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ABSTRACT

The object of this thesis is to model a dc motor
driven single axis table system and to perform adaptive

velocity and position control of the table.

After modeling the system, in the first part of the
thesis, fixed parameter and adaptive PI control of the
velocity of the table has been achieved and the effects of
several effective parameters 1in adaptive control such as
initial estimates, initial covariance matrix and forgetting
factor have been investigated. Recursive least squares
estimation method has been used to estimate the system
parameters at each step. The experimental results have shown
that for speed control of a dc motor driven single axis table
system, implementing adaptive control algorithm 1is better

solution.

In the second part of the thesis, the ordinary PD and
adaptive pole assignment position control of the table were
performed. The effect of estimator parameters on the
estimator and controller response has been examined. The
results revealed that the adaptive regulator is advantageous

over the ordinary PD pole assignment algorithm.



KISA OZET

Bu tez calismasinin amaci dc motor tahrikli tek
eksenli bir tabla sisteminin modellenmesi ve tablanin h1z ve
konum denetiminin kendi-ayarlamali uyarlanabilir denetim

yontemi ile saglanmasidir.

Sistem modellendikten sonra, tezin ilk bdltimtinde,
sabit parametreli ve kendi-ayarlamali wuyarlanabilir PI hiz
denetimleri gerceklestirilmis ve wuyarlanabilir denetimdeki
ilk kestirmeler, unutma faktérti ve baslangi¢c kovariyans
matrisi gibi bazi etkin parametrelerin etkisi
arastirilmstair, Sistem parametrelerinin her adimda
kestirilmesinde ardisik en kiicik kareler parametre kestirme
yontemi kullanilmstir. Deneysel sonug¢lar, bir dc motor
tahrikli tek eksenli tabla sisteminin hiz denetiminin
saglanmasinda, kendi-ayarlamali uyarlanabilir denetim

yonteminin daha iyi bir ¢dzim oldujgunu gostermistir.

Tezin ikinci bdélimiinde, tablanin siradan PD ve
uyarlanabilir kutup atamali konum denetimleri
gerceklestirilmigtir. Kestirici parametrelerinin, kestirici
ve denetleyici tepkileri tizerindeki etkileri incelenmistir.
Sonu¢lar, uyarlabilir denetimin siradan PD denetleyiciden

daha iyi oldugunu gdstermistir.
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I. INTRODUCTION

In most feedback control systems, small deviations in
parameter values from their design values will not cause any
problem in the normal operation of the system, provided these
parameters are inside the 1loop. If plant parameters vary
ﬁide1y according the environmental changes, however, then the
control system may exhibit satisfactory response for one
environmental condition but may fail to provide satisfactory
performance under other conditions. In certain cases, Jlarge

variations of plant parameters may even cause instability.

If the plant transfer function can be identified
continuously, then we can compensate variations in the
transfer function of the plant simply by varying adjustable
parameters of the controller and thereby obtain satisfactory
system performance continuously under various environmental
conditions. Such an adaptive approach is quite useful to cope
with a problem where the plant is normally exposed to varying
environments so that plant parameters change from time to

time [1].

In the early 1950s there was extensive research on
adaptive control, in connection with the design of autopilots
for high performance aircraft. Such an aircraft operates over
a wide range of speeds and altitudes. It was found that
ordinary constant-gain, linear feedback control could work
well in one operating condition , but that changed operating
conditions led to difficulties. A more sophisticated

regulator, which could work well over a wide range of



operating conditions, was therefore needed. Interest in the
subject diminished due to the lack of insight and a disaster

in a flight test.

In the 1960s many contributions to control theory
were important for the development of adaptive control. State
space and stability theory were introduced. There were also
important results 1in stochastic control theory. Dynamic
programming, introduced by Bel1man, increased the
understanding of the adaptive processes. Fundamental
contributions were also made by Tsypkin, who showed that many
schemes for learning and adaptive control could be described
in a common frame work as recursive equations of a special
type. There were also major developments in system
identification and 1in parameter estimation. There was a
renaissance of adaptive control in the 1970s, when different
estimation schemes were combined with various design methods.
Many applications were reported, but theoretical results were

very limited.

In the Tate 1970s and early 1980s correct proofs for
stability of adaptive systems appeared, albeit under very
restrictive assumptions. Investigation of the necessity of
those assumptions has sparked new and interesting research
into the robustness of adaptive control, as well as into
controllers that are universally stabilizing. Rapid and
revolutionary progress in microelectronics has made it
possible to implement adaptive regulators simply and cheaply.
Yigorous development of the field is now taking place, both
at universities and in industry. Several commercial adaptive
regulators based on different 1ideas are appearing on the

market, and the industrial use of adaptive control 1is growing



slTowly but surely [2].

Likewise the situation described in the first
paragraph, the control of DC motors and DC motor driven
systems reveals the need for more sophisticated control
algorithms. This is mainly due to the fact that the dynamic
behavior of a DC motor varies essentially with the moment of
inertia and with the friction of the 1load [3]. This 1is a
typical situation taking place in a variety of applications
such as machine tools, rolling mills, wiring machines,
packaging machines, robots, etc. Also, in number of cases
encountered in DC motor control systems, it is difficult to
determine the values of the dynamic parameters with known
structures [4]. Similarly, the cutting force dependent upon
the depth of cut, feedrate, speed of cutter in machining
operations are of typical "time-variant"” parameters which may
affect the quality and productivity of the production process
[5].

Thus, to eliminate the necessity of initial tuning
and detuning of the DC motor controller, and to overcome the
problems that are expected to be arised when there are
parameter changes because of the slightly time-variant
friction throughout the guide rods, an adaptive controller
has been designed to control the servo system. As a design
technique, a pole-placement explicit STR has been
implemented. In the estimation of the system parameters, the
well-known recursive least squares estimation algorithm with

UD factorization method has been used.

In Chapter II and III, adaptive control theory and

the most important part of it, identification and parameter



estimation, have been introduced. The mathematical modelling
of the system and the adaptive velocity controller design
have been presented in Chapter IV. The design of the adaptive
position controller with no cancellation of process zero has
been given in Chapter V. In Chapter VI, the experimental
set-up has been described first, and then the experimental
procedure and the experimental results have been given.
Finally, the major conclusions were drawn in the last chapter

of the thesis.



II. ADAPTIVE CONTROL THEORY

2.1. Introduction

In everyday language to "adapt” means to change a
behavior to conform to new circumstances. Intuitively, an
adaptive regulator, 1is a regulator that can modify its
behavior in response to changes in the dynamics of the
process and the disturbances. Since ordinary feedback has
been introduced for the same purpose, the question of the
difference between feedback control and adaptive control
immediately arises. In a sense, adaptive control is a special
type of nonlinear feedback control in which the states of the
process can be seperated in two categories, which change at
different rates. The slowly changing states are viewed as
parameters. This introduces the idea of two time scales: a
fast time scale for the ordinary feedback and a slower one
for updating the regulator parameters. This also implies that
linear constant parameter regulators are not adaptive. In an
adaptive controller it is also assumed that there 1is some
kind of feedback from the performance of the c¢losed-loop
system. This implies that gain scheduling should not be
regarded as an adaptive controller, since the parameters are
determined by a schedule, without any feedback from the

performance [2,4].

Several definitions of adaptive system have been made
and the aggreement over definitions for adaptive systems

remains a very controversial area [1,6,7]. Some of the other



definitions of adaptive system can be found in [8].

Definition of an adaptive system [3]: An adaptive
system measures a certain index of performance (IP) using the
inputs, the states, and the outputs of the adjustable system.
From the comparison of the measured index of performance and
a set of given ones, the adaptation mechanism modifies the
parameters of the adjustable system or generates an auxiliary
input in order to maintain the index of performance close to

the set of given ones. This definition 1is 1dllustrated in

Fig.2.1.

UNKNOWN KNOWN
PERTURBATIONS PERTURBATIONS

L4

INPUTS OQUTPUTS
Adjustable >
Svstem
i
Adaptation P
Mechanism Measurement
SET OF
GIVEN IP
& Decision

Fig.2.1.Basic configuration of an adaptive system.

In the definition, the adjustable system must be
understood to be a system capable of adjusting its
performance either by modifying 1its parameters (internal

structure) or by modifying 1its +input signals.



The measurement of the index of performance can be
done 1in several ways, sometimes directly, sometimes
indirectly, as, for example, through the identification of

the dynamic parameters of the system.

The comparison-decision block makes the comparison
between the given set of IP’s and the measured IP and decides
if the measured IP 1is within the acceptable IP set. If not,
the adaptation mechanism will act accordingly so as to modify
the system performance either by modifying the parameters of
the adjustable system or by changing the system control

inputs.

In general, the index of performance measurement s
achieved through identification of the process. Especially,
when the model 1is unknown, on-line parameter estimation
(identification) could be combined with on-1ine control. Most
of the adaptive controllers are designed with regard to this
principle.

From the discussion above it can be seen that
underlying each of the problems of adaptive control, there is
some form of parameter estimation. Virtually, parameter
estimation forms an integral part of almost any adaptive
scheme. It is useful to distinguish between situations 1in
which the system parameters are constant and situations in
which the parameters vary with time. Obviously, the former
situation is easier to deal with than the latter. A feature
of many of the parameter estimation algorithms wused 1in the
time—-invariant case is that the gain of the algorithms
ulitimately decreases to zero. This means that when all of the
parameters have been estimated, the algorithm "turns off”. On

the other hand, if the parameters are time varying, it is



necessary for the estimation algorithm to have the capability
of tracking the time variations. This capability directiy

affects the performance of the adaptive controller.

Summing up, an adaptive control system must provide
continuous information about the present state of the plant,
that is it must identify the process; it must compare the
present system performance and make a decision to adapt the
system so as to tend toward optimum or desired performance;
and finally it must initiate a proper modification to drive
the system toward optimum [10]. These three functions are

inherent in an adaptive system.

Adaptation and Tuning: It is customary to seperate
the tuning and adaptation problems. In the tuning problem it
is asssumed that the process to be controlled has unknown but
constant parameters; in the adaptation problem it is assumed
that the parameters are changing or simply a function of
time. Many issues are much easier to handle 1in the tuning
problem. The convergence problem is to investigate whether

the parameters converge to their true values [2,11].

Parameter Adaptive and Structurally Adaptive Systems:
In a dynamical system uncertainties may arise due to a 1lack
of knowledge of some of the system or noise parameters that
are elements of a parameter vector or some of the functions.
In both cases, other elements of the parameter vector or the
functions, may be varied appropriately to achieve the desired
control. The former are said to be parameter adaptive, while
the latter are said to be structurally adaptive. Switching
systems, where structural changes can take place due to

modifications 1in the 1interconnections between subsystems



belong to the latter class [8].

Direct and Indirect Control: Two philosophically
different approaches exist for the solution of the adaptive
control problem. In the first approach,referred to as
indirect control, the plant parameters are estimated on-line
and the control parameters are adjusted based on these
estimates. Such a procedure has also been referred to as
explicit identification in the literature [2,8]. In contrast
to this, in what is referred to as direct control, no effort
is made to identify the plant parameters but the control
parameters are directly adjusted to 1improve a performance

index. This 1is also referred to as implicit identification.

Relations to Other Areas of Automatic Control:
Adaptive control is by no means a mature field. Many of the
algorithms and approaches used are of an ad hoc nature; the
tools are gathered from a wide range of fields; and good
systematic approaches are still lacking. Yet the algorithms
and systems have found good uses, and there are adaptive
systems that clearly outperform conventional feedback
systems. To pursue adaptive control one must have a
background in conventional feedback control and also sampled
data systems. There are strong ties to nonlinear system
theory, because adaptive systems are inherently nonlinear.
Stability theory is a key element. Adaptive control also has
connections to singular perturbations and averaging theory,
because of the seperation of time scales in adaptive systems.
There are also links to stochastic control and parameter
estimation, because one way to look at adaptive systems is to
view them as a combination of parameter estimation and

control [2].
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2.2. Adaptive Control Schemes

A robust high-gain regulator which is a constant gain
regulator designed to cope with parameter variations 1is a
point of departure in the discussion of the adaptive control
schemes. The different heuristic adaptive systems such as
self-oscillating adaptive controller and gain scheduling are
the other techniques for reducing the effects of parameter
variations [2]. However, in this section, only the model
reference adaptive systems (MRAS) and the self-tuning
regulators (STRs) will be outlined. The Tlatter scheme, the
so-called self-tuning reguliator which is the scheme used iin

this study will be discussed in detail.

2.2.1. Model Reference Adaptive Systems

The model reference adaptive system 1is one of the
main approaches to adaptive control. The basic principle is
illustrated in Fig.2.2. The desired performance is expressed
in terms of a reference model, which gives the desired
response to a command signal. The system also has an ordinary
feedback l1oop composed of the process and the regulator. The
error e is the difference between the outputs of the system
and the reference model. The regulator has parameters that
are changed based on the error. There are thus two 1loops in
Fig.2.2: an inner loop, which provides the ordinary control
feedback, and an outer loop, which adjust the parameters in
the inner loop. The inner loop is assumed to be faster than

the outer Toop.
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Im

Model

Regulator parameters
Adjustment
> mechanism
Ve
u y
Regulator » Plant

Fig.2.2.Block diagram of a modei-reference adaptive system.

