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ABSTRACT

The unique feature, the time constraint, of hard real-time systems makes them
different from the traditional computer systems because in such systems the required
tasks must be executed not only functionally correctly but in a timely manaer. In this
thesis, the scheduling problem of hard real-time tasks. in distributed systems is
examined in detail. Previous work on the algorithms pro'posed for scheduling in hard
real-time systems is reviewed. A heuristic algorithm which considers not only CPU
scheduling but also general resource requirements of tasks is chosen to be evaluated. A
set of heuristics that can be used. by this algorithm is studied through a segquence of
simulations. The heuristic function which is observed to perform the best is
incorporated in the distributed schéduling algorit.hm. In this algorithm the
determination of a good destination node for a locally nonguaranteed task, is based on a
technique that combines bidding and focused addressing algorithms. S‘imulaiion studies
are conducted in order to evaluate the performance of the algorithm in a wide range of
application environments. The performance of the algorithm is also compared to that
of three other distributed scheduling algorithms. It is observed that though this
algorithm is sensitlive to the characteristics of the environments, it performs well in a

wide range of environments, compared with the other algorithms.



OZET

Kal1 gercek zamanli sistemlerin ozelligi olan stre sinirfamass, bu sistemleri geleneksel
bilgisayar sistemlerinden farkli kilmaktadir, cinkt bu tur sistemlerde talep edilen
isler yvalnizca gﬁrev' bakimindan-dogru olarak degil, ayxﬁ zamanda vaktinde yerine
getirilmelidirier. Bu tezde dagitilmisg sistemlerde kati gercek zamanli islerin
planlanmasi sorunu ayrintilt olarak incelenmektedir. Katt gergek zamanli islerin
planlanmasi konusunda simdiye dek onerilmis algoritmalar gozden gegirilmektedir.
Sadece MIB planlamasini degil, islerin genel kaynak ihtiyaglarint da dikkate alan bir
bulugsal algoritma degerlendirilmek uzere secilmistir. Bu algoritma tarafindan
kullanilabilinecek bir grup bulussal fonksiyon, bir seri benzetim caligmas: ile
incelenmektedir. En iyi performanst verdigi gozlenen bulussal fonksiyon dagitilmis
planlama algoritmasinda kullanilmakiadir. Bu algoritmada yerel olarak garanti
edilemeyen i§v icin hedef dugumin seciminde pey strme ve direkt gonderme
algoritmalarini birlestiren bir teknik esas alinmaktadir. Algoritmanin performansini
gozlemlemek amac: ile ‘¢esitli uygulama sartlart igin benzetim calismalars
yapilmaktadir. Algoritmanin performanst bagka 0¢ degisik dagitulmis planlama
algoritmasinin performanslar: ile de kargilastirilmaktadir. Bu algoritmanin, uygulama
alaninn vzelliklerine haséas olmasina ragmen, genfs bir uygulama alani icinde, diger

algoritmalara kiyasla iyi bir performans gosterdigi gozlenmektedir.
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I. INTRODUCTION

Recently, there has been an increased interest in hard real-time systems and such
systems are becoming more and more so’phist.,icated\ Examples of this type of real-time
systems are command and control systems, flight control systems, and the space shuttle
avionics system. ' :

Correnily, the field of real-time scheduling is.the focus of a great deal of
research interest, This is because of the very frequent use of digital computers in real-
time applications, growing sophistication in real-time software for the last few years,
and an increased necessity in improving system performance and reliability.

In a hard real-time system, the correctness of the system depends not only on
the logical result of the computation, but alse on the time at which the results are
produced. Usually, timing constraints are described in terms of deadlines by which
computations of tasks must absolutely be met or the system will be considered to have
" failed. Further, if these real-time timing constrainis are not met there may be
potentially catastrophic consequences. Hence, the most critical part of supporting such
new systems is the ahility to guarantee that timing constraints can be met. Because of
the large number of combinations of tasks that might be active at the same time and
because of the continuvally varying demand patterns on the system, it is generally
impossible to pre-calculate all possible schedules o/7~/ine to statically guaraniee real-
time timing constraints. This study concerns the scheduling algorithms for oan-Zne
dynamic guarantee of deadlines,' in a hard real-time distributed computer system,

The problem of determining an optimal schedule is known to be NP-hard and is
hence impractical for real-time task scheduling. The problem is even harder when, in
addition to computation times and deadlines of tasks, their active and passive resource
requirements are aise accounted for, Optimal algorithms with polynomiai time
complexity exist only for a few restricied cases, for example, in the case where tasks
baving the same processing time and the same deadline are scheduled on two
processors and in the case where there is only one type of resource. None of these
cases.represent practical situations, Moreover, it is impossible to find an optimal



schedule for 3 dynamic disu‘-lbuted system given the inherent communication delay.
All of these factors necessitate a heuristic approach to scheduling.

In many hard real-time systems, tasks are scheduled dynaﬁically and hence the
- scheduling algorithms used must have low run-time costs. In this study, 2 non-
preemptive scheduling scheme is evaluated for such dynamic hard real-time
distributed systems. In this scheme in addition to tasks' timing constraints their active
and passive resource requirements are also taken into jax:counL The scheme has two
components : local scheduling (guaranteeing tasks that arrive dynamically at a node)
and distributed scheduling (guaranteeing locally nonguaranteed tasks at remote
nodes).

The heuristic algorithm developed by Zhao, Ramamritham, and Stankovic " is
chosen as the algorithm vnderiying the guarantee roviime in focal scheduling and is
implemented with some modifications. The most critical point in local scheduling is the
heuristic function used by the guarantee routine to select the task to be scheduled next.
In order {o keep run-time costs low, computationally simple hevristic functions are
ewfaluated and the one which has the best perfurmance is chosen for further
exploration. The simulation results teported in Part- VI show that because of the
complexity of the problem, simple heuristics alone ‘do not perform satisfzictorily,
However, an algdrithm .that uses a linear combination of simple heuristics in
conjunction with limited backtracks works very well.

As mentioned before, in a hard real-time system, every -task that misses its
deadline can seriously degrade the performance of the sysitem. Hence, even a small
performance improvement should 'be, considered significant in the context of hard
real-time systems, '

It should alse be pointed out that the f{ime complexity of this algorithm for
scheduling a set of k tasks is k2, which is very much lower than that of an optimal
exhaustive search algorithm which takes time proportional to k!. Hence, this is an
attractive approach to overcome the exponential px;oblem of scheduling.

When a task arriving at a node cannot be guaranteed at that node, the
“distributed scheduling problem comes into the picture. In that case, the local
schedulers on individual nodes must interact and cooperale to determine which other
node in the system can guarantee the task. The degree of this cooperation depends on

*

References enclosed in brackets refer to the bib;iography,



the algorithm used. In this study, an algorithm which combines bidding and focused
addressing algorithms [2] is evaluated. The integrated simple heuristic, which was
observed to have the best performance in Part V1, is incorporaled in this diétributed
.scheduling algorithm as the heuristic underlying the guarantee routine on each node.

In the dlstrzbuted scheme the guarantee routine is used both in scheduling tasks that
arrive at a node, and in making bids for remote tasks locally nonguaranteed.
Simulation studies are conducted on the algorithm to observe how communication
delay, task 1é,xity, system load, and system's network topology affect the overall
performance of the system. The performance of the algorithm is also compared with
that of thge other algorithms : noncooperative, random scheduling, and Hirect
bidding. From the simulation results reported in Part VII, it is observed that the
scheme is effective and practical in 4 wide range of application environments. It reaps
the benefits of both bidding and focused addressing, and overcomes the shortcomings
in using each by itselfl.

The thesis consists of eight parts, including this part. In the next part, a general
information about distributed systems and real-time sysiems is given, and a hard real-
ﬁme fask model is introduced, Then, in Part III, a taxonomy of different approaches to
the distributed scheduling problem is presented. Part IV concerns a literature §urvey
en scheduling algorithms in hard real-time systems, The current literatures for
multiprocessor systems and for distributed systems are reviewed separately. After this
general study. in Part V, an overview of the scheme of scheduling hard real-time tasks
with general resource requirements in distributed systems is introduced whose local
scheduling component is discussed in detail in Part VI, and distributed sched‘uling
component is discussed in detail in Part VII. Part VIII contains the conclusion of the
thesis.

Appendices A through D, contain the listings of some of the simulation
programs which are introduced in Parts Viand VII. One may refer to the diskette for a
complete set of programs developed for this study.

Bibliography gives a list of references used in this study and cited in the text of
the thesis. References not cited are listed separately



I1. SCHEDULING

This part contains the presentation of the distributed system model adopted throughout
this study and the introduction of the scheduling problem in distributed computer
systems followed by a general information about real-time systems and hard real-time
scheduling. A hard real-time task model is also presented.

2.1. Distributed Systems and Schec!uling

A resource is an eniity which may be demanded by tasks. It can include CPU, I/0
devices, files, data structures, etc. A resource wh@ch‘ha:f.g;'ocessing power is called an
acifve resource, or processer; A CPU or an 1/0 processor is an aclive resource. If a
resource has no processing power, it is a passive resource Files are examples of passive
reseurces. Therefore, a passive resource must be used with an active resource.

A multiprocessar system is a configuration of a set of resources in which the
" cantrol is centralized, and processors can communicate with each other without any
significant delay. According to the definition of resources, in a multiprocessor system
there is at least one active resource, that is, a processor, and zero or more passive '
resources. In a multiprocessor system, the processors are sdentical if they are exactly
the same in terms of the processing power, that is they have the same instruction set
and the same speed,. The processors are vaiform if they have only the same instruction
set, but different speeds, '

A distributed system is defined as any configuration of two or more nodes, each
consisting of a multiprocessor system as defined above, with control of the system
being distributed among the nodes. In a distributed system, communication between
nodes occurs over some communication medium, and the time of communication
between nodes is often assumed to be non-negligible.



Once the systém is operational, improving response time and throughput of
user processes is large'ly the responsibility of scheduling algorithms which are the
operaling system components that function continuously to manage the processing
" resources in the system. Proper design of such mechanisms has a great impact on
overall system performance. This design problem becomes two-dimensional in the
domain of distributed computing systems since not only the question of waeaz to
execute, but also where 1o execute a pariicular task mﬁst be addressed. Towards this
goal, many approaches to the problem have been attempted, with variously reported
results. A taxonomy of these approaches is given in Part I11.

If a distributed computer system is to exploit the multiplicity of processors and
resources in the network it must contain independent Lol schedulers The local
schedulers must interact and cooperate and the degi‘ee to which this occurs can vary
widely. '

Stankovic in [3] suggests that a good scheduling algorithm for a distributed
computer system will necessarily use Aeuristics sin_lilar to those found in “expert
systems”, The task of these heuristics is to effectively utilize the resources of the entire
distributed system given a complex and dynamically changing environment,

Some implications of using a heuristic function for scheduling should also be
pointed out :

(a) If an optimal scheduling algorithm can come up with a feasible schedule for a set of
tasks, the heuristic scheduling algorithm may be able to do the same depending on the
goodness of its heuristic function.

(b) If even an optimal scheduling algorithm is upnable to schedule a set of tasks, then
the heuristic scheduling algorithm definitely cannot.

i

(c) When there is no feasible schedule for a set of tasks, the heuristic scheduling
algorithm will be able to discover that much sooner than an optimal scheduling
algorithm. '



2.2. Real-Time Systems

Recently, a major area of computer application has been real-time systems. There are
“two types of real-time computer systems :

(a) A Hardd Real-Time Spstem is one in which tasks have explicit time constraints, such
as deadlines, so that a task is considered to be of value only if it finishes before its
deadline.

(b) A Soft Real-Time System is one in which tasks hayve to be executed as quickly as
possible, but there is noexplicit time constraint associated with them.

Distributed systems are wﬁable for hard real-time applications. This is not only
because often the apphcatmns themselves are phy*zxcally distributed, but also because
of the potential that distributed systems have for providing good reliability, good
resource sharing and good extensibility, as reparted by Staﬂkovxc in [3], by Stone and
Bokhari in [4], and by Klemmck in {5].

Nuclear power plants and process control applications are 'inhérently '
distributed and have severe real-time constraints and reliability }equirements. These
. constraints add considerable complication to a distributed computer system. Airline
reservation and banking applications are alse disiributed, but have less severe real-
time and reliability constraints and are easier to build. Examples of the more
demanding real-time systems include ESS [6], REBUS [71,-and SIFT [8]. ESS is a software
controlled electronic switching system developed by the Bell System for placing
telephoune calls, REBUS is a fault tolerant distribuied system for industrial real-time
control, and $IFT is a fault tolerant flight contrel system.

In the future, such real-time systems are expected to become more and more
complex, have long lifetimes, and exhibit very dynamxc, adapiive and even intelligent
hehavior.



2.3. Scheduling in Hard Real-Time Systems

1n many systems, and especially in embedded systems, danger to human life or simply
damage to equipment makes the violation of a task’s deadline unacceptable. It follows
that the main requirement of a hard real-time system is that it should be sup plied with
a highly efficient lesk schedulec which carefully schedules the tasks so that all the
tasks meet their timing requirements.

In a hard real-time scheduling algorithm, a set of tasks is said to be guaraateed
1f and only if the algomthm derives a schedule for the set of tasks which meets the
given set of time, resource and precedence constraints, In a dynamic system, because
all of the task characteristics are not known a priory, a task is said to be guaranteed by
a scheduling algorithm if, when the task arrives, the scheduling algorithm is capable
of finding a échedule for all the tasks previously guaranteed and the new arrived task.

A major performance metric for dynalmc ﬂcheduhng algorxthms is the
.guarantee ralio, which is defined as the tatal number of tasks guaranteed versus the
total number of tasks arrived, '

. A real-time scheduling algorithm is said to be gptima/ if given a set of tasks it
can always generate a schedule meeting the time, resource and precedence constraints
whenever there is any algori@ﬁm which can do so, '

For sub-aptimal algorithms, one performance metric is the seccess ralfo, ie.,
the total number of task sets guaranteed by this algonthm versus the total number of
_task sets guaranteed by an optimal algorithm.

A fas£ T, in a hard real-time system is characterized by the following
parameters ;

(A) The Arcival Time, AT(T) : At this time, the task and the associated task
parameters (specifications) are known to the system,

(B) The (Farliest) Start Time, ST(T) : Only after this time, can task T be executed.

(C) The Forst Case Compuiztion Time, C(T) : In any. case, the running time of
task Twill aot be more than this amount of time. Tasks in real-time system have to be
designed so that the difference between their worst case and normal execution times is



not large. Otherwise, when resources are assigned to a task for its worst case execution
time, poor resource utilization will result. 1n this regard, a dvnamic scheduling scheme
has advantages since based on the input parameters of a dynamically invoked task, a
lower worst case computation Lime can be determined (compared to a statically
determined worst case computation time).

(D) The Mlinc. D(T) : By that time, task T must complete its execution.

(E) The Lxra;r L(T) : This is the time difference between the earliest termmaimn
time of 2 task'l‘ and its deadline, where ea,rhest termination time of a task is the sum of
.its earliest start time and its computatien. tlme

(F) The Resource Requirements of the task, R(T) : This is a vector, specifying
the resources needed in the execution of the task, It is assumed that a task needs all its
resources throughout its execution, and the resource requirements of a task are always
less than or equal to the total resources in the node of the system, A task will request at -
least one active resource and zero or more passive resources.

It is assumed that these parameters are always feasible, that is to say,
0 £ AT(T) £ ST(T) = D(T)- (T,
alway§ halds.

In a hard real-time system, there are two types of tasks : ﬂoﬁpefiodic lasks and
periodic lasks A n(inperiedic task arrives at any node dynamically and has {o be
executed before its deadline, The existence of a péi'iodic task with period P implies that
ane instance of the task should be execuied once every P units of time after system
" initialization: The i-th instance of a periodic task with period P has deadfine being
1*P+] where I is the relative deadline in a period, It is generally assumed that D' £ P.

In addition to resource requirements and timing ';mnstraints, tasks in real-time
systems are also characlerized by their priordy and precedence consirainls The
priority of a task encodes its level of importance relative to other tasks. There may be
precedence relation among a set of tasks in the systém. A task Ty is said to precede
another task Tz, if T{ must complete its execution before T2 starts. It is always assumed
that the precedence relation is acyclic. A task is preemptable if it can be preempted in
its execution. Precedence constraints enter the picture w'hen tasks communicate or
when a complex task is viewed in terms of a number of subtasks related by precedence
constraints.
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This study focuses on tasks that are independent and have equal priority,
because consideration of precedence and priority constraints would add new variables
to the already large number of variables used, and would affect the results of the

simulation studies.
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I11. DISTRIBUTED SCHEDULING ALGORITHMS

The study of distributed comLputing has grown to include a large range of applicaiions.
However, at the core of all the efforts to exploit the potential power of distributed
computation are issues related to the management and allocation of system resources
relative to the computational Inad of the system.

The notion that a loosely coupled collection of processors could function %3 8
more powerful general-purpose computing facility has existed for quite some time. A
large body of work has focused on the problem of managing the resources of a system
in such a way as to effectively exploit this power. The resuit of this effort has been the
proposal of a variety of widely differing techniques and methodologies for distributed
scheduling.

In this part, a tazonomy of approaches to the scheduling problem is presented
in an attempt to bring together the ideas and the common terminology used in this
area, and to provide a classification mechanism necessary in addressing this problem.

Among existing taxonomies, one can find examples of flat and hierarchical
classification schemes. The taxanomy presented in this part is a hybrid of these two :
hierarchical as long as possible in order to reduce the total number of classes, and flat
when the descriptors of the sysiem may be cposen in an arbitrary order.

3.1. Hierarchical Classification

The structure of the hlerarchlcal portion of the taxonomy is shown in Figure 3.1,
dmcu':smn of the h1erarch1cal portwn then follows,
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FIGURE 3.1 Structure of the hierarchical classification

(A) Local Versus Global - At the highest level, one may distinguish between /foca/
and globa/scheduling. Local scﬂeduling is involved with the assignment of processes
to the time-slices of a single processor, Global scheduling is the problem of deciding
where to execute a process, and the job of local scheduling is left to the operating
system of the processor to which the process is ultimately allocated. This does not imply
that global scheduling must ‘bé done by a single central authority, but rather, the
problems of local and glabal scheduling are viewed as separate issues, and (at least
lagically) separate mechanisms are at work solving each.
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(B) Static Scheduling: The next level in the hierarchy (beneath global scheduling)
is a choice between seafsc and 'ajmamit: scheduling. This choice indicates the time at
which the écheduling' or assignment decisions are made. In .the case of static
scheduling, information regarding the total mix of processes in the system as well as
“all the independent subtasks involved in a job or task force is assumed to be available
by the time the program object modules are linked into load modules. Hence, each
executable image in asystém hasa static assignment o a particular processor, and each
time that process image is submitted for execution, it is assigned to that processor.

(C) Optimal Versus Suboptimal : 1n the case that all information regarding the
state of the system as well as the resource needs of a brocess are known, an ogliimal
assignment can be made based on some criterion function. Examples of optimization
measures are minimizing total process completion time, maximizing utilization of
resources in the system, or maximizing system thmughpdt In the event that these
problems are computationally infeasible, subopiimal solutions may be tried.

(D) Adpproximate Versas Hearistic : Within the realm of suboptimal solutions to
the scheduling problem, two general categories may be encountered. The first is to use
the same formal computational model for the algorithm; but instead of searching the
entire solution space for an opﬁmal solution, we are satisfied when we find a "good”
one. Those solutions are categorized as subopiimal-approximate. The assumption that a
good solution can be recognized may not be so significant, but in the cases where a t
metric is available for evaluating a solution, this technigue can be used to decrease the
time required to find an acceptable solution.

The second branch beneath the suboptimal category is labeled Aeurisiic This
branch represents the category of static algorithms which make the most realistic
a#sumptions about 2 grwrd knowledge concerning process and system Ioéding
characteristics. It also represents the solutions to the static scheduling problem which
require the most reaspnable amount of time and other system resources to perform
their function. The most distinguishing feature of heuristic schedulers is that they
make use of special parameters which affect the system in indirect ways.

(E) Optimal and Suboptimal Approximate Technigues: Regardless of whether a
static solution is optimal or suboptimal-approximate, there are four basic categories of
task allocation algorithms which can be used to arrive at an assignment of processes to
Processors

(a) solution space enumeration and search;
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(b) graph theoretic;
(c) mathematical programming;
(d} queueing theoretic.

(F) Dynamic Schedvling : In the dynamic scheduling problem, the more realistic
assumption is made that very little 2 prvars knowledge is available about the resource
needs of a process. In the statip case, a decision is made for a process image before it is
ever executed, while in the dynamic case no decision is made until a process begins its
life in the dynamic environment of the system.

(G) Distributed Versus Nondistributed : The nexi issue (beneath dynamic
.solutions) involves whether the responsibility for the task of global dynamic
scheduling should physically reside in a single processor ( ghrsically noadistributed )
or whether the work involved in making decisions should be phssically distributed
~ among the processors,

(H) Coaperstive Fersus Noncooperstive : Within the realm of distributed
dynamic global scheduling, we may also distinguish between those mechanisms which

involve cooperation between the distributed components ( cooperative ) and those in

which the individual processors make decisions independent of the actions of the other

processors (noncogperative ). The question here is one of the degree of awvionomy
which each processor has in determining how its own reéo;:rces should be used.

In the noncooperative case individual proceséors act alone as auvionomous
entities and arrive at decisions regarding the use of then' resources independent of the
effect of their decision on the rest of the sysitem.

In the cooperative case each processor has the responsibility to "carry out its
own portion of the scheduling task, but all processors are working toward a common
system-wide goal. In other words, each processor’s local operating system is concerned
with making decisions in concert with the other processors in the system in order to
achieve some global gbal, instead of making decisions based on the way in which the
decision will affect local performance only.

As in the static case, the taxonomy tree has reached a point where optimal,
suboptimal-approximate, and suboptimal-heuristic solutions may be considered. The
same discussion as was presented for the static case applies here as well.
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3.2. Flat Classification Characteristics

In addition to the hierarchical portion of the taxonomy already discussed, there are a
number of other distinguishing characteristics which scheduling systems may" have.
This section deals with characteristics which do not fit uniquely under any vparticular
branch of the tree-structured taxonomy given thus far, but are still important in the -
way that they describe the behavior of a scheduler‘ In other words, the Following
characteristics could be branches beneath several of the leaves shown in Figure 3.1,
‘and in the interest of clarity are not repeated under each leaf, but are presented here
as a [lat extension to the scheme given thus far. '

"It should be noted that these attributes represent a sot of characteristics, and
any particular scheﬁluling subsystem may possess some subset of this set.

(A) Adapiive Vorsus Ient&ptin: An adaptive solution to the scheduling problem
is one in which the algorithms and parameters used to imblen_xent the scheduling
policy change dynamically according to the previous and current behavior of the
* system in response to previous decisions made by the scheduling system. In contrast to
an adaptive schedulsr, a nonadaptive scheduler would be one which does not
necessarily modify its basic control mechanism on the baszs of the history of system
activity.

(B) Load Balancing : The basic idea is to attempt to balance (in some sense) the load
on all processors in such a way as to allow progress by all processes on all nodes to
proceed at approximately the same rate, This solution is most effective when the nodes
of a system are homogeneons since this allows all nodes to know a great deal about the
structure of the other nodes. Normally, information would be passed about the network
periodically or on demand in order to allow all nodes to obtain a local estimate
concerning the global state of the system. Then the nodes act together in order to
remove work from heavily loaded nodes and place it at lightly loaded nodes.

This is a class of soluuons which relies heavily on the assumption that the
information at each node is qmte accurate in order to prevent processes from endlessly
being circulated about the system without making much progress.

(C) Bidding : In this class of policy mechanisms, a basic protocal framework exists
which describes the way in which processes are assigned o processors.-Fhe resulting -



15

scheduler is one which is usually cooperative in the s’eﬁse that enough information is
exchanged (between nodes with tasks to execute and nodes which may be able to
execute tasks) so that assignment of tasks to processors can be made which is beneficial
to all nodes in the system-as a whole.

Ta illustrate the basic mechanism of bidding, the framework and termiinology
introduced by Smith [9] will be used. Each node in the network is responsible for two
roles with respect to the bidding process : manager and contractor. The manager
represents the task in need of a location to execute, and the contractor represents a
node which is able to do work for other nodes. A single node takes on both of these
roles, and there are no nodes which are strictly managers or contractors alone, The
manager announces the existence of a task in need of execution, then receives Asds
from the other nodes. A wide variety of possibilities exist concerning the type and
amount of information exchanged in order to make decisions.

A very important feature of this class of schedulers is that all nodes generally
have full autonomy in the sense that the manager ultimately has the power to decide
where to send a task from among those nodes which respond with bids. In addition, the
contraciors are also autonomous since they are never forced to accept work if they do

" not choose to do so, '

(D) Probabilistic : The basic idea for this scheme is motivated by the fact that in
many assignment problems the number of permutations of the available work and the
number of mappings to processors are o large that examining analytically the entire
so_lution space would require a prohibitive amount of time. Instead, the idea of '
randomly (according to some known distribution) choosing some process as the next to
| assign is used. Repeatedly usihg this method, 4 number of different schedules may be
.generalad; and then this set is analyzed to choose the best fmm among those randomly .
generated, The fact that an fmbortant attribute is used to bias the random choosing
process would lead one to expect that the schedule would be beller than one chosen
entirely at random, The argument that this method actually px"odu ces a good selection is
based on the expectation that enough variation is introduced by the random choosing

N

to allow a good sofution {o get into the randomly chosen set.

