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Abstract

Various remarkable features of polymers, as compared with metallic and
inorganic materials, arise from the fact that macromolecules can take up various
conformations. The study of macromolecular conformations and dynamics is
undoubtedly important in polymer science and technology from both basic and
practical viewpoints. Comprehension of the configurational statistics of chain
molecules leads to a rational interpretation and understanding of their physical
properties. In previous studies, much effort have been devoted to dilute solutions.
Though, recently there is a clear trend towards studying molecular properties in
condensed systems, studies in the area of dilute solutions still remain a

cornerstone of polymer characterization.

Orientational motions of segments in polymer chains depend sensitively
on both intra- and intermolecular configurational characteristics of the chains,

and thus are of special interest for the understanding of polymer behavior.

This thesis is mainly composed of two parts. In the first part, segmental
orientation of polymers related to the chemical structure and resulting
configurational characteris;tics of the chains are investigated using
polyetylene(PE) and polyoxyethylene(POE) networks. In the calculations, the
orientation of a reference vector m rigidly embedded in a chain of deformed
network is considered. As a first step, the mean-square cosine <cos20>; of the
angle that m makes with a laboratory-fixed axis is formulated for a chain with
fixed end-to-end vector r. A series expression including terms up to fifth inverse

power of n, where n is the number of bonds in the network chain, is obtained for



<c0s20>y. Next, the corresponding averages over all chains of a network and the
associated orientation function S, which is macroscopically observed are found
in terms of (i) unperturbed chain moments readily obtainable by the rotational
isomeric state scheme(RIS) (ii) the extension ratio A for uniaxially deformed
networks. Such a rigorous expression for S is particularly useful for relatively
short chains and for moderate to large deformations that can not satisfactorily be
accounted for by the existing simpler formulations. Thus, we estimate ranges of
extension ratios A to which the conventional first order approximation may be
confidently applied. Calculations are performed for PE and POE chains of n = 21,
51 and 101 bonds which are generated by Monte Carlo simulation. The results
are compared with those obtained by previous theoretical approaches. These

comparisons demonstrate the importance of the adoption of higher order terms in

the serial expansion of the orientation function for A > 1.8

In the second parn , static and dypamic correlations between bond
conformations and reorientations are examined by Brownian dynamics
simulations for polymer chains with fixed ends. Polyethylenelike model chains
are considered. Rates of rotational isomeric transitions and time evolution of
orientational correlations are analyzed for various extensions of the chain. The
relatively more extended chain exhibits the higher mobility in the short-time scale
but possesses lower effective rate of rotational isomerization. This follows from a
hazard analysis covering ranges up to 10 ns. The time decays of bond
orientational correlations are reproducible by stretch exponential functions with
exponent almost independent of chain extension. The imposition of deformation
by fixing chain ends, affects the orientational mobility of the chain down to the
scale of individual bonds which may be observed from the biased evolution of
time-dependent distribution functions for bond spatial reorientations. The

analysis is also extended to the study of local orientational motions as seen by a
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laboratory fixed-observer. Time-dependent joint probability distribution functions
for orientations of a vector affixed to a polymer chain are expressed in terms of
double spherical harmonics. An expansion of the distribution function up to the
second order harmonics accurately reproduces the results of Brownian dynamics
simulations for a 49 bond polyethylene chain whose end-to-end separation is
fixed at different extensions. Various functions related to the anisotropy of
segmental dynamics such as the mobility, orientation-mobility correlation,
directivity' of mobility and the sense of mobility are examined and observed to be

strongly dependent on the degree of chain extension.
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OZET

Makromolekiillerin  birgok &nemli &zellikleri, metaller ve inorganik
maddelerle karsilastirildiginda, konformasyonal déniisiimlere sahip olmalarinin
bir sonucudur. Polimer bilim ve teknolojisinde molekiler konformasyonlarin ve
makromolekiler dinamigdin incelenmesi temel ve pratik gérisler agisindan
dnemlidir. Zincir molekdllerinin konfiglrasyon istatistiginin incelenmesi,
olugturdugu polimerin 6zelliklerinin anlasiimasina ve yorumlanmasina olanak

saglar.

Polimer zincirlerinde yénlenme hareketleri zincirin hem molekal igi hem
de molekiller arasi konfiglirasyonal karakteristiklerine baglidir. Bu tez caligmasi
iki bélumden olugmaktadir. Birinci bélimde polimer zincirlerinin yapilarina ve
onun sonucu konfigirasyon karakteristiklerine bagli olarak yerel(segmental)
ybénlenmesi polietilen(PE) ve polioksietilen (POE) agyapilarinda incelenmektedir.
Hesaplamalarda deformasyona ugramis adyapida bir zincire yerlegtirilmis bir
referans vekt6érinin yonlenmesi digtnalmistir. Ik adim olarak, m vektériinin
sabit bir eksenle yaptid1 aginin karelerinin ortalamasi <cos26>,, konum vektéri
(end-to-end vector) r olan bir polimer zinciri igin ifade edilir. Ardindan bir
agyapinin bitin zincirlerine karsilik gelen ortalamalar ve ilgi‘li yénlenme
fonksiyonu, i) dénme izomerleri modeli ile elde edilen serbest zincirin
momentleri ile ve ii) tek yonli deformasyona ugramis agyapilardaki ¢ekme
oranian ile ifade edilir. Yénlenme fonksiyonunun elde edilen sekli, 6zellikle kisa
zincirler ve yliksek deformasyon oranlarinda gergede yakin sonuglar
vermektedir. Hesaplamalar Monte Carlo similasyon yontemi ile elde edilmis

n=21, 51 ve 101 bagdan olugan PE ve POE zincirleri i¢in yapiimigtir. Birinci
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derece yaklagsimin uygulanabilecedi zincir boyutlari ve ¢ekme oranlari
belirlenmigtir. Sonuglar Monte Carlo similasyon sonuglart ve énceki teorik
yaklagimlarla karsilastiriimigtir. Bu karsilastiriimalar gekme orani A > 1.8 olan
durumlarda ydénlenme fonksiyonu igin yliksek mertebeden yaklasimin énemini

gbstermektedir.

Bu tez galismasinin ikinci béliminde Brownian Dinamik similasyon
yontemi ile tek yonlu dedisik derecelerde deformasyona u@ramis polimer
zincirlerinin statik ve dinamik 6zellikleri arastinimistir. Bu amagla model PE
zincirlerinin similasyonu yapilmigtir. D6nme izomerleri arasindaki gegis hizlar
ve yonlenme korelasyonlarinin zaman igindeki gelisimi degisik oranlarda gekilen
zincirler igin incelenmigtir. En fazla deformasyona ugrayan zincirin kisa-zaman
6lgeginde en fazla hareketlilije sahip oldugu goézlenmektedir; ancak ayni zincir
hazard analiz yénteminden elde edilen sonuglara gére en disik etkin dénme
izomerizasyon hizini géstermektedir. Bag vektorlerinin zaman iginde sénmesini
gdsteren egriler Kollrauch-Williams-Watts(stretched-exponential) fonksiyonlarina
uymaktadir. Zincir uglarini sabit tutmak (zere uygulanan deformasyon, zincir
baglarinin éigeginde dahi etki etmektedir. Yerel yonlenme hareketleri, sabit bir
eksenden izeyebilmek Uzere, kiresel harmonik(spherical harmonics) serisi ile
ifade edilmig zamana bagh olasilik dagilim fonksiyonlari ile incelenmigtir. Bu
serinin ikinci dereceye kadar agilmig terimleri Brownian Dinamik sonuglari ile
kargilagtinlmigtir. Yerel zincir dinamigindeki yénlenmeyi ifade eden fonksiyonlar
farkh oranlarda ¢ekilmig zincirler igin hesaplanmig ve gekme oranlarina biiyiik

6lglide bagimii olduklari gdézlenmistir.
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Chapter |

Introduction

This thesis is mainly composed of two studies of segmental orientation in
polymer chains. In the first part, segmental orientation in uniaxially deformed

networks, polyethylene(PE) and polyoxyethylene(POE) have been investigated.

The existing theoretical characterization of segmental orientation in
polymeric chains which are subject to an external disturbance is based almost
entirely on the freely jointed chain model. Although this model conveniently leads
to simple analytical expressions for segmental orientation, its inadequacy to
reflect the effects of the real chemical structure of a polymeric system is a serious
weakness. Recent developments in spectroscopic techniques, in particular the
use of dynamic infrared spectroscopy! and deuterium NMR spectroscopy?,
permit very accurate measurements of segmental orientation in polymeric
systems in deformed state. The degree of accuracy of these two techniques is

unprecedented by any of the conventional techniques in this field.

On the theoretical side, the general formulation of the problem of
segmental orientation in real chains has been outlined in the pioneering work of
Nagai3. Calculation methods for segmental orientation according to rotational
isomeric scheme for real chains were later improved by Flory4 in a form that is
suitable for the study of birefringence. The formulations of both Nagai and Flory
lead to an expression in the form of series expansion containing various-order
moments of the chain end-to-end vector and related trigonometric variables. For

sufficiently long chains, i.e., chains containing more than 100 bonds, the first term



of the series gives a reasonable accuracy. However, as the number of bonds
decreases, more terms of the series are required for accuracy. The specific aim of
this study is to give a more rigorous expression for the orientation function so as
to include several powers of 1/n, where n is the number of bonds of the chain. By
the use of such an expression, the relative contributions of first and second order
approximations are assessed. It should be noted, at this point that the original
paper of Nagai contains some minor printing mistakes in the expression for
orientation and not all of the sixth-order terms are included therein. The treatment
by Flory, on the other hand, is developed only for birefringence and is not exactly
suitable for the study of segmental orientation. The present treatment may thus
be regarded as an improvement and completion of the previous formulations of

Nagai and Flory.

Within the context of the first part, in Section Il, the theory is applied to
uniaxially deformed PE and POE networks and the importance of contribution of
higher order terms to segmental orientation is examined. Calculations have been

performed for PE and POE network chains of n = 21, 51 and 101.

In the second part, Brownian Dynamics simulations have been performed
for the investigation of equilibrium and dynamic properties of uniaxially deformed
polymer chains. Internal orientational and conformational correlations in
deformed polymer chains with fixed end-to-end separation are studied as a first
step. Previous theoretical considerations indicate that polymers with fixed ends
are subject to distinct conformational statistics, depending on the degree of
extension or perturbation of the chain.# Similarly, the local reorientational and
conformational dynamics of deformed chains is expected to be altered due to the
imposition of spatially constrained ends. Examination of the distribution of

conformational states and their time evolution in chains with fixed end-to-end



separation r is expected to give some insights as to the intrinsic orientational

characteristics of deformed network chains.

A potentially useful tool to study high frequency motions and associated
dynamic properties in polymeric systems is the Brownian dynamics (BD)
simulation technique.® The time evolution of particles in BD method is described
by coupled Langevin differential equations or alternatively stochastic difference
equations which are shown to be equivalent to the Fokker-Planck description of
particle diffusion.®:’ Earlier studies using this technique adopted simple model
chains such as one-dimensional bistable oscillators.8:° Studies of more realistic
moderate size chains with fixed bond lengths and bond angles were soon
performed by Fixman using generalized coordinates,®’ by Pear and Weiner,10:11
and Levy et al.’2 In the BD study of conformational transitions by Helfand,
Wasserman and Weber'3:14 bond stretching and bond angle bending were
incorporated as possible degrees of freedom in addition to bond torsional
mobility. BD has thereafter proved to be a mathematically convenient method to
treat several problems involving (i) static properties such as end-to-end
distribution functions in various regimes,'® surface adsorption,'® and collapse
transition produced by modulating intermolecular interactions,'” and (ii) dynamic
phenomena such as relaxation of various correlation functions, transitions
between rotational conformers,'31418  chain diffusion,”® cyclization.2° Also, the
time evolution of internal relaxational modes and dynamic light scattering
functions have been recently investigated by BD method,?' following the
formalism introduced by Ermak and McCammon?22 which considers the effect of

fluctuating hydrodynamic interactions.

In this study, BD simulations are performed using the polyethyleneiike

model chain of Helfand, Wasserman and Weber.'314A similar mathematical



formalism has been recently adopted by Adolf and Ediger23 to analyze the role of
cooperativity in conformational transitions of polyisoprene. The ends of the
chains investigated in the present study are held fixed in space, to mimic the
state of deformed chains following the affine network model. The simulations are
repeated for various end-to-end separations to assess the influence of chain
extension (or compression) on the conformational and orientational behavior of
the chain. Results of BD simulation are used to study the internal orientational
dynamics of deformed polyethylene model chains as a function of their end-to-
end separation. The rate of transitions between isomeric states and bond
orientational auto- and cross-correlations are observed to be strongly affected by
the perturbation of chain dimensions. Conformational correlation functions are
evaluated for backbone bonds and the autocorrelation functions, M¢(t) and May(t)

associated with the reorientation of bond vectors are analyzed.

The analysis is extended to study the local orientational motions in
polymer chains by the use of time-dependent probability distribution functions .
The anisotropy of segmental dynamics in polymer chains has been investigated
some years ago in terms of double spherical harmonics by Tao?* and Jarry and
Monnerie.?® These authors formulated the time-dependent orientation
distribution for vectors affixed to chains in a form suitable for the study of local
chain dynamics by polarized fluorescence experiments. In recent years, interest
has been refocussed on the problem of the anisotropy of local static and dynamic
orientational correlations following the developments in deuterium NMR
spectroscopy.2® The present treatment tests the adequacy of spherical harmonics
series expansion of the joint distribution function for chains with fixed ends at
various extensions. The analysis carried out for the investigation of internal
orientational dynamics of PE chains in Section 3.2 is extended to the study of

local orientational motions in deformed chains as seen by a laboratory-fixed



observer at a given orientation with respect to the chain vector. Time-dependent
joint probability functions in the form of a double spherical harmonics series are
developed for the orientation of bond vectors. The coefficients of this series are
evaluated numerically for a polyethylene chain of 49 bonds using the results of

the Brownian dynamics simulation described in detail in Sections 3.1 and 3.2.

Finally in Section 3.4, the simulation results have been exploited for the
calculation of some experimental measurable functions; the mean mobility,
orientational-mobility amplitude correlations, directivity of mobility and the sense

of mobility.



Chapter I

Segmental Orientation in Uniaxially Deformed
Networks: A High Order Approximation for Finite
Chains and Large Deformations

The second Legendre function S, also termed as the orientation function,

is defined by
S=[3<cos20> -1]/2 (2.1)

Segmental orientation in deformed networks may be analyzed at different
levels of approximation. The simplest and the most commonly employed model is
the Kuhn model32 relating the orientation function to the number of Kuhn
segments in network chains and to the applied state of uniaxial deformation. It is

given according to the expression
S = (1/5N) (A2 - A1) (2.2)

where N is the number of Kuhn segments of the chain and A is the extension
ratio defined as the ratio of the final macroscopic length of the network under
uniaxial extension to its length in the reference state. The variable A also
identifies the extension ratio of each chain at the microscopic level because
eq 2.2 is based on the affine network model where the ends of the network

chains deform affinely with macroscopic dimensions. Equation 2.2 constitutes



the first term of a series expression for the freely jointed chain. Under larger
degrees of extension of the network, higher order terms in 1/N and A are needed
which have been derived by Roe and Krigbaum3! and Walasek.33 Inasmuch as
eq 2.2 and its higher order approximations31.33 are based on the freely jointed
chain, they give only a qualitative idea on segmental orientation in deformed
network chains. The shortcomings of eq 2.2 when applied to real chains have

been recently indicated.34.35

In a more realistic approximation, the front factor 1/5N in eq 2.2 may be

replaced by the coefficient

Do = (3 < r2cos2® >4/ < 12>5-1)/10 (2.3)

obtained3.4 according to a more rigorous description of the chain structure than
the freely jointed one. This expression characterizes the orientation of any vector
which is rigidly affixed to any point of the chain. @ is the angle between the vector
of interest and the chain end-to-end vector. Angular brackets denote the
ensemble average and the subscript zero indicates that the averaging is
performed for chains in the unconstrained state. The statistical averages in eq 2.2
may conveniently be evaluated according to the RIS scheme as has been
indicated by Nagai® and Flory.4 Thus, for a chain of n bonds, within the validity of
the RIS scheme, eq 2.2 represents the exact first term, linear in 1/n, that replaces
the front factor of 1/5N of the Kuhn approximation in eq 2.2. Its derivation rests on
the two assumptions that (i) the chains are long and (ii) the macroscopic
deformation imposed on the network is low. The higher order terms required
when the chains become shorter and the deformations larger have been given
by Nagai® and Flory4. In the following sections, the formulation of Nagai and Flory

has been generalized3® to finite chains and large deformations.



The affine network model of rubber elasticity is adopted. The choice of a
network for describing segmental orientation is only for convenience of
visualizing the chains in equilibrium in the deformed state. We therefore assume
each chain to extend between two active junctions that displace affinely with the
macroscopic deformation. The treatment may be applied to systems other than
networks by suitably assuming two points on the chain to deform affinely and
calculating the state of segmental orientation between those two points. In this
respect the present treatment focuses only on intramolecular contributions to
segmental orientation. Intermolecular contributions imposed by the local

anisotropic environment of a given segment are not considered.

As a first step, following Nagai's earlier treatment , the mean square cosine
<cos20>p of the angle that m makes with a laboratory-fixed axis is formulated for
a chain vector with fixed end-to-end vector r. An expression including terms up to
fifth inverse power of n, where n is the number of bonds in the network chain, is
obtained for <cos28>r. Next the corresponding averages over all chains of a
network and the associated orientation function S, are found in terms of (i)
unperturbed chain moments readily obtainable by the rotational isomeric

scheme(RIS) (ii) the extension ratio for uniaxially deformed networks.

2.1Theory

One configuration of a single chain is shown in Figure 2.1. Oxyz
represents a laboratory fixed coordinate system. The two ends of the chain at O
and A represent points fixed in space. In a network, those are the two junction

points at the termini of a network chain. They are assumed to displace affinely



with the macroscopic deformation. r in the figure represents the end-to-end
vector of the chain in the deformed state, which, in the undeformed state, is equal
to ro. For simple elongation along the x-direction, using the deformation gradient

tensor A, we have

r=2ro (2.4)
where
x/xg O 0 A 0 0
A= 0 yly, 0= 0 A" o
0 0 z/z 0 o A"
(2.5)

with Xo, Yo, Zo, and X, y, z denoting the components of ro and r, respectively, and A

representing the extension ratio.

In Figure 2.1, m represents a unit vector rigidly affixed to the chain at a
given point. It makes an angle 8 with the x-axis as shown. In the present
treatment, m may represent the direction of any sequence of bonds in the chain
or it may refer to a specific label attached to the chain. Identification of m with one
of the principal components of the optical polarizability tensor provides the basis
for the analysis of strain birefringence4 whereas in the treatment of dichroic ratio
it is identified with the absorption transition moment of the excited group. We are
interested in the orientation of m as the network deforms and the ends of the

chain displace affinely with macroscopic strain.
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y

Figure 2.1 Schematic representation of a chain OA with end-to-end vector r. The vector

m is rigidly affixed to the chain and makes an angle 6 with the laboratory fixed x-axis.

The orientation of m will be calculated in two stages: In the first stage, we
consider only a single chain whose end-to-end vector r is fixed in space, and

calculate the average < cos20 >y over all configurations of that chain. Here, the

subscript r refers to the averaging over all configurations at fixed r. In the second

stage, we find the average < cos26 > over all chains of the system. Here, the

subscript r is deleted inasmuch as the constraint of fixed r is removed.

2.1.1 Average Orientation of Bond Vectors with respect to Stretch

Direction in Deformed Chains

Calculation of < cos268>y

We follow a procedure similar but not identical to the one adopted by

Nagaid and Flory.4 The average < cos26>; is expressed by
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<0820 > = Z,'1 f cos28exp (-E{¢}, /KT)d{o},
(2.6)

where, E { ¢ }r is the energy of the configuration { ¢ }; which is defined by a set of
skeletal bond rotations. The subscript rin d{ ¢ }¢ indicates that the integration is
carried out over only those configurations that possess the specified end-to-end
vector r. It should be understood that the whole configurational space is referred
to, whenever the subscript r is omitted. k is the Boitzmann factor, T is the
absolute temperature. Z, is the configuration partition function for a chain with

fixed r, defined as

Ze= [ exp (-E{0}, /KT) d{0},

(2.7)
Denoting the integral in the right-hand side of eq 2.6 by f (r ), we have
f(r)= fcos2e exp(-E{¢},/kT)d{¢}, = <cos26> Z,
(2.8)
The Fourier transform f (q ) of f(r)is
f(q):fe-iq T <c0s20>,Z, dr
(2.9)

.—.jj ] cos20 exp (-E{¢ } /kT)e‘kI"sinxdxdwdmd{(p},dr
I Jyy,o {¢}|’

(2.10)
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(a) (b)
Figure 2.2 (a) The representation of m and r in the XYZ coordinate system in which

the Z-axis is parallel to the transform variable q. @ is the angle between m and r. , i and ®

are the three Euler angles. (b) Position of the transform variable q with respect to the

laboratory fixed frame xyz. Tq is the angle it makes with the x-axis.

Here q is the transform variable, r is the magnitude of r and y, v and o are the
three Euler angles defined in Figure 2.2. In this figure, XYZ is a new Cartesian
coordinate system with the Z axis parallel to q and the X axis is in the xZ plane.
The X axis makes an acute angle with x. x and y are the polar and azimuthal
angles, respectively, locating r relative to q along the polar axis Z. o gives the

rotation of the plane defined by m and r from the plane of r and Z. Using

J.r Jx,w,m‘..{ N }rd {0 }r siny, dy dy do dr = 8 nz_"r J{ N }rd {o }r dr
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=J.r j{<1>},°'{‘1’}'d'r i j{<1>}°'”’}
2.11)

Equation 2.9 may be rewritten as

f(q)=(8n2)" f cos28exp (-E{¢ }/kT) e-a- rsiny dy dy do d{¢}
{0}

(2.12)

Let ® denote the angle between m and r as shown in Figure 2.2a. The
laboratory fixed system Oxyz is shown in part b of the same figure. The

components of q along the x, y and z axes are indicated as qx, gy and q,. The

angle between the x axis and q is shown by 1. From the scalar product of m with
the x axis, both of them being expressed in the frame XYZ, it is possible to write
cos 8 interms of ¢, v, , Dand t as

cos 6 = sin t [ sin x cos y cos @ + ( cos y Cos y cos m - Sin y sin ® ) sin @ ]

+ cos t[ cos i cos @ - sinx cos w sin P ] (2.13)

The substitution of eq 2.13 into eq 2.12 and integration over y, ¥ and o, at fixed

{0 }, leads to the series expression

4 6 8
=3 [1- 5 0G0 G 1 T (3005 1) (3cos’a-1)
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Lo’ (an)® (ar)® (ar)?

58 7580 o 75 1197111 @P (“E/KT)d{e)

(2.14)

where q is the magnitude of q. Expressing the internal configuration variables in

terms of the configurational averages of the various quantities, we obtain

Z <r’> q2 <r*s> q4 <r q6 <r> q8
0 0 0 0
Ha)=g{lt-—— g+ o

1 2 2 1
-~ (8ax -q) 53

5 (3<r2coszc1>>0-<r2>o)-

2 4

(3 <r4coszd>>o-< r*0) + 935| (3 <r6coszd>>o-<r6>o)

q
7.5.3!

9T (3<r8cosz®>0-<r8>o) + o |

(2.15)
where the subscript zero appended to angular brackets refers to the averaging of
the chains in the unperturbed state and Z is the configuration partition function for
the free chain. Eq 2.15 is identical in form to the expression which was given by
Flory up sixth order terms. Following the procedure adopted by Flory,
multiplication of the denominator of eq 2.15 by exp (< r 2 >, 2/ 6 ) and the

numerator by the series expansion of this expression leads to

2

f(a)=2

exp(-<r2>oq2/6){1 +{n2(<r2>0 /3)+n4(<r2>0/3 )2 q

2 3 4 2 4 86 2
+1g(<r>0/3) q 4+, (<r?>0/3)* q°+..1(q°-3¢%)
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+[g4(<r2>0/3 )2 q4+gs(<r2>o /3 )3 q6+ga(<r2>o /3 )4 q8+...]}

(2.16)
where
_ 1 (3<r2cos®®> _,
N2 ( <r >0 )
_ 1 3<r2cos2d >g 3<ricos?d > <r4>g
N4=_— -1
20 ( < 12> ) 7( <12 >3 < r2>3 )
(2.17)
nGE_1_[(3<r2coszd)>o _1)__@(3<r4cos2c1>>0 _<r¥>g
80 < r?>g <r2>q? <r2>§
41 (3<r5coszd)>o < >4 )]
< r2>y° < 1253
ne = 1 [(3<r2cos2cb>o 1 ) g(3<r4c032d>>0 < 4>
480 <r2>q <2 >q < 12542
+3 (8<r8cos2®> <rb>g ) .3 (3<r8cos2d>>o _<r8> ]
< r2>q® <3’ 77 4

<>, <r2>8

and

1 3< r4>
g.=-(—)[1- 5]
22 5< r2>o

2 6
gsE-( 13)[3(1 3<r>o) (1__3_<r—>03)]
312 2

5<r>p 5.7 <r2>o
(2.18)
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3 < r4> 32< r6> 33< r8>
0 0 0
go=-(——)[6(1-22L 22y a(1- 2220 4 4 )]

4!2 5<r2>0 5.7 <r2>o 5.-7-9 <r2>o

The inverse Fourier transform of eq 2.9 yields the required average

<cos°6 >,=(.2n)"°'z,”ff(q)ei 9T 4q
(2.19)

Substituting from eq 2.16 into eq 2.19, writing q-ras xax+Yy qy + 2 9, and

performing the integrations lead to

<cos”® >=(2Z/Z,)(38/<r >03)”2(1/2n)3/2exp(-3r2/2<r2>0){ 1+

QM2+ O+ OaNe + ONg+ P1Ga+ B2ge+ Bags }

(2.20)
where
a153(3x2-r2)/<r2>0
2,7 r2 2 2 2
0,=3 (5- > J(3x -1 )/<r >4
<r>o
(2.21)
3 r2 r4 2 2 2
a,=3 (7-6 T+ 22)(3x-r)/<r >q
<r>0 <r>0
2 4 6
4,77 r r 2 2 2
a,=3 (?-33 +11 2 T2 3)(3x -1 )/ <r >
<l’>0 <r>o <r>o

and
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2 4

_ r r
B,=15-30 +9 ——
<r>p <r>g

r2 T4 r6
,=105-315 +189—— - 27—

<Tr >0 <r>o <Tr >0

(2.22)
2 r4 r6 8

By=945-3780 — — +3402— -972——+81——

<r>0 <r>o <r>0 <l‘>0

The ratio Z; / Z is equal to the distribution function W ( r ) of the chain end-to-end
vector. The latter may be expressed as a series expansion as derived by Nagai,3
which, upon substitution of the variables defined in eqs 2.18 and 2.22, takes

the simple form
Z, /Z=W(r)=0Q2mn<r2>y/3)-3/2exp{-3r2/2<r2>3}[1+

B194+PB2ge+Pags+-..]
(2.23)
By inserting eq 2.23 into eq 2.20 the following expression is obtained for the

average of < cos? 6>, of the unit vector m

2 1 -1
<05 0> == (1+B,94+Bp06+P30s+) (1+aymy+

+ 0N OgNgt O Ng+ P94+ PB,0e+B30s +-..)

