {NoEqn, EndoAr [NoParl]. Mode + 1 ;{ try mext mode }

ase Table [NoEqn, n o r o ar
: Table {Nolqn, Endodr [No arli Slgn :‘ IHatrxxS {NoEqn, EndoAr [NoPar]] ;
Sign := zero

: Table {NoEqn, EndoAr [NoPar
3 Table {NoEqn, EndoAr HoPar Sign := ngnThverse (IMatrizS [NoEqn, EndoAr [NoParll)

fad ;
For i:=NoPar+l To Endo¥o l 1n1t1a11ze following parameters }
Tablefntry (Table [NoEa BndoAr [i]], IMatrizS [NoEqn, EndoAr [il], 1} ;
f Not HodesConSLBtent { oﬁ Then
Exitloop := PFalse

i
Until Exitloop ;

NextPossibility := Found
Bud ;

% 25k initialize slgns & modes of parameters in the equat1on £tx }
vunct1on InitializeBqn (NoEqn : EquationRange) : Boolean ;

ar

NoPar : ParameterRange ;

ModeSet : ModeSetType

EgnOkey Boolean ;

61th CrModel, Model, Modellnfo, Equations. EqnInfo [NoBqn], Parameters, Endo [NoEqn] Do
§ode5et = 1{1;

For HoPar 1 To Par
n (4 del NoPar Nok And ((Signs [NoPar} <> _undef} Or {Park nﬂo[NoPar] < NoEgn)) Then
g :§e% b ogeSet + [Tableq?&gkqn, &gPagl ﬁo ear’ J O {Rarty g

RqnOkey := True ;

Case Knd No Of
0 :If ([1 3] * ModeSet <> [1) And ([1,3] * ModeSet <> [1,3]1) Then f 8o, equation cannot ;

False be initialized
R ?}[)1 81 # odeSet, - () Then
TableEntry (Table {No qn, EndoAr [11], zero_, 2)

1se
If JINH
Tﬁen TableEntr Table [NoEqn, Endodr 1]] IMatrixS [NoE n, EndoAr &1]] 1)
1ge Tab eEntr Table NoEgn, Endofr Signlnverse ( Hatr1xS[Ho qn, EndoAr[111}, 3) ;
Blse If (3 IN ModeSet)
For NoPar:=1 To R
1 TﬁbleEntry (Table [HoEqn, EndoAr [NoPar]]l, IMatrixS [NoEqn, EndoAr [NoPar}l, 1)
se Begin
For NoPar:=1 To EndoNo-1 Do
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TableEntry {Table [NoEqn
TableBntry {Table {¥oEqn, EndoAr {EndoNo]], ngnInverse (1

fud
md's { Vit |

InitializeRqn := EqnOkey
End ;

Funct1on InitialPossibility (NoEqn : EquationRange) : Boolean ;

BndoAr [NoPar]], IMateixS [NoEﬁn, EndoAr [NoPa r]l 1} ;
atrixS{NoBqn,EndoAr(Endooll), 3)

NoPar ParameterRange ;

alth Cr¥odel, Modellnfo, Model. Parameters Do

Ror NoPar:z1 To ParNo Do
f (ParInEqn (Hodel NoPar, NoEqn)) And (Signs [NoPar] = _undef) And (ParEqnNo[NoPar] < NoRgn) Then

éable LNOE 1, NoPar] Sign ;= Table [ParEqalo [NoParﬂ NoPar]. Sign ;
% NoEqn, NoParl. Slgn = [MatrixS [Noqn, NoPar]) Them
1Table [NoEqn, HoPar]. Hode := 1

If Table (NoRqn, WoParl. Sign = zero_
Then Table rﬂoEqn, lofr]. Yode":=
Else Table {NoEqn, NoPar]l. Mode := 3

Bnd ;

énitialPossibility := InitializeBan (NoKqn)
nd
Begin & SlgnAnaIy s}
ith CrHodel, ModelInfo, Model, Rquations, Parameters Do
éxoSet = [1;

For NoPar:=1 To ParNo Do
f Signa [BoParg <> _undef Then
RxoSet := ExoSet + [NoPar] ;

Writeln (%g, ‘Possibilities’,

PossibilityNo := 0 ;

If ExoSet = [1..ParNo] Then { if no unknowns then no possibility }
Goto EndProc ;

FillChar {ParBqnNo, ParMo, 0) ;

For NoEgn:=1 To Kgnl
Vlth annfo [NoEqn] Endo [NoEgn] Do

eﬁndoﬂo =0

Ror NoPar:=1 To ParNe Do
If ParInkqn (Hodel NoPar, NoEqn) Then

ff S1gns [NoPar) <> _undef Then a531gn gigns and modes of known parameters into
f These do not change during the analysis
able [HoEqn, NoPar]. Slgn = SignType Ord (81 s [KoParl)) ;
If Ord (Signs [NoPar]} Ord (IHatrle ¥oEqn, NoPar]) Then
Table [RoRgn, NoPar]. Hode

1ze
If Signs NoPar] =
Then Ta le [NoEqn, HoPar Hode := 2

Else Table [NoBgn, NoPar). Mode := 3
End ;
If Not (NoPar IN ExoSet) Then
Begin
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EndoNo := Endolo + 1 ;
EndoAr [ ndoNo] := = Nobar ;
ExoSet := KxoSet + [NoPar)

End ;
If ParEqnlo ﬁNoPar] = ( Then
ParKqnNo [NoPar] := ¥oEan { % of the "first” equation the parameter appears }

Erd : or
Bed ; { With & For

In1%1alized = False ;
Re
fnltOkey = InltxallzeEqn éﬂoﬁq n) ;

[f Endo [NoEqng EndoNo = O Then { if ¢ of endos in NoEqn > 0, then InitializeBqa returns True }
If ¥ot Inif0 g
Then Goto RndProc
Klse NoEqn := NoEgn + 1

se
Initialized := True
Until Initialized ;

With Endo [NoEqn &
Table [NoEqn, EndoAr [EndoNo]]. Mode := Table [NoBqn, EndoAr [EndoNol]. Mode - 1 ;

ﬂhile (NoBgn > 0} Do

5ont1uue = T
If NextP0331b111ty {NoRqn) Then

shlle (Continue) And (NoEqn < EqnNo) Do { initialize following equations }

eﬁokan = Nok
ot InltlalPOSSIslllty {NoEqn) Then

Be
ﬁoE%n z NoE n -1
Con inue := false

End
Bnd ; { While }
If Continue Then

érxtePossxbllxty v
NoEqn := Eqnlo

n
Bnd { If
Else{ }

NoEqn := Nokgn - 1

End [ ile }
End ; { With }
BndProc :
Wri
If Posslﬁlllt No=0
Then Write ! Inconsistent, no p0331b111t1es )
Tnd Kise Write (‘Possibilities found : °, PoasibilityNo)
ud

{$I INCLUDE.PAS}

{ 1t displays main menu and calls the option selacted ¥kt 3
rocedure MalnMenu ; { no variables must be passed to this procedure }

Choxce : Integer ;
eé n
1rScr ;
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Weite (“Current model : ) ;