(E) One-Time Assignment Versus Dynamic Resssignment: If the entities to be
scheduled are jobs in the traditional batch processin‘g.sense of the term, then the
single point in time in which a decision is made as to where and when the job is to
execute is considered. While this technique technically corresponds to a dynamic
approach, it is static in the sense that once a decision is made to place and execute a job,
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no further decisions are made concerning the job. This class is characterized as one-
time assignments. In contrast, solutions in the dynamic reassignment class try to
improve on earlier decisions by using information on smaller computation units.

33. Application of Taxonomy to Some Examples

As an illustration of the taxonomy introduced in the preﬁous sections, some example
hard real-time scheduling algorithms are taken from the published literature, and
their classification characteristics are determined according to the taxonomy. Table 3.1
contains the results.

These example algorithms are discussed in detail in Section 4.2.1 and in
Section 4.2.2 of Part IV concerning the literature survey on scheduling algorithms for
hard real-time systems.

Since this study is focused on hard real-time distributed scheduling, example
algorithms are chosen from this area of research. One may refer to the work of
Casavant and Eub{, presented in [10], for a more general annotated bibliography of
scheduling algorithms for general-purpose disiributed computer systems.
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Developed by

Reported In

Classification Characteristics

Lo, V.M.

(11)

Global,

Static,
Suboptimal,
Approximate,
Graph theoretic.

Efe K.

2]

Global,
Static,
Suboptimal,
Heuristic,

Ma, P.Y.R,
" Lee,E.Y.S.,
and Tsuchiya, ].

(131

Load-balancing.

Global,

Static,

Optimal,

Mathematical Programming.

Ramamrithain, E.,
and Stankovic, J. A.

[14] -

Global,

Dynamic,

Distributed,
Cooperative,
Suboptimal,

Heuristic,

Bidding,

(ne-time assignments,

TABLE 3.1 Application of the taxonomy to some example algorithms
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IV LITERATURE SURVEY ON SCHEDULING ALGORITHMS FOR HARD
REAL-TIME SYSTEMS

In this part, the algorithms proposed for scheduling in ha;-'d real-time systems, are
reviewed. Most research on scheduling tasks with hard real-time constraints is
restricted to uniprocessor and multiprocessor systems. As reported by Graham, I_Qawier.
Lenstra, and Ean in [15], optimal scheduling in 2 multiprocessing environment is an '
NP-hard problem, and hence computationally intractable. The loosely coupled nature
" of distributed systems makes the problem even har‘der‘ Section 4.1, contains an
overview of the current literature on scheduling algorithms for multiprocessor

systems, and Section 42, surveys work on schedulmg algorlt,hms for distributed
systems.

4.1. Literature Survey for Multiprocessor Systems

4.1.1. Static Scheduling Algorithms for Myltiprocessor Systems

Xu and Parnasin [16], present an algorithm that finds an optimal schedule on a single
processor for a given set of processors such that each process starts executing after its
release time and completes its computation before its deadline, and a given set of
precedence and exclusion relations are satisfied. Exclusion relations may exist between
process segments when shme process segments cannot be interrupted by other process
ségments to prevent errors caused by simultaneous access to shared resources. This
algorithm can be applied to the problem of pre-run-time scheduling of such processes,
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on a single processor, in hard real-time systems. Fuwre work is required to generalize
the algorithm for n processors case.

Garey and Johnson in [17], describe an algorithm to determine if a two-
processor schedule exists so that all tasks are completed in time, given a set of tasks,
their deadlines, and the precedence constraintsof all tasks.

Liv and Layland in [18], derive necessary and sufficient conditions for
scheduling periodic tasks, with preemption pe’rmitted. The first algorithm is the Rate
Monotonic Priority algorithm which assigns the highest priority to the task with the
fastest rate, that is, the smallest period. The second algorithm, called Deadline Driven
algorithm, dynamically assigns priorities to the instances of the periodic tasks based on
their deadlines. The task with the smallest deadline gets the highest priority. Their
results, which hold for uniprocessor systems were extended to include arbitrary task
sets and precedence constraints.

Houssine Chetto and Maryline Chetto in [19], investigate the problem of
estimating localization and duration of idle times when tasks are scheduled according to
the Earliest Deadline scheduling algorithm asin [11], Their aim is to bring to light new
ideas about preemptive scheduling applied to a set of real-time, independent, periodic
tasksthatrunona monoprocessdr machine.

Teixeira in [20], develops a model that considers priority schedulmg for a more
general case, where the deadline of a periodic task is not necessarily equal to the
length of its period.

Johnson and Madison in [21], examine single and multiple processor systems
executing real-time tasks, They develop a measure of free time to determine whether
new tasks can be admitted and still meet every task's response specification.

These ahove schemes are quite inflexible, in that they do not adapt to the
changmg state of the system, and do not take inito account general resource
requirements of the tasks,

' Blazewicz, Drabowski, and Weglarz in [22], present an algorithm for
determining the sh({rtest p:eexﬁptive schedule in a system with a single resource type
but any number of instances of this type. The authors formulate the determination of
the schedule in the form of a linear programming problem and therefore, the problem
can be solved in time which is a polynomial in the number of variables. This algorithm
_{akes an exponential time in the number of resource instances which makes it
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computationally too intensive to be used for on-line scheduling. Moreover, the case of
- multiple resource types is not handiled. '

However, in the work of Leinbaugh in [23], resource requirements are dealt
with. He developed a heuristic algorithm which, when given the general resource
requirements of each task, determines an upper bound on the response time of each
task. While this approach is useful at system design time to statically determine the
upper bounds on response times, it cannot be used for on-line scheduling, because
there is no attempt at raamicnilr guaranteeing a new task so that it will meet its
deadline.

Zhao, Ramamritham, and Stankovic in [1], describe a heuristic algorithm which
takes into account both of tasks’ active and passive resource requirements, and can be
used in multiprocessor systems. The heuristic function, used to guide the search of a
feasible schedule if there is one, is composed of three weighted factors which explicitly
consider information about real-time constraints of .tasks and their utilization of
resources, They also show that modifying the approich to use limited backtracking
improves the degree of success. )

According to Lenat [24], heuristics are informal, judgmental rules of thumb
which come in two types : '

{a) those that actively guide the system toward plausible paths to follow ;
(b) those that guide the sysiem away from the implausible paths

In the work of Zhao, et al. [1], both types of heuristics are used. The heuristic
function used by the algorithm actively directs the scheduling process to a plausible
path, and also, the search space is constrained by looking only at strongly feasible
paths, preventing from looking at implavsible paths, As a result;even in the worst
case, this algorithm is not exponential,

Zhao, Ramamritham, and Stankovic in 125), further consider the problem of
scheduling a set of preemtable tasks in a real-time sysiem in which a passive resource
can be used either in shared made or exclusive mode. They present an algorithm which
uses a heuristic function which is a caimbination of Minimum Deadline First heuristic
and Maximum Resource Utilization First heuristic with a third factor to prevent over
preemption. They show that this algorithm, in conjunction with limited backtracks,
works satisfactorily, | |
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4.1.2. Dynamic Scheduling Algorithms for Multibrocessor Systems

It should be noted that in a dynamic system there is no a priori knowledge about any -
characteristics of a task vntil it arrives. Whenever a task arrives, a new schedule
needs to be determined for the tasks including those which have been in the system,
“but have not finished, and the newly arrived one, '

) Sincé static scheduling problems for multiprocessor systems are similar to
scheduling problems in operations research, they have been attracked by the
researches since the 1950's. Various algorithms have been pmpqs&d‘ Some of them
have a small time ép‘mplex'ity‘_lf a system can tolerate the time complexity of a static
scheduling algorithm, the algorithm may be used to determine a new schedule .
dynamically when a task arrives. But, there are also scheduling algorithms which are

developed specially for dynamic multiprocessor systems. The followings are some
. examples of such scheduling algorithms :

Dertouzos in [26], shows that the Earliest Deadline algorithm is optimal, for a
single processor system with independent preemptable tasks. The proof dependson the
fact that for a single processor system, it is always possible to transform a feasible
schedule to one which follows the Earliest Deadline algorithm. This is so because if at
any time the processor executes some task other than the one which has the closest
deadline, then it is possible to interchange the order of execution of these two tasks,
that is, execute the task with the closest deadline first and execute the sacrificed task
at a later time when the task with the closest deadline would have been executed, Since
the sacrificed task has a more distant deadline, making up for its processor time before
the closest deadline certainly does not violate its own deadline. |

Further, Dertouzos and Mok in [27), prove that the Least Laxity algorithm is also
optimal for such a system to dynamically schedule hard real-time tasks. They also point
nut that the above nptimality proof of the Earliest Deadline algorithm does not hold in
the multiprocessor case. They show that for the case when the number of processors is
larger than one, no scheduling algorithm can be optimal without 2 privrs knowledge
of deadlines, computation times and start times of the tasks. This implies that heuristic
approaches have to be taken for scheduling tasks in such systems.

Jensen, Locke, and Tokuda in [28], re portthat Least Laxity , and Earliest Beadline
scheduling policies perform much better than others in a multiprocessor real-time
system,
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It should also be pointed out that the above dynamic multiprocessor scheduling.
algorithms do not take into account the passive resource requirements of tasks.

4.2. Literature Survey for Distributed Systems

-

The architecture of the network and the nature of the application programs being
presented to a distributed system are often such that the communication between nodes
is a significant factor in the performance of the system. Because of this, the run time
control has to be distributed. Hence, each node in the system is autonomous and often
has its own local scheduler to handle the tasks assigned to it. The scheduling algorithms
for multiprocessor systems can be used for the scheduling tasks on a node. However,
how to allocate tasks to nodes statically in a static system, and how to transfer tasks
from one node to another at run time in a dynamic system are the new problems,

4.2.1. Static Scheduling Algorithms for Distributed Systems

The stéaﬁc scheduling algorithms for distributed systems are é,lready known to be
difficult even without time constraints on tasks. '

For example, as Bokhari reportsin [29], if the objective is to minimize the cost of
processing and communication, the problem of assigning tasks in a distributed system
with heterogeneous processors is NP-hard for a system of more than three processors.
For three processors the system is open.

For two processors, an optimal algorithm is reported by Stone in [30]. This
algorithm considers two kinds of 'costs in an assignment. One is the computational cost,
the otlier is the cost of interprocessor communication. He shows that the problem can
be solved effii:iently by making use of the algorithm for finding maximum flows in
commodity networks. ‘ h
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Lo in [11], extends Stone's algorithm into a heuristic one for arbitrary number-
of processors. Lo also recognizes that the use of total execution and communication
costs as the criteria for optimality has no explicit advantage to concurrency. Therefore
the total completion time of tasks may nnt be optimal as it could be. Lo introduces a new
cost, ¢k inlerference cost to measure the cost if two tasks are assigned on the same
node. Interference costs reflect the degree of incompatibility between two tasks. For
example, a pair of tasks that are' both highly CPU bound would have géeater
interference costs than a pair in which one task is CPU bound and the other is 1/0
bound. Similarly, if two tasks were involved in pipelining, it would be undesirable that
they are assigned to the same processor. This incompatibility would be expressed in a
high interference cost for that pair of tasks. With this metric, Lo's algorithm is able to
make assignments with greater concurrency and less completion time than the
previous ones. Further, Lo investigates the problem with the goal of minimizing the
completion time of a task set. An optimal algorithm is reported for the case where all
costs are constant.

Chu and Lan in [IBI}, propose a heuristic algorithm for task assignxﬂent which
consists of two phases. Phase 1, reduces modules to a2 number of groups each of which
will be assigned as a single unit to a processor. This grouping is based on several
factors, such as, precedence relationship, communication costs and accumulative
execution times. In phase 2, an exhaustive search is performed for the assignment of
these groups td processors, such that, the load on the most héavily foaded processor
(bottfeneck) is minimized, The algorithm, instead of trying to minimize the sum of
processor loads, searches the assignment that yields the minimum hottleneck. They
show that assignments generated by such an approach yield good task response time
which is the most important performance measure for real-time systems.

Efe in {12], propdses a heuristic algorithm for static assignment of tasks in a
“distributed system. His algorithm works as follows :

(a) cluster tasks according to'com'municaﬁon costs;

(b) assign each cluster to a processor taking the current processor load into
consideration;

(¢) if the results of the assignment in the above slep satisfies the load balance
constraint, stop; otherwise,

" {d) identify the overloaded and underloaded processors and move some tasks from the
overloaded processor to th_e underioaded one;
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(e) repeat frmh c.

Although the original goal of Efe's algorithm ‘is to balance the loads of
processors, the load balance constraint can be replaced with the deadline of the task
set. Consequently, the modified algorithm can be used for the static assignment of tasks
with task-set deadline. |

It should be noted that, the ahove approaches cannot take into account deadlines
of individual tasks, but the algorithms that will be discussed next, do.

Leinbaugh and Yamini in [32], extend the approach in [23] into distributed
cases, [n their model, a task is divided into multiple segments and the segments of a task
can be executed concurrently on different nodes, In this study, the worst response time
of each individual task is estimated by taking inte account not only the blocking times
caused by other tasks, but alse the communication delays, Their algorithm is useful in a
hard real-time environment to determine if response times will always be met.

Ma, Lee, and Tsuchiya in [13], and Ma in [33], propose an algorithm to statically
assign tasks for a distributed system taking timing-critical applications into account.
The model introduced, represents an example of an optimum mathematical
programming formulation employing a branch-and-bound technique to search the
solution space. The goals of the solution are to minimize interprocessor
communications, balance the utilization of all processors, and satisfy all other
engineering application requirements. The model given defines a cost function which
includes interprocessor communication costs and processor execulion costs. The
assignment is then represented by a set of zero-one variables, and the total execution
cost is then represented by a summation of all costs incurred in the assignment. In
addition to the above, the problem is subject to constraints which allow the solution to
satisfy the load balancing and engineering application requirements. The algorithm
then used to search the solution space (consisting of all potential assignments) is
derived from the basic branch-and-bound technique.

Both Efe and Ma, use Aeuristic approaches for related scheduling problems. But,
they use the second type of heuristics mentioned in Section 4.1.1, This approach of only
u;ing the second type of heuristics is limited because, in the worst 'tase, the
exponential search problem cannot be avoided,
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42 2. Dynamic Scheduling Algorithms for Distributed Systems

The dynamic scheduling algorithms for distributed syétems should maximize the
guarantee ratio. To achieve this goal, two factors must be recognized :

(A) Suppose that tasks demand each resource with equal probability and have the
computation time equal to each other. Then, the guarantee ratio will be proportional to
the resource utilizations. Hence, to maximize the 'gi§§mnwe‘ratio, one should maximize
the resource utilizations Since, in practice, 'ta:;kﬁ wﬂl not always satisfy the above
conditions, this is only a rule of thumb. As reported by Livay and Melman in {34, in a
dynamic distributed system, without any mechanism for cooperation among nodes, it is
very likely that one node will be idle while tasks are queued at some other nodes, Thus,
fo maximize resource utilization, it is necesséry at rup time fo transfer tasks to other
less loaded nodes when they cannot be guaranteed locally,

(B) Because of the real-time constraints on tasks, the scheduling algorithm itself
should be very efficient, That is, to maximize the guarantee ratio, one should also
minimize the scheduling defay, This implies that the decisions, such as where to send a
task that cannot be guaranteed locally, must be made efficiently. It is not practical, if
not impossible, to perform a complete search to determine the best node to send a task,
in a network where communication delay is not negligible.

These factors necessitate 2 feurisiic approach for scheduling hard real-time tasks in a
dynamic distributed system,

As reported by 5mith in [9], and by Wang and Morris in [35], twe approaches
below have been recognized, in the current literature, for dynamically transferring
tasks in general distributed systems :

(a) source ifnitiated task transter where a node searches for other nodes to which a
task may be transferred;

(b) server initigted lask transter where a node searches for other nodes from which
tasks may be transferred.

Ramamritham and Stankovic in [14], adopt the ideas of source/server initiated
. task transfer, and suggest paﬁicular versions of them for hard real-time systems. In
this work, Aidding is implemented as source initiated task transfer, and focused
addressing is implemented as server initiated task transfer, Brief Iy, in bidding, a node
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is selected if the node offers the best bid. The commumcanon costs involved in bidding
are high, but selection is made based on relatively accura.te state information of nodes.
On thé other hand, in focused addressing, a node contains some state mformauon about
the other nodes, estimates the surplus of other nodes, and selects a node tn send a task to
based on these estimates. Focused addressing entails less commu nication costs and delay
than bidding, though the use of incomplete, inaccurate and out-of-date state
informaxiox;, increases the risk of making wrong decisions. Because of these reasons,
the working domain of these schemes are limited.

Stankovic, Ramamritham, and Cheng in [36], report an approach combining
bidding and focused addressing The aim is to reap the benefits of both and to overcome
the shortcomings inherent in using each by itself. They show that the working domain
of the combined scheme covers both domains of bidding and focused addressing.

Eurose and Chipalkatti in [37], study analytically the relative performance of
several different decentralized approaches towards load sharing, in order to determine
the level of complexity for load sharing algorithms in a distributed real-time
environment. 1n their model, it is assumed that tasks arriving at a node have to
complete their execution within a fixed amount of time, after their initial arrival to the
system. That is to say, deac}lines, are not drawn from additional deadline distribgtions.
They develop an approxzimate analytic system-level model for the entire distributed
system, and vse it to quantitatively study the real-time performance of two simple
approaches towdrds real-time load sharing. In the first approach, called guas/-
dynamic load sharing a task which cannot meet its deadline locally is sent to a
praobabilistically chosen remote node. The second approach is the probing approach
which is a simplified form of bidding. In this approach, when a task is to be
transferred, a node probes some specified number of other nodes chosen at random to
determine if one of them can currently guarantee it. Their performance results show
that, the performance of these simple approaches is substantially better than the case
of no load sharing and often close to that of a theoretically optimum algorithm.

But, all of these last three algorithms above, consider just CPU scheduling.
General resource requirements of the tasks are not dealt with.

Recently, Ramamritham, Stankovic and Zhao in (2], present another version of
the algorithm reported in [36), in which genera/ task'’s active and passive resource
requirements are also taken into account.
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V. OVERVIEW OF THE SCHEDULING SCHEME

In the design of real-time computer systems, the scheduling problem is considered to
be an important one, and has been addressed by many r_esearches as discussed in
Part 1V. However, most approaches are restricted to CP1J scheduling only. Whereas the
scheduling algorithm, which is chosen to be evaluated in this study, takes general
tasks' passive and active resource requirements into account as well [2). This part
contains a brief overview of the algorithm, the details are discussed in subsequent -
parts.

In this scheduling scheme, the scheduling entity is a task, It is assumed that
tasks may arrive dynamically at any node, and that they are independent, non-
preemptable, and have equal priority. The worst case computation time, the deadline,
the resource requirements of the tasks are assymed known when they arrive.

Each node in the distributed system has a Jocal schedvler. Each local
scheduler contains a guarantee routine, a bidder, a dispatcher, _axid a node surplus
manager. Figure 5.1 shows how these various modules interact with each other,

The local scheduler al a node, invokes the guxmbtae roufine , when a new
task arrives at that node. The guarantee routine decides if the new task can be
guaranteed at this node or not. The guarantee means that no matter what happens
{except failures) this task will execute by its deadline, and that all previously
guaranteed tasks will also still meet their deadlines, If the new task cannot be
guaranteed locally, then it becomes a candidate for distributed schéduling,

The bidder interacts with the local schedulers on the other nodes in order to
perform distributed scheduling. It is responsible for determining where a task that
cannot be locally guaranteed should be sent. It does this through a combination of
focused addressing and bidding.

In focused addressing , a task is sent directly to another node hased on its
partial knowfedge about the surplus of the other nodes in the system.
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FIGURE 5.1 Structure of the local scheduler on a node

In diddiag, the node sends out request-for-bid messages to other nodes, Nodes
with sufficient surplus on resources needed for the task, respond with a bid reflecting
this surplus. Then, the task is sent to the node which offers the ‘best bid. In addition to
sending its tasks to other nodes, the bidder makes b‘ids' in response to request-for-bid
messages from the other nodes,

The dispatcher isthe component that actually schedules the guaranteed tasks.

It should be pointed out that when a node bids for a task, it does not reserve CPU
time for that task, Reserving CPU time ties up too many resources for a long time.
Consequently, when a task finally arrives at a bidder node, the node will attempt to
guarantee it. In case that this guarantee fails, the task will be considered as

nonguaranteeable,

There is a separation of dispatching and guaranteeing, allowing the dispatcher
and the guarantee routine to run in parallel. The dispatcher is always working with a
set of tasks which have been validated to meet their deadlines and the guarantee
routine operates on the current set of guaranteed tasks plus any newly invoked tasks.
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One of the assumptions underlying the scheﬂuling algorithm is that nodes can
estimate the resource usage or resource surplus of other nodes. This requires that
nodes keep each other iﬁformed about their surplus. This can be done by the aode
sacplas magager in the following way : ‘

The node surplus manager on each node periodically calculates the node
surplus. The node surplus provides information about t:he available time on each
respurce in a previous window, by taking into account respurce utilization of Jcu/
tasks, that is to say, the tasks that directly arrived at a node from the external
environment and not from the subnet. This information is used to predict the resource
availability for the tasks from the other nodes in the near future. The computed node
surplus is sent to a selected subset of nox!es,ig&l;t,_gp“;systerx'x, The selection is to be based on
the proximity of the nodes, on who sent tasks to this node recently, and on whether the
tasks were guaranteed. | '

The steps invoelved in scheduling a newly.arrived task are as follows .

(A) When a local task, T, arrives at a node Nj, the local scheduler is invoked to try to

guarantee the newly arrived task on the node, If the task can be guaranteed, it will be
put into the schedule which contains all the guaranteed tasks on the node. The details
of the local scheduling algorithm is discussed in Part VI,

(B) When the local scheduler of node Nj is unable to guaraniee the newly arrived task,
T, it attempts to find another node through focused addressing. This focused node
should have sufficient surplus to guarantee the task. If a focused node is found, the task
is immediately sent to the node, In addition to sending the task to the focused node, node
. Ni sends request-for-bid messages to a subset of the other nodes, The request-for-bid
message also contains the identity of the focused node, if there is one, indicating that
the bids should be sent to the focused node:

(C) When a node receives the request-for-bid message, it calculatesa bid indicating the
possibility that the task can be guaranteed on the node, and sends the bid to the focused
node if there is one, otherwise, to the original node which issued request-for-bid.

(D) When a task reaches a focused node, it first invokes the local scheduler to try to
guarantee the task. If it succeeds, all the bids for the task will be ignored. If it fails, the
hids for the task will be mn;p%n‘ed and the task will be sent to the node responding with
the "best bid" on condition that the bid is above a certain lin_ij
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(E) 1n case there is no focused node, the original node will receive the bids for the task
and will send the task to the node which offers the best bid again on condition that the
bid is above a certain limit.

- (FY If the focused node cannot guaraniee the task and if there is no good bid available
for the task, it is assumed that no node in the network is able to guarantee the task. If a
task has sufficieht laxity then focused addressing and bidding may be repeated. But,
this will increase the scheduling and communication overheads.

The distributed scheduling scheme is discussed in detail in Part VII.
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V1. LOCAL SCHEDULER

In this part, the strategy for scheduling tasks on a local node is introduced. The
heuristic algorithm developed by Zhao, et al. [1}, is chosen as the algorithm underlying
the guarantee routine on each node, and is implemented with some modifications.
Since properly choosing the heuristic function used by the guarantee routine in
selecting the next task to be scheduled, is important for the performance of the
algorithm, a set of heuristics is studied in Section 6 4. From the simulation studies
performed in that section, it is concluded that simple heucistics do not perform
mﬁsfactorily because of the complexity of the problem. However, an algorithm that
uses a combination of thése simple heuristics works very well compared to an optimal
" algorithm that takes exponential time complexity. The heuristic function which has
the best performance will be used as the heuristic for the guarantee routine in the
distributed scheduling scheme describeti in detail in Part VII. In this scheme the
guarantee routine is used both in scheduling tasks that arrive at a node, and in making
a bid for a remote task which cannot be guaranteed locally,

6.1. Strategy Behind the Local Scheduler

At any given time, node Nj( i=1..n ) has guaranteed a set of tasks §; and has a full

feasible schedule for this set of tasks. A feasible schedule is a list of tasks that have
been guaranteed, With respect to a set of tasks, a schedule is. fu/ if it contains alf the
tasks in the set, otherwise it is gartsal A scheduls ( T;.Tz. v TsTge1 ) is an immediate
" exteasion of the schedule (Ty.Tp, .. T5 ). '

Suppose task T comes to the local scheduler at node Nj, then the following steps
are taken in order to guarantee the newly arrived task T

(A) The guarantee routine in node Ni is called to decide whether the new task can be
guaranteed or not. The new task T can be guaranteed on this node if and only if, a new
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full feasible schedule exists for tasks in 5§ U{ T ). This ensures that the tasks of §; in the
original feasible schedule remain guaranteed. Also, it ensures that the new task T will
meet its deadline. '

(B) If T is guaranteed by node Ni (as stated above), the new full feasible schedule
containing tasks in S; U { T } replaces the original one, This schedule determines the
start times of the tasks in node Nj, and will not be moedified until another new task is
guaranteed by node Nj,

(C) If the new task T cannot be guaranteed by node Ni, that is, there is no full feasible
schedule for tasks in S; U { T }, the approach based on bidding and focused addressing is
used to determine if another node isin a position to guarantee task T, When such a node
is found, T is sent to that node. In any case, the current feasible schedule of node Nj
remains unchanged,

In the remainder of this part, the first step above is explained. That is, a
heuristic technique for determining whether a node’s current feasible schedule can be
changed in order to iniroduce a new task, is presented.