(2.24)

Equation 2.24 may be approximated by expanding the first term in parenthesis

as



18

2 1
<cos 8> =z (1-B194-B29s-B30s) (1+0m+

+ o, Nyt Ay Mgt 0‘4“3"'[31 da+ 5296‘*' Bsga)

4

=%+(1“Blg4'B296'B398)i§1[ainzi/3] (2.25)

2.1.2 Average Orientation of Bond Vectors with respect to Stretch

Direction in Free Chains
Calculation of < cos26 >

The expression given by eq 2.25 is an average for a single chain of the
network having its two ends fixed. For relating the segmental orientation to that
observed in experiments, we have to average eq 2.25 over all orientations and
magnitudes of the end-to-end chain vectors. In eq 2.25 the coefficients n;and g;
include statistical averages which have already been performed, as apparent
from eqs 2.17 and 2.18. Averaging over the ensemble of chains has therefore to
be carried out only for the terms comprising a;jand ;. The latter includes ratios of
the formr m/ < r2 >, M2 | and o includes both those ratios and other terms of the
form 3 x2/<x2>p-r2/<r2>q. If the powers of r are written in terms of the x, y
and z components, a representative term whose ensemble average has to be
taken will have the form xP yd z', where x, y and z are the components of the end-
to-end vector in the deformed state. According to the affine deformation

assumption, they are related to those in the undeformed state by
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x'Dyq z =7»z )»3 k; xgyg z[,
(2.26)
Here Ax, Ay and A; are the x, y, z components of A . Representing the polar and
azimuthal angles of a chain end-to-end vector by ¢ and ¢, the undeformed

components may in turn be expressed as

X0= ro COS'B‘
Yo=Trg SinY COS @
Zg=rqy Sin 9 sin @

(2.27)

Substitution of eq 2.27 into 2.26 and averaging over both rp and the trigonometric
functions leads to
p+q+r

p,9._r
<xPy'z > =n A A <r >0Q (p,q,")

2.28)

where,

1,27 b1 p . q+r+1 q LT
Qp,gn)=(4mn cos O sin ¥ cos ¢ sin ¢ de dd
(p.a.1) = ( )f(p=0fﬁ=0 @sin’ ¢ do
(2.29)

The application of the above integrations to isotropic, unperturbed chains leads
to the averages of unperturbed dimension and of « ;, B; and a;f; which are
listed in the Appendix A. Those averages are inserted in eq 2.25 to yield the
average <cos20 > over all r. It is convenient to organize the latter on the basis of
increasing powers of A . Following the arguments given by Nagai® and Flory,4 it
can be shown that the coefficients g; and n; scale with the number n of segments

in a chain as follows:



20

g4, M2 ~nt
(2.30)
gG,QBaTM,T\B ~ n-2
Mg~ n™
Accordingly, <cos26 > may be rearranged as
<cos29>=%[1+01(12-x‘)+ Dg(x4+;_x-§x2)+
Ds (A8 +323- 823y 4D, (A8 +225,1252_ 8 371 64,4y,
tDs(ATagh - g A )+ Da(A e A agsh a5t st )t
(2.31)
where
D1=2T]2+14T]4+126T]6+13861’]8-30']']294'
- 210 M 296 -1890 n2gs -210 N 494 -1890 164
Dp=- 8 (n4+ 1876 +297 Mg - 10M2Gs - 105125 -
(2.32)
- 1260 11208 - 85 1404 - 900 M 694 ) <20
<r2>§

D3 = ‘57A(n6+33718‘ N2g4 - 21 N2Qe -

<18 >
3
<r2>3

- 378 N2gs - 17 Maga - 258 NeQ4 )
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8
Ds= 18 (n2ge+ 36 n2gs + 714g4+2871694)i_>%
<r2>§

[t should be noted that in eq 2.32, the leading term of D, is of order n-1, those of
Do and Ds are of order n2, and that of D4 is of order n-3.
2.1.3 Orientation function

Substitution of eq 2.31 into eq 2.1 yields

s:%[m(xz-x‘n

+Do (A 41 % A2y 4+ D3(k6+%k3- 58‘ 23)

3
Dy (AB+8525,.1272 8 31 64,54y,
P AT DA g A g g M)

(2.33)

Inasmuch as the next coefficient Ds will include terms of the order n-3, eq 2.33
can not be regarded as complete up to the third order. Accordingly, calculations
in the ensuing section are confined only to the first and second order

approximations.

The orientation function in the small deformation limit may be obtained

from eq 2.33 by factoring out the conventional small strain expression € = A - 1
and letting A = 1. The result takes the form

S=3(D«+LD>»+21D,+33p
2( 1+ D2 +S-Da 4+ 4) €

(2.34)



22

2.2 Segmental Orientation in Polyethylene Networks.

2.2.1 Statistical Characterization of the Polyethylene(PE) Chain

and Monte Carlo Chain Generation

The statistics of PE chain has been investigated before.4 The chain has a
quite simple structure which is represented as a linearly connected sequence of
groups, the identities of individual atoms being ignored. The planar form of the
chain is depicted in Figure 2.3. The chain can be represented as H(-CH>CH3)xH
in a closed form, where x stands for the number of repeat units. Considering
pairwise interdependence of backbone bonds, following RIS formalism, two
equivalent statistical weight matrices are required to account for the pairwise

dependent bond rotational potentials in each repeat unit.

CH,

CH
Y / 2\
4 )
CH2 CH
2

Figure 2.3 The planar form of a polyetylene(PE) chain

The first few bonds of the chain are represented in Figure 2.3. Local
coordinate systems for skeletal bonds are defined in the conventional way; x axis

lies along the i*h bond, y axis lies in theyplane determined by bonds i and i-1 and
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z axis in the way completing the right-handed system. Q'th atom is placed at the
origin. The length of the CC bond is 1.53 A and the supplemental bond angle Z
CCC is 689. Isomeric rotations of the bonds are described in terms of three
rotational states, trans (t), gauche* (g*), and gauche-(g-) which stand
respectively for 00, +1129, -1120 rotations. The statistical weight matrices for the

pair of backbone bonds is denoted by U and defined as

100
U=100c0
100 (2.35)
Here the parameter o is calculated from the general expression
o = exp(-Es / RT) (2.36)

where R is the gas constant, T is the absolute temperature and Eg is 0.5
kcal/mol. For a chain of X units of the form (-CH2CH2-)x , the configurational
partition function Z is found from multiplication of the statistical weight matrices U

as
Z=J'U)>1J (2.37)
where J* = row(1 0 0)

J=col(111)

Monte Carlo Chain Generation:

The various moments of the form <r2m>y and <r2mcos2¢>,>, with m=1-3,

which appear in eqgs 2.17-2.18, may in principle, be evaluated according to the

matrix generation scheme of the RIS model. However, the analytical calculation
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of the moments higher than the second becomes prohibitively difficult and

recourse to Monte Carlo methods becomes imperative.

Conditional Monte Carlo technique with bond isomeric state probabilities
deduced from the RIS model has been employed in generating chains of n=21,
51 and 101 bonds. In general, the conditional probability q ¢y ;i of occurrence of

isomeric state n for bond i, given that bond i - 1 is in state {, is found from
Qen:i =Ptn:i/ 2P nsi (2.38)

where the summation extends over all states accessible to bond i and the joint

probability p ¢y i of states {n for the respective bonds i - 1 and i, is evaluated

from

e i1 n-1
- 4 :
Pensi =271 [h|=2| Un] Ui [T] U3l 9 (2.39)

j=i+1

Here Uy, .; is the matrix obtained by equating ail elements of U; to zero, with the
exception of the element {n. Clearly, in the index notation which is adopted for

convenience in eq 2.39, the matrix U,,....,U,.1 is identified with U.
The following variable were recorded for each generated chain:

i) The vector r; connecting the zeroth atom to the i'th atom, along the

backbone.

ii) The angle ®; between the central bond vector |; and the end-to-end

vector r, which is obtained from
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®; = cos-Y{(l;.r)/l r] (2.40)

Here |; and r is the magnitude of the vectors I; and r; and the dot stands for

the scalar product.
iii) The vectors r2m=(r.r) ™ and (r2Mcos2¢), with m = 1-4 (2.41)

The above information obtained for each generated chain is combined to

determine the ensemble averages <r2m>y and <r2Mcos2¢>g overall sets of

generated chains of a given size.

2.2.2 Calculations and Discussion

Calculations were performed for polyethylene (PE) for a quantitative
assessment of the relative importance of higher order approximations,in the
evaluation of average orientations. Calculations involve two major steps in
parallel with the theoretical presentation above: First, chains with constant r
have been explored. The exact dependence of < co0s26 > onr has been
determined from Monte Carlo simulations and compared with the predictions of
eq 2.24. In the second stage of calculations, all network chains have been
considered and the degree of orientation has been investigated as a function of
extension ratio, by adopting both first and second order dependences on 1/n, for
comparison. The results from the two sets of calculations are separately

presented and discussed in the following.
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2.2.2.1 Orientation in a Chain with Fixed End-to-End Separation

Monte Carlo (MC) simulations are used in the present work for two
purposes: First, it is possible to obtain an exact value for < cos2 6 >, as a function
of r, provided that a sufficiently large number of chains is generated. Secondly,
MC chains are used for the determination of moments of the form < r 2M cos2 6>,
<1 2m>,, with m = 1-4, which will be required for the evaluation of njand g; in eq
2.24. In particular, evaluation of averages with usual generator matrix technique
of the RIS formalism, is prohibitively difficult when m is larger than 2, and MC

calculations are indispensable.

PE chains generated by the conditional Monte Carlo method are classified
according to the magnitude of their end-to-end vectors, and the average square
cosine of the angle between the central bond and the vector r is evaluated for
each subset of chains lying in a given interval of r £ Ar. The resulting < cos2 8 >,
values are plotted as a function of r / rmax in Figures 2.4-2.6, for the respective
cases n =21, 51 and 101. rypax refers to the maximum end-to-end separation, i.e.
that of the all trans configuration. The final point at r / rmax = 1 is calculated for the
central bond in a fully extended chain of n = 21, 51 and101 bonds as < cos26 >,
= 0.717, 0.699 and 0.694, respectively. Results from MC simulations for each of
the successive intervals are shown by the empty circles. In order to end up with a
reliable number of chains in each interval, generation of a set of ~105 chains is
required for a given n. It is observed in Figure 2.4 that < cos 26 >, values for
n=21, which are connected by a curve to guide the eye, are subject to
considerable fluctuations.The latter are not due to uncertainties or scattering in

the properties of the generated chains but to a systematic reproducible effect



27

< COS 9>r

o-o L 1 i 1 1 | A 1 2
0.0 0.2 0.4 0.6 0.8 1.0

r/r
max

Figure 2.4 Dependence of < cos20 >, onr/r max for n = 21.The circles are results
from MC simulations. The curve through the circles is drawn to guide the eye. The lower
solid curve is theoretically obtained by using the first order approximation. The
discontinuous curve is found from eq 2.24. The discontinuous portion is indicated by the

dashed curve.
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0.7 a— y . — T T
9

<cos 0 >

0.0 0.2 04 0.6 0.8 1.0

rlrmx

Figure 2.5 Dependence of < cos28 >, on r/r max for n = 51.The circles are results

from MC simulations. The lower solid curve is obtained by using the first order

approximation. The upper curve is found from eq 2.24.
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0.7 - r ' T
n=101

<COSZB>
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Figure 2.6 Dependence of < cos26 >, onr/rmax for n = 101.The circles are results

from MC simulations. The lower solid curve is obtained by using the first order

approximation. The upper curve is found from eq 2.24.
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which may be attributed to small chain length. Similar fluctuations, though
considerably weakened in amplitude, are discernible in longer chains, as may

be seen in Figures 2.5 and 2.6.

For comparative purposes, the theoretical curves obtained with (i) the
first order approximation where < cos28 >, =1/3 + ainz/ 3 and (ii) the more
complete expression given by eq 2.24, are shown by in Figures 2.4-2.6.
Comparison of the theory with MC simulations is made possible by identifying
the direction of the end-to-end vector with the x-axis. In all cases the lower
curves represent the first order approximation whereas the upper curves are
obtained from eq 2.24. The extrapolation of the latter to r / rmax = 1 has been
carried out with the help of best fitting third order polynomials. From the
observation of Figures 2.5 and 2.6, it is noted that in the case of longer chains the
two approaches are both satisfactory, although eq 2.24 exhibits a better
agreement with the real behavior which is indicated by MC simulations. The
deviation between the two approaches is particularly apparent at more extended
configurations. For n = 21, however, the first order approximation curve lies
definitely below the MC simulation points, regardless of r / rmax and is not
adequate for data interpretation. In this respect, the approach (ii) follows more
closely the MC simulations, apart from a singularity near r / rmax= 0.2, due to the
vanishing of the denominator in eq 2.24. This region is shown by the dashed

portion of the curve.

2.2.2.2 Orientation as a Function of Extension Ratio

The dependence of S on A is shown in Figure 2.7 for n= 21. The solid

curve is obtained from eq 2.33 by retaining the linear term only, i.e., by adopting
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D1=21n2

(2.42)
Do=D3=D4=0

The dashed curve in Figure 2.7 is obtained for the second order approximation

by the use of the following expressions for Dj's in eq 2.33

Di=2mn2+ 1414+ 126 N - 30 N2ga

4
Do=- 18 (n,+181m-101,g,) =20
5 <r2>%

(2..43)
<rb >0

D.= 54 .
3= 3 (Me 11294)<rz>8

D4=0

The results of the first and second order approximations shown in Figure 2.7 for n

= 21 are very close to each other for 1 <A < 1.75. In this range, the second order
approximation predicts a slightly smaller S values than the linear one. Above A
=1.75, however, the second order approximation for S increases very sharply to
full orientation at about A = 2.8. It may be concluded from Figure 2.7 that for short
polyethylenelike chains ( n =21), the first order approximation to orientation given

by the very simple expression

S=1D,(a2-1")

(2.44)
is satisfactory for relatively small strains. However, the identification of the front

factor in eq 2.44 with the Kuhn expression of 1/5N, with N indicating the number
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A

Figure 2.7 Dependence of the orientation function S on extension ratio A for a chain with

21 bonds. The lower curve is obtained from the linear expression given by eq 2.44. The

upper curve is from the second order expression obtained by inserting the coefficients given

by eq 2.43 into eq 2.33.
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of Kuhn segments in the network chain, is not acceptable as has been
demonstrated previously.28 For a polyethylene chain of n = 21 bonds, one Kuhn
segment contains about 10-22 C-C bonds depending on the definition of the
Kuhn length.4:2° Thus,1/5N assumes values between 0.1 - 0.2 while the present

calculations predict a value of .02 for D4/2.

Results of calculations of S for n = 101 are shown in Figure 2.8 as a
function of A . The upper curve obtained by the second order approximation

departs from the results of the linear approximation, the lower curve, around A =

2. D+/2 is 0.004 for this chain and deviates strongly from the Kuhn approximation.

It may be concluded from the form of eq 2.33 that S has to converge to the
expression given by eq 2.44 in the limit of very large n. The strong deviation of
the two curves from each other in Figure 2.8 indicates, however, that n = 101 is a
value much lower than that required for eq 2.44 to be strictly valid. It may be
interesting to note the abruptness of the deviation of the second order curves in
Figures 2.7 and 2.8 from the respective first order ones. The marked rise of the
curves in the second order approximation results from the dominance of the A8
term with increasing extension. This type of behavior at higher strains is distinctly
exhibited by the recent results of infrared dichroism measurements in high cis-

1,4-polybutadiene networks.30

A comparison of eq 2.31 with the results of Roe and Krigbaum3? for finite
freely jointed chains shows that the functions containing the A's are identical in
the two works and both formulations exhibit strong resemblances. However, the
coefficient D3 of eq 2.31 is of order n-2 whereas the corresponding coefficient in

the work of Roe and Krigbaum is of order n-3. It may thus be concluded that the
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Figure 2.8 Dependence of the orientation function S on extension ratio A for a chain with

101 bonds. See legend for Figure 2.7.
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present study does not converge to that of Roe and Krigbaum in the limit of freely

jointed chains.

2.2.2.3 Orientation in the Small-strain Limit

Calculations of the values of S / € from eq 2.34 by retaining only terms of
order n'leads to 0.1176, 0.0525, and 0.0243 for n=21, 51, and 101,
respectively. When terms of order n2, i.e., second order terms, are included, the
above values become, respectively, 0.1253, 0.0546, and 0.0255. This
comparison shows that the contribution of the second order terms to S/ e is
6.6%, 4.0 % and 5.1 % for n=21, 51 and 101, respectively. Thus it may be
concluded that in the small strain limit , the term S /e which may be referred to as

the orientational modulus, is satisfactorily represented by

2 2 >
S/e=23 (3<rfcos"®> _, 2.45
e=15 <2 > ) (2.45)

The above equation is particularly useful in interpreting resuits from infrared
dichroism experiments recently developed by Noda et. al.1, which allow for very

precise determination of S/ e.
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2.3 Segmental Orientation in Polyoxyethylene Networks

2.3.1 Statistical Characteristics of the POE Chain

The statistics of the POE has previously been investigated by various
authors4.37-39, The chain presents a relatively simple structure having x repeat
units, each of them comprising three backbone bonds of the type C-C, C-O and
O-C. On the premise of pairwise interdependence of backbone bonds, following
RIS formalism, three statistical weight matrices are required to take account of the
neighbor dependence of bond rotational potentials. From structural point of view,
POE presents intermediate characteristics between polyethylene and
polyoxymethylene. Yet, the preferred conformations for the three polymeric
chains differ markedly. In the former, the frans conformation is of lower energy
than the gauche; the reverse holds for the latter. On the other hand, analysis of
chain conformation in POE suggests a preference for trans rotations about the C-
O and O-C bonds while it is well established from previous spectroscopic studies

and theoretical analysis that gauche states are preferred about the C-C bonds.
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Figure 2.9 Schematic representation of the first five bonds in polyoxyethylene. The X
and Y axes of the local coordinate system appended to the first bond are explicitly shown. 6
represents the supplemental bond angle and the numbers affixed to the bonds indicate their

indices.

The first few bonds of the chain are shown in Figure 2.9. Backbone bonds
are indexed as indicated. Local coordinate systems for skeletal bonds are
defined as previously described for PE. The length of the bonds in the backbone
are lec=1.53 A, and Ico=1.43 A. The supplemental bond angles £ COC and £
OCC are nearly the same and equal to 8=68.5°. Isomeric rotations of the bonds
are described in terms of three rotational states, trans (t), gauche* (g*) and
gauche  (g-) with respective torsional angles of 0°, +110°, -110°.10 The statistical
weight matrices for the pairs of bonds (CC, CO), (CO, OC) and (OC, CC) are
denoted by Ua, Up and Ug, respectively. They read



38

1 G o |
Up=1{ 1 c oo
L 1 cw o (2.46)
1 ¢ ¢
U=] 1 ¢ oco
L 1 o o .

Here the parameter o (o =0, ¢', ® or @' ) is found from the general expression

o =exp (- Eyg/RT) (2.47)

where R is the gas constant, T is the absolute temperature, and E, assumes the
values 0.90, -0.45, 0.39 kcal/mo! and o= for a equal to o, ¢', ® and o',
respectively.38 For a chain of x units (or 3x-1 bonds) of the form H(-CH,CH20)xH,
which will be investigated in the following, the configurational partition function Z

is found from the serial multiplication of the statistical weight matrices as

Z=J* (UaUp Uc)*1J (2.47)

2.3.2 Calculations and Discussion

The ensemble averages determined from Monte Carlo simulations are
used in eqgs 2.17, 2.18 to evaluate the parameters na = Dq, N4, Ne and g4 which
are then inserted into eqgs 2.32 to calculate the coefficients D4, D2 and D3 for
n=21, 51 and 101. A list of averages resulting from Monte Carlo simulations at
303 K is presented in Table 2.1, for the cases n = 21, 51 and 101. Each average

is obtained from a set of 50000 sample chains. The deviation from each mean on
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TABLE 2.1

Values of the various Averages Appearing for POE

21 51 101
< COS2D >, .3694(+£0.0007) 0.3518(+0.0002) 0.3422(+0.0001)
< 2 cos2d >, 70.68(+0.20) 174.18(+0.64)  343.86(+0.96)

104 < 4 cos2d >, 1.678(+0.011) 12.96(+0.10) 55.04(+0.17)
107 < 18 cos2d >, 0.4519(x£0.0049) 12.25(x0.14) 117.8(x0.1)
< 2>, 175.4(+0.4) 469.6(+1.6) 989.6(+2.8)
104 < 4>, 4.00(£0.02) 34.72(+0.25)  155.97(+0.63)
107 < 18>, 1.05(0.01) 32.03(+0.34) 328.79(%1.00)
TABLE 2.2
Values of the Coefficients Dy, D1, D, and D5 for POE
n
21 51 101
103 D, 20.905(£0.024)  8.938(+0.027) 4.241(0.000)
102Dy 11.160(+0.160)  2.186(+0.035)  0.837(+0.055)
103Dy -46.67(+0.95) -3.17(+0.31) -0.02(+0.27)
103 D3 9.344(+0.133)  1.046(+0.068) 0.12(0.18)
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the basis of two groups of 25000 chains are indicated in parentheses in the table.
The deviations in the coefficients D, and D3 for n = 101 indicate that Monte Carlo
calculations of the stated sample size cannot be reliably used for their absolute
determination. However, calculations presented below indicate that the effect of
those deviations on S is of secondary importance. In fact, less than 6 % error in
the absolute values of S is found to result from those uncertainties, throughout

the range of extension ratios investigated.

The coefficients Do, Dy, Do and D3 are given in Table 2.2 for the three
values of n. The entries in the parenthesis indicate again the deviation from each
mean when two groups of 25000 chains are used instead of one 50000. The
dependence of the coefficients on the number of chains generated is displayed in
Figures 2.10-2.13. In general, the fluctuations in the curves become relatively

unimportant when the number of chains generated exceeds 20000.

The coefficients Dg, D1, D> and D3 obtained by Monte Carlo simulations are
inserted into eq 2.33 to evaluate the orientation function in terms of the extension

ratio. In Figures 2.14-2.17 the reduced orientation function [ S ] defined as

[S1=8/(A2-A") (2.49)

is presented. Figure 2.14 displays the variation of [ S ] with the number of chains
generated for n = 21, 51 and 101, for A = 2 . When the number of chains used is
more than 20000, the fluctuations in [S] are indeed negligibly small and the
values of [S] calculated using two sets of 25000 generated chains lie within 1, 2

and 6% of each other for n = 21, 51 and 101, respectively.
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Figure 2.10 The variation of D, values with the number of chains generated for n = 21,
51, 101. In order to present all three curves on the same graph, the Dy values for n = 51 and
n = 101 are shifted up by adding a constant to each. The constant is 0.0114 for n = 51 and

0.015 for n = 101.
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Figure 2.11 The variation of D1 values with the number of chains generated for n = 21,

51, 101. The curves for n = 51 and n = 101 are shifted up by adding a constant to each. The

constant is 0.087 for n = 51 and 0.10 for n = 101.
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Figure 2.12 The variation of D7 values with the number of bonds generated for n = 21,

51, 101. The curves for n = 51 and n = 101 are shifted up by adding a constant to each. The

constant is -0.046 for n = 51 and -0.0508 for n = 101.
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Figure 2.13 The variation of D3 values with the number of bonds generated for n = 21,
51, 101. The curves for n =51 and n = 101 are shifted up by adding a constant to each. The

constant is 0.008 for n = 51 and 0.00879 for n = 101.
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Figure 2.14 The dependence of the reduced orientation function [S] at A = 2 on the

number of chains generated for n = 21, 51 and 101.
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Figure 2.15 Reduced orientation function [S] = S / (A2 - A1) as a function of the inverse
extension ratio 1/A, for a chain of n =21 bonds, at T = 303 K. The horizontal line represents
the first order approximation and the higher curve results from the second order

approximation which includes the contributions of both terms of order 1/n and 1/n2.
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Figure 2.16 Reduced orientation function [S] = S/ (A2 - A-1) as a function of the inverse

extension ratio 1/A, for a chain of n = 51 bonds, at T = 303 K. See legend to Figure 2.15.
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Figure 2.17 Reduced orientation function [S] = S / (A2 - A~1) as a function of the inverse

extension ratio 1/A, for a chain of n = 101 bonds, at T = 303 K. See legend to Figure 2.15.
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Figures 2.15-2.17 illustrate the change in [ S] as a function of the inverse
extension ratio 1/A for n = 21, 51 and 101, respectively. The horizontal line
represents results for the first order approximation whereas the upper curve is
obtained for the second order approximation in all of the three figures.
Comparison of the ordinate scales in the three figures indicates, as expected, that
longer chains are less oriented at a given A. For small degrees of deformation, the
first and the second order approximations are rather close to each other. For n =
20, in the range A< 1.5, the second order approximation falls below the first order
approximation. It is interesting to note that this result was also obtained in the
previous calculations36.41 for polyethylene and poly(dimethyl siloxane). As A
increases, the curve for segmental orientation in the second order approximation
rises abruptly. More precisely, for A = 2 for instance, the contribution of the
second order terms to segmental orientation amounts to 45% of the total [ S ], for n
= 21. The contribution of the second order terms decreases in longer chains. In

fact, it accounts for 34% and 19% of the total [ S ], for n = 51 and 101, respectively.

The values of D, reported in Table 2.2 allow for the estimation of the
number mg of bonds in a Kuhn segment. Identification of the front factor 1/5N of
eq 2.2 with D, yields the value of mg = 2 - 2.3. This value is much smaller than
that for the polyethylene chain obtained previously.# On the other hand, it is noted
that for POE, the estimation of mk on the basis of the second and fourth moments
of displacement vector leads3® to mk = 10.3 while the conventional approach34 of
estimating mg from <r2>, and the fully extended r, gives mg = 6.0. The variety of
values assumed by mg depending on the method of comparison indicates that an
absolute identification of a real chain by an equivalent Kuhn chain is

inappropriate.
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Chapter lll

Brownian Dynamics Simulation of Chains with
Fixed End-to-End Separation

3.1 Molecular Model and Simulation Method

Model Description

A segment AB of N bonds in a laboratory-fixed coordinate system OXYZ
is considered. The two ends A and B of the chain are held fixed in space
throughout the BD simulation. For mathematical convenience the first atom is
assumed to coincide with the origin of the frame OXYZ, and the first bond lies
along the X axis. The tetrahedrally attached second bond is in the plane XY and
makes an acute angle with the X-axis, as shown in Figure 3.1. Holding the
direction of the first two bonds fixed in space corresponds to eliminating the three
degrees of freedom associated with the absolute spatial reorientation of the
chain. This device is inconsequential for the study of the internal conformational
and orientational dynamics of the chain which is of interest in the present study.
The backbone atoms are indexed from 0 to N and their location with respect to
the frame OXYZ are given by the position vectors ri= (xj, vi, zj). ri may
alternatively be viewed as the position vector of the ith united group forming the
chain, in which the hydrogen atoms or other substituents are collapsed into the

backbone atom. For simplicity, the ith backbone atom or group will be referred to
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Figure 3.1Schematic representation of a chain of N bonds in a fixed reference frame
OXYZ. Atoms with indices 0, 1, 2 and N are fixed in space throughout the BD simulations

of a chain of a given end-to-end separation vector r.
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as Ci. The position vector ry of the terminal atom is equal to the end-to-end

vector r of the chain.

