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ABSTRACT

This thesis considers the problem of identification and restoration of images de-
graded by additive Gaussian white noise. It is assumed that the power of the noise
and the statistical properties of the original image are not known a priori. A new
approach which reduces the two dimensional problem to a one dimensional problem
by using the unitary discrete Fourier transform is introduced. Then, by applying
the expectation-maximization (EM) algorithm, the image is restored and the pa-
rameters of various types of AR models are identified under noisy conditions. Two
different methods are used for restoration, namely, maximum likelihood restora-
tion and Kalman filtering. The simulation results of the presented approach are

also included.



OZET

Bu galigmada toplamsal Gauss dagilimli beyaz giiriiltii ile bozulmus imgelerin
taninmasi ve onarimu sorunu ele alinmigtir. Giraltinin giiclinin ve imgenin is-
tatistiksel 6zelliklerinin onceden bilinmedigi varsayilmugtir. Iki boyutlu sorunu,
ayrik Fourier doniigimini kullanarak tek boyuta indiren yeni bir yaklagim tanitilmig
ve daha sonra beklenti-enbiiylitme (EM) algoritmas: uygulanarak, imge gliriltili
ortamlarda onarilmg ve degisik 6zbaglanimhi (AR) modellerin parametreleri bu-
lunmustur. imge onarimu igin, Kalman stizmesi ve enbiiyiik olabilirlik onarim ol-
mak tzere, iki farkh yontem kullamilmigtir. Tamitilan yaklagimin benzetim sonuglar:

da caligmaya eklenmigtir.
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I INTRODUCTION

1.1 Statement of the Problem

Restoration of images can be defined as the general problem of estimating a
two dimensional (2-D) object from a degraded version of this object. The cause of
these degradations are generally the imperfections in the electronic or photographic
medium. Blurring and noise are two important and dominant types of degradation.
Blurring can be introduced by relative motion between camera and the original
scene, by an optical system which is out of focus, or atmospheric turbulance. On
the other hand, noise may be caused by the transmission medium, the recording

medium, inaccurate measurement or, quantization of the data for digital storage.

An image is generally defined as a real or complex valued function of two
space variables belonging to some support region. Although this support may be
continuous, it is commonly sampled on a rectangular grid. This defines a set of
pixels and the image can be represented by an array z(n, m) of pixel intensity levels.
In this thesis, we deal with monochromotic images of pixels representing the gray
levels, degraded by an additive Gaussian white noise with zero mean. We assume
that there is no blurring or another type of noise —like multiplicative noise— in
the observed image and try to recover the original image from its observed version
degraded by the additive Gaussian white noise. Therefore, the degradation can be
modelled as,

y(n,m) = a(n, m) + v(n,m) 1)

where y(n,m) denotes the observed image and v(n,m) represents the zero-mean

Gaussian white observation noise with variance o2.



Restoration of images requires some statistical knowledge of both the original
image z(n,m) and the observation noise v(n,m). Therefore, restoration can be re-
defined as estimating x(n,m) given the observed image y(n, m) and some statistical
knowledge of z(n,m) and v(n,m). Image identification concerns with estimating
this knowledge prior to the restoration. However, it should be pointed out that im-
age identification and image restoration are separate problems and the use of image
identification is not limited to only image restoration. The mentioned statistical
knowledge of the image is also useful in several other fields of image processing,

e.g., image data compression, coding, filtering and image analysis [1].

1.2 The Scope of the Thesis

This thesis addresses the problem of image identification and restoration when
the observation noise is not known a priori and concentrates on the reduction of

dimensionality.

Chapter II studies the 2-D stochastic modelling for image processing and forms
the mathematical groundwork for the study of image identification and restoration.
In this chapter we briefly review the 2-D autoregressive (AR) image models and
the use of the well known least squares (LS) method in the realization of these

models.

Chapter III begins with a review of classical stochastic image restoration meth-
ods and discusses some shortcomings of these methods. In the rest of the chapter,

we summarize the image identification and restoration method using expectation-



maximization (EM) algorithm, which has been developed by Lagendijk [2].

Chapter IV concentrates on reduction of dimensionality. Since images are
generally 2-D objects, image processing methods are usually 2-D. In this chapter
we develop an algorithm which decomposes the image into scalar subsystems and
which, in this way, reduces the problem of image identification and restoration to
a 1-D problem. Our method is similar to the method developed by Katayama [3].
The advantage of our algorithm is that it is capable to identify the parameters
of various 2-D AR models. In this chapter, we also use the restoration method
developed by Lagendijk [2] more efficiently. At the end of the chapter, we display

the experimental results of the algorithm and compare with the results in [3].

Finally, in chapter V, we make concluding remarks on this thesis study.



II STOCHASTIC IMAGE MODELLING

Restoration of images requires a priori statistical knowledge of the original
image z(n,m) and the observation noise v(n,m). This statistical knowledge is
the the concern of image identification. However, soon a new question comes into
the mind: What is the type of this statistical knowledge? In order to answer this

question, we have to develop a mathematical model for the original image.

2.1 2-D AR Modelling

The development of a suitable mathematical model for an image requires a
trade off between its accuracy of representation and its utility for the application.
In view of the experimental results obtained by many researchers, we use the
following 2-D autoregressive (AR) model driven by a zero mean random noise,

z(n,m) = Z a(k,z(n — k,m — 1) + w(n,m) (2)

kleS

where a(k,[) denotes the image model coefficients which are determined by mini-
mizing the variance of the noise o2 = E[w?(n,m)]. Here E[.] denotes the mathe-

w —

matical expectation. Therefore, w(n,m) can be considered as the modelling noise.

In (2), S stands for the image model support. Some common model supports

for various first order AR models are shown in Figure 1.

2-D AR models are useful in many fields of image processing like image data

transmission and storage via DPCM coding, hybrid coding, design of recursive,
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Figure 1: Examples of some commonly used model supports for various first order
AR models, (a) quarter plane causal, (b) nonsymmetric halfplane causal, (c) semi-

causal, (d) noncausal.



semirecursive and nonrecursive filters for image estimation, restoration and filter-

ing and image analysis [1].

Although the choice of the model support depends on the application, nonsym-
metric halfplane (NSHP) model support has various advantages over the others,
as becomes apparent, e.g. in 2-D Kalman filtering [4, 5] and the factorization of
2-D spectra [6]. Further, the NSHP! image model immediately allows for a 2-D

recursion without the necessity to delay the observations.
An alternative compact notation of (2) and (1) is,
z=Az+w (3)

y=a+v (4)

where @, y, w and v are the lexicograhically? ordered vectors of size N2 x 1 for
z(n,m), y(n,m), w(n,m) and v(n, m) respectively. A is the AR model coefficient
matrix of size N? x N2. If the boundary problem is solved by assuming that the

image is circulant, then A has a block circulant structure.