6.2. The Basic Algorithm Underlying the Guarantee Routine

v

. This section describes the heuristic algorithm underlying guarantee routix;e. First
scheduling and searching are compared, then several data structures used are
presented, a consiraint on the search process is motivated, and finally the basic
algorithm is presented.

6.2.1. Scheduling versus Searching

.The'guaranﬁee routine determines a full feasible schedule for a given set of tasks in the
following way: it begins with an empty schedule and tries to extend it with one task at a
time until a full feasible schedule is derived. This is, in fact, a search problem. The
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structure of the search space is a search éree The root of the search tree is the empty
schedule. An fnlermediate verter of the search tree is a partial schedule. A descendeat
of a vertex is an immediate extension of the schedule corresponding to the vertex. A
leal] a terminal vertex, is a full schedule. It should be noted that all leaves will
correspond to feasible schedules. The goal of the algorithm is to search for a leaf that
corresponds to a full feasible schedule. Figure 6.1 shows a search tree for a set of 4
tasks.

An optimal algorithm, in the worst case, may make an exhaustive search, which
is computationaﬂy intractable. In order fto make the algorithm computationaily
tractable even in the worst case, a heuristic approach for this search is preferred. That
is, a heuristic function, H, is developed which can synthesize the various factors
affecting real-time scheduling decisions to actively direct the scheduling process to a
plausible path,

On each level of the search, function H is applied to each of the tasks that
remain to be scheduled. The task with the minimum value of the function H is selected
to extend the current partial schedule. Asa result of the above directed search, even in
the worst case, this scheduling algorithm is not exponential.

6.2.2. Data Structures

The algorithm maintains a vector EAT, to indicate the Farliest Available Times of
resources on a node : '

EAT = (EAT1.EAT,. ... EAT; )

- where EAT}, is the earliest time when resource R; will become avaifable. Initial values
of EAT} for all i will be the current time if the running task is preemptable. Otherwise,
EAT; will be the time when the running task finishes using it. Each time the partial
schedule is extended, EAT will be updated taking into account the newly added tasks’
resource requirements and completion time,

At each level of the search tree, the guarantee routine computes ST(T) and
New_EAT(T) for each task T that remains to be scheduled. ST(T) indicates the start time
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of task T if it is scheduled next. Since a task T can run only when all resources it needs
are available, ST(T) isdefined as :

ST(T) = MAX(EAT; where T needsR;).

It should be noted that for a given feasible schedule to remain feasible when
extended by T, '

ST(T) » C(T) < D(T)

must hold, where C(T) is the computation time and D(T) is the deadline of the task T.

New_EAT(T) is a vector with the same size as EAT and contains the earliest
available times of resources if task T is scheduled next. In other words, New_EAT(T) will
replace the current EAT if task T is scheduled. It is calculated as :

New_EAT(T) =ST(T} « C(T).

New_EAT(T) should he further updated because in the system model, active resources
are distinguished from passive ones. Since a passive resource must be used with active

ones, no task can use a passive resource uatil ;

time = MIN( New_EAT(T)js where resource i isan active resource ) 5

- wherei=1,.., r.That is, all New_EAT(T);s for passive resources should not be less than
the minimum New_EATiC[ Jof active respurces, Hence, New_EAT(T);s should be further
updated as : '

New_EAT(T) = MAX ( New_FAT(T); , time ) wherei=1,...r

At each level of the search, the guarantee routine also calculates a vector called.
DRDR, the JDynamic Resource Demand Ratio, whlch indicates the degree to which tasks ,
- that remain to be’ ﬂcheduled will demand resources :

DRDR = ( DRDR{, DRDR2, ... , DRDRr)
where DRDR; is defined as ;

DRDR s - Z (C(T), T remains to be scheduled and uses Ry)
1T MAX (DT, T remains to be scheduled and uses R;) - EAT;

wherei=1,...r
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For all the remaining tasks to be schedulable, every DRDR; of a DRDR associated
with a partial feasible schedule should be less than or equal to one. If that is pot the
case, this means that there is no need to continue the search, it is not possible to find a
feasible schedule for the remaining tasks with such resource requirements.

EAT, New_EATs and DRDR are updated each time the partial schedule is extended.

6.2.3. A Constraint on the Search

Using the data structures, EAT and DRDR, desgribed abave, a constraint can be impased
on the search for a full feasible schedule.

A feasible partial schedule is said to be strongfy feasible if

(a) DRDR associated with the schedule has DRDR; < | for i=1,...,r, and

(b) all of its immediate extensions are feasible, that is to say, for each task T that
remains to be scheduled, there will not he any deadline violation when the current
feasible schedule is extended by T,

By defigiﬁon, a full feasible schedule is strongly feasible. If a schedule is not
strongly feasible because one of the conditions fails, then the failed condition will also
fail for all descendanis, ie., the extensions, of the non-strongly feasible schedule.
Hence, none of the descendants of a non-strongly feasible schedule can be strongly
feasible. On the other hand, the ancestor of a full feasible schedule must be strongly
feasible, otherwise the full schedule itself will not be feasible. Therefors, only strongly
feasible schedules can lead to a full feasible schedule. Coqsidering this ﬁzm,~ the
" following constraint on the search for a full feasible schedule can be stated :

For @ partial schodule to be extendible to @ full feasible schedule, the partial
schedule should be strongly feasible.

From the 'vie\irpoin; of the algorithm, this means that it is not necemry to
ssarch through a vertex corresponding to a non-strongly feasible schedule, because a
non-strongly feasible schedule will not lead to a full feasible schedule. Given the above
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constraint, the search should be confined only tp those subtrees whose roots
correspond to strongly feasible schedules.

However, in the worst case an exhaustive search may still be required, making
the search computationally intractable. ln order to make the algorithm
computationally tractable, even in the worst case, ohly one of the vertices is chosen at
each level in order to expand the search tree. The vertex chosen is the one which
appears to be most capable of ;eading to a full feasible schedule. In the next section the
basic algorithm which incorporates the heuristic necessary to make this choice, is
discussed. |

6.2.4. The Basic Algorithm

The pseudo code for the basic local scheduling algorithm is given in the Figure 62,
Beginning with the empty schedule, the algorithm searches the next level by
exbanding the current vertex (a partial strongly feasible schedule) to only one of its
immediate descendants, If the immediate descendant is also a strongly feasible
schedule, the search continues until a full feasible schedule is met. At this point, the
searching process succeeds and all the tasks are known to be guaranteed.

If at any level, a non-strongly feasible schedule is met, the algorithm
announces that the searching (scheduling) process fails and that this set of the tasks
. cannot be guaranteed, This implies that the new task we are trying to dynamically
guarantee is not guaranteed so there is no new schedufe. The previous schedule is {eft
unaffected,

A modification is made on the original aigorithm. Instead of calculating
New_EATs just before applying the function H as in the original algorithm, in this
study, it is preferred to calculate them before the if statement which checks the strong
feasibility; condition. In this way, while calcxiiaﬁng New_EATs, possible deadline
violations of tasks are detected, and this information is used by the “strongly_feasible”
function in order to decide whether all of the immediate extensions are feasible or not
{second condition of strong feasibility). '
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PROCEDURE Scheduler(VAR guaranteed : boolean);
BEGIN
guaranteed - true; '
schedule = empty;
WHILE NOT empty({task_set) and (guaranteed) DO
BEGIN .
calculate ST for each task in task_set;
calculate New_EAT for each task in task set;
calcufate DRDR;
if not strongly_feasible
THEN guaranteed :~ faise
ELSE BEGIN
apply function H to each task in the task_set;
let T be the task with the minimum value of function H;
EAT :~ New_EAT(T);
remove task T from task_set;
append task T to scheduie
END
END
END;

FIGURE 6.2 Basic local scheduling algorithm for guarantee routine

It should be noted that, it is possible to extend the algorithm to continue the
search even afier a failure is found, and this extension is discussed in the next section.

6.3. Extension to the Basic Algorithm

The assumptions underlying the use of the heuristic function in the basic algorithm
are :

(a) at each level of the search, there is a certain order among the tasks to be selected;

(b) the order can be sdentified by a linear function such as function H used in the
basic algorithm,
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Though the firstassumption is definitely true, the second may not always hold,
so the original algorithm cannot always guarantee a set of tasks for which there is at
least one fuﬁ feasible schedule. To improve the success ratio, the following means were
considered : '

(a) add some non-linear components to function H;
(b) change the weight of function H dynamically;

(¢) whenever a partial non-strongly feasible schedule is met while scheduling, try to
backtrack. '

Since the first alternative increases the computation cost on every computation
of function H, and the second could make the algorithm too complex, the third one is-
adopted,

The basic algorithm is extended in the following way :
' Each time a non-strongly feasible schedule is found,

@a procedure called Limited Backtracker is invoked to withdraw the task just selected
and added in the schedule, and instead attempt to schedule the task with the second
minimum value of function H;

(b if the first step does not succeed, that is, the schedule is still non-strongly feasible,
recursively backtrack to the immediate ancestor and attempt to schedule the task with
the second value of function H at the ancestor level. Whenever a strongly feasible .
schedule is found, the Limited Backiracker returns “guaranteed” to the callerthe
procedure Scheduler, Otherwise, it continues the tecursive backtrack until either it
has backtracked to the root of the search tree (the e'mi:ty schedule), indicating that all
the ancestors have been tried; or until a counter, which counts the number of
backtracks in scheduling this task set, reaches a pre-set upper hound. In these cases,
the Limited Backtracker returns “nonguvaranteed”,

The pseudo code of the algorithm for the procedure Limited Backtracker is
shown in'Figure 6.3. The first step in the Limited Backiracker is called a psevdo
backirack because it happens at the current search level and function H is not
recalculated. The second step is called rea/ backirack Real backtracks do increase the
computation cost because they requires the recalculations of the function H at all the

. levels immediately below the vertex in which the real backtrack succeeds.



PROCEDURE ,Lim{ted_Backtrackér { var guaranteed : boolean);
{ This procedure is called when the i)a.rtial schedule is found to be non-strongly feasibie}
BEGIN
if empty{schedule)
THEN guaranteed :- false
BELSE
BEGIN (f irst., pseudo backtrack J
fet T1 be the fast task in the schedule;
remove T from schedule and append it to task_set;
et T2 be the task with the second H value pointed 1o by the second pointer of T1;
remove T2 from task_set and append it to schedule;
IF not strongly_feasihle
THEN
BEGIN { the real backtrack starts }
guaranteed ;- false;
WHILE {NOT empty{schedule)) and {counter«max_counter) and (not guaranteed) DO
BEGIN '
{ withdraw from the end of the schedufe all the tasks, one by one, until a task
having a non-nil “second pointer” is met or there is no task feft in the schedule or
the partial schedufe is guaranteed.} ‘ ‘
- REPEAT
fet T be the last task in the schedule;
remove T1 from schedule and append it to task_set
UNTIL ( Ti's “second pointer™ <> nil ) or ( empty ( schedule ));
IF T1's “second pointer” < nil .
THEN BEGIN
et T2 be the task pointed by T1's “second pointer™;
EAT :~ New_EAT stored as old_EAT with T2; '
remove T2 from task_set and append it-to schedule;
IF strongly_feasible THEN guaranteed :- true; .
counter :-counter +1
END
END { WHILE)
END
END
END;

FIGURE 6.3 The algorithm of the Limited_Backtracker.



41

It should be noted that, if in the Limited_Backtracker the number of real
backtracks is not'limited,'then in the worst case, the search process might eventually
expand two vertices from sach ancestor, resﬁlting in a computation time proportional
to 2K, where k is the number of tasks.

In order to avoid some re-calculations that may be caused by paossible future
backiracks, each scheduled task keeps a pointer to the task with the second minimum
value of function H at that level. In the original algorithm, the EAT values before the
task is scheduled is also recorded, Whereas in this study, it is preferred to record the
New_EAT values of the task with the second minimum vafue of function H, instead of
the EAT values, The motivation is to be able to use these New_EAT values, when there is

a backirack which attempts to schedule the task with the second minimum value of H,
without having to re-calculate them at that level.

Another modification is the following: an if statement is added at the beginning
of the procedure Limited Backiracker, which checks whether the schedule is empty or
- not, Because, a schedule can be found non-strongly feasible (any one of the two strong
feasibility conditions may not hold) before any task has beeﬁ scheduled. In this case,
since the schedule is empty, backtracking isnot possible.

Therefore, the data structure used to implement a task node has the form shown
in Figure 6.4,

task id - {1

arrival time | arr_t
~ deadline . deadline .
start time L start t pointer to the task with second
computation time comp._t mintmum vaue of the function H
resource requirements | res_need ' *
| seemin  ——a | soominnode! | ——
ptr. to previous task g—1— prev
' Cnext —— pteto next task
New_EAT values New_EAT . :
- Old_EATptr ——— {Old_EAT |
recorded New_EAT values
if-the task is the one having

second myininuny value of H

" FIGURE 6.4 Data Structure used to implement a task node
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The va;lues of &l arr & deadline comp | apd res_pneed are known when a task
arrives. The values for stars_tand New FdTare calculated at each level of the search.
The use of secain and W _FATpir will be illustrated, by a simplified example. Assume
the following scenario :

(a) let task set be { T1, T2, T3), and let schedule be (} (Figure 6.5 (a));

(b} let the scheduie be strongly feasible, function H is applied to each task in the task
set in order to select the task to be scheduled at level one : let T2 be the task with the
minimum value of function H, and let T3 be the task with the second minimum value;

(¢) T2 is scheduled at level one (Figure 6 5 (b)),

(d) assume that the schedule is strongly feasible, then the next task to be scheduled at
level two is selected : let T1 be the task with the minimum value of function H, and let T3
be the task with the second minimum value;

{e) T1 isscheduled after T2 at level two (Figure 6.5 {c));
(f) assume that the schedule is found to be non-strongly feasible;

(g) Psendo Backtrack : Tl is removed from schedule and appended to task set, since
TI's “second pointer” is T3, T3 is scheduled, EAT is updated by using the recorded
New_EAT values of T3 for level two without having to recalculate them(Figure 6.5 (d));

(h) assume that the schedule is again non-strongly feasible;

(i) Real B;cktrack : T3 is removed from schedule and appended to task set, going
back to level one (ancestor level) T2 is removed from schedule and appended to task set -
(Figure 6.5 {(a}); '

“(j) since T2's "second pointer” is T3, T3 is scheduled, EAT is.updated by using the
recorded New_EAT values of T3 for level one (Figure 6.5 (1));

(k) assume that the schedule is still found to be non-strongly feasible, T3 is removed
from schedule and appended to task set, since further backtracks are not possible, the
task set is said to be nonschedulable.

, But, if this real backtrack bad succeeded, the search would have continved by
- -recalculating the function H in order to detect the task to be scheduled at level two.
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6.4. The Heuristic Function H

Clearly, at each level of the search, effectively and correctly identifying the immediate
descendaant is difficult but very important for the success of the algorithm. Function H
becomes the core of the algorithm. In this section, the heuristics to construct function
H are identified. First, some simple heuristics are evaluated, then integrated !simple
 heuristics are considered. Because of the complexity of the problem, it is not expected
that the use of simple heuristics alone will result in gooed performance. The purpose of

evaluatling their performance is to identify the candidates that are worthy of further
exploration., ‘

6.4.1. Simple Hevristics for Scheduling

The following is a list of simple heuristics for scheduling, and corresponding H
functions defined on them :

(a) minimum deadline first (Min_D) : H(T) = D{T):
(b) minimum start time first (Min_S) : H(T) = $(T);
(¢) minimum computation time first (Min_C) : H(T) = C(T);

(d) minimum laxity first (Min_L) : H(T) = DCT)-(S(T)+C(T)).

6.4.2. Simulation Method and Results

The purpose of the simulation is to evalyate the performance of the different heuristics
used for the function H, In each simulation, tasks are randomly generated. A number of
. tasksare collected as a task set. For each task set, an exhaustive search is performed to
determine whether this task set has at least one feasible schedule or not. Those task sets



that are known to be schedulable are input to the local scheduling algorithm. Thqn, for
each heuristic, the percentage of tasks sets scheduled is observed. This percéntage
gives the syccess ratie SR of the heuristic,

Since meeting deadlines is very important in real-time systems, the
schedulability of tasks, ie.whether or not tasks will finish before their respective
.deadlines, is considered as the performance metric.

For this simulation study, a local task generator program is written which given
task generaling parameters, generales two hundred schedulable task sets, each of
which consists of six tasks. The listing of this program is given in Appendix A. It
should be noted that for a set of six tasks, there are 720 permutations, each of which
may or may not present a full feasible schedule. The program, after having generated a .
task set, performs an exhaustive search to see whether there isat least one full feasible
- schedule for the task set or not. If not, the task set is discarded, and a new ode is
generated. |

* The local task generator generates a task by specifying ils resource
requirements, its computation time and jts deadline. It is assumed that the local node,
has five resources : two active resources and three passive resources. The resource
requxrements ofa task are chasen randomly with the condition that a task uses at least
one active resource. A task needs a resource with probability ¢ 5

The other generating parameters, to be set in the task generator program, are
the mean and standard deviation values of the computation time distribution and of the
laxity distribution of the tasks. The laxity distribution is used to generate the deadlines.
These dxsmbutmns are assumed to be normal distributions. In order to see the
perfnrmance of the heunsucs in different levels of scheduling difliculltes three
different sets of tasks sets are generated by using three different laxity distributions,
which indicate the tightness of the deadlines. Then, the performances of the heuristics
used by the Iocal scheduling algorithm are evaluated for each one of these,

The listing of the local scheduling program is given in Appendix B. In this
program, the extension of the basic scheduling algorithm which uses the limited
backtracking concept, is adopted. That is, in the scheduling process when an infeasible
vertex is met, instead of simply announcing a failure, the task that has the second
lowest value of the function H is tried to be appended the current feasible schedule. If
this attempt fails, the program recursively backtracks to the immediate ancestor and
attempts to schedule the task with the second value of the function H at that level.
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The number of backtracks is limited by setting up a variable counter which
counts the number of backtracks used in scheduling a set of tasks. If the counter
exceeds a preset maximum value MC (max ovuntes; no further backtracking is
allowed. In this way, even in the worst case, the time complexity of the algorithm will
nol be exponential. The simulation is performed for different values of MC, in order to
show its effect.

The simulation results of using simple heixristics are presented in Table 6.1, In.
Table 6.1(a), Table 6.1(b), and Table 6.1(c), the computation time distribution is assumed
to be N(200,1002) and the laxity distribution is assumed to be N(100,1002), N(200,1002),
and N(400,2002) respectively.

From the tables, it can easily he seen that as deadlines become less tight, that is,
asthe mean of the laxity distribution increases, the difficulty in scheduling decreases,
and the performance of the heuristics increases, It can also be concluded that when
MC, the preset maximum value of backiracks is zero, that is, when backtracking is not
allowed, none of the heuristics performs satisfactorily. Increasing the value of MC, up

_to 10 for example, causes a remarkable increase in the performance. But still, the
performances of the heuristics are far frbm being good. It is also seen that increasing
MC to a higher value than 10 does not make any change on the performanée, In the
case where laxity distribution is taken as N(400,2002) and MC is large, the heuristic
Min_D performs reasonably well, but still does not achieve 100 per cent.

 The observations from this simulation: study, indicate that some traditional
hevristics used in general operating systems, are not appropriate for tasks with Ttiming
- .constraints. For example, using Min_C is eq{xivalent to using the shortest job first
policy which is a heuristic sometimes adopted in nonreal-time scheduling, because it
produces the minimum average waiting time for tasks, Bui, this simulation study shows
that this heuristic does not perform satisfactorily in real-time systems.

6.4.3. Integrated Simple Heuristic Algorithms

Given that no single heuristic performs satisfactorily, integrated heuristics need to be
attempted, The integrations are considered as simplé ‘as possible in order to keep the



MC HEURISTICS

Min_D Min_S Min_C Min_L
0 $4.0% 340% 62.5% 43.0%
1 92.0% 380% | - 780% | 560%
2 92.0% 35.0% 78.0% 60.0%
3 - 9%40% WNH% 750% 62.0%
10 9411% 400% 730% 62.0%
100 94.0% 00% _750% 62.0%

(a) Compuﬁtion time distribution of tasks : N(200,1002),

Laxity distribution of tasks : N(100,1002);

MC HEURISTICS
Min_D Min_S Min_C Min_L
0 82.5% £6.0% 78.0% 56.0%
1 39.0% 495% 33.0% 655%
2 915% 54.0% 84.0% 65.0%
3 93.0% 545% 86.0% 69.0%
10 935% 54.5% 86.5% 71.0%
100 935% 54.5% 86.5% 710%

(b) Computation time distribution of tasks ; N(200,1002),

Laxity distribution of tasks : N(200,1002);

MC HEURISTICS
Min_D Min_S Min_C Min_L
0 93.0% 54.5% 66.0% 77.0%
1 95.5% 60.0% 69.5% 8§45%
2 97.0% 625% 70.5% 875%
3 %0% | 635% 710% 89.0%
10 95.0% 63.5% 71.0% 90.0%
100 98.0% 635% 710% 90.0%

{c) Computation time distribution of tasks: N(200,1002),

Laxity distribution of tasks : N(400,2002);

TABLE 6.1 Simulation resultsof using simple heuristics
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run time cost of the algorithm still low. Because Min_D performs much better than any
other heuristics when used alone, it is considered to be the primary heuristic, and the
others become the candidates to be combined with Min_D.

Following are the mtegrated simple heuristics and the corresponding
definitions of H functions:

(a)Min_Dand Min_C :H(T) = D(T)» W*C(T});
(b) Min_Dand Min_S : H(T) = D(T)+W*S(T).
where W is a weight, and will be adjusted For different conditions. _

Min_ D and Min_L are not combined, because the information in Min L is
similar to Min_C and Min_D combined.

6.4.4. Simulation Results of Using Integrated Simple Heuristics

The same three sets of two hundred task sets generated for simple heuristics, are used to
evaluate the performance of the above integrated sunple heuristics. Table 6.2 shows
the results.

In the table, the maximum success ratio SR, achieved by a particular H function
is shown. with the weight W that makes this possible. This weight that produces the
maximum success ratio is defermined assuming that the success ratio as a function of W
has a single maximal point. Given this assumption, starting with a value of 05 for W
and increasing it by 0.5 each time, the maximum of success ratios is determined untif
the success ratio starts to decrease after reaching a peak value. The value of W that
produ ced the peak success ratio is the one shown in the tables,

It is observed that combining Min D with Min_S improves the performance
subsiantially. Although, Min_5 does not perform well when used alone, it outperforms
all others when it is integrated with Min_D, This is because Min_$ by itself does not
consider timing consirainis and hence many tasks are liable to miss their deadlines.
Combining Min_S with Min_D removes this shortcoming of the heuristic.



MC | HEURISTICS

Min_D+¥W*Min_C Min_D-¥W*Min_S

v SR v SR
0 10 38 0% 05 88.0%
1 10 M0% 05 940%
2 10 94.0% 05 940%
3 0.5 94.0% 05 %.0%
10 05 94.0% 0.5 9% 0%
100 05 94.0% 05 9%.0%

(2) Computation time distribution of tasks : N(200,1002),
Laxity distribution of tasks : N(100,1002);

MC HEURISTICS
Min D+ W*Min C Min_D:W=*Min S
& SR ¥ SR
(1] 1.0 875% Lo 875%
I 05 91.5% 15 92.5%
2 05 93.0% 15 945%
3 0.5 94.0% 20 96.0%
10 05 94.5% 10 97.0%
100 05 94.5% 10 97.0%

{b) Computation time distribution of tasks : N(200,1002),

Laxity distribution of tasks : N(200,1002);

MC HEURISTICS

_Min D+W*Min C_ Min_D:¥*Min_$§

v SR B SR
0 05 910% 10 9% 5%
1 05 945% L5 95.0%
2 05 95.0% 10 995%
3 05 95.5% 10 100.0%
10 05 97.0% 05 100 0%
100 05 97.0% 05 100.0%

{c) Computation time distribution of tasks : N(200,1002),
Laxity distribution of tasks : N(400,2002);

TABLE 6.2 Simulation resultsof using integrated simple heuristics
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Finally, using the heuristic minimum deadline first integrated with minimum
earliest start time first as the function H, along with limited backtracking makes the
algorithm perform very well, close to an optimal algorithm that has an exponential
time complexity. |

6.5. Application Considerations

In this section, how the algorithm can be applied to the following cases, is discussed :
(a) on-line heuristic scheduling;
(b) scheduling when tasksarrive in a batch;

(c) non-preemptive scheduling and the inclusion of periodic tasks.