Fig.2.2 is the original MRAS, proposed by Whitaker in
1958, in which two new 1ideas were introduced. First, the
performance of a system is specified by a model; secondly,
the parameters of the regulator are adjusted based on the
error between the reference model and the system. Model
reference adaptive systems were originally derived for the
servo problem in deterministic continuous-time systems. The
idea and the theory have been extended to cover discrete-time

systems and systems with stochastic disturbances [2].

2.2.2. Self-Tuning Regulators

In an adaptive system it 1is assumed that the
regulator parameters are adjusted all the time. This implies
that the regulator parameters follow the changes in the
process. However, it is difficult to analyze the convergence
and stability properties of such systems. To simplify the

problem it can be assumed that the process has constant but
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unknown parameters. When the process is known, the design
procedure specifies a set of desired controller parameters.
The adaptive controller should converge to these parameter
values even when the process is unknown. A regulator with
this property is called self-tuning, since it automatically
tunes the controller to the desired performance. Block
diagram of a STR is shown in Fig.2.3. Self-tuning controllers
represents an important class of adaptive controllers and
they are easy to implement and applicable to complex
processes with wide variety of characteristicse 1involving
unknown parameters, the presence of time delay, time-varying
process dynamics, and stochastic disturbances. It should be
noted that, in the 1literature, traditionally, control of
systems with unknown constant or slowly varying parameters is
called self-tuning control, and the control of systems with
time-varying parameters is called adaptive control. of
course, in fact, an STR is capable of controlling both
systems with constant or time-varying parameters beyond the

traditional classifications in the literature.

Process parameters

y

Design Estimation |

Regulators
parameters

u
[+

_—

Reguiator »  Process
— u Yy

Fig.2.3.Block diagram of a self-tuning regulator.
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The original idea of self-tuning was first given by
Kalman in 1558. The major breakthrough came with the self

tuning regulator of Astrom and Wittenmark [12] in 1973.

In self-tuning control, process parameters are
updated and the regulator parameters are obtained from the
solution of a design problem as shown 1in the figure. The
adaptive regulator can be thought of as being composed of two
Toops. The inner loop consists of the process and an ordinary
Tinear—feedback regulator. The parameters of the regulator
are adjusted by the outer 1loop, which 1is composed of a
recursive parameter estimator and a design calculation. As it
has been treated in chapter III, to obtain good estimates it
may also be necessary to introduce perturbation signals
[9,11]. Notice that the system may be viewed as an automation
of process modeling and design where the process model and

the control design are updated at each sampling period.

The block labeled “"design calculations”™ 1in Fig.2.3
represents an on-line solution to a design problem for a
system with known parameters.This is called the wunderlying
design problem [2,6,7]. Such a problem can be associated with
most adaptive control schemes. However, the problem is often
given indirectly. To evaluate adaptive control schemes it is
often useful to find the underlying design problem because it
will give the characteristics of the system under the -ideal

conditions when the parameters are known exactly.

The self-tuner also contains a recursive parameter
estimator. Many different estimation schemes have been used
{2,10,13,14,15,16], for example TJeast squares, stochastic

approximation, extended and generalized least squares,
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instrumental variables, extended Kaiman filtering, and the
minimum and the maximum Tikelihood methods. The most common
scheme least squares method has been formulated and discussed

in detail in Chapter III.

The self-tuning regulator is very flexible with
respect to the design method. Virtually any design technique
can be accommodated. Self-tuners based on pole placement,
phase and amplitude margins, minimum-variance control and LQG
(Linear Quadratic Gaussian) control are some of the common
design techniques [2,6,7,11]. However, basically, the
self-tuning algorithms can be devided into two major classes:
implicit and explicit algorithms. In an explicit algorithm,
there is an estimation of an explicit process model. Thus,
the self-tuner shown in Fig.2.3 is an explicit STR. It is
sometimes possible to reparameterize the process sc that it
can be expressed in terms of the regulator parameters. This
gives a significant simplification of the algorithm because
the design calculations are eliminated. In terms of Fig.2.3,
the block labeled design calculations disappears and the
regulator parameters are updated directly. Such a self-tuner
is called an 1implicit self-tuning regulator and it is
therefore based on the estimation of an implicit process

model.

The most common implicit self-tuning regulator is the
minimum—-variance STR [17]. On the other hand, the most
commonly used explicit STR is the pole~placement STR. The
pole—-placement STR is of use even in regulating non-minimum
phase systems (systems having a pole or zero outside the unit

circle) or systems involving unknown time delays and such
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systems cannot be handled by direct minimum variance methods

[13].

Another pole-placement STR approach is to use PID (or
PI,PD,P) self-tuning regulator scheme [14].This scheme s
principally of type explicit self-tuning regulators. In this
approach, regulator parameters are parameterized in terms of
the parameters of the process and the parameters of the
desired closed-loop transfer function. At each step, the
recursive estimates of the process parameters are used to
find the regulator parameters Kp, KL, and Kd that are

expected to give the desired performance.

2.3. Pole Placement Design [2]:

Pole placement is one of the simpler direct design
procedures. The key idea is to find a feedback law such that
the closed-loop poles have the desired 1locations. Let the

process to be described by
Ay = Bu + v (2.1)

where u is the control variable, y the measured output, and v
a disturbance. The symbols A and B denote polynomials in the
differential operator p = d/dt for continuous-time systems or
the forward shift operator q for dicrete-time systems. It is
assumed that A and B are relatively prime, i.e., that they do
not have any common factors. Further, it is assumed that A is

monic, i.e., that the coefficient of the highest power 1in A
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is unity. The pole-excess d = degA - degB is for
discrete-time systems the time delay of the process. Let the
desired response from the reference signal Lﬁ to the output

be described by the dynamics
Ay =Bu (2.2)

Furthermore, Tlet Ab be the specified observe
polynomial. The dynamics of the observer are not controllable
from the reference input u . To get a differentiation-free
(continuous-time) or causal (discrete-time) controllier, the
model Eq.(2.2) must have same or higher pole-excess as the

process of Eq.(2.1). This gives the condition
deg Am - deg Bm >~ deg A - deg B (2.3)
A general linear regulator can be described by
Ru = T%:— Sy (2.4)

Elimination of u between Egs.(2.1) and (2.4) gives

BT R
y = u + |4
AR+BS °© AR+BS
AT S
u=-____u - \'4
AR+BS  © AR+BS

To achieve the desired input-output response, the following

condition must hold
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BT B
m
= (2.5)
AR+BS A
m

The denominator AR + BS is the closed-1o0p
characteristic polynomial. To carry out the design, the

polynomial B is factbred as

where B+ is a monic polynomial whoses zeros are stable and so
well damped that they can be canceled by the regulator. When
B+ = 1, there is no cancellation of any zeros. Since B+ is
canceled, it also factors the closed-loop characteristics
polynomial. The other factors of this are Am and Ao. This

gives the Diophantine equation

AR + BS = AA B
O m
. + ..
It follows from this equation that B divides R.

Hence

AR + B S = AA (2.6)
1 o]

The solution of the Diophantine equation (EG.2.6) is
essentially the same as solving a set of 1linear equations.
£Eq.(2.6) has a unique solution if A and B are relative
prime. Furthermore, it follows from Eq.(2.5) that B  must

divide B and that

T
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T=AB/B (2.7)
oOm

The pole placement procedure can now be summarized in

the following algorithms.

Algorithm 1-Pole placement design
Data: Polynomials A, B.
Specifications: Polynomials Am, Bm, and Ao'

Compability Conditions:
B divides B
m
deg Am - deg Bm >= deg A - deg B (2.8)
deg A0 = 2deg A - deg Am - deg B+ -1 (2.9)

+_
Step 1: Factor B as B = B B
Step 2: Solve R1 and S from the equation AR1 +BS = AOA .

™

+ —
Step 3: Form R =lﬁB and T = Aan/B .
1

The control law is then given by
Ru=Tu - Sy
(o4
There are many variations of the pole placement
procedure. A particularly simple case is when the whole B
polynomial 1is canceled. We then obtain the following

algorithm.

Algorithm 2-Pole placement design with all zeros cancelled
Data: Polynomials A, B.

Specifications: Polynomials AW, B , and Ao'
1 m
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Compability Conditions:
deg A — deg B >= deg A - deg B
m Y
deg Ab >= 2deg A ~ deg Am - deg B - 1

+
Step 1: Factor B as B = boB
Step 2: Solve AR + b S = A A .
1 K o m
Step 3: Form R = RB and T = AB /b .
1 Om o

The control law is
Ru = Tuc - Sy

Notice that Step 2 is very simple in this case. R1 is
simply the quotient, and bOS the remainder when dividing AoAm
by A. This implies that the coefficients in the R and S
polynomials can be obtained from a triangular 1linear system
of equations. Another useful special case is when there are
no cancellations at all. The design procedure then becomes

that of the following algorithm.
Algorithm 3-Pole placement design with no cancellations
Data: Polynomials A, B.
Specifications: Polynomials Am, Bm, and Ao'
Compability Conditions:
B divides B
m

deg Aw - deg Bm >~ deg A — deg B (2.8)

deg A0 >= 2deg A - deg Am -1 (2.9)
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Step 1: Solve AR + BS = AoAm'
Step 2: Form T = A B /B.

o m
The control law is

RuU = Tu - Sy

2.4. Relationship between MRAS and STR

The MRAS originated from a continuous time,
deterministic servo-problem and the STR from a discrete time,
stochastic regulation problem. The two approaches are quite
similar in spite of their different origins. This can be seen
superficially from the comparison of Fig.2.2 and Fig.2.3.
Both systems have two feedback l1oops. The inner 1loop is an
ordinary feedback loop with a process and a regulator. The
regulator has adjustable parameters which are set by the
outer loop. The adjustments are based on feedback from the
process inputs and outputs. The method for designing of the
inner loop and the techniques used to adjust the parameters

in the outer Toop are, however different.

The reguiator parameters are updated directly in the
MRAS in Fig.2.2. In the STR in Fig.2.3, they are updated
indirectly via parameter estimation and design calculations.
This difference is, however, not fundamental because the STR
may be modified so that the regulator parameters are updated
directly, i.e., if the implicit scheme is adopted. Virtually,
the regulator shown in Fig.2.3 can also be derived from the
MRAS approach if the parameter estimation is done by updating

a reference model. This scheme 1is called the indirect MRAS
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because the regulator parameters are updated indirectly via
the design calculation. So, we can say that the direct MRAS,
where the regulator parameters are updated directly, is
closely related to the implicit STR; the indirect MRAS is
related to the explicit STR.

However, besides this relationship, it should be
noticed that whereas in MRAS the basic idea is to
asymptotically drive the output of an unknown plant to that
of a reference model, in self-tuning the basic procedure is
to select a design for known plant parameters and apply it to
the unknown plant using recursively estimated values of these

parameters.
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ITII. IDENTIFICATION AND REAL-TIME PARAMETER ESTIMATION

On-line determination of process parameters is a key
element in adaptive control and it is an important part of a
self-tuning regulator. Parameter estimation also occurs
implicitly in a model-reference adaptive regulator. In
adaptive systems, parameter estimation is used in the 1larger
context of system identification. The key elements of system
identification are selection of model structure, experiment
design, parameter estimation, and validation. The model
structures are derived from prior knowledge of the process
and the disturbances. In some cases the only a priori
knowledge is that the process can be described as a Tlinear
system in a particular operating range. It is then natural to
use general representations of linear systems. It is often
difficult and costly to experiment with industrial processes.
Therefore, it is desirable to have identification methods
that do not require special 1input signhals. Many “classic”
methods depend strongly on having the input be of a precise
form, e.g., sinusoid or impulses. One requirement of the
input signal is that it should excite all the modes of the
process sufficiently. A good didentification method should
thus be insensitive to the characteristics of the 1input
signal. Solving the parameter estimation problem requires,
input—-output data from the process, a class of models and a
criterion. The criterion is introduced to give a measure how
well a model fits the experimental data. Parameter estimation

can then be formulated as an optimization problem [2].

The performance of the controller strictly depends on
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how close the estimated parameters are to the real ones.
Consequently, several recursive estimation algorithms have
been developed. Among them, recursive least squares, extended
and generalized least squares, minimum and maximum 1ikelihood
are the most popular schemes. However, recursive least
squares method have dominated the other schemes. Furthermore,
there are several recursive least squares algorithms such as
square-root algorithm and the so-called UD method. A1l the
mentioned schemes are time domain parameter estimation
methods. On the other hand, there exist least-squares
frequency-domain parameter estimation methods.
Frequency-domain parameter estimation scheme is used 1in
general in off-1ine form and is not recursive. A further work
is needed to make it an attractive on-line estimation method
[18]. Therefore, one can use least squares frequency-domain
estimatibn method to estimate the parameters of a
time—-invariant process. Another use of frequency-domain
estimation scheme is that the estimation of the initial state

of the parameters of a time-varying process.

For convergence of the parameter estimates to the
true parameter values, it is well known that the input signal
must be “"sufficiently rich” or “persistently exciting”
[2,9,19]. This perturbation signal should be a white noise,
i.e., a signal having a flat modulus spectrum. 1In general,
the pseudo-random binary sequence (PRBS) [20] or the
Schroeder-phased harmonic sequence (SPHS) [5,18,21] is used.
In this study,the latter is used to excite the system, and to
validate the obtained experimental results, the SPHS is
injected as input to the experimental set-up. This will be
discussed extensively in experimentals results part of the

thesis. In this chapter, only the formulation of the SPHS
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will be presented and then time domain Tleast squares

parameter estimation scheme will be outlined.