GotoXY 354 K}
If CrM¥odel

elGiven Then
Write (CrModel. Hodel Name) ;

GotoXY (1, 2) ;
Write { Analysls of Algebraic Mathematical Models ver.1.00°, IF,

‘Main Menu’, LF,

LF, ‘s ’

L. New model (from user)’,

New nodel from lxbrar{

Sign of Information ma r1x ,

Sign analysxs of total dlfferentlals , LE,
Sign analysis of gains’, LF,

Parameter values’

Value analysis’, LF,

Gains’, LF,

Rlasticities’, LF,

. List library’, L,

. Insert to 11brary , LF
. Delete from library’, L
. Save current model’,

. Exit’, LR,
oice : °) ;
ReadInputl (2, Choice) ;

If (Not CrHodelG1ven) And {Choice IN {3..9,13]1) Then
leeErr (8, 0) ;
If (Not IHattleleen) And (Choice IN [4,5]) Then
leeErto (9, &
f (Hot ParValues 1ven) And (Choice IN {7..8]) Then
leeError 0
If Not Cho1ce In 1 .14]) Then
vaeError (20,

If [Ch01ce < 14) Then

e
erte ( 0pt1on , Choice, " - °) ;
Case Ch01ce of

: Write ( New model {frou user)’, LF,
new node is given by the user and becomes the current model’) ;

: Write (‘New model (from library)’,

‘A model of the library is loaéed as the curreat model’) ;
: Write (Sign of Infornatlon matrix”, LF,

‘Signs of pars & par expressions given to reduce I matrix into a sign matriz’) ;
: Write (Sign analys1s of total differentials®, L

‘Sign analysis of tot difs on current nodei signs of 7 pars are determined’) ;
: Write (‘Sign analysis of gains®, LF,

‘Sign apalysis of gains on current nodel, gains of endos wrt a exo/cst determined’) ;
: Write ( Parameter values’

“Par values given 5{ the user & equations solved, if desired, for endo vars’) ;

: Write ( Value analysis’,
Value analysls of tot difs on current model, magnitudes of ? pars are determined’) ;

: Write (G a ns ;
éains for a single exo var/constant or for all exo vars/constants |
: Write (© Elastic ies
E last1cit1es for a single exo var/constant or for all exo vars/constants’) ;
: Write {’Lis 1brarg
“Models in the 11brarE are listed”) ;
: Write ((Insert to lib rar¥
‘Add a new no el to the library’) ;
: Write (‘Delete from library’
“Remove a nodel from fhe library’) ;

..g—u5~.-~..
o ot Yot
IS SRR D N cotar,

N -n ] =
e e
P

€O O 3 O N e L3 DN

— s s
N - O
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13 : Write ("Save current model”’, LF,
od ‘Add the current model to the library’)
nd 3

GotoXY {54, 1) ;
Write 'Cuyrené nodel : °) ;
1f CrModelGiven Then

Write (CrModel. Model. Name) ;

Write (LF, LF, “=-eremcmmmmmmmme e e Vs
Gotoll (1, 24) ;
Write
Nindow (1, 4
GotoXY (1, 1}
End ;

Case Choice Of
: ReadCurrent¥ode] ;
: LoadCurrentNodel ;
: Sign0fInformationflatrix ;
: SignhnalysisQfTotalDifferentials ;
: SignAnalysisOfGains ;
: ParameterValueg ; .
: ValueAnalysisOfTotalDifferentials ;
: DisplayGains ;
: Blasticities ;
: LxstL1brarg ;
: IngertTolibrary ;
: DeleteFroalibrary ;
: SaveCurrent¥odel ;

: Beéin h
lose {ModelLibFile) ;
Halt

80, 23) ;

5 EX I b L TND e

Pt et st s o R X w3
e CAORNI D
.

Bad { O )
Endn; 38e

XXX gain program ¥#* }
egin
issign {ModellibFile, ModelLibraryRileName) ; { open model library file }

§$I~} I
efst (ModelLibFile) ;

(I0Result ¢ 0) Then { if file does not exist, create it }
Rewrite (ModelLibFile) ;
CriodelGiven := False ; { no currnt mode] }
Inline {$89/$26/5PReg/ MOV SPReg,SP nove (address of top of stack - 2% to SPReg
Fg/ (0B/SPReg/ DEC SPReg this 1s the address that will contain the
FE/$0K/SPReg ) ; DEC SPReg return address of main program when it calls

the procedure MainMenu. MainMenu must not be
called with a variable, otherwise GPReg points to
these variables instead of the return address

HeapPtrSeg := Seg (HeapPtr®) ; top of heap: segment & offset. The program allocates
HeagPtrOfg = Ofg EHeagPtr‘g ; f pognters og heagmat top of heap & ag (Eop of heap + 32K) ;

TextColor (LightGray) ;
Repeat
MainMenu

Until False
End.

182



£ ##% 3ign analysis of total differentials %3t }
vrocedure SignAnalysisOfTotalDifferentials ;

Signs : SigrArrayType ;
NoPar : ParameterRange ; ;
SlgnCh Char ;

ﬁxth Crodel. Model. Parameters Do
For NoPar:=1 To Parlle Do

ﬁrlte (ParInfocgﬁoPar] Name, ‘ 5‘10 £ )

:::::

len s r ¢ H
ase 1gn
-t oigns [NoPar] := _neg ;
‘0" : Signs [NoPar} := _zers ;
‘+ 1 Signs [NoPar) := _pos ;
‘9 . Signs [NoPar] := _undef
End
End ;

SignAnalysis (Signs) ;
g gegsage {3)

39 81%“ analysis of galns similar to 81€n analysis of total #*x
%% differentials. sign of given exo/const becomes +. gigns of *xx
xx% other exos/consts initialized. signs of endos found ¥x
rocedure SignAnalysisOfGains ;

S1gns : SignArrayType

Parame - Paranmeterfame :

[ndex ,
NoPar  : ParameterBange ; ]
SzgnCh Char H

61th CrHodel, Model, Parameters Do

ezin
arlte ("Name of exo var/constant Vs
ReadInputS (ParameterNamelen, ParNane) ;

If Not ParameterExists {Parametera, ParName, Index) Then
GiveRrror (24, 0) ;

If Parlnfo [Indexa Type_ = Endo Then
Givefrror (25, 0) ;

Writeln ;

For NoPar:=1 To ParNo
If Parlnfo £HOPar] Ty e_ = Endo Then

ngns [NoPar] := _undef
If ParInfo £HOPar] Nage = ParName Then
181333 [NoPar] := _pos
ﬁrlte (ParInfoc£HoPar] Naae, ( 0+):7);
5:1 1)
ase olgn
: Gigns [NoPar] := _peg ;
‘0 : Signs [NoPar = _Zero ;
: Signs [NoPar] := _pos
End H

Slgnﬂnalisls (Signs)
Bnd
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g gegsage {10)

5 $xt input a system state %1% }
rocedure ParameterValues ;

ar
EqnVector : BquationVectorIype ; ;
KanMatrix : EquationMatrixType ; ;
Nokqn : EquationRange ;
NoPar : ParameterRange ;
Answer : Char ;

é %% golves the nonlinear equations by Newton-Raphson method ¥*+ }
rocedure Newton_Raphson ;