We will denote the covariance matrices of w and v by Q,, and Q, of size
N? x N2, respectively. Since we assume that observation noise is white, we can

write the covariance of v as,

Q,=o,I (5)

1'We note that in 2-D literature, the term ’causal’ is often used for only quarter plane models.In
this thesis, we regard NSHP model as causal.

2Lexicographically ordering means to scan the 2-D data row by row and stack into a vector.



2.2 Model Fitting

Since the image model (2) is completely determined by the model coefficient
matrix A and the model noise covariance matrix @Q,,, the a priori knowledge of
the original image which image identification concerns with, is the knowledge of

A and Q,,.

2.2.1 Least Squares Method
The entries of the model coefficient matrix A are the model coefficients a(k, ) in

(2). Therefore, the problem of image model identification is generally defined to

be minimizing the variance of the model noise

N 2
ol = -j% E (:z:(n, m) — E a(k,z(n — k,m — l)) (6)
n=1,m=1 k,leS

with respect to a(k,!) if the image is assumed to be of size N x N.

If @ denotes the coefficient matrix and @;(n — 1, m) denotes the vector formed
by the pixel values z(n — k,m — [) in the model support of z(n,m), (6) can be

rewritten in vector form as,

N 2
02 = 7 Z (x(n,m) —a‘zy(n — l,m))

Setting to zero the gradient of o2 with respect to a yields

a= [ Z zi(n —1,m)zi(n — l,m)]_l[ Z z1(n — 1,m)z(n,m)]

n,meWwW nymeW

This is a straightforward procedure if we do not worry about the observation

noise. For noisy images, this method, which is referred to as least squares method,



has been modified in [5]. The modified method uses directly the noisy observation
and is called as bias-compansated least squares method. However, the method
assumes that the noise is known a priori and makes some expectation approxima-

tions which yield poor performance at high noise levels [5].

2.2.2 Stability of 2-D AR Models

2-D AR models can only be useful in designing image processing techniques, if the
underlying model is BIBO (bounded-input, bounded-output) stable. Otherwise,

small errors in calculations can cause large errors in the result [1].

Identification of image models by minimizing the variance of the model noise
does not necessarily lead to stable models or does not assure that the resulting noise
is white. This is the case for semicausal and noncausal AR models. Therefore,
the model noise in (2) is not necessarily a white noise process since we assume the

model as minimum variance representation model (MVR)? [1].

In the case of causal models, fortunately, if we fit a model by minimizing the
variance of the modelling noise, the resulting model is assured to be stable and

white noise driven [1].

3In AR modelling, there are two important types of noise modelling: white noise driven

representation (WNDR) and minimumum variance representation (MVR).



IIT IDENTIFICATION AND RESTORATION
USING EM ALGORITHM

Classical approaches in the field of image identification and restoration assume
that the observation noise is known a priori, i.e, identification and restoration are
possible only if this assumption is valid. With this assumption, a suitable model
is found for the original image and then the restoration is performed. In recent
studies of Lagendijk [2] and Katayama [3], methods which do not assume that
the observation noise is known a priori, and which perform the identification and
restoration concurrently have been developed. These methods use the well known

EM (Expectation-Maximization) algorithm and maximum likelihood approach.

3.1 Overview of Stochastic Image Restoration

Before going into EM Algorithm, in this section we briefly summarize three clas-
sical stochastic image restoration methods. We exclude non-stochastic approaches

like iterative and algebraic restoration [8, 9].

3.1.1 Bayesian Estimator

With the assumption that the original image and the observation noise are Gaus-
sian with zero mean, the Bayesian estimator of the original image & maximizes

the a posteriori probability density function (pdf) p(z | y) with respect to & and



10
yields the following restoration equation [2],
¢=(I+RnB;)'y

where R, and R, denote the correlation matrices of v and @, respectively. There-
fore, Bayesian estimator requires some a priori knowledge of the original image and

the observation noise.

3.1.2 Wiener Filtering

The Wiener filter is designed to minimize the mean squared error between the
original image & and the restoration result &. The solution to this rather classical

problem is given by [7, 2],
¢=(I+R.R;)"y

which is identical to the Bayesian estimator under the Gaussian assumptions.
The correlation matrix R, is usually approximated using the observed image.
Although the method may work satisfactorily at low noise levels, its performance

becomes poor when the noise level is high.

3.1.3 Kalman Filtering

Direct application of classical 1-D Kalman filtering to the problem of 2-D filter-
ing results in a very large state vector and therefore, excessive computation. To
overcome this excessive computational load, a 2-D version of Kalman ﬁlter has
been adapted [4, 10]. The method is known as reduced update Kalman filtering
(RUKF).
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Like Wiener filtering, Kalman filtering aims to minimize the mean squared error
between the original and the restored image. Here, we do not go into the details
of this well known filtering. This method also requires the a priori knowledge
of the observation noise and makes use of the NSHP AR modelling (Figure 1).
Moreover, the method is suboptimal since reduction of the state vector means an

approximation to the optimal solution.

3.2 Maximum Likelihood Identification and Restoration

Maximum likelihood approach requires the definition and optimization of a

likelihood function for the image.

Image identification aims to determine the unknown parameters of the image,

which we denote by ©. In our case, © includes the model coefficients a(k, ), the

variance of the model noise 02 and the variance of the observation noise o2, i.e.,

the parameter vector © can be written as

© = [a(k,1), 07, 03]

With this definition of ©, the likelihood function is given by
p(=,y|©)=p(y|z,0)p(z | O) (7)

where the conditional pdf of & given O is

v 2
p(z|0)= H (2r02) " exp {—% Z (w(n,m) - Z a(k,)z(n — k,m — l)) }

n=1,m=1 W n=1,m=1 k,leS
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and the conditional pdf of ¥ given ,0 is

N N
- 1 2
ylz0)= ] Crod)en{-55 3 (vnm)-z(nm)} (9)
n=1m=1 U n=1m=1
In writing (8) and (9), we assume that the modelling noise w is a Gaussian

white random process as well as the observation noise. (Therefore, 2-D AR mod-

elling is necessarily causal). Using (8) and (9), the log-likelihood function is given

by
L(®) = —logp(z,y|0O)
N? N, 1 & 2
= 5 log 27 + Tlog oy + %mlz,;:l (:v(n,m) - k%; a(k,)z(n — k,m — l))

N

202 }: (y(n,m)—x(n,m))z (10)

Y n=1m=1

2 2
+ —]\;—10g27r+ %logo§+

In view of (7) and (10), we state:

e Image identification problem is to find the best estimate for ©® which maxi-
mizes the likelihood function (7) or equivalently the log-likelihood function

(10), given the original image & and the observed image y.

e Image restoration problem is to find the best estimate for @, which also

maximizes (10), given y and the parameters ©.