3.1. Schroeder—-Phased Harmonic Sequence (SPHS) Input

SPHS 1is a periodical signal which can be constructed

using the formula;

NH 1,2

f(t) = ¢ (2%<) cos(kwot+9k) (3.1)

k=1
where pk, with } pk=1, is the relative power and Qk is the
phase angle of the kth harmonic. NH 1is the number of
harmonics, and wo is the fundamental frequency of the SPHS

and equal to 2rn/T, where T is the period of the signal.

The SPHS can be synthesized to give any arbitrarily
defined spectrum, including a flat modulus spectrum with a
sharp cut-off. This is not possible with PRBS which always
has the same shape of modulus spectrum and possesses
parasitic frequencies beyond its flat bandwidth. The SPHS s
a low peak factor signal and persistently excites all of the
system modes without violating the linear operating condition

[18].

In order to reach a low—-peak factor signal with flat
spectrum, one should choose pk=1/NH=const., so that each
harmonic will contain a constant proportion 1/NH of the total

average power. Then Eq.(3.1) becomes;
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NH 1/2
f(t) = ¥ (2/NH)" "cos(
k=1

t+6k), k=1,2,..,5,..,NH (3.2)

with

2n i

95 = NA Y. (k), 6=1,2,..,NH
k=1

The characteristics of the SPHS are then

2n /T rad/sec = 1/T Hz

2nrNH/T rad/sec = NH/T Hz

Resolution (k=1)

Bandwidth (k=NH)

3.2. Recursive Least Squares Parameter Estimation in Time

Any single—-input single-output dynamic system can be

represented by a single high order difference equation;

y(k)+p1y(k—1)+...+phy(k—n)=n0u(k—d)+n1u(k—d-1)+...+
nmu(k—d—m) (3.3)

where d=(n-m)z0 and represents the system delay. For a system

described by EQ.(3.3), the pulse transfer function is;

-d -1 m 14] M4
Y(z) zZ (n+z +...+n z ) n Z ¥ z +...4
o] 1 m 8] 1 1]
= = (3.4)
-1 - ™ n-1
u(z) 1+piz +...+pnz z +piz +...4p

i8]

The problem 1is that determining p_L and 7. from
L
input-output measurements. Assume that the loss function to

be minimized is chosen to be;
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k
J =T e(i) (3.5)

i=1

where the estimation error is
e(i) = y(i)-y(i) (3.6)
and
y(1)=—p1(1)Y(i—1)—...—en(i)y(i—n)+5o(i)u(i—1)+...+
néjzu[i—(n-1)] (3.7)

is an estimate of y(i) calculated using the parameter

-~ -~

estimates o and n, - Thus, one could stop when J is decreased

below a certain absolute level.
Express Eq.(3.3) using the following notation;
y(k) = ©3(k-1) (3.8)
where
© =1lp, o -0 W, M e ] (3.9)
is termed the parameter vector, and

8 (k-1) = [-y(K) -y(k=1)...-y(k-n) u(k-d) u(k-d-1)...
... u(k=d-m)] (3.10)

is the measurement vector. Then write Eq.(3.7) as
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y(K) = ©(k)"& (k-1) (3.11)

where

~ ~

(k) =lp, (K) o (K)..p (k) 1_(K) 1 (K)..n (K)] (3.12)

is the parameter estimate vector containing the (n+m)

parameters to be estimated.The minimization for kx{(n+m) of

k A
J =T [y(i)-0k)3(i-1)71° (3.13)
1=1
gives the solution;
~ k
®(k) = P(k)[ T y('i)§(1'—1)] (3.14)
i=1
where
K -1
P(K) = [ T §(1’-—1)§(1‘-1)T] (3.15)
=1

Notice that the least-squares parameter estimation as
given by equations (3.14) and (3.15) 1is suitable only for
off-1ine computation. That is, one must first collect the
input u(i) and output y(i) measurements of all i=1..k, then
calculate the terms in Eq.(3.15) and invert the matrix to get

P(k), finally, use Eqg.(3.14) to get @(k).

In adaptive control, it is needed to obtain an
estimate of ®(k) while collecting data and continuing to
update it as new data becomes available. Such an on-l1ine
version of least-squares parameter estimation algorithm can

be obtained by writing Eq.(3.14) at k and k+1, then writing
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an expression for ©(k+1) 1in terms of ©&(k). The matrix
inversion implied by Eq.{(3.15) can also be avoided by using
the matrix inversion lemma [1,3]. This on-1ine version of the

algorithm, usually termed recursive least squares (RLS), is

given by;
. . P(k)Z (k) [y (k+1)-0(K)'& (k)]
O(k+1) = B(k)+ - (3.16)
A+ & (K)P(K)E(K)
and
1 P(K)& (k)3 (k) P(K)
P(k+1) = —|P(K) . (3.17)
) A+ 8(k) P(K)2(K)

where initial estimates é(o) and P(0) are required to start
the the algorithm. As stated before, in adaptive velocity
control part of this study, to obtain a good estimate of 6(0)
freguency domain least squares estimation scheme is used. For
the matrix P(0), one often selects P(0)=pI where I 1is the
identity matrix and p is a design parameter that a number
greater than zero (e.g. 10, 1000, 1000000) and then varied
until good parameter convergence is obtained. » is called the
“forgetting factor” and is a measure of how fast the old data
are forgotten. If A=1, there is no forgetting. In order to
control plants having constant and unknown parameters, there
is no need to forget the old data. Therefore, since the
algorithm Eg.s (3.16)-(3.17) 1is general, to control an
unknown and time- invariant process ?» 1is chosen to be unity
[22,23,24]. In order to control plants having time-varying
parameters, the convenient and much-used way to make the
estimator able to follow these changes is to 1introduce a
forgetting factor 1less than unity. This was originally

proposed in [13] and » is chosen 1in general 0.955X<1. An
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another way is to introduce a variable forgetting factor

[2,24,25,26].

The recursive least squares parameter identificapion
equations, equations (3.16) and (3.17), have good physical
interpretation. To interprete them, one could write these

eguations in the following form assuming A=1;
e(k+1) = y(k+1)-8 (k) @(K) (3.18)
P(k)3 (K)E (k) P(k)

P(k) - (3.19)
1 + 8(k) P(K)3 (k)

P(k+1)

e(k+1)

@(k) + P(k+1)&(k)e(k+1) (3.20)

Here, the new estimate ®(k+1) is obtained by adding a
correction term (P®e) to the o0ld estimate ©(k). The
correction term is a product of three quantities: P, &, and
e. The error e is the difference between the last measurement
y(k+1) and the prediction (@T@) of this measurement based on
old estimates. Regression or the measurement vector £ can be
interpreted as the gradient of the error with respect to the
parameters. Eq.(3.19) may be interpreted as follows. Matrix
P(k+1) is proportional to the covariance matrix of the
estimates; the last term in Eq.(3.19) 1is the reduction 1in

uncertainty due to the last measurement [4].

Because RLS parameter estimation algorithm 1is quite
time consuming from a numerical point of view, some better
ways of doing the calculations are developed. Two schemes are

much popular. One way is to update the square root of P
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instead of updating P. The other way to do the calculations
is to use the U-D algorithm by Bierman and Thornton [27,28].
This method is based on a factorization of the covariance
matrix P as P=UDUT, where D 1is diagonal and U 1is an
upper-triangular matrix. This algorithm reduces 'the
calculations and 1is well suited for microcomputers and
real-time applications. In this thesis, up covariance
factorization algorithm is used to mechanize the recursive

least squares parameter estimation.
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IV. MATHEMATICAL MODELING AND ADAPTIVE VELOCITY CONTROL
OF THE DC MOTOR DRIVEN TABLE SYSTEM

4.1. Mathematical Modeling of the System

M — VvV
\'
—_— Te W ' 2F B
> Tre
DCmotor 41——]
m m

Fig.4.1.Schematic representation of a dc motor driven single

axis table system [4].

The modeling of the system is done with respect to
Fig.4.1. According to Newton’s second 1aw, the equation of

motion of the system at the motor level is;

Jmcb tbuw+T =T (4.1)
where Jm is the moment of inertia of the motor and the
actuator shaft, bm is the viscous frictional coefficient of
the motor, Tr is the resistance torque by the table, Te is
the torque applied by the dc motor and « 1is the shaft

velocity of the motor.

Oon the other hand, the egquation of motion can also be
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written at the table level;
Mv+Bvz=z=F (4.2)

where M is the mass of the table and the 1load, B is the
viscous frictional coefficient between the shaft and the
table, F is the resistance force and v is the velocity of the
table.

The conversion rate between the rotational motion of
the shaft of the dc motor and the translational motion of the
table is defined to be;

w F
r
Thus, Eq.(4.1) becomes;
Jio+bwt— =T
m ™ N e

or inserting Eq.(4.2);
Jow+buw+ —l—(M§+Bv) =T
™ ™ N e

and substituting Eq.(4.3), the equation of the motion is

obtained;

¢;>+[b + —E;]w:Te (4.4)

where J is the equivalent moment of inertia and B is the

equivalent viscous frictional coefficient of the dc motor-
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table system.
If Eq.(4.2) was chosen as the basis, one would obtain

similarly;

(M + Nz.:m)\'/ + (B + szm)v =NT (4.5)

4 J’ R B’ )
e e

Such an experimental system is shown in Fig.1.1. To
control speed of the table of such a system, one could choose
a linear encoder as the feedback element [29]. Therefore for
the direct digital control (DDC) of such a system, the

structural diagram is shown in Fig.4.2.

u(k) v(k)
C| DA ——D Icuer'_____*> Process -3
o Amp
AT-386 ;‘
33Mhz
N r
Math-Co ;’
|
vi(k) .
e Pulse Linear ‘
T Vot Counter Encoder <

Fig.4.2.Structural diagram for DDC of the table speed of a dc

motor—-table system [4].

The block diagram representation of the control

system is given in Fig.4.3.

In the block diagram, Ka is the power amplifier gain,

Kﬁ is the dc motor gain, Kﬁ is encoder gain, N 1is the

conversion rate given by Eq.(4.3), and i is the timing belt
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conversion rate between the dc motor shaft and the ball screw

and given by In the presence of a timing

/o .
motor” ballscrev
belt transmission between the dc motor and the ball screw

which is always the case in practice, EQ.(4.3) needs some

modification and takes the form:

w
bs %*
N = v (4.3)

where wks is the rotational speed of the ball screw.

R(s) U(s) K Q(s)f 1 10 (s) 1 |V(s)
m ™ bs
—®— |D(8)}——| K —> > > -
+ a Ts+1 .
—ﬂ" i | N
Controller Pover DC motor
Amp +table
L )
G(s)
K | ¢

Encoder ,H(S)

Fig.4.3.Block diagram of speed control of a dc motor driven

table system [4].

Also, in the block diagram;

K = (4.6)

T = (4.7)
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which is the time constant of the dc motor-ball screw-
table system. Here, Je=Jm+M/N2 represents the equivalent
moment of inertia of the dc motor-ball screw-table system and
the moment of inertia of the ball screw is assumed to be
included 1in Jm. Similarly, Bé=bm+B/NF represents the
equivalent viscous frictional coefficient of the dc motor-

ball screw-table system.

From the block diagram, the process transfer function
G(s) 1is;

V(s) K K 1 K K b
G(s) = = am = o m (4.8)
U(s) iN T8s+1 iN s+b

where b=1/7.

Assuming that a zero-order-hold type of digital-to-
analog converter (DAC) 1is used, the pulse transfer function

of G(s) is;

a(z)= Z am _ o m (4.9)
z s(s+b) iN iN zZ - e

From the Fig.4.2, we should be aware of the fact that
the computer sends the signal u(k) and gets it back as
v(k) K =v’(k), therefore we must use 1in our design and

=]

identification problems v’(k) not v(k). Thus;

V' (z) 1-e°T

K'— ™ —4}m—— (4.10)
U(z) z—-e

G’(z) =
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K K K
where K’=—2 M °  is the open loop gain.
iN
From the pulse transfer function G’(z), the

difference equation of the system is obtained to be;
vi(k) = e v’ (k-1) + K’(1-6 °T)u(k-1) (4.11)
Defining the so-called parameter vector ©® and the

measurement vector & described in chapter 3.2, Eq.(4.11) can

be written as [4,5];
) — — T —
v’(k) = 61¢1+ 92¢2 = ® &(k-1) (4.12)

where @T = [8162] with 91=exp(-bT) and 92=K’(1—91), and
8T (k-1) = [v’(k-1) u(k-1)].

4.2. Recursive Least Squares Estimation Formulation

Recalling the system difference equation;
vi(k) = € °Tvi(k=1) + K’ (1-¢ °T)u(k-1) (4.11)

where b=1/7t and K’=K KeKm/iN. One can write this equation in
(<}

vector form in terms of the parameter estimates as;
T
vi(k) = @ &(k-1) (4.13)

where
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e=r6 6 1
1 2
8(k-1) = [ v'(k-1) u(k-1) 17

and real ® is given by
® = [ exp(-bT) K’(1-exp(-bT)) ]

RLS algorithm given by equations (3.16) and (3.17)
uses P(0), é(o) and 2(0). Initial covariance matrix P(0) is
a positive definite matrix where the diagonal terms are 10,
100, or a larger value and the off-diagonal terms are zero.
As introduced in Section 3.2, UD covariance factorization
algorithm [27,28] 1is used to mechanize the recursive Jleast

squares parameter estimation.