A short sequence of bonds between atoms Ci; and Cj,» is shown in

Figure 3.2. I; is the bond vector connecting atomsi- 1 andias
li=ri-r.q =1, , N (8.1)

The dot product of consecutive bond vectors defines the supplemental bond

angle 0; as

ei=cos4[Li+—1'h—] =1, . , N-1 (3.2)

i+t i

where |; is the magnitude of the vector ;. The torsional state of bond i is
described by the dihedral angle ¢; which is expressed in terms of bond vectors

as

= cost |- Mixhig) o (lisg x'i)} . )
0; = cos TSI TS i=2, ., N-1 (3.3)

The values of 0°, 120° and -120° for ¢; define the respective rotational isomeric

states trans (f), gauche* (g*) and gauche- (g-) of bond i."

The chain is subject to an intramolecular conformational potential
controlling the changes in the bond lengths, bond angles and bond torsions in
conformity with the model chain of Helfand et al.’# The bond stretching potential

Vp(lj) for bond i is given by the harmonic function
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Figure 3.2 A portion of simulated chain between atoms C;.; and C;,, indicating the

generalized coordinates l;, 0; and ¢; 1; with 1 <i <N is the bond vector between atoms
Ci.; and C;, 0; is the supplemental bond angle at the ith atom and is defined in the range

1 <i <N-1, ¢ is the torsional angle of the bonds with indices 2 <i <N-1.
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Vp (1) = (ko / 2) (I - 19)? i=1, ... N (3.4)

where ky, is the bond-stretching force constant, and Iy is the most probable bond
length. Similarly, Vg(8) is the bond angle bending potential which constrains the

supplemental bond angle 6; to fluctuate about 8¢ according to

Vo(8) = (Ko /2) ( cOSB; - coSBp)? i=1, N -1 (3.5)

Here kg is the bond angle bending force constant. The torsional motion of bond i

is governed by the rotational potential Vg(¢i)

5
Vo(0i) = ko Y, @n cosn i i=2, ey N 1 (3.6)

n=0

leading to three isomeric minima at the t and g* states. Here kg is the bond

torsion constant and the coefficients a;j (0 < i < 5) satisfy the relationship,

i an=0 (3.7)

n=0

with ap equal to unity. It is clear from eq 3.6 that bonds are subject to

independent rotational potentials which leads to the expression

for the rotational potential energy of the chain. Clearly, this approximation is not
applicable to chains in which the rotational state of a given bond is strongly

coupled to that of its close neighbors. In the case of pairwise interdependent
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bonds which is commonly adopted in chain statistics, the potential given by eq

3.6 should be modified as a function of two consecutive bond dihedral angles.

The total conformational potential V of the chain is given by the additive

contribution of the above three interactions as

N N-1 N-1 :
V=2 Vu(l) + Y, Ve (8) +Y, Vo (0) (3.9)
i=1 i=1

i=2

Brownian Dynamics Method

For a chain of N+1 atoms each of equal mass m, the Brownian motion of

the i'th atom is given by the Langevin equation

2, |
m3T gdE vy m A (3.10)
d t2 dt

which in the high-friction limit reduces to the equation of motion

dri

=5 =M ViV A Q) (3.11)

B

In egs 3.10 and 3.11, § is the friction coefficient, B is defined as the ratio £/ m, V;
is the gradient operator indicating the partial derivative with respect to the
position vector r;, and Aj(t) is the Gaussianly distributed stochastic force per unit

mass with zero mean and covariance matrix

< At) Aflt) > = (2BkgT /m) &; 8(t - t') I3 (8.12)
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Here kg is the Boltzmann constant and T is the absolute temperature, I3 is the
identity matrix of order 3. Explicit expressions for the stretching, bending and
torsional forces resulting from the negative gradient of the potential V are given

in the Appendix B.

In the present model the hydrodynamic interactions between carbon
centers transmitted by the surrounding medium, and the intermolecular
interactions between non bonded chain units leading to excluded volume effect
have not been included. The contribution of these interactions to the rapid
conformational relaxation processes in polymeric chains presently investigated

is expected to be negligibly small .

The Brownian dynamics simulation is performed by the numerical
integration of the 3(N+1) equations of motion given by eq 3.11 for each atom
constituting the chain. The previously described*? stochastic extension of the
Runge Kutta method is adopted for that purpose and the second order
approximation is used. The details of the method is given in Appendix C. The
integration time step is taken as &t = 0.5 fs in conformity with previous work.'4
Thus, the simulated stochastic process is discrete and Markovian in the sense
that the trajectories of particles are generated only at discrete time steps 0, 8t,
20t, etc. and the state of the system at a given time t+8t is completely

determined by its state at time t .

Simulation Parameters

Simulations are carried out for polymeric chains of 49 bonds using the
set of energy parameters listed in Table 3.1. The parameters for torsional

parameters are proposed by Ryckaert and Bellemans*® as representative of a



Table 3.1
Conformational Energy Parameters
ko/m (ns1) 2.5 x 109
ke/m (J/kg) 1.3x 107
ke/m (J/kg) 6.634 x 105
ao 1.0
ay 1.3108
ap -1.4035
as -0.3358
ay 2.8271
as -3.3885

Table 3.2

Simulation data and Results*

Run A tr(ns)  pr Mg(ns 1)

I 0.37 12.0 0.593 5.60

| 0.91 13.5 0.603 5.40
| b 0.91 13.5 0.627 2.92
n 1.38 12.5 0.641 4.58
\Y) 2.00 13.5 0.777 2.76

* at 400K, ** at 300K

57
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hydrocarbon chain. The force constants for bending and bond stretching were
proposed by Helfand et al.'* as a reasonable compromise between realistic
estimates leading to too fast oscillations and softer potentials allowing for larger
time steps of integration. The mass m of chain atoms was taken as 0.014 kg/mol,
corresponding to methylene repeat units. Similarly, the equilibrium values Iy =
1.53 A and 6, = 70.53° of alkane chains were used. Simulations were performed
with = 1.0 x 105/ ns for T = 400K in general. A few runs were repeated for 300K

to estimate the effect of temperature change.

Initially, bond lengths and angles were assumed to be at their
equilibrium values and bond torsional angles were assigned by the Monte Carlo
technique based on the conventional rotational isomeric state* approach.
Accordingly, a priori probabilities of rotameric states t, g* and g~ were estimated
from the above rotational potential and bonds are assigned isomeric states in
conformity with those probabilities. Simulations were repeated for four chains
with distinct end-to-end separations listed in Table 3.2. The total duration of
simulations t¢ for each run are given in the third column. A given run required a
CPU time of about 10-12 hours on an SGI / 35 Personal Iris. The end-to-end
vector of each chain was held fixed by artificially freezing the two terminal atoms.
This mathematical device permits to simulate a chain between two securely
embedded junction points A and B in a deformed network, which undergoes
restricted motions to the extent of rigidity imposed by its extension. The degree of
extension of each chain is characterized by the ratio A = r / < 12 >¢'2 of its end-to-
end distance r to the unperturbed chain length. Compared to the dimensions of
unperturbed polyethylene chains, in which r =< r2>0"2 = 2.6 nm for n = 48,
(using the characteristic ratio* C,= 6.0 in < r2>g= Cy nlg2), the simulated
chains Il and IV with respective end-to-end distances 3.62 and 5.23 nm have

relatively expanded configurations, while the chain | with r = 0.97 nm is highly
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contracted. The dimensions of the chain Il with end-to-end distance r = 2.39 nm

approximate those of unperturbed PE polymers.

3.2 Internal Orientational and Conformational Correlations
in Deformed Polymer Chains

The simulation results have been used to study the equilibrium and
dynamic properties of model PE chains described in the previous section. The
following sections are organized as follows: In Section 3.2.1, the BD trajectories
of bond dihedral angles are displayed for chains of various extension and the
rotational isomerization rates are estimated from hazard analysis. Static and
dynamic correlations between bond orientations are analyzed . The time
evolution of probability distribution functions for bond dihedral angles and bond
reorientation in space are obtained. In the final Section 3.2.2, concluding

remarks are presented.

3.2.1 Analysis of the Trajectories

3.2.1.1 Trajectories and Equilibrium Distribution of Bond Dihedral

Angles

For illustrative purposes, the changes in the dihedral angles of the
central bonds in the chains 1, 1l and IV during a BD simulation period of 1.2 ns
are displayed in Figure 3.3. The preference for rotational angles centered within
+30° fluctuations about the isomeric states t, g* and g~ is clearly apparent from

those trajectories. It is noted that the more contracted chain exhibits steady
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Figure 3.3 Example trajectories of 1.2 ns for dihedral angles ¢; of the central bonds in
chains of various extensions I, I and IV with A = 0.37, 0.91 and 2.00, respectively, at

400K.
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transitions between rotamers while the highly strained chain with the largest A is
subject to fast oscillatory motions and in particular rapid back transitions
restoring the bond torsional angle to the trans state, whenever the gauche® state
is visited. In Figure 3.4, the isomeric transitions within the simulation period of

1.2 ns are presented for the bonds in the chains with A = 0.37, 1.38 and 2.00.

The normalized probability distributions of dihedral angles for the chains
of various extensions are displayed in Figure 3.5(a)-(d). The distributions were
obtained by considering dihedral angle intervals of 20°. The weak asymmetries
of the figures indicate the statistical error bounds of the BD simulations. An
increased preference for the trans state with increasing chain extension is
observed. From the integration of the probability distribution curves in the ranges
-60° < ¢ < 60° and 60° < I¢l < 180°, the equilibrium probabilities of t and g*
states, respectively, are estimated. The results are listed in the fourth column of
Table 3.2. It is interesting to note from the tabulated equilibrium probabilities pt
of the trans state or from the curves in Figure 3.5(a)-(d) that the equilibrium
distribution of rotational states is more sensitive to chain extension in the
case of more stretched chains (with higher A). The contracted chain on the other
hand exhibits a distribution of dihedral angles that closely approximates that of

the unperturbed chain.

3.2.1.2 Rotational Isomerization Rates

For the estimation of the rotational isomerization rates in the chains with
different extensions, the hazard plots shown in Figures 3.6(a) and (b) were
drawn. The cumulative hazard H(t) in the ordinate of the figures are obtained

from the set of first passage times from one rotational isomeric minimum to
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Figure 3.4 Absolute transition times(abscissa) for the various bonds. An o indicates a

transition from one of the gauche states to the trans state, while ® indicates a transition from

the trans state to the one of the gauches.
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another, by following the procedure previously outlined.® Accordingly the first
passage times are organized in ascending order and the hazard rate h(tj)
corresponding to the ith element 1; of the set of first passage times is assigned
the value h(tj) = i / (n-i) where n is the total number of first passages. The
cumulative hazard H(t) results from the summation of the hazard rates h(t;) in the
range 0 < 1;< t. The details of the hazard analysis technique is given in Appendix

D.

The asymptotic slope An of the cumulative hazard is a measure of the
transition rate for each chain. The slope A, is related to the rate of transition Mg

from trans to one of the gauche states and to the reverse rate Ag by

}\.h = 2pt )utg + 2pg 7\,91 = 4pt 7\49 (3. 1 3)

where the second equality follows from the principle of detailed balance. The
isomerization rates Mg resulting from the least squares fits of the plots for the four
chains in Figure 3.6(a) are listed in the fifth column of Table 3.2. The
isomerization rates decrease with chain extension and increases with

temperature.

In particular, it is noted from Figure 3.6(a) that the most stretched chain
(IV) exhibits distinctly lower slope A indicative of a slower transition rate
compared to the other three chains. At first glance, this feature appears
contradictory to the trajectories displayed in Figure 3.3. A closer examination
reveals, however, that on a short time scale this chain is in fact the one which
exhibits the highest mobility as illustrated in Figure 3.6(b). This figure which
represents nothing else than the short time portion of Figure 3.6(a) clearly

demonstrates the enhanced tendency of the chain IV to undergo high frequency
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motions at short time scales. The majority of those motions are however in the
form of reverse transitions forcing the bond back to its original state and do not
effectively contribute to the conformational relaxation of the chain. The effective
rate of isomerization is portrayed by the long time asymptotic slope of the
cumulative hazards and is relatively low, as would be expected for a chain with
considerably reduced degree of freedom. In the case of temperature effect, any
decrease in temperature leads to the lower isomerization rates as depicted in

Figure 3.6(c).

3.2.1.3 Equilibrium Correlations between Bond Orientations

The equilibrium correlation between the orientations of bonds i and j

along the chain is expressed by the order parameter or orientation function S

S=1/2 (3 (m;.mp)?-1)=1/2 (3 < cos2a > - 1) (3.14)

where mj and m; are the unit vectors along the two bond vectors |; and I;, and o
is the angle between them. The angular brackets in eq 14 indicate both the time
average for the pair of bonds i and j and the ensemble average over pairs of
bonds with the fixed number j - i of intervening bonds. Figure 3.7 displays the
decay of orientational cross-correlations with increasing number of intervening
bonds, for the four chains of different extensions. A sharp even-odd effect which
persists over a large number j-i of intervening bonds is observed in the case of
stretched chains. Strongest orientational correlations, positive or negative, occur
in the case of the most strained chain (IV) as expected. It is interesting to note on
the other hand that the orientational behavior of the contracted chain (I) closely
resembles that of the unperturbed chain (Il) and the orientational correlations

between bonds vanish at about j - i =5, in those chains.
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Figure 3.6(a) Time dependence of cumulative hazards H(t) for the simulated chains of
various end-to-end separation, indicated in the figure. The lowest curve obtained for

A =2.00 shows the low effective rate of isomerization of the most strained chain.



1.0 i r T T T ]
P »°]
L PR g ,o" ;
R ,' S
0.8 [
< i
- X
g 06r
N
2 ) V.
S 0.4} "'
— RS U4
g [ ¢ 7 MM Il )\‘=200
g [ memmmem=mss A=138 ]
© o02f s ) =091 | ]
A=0.37 | ]
0.0 . 1 -
0.00 0.01 0.02 0.03 0.04
t (ns)

67

Figure 3.6(b) Short time region of the hazard plot displayed in Figure 3.6a, indicating

the enhanced tendency of the bonds in the most stretched chain to undergo back transitions to

their original rotameric state.
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obtained shows the low effective rate of isomerization of the chain at the lower temperature.
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Figure 3.7 Static orientational cross-correlation function S = 1/2 [3 (m; . mj)2 - 1]
between bonds i and j as a function of the number j-i of intervening bonds, for the four
chains with the indicated extensions, at 400K. A strong even-odd effect enhanced by chain

extension is observed.
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The influence of temperature on the degree of bond orientational
correlations is illustrated in Figure 3.8. Chain Il is taken up. It is observed that
the orientational correlations which vanish at about j - i = 6 at 400 K are

maintained until j - i = 10 with the decrease in temperature to 300K.

An estimation of the orientational correlation distance between
neighboring bonds may be performed by examining the change in the
orientational cross-correlation function S with the distance separating the
studied bonds. Figure 3.9 displays the variation of S with d where d is taken as
the distance between the midpoints of the bonds. Results reported in Figure 3.9
are obtained by computing the average S values corresponding to intervals Ad
of 0.025 nm. The curves exhibit oscillations which gradually level off with
increasing d to the asymptotic values dictated by the particular chain extension.
The lowest starting point reflects the almost tetrahedral bond angle between
successive bonds and is not affected by chain extension. The effect of chain
extension is distinguishable at longer separations. Strongest orientational
correlations occur in the most stretched chain. The unperturbed chain exhibit the
same behavior as the contracted chain | and is not explicitly displayed for clarity.
The relative heights of the curves are in conformity with the ordering of their end-
to-end separation. This dependence of S on d is characterized in all cases by a
maximum correlation at a separation of about 0.12 nm, followed by a minimum at
about 0.20 nm. Beyond 0.5nm approximately, orientational correlations

between bonds become negligibly small unless the chain is highly strained.
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Figure 3.8 Decrease in S with increasing temperature. Results are presented for the

example chain II at the two simulation temperatures 300 and 400K.
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Figure 3.9 Change in equilibrium orientational correlations S between pairs of bonds
with increase in their separation d. The orientational correlation length does not extend

beyond 0.5 nm except for the highly strained chain.
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3.2.1.4 Time Decay of Bond Orientational Autocorrelations

The first and second orientational autocorrelation functions (OACF) for a

given bond i along the chain are given by the respective expressions

Mi(t) = <m;(0) . myt) > (3.15)

and
Mo(t)=1/2 <3 (m(0) . m; (1)%-1> (3.16)

Here m;(0) and mj(t) represent the unit vectors associated with the initial and
final states of the investigated bond vector. M;q(t) is related to dielectric
relaxation process whereas Ma(t) is observed in fluorescence anisotropy, NMR
and ESR experiments. In analogy to eq 3.14, the averages in eqs 3.15 and 3.16

are performed by taking both the ensemble and the time averages as

n-k
Mi(t) = At (-2k)" (t- 7 D D' mi(sat) . mi(sAt+ ) (3.17)

i=k S

A similar expression applies to Ma(t). The first summation includes all bonds
devoid of end effects. The value k = 10 is safely used. The second summation is
performed over discrete initial times sAt with spacing At. s is varied from 0 to (t;-
t) /At for a total simulation duration of tf, and At is chosen as 4900 fs. It is noted
that the use of mj(sAt) instead of mj(sAt+t) in eq 3.17 yields at t = O the
equilibrium property < cos a >. Similarly, Mo(t) reduces to S upon substitution of t

=0andj=#i.

The time decay of the first OACF My(t) is displayed in Figure 3.10. The

initial decay rates are comparable in the chains with different extensions but the
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Figure 3.11 Time decay of the second orientational autocorrelation function Mj(t) for

internal bonds of simulated chains subject to indicated A values.
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curves gradually separate as the equilibrium values are asymptotically
approached. The distinction between the respective chains are even weaker if
the second OACF Ms(t) is considered, as illustrated in Figure 3.11. A measure of
the dynamics of the chain excluding the effect of equilibrium constraints is the

normalized OACFs

Mi (Onorm = [ Mj (t) - M (2} 1/ [ M; (0) - Mj(e0) ]  i=1,2 (3.18)

The time decay of the normalized first OACF is displayed in Figure 3.12. It is
clearly seen that bond reorientation is fastest in the most stretched chain
indicating the occurrence of fast large amplitude motions on a localized scale.
As far as the overall chain is concerned, on the other hand, the asymptotic high
value of M¢(t) at long times in Figure 3.10 shows that the ultimate orientational
relaxation is considerably limited. This is a natural consequence of the
imposition an uniaxial tension holding the chain ends far above their
unperturbed separation. Figure 3.12 shows that the bond reorientation is
slowed down in the case of less extended chains. The influence of temperature
on the bond OACF is depicted in Figure 3.13. Any increase in temperature

results in faster bond reorientation.

Stretched exponential functions of the form44

Mitt) =exp {-t/T)B} (3.19)
with 0 < B < 1 has been used in literature to approximate the time decay of

correlation functions. Tj is the characteristic time for the specific relaxation

process expressed by Mj(t). Eq 3.19 may be rewritten as
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Figure 3.13 a) Time decay of the first autocorrelation function M;(t) for internal bonds of
the example chain II at the two simulation temperature 300 and 400K. b) Time dependence of
normalized M(t) which is a measure of local chain dynamics excluding equilibrium

contributions for the chain II at the two simulation temperature 300 and 400K.



78

log[-InMj(t)]= Blogt-plogTi (3.20)

which permits an easier graphical analysis of the results. Plots of log [ -In Mi(t) ]

vs. log t are presented for i = 1 and 2 of the bonds in the chains with different
degrees of extension in Figures 3.14 and 3.15 respectively. Representation of
M4(t) by stretched-exponential for the chain Il at two simulation temperatures,
300 and 400K is given in Figure 3.16. The analysis is mostly significant in the
intermediate to long time range inasmuch as a single exponential decay of
correlation functions is operative in the two limits as t approaches zero or infinity.
That the OACFs may be fairly well represented by stretched exponentials is seen
from the approximately straight lines resulting from BD simuilations. The
exponents calculated from the slopes of the curves in Figure 3.14 vary in the
range 0.46+0.03, smoothly increasing with chain extension. An exponent of B =
0.5510.04 is obtained on the other hand from the best fitting lines in Figure 3.15.

The dependence on chain extension is mostly manifested by the vertical shifting

of the curves which is directly related to the characteristic time T;. it is noted that
the characteristic times T4 associated with the first OACF exhibit a definite
dependence on chain extension whereas those corresponding to My(t) are
relatively insensitive. Table 3.3 gives a summary of the exponents and
characteristic times resulting from the BD trajectories of the four chains. A ratio of
T1 / T2 of about 4 is obtained for the unperturbed chain. This ratio is found to
decrease with increasing chain extension. Correlation times for the decay of
M1(t) and Ma(t) may alternatively be estimated from the times corresponding to
1/e of their full relaxation. The correlation times obtained by this method exhibit
the same dependence on chain extension. The ratio T1 / T> is found to decrease
linearly with chain extension, irrespective of the method of estimation of

characteristic or correlation times, as illustrated in Figure 3.17.
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Table

3.3

Stretched Exponential Parameters for Bond OACFs*

Run A T1 (ns) B To(ns) B

i 0.37 0.178 0.453 0.030 0.586
ll 0.91 0.137 0.469 0.030 0.578
I~ 09 0.324 0.674

i 1.38 0.087 0.454 0.027 0.554
v 2.00 0.026 0.467 0.020 0.513

* at 400K, ** at 300K
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form. Exponents B = 0.5530.04 are obtained from the best fitting lines. The characteristic

times and exponents for the four runs are listed in Table 3.3.
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form according to eq 3.20 for the chain II at the two simulation temperature, 300 and 400K.

Exponents B and the characteristic times obtained from best fitting lines are listed in

Table 3.3.
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Figure 3.17 Dependence of the ratio T; / T, on chain extension. T; and T; are obtained

1
i

T,/ 7T,

both from (i) the best fitting stretched exponentials (filled circles) and (ii) the 1/e points of

full decays of OACFs (empty circles). Linear decrease of T; / T, with chain extension is

observed irrespective of the method of approach.
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3.2.1.5 Distribution of Bond Rotation and Reorientation Angles

Following the approach adopted by Takeuchi and Roe4%+46 for a detailed
description of the time evolution of relaxational processes in polymers, time-
dependent distribution functions is considered in the following. The evolution of
bond torsional motions is described by the probability distribution function P(IA¢l,
At) associated with the absolute changes in dihedrai angles lA¢l occurring within
the time interval At. Similarly, P(Aa, At) represents the probability that a given

bond undergoes a spatial reorientation of angle Aa during a time span At.

Figures 3.18(a)-(d) display the distribution functions P(lA¢l, At) of bond
torsional motions obtained for the four chains of various extensions. The A
values corresponding to each of the parts (a)-(d) is indicated. The curves are
drawn for At = 0.005, 0.060 and 1.765 ns in each case. The distribution functions
are not normalized but rescaled such that P(IA¢l = 0°, At) = 1 for each of the
chosen At values. Initially the distribution function P(IA¢l, At) is a dirac function
with the pike at IA¢l = 0. With increase in the elapsed time the distribution is
expected to broaden towards larger 1A¢l values. However, the broadening does
not occur in a gaussian form but instead a second peak centered about lA$l=
110°% appears which is indicative of the probable transition to another rotational
isomeric state. In fact, the change in the torsional angle exactly reflects the
rotational difference between the trans and gauche states of either sign in PE
chains. At long times the equilibrium distribution of dihedral angles is gradually
approached as revealed from the comparison of the uppermost curves in Figure

3.18(a)-(d) with those of Figure 3.5(a)-(d).

Figures 3.19(a)-(d) display the evolution of bond reorientation in space.

The distribution curves P(Aa, At) are obtained from the angular displacement Aa.
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of bond vectors in space, by considering the same bond during two successive
times with a delay of At. Curves are drawn for At = 0.01, 0.11 and 2.31ns. For an
unbiased distribution of spatial reorientation the distribution curves should
evolve from a dirac function at At = 0 to the functional form 1/2 sin Aa at long
times. This is not the case as the chains are subject to fixed end-to-end
separations that certainly constrain bond spatial reorientations. The unperturbed
chain and the compressed chain obey comparable dynamics and approach the
equilibrium distribution 1/2 sin Ao at long times, which is indicated by the dotted
curve in parts (a) and (b) of the figure. The bonds in the stretched chains
however exhibit smaller Ao values on the average, decreasing with chain
extension. This clearly demonstrates the influence of the deformation of chain
ends on the orientational mobility of the chain even at the scale of individual

bonds.

3.2.2 Concluding Remarks

In the present study, BD simulation method has been employed for a
systematic analysis of chain extension on the conformational and orientational
dynamics of polymer chains. The picture of spatially frozen chain ends is
conveyed by the classical model of network chains in which the junctions deform
affinely with the macroscopic strain. A more realistic model would consider a
distribution of end-to-end separations in the deformed state and the possible
fluctuations of the constrained domains. Restriction of the analysis to fixed chain

ends is a mathematical simplicity which is adopted for computational efficiency.

The hazard analysis of BD trajectories demonstrates that with increasing

extension and decreasing temperature the effective isomerization rates
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decrease. The highly strained chain undergoes rapid rotational jumps though
those are mostly in the form of back transitions forcing the bonds back to their
original states and hence not contributing effectively to the conformational
relaxation of the chain. Examination of the equilibrium correlations between
bonds within the four chains of different extensions reveal the strong even-odd
effect dominating the static cross-correlations, in agreement with previous work4”
The correlation length is about 0.5nm in the unperturbed or weakly perturbed

state but is larger in the highly stretched chain.

Dynamic orientational autocorrelations of bonds are described by the
functions M1(t) and My(t) differing in correlation times by a factor of about 4 in the
case of unperturbed chains. This factor is found to decrease linearly with
increasing end-to-end separation. Recent MD simulations of n-alkanes in the
bulk state by Takeuchi and Roe*® yield a value of about 3 for the ratio T4 / Ty of
the correlation times associated with M1(t) and Mo(t) for bond reorientation. The
small difference between the present results and those from MD simulations may
be attributed to the influence of intermolecular constraints which are not
presently considered. In fact, with increasing constraints at the chain ends, i.e.
with increasing r, the ratio T / Tz is found to decrease linearly and approaches
almost unity (indicative of large jump motions) in the highly strained chain.
Previous analytical treatment based on the dynamic rotational isomeric states
formalism leads*® to a ratio of about 1-1.5 which follows from the discrete 120°

amplitude jumps inherently present in that approach.

The exponents B which satisfactorily reproduce the time decay M;(t) and

Ma(t) are found to assume the values 0.46+0.03 and 0.55+0.04, respectively. For

polyisoprene, recent BD simulations lead to = 0.6 for Ma(t) while B = 0.4 for

M1(t) as measured in dielectric experiments and interpreted theoretically.4? 1t is
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interesting to note that the exponents in the two different chains, polyethylene
and polyisoprene, show comparable qualitative and quantitative dependence on

the type of orientational autocorrelation function considered.

Time-dependent probability distribution functions describing the evolution
of rotational and reorientational motions of the bonds indicate that the
amplitudes of rotational motions are not affected by chain extension but their
occurrence is reduced. Thus the location of the second peak in the distribution
functions of Figure 3.18 remains unchanged at about A¢ = 112° when increasing
deformation but its height is reduced. The amplitudes of bond reorientational
motions on the other hand are significantly diminished upon stretching of the
chain as observed from the shift of the maxima in Figure 3.19 to lower values
with increasing chain extension. Thus the long time peak shifts from 90° for the

unperturbed chain, to less than 60° for the highly strained chain.
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3.3 Time-Dependent Probability Distribution Functions for
Orientational Motions of Segments in Polymer Chains.