Const
Tolerance = 1E-6 ; . .
. Max[teration = 10 : { 10 iterations is enough for convergence }
ar
KqnVector : EquatlouVectorType ;
BanMatrix : RquationMatrixType ; ;
NoKqn : BquationRange H
NoPar : ParameterRange ;

0ldVector ,
HewVector ,

RHSVector : RquationVectorType ;
[terationflo  : Byte ;
Valuel s

Value? ¢ Real ;

Bef
terationNo := 0 ;
Wlth CrHodel ModelInfo, Model, Equations, Parameters Do

Re
gor NoBgn:=1 To Equo Do
RqnVector (NoBqnl := BvaluateRxpression (EqnInfo [NoEqnl. Expression) ;

For NoEqn:=t To KanlNo Do

For HoPar:=1 To EndoParNo Do
EqnMatrix [HoEqn,NoPar] := EvaluateExpression {EqnInfo[NoEqn]. IMatrixRow [EndoParAr[HoPar]]) ;

For NoPar:=1 To EndoParNo Do
0ldVector [NoPar] := Value {RadoParAr [NoParl} ;

MatrixVectorfult (Eqnﬂo BqnMatrixz, OldVector, RHSVector) ;

For NoEqn:=1 To Eqn
RHSVector [HoEqn] = RHSVector [NoEqn] - EqnVector [NoEgn] ;

GaussEllmlnatlon (Eanatrlx, RHSVector, RBqnNo, NewVector) ;

For NoPar:=1 To EndoParNo Do -
Value [EndoParAr [NoParl] := RewVector [NoPar] ;

Valuel := 0 ;
Value2 := 0 ;

For NoPar:=1 To EndoParNo Do
Valuel := Valuel + Sqr (NewVector [NoPar] - OldVector [NoPar]) ;

For EoEgn %
ValueZ := Value + Sqr (EvaluateﬁxpreSSLOn {3qnInfo [NoBqn]. Expression)) ;

IterationNo := IterationNo +
Until ((Sqrt (Valuel) < Tolerance) And (Sqrt (Value2) < Tolerance)) Or (IterationMo > MaxIteration) ;

If IterationNo » MaxIteration Then

GiveRrror (11, 0
End ;

184



Beﬁin .
arValuesGiven := False ;
gitb CrModel, Modelinfo, Model, Equations, Parameters Do
egin
ﬁor_BoParzzl To Parfo Do

Begin

e6rite (ParInfo (NoPar], Name, " = ) ;
g geadlnputR {10, Value [NoPari)

nd ;

Write (LF, “Will the equations be solved for endogenous variables ? (1/N) °) ;
ReadChar (Answer, [ T','N'1) ;

Writeln ;

If Answer = ‘Y" Then
Begin
ewton_Raphson ;
for NoPar:=1 To EndoParfo Do

Begin
arite {ParInfo (BndoParAr [NoPar)l. Mame, * = °, Value [EndoParAr [NoParl} :7:2) ;
WriteSc (°°)

End
End ;

For NoEga:=1 To EqnNo Do

For NoPar:=1 To EndoParNo Do
EqnMatrix [NoRqn, NoPar] := BvaluateBxpression (EqnInfo [NoEqn]. IMatrixRow (EndoParAr (NoParll) ;

gor.HoPar::l To ExoParlo Do { calculate gains }
egin
éor NoEqn:=1 To EqnMNo Do

Begin
Eanector [NoEqn] := BvaluateBxpreasion (EqnInfo [NoEqn]. IMatrixRow [ExoParAr [NoParll) ;
EqnVector {NoEqn] := - EqnVector [NoEqn]

nd ;
g gaussElinination (EqnMatrix, EqnVector, EqnNo, ExoEndoMatrix [NoPar])
n
Eod ; { With }
Message (2) ;

ParValuesGiven := True
End ;

5 #3% value analysis on the current model ¥¥x }
rocedure ValueAnalysisOfTotalDifferentials ;

Type
vygagnitudeﬂrrayType = Array [ParameterRange} Of Real ;
ar

Signs + SignArrayType ;
Magnitudes : MagnitudeArrayType E
EqnVector ,

ResultVector : EquationVectorType ;

RqnMatrix  : BquationMatrixType ;
Gain : Real H
NoEqa + EquationRange ;
(UndefNo ,
NoPar ,
i : ParameterRange H
" SignCh : Char ;
egin
gitb Cr¥odel, Modellnfo, Model, Eguations, Parameters Do
in
¢ ndefNo := 0 ;
Writeln (° Sign (- 0 + 7) Magnitude’) ;
Writeln {' a ) ae '} ;
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For NoPar:=1 To Par¥o Do

§r1te (ParInfo [NoPar] Name, ‘i B
ReadChar 18u y [7=5,707,745,°7°])
Cage § 1gn

'6' : 1gna [NoPar] := _neg ;

§1 g [NoPar] := _zero ;
Haggxtgdes [éoParT =0

+ f Slgus [NoPar] := _pos ;

§1§ns [NoPar] _undef ;
effo := UndefNo 1

Bnd
If Slgns {NoPar] IN [_neg, _pos] Then

éotoXY {33, Wherel- é
; Eead[nputR (5, Magni wdes [NoParl) ;

Bnd ;

If Undefo © Equo Then
Givekrror (26, 0

For NoEqn:=1 To Eqnﬂo Do { solve the equations }
ﬁanector [NoEqn] =0

Undeflo := L ;
For NoPar:=1 To ParNo Do

ff Parinfo [NoPara Type = Endo Then
If NoPar = EndoParAr {NoEqn]
Then Gain = 1
Else Gain :
Else Be 1n

thle ExoParAr [i} <> NoPar Do
i
Gaxn = - Exoﬁndoﬁatrlx {1, NoEgn]

End ;
If Signs [NoPar] = _undef Then

Eqnﬁatrlx [Noqu Undifﬂo] = Gain ;

UndefNo := Und
Else Begin
If S1gns [NoPar} = _pos Thea

Gain := - Gai
Eanector [HoEqn] = EqnVector [NoRqn] + Gain ¥ Nagnitudes [NoPar]

En
Bnd f For NoPar ... Do Begin I
End ; { Bor NoBqn ... Do Begin

GaussBlimination (EquMatrix, BqnVector, EqnNo, ResultVector) ;

Write (LF,
Results , LE,
L¥

i=1;
For “NoPar:=1 To Parfo Do
If Signs [NoPar] = _undef Then

6r1teln {ParInfo [NoPar}. Name, ° = °, ResultVector [i] :68:2) ;
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=it
End
nd ; { With }
“Message (11)
Bnd ; - (
§ *xx output gaing for the given system state ¥¥x }
rocedure DisplayGains ;

Parﬂane : ParameterName ;

[ndex ,
NoPar s

: ParameterRange ;
AllGalns Boolean ;

61th CrModel, ModelInfo, Model, Parameters Do

Begi
étlte “Name of exo var/constant : °) ;
ReadInputS (ParameterNamelen, ParName) ;

AllGains := {Trin? (ParName) = *°) ; { if no name is given then output all gains }