4.3. Control Algorithm

For adaptive velocity control, PI self-tuning
regulator scheme described in Section 2.2.2 is used. Because,
it is well known that PI control 1is adequate for all
processes where the dynamics are essentially of the first
order l1ike the system governed by Eq.(4.8). In other words,
the integral (I) action provides zero steady-state offset and
the proportional actijon (P) gives a good transient response

for such a system.

The transfer function of the PI controller is;
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U(s) K
D(s) = —— = K + — (4.14)
E(s) p s
where Kp is the proportional control coefficient, KL is the
integral control coefficient, U(s) is the function of the
control signal, and E(s) is the function of error. To obtain
the discrete-time representation of the PI controller, one
can use Tustin’s approximation;
2 z—-1

s = (4.15)
T z+1

where T is the sampling period. Therefore;

T z+1
D(z) = K + K——
P t 2 z-1

By organizing this equation;

o+ T8 20 ok
z—1
We obtain;
u(z) a z + a
D(z) = = (4.16)
E(z) z-1
vwhere
TK
a0=K+ L
P 2
TK
a1 = - K
2 P

The difference equation of digital PI controller s

then;
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u(k) = aoe(k) + aie(k-1) + u(k-1) (4.17)
Eq.(4.17) 1is called "position algorithm™ 1in PI
control since it calculates the total output value u(k). By a

simple manipulation on Eq.(4.17) one can write;

Au = u(k) - u(k-1)

aoe(k) + a1e(k—1 )

(4.18)

u(k) u(k-1) + Au

which is called to be "velocity algorithm” in PI control.
Velocity algorithm computes a signal difference and adds this
value to the previous signal. By this algorithm a smooth
approach (bumpless transfer) is obtained and integral wind-up
problem is prevented [11,30]. In this study, this algorithm
is used to compute the control signal 1in adaptive velocity

control.

4.4. Pole Assignment for PI Velocity Control

For a linear single input single output (SISO) system
the closed 1oop poles not only determine the stability of the
system, but their locations in the z plane determines the
closed-loop system transient characteristics as well. Thus,
one method for selecting controller parameters is to specify
closed-Joop pole Tlocations to achieve certain desired
performance characteristics. This is referred to as pole or
eigenvalue assignment as introduced and formulated in Section

2.3.
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From the block diagram, Fig.4.3, the characteristic
equation in z domain is; 1+D(z)HG(z) = 0 where H(z) denotes
the feedback eiement and G(z) denotes the plant transfer
functions. Recalling the plant pulise transfer function gjven
by Eq.(4.9);

v(z) Kaﬁm 1-a

G(z) = = (4.9)
u(z) iN z-a

where a = exp(-T/t) and H(z) = Ke yields;

abz+%‘ K K 1—-a
1 + D(2)HG(Z) = 1+ K ¢ T =0
(=] .
z—1 iN z—a
and for simplicity;
abz+%' 1-a
1+D(z)HG(z) = 1+ K? =0 (4.19)
z—1 Z—-a
where
K K K
K’ = a m e
iN

After a few straightforward calculations, we obtain

the characteristic equation in the polynomial form;
2+ [-a~1+K’ (1-a)a_Jz + [a+K’(1-a)a ] = O (4.20)
where b=1/7 and a=exp(-bT).

The desired characteristic equation will then be 1in

the form of [11];

z2 + cz+c =20 (4.21)
1 2
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where

0
H

—2exp(—CwnT)cos( 1-(2 wnT)
(4.22)

0
H

exp(-ZEwnT)

in which { denotes the damping factor, @ denotes the natural
frequency, and T is the sampling interval. This equation may
readily be obtained by sampling (at intervals T) a
continuous-time system with the characteristic equation

2 2
s +2{w stw =0,
ks n

Therefore, pole—-assignment method will be used so as
to find the regulator parameters Kp and ﬁ‘in terms of the
plant parameters and the desired performance characteristics.
The poles are simply assigned to the desired locations in the
Z plane by simply equating Eq.(4.20) and Eq.(4.21). Thus, we

obtain;

c1 + a + 1 c2 - a
a = ’ a-= (4.23)

K’(1-a) K’(1-a)

Further recalling ao =Kp+(TK,b/2 ) and a1=(TKi /2 )—Kp the

regulator parameters are found to be;

%' - c2 + 1 + 2a
K =
P 2K’ (1-a)
(4. 24)
c1 + c2 + 1
K =

TK’(1-a)

where a =exp(-T/7t), K'’=(K K K /iN) and ¢ and ¢ are given by
(o] a m e 1 2

Eg.{(4.22). Eq.(4.24) gives the pole assignment results for PI
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control of the plant given by Eq.(4.11).

According to the self-tuning adaptive control

procedure shown in Fig.2.3, Eq.(4.22) forms the block labeled
"design calculations™ with the modification 1in which the

recursive estimates of the process parameters are used to

obtain the regulator parameters Kp and K1 at each sampling

interval. Therefore, in PI self-tuning adaptive control of
the system, the regulator parameters are;
ci--cz+1+261 c1+c2+1
K = = K=——Fxr—-— (4.25)
P 26 ‘' T8
2 2

where 91= exp(-T/t) and 62= K’(1—81), and 61 and 92 denotes

the recursive estimates of the process parameters 61 and 92.

In this study, at the beginning, and therefore in the
simulations, the time-varying parameter (in adaptive control)
was chosen to be the equivaient moment of inertia Je [4]. The
variations in the equivalent moment of inertia would then
affect the time constant of the system according to Eq.(4.7),
and the variations in the time constant affect the process

parameters 61 and 62. However, due to the limitations arising

from the mechanical
Je in considerable
between the table

insensitive to load

nonlinear and random friction resulting from the guide

makes the system inherently time-variant

constructions it was impossible to change

amounts. Namely, the reduction ratio

and the DC motor makes the system

inertia changes. On the other hand, the

rods

[5]. Hence, these

variations are followed by the RLS estimation algorithm which

is described in Chapter III.

At each step, the recursive



43

estimates for 61 and 92, namely 61 and 62 are used to obtain

the optimal Kp and K,L values,

The values c, and c, appearing in Eq.(4.26) show the
nature of the desired dynamics. According to EqQ.(4.22), the
desired dynamics aregiven in terms of the natural frequency
@ and the damping ratio {. Also, the desired dynamics can be
given in terms of the maximum overshoot and the settling
time. In such a case, natural frequency and damping ratio
values are determined according to the following set of

equations [31,32];

n® (t_/100)
=} — 29 (4.26)
no+In" (t /100)

4
w = (for 2% settling) (4.27)

8
where t 1is the maximum overshoot and tg is the settling
P

time.

In the thesis, principally {=0.826 and wn=6.456
rad/sec, in other words 0.75 sec. settling time and an
overshoot of 1% have been used [5]. This choice implies that
the closed-loop poles in z-plane are chosen to be

z . = 0.872 * 1i(0.08).

Ed
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V. ADAPTIVE POSITION CONTROL OF THE DC MOTOR DRIVEN TABLE SYSTEM

5.1. Mathematical Modeling of the Position Controlled System

The block diagram representation of the system is
similar to the block diagram of the velocity controlled
system, Fig.4.3. The exception is only the integrator 1/s.
Thus, the block diagram of the position controlled system is

given in Fig.5.1.

R(s) U(s) K [Q(s)! 1 Qés) 1 |V(s)! 1 IX(s)
——:ﬁ@——» D(s)t——|K — m Lol °, > >
—» ¢ T8+1 i N 8

Controller Power DC motor

Amp +table
L J

G(s)

K

e

Encoder ,H(S)

Fig.5.1.Block diagram of position control of a dc motor

driven table system.

According to Fig.5.1, the process transfer function

is;
X(s) K KDb
G(s) = = cr (5.1)
U(s) iNs(s+b)

where b=1/t . Assuming that a zero—order-hold type of DAC is
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used, the pulse transfer function of G(s) is [33];

K K (bT-1+a)z+(1—-a—-baT)
G(z) = —72 (5.2)
iN (z-1)(z-a)

where b=1/7t, a=exp(-bT), and T is the sampling period.

As stated in Section 4.1, the computer sends the
signal u(k) and gets it back as x(k)-Ké=x’(k), therefore we
must use x’(k) being the output. Thus, the pulse transfer

function becomes;

X’(z) oz+3
G’'(z) = — = K’ (56.3)
u(z) (z-1)(z-a)
where
K K K
K’ = ame
iNb
a =bT -1+ a
f =1- a - baT
a = exp(-bT)
b = 1/t
From the pulse transfer function G'(z), the

difference equation of the position controlled system is

obtained;

x"(k) = (a+1)x’(k-1)-ax’(k-2)+K’au(k-1)+K’3u(k-2) (5.4)

Defining the parameter vector @ and the measurement

vector & described in Section 3.2, Eq.(5.4) can be written in

the compact form;



46

;| — -— T o,

X*(K) = 0.6 40,6 40 ¢ 40 ¢ =0 8(k-1) (5.5)

where @ = [6 6 6 6 1 with
1 2 3 4

8 = a+1
8 = -a
g = K'o
6 = K'f

and & (k-1) = [ x’(k-1) x'(k-2) u(k-1) u(k-2) J.

5§.2. Pole-Assignment for Adaptive Position Control

According to the pole-placement design algorithm

described in Section 2.3, let the process, Eq.(5.3), be;

B(z) a(z-d)
H(z) = —— = K’ (5.6)
A(z) (z-1)(z-a)
where d = -f3/a

Let the desired closed-loop transfer function in the

form of:
B (z) (z—d)(1+% +% )
H (z) = —C = — (5.7)
™ A (z) (z"+¢c z+c )(1~d)
m 1 2

where
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c =-2exp(-fw T)cos( 1—E2 w T)
1 n n

c =exp(-2{w T)
2 n

Notice that the process zero on the negative real
axis is now also a zero of the desired closed-loop transfer
function. This means that the zero does not have to be

canceled by the regulator.
According to the pole-placement algorithm, B(z) is

factorized in the following way;

where
B = 1 (5.8)
B = aK’(z-d) (5.9)

Here, B" has the process zero inside the unit circle, and B

has the zero outside the unit circle.

Further B’ is defined by B’ = Bm/B—, therefore;

(1+c1+c2)
Br: = (5.10)
' aK? (1-d)

According to the causality condition the degree of

the observer polynomial A0 is given by [2,11];
deg Az 2degA - degA - degB’ -1.

This gives deg A0 = 1. We choose Ao(z)=z for simplicity.



48

The degree of the polynomials R’ and S are given

according to the causality conditions by [2,11];

deg R’ = deng + degAYf - degA
1
deg S

1

degA - 1
These relations imply degR’=1 and degS=1. Thus, we choose;

R* =z +r (5.11)

S =sz + s (6.12)
o 1
According to the so—-called Diophantine equation
AR +BS=AA (2.4)
m O
the following polynomial identity is obtained;

(z-1)(z-a)(z+r )+aK’(z-d)(s z+s ) = z(zz+c z+c ) (5.13)
1 o 1 17 2

Equating the coefficients, and using the relation

given by Eg.(2.5), the regulator parameters are found to be;

g 2
d +c d +c
1 2

(d-1)(d-a)

ct
H

(1+c +c )/(aK’(1~-d))
1 2

(1+c +c_)(a-d)-(1-d)(a +a’c +ac )
i 2 1 2

aK’(1-a)(1-d)(a-d)

si'%—% (5.14)
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According to the pole assignment algorithm with no
cancellation of process zero given 1in Section 2.3, the

regulator is given by;
Rru=T-u - Sy (2.3)

where R=B+R’, T=AbB;, uc is the reference 1input y 1is the

output. Therefore, the regulator is given by;
+ = . - ? .
(z ri)U(z) tbz XR(z) (soz+s1)x (z) (5.15)

The difference equation form of the pole placement
explicit self tuning regulator for adaptive position control

is then;
u(k) = thR(k)-SOX’(k)-six’(k—1)—riu(k-1) (5.16)

where to’r1’ s° and s1 are given by Eq.(5.14), u(k) denotes
the regulator control signal, XR(k) denotes the reference

position, and X’(k) denotes the current position.

According to the self-tuning adaptive control
procedure shown in Fig.2.3, the recursive estimates of the
process parameters a1,a2,b1, and h% should be used at each
sampling period to control the regulator parameters.
Therefore, in terms of the recursive parameter estimates, the

regultator is given by;

u(k) = toXR(k)—sz’(k)—six’(k—1)—riu(k-1) (5.17)

where

d = _bz/bi
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d3+Cd2+C
1 2

ri = -d +
(d-1)(d-a)
to = (1+c1+c2)/(b1(1—d))
3 2
(1+c +c )(a-d)-(1-d)(a +a c +ac )
R 1 2 1 2
s0 =
E}1—a)(1—d)(a—d)
81 = to - so (5.18)
in which the estimate vector @T =TI a1 a.2 b1 b2 1 s

calculated by the recursive least squares estimator at each

step.
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VI. EXPERIMENTAL SET-UP, ANALYSIS AND RESULTS

6.1. Experimental Set-Up

The purpose of this research was to realize real-time
adaptive control of a dc motor driven single axis table. The
experimental set—-up, which is consructed to accomplish this,
consist of a dc motor that drives the table, an incremental
linear encoder as feedback unit, an interface card, a power
amplifier, and finally, an AT type 33 MHz microcomputer with
built 1in mathematical coprocessor. The 1layout of the

experimental set—-up is presented in Fig.1.1.