In this part, the adequacy of the joint probability distribution function in
terms of spherical harmonics has been tested for chains with fixed ends at

various extensions. The sections under this subject are organized as follows:

In Section 3.2.1, the serial expression for the time-dependent probability
distribution function is given. The coefficients of this series are evaluated from
simulations for chains of various extensions in Section 3.3.1 and the series are
developed up to the second order terms in the spherical harmonics and the
analytical expressions are compared with the results from Brownian dynamics
simulations in Sections 3.3.2 and 3.3.4. Graphical analysis of the probability
distribution functions have been carried out to indicate the suitability of the
closed form expressions for an effective description of local orientational
dynamics of polymer chains in Section 3.3.3 and concluding remarks has been

represented in the final Section 3.3.5 within the content of this part.

3.3.1 Distribution Function for Segmental Orientation

The z-axis of the laboratory-fixed coordinate system is chosen along the
direction of the end-to-end vector r. The n'th atom is kept fixed along the z-
axis.The zeroth atom of a 49 bond chain is located at the origin. The z-axis
chosen in this manner forms an axis of cylindrical symmetry about which all

configurations of the chain are equally accessible. The orientational dynamics of
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a vector m, shown in Figure 3.20, is analyzed. m is assumed to be rigidly affixed
to a point along the chain. The axes shown in the figure are parallel to the
respective axes of the laboratory-fixed coordinate system. The state of separation
of the two ends of the chain is represented by the parameter A defined as the
ratio of the fixed end-to-end distance r to the root mean-square distance of the
end-to-end vector of the unperturbed chain. Four different values of extension

ratios A are considered in this study as shown in the third line of Table 3.4.

N
e
3

<

Figure 3.20 Orientation of the vector m with respect to the laboratory-fixed frame xyz,

defined by the polar angle ® and the azimuthal angle .

The instantaneous orientation of m may be described by spherical polar .

angles Q = (0, v ) where o is the angle between the z-axis and m, and v is the
angle between the x-axis and the projection of m on the xy-plane. The joint
probability of orientation Q at time t and Qo at time t; for the vector m is denoted
as pr(2, t; Qo, to) for a chain with end-to-end separation r. This probability may be

expressed in terms of a double spherical harmonics series as
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pl’ (Qv t; Qo, tO) = Z

k=0

Y ool

k *
Y Yar YT(QO) Y:‘(Q) (3.21)

|
k n=-| Kl

where Y|, (Q0) are the spherical harmonics given by5°

(2k + 1)(k - m)!]

YR (@) =Yk(0, y) = (1) 4n (k + m)l |

PT(cos w) eimv (3.22)

with l:’r,:‘(cos o) expressed in terms of the Legendre polynomial Py(cosw) of

degree k as

PT(cos o) = (sin®w) ]é’—x",‘n- Pi(cos ) (3.23)

Pk(cosw) is equal to (cos ) and (3/2 cos? w -1/2 ) for k = 1 and 2, respectively.

The details are given Appendix E. The superscript * in eq 3.21 denotes the

complex conjugate, and a:;n is the coefficient obtained as

= <YV, (3.24)

=f f pr(Q. t; Qo, to) Y';‘(Qo) Y{‘(Q)* dQo dQ (3.25)
Q JQo

where, dQ = sin o dw dy and dQp = sin wp dwy dyp and the variable o and y vary
in the ranges 0 < o < &, 0 <y < 2r. The angular brackets with the subscript r

denote the time average over all possible configurations of the chain with fixed r.

We define the probability function pr(Q, t; Qq, to) in eq 3.21 as the

probability obtained for a single chain with fixed r along the z-axis. In adopting
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this definition, we pay attention to directivity along the chain by assuming that the
two ends of the chain are distinguishable. We make this choice in the interest of
interpreting our computer simulation resuits obtained for the single chain. This
choice of averaging does not obtain, for example, in spectroscopic experiments
where the two ends of chains are not distinguishable and odd powers of cos ®

necessarily vanish when t = 0. This point will further be discussed below.

The following relations exist between the coefficients of eq 3.21 from
cylindrical symmetry:

-m-n m
mn_ -m = a5

ki ki ki (3.26)

where &mp is the Kronecker delta. With these definitions, eq 3.21 may be written

up to the second order terms in the spherical harmonics as

9
P, (2, t Qo, to) =—] [1 £, <fi>, fi]
=1

16 n2 (3.27)

where the nine functions f; are given as

f1 = (3/2)"2 (cos @+ cos wp)

f=1 (6/2)"2 [(3cos® wo- 1) + Bcos® @-1)]
1‘3:%(30)"2 [cos ap (3cos® @- 1) +cos ® (3 cos® mp-1)],

f4 = 3 cos wg COs ®
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ts=2 (3cos® wp-1)(3cos® -1
5= (3c0s" wo-1)( ®-1) (3.28)
f6=§21 22 sin wg sin @ cos (- o )
f7=-'|é5-21’zsinmocoscoosinmcosmCOS(\V'\lfo)

f8=_3.(5)1/2 [ sin o cos wy sin ® + sin @ cos @ sin wy ] cos (- yo )

f9=g-i- 212 sin2 wg sin2 wcos 2 (- Yo )

The averages appearing in eq 3.27 are defined as

< fi >r=f f fi pr (Q, t; Qo, o) dQp dQ (3.29)
Q JQo

For an ensemble of chains with indistinguishable ends for which the z-axis may
equally be directed from the n’th atom to the zero’th atom, the averages < fi >y
containing odd powers of cos wgo should reduce to zero, thus leaving the four

averages < fa >y, , <f5 >, <fg >rand < fg >y.

Evaluation of the nine functions < f; >r completely describes the probability

distribution function up to the second order terms in the spherical harmonics.
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3.3.2 Evaluation of < fj >r from Brownian Dynamics Simulation Data

In this section, the averages < fj >, are evaluated from trajectories of the
vector m over sufficiently long time ranges by using the Brownian dynamics
simulations of the preceding work, Section 3.1, for a polyethylene chain at four
different degrees of extension, A. The vector m is chosen in the present study as
a unit vector along backbone carbon-carbon bond. All calculations throughout
the paper are based on the average behavior of the central 20 bond vectors of
the chain. The total duration of the four simulations are shown in the second line
of Table 3.3. Time steps of 5 femtoseconds were used in simulations. The
averages are calculated for the four runs by using eq 3.22. The first two averages,
< fy >y and < f3 >, are independent of time inasmuch as they depend only on the
instantaneous values of o and the simulations are performed at steady state
conditions. Their dependence on the degree of extension are shown in Figure
3.21. The filled circles in the figure represent the < f; >; values obtained from
simulations. The empty circles are for < f >;. The solid line is obtained for < f2 >,
from a previous Monte Carlo study, Section 2.2, of orientation in deformed
polyethylene chains. The points and the curves indicate the good agreement
between Brownian dynamics simulations and the Monte Carlo calculations.
Small differences between the results of the two methods may be attributed to the
fact that the bond orientational potentials were taken to be pairwise dependent in
the Monte Carlo calculations while they are assumed to be independenf in the

present Brownian dynamics simulations. The curve as well as the empty circles in

the figure exhibit the dominant A2 -1/A behavior of the orientation function.
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<f,> and <f,>,

-0'5 M L 2 L
0.00 1.00 2.00

A
Figure 3.21 Dependence of the coefficients <f;>; and <f,>; defined in eqgs 3.28 and
3.29, on the extension ratio A. The filled and empty circles are computed for <f;>y and
<f3>r, respectively from Brownian dynamics simulations of 49-bond chains. The curve

was obtained® for <f;>p in a recent Monte Carlo study of orientation in deformed PE chains.
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The decay of the functions < f3 >y and < f4 >, with time are presented in
Figures 3.22-a and 3.22-b, respectively, for the four different degrees of
extension. In Figure 3.22-a, the curves display different relaxational behavior at
different degrees of extension. Strongest time dependence is observed for the
intermediate extension of A = 1.38. The highly compressed chain exhibits only a
small amount of decay. The dependence of < f4 >, on strain presented in Figure
3.22-b exhibits on the other hand, a systematic pattern such that the highly
stretched chain rapidly decays to its asymptotic value while both the magnitude
and the rate of decay for the highly compressed chain are significant. The
behavior of < fs > and < fs >, are shown in Figures 3.23-a and 3.23-b,
respectively. Both functions depend strongly on time and extension. For a given
A, < f5 >, asymptotically converges to the square of the corresponding < f >; as
dictated by the expressions given in eq 3.28. The decay curves for the functions,
< f7 >; and < fg >, are displayed in Figures 3.24-a and b. The values of < fg >, for
A = 1.38 and 2.00 are very close to each other which is representative of a
saturation effect at higher levels of stretching. Large reduction in the values of < fg
>y upon compression to A = 0.37 should also be noted. Finally, the decay curves
for < fg >; are given in Figure 3.25. The strain dependence of these curves

exhibits the same trend as that of < fg >,.

3.3.3 Graphical Presentation of the Distribution Functions

In order to illustrate some features of the distribution functions, the
surfaces generated from eq 3.27 for pi(Q, t; Qo, to) are plotted in Figures 3.26 and
3.27 for vectors with specific initial orientation Qg in chains of different extensions.
The reorientational behavior of two major class of vectors, namely those parallel

and perpendicular to the direction of stretch are investigated in Figures 3.26 and
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3.27, respectively. Inasmuch as the conformational transitions in chains with fixed
end-to-end separation conform with a stationary process, the elapsed time t - tg
rather than the two absolute times tp and t, is of importance. The value t - t5 = 0.5
ns is considered in most of the calculations. This time is of the order of the
relaxation time for the reorientational motions of m. For economy of space, results
for the two extreme cases of deformation, A =0.37 and A = 2.00, are displayed in

parts (a) and (b) of the figures.

Iin Figures 3.26(a) and (b) , the normalized probability surfaces for those
vectors which were originally parallel to the z-axis, i. e., wg = 0° are shown for the
two extension ratios (a) A = 0.37 and (b) A = 2.00, att - to= 0.5 ns. The surface
remains constant along the y axis, indicating that a vector originally along the z-
axis may result in any direction around the end-to-end vector, with equal
probability. This is a natural consequence of the cylindrical symmetry about the z-
axis. The dependence on o on the other hand may be observed from a given
cross-section of constant y. The stronger tendency of alignment along the stretch
direction in the highly extended chain is clearly observable. The time evolution of
a given probability surface may be seen from the comparison of Figures 3.26(a)
and 3.26(c), on the other hand, which are obtained for the respective time
intervals t - to = 0.5 and 1.5 ns, for the compressed chain. With increasing time,
the distribution of ® approaches the equilibrium distribution of orientations with

respect to the z-axis which will be reconsidered below.

In Figures 3.27(a) and (b) , the probability surfaces calculated from eq
3.27 are shown for bond vectors which were originally perpendicular to the z-axis
and parallel to the x-axis, i. e., wp = 90° and yo = 0°. The extension ratios A = 0.37
and 2.00 are considered in parts (a) and (b), respectively, with the same time

interval of 0.5 ns. The general sloping down of the surface as vy increases from
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Y 180

Figure 3.26(a) Time-dependent orientational probability distribution function p,(Q, t;
Qg to) as a function of Q = (®, y) calculated from eq 3.27 for bond vectors originally along

the z-axis (wp = 0°) in the chain subject to the extension ratio A =0.37, at t - to = 0.5 ns.

180 O

Figure 3.26(b) Probability surface pr(S2, t; Qq, tg) for g = 0°, t - top = 0.5 ns and
A = 2.00.
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0.0069

pr(n: tl nol to)

Figure 3.26(c) Probability surface p (Q, t; Qo, to) for g = 0°, t-ty = 1.5 ns and
A =0.37.
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Figure 3.27(a) Probability surface p.(Q, t; Qo, tp) as a function of Q = (w, ¥)

calculated for bond vectors originally perpendicular to the z-axis in the compressed chain.

= (.5 ns.

(900,00), A =037,and t - ty

(0)0 ’WO)

Qo=

Qo, o) for (@o ,yo) = (90°,09), t-tp =05

Figure 3.27(b) Probability surface p(€2, t;

2.00.

ns and A
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0° to 180° indicates that the vectors m did not have sufficient time to spread out in
the xy-plane during the time interval of 0.5 ns. The higher ordinate value
observed in part (b) is again indicative of the enhanced tendency of the vectors
perpendicular to the stretch direction in the highly extended chain, to escape their
original orientation and to align along the preferred directions o = 0° and 180°. It
is noted that the sense 0° is preferred rather than 180°. This is due to the fact that
the two senses tr of the end-to-end vector are distinguishable for the presently
investigated bond vectors. Bond vectors exhibit a higher tendency to be oriented

along +r sense, unless the chain is infinitely long.

In Figures 3.28(a)-(c), the dependence of the probability surface on the
polar angles wo and w of m, irrespective of the azimuthal angles yo and vy, are
shown. The resulting surfaces represent the probability pr(w, t; wg, to) of the time-
delayed joint event (o, t; o, to). Summation over the azimuthal angles
corresponds to integration of eq 3.27 with respect to these two variables.
Performing the integrations leads to the joint probability, pr(w, t; wo, to) of the polar

angles of m as

5
. =1 . A
Pr (0, @0, to) = [1 +g1: <fi> f':l (3.30)

The surface are obtained by summ/ing all occurrences of m over the full range of
azimuthal angles, 0° < yp < 360° and 0° < y < 360°, for t - to =0.5 ns in parts (a) ’
and (b), and for t - t{p =1.5 ns in part (c). Comparison of Figures 3.28(a) and (b)
obtained for A = 0.37 and 2.00 respectively, reveals the pronounced effect of
chain extension on the time-delayed joint probability of polar angles. The
relatively diffuse distribution of polar angles in the compressed chain is strongly

sharpened and biased towards low values of (@, m,) with increasing extension,
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Figure 3.28(a) Dependence of the probability distribution function py(®, t; @y, to) given
by eq 3.29 on the polar angles wg and ®, for bond vectors in the highly compressed chain

with A = 0.37 at the time interval t - top= 0.5 ns.

Figure 3.28(b) Probability surface p(®, t; g, tp) fort - tg = 0.5 ns and A = 2.00.
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0.2612
pr( @, t; (Do; l.0)

Figure 3.28(c) Probability surface py(, t; g, to) fort-tg=1.5ns and A =0.37.
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as expected. Comparison of Figures 3.28(a) and (c) on the other hand, displays
the time evolution of the same probability surface obtained for A = 0.37. The
probability distribution obtained at long times in Figure 3.28(c) indicates that the
equilibrium state (0,m,) = (90, 90) corresponding to transverse orientations of
bond vectors with respect to the z-axis is relatively favored in the case of
compressed chains. One may better visualizes the distributions by considering
the intersections of the surface by planes perpendicular to the wg axis. The curves
obtained in this manner show the probability of occurrence of the final orientation
o for a vector m which was initially at wo. Thus, the plane at wg = 0° in Figure
3.28(c) shows that bonds which were originally along the direction of the end-to-
end vector r will acquire a broad distribution of orientations after 1.5 ns.
Similarly, the plane at mo = 90° shows that bonds which were originally
perpendicular to r will orient more along the direction of r and much less in the
direction of -r, in agreement with the implications of Figure 3.27(b) discussed

above.

3.3.4 Comparison between Numerical and Analytical Results

The curves shown in Figure 3.29 are obtained from eq 3.30 for the four

values of A and the time interval t - to = 0.5 ns. The ordinate values represent the

conditional probabilities qr (o, t; g, to) Which are defined as

Pr(@t;apto)sino _ pr(w,t;ato)sine
T pr(COO,tO)
Pr (0, t; @, to) Sin ® dw

ar (o, t/ oo, to) =

0
(3.31)
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ar (o, t; wo, to) gives the probability of occurrence of the orientation ® at time t,
given that the studied vector makes initially an angle wqo with the direction of
extension. Thus, the surface represents the time-delayed normalized distribution
of polar angles for those bonds which were originally along r. The points are the
results from Brownian dynamics simulations, obtained from direct counting of the
joint event (wo + Awo, to; ® £ A, t ), with t - t = 0.5 ns and wg = 0°. In order to
have a sufficiently large population, the intervals in the counting process were
taken as Awg=Aw = 10°. The agreement between the simulation resuits and the
analytical expression is remarkable although the latter is truncated after the
second order terms. Negative values of the probability in part (d) indicate that the
second order approximation becomes insufficient as the degree of stretching
becomes large. As expected, the curves become more sharply peaked and their
maxima shift to smaller values of @ upon stretching. However the shift is relatively

small and moves from about 60° for A = 0.37 to 40° for A = 2.00.

Further integration of eq 3.30 over the polar angle w after multiplying by
sin wp results in the equilibrium probability distribution p,(w) of the polar

directions as

p,(m):%[1+3<cosm>cosm+

(3<cos2m>-1) (3cos2w-1)]

N7

This quantity represents the equilibrium distribution of bond orientations with
respect to the end-to-end vector r, inasmuch as r coincides with the z-axis.
Predictions of eq 3.32 are compared in Figure 3.30 with results of Brownian
dynamics simulations for the four different degrees of stretching. The good

agreement between the numerical and analytical results confirms once again the

(3.32)
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suitability of the second-order expansion of time-dependent distribution functions
in terms of spherical harmonics for an effective description of local orientational

behavior of the chain.

3.3.5 Concluding Remarks

Series expansions has been widely used in chain statistics for
representing the probability distribution functions associated with the equilibrium
conformational properties of polymer chains. A common example is the Hermite
polynomials series employed for the distribution of the end-to-end separation
vector r. Monte Carlo chain generation technique is conveniently used to
determine the moments which appear in the coefficients of these series
expansions. In analogy to this common procedure of equilibrium statistics, a
series expansion is proposed in the present work for the time-dependent joint
probability distribution of spatial orientations of vectorial quantities rigidly
embedded in polymer chains. Brownian dynamics simulation method is used in
this case instead of Monte Carlo technique, for the estimation of the time-
dependent averages appearing in the coefficients of a spherical harmonics
series. Comparison of the predictions of the series with the results from Brownian
dynamics simulations confirms that the truncated series expansion may be safely
employed for a quantitative analysis of local orientational dynamics in deformed
chains. Brownian dynamics simulation rests on the assumption of a Markoff
process. The present calculations show that this Markoff process may accurately

be described by a second order series in spherical harmonics.

Present calculations were performed for deformed chains of 49 bonds. The

analysis demonstrates that truncation of the series after the second order
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spherical harmonics is suitable for an accurate description of the local
orientational dynamics in those chains. For longer chains subject to weak
deformation, the chain segments enjoy a higher degree of flexibility and on a
local scale the orientation behavior of bond vectors approaches an unbiased
distribution. As a result, the coefficients with odd-powered averages in the series
will be vanishingly small and only the contributions from the remaining terms will

survive, leading to much simpler expressions.

The description of local orientational dynamics by a closed form
expression for time-delayed joint probability function allows for the prediction of
the dynamic behavior of specific vectors observed in various experimental
techniques. Examples are C-H bond vectors in NMR relaxation, transition
moment vectors in fluorescence polarization, dipole moments in dielectric
relaxation, etc. For the application of the presently developed probability
distribution formalism to those specific vectorial quantities, it is sufficient to know
the spatial orientation of those vectors with respect to the chain vector. Thus, the
use of analytical expressions for time-dependent orientational distribution
functions may avoid repetitive simulations and may be particularly useful as a

substitute for extensive computational analysis.

inasmuch as the coefficients in the series are evaluated in a semi-
empirical way, based on BD trajectories, it should be noted that the expressions
for the time-dependent distribution functions suffer from the same limitations as
those inherently present in the simulation techniques. Absence of intramolecular
effects such as bond rotational interdependence and volume exclusion, and
neglect of intermolecular contributions such as specific solvent effects and
hydrodynamics interactions are the main assumptions present in the BD

simulations which are readily reflected upon the distribution functions.
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3.4 Orientational Mobility in Uniaxially Deformed Networks

3.4.1 Introduction of an Internal Coordinate System for the

Orientation of vectors.

Orientational motions of segments in polymers depend sensitively on both
intra- and intermolecular configurational characteristics of the chains, and thus
are of special interest for the understanding of polymer behavior. In a previous
sections, results of Brownian dynamics (BD) simulations were used to study the
orientational dynamics of deformed polyethylene model chains as a function of
their end-to-end separation. On the basis of the cylindrical symmetry of polymers
about the direction of extension, time-dependent joint probability functions
expanded in terms of double spherical harmonics were developed. The
anisotropy of segmental dynamics in terms of spherical harmonics was originally
investigated by Tao24 and Jarry and Monnerie2> some years ago. These authors
formulated the time-dependent orientational distribution for vectors affixed to
chains in a form suitable for studying iocal chain dynamics by polarized
fluorescence experiments. Recent developments in deuterium NMR
spectroscopy®! have refocussed the interest on the problem of the anisotropy of

local static and dynamic orientational correlations.

The initial orientation of a vector m rigidly affixed to the chain is described
by the set Qo = {wg, Yo}, with respect to the laboratory fixed frame Oxyz, as

shown in Figure 3.31-a. At time t, the orientation of m is given by Q = {®, y}. For

spectroscopic reasons, the orientation of m at time t relative to its previous
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(®)

Figure 3.31 Coordinate systems defining the orientation of mg. Oxyz is the laboratory-
fixed frame with the z-axis along the direction of uniaxial deformation. The frame OXYZ
defines the internal reorientation of m, in terms of the polar and azimuthal angles o and B,
respectively, as shown in part (b). The Z-axis is directed along myg and makes an angle , .
with the z-axis. The intersection of the XZ-plane with the xy-plane makes an angle of g

with the x-axis, and the Y-axis always remains in the xy-plane.
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orientation may be desirable. This requires the introduction of an internal
coordinate system, OXYZ, shown in Figure 3.31-a. Following the definition of
Jarry and Monnerie25 the Z-axis is chosen to coincide with the initial direction of
the m, thus making an angle wg with the z-axis.The intersection of the XZ-plane
with the xy-plane makes an angle of yo with the x-axis, and the Y-axis always
remains in the xy-plane. The instantaneous orientation of m is shown in Figure
3.31-b with the angles o and B denoting the polar and azimuthal angles,

respectively, relative to the OXYZ coordinate system.

The spherical harmonicsS0 YL"(Q) appearing in the time-dependent joint

distribution function may be expressed in terms of the internal reorientation

variables T = {a, B} by the use of Wigner rotation matrices .D—n'L(Qo ) as

+k
YR(Q) = D myu(Q0) Yi(T)
H=- k (3'33)

The details of the Wigner rotation matrices25 and the spherical hrmonics Ymi(Q)
up to the second order, rotated the way Qq(wo, yo) are given in Appendix G.
These Wigner matrices are used for the elimination of the set Q = {w, y} in favor
of ' = {a, B} and Q¢ = {wg, yo}. Four physically meaningful functions

characterizing mobility result from this elimination:
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3.4.2 Orientational Mobility Functions

3.4.2.1 The Mean Mobility-Amplitude

M(t)=g—(3<coszoz>-1 ) (3.34)

M(t) is also referred to as the second orientational autocorrelation function of m.

Time decay of M(t) has been obtained from BD simulations for polyethylene
chains with the four different extension ratios, A = 0.37, 0.91, 1.38, and 2.00 in

Section 3.2.1.4 and depicted in Figure 3.11.

3.4.2.2 The Orientation-Mobility Amplitude Correlation

Ct)=L <(3cos2mg -1)(3 cos2a -1) >

TN

(3.35)

This function reflects the correlations between the original orientation of m and its
mobility. At long times, the two terms in parenthesis become independent and
C(t) may therefore be written as a product of two functions. Thus, the orientation-

mobility correlations may be described in terms of the difference R(t)
R(t)=C(t)-l—<(30032mo-1)><(3 cos?a -1)> (3.36)
If R(t) = 0, the mobility of m is uncorrelated with its direction. If directions paraliel

to r have less mobility than the perpendicular directions, then R(t) > 0. Otherwise

R(t) is negative. In Figure 3.32, the time dependences of R(t) calculated from BD
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Figure 3.32 Time dependence of R(t), defined by eq 3.35, for chains with the indicated
extension ratios. R(t) describes the orientation-mobility amplitude correlations C(t) of bond

vectors in deformed chains relative to the case of chains in which the original orientation of

bond vectors is independent of their motion amplitude.
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simulations are shown for four different extension ratios. For very short times
(£0.01 ns) R(t) is negative and therefore the bonds along directions
perpendicular to r are relatively more mobile. For the highly compressed chain
with A = 0.37, R(t) remains negative for all times. For the chain with A = 0.91,
which is closest to the unperturbed state, R(t) rapidly becomes zero and

oscillates about this value. R(t) is positive for all times, for A = 1.38 and 2.00.

3.4.2.3 The Directivity of Mobility

D(t) =% < sin2 wg sin2 o cos 2B > (3.37)

This function may best be described following Jarry and Monnerie, in terms of two
planes P and P’ shown in Figure 3.33-a. D(t) differentiates between motions
contained in such planes. The P-plane is defined as the plane that contains mg
and the laboratory-fixed z-axis. Motions of m with B = 0 or = are confined to this
plane. The P’-plane contains mg and is perpendicular to the P-plane. Motions of
m with f = - /2 or n/2 are confined to this plane. It the vector moves in the P-
plane, cos 2B = 1 and D(t) is positive. If it moves in the P’-plane, cos 2B= -1 and

D{t) is negative.

Results of calculations for D(t) based on BD simulations are presented in
Figure 3.34. For the chain with A = 0.37 D(t) is close to zero or slightly negative,
indicating the absence of a strongly preferred directivity. For A = 0.91, D(t)
remains small but positive for all times, indicating that motions in planes
containing the fixed end-to-end vector are more intense than those in other
planes. Upon further stretching of the chain, D(t) becomes strongly positive and

motions in the P-plane dominate.
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Figure 3.33 (a) Definition of planes P and P'. The P-plane is defined as the plane that
contains mg and the laboratory-fixed z-axis. The P’-plane contains mg and is perpendicular
to the P-plane. (b) Diagrams 1 and 2 illustrate the movements leading to positive or negative

values for the terms involved in eq 3.38 defining the sense S(t) of mobility.
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3.4.2.4 The Sense of Mobility

S(t) = 3 < sin wg cos wp sin o cos o cos P > (3.38)

This function distinguishes between motions of m towards the direction of stretch
or away from it. The sign of S(t) depends on the signs of cos wg and cos B. The
latter is positive if mg rotates away from the laboratory-fixed z-axis and is
negative otherwise, as shown in Figure 3.33-b. Similarly, cos wq is positive if mg

makes an angle less than 90° with r and is negative otherwise.