At first sight, these two statements seem to make no sense since we assume
that © and & are not known a priori. However, the use of EM algorithm makes

these statements rather meaningful.
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3.3 EM Algorithm

It has been shown that EM-like algorithms lead to computationally efficient

estimation algorithms in various signal processing applications [11, 12].

EM algorithm has two steps: Expectation (E-step) and Maximization (M-step).
Algorithm starts with some initial parameters ©y. In E-step, using O and the
observed image y, the image is restored maximizing (10). In M-step, using the
restored image &, © is updated again by maximizing (10). Then, we return to
E-step and restore the image, this time using the updated parameters ©. The

algorithm continues so on until © converges. (See Figure 2)

In EM Algorithm, M-step corresponds to identification of the unknown pa-
rameters maximizing the likelihood function. That is why we call this step as
magimization séep. On the other hand, E-step corresponds to restoration of the
original image. Maximization of the likelihood function with respect to @ is equiv-

alent to finding the expected value of @ using its conditional pdf which is given

8]

E-step M-step

Restoration Identification

B0

Figure 2: Structure of EM Algorithm
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by
_ p(=,y]0)
p(‘B |'y,®) - p(y | (_))

since finding the expected value of a random variable is equivalent to maximization

of its pdf*. That is why we call this step as ezpectation step.

Under the conditions that 62 > 0, 02 > 0 and that (I — A) is nonsingular, EM
algorithm is assured to converge [2, 13]. However, a critical problem is choosing Oy,
the initial value of ©, since © may converge to a local optimum of the likelihood

function rather than the global ®ptimum.

3.3.1 The E-Step of the Algorithm

A more compact expression for p(x,y | ©) might be written in vector form as

—A? .4 ,
P(ﬂ?,yle):\/%j;:('ieltlQ(I? Iexp{‘%(y—w) Qvl(y—:c)—%a: (I—A):c}

where @, and @Q,, are covariance matrices of v and w with size N? x N2, respec-
tively and given by

Q, = oI (11)

Q, = oI (12)

v

Maximizing p(,y | ©) with respect to & or equivalently, taking the expecta-

tion of & with respect to p(z | y, ©) yields the following restoration equation[2]:

¢ =E(z|y,0)=PQ.'y (13)

4Observe that p(y | ©) is not a function of =.
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where P denotes the covariance matrix of @, which is given by

P =Cov(z |4,0) = [(I- 4)Q;' I — 4)+ Q7] (14)

3.3.2 The M-step of the Algorithm

If we assume that we have the original image restored in E-step, the identification
problem becomes similar to the least squares method described in Section 2.2.1.
However, for an accurate identification we should take into account that the re-

stored image & is not identical to the original image @, but its optimum estimate.

Therefbre, in M-step we make use of the correlation matrix of & which is given by

R, =E(zz' | y,0) = P + &3 (15)

Further details for the M-step will be considered in the next chapter.

3.3.3 Discussion

An important disadvantage of this application of EM algorithm is the computa-
tional load caused by the operations on large matrices, e.g. in the restoration
equation (13) we have to operate on matrices with size N2 x N2. In the next

chapter, we will discuss some ways to reduce this computational load.

Another disadvantage is that it is applicable only to causal image models. We
recall that one necessary condition for EM Algorithm to be assured to converge is
the requirement for the matrix (I — A) to be nonsingular. In case the modelling
is causal, (I — A) is a lower triangular matrix and therefore, det(I — 4) = 1
which means that it is nonsingular. However, when the modelling is semicausal or

noncausal, (I — A) is not necessarily nonsingular.
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IV REDUCTION OF DIMENSIONALITY

Since images are generally 2-D objects, most of the classical methods in image
processing require 2-D filtering. However, 2-D processing of images yields compu-
tationally more complex algorithms when compared to 1-D signal processing. This
fact becomes apparent in for instance 2-D Kalman filtering. When we implement
Kalman filtering in 2-D, we encounter the problem of enormously large state vector
when compared to 1-D Kalman filtering and a computationally feasible filtering
becomes possible only if we make some approximations on the size of the state
vector. With this motivation, in this chapter we will discuss the problem of reduc-
tion of dimensionality for image identification and restoration. We will consider

only the first order AR models to simplify the notation.

4.1 Image Model

We recall the 2-D AR modelling (2) and define the following vectors,

2(m) = [a(l,m), ..,=(N,m)]
wim) = [w(l,m),...w(N,m)]
y(m) = [y(1,m),..y(V,m)]
v(m) = [v(l,m),...,v(N,m)]t

Then, considering only the first order models, (2) and (1) become

Aoz(m) = Az(m—1)+w(m) (16)

y(m) = =(m)+v(m) (17)
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where A and A; are coefficient matrices determined by the 2-D AR model coef-
ficients a(k,!). For all types of AR models (causal,semicausal or noncausal), the
coefficient matrices are circulant if we solve the boundary problem by assuming

the image is circulant.

We note that for noncausal AR modelling, (16) has an additional coefficient
matrix A_y. Therefore, in our derivation we will exclude the noncausal AR mod-
elling. However, since A_; is also circulant, it is also possible to modify the

algorithm and extend it to noncausal AR models.

Below, we list the first rows of the circulant coefficient matrices for various first

order AR models:

1. Quarterplane causal AR model:
A0—> [1 0:---0 —am]

A1—> [a01 0---0 an]

2. NSHP causal AR model:
Ag— [1 0+ 0 —ay)

A — [ao1 a_1.1 0---0 011]

3. Symmetric-semicausal® AR model:
Ao—) [1 — aig 0---0 —alo]

A; — [aor ann 0 --- 0 ay4]

4. Symmetric-noncausal AR model:
Ag— [1 —ap 0--- 0 —ay)
A — [ann 0 --- 0]

A_1— [ag-1 0 --- 0]

SSymmetric modelling implies az; = a—i
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Therefore, the coefficient matrices are all circulant with the first rows given above.
We note that the coefficient matrices for the symmetric semicausal model are also

symmetric banded Toeplitz matrices.