In order to convert the rotational motion of the dc
motor into linear motion a ball screw was employed. The use
of the ball screw ceased friction, prevented vibration, and
improved efficiency by providing smooth action. Additionally,
in the experimental set-up, to prevent vibration and
misalignment, carbon steel plates and hardened steel guides
of safe dimensions were used. Another possible source of
friction between the moving table and guides was eliminated

by using one linear ball bearing on each guide [34].

6.1.1. Linear Encoder

An incremental linear encoder has three basic parts,

a light source, a scaling glass and a sensor (photovolcaic

cell, phototransistor, photodiode). In this research, a "Dr.
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Johannes Heidenhain GmbH-LS 707" 1incremental 1linear encoder

was used. Its specifications are [35];

i.Scanning principle: Photoelectric  transmitted
1ight.

ii.Scale: Glass scale with DIADUR grating.
iii.Grating pitch: 20 um

iv.Light source: Long 1ife miniature lamp prefocused,
5vV/0.6W

v.Scanning elements: Silicon solar cells in push pull
arrangement.

vi.Maximum permissible speed: 24 m/min
vii.Permissible acceleration: 30 m/s2

viii.Required feeding power: <=10N

ix.0Output signals of transducer: 2 sine-wave signals,
I and Ie

el 2
X.Supply voltage: 5 Volt (lamp)

phase shifted by 90 degrees.

xi.Weight of transducer: 0.8 kg + 2 kg/m measuring

length.

For most purposes the 1low signal levels obtained
directly from the encoder optoelectronic sensors are not
adequate for control or signal processing. Therefore,
amplifiers and wave form shapers are incorporated 1into the
encoder packages. However, we did not have this package.
Thus, to convert the 10uA sinusoidal signal to a 0-5V square
wave signal an electonic circuit has been designed and

constructed.
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6.1.2. Ball Screw

Ball screws are one of the high-tech products used in
modern CNC machines. The use of steel balls between nut and
screw minimizes friction and provides smooth action. These
screws have efficiencies up to 95%. The choice of lead angle

of this screw 1is such that no self-locking exists.

In this research a Steinmeyer Ref. Nr.
1530/4.12.700.700 ball screw was used and all the mechanical
assembly was constructed as a ME 492 Project by C. Akcadag
and S. Unsal in 1990. The specifications of the ball screw

are [34]1;

i.Nut: Do 25.4 mm., 24.1 mm. long
ii.Balls: D = 2.03 mm.

iii.Pitch 4 mm.

'iv.Do of the screw = 12 mm

v.Total length = 700 mm

6.1.3. Interface Card and Power Amplifier

The dc motor interface card was designed to do
various tasks for computer controlied dc systems [36]. It is
plugged into one of the computer slots and has the following
functions: address decoding, clock adjustment, PWM
generation, speed reading, interrupt generation and position
counting. In realizing these experiments, except interrupt
generation, all the parts of the 1interface card have been
used. Both the pulses from the encoder and seperate high
frequency clock were counted 1in a predetermined time

interval, and the speed found by division.
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The power amplifier employed is a PWM (pulse width
modulated) device. The period of the output signal is
constant, but the pulse Tlength changes according to the
control signal. The PWM signal and the direction of rotation
is fed to the dc motor drive circuit which is also fed by 15
volt regulated power supply. According to the PWM signal, the

driver voltage is supplied and fed to the dc motor.

6.2, Computer Programming

In this study, four different real-time control

programs have been written in Pascal.

The program PIVEL performs classical PI control of
the table velocity. In this program, PI velocity algorithm
was implemented and the controller parameters were tuned by

using Ziegler—-Nichols method.

The program ADAPVEL performs self-tuning adaptive PI
velocity control of the DC motor driven single axis table
according to the formulation presented in Chapter IV. In this
program, PI velocity algorithm using Tustin’s approximation
has been used. The controller parameters were updated by the
procedure LS which performs RLS parameter estimation at each

sampling period.

The program PAPDPOS performs pole assignment PD
position control of the table. In the program, the procedure

GAUSSELIMINATION solves the matrix equation which 1is needed
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to assigh the poles to the desired locations.

Finally, the program ADAPPOS performs the self-tuning
adaptive position control of the DC motor driven single axis
table according to the formulation given in Chapter V. 1In
this program, algorithm 3 of Section 2.3 has been used.

Again, parameters were updated by the procedure LS.

The procedures InitPPI_Cnt, Power_Up, and Power_Down
are similar for all those above mentioned programs. The
procedure InitPPI_Cnt initializes 8255 and 8253. The Power_Up
procedure resets and enables the interface card. 8imilarly,
the Power_Down procedure disables the interface. The detailed

information can be found in [36].

6.3. Experimental Analysis

An AT type microcomputer of 33 MHz clock frequency
with a built in mathematical coprocessor has been used to
control the servo system shown 1in Fig.4.3 for velocity

control and Fig.5.1 for position control of the table.

In the preliminary experiments, first, armature
resistance, the torque and voltage constants of the DC motor,
and equivalent viscous frictional coefficient of the
experimental system were found. Then, the step response tests
were conducted to determine the open-loop gain and time

constant of the system. These were roughly found to be as



56

K = Kt = 0.07037 V/rad/sec.
R =1.830Q
B = 1.442%x10 % Nm/rad/sec.

K’ = 3.8%10 4 m/s/V

T = 40ms.

For the subsequent experiments, the sampling time of

T=25ms was chosen.

6.4. Experimental Results

6.4.1. Adaptive Velocity Control

For the adaptive velocity control experiments, the
sampling time of T=25ms and the reference speed of the table
of v=0.03m/s were chosen. During the experiments it was
observed that the speed measurement was quite noisy, mainly

due to the poor mechanical construction of the set-up.

The performance of the estimator and controller
depends seriously upon the estimator parameters. Hence a
number of experiments were implemented to determine the
effects of initial estimates, forgetting factor and
covariance matrix on the whole adaptive procedure and to

choose their "best" values.
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i) In Fig.6.1.(a) and (b), the self-tuning controliler
is started for two different sets of initial estimates,
namely for Je(0)=10—5kgm2 and Je(0)=10_2kgm2. The 1low value
of Je(O) causes a slow response and a high value leads to a
faster but oscillatory response at the start-up. It was
observed that in both cases the estimates 91 and 62 converged

to the same values nearly at the same time.

ii) The forgetting factor A of RLS-UD algorithm is a
parameter which determines how fast the previous data is
forgotten. It is usually chosen around X=0.95. It 1is seen 1in
Fig.6.2.(a) and (b) that due to noisy measurement of speed,
the lower value of A=0.93 caused higher fluctuation of the
estimate 61. On the other hand, the higher value of X=0.99
caused extremely small convergence to the average value of
61=O.55. However, the 1implementation of a variable or
directional forgetting factor are possible methods to
overcome the difficulties arising from the choice of the
forgetting factor [24,25,26,37]. In Fig.6.3, the desired
overshoot and settling time are set to 10% and is,
respectively. With A=0.99 the desired overshoot and settling
time are achieved. However, A=0.99 an overshoot of 6% is
reached which 1is 1less than the desired value. This
discrepancy is expected to be due to the inadequate modeling

6f damping between the table and the guide rods.

iii) The AC is also affected by the choice of initial
covariance matrix. For matrix P(0), one often selects P(0)=pI
where I is the identity matrix and p is a design parameter
which is greater than zero. Setting ¢ to a low value of p=100
eliminates the sudden Jjump of the estimate 91 at the

start—-up, but it causes the speed response to have a maximum
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overshoot far from the desired value of 1% (Fig.6.4.(a) and
(b)).

Based upon the experimental observations, the
forgetting factor and the initial covariance matrix diagonal
elements are set to A=0.96 and p=10000, respectively, to
achieve a desired speed response with 1% overshoot and 0.75s

settling time.

The teoretical and experimental speed response is
shown in Fig.6.5.(a). It 1is seen that the experimental
response takes about 1s to reach the desired reference value
with approximately 0.20s delay. This delay is mainly due to
fair mechanical construction and partially due to a sticktion
of the motor at the start-up. Moreover, it is observed that
the theoretical and experimental overshoots do not agree
well. This can be explained by the effect of nonlinear
frictional damping which exists in the experimental system,
but not included in the simulation model. It is seen that the
experimental self-tuning adaptive controller (STAC) follows
quite well the desired performance criteria. Additionally the
comparison of STAC response with that of the fixed PI
controlier (Fig.6.5.(b)), tuned by using Ziegler—-Nichols
method, reveals that the adaptation algorithm provides a

faster and smoother response in this experimental set-up.

The corresponding parameter estimates 61 and 62
illustrated in Fig.6.6 converges at approximately 6 seconds.
The fluctuation of the estimates 1is explained by the
mechanical noise arising from the misalignment of the guide
rods. Using the average values of 91=0.55 and 62=1.6’l=10_4 of

Fig.6.6.(a) and (b), the gain and the open-lioop time constant
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of the system are obtained as 3.6*10_4m/s/v and 42ms,
respectively. These values are approximately equal to the
ones obtained from the open-loop step response of the system,
i.e., 3.8*10-4m/s/V and 40ms. These results validate the

estimation procedure.

It is known that the excitation signal 1is a factor
which affects the quality of the estimates in most
identification procedures [9]. The test signal should
preferably be rich with flat spectrum, and should
persistently excite all the system modes. The so called
Schroeder Phased Harmonic Sequence (SPHS) which is shown in
Fig.6.7.(a), providing such features, was injected as input
to the open-loop plant while the table was at a given point
on the rod. The resulting parameter estimate 61 is plotted in
Fig.6.7.(b). It is observed that the estimate 61 converges in
2s to the approximate value of 61=0.57 which is also nearly
the mean value of the fluctuating estimate 81 of the STAC
[5].

6.4.2. Adaptive Position Control

In the position control of the DC motor driven single
axis table two algorithms were used: the ordinary PD pole
assignment control algorithm and the poie assignment

self-tuning adaptive control algorithm.

For the experiments, sampling time of 25ms and

reference position of 0.05m were chosen.

The effect of the estimator parameters on the
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estimator and the controller performance was examined first.
It was observed that the estimation procedure did not work
well , since the settling time for the position was too short
and after the table settles no more useful information could
be transferred to the estimation algorithm. Thus, to obtain
better estimates and consistent convergence, a persistently
exciting signal was needed. However, the trial to implement a
SPHS to the algorithm has failed. To sum up, some effects of
the initial estimate, forgetting factor and initial
covariance matrix on the parameter estimates were observed,
but due to the inconsistent data, no precise results could be
obtained. The 1inconsistency and unreliability of the
parameter estimates can be seen 1in Figures 6.8, 6.9, and

6.10.

Secondly, the effect of estimator parameters on the
system response was determined. It was observed that the
effects of forgetting factor and initial covariance matrix on
the system response were not remarkable. The effect of
forgetting factor and initial covariance matrix are
illustrated in figure 6.11.(a)-(b) and 6.13, respectively. On
the other hand, the effect of initial estimate was found to
be drastic. High value of equivalent load of 1inertia causes
the system settle in 2s and 1low value of it results 1in
overshoot percentage of higher than the desired value of one

percent (Figure 6.12).

Finally, in position control experiments, ordinary PD
pole assignment and adaptive algorithms were compared. In
Figure 6.14.(a), with good initial estimate, it is seen that
adaptive algorithm is superiour, since it eliminates the

steady state error which 1is encountered 1in ordinary pole
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assignment position control. Moreover, when the 1initial

estimate is bad, that is to say, the system characteristics
are totally unknown, adaptive algorithm still provides the
table to reach the reference value. However, the ordinary PD
pole assignment algorithm causes oscillation under the same
conditions (Figure 6.14.(b)).
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VII. CONCLUSIONS AND RECOMMENDATIONS

In this thesis, a microcomputer based adaptive
controller using self-tuning pole assignment technique
together with recursive least squares estimation algorithm
for system identification was investigated experimentally on

a laboratory model of a DC motor driven single axis table.

i) Velocity Control: The misalignment of guide rods
and unmodelled friction damping affected adversely the
estimator and controller performances. The steady-state mean
value of the recorded parameter estimates of the adaptive
velocity control experiments were found approximately to be
equal to the ones obtained from the preliminary experiments.
The effects of the initial estimates, the forgetting factor
and the initial covariance matrix on the estimates and the
speed response dynamics have been examined. It was noted

that;

*The effect of forgetting factor on the convergence
time of the estimates is more significant than its effect on

the performance of the response.

*0On the other hand, the effect of 1initial estimates
on the performance of the speed response 1is important,
whereas initial estimates have no effect on the parameter

estimates.

x*However, the initial covariance matrix affected both

the performance of the response and the parameter estimates
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considerably.

It was observed that the AC algorithm performed
better than the fixed parameter PI controller. The slight
time-variance of the system plant parameters originating from
the mechanical construction were followed by the on-line

recursive estimation procedure.

ii) Position Control: 1In the position control
experiments, the performances of the ordinary PD pole
assignment and adaptive algorithms were examined and

compared. It was observed that;

*No consistent and reliable results were obtained
when the parameter estimates and the effects of initial
estimate, forgetting factor and initial covariance matrix on
the parameter estimates are considered. This is because of

the Tack of persistent excitation in the system.

*The effects of forgetting factor and initial
estimates on the system response were not considerabie

whereas the effect of initial estimate was quite remarkable.

*The comparison of classical and adaptive pole
assignment algorithms revealed that the latter was superior

when compared to the former.