In Figure 3.35 values of S(t) calculated from BD simulations are presented
for the four different values of the extension ratio. For all extensions S(t) is
negative and this negativity becomes more pronounced as the chain is stretched.
Since bonds making an angle less than 90° with the z-axis are more populated,
the cos mg term will contribute to S(t) with a positive sign. One may conclude from
this, therefore, that cos B should be negative, i.e., motions of the bonds directed
towards the z-axis are more intense than those away from it. This tendency is

weakest in the case of compressed chains.
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Figure 3.35 Time dependence of sense of mobility S(t) of m, for chains with different

extension ratios.
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Chapter IV

Conclusion and Recommendations

4.1 Conclusion

In the present study, the segmental orientation and the conformational
dynamics of polymer chains have been investigated and the following

conclusions are reached:

i) For segmental orientation in uniaxially deformed PE and POE networks,
the specific aim was to obtain a more rigorous expression for the orientation
function, which includes several powers of 1/n. By the use of such an
expression, the relative contributions of the first and second order
approximations to segmental orientation are assessed. It has been found that the
new formulation is particularly useful for relatively short chains and for moderate
to large deformations . Calculations performed for PE and POE chains of n = 21,
51 and 101 gave the ranges of extension ratios A to which the conventional first-
order approximation may be confidently applied. Results compared with those
obtained from simulations demonstrate the importance of a higher order

approximation for the orientation function in the range A = 1.8.

ii) In the Brownian Dynamics simulation study , the inner orientational and
conformational correlations in deformed polymer chains with fixed end-to-end
separation were investigated for polymer chains with fixed ends. Rates of

rotational isomeric transitions and time evolution of orientational correlations for
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various stretch ratios of model PE show that the more extended chains exhibit
the highest mobility in the short-time scale but possess the lowest effective rate of
rotational isomerization as follows from a hazard analysis within the time span of
10 ns. The stretched-exponential functions with exponent ailmost independent of
chain extension reproduce the time decays of bond orientational correlations.
The evolution of rotational and reorientational motions of the bonds described by
the time-dependent probability distribution functions shows that the amplitudes of
rotational motions are not affected by chain extension but their occurrence is
reduced. The distribution of reorientational angles is biased towards lower
orientational angle values upon stretching of the chain. This is an indication of
the effect of deformation of chain ends on the orientational mobility of the bonds

in the chain.

iii) The adequacy of double spherical harmonics functions for the time-
dependent probability distribution functions of orientational motions has been
tested for describing the orientation of bond vectors. The coefficients of the serial
expansion have been evaluated from BD simulations. The resuilts show that
truncation of the series after the second order harmonics reproduces the results
of BD simulations for a 49 bond PE chain whose ends are held fixed at various
extensions, and consequently it is suitable for the description of local

orientational dynamics in those chains.

iv) The anisotropy of segmental dynamics has been described by four
physically meaningful functions such as mean-mobility amplitude term,
orientational-mobility correlation, directivity and the sense of mobility using the
results of BD simulation. Strong dependence of those properties on chain

extension has been observed.
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4.2 Recommendations for Future Developments

The analysis carried out to assess the importance of higher order
approximation in the evaluation of the orientation function S may be repeated for
networks with a variety of chemical structure to understand the ranges of
extension ratio and the size of chains to which the first order approximation may

be applied.

In the BD simulations of uniaxially deformed PE chains in dilute solutions,
hydrodynamic interactions and excluded volume effects have been ignored for
the computational simplicity. For future study, with increase in the computational
facilities, contributions of those effects to the equilibrium and dynamic properties
of the polymer chains in condensed systems may be investigated. The simulation
program may be adopted for different model polymer chains by changing the
energy parameters and their properties may be investigated comparatively . In all
of the simulations, rotational transitions between isomeric states are based on
independent bond rotational potential and thus pentane effects have been
neglected. Use of an energy potential governing pairwise dependence on

rotational potential may lead to a more realistic description of the polymer chain.

The present work has been performed for deformed polymer chains.
Deformation induces the concept of anisotropy of the properties of those
polymers and thus indicates the importance of physically meaningful functions
which are experimentally measurable as well. The optical and mechanical
anisotropy in oriented polymeric materials may be studied in terms of the
orientation of the structural units by suitable refinement in the simulation program

and efficient manipulation of the simulation data.
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Appendix A

Performing the integrations indicated in eq 2.26, the averages shown in

eq 2.25 are obtained up to the eight order as
<X2>09=<y2>9=<2z2>0=<r2>,/3
<X4>g9=<yd>p9=<z4>9=<r4>(/5

<X8>0=<yb8>9=<28>0=<r6>4/7

<X8>g0=<y8>9=<2z8>5=<r8>,/9

<X2y2>3=<x2z2>p5=...=<r4>4/15
<X2y4>9=<x2z4>p=...=<r6>4,/35
<X2y8>0=<x226>p=....=<r8>(,/63
<X4y4>p=<x4z45p=....=<18>4/105

<x2y2z2>,= <ré>,3/60

<X%y2z2>45=<y4x222>4= ...=<r8>4,/315 (A1)

The terms not shown in eq A.1 are readily obtained from symmetry. The use of

these averages leads to the following averages of . i, B i and af;

<oy>=2A2

<a2>=14A2-—6—ﬂ)-A
5 <r2>j

<og>=Ap- 108 <> 4 54 <> ,
5 <r2>3 7 <r2>§

<o4>=1386 Ap- 1782 <F>0 ), , 1782 <P> 5 4 <> 4.
5 <”>§ 7 <r2>3 <r2>4
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<a1[31>=3OA2 -12 iﬂ,\“_& <r6>0 Ag
<r2>j 7 <r2>3

8
<oqPa>=210Ap-378 <220 A, 4162 SI°20 A .18 <1220 4. (A2)
<>} <r2>3 <r2>g

4
< 04Ba>=1890 Ap- 4536 =20 A, 42916 <P>0 A -648 P20 5,
<l"2>(2) <r2>:(3) <r2>8

<(Xgﬁ1 >=210 A>- 306 _ﬁ@_ A4+_9_.L8.i6_ﬁ)_ Ag-18 <r8>° Asg

<I’2>% 7 <r2>% <r2>6

4 8
< 0y > = 1890 Ap- 3240 S1220 5, 13982 <P>0 £ gog <FP>0 5
<r2>% 7 <r2>3 <2 >4

where
A2 = )\'2 ~ x-1

Ag=3A*+A-412 (A3)

A = A84+333.8):3
6 5 5

_284+535,.12,52 8 -1.64)-4
Ag= A+ A tagh=35™ "35
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Appendix B Details of Flexible Chain Formalism

The position vector rj of the ith atom is a function of the generalized
coordinates |j, li+1, 0i-1, 8i, Oi+1, 0i-1, 0}, di+1 and o¢i,2, as follows from the
examination of eqs 1-3. Thus, the gradient of the overall potential V with respect
to ri may be written as

i+1 i+1 i+2

ViV =vi[ kZ V() + 3, Ve (Bk) + D, Vo(ow] (B.1)

k=i-1 k=i-1

It should be noted that in eq A.1 and in the following equations the potential or
the force having an undefined generalized coordinate as the argument (such as
Ve(By) with k < 1 or k = N) is implicitly accepted to be equal to zero. Replacing in
eq A.1 the negative gradients of the potential functions V¢ ( with { = b, 8 or ¢) by

the forces F; and inserting the results into the equation of motion 3.11, leads to

i+1 i+1 i+2
Bdr/dt =m1[Y, Fo () + >, Fo®+ Y, Fo @] +Ai () (B.2)
k=i =j-1 k=i-1

The bond stretching forces which are associated with the deformation of the

lengths of bonds i and i+1 are given by

Fo () = - kb (1 -1 /1) I 1<i<N (B-3)

and

Fo (lis1) = ko (1 -1o /1) lisq 2<i<N-1
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On the other hand, the bond bending forces on atom i arising from the distortions

of the angles 6;.1, 8;and 6;.1 are given respectively by
Fo (6i.1) = - Kei-1[|i-1 -d' i 'i/liz] 2sisN (B.5)

Fo (6i) = - Kyg; [|i+1 b+ T (I 1,7 - 'illiz)] 2<isN-1  (B.6)
and
. » '
Fo (6i41) = K(-)i+1 [ liso - d‘}:.21 lisa /|i+1 ] 2<i<N-2 (B.7)
Here Kg,, and d X are defined as

Ko = ke (cos By, - cos 6g)

m=

(B.8)

Im Im+1

and
dk =1m. 1 (B.9)

In order to write the rotational potential forces Fo(om), i-1<m<i+2,ina

more concise form, the following variables are introduced

af=[1? 12 (d§)? (B.10)

Al i 1) = (dy - 13 1) (dy B-dfdy) (@) "+ (B h-df 1) (B.11)
o i 2 P2 gy, j i

Adfi, k) =(djl-1 ;1) (dglj-ddg(a) +(1ijdy-1¢dy) (B.12)

Using those variables, the bond rotational forces read
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Fodi-1) =Kgiy A1 (i, 1-1,1-2) 3<i<N (B.13)

Fo(0) = Ko; [ A2 (i, i1, i+1) = Aq (i+1, i, i-1) + Az (i, i+1, i-1)]
3<i<N-1 (B.14)

Fo (9is1) =- Kpipq [ A2 (i+1, 1, i42) - A¢ (i, i+1, i+2) + Ao (i+1, i+2 , 1) ]
3<isN-2 (B.15)

and

Fo (0ir2) == Koiyp A1 (i+1, i+2, i+3) 3<i<N-3 (B.16)
where the proportionality constant Kg,,, is defined as

Ko m == ko (@Thq aw)-“?[sz i a; cost! o ] (B.17)

=1
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Appendix C Hazard Analysis

In hazard analysis, at the beginning of a simulation, a "clock” equal to zero
is set and the number of time steps required for a transition is counted for the
particle to first reach the bottom of the opposite well. Then the clock is again set
to zero and the next reaction time is measured and so on. The reaction times,
except the first one, are the first passage times from one minimum to the other.
Thus a set of n reaction times is obtained. These are arranged in ascending

order,
tste)s..... Sty

forming what is called a set of order statistics. The statistical method employed

have mostly been developed in the field of reliability analysis.52

In hazard analysis, the hazard rate h(t) defined such that h(t)dt is the
probability that a system which has survived a time t since its last transition will
undergo a transition at time between t and t+dt. Cumulative hazard is defined as

follows: .

t
H(t) =f h(t)dt’
0 C.1

The probability of transition occurring in a time less than t since the last is

P(t) = 1- exp[-H(t)] c2
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and the probability density of transition at t is
P(t) = dP/dt = h(t)exp[-H(t)] Cc3

The data is best depicted in a hazard plot, a plot of the n transition times vs
expectation values of the corresponding cumulative hazards. The expectation of

cumulative hazard at the time of the k' ordered transition is,

ke
Hk=z 1

o Nl C.4

as a function of k only.

The slope of the hazard plot gives the reaction rate. What is measured is a

composite of all processes, trans going to either one of gauches or vice versa:
A= 2ptktg+2pg)\'gt C.5

where Ay is the rate of transition from trans to one of the gauches, Ay is the
reverse rate, pi is the fraction of trans, and pg is the fraction in one of the

gauches. From the detailed balance:

PtAtg = Pghqt
so that Cé6
7\49 = Al 4pt
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Appendix D Extended Runge-Kutta Method for Integration of
Stochastic Differential Equations

The Langevin equation by which the dynamics of model polyethylene
chains are simulated is a stochastic differential equation. A stochastic differential
equation does not have a definite solution as in the case of deterministic
differential equations. An extension of the Runge-Kutta method for the integration
of stochastic differential equations was presented in a previous study by
Helfand.42 He showed that this technique produces results which are statistically

correct to the kth order in the time step s.

General form of stochastic differential equation occurring in Brownian

motion theory is as follows:

%t‘- = f(x)+A(t) D1

Here the A(t) are Gaussianly distributed random variables with mean zero and

covariance(white-noise)

<A(H)A(t)> = Ed(t-t) D.2
and it is related to the wiener processes( Brownian motion processes)

wo(t) =J A(t) dt'
0 D.3
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which has correlation
([wo()]) =&t D.4

A stochastic differential equation does not have a definite solution.
Numerical integration means generation of statistically representative trajectory
values of x at discrete times: x(0), x(s1), x(s1+s2). The process defined in D.1 is
Markovian. Thus the process is completely specified by the conditional
probability density function P(x, s / xo, 0) which gives the probability density of
observing x at time s, given the value xo of the variable at time zero. What is
searched for is a method of selecting a value xs with statistics correct to kth order
in s. That means that the moments <xs9> are all correctly given to O(sk). An

approximation algorithm involves generation of some random numbers.

Eq D.1 may be writien in an integrated form by iteration and Taylor series

expansion:

X = xo+f f(x) + wo(s)
0 D.5

Here f(x) can be extended as
(%) = fo + fo(X-X0) + crorrei - T3P (x-X0)P
p! D.6
for all points of xg accessible to the trajectory. To develop an iteration solution, x
is substituted in the integral in eq D.5 and f(x) is expanded in the power series(eq

D.6):

s s1
x(s) = Xg+ I ds1{Xo+ f dsof[Xg+...]+w(s1)}+wo(s)
0 0 D.7
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= Xo+5fo+1/252Hg fo+1/683(fofo 2+fo2fo )+ S
with
S stands for the stochastic part. The statistics of the stochastic part of the
trajectory are embodied in the moments of S. fo(") denotes the nth derivative of f

evaluated at xo.

The aim of many numerical procedure is to present an algorithm which,
when expanded in s, matches the series(eq D.7) to a given order, k, in s.
Furthermore, the use of the derivatives of f is avoided. In the extension of the
Runge-Kutta theory one goes from initial condition x¢ to x(s) in k stages by the

procedure presented below:

g1 = f(xo + s1/281/201.2)

gz = f(Xo + sP21g1 + §12£1/2)5.7)

gk = f(Xo + SPk1g1 +...+ SPkk-1Gk-1 + §12612Ak.2) D.8

Xs=Xo + S(A191 +...+ Axgk) + SV2E12)9.Z

The parameters A's, B's and A's are to be selected such that an expansion
of eq D.8 in powers of S matches the nonstochastic and the moments of the
stochastic term S through order k of eq D.7. Z is a vector of Gaussian random
variables with mean zero and variance unity, generated for each time step s. The
number of Gaussian variables is determined such that there are a sufficient
number of parameters to satisfy these equations. gk represents the kth order
perturbation for f. In the case of § = 0, the ordinary differential equation is
recovered from eq D.8. For detailed intermediate steps, the reader is suggested

to read the paper by Helfand.42
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In the second order approximation of the extended Runge-Kutta method,
the stages of the numerical procedure applied in the Brownian Dynamics
simulation program for the solution of the Langevin equation(eq 3.11) are given

below:

g1=1(xo)
g2 = f(xo + sg1 + s1/2812 Z) D.9
Xs=Xo + S(1/2 g1 + 1/2 gp) + s"/2E12Z

with the solution set of parameters:

A= A=1/2
B21 =1 D.10
Ao =1, A4=0, Aox=1

evaluated from the solution of the following equations:

Ar+Ag=1

AoB=1/2

Ao2 =1 | D.11
(Arh + Aghz) Ao=1/2

Ati2 + Aghp2=1/2

g1 and go are the first and the second order perturbation of f which is the
total conformational potential force calculated of the polymer chain in the
simulation program. Z is a single Gaussian random variable and generated

using the Function Gauss in the program for each time step s. § is equated to
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2BksT/m, given as the coefficient of the covariance of the Gaussianly distributed

force in eq 3.12.
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Appendix E Spherical Harmonics

The solutions to (1) Laplace's equation, (2) Helmholtz's or the space-
dependence of the classical wave equation, and (3) the Schrddinger wave

equation in central force fields

VY + k2P = 0 E.1

are called the solid spherical harmonics5° 1 YT(@, ¥), where r, o, y are three
spherical coordinates. The angular dependence of eq E.1 in the separation of

variables results in the surface spherical harmonics YT(® ¥) of function of

spherical angles o and .

Azimuthal dependence(y) produces the solution

O(WP) =e1mv,elmy E.2
which satisfies the orthogonality condition:

2%
f e'im"l’e'imz‘l’dw =27 8"’\1, mo
0

E.3
and results in
@m = —1—- eifﬂ\]f
2r E.4

which is orthonormal with respect to integration over the azimuthal angle v .
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Polar dependence () leads to the Legendre functions,
PT(cosw —(1 x2)W2d " (y2 4yn
n( )= ) dxm+n ( ) -n<m<n E.5

and normalizing the associated Legendre function results in the orthonormal

function

m on+1 (n-m)! pm .
Ph(cosw) = \/ 2 ("+ )1 n{eos®) -n<m<n E.6

The product of ®@,(y) which is orthonormal with respect to the azimuthal
angle y, and PMy(cosm) which is orthonormal with respect to the polar angle ®
gives the spherical harmonics which are functions of two angles and orthonormal

to the spherical surface: -

(2n + 1)(n - m)! |12 PM (cos @) eimv

YIQ) =YT (@, ) = (-1)™ amnsml | £

The complete orthogonality integral becomes:

j le%1(mv \V) Y"gz (0), W) sinodw d\lf = 8“1,02 8m1,mz
E.8

These functions takes the name "spherical harmonics®, because; they are

defined over the surface of a sphere with ©, the polar angle and v, the azimuth.

The "harmonic" is included because solutions of Laplace's equation were called

harmonic functions and Ym,(w, ) is the angular part of such solution.

The spherical harmonics of function Q(w, ) obtained up to the second

order terms using eqs E.6 and E.7 are given below:
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0 = _L1/2
Y0(€2) (4n)

Y%(Q) = (-2 "cosw
47

1/2

Y%(Q) = (%;) (3cos2w-1)

E.9

YH(Q) = (-1 )%%)Vzmosm sin @) ey
Y5(@) = (159" sin? ) o 2

Y7H(Q) = -Y' ()
Y5(Q) = Y22(Q)

The completeness property is the most important property of the
spherical harmonics. By this property, any function can be expanded in a
uniformly convergent double spherical harmonics. Thus, the joint probability
distribution function pr(Q, t; Qo, to) of orientation Q at time t and Qg at time tq for
the vector m for a chain with end-to-end separation r is expressed in terms of a
double spherical harmonics series. The coefficients of this series are defined as
amn = < YM(Qq) YN(Q)>r and by the use cylindrical symmetry,

mn -m-n

a™=a =a's
K~ K = Fgmn

, the functions f,, (m = 0-9) up to the second order terms in
the joint probability distribution function, pr(Q, t; Qo, to) given in eq 3.28 are

obtained from ak, 's as follows:

fo=a%o
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f4 (@%1+ a%p)

=1
V2

1
V2

fo= L= (2%2+ 2%0)

fa= _V% (ao12+ 3021)

f4= a%4 E.10
fs= a%,

fe= 12 al;;

f=12 al,

fa= V2 a';;

f9= VE 3222
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Appendix F wigner Matrices

The introduction of o and B (defined in Figure 3.31) into the spherical
harmonics Y k(&) of angular function of Q has been performed using the Wigner

matrices:51

+k
YHQ)=Y, D¥nu(wo, wo, O)Y ()
p=-k F.1

where Bkmll are the Wigner matrices, with the argument Qg denoting the three
Euler angles wy, yp and 0 and YRT) are the spherical harmonics of angular
function I'(a,B). The point Q is the same point in space as I'" but measured
relative to the rotated coordinate system rather than relative to the initial system.
This rotated system is specified by the three Euler angles: yo, wg and 0. Eq F.1
rotates the coordinates. The first two Euler angles yp and wo define a new polar
axis, Z (Figure 3.31) and a new zero of azimuth. (The third Euler angle 0
corresponds to a rotation about new polar axis and irrelevant here). The Wigner

matrices in eq F.1 is obtained by the following expression:

j — a-ivo \S [(J'+k)!(j-m)!(j+k)!(j-m)!]2 2j+m-k-2s m-k+2s
Do @0.0) = %2, 0y croramesitorsmyy X €20 (55D

F.2
where the sum is over the values of the integer s for which the factorial argument
are greater than or equal to zero and the spherical harmonics. YR(I) may readily

be obtained from eq E.9 by replacing the spherical angles  and y with o and B.
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The spherical harmonics Y'K(€2) up to the second order rotated the way
=k
D

Qo(mo, Wo) by the use of Wigner matrices = ™ are given below:

0 _ LI/Z
YH(Q) = G

12

Y% (Q) = (—13E) (1/2 coswgcosa. - sinmgsina cosp)

Y(Q) =e-wo (5%)” 2( sinswgcosP + (1/2)coswgsina cosP) F3

Y%(Q) = (15;)1/2{(3cos2mo-1) ((3cos200-1)/4 + (3/4) sinay sino. cos2p)

-3 sinwecoswg sina sinf}

Y3(Q) = e-2ivo (3—12%)”2{( sinwy cosawgsin?o. cos2p) + (2-4sin®wy ) sina cosa cosP

- COSWp Sinwp(3cos2a-1)}

Y3%(Q) = e-2ivo (?12%)”2{( 1-(1/2)sin%wy ) sino cos2B+ ( sinwg coswy sino. cosa cosp

+ sin%og(3cos2a-1)]}
Yh(Q)=-Y \(Q)
YH(Q) =-YH(Q)
Y%(Q) = Y3(Q)
The rotated spherical harmonics Y'K(€) placed in eq 3.24 lead to the

coefficients of the probability distribution function in terms of new angles o and .

After manipulation among these coefficients, following experimental measurable

functions come up:



1/V§a_82.=C+D-S
ado

a3 ad
6/5222 ;. 1/5322 — M. 2C + (1/2)D + 3S
ado ado

ad al a3
1/5%+2/5—§3-2/5—02= M
dgo apo ago

where

M = <(3cos2a - 1)/2>

is the mobility amplitude term,

C = <(3cos2mq-1)(3cos?0-1)/4>

is the orientation-mobility amplitude correlation term,

D = (3/4)<sinwgsin®ocos2p>

is the directivity of mobility,

and
S = 3<sinwpcosmesina cosa cosP>

the sense of mobility.
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F.4

F.5

F.6

F.7

F.8

F.9

F.10
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Appendix G

1. Simple Flow Diagram for BD Simulation

2. Monte Carlo Simulation Program for Chain Generation
3. BD Simulation Program

4. Data File for BD Simulation Program

5. Simulation Output from BD Simulation
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Program
Start
| Program
Read in initial position Sto
yectors of N backbone P
atomsof a chain N
I
: Y /\
Time step loop JA <Nstep
JA=1, Nstep
N
Y
a

I

Calculation of position yector
of ith bond for the first order
perturbation

Call Function Gauss

Call Subroutine Force

Calculation of position vector

of ith bond For the second order
perturbation

Call Subroutine Force

Calculation of position vector of
ith bond after time step n
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Basic Outline of the Program BROWNIAN DYNAMICS

1. Program starts

2. Program reads in the initial position vectors of NN atoms of a chain generated
by Monte Carlo simulation

. Initialization of arrays

. Beginning of the main program

. Start of time-step loop(JA=1,NSTEP)

. Start of bond loop(l =1,NN)

. Calculation of the position vector of (i)t atom for the first order perturbation

00 N O O M~ W

. Call Function Gauss; it returns a normal variate of zero mean and unit
covariance.
9. Call Function Force; it returns the total force (TFX, TFY, TFZ), acting on the
(i)th atom after first order perturbation

10. Calculation of the position vector of (i)th atom for the second order
perturbation

11. Call Subroutine Force; it returns the total force (TFX, TFY, TFZ), acting
on (i)th atom after second order perturbation

12. Calculation of new position vector of (i) atom at JA'th time step

13. End of bond loop(next I)

14. End of time loop(next JA)

15. Program stops.

Routines Supplied
Subroutine Force: It returns the total (TFX, TFY, TFZ) acting on (i)th atom due to

the bond stretching, bond bending and bond rotational potential.
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Function Gauss:; It returns a uniform random variable with zero mean and unit
variance.

Subroutine RAN2: It returns a uniform random number between 0 and 1.



on

Monte Carlo Simulation Program for Chain Generation

program mc
dimension u(101,3,3),p(101,3,3),q(3,3),cs(3)
dimension rowj(3),colj(3),row(3),prod(3),ps(101,3)
dimension r(101,3),t(3,3),tt(3,3),fi(101),sm(3,3)
dimension d1(101),d2(101),d3(101),d4(101),d5(101)
dimension d6(101),end(3),vm(3)

data esig,eom,epsi,n,temp/0.5,2.0,0.0,50,140./
data ngen,tr,gp,gm,theta/10,0.,120.,-120.,68./
data r2avg,r4avg,réavg,r8avg/0.,0.,0.,0./

data sum1,sum2,sum3,sum4/0.,0.,0.,0./
open(2,file ='out mc',status="new')

idum=-25

write(2,*)'idum=",idum

cs2avg=0.

r2cs=0.

r4cs=0.

récs=0.

r8cs=0.

theta=theta*3.141592654/180.
gp=gp*3.141592654/180.
gm=gm*3.141592654/180.
tr=tr*3.141592654/180.

do 1i=1,3

row;j(i)=0.

colj(i)=1.

rowj(1)=1.

temp=temp+273.

rg=1.987e-03

sigma=exp(-esig/temp/rg)
omeg=exp(-eom/temp/rg)
psi=exp(-epsi/temp/rg)
dis=((1-sigma*(psi+omeg))**2.+8*sigma)**0.5
hlam1=0.5*(1+sigma*(psi+omeg)+dis)
hlam2=0.5*(1+sigma*(psi+omeg)-dis)
hlam3=sigma*(psi-omeg)
z=(1-hlam2)/(hiam1-hlam2)*hlam1**(n-1)
z=z+(-1+hlam1)/(hlam1-hlam2)*hlam2**(n-1)
write(2,*)'partition fn from eigs=',2z

do 2 i=2,n-1

u(i,1,1)=1.

u(i,1,2)=sigma

u(i,1,3)=sigma

u(i,2,1)=1.

u(i,2,2)=sigma*psi

u(i,2,3)=sigma*omeg

u(i,3,1)=1.

u(i,3,2)=sigma*omeg

u(i,3,3)=sigma*psi

write(2,*) 'statistical weight matrix for bond 2'
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do 12 i=1,3
12 write(2,%)(u(2,i,j),j=1,3)

calculation of equnhbnum probabilities for interdependent pairs
starting from (2,3) pair up to (n-2,n-1)pair.
do 1000 nbond=3,n-1
do 10 kk=1,3
do 10 II=1,3
do 20 i=1,3
do 20 j=1,3
20 u(nbond,i,j)=0.
u(nbond,kk,ll)=u(2,kk,l)
do 3i=1,3
3 row(i)=rowij(i)
do 801 ii=2,n-1
do 4 i=1,3
prod(i)=0.
do 5 k=1,3
5 prod(i)=prod(i)+row(k)*u(ii,k,i)
4 continue
do 6 i=1,3
6 row(i)=prod(i)
801 continue
10 p(nbond,kk,Il)=(row(1)+row(2)+row(3))/z
do 21 i=1,3
do 21 j=1,3
21 u(nbond,i,j)=u(2,i,j)
c write(2,*)'probs for bond ‘,nbond
c do 221 i=1,3
c221 write(2,*)(p(nbond,i,j),j=1,3)
1000 continue

c
c
c
C
c
c

c for the pair (2,3) we use the following ranges

ra1=p(3,1,1)

ra2=rai+p(3,1,2)
ra3=ra2+p(3,1,3)
rad=ra3+p(3,2,1)
ra5=ra4+p(3,2,2)
ra6=ra5+p(3,2,3)
ra7=ra6+p(3,3,1)
ra8=ra7+p(3,3,2)

o0

Calculation of cond probs and ranges for the remaining bonds
do 1001 i=4,n-1
do 22 j=1,3
22 ps(i-1,j)=p(i.j,1)+p(i.j,2)+p(i,},3)
do 23 k=1,3
do 23 |=1 3
23 qtk,)y=p(i,k)/ps(i-1,k)
d1(i)=q(1,1)
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d2(i)=d1(i)+q(1,2)
d3(i)=q(2,1)
d4(i)=d3(i)+q(2,2)
ds5(i)=q(3,1)
1001 d6(i)=d5(i)+q(3,2)
¢1001 write(2,*)i,d1(i),d2(i),d3(i),d4(i),d5(i),d6(i)
c write(2,*)'buraya geldim'

c Chain Generation
do 13 iter=1,ngen
do 40 i=1,3
do 41 j=1,3

41 tt(i,j)=0.