Since the model noise of causal models is white, the covariance of w(m) in (16)

can be written as

Elw(m)w!(m)] = 021 (18)

For symmetric semicausal models, it is possible to assume the covariance as [3, 14]
E[w(m)wi(m)] = o2 Aol (19)

Since the modelling is symmetric, the covariance matrix in (19) is assured to be

symmetric. As for the covariance of the uncorrelated observation noise v(m):
Elv(m)vi(m)] = 021 (20)
and the cross covariance of w(m) and v(m) is

E[v(m)w!(m)] = 0 (21)

4.2 Diagonalization of the Coefficient Matrices

Unitary transforms are useful in many fields of image processing. Two impor-
tant unitary transforms are discrete Fourier transform (DFT) and discrete sine

transform (DST).
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4.2.1 Diagonalization with DST

The idea of reducing the dimension by using unitary DST belongs to Jain [14].
According to his factorization result [15], the coefficient matrices Ay and A; of

the symmetric semicausal AR model can be almost diagonalized by DST, i.e.
TAT=A

where A is a diagonal matrix and T is the defining matrix of DST which is given

2 nmm
T = 1/ i , 1<n,m<N
{ N+lsmN+1 <n,m

This result is the consequence of the fact that any N x N real, symmetric banded

by

Toeplitz matrix A can be factored as
A=A+ A

A, is a Hankel matrix and A, is a p th order polynomial in a symmetric, tridiagonal

matrix.

DST diagonalizes A,. Therefore, when we neglect the matrix A;, we can say
that DST diagonalizes A. Actually, this is a valid approximation. For example,
when the AR model is of first order, the coefficient matrices in (16) are completely
diagonalized. When the order increases, the effects of A, comes into the picture.
Therefore, for a reasonable value of the order p which should be sufficiently small
as compared with N, we can say that DST almost diagonalizes the coeflicient

matrices.
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4.2.2 Diagonalization with DFT
Including the symmetric semicausal model, all types of AR models yield circulant

coeflicient matrices(see Section 4.1). Any circulant matrix can be diagonalized by

unitary DFT [7], therefore
FAF" = diag(fe(WR), Se(Wh), ., S(WH ) (22)

where Aj denotes the coefficient matrices and F' is the defining matrix of DFT,

which is given by
1 .
F=1—=Wir, 0<5 n<N-1
{Lws} ;
where by definition

—127

N

Wn = exp (23)

In (22), the diagonal elements denote the eigenvalues of the coefficient matrix Ay

and are given by the DFT of its first coloumn:

N-1
W) =Y m(OWH, 0<j<N-1 (24)
{=0

where {hk(l)} denotes the first coloumn of the coefficient matrix A;. Recalling
that DST almost diagonalizes the coefficient matrices of the symmetric semicausal
AR model, we note that when we use DFT, we do not have to make any approxi-

mation on the diagonalization of the coefficient matrices.
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4.3 Decomposition into Scalar Subsystems

In this section, using the diagonalization results of the previous section, we aim
to decompose the 2-D image into 1-D scalar subsystems to which we will apply
the EM algorithm for image identification and restoration. A similar method has
already been developed by Katayama [3], using DST, so which is applicable only
when the modelling is symmetric semicausal. What we will do in the rest of this
chapter is to generalize his method to various 2-D AR models. Therefore, we will
derive the algorithm once more, this time using DFT. Throughout the derivation,
for the sake of notational simplicity, we will consider the first order AR models. It

is also possible to extend the derivation to higher order AR models.
We define the DFT’s of the vectors of (16) and (17) as
2(m) = Fa(m)  &(m) = FAz'w(m)
n(m) = Fy(m)  ¢(m)=Fo(m) (25)
and taking the DFT of (16) and (17) yields (see Appendix A)

Fz(m) = AFz(m-—1)+ FA7'w(m)
Fy(m) = Faz(m)+ Fo(m) (26)
where
A = diag(f5 (W) W), - S WY AWEY) (27)
and it follows,
z(m) = Az(m—1)+§(m)

n(m) = z(m)+({(m) (28)



22
Using (27), (28) can be written in scalar notation as

zj(m) = a;z;(m —1)+§;(m) (29)

ni(m) = z(m)+(;(m) (30)
where the subscript j denotes the j th elements of the vectors in (25) and

a; = ——fl(Wg’) (31)
T (W)

We note that the scalars in (29) and (30) are all complex valued. Therefore,
although the modelling equations of each subsystem seem to be the same with the

ones that Katayama has obtained in his work, the problem is different.

Since DFT is a unitary transform and since total energy is conserved in unitary
transforms, we can write the covariances of the transformed complex scalars £;(m)

and (j(m) as (see Appendix B),

E[¢;(m)ér (k)] = _ﬁw—,aajam 32
[¢i(m)&; (k)] | 16mk (32)
E[G(m)(7 (k)] = o026jibme (33)

El¢;(m)¢7 (k)] = 0

(32) is valid for causal AR models. For symmetric semicausal modelling, we can

write
o

| fe(WE) |
We see that £;(m) and {;(m) are uncorrelated for j # [ and so are (;(m) and {;(m).

E[&;(m)& (k)] 6516mik (34)

Omitting the subscript j, we rewrite (29) and (30) as

2m) = az(m—1)+€m) (35)

z(m) + ((m) (36)

=
2
I
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Writing the imaginary and real parts of complex scalars, we get

zz(m) = a,z(m—1)— a;zi(m — 1) + & (m)

zi(m) = aiz(m—1)+ arzi(m — 1) + &(m) (37)

n(m) = z(m)+((m)

m(m) = z(m)+ G(m) (38)

where the subscripts ¢ and r denote the imaginary and the real parts, respectively.

A deeper analysis (see Appendix C) and experimental experience show that

the imaginary and the real parts of z(m) are uncorrelated so that
a; =0 (39)
Therefore, (37) and (38) can be rewritten as
z(m) = az(m—1)+&(m)
m(m) = z(m)+((m) (40)

zi(m) = az(m —1)4 &(m)

(m) + Gi(m) (1)

s
2
I

where a is a real scalar.

The real and the imaginary parts of DFT are actually two seperate linear
transformations. Since the linear transformation of a Gaussian random process
yields a Gaussian random process [16], by equations (32), (33), (40) and (41) we

get

E[§,(m)& (k)] = ofTbmk

E[C,(m)Ci(k)] = 0% I6m: (42)
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E[&;(m)Ei(k)] = ofLbmx

E[¢(m)CG(k)] = ofT8ms (43)

Therefore, €,.(m), &;(m), {,(m) and {;(m) are Gaussian uncorrelated (white) ran-

dom processes with zero mean.