6.5.1. On-line Heuristic Scheduling

" As noted before, this heiristic appi‘oax:h is qs'ad to decide whether a new schedule exists
for the tasks that have already been scheduled to execute on a node plus the task that
just arrived at that node. Now, a technique for making this decision will be presented :

Supposé o tasks are scheduled to execute on a node, ie., there is a full feasible
schedule for the 2 tasks. Suppose m of these tasks begin execution and then task T
arrives. Because task preemption is not allowed, the s tasks in execution will be
~ allowed to run to completion. Let EAT be the vector indicating the earliest available
‘times for all the resources, taking into account the fact that ztasks are in execution.
With this EAT, if a full feasible scheduls is found for the (z-z) tasks plus the newly
arrived task T, then T can be said to be guaranteed. In thzs way, this scheduling
" algorithm can be used to decide whether a task which arrives during the execution of
m tasks on a node can he Vscheduled tn execute on that node.
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The method just described for on-line scheduling assumes that to decide
whether the new task T is schedulable, a full feasible schedule has to be determined for
(2-m)+1 tasks, that is, the scheduling algorithm has to be executed on the (a-m)+1
tasks, given the EAT.

6.5.2. Scheduling When Tasks Arrive in a Batch

Another issue is lm,v:zto perfonil on-line scheduling when a number of tasks arrive in
a batch. Assume.that o tasks have been guaranteed but not yet begin execution, when
g tasks arrive, Augmenting the schedule for the ptasks with the ¢g(»1) tasks hécomes
difficult. Suppose the heuristic algorithm is used to determine a schedule for the p+¢
. tasks. If such a schedule does not exist, this means that nef af/ of the ¢ tasks are
schedulable. But, a subset of the g tasks may be schedulable. To find out this subset, the
heuristic algorithm has to be repeatedly applied to subsets of the g tasks. The problem
here is to determine which task is to be discarded from a given set before the algorithm
is re-applied. '

The best thing to do is the following : when tasksarrive in a baich, each of them
should be considered one by one, in some order, say, earliest-deadline-first. If a full
schedule is found when a task is added, the task is kept in the new schedule. If a full
feasible schedule cannot be found for this task, it is nongvaranteed, and it becomes a
candidate to be sent to some other node,

6.5.3. Non-preemptive Scheduling and the Inclusion of Periodic
Tasks

Thisscheduling algorithm is developed assuming that tasks cannot be preempted. Two
reasons for this are as follows :

(A) Suppose the first task in a schedule is dispatched and then a new task arrives, The
requirements of the tasks and of the newly arrived task may be such that even if the
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currently running task is preempted to run the newly arrived task, all tasks will meet
their deadlines. Whether this is true or not can be checked easily when dnly CPU
requirements of the tasks are taken into account as in [36]. Inclusion of the general
respurce requirements considerably increases the complexity of the check.

{B) Preemption also introduces the need to take into account the consistency of
resources. For example, if Ry is a file and both Ty and T2 modify the file, then a
schedule where T2 preempts T{ may result in R{ becoming inconsistent. Hence, once

preemption is allowed, considerations such as thisenter the picture.

Primarily for these reasons, in this study, the heuristic scheduling without task
preemption is discussed. It should also be recognized that when preemption is not
permitted, respurce utilization may decrease and the number of tasks guaranteed may
alsn decrease.

Another implication of doing non-preemptive scheduling is that a task may not
be schedulable mainly because of its arrival time. For example, suppose a task T; with
deadline 200 and computation time 100 is the first task in a schedule, and begins
execulion at time equals zero. At time one, a task T2 with deadline 100 and computation

.time 80 arrives. If T{ were not in execution, T2 may be schedulable. If it was known that
T2 would arrive at time one, it might be possible to schedule all tasks in the current
schedule plus the new task Ty, such that they all finish before their deadlines.

In any dynamic system, such information about future task arrivals will not be
available. However, for an important type of tasks, called periodic tasks such
information is available and can be used to perform intelligent scheduling, because
periodic tasks are tasks that have to be executed at regular intervals specified by their
- periods. In general, each periodic task will be generated at the beginning of its pericd,
The following technique is advised to be utilized in case of periodic tasks: if a
nonperiodic lask, arriving before the beginning of the next period, has a deadline in
or be;gond the next period, the next periodic task will be generated and sent to the
scheduler before the nonperiodic one. Each periodic task has an earliest start time
equal to the beginning of its period so that it cannot be scheduled before that time.
Therefore, the definition of ST needs a slight change with the inclusion ‘of periodic
tasks, it should be redefinedas; :

ST(T)=MAX(EAT; where T needs R;, and the earliest start time of task T).

The earliest start time for a nonperiodic task is defined as its arrival time, so that it can
start any time after its arrival. '
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VI1. DISTRIBUTED SCHEDULING SCHEME

In this part, the strategy for scheduling tasks dynamically in a distributed hard real-
time system s presented. The distributed scheduling algorithm developed by
Ramamritham, Stankovic, and Zhao [2], is chosen as the algorithm to study on, and is
implemented with some modifications.

Since the focal scheduling algorithm, explained in Part VI, with the heuristic
function minimum deadline first integrated with minimum start time first :

Min D+« W*Min_5,

has been shown to be highly successful, it is incarporated in the distributed scheduling

scheme as the local scheduling algorithm underlying the guarantee routine on each
node.

The performance of the overall sysitem heavily depends on how distributed
scheduling is done, that is to say, on how the node to send a task which cannot be
guaranteed locally, is detected. In this part, the details of the distributed scheduling

. algorithm are considered first. Then a sequence of simulation studies is performed in
order to observe how the system performs under different conditions. The
performance of the algorithm is also compared with that of three other algorithms,

7.1. Generation and Transmission of the Node Surplus

i

The purpoée of generation,and’ transmission of node sufplus from a node is to help
other nodes to correctly make the decision about which node a task should be sent to
during focused addressing and which nodes the requesi-for-bid messages should be
sent to during bidding, Obvicusly, it is neither practical nor possible to fet nodes have
precise state information about other nodes because of the communication delay .
invaived, ' |
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The notion of the surplus of a node, as used in this distributed scheduling
algorithm is its ability to guarantee tasks from the other nodes. A node’s surplus is in
reality a vector, with one entry per resource on that node. Each eniry indicates the
total amount of time, in past window, duriné which a resource is not used by the fowa/
tasks.

Each node periodically calculates ifs node surplus and sends it 10 a suﬁset of the
remaining nodes. A node sorts other nodes according to the number of tasks received
from them that were guaranteed on this node in-a past time window. Then, according to

this sorted node list, a node selects a subset of nodes to send information on its own

current node surplus. The subset is chosen such that nodes in the subset will
potentially use this information in deciding whether or not to send a task to this node.
Therefore, the nodes, which recently sent more tasks to this nade, will more likely to be
selected. '

Broadcasting the node surplus information in farge network is not suggested,
because it causes heavy traffic and therefore can increase communication overheads.
~ Because of the fact that communication takes non-negligible time delay, and that
resource requirements of tasks from different nodes may be different, the surplus
information from a node may not always be useful for some other nodes. Sending a
node’s surplus information to a subset of other nodes; reduces the communication
traffic, and lets a node send its surplus information only to these nodes where its
surplus information is potentially needed. These nodes will typically be those that have
tasks which require the resources that are less utilized by the focal tasks on the
sending node.

Of course, if the network is smalf, the surplus information can be sent to all the
other nodes,

7.2. Focused Addressing and Requesting for Bids

When a task, T, arrivesat a node Nj, the local scheduler is invoked to try to schedule the
newly arrived task on the node, If it is impossible to schedule the task locally, node Nj's
bidder comes into the picture which is responsible for doing focused addressing and
requesting bids,
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“ Forj=1, . nandj#i the bidder on node Nj estimates ES(T, j) which is the
number of instances of task T that node Nj can guarantes.

~

This estimation is made according to the node surplus information available on
node Ni and provides a good indication of the likelihood of a site being able to -

guarantee a given task.

For example, assume that the computation time of task T is 250 time units.
Suppose, node Ng is estimated to have a minimum surplus of 400 time units on each of
the resources needed by T.Then, the surplus of N5 with respect to the resources needed
by task T is 400, and the estimated number of instancés of task T that node N can
guarantee is 400/250 which is 1.6 . |

In the original algorithm [2], it is suggested to continue the process as below:

Nede Nj sorts other nodes according to their ES(T, j), in descending order. The
first k nodes are selected to participate in focused addressing and bidding. The value of
k is decided such that the sum of ES(T, j) of the k nodes is larger than or equal to SGS,
the System-Wide Guaranitee Surplus This is a tunable parameter of the system, If the
first node Ny among the k nodes has its ES(T, ) larger than FAS, the Focused Addressing
Surplus another tunable parameter, node Ny is the focused node. The task is
immediately sent to that node. The remaining k-1 ‘nodes are sent request-for-bid
messages in parallel, to handle the case where the focused node cannot guarantee the
task,

Whereas, in this study, it is preferred to modify this process as follows:

The node Nj, having the maximum value of ES(T, j) is selected as the focused
node on condition that ES(T, {) is larger than FAS. The task is immediately sent to node
Nj. and request-for-bid messages are sent to each one of the remaining nodes in
parallel. '

The purpose of this modification is {0 increase the chance of being guaranteed
of task T at another node, in case that it cannot be guaranieed at the focused node. Since
in focused addressing, out-of-date state information of the nodes is used, there is a risk
of making wrong decisions. Consequently, a task T may not be guaranteed, not because
there are no nodes that can guarantee it, but because the nodes that can guarantee it,
are not sent request-for-bid inessages. By sending request-for-bid messages to all the
other nodes, this risk can be tolerated. But, it should also be kept in mind that, this
methaod is preferable as long as the network is small. Because when there are too many
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nodes in the network, there will be too many transmitted messages which will increase
the communication overhead.

A request-for-bid message includes information about the deadline, the
computation time and the resource requirements of the task as well as the latest bid
arrival time, that is, the time by which bids should reach the facused or requesting

. node to be eligible for further consideration, The fatest bid arrival time for a task T,
LBA(T), is estimated as follows: ’

- LBA(T) = (T} - C(T) - (TD « 5D,

where D(T) is the deédline of’l‘,'C(T) isthe computation time of T, TD isthe network-wide
average transmission delay between twa nodes, and SD is the average scheduling delay
on a node, Thus, on the average, before LBA(T) there will be sufficient time to send the
task to a bidder node, for it to be scheduled there and then be executed before its
. deadline, :

7.3. Bidding

When a'node receives a request-for-bid message, it calculates a bid for the task
provided that there is enough time for bidding. Each request-for-bid message contains
a deadline for response (latest arrival time of a bid). If _t.he responding node estimates
that it cannot deliver the bid to the requesting node on time, it does not bid. Therefore,
only viable bids will reach the requesting host and the commusnication overhead is
reduced,

The 4/d is purely a number which indicates the number of instances of the
task the bidder node can guarantee, The cal;ulation is done in two steps:

First, an upper bound of the bid, Max-Bid is calculated by the below formula:

Task Deadline - Estimated Earliest Arrival Time of the Task

Max-Bid = ~ Task Compitation Time
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The earliest arrival time of the task to the bidder node is estimated in an
optimistic manner to be the sum of current time, the minimum message :ﬁlela:y in
transmitting the bid, and the minimum delay in sending the task to this node. Max-Bid
is the best possible bid that this node can make assuming ideal availability of resources
that the task needs.

In the second step, the actual bid is calculated by performing a binary search
between zero and Max-Bid. In each step of the binary search, a given number of
instances of task T are temporarily inserted into the current schedule of this node, and
the guarantee routine is called to see if the inserted instances can also be guaranteed.
At the end of the search, the maximum number of instances of the remote task T that
this node can actually guarantee without endangering previously guaranteed tasks, is
obtained. This number, if above a predefined limit, becomes the bid. The bid is sent to
the node which was selected for focused addressing if there is one. Otherwise, the bid is
sent to the original node which issued the request-for-bid message. The inserted
instances of the remote task are removed from the schedule on a bidder's node.
Therefore, the schedule on the bidder’s node is not affected by the bid it makes. This
implies that a node does not reserve the resources needed by the tasks for which it bids
since a node will typically bid fqr multiple tasks and multiple bids will be received for a
task, reservation of resources will resylt in pessinistic bids and therefore may reduce
the system performance.

7.4. Bid Bvaluation

' When a node receivesa bid for a given task, and the bid is higher than a certain
limit, high-bid (HB), the node awards the task to the bidding node immediately and all
other bids for this task, that arrived earlier or may arrive later, are discarded. If all-the
bids, that have arrived, for a given task are lower than the h'i‘gh—bid, the node
postpones making the awarding decision until the latest bid arrival time of 'the task, At
that time, the task will be awarded the highest bidder if any. All the bids that arrive
fater will be discarded. |
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7.5. Response to Task Award

When the awarded task arrives at the highest bidder, the local scheduler on that
node is invoked o see if the task can be guaranteed. It shoutd be noted that the state of
the node may change after making a bid and since resources needed by the task were
not reserved, the task may or may not be guaranteed. If the task is not guaranteed, it is

rejected.

7.6. Simulation Model

In this section, the simulation model on which a sequence of simulation studies are
conducted, is introduced. The results and observations of these studies are presented in
Section 77.

7.6.1. System Model

The system model is assumed fo be physically distributed and composed of a
network of five nodes (multiprocessors) each of which has its own' focal memory. All
internode distances are considered to be the same.

" The nodes in a network can be physically connected in a variety of ways,
namely communication topologies, In order to see the performance of the algorithm in
different conditions, the simulation studies are performed on two different network
communication topologies:

(4) f‘al]y Connected Communication Network : In such a network, each node is
directly linked with all other nodes in the system, The basic cost of this configuration
isvery high, since a direct communication line must be available between every nodes.
The basic cost grows as the square of the number of nodes. In this environment,
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however, messages between the nodes can be serit very fast. The first simulation system
model with such communication topology is shown in Figure 7.1.

(B) Star Dommuanication Nelwork. : In a star network, one of the nodes in the
system is connected to all other nodes. None of the other nodes is connected to each
other. The basic cost of this system is linear in the number of nodes. The
communication cost is also low, since a message from Node; to Nodej requires at most
two transfers. This speed may be somewhat misleading, however, since the central node
may become a bottleneck. Consequently, even though the number of message transfers
needed is low, the time required to send these messages may be high. Figure 7.2 shows
the second simulation system mode! with such communication topology. In this model,
the central node, S, is completely dedicated to the message switching task.

FIGURE 7.2 Simulation system model 2-( Star )
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Messages pass through a communication line in a pipe-lined fashion with only
one message occupying a channel at a given time, in a given direction. When a
message is in a line, if there is another message that needs to be transmitted, the latter
message must wait until the first has left. This situation is called a confZict The total
time for transmitting a message from one node to another without any conflict is
denoted as zo contflict message delay (MD). 1n star network, since a messaige from one
node to another passes through two communication lines, the time taken by a message
to pass through a line, without any coaflict, is half of the message delay.

The delay involved in transferring a task through the network is assumed to be
the message delay plus 10 per cent of the computation time of the task. That is, it is
assumed that transferring a task requires higher tommunication overheads than a
message, and this overhead is proportional to the computation time of the task. Again
in star network, the time taken by a task to pass through one communication line is
half of this amount.

In the simulation program, since the network is sufficiently small, a node sends
its surplus information to all the other nodes in the system, When the network is large,
.the node surplus information should be sent to only a subset of selected nodes. Nodes
that potentially need such information should be selected, A géo‘d selection policy will
reduce the number of messages transmitied in the network, while letting the nodes
obtain such information if needed.

" The message traffic created by the transmission of sufplus information as well
asall other messages generated in the course of scheduling is also taken into account
in the simulation model;

These two network topologies and the communication protocol just described are

chosen for simulation in order to abserve the effect of the communication overhead on
the performance of the algorithm,

7.6.2. Node Model

It is assumed that a stream of tasks arrives locally to each node as a Poisson
process, The nodes are considered to be heterogeneous in the sense that each node may



62

have a different arrival rate of local tasks, but homogeneous in the sense thai a task
submitted to any other node in the network can be executed there. The fact that local
task arrival rates on. different nodes may be different, results in differences in the
loads of the nodes. In the simulation studies, the term syem local task arrival rate | R,
is used to refer to the sum of the local task arrival rates of all the nodes in the sysiem‘

1n the simulation model, two of the five nodes (node A and node B) are assumed
to have equal loads which are higher than the remaining three nodes. Given the
system arrival rate, R, the local task arrival rate for each node is considered to be as
follows :

(a) for nodes A and B : 0.375R;
(b) for node C: 0.125R;
{c) for nodes D and E : 1 0625R.

Each node is assumed to contain five resources which may be demanded by
tasks, including two aéthfe resources (processors) and three passive resources. A
resource can be serially shared by tasks. The resource requirements of a .task are
determined randomly, provided that a task needs a resource with probability 0.5.
Mareover, each task requires at least one of the active resources and zero or more
passive resources,

Both the computalion time and [zxify of tasks are considered to be normally
distributed. |

Since the dispafcher has to be invoked each time any task completes execution,
the run-time cost of the dispatcher is included in the computation t{ime of every task.

The simulation model also assumes that the scheduler {asks such as the Asdder
and the Jocal scheduler are executed on a co-processor dedicated to scheduling.

The model is based on the assumption that there is a communication module,
executing on a co-processor which is responsible for receiving communication from
local sources as well as from other nodes. Based on the type of communication, this
module stores received information in the appropriate data structures so that they will

“be looked at when different tasks execute.

The purpose of using such co-processors (or system processors) is to offload the
scheduling algorithm and the other aperating system overhead from the application
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tasks hoth for speed, and so that this overhead does not cause uncertainty in executing
already guaranteed tasks.

7.7. Simulation Results and Observations

The distributed scheduling ‘algorithm explained in the previous sections, is
implemented and tésted under different conditions, using the simulation model
presented in Section 7.6. Appendix D contains the listing of the simulation program
implementing this aléorithm, Since the algorithm uses a technique that ‘combines
bidding and focused addressing, the term /# will be used to describe this algorithm.
Before presenting the simulation results, a general information about what kind of
simulation studies are performed will be given, discussions on the observations then
follow.

In the simulation studies, the computation time distribution of tasks is
considered to be normally distributed having a mean of 200 and a standard deviation of
100, denoted as N(200,1002),

The cases with three different laxity distributions are tested in order to study
the effect of tasks laxity distributions on the performance. These cases are :

(a) ZLow laxity (L_LAX) :laxity distribution of tasks is N(300,1502);
(b) Medivm faxity (M_LAX): laxity distribution of tasks is N(450,1502);
(c) High laxity (H_LAX): laxity distribution of tasks is N(600,1502),

In order to observe the changes in system's performance under different
~system loads, the simulation is performed under light, moderate and heavy system
Inads: ‘

(a) Light load (L_LOAD) : system arrival raie, R, is 8 tasks per 600 time units;
(b) Mederste load {M_LOAD) ; system arrival rate, R, is 16 tasks per 600 time units;

(¢) Heavy load (H_LOAD) : system arrival rate, R, is 24 tasks per 600 time units.
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Consequently, the lbcal task arﬁval rates for each node, under these different
system loads are as shown in Table 7.1,

SYSTEM LOAD LOCAL TASE ARRIVAL RATE
NODEA | NODEB | NODEC | NODED | NODEE R
L_1OAD 3/600 3/600 17600 | 05/600 | 05/600 | 8/600
M_LOAD 67600 67600 27600 14600 17600 16/600
H_1.OAD 97600 9/600 37600 | 15/600 | 135/600 | 24/600

TABLE 7.1 Nades' local task arrival rates under different system loads

Three different cases for task laxity distributions and three different cases for
system load, result in a combination of nine different cases, each of which has a
specified task laxity distribution and a specified system task arrival rate. Hence, nine
groups of tasks are generated by the global task generator program in order to be used
during the simulation studies. The listing of the global task generator program is given
in Appendix C. '

The performance of the algorithm is tested under different no conflict message
delay, MD, values as well. The purpose is to examine how communication delay affects
the system performance,

* In the simufation studies, the performance of the algorithm FB, is also compared
to that of three other algorithms explained below :

(a) Noncooperative scheduling algorithm (NC) : In this algorithm, whenever a
task cannot be guaranteed locally, the task is discarded. No attempt is made to send the
task to other nodes, K

(b) Random scﬁadhling glgorithm (R): In this algorithm, when a task cannot be
guaranteed"by the local node at which it arrives, the node randomly selects another
node and directly sends the task to that node, The advantage of this.algorithm is that, it
uses the minimum communication overhead to determine where to schedule a task in
" the network. The disadvantage is that, it is easy to send a té,sk to an improper node
because of the randomness.

(c) Bidding (B): Thisalgorithm, whenever a task faﬂs," do not select a focused node to
send the task, as in the algorithm FB, but sends a request-for-bid message to the other
nodes, and then sends the task {o the node which ol‘fer: the best bid, If there is no good
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bid available for the task, it is assumed that no node in the network is able to guarantee
the task.

The listings of the simulation programs Vhich implement these three
scheduling algorithms are not given because of the space limitations. One may refer to
the diskette for the program files,

In order to observe the effect of different network topologies on the
performance of the algorithms, all these simulations are performed on both of the
below communication network topologies, explained in Section 7.6.1 :

(a) fu]]y.cannected communication topology (FC);

(b} Star communication topology (5).

7.7.1. Effect of Laxity Distribution of Tasks

The purpose of this study is to examine how the differences in the laxity distribution of
tasks, affect the performance of the distributed scheduling algorithm FB.

The term percentage of nonguaranteed tasks denoted as “% NG,” is used to
indicate the system performance.

Three different laxity distributions (L_LAX : N(300,1502), M_LAX : N(450,1502),
and H_LAX : N(600,1502)) are tested as follows :

(a) under moderate sysiem load where system arrival rate (R) is 16 tasks per 600 time
units, and with different no conflict message delay values (Figure 7.3 and Figure 7.4
‘show the simulation results for f ully connected network ‘topdlagy and for star network
topology respectively); '

(b) under three different system loads (L_LOAD : R=8/600, M_LOAD : R=16/600, H_LOAD :
R=24/600), with a cogistant no conflict message delay (MD) value which is taken to be 36
time units (Figure 7.5 and Figure 7.4 show the simulation results for fully connected
network topolegy and for star netwoerk topology respectively). '
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"From the simulation results, it is easily observed that the task laxity does affect
the system pebfn rmance.

As seen from Figures 7.3, 74, 75 and 76, when the mean of tasks' laxity
distribution increases, the percentage of tasks nonguaranteed decreases significantly.

. From Figure 7.3, it is observed that when laxity increases from L_LAX to H_LAX,
the percentage of tasks nonguaranteed decreases by an amount between nine and 14
per cent, for different values of MD. But as seen from Figure 7.4, on star topology this
decrease is not very significant for high values of MD. For example, when MD is 96,
there is only a decrease of three per cent on the number of nonguaranteed tasks. This
implies that, when message delay is very large, the increase in laxity does not affect
the system performance on star communication topology, as much as. it does on fully
connected communication topology.

Figures 7.5 and 7.6 show that, increasing the task laxity, decreases the
percentage of tasks nonguaranteed under each one of the different system loads, on
hoth of the communication topologies, This decrease is more obvious when the system
load is light or mederate than when the system load is heavy. This reflects the fact that,
when the system arrival rate is high, there are so many tasks to be scheduled in the
system that increasing the mean of the task laxity distribution does not resultin a
significant increase in system performance.

7.7.2. Effect of Communication Delay

in this section, how the communication delay affects the system performance of the
algorithm FB, is examined. In the simulation studies, the term percentage of guaranteed
tasks, denoted as "% G,” is used to indicate the system performance,

The first set of simulation studies with different no conflict message delay (MC)
values, is performed under moderate system foad (R=16/600), on two groups of tasks
having different laxity distributions. One group of tasks is generated by using a low
laxity distribution (N(300,1502)), and the other by using a h-igh laxity distribution
(N(600,1502)). The performance observations of these two groups, with different MD
values are shown in Figures 77and 73,
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6h star topology than it does on fully connected wpology. This implies that the.

communication network topology of a system, is also an important factor in tolerating
high communication delays.
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As mentioned before, in Figure 7.7, the lines "FC_GNW" and "S_GNW" indicate the
percentage of tasks guarantéed network wide, on two different topologies, under
mederate load and low laxity. Figures 7.9 and 7.10, further present the details about how
these tasks guaranteed at remote nodes are actually gugranteed.'Figure 7.9 shows the
" results for fully connected system model, and Figure 7.10, for star system model.

According to the distributed scheduling algorithm FB, there are three possible
ways for a task to be guaranteed network wide : '

{A) When a task cannot be guaranteed locally, the local scheduler, if it finds a node
having sufficient surplus to guarantee it, sends the task to that node through focused
addressing. Hence, a task can be guara'nteed al the focused node. This first way of
guarantee is named as guwaraateed by focused addressing and denoted as "G_FA"
in the figures,

(B) The local scheduler, in addition {e sending the task to the focused node, sends
" requesi-for-bid messages to the remaining nodes, to handle the case where the task
cannot be guaranteed at focused node. If this happens, the focused node evaluates the
bids arrived for this task, and sends the task to the best bidder, if there is any, so that
the task has a chance of being guaranteed at this "second step” node, This way of
guarantee is called guaranteed by focused addressing and bidding and denoted
as "G_FAB" in the figures.

(C) In case that there is no focused node having sufficient surplus to guarantee the
task, the lacal scheduler starts the bidding process, and then sends the task to the nade
which offers the best bid. So a task can be guaranteed at the bidder node. This third way
of guarantee is named as guarsnteed by direct bidding and denoted as "G_B" in the
figures.