40 tt(i,i)=1.
r(1,1)=1.53
r(1,2)=0.
r(1,3)=0.
fi(1)=0.
call transf(t,b,theta)
call mult(t,tt,sm)
do 46 i=1,3

46 r(2,i)=r(1,i)+1.53"tt(i,1)
call ran2(idum,ran)

c write(2,*)'random # for the pair (2 3)=',ran
a=ran
if (a.gt.ra8) then
fi(2)=gm
fi(3)=gm
else
if (a.gt.ra7) then
fi(2)=gm
fi(3)=gp
else
if (a.gt.ra6) then
fi(2)=gm
fi(3)=tr
else
if (a.gt.ras) then
fi(2)=gp
fi(3)=tr
else
if (a.gt.rad) then
fi(2)=gp
fi(3)=gp
else
if (a.gt.ra3) then
fi(2)=gp
fi(3)=tr
else
if (a.gt.ra2) then
fi(2)=tr
fi(3)=gm
else



47
15

17

446

if (a.gt.ra1) then

fi(2)=tr

fi(3)=gp

else

fi(2)=tr

fi(3)=tr

endif

endif

endif

endif

endif

endif

endif

endif

write(2,*)'fi(2)=',fi(2)," fi(3)="fi(3)

do 15 ij=2,3

b=fi(ij)

call mult(t,tt,sm)

do 47 i=1,3

r(ij+1,i)=r(ij,i)+1.53*tt(i, 1)

continue

nbond=3

nprev=nbond

nbond=nbond+1

call ran2(idum,ran)

a=ran

if (fi(nprev).eq.tr) then
if(a.le.d1(nbond)) fi(nbond)=tr
if(a.gt.d2(nbond)) fi(nbond)=gm
if(a.gt.d1(nbond).and.a.le.d2(nbond)) fi(nbond)=gp
endif

if (fi(nprev).eq.gp) then
if(a.le.d3(nbond)) fi(nbond)=tr
if(a.gt.d4(nbond)) fi(nbond)=gm
if(a.gt.d3(nbond).and.a.le.d4(nbond)) fi(nbond)=gp
endif

if (fi(nprev).eq.gm) then
if(a.le.d5(nbond)) fi(nbond)=tr
if(a.gt.d6(nbond)) fi(nbond)=gm
if(a.gt.d5(nbond).and.a.le.d6(nbond)) fi(nbond)=gp
endif

b=fi(nbond)
write(2,*)'a=",a,'fi=',fi(nbond),'for ',nbond
call transf(t,b,theta)

call mult(t,it,sm)

DO 446 iii=1,3
r(nbond-+1,iii)=r(nbond,iii)+1.53*tt(iii,1)
write(2,*)'r(,nbond,")=",(r(nbond,k),k=1,3),NGEN
if(nbond.eq.(n-1)) go to 99

goto 17

Calc of contribution of each generated chain to avg properties

155
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c99 write(2,*)'chain',iter,'is generated'
99 do 18 i=1,3
im=(n-1)/2+1
in=(n-1)/2
vm(i)=r(im,i)-r(in,i)
end(i)=r(n,i)
c write(2,*) vm(i),end(i)
18 cs(i)=vm(i)*end(i)
endsqg=end(1)**2+end(2)**2+end(3)**2
c write(2,*)'endsqg=',endsq
do 19i=1,3
19 cs(i)=cs(i)/1.53/endsq**.5

csfi=cs(1)+cs(2)+cs(3)

cssqg=csfi**2
c write(2,*)'cos fi=',csfi,' cos2fi=',cssq
cs2av=cs2av+Cssq
r2cs=r2cs+endsqg*cssq
rdcs=r4cs+endsq**2.*cssq
récs=récs+endsq**3.*cssq
r8cs=r8cs+endsq**4.*cssq
r2avg=r2avg+endsq
r4avg=rd4avg+endsq**2.
réavg=réavg+endsq**3.
r8avg=r8avg+endsq**4.
write(2,*)" cos2 th =',cs2av
write(2,*)" r2 cos2 th =',r2cs
write(2,*)' r4 cos2 th=',rdcs
write(2,*)' r6 cos2 th =',récs
write(2,*)' r8cos2 th =',r8cs
write(2,%)' r2 ='r2avg
write(2,*)' r4 ='rdavg
write(2,*)' r6 ='réavg
write(2,*)' r8 =',r8avg
continue
cs2av=cs2av/ngen
r2cs=r2cs/ngen
r4cs=r4cs/ngen
récs=récs/ngen
r8es=r8cs/ngen
r2avg=r2avg/ngen
rdavg=r4davg/ngen
réavg=r6avg/ngen
r8avg=r8avg/ngen
write(2,*)' < cos2 th >=',cs2av
write(2,*)' < r2 cos2 th >=',r2cs
write(2,*)' < r4 cos2 th >=',r4cs
write(2,*)" < r6 cos2 th >=',r6cs
write(2,)" < r8cos2 th >=',r8cs
write(2,%)' < r2 >='r2avg
write(2,*)' < r4 >='r4avg
write(2,*)' < ré6 >=',réavg
write(2,*)' < r8 >='r8avg

2O O0O00O0OOO0O0O0

w
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11

close(2)

stop

end

SUBROUTINE transf(t,b,theta)
DIMENSION t(3,3)
t(1,1)=COS(theta)
t(1,2)=SIN(theta)

t(1,3)=0.
t(2,1)=SIN(theta)*COS(b)
t(2,3)=SIN(b)
t(2,2)=-COS(theta)*COS(b)
t(3,1)=SIN(theta)*SIN(b)
t(3,2)=-COS(theta)*SIN(b)
t(3,3)=-COS(b)

RETURN

END

SUBROUTINE mult(t,tt,sm)
DIMENSION 1(3,3),tt(3,3),sm(3,3)
DO 21 1=1,3

DO 21 K=1,3

sm(l,K)=tt(l, 1)*t(1,K)+it(1,2)*t(2, K)+tt(1,3)*1(3,K)
DO 65 1=1,3

do 65 K=1,3

tt(l, K)=sm(l,K)

RETURN

end

subroutine ran2(idum,ran)
parameter (m=714025,ia=1366,ic=150889,rm=1./m)
dimension ir(97)

data iff/0/
if(idum.it.0.or.iff.eq.0) then
iff=1

idum=mod(ic-idum,m)

do 11 j=1,97
idum=mod(ia*idum4+ic,m)
ir(j)=idum

continue
idum=mod(ia*idum+ic,m)
iy=idum

endif

j=14+(97*iy)/m
if(j.gt.97.or.j.1t. 1)pause
y=ir(j)

ran=iy*rm
idum=mod(ia*idum-+ic,m)
ir(j)=idum

return

end
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(:**********************************************************************************

C

Brownian Dynamics Simulation Program

(:***************************************************************ﬁ******************

@)

C
C
C
C
C
C
C

Program Brownian Dynamics integrates the Langevin equation by the
extended second order Runge-Kutta method. Program simulates the
dynamics of the model Pe chains with the fixed end-to-end separation. A
flexible chain model is adopted. The intramolecular forces due to the bond
stretching, bond bending and the bond rotation are included. It reads in
the initial coordinates of NN atoms of a chain generated by Monte Carlo
Simulation. In the simulation, excluded volume effects and hydrodynamic
interactions are ignored.

(:***************************************************************************i******

(:*******************************t**************************************************

C

olololeolololololololololo oo @)

CONSTANTS

A1,A2 B,elam: CONSTANTS IN EXTENTED RUNGE KUTTA

PSIG=2*BET*KB*T/MASS

NN: # OF BONDS IN THE CHAIN

NSTEP: # OF INCREMENTS, NBOND= # OF BONDS+4(NN+4)

CKL,CKTH, CKF : FORCE CONSTANTS OF BOND STRETCHING,

BOND BENDING AND BOND TORSION

CTH, CEL: BOND BENGING ANGLE(TETRAHEDRAL) AND BOND C
LENGTH OF CC BOND

CAO0,CA1,CA2,CA3,CA4,CA5 : CONSTANTS IN ROTATIONAL

POTENTIAL

BET=E/M; E: FRICTION COEFFICIENT, M: MASS

S: TIME INCREMENTS

CUBL=.153 NM/SQR(3.): X,Y,Z INTERCEPTS OF THE BOND OF

LENGTH .153 NM

AVGN: AVAGADRO'S NUMBER

EKB: BOLTZMANN CONSTANT

(:*******************************************i**************************************

CQOOOCOO0O O

UNITS

BET(1/NS)
MASS(KG/MOL)
CKL/MASS(1/NS**2)
CKTH/MASS(J/KG)
CKFY/MASS(J/KG)
CTH(DEG)
CEL(NM)

(;*********i******************************************************i*****************

C

RRX(1), RRY(l), RRZ(): x, y, z components of positon vector of i'th bond
O<i<nn
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RSX(1), RSY(I), RSZ(l)

and

RFX(l), RFY(l), RFZ(l): x, y, z components of positon vector of i' th bond
for manipulation in intermediate steps

DMAG: magnitude of end-to-end vector r

TGAUSX, TGAUSY, TGAUSZ: gaussian random variable in 3D

FY(l): rotation angle of i' th bond

TS(1),GPS(l), GMS(l): counters for t, g+ and g- respectively

LC: counter for number isomeric transitions

TEX(), TFY(1), TFZ(1): x, y, z components of total force due to bond
stretching, bond bending and rotational potential

ELX(l), ELY(l), ELZ(I): x, y, z components of bond vector i

ELM(l): magnitude of bond vector i

D(K,L): dot product of k' th and I' th bond vectors

TH(1): bond angle of ' th bond

ELCX(l), ELCY(l), ELCZ(I): x, y, z componens of cross product of i th

and i -1' th bond vectors
ELCM(l): magnitude of cross products of i' th and i - 1' th bond vectors
ELCD(l): dot product of cross products i ‘th and i- 1'th bond and
cross products i - 1'thand i - 2 ' th bond vectors

GPM(l): to distinguish plus(+) and minus(-) rotation angles of i ' th bond

EKTH(1): term for bond bending force

EX(), EY(l), EZ(l): x, y, z components of term in bond bending and bond

torsion force

ACAX, ACAY. ACAZ and

ACBX, ACBY. ACBZ and

ACCX, ACCY. ACCZ and

ACOMX, ACOMY, ACOMZ: x, y, z components of terms In bond torsion

force

AAZ1, AAZ2, AAZ3: terms in bond torsion force

FYC: term in bond torsion force

FFYX(l), FFYY(l), FFYZ(]): x, y, z components of derivative of cosi(i)

FYX(), FYY(I), FYZ(l): x, y, z components of ROTATIONAL bond force

FLX(I), FLY(l), FLZ(l): x, y, z components of bond BENDING force

FTHX(1), FTHY(l), FTHZ(1): %, y, z components of bond ANGLE force

(:**********************************************************************************

(:**********************************************************************************

PROGRAM BROWNIAN DYNAMICS

DOUBLE PRECISION RRX(200),RRY(200),RRZ(200)

DOUBLE PRECISION TFX(200), TFY(200)

DOUBLE PRECISION TFZ(200),G1X(200),G1Y(200)

DOUBLE PRECISION G1Z(200),G2X(200),G2Y(200)

DOUBLE PRECISION G2Z(200),RFX(200), RFY (200),sumer(300)
DOUBLE PRECISION RFZ(200),FY(100), TH(100),er(300)

DOUBLE PRECISION TS(100),GPS(100),GMS(100),CORSM(100)
DOUBLE PRECISION RSX(200),RSY(200),RSZ(200),G(200)
DOUBLE PRECISION CORX(100,11),CORY(100,11),CORZ(100,11)
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DOUBLE PRECISION B,EKB,AVGN,TEMP,BET,EMASS,A1,A2,ELAM,P
DOUBLE PRECISION CKTH,CKL,CKFY
DOUBLE PRECISION CEL,CTH,CA0,CA1
DOUBLE PRECISION CA2,CA3,CA4,CA5,CUBL,S

COMMON CKTH,CKL,CKFY,CEL,CTH
COMMON CAO0,CA1,CA2,CA3,CA4,CA5

INTEGER AX,AY,AZ,BX,BY,BZ,CX,CY,CZ,DX,DY,DZX
INTEGER APX,APY,APZ,BPX,BPY,BPZ,CPX,CPY,CPZ,DPX,DPY,DPZ

OPEN(7,FILE="tbl522.dat2")

OPEN(8,FILE='{bl522.0ut4’)
OPEN(9,FILE='11522.0ut5")
OPEN(10,FILE='fb|522.0ut6')

READ(7,*)idum,B,EKB,AVGN,TEMP,BET,EMASS,A1,A2
READ(7,")ELAM,NSTEP,NN,S,CKTH,CKL,CKFY,CEL,CTH
READ(7,")CA0,CA1,CA2,CA3,CA4,CA5

PSIG=2."BET*EKB*TEMP/EMASS*AVGN
CUBL=CEL/3.**.5

WRITE(8,*)IDUM',IDUM,' KB' EKB,' TEMP', TEMP

WRITE 8 de ' D ok e g e de e e e e de v e o e de e de de o de g de de e de e de I de e e ke ke Ak e de dede de ke dedodede e ke k)
y

WRITE(8,”)'BET',BET,' MASS'EMASS,' A1',A1,' A2' A2,'B',B

WR'TE 8 dk\lkdkhkddhddkhhddkdhdhkhhkkkhrkhhkrkbbddhhdiddhrdhihhhirn]
’

WRITE(8,*)NSTEP',NSTEP,' NN',NN,' §',S,'CKTH',CKTH,'CKL',CKL

WRITE 8 e ) 9k o e ke e v s v o e e e e e 3 v e e ok e e e e de e e o o e de e dede e de e et e de de e dede deke drde ke )
?

WRITE(8,*)'CKFY',CKFY,'CEL',CEL,'CTH',CTH,'CA5',CA5

WR'TE 8 *)I*************************************************l
b

WRITE(8,*)'CA0',CA0,'CA1',CA1,'CA2',CA2,'CA3',CA3,'CA4',CA4

WR‘TE 8 *)I***********************************************'k*l
’

WRITE(8,*)'PSIG',PSIG,'CUBL',CUBL

WR'TE(S *)l*************************************************l
’

INITIALIZE THE ARRAYS

LC=0.
ns=0.

DO 1411 K=1,NBONC+8
TS(K)=0.

GPS(K)=0.

GMS(K)=0.

RRX(K)=0.

RRY (K)=0.

RRZ(K)=0.

RSX(K)=0.

RSY(K)=0.



1411

1119

645

Cc
624
50

RSZ(K)=0. 161

G1X(K)=0.
G1Y(K)=0.
G1Z(K)=0.
G2X(K)=0.
G2Y (K)=0.
G2Z(K)=0.
RFX(K)=0.
RFY(K)=0.
RFZ(K)=0.
G(K)=0.
CONTINUE

do 1119 i=1,300
sumer(i)=0
er(i)=0

continue

NN=NUMBER OF BONDS IN THE CHAIN, NN IS SHIFTED BY FOUR
TO NBONC FOR EASE OF COMPUTATION

nbonc=nn+4

do 645 i=5,nbonc
read(7,*)rrx(i), rry(i), rrz(i)
continue

DO 624 1=5,NBONC
RSX(I)=RRX(l)
RSY(l)=RRY()
RSZ(1)=RRZ(l)

WRITE(2,50)RSX(1),RSY(l),RSZ(l)
CONTINUE

FORMAT(3F20.16)
MAGNITUDE OF THE END-TO-END VECTOR OF THE CHAIN

DMAG=((RRX(NBONC))**2+(RRY(NBONC))**2
+(RRZ(NBONC))**2)**.5

WRITE(2,*)DMAG',DMAG

WRITE(2 *)l******************************i’******************!
3

WRITE(2,*)'BOND',' TRANS',' GAUCHE +',' GAUCHE-'

WR'TE(2 *)l*************************************************l
?

BEGINNING OF THE MAIN PROGRAM
START OF TIME-STEP LOOP



890

1002

302

O 00000

oo

DO 101 JA=1,NSTEP

e\ Foe v de ok 3k o o S I e e o o o ok e e de ke e S de A e i do e e e e e e de de e e do i dede dede de b g g de ok ok )
WRITE(2,*)

WRITE(2,")NSTEP',JA

WRITE(2 *)l********************'k****************************I
3

START OF BOND LOOP

DO 890 I=5,NBONC
RRX()=RSX(l)
RRY(1)=RSY(l)
RRZ(1)=RSZ(l)
CONTINUE

DO 1002 I=1,NBONC
RFX()=RRX(l)

RFY(1)=RRY())

RFZ(1)=RRZ(])
WRITE(2,")RFX(I),RFY(l),RFZ(l)
CONTINUE

START OF BOND LOOP

DO 102 I1=5,NBONC

DO 302 K=1,1

RFX(I-K)=RRX(I-K)

RFY (I-K)=RRY(I-K)

RFZ(I-K)=RRZ(I-K)

CONTINUE
PSIG=2.*BET*EKB*TEMP/EMASS*AVGN

DO 1001 K=1,NBONC
WRITE(2,*)YRFX',RFX(K),K,' RFY'RFY(K),' RFZ',RFZ(K),1'}

1001 CONTINUE

FUNCTION GAUSS RETURNS A NORMAL RANDOM VARIATE

TGAUSX=GAUSS(idum)
TGAUSY=GAUSS(idum)
TGAUSZ=GAUSS(idum)

write(6,*)'ga',tgausx,tgausy,tgausz,i,ja

SUBROUTINE FORCE RETURNS THE TOTAL FORCE(TFX, TFY, TFZ)

ACTING ON (I)TH ATOM AFTER FIRST PERTURBATION
CALL FORCE (nbonc,JA,l,RFX,RFY,RFZ TFX,TFY,TFZ,FY)
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PSIG=2."BET*EKB*TEMP/EMASS*AVGN

TO KEEP END ATOMS FIXED

if(i.eq.5.or.i.eq.nbonc)then
tfx(i)=0

tfy(i)=0

tfz(i)=0

psig=0

endif

G1X(l)=1./BET*TFX(l)
G1Y()=1./BET*TFY(l)
G1Z(1)=1./BET*TFZ())

POSITION VECTOR OF (I)TH ATOM AFTER FIRST PERTURBATION

RFX()=RFX(1)+G1X(l)*S*B+S**.5*PSIG**.5"ELAM*TGAUSX/BET
RFY(1)=RFY(I)+G1Y(1)*S*B+S5**.5*PSIG**.5"ELAM*TGAUSY/BET
RFZ(l)=RFZ(1)+G1Z(l)*S*B+S**.5*PSIG**.5" ELAM*TGAUSZ/BET

IF(JA.EQ.NB)THEN
SUMFY=SUMFY+COS(FY (I)*3.141592654/180.)
WRITE(2,*)COS(FY(I)*3.14/180),!

ENDIF

TO SET A COUNTER TO ASSES THE TIME-STEPS THAT EACH ATOM
SURVIVES IN THE STATES T,G+, G-

IF(JA.EQ.1)THEN

WRITE(8,*) FY",FY(l),' I'},' JA' JA

ENDIF

IF(FY(1).LE.60.0.AND.FY (1).GE.-60.0) THEN
TS()=TS()+1

IF(TS(1).EQ.1) THEN

LC=LC+1

WRITE(2,*)l, TS(l), GPS(l), GMS(I),' NSTEP', JA,' LC', LC
GPS(1)=0

GMS(1)=0

ENDIF

ENDIF

IF(FY(1).GT.60.0) THEN

GPS()=GPS(l)+1

IF(GPS(I).EQ.1) THEN

LC=LC+1

WRITE(2,")l, TS(I), GPS(l), GMS(l),' NSTEP', JA,' LC, LC
TS(1)=0

GMS()=0

ENDIF

ENDIF
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RSX(I)=RRX(1)+S*(A1*G1X()}+A2*G2X()))
+ +5* 5*PSIG**.5*ELAM*TGAUSX/BET
RSY(I)=RRY(1)+S*(A1*G1Y(I)+A2*G2Y(l))
+ +8** 5*PSIG**.5*ELAM*TGAUSY/BET
RSZ(1)=RRZ(1)+S*(A1*G1Z(I)+A2*G2Z(1))
+ +5** 5*PSIG** 5*ELAM*TGAUSZ/BET

102 CONTINUE
C EEND OF BOND LOOP

jt=jtt*1000
if(ja.eq.jt}then

write(6,*)'ja',ja
if(ja.lt.300000)then
go to 8011

endit
if(ja.ge.300000.and.ja.!t.600000)then
go to 5080

endif
if(ja.ge.600000)then

go to 5090

endif

8011 DO 2510 K=15,35
WRITE(8,*)RSX(K),RSY(K),RSZ(K),K,ja

2510 CONTINUE
go to 2090
5080 DO 2610 K=15,35
WRITE(9,*)RSX(K),RSY(K),RSZ(K),K,ja
2610 CONTINUE
go to 2090
5090 DO 2710 K=15,35
WRITE(10,*)RSX(K),RSY(K),RSZ(K),K,ja
2710 CONTINUE
endif
2090 if(ja.gt.jt)then

jtt=jtt+1
endif
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IF(FY(1).LT.-60.0) THEN
GMS(1)=GMS(l)+1

IF(GMS(1).EQ.1) THEN

LC=LC+1

WRITE(2,)l, TS(l), GPS(I), GMS(l), NSTEP', JA,' LC', LC
TS(1)=0

GPS(1)=0

ENDIF

ENDIF

do 789 k=1,20
er(k)=k*20-200
continue

do 9999 k=1,20
if(fy(i).It.er(k+1).and.fy(i).ge.er(k))then
sumer(k)=sumer(k)+1

endif

continue

SUBROUTINE FORCE RETURNS THE TOTAL FORCE(TFX, TFY, TFZ)
ACTING ON ('TH ATOM AFTER SECOND PERTURBATION

CALL FORCE (nbonc,JA,l,RFX,RFY,RFZ,TFEX, TFY,TFZ,FY)
PSIG=2."BET*EKB*TEMP/EMASS*AVGN
TO KEEP END ATOMS FIXED

if(i.eq.5.or.i.eq.nbonc)then

tfx(i)=0

tfy(i)=0

tfz(i)=0

psig=0

endif
G2X()=1./BET*TFX(l)
G2Y()=1./BET*TFY(l)
G2Z(1)=1./BET*TFZ(l)

WRITE(2,")OLD COORDINATES OF THE CHAIN'
WRITE(2,*)’RSX',RSX(l),''l,'NSTEP',JA
WRITE(2,*)'RSY',RSY(l),'',|, NSTEP',JA
WRITE(2,*)'RSZ',RSZ(1),'I' |, NSTEP',JA
WRlTE(2"k)l*****t**********************i*************i*l
ENDIF

ENDIF

NEW COORDINATES OF (I)TH BOND AFTER JATH TIME STEP
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C

2910
55

2921

8887

00000000

CONTINUE
END OF TIME-STEP LOOP

DO 2910 K=5,NBONC
WRITE(8,*)RSX(K),RSY(K),RSZ(K)
CONTINUE

FORMAT(3F19.15)
DO 2921 K=5,NBONC
WRITE(8,*)TS(K),GPS(K),GMS(K)
CONTINUE

DO 8887 K=1,50
write(6,*)sumer(k), k, er(k)
write(8,*)sumer(k), k, er(k)
continue

CLOSE(2)
CLOSE(8)
CLOSE(1)

STOP
END

SUBROUTINE FORCE RETURNS THE TOTAL

FORCE(TFX,TFY, TFZ)ACTING ON()TH ATOM DUE TO THE BOND
STRETCHING, BOND BENDING AND BOND ROTATIONAL
POTENTIAL. THAT IS THE FORCE ON THE ATOM(l) DUE TO THE
PRESENCE OF THE CARTESIAN COORDINATE Xi,Yi, Zi IN THE
GENERALIZED COORDINATES Li+k, THi+k AND Fi+k,

k=0,1 for Li+k, bond length

k=0-2 for THi+k, bond angle

k=0-3 for Fi+k, bond torsional angle

SUBROUTINE FORCE(nbonc,JAL,RFX,RFY ,RFZ TFX, TFY,TFZ,FY)

DOUBLE PRECISION RFX(200),RFY(200),RFZ(200),EKTH(10)
DOUBLE PRECISION EKFY(10),ELX(10),ELY(10),ELZ(10)
DOUBLE PRECISION ELM(10),ELCX(10),ELCY(10)

DOUBLE PRECISION ELCZ(10),ELCM(10),ELCD(10), TH(100)
DOUBLE PRECISION FY(100),EX(10),EY(10),EZ(10)

DOUBLE PRECISION D(150,150),A(150,150),FLX(10),FLY(10)
DOUBLE PRECISION FLZ(10),FTHX(20),FTHY(20),FTHZ(20)
DOUBLE PRECISION FFYX(10),FFYY(10),FFYZ(10),FYX(10)
DOUBLE PRECISION FYY(10),FYZ(10),GPM(100)

DOUBLE PRECISION TFX(200), TFY(200), TFZ(200),FAYY/(100)
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DOUBLE PRECISION ACAX,ACAY,ACAZ,ACBX,ACBY,ACBZ,ACCX
DOUBLE PRECISION ACCY,ACCZ,ACOMX,ACOMY,ACOMZ,ACOM

DOUBLE PRECISION CKTH,CKL,CKFY,CEL,CTH,CA0,CA1
DOUBLE PRECISION CA2,CA3,CA4,CA5,P,FYC
DOUBLE PRECISION AAX1,AAX2,AAY 1,AAY2,AAZ1,AAZ2

REAL MA(3),NA(3),LA(3)

COMMON CKTH,CKL,CKFY,CEL,CTH
COMMON CA0,CA1,CA2,CA3,CA4,CA5

ni=i+3
if(i.eq.nbonc)then
Ni=i

endif
if(i.eg.nbonc-1)then
Ni=i+1

endif
if(i.eg.nbonc-2)then
ni=i+2

endif
if(i.eq.nbonc-3)then
Ni=i+3

endif

INITIALIZE THE ARRAYS

DO 5001 K=I-3,ni
GPM(K)=0.
FTHX(K)=0.
FTHY(K)=0.
FTHZ(K)=O.
FYX(K)=0.
FYY(K)=0.
FYZ(K)=0.
FFYX(K)=0.
FFYZ(K)=0.
FFYY (K)=0.
ELCX(K)=0.
ELCY(K)=0.
ELCZ(K)=0.
ELCM(K)=O0.
ELX(K)=0.
ELY/(K)=0.
ELZ(K)=0.
ELM(K)=0.
TH(K)=0.
ELCD(K)=0.
FY (K)=0.
FAYY (K)=0
EKTH(K)=0.
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5001

5003
5002

EX(K)=0.
EY(K)=0.
EZ(K)=0.
FLX(K)=0.
FLY(K)=0.
FLZ(K)=0.0
TFX(K)=0.
TFY(K)=0.
TFZ(K)=0.
EKFY(K)=0.
CONTINUE

MA(1)=0.
NA(1)=0.
LA(1)=0.
MA(2)=0.
NA(2)=0.
LA(2)=0.