If gﬂot Al1Gaing) Then
Not ParaneterExlsts (Parameters, ParName, Index) Then
leeError (24,

If Parlnfo [Index& Type_ = Endo Then
GiveRrror (28, 0) ;

Writeln ;

For NoPar:=1 To ExoPar
!f AllGaing Or (ExoParAt {¥oPar] = Index) Then

érlteln [ Gaing for °, Parlnfo {ExoParAr [NoPar]). Nam %
rxte c Spc ( -*, len th (Tria? (Parlnfo [ExoParhr [NoPar]l. Name)) + 1)) ;

Por 1:=1 oParlo
Hrlteln (ParInfo [EndoPar&r (i11. Mame, ° : °, ExoEndoMatrixz [NoPar, i) :8:2)

End
Bnd ; { With }

| e (12
Endessag (12}

£ kxx output elasticities for the given system state %% }
rocedure Blasticities ;

ParName : ParameterName ;
ndex ,
NoPar s

: ParameterRange ;
AllElastlcltles Boolean ;

alth CrHodel, Modellnfo, Model, Parameters Do

ﬁrlte {‘Name of exo var/constant : °) ;
ReadInputS (ParameterNamelen, Parfiane) ;

Al1Elasticities := (TriaT (ParName) = °°) ; { if no name is given then output all elasticities }

If %Bot AllRlasticities) Then
It Not Paraneterkx1ats (Parameters, ParName, Index) Then
GiveBrror (24

lse
If Parlnfo [Index& Type = Endo Then
Giverror (25,

Writeln ;
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For NoPar:=1 To ExoParlo Do
1f Al1Xlasticities Or (ExoParAr [NoPar] = Index) Then

Begin
ariteln f'Elasyigities for °, ParInfo_ [ExoParAr [HoPar]g

ame) ;
gg%t§§gl %gcggdapérggnﬁgh (TriaT (ParInfo [ExoParAr [NoParl]. &ame)) +11))

Writeln (ParInfo [EndoParAr [i]]. Name, * : 7, .
ExofndoMatrix [NoPar, 1] % Value fRxoParhr [NoPar]} / Yalve [EndoParAr [i}] :6:2) -

End
Bnd ; { With }
Message (13
End;g()

%xx gimplify the expression. For examgle, if there is a + operation ¥¥x
Xt where both operands are numbers, then add those numbers and  xkx
1t insert the result as a gingle entry instead of three entries  ¥xx

crocednte SimplifyRxpression (Var Expression : PostfixType) ;

onst
MaxStackItem = 50 ;

Type
ygtackltenRange =1 .. MaxStacklten ;
StackltenRangeW = § .. MaxStackltes ;

StackType = Recor
Top : StackItemRangeW ;
Item : Array [StackltesRange) Of Postfixlype

End ;
Yar
Stack : Stack?yﬁe ;
NoEntry : PostfizKntryRange ;

Itenl, Item?,
[tend, [temB,

[temC, ItemD  : PostfixType

'
Error : Boolean g

Procedure Pop (Var Stack : Stacklype
Var Toplten : Postfix?ype )

Beain
ith Stack Do
Begln .
oplten := Item [Top] ;
Top :=Top - 1
nd
Bnd ;
Procedure Push (Var Stack : StackType ;
) Topltem : PoatfizType ) ;
Beﬁ;n
ith Stack Do
Begin
op :=Top +1;
Tten [Tops := Toplten
End
End ;

Function Result {Qperandl ,
Operand? : Real

Roal Operator : OperatorType ') ¢ Real ;
in
§ ({Operator = Div_ ) And (Operand? = )} Or
Operator = In_ And (QOperand? <= Q}} Or
QOperator = Log_ ) And (Operand? <= 0}) Or
(Operator = Sqrt_ ) And (Operand2 ¢ 0}} Or

erator = Power_) And
erand] ¢z

0
= 0) Ind
{0 erandl >z 0; Or {Operand2 <> Int (Operand2))) And ((Operandl <> 0) Or (Operand2 <= 0})))
Then Krror := True

en
Else Result := OpResult {Operandl, Operand2, Operator)
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End ;

Procedure NegativeOfltem (Var Iteml : PostfixType ;
Ttem2 : PostfixType ) ;

‘efln
tenl := Itea? ;
Wlth Itenl Do

Be

ﬁntryﬂo = KntryNo t1;;

Entry { ntry o] Type_ erator ;
ol Entry {EntryNo Operator = 1nus

Bnd ;

Function CondFalse (Condition : Boolean ;
Iten : PostfixType ) Boolean ;

Begi
éondltlon = Condition And (Not Srror) ;

If Condition Then
Push (Stack, [tenm) ;

GondFalse := Not Coandition
End ;

Procedure Mergeltems (Itenl Iten? : PostfxxT;pe 5
Operator Operatoriype ) ;

: PostfizRntryRange ;

§or i:=1 To Item2. EntryNo Do

Itenl. Entry (I teml ntr{No + 1] := [tem?. Entry {1] :
[ten]. EntryHo H teml nteyl o + Tten?. Entryﬂo +
Iteml. Bntry [Itenl Bntryd o] := Operator_ i
Itenl. Entry (Iteal. EntryNo Operator Operator” ;

Push (Stack, Iten!)
End ;

Begin { SimplifyExpression }
éit §tackp Exgregslon Do

Begin
op := 0 ;

For HoEntry =1 To Entr¥
If Entry [NoEntry]. Type_ <> Operator_ Then

ften& Entryﬂo
ItesA. Entry il] ﬁntry {NoEntry] ;
: gush {Stack, enA)
Rlge g
Pop (Stack, Iteal) ;
f Binar Operator {ﬁntry {NoBntry]. Operator) Then
Pop (Stack, Iteml) ;
Error := False ;
Case Eatry [HoEgtry] Operator Of

us_
ﬁumberEntry {Itend, Itenl Entry g Nusber + Item2. Entry [1]. Hunber)
If CondFalse ( Itenl t ﬁ nd i tenl Entr [1 ype_ = Hunber }
EntreyNo =

ten n r ber_
If CondPalse | %ten% futrlo ) Agd : Igntiz ﬁe e
ugber = 0), Iten
If CondFalse ( Iten2 Eniryﬂo = & in d (I %enZ ¥ &%] Type > Number_) And
en
Mergeltens ( tenl ItenZy slus

And
tenA) Then

umber = 0}, Itenl
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End ;

: Begi
ﬁumberEntr¥ (ItemA Iteml Entry {1]. Number - Item2. Entry [1}. Number} ;
NegativeOfiten } tend , Iten?) ;
If CondFalse ( teml Entr Ho z 1) And Itenl Bntr Type = Number_) And
Entryfo = 1) An ten n ryf g_ = ¥unber ), ItenA& Then
If CondFalae ( Iteml Entryﬂo = 1& A d (I enl “Type. = Number_) An
[tem { . Number = 0{ I Z hen
If CondFalse ({ItemZ En ryNo = g And { *1] Type_ = Nuzber_) And

BMinus_

t 1]. Humber = 0), It h
tem? Itgmﬁy Eﬂlnusu? ° ) esl) Then

Minus_, Sm_,1 Cos_, ArcTan_, Exp_, In_, Log_, Sqr_, Sqrt_:

ﬁumberﬁntry §Itema Result (0, Item2. Entry [1]. Number, Entry [NoKntry]. Operator)) ;

[teal. Ent
If CondFalse {iltemZ EntryNo = 1) And (Item?, Entr{[l} Type_ = Number_) , Itemd} Then

HergeItems ten2, Iteml, Entey [NoEatry]. Opera

Hergeltems (

Hult_ Be
ﬁumberEntry ItemA Itemi. Entey [1}. Number # Item2. Entry [1]. Number) ;
HunberEntr¥ temB, )}
NegativeQfitem (ItenC, itenZ
NegativeOfitem {ItemD,
If CondFalse ( teml EntryNo =1 {teml. Entr 4 Type_ = Number_) And
2. RnteyNo = 1 Iten ntrgf “Muab er.) ItemA) Then
If CondFalse (( Itenl Entryﬂo = & d (I teu ntry ff] Type = Nuaber_) An
ten Ent ry {1]. Number =
2. EntryNo = 1) And (Iten Entry 1%. Type_ = Nuaber_) And
I 2 Entey [1]. Number = 0)), ItemB) Then
If CondFalse { Itenl EntryHo 1& And (Iteml. Entry [1]. Type_ = Number_} And
Tteal. fntry (1. Rugber = 1), ltes z hea
If CondFalse ( Item% Eniryﬂo = 13 Abd (I end. En ri 1}. Type_ = Number_) And
. Number = en
If CondFalse ( Iteml En{ryﬂo = And (I enl. Entr 1% Type_ = Number_) And
enl. { . unber 1) Iten hen
If CondFalse ( ItemZ En ryNo = 1) And (Itemd. Entryﬁl] Type = Number_) And
ten2. Entry ﬁl{. umber = -1), ItemD) Then
E i Hergeltens (Iteml, Item?,
nd

ﬁumberEntry ItemA Result (Iteal Entry [1]. Number, Item2.BEntry[1].Number, D11_)) ;
NumberﬁntrY
NegativeOfiten {ItemC tt
If CondFalse {{Item] EntryNo z 1 And Iteul Entr Type = Numbet _} And
Entry¥ And ten ntryf Number_) Itemag Then
If CondFalse ( Itenl ﬂniryﬂo = Entr Type = Number _) An
Iteml. ntrz umbet = Oz, Tten BE
If CondFalse ( ItenZ Entrylo =
unber = 1% Tte

en?. Entry [1]. al
1f CondFalse ( ItenZ Eniryﬂ z % em2. En

ten2. Entry [1]. Number = -1), ItenC) T
tenl “Tten2, Div.)

Diy

h

I 1] Type_ = Number_) And

r [lg. Type_ = Number_) And
en -

Mergeltems (

Power_

Rumberfatry (ItexB, 0
Nuzberfntry (ItenC Resnlt (Itenl Entry{l] Number, Item2. Entry[l] Number, Poven_)) ;

If CondPalze ({ Iten n ry o z 1& Itenl. En ry [1]. Type_ = Number_} And
Itemi. Ratry [

{ %ten Bntryﬂ 1& nd (Iten% Entr [Tg Type_ = Number_) And
ntr
If CondFalse }tenl Entgy o = 1& d eni Entrz 1] Type_ = Number_) And
ber
If CondFalse { Iten2 Enlryﬂo S A (I end. En 1] Type_ = Number_) And

sl
Immmmmﬂm4humhmuw-Mum
‘ o

: Be ﬁ
MMMFMI

0z1) And (Iten2.Bntry[1].Type_zNumber_), Itenl) Then

Mergeltens { tenl Iten§ Power_)

190



End ;
Engn? f Eigg %egin k For }
Expression := Item [1]
End { With }

End ;

£ $¥1 finds derivative of the equation wrt all parameters ¥xx }
rocedure DerivativeOfEquation (Var Model : Modellype ;
NoEqn : EquationRange ) ;

Cons
HaxDer1vExpr = 50 ;

BerlvExerange = 1 .. MaxDerivExpr ;
DerivExprType = Record
Kxpr : PostfixType ;
Deriv : Boolean
Bnd ;
DerivativeType = Record
Bxprio : DerivEx rRané
g gxprAr Array [Deriv xerange] 0f DerivExprType
nd
Var
Derivatxve Der1vat1veType ;
g : DerivExprRange ;
NoEn ry . PostfixEntryRangeW ;

NoPar : ParameterRange ;
Counter  : Integer ;
Found - : Boolean g
Procedure ShiftExpressions (Var Derivative : DerivativeType ;
Index : DerivExprRange ;
ShiftNo  : Byte ) ;

Var
: DerivExprRange ;

ﬁxth Derivative Do
ﬁxprﬂo := Expr¥o + ShiftNo ;
For i:=ExprNo DownTo Index+ShiftNo Do
1 ExprAr [i] := ExprAr {i-ShiftNo]
Bnd ;

Procedure Shiftfntries (Var Entrg&r : PostfixType ;
ShiftNo : Byte |

i PostfixEntryRange ;
61th EntryAr Do
ﬁntryﬂo EntryRo - Shiftho - 1 ;
Far 1 =1 To Entr
Entey [i] := Entry [1+Shiftlo]
Endn;

Procedure OperatorItem (Var Expression : DerivExprIype ;
0Ops : OperatorType ) ;

8peratoartrE (ExpresSIOn Bxpr, Ope) ;
e

xpress on. Deriv := False
End ;
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Procedure NumberItem (Var Expression : DerivExprType ;
Number : Real )3

Begin
ﬁumberEgtry 6Expressioni Expr, Number) ;

Kxpression. Deriv := False
Bnd
Begi DerivatlveOfE uation }
ﬁ1th Serlva tive Do !
ﬁxprﬂo
ExprAr [ J ﬁxpr = Hodel Bquations. EqnInfo [NoEqn]. Expression ;
ExprAr [1]. Deriv := True ;
Repeat
ound := False ;
NoRxpr := 1 ;

thle &Nokxpr <= ExprNo& And (Not Foun dg
If (ExprAr [NoBxzpr]l. Deriv) And {BxprAr [¥oBxpr]. Expr. EntryNo > 1)

Then Found := True
Else NoExpr := NoBxpr + 1 ;

If Found Then
61th BxprAr [NoRxpr]. Expr Do

gokntry Entryﬂo -1;
ounte
ﬂhlle (Counter > 0) Do { find operator with lowest precedence }

ff Bntry [NoEntryl. Type_ <> Operator_ Then
Conn ter := Counter - 1

If BlnaryOperator (Entri [¥oBntryl. Operator) Then
Counter := Counter +
HoRntry := HoEntry -1

End
Bad ; { With }
Case RxprAr {NoExpr]. Bxzpr. Entry {ExprAr [NoRxpr]. Expr. EntryNo]. Operator Of

ExprAr {NoExpr+l] xE NoExpr] ;
ExprAr [NoRxpr]. Expr. EntryNo := NoEntry ;
ShiftEntries i xprAr sHoExpr+1 Bxpr, NoEntry)} ;