As seen from Figures 7.9 and 7.10, there is no task guaranteed by focused
addressing and bidding (FAB), when MDz46 time units on fully connected topology, and

when MDz16 time units on star topology. Because when communication delay is high, it
is very difficult to find enough time to attempt to schedule a task which is not
guaranteed at focused node, at a second step node. This effect of MD, is much more
obvious on star sysitem model, -

These figures also show that, at high message delays, guaranteeing by ’dire-ct

bidding (B), becomes difficult as well. No task is guaranteed by direct bidding when
MD=956 time units for fully connected system model (Figure 7.9), and when MDz266 time

units on star system model (Figure 7.10).This reflects the fact that at high
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communication delays the message traffic required by bidding process creates an

overhead.
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The system performance on fully connected topology is not as sensitive to MD as
it is on star topology. For example, on star topology, there is no task guaranteed
network wide when MD296 time units, wheneas, on fully connected one, at MD=96 time

‘units, the percentage of tasks guaranteed network wide is flve Moreover, this
percentage remains positive for much higher values of MD, and finally becomes zero at
MD=186 time units.

In order to -observe the effect of the communication delay under different
svstem loads, a set of simulations is performed. 1n these studies, tasks' laxity distcibution
is chosen tn be low laxity {L_LAX : N(300,1502}), and the performance of the algorithm
is tested under light, moderate, and heavy system loads (L_LOAD : R=8/600, M_LOAD :
R=16/600, and H_LOAD : R=24/600), on both of the fully connected and star system
" models (FC and $). The results obtained are presented in Figure 7.11.

1t is nbserved that, as MD increases from two to 96 Lxme units, the decrease in the
percentage of guaranteed tasksis:

(a) under light load : six per cent for FC topology, and 10 per cent for S topology;
{b) under moderate ioad : 14 per cent for FC topology, and 19 per cent for S topology;

(c) under heavy load 1 22 per cent for FC topology, and 24 per cent for S topology.
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Hence, according to these results, it can be concluded thal the effect of MD on.
the system’s performance becomes more significant as the load of the system becomes
heavier, and also, this effect is more explicit on star system model than it is on fully
connecied one,

7.7.3. Effect of Sygtem's Communication Network Topology

In order to observe the effect of éystem’s network topology on the performance of the

algorithm FB, the algorithm is tested on both of fully connected and star system models,

under light, moderate, and heavy system loads (L_LOAD : R=8/600, M_LOAD : R=16/5600,

and H_LOAD : R=24/600), for each of the three different laxity distributions of tasks

(L_LAX : N(300,1502), M_LAX : N(450,1502), and H_LAX : N(600.,1502)). The results

obtained are as shown in Figixre 7.12. During these simulation.studies, no conflict
message delay, MD, value of the systém is taken to be 36 time units,

| # FC_H_LAX
O S_H_LAX
& FC M LAY
O S_M_LAX
A FC_L_LAX
& 51 LAX

RGO

LLOAD M_LOAD H-LOAD
SYSTEM LOAD

FIGURE 7.12 Effect of system’s communication network topology



 From the simulation studies, it is observed that when the system load is light, the
. performance of the algorithm FB is the same on both of the topologies, for each of the
cases. But, when the system load is moderate, the dlfference between the performance
of fully connected system model and that of the star system model is five per cent at
H_LAZX, 10 per cent at M_LAX, and five per cent at L_LAX.Further, when the system load
is heavy, this difference is seven per centat H_LAX, nine per centat M_LAX, and 12 per
centatL_LAX. Hence, as the system load becomes heavier, and tasks' deadlines become
more tight, the algorithm FB performs better on fully connected topology than it does
on star topology. ' ' |

It shouid alse be added that, as mentioned in Seétio'n 7.7.2, the performance of
the algorithm FB, on fully connected topology. is not as sensitive to communication
overheads as it is on star topology.(see Figure 7.11).

7.7.4. Comparison of Algorithm FB with Algorithms NC and R

In order to compare the performance of the algorithm FB to the performances of the
noncooperative scheduling algorithm, NC, and of the fandom scheduling algorithm, R,
three cases with different task laxity distributions (L_LAX N(300,1502),
M_LAX : N(450,1502), and H_LAX : N(600,1502)) are tested. The results are shown in
Figures7.13 through 7.18. In each case, the performances of the algorithms NC, R, and
FB, are observed under light, moderate, and heavy system loads (L_LOAD : R=8/600,
M _LOAD : R=16/600, and H_LOAD : R=24/600), During these simulation studies, the
system's message delay, MD, is taken to be 26 time units. The performances of the
algorithms FB and R are evaluated on both fully connected (Figures 7.13, 7.19, 7.17) and
star (Figures 7.14, 7.16, 7.13) system models.

Asseen from the figures, in most cases the performance of the algorithm FB is
much better than the lower bound offered by the aigorithm NC. The percentage of
guaranteed tasks of the algorithm FB is higher than that of the algorithm NC, by an
amount hetween five and 24 per cent on star system model, and by an amount between
five and 27 per cent on fully connected one. This proves the fact that distributed
schédiliing»impmves the perfo:_‘mance of a hard real-time system.
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In all cases, on fully conpected topology, the performance of the algorithm FB
is better than that of the algorithm R. This is expected in most cases, since the decisions
about to which node to send the tasks locally nonguarantaad,‘are made by using the
network wide surplus information in the algorithm FB, whereas in the algorithm R,
they are made randomly.

Except one case, the performance of the algorithm FB is better on star topology
aswell, But, at the point where the system load is heavy (H_LOAD) and tasks' deadlines
are tight (L_LAX), the performance of the algorithm R is observed ta be higher than
‘that of the algorithm FB, by an amount of two per cent. Since the algorithm FB requfrés
much mere cemmunication than the algorithm R, when the system load is heavy, the
nen-negligible message delay MD, which was taken {o be 26 time units, results in a
perfor'mance lower than that of the algorithm R,

When the sysiem load.is light, no performance difference is observed between
the algorithms FB and R. This reflects the fact that when the load is light, most of the
nodes have enough s{u'j:olus so that any node selected randomly is as good as any other
node,

7.7.5. Comparison of Algorithm FB with Algorithm B

In order to compare the performance of the algorithm FB which combines focused
addressing and bidding, with that of the algerithm B which uses bidding only, a set of
simulation studies is performed. First, under moderate system load (M_LOAD : R=16/600),
the performance of the algorithms is evaluated v)ith aifferent no conflict message
delay values, for each of the three different laxity distributions (L_LAX : N(300,1502),
M_LAX ; N(450,1502), and H_LAX : N(600,1502)), on hoth of fully connected and star
network fopologies. Figures 7.19 and 720 show the sinpulation results for fully
connected and star system models respectively, Supported by these results, it is easily
concluded that the algorithm FB performs hetter than B,

As seen from Figures 7.19 and 7.20, the communication overhead does have an
explicit effect on the performance of bath of the algorithms.
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When MD is small, the performance of the algorithm B is close to that of the -
algorithm FB. As MD increases, the difference between the performances of the two
. schemes increases. For example, on fully connected system model, although the
performanceé of the two algorithms are the same at MD=16 time units, at MD=96 time
units, the percentage of guaranteed tasks by the algorithm FB is higher than that of
the algorithm B, by an amount of 13 per cent at H_LAX, six per cent at M_LAX, and five
per centat L_LAX Thisdifference is not so significanton star system model, because in
this model, the performance of the algorithm FB also decreases explicitly at MD=96 time
units, ’

Hence, it is observed that the perfermance of the algorithm FB is not as
sensitive to MD as that of the algorithm B, This is becayse bidding always requires more
message traffic, Also, the overhead of processing the request-for-bid messages and
bids, affecis the performanée of the algorithm B at high MD values. Although the
algorithm FB also uses bidding scheme, it has the advantage of being able to send a
locally nonguaranteed task immediately to a focused node, using network wide surplus
information of the previous window. This feature prevents the algorithm FB from
decreasing in performance as much as the algorithm B does, at high communication
delays.

As a result, it is concluded that the algorithm FB, compared to the algorithm B,
performs well over a large range of no conflict message delays.

Further, the performances of these two algorithms are compared under heavy,
moderate, and light system loads ( L_LOAD : R=8/600, M_LOAD : R=16/6011, and
H_LOAD : R=24/600 ), with low, medium, and high laxity distributions of tasks, at a
constant no conflict message delay which is taken to be 36 time wnits, The results
obtained are presented in Figure 721 for fully connected system model, and in
Figure 722 for star system model, These observations show that the algorithm FB
performs better than the algorithm B under different system loads and tasks’ laxities,
on both of the network topologies.
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VIII. CONCLUSION

In a hard real-time processing or control environment, each task mﬁst be comi)leted
within a specified amount of time after being requested. If any task fails to complgte in
time, the entire system fails. Hence, one of the most important steps in designing a
real-time computer system is to supply it with an efficient task scheduler. In a real-
time context, efficiency is essential both for achieving the best use of the computer
and for adhering with severe timing constraints relating to task executions.

Considerable research effort has been contributed to the subject of scheduling
algorithms for hard real-time systems for decades. However, for most applications, the
problem is often hard. For most cases, the problem of determining a static optimal
schedule for a multiprocessor system is known to be NP-Complete. The problem is
further complicated when dynamic distributed systems are dealt with, in which tasks
can arrive dynamically at any nodes and the communication delay among the nodes is
inherent and non-negligible.

In this thesis, the problem of dynamic scheduling of hard real-time tasks with
resource requirements in distributed computer systems is considered. A heuristic
scheduling approach for solving the problem is studied. Needless to mention, since
heuristics are built into the algorithm, it is not optimal, Heuristics are necessary given
the computationally hard nature of the scheduling problem. An optimal algorithm, in
the worst case, may make an exhaustive search which is computationally intractable,
In order to make the algorithm computationaily tractable even in the worst case, a
heuristic approach has to be taken, That is, on each level of the search, a heuristic
function is applied to each of the tasks that remain to be scheduled. The task with the
minimum value of this heuristic function is selected to extend the current schedule.
Therefore, even in the worst case, the algorithm is not exponential.

The simulation studies performed on this algorithm, in Part VI, with different
sets of tasks indicate that combination of simple heuristics with small number of
backtracks performs very close to the optimal algorithm that uses exhaustive search.
Hence, this is an attractive approach to on-line scheduling in dynamic real-time

systems.
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The heuristic function is invoked & i (i=1,..k, k being the size of the task set)
times, resulting in a time complexity of k2. Pseudn backtracks do not increase the
computational complexity., Moreover, the  computation cost increased by real
backtracks cannnt effect the total complexit;%, sn long as the upper bound of real
backtracks is pre-set to less than k2. The time complexity k2 of the algorithm is fairly
low comparéd to that of an exhaustive search algorithm w'hich takes time proportional
to k!. The other features of the algorithm are that it takes both tasks' active and passive
resource requirements into account, is dynamic, and is distributed.

OF course, there is the question of cost versus performance of the heuristics
proposed in Part V1. The improved performanceé that results frmp the use‘ of complex
mechanisms, such as backiracking, may be offset by the computational overheads
introduced by such mechanisms. Such overheads mé.y be tolerated if a separate
specially designed coprocessor is used for scheduling. In case such a processor is not
used, one should use the simplest algorithm appropriate for the application under
consideration.

This introduces the issue of selection of heuristics appropriate for a given
situation. For example, as observed in the course of discussions of the simulation
results, in Part VI, simple (single) heuristics may suffice if the deadlines of tasks being
scheduled are not very tight,

The cooperation among the nodes, needed when a node is unable to guarantee a
task, occurs through a combined scheme of biddiﬁg and focused addressing as
explained in Part VII. It should be pointed out that bidding and focused addfessing
techniques are refined forms of the traditional source-initiated and server-initiated
scheduling techniques. The combined scheme functions satisfactorily in spite of
imprecise and incomplete global state information of the system,

The results of the simulation studies show that in a wide range of application
environments (defined by task characteristics, system loads, communication delays,
system network topologies, etc.), this scheme 'is effective and practical, and has a
performance better than the other three algorithms that it is compared with : bidding
only, random scheduling, and noncooperative scheduling algorithms. It is observed
that the system performance improves when bidding is used in conjunction with
focused addressing. In fact, focused addressing is an intefligent form of random
scheduling in that it takes into account node’s surplus information in choeosing a node
to send a task. By using a scheme that incorporates focused addressing and bidding, the
benefits of both schemes are reaped.
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APPENDIX A. LOCAL TASK GENERATOR

progrom task_generotion; :

{This program using the preset generating parameters, gererates a number of
task setz so that each of them has at least one full feasible scheduls,
. Those scheduloble tosk seis will be used gz Input data by the Local
Schaduler FProgram which chacks the parformance of various heuristics.}

const :
rumber_of _task_sets = 200, {number of task sets to be generated}
nusber_of _tasks = 6; {number of taske in one iask set}
mi_compt = 200;
gigroompt = 100; {maan and standard deviation of itasks’ computation time)

mi-foxity = 400; \

sig_laxity = 200; {mean and stondord deviation of tasks' laxity distribution}
r=9; {rumbar of reascurces on a noda}
rr = 7,

type ,
taskset = arrayl1. .rumber of_tasks, 1..rr] of integer;

var
Tset : taskset; {contains specifications of tasks in a task set}
count . intager; ,
schedulable | booleon;
toskefile : text;

procedure generate_task _seti{var T:taskeet);
{create a task set, by generating task specifications for each task in it}
var

counter,i,j . integer;

. n: real;
begin
for i:=1 +to number.of_tasks do
for j:=1 to r+2 do TU,§1:=0; - {initialize task zet}
counter:=1; {genarote computation times for each task}
rapaat
fi:=0;

for i:=1 to 12 do n:=n+RANDOM;
11258 | goomp t#{r~6 Jau.compt
i1 truncins 0
then begin
Tlcounisr r+1):=truncing,
counter: =countars|
@l
until counter=number of_tosks+1;
counter:=1; {generate laxities and calculate deadlines using' them}
repegt
n:=; '
for i:=1 {0 12 do n:=n+FAMDOM;
r:=sig_laxityb{n-6rrmu_laxity;
if truncins0
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then bagin
Ticounter,r+21:=truncin T lcounter r+11;
counter: =counter+
. atd
until counter=rusber of_ iasks+1;
for i:=1 to number—of_tasks do  {generate resource requirements}
repeat ,
for j:=1 to r do
if RANDOM<=0 .5
then T(i,}1:=1
' alse Tii,jl.=0
until <(TIH, 1]4;6) or (T(i,214303%)
and; {generate_ task_set} .

procedure axhoustive_searchiT:taskeet, var schedulable: boolean);
{parform an exhoustive search which checks all the possible permutations
of the task set, one by oha, until a full feasible schedule is found. (f  there
is not any ful | feasible schedule the task set is nonschedulable }
labal stop;
tupa

et array = arrayli..r} of integer;
‘var

fi,i,j,k,1,m,n : intager,

EAT,EATI ,EAT) ,EATK EATI EATH : eat_drray;

passdead|ine : booleon;

procedure inlt;

var
oz 1l
begin
for z:=1 1o r do
begin
EATI[z]:=0;
EATj(z):=0;
EATKIZ):=0;
EATI(z]:=0;
EfTmiz] =0
and
aend; {init}

procedure schedule(T: taskset;1i: integer ;var EAT eat_array;var pass.booleany;
o :
max,min,z ztart t iﬂtagar
Hew EAT : eat_arrag,
begin
max =0,
pass . =folsa;
for z:=1 o r do Hew EATIZ]:=0;
for z:=1 to r do
if Titt,z1460
then |1 EATIZ1>=max
then max:=EATIz];
stort t:=mox;
min:=9999;
for z:=1 ta r do
in
if Titt,z)420
then begin
Hew EAT[Zz):=start_t+T[tt,r+1];
if Hew EATI(z15Tiit,r+2] then pass:=true
ernd
alza Heaw EATIZ].=EATI(z];



if ({z=1) or (=20
then 1T Mew ERTIzit=min
then min:=New ERATIz]
ard;
if not pass
then begin
for 2:=1 o r do
11 New EATIz¢min
then EATIz!:=min
else EATIz]:=New EATIz];
and
end; {=chadule}

begin {axhuustive_search}
init;
for i:=1 {0 rumber of.tasks do
begin
for ii:=1 10 r do EATLIi1:=0;
schedulelT, i EAT, passdead] ine’;
if not passdeadiinag then
begin
for fi:=1 to r do EATILI1):=ERTLII];
for- j:=1 to rumbar_of. tagks do
i1 142) then -
bagin
for ii:=1 10 r do EATLII]:=EATITII];
schedulelT, j EAT,passdead! ined;
i1 not pazsdead!ing then
begin
for {1:m1 to r do EATI 0T 1 =EATLIT];
for k:=1 to numbar.of. toske do
i Chesl)d and (k<) then
begin
for ii:=§ to r do ERTLii1:=EATjLi1];
scheduledT,k,EAT, passdead| ine);
if not passdead{ine then

begin
for 1i:=1 tor do EATKITT]:=EATLII];
for f:s1 o numbar_of_tasks do
if Cl<e3i) and (14%)) and (142k> then
bagin -
~for {i:=1 10 r do EATLIiI:=RATKIIID;
. scheduledT, | EAT, passdead! ine);
if not possdaad!ine then
bagin
for ii:=1 to r do ERTILii1:=EATIii];
for m:=1 to numbar of_tasks do i
if (ms>i) and (m<>) > and (mok) and (m<>1) then
in .
for- 1i:m1 to r do EATIII 1:=mERTII1];
schadu T, m, EAT ,possdaad! ine?;
{1 not poazzdacd!ine then
" begin
for {1:=1 to r do EATeI]1=ERTIII];
for n:=1 to rumberof.tashs do
i1 i) and dnirjs and (nixk)
and {nixl) ond indrmd then
bagin ‘
fer 11:81 Lo r do ERTII1:=EATmIiI];
schadul alT,n EAT, passdead] inad; ‘
if not pussdead!ine then

bagin

87
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schedulable:=true;

goto stop
end

and

stop : end; {exhoustive_search}

procadurae wrilte tosk_get(T:taskset); .
{write tosk specifications of the schedulable task zet into a file}
var.

1,02 : integer;
begin
for ci:=1 t{o rumberof_tasks do
begin

for ¢2:=1 to r+2 do
writel{iasksfile, Tsaticl,c2):9);
writelni{taskefile)

ehd
end; {write_task.set}

begin {main}
rondomize;
assrgn(task.f:le  tasks . dat’ J;
regritettasksfila);
count:=0;
repeat
generate_task_set(Tset); {generate a task set}
zcheduioble: =false;
e;dmtiua_iwchﬂut schadulable)’;
{parform axhoustive nareh to chack if this ganerated tosk zat has a'f jeast
- one full feasible schedule or not}
if schedulable
then begin
wri ta.tm.sat(‘l'sat)
count i =count+ 1,
‘ Witeln('cmmt = ' oount:2)
and

until countsrumber.of tosk.zetis;
closaltaskefilae)
end. {main}
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APPENDIX B. LOCAL SCHEDULING PROGRAM

progrom |local schaduling;
{This progrom, given a number of schedulable task sets, determines the
performance of the  local scheduling algorithm. For each of tha zisple ond
integrated heuristic functions H, the rumber of task seis scheduled by the
algorithm is calculated.}

const
HC = 3; {max counter used in real backtracking}
ro=5; {rumber of resources on sach node}
rr = 7; ‘
rumber_of _task_sets = 200; {number of task sats to be processed}
number_of _tazkz = 65; {rumber of taskz in one tozk set}
number_of _zim_types = 6; {rumber of different heuristic functions}
tupe

resource.ar = array [1..r] of integer;
real.ar = array [1..r] of real;
bool.ar = pocked array (1..r] of boolean;
0{d_EATpiriype = “01d_EATiype;
01dEATiype = record
OId_EAT : resource_or;
link : O!d.EHTptrtgpa
end;
rodeptr = “‘nodetype;
. seeminptr = “secminptriyps;
sacminpirtype = record
secminnode : nodeptr;
, nexisecmin : secminptr
end;
rnodetypa = record
id : ziringl2l;
arr_t,deadl ine,start_t,comp_t : integer;
res need : bool_or;
secmin ;. secminpir;
preu,nax't : nodaptr;
Mew_EAT : rescurce._or;
Old_EﬂTptr* : Oid_EATptrtype
and;
st_type =1, number_af_:im_tgpgs;
task_setz _range = 0. . number_of_task_sets;

var

try : 0..5;

Wantsad.task.mtz,prwmus.mlm : taxk zeiz_ronge;
active : bool_or;

noincraaze | boolean,

Fintype : st type;

W : real; :

procedure init;
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beqin {indicate active and passive resources}
activelll:=true;activalll =trus; :
activell]:=false;activaldl:=false;activelSl:=false;

and; {init}

procedure get_tasks(uar infile:text;var first_task _ptr:nodeptry;
{read task_set’'s specifications from the input file,and create a task queus}
var
ii,i : integer;
p,q : nodepir;
Crnocoarray [1..rr] of integer;
bagin
newiql,;
q”.prev:=nil;q" .secmin:=nil;
q" . 01d_EATptr:=nil; first_task pir:=qg;
for ii:=1 to rumber.of_tasks do
begin
newip s,
with p* do
in
z=ir{ii:2,id3;start 4 =0;
raxt:=ni | ;prav.eq;seacmin:=nil;
Old_EATpir:=nil;
for 1:=1 to rr do readfinflte,rﬁ[il)
readin(infile’;
deqdline:-rn[r+21;'
comp-t:=rnir+1l;
for i:=1 10 r dn
if rrli147 O then res_needli]:strue
: else res.needli}.=falss;
for i:=1-t0 r do Mew EATIi1:=0
shd; '
q°.next:=p;q:=p
end

end; {get_tasks}

procedure delete_queusl(var fn:nodeptir);
var
n,pr . hodeptr;
begin
prh:sfn;n:=pn” .next;
rapant
dizpogaipny;
phisn;
if nfﬁnti then n:=n"* next
until prsnil
and; {delete_quaus}

procedure scheduler{sin_type:st_type;var guaranteed:bocleon;l:real;
var {irst_task _ptr: nodeptr; EAT:resource_or);
var '

ampty, passdaadl ine : boolean;
dchedule,s, P,z 0 nodepir
tempptr : secminptr;

DROR : real_ar;

counter : integer;

procedure caleulate ST,

{calculate the 5tart time of the task if it is scheduled next}
v

max,i . integer,
p : nodaptr;
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begin
p:=firat_task_ptr" . next;
while ponil do
bBagin
max =0,
for i:=1 o r do
if p*.res readli] than if EATLI 1>=max then mox:=EATI(i];
p*.start t =moyx,;
p=p” raxt
and
end; {calculate ST}

procedure colculate DROR{var DRDR:real_or);
{calculate Dyramic Resource Demand Ratio, which indicates the degree to which
tazks that remain to be scheduled will demond resources}
yar
" froaction, tot_cosp_t, max, | ;| integer;
p : hodeptr;
begin
for i:=1 to r do
begin
tot_comp_t:=0;
mox . =0;
p:=first_task_pir* . next;
swhile pinil do
begin
if p*.res_needlil
then begin
tat.;amp.i =tot_ﬂamp_i+p comp_i
if p*.deadl ineymsmax then max:=p".deadl ine
p.=p” . next
erd;
fraction: =max-EATLi1;
if fraction=0 then DRDRLi1:=0
. alge {1 max=0 than OPORLI1:=0 .
si=e DROALI ] =tot_comp_t/fraction
end
and; {cqleu|ati_ﬂﬂﬂﬂ}

function stranq!g.feusibla(ﬂﬂnﬂ real-ar):boolean;
var
I 1 integer;
bagin
<tronglu_feu<|ble =trye;
for i:=1 tor do if DRBR[:])-! then strongly_feasible: -fulse,
if passdead! ina then strongly-feasible:=false :
end; {strongly-feasibie}

procedura caloulate_New EAT; .
{catoulate the EAT values of the task if it is scheduled next}
var . .
min,i : integer;
p : nodepte;
bagin
pretirst_taskopir® naxt;
passdead] ine:=false;
ghile {pienil) ard (rot passdead!ine) do
begin
mini=maxint;
for 1:=1 tor do

bagin
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it p*.resneedli] then begin
p" New_ EATIi1:=p" start_ t+p" . comp_t;
if p*.New_EATIi }>p".deadl ine

than passdaad! ina:=trua

end ,
alze p" . New ERTLi1:=EATLi1;
if activelil then if p*.New EATIil¢=nin
then ain:=p*.New EATIi]
and;
for i:=! to r do '
if p~ .New EATLI I<min then p~ . New ERTUi1:=min;

p:=p".next

end )
end; {calculate_New EAT}

procedure calculate_minHl{var ptr:.nodeptr;sim-type:st_type;U:real),;
{datact which tosks, omong the tasks that remain to be scheduled, have minidum
" ond zecond minimum values of the function H}
var
temp,i : integar;
zacondmin,min,ﬂ . real;
sacpointer,q | nodeptr;
7> zacminptr
P,pp : DIdEATpiriype;

Emgin
min:=mpaxint; secondmin: -maxlnt

pir:=nil; q: 'first_task.ptr* next
while g<nil do .

begin
~type of

“.daagdiine;

“.starit;

*.comp-.t;
*.dead!| ina-(q" stari i+q” . comp.t’;
: ',deadline+u*q“.camp.1;
¢ H:i=q".deadl inatii*q”* .start.t
end;

if He=min then begin

sacondmin:=min;

i

ﬂﬁ.&ﬁﬁa

ogse 5
H:=
: H:
: H:
H:
H:

"J‘Ul-h-LQN-—s

min:=H;
secpointer:=ptr;
ptr:=q
etd
aeise {f He=secondmin then begin
secondain,=H;
secpointer =q
,
q:=q" . next
if =ecpointer < nil
then bagin
rauisacd;

sec” . secminnode i=secpointer;
sec”.nextsecmin:=ptr" . secmin;
ptr" . secmin:=sec;
nawip;
for- i:=1 to r do p* . OId.EATLi ):=secpointer” Hew EATILi];
pp.=secpointer”  01d.EATpir;
p.link:=pp,
secpointer” . OId_EATptr:=p
end
erd; {ealeulateminH}
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procedure updute_EﬂT(polnter hodeptr);
{replace EAT values by New ERT values of the task just scheduled)
war
i : integer;
bagin
for i:=1 to r do EATLi ):=pointer” . Hew EATLi];
end; {update EAT)

procedure delete_from_task _seilpointer: nodeptr),;
{remove the task to be scheduled from the task queue}

bagin
< polnter” . prev’ naxi spointer® next;
if pointer” .next<snil then begin

. © - pointer” .rext” . prev:spointer” . prev;
pointer” naxt:.=nil

. erd;

pointer® previ=nil
end; {delete_from.task.set) -

procedure qdd.to.#éheduie(vqrfs:nodeptr;poinier:nodeptr);

bagin ) 4 )
pointar”’ prav.=s; {add the task to ba schadulad to the schadule queue)}
s* .next:=poinier; .
£:spointar

erd; {odd_to.schedule)

procedure dalete from schedule{var =,pointer:nodeptr;
begin ‘ .
pointer:=s; {remove the last iask scheduled from the schedule queus}
s:=pointar” .prey; '
painter previ=nil;
£ . nexti=nil
end; {datatg.!roa.schedu!e}

procadure put.back. to_tagk setilpointer: rodeptr);
{add th= iosk, removed from schedule gquesus, io task quaus}
war

p : nodeptr;
in

p:sfirst_tagk _ptr* . next;
p’.previ=pointer; pointer® next: sp;
firgt_togk ptr® . rnext . =pointer;
pointer’ prev:=first_task.pir

end; {put.bock_to_tosk set}

procedure gat OId EAT(pointar nodapir’;
{zince there iz a backtrack attempiing to stheduie the task which hgs second
minimum value of the function H, EAT values should be replaced by Hew EAT of
this task which was recordéd as Old.EﬂT}
v

i : in

ﬂid_EﬂTpfrtgpe,

begin

p =pointer” Old_EATpir,;

for 1:=1 to r do EATLi}:=p* .OlId. EATI(i};

pointer® 014 EATptr:=p”.link;

disposalp); p:=nil;
end; {gef.ﬂld_EﬂT}

procedure schedule_second mirimm;
{zchedule the task which has aacand minimum value of function H}



begin
tempptr:=ptr" secmin;
ptr’ . secmin:=tempptr" .nextsecmin;
pir:=tanpptr* .sacminrode;
disposetemppir); temppir:i=nil;
dalete_from_task.setiptr);
add_toe_schedulels, ptrl;
get DId_ERT(piry,;
caleulata ST,
caloulate New ERT;
caloulate DROR(DRDORY :
cend; {schedule_second_minimum}

procedursa hmted_bmktmcker(w guarantesd:boolean?;
begin '
if schedule® next=nil
then guaranteed:=false -
elze begin | {perform Pseudo Backirack}
delete_from_schedulels,ptr’;
put. bock to.task. setiptir’,
zcheduls second_minimum; .
if not strongly_feaszibla(DROR « -
"~ ihan bagin ‘ {perform Real Backtirack}
guarantieed:.=fgiss; T
snpty:=faige;
while (noi emptyy and (counterdiiC)
and {not guaranteed’ do
bagin
repeat
deiate_from_schedulels,piry;
put back_to_task_set(ptr) .
until (ptr*.secmindnil’ or (s=schedule’;
if ptr.secmindinil
then begin
schedule_sscond_mirimum;
.if strongly_feasible(DROR)
then guaranteesd:=trus;
end
aise amply:=trug;
counter : =counter+|
end {whila}
end
end
end; {limited backiracker}

begin {;—:cheduler}
naw(z3; £°.naxt:=nil; s°.prav:=nif;
g* smm =hil; sd'iedu!e =z, eouﬁter =0, quar*mteed =true;
emptiy:=false; f =first_task._pir;
while {1 nexiisnil) and guorontssd do
bagin
caleulotea S7;
calculagte_MNew EAT;
calcul ate DRORCOFOR ;
if not strorgly_ feasible(DRDR)
then |imited backiracker(guaranteed)
else begin
coleulateminHiptr, sin_type, W;
update EAT(ptr),
daiste_from_task seilpir);
add_toschedulaliz, pir)
st
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end; {while}
delete_queualschedulel
end; {scheduler}

procedure check_task_sets(var guaranteed_task _setis:task_sets_range’;

var
i . integar;
infile @ text;
EAT : resource_y;
guaranised ;| boolean;
first_task ptr . nodeptir;
count_task_zaetz | task_seiz_rangs;

begin
assign{infile, tasks. dat’'’; reseti{infile);
guoraonieed_task seis: =0, count_-task_setz: =0,
reapeat
for i:=1 {0 r do EATIi).=0;
gat_tazksi{infile, first_task _ptr);
scheduler{sim_typa, guaronteed U, first_task_ptr EATY;
if guarantead
- then guaranieed_tosk _sets:=guorgnieed toask _ssts+i
else delete_gueus(first_task ptr’;
count_task_ sets: =counti_task _sets+i
- untll count_task _ssts=number_of_task_sets;
clogalinfile)
end; {check _task _seis)

begin. {main}

H:=0; init;
for slm._tupe =1 to mmber_of._-nm_tupes do
if sim_type<s
then begin

cthtqskJets(guqrun teed_task_sets);

writein;,

writein(’'8T = 5lm..tgpe 1,° HUMBER OF GUARANTEED TASK SETS =

guamnteed.f.ask_f-:ets 2

=nd
- alze beqgin

try:=y; W:=0.5;

previous.value:=0;
roincranse.=false;

rapsat

chﬁck_mkﬂts(guqrmtﬁd_task_sets/,
writaln;
writein{'8T = ', zim_typa:1,' U= ', W31

: ’ 4
' MUMBER OF GUARANTEED TASK SETS = ', guaranteed_task_sets:33;
11 tguarantiead_tosk. zeis=rumbar_of _task. sats) .
or (guaranieed_lask _sets<previous.salue)
thers noincreaze:=true
ef{ze brgin
W:=l+0.5;
if guaranteed. task sets=previous value
then try:=try+i
alse try:=1,
i triprd ﬂ':en noincrenss; =true .
grwim..uama wwmtead.task_sats
et
unti! noincrease
. _ and
end. {main}



APPENDIi C. GLOBAL TASK GENERATOR

- progron gen-iozkoususs . '

{Thiz progrom, given the preset generating parometers, generates tasks that
arrive locally to each node of the system model, and creotes task queues which
will be used as input data by the simulation programs which siudy  the
performance of warious distributed scheduling algorithms.}

siring_type = siringlsS];

wor
tasksfile : texti;

procedure gentaske(ch:char;sig compi, mucompt,sig.laxity,
su_laxity: integer; lasbda_arrti:raeal 3;
const ‘

r= g

rr =8,

SIN.TIME = 2300;
typa :

taskiuype = arroy [1..rr] of integer,
v

T : taskiypa;

counter, i ,arr.t : integer;

n : real;

=top : boolean;

begin
for- i:=1 1o rr do Tlil:=0;
counter: =1,
arr_t:=0;
stop:=falze;
repeat
Tir+31:=arrt;
repeat
no=0;
for 1:=1 10 12 do n:=r+BANDOK;
n:=sig_compt#*{(n—6 H#mu.compt
until truncini»0;
Tlr+11:=trunciny; {gererate computation time}
repeat
n:=0;
for- 1:=1 to 12 do n:=n+RAMDON,
n:=sig-foaxi ty#(n-6rmi_laxity;
until trunedin)r0;
Tlr+21:=TIr+3 14T [r+11+truncin’y; {generate dead|ine}
repeot
for 1:=1 to r do .
if RAMDOM<=0.5 then TLil:=1
slze TLil:=0
kil (4TU11450% or (T12142003; {gererate rescurces requirements}
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if Tir+2) > SINLTINE
then stop:=trus
else begin
for i:=1 to r+3 do write(tasksfila, TIi1:5);-
" writeinttasksfile,’ ',ch:1,counter);
counter  =counter+1,
arr_t:=trunc(arr_t-1n(RANDOM 3 /i ambda_arri’ {generate arrival time}
end .
until stop
end; {gen_tasks}

procedure create data_file(fl :string-type;ch:char;
gig.e, miec,2ig.t,mi_l: integer;
|ambda._arrt real 7;
begin
azsigni{tasksfile, fi);
rewritedtagkefile);
gen_tasks(ch,sig.c, mi-c,sig-l ,mil, lambda_orrt);
closeliasksfilar
end; {create_data_file}

begin {main}
randomiz&;
{generate task queuez for the nodes fi through E}
create datafile('A.dat’,'A’, 100,200, 150,300, 1/1007;
crente datofi{e('B. dot’,'B’, 100,2ﬂ0, 1'50,300, 171093,
create_data_file('C.dat’, 'C’, 100,200, 150,300, 1/3007;
create_data_file(’'D.dat’,'D’, 100,200, 150,300, 1/600;
create_data_filed'E.dat’, 'E’, 100,200, 150,200, 1/600
end, {main}
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APPENDIX D. SCHEDULING PROGRAM USING BIDDING AND FOCUSED
ADDRESSING

This part contains the listing of the distributed scheduling program which uses a
technique which combines bidding and focused addressing schemes. First, the listings
of the include files are given, the listing of the main program then follows.

Listing of Include File SCH.PAS :

procedura gat_nodelvar pointer:nodeptr};
e
i ¢ integer;
bagin
new{pointer); {initialize a task node}
with pointer® do
bagin
nexti=nil;
pravioanil;
zecmin:=nil;
Old_EATptr: =nil;
arr-t:=0;
dead! ine:=0;
storti_t.=0;
comp..t: =,
for i:=1 lor do
bagin
res.needl(il:=falsze;
Hew EATLI 1:=0
end
end
erd; {get.rode}

ggc;edure copy_infolhesnods, oldnode: nodeptr ),
in : '
newnode” | id:=oldnode”  id;
- rewrade” arr_ti=oldnode” .arr-t;
nawrnda” . comp_i:=oldnaode” . compt;
nesrode” . deadl ine:=oldnode” .deadl ine;
rewnode” . res_need:=cldnode” . res_need;
newnode®  Hew EAT :=oldnode” . Hew EAT
end; {copy-info}

procediure get_tasksivor first_task: nodeptr);
yar "

p.q ¢ nodepir;

o oarray U1, .er] of integer;

ch  chey, '
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‘i 1 integer;
bagin .
get_nodelq; ‘ {create a task queue}
first_task:=q;
while rot eof{infile’ do
begin
rawips,;
with p* do
begin
start. bt =0;
next:=nil;
prev.=q;
secmin:=nil;
OId_EATptr =nil,
for i:=1 to rr do readiinfile,rnilil’,
read(infile,ch,id’;
raadiniinfile);
arr.t:=rnir+31;
dead] ine:=rnir+21;
comp..t =rair+1];
for i:=1 tor do
if ﬁﬁtil{: 0 then rez.needli]: =tru¢
" alse recreed(il: =false;
for i:=1 io r do Hew EATII1:=0
erdl;
q‘,next.-p,
q:=p
and

end; {get_tasks}

procedure schedulori{q,D]:nodeptr;EAT resource_ar;, var guaranteed:boolean;
var first_task_ptir,schedule:nodeptr;quantity: integer);

{check whether a newly arrived task can be guaranieed or not}
vor

passdead! ina, empty . booleon;

5,1,p,pp,ptr,s5 : nodeptr;

temppir : =zscminpir;

ORGR © real_ar;

countar,| : integer;

procedure colculate 57;
var

max,i : integer;

p : nodepir;
bagin

P =first_iask_ptr ﬂeyt {ealeulate start time}
while psrnil do .

begin
mox =p”  arrt;
for i:=1 {0 v do
if p”.rez.naedli]
than {f EATLi I>=max
then moy:=EATLI];
p.start t=max;

poap” vt
erd; {ealculate 5T}

| procadure ca!aulaia_ﬂﬁﬂﬁ(var DRDR:real_ar;

{calculate the degree to which tasks to be schadulad will damand resources}
war

fraction, tot _comp_t,max, i L integer;
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: nodeptr;
begm
for ii=1 top de
bagin
tot comp i ;=0;
mene =,
P =first_1usk.ptr .maxt;
ghila ponll do
bagin
if p*.ras.need(i]
thenh begin
totcompt:=tot comp_t+p”.comp_t;
i1 p*.deod| ine>=may
then max:=p”" .deadline
end;

p:=p” .next

froction:=max—-EATILi];
if fraction=0
then ORDRLI1:=0
eize if mox=0 then DRDRIi}:=0
elze DRORL{1:=totcomp_t/fraction
ard
end; {calculate_DROR}

function strongly-feasible(OPDR: real .ar):boolean;
var

i : integer,
bagin

strongly_feasible:=trus;

for i:=1 to r do- :

if DRORLi 1>=1 then strongly_feazible:=falss;

if pagsdead|ine then strongly_feasible:=false

snd; {strongly_feosible}

procadure caleulate Hew EAT;
{eaiculate EAT voluss of the task if it i= zcheduled next}

var
omin, i o integer;
p : nodeptr;
begin

p: =f§wzt.iaak.ptr‘ neExt ;.
paszdead| ine:=falze;
while {p<snil) and (rot passdead!xna) do
begin
min: =maxiﬂt;
for i:=1 to r do
begin
if p* res.need!;l
then beqgin
p° Haw EATLI ):=p” . gtort i4p”  comp.t;
if p*.Haw EATLi 1>p* .deadlina -
then pazzdead! ine:=true

end
else p* Hew EATIi1:=EARTIi];
if activelil _
then if p”.Hew EATLi I<=min
then min:=p* .Hew EATIil
end;
for i:=1 to r do
if p* . Hew EATILi l<min
than p* . Hew EATLi 1.=min;
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pi=p" . next .
end; {calculate_New_EAT)

caleulate_min H{var ptrinodepir);
{detect the tasks having minimum and second minimm values of H}
const .
H =075
war
temp,i : integer;
secondmin,min,H | real;
secpointer,q @ nodepter;
sec | secminpir;
p.Pp : Old_ERTpirtype;
begin
min:=maxint;
secondmin:=paxint;
ptri=nil;
q:=first_task_ptr". next;
whila gonil do
begin
H:=q" .deadlire + W #* q°.start_1;
i1 Héi=min
then begin
gecondmin:=min;
min:=H;
secpointer =ptr;
pir:=q
erd

slza {f Himgacondmin
then begin
secondmin.=H;
secpointer:=q
end;
q:=q" . next

?
if secpoinier 47 nil
then begin
rawlEac);
sec” ., secminnode  =secpointer;
sec’ rextsecmin:=ptr* . secmin;
pir®.secmin:=szec;
rewips; _
for i:=1 to r do
p”.OId_EATLi 1:=secpointer” Mew EATIi];

pp:=secpointer* . 0ld_EATptr;

p* . link:=pp;
secpointer® .0Id_EATpir:=p
end

and; {calc:u!ate.mm.H}
. .pmaadwa updatﬁ.EﬂT{pafnw nodaptr;

: Integer;
bagm
for- 1:21 {5 r do EATL Vi=pointer” Hew EATILi];
end; {update EAT}

procadure dﬂiatﬁ.frm-iask.ﬂtimmter nodeptw

bagin
pointer® . prev’  next: =pointer next

if pointer®. nexfaml o

ekeGrotlm Kuruiu
@Y@ﬁmamasy@m Merlze@



then bagin
- pointer” .next® . prev:zpointer® . prev;
pointer® .next:=nil
and;
pointer” .prev:=nil
. end; {delete_from_task.set}

procedure add_to_schedule(var s:nodeptr;pointer: nodeptr);
bsgin

poiniar”® . prayv;=g;

£° .naxt:=pointar;

£:2pointar
end; {odd_to_scheduis}

procedurae delate_from_schaduletvar s,pointer: nodapir);
bagin

pointer =g,

z:=pointer’  prev;

pointer” . prey:=nil;

s" .naxt . =nil :
erd; {delete_from_schedule)}

" procedure put_back_to_task sst{pointer:nodeptir);
var ) :
p : nodeptr;
begin
p: =first-task_ptr” .next;
p*.prev.=pointar;
pointer® rext: sp;
firet_task pir® next: =paintar~
pointﬁr prav:=first_task_ptr
end; . {put_back_to_task set}

procedure get_01d_EAT{pointeér:nodeptr;

- -uar

p: Old EATpirtypa;
i : integer;
bagin
piapointer” 014 _EATptr;
for- 1:=1 io v do EATLI):=p* . DId_EATII];
pointer  0ld_EATpir:=p*, Hm
dispossip);
piang |
and; {gat_0ld EAT}

procedure initial values;

bagin
counter:=0;

" emply =falze;
guarantesd sty
get_nodeis?;
schedula:=s;
get_node(f’;
first_task_ptr:=f

end; {initial_wvalues}

procedure form-tasks_ queus;
var

i:integer;
begin

p:=bBO” .next;
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whila pirnil do {ropy dispatcher queue (DOJ to tasks queus}



beqin
get_nodelpp);
copy-infolpp,p;
£ .raxti=pp;
pp" .prey:=f;
Lk =Pp;
pi=p" naxt

and;

for 1-1toqmmﬁtgdo

begin
get_nodeipp);
copi-infoipp,ql;
f* .next:=spp;
pp”.prev:=f;
fi=pp

end;

end; {form_tasks_queus}

procedure calculations;
begin
colculote . ST;
caleulate Hew EAT;
caloul ate DRORCDRDF )
etid ;

begin {schedulor)
initialwvalues;
{orm.Aosks quaus
f:=first_ task_pir;

{add new task (or multiples of it)

while (f" .rexi<nil) ond guaranteed and <not empiy) do

begin
calculations;
if not stronglg_faasi

ble{DAROR Y

then i1 schedule” .nexisnil

then empty:stirue

alsa begin

dajete_from.schedule(s pir’;
put_back to_task_set{ptr),;
tesppir:=ptr* . secmin;
ptr*.secmin:=tempptr* .nextsecmin;
pir:=temppir” . secminnode;
disposeltempptr); temppir:=nil;
deleta_from_task _set{ptr);
add.to_schadula(s,pir);
‘get_01d_EAT(ptr);

calculations;

if not

5trangtg_feasibteéﬂﬁﬂﬂ)

then begin .

guaranteed:=false;
enply:=false;
while (not empty) and (counter<iC) and
thot guaranteed’ do
begin
rapeat
delete_from.gchedulelis, pir);
it back. totagk set(ptr)
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to tasks_queue}

{Pzeudo Backtrack}

{Real Backtrack}

untii (plr*.secminnil)y or ﬂszschedule}

if ptr® . zacmindnil

pir”, secmin =iempptr Jnextsecming

pir:=tanppir’ . secminnode;



dispose( tempptr);
tampptr =nil;
delate_from_task_set{ptr);
add_to_schadulals,ptr);
get 0d_ERT{pir);
caloulations;
if strongly—feasikle{BROR)
then guarantesd:=true;
end
alse emply:=true,;
counter:=countert
and{whila}
end
. end -
alse bagin
caloculate_min Hiptr),;
vpdate ERT{pir);
deiete_from_task _satipird;
add_to.schedulels, ptrd
atd
end;
if empty then guarantesd:=faisa
and; {schadular}

Listing of Include File BID.PAS :

pmor.edwe indicate_l ine(nodeid,dest . chor;var bidorr,no: integer’;

bagin
deteci_indexinodeid, dest noj;
case ro of
1: bidgrr:=lins4;
2: bidarr:=line3;
3. bid_arr:=linaZ;
4. bid_arr:=lins1

eryd .
end; {indicate_ljne}

procedure calculate MAXBID;
i, mintosk_sendingdelay,max,estimated_start_t . integer; -
bagin
- mintosk_sendingdelay:=b* . comp_t div 10+message_delay;
{ colculots sorliest estimated arrival time}
b”.arr_t =clockimazzage del apnintask sending. deiay;
for i:={ to.r do .
if real EATLI J<clock
ther temp EATII]:=ciock
€ize temp EATII].=raal EATIi];
max:=b”.arr_t;
for i:={ to r do
i{ b*.rasnesdli] ‘
then if temp EATLiI>=max then max:=temp EAT{il;
eztimated_stiori_t:=max;
MAXBEID:=(b”. deadline-estmated.start_t) div b*.comp_t
-and; {ealoul ate MAXBID}

procedure binary.search_for BID;
war

tow,hi,mid : integer;
guaranieed @ boolean;
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bagin
BliD:=D;
fow:=1;
ki :=RXBID;
while {low<=hi) do
bagin
mid:={{owthi) div 2;
schedutardh, D, temp_EﬁT guaranteed, m,b&,md}
daletequeue\m) _
T2 orextiepnil;
deletequm(sm
80° .nexti=nil;
if gumteed
then begin
BID:=mid;
low:=mid+i
end
alze hir=mid-1
and
and; {binary-search_for B1D}

procedwe bidding.L;
bagin
case no of
1: send.bid(b”.id,1B0.4,1,B10,lined’;
2: zend bid¢b”.id, 1B0.3,2,BID, | ine35;
3: send bid(b”.id,1B0.2,3,BI0,1ine2’;
4: zend.bid(b*.id, IB0_1,4,BI0,linet’
erd :
end; {bidding.C}

procadure bidding.S;

bn,pbn, bidriods © bidonodapir;
bagin
gatbidnodelbidrodal;

bid.node” . t_id:=b” . id;
bidnoda’ .valus:=BID;
coze no of
1: begin
bidnode” . ind:=1;
if rodejdis 'R’ .
then bidnode” . dest: =pred(nodeld}
ﬂlse bid_node* .dast:="E’

2: bmm
bidunoda” ., ind:=2; . |
i1 trodelid="A’) or {nodeid="B‘)
then bid rode” . dest: =succ{succi{succinadaidi’)
gise bid.node*  dest:=pred(predinodeid’’ '

begin
bid_node*. ind:=3;.
if tnodeid='D" 7 or (nodeid="E’')
then bid-node’ . dest:=pred{pred{predinadaid’)’
ﬁlse bid.node* ,dést :=succisuccinodaids)

4: bﬁgin
bidnoda” ., ind:=4,
if nodaid<s'E’
then bidurode” . dest: =succirodeid)
elze bidrode” . dest:='A’
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end

and;

update_| ineimessage delay, finel’;

bid_noda“ .are: =l inai; :

inzert_into 2 BIDOCbid node?,
erd; {bidding S}

Listing of Include File BIDEVAL.PAS :

procedure sending_task{var b: sm_bld'-.mﬁptr
RFEQ, task..queue rodepir;ch:char;var |ine: mtegem

g
B : nodeptr;
detlay : integer;
begin
f ind_the_task¢b, RFEQ,p);
if pinil
ihen begin
delay:=p“.comp.t div 10+message delay;
i TOPOLOGY='S"
~ then p*. id:=chip”. id;
zand(p, tagk_queus, | ine,dalay’;
delate_taskip>
end .

end; {sending_task}
‘procedure nonguaranieed{var b: inc.bids.nodeptr;RFBO: nodeptrJ;
var

p : nodepir;

begin
find_the_task{b RFBQ,p);
if pirnil
then begin
taskz_nonguarontead : =tasks_ronguoranteed+1;
delete_task(p)
: aend
end; {nonguaranteed}
" procadura bidmlmtin«g(!ﬂ& im.bida_nodeptr
RFEQ, Hew_TO1, New_ T2, Hew_TO3, Hew_T04: nodepte;
chi, ch2 ch3, ché: char;
o lme1 Hmz lmea lined: integer);
var - .
okay : boolaan; .
b incbhids_onodepir; '
i, latast bid_arr, m, : intaw;

procadura Sihdit‘(m intigit‘)
begin .

case ho af
. nohguarantesdib,RFEQ);
sanding-taskdb, RFBQ Nam_‘fm,ehi,linai);
sending.tc:sk(b‘.RFBQ,New.m,chE, line2);
sending..task{b, RFBQ, New_TQ3, ch3, | ineld);
gending..task{b,RFBQ, New.T04,chd, | inedd

- and; {sender}
begin {bid_evaluating)

%:‘??.’!“:’:‘:‘F’
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b:=1B0" .naxt; ‘ {evaluate bids arrived at the Incoming Bids Queus}



while bdnil do
with b” do
begin
if clocks=latest bid_arr
then begin
oy, =0
no =0,
for i:=1 10 4 do
bagin
if Carrslilimclock) and <bidslilsmax)
then begin
- max.=bidslil;
1o =i
and
&,
genderino)
and .
eise begin
chay:=true;
for {:=1 40 4 do
if Corrslil=0ior(orreiilrclonck) then okoy:afalse;
if olay
than bagin
max:=0;
ro:=0;
for 1:=1 40 4 do
begin
if bidslil>max
then begin
max:=hbidslil;
no =i

end
end;
zardering )
e
alge |f (bidsl11>HBY and Carrslili=clock) :
ihen zender{i)
alze {f CbidsiZ1HB) and {orrs(2]4i=ciock)
than sendar(Z)
alze 11 (bidsI31>HB) and {arrsi3li=clock)
than serder(3)
glze if (bidz{4):HB) ard t’arrﬁwlﬂclos:k?
thasy sarderi4’
eise b:=b" .nexi
and
el

and; {bid.ﬁualuaf.mg}
Listing of Include File FROMS.PAS :