4.4 EM Algorithm

By the equations (40), (41), (42) and (43), we have now 2N independent 1-D
scalar subsystems in the transform domain. We will apply the EM Algorithm to
each of the subsystems and restore the real and the imaginary parts of the DFT

image row by row.

4.4.1 E-step (Restoration)

Assuming that we know the parameters © identified by the M-step,we restore the
transformed image using two different approaches: Maximum likelihood restora-

tion and Kalman filtering.

Maximum Likelihood Restoration

Recalling the restoration equations (13) and (14) of Section 3.3.1, first we write

(40) and (41), in matrix form as

z, = az,+6§,

n, = z.+¢, (44)



25

zZ; = azi+£i
n, = zi+(; (45)

Since the real and the imaginary parts are independent of each other, we can
restore 2, and z; seperately. Using (13) and (14), we get the following restoration

equations for the real part,

3, = E(z|n,,0)=P.Q;', (46)

P, = Cov(z |9,,0)=[I-a)Qz(I-a)+ Q7] (47)

where Q,, and Q,, are the covariance matrices of , and (,, respectively and are

given by

Q{r . 0'ng

Q(r = U(%TI

Restoration equations for the imaginary part is identical to those for the real
part except for a subscript ¢ instead of r. However, we note that ¢f; and o7, are
not necessarily the same and are identified by the M-step and so are ¢; and ¢7,. In
(46) and (47), © denotes the parameters a, 0f;, 0%, 0%, and of;. Coefficient matrix

a is a N X N circulant matrix with the first row

0---0 4]

When we recall (13) and (14) in Section 3.3.1 by which the image is restored
without decomposition, we observe that we have to deal with matrices of size
N? x N? in order to get the restored image. On the other hand, the restoration
equations (46) and (47) which we get by decomposition require operations on
matrices of size N x N. Therefore, the computational load of the maximum

likelihood restoration algorithm decreases significantly.
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1-D Kalman Filtering

The significance in reduction of the computational load by decomposition becomes
much more apparent if we see that the equations (40) and (41) are suitable forms
for applying 1-D Kalman filter and the fixed interval smoother {17, 18]. Therefore,
what we do in order to restore the image is just to apply 1-D Kalman filter and
backward smoother to the rows of the DFT image modelled by (40) and (41). 1-D
Kalman filtering followed by a smoother is computationally much more efficient

when compared to maximum likelihood restoration.

4.4.2 M-step (Identification)

If the system parameters are not known a priori, which is our case, we have to
identify these parameters from 7 prior to restoration. System parameters are
identified by maximizing the likelihood function p(2,, z;,1,,7; | ©,,0;). In view
of the equations (10), (40) and (41), the log-likelihood function can be written as

(omitting the constant terms)

. N
N 1 2
£(0,,0;,) = 5log ol + E Z (zr(m) —az,(m — 1)) +
T m=1
N
N 1 2
5log ol + 2—0_%—;7; (z,-(m) — az(m — 1)) +
N
N g 1 2
5 logag, + '2772—”; (77 (m) — 2(m))” +
N R 2
2
—2—log oé; + 20_% ; (m(m) — z,-(m)) (48)

Partially differentiating £(©,,0;) with respect to a,0},,0%,0%,,0% and setting

the derivatives to zero so as to maximize the log-likelihood function yields the
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following update equations for the unknown parameters

Sz (m)z.(m — 1) + z;(m)z;(m — 1)
2 z(m—1)+2}(m—1)

6% = %Z(zr(m)—azr(m—l))z

5% = %,-Z( ) — azi(m — 1)) (49)
i = 5 3 (mlm) - z(m)’
6% = %Z(m (m) — z(m))”

[
I

form=1,..,N.

As the output of the restoration in the E-step, we get the expected values 2, and
Z;, not the true values of 2, and z;. Therefore, recalling the correlation equation
(15) and using the covariance matrices ( or equivalently, the error covariances )
which can be found by (47) or by the Kalman filter and the smoother, we can

rewrite the update equations (49) in terms of 2,.(m) and %;(m) as

> 2 (m)z.(m = 1)+ P(mym—1]| N)+ 2(m)z(m — 1)+ Pi(m,m —1| N)

‘= > 2m—1) + P 1] N)+ 2(m—1) % B(m 1] )
62, = NZ”" m) + P.(m | N) — 2a2,(m)2,(m — 1) — 2aP.(m,m — 1| N)  (50)

+a?22(m — 1)+ a®P.(m —1| N)
A2 1 2 5 52
0'(-7. = N an (m) - 27]"'(m)z7(m) + 2y (m) + P(m I N)
where P,(m | N) and P,(m,m — 1| N) denote the error covariances.

The update of the variances 67 and 6% are identical to the update of the

variances of the real part in terms of P(m | N), P,(m,m — 1| N) and 2;(m).

Update equations (50) supply the necessary system parameters for the E-step.
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By iterating the computation of the expectation for 2, and z; and the update of
the parameters, we obtain the parameters for each row (7 = 0,..., N — 1) of the

DFT image. At this point, we are to make the following remarks:

1. Since the 1-D AR modelling which we use for the transformed DFT image
is causal, (I — a) is a lower triangular matrix and nonsingular. Moreover,
6%.,6%,6%, and &7; are positive. Therefore, EM Algorithm is assured to

converge.

2. If 0 and o} denote the variances of the complex modelling noise and obser-

vation noise in (35) and (36), then by (37) and (38) we get

0f = ElE(m)(m)] =, +

o? = E[((m)¢"(m)] = of, + o} (51)
and by (32) and (33)
o2 = | foWi) P (e3.G) +o2(5))
o2 = oX(j) (52)

for j = 0,.., N — 1.

3. 1-D AR models for 2, and z; in (40) and (41) are not necessarily minimum
variance models as also seen in the update equation (50) for a, i.e the updated
parameter a@ does not necessarily make the variances 0?, and agé minimum.
However, recalling (35) and (36), we see that ¢ given by (51) is minimized.
(40) and (41) are actually white noise driven models, i.e. &, and £, are

Gaussian white random processes.
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4.5 Identification of the 2-D AR Parameters

The output of the EM algorithm is the restored image and the identified pa-
rameters in the transform domain. Original image can easily be restored by taking

the inverse DFT of the estimated image.