DO 5002 K=I-3,ni
DO 5003 L=I-3,ni
D(K,L)=0.
D(L,K)=0.
A(K,L)=0.
A(L,K)=0.
CONTINUE
CONTINUE

BOND VECTOR OF (I)TH ATOM,L

DO 101 K=l-2,ni
ELX(K)=RFX(K)-RFX(K-1)
ELY(K)=RFY(K)-RFY(K-1)
ELZ(K)=RFZ(K)-RFZ(K-1)

WRITE(2,*)'ELX', ELX(K),ELY(K),ELZ(K),'K"k, 'ni',ni
CONTINUE

WRITE(2 *)l*********‘k***************'k*********************l
L

MAGNITUDE OF BOND VECTOR,L

may=i-2
if(i.eq.5.0r.i.eq.6)then
may=5

endif

DO 102 K=may,ni

ELM(K)=(ELX(K)**2+ELY (K)**2+ELZ(K)**2)**.5
WRITE(2,*)'ELM',ELM(K),'ni",ni

CONTINUE

WRITE(Z *) e de e de e e do g o Jo e e Je 9 g e o g de B e e de Ao A I do e de g g e ke oo Je e dede dedede ke dedekde )
?

DOT PRODUCT OF (I)TH AND (I-1)TH BOND VECTORS

le8



192

109
108

OO%‘O

oo

c
104

oo

DEFINITION FOR D(l, J), DOT PRODUCT OF (I)TH AND (J)TH CC
VECTORS

if(i.lt.6)then
go to 199
endif
may=i-2

if(i.eq.6)then

may=5
endif
DO 108 K=may,ni-1
DO 109 L=K+1,ni
D(K,L)=ELX(K)*ELX(L)+ELY(K)*ELY(L)+ELZ(K)*ELZ(L)
D(L,K)=D(K,L)
WRITE(2,*)'D',D(K,L),’K',K,'L',L
CONTINUE
CONTINUE

WRITE(2 *) 19 e 9 e Jo I e e e s de de e e do ot e e de g de e de do ode e e de dede de dede ok de do g ke e ok dede dede dedke )
g ’

THE ANGLE BETWEEN (I)TH AND (I-1)TH BOND VECTORS

may=i-1
if(i.eq.6)then
may=>5
endif

DO 501 K=may,ni
TH(K)=(ACOS(D(K,K-1)/(ELM(K)*ELM(K-1))))*180./3.141592654
WRITE(2,*)TH', TH(K),K

CONTINUE

WRITE(z *)ITH K'lv************************i******************l
¥

if(i.1t.7)then
go to 197
endif

CROSS PRODUCT OF (I) AND (I-1)TH BOND VECTORS

DO 104 K=I-1,ni
ELCX(K)=ELY (K)*ELZ(K-1)-ELZ(K)*ELY/(K-1)
ELCY(K)=-(ELX(K)*ELZ(K-1)-ELZ(K)*ELX(K-1))
ELCZ(K)=ELX(K)*ELY (K-1)-ELY (K)*ELX(K-1)
WRITE(2,*)ELCX(K),ELCY(K),ELCZ(K),k
CONTINUE

WR'TE(Z *) T e de e dc e de de T de o 2 o dc 3o de o B Je de Je d e de o e B e dede ke dede do ke et dedodededeke dededede )
9’

MAGNITUDE OF CROSS PRODUCT OF (I)'TH AND (I-1)TH BOND
VECTORS
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DO 105 K=l-1,ni 0
ELCM(K)=ELM(K)*ELM(K-1)*SIN(TH(K)*3.141592654/180.)
WRITE(2,*)ELCM',ELCM(K),K
CONTINUE

WR'TE(z,*)lELM*****t***************************************l
DOT PRODUCT OF TWO CROSS PRODUCTS
if(i.1t.7)then

go to 197

endif

DO 502 K=l,ni
ELCD(K)=ELCX(K)*ELCX(K-1)+ELCY(K)*ELCY (K-1)

+ +ELCZ(K)*ELCZ(K-1)

c
502
C

3456

Qo0

503

o0 O

197

WRITE(2,*)'ELCD',ELCD(K)
CONTINUE

WR'TE(2 *) 19 v 3 o e o e e e de e 3 e e o e ok v de A g de ok 3 e de de o ke e e e ke e A de ke de ek e e Al
’

DO 3456 K=l,ni
GPM(K)=ELCX(K-1)*ELX(K)+ELCY (K-1)*ELY(K}+ELCZ(K-1)*ELZ(K)
WRITE(2,")GPM',GPM(K),’K' K

CONTINUE

TORSIONAL ANGLE FOR (I)TH BOND

DO 503 K=,ni
FAYY(K)=((-ELCD(K)/ELCM(K)/ELCM(K-1)))
WRITE(2,*)FAYY' FAYY(K),K JA
IF(FAYY(K).GT.1.)THEN

FAYY(K)=1.

ENDIF

IF(FAYY(K).LT.-1.)THEN

FAYY(K)=-1.

ENDIF
FY(K)=(ACOS(FAYY/(K))*180./3.141592654)
WRITE(2,*)FY"FY(K)

IF(GPM(K).LT.0.0000000) THEN
FY(K)=-FY(K)

ENDIF

CONTINUE

WR'TE(a *)I*************************************************I
Y

DEFINITION FOR EKTH(l), NECESSARY FOR THE CALCULATION OF
THE FORCE DUE TO BOND BENDING

if(i.1t.6)then
go to 198
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endif

DO 106 K=l,ni
EKTH(K)=CKTH*(COS(TH(K)*3.141592654/180.)
+ -COS(CTH*3.141592654/180.))/ELM(K)/ELM(K-1)
106 CONTINUE

C WRITE(Z *)l***************i***'A"A'****************************l

C  DEFINITION FOR E(l), NECESSARY FOR THE CALCULATION OF THE
C  FORCE DUE TO BOND BENDING

DO 107 K=l,ni

EX(K)=ELX(K)/ELM(K)**2

EY/(K)=ELY(K)/ELM(K)**2

EZ(K)=ELZ(K)/ELM(K)**2

107 CONTINUE

DEFINITION FOR A(lJ), NECESSARY FOR THE CALCULATION OF
THE FORCE DUE TO BOND ROTATIOND

00

DO 210 K=I-1,ni-1
DO 211 L=K+1,ni
A(K,L)=(ELM(K)**2*ELM(L)**2-D(K,L)**2)
A(L,K)=A(K,L)

211  CONTINUE

210 CONTINUE

C WRITE( *)l*******************************************i**l

DEFINITION FOR EKFY(l), NECESSARY FOR THE CALCULATION OF
THE FORCE DUE TO BOND ROTATION,1/A/B

oo

198 if(i.lt.7)then
go to 199
endif

DO 212 K=l,ni
EKFY(K)=-1./ELCM(K)/ELCM(K-1)

¢ WRITE(2,*EKFY(K)',EKFY(K)
212 CONTINUE

C WR'TE(z *)l**********************************************l

C  CONTRIBUTION TO ROTATIONAL FORCE ON (\TH ATOM

C  FROM THE ROTIONAL FORCE ON (1+1)TH ATOM DUE TO

C  PRESENCE OF Xi,Yi AND Zi IN THE GENERALIZED COORDINATE,
C  ROTATIONAL ANGLE Fi+1

c

if(i.gt.(nbonc-1))then



00

O000

OO0 0000

go to 1911
endif

ACAX=D(l,I-1)*ELX(I-1)-ELM(I-1)**2*ELX(l)
ACAY=D(l,I-1)*ELY (I-1)-ELM(l-1)**2*ELY(l)
ACAZ=D(},I-1)*ELZ(I-1)-ELM(I-1)**2*ELZ(l)

ACBX=D(I+1,1)*ELX(I)-ELM(1)**2*ELX(I+1)
ACBY=D(I+1,1)*ELY(I)-ELM(l)**2*ELY(I+1)
ACBZ=D(I+1,)*ELZ(l)-ELM(I)**2*ELZ(1+1)

ACCX=D(l+1,1)*ELX(I1+1)-ELM(I+1)**2*ELX(l)
ACCY=D(l+1,))*ELY (I+1)-ELM(l+1)**2*ELY (I)
ACCZ=D(I+1,)*ELZ(I+1)-ELM(I+1)**2*ELZ(l)

ACOM=ELM(1)**2*D(I-1,1+1)-D(1,1-1)*D(l, 1+1)
WRITE(2,*)ACOM',ACOM

WR'TE(2 *)l***'k*******************************i**********l
]

ACOMX=-D(l,I-1)*ELX(I+1)4+2.*ELX(1)*D(I-1,1+1)
+ELX(1)*D(1,I-1)-ELX(I-1)*ELM(1)*2-ELX(I-1)*D(l, 1+1)

ACOMY=-D(I,1-1)*ELY(I+1)+2.*ELY (1)*D(I-1,1+1)
+ELY(1)*D(1,1-1)-ELY(I-1)*ELM(1)**2-ELY(I-1)*D(l, 1+1)

ACOMZ=-D(l,I-1)*ELZ(1+1)+2.*ELZ(1)*D(I-1,1+1)
+ELZ(1)*D(1,1-1)-ELZ(1-1)*ELM(I)**2-ELZ(I-1)*D(1,1+1)
WRITE(2,*)ACOMX",ACOMX

WRITE(2,")ACOMY', ACOMY

WRITE(2,*YACOMZ', ACOMZ

WRITE (2 *) (B2 22222222l 2 sl adiss s sdlesitess ettt s sl
9’

FFYX(l+1)=((ACAX/ELCM(I)**2+(-ACBX
+ACCX)/ELCM(1+1)**2)*ACOM+ACOMX)*EKFY (I+1)

FFYY(1+1)=((ACAY/ELCM(1)**2+(-ACBY
+ACCY)/ELCM(1+1)**2)*ACOM+ACOMY)*EKFY I+1)

FFYZ(i+1)=((ACAZ/ELCM(l)**2+(-ACBZ
+ACCZ)/ELCM(I+1)**2)* ACOM+ACOMZ)*EKFY (I+1)

WRITE(2,*)FFYX(I+1),FFYX(I+1)
WRITE(2,*)FFYY(I+1) ,FFYY(I+1)
WRITE(2,")FFYZ(I+1) ,FFYZ(I+1)

WRITE(2,*)I1ST STEP***************************************l

CONTRIBUTION TO ROTATIONAL FORCE ON (I)TH ATOM
FROM THE ROTIONAL FORCE ON (I+2)TH ATOM DUE TO
PRESENCE OF Xi,Yi AND Zi IN THE GENERALIZED COORDINATE,

ROTATIONAL ANGLE Fi+2

1911 if(i.gt.(nbonc-2))then
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0000

OO0

+
+

go to 1919
endif

ACAX=D(I+1,I)*ELX(I)-ELM(I)**2*ELX(I+1)
ACAY=D(I+1,)*ELY(l)-ELM(I)**2*ELY(l+1)
ACAZ=D(I+1,I}*ELZ(I)-ELM(I)**2*ELZ(I+1)

ACBX=D(I+1,1)*ELX(I+1)-ELM(I+1)**2*ELX(l)
ACBY=D(I+1,)*ELY(l+1)-ELM(l+1)=2*ELY(l)
ACBZ=D(I+1,I)*ELZ(I+1)-ELM(I+1)*2*ELZ(l)

ACCX=D(I+2,1+1)*ELX(I+2)-ELM(I1+2)**2*ELX(1+1)
ACCY=D(1+2,1+1)*ELY (I1+2)-ELM(1+2)**2*ELY (l+1)
ACCZ=D(I+2,1+1)*ELZ(1+2)-ELM(1+2)**2*ELZ(i+1)

ACOM=ELM(1+1)**2*D(1,1+2)-D(I+1,1+2)*D(l, 1+1)

WRITE(Z *)I************************'&***********************l
s

ACOMX=-D(I,I+1)*ELX(I4+2)+2.*ELX(I+1)*D(1,I1+2)
+ELX(1+1)*D(1+1,1+2)-ELX(I+2)*ELM(I+1)**2
-ELX()*D(1+2,1+1)

ACOMY=-D(l,I+1)*ELY (I4+2)+2.*ELY (I+1)*D(l,1+2)
+ELY(I+1)*D(I+1,1+2)-ELY (I+2)*ELM(l+1)**2
-ELY(I)"D(1+2,1+1)

ACOMZ=-D(1,1+1)*ELZ(1+2)+2.*ELZ(I+1)*D(l,1+2)
+ELZ(14+1)*D(1+1,142)-ELZ(1+2)*ELM(I+1)**2
-ELZ(1)*D(I+2,I+1)

WRITE(2,*)'ACOMX',ACOMX
WRITE(2,*YACOMY', ACOMY
WRITE(2,")ACOMZ', ACOMZ

WRITE(2 *)l'k*********************************************l
1

FFYX(1+2)=-EKFY (1+2)*((((ACAX
-ACBX)/ELCM(I+1)**2
+ACCX/ELCM(1+2)**2)* ACOM)+ACOMX)

FFYY (1+2)=-EKFY (1+2)*((((ACAY
-ACBY)/ELCM(l+1)**2
+ACCY/ELCM(1+2)**2)*ACOM)+ACOMY)

FFYZ(1+2)=-EKFY(l+2)*((((ACAZ
-ACBZ)/ELCM(l+1)**2
+ACCZ/ELCM(1+2)**2)* ACOM)+ACOMZ)

WRITE(2,*YFFYX(1+2), FFYX(1+2)
WRITE(2,*)FFYY(l+2) FFYY (14+2)
WRITE(2, Y FFYZ(1+2)' FFYZ(l+2)

WRITE (2’ *)|2N D STEP***’l*i*************************************l
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OO0

1919

CONTRIBUTION TO ROTATIONAL FORCE ON (I)TH ATOM
FROM THE ROTIONAL FORCE ON (I)TH AND (I+1)ATOM DUE TO

PRESENCE OF Xi,Yi AND Zi IN THE GENERALIZED COORDINATE,

ROTATIONAL ANGLE Fi AND Fi+3

MA(1)=l
NA(1)=I-1
LA(1)=I-2
MA(2)=1+1
NA(2)=I1+2
LA(2)=1+3

DO 213 K=1,2

if(k.eq.2.and.i.gt.(nbonc-3))then

go to 213

endif
P=(D(MA(K),LA(K))*ELM(NA(K))**2)
-D(NA(K),LA(K))*"D(MA(K),NA(K))

AAX1=(D(MA(K),NA(K))*ELX(NA(K))-ELM(NA(K))**2*ELX(MA(K)))
AAX2=(ELM(NA(K))**2*ELX(LA(K)))-D(NA(K),LA(K))"ELX(NA(K))
FFYX(1+3*K-3)=(AAX1*(P)/A(MA(K), NA(K))
+AAX2)*(-1.)**(K+1)*EKFY (1+3*K-3)

AAY 1=(D(MA(K),NA(K))*ELY (NA(K))-ELM(NA(K))**2*ELY(MA(K)))
AAY2=(ELM(NA(K))**2*ELY (LA(K)))-D(NA(K),LA(K))*ELY (NA(K))
FFYY (1+3*K-3)=(AAY 1*(P)/A(MA(K),NA(K))

+AAY2)*(-1.)** (K+1)*EKFY (1+3*K-3)

AAZ1=(D(MA(K),NA(K))*ELZ(NA(K))-ELM(NA(K))**2*ELZ(MA(K)))
AAZ2=(ELM(NA(K))**2*ELZ(LA(K)))-D(NA(K), LA(K))*ELZ(NA(K))
FFYZ(1+3*K-3)=(AAZ1*(P)/A(MA(K),NA(K))
+AAZ2)*(-1.)**(K+1)*EKFY(1+3*K-3)

CONTINUE

WthE(z,*)l********************************************l

FORCE DUE TO BOND ROTATION

DO 701 K=l,ni

FYC=CA1+2.*CA2*FAYY(K)+3.*CA3*FAYY(K)**2

+ +4.*CA4*FAYY(K)**3+5.*CA5*FAYY (K)**4

FYX(K)=CKFY*FFYX(K)*FYC
FYY(K)=CKFY*FFYY(K)*FYC
FYZ(K)=CKFY*FFYZ(K)*FYC
WRITE(2,*)FYC',FYC
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C  WRITEQR,FYX(K),FYX(K),FYY(K),FYY(K), FYZ(K) FYZ(K) 175

701 CONTINUE

CONTRIBUTION TO BOND STRETCHING FORCE ON ()'TH ATOM
FROM THE BOND STRETCHING FORCE ON (I) AND (I+1)TH ATOM
DUE TO RESENCE OF Xi,Yi AND Zi IN THE GENERALIZED
COORDINATE, Li AND Li+1

0000

199 DO 1495 K=1,2

if(k.eq.2.and.i.gt.(nbonc-1))then

go to 1495

endif

FLX(I+K-1)=(-1.)**(K)*CKL*ELX(I+K-1)*(1.-CEL/ELM(I+K-1))

FLY(1+K-1)=(-1.)"*(K)*CKL*ELY (I+K-1)*(1.-CEL/ELM(I+K-1))

FLZ(14+K-1)=(-1.)"*(K)*CKL*ELZ(1+K-1)*(1.-CEL/ELM(I+K-1))
1495 CONTINUE

WRITE(Z *) e de sl e v o ode e Je v g vle sk e e e ol e e e e e S v e o e e e % e o de e e e b g e de s o e )
b

@)

CONTRIBUTION TO BOND BENDING FORCE ON ()TH ATOM
FROM THE BOND BENDING FORCE ON (I)TH ATOM DUE TO
PRESENCE OF Xi,Yi AND Zi IN THE GENERALIZED COORDINATE,
BOND ANGLE THi

OO0

if(i.1t.6)then
go to 9101
endiF

FTHX()=-EKTH(I)*(ELX(I-1)-D(1,1-1)*EX(1))
FTHY(l)=-EKTH(I)*(ELY(I-1)-D(1,I-1)*EY(l))
FTHZ()=-EKTH(I)*(ELZ(I-1)-D(1,I-1)*EZ(l))

C WRITE(Z *)l********************************************l
¥

9101 if(i.lt.6.or.i.gt.(nbonc-1))then
go to 191
endif

CONTRIBUTION TO BOND BENDING FORCE ON (I)TH ATOM
FROM THE BOND BENDING FORCE ON (1+1)TH ATOM DUE TO
PRESENCE OF Xi,Yi AND Zi IN THE GENERALIZED COORDINATE,
BOND ANGLE THi+1

O000

FTHX(I+1)=-EKTH(I+1)*(ELX(1+1)-ELX(1)
+ +D(1,1+1)*(EX(+1)-EX(1)))

FTHY (I+1)=-EKTH(I+1)*(ELY (I+1)-ELY(l)
+ +D(1,+1)*(EY(+1)-EY(1))

FTHZ(I+1)=-EKTH(l+1)*(ELZ(1+1)-ELZ(l)
+ +D(I,1+1)*(EZ(1+1)-EZ(1)))

C WRITE(Z *) Ve e e v de o e e e de e ot g e de e e e de do sk de g e e de e dede i v de o dede A i de de dede ko %)
]



176

191 if(i.lt.6.0r.i.gt.(nbonc-2))then
go to 123
endif

CONTRIBUTION TO BOND BENDING FORCE ON (l'TH ATOM
FROM THE BOND BENDING FORCE ON (I+2)TH ATOM DUE TO
PRESENCE OF Xi,Yi AND Zi IN THE GENERALIZED COORDINATE,
BOND ANGLE THi+2

OO0

FTHX(1+2)=EKTH(1+2)* (ELX(14+2)-D(I+1,1+2)*EX(I+1))
FTHY (1+2)=EKTH(I+2)*(ELY (1+2)-D(1+1,1+2)*EY(I+1))
FTHZ(1+2)=EKTH(1+2)*(ELZ(1+2)-D(1+1,1+2)*EZ(I+1))

(: vqurTTE(2 *y******************************************l
4

C X,Y,Z COMPONENTS OF THE TOTAL FORCE

123 TFX()=FLX(I)+FLX(1+1)+FTHX()+FTHX(1+1)+FTHX(1+2)
+ +FYX()+FYX(1+1)+FYX(1+2)+FYX(1+3)

TEY()=FLY()+FLY(I+1)+FTHY()+FTHY (I+1)+FTHY(I+2)
+ +FYY(D+FYY(I+1)+FYY(+2)+FYY(I+3)

TFZ(1)=FLZ(I)+FLZ(1+1)+F THZ()+FTHZ(1+1)+FTHZ(1+2)
+ +FYZ()+FYZ(1+1)+FYZ(1+2)+FYZ(1+3)

C WRITE(2,*)TEX(1), TEX(1), TEY(1), TFZ(1)

RETURN
END

(:*************************************************************************i********

C FUNCTION GAUSS RETURNS A UNIFORM RANDOM VARIATE FROM
C A DISTRIBUTION OF ZERO MEAN AND UNIT VARIANCE

(;**********************************************************************************

REAL FUNCTION GAUSS(idum)

REAL A1,A3,A5,A9,A7
PARAMETER(A1=3.949846138,A3=0.25240874)
PARAMETER(A5=0.076542912,A7=0.008355968)
PARAMETER(A9=0.029899776)

DOUBLE PRECISION SUM,R,R2

INTEGER |

SUM=0.0

DO 1000 I=1,12

v=RAN(idum)

write(6,*)'V',v

oo



90 CALL RAN2(idum,ranv)
C write(8,*)'ranv',ranv
if(ranv.gt.1.or.ranv.lt.0)then
idum=idum-1
go to 90
endif
C WRITE(2,")RANV',RANV
SUM=SUM-+v
1000 CONTINUE
R=(SUM-6.0)/4.0
R2=R*R
GAUSS=((((A9*R2+A7)*R2+A5)*R2+A3)*R2+A1)*R
C WRITE(8,*)'GAUSS',GAUSS
RETURN
END

(:***************************************************************************i******

C SUBROUTINE RAN2 RETURNS A RANDOM NUMBER BETWEEN 0
C AND 1

e v o e e T e o de i e o do A g do Jo o ode e de de do e e do i B Jo e de dede Je U de e oo de e o de Je v ode b e e do de e de I e do e de de Jo e de de de Je e de Iede e de de de e de g e ode A de dede ok ke ke

subroutine ran2(idum,ran)
parameter (m=714025,ia=1366,ic=150889,rm=1./m)
DOUBLE PRECISION ir(97)
data iff/0/
if(idum.lt.0.or.iff.eq.0) then
iff=1
idum=mod(ic-idum,m)
do 11 j=1,97
idum=mod(ia*idum+ic,m)
ir(j)=idum

11 continue
idum=mod(ia*idum+ic,m)
iy=idum
endif
j=1+(97*iy)/m

c if(j.gt.97.or.j.1t. 1)pause
iy=ir(j)
ran=iy*rm
idum=mod(ia*idum+ic,m)
ir(j)=idum
return
end
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Input File for the chain with A = 0.91

8 1. 1.381E-23 6.023E+23 400. 1.E+5 .014 5 5
1. 30000 49 5.E-6 1.3E+7 2.5E+9 6.634E+5 .153 70.53
1. 1.3108 -1.4135 -.3358 2.8271 -3.3885 10000

0.153000000000000
0.037189392742390
0.033005999198542
-0.047519859279891
-0.187014214985297
-0.239266325915663
-0.184399526931905
-0.173747926905847
-0.047553365252175
0.081082510194386
0.194097220547070
0.298551942241834
0.406750109145059
0.517819849936056
0.638480480875615
0.655286660066536
0.772800663833600
0.772570613480416
0.894160842009936
1.007250846450889
0.999252671357704
1.075767360022740
1.203617242851564
1.301581360303376
1.422733603330274
1.406266808440649
1.501510592404770
1.639449557340825
1.725227156695967
1.827694413502477
1.953084079052413
2.026362078224821
2.142775462875083
2.076254663695608
1.990911500982778
2.065315689289692
1.985779770099492
1.896538294367176
1.971866662511638
1.934795856769193

1 2,029689596272331"

2.011505905392287
2.063470223912165
2.228310153395206
2.214059346670165
2.365336214041560
2.353338826106337
2.234693223750724
2.291209000000000

0.000000000000000
0.123318096685324
0.051784053758746
0.145685302147094
0.137514643080215
0.281657169798146
0.361763009855380
0.512576620523088
0.540162302595642
0.536326544891653
0.583512419094977
0.585979982551729
0.668634364004548
0.675598244057358
0.722299723548547
0.633982230947588
0.653894087350062
0.753188859102235
0.736924533208746
0.713869944029158
0.801888889891373
0.740056174473580
0.701920311999400
0.621619217570701
0.584383867460669
0.453450893740522
0.403701627225291
0.359258386549955
0.274411941934645
0.213818219214874
0.145555699704187
0.243624551389885
0.217084670271999
0.143980810402456
0.038682633210978
-0.081720466909308
-0.204058521330056
-0.158337258335406
-0.126409065793620
-0.050223516739218
-0.081846865368381
-0.238792471979081
-0.296626817791114
-0.245646059662115
-0.088371204637817
-0.047780962960556
0.116036730828180
0.165377971260148
0.147447000000000

0.000000000000000
0.053174111103034
0.192209408391067
0.311072352781268
0.305131171743871
0.305705342213924
0.178872067914022
0.189891944795750
0.270321595294652
0.198561098218889
0.266737590182527
0.155514427781004
0.193053554571094
0.078711175118734
0.141006744262968
0.237215199417468
0.336127994663662
0.442366873181529
0.547766509650554
0.449049061552932
0.331840986277307
0.201913309233852
0.272968339667363
0.188074575150938
0.288475148739376
0.353825027080228
0.450068682798854
0.407513303865502
0.501438080146117
0.402698738289838
0.492625410308671
0.568901170894597
0.664851430121629
0.777488809157132
0.760224665029278
0.703987424144919
0.693380598203139
0.592145998410392
0.465415985822154
0.354140501791383
0.250639019649465
0.193639642978731
0.324968718621234
0.344422217221760
0.352356417003817
0.383960725732734
0.408007954904516
0.505780349726884
0.661719600000000
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Output file for calculation of bond Ma(t)

for the chains with

A=0.37

1.000
5.2184950e-1
3.706808e-1
2.706408e-1
2.083523e-1
1.680483e-1
1.409149e-1
1.2061456-1
1.071512e-1
9.5698416e-2
8.2063794e-2
7.7150106e-2
7.1061373e-2
6.1887741e-2
5.42433866-2
4.6675384e-2
3.8849473e-2
3.5118759e-2
3.2580495e-2
2.6157081e-2
1.9540846e-2
1.7051399e-2
1.4808476e-2
1.1440575e-2
1.4181018e-2
2.0035684e-2
1.8268883e-2
1.1950135e-2
8.6049438e-3
7.3777437e-3
1.3446689%e-2
1.616776e-2
1.6348004e-2
1.567173e-2
1.2702525e-2
1.7558157e-2
1.8462539e-2
2.2556365e-2
2.4932265e-2
1.9729555e-2
1.4658272¢-2
1.4530778e-2
1.6864061e-2
2.03011638-2
1.9948721e-2
1.7311811e-2
1.5302658e-2
1.3510048e-2
1.6355766e-2
1.7088234e-2
2.4377227e-2
3.0256271e-2
2.3023725e-2
1.7842054e-2
1.5975118e-2

A= 0.91

1.00
5.273262e-1
3.772515e-1
2.864779e-1
2.258148e-1
1.801113e-1
1.461392e-1
1.23808e-1
1.091021e-1
9.9069536e-2
9.0826392e-2
8.563e-2
7.74623750-2
6.7756832e-2
6.1491489e-2
5.422312e-2
5.623275e-2
5.5428088e-2
5.3616405e-2
5.1434159e¢-2
4.3825328e-2
4.4773579e-2
4.2550623e-2
4.3303251e-2
3.7376523e-2
3.5419047e-2
3.2838523e-2
2.948302e-2
2.8804243e-2
2.4571121e-2
2.0964682e-2
1.5211761e-2
2.0803809e-2
2.5531352e-2
2.56133967e-2
2.1368146e-2
2.0858169e-2
2.0045042e-2
1.9648075e-2
1.4525294¢e-2
1.5896022e-2
1.9738853e-2
1.9511402e-2
1.9354463e-2
1.5434861e-2
1.37036446e-2
1.3586938e-2
1.6161978e-2
1.514709e-2
1.5658081e-2
1.4238e-2
1.418227e-2
1.6013443e-2
1.4716566e-2
1.5956819e-2