Operatoriten Expr&r NoRxpr+?
Rud ; ExprAr{NoBxpr+2] Expr. Entry[ExprAr[NoRxpr+2].Bxpr.EntryNol. Operator)
n

: B
e§h1ftEx ressions &Derlvatlve NoExE;
Exprir fNoExprg xpr. Knt ryﬁo = Rxprir HoExpr] Bxpr. BotryNo - 1 ;
ry OperatorIten (8xprAr [NoExpr+1], OMinus_)
Mult_ B: 1ﬁ
hxftExIre sions (Derlvatlve& NoExpr, 6) ;

BMinus_ : Begin
hlftExEresalons (Perlvatxve£ NoBxpr, 2) ;

Minus_

ExprAr [NoRxpr+l) E HoExpt] ;

Exprir xpri Expr ntry = Nokntey ;
ShiftRntries (KxprAr [NoExpr+ll. B ry NoEntry) ;
Exprdr (NoBxpr+3] := KxprAr NoExpr

RxprAr [NoExpr+3]. Deriv := False ;

ExprAr [NoExpr+4] := Expr&r RoExpr+1]

z
g=-K=]

RxprAr [NoExprtl]. "Deriv :=
OperatOtIten Exprir NoExpr+2 Hult_ ;
Operatoriten (RxprAr [NoRxpr+5], Mult ) ;
g gperatorlten BxprAr [NoExpri6], Plua_
n

Div_ : Begln

192



Bower_

Sin_

Cos_.

ArcTan_ :

Exp_

) End g

ExprAr Hoﬁxpr+1] Hokxpr} ;

ShiftExpressions [Der1vat1ve NoBxpr, 9) ;
KxprAr f &

Bx

NoRxpr xpr En tryNo := NoBatry ;
RxprAr [NoExpr+d xprAr [NoExpr
Rxprar [NoKzpr+d]. Derxv = Ralge ;
KxprAr [HoBxpr+4] := Exprﬂr £N0Expr+1] ;
RxprAr [NoBxprti]. Deriv := false ;
KxprAr {HoRxpri7] := Exprkr f oEx§r+1] ;
Operatorltem (ExprAr [Nokzpr+2],
(Operator[ten (Exprdr {NoExpr+j],
Operatoritem (RxprAr [NoExpr8), BHxnus
QOperator[ten (ExprAr {NoExpr+8], Ser_

2 OperatorItem ExprAr [NoBxpr+9], Div_

nd ;

: Begi

§h1ftEx regsions (Derivative, NoExpr, 13} ;
Rzprir EHoExpr+1] := Exprir sﬂoExpr] H
Kxprir

emewswe

NoRxpel. Expr. ntry o := Nofntry ;

ShiftEntries (Ex rAr No xpr+1] Exgr, NoEatry) ;

RxprAr [NoEzpr+8] := BxprAr [NoExpr
Kxprir [NoBxpr+d] := xprAr Nonpr+1§
Exprar {Hofzpr .Deriv := false ;
Kxpedr (NoBxprel]. Deriv := Falge ;
ExprAr [NoExpr+{ xprAr Ho!xpr] ;
KxprAr [NoRxzpr+d xprir [NoExpr] ;
KxprAr [NoExzprs? xprAr [No xpr+lj
Operatoriten (Exprir [NoRxpr+ 2}, Pover.
Operatoriten {Exprir {NoRxpr+ 5], In
Operatoriten (Exprdr [NoExpr+ 8], Mult_
Operatorlten {ExprAr NoExpt+10 : Div_
OperatorIten (Exprdr [NoBxprell], Mulf_
OperatorIten (ExprAr [NoRxpr+12], Plus_
OperatorIten ExprAr [NoExpr+13], Mult_

ct sa ne
"wuan

i memimowmewy

Kxprdr [Nolzprl xpe ntryﬁo
ExprAr [NoBzpre2] := Expr&r NoExpr] :
ExprAr [NoExprl. Deriv := False ;
(perator[tea xpr&r [HoExpr+1] "Cos_ ) ;
OperatorIten ExprAr [NoRxpr+3], Mult_

§h1ft3xtressxons &Derlvatlve Hoﬁxﬁi. 3

End K

ghtftﬂx resaions §Der1vatxve Hokx

Exprdr {NoExpr].

BxpeAr (NoExpr#l] := Expr&r o xpr] ;
ExprAr [NoExpr]. Deriv : ;
Operatoriten (Rxpric RoExpr+1 Sin :
Operatoriten {ExprAr {HoExpr+3}, ;

Operatorltea Expehr (NoBxprd], UHlnus

Exprir [HoKxpr]. ntryﬁo := Expr&t (NoExpr] Expe.

B
eghlftExE‘~ gions Der1vat1ve NoEx

Rxprir xprid] 12 Expr&r KoExpr] ;

Exprir xprii. “Deriv := false
HumberItem (KxprAr KoExpr+1 ! ;
(Operatar[tem {Exprdr RoExpr+3 ) S%
Operatorten (ExprAr [NoRzpr+4], Plua ;

Operator ten (ExprAr [NoExpr+5}, Biv_

prir

Exprir xpr+2] = Expr r NoExpr ;

: B
eghxftExE aions {Derivative, NoExpr

o0 Ok

faorde olipe]. Deriy o= Talee
erator[ten rir [NoBxpr
Ogerator_ten {Exgrkr {Rokx§r+3] }
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ShiftEntries (gx rgr ﬁ ofzpril]. Exﬁr, Nofntey) ;

prﬁr tNoExpr] Bxpr.

r,
xpr ntryﬁo : Exprbr {NoBxpr]. Expr.

xpr]. B Ent ryﬂo 1z Expr&t {NoExpr]. Rxpr.

EntryNo - 1 ;

EnteyNo - 1 ;

Entry¥o - 13

Enteylo - 1



En
End
Until

End ;
Ln_ : Beéln
hiftExpreasions %Der1vat1ve HoExE

RxprAr [HoRxprl. xpr Ent ryﬁo 1= xprAr NoExpr] Rzpe.
Exprdr [NoRxprii Expr&r NoExpr] ;
xprAr [NoEzpril]. ‘Deriv := Palge :

gperatorltem (RxprAr [NoExpr+2], Div_)

ﬂ H
Log.

xprAr [NoBzpr Bt ryﬁo iz Exprkr HoExpr] Bxpr.
ExprAr {NoEzpr+i] ::= ExprAr NoExpr] ;
ExprAr [NoExpr+l “Deriv := Ralse
(Operatoriten Expt&r HoExpr+2], Div H
Numberltem (ExprAr [NoBxpr+3}, gofﬁf
nlt

Operatorltem BxprAr [NoKzpr+d],
§h1ftEx{r3381ons gger1vat1ve NoEx

ghlftﬁxfressxona égerlvatlve NoEzpr

-
b

End ;

Ser_
ExprAr [NoRxzpr Entry o :- x rAr {NoEx r}. Expr.
Exprar [NoBxzpr+d] := Exprkr NoExpr] p, P P
ExprAr [NoExpr Deriv := False ;
Numberltem xprAr No!xpr+1 2
Operatoritem (ExprAr [NoRxpr+2], Mult_
gperatorlten ExprAr [NoBxpr+4], Mult_