In this section, we derive an identification algorithm that determines the pa-
rameters of the original 2-D AR model based on the AR parameters of the DFT
image. The method makes use of the well known least squares method and is

similar to the algorithm in [3].

While the algorithm in [3] is capable to identify only the 2-D symmetric semi-
causal AR parameters, our identification algorithm can be used to identify any kind
of 2-D AR (causal or semicausal ) model parameters since we have not assumed

any specific AR modelling in the derivation of the EM algorithm.

We derive the identification algorithm for only the quarter plane causal model

(see Figure 1). However, it can easily be generalized to the other AR models.

Recalling the coefficient matrices Ag and A; in Section 4.1 for the first order

quarter-plane causal model and using (24) , we write

fo(W3) = 1~ aoWi

AWE) = an +auW§ (53)
where ag;, a10 and a;; are the AR parameters of the original image model.

Using (31) and (53) we get

ao1 + a11(cos %’] + 2sin ?—\’,’-])

N . . N9
1 — ayo(cos 375 + isin X7 5)

j=0,...,N—1 (54)

j':_‘
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where a; is the AR coeflicient of the jth row of the DFT image.

(54) yields two equations for the real and the imaginary part:

T, T .
ao1 + a100; €OS 7\/—] + a11 cos —J7 = a;

N

27

v/ =0 (55)

. 27 . .
Q100  SIN j—v-] + @11 81n

forj =0,.., N — 1.

(55) is a system of 2NN linear equations with 3 unknowns. Therefore, we can
write (55) in matrix form as

Ba =b (56)

where B is of size 2N X 3, b is of size 2N x 1 and a is a 3 X 1 matrix formed by

the 2-D AR coeflicients.

Solution of (56) is given by the least squares method:
a = (B'B)'B'% (57)

where B!B is a matrix with size 3 x 3.

Solving (57) is equivalent to find the parameters ao1, a19 and aq; which fit best

to the equation (56).

It is also possible to estimate the model noise variance o by using the variance

of the DFT image model noise. Recalling the equation (52), we get
L N '
o =5 Z | 1o(W3) P (2.G) + o:03) (58)
1-D AR model parameters of the DFT image preserve all the information which
is sufficient to identify 2-D causal and semicausal AR model parameters of the

original image. The identification algorithm for the other AR models is similar to

the method described above.
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4.6 Summary

The image identification and restoration algorithm we present in this chap-
ter may be visualized by Figure 3. The input is the noisy N x N image whose
properties are not known a priori except for the Gaussian assumptions on the
observation noise. Then, the observed image is decomposed into N 1-D complex
scalar subsystems, (or euivalently, 2V real scalar subsystems) by using discrete
Fourier transform (DFT). Applying the EM algorithm to each of the subystems,
we restore and identify the DFT image. Then, taking the inverse DFT of the re-
stored DF'T image, we get the restored N X N original image. The AR parameters
of the original image are identified from the AR parameters of the DFT image by

using the least squares method.

Mo 20
™ z
Decomposition EM -
— ; , : IDFT | —
by DFT : Algorithm .
NIN-1 ZN-
éo él (:)N -1
LS o)
Method

Figure 3: Schematic representation of the identification and restoration algorithm



32

4.7 Experimental Results

In this section, we present the simulation results of our identification and
restoration algorithm. Experimental experience shows that the selection of the
initial parameters © is critical since the EM algorithm may converge to a local
optimum rather than the global optimum of the likelihood function. Therefore,
we should run the algorithm several times so that we can learn about the image
and set the initial parameters to reasonable values for an accurate identification

and restoration.

We measure the performance of image restoration by the signal to noise ratio

(SNR) p which is defined as
o

where o2 is the variance of the original image and o2 is the mean squared error

between the original image and the observed or restored image.

We have used the monochromatic 100 x 100 face image shown in Figure 4 as
the original image. Before processing, we have normalized the observed image, i.e.,
we have corrected for its mean value in order to satisfy the zero mean assumption

on the model noise.

In Table 1 and Table 2, we present the simulation results of restoration in DFT
and DST domain using Kalman filtering and maximum likelihood approach under
0 dB, 5 dB and 10 dB noise. The results presented correspond to SNR of the
restored images which are displayed in Figures 6 - 19. We note the success of the
restoration, especially in 0 dB noise. While the features of the face are almost

lost in the noisy image, in the restored images they become extractable for the
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human eye. However, the improvement in SNR decreases as the level of the noise

decreases.

We measure the performance of image identification by comparing the identified
parameters with the ’true’ coefficients which we have found by the least squares
method described in Section 2.2.1, using the noiseless original image. However,
since for semicausal models, model fitting does not necessarily yield white noise
driven models, we have found the true coefficients of this model in DFT domain
by using the method presented in Section 4.5. Table 3 displays the AR coefficients
identified in DFT domain for quarter plane, NSHP and symmetric semicausal AR
models under 0 dB, 5 dB and 10 dB noise 6. We observe that even at 0 dB noise
the estimated parameters are very close to the true parameters. Table 4 shows
the results of identification by DST for the symmetric semicausal AR model, since
identification by DST is applicable to identify only this type of AR parameters.
We observe that, for this model, the results of identification in DFT domain seem

to be better than those in DST domain.

®In finding the true parameters, we have also used the constraint ), ;s a(k,{) = 1, which is

generally true for homogenous images as also verified by the true values of the parameters.



Kalman F. Maz-Like

p, 0dB 96dB 9.2 dB
p, 5dB| 11.9dB 11.8dB

p,10dB| 145dB 14.7dB

Table 1: Performance of restoration in DFT domain

Kalman F. Maz-Like

p, 0dB 99dB 9.9 dB
p, 5dB 12dB 123 dB

p, 10 dB 15dB  15dB

Table 2: Performance of restoration in DST domain



Quarter plane NSHP Semicausal

True | -0.45 0.77 -0.39 047 0.17)-0.13 0.29
0.67 0.75 0.68

-0.13 0.29

0dB {-0.56 0.78 -0.39 0.56 0.05|-0.23 0.34
0.78 0.78 0.68

-0.23 0.34

5dB | -0.52 0.81 -0.30 0.51 0.07-0.19 0.34
0.71 0.72 0.70

-0.19 0.34

10 dB | -0.48 0.78 -0.22 0.42 0.08}-0.13 0.27
0.70 0.72 0.72

-0.13 0.27

Table 3: The results of identification by DFT

0dB 5dB 10 dB

Semi | -0.35 0.47 -0.28 0.40 -0.13 0.28
causal | 0.76 0.76 0.70

-0.35 047 |-0.28 040 -0.13 0.28

Table 4: The results of identification by DST

35
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The original face

Figure 4

: 0 dB noisy image

Figure 5
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Figure 7: The image restored in DST domain against 0 dB noise by Kalman

filtering
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Figure 8: The image restored in DFT domain against 0 dB noise by maximum

likelihood approach.
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Figure 9: The image restored in DST domain against 0 dB noise by maximum

likelihood approach
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Figure 11: The image restored in DFT domain against 5 dB noise by Kalman

filtering.
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Figure 12: The image restored in DST domain against 5 dB noise by Kalman

filtering.
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Figure 13: The image restored in DFT domain against 5 dB noise by maximum

likelihood approach.
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Figure 14: The image restored in DST domain against 5 dB noise by maximum

likelihood approach.