Summing up, in this thesis an experimental
investigation of adaptive servo control of single axis table
has been done. The overall results showed that 1in this
experimental set-up, since the system has inherently

time-variant characteristics, the use of adaptive control is
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advantageous. On the other hand, the need for adaptation
algorithm in both the position and the velocity control is
controversial. Before attempting to use adaptive control, it
is important to investigate whether the control problem might
be solved by constant—-gain feedback, since in the 1literature
on adaptive control there are many cases where constant-gain

feedback can do as well as an adaptive regulator [2].

For further research on this subject, several
recommendations can be made. First, it was noted that the
effects of forgetting factor on parameter estimates and
initial estimate on the speed response 1in adaptive PI
velocity control were quite remarkable. Thus, to
automatically choose the forgetting factor and the initial
estimate is important. To automate the forgetting factor, a
directional or variable forgetting factor algorithm can be
added to the estimation program. Additionally, to overcome
the difficulties arising from the bad initial estimate, an
off-1ine frequency domain estimation procedure can be
impiemented which uses the experimental block data. By doing

this, reasonable initial estimates can be obtained.

On the other hand, to 1improve the experimental
results, some parts of the mechanical hardware should be
reconstructed. The placement of the encoder can be changed
and the guide rod friction can be reduced or at Tleast
homogenized. For example, to replace the encoder in the
middle of the table is a better solution. Moreover, using
direct drive rather than the power transmission with the help
of a timing belt, and a more sensitive DC servo motor can be

other recommendations to improve the experimental setup.
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{$R+}

Program PIVEL;

(* Classical PI Velocity Control x)
uses graph,dos,crt;

Const
PortA_Addr = $340; { 8255 Ports }
PortB_Addr = $341;
PortC_Addr = $342;
Cont_8255 = $343;
CntO_Addr = $348; { 8253 Ports }
Cnti_Addr = $349;
Cnt2_Addr = $34A;
Cont_Reg = $34B;
PosL_Addr = $350;
PosH_Addr = $358;
Var
NextReady : word; {if the controller has calculated the next output}
CalclLate : word;
LastDir : word; {the direction of rotation, 1=clockwise }
Puises : word; {# of encoder pulses in the measurement interval }
Secs : word; {# of MMCLOCK pulses in the measurement interval }
Position : word;

{$I graf.inc}
{$L endcheck.obj}

Procedure EndCheck ; external;

var
pass, lob,hib:byte;
c:char;
posmax, spmax,posmin,spmin:real;
nper:word;
old,
oldspeed, tsam, speed, absspeed,u,err,Kp,Ki:real;
sphist,poshist:array[0..2000] of real;
incr,i:integer;
refspeed,ur,du,vel,vell:real;
st:string[10];
file1,file2:text;

Procedure InitPPI_Cnt;
{ Configures 8255 and 8253 }

begin
port[Cont_8255]:=¢$8A; {A inmodeO,output.B input.C Hiinput,C Lo output}
portlcont_8255]:=3; { reset card }
port[Cont_Reg]:=$36; { Counter 0 in square wave mode }
port[CntO_Addr]l:=$8B; { set sampling period }
port[{Cnt0O_Addr]:=$02; {first LSB then MSB }
tsam:=10;

{ ¢1k period=15.36 micro secs }
{ measurement clk frequency 1.0416 MHz }
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port[Cont_Regl]:=$70; { Counter 1 in Mode 0 }
port[Cnti_Addr]:=$FF;
port[Cnti_Addr]:=$FF;

port[Cont_Reg]:=$B0; { Counter 2 in Mode 0 }
port{Cnt2_Addr]:=$FF;
port[Cnt2_Addr]:=$FF;

end;

procedure power_up;

begin
porticont_8255]:=$03; { set port C1 to reset card }
port[cont_8255]:=$00; { clear position cnt , toggle CO }

port[cont_8255]:=$01;

{ clear counters }

portl[cont_reg]:=$B0O; { load cnt2 }
portlcnt2_addr]:=$FF; { LSB }
port[cnt2_addr]:=$FF; { MSB }
port[cont_regl:=$70; { 1oad cnti }
portfcnti_addr]:=$FF; { LSB }
portlcnti_addr] :=$FF; { MSB }
port[cont_8255]:=7; { set port C3 for position latch signal }
port[cont_8255]:=$02; { reset port Ct1 to start card }
end;
Procedure Power_Down;
begin
port[portA_addr]:=0;
portlcont_8255]1:=7;
delay(round(tsam));
porticont_8255]:=$03; { set port C1 to reset card }

end;

Procedure NewSpeed(rsp:real);
{if sp>0 then positive direction ,else negative }
var
sp:integer;
begin
sp:=round(rsp);
port[portA_addr]:=0;
if sp>255 then sp:=255
else if sp<-255 then sp:=-255;
if sp>=0 then port[cont_8255]:=5
else port[cont_8255]:=4;
portiportA_addr]:=abs(sp);

end;

begin { main }
initppi_cnt;
clirscr;

writeln(’'refspeed?’);
readin(refspeed);
nper:=0;
spmax:=-1e30;
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posmax:=-1e30;
spmin:=1e30;
posmin:=1e30;
for i:=0 to 2000 do
begin
sphist[i]:=0;
poshist[i1]l:=0;
end;
err:=0;
u:=0;
vel:=0;
vell:=0;
assign(filel,’pisp.dat’);
assign(file2,’iconsig.dat’);
rewrite(filel);
rewrite(file2);
if (refspeed>0) then port[cont_8255]:=5

else port[cont_8255]:=4;
power_up;
repeat
EndCheck; { wait until the end of sampling period }
speed:=0;

if (LastDir=0) and (secs>0) then
speed:=20.832*%Pulses/Secs

else if secs>0 then
speed:=-20.832*%Pulses/Secs; { in cm/s }

absspeed:=abs(speed);

if speed>spmax then spmax:=speed;

if position>posmax then posmax:=position;
if speed<spmin then spmin:=speed;

if position<posmin then posmin:=position;
sphistinper]:=speed;
poshist[nper]:=Position:

if nper>4 then sphistinper]:=0.25%(sphist[nperl+sphist[nper-11l+
sphist{nper-2]+sphist{nper-31);
writeln(filel,sphistinper]);

{ CONTROL SIGNAL CALCULATION }

if (nper mod 20)=0 then
begin
gotoxy(3,3);
writein(nper,’ ’,pulses,’ ’,secs,’ ’',speed:7:2,’ ’);
end;
vel:=sphist[nper];
err:=refspeed-vel;

Kp:=3.5;

Ki:=0.15;
du:=Kpx(velil-vel)+Kixerr;
vell:=vel;

u:=utdu;

ur:=2550%u;

newspeed(ur);

writeln(file2,ur);
if nper<2000 then inc(nper);
until keypressed or (nper>=2000);
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{ CONTROL SIGNAL CALCULATION END}

power_down;
nper:=0;
incr:=1;
while nper<=2000 do
begin
old:=trunc(1.0xposhist[nper+1]-poshistinper]);
writeln(nper:7,’ ’,sphist[nper]:7,’ ' ,poshist[nper]:7,’
old:5:2,’ DK
if (nper mod 19)=0 then
begin
writeln(’E to end’);
¢c:=readkey;
if upcase(c)='E’ then nper:=2001;
if upcase(c)=’I’ then incr:=20;
if upcase(c)='D' then 1incr:=1;
end;
inc(nper,incr);
end;

writeln;

writein(’Graph?’);
readln(c);

pass:=0;

if (ec="y’) or (c=’Y’) then
while (c=’y’) or (c=’Y’) do
if (pass+1)%720<2000 then

begin
for i:=0 to 720 do
begin
fn[1][i]:=round(sphist[i+pass*x720]);
fn[2][i]:=round(poshist[i+pass*x720]);
end;

ymin[2]:=posmin;
ymax[2]:=posmax;
ymin[1]:=spmin-2;
ymax[1]:=spmax+2;
Xmin:=passx720;
xmax:=(pass+1)*720;
axinf[0].name:="Time’;
str(tsam,st);
axinf[0].axunit:="(’+st+’ms)’;
axinf[1].name:=’Speed’;
axinf[1].axunit:=’()’;
axinf[2].name:="Position’;
axinf[2].axunit:="()";
grapher(fn, ymin,ymax,xmin,xmax,2,720,
'Speed vs Time’,axinf,true);

pass:=pass+1;
writeln;
writeln(’Graph?’);
readln(c);

end;

close(filet);
close(file2);
end.
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{$R+}
PROGRAM ADAPVEL;
(x* Self-Tuning Adaptive PI Velocity Control %)
USES
graph,dos,crt;
CONST
npar=2;
noff=1;
TYPE
vec1=ARRAY[1..npar] OF real;
vec2=ARRAY[1..noff] OF real;
VAR
km, tauest,denom,kprime,natliog :real;
speed,ainitial,c1,c2,ddenom,kp,ki,settlingtime :real;
ka,ke,iii,N,tsamp,tsam,rho,vref,zeta,wn :real;
jeo,ra, lambda,overshoot :real;
kt,kb,be,initialestje,binitial :reail;
index,M :integer;
v,u,sphs :ARRAY[O0..2000] OF real;
aaa,ek,bbb,ccc,ek_1 :reatl;
PAR1,PHI,diag :veci;
offdiag :vec?2;
deltau, jeest :real;
Kad :real;
filet,file2,file3 :text;

Const
PortA_Addr = $340; { 8255 Ports }
PortB_Addr = $341;
PortC_Addr = $342;
Cont_8255 = $343;
Cnt0O_Addr = $348; { 8253 Ports }
Cnti_Addr = $349;
Cnt2_Addr = $34A;
Cont_Reg = $34B;
Posl_Addr = $350;
PosH_Addr = $358;
Var

NextReady : word; { if the controller has calculated the next output}
CalclLate : word;

LastDir : word; { the direction of rotation, 1=clockwise }
Pulses : word; { # of encoder pulses in the measurement interval }
Secs : word; { # of MMCLOCK pulses in the measurement interval }
Position : word;

{$I graf.inc}
{$L endcheck.obj}

Procedure EndCheck ; external:
Procedure InitPPI_Cnt;

{ Configures 8255 and 8253 }
begin
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port[Cont_8255]:=$8A; {A inmodeO,output.B input.C Hiinput,C Lo output’

portlcont_8255]:=3; { reset card }

port[Cont_Reg]:=$36; { Counter 0 in square wave mode }
port[CntO_Addr]:=$5C; { set sampling period }
port[Cnt0O_Addr]:=$06; {first LSB then MSB }

tsamp:=25;

{ ¢clk period=15.36 micro secs }
{ measurement clk freguency 1.0416 MHz }

port{Cont_Regl:=$70; { Counter 1 in Mode 0 }
port[Cnti1_Addrl:=$FF;
portICnti_Addr];=$FF;
port{Cont_Reg]:=$B0; { Counter 2 in Mode O }
port[Cnt2_Addrl:=$FF;
portiCnt2_Addr]:=$FF;

end;

procedure power_up;

begin
portlicont_8255]:=$03; { set port C1 to reset card }
port[cont_8255]:=%$00; { clear position cnt , toggle CO }

port[cont_8255]:=$01;

{ clear counters }

portlcont_regl]:=$B0O; { load cnt2 }
portl{cnt2_addr]:=$FF; { LSB }
porticnt2_addr]:=$FF; { MSB }
port[cont_regl:=$70; { load cnti1 }
portlcnti_addr]:=$FF; { LsB }
port{icnti_addr]:=$FF; { MSB }
port[cont_8255]:=7; { set port C3 for position latch signal }
portlcont_8255]:=%$02; { reset port Ci1 to start card }
end;
Procedure Power_Down;
begin
port{portA_addr]:=0;
port[cont_8255]:=7;
(*x delay(round(tsamp));x*)
port{cont_8255]:=$03; { set port C1 to reset card }

end;

Procedure NewSpeed(rsp:real);
{if sp>0 then positive direction ,else negative }
var
sp:integer;
begin
sp:=tround(rsp);
port{portA_addr]:=0;
if sp>255 then sp:=255
else if sp<-255 then sp:=-255;
if sp>=0 then portfcont_82855]:=5
else porticont_8255]:=4;
portl[portA_addr]:=abs(sp);



end;
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PROCEDURE LS(VAR bbb,aaa, lambda:real;
VAR PAR1,PHI,diag:vect;
VAR offdiag:vec2);
(xcomputes the least-squares estimate using the U~-D method

by Bierman & Thorntonx)
VAR

kf,ku,i,j :integer;

perr,fj,vj,alphaj,ajlast,pj,w :real;

k :ARRAY[1..2] OF real;

n,na :integer;
(*par1 vector : theta vectorx)
(*diag vector : initially, rho times identity vectorx)
(*offdiag vector : initially, null vectorx)

BEGIN

n:=2; (xfor n, refer to chapter 3 of the thesisx)
na:=1; (*for na, refer to chapter 3 of the thesisx)
perr:=aaa; (*perr:=y%x)

for i:=1 to n do perr:=perr-PAR1[{J*PHI[i];
(*calculate gain and covariance using U-D methodx)
fj:=PHI[1];

vj:=diag[11*xfj;

k[1]:=v];

alphaj:=1.+vjxfj;
diag[1]:=(diag[1]/alphaj)/Tambda;

if n>1 then

begin
kf:=0;
ku:=0;
for j:=2 to n do
begin
fj:=PHIL[J];
for i:=1 to j—-1 do
begin (*F=PHI%Ux)
kf:=kf+1;
fi:=FJj+PHI[1il*offdiag[kf];
end;
vj:=fjxdiaglj]; (*v=D*fx)
k[jl:=vi;

ajlast:=alphaj;
alphaj:=ajlast+vjxfj;
diag[jl:=diagl[jl*xajlast/alphaj/lambda;
pj:=-fj/ajlast;
for i:=1 to j-1 do
begin
ku:=ku+1;
w:=offdiag[kul+k[il*pj;
k[i]:=k[i]+offdiaglkul*vj;
offdiaglkul:=w
end;
end;
end;
(xupdate parameter estimatesx)
for i:=1 to n do PAR1[i]:=PAR1[i]l+perrxk[il/alphaj;
{xupdating of phix)
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for i:=1 to n-1 do PHI[n+1-1i]:=PHI[n-1i];
PHI[1]:=aaa;