. procedure send_RFEMs_from_S;
var '

ch : chor,
q : nhodepir;
stop : boolean;
bagin
stop:nfgize;
repeat
q:=5_IFFBN". neut :
if (qunil; and (q .arr-t=clock )

{transfer raqguast for bid masgoges quauad at the central node}
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than begin
S.iFﬂ'-'ﬁ‘!“,mxt:-q‘.mxt; {get message from queus)
if q*.next<rnil
thar bagin
q next” . press: =S_IP.FEﬁ*l
q“.next:=nil
end;

q".preu.=nii,

ch:=q",idl1];

q" . id:=copyiq*.id, 2,37,

case ch of
‘A': tronsfer_nodel(q, A_IRFBH, | inaSA, message.dalay);
‘B': tronzfer_node(q,B_IRFBY, | inedB,mezsage_delay);
'‘C': tronsfer.nodel{q,C_|PFEM, | ineSC,message. delay’;
‘D*: tronsfer_node(q,D_IRFBM, | ine5D, message_dalay);
'E’': transfer_node(q,E_IRFBM, | ineSE, nessage_delayd

end

end
else siop:=true
until stop
end; {send FFEM=_from .S}

procadure sand-BlDz_from.3,;
var

bri bid.nadeptr,
s’f.op boolear;

ztap =false; {trarnsfar bid Inforaations quaued at the central node}
repact ;
bri:=5.B100" . naxt;
if (bnednild and (bn®, arr=clock)
. then begin ,
S.B100" . naxt =bn" .next; {get bid node from queus}
if bn".nexteonil : . o
then bagin
bn* .next® . prev.=5.8100;
bn” .next:=ni|
end;
b .prav:=nil;
case bn*.dezt of -
‘A': send_bid{bn”.t_id,A_IB04,bn".ind, bn* .value, | ineSA’;
'‘B’: send.bidibn®.t_id,B_IBO,bn".ind,bn* .value, LineSB);
‘C': send_bid{bn".t.id,C_1EQ,bn". ind,bn" .value, | ineSC);
‘D' zend bidibn®.t_id,D_IEQ,bn*. ind,bn" .value, 1inesSD’;
‘E’: send bid(bn”.t.id,E_IBQ,bn". Ind,bn* .value, | ineSE> '
end, )
dispom(bn)
end
else stop:=trua
until stop
ard; {sand_B|Ds_from-2}

procedure zand taskz_from S;
var
ch : chor;
q : nodepir;
stop : boolean;
deloy : integer;
begin ’
stop:=falza; {transfar tasks quaued at the cantiral node}
rapaat
q:=8.T0" . naxt;
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if ¢qednil) and <q°.arr_t=clock)

then bagin

S T0°.rexi:=g" .next; ’ {get task rnode from task queus)’
if q°.naxtirnil
then begin

q°.next” . preyv:=5_T(0;
q".next:=nil
ahud;

q”.prav.=nil;

delay:=q*.comp_t div i0+message.deloy;
ch:=q”.idl1];

q*.id:=copy(q*.id,2,3%,

coze ch of

lﬂ‘ :
"B
i P
!Bl :
‘E*:
end
sl

transfer_node(q,A_tasks_pir, | ineSA, dalayl;
trongfernodedq, Botaske ptr, | ineSB, delay);
transfer_nodelq,C_tasks_pir, | ine2C,deiays,;
trongierrodelq, O tasks.pir, | ineBD,dalay);
ironsfer_nodelq,E_taskz_pir, | ineSE delay> -

eize ziop:=irus

until stop

and; {sand_tasks_from.S}

Listing of The Main Program :

program biddingand_focused_oddressing;

{This program tries to schedule real-time tasks in a distributed system model.
. Hhenever a task connot be guaronteed by the local node at which it arrives, it
is sent to q remote node by means of focused addressing and bidding scheme.}

-cOns
r =5
rr = 8;
e = 3;
TD = 46;
50 = 4;
HB = 2;

SIM.TIME = 2500;

{rumber of resources on each node}

{max count used in real backtacking}
{average tronsmission deloy between nodes}
{overge schedul ing delay on g bidder node}

{high bid}
{simslation time}

TOPOLOOY = 'C’; . {'C' for FULLY COMMECTED, 'S’ for STRR}

massogedelay = 26; {system’s no conflict message deloy}

window _lenght = 500, : {period for surplus sxchangs)

windows = 5; {rugber of windows}
type

id_type = giringl4];

string-type = stringl3];

rezourca_or = array. [1..r] of integer;
realar = array [1..r] of real;

boolar = packed array [1,.r] of boolean;
Oid_EATptriype = “0Id_EAT type;
0ldEATtype = record

O1d_EAT © resource_ar
lirk : Old_EATptriype

srvd;
nodepir = ‘nodatypa;

secminplr = “zecmirpiriype;
gecminptiriype = record

secminnode © nodeptr;
nextzsacmin : secminptr
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end; .
nodetype = record
id : id-type; _
um*_t daad! ina, stortt,comp_t : intagar;
res_need hml_ar,
foend ehar .
secmin @ mminptr;
pray, next . : nodeptr;
New_ERT : resource_ar;
Old_EATptr : Qld.ERTptriype
end;
bid.nodeptr = “bid_mdet\,pe,
bid_nodetype = record
tid : id.type;
m,wlue,ind v integer;
dast : char;
prev next : bid-nodeptr;
end;
inc_bids_nodeptr = *inc_bids_nodetype;
inc.bids_nodatype = record
t.id : idtype;
latest bid.are : integer;
bids,arrs : array [1..4) of integer;
prev, next ¢ im_bids_nodeptt*

and;

inc.suwrpluzs_nodeptr = "im_swplmmtgpa,
lne.swp!us_mdetme = pacord

n.id,dest . char;

are ! intmt‘ ,

SUrp | resourca.ar;

prav,ext @ inc-surplus.nodaptr;
nd_range = 'R'..'E";
reportoarray = arrayll, (2, nd_range, 1..3]1 of intager;

info_array = arrayll. (eindows] of resource.ar; X {busy times}
surplusarray = arrayindrangel of rasourca.ar; {fraction of fres times)
var '

infila : text;

gotive | boolar;

larange © set of char;

S_BiDQ : bid-nodeptr; .

A.EART,B_EAT,C_EAT,D_ERT,E_EAT : resource.or,;
A.1B8G,B.1BQ,C.1BQ,D.1BO,E~IBY : inc.bidsnodeptr;

RA_tasks pir, Adisp, A.IRFEN, ALRFBQ, B tasks_ptr,B_disp,B_IRFBN, B_RFEQ,
C_tasks.ptr,C_disp, C.IRFBY,C_RFBQ, D_tasks_ptr, D_disp, D_IRFBN, D_RFBEQ,
E_taske.ptr, E.disp, E_IRFBN, E_RFRQ,8_TQ, S_IRFEN : nodeptr;

lineRB, 1ineRC, 1 ineRD, 1 ineRE, | ineBA, | ineBC, | ineBD, | ineBE, | inelA,
lineCB, 1 ineCD, | ineCE, | ineDA, | inelB, | ineDC, | ineDE, | ineER, | inekER,
LineEC, | ineED, clock, tasks_guarantesd, tasks_disp_local iy,
tasks.disp.nueide, tasks honguarantead, | inefS, | inaBS, | ineCs,

linaDS, | inaES, | inaSA, | inaSB, | inaSC, | inaSD, lir\aSE intagar\
R.neport B.report (?q*eport u_report E_report report_array;
A_surplus, B surplus, Csurplus, Dsurplus, E_mr*plus : surplus_array;
f-info,Buinfo,Cainfo, Doinfo,Edinfo ¢ inf

ﬁ_lbiQ,B_lSlQ C.!b&Q,D_tS!Q,E.ISlQ,S_ISN ln»._.m*plus_mdmtr‘,

procadura init;
] ! nd-ranga;

i,ii 1 integer;
begin



activelil:=true; activel2l:=true;
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{set initial values}

activel3l:=false; activaldl:=false; activelSl:=false;

clocki=-1;

finafB:=0; |inefC:=0; {ineAD:=0; |inefE:=0;

lineBA:=0; lineBC:=0, lineBD:=0; |ineBE:=0;

lineCA:=0; 1ineCB:=0; |ineCD:=0; |ineCE:=0;

lingDA:=0, |inaDB:=0; |ineDC:=0; |incDE:=0;

1ineEA:=0; 1ineEB:=0; |ineEC:=0; |insED:=0;

linefg:=0;, 1ineB3:=0; lineC5:=0; |insDS:=0; |ineES:=0;
lineGh: =ﬂ 1inegB:=0, |ineSC:=0; |inesD. =0 | ineSE:=0;

tasks_guaranteed:=0; tasks_disp_local ly:=0;
taske disprwwide: =ﬂ tasks.naﬂguaranteed =0;
for i:=1 40 r do
bagin
AEATL ] :=0; B.EﬁT[il -0 CEATLI 1:=0; DEATIi1:=0; E_EﬁTlll =0
and;
for i'=1 to 2 do
for j:='R' 10 'E’ do
for ii:=1 10 3 do

bagin
Areportii,j,iil:=0; Breporili,j, il ={;
Creportli,j,iil:=0; Dreportli,],iil):=0; E_reportli,},iil:=0
and
end; {init}
{%1 =ch.paz)
procedure init-foc;
wor
j : char
i,ii : integer;

begiﬁ
lwronge:=['a’..'e’1;
for ii:=1 %o windows do
for i:=1 to.r do
begin
fiuinfolii,il:=0; B infolil,il:=0;
..infa!is il: =ﬂ Doinfolii,il: =ﬂ E_infolii,il:=0"
end;
for j'“'ﬂ‘ to 'E’ do
for i:=1 to r do
bagin
Asurplusl],il:=0; B.surplus[j il , .
Csurpluslj,il: =0 Dsurpluslf,il:=0; Esurpluslf, il:=0

end
end; {init_foc}
procedure getting_tasks(f| string_tuype;ch:.char,var task_queue:@nodeptir);
in ' '

asgigntinfile, 117
razat{infilay;
gattaske! lark queus ),
ciosalinfiia)

erd; {gatting_tasks}

procedura gat.bid_nadefvar bh:bidnodeptr;
begin .

newibnl;

b .next:=nil,

bn* .prav:i=nil
erd; {get bid_node}
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procedure getoinc.bidsnodelvar b: inc bids nodeptr);
uar '

i 1 integer,;
bagin
nealb);
for i:=1 to 4 do
bagin
b, bidsnl =0;
b*.arrselils 0’
and;
b* . next:=nil;
b*.prayv:=nil
end; {get.inc_bids_node}

procedure getoinc.surplus.nodelvar s:imlus_mdeptr);
bagin

nawis);

=" . naxti=nil;

g .pravienil
end; {gat_inc_surplus_node}

procedure delate_inc bids.nodelvar b:inc bhids_rodeptr);
war '
bb : inc.blds_nodeptr;
begin :
bb:=h;
bi=bb* . next;
bb* .prav® next:=b;
it binil then b*.previ=bb® . prev;
disposelbb?
end; {dalate-inc.bidsnoda}

procedure gatting_nodes{var DO, RFBQ, IRFEN nodeptr;
Y- lBQ inc bids_nodeptr;var 1510! incsurplus.nodaptr);
begin

gat.nodalDQ);
get_node{RFRQ};
get_node{IRFBN?;
get_inc_bids nodal |BQY;

. get.inc_surplus.rodel lblt!)

end; {gettmg_mdas}

procadurea gat_tusks_initiuliza.nn
" bagin
init;
mlt_fn:n:,
gatting-tasks(‘f.dat’,'A’, Fl..tasks tr3;
gﬂttlng.mdaﬂﬂ_disp,ﬂﬁm,ﬁ.lﬁm ﬁ.lBQ,ﬂ.lBl’J)'
getting_tasks('B.dot’, 'B’ B tasks pir);
getnng_mdesw_disp,B.HFBQ,B.lﬁFBH,B.IBQ,B.ISiQ?;
gatting.taske('C.dat’, 'C’ ,C_taske pir);
gatiing nodes(C disp,C_AFBO,C_IRFEX,C_1BO,C_1510);
getting._tasks('D.dat’,'D’ ,D_tasks ptr;
getting;nodes(ﬂ_di,sp,ﬂ.ﬂEBQ,D_mFBﬂ,D_lm,D_ISiC!);
getting_tasks('E.dat’, 'E’' ,E_tasks_ptr);
getting.nodes(ﬁ.di’p,E_FfBﬂ,E_lW E.IBQ,E.IB!Q)'
- get_node{3.T0QJ;
gat.nodelS_ IRFBM);
getbid.nodae(3. BIDGJ;
get.im_surplusmdace_wm)
arnd; {get-taskz_initialize.afl}
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procedure deletequevalvar pirinodeptr);
war
painter : nodeptr;
bagin
repeat
pointer:=ptr;
ptrizpointer” .next; -
dispose{pointer;
pointer:=nil
until ptr=nil
end; {deletequeue}

procedure insert_into_gqueue{qq, queue:nodeptr?;
var

ppointer,pointer : nodeptr;
begin
ppointer: squaus;
pointer:=quaus” next,
whé;;'(potntertﬁnil) and {pointer® . arr_t<=qq*.arr_t’ do
in
ppointar:=soointier;
pointer  =pointer” next
ardd;
i1 pointer<>nil then begin
polnter Lprev:.=qq;
qq” .next: =pointer
¥
ppalnter Jnexti=gg;
qq" . previ=ppoinier
end; {insert_into_gqueus}

g:gcedure update_!inecdalag integer; ;var |ine:intager);
in
case TOPOLOGY of
'C i f linmiciook then |ine:=clock+daloay
alze lina:=linat+dalay;
'§':if line<clock then |ine:=clock+dalay div 2
aelge lina:=linetdaiagy div 2
ehd
end; {update_|ine}

procedure insert.into-lﬁiﬂ(sglle:inc_surp!us.nodeptr);
var ;
ppointer,pointer : inc_surplus_nodeptr;
. i : integer; , )
begin
ppointar:={§10;
polinter:=1810" . next;
whils ﬁpointerlinilﬁ and (potnter“ arr4=s .art) do
begin
ppointer:=poinier;
pointer: =pointer”, naxt

arud;
1 pointer<rni |
‘than begin
poiniar” . prav; =g,
£° . next:=pointar
and; .
ppoinler” . rext.=g;
£° .prav.sppointar
end; {insert_ into_I810}

-
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procedure s.surplusis, 1S1Q: inc_surplus_nodeptr var [ine: integer);
begin

@dqte_lme(msﬁme_delm,lme)

&% .arr=lina;

jnsert_i‘nto_!sm(s, 1St
end; {s_surplus}

pracma w;d_ﬁwpmﬂswpws surplusarray; nodeid, dast char;
: 1910: inc.surplusrodeptr var |ire: integer*)
var

g : inc_surplus_rodeptr;
bagin

gat_inc_wrpluz.mde(s)

£” .n-id:=nodeid;

2" .dazt . adest; - '

£* .surp:=surplusinodeidl,

s.surplus(s, 1810,1ingy
end; {send_surplus}

procedure sendmg_swplus_ﬂsurpius surpms.cwrw;,id d1,d2,d3,d4:char;
1310_1,1810.2,1810.3, 15104 sm_sur'plusmdeptr
var l!na1 {ine2, line3,lined: integer’;

" begin -
send_surplus(surplius, id,d1, 13101, linet’;
sernd_surplusisurplus, id,dZ, 18102, 1 ine2),;
zend_surplus(surplus, id,d3, 15103, | ine3);
send_surplus(surplus, id, d4 18104, 1ine4>

end; {sending surplus.C}

procedure serding surplus_S(surplus:surplius_array;
: id,d1,d2,d3,d4:chor;var line: integer);
- begin ' _

send_surplus(surplus, id,d1,5_1514G, lineJ;

serd_surplusisurplus, id, d2,5.1810, lins);

gard_surplusisurplus, id,d3,8.18140, linal,

gand _gurplus(aurpiug, (d,d4,8.1814, 1 ina’
end; {zsnding surpiuz 5}

procadura surplussxcharngs;
A
i,or00 . integer,
begin
wro:sclock div window_lenght;
for i:=1 to r do
begin
Asurplusi'A’,il: -window_lmght-ﬂ_info{m,tl
Bsurplugl'B’, i l:=window_|laernghti~-B_infolunc,i];
C.surplust'f:','istwindaw_lm@t-c_infotwm,il;
D_surplusl’'D’, i 1;=window_lenght-D_infolwno,il;
E surplusl’'E’ , i} :swindow_|enght-E_infolwno, i}
&rud;
case TOPOLOGY of
'C’ :begin
sending_surplus C(A_surplus, 'A’,’'B’,'C’,'D’,'E’,B_1514,
C1510,0.1510,E_1510, | inefB, | inefiC, | ineAD, | inefE);
sending_surplus_{B.surplus, 'B*,'C*,'D’,'E*, ‘A’ ,C_I810,
D-1810,E_1510,A_1510, 1 ineBC, | ineBD, | ineBE, 1 ineBA;
sendingsurplus.L{C_surplus,'C’,'D',’'E’,'A’,’'E" ,D_1510,
E_1510,R.1510,B..1810, | ineCD, | ineCE, | ineCA, | ineCB);
sandingsurplus C(D_surplus,’'D’,'E’,'A’,’'B", 'L’ ,E_ISICQ,
A-1810,8.1610,C_1210, | ineDE, 1 ineDA, 1 ineDB, 1 ineDC);
serding.surpius L(E surplus, 'E’,'A’,'B’,'C','D' ,A-ISI0,
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B-IS10,C.1510,D-1S1Q, 1 ineER, | ineEB, | ineEl, | ineED

and;
&' :begin
sandingsurplus S(Asurplug, 'A’,'B’,'C’','D’','E’, | inafAS);
sending.surplus 3{B_surplus, ‘B’','C’,'D’, 'E’ ‘ﬁ’ 1ineBS);
sending_surplus 8(C_suwrplus, 'C’','D’,'E’, 'ﬂ' ‘B, lmd:‘é’h
smding.surpius.s(n_surplus,'D‘,’E‘,‘ﬂ',y‘B‘,'C',!ineDS);
- sending_surpius S(E_surplus, ‘E','A’,*'B’,'C', ‘D', 1 ineES)
end ‘

and
erd; {surplus_exchange}

procedure find_delete_inc bids.nodel{task_id: id_type; |BQ: inc_bids.hodeptr);
var

b : inc.bids_nodeptir;
begin

b:=1B0" .next;

while (b<>nil) and <b*.4_id<>task_id’ do

b:=b*.next;

if b<rnil then delete.inc_bids_nodech’

end; {find_dalste_inc_bids_noda}

procedure chack-foc.add(q:nodeptr nodaid,chi,ch, ch, chd: char,
var focnode:char;surplus: surplus_array;
var posgible:boolean’;
consi
FAS = 0.5;
var
maxy . real;
{,tims, ind ; Integsr
factor © arroyll, .41 of real;

function fr*aetmeiq mdeptr,res_surp resource_ar’: integer;
war

i,ft.: integer;
begin :
f:=window. fenght;
for i:=1 4o r do

if 9" .rag_naedlil

then 11 firres_surplil

- than ft: sres_swptil

freetime:=f1
end; {freetime}

begin
- possible:=trus; - {check whather there iz a node for focused addressing}
factor(1]:=freatimalq, surplusichil;
factor(2):=freetimeiq,surplusich]);
factor(3].=freetimel(q, surplusich3l); -
factor(4) :=frestime(q, surplusich4l’;
if g°.comp_tywindow.|anght

ther time:swindow.|snght

size Lime:»q" . comp.t;
for i:=1 40 4 do

A1 factori1430

then factorlll: =fmtcm“l/tim,

ind:=0,
B 'D
{or i:-! to 4 do

if factor(il>max

then begin

' max.=factorlil;



ind:=i
. end;
if max>FRS
than casa ind of
1. focnode:=chi;
2: fTocnode:=ch?;
3: foonode:=chy;
4: fochode:=chd
end o
alse bagin i
puossinle:=false;
q*. focond ;= X"
end
end; {check.foo_add)

procedure tmrrfar.mdeﬁq,qume nodeptr;var |ine: mt&ger, delay: integer);

bagin
wdate_l insideiagy,ine’;
q°.arr.t:=line;
insert_into_quasua(q,queus)
end; {ironsfer_node}

procedure send(q,queue:nodeptr,var |ina: integer;delay: integer);
var :

qq @ hodeptr;
begin
get nodelqqd,
aapg.infa(qq,q?;
qq° . focnd:=q" . focrd;
trmsfea*.mde(qq,q:m line,delay)
ard; {serd}

procedure create.an-inc.bids_node(iask_id: fd_type; latest: integer;.

. war {80,b: inc_bids_nodepiry;
var .
bb,bbb : inc_bids_nodeptr;
begin ‘
gat_inc bids_nodalhs;
b* . i id:=task_id;
b . latest bid arr:=latest;
bb . =1 B(y;
bbb :=bb* . next;
while bbbirni1 do
bagin
bb:=bbl,
bbb:=bb* . next
ared;
bb* . raxt:sb;
b” . prev:=bb
end; {creats_on_inc bids node}

function upc(ch:char:char;
begin

upc:=chr(ord(chi-ord('a’ Mord('A’ )
end; '

function lwci(ch:char’:char,

begin
- Nwe=ctrtord{chi~ord( A’ Hordi'a’' )’
end;

procedure add_to FFBO(q,RAFB0:nodeptr;nodeid:char);

116
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var
qq : nodeptr;
bagin
gatnodalgy);
eopg_infa(qq,q};
qq". focnd:=q". focnd;
inwt_in\o_quwa(qq,m)
end, {add_to_RFBQ}

procedure send RFBM.C(q, IFFEM_1, IPFBM.2, IRFEM_3, IRFEM.4 nodeptr;
chi,ch2,ch3,chd:char;var linel,line2,1ine3, lined: integer);

begin :

sendiq, IRFBM_1, | inel, mexsoge_deioy);

send(q, IRFBM.2, | ine2,message_delay’;

serdlq, IRFEM.2, | ine3,meszagedelay);

send(q, iIRFB1.4, | ined, message_delay’
end; {send_FiFBHJ"}

procedure send RFBHM.S(q:nodeptr;chi,ch2,ch3,chd: cmr,uar lire: integer;
b&gm
q".id:=chi+tg”, id;
send(q,S.lRFBﬂ lme  message_delay’;
q*.idl1):=ch2;
:endfq,s_tRFBﬁ ling, message_delayl;
gq°.idl{1]:=ch3;
zmd(q,s.lHFBﬂ Hm,wzage.delw,p;
q*.idl11:=ch4,
;er:diq,ﬂ..tﬁFBﬂ Hm,msqga.deiw;;
ard; {zend FFEH

procadure daisci-indax{nd,dasi:char;var ind:integer);
begin
if {succindi=dest) or (ndﬂmbaimcém(m(destﬁ})))
then ind:=4
ez i1 {succi{zuccind)i=dest) or 4nd=succ(succ€suc:c(dast?;)ﬁ
than ind:=3
ejzs {{ {(mucci{zuccisuccind’’imdests or
(rddessuccisucci(dest)))
thar ind:=2
elise ind:=1
end; {detect_index}

procedure form_on-inc.bids_nodeid:id type; ! integer;
foc (B0 incbids.nodeptr;nd, fn:char’;

var .
nd : integer;
b : inebids.nodaptr;

begin :

. ereate_on_inc. bids_node(id, |, foe1BQ,b3; {ereate an incoming bids node}
detect _indexind, fn,ind); - .Aat the focused nods}
b“.bidslind]l:=-1; {no bid is expected from the sender node)

b*.arrslind]:=~1
end; {form_on_inc_bidzs._node}

procadura s*aﬁ. fo#..add..c{q, {oc_T0, IRFEM1, IFFBM2, IFFBM3: nodeptr
I:intagar; fac..IBl:! lnr'.bids.mdepf.r
var lfn,lbm 1n2, [bn3: integer;
rd, fn, bl bnd, bn:S char ),

bngm '
fm.m-inc.bids_mde(q id, 1, foc.IBO,nd, fny,
q*.focnd:=fn;



118

gend(q, |RFBN1, ibni, message_delay?;

sand{q, |RFBN2, 1bn2, nessaga.delay?;