BxprAr [NoRxpr] ntrylo := BxprAr [NoRzprl. Rxpr.
Exgrﬂr NoEx£r+2 E ExprAry Yo xpr p, t ? ?
NoBxpr+2 ‘Deriv := Palse ; 2

2 5
Sqrt } 2

D1v

Sqrt_  : Beai
! ghlfth[resalons Der1vat1ve Noﬂxgr, 5)

ExprAr
NumberIten

Operator]ten
(Operatoriten
gperatorlten

RoExpr+1
NoExpr+3],
NoBxprt4],
NoExpr+d],

Exprér
ExprAr
Exprér
Rxprir

d { Case }
§ f ?ound Then Begin }
ot Found ;

With Hodel E1uat10ns E%nlnfo [NoBqn], Parameters Do

For N

oPar:
ParInkqn (Model, NoPar, NoEqn) Then
(hth T (e {¥oPar]’D
Begin
ntrylo := 0 ;

For NoExpr:=1:To ExprNo Do
If ExprAr [NoExpr]. Deriv Then

ﬁntryﬂo = Bntryﬂo +1;
{Eat rﬁ Type_ Nuzb
If KxprAr [NoR xpr prr Entty [11 Index = NoPar

Then ntry [ ntryNo]. Number :
Blse Entry (EnteyNol. Number :=

Rlse Begin
For HoEntry =1 To ExprAr [NoExpr]. Expr Entr

Entryfo - 1 ;
Batry¥o - 1 ;
EntryNo - 1 ;

Entrylo - 1 ;

Bntry Entrzﬂo + RoEntrx] := Exprir & onpr Expr Botry [HoEntryl ;
X

Entr o = kn
End ;

Sinplinyxpressxon (IHatr1xRow [NoPar])
End { With & If & For & With }

r¥No + Bxprhr [KoExpr] pr. Eatrylo

g gnd { With }

{ %% list a model x&x }
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Procedure ListModel (Var Model : ModelType ;
. © Index : Integer ) ;

ar
NoEqn : EquationRange ;
NoPar : Pgrameterkagge ;

Be&ln
ith Nodel, Equations, Parameters Do
Bes1q
riteln ;

frite (‘Model o : °, Index, IF,
¢ (‘Hgdel ggme 1 ’, Bame', LF,
“Equations’, kg,

-
] ?

For BoBgn:=1 To EqnNo Do
Rriteln (RoBan -2, °. ", Ranlnfo [Nokan). Tnfix) ;

s

s )

goriNoParzzl To Parlo Do

eén
ite (NoPar :2, . °, ParInfo [NoPar]. Name, * °) ;
ngeePaglnfq {Noﬁar]. Typq 0f

x0 : Write ("Exo var) ;
Endo : Write (‘Endo var’) ;
Cnst : Write (“Constant’

i
WriteSe (")
nd 3

Writeln
End { With }
End ;
é % list podels in the library +4¥ }
rocedure ListLibrary ;
ar
Model : ModelTypePtr ;
Be§1n .
eset {ModelLibFile) ;
¥odel := Pir (HeapPtrSeg, HeapPtrOfs) ;
While Not Bof (HodellLibFile) Do
Beﬁln s .
ead (ModelLibFile, Model®) ;
ListHodel (Model®, FilePos (ModelLibFile)) ;

Writeln
End ;

Message {5
End ; e ()
£ %1% delete a model from library %% }
rocedure DeleteFromlibrary ;
ar
TempFile : ModelLibraryFileType ;

Model  : ModellypePtr ;
Hame .. HodeINameType ;
Index  : Integer :

Begin
ﬁodel := Ptr (HeapPirSeg, HeapPtrOfs) ;

Write (LF, "Mode] name : '& ;
ReadInputé (ModelNamelen, ame) ;
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1f Not ModelExists (Name, Index) Then
GiveError (18, 0) ;

Assign (TempFile, "TRMP*) ;
fooien, [fombpifey T

Reset (NodelLibFile) :
Rreet Aoode AbE ) furite) Do

Beﬁin

d {HodelLibFile, Model®)
IgaFi{egog (Hodélﬁingle) ) { < Index Then
fud Write (TempFile, Hodel)

nd 5

Close ;HodelLibFile) ;
Close (TempFile) ;

Erase HodelLibFile% i .
Renane (TempFile, ¥o e1L1braryF1leﬂnne) ;

kssign (ModelLibFile, ModellLibraryFileName) ;

Hessage (6
i ge (8)

§ xxx insert current mode]l into library ##t }
rocedure SaveCurrentdodel ;

ar
Index : Integer ;

Begin
if ModelExists (CrModel. Model. Wame, Index) Then
GiveError (19, 0) ;

Seek %HodelLibFile, FileSize éﬂodelLib?ile)) R
Write (ModellibFile, CrHodel. Model) ;

¥essage (4)
nd ;

; %% input a model ¥%x }
rocedure Read¥odel (Var Model : ModelType) ;

Type ;
BarInfoType = Array [ParameterRange] Of Record
Name_ : ParameterName ;
Index_ : ParameterRange ;
Type. :0..3
End ;
Var
SubModel : ModellypePtr ;
Nape : ModelNameType ;
Index : Integer ;
nfo : Parlnfolype
EqnStr  :- StringType ;

NoEqn - : EquationBange ;
NoPar ,

i : ParameterRange ;
StrPos ,

NamePos : Integer ;
TypeCh  : Char ;

Procedure ChangeParIndex (Var NewExpression : Postfixlype
dExpression : PostfixIype
dindex ,
v NewIndex : ParameterRange ) ;
ar
RoEntry : PostfixEntryRange ;

Begin
5ith (01dBxpression Do
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e

O Y Parateter ) tnd (Index = OldTades) Then
End Hewixpre351on Entry [NoEntryl. Tndex := NewIndex
ng

Beéin
ubModel := Ptr {HeapPtrSeg, HeapPtrOfs + $7FFF) ;
ﬂ1th Hodel, Equatlons, Parameters Do

6 ite (Hodel n ‘Y
ReadInput$ (HodelNaneLen, Name) ;

If ModelExists (Hame, Index) Then
GiveRrror (19, 0) ;

EquNo := 0 ;
Parbo := 0 ;

Por NoKan:=1 To MaxEquation Do
For NoPar:=1 To MaxParameter
NumberEntry (Eqninfo [Nokqn] IMatrixRow [NoParl, 0) ;

For HoPar:=1 To HaxParaneter Do
Info [NoPar]. Type_ :

Writeln (%g, ‘Equations’,

.
b b

Repeat | s
rite (‘Ban : ) ;

ReadInput§ (70, EqnStr) ;

If Trisl (Bantr) <> * Then
I Equbtr [1] = “6" Then

%f Not ModelExists (Copy (EgnStr, 2, Length (EqnStr) - 1), Index) Then
GiveError (18, 0) ;

Seek (ModelLibFile, Index&
Read (ModelLibFile, SubMogel*)

ListModel (SubNodel®, Index+1) ;