PHI[na+1]:=bbb;

END: (*procedure LSx)

BEGIN (*xmain programzx)
initppi_cnt;

clrscr;

writein(’'number of steps?’);

readln(M);

writeln(’Maximum overshoot?’);
readIn(overshoot);

writein(’Settling time?’);
readln(settlingtime);

writein(’forgetting factor[0.95<=Tambda<=117?’);
readlin(lambda);

writelin(’reference velocity?’);
readin(vref);

writein(’initially estimated Je (Jeo™)?’);
readin(initialestje);
natlog:=sqr(1n(overshoot/100));
zeta:=sqgrt(natlog/(sgr(pi)+natlog));
wn:=4/(zetax*settlingtime);

tsam:=0.025;

rho:=10000;
ra:=1.3;
be:=0.0001442;
kt:=0.07037;
kb:=Kt;
ka:=4.656;
ke:=50000;
KAD:=1/50000;
N:=1570.8;

iii:=2.1274;

diagl[1]:=rho;

diagf[2]:=rho;

offdiagl1]:=0;

denom:=(raxbe+kt*xkb);

km:=Kt/denom;
tauest:=(raxinitialestje)/denom; (*initially estimated time const.*)
Kprime:=(kaXxkmxkexKAD)/(i171i%N);
kprime:=0.0003782;
ainitial:=exp{(-tsam/tauest);
binitial:=kprimex(i1-ainitial);
PAR1[1]:=ainitial;

PAR1[2]:=binitial; (x initial Best’s %)
ek:=0;

ek_1:=0;

(x*beginning of STR boxx)

(*beginning of Pole Ass. boxx)
cl:=-2%exp(-zeta*wnkxtsam)*cos(sqgrt(1-zeta*xzeta)*wnxtsam);
c2:zexp(-2*%xzeta*wnxtsam);
ddenom:=({kprime)*(1-ainitial));
kp:=(ainitial-c2)/ddenom; (xinitial Kpx)
ki:=(c1+c2+1)/(tsamxddenom); (*initial Kix)

(x*end of Pole Ass. boxx)
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uf0]:=0;

(*end of STR boxx*)

vi0]:=0;

aaa:=v[0]; (xaaa=v[0]x)
bbb:=ul[0]; (*bbb=ul0]x*)
PHI[1]:=aaa;

PHI[2]:=bbb; (xinitial PHI vectorx)

Assign(filet,’VELOCITY.DAT?);
Assign(file2, ’PAR1.DAT’);
Assign(file3, ’PAR2.DAT’);
Rewrite(filet);
Rewrite(file2);
Rewrite(file3);
clrscr;
gotoxy(1,20);
writeln(’As the loop proceeds, press any key to exit...’);
delay(1200);
power_up;
index:=1;
repeat
EndCheck; { wait until the end of sampling period }
ccc:=aaa; (*i.e., ccc=v[index—-11x%x)
(*processx)
speed:=0;
if (LastDir=0) and (secs>0) then
speed:=20.832xPulses/Secs
else if secs>0 then
speed:=-20.832xPulses/Secs; { in m/s }
v[index]:=speed;
if index>4 then v[index]:=0.25%(v[index]+v[index—-1]+v[index-2]
+v[index-3]);
(xend processx)

aaa:=v[index];

WRITE(’CURRENT VELOCITY(m/s)___);
WRITELN(v[index]:9:7);

writeln(filel,v[index]);

if index>5 then LS (bbb,aaa, lambda,PAR1,PHI,diag,offdiag);
writeln(file2,PAR1[1]);

writeln(file3,v[index]);

(*pole-assignmentx)

tauest:=~tsam/1n(PAR1[1]);
jeest:=denomxtauest/ra;
kp:=(c1-c2+14+2%PAR1[1])/(2x(kprimex(1-PAR1[1])));
Ki:=(cl1+c2+1)/(tsam*kprimex(1-PAR1[1]1));
(*pole-assignment endx)

(*controllerx)

ek:=vref-aaa; (*aaa=v[index]x*)

ek_1:=vref-ccc; (*ccec=v[index—11%)
deltau:=((kp+(ki*tsam/2) )xek + ((kixtsam/2)-kp)*xek_1);
ulindex]:=u[index-1]+deltau;

(*controller endx)

if (ulindex]>255) then ul[index]:=255

else if (u[index]<-255) then ul[index]:=-255;
newspeed(ul index]);
bbb:=ulindex];
inc(index);



until keypressed or (index>M);
power_down;

Close(filel);

Close(file2);

Close(file3);

END. (*main programx)

75



APPENDIX B

Listings of the Classical PD and Adaptive

Pole Assignment Position Control Programs

76



77

{$R+}

PROGRAM PAPDPOS;

(*Pole Assignment PD Position Controix)
USES Crt,graph;

CONST

M=300;

TYPE

matr=ARRAY[1..3,1..3] of real;
solution=ARRAY[1..3] of reatl;

VAR
km, tauest, je,c1,c2,ka,ke,ii1,N,tsamp,rho,posref,initialpos :real;
zeta,wn,fff,coeff1,coeff2,coeff3, jeo,ra, lambda,kt,kb,be :real;
denom, aaa,bbb,kp,kd,r,a :real;
alpha,beta,kprime,pri,pr2,pr3,pr4,initialu :real;
ccc,at,a2,ek,ek_1 :real;
index :integer;
initialestje,b :reafl;
Amat :matr;
Bmat,X :solution;
pos :ARRAY[-1..M] of real;
u :ARRAYI[-1.,.M] of real;
filel,file2 :text;

Const
PortA_Addr = $340; { 8255 Ports }
PortB_Addr = $341;
PortC_Addr = $342;
Cont_8255 = $343;
CntO_Addr = $348; { 8253 Ports }
Cnti_Addr = $349;
Cnt2_Addr = $34A;
Cont_Reg = $34B;
Posl_Addr = $350;
PosH_Addr = $358;
Yar

MNextReady : word; {if the controller has calculated the next output }
CalclLate : word;

LastDir : word; { the direction of rotation, 1=clockwise }
Pulses : word; { # of encoder pulses in the measurement interval }
Secs : word; { # of MMCLOCK pulses in the measurement interval }
Position : word;

{$I graf.inc}
{$L endcheck.obj}

Procedure EndCheck ; external;

Procedure InitPPI_Cnt;
{ Configures 8255 and 8253 }

begin
port[{Cont_8255]:=%$8A; {A inmodeO,output.B input.C Hiinput,C Lo output}
port{cont_8255]:=3; { reset card }

port[Cont_Reg]:=$36; { Counter 0 in sguare wave mode 3
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port[Cnt0O_Addr]:=$5C; { set sampling period }
port[Cnt0O_Addr]:=$06; {first LSB then MSB }
tsamp:=25;

{ ¢lk period=15.36 micro secs }
{ measurement clk frequency 1.0416 MHz }

port[Cont_Reg]:=$70; { Counter 1 in Mode 0 }
port[Cnti_Addr]:=$FF;
port[Cnti_Addr]:=$FF;
port[Cont_Reg]:=$B0O; { Counter 2 in Mode 0 }
port[Cnt2_Addr]:=$FF;
port[Cnt2_Addr]:=$FF;

end;

procedure power_up;

begin
portlcont_8255]:=%$03; { set port C1 to reset card }
porticont_8255]1:=%$00; { clear position cnt , toggle CO }

port[cont_8255]:=$01;

{ clear counters }

portl[cont_reg]:=$B0; { 1oad cnt2 }
portlicnt2_addr]:=$FF; { LSB }
portlcnt2_addr]:=$FF; { MSB }
portlcont_regl:=$70; { load cntt }
portlcnti_addr]:=$FF; { LSB }
porticnti_addr]:=$FF; { MSB }
portlicont_8255]:=7; { set port C3 for position latch signal }
port{icont_8255]:=%$02; { reset port C1 to start card }
end;
Procedure Power_Down;
begin
port[portA_addr]:=0;
port[cont_8255]:=7;
(x delay(round(tsamp));*)
port{cont_8255]:=$03; { set port C1 to reset card }

end;

Procedure NewSpeed(rsp:real);
{if sp>0 then positive direction ,else negative }
var
sp:integer;
begin
sp:=round(rsp);
port{portA_addr]:=0;
if sp>255 then sp:=255
else if sp<-255 then sp:=-255;
if sp>=0 then port[cont_8255]:=5
else porticont_8255]:=4;
port[portA_addr]:=abs(sp);
end;

Procedure Setting(VAR wn,zeta,ra,kt,kb,be,iii,N,ka,ke,initialpos:real;
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VAR rho, lambda,fff,initialestje,posref:real;
VAR Jjeo :reafl;
VAR tsamp:real);

VAR

f,overshoot,settlingtime,natlog :real;

choice :char;

BEGIN

clrscr;

writeln(’To input the desired dynamics in terms of maximum overshoot’);

writein(’and settling time press ( 8 ), or in terms of natural freg.’);

writeln(’and damping ratio press( D )’);

REPEAT

readin(choice);

choice:=UpCase(choice);

IF choice=’8" THEN BEGIN
write(’'Maximum overshoot(%)___ ’');
readin(overshoot):
write(’Settling time(s)___’);
readin(settlingtime);
natlog:=sqr(1n(overshoot/100));
zeta:=sqgrt(natlog/(sqr(pi)+natliog));
wn:=4/(zeta*settlingtime)

END
ELSE IF choice=’D’ THEN BEGIN
write(’Natural freq.(Hz)[1 Hz]l___ *);
readin(f);
write(’Damping ratio[0.95] __ ’);

readin(zeta);
wn:=2%pixf

END
ELSE BEGIN
sound(400);
delay(200);
nosound
END;
UNTIL ((choice=’8") OR (choice=’D’)});
write(’Sampling time(sec)[0.01 sec]l___’);
readln{tsamp);
write(’Reference position(m)__");
readin{(posref);
write(’Initially estimated Je{kgm2)__ ’);

readin(initialestje);
END:; (xprocedure setting*)

Procedure GaussElimination(VAR Amat :matr;
VAR Bmat :solution;
VAR X :solution;
VAR zeta,wn :real);
VAR
i,iat,j,k,nej,v :integer;
piv,tot :real;
BEGIN
(xeliminationx)
for i:=1 to 2 do begin
iat:=i+1;
for j:=1al to 3 do begin
piv:=Amat[j,il/Amat[i,i];
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Amat[j,il:=0.;
for k:=ial to 3 do Amat[j,k]:=Amat[j,k]-Amat[i,kl*piv;
Bmat[{jl:=Bmat[j]-Bmat[i]lxpiv;
end;
end;
(*backward scanning*)
X[3]:=Bmat[3]/Amat[3,3];

write(’3rd root "Y;writeIn(X[3]);
for j:=1 to 2 do begin
nej:=3-j;
vi=nej+1;
tot:=0.;

for i:=v to 3 do tot:=tot+Amat[nej,il*xXx[1i1];
X[nejl:=(Bmat[nej]l-tot)/Amatlnej,nej];

end;

END; (*procedure gausseliminationx)

BEGIN (*main programzx)

initppi_cnt;

clrscr;

Setting(wn,zeta,ra,kt,kb,be,iii,N,ka,ke,posref,initialpos,
rho, Tambda,fff,initialestje, jeo,tsamp);

ra:=1.3;
kt:=0.07037;
kb:=kt;

be:=0.0001442;
Assign(filel,’’POSITION.DAT’);Rewrite(filel);
Assign(file2,’CSIG.DAT’);Rewrite(file2);

denom:=(raxbe+ktxkb);

km:=kt/denom;

tauest:=(ra*INITIALESTJE)/denom; (*initially estimated time constantx)

b:=1/tauest;

kprime:=0.0003782%tauest;

a:=exp(—-bxtsamp);

alpha:={bxtsamp-1+a);

beta:=(1-a~-bxaxtsamp):

index:=1;

(*pole assignhmentx)
cl:=-2%exp(—~zeta*wnktsamp)*cos(sqgrt(1-zeta*zeta)* wnxtsamp);
c2:=exp{-2xzetakxwn*xtsamp);
Amat{[1,1]:=kprimexalpha;
Amati{i1,2]:=Amat[1,1]/tsamp;
Amat[1,3]:=1;
Amatf[2,1]:=kprimexbeta;
Amat[2,2]:=kprimex(beta-alpha)/tsamp;
Amat{2,3):=ct1;
Amat{3,1]1:=0;
Amatl[3,2]:=-kprimexbeta/tsamp;
Amat{3,3]:=c2;
Bmati1]:=c1+a+1;
Bmat[2]:=c2-a;
Bmati{3]:=0:
GAUSSELIMINATION(Amat,Bmat,X,zeta,wn);
kp:=X[1];
kd:=x[2];
r :=X[3];
{x*end of Pole Ass. boxx)