- sendlq, |RFBIG, |bn3, message_delay); :

sand(q, foc_TQ, | fn, (q cnmp_t div 0 rmessoga—daiay)
end; {stwt_foe_add_t‘} :

procedure start_foc_odd 5(q:nodeptr;|:integer; var foc_IB0:inc_bids nodeptr;
var |ine: integer;nd, fr,bni,bn2,bn3:char);
begin '

fom..qn_sm_bids.node(q !d, {,foc_IBO,nd, fn3;
q .focnd: —fn,
q*.id:=bni+g”.
smd(q,S_lHFBﬁ llm,messag:_delwg}
q*.idi1]:=bn2;
.mdiq,s_lﬁFBﬂ line, massoge _deloyd,
q”*.id{1]:=bn3;
's,end(q,S_IHFBﬂ, line,message_delay’;
q°.idl1]:=fn;
send(q,S..Tﬂ,lma,(q .comp_t div 10mescage. dalay)
and; {start_foc_add.8}

procedure start_foc add(q, foc. . T01, foc_T0Z, foc. 103, focTO4, IRFBHM_1,
IRFBN.Z, IRFEN_3, |RFBMA4 nodapir;
var foc_lB{H foc_1B02, foc1B03, foc.1BO4: inc_bids_nodeptr;
var |iret, HnaZ line3, | inad: integer;
nd, fn,chi,ch2, chS ch4:char; lotest: integer;

begin

q°.idl1):=lwelg”.idl11);
if frechd
then
casa topology of
'C': start_foc_add Clq, foc_TO1, IRFBM_2, IRFBM_3, IRFBI_4, latest,
foc_(BO1,1inzi, Imu lme3,lme4 nd fn,chz, chS ch4)
2 ztwt.foc.add._ﬁ(q,latest,fac_le,limi,nd,fn,chZ,ch?,cM}
end -
alze
if frmch2
then
cose topology of
'L’ start_foc_add £4q, foc_TQ2, IFFBH_3, IBFBH.A IRFBM._1, | Gtest,
foc |BGZ, | ineZ, lme3 fined, lmei nd fn,ch3, ch4 cl'ui)
‘g’ stari_foq..add_aﬁq, !atest, for:..lBﬁz, | imi,nd, fn,chs,clﬂ,mi)
ard
alge
i Trechiad
then
coxe topology of
' stord fonadd Coq, foc TO3, IRFEM.4, IFFBM_1, IPFBM_2, latest,
: foc iBO3, 1 ine3, | ined, | inel, | ina2,nd, fn,chd, chi,ch2;
'8’ starti_foc.odd.B(q, latast, focIBO3, linei, nd, fr,chd, chi, ch2) -
and
alza
caze topology of
'C*: start_foc_add. L{q, foc_T04, IFFBM_1, IPFBM_2, IRFEM_3, latest,
foc_[BO4,lined, linel, line2, | ine3,nd, fn,ch1,ch2,ch3);
'5';: stori_foc_add S(q, latest, focI1BO4, 1 inel,nd, fn,chi,ch2,ch3)
e
end; {stori_foc_add}

procaedura start_bidding(q,HFBﬁ, IRFEM_1, IPFEM_2, |FFBM_3, IRFBM_4 :nodeptr;
nd,chi,eh2, ch3, chd: char;var 1B0: incbids_rodeptr;
var |inat,lineZ, 1ine3, | ined: intager; latest: intager);
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b : incbjds_nodeptr,

begin

creaate_on_inc bids rodedlq” . id, latest, IB0,bJ;
add_to_RFBO(q, FFEG, nd);
case TOPOLOGY of
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i Al smd_FxFBﬂ_L(q,iFFBﬂ..i mr-'t-m_z IHFBM_B IRFBM-4,ch1 chZ,ch:l chd,
linei linez 1inez line4>

‘8" 1send_RFEN_S(q,ch1,ch2,ch3, chd, lineld

and

end; {start-bidding}
procedure schedul ing

{nodeid:char;real -EAT :resource.ar;var FFEQ, DU :hodeptr;
var B0, foc.lBQi foc-!BﬂZ,foc_iBQG,foﬂ_le inc_bids_nodeptr;
MJMJMfMJMJmeﬂmJMJWmJ1WWJ(WW“,

IRFBY .4 nodeptr;chi,ch2,ch3, ch4:char;

var linet,line2, lmeS ined: integer;
var report raport.arrag,surpﬁus surplus_array’y;

q : nodepir;
focrode, ch ' char;
i,lotast dim : integer;

var

20,702 :

rodepir;

EAT : resource_ar;
siop, guaranteed possible : boolean;

begin

stop:=false;

repeot

9:=5T0" .next;
if <g4vnil) and {q"°.arr_t=clock)
then
bagin
TO* et cmg® et ; {gat task from tosk queus)

if g*.next<snil then begin
q” .naxt” .prav:=T(;
g°.nexii=nil
erd,
qt.pravi=nil;
for 1:=1 to r do
it real EATIi1tclock then ERTIil:=clock
: alse EATI li=real EATII];
if g*.idi1} in i@range then begin
ch: —upc\q idiin;
it q* f@and=nadeid
then dim:=1
alsa dim:=2
and
alse begin
chi=q®, {dl1];
dim:=3
and;
reportil,ch,dimli=reportii,ch,diml+;
schedulur(q,na ERT guuranteed Ta2, SQ,l}
if guaranteed
then
bagin
tasks_guaranieed: =tasks _guarantesd+i;
reporti2,ch,dim) :=reporti2,ch,dim]+1;
if g*.idl11 in fwr

then find-delete_inc_bids_node(q*.id, IBOQJ;

daletequeuallny; {delate Dizpatcher Queue}
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DQ:=5Q; {Scheduie Queue becomes DO}
dispose(T02?; : :

TQ2:=nil
and
else
bagin
lotest:=q" .deadl ine-q”" comp.t-(‘fﬂ%)
if latesti=clock
then tasks_mnguarmteed =iq5ks_nmgt.,|armteed+1
else
begin
q° . Hew EATI1]:=latest;
for i:=2 tor do qg° Hew.EﬂTi:] =f;
if g*.idl1l=nodeid
ther {if the task is local send it to another node}
begin .
chack_foc.add(q,nodeid,chi,chZ, chd, chd, focnode,
surplus, W:-Iblﬁ)
if pogzible

then stari_foc.addiq, foc 101, for..TQZ, foc T03,
foc 104, IFFEM.1, IRFEM.2, IRFBN.S, IFFEN.4,
foc_ {801, foc 1B02, f»:n:...tBﬂ&’, fao:.fBCH, i ine!,
{ine2, | ine3, | ired,nodaid, focnoda, chi,ch2,
chi3,chd, latest)
«ise start bidding(q,RFBQ, IRFBH_.1, IRFBENM.2,
_IPFBN.3, IRFBM.4, nodeid, chi1,ch2,ch3,chd,
180, 1inel,line2, 1 ine3, | ined, latest)

elze if ({q".idl1] in lwrange’ and {nodeid=q".foc.nd’>
then add-to FFBOC(q, FFEO, nodeid) {try bidding}
alse tasks_nonguaranieed:=tasks_ronguaranteed+1
erd;

deletequeus(TO2; TG2Z" .rext:=nil;
delatequeue(S0’; 50°.next:=nil;
disposeiq’;, q:=nil

end

and
elze stop.=trus
untii stop
end; {schedul ing}

procedure update_infolp:nodeptr,var info:info_arroy’,;
yar
i,start, termination,wno, duration, limit : integer;
begin
start:=clock;
duration:=p”  comp-t;
termination: ~ztart+duratlan,
wro miztart div window_lenghti+1;
while duration< do
bagin
limit:=wnotwindow_langht;
if terminotions=limit .
then begin
for i:=1 to r do
if g .raz_resdli]
thent infolwno, il:=infolwno, i 14duration;
duration:=0
end
alza begin
for 1:=1 to r do
if p*.resneedlil
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then infoluno,il:=infoluno, i l+limit-start;
start:=limit;
duration:=teraination-limit;
wro L =unoth 1
end '
eng
end; {updata_info}

procedure dispatching(nodeld char;D0: nodeptr;
war real_EHT resource.an;var info:info.array?;
ww
B, Pp ! nodapir;
I ! integer,;
bagin
.. ppu=DQ;
pi=pp®.naxt;
while p<>ni! do
if p*.startt=clock
then begin
it nodaid=p*.idi1]
- then begin
tasks disp_locally: =tasks_dlsp.local!g+1
- {incremant rnumber of tasks dispotched laeaiig}
update_info(p, info)

- else tasks_disp.nw_wide:=tasks.disp_rw.widetl;
{increment number of tasks dispatched network.wide}
for i:=1 o r do real.EﬂT[tl =p* Hew_EﬂT[il
PP et =pt next;
if p”.rextonil then p’.next” prev.=pp;
dizposaip’;
pr=pp” .rext
end
elss begin
Fpi=p,;
po=p” . naxt

e
ard; {dispatching}

procedure send.bid(task_id: id-tupe; 1B0: inc_bids_nodeptr;
index, BI0: integer var |ine: integer);
var

p ! inebidzncdepty;
: intager;
begin :
update_l:ne(me',age_de!ay,f:neﬁ
if task-.idi2] in lwrange then task_id: -cepg(task.ld

p:=1B0* .next; {search the node in the Incoming Bids Queue}
while (p<>nll) and {p*.t-id<>task_id’ do

pimp’ next;
if ponil ,

than begin

p arrslindex]: ﬂline,
p*.bidsilindex]:=BI0
ard;

end; {send_bid}
procadure inssriointo 5. B100¢bn: bidnodeptir’;
vor
ppointar,pointer : bid.nodaptr;
begin

ppointer: =S5 _BI00;
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pointer:=5_BIDQ" .next;
while (pointer<inil) and (pointer* arr<=bn*.arr? do
begin
ppointar :=pointar,
pointer:=pointer” next
and;
if pointeronil
then begin
painter” .previ=bn;
bn® . nexti=pointer
end;
ppointar® .naxti=hn;
bn” . prev:=ppainter
end; {insert._into.S_BIDQ}

" procedure biddingtnodeid:char;real -EAT:resource or; |FFEN, DO: rodepir;
jeq_1,180.2, 1B4_3, IBO_4: inc. bids nodeptr;
var linel,line2, line3, | ine4:integer);

var
b: nudaptr;
8Q,TQ2 nodeptr‘

sinp,fi»st boolaan;
teppEAT | resource.ar;
‘naxstn Bln lutest_hid.gr» bidaare,no @ integer;

{1 bid.pas}

- -bagin
stopi=false;
repaat .
bi=IRFBN" . naxt; _
If {dbtrni !} and BT arpt=clock))
then begin
IRFBH” .next:=b”" .rexi;
if b*.nextionil
than begin
‘ b*.next* . prey:=|FFEH;
. b”.next:=nil
and; )
b .prev: —nil
if b*.id11 in lwronge then b°.id:=b", foc_nd+b“ id;
indicote | ineinodeid,b*. idl1],bidarr,no’;
latest Lid_arr.=b”, Hew.EﬁTl!l
update_llne(message.delag,bld.arr}
i1 TOPOLOGY='%" then bid_arr: -bid_arr+mezsage_delag div 2;
if latest bid arrssbid_arr
then bagin
caleulate MAXBID;
bingry.search _for BiQ;
cose TOPOLOGY of
‘Cibidding.C;
‘S :bidding&
end
end;
disposeih’
ard

{gei‘task from (FFEM queus)

else stop:=true
until stop
end; {biddirg}

procedure deleis tazkivar pinodeptir);
war
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PP hodeptr;
bagin
PP:=p;
p:=pp".haxt;
pp‘\pre\«-“,next:-‘-p;
if pOORil then p'.previ=pp".prav;
disposelpp?
end; {detete_task}

procedurs ind.tm.taakwar b: inc_bidz_nodaptr ;FFB0: nodeptir var pinodepir);

whi!e ﬁptmiw and {p”,id<rb* . 4.id) do p: =n” . next;
if penil ihen b:=b” .next
elzs delate-mc.bids.rmcb?
and; ifind.the_task}

{$i bideval.pas}
procedurae updating.surplus_info;

procedure updatesurplus_infoll810: inc_surplus_nodeptr;nodeid:char;
var surplug:surplus_array’;
var .
£,88 | irc_surplus_nodepir;
begin
£:=1810"% .rext;
while s<nil do
“if 2 .arrecliock
then begin
surpms!c noidli=e” surp;
g2.=¢
g -ss next
. st prey” next:-'s,'
if sionil then s”.prev.=ss®.prev;
dizposelss);
2z =0
end )
alze z:=2g" .naxt
end; {update surplus_info}

begin
upmta_ﬁwplua.iﬁfa{ﬁ_iam ‘A Asurplus);
updth.surplus-infai&.lsm, ‘B’ ,Bsurpius’;
update_surplus-infolC_i810, 'C’ ,C_surplus);
update_surplius_infolD_iS14, 'D’ ,D.surplus);
updatesurplus.infolE 18I, 'E' ,Esurplus)
end; {updating surpius_info}

procedure ful iy connected topology;
bagin
repaat,
clock =clock+i;
if (clock mod window_lenghti=1
then if clocksy
than zurplus_exchange;
schedul ingl'A’ ,A_EAT H_FIFBG,H_dlsp,H.IBQ,BJBC!,D_IEﬂ D.IBC!,E_IBG,
ﬂ.tasks.ptr E.taikz.ptr Ctaskepir, D tasks pir E tasks pir,
E.IRFBN,C.iRFBH,D_IRFBM,E_IRFBM, 'B’,'C*,'D’,'E’, | inefB,
{InafAC, 1 inaRD, | inafE,A_report,A-surplus); ‘
dizpotehingt 'R’ ,A.digp,A-EAT, A info);
bidding('R’ ,A_EAT,A_IRFBM,Adisp, B.IBGQ,C_IEQ,D_1BQ,E~IB0, | inefB,



bagin .
slop:=false;
rapeat

lineRC, 1ineRD, | ineRE);
bid.evaluati ngiA.l Bu, H_RFBQ, B_tasks ptr, C_tqsks_ptr Do tasks_ptr,
E_tasks_ptr,'B','C*, "D, 'E*, lineRB, l inefC, | IneRD, | inefRE);
schadul ing('B"’ ,B_ERT,B_RFEQ,E.disp,a_lea,t_leu,O.iB:Q,E_lBQ,R_lBQ,
B_tasks_ptr,C.tasks.ptr, D tasks_ptr, E_tasks_pir,A_tasks_ptr,
C..|RFBHN, D_IRFEN, E_IRFBN, AIRFBY, *C*,'D", 'E’, 'R, 1 ineBC,
lineBD, lim& 1ineBR B..rapm*t B.sm'-plus)
dlsputx.hing( B B_disp,B_EHT B_info); -
bidding{'B’ ,B._ERT,B_IRFBN,B_disp,c_lBQ‘.D_IBQ,E_IBQ,H_IBQ, lineBC,
| ineBR, | ineBE, | inaBR;
bid_evaluating{B.1BQ, BLRFBQ, C_tasks_ptr,D_tasks_pir, E_tasks_ptr,
A.tasks_ptr,'C','D', 'E", 'R, lineBL, | insBD, | ineBE, | ineBA);
schedul ing{'C* ,C_ERT,C_RFBQ,C_disp, C.1BQ,D_1BQ,E_|BQ,A_1BQ,B_1BQ,
C.lasks ptr,D_tasks ptr, E_tasks_ptr,A_tasks_ptr, B tasks_ptr,
D_IRFBM,E_IRFBN, R_IRFEM,B_IRFBM, "D, 'E', ‘A", 'B’, 1 ineCD,
tineCE, | InaCh, | ineCB,C_report,C_surplus);
dispatching{'C*,C_disp,C_EAT,C_info);
bidding('C' ,C_EAT,C_IRFBM,C_disp,D_1BQ,E_1BQ,A_1BQ,B_IBQ, | ineCD,
lineCE, | ineCR, | inelB);
bidevaluating(C_IBQ,C_RFBQ, D _tasks_ptr E_tasks_ptr A_tasks_ptr,
B_tasks_ptr,'D*,'E*,'R', "B, l ineCD, | ineCE, | ineCA, | ineCR);
schadul ing{'D* ,D_ERAT, D_HFBO D_dtap,B_lBQ,E 1BQ, H_IBQ,B_IBQ,C_IBQ.
D_'tGSkS_p‘b‘ E._tasks_ptr A-tasks_ptr, B_tasks_ptr C_tasks..ptr‘,
E_IRFBN, A_IRFBN, B_IRFBN, C_IRFBY, 'E*, 'A*, 'B*, 'C', | ineDE,
linanﬂ,linana*linant,.n_repwtén.swplm);
dispntahing{ D', b di=p,D.ERT,Dinfo);
biddingl'd' D..EHT O_IRFBN, D disp, E.!EQ,H.IBQ,B..IBQ,C.!BQ,HneDE
limDﬁ limDB llmDL)
bid_evaluati ng(!l_l BQ, D.RFBQ E_tasks_pir A_tasks_ptr B_taszks_ptr,
'C_tnsks_ptm'E‘.‘H‘,‘B‘.‘E‘.Hmﬁ,nmm,limm.lihant);
schedul ing{ 'E* ,E.ERT ,E_RFBQ,E_disp,E_{BQ,A..1BQ,B_IBQ, C.1BQ,D_1BQ,
E_tasks_ptr,A_tasks pir,B_tasks_ptr,C_tasks_ptr,D_tasks_ptr,
A-IRFBN, B_IRFBN,C_IRFBN,D.IRFEN, 'A*, 8", 'C','D’'  lineER,
lineER, limEB HmED E_npm*t Empluz)
dtsputehing( E E_disp,E_EﬁT E-infa);
bidding{'E" E..ERT E_IRFBN E.disp,ﬂJBQ,B.lBQ,C.!Bﬁ,D-IBD,.limER
lineEB HneE\: HneEm
bid_avaluati ng(E IBQ, E_HFBQ H_tusks_ptr‘, B_tasks_ptr,C_tasks_ptr,
D.tasksptr, '‘R°, 'B", 'c' ‘0, lineER, | ineER, | ineEC, | ineED);
andatlngjurplua_info, .

mt!l clock=8IN-TINE

{ful ly_connected.topology}

“{$i fromd.pas)

procedure send_surplus_infos_fron.S;

g - inc_surplus.nodepte;

stop : boolean;

=2:=5_1810" .next;
if {s<rnily and (z*.arr=clock)
then bagin

if 2" .nextirnil
then begin
5" . rext” pravi=8_151Q;
& naxti=nil

and;
s“;prw.mil,
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{transfer surplus informations queued at the central noBE}

81510 . next:=z" naxt; Iget surpius Info from queua)
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case " .dest of
‘A resurplusis, IS0, | ineBRY;
‘B isswrplusis, BUISIA, | ineBRY;
‘Cis_surplusis, L1581, | inaSC);
‘0 rsesurplus(s, L1810, | ineSD);
'E' rssurplus(s, E_ISIQ, lineSED

and
and
aise stop:=true
until stop
end; {send_surplius_infos_from_S}

procedure transfers_from.S;
begin
send. surplus_infos_from.2,
zand _FFBHis.from.5;
gand Bl0gfrom.g;
zend_taske.from 5
end; {transfers_from 5}

procedurs ztor_topoiogy;

war

%
r A

rodaptr
inc.bids_nodepir;

begin

%
repea

snil; z:=nil;

t

clock =clock+1;

if {clock mod window_lenght =1

then if clock<s1
then surplus_exchangs;

schedul ing('A’ ,A_EAT ,A_RFEO,A_disp,A-I1B0,B_1B0,C.1B0,0_180,E_IBQ,
H_tasks_ptr AR, KKK, K,%,%,'8",'C D, 'EY, L inefS, | inefS,
{inef5, | inefAS ﬂ_repwt A _surplusy;

dispatchingt A’ ,A_disp, A_EAT, A_into);

bidding('A’, FI_EFIT A_IRFBEM Fl.disp,z,z,z z,1inefis, | inefS, | ineRS, | inefS);

bid_gvamai!ng{ﬁ_lsq,ﬁ_ﬁFBa £.70,8.TG,5_70,5.T0,'B’, ‘C’ ‘o, ‘E‘
Hneﬁﬁ,lin%,lineﬂs,!in%’};

schedul ing('B’ ,B_EAT ,B_RFB0,B.disp,B-1B0,C_180,01BG,E_1B0,A-1BQ,
B_taskg_ptr,x,x R, %,%,%,%,%,'C,'D','E",'A", 1ineB8, | ineBS,
lineBs, | ineB3,Breport, B_surplus)

di;pab:hingf'e’ B.diﬂp,B_EﬁT B_infoJ;

bidding!{'B’ ,B.EAT,B_IRFBN,B.disp,z,2,2,2, | ineBEZ, | ineBS, | ineBS, | ineBS ),

bid_wa!uqf1ngtlB_tEQ,B.HFEQ,S_Tﬂ,u_TQ,u.m 2.740,°'C, 'D' ‘E’, 'R,
1ineB3, | ineBB, | ireB3, | InaBE3;

schadul ingd’ C‘ C.Eﬂ‘!' C_FFEQ,C.disp,C.!BQ,D_IBﬂ,E 1B4,A_IEG,B-1E0,
c.tasks_ptr H,%,M,0,%,%,%,%,'0' ,'E", 'R, B L inglB, | ineCE,
1 ineCs, | inel8,Craport, c..swpms)'

dlspatching( C' C.dlsp,ll_EﬂT C_infa’;

biddingt'C’ C.EBT C_IRFBH,C.disp,z, z,z,z,llmzcs I inaCs, | inaCs, | inaCS);

bid_ewluqtmgéﬂ.lﬁﬂ,C.FFBQ,%.TQ,B.TL’!,S.TQ,5’..711,'D' ’E‘ A, 'B'
1 1halZ, 1 iraCB, | inaCs, | inaCS),;

zchadul ing?’ B‘ D..Eﬁ'!' B.F?Bﬂ,ﬁ_disp, D.1BqQ,E~1BG, A lBﬁ B_!Bﬂ C.1BM4,
D.tazkf_ptr,x X, 0,%,%,%,4,%,'E* 'R, 'B",'C’, Hn&ﬂs HneDS
| inaDg, | Irnals, Draport, D...mrplu')

dizpatahing( ﬂ' D_disp,D.EﬁT D.infa);

bidding(’'D’, U_EF!T O_IRFBH D_disp,z,z z,z,1inel8, | ineDS, | ineDS, | inelS);

bld_am!mtlm(ﬂ.i&ﬂ,ﬂ.ﬁ!’s&,B_TQ,S.TQ,u_TQ, ..TSJ 'E’, 'ﬁ‘ ‘er,'t’,
HineD8, | ireD8, | ineDE, | ineDS); :

schadul ing'E* E_EAT,E_FFEA, E_disp,E_1BQ,A_1E0,B_IBA,C_IEQ, DB,
E_tasks_pir, #,%,%,%,%,%x,%,%,'AR*,'B’','C*,°'D’, l'ineES, | ineES,
1ineES, | IneES,E_report E_surplus);
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dispatchingl{ 'E' ,E_disp E.ERT E_infal;

bidding({'E' (E_EAT,E.IRFBN,E_disp,z,2,z,2, | IneES, | ineES, | inaE], | inaES);

bid-evaluating(E-1BQ,E_RFBQ, S.TQ, 810, 8.-TQ, &.TQ, 'A*, 'R, 'C*,'D°,

tinaES, | ina€S, | inaES, | inaBS);
transfers.from.S;

updatingsurplus_info;
until clock=SIN_TINE
end; {star_topology}

procadure print.raport{raport:reportoarray?;

var
dim : 1..3;
nd : nd_range;
begin

write( tosks arrived :°'7;
for nd:='A’ to ‘E’ do
bagin
for dim:=1 10 3 do
writeirepori(l,nd, din] 33,
writal’ ')
end; - . -
writeln; writel’ tasks dispatched:’’;
for nd:='A’' {0 ‘E’ do
b&gfﬂ -
for dim:=1 t0 3 do
writelrepori2 nd, diml: 25,
writel':'7;
and;
writein
erd; {print_repori}
procedure print_rep;
beqin

writein;

writelnl 'HODE A : local : from B : fromC : frem D :

printreport(A_raport’,;
writein;

writeln('HOCDE B : -2 from A : focal : fromC : from D :

printreport(B_report);
writeln;

witeln(‘m C: : from A : fromB : focal @ from D

printreport(C_report’,

writein;

mritein{'HODE O : from A : from B : from C : local
-printreport({D report’; .

writein; :

writain{'HODE E : from A : fromB : fromC : from D :

printreport(E_report)
end; {print_rep}

function caletii:integer): integer;
v
i : nd_range;
t . integer;
bagin
n.=0;
. for j:='A’ to 'E’' do A
n:=rfreport(2,j, 1i1+B_reportl2,,1i 14+ reporti2,j,iil
+Oreportl2, ), 11 4Ereportl2,,1il;
cafoc=n »
ard; {calc) ‘

from E :

from £

from € :

from E

{ocal
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procadure writing_the_resul ts;
war :
n.by.foc, n.by_focbid,nbu.bid : integer;
bagin
printrep; .
nby_foc:=calall);
nby_feebhidi=caleddd; -
nbybidi=caiadd>tasks.disp-locat ly;
witeln; ‘
wiriteind HWMBER OF TAZKS ', (taske_guaranteedtiazks ronguaranieed’:5);
wr-iieins ‘MUMBER OF TASKS GUARANMTEED :°, tasks_guaranteed:57;
writeind HUMBER OF TASKS DISPATCHED LOCALLY :°,tasks disp_locally:57;
writein( ' HUMBER OF TASKS DISPATCHED HMETUORK WIDE :',tasks_disp.rwwide:55;

writeint’ BY FOC.MODE ;' ,nby_foc:57;
writeint’ BY SECOMD_STEP MODE : ', n.by_foc bid:S);
writelnt’ BY DIRECT BIODING ' ,nby-bid:57;

writeinl ' HUMBER OF TARSKS MOMGURRAMTEED :°, tasks_nonguaranteed:57;
end; {writing_theresuliz} ' ,

bagin {main}
writein,
get_taskz_initializealf;
cosze TOPOLOGY of
' ful tucormmected_topology;
‘G istar topology;
e
writingthe_rasultis
end. {main}
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