If Eqnflo + Snbﬂodel‘ Equations. EqnNo > MaxEquation Then
GiveRrror (21,

For NoPar:=1 To Snbﬁodel Parameters. ParNo Do

érlte (SubModel”. Parameters. Parlnfo £NOPata Name, * --> °} ;
ReadInput$ (Parameterfamelen, Inf 0 [No ar] ame_) ;
Trink (Info [NoPar] Name ) =
Info £NOPar] Name_ := Sub Subodel”. Parameters ParInfo [NoParl Name ;
If Not araneterkxists (Parameters, Info [NoPar]. Hame_, Info [NoPar]. Index_) Then

%f Parlio = MaxParameter Then
leeError 22 0) ;
Parllo :

+1;
Parlnfo ;Parﬂo& Nape := Info éﬂoParg Name
rlte e au lt, 1 End 0, Exo Constau{)
Read ar ype , ¥

Then Info Parﬂo] Type := Ord (SubModel”. Parameters. Parlnfo [NoPar}. Type_) + 1
Klse Tnfo [Paro}. Type_ := Ord (TypeCh) - 48

: gubﬂodel Parameters. ParInfo[NoPar]. Name := TrinT (SubModel”.Parameters.ParInfo{NoPar].Name)
1
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Writeln ;

For Rolan: 'Egnﬂo+1 To Suandel‘ Equations. EgnNo + Eqnilo Do
gxth gninfo [NoEqn]l Do

fnflx = SubHodel‘ Equatlons Eqn [nfo Kokqn-Equo] Infix 3
Expression ;= SubModel tions. nfo [NoEqn-EqnNo Expresalon ;
EoriNoPar =i To SubHodel qggraneters Parlo Do

trPog
With SubHodei Parapeters. ParInfo [NoPar], “Info [NoPar] Do

Repeat
amePos := Pos Sﬁame Copy (Infix, StrPos, 255)) ;
If (Nameos <> 0) And
Co Inflx, StrPostHamePos-1, Len%th (Rane) Rane) And ,
ol {Infix [SirtopsTasbon-1engthse)] 20..9°)) O
" BtrPos+Kame os-1tlength(Name) > Length ( nf1x) )
en Begin
Inﬁxg S Copy {Inf1x 1, StrPos+NanePos-2)+ TrlnT(Nane
yé nfix,btrPos+NanePos- 1+Length(Nane),2 5
g gtrPos = Sg o5 + HamePos - 1 + Length TrlnT(Nane_)
1

8
SirPos = StrPos + KanePos
Until NapePos =

ChangeParIndex (ExBresslon, Sﬁbgodel Equat1ons EanInfo [NoEqn-EgnNo]. Expression,
[NoPar

IHatr1xRow[Info§ﬂoPar1 Index_]: -Sugﬁodel Eﬁnatlons EqnInfo{KoEqn-EqnNo]. I¥atrixRow[NoPar];
For i:=1 To Subl Parameters. Parlo
ChangeParIndex {IMatrixzRow &Info £] oPar] Index

Sublodel”. Kquations. EanlInfo [ okqn-Eano]. IMatrixRow [NoPar],
i, Info [i1. Index )
End { For }
End ; { With & For }

EqnNo := Eqnlo + Subﬁodel‘ Equations. K nNo
End { If . gT hen Begin } g d
Else Begin

EqnNo := Egnlo +

Eqnlnfo {EqnNo]. Inf1x o= Eantr

Parsel uatlon Hodel, qnfo, Ean{r) ;

DerivativeOfEquation (Model, EquNo)

En
Until (Triml (BqnStr) = °°) Or (EanNo = MaxEquation) ;

If ParNo = 0 Then
GiveError (23, 0) ;

Write ( Parameter types (ng?do 2:Ez0 3:Constant)’, LF,

gor NoPar:=1 To Parfo Do
f f {Info [NoPar}. Type_ = 0) Then
Erlte (ParInfo [NoPar] Name )
ReadChar (TypeCh ‘3 2%
Info [NoParﬂ Type ="0rd {TypeCh) - 48
£l ParInfo [NoPar]. Type_ := TypeOfParapeter (Info [NoPar]. Type_ - 1)
End { With }

End ;

% txx insert a model into llbrary 15}
rocedure InsertTolibrary ;

Model : KodelTypePtir ;
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Beﬁin
odel := Ptr (HeapPtrSeg, HeapPtrOfs) ;
Beadlodel (Model®) ;

Seek %HodelLibFile, FileSize (ModelLibFile)) ;
Nrite (ModelLibFile, Model®) ;

Hessage (T)

nd ; .

g t1x initjalize info of current model ¥ }
rocedure InitCrModelInfo ;

ar
NoEqn : BquationRange ;
HoPar : ParameterRange ;

Begin
gétb Cr¥odel, Modellnfo, Model, Bquations, Parameters Do
i
EngoParRo =0 i

ExcParNo :2 0 ;

Eor NoPar:=1 To ParNo Do
With ParInfovﬁgoParg Do
If Type_ = Kndo Then

Begin
“BadoParko := EndoParllo + 1 ;
. gndoParAr {EndoParlo] := Hobar

n
Elge Begin
ExoParBo := BxoParlo + ! ;
ExoParAr [ExoParNo] :- Hobar

End ;

If Eqnllo <> EndoParNo Then
GiveXrror {7, 0
End ; { With }

CrModelGiven := True ;

IMatrixSGiven := False ;
i garValuesGiven := False
g

5 5% load a model from library %%t }
rocedure LoadCurrentModel ;

ar
Name : Model¥ameType ;
Index : Integer ;

Begin
ﬁrite {LF, ‘Mode] name : ‘& ;
Readlnpnté (ModelNamelen, Name) ;

If Not ModelExists (Name, Index) Ther
GiveRrror (18, 0) ;

{r¥odelGiven := False ;

Seek (ModelLibFile, Index) ;
Read (ModellibFile, CrModel. Model) ;

InitCréodellnfo ;

Hessage (B
s ge (8)

B 3xt read a current mode] ¥x% }
rocedure ReadCurrentModel ;

Begin
6rﬂodelGiven iz False ;
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ReadModel (CrModel. Model) ;
InitCréodelInfo ;
Enge?sage {9)

i*; Turgo Pascal routines used iﬁ the program that are not available in Standard Pascal #¥%
rocedures :
CirScr --> clears screen, places cursor in the upggr left-hand corner.
GotolY (Column, Row) --> moves cursor to the specified location,
FillChar (Vari‘ﬂun, Value% =-> fills Kum bytes of memory, starting at
i

the first byte of Var, with Value.
Punctions:
4bs (Num)  --> absolute value of Num. )
BrcTan (Num) --> angle, in radiams, whose tangent is Num.
Cos (Num) ~ --> cosine of Num which is in radians.
Sin (Num)  --> sine of Kum which is im radians.
Exp (Num)  --> exponential of Num.
Int {Num --> integer part of Num.
Lo (Num) --> natural logarithe of Rum.
Sqr {(Num)  --> square of Num,

Sart &Nnn) --> gquare root of Hum.

0dd (Num)  --> true if Kum is an odd mumber. .
Ord (Var --> ordinal number of Var in the set defined by the type Var.
Round (Num) --> the value of Bum rounded

feyPressed --> true if a key is pressed at the console.
Uplase (Ch) --> uppercase of Ch.
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