Figure 15: 10 dB noisy image
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Figure 16:

filtering.

Figure 17: The image restored in DST domain against 10 dB noise by Kalman

filtering
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' Figure 18: The image restored in DFT domain against 10 dB noise by maximum

likelihood approach.
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Figure 19: The image restored in DST domain against 10 dB noise by maximum

likelihood approach.
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4.8 Discussion

In this section, we will discuss the experimental results presented in the previ-

ous section.

The most important advantage of the use of DFT in our algorithm is that the
1-D AR parameters of the DFT image carry the sufficient information to identify
the parameters of various types of 2-D AR models while the identification in DST
domain supplies the information to identify only 2-D symmetric semicausal AR

model.

The fact that, in view of the results in Table 1 and Table 2, restoration in DST
domain seems slightly better than restoration in DFT domain does not have much
significance since the restoration performance measure p, which is the only perfor-
mance measure available for image restoration, is unfortunately not very accurate
and reliable. For instance, if we carefully compare Figures 6 and 7, we observe
that some important features of the original face image like the mouth, the nose or
the eyebrows seem to be restored more successfully in DFT domain as compared
to those in DST domain. Moreover, we see that there are some spurious noise in
Figure 7 while the restored image in Figure 6 is smooth. We also note that identi-
fication by DFT have yielt better results as seen in Table 3 and 4. Therefore, we
should expect that restoration in DFT domain should be more accurate. Another
reason why we expect that the results of restoration in DFT domain should be
better is the approximation which is made in writing the covariance matrix of the
2-D symmetric semicausal AR model noise in Equation 19. By this approximation
it has become possible to decompose the original image into scalar subsystems.

What we know for symmefric semicausal modelling is that the resulting model
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noise is not white. However, we do not know exactly the structure of its covari-
ance matrix. On the other hand, since the resulting model noise is white for causal
models (the use of causal models is possible if we use DFT), the assumption that
the decomposed scalar subsystems are uncorrelated becomes more valid by the use
of DFT. Moreover, since the selection of the initial parameters for the EM algo-
rithm is critical, with different initial values, it is possible to end up with different
results. Therefore, evaluation of our experimental results for restoration is not very
straightforward. Finally, it is possible to make the conclusion that restoration in
DST and DFT domain have almost equal performances. If we use the classical
performance measure defined in (59), restoration in DST is slightly better. On the

other hand, visually, restoration in DFT domain seems to be better.

In Table 1 and Table 2, we also compare the performances of maximum likeli-
hood restoration and Kalman filtering. The maximum likelihood approach requires
a bulk restoration process (i.e., it makes use of all the image pixels in order to re-
store a single pixel. ) and seems to yield better results when compared to recursive
Kalman filtering. However, our simulation results have shown that Kalman filter-
ing followed by a backward smoother yields almost equal performance as compared
to the maximum likelihood restoration and is, moreover, computationally much

more efficient.
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4.9 Comments on Further Research

In this thesis, we have dealed with the restoration and identification of images
degraded by Gaussian additive white noise. We have excluded another type of
degradation which is called blur. However, blurring is an important problem which

is usually inevitable in image identification and restoration applications.

In image processing, blurring is modelled by a 2-D point spread function (PSF)

and in the existence of blur, the observation model in (1) becomes

y(n,m) = Z d(k,z(n —k,m — 1)+ v(n,m) (60)

k€S,

where d(k,) is the point spread function and Sy denotes its support.

The compact form of (60) can be written in matrix form as
y=Dz+v (61)

where D is a block circulant matrix determined by the point spread function

coefficients d(%, ).

We observe that (60) and (61) are in similar forms with the AR modelling

equations (2) and (3).

In the existence of blur, image identification includes also the identification of
the point spread function and image restoration must be performed also against
blur. In AR modelling, the choice of the support depends on the application. How-
ever, since blur is a real phenomenon, the support is not a matter of choice any
more for blur models. Therefore, the flexibility of DFT restoration and identifica-
tion for different types of supports gains much more importance in the existence

of blur.
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In view of the observation model equations (60) and (61), if we proceed further,
we end up with similar circulant blur coeficient matrices as in (16). The structure
of these coefficient matrices depends on the existent blur. Therefore, reduction
of dimensionality is not generally possible by using DST. On the other hand,
since DFT diagonalizes any circulant matrix, we can modify our algorithm also for
restoration and identification against blur. However, we need a formal derivation

and this may be the subject of a further research.
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V CONCLUSION

In this thesis, we have studied the problem of image identification and restora-
tion using the EM algorithm. By the use of the EM algorithm, we have shown
that image identification and restoration are possible at the same time without a

priori knowledge of the observation noise and the original image.

Throughout the study, we have concentrated on the reduction of dimensional-
ity since 2-D processing of images generally yields more complex algorithms when
compared to 1-D signal processing. We have presented an algorithm which reduces
the 2-D problem to a 1-D problem and then identifies and restores the image by
using the EM algorithm. The algorithm presented may be regarded as a modifica-
tion to the method developed by Katayama [3]. However, our algorithm is superior
to this method since by the use of DFT, it is capable to identify any type of 2-D
AR parameters while the latter can identify only the symmetric semicausal AR
model parameters. Moreover, our algorithm is promising for image identification
and restoration in the existence of blur since it is flexible about the support of the
blur and AR models. We have simulated the method and identified the parameters
of quarter plane, NSHP and symmetric semicausal AR models successfully under
noisy conditions. The performance of restoration has been almost equal with the

method in [3]. However, visually, restoration in DFT domain seemed to be better.