(*xaaa=pos[0]*)
(*bbb=uf[0]x*)

aaa:=0;
bbb:=0;

pos[-1]:=0;
pos[0]:=0;
ul-11:=0;
ulfo]l:=0;
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writeln(’As the loop proceeds, press any key to exit...’):

power_up;
repeat;

Endcheck;
ccc:=aaa;

(*processx)

pos[index]:=position/50000.0;

aaa:=pos[index]:

WRITE(’CURRENT POSITION(mM)___ ’);

WRITELN(pos[index]);
writein(filel,pos[index]);

(*process endx)

(*PD regulatorx)
a2:=-kd/tsamp;
al:=kp-a2;
ek:=posref-pos[index];
ek_1:=posref-pos[index-1];
ulindex]:= atxek + a2%ek_1;
if (ufindex]>255) then u[index]:=255

(xi.e., ccc=pos[index-1]1%)

(*xaaa=pos[index]*)
(xccc=pos[index-11x%)

else if (ulindex]<-255) then u[index]:=-255;

newspeed(ul[index]);
bbb:=ulindex];
writeln(file2,u[index]);
(xPD endx)

inc(index);

until keypressed or (index>M);
power_dowh;

Close(filet);

Close(file2);

END. (xmain programx)
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{$N+}

{$R+}

PROGRAM ADAPPOS;

(*x Self-Tuning Adaptive Position Control x)

USES
Crt,graph;

TYPE
vec1=ARRAY[1..4] OF extended;
vec2=ARRAY[1..6] OF extended;

VAR
km, tauest,denom,kprime, tau, je,areal :extended;
c1,c2,ddenom,sa,sb,sc,s0,s1,r1,t0,d :extended;
ka,ke,iii,N,tsamp,rho,xref,zeta,wn,fff :extended;
coeff1,coeff2,coeff3, jeo,ra, lambda, temporary: extended;
kt,kb,be,initialestje,atlinit,a2init,blinit,b2init :extended;
ii,3J,index,i,M :integer;
X,u :ARRAY[-1..2000] OF extended;
aaa,a,f, at,a2,b1,b2,bbb,ccc,ddd,eee :extended;
err_al,err_a2,err_bi,err_b2 :extended;
PAR1,PHI,diag :vect;
offdiag :vec?2;
jeest :extended;
c,Kad :extended;
filet1,file2,file3 :text;
noisedist :boolean;
momint,ansquestion :char;

const
PortA_Addr = $340; { 8255 Ports }
PortB_Addr = $341;
PortC_Addr = $342;
Cont_8255 = $343;
CntO_Addr = $348; { 8253 Ports }
Cnt1_Addr = $349;
Cnt2_Addr = $34A;
Ccont_Reg = $34B;
PosL_Addr = $350;
PosH_Addr = $358;
var
NextReady : word; {if the controller has calculated the next output]
CalclLate : word;
LastDir : word; {the direction of rotation, 1=clockwise }
Pulses : word; {# of encoder pulses in the measurement interval )
Secs : word; {# of MMCLOCK pulses in the measurement interval )
Position : word;

{$I graf.inc}
{$L endcheck.obj}

Procedure EndCheck ; external;

Procedure InitPPI_Cnt;
{ Configures 8255 and 8253 }
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begin
port[Cont_8255]:=$8A; {A inmodel,output.Binput.C Hiinput, C Lo output}
porticont_8255]:=3; { reset card }
port[Cont_Regl:=$36; { Counter 0 in square wave mode }
port[Cnt0_Addr]:=$5C; { set sampling period }
portfCnt0O_Addr]:=%$06; {first LSB then MSB }
tsamp:=25;

{ clk period=15.36 micro secs }
{ measurement clk frequency 1.0416 MHz }

port[Cont_Reg]l:=$70: { Counter 1t in Mode 0 }
port[Cnt1_Addr]:=$FF;
port[Cnti1_Addr]:=$FF;
port[Cont_Regl:=$B0; { Counter 2 in Mode 0 }
port[Cnt2_Addr]:=$FF;
port[Cnt2_Addr]:=$FF;

end;

procedure power_up;

begin
port[cont_8255]:=$03; { set port C1 to reset card }
portfcont_8255]:=$00; { clear position cnt , toggle CO }

porticont_8255]:=%$01;

{ clear counters }

portlcont_regl:=$B0; { load cnt2 }
portfcnt2_addr]:=$FF; { LsB }
port{cnt2_addr]:=$FF; { MSB }
porticont_regl:=$70; { load cnti1 }
portlicnti_addr]:=$FF; { LSB }
porticnti_addr]:=$FF; { MSB }
porticont_8255]:=7; { set port C3 for position latch signal }
portlicont_8255]:=%02; { reset port C1 to start card }
end;
Procedure Power_Down;
begin
port[portA_addr]:=0;
portfcont_82565]:=7;
{(x delay(round(tsamp));x)
porticont_8255]:=%$03; { set port C1 to reset card }

end;

Procedure NewSpeed(rsp:real);
{if sp>0 then positive direction ,else negative }
var
sp:integer;
begin
sp:=round(rsp):
port[portA_addr]:=0;
if sp>255 then sp:=255
else if sp<-255 then sp:=-255;
if sp>=0 then porticont_8255]:=5
else portlcont_8255]:=4;
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portl[portA_addr]:=abs(sp);
end;

PROCEDURE SETTING(VAR wn,zeta,ra,kt,kb,be,iii,N,ka,ke,xref:extended
VAR rho, lambda,fff,initialestje :extended;
VAR jeo :extended;
VAR tsamp,KAD:extended;
VAR noisedist:boolean;
VAR momint:char;
VAR ansquestion:char;
VAR M :integer);
LABEL 10;
VAR
f,overshoot,settlingtime,natlog :real;
choice,ans,answer :char;
BEGIN
clrscr;
gotoxy(23,10);
writein(’ P ARAMETER SETTING);
gotoxy(23,11);

writeln(’———————-——— e "k
gotoxy(20,13);
writeln(’Default values are in square brackets...’);

delay(1800);

10: clrscr;

write(’Number of steps___’);

readin(M);

writein(’®BTo input the desired dynamics in terms of max. overshoot’

writeln(’and settliing time press ( 8 ), or in terms of nat. freg.’)

write (’and damping ratio press ( D )__ ’);

REPEAT

readln(choice);

choice:=UpCase(choice);

IF choice=’8’ THEN BEGIN
write(’Maximum overshoot[1%]__ _’);
readln(overshoot);
write(’Settling time[.75 secl__ _’);
readln(settlingtime);
natlog:=sqr(1n{overshoot/100));
zeta:=sgrt(natlog/(sgr(pi)+natiog));
wn:=4/(zetaxsettliingtime)

END
ELSE IF choice=’D’ THEN BEGIN
write(’Natural freq.[1 Hz]l__ ’);
readin(f);
write(’Damping ratio[0.95]1___’');

readin(zeta);
whn:=2*pixf
END
ELSE BEGIN
sound(300);
nosound
END;
UNTIL ((choice=’S’) OR (choice=’D"));
write(’Sampling time[Ts=0.025 sec]____’);
readin(tsamp);
write(’Reference position(m)___"};
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readIn(xref);

write(’rho[1<rho<10000000]___’);

readln(rho);

write(’Forgetting factor[0.95<=Tambda<=1]___");
readin(iambda);

write(’Initially estimated equivalent mom. of inertia__ ’);
readin(initialestje); .
clrscr;

gotoxy(20,20);

write(’mDo you want to change any data? (Y/N)...’);
readin(ans);

ans:=Upcase(ans); :

IF ans=’Y’ THEN goto 10;

clrscr;

END; (*procedure settingx)

PROCEDURE LS(VAR bbb,aaa, lambda:extended;
VAR PAR1,PHI,diag:vect;
VAR offdiag:vec2);
(*computes the least-squares estimate using the U-D method
by Bierman & Thornton)

VAR

kf,ku,i,j :integer;

perr,fj,vj,alphaj,ajlast,pj,w :real;

k :ARRAY[1..4] OF real;

n,na :integer;
(*par1 vector : theta vectorx)
(*diag vector : initially, rho times identity vectorx)
(*offdiag vector : initialily, null vectorx)
BEGIN
n:=4; (xfor n, refer to chapter 3 of the thesisx)
na:=2; (xfor na, refer to chapter 3 of the thesisx)
perr:=aaa; (xperr:=y%)
for i:=1 to n do perr:=perr-PAR1[1]1*PHI[i];
{(*calculate gain and covariance using U~-D methodx)
fij:=PHI[1]1;
vj:=diag[1]1*fj;
k[1]:=vJ;
alphaj:=1+vj*fj;
diag[1]l:=(diag[11/alphaj)/lambda;
if n>1 then

begin
kf:=0;
ku:=0;
for j:=2 to n do
begin
fj:=PHI[Jj];
for i:=1 to j-1 dc
begin {(xF=PHIXxUx)
kKf:=kf+1;
fj:=Fj+PHI[i]*offdiagl[kf];
end;
vi:=fjxdiag[j]; (kv=D*fx)
k{il:=v3;

ajlast:=alphaji;

alphaj:=ajlast+tvi*fj;
diagl[jl:=diagljl*ajlast/alphaj/lambda;
pij:=-fj/ajlast;
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for i1:=1 to j-1 do
begin
ku:=ku+1;
w:=offdiaglkul+k[il*pJj;
k[il:=k[i]+offdiag[kul*vj;
offdiag[kul:=w
end;
end;
end;
(*update parameter estimatesx)
for i:=1 to n do PAR1[i]:=PAR1[il+perrxk[i]l/alphaj;
(*updating of phix)
for i:=1 to n-1 do PHI[n+1-i]:=PHI[n-1i];
PHI[1]:=aaa;
PHI[na+1]:=bbb;
END; (*xprocedure L.Sx)

BEGIN (*main programzx)
initppi_cnt;
clrscr;
Setting(wn,zeta,ra,kt,kb,be,iii,N,ka,ke,xref,
rho, Tambda, fff,initialestje,
jeo,tsamp,KAD,noisedist,momint,ansquestion,M);
diag[1]l:=rho; diagl2]}:=rho; diag[3]l:=rho; diagl4]:=rho;
offdiag[1]:=0; offdiag[2]:=0; offdiag[3]:=0;
offdiag[4]:=0; offdiag[5]:=0; offdiag[6]:=0;

ra:=1.3;
Kt:=0.07037;
kb:=kt;

be:=0.0001442;

denom:=(raxbe+kt*xkb);

km:=kt/denom;
cl:=-2xexp(-zetaxwnxtsamp)*cos(sart(1-zetaxzeta)*wn*xtsamp);
c2:=exp(-2*%zetaxwn*xtsamp);

tauest:=(raxinitialestje)/denom; (*initially estimated time constx)
kprime:=0.0003782%tauest; (*kprime=(kaxkmxkexKAD)/(iii%N) *)
atinit:=1+exp(-tsamp/tauest);

azinit:=1-atinit;

btinit:=kprimex(tsamp/tauest-(1+a2init));
b2init:=kprimex(t1+a2init+a2init*x{tsamp/tauest));

PAR1[1]:=alinit;

PAR1[2]:=a2init;

PAR1[3]:=b1init;

PAR1[4]:=b21init; (* jnitial Gest’s %)

index:=1;

aaa:=0;

bbb:=0;

add:=0;

uf0}:=0.0; uf-1]:=0.
x{0]:=0.0; x[-1]1:=0.
PHI[1]:=aaa; PHI[2]:
PHI[3]:=bbb; PHI[4]:
ccec:=0;

eee:=0;
Assign(filel,’ POS.DAT’);Assign(file2, A1EST.DAT’);
Assign(filel3,  B1EST.DAT’ );
Rewrite(filetl ) ;Rewrite(file2) ;Rewrite(filel3);
cirscr;

Irnoo
O O s s

we ws

(*xinitial PHI vectorx)



gotoxy(1,20);

writeln(’As the loop proceeds, press any key to exit..

delay(1200);
power_up;
repeat
Endcheck;
ccc:=aaa; (xi.e., ccc=x[index-1]1%)
(*processx)
x[index]:=(position)/50000.0;
(*end processx)

aaa:=x[index];
ddd:=ccc;
WRITE(’CURRENT POSITION(m)___ ’);
WRITELN(x[index]1:9:7);
writeln(filetl,x[index]);
if index>5 then
LS (bbb,aaa, lambda,PAR1,PHI,diag,offdiag);

(*pole-assignmentx)
d:=-PAR1[4]/PAR1[3];
t0:=(1+c1+c2)/(PAR1[3]1%x(1-d));
a:=—PAR1[2];

ri:= -d + (dx(d*d+ci*d+c2))/((d-1)*x(d-a));
sa:=(1+ct+c2)*(a-d);
sb:=(a%a*xa+ci*axa+c2*a)*x(1-d);
sc:=PAR1[3]x(1-d)*x(a~-d)*x(1-a);
s0:=(sa~-sb)/sc;

s1:=t0 - s0;

eee:=bbb;

(1))

(* control signalx)
u[lindex]:= tOxxref - sO%aaa - si*xccc - ri*xbbb;
if (u[lindex]»>255) then ul[index]:=255
else if (ulindex]<-255) then ulindex]:=~255;
newspeed(ul index]);
bbb:=ul index];
writein(file2,PAR1[1]);
writeln(file3,PAR1[3]);
(xcontroller endx)
inc(index);
until keypressed or (index>M);
power_down;
Close(file1);Close(file2);Close(filel);
END. (*main programx)

)
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Figure 1.1. Schematic diagram of the experimental
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