In this thesis, we have also compared the performances of maximum likeli-
hood restoration and Kalman filtering followed by backward smoothing. Since we
have reduced the dimension of the processing, 1-D Kalman filtering has become
possible, which is much more efficient than 2-D Kalman filtering. We have also

used the maximum likelihood restoration approach more efficiently, again because
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of the reduction in dimension. Experimental results have shown that these two
approaches have almost equal performances. Since 1-D Kalman filtering is com-
putationally much more efficient, in one dimension, Kalman filtering followed by

backward smoothing is preferable to the maximum likelihood restoration.



51

APPENDIX A

Derivation of the Equation 28

We rewrite (16) as
2(m) = A5’ Ajz(m — 1) + A5 w(m) (62)
Taking the DFT of (62) yields
Fz(m) = FA;' Ajz(m — 1) + FA;'w(m)
Since (FF™ = I), it follows

Fz(m) = FA;'F*FA F*Fz(m—1)+ FA;'w(m)

= Aj'A Fe(m — 1)+ FAG'w(m)
where

A7Y = diag(f5 (W), SN WHTY)

Ay = diag(fi(W3), .., A(WE))

Finally, we end up with the equation (28),

Fz(m)= AFz(m — 1)+ FA;'w(m)
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APPENDIX B

Derivation of the Equations 32 and 33
By the definition (25),

§(m) = FA7 w(m)
Using (FF* = I) we write,

£(m) = FA;'F*Fw(m)

= AF'Fw(m) (63)
The covariance of &(m) is defined by
Cov[é(m)] = E[€(m)é™ (m)] (64)
Using (63), we write

Em)E(m) = A7 Fw(m)(A7" Frw(m))

= AF'Fw(m)w'(m)F*A;"
Then, by (18), the equation (64) becomes

E[¢(m)€(m)] = o2A7'FF*A;"
= o2 AF' AV (65)

(66)

— -1%* . . . . .
where Ag'A;"" is a diagonal matrix with real entries.
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(65) implies the equation (32) and means £;(m) and £(m) are uncorrelated for
[+ 3.

The derivation of (33) is very similar to that of (32).
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APPENDIX C

Derivation of Equation 39

Recalling (35) and (37), the complex coefficient @ = a, + ia; is found so as to

minimize the log-likelihood function (omitting the constant terms) :

N
logp(z | 0©) = Z [ z2(m) — az(m — 1) |2

3
[}

Il
mqwl = mqul -
M=

3
1§

(Z'r(m) - arz'r(m - 1) + aiz’:(m ) 1))2

(z,(m) —a;z,(m—1) — a,z;(m — 1))2

4
M=

3
)l
A

where ag = agr L agi by (51), with respect to a, and a;. Differentiating the log-

likelihood function with respect to a; and setting to zero yield

N
Z z(m)zi(m — 1) — zs(m)z.(m — 1) + a;(zf(m — 1)+ 2(m — 1)) =0

m=1
It follows
w YN z(m)z(m — 1) — zi(m)z,(m — 1)
’ N2 (m—1)+22(m—1)
Since

1 N

m=1

=0

we get the equation (39):

a,-=0

¥ > z(m)zi(m — 1) = zi(m)z,(m — 1) = E[z(m)]E[z(m — 1)] - E[z,(m)]E[z:(m — 1)]



55

BIBLIOGRAPHY

[1] A.K. Jain, ”Advances in mathematical models for image processing”,

Proc. IEEE, Vol. 69, No. 5, pp. 502-528, 1981.

[2] R.L. Lagendijk, Iterative identification and restoration of images, Ph.D. The-

sis Delft University of Technology, 1990.

[3] T. Katayama and T. Hirai, "Parameter identification for noisy image via the

EM algorithm”, Signal Process., Vol. 20,No. 1, pp. 15-24, May 1990.

[4] J.W. Woods and C.H. Radewan, "Kalman filtering in two-dimensions”,
IEEE Trans. Information Theory, Vol. 23, No. 4, pp. 473-482, 1977.

[5] H. Kaufman, J.W. Woods, S. Dravida and A.M. Tekalp, ”Estimation

and identification of two-dimensional images”, IEEE Trans. Autom. Control,

Vol. 28, No. 7, 1983.

[6] M.P. Ekstrom and J.W. Woods, ” Two-dimensional spectral factorization with

applications in recursive digital filtering”, IEEE Trans. ASSP., Vol. 24, No.

2, pp. 115-128, 1976.

[7] A.K. Jain, Fundamentals of Digital Image Processing, Prentice Hall, Engle-

wood Cliffs NJ, 1989.

[8] R.L. Lagendijk, J. Biemond and D.E. Boekee, ”Regularized iterative image
restoration with ringing reduction”, IEEE Trans. ASSP., Vol. 36, No. 12, pp.

1874-1888, 1988.



56

[9] R.W. Schafer, R.M. Mersereau and M.A. Richards, ”Constrained iterative
signal restoration algorithms”, Proc. IEEE, Vol. 69, No. 4, pp. 4322-450,
1981.

[10] J.W. Woods and V.K. Ingle, "Kalman filtering in two-dimensions: Further
results”, IEEE Trans. ASSP., Vol. 29, No. 2, 1981.

[11] B.R. Musicus and J.S. Lim, "Maximum likelihood parameter estimation of

noisy data”, Proc. 1979 IEEE Int. Conf. ASSP., pp. 224-227.

[12] M. Feder and E. Weinstein, ” Parameter estimation of superimposed signals

using the EM algorithm”, IEEE Trans. ASSP., Vol. 36, No. 4, pp. 95-103,

1988.

[13] A.P. Dempster, N.M. Laird and D.B. Rubin, *Maximum likelihood from in-

complete data”, J. Royal Statist. Soc. B, Vol. 39, pp. 1-38, 1977.

[14] A.K. Jain and E. Angel, ”"Image restoration, modelling and reduction of di-
mensionality”, IEEE Trans. Comp., Vol. 23, No. 5, pp. 470-476, 1974.

15] A.K. Jain, ” An operator factorization method for restoration of blurred im-
P

ages”, IEEE Trans. Comp., Vol. 26, No. 11, pp. 1061-71, 1977.

[16] W.B. Davenport, Probability and Random Processes, McGraw-Hill, Inc. ,

1970.

[17] J.S. Meditch, Stochastic Optimal Linear Estimation and Control, McGraw-

Hill, Inc. , 1969.

[18] M. Tanaka and T. Katayama, ”Edge detection and restoration of noisy images

by the expectation-maximization algorithm”, Signal Process., Vol. 17, pp.

213-226, 1989.

DO‘MMAB yAad1UN MERKEZL