A=1.38

1.00
5.016978e-1
3.482617e-1
2.567928e-1
2.034001e-1
1.648633e-1
1.367962e-1
1.158052e-1
1.0262266-1
9.2541098e-2
8.2869828e-2
7.979393e-2
7.8735948e-2
7.4189961e-2
6.7968726e-2
6.38659e-2
5.9708416e-2
5.3936183e-2
5.0982654e-2
3.8194954e-2
3.4254134e-2
3.175813e-2
2.9920995e-2
2.9209077e-2
2.9772162e-2
2.6919842e-2
2.6791275e-2
2.6364863e-2
2.8891921e-2
3.065908e-2
3.1026781e-2
3.2424033e-2
3.4784138e-2
3.6294878e-2
4.4256032e-2
4.43732746-2
5.1217198e-2
5.2051783e-2
5.2921593e-2
5.3936601e-2
5.1950216e-2
4.9185216e-2
4.8172832e-2
4.918634%e-2
4.4503331e-2
4.4363022e-2
4.4468999e-2
4.5624256e-2
4.6446443e-2
4.5747697e-2
4.4633329e-2
4.2330325e-2
3.9731443e-2
3.3336818e-2
2.5391877e-2

A=2.00

1.00
4.767273e-1
3.4542010-1
2.8140356-1
2.3700426-1
2.057527e-1
1.8332726-1
1.719057e-1
1.60552e-1

1.496928e-1
1.3946496-1
1.359208e-1
1.354957e-1
1.3285956-1
1.330768e-1
1.334973e-1
1.2040266-1
1.2758426-1
1.2248686-1
1.150309e-1
1.2047646-1
1.249334e-1
1.2683536-1
1.3103996-1
1.3272166-1
1.392437e-1
1.423075e-1
1.411485e-1
1.414135e-1
1.3987336-1
1.398469e-1
1.401225e-1
1.463239e-1
1.3853596-1
1.303134e-1
1.3232996-1
1.2968086-1
1.2780186-1
1.314501e-1
1.339267e-1
1.333439¢-1
1.308763e-1
1.2222646-1
1.244133e-1
1.22425¢-1

1.2526356-1
1.214041e-1
1.171191e-1
1.160397e-1
1.220227e-1
1.2734286-1
1.2755246-1
1.2652086-1
1.256709e-1
1.2424036-1

t(ns)

0.00
1.5e-2
3e-2
4,5e-2
6e-2
7.5e-2
9e-2
1.05e-1
1.2e-1
1.35e-1
1.5e-1
1.65e-1
1.8e-1
1.95e-1
2.1e-1
2.25e-1
2.4e-1
2.55e-1
2.7e-1
2.85e-1
3e-1
3.15e-1
3.3e-1
3.45e-1
3.6e-1
3.75e-1
3.9e-1
4.05e-1
4.2e-1
4.35e-1
4.5e-1
4.65¢e-1
4.8e-1
4.95e-1
5.1e-1
5.25e-1
5.4e-1
5.65e-1
5.7e-1
5.85e-1
6e-1
6.15e-1
6.3e-1
6.45e-1
6.6e-1
6.75e-1
6.9e-1
7.05e-1
7.2e-1
7.356-1
7.5e-1
7.65¢e-1
7.8e-1
7.95e-1
8.1e-1
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1.0550916e-2
8.3901882e-3
7.621944e-3
3.8020611e-3
2.3687482e-3
-3.0643642e-3
-2.6007295e-3
2.6111007e-3
4.7103167e-3
3.3980012e-3
4.3699741e-3
9.4454885e-3
1.0670781e-2
6.2799454e-3
3.7173033e-3
-1.1951327e-3
-8.6642504e-3
-1.0005295e-2
-1.1910528e-2
-1.4456064e-2
-9.6599466-3
-6.26936556-3
-2.6465654e-3
2.4129748e-3
5.454421e-4
-3.5768747e-3
-8.8450611e-3
-1.0616213e-2
-7.4266791e-3
-5.8255494e-3
-1.0216027e-2
-1.4113039%e-2
-1.1792153e-2
-8.0595315e-3
-7.0121884e-3
-4.5880079%e-3
-4.0898621e-3
-3.4830868e-3
-2.684623e-3
-4.0147305e-3
-8.4141791e-3
-8.6109936e-3
-4.4513047e-3
-6.4411759%-4
-4.0271878e-3
-5.3104758e-4
3.0383468e-3
8.5368156e-3
1.0828853e-2
8.7489486e-3
9.3573928e-3
3.6864281e-3
9.7119808e-3
2.7796626e-3
-5.4234862e-3
-6.3046217e-3
-8.8592768e-3
-9.8738968e-3
-7.2189867e-3
-2.4455786e-3
-3.9171875e-3
-5.0114095e-3
-8.6507201e-3
-7.3055029e-3
-4.5337081e-3
8.6188316e-4
3.0913353e-3
1.0024548e-2
6.7358017e-3
3.4087896e-3

1.7733455e-2
1.9427478e-2
1.592195e-2
1.6757667e-2
1.1080801e-2
1.00823046-2
6.2230825¢-3
4.3973923e-3
3.4868121e-3
5.3149462e-3
5.6826472e-3
7.3953867e-3
1.0590732e-2
8.1858039e-3
1.0210752e-2
1.2814939%e-2
1.7529845e-2
2.2690535e-2
2.276378%e-2
1.8598722e-2
1.5559137e-2
1.3980687e-2
8.9752078e-3
7.373631e-3
1.94972750-3
4.5210123e-3
4.3005943e-3
4.3343306e-3
4.4549704e-3
1.0112762e-2
8.2079172e-3
7.3469877e-3
7.1977377e-3
7.2968006e-3
9.2658997e-3
6.9041848e-3
9.3214512e-3
8.7853074e-3
9.550631e-3
5.2261949e-3
4.8542619e-3
9.5705986e-3
1.0030627e-2
4.6693683e-3
8.54671e-4
-8.0417395e-3
-5.3825676e-3
-7.8978539%e-3
-1.0001928e-2
-5.9194565e-3
1.6282201e-3
2.7062893e-3
4.7087669e-6
4.2170286e-4
5.49536946-3
8.2038045e-3
7.5892806e-3
8.5229278e-3
6.8038702e-3
5.928576e-3
3.57925896-3
-1.2806356e-3
-4.0921569e-4
1.85549266-4
-1.9052625e-3
1.3113022e-6
-2.2908151e-3
-7.3142358-3

--1.03353566e-2

-4.3888092e-3

2.2618949e-2
1.8009054e-2
2.6502132e-2
2.9529214e-2
3.2032013e-2
3.3951819e-2
3.3216536e-2
3.4160852e-2
3.1420887e-2
3.254348e-2
3.495425e-2
3.4527063e-2
3.3416212e-2
3.3701658e-2
3.8518965e-2
3.5124838e-2
3.2655656e-2
3.6668777e-2
4.036504e-2
4.0930688e-2
4.1073918e-2
4.2545319e-2
4.6371639e-2
4.5543969e-2
4.2707086e-2
3.90454536-2
4.1970909e-2
5.1106453e-2
5.4872572e-2
5.410558e-2
5.5224001e-2
5.9413075e-2
6.0913861e-2
6.5420091e-2
6.0714722e-2
5.5378616e-2
5.9328258e-2
4.8197031e-2
4.7093213e-2
4.6127796e-2
4.2907357e-2
4.2793214e-2
4.2528152e-2
3.6590815e-2
3.4929752e-2
3.5382926e-2
3.817457e-2
4.0791452e-2
4.060483e-2
3.4397364e-2
3.2328129%e-2
3.5290718e-2
3.67679e-2
3.5288692e-2
3.4627497e-2
3.543514e-2
3.4306705e-2
3.8573802e-2
3.9180577e-2
4.3464601e-2
5.3308487e-2
5.7711601e-2
5.8791697e-2
5.443567e-2
5.1630855e-2
4.0444493e-2
3.694725e-2
3.5774648e-2
3.5987437e-2
3.7418008e-2

1.219915e-1
1.147157e-1
1.068682¢-1
1.05162e-1
1.036519e-1
1.092771e-1
1.089848e-1
1.071438e-1
1.0502e-1
1.066138e-1
1.0906016-1
1.070691e-1
1.062509e-1
1.046005e-1
1.0976656e-1
1.1399656-1
1.101868e-1
1.028019e-1
9.63652138-2
9.4705701e-2
9.7648501e-2
9.37611466-2
9.3893236-2
9.80407e-2
9.93454460-2
1.016266e-1
1.0250450-1
1.087911e-1
1.113632e-1
1.057609e-1
1.063261e-1
1.057978e-1
1.003149e-1
1.004381e-1
9.62230560-2
9.166193e-2
9.81349356-2
1.056347e-1
1.099245e-1
1.091328e-1
1.114109e-1
1.162561e-1
1.1426456-1
1.159851e-1
1.114042e-1
1.1016426-1
1.144014e-1
1.129647e-1
1.139693e-1
1.166868e-1
1.147872e-1
1.1046336e-1
1.101836e-1
1.068218e-1
1.050307e-1
1.058656-1
1.042363e-1
9.79449150-2
9.08333666-2
9.555769e-2
9.47912346-2
9.4349802e-2
9.3252063e-2
9.64345346-2
1.014637e-1
9.87553e-2
9.8890483e-2
1.028816e-1
1.035607e-1
1.109363e-1

8.25e-1
8.4e-1
8.55e-1
8.7e-1
8.85e-1
9e-1
9.15e-1
9.3e-1
9.45¢e-1
9.6e-1
9.75e-1
9.9e-1
1.005e+0
1.02e+0
1.035e+0
1.05e+0
1.065e+0
1.08e+0
1.095e+0
1.11e+0
1.125e+0
1.14e+0
1.155e+0
1.17e+0
1.1856+0
1.2e+0
1.215e+0
1.23e+0
1.245e+0
1.26e+0
1.275e+0
1.29e+0
1.305e+0
1.32e+0
1.335e+0
1.35e+0
1.365e+0
1.38e+0
1.395e+0
1.41e+0
1.425e+0
1.44e40
1.455e+0
1.47e+0
1.485e+0
1.56+0
1.515e+0
1.53e+0
1.545e+0
1.56e+0
1.575e+0
1.59e+0
1.605e+0
1.62e+0
1.635e+0
1.65e+0
1.665e+0
1.68e+0
1.695e+0
1.71e+0
1.725e+0
1.74e+0
1.755e+0
1.77e+0
1.785e+0
1.8e+0
1.815e+0
1.83e+0
1.845e+0
1.86e+0
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4.31883340-3
8.3395839%e-3
7.4833035e-3
2.6649237e-3
-8.9359283e-4
-5.3268373e-3
-2.2453964¢-3
-6.3052773e-4
3.2203197e-3
1.1031985e-2
1.4882445e-2
1.6244054e-2
1.3554335e-2
8.96364450-3
6.4564347e-3
5.8264732e-3
6.6204071e-3
4.5974851e-3
8.8453293e-5
-8.8216066e-3
-4.29651146-3
-6.8930984e-3
-4.4074655e-3
-8.0622902e-4
-7.8555942e-4
9.6023083e-4

-3.0430555e-3
-1.601696e-3
-1.5827715e-3
-3.2486022e-3
-2.7229786e-3
8.7535381e-4
3.9749742e-3
5.9010386e-3
3.8682818e-3
2.4202466e-3
-1.625061e-3
-2.4643540-4
-8.366704e-4
-8.7985396e-4
2.9925108e-3
5.3251386e-3
1.2527704e-3
-1.6838312e-3
-3.9405823e-3
-4.7549009e-3
-2.12797526-3
-9.585917e-4
2.8246641e-3
3.3448339e-3
6.9781542e-3
1.0924339e-2

3.7440717e-2
4.5003295e-2
5.1586926e-2
5.8268726e-2
6.1501205e-2
5.7668924e-2
5.5416584e-2
5.2823842e-2
5.2541912e-2
5.0442457e-2
4.7965944e-2
4.5251966e-2
4.3321371e-2
4.2620182e-2
4.513824e-2

4.2177022e-2
3.839767e-2

3.7617207e-2
3.6819518e-2
4.0284872e-2
3.5214722e-2
3.5276115e-2
3.8079679e-2
3.5574913e-2
3.7686586e-2
4.1796207e-2

1.199147e-1
1.259761e-1
1.227909e-1
1.230773e-1
1.252584e-1
1.281695e-1
1.281273e-1
1.238208e-1
1.241043e-1
1.260976e-1
1.236819e-1
1.299424e-1
1.246923e-1
1.18786e-1
1.153363e-1
1.108179e-1
1.1449956-1
1.201053e-1
1.1768e-1
1.150593e-1
1.172784e-1
1.194548e-1
1.165819e-1
1.226752e-1
1.20894e-1
1.278673e-1

1.875e+0
1.89e+0
1.905e+0
1.92e+0
1.935e+0
1.95e+0
1.965e+0
1.98e+0
1.9956+0
2.01e40
2.025e+0
2.04e+0
2.055e+0
2.07e+0
2.085e+0
2.1e+0
2.115e+0
2.13e+0
2.145e+0
2.16e+0
2.175e+0
2.19e+0
2.205e+0
2.22e+0
2.235e+0
2.25e+0
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Output file for calculation of M4(t)

for the chains with

A=0.37

1.000
7.784261e-1
6.758767e-1
5.998288e-1
5.411134e-1
5.011939e-1
4.699048e-1
4.436026e-1
4.2236656e-1
4.038131e-1
3.831119e-1
3.691666e-1
3.561335e-1
3.447056e-1
3.337185e-1
3.216291e-1
3.121261e-1
3.043718e-1
2.969061e-1
2.898264e-1
2.844643e-1
2.78051e-1
2.745326e-1
2.673885e-1
2.589439e-1
2.539639%e-1
2.459312e-1
2.379111e-1
2.306051e-1
2.24215e-1
2.21094e-1
2.186923e-1
2.189749e-1
2.166898e-1
2.148222e-1
2.102915e-1
2.066721e-1
2.056842e-1
2.040873e-1
2.004159e-1
1.985742e-1
1.946093e-1
1.929075e-1
1.897011e-1
1.848239%e-1
1.800898e-1
1.760281e-1
1.726117e-1
1.71043e-1
1.702569e-1
1.668744e-1
1.65733e-1
1.625104e-1
1.596966-1
1.579849e-1
1.560155e-1
1.558795e-1
1.550595e-1

A=0.91

1.00
7.819575e-1
6.809513e-1
6.087325e-1
5.540718e-1
5.093446e-1
4.734723e-1
4.472985e-1
4.264518e-1
4.117484e-1
3.967986e-1
3.831475e-1
3.712097e-1
3.630731e-1
3.546102e-1
3.451549e-1
3.414248e-1
3.345407e-1
3.275141e-1
3.241692e-1
3.156744e-1
3.079249e-1
2.97506e-1
2.920503e-1
2.854602e-1
2.791091e-1
2.738166e-1
2.65622e-1
2.591971e-1
2.513982e-1
2.446586e-1
2.38006e-1
2.365212e-1
2.347495e-1
2.30121e-1
2.265376e-1
2.260593e-1
2.25026e-1
2.235809e-1
2.216561e-1
2.217654e-1
2.189026e-1
2.161862e-1
2.110733e-1
2.067499e-1
2.047832e-1
2.043725e-1
2.038287e-1
1.997384e-1
1.997043e-1
1.872036e-1
1.964066e-1
1.952488e-1
1.932705e-1
1.915358e-1
1.898207e-1
1.888824e-1
1.891659e-1

A=1.38

1.00
7.654946e-1
6.601701e-1
5.905019e-1
5.437995e-1
5.099077e-1
4.844558e-1
4.652547e-1
4.497441e-1
4.389499e-1
4.278911e-1
4.216373e-1
4.17344e-1
4,119154e-1
4,044199e-1
3.984148e-1
3.928927e-1
3.873614e-1
3.840607e-1
3.786952e-1
3.762643e-1
3.738657e-1
3.719839e-1
3.681411e-1
3.632674e-1
3.620166e-1
3.611493e-1
3.605575¢e-1
3.60176e-1
3.657435e-1
3.5636236e-1
3.517983e-1
3.529812e-1
3.574858e-1
3.623047e-1
3.662751e-1
3.721576e-1
3.700516e-1
3.695175e-1
3.708203e-1
3.717736e-1
3.706926e-1
3.709017e-1
3.679354e-1
3.650792e-1
3.657766e-1
3.666536e-1
3.676848e-1
3.680588e-1
3.655607e-1
3.645785e-1
3.635565¢e-1
3.651781e-1
3.630653e-1
3.586462e-1
3.56461e-1
3.555718e-1
3.574672e-1

A=2.00

1.00
7.580264e-1
6.726103e-1
6.26658e-1
5.955027e-1
5.725367e-1
5.566602e-1
5.456008e-1
5.367628e-1
5.306199e-1
5.243626-1
5.215786e-1
5.197479e-1
5.181395e-1
5.18088e-1
5.171509%e-1
5.116842e-1
5.08637e-1
5.106016e-1
5.082731e-1
5.093336e-1
5.089824e-1
5.085791e-1
5.102321e-1
5.113897e-1
5.133441e-1
5.150314e-1
5.179213e-1
5.188209e-1
5,18505e-1
5.169677e-1
5.167311e-1
5.184657e-1
5.163279e-1
5.124706e-1
5.122122e-1
5.11483e-1
5.110406e-1
5.12154e-1
5.138078e-1
5.125002e-1
5.11358e-1
5.076892e-1
5.097782e-1
5.095729e-1
5.118502e-1
5.115994e-1
5.090636-1
5.103441e-1
5.107475e-1
5.13815e-1
5.132148e-1
5.115635e-1
5.122936e-1
5.095545e-1
5.060203e-1
5.002815e-1
4.972106e-1

t(ns)

0.00
1.5e-2
3e-2
4.5e-2
6e-2
7.5e-2
9e-2
1.05e-1
1.2e-1
1.35e-1
1.5e-1
1.65e-1
1.8e-1
1.95e-1
2.1e-1
2.25e-1
2.4e-1
2.55e-1
2.7e-1
2.85e-1
3e-1
3.15e-1
3.3e-1
3.45e-1
3.6e-1
3.75e-1
3.9e-1
4.05e-1
4.2e-1
4.35e-1
4.5e-1
4.65e-1
4.8e-1
4,95¢e-1
5.1e-1
5.25e-1
5.4e-1
5.55e-1
5.7e-1
5.85e-1
6e-1
6.15e-1
6.3e-1
6.45e-1
6.6e-1
6.75e-1
6.9e-1
7.05e-1
7.2e-1
7.35e-1
7.5e-1
7.65e-1
7.8e-1
7.95e-1
8.1e-1
8.25e-1
8.4e-1
8.55e-1
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1.533341e-1
1.510208e-1
1.474179e-1
1.44045e-1
1.424224e-1
1.389077e-1
1.324074e-1
1.291577e-1
1.282248e-1
1.2721e-1
1.250759e-1
1.222407e-1
1.195893e-1
1.200439e-1
1.1911e-1
1.164849e-1
1.161986e-1
1.172399e-1
1.181402e-1
1.20975e-1
1.230521e-1
1.217429e-1
1.193348e-1
1.193672e-1
1.206391e-1
1.2330798-1
1.256185e-1
1.24467e-1
1.2254b5e-1
1.212754e-1
1.231153e-1
1.235121e-1
1.257509e-1
1.258935e-1
1.256706e-1
1.233856e-1
1.189572e-1
1.1484e-1
1.105134e-1
1.059106e-1
1.032945e-1
1.030258e-1
1.011579e-1
9.94465350-2
9.6454926e-2
9.3749844e-2
9.188696e-2
8.9168526e-2
8.6917996e-2
8.6744085e-2
8.4532507e-2
8.6307451e-2
8.7161079e-2
8.9966506e-2
9.3690887e-2
9.760689%e-2
1.00637e-1
9.9107303e-2
9.6526764e-2
9.774258e-2
9.6470065e-2
9.3705058e-2
9.1141082e-2
9.2020229e-2
9.4249785e-2
9.3837731e-2
9.8761819e-2
1.022887e-1
1.046797e-1
1.062444e-1

1.878568e-1
1.851714e-1
1.832329%e-1
1.823316e-1
1.822047e-1
1.80615e-1

1.789943e-1
1.74523e-1

1.705017e-1
1.677674e-1
1.681497e-1
1.6905756-1
1.70303e-1

1.715265e-1
1.751945e-1
1.761601e-1
1.76555e-1

1.735045¢e-1
1.69305e-1

1.681969e-1
1.670129e-1
1.632387e-1
1.609619e-1
1.588814e-1
1.592588e-1
1.595561e-1
1.646558e-1
1.664984e-1
1.67523e-1

1.661481e-1
1.637636e-1
1.60832e-1

1.572538e-1
1.541552e-1
1.562402e-1

1.526197e-1
1.534406e-1
1.53426e-1

1.560214e-1
1.5689227e-1
1.60575e-1

1.604335e-1
1.585925e-1
1.5680368e-1
1.580695e-1
1.575904e-1
1.59786e-1

1.612657e-1
1.61257e-1

1.580672e-1
1.54051e-1

1.532924e-1
1.53689e-1

1.547168e-1
1.539605e-1
1.532911e-1
1.518024e-1
1.475775e-1
1.430345e-1
1.43301e-1

1.398082e-1
1.357471e-1
1.335697e-1
1.300185e-1
1.283443e-1
1.26379e-1

1.244926e-1
1.24863%¢-1
1.231875e-1
1.18417e-1

3.582142e-1
3.593929e-1
3.620924e-1
3.658018e-1
3.683485e-1
3.675113e-1
3.663441e-1
3.667971e-1
3.654125e-1
3.65029e-1

3.6899946-1
3.751288e-1
3.771777e-1
3.796648e-1
3.809806e-1
3.824347e-1
3.842604e-1
3.85079e-1

3.86513e-1

3.880657e-1
3.85714e-1

3.823036e-1
3.817497e-1
3.828733e-1
3.870002e-1
3.8949580-1
3.864699%¢-1
3.853002e-1
3.839541e-1
3.83065e-1

3.816025e-1
3.780833e-1
3.77257e-1

3.771491e-1
3.712758e-1
3.673163e-1
3.618176e-1
3.614573e-1
3.633267e-1
3.635144e-1
3.580609e-1
3.575564e-1
3.572968e-1
3.562687e-1
3.575962e-1
3.577922e-1
3.578585e-1
3.590735e-1
3.628401e-1
3.636446e-1
3.634501e-1
3.634422¢-1
3.625956e-1
3.597046e-1
3.60766e-1

3.648465e-1
3.701916e-1
3.762429e-1
3.813673e-1
3.84597e-1

3.843177e-1
3.812213e-1
3.723777e-1
3.684085e-1
3.663625e-1
3.671605e-1
3.684462e-1
3.67727e-1

3.729376e-1
3.758128e-1

4.965944e-1
4.959914e-1
4,998662e-1
4,985821e-1
4,980223e-1
4.977096e-1
4.985108e-1
5.024704e-1
5.011585e-1
4.977615e-1
4,973895e-1
4.99737e-1

4.985258e-1
4.973291e-1
4.938528e-1
4.915671e-1
4.918327e-1
4.927867e-1
4.91669e-1

4.924848e-1
4.935829e-1
4.923549e-1
4.943575e-1
4.946442e-1
4.976877e-1
4.967838e-1
4.946658e-1
4.936674e-1
4.923612e-1
4.919615e-1
4.924459e-1
4.899641e-1
4.886682e-1
4.920868e-1
4.960183e-1
4.996778e-1
4.980168e-1
4.981961e-1
4.994862e-1
4.998655e-1
4.994408e-1
4.940294e-1
4.940125e-1
4,959496e-1
4.961908e-1
4.967678e-1
4.972114e-1
4.96883e-1

4.968061e-1
4.982127e-1
4.964944e-1
4.97012e-1

4.962356e-1
4.964263e-1
4.935999e-1
4.898914e-1
4.931482e-1
4.932079e-1
4.911086e-1
4.907098e-1
4.910053e-1
4.937013e-1
4.94489e-1

4.938429e-1
4.943933e-1
4.970477e-1
4.979185e-1
5.026094e-1
5.067813e-1
5.06921e-1

8.7e-1
8.85e-1
9e-1
9.15e-1
9.3e-1
9.45e-1
9.6e-1
9.75e-1
9.9e-1
1.005e+0
1.02e+0
1.035e+0
1.05e+0
1.065e+0
1.08e+0
1.095e+0
1.11e+0
1.125e+0
1.14e4+0
1.155e+0
1.17e+0
1.185e+0
1.2e+0
1.2156+0
1.236+0
1.245e40
1.266+0
1.2756+0
1.29e+0
1.305e+0
1.32e+0
1.335e+0
1.356+0
1.365e+0
1.38e+0
1.395e+0
1.41e+0
1.425e+0
1.44e+0
1.455e+0
1.47e+0
1.485e+0
1.5e+0
1.5156+0
1.53e+0
1.545e+0
1.56e+0
1.5750+0
1.59e+0
1.605e+0
1.62e+0
1.635e+0
1.65e+0
1.6650+0
1.68e+0
1.695e+0
1.71e+0
1.725e+0
1.74e40
1.755e+0
1.77e+0
1.785e+0
1.8e+0
1.815e+0
1.83e+0
1.845e+0
1.86e+0
1.875e+0
1.89e+0
1.905e+0
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1.073846e-1
1.056611e-1
1.046747e-1
1.056025e-1
1.090451e-1
1.111414e-1
1.164746e-1
1.214473e-1
1.247869%e-1
1.232267e-1
1.221254e-1
1.186607e-1
1.166236e-1
1.146288e-1
1.128901e-1
1.135395e-1
1.142485e-1
1.13043e-1

1.143931e-1
1.162495e-1
1.177736e-1
1.216433e-1
1.202524e-1

1.123791e-1
1.110438e-1
1.106424e-1
1.093526e-1
1.105069e-1
1.081283e-1
1.078883e-1
1.081701e-1
1.086127e-1
1.099941e-1
1.084183e-1
1.104648e-1
1.104327e-1
1.123661e-1
1.149723e-1
1.181957e-1
1.168409e-1
1.142555e-1
1.149962e-1
1.149832e-1
1.094988e-1
1.063648e-1
1.02352e-1

3.786172e-1
3.814349e-1
3.760138e-1
3.710993e-1
3.682586e-1
3.682724e-1
3.670062e-1
3.670024e-1
3.681351e-1
3.700357e-1
3.728246e-1
3.712761e-1
3.689531e-1
3.669775e-1
3.65691e-1

3.61853e-1

3.620491e-1
3.622319e-1
3.67351e-1

3.69514e-1

3.683645e-1
3.748669e-1
3.799421e-1

5.082785e-1
5.095062¢-1
5.092807e-1
5.055113e-1
5.029485e-1
5.038472e-1
5.053343e-1
5.061788e-1
5.088812¢-1
5.061107e-1
5.028082¢-1
5.010432e-1
4.984106e-1
4.995146e-1
5.020851e-1
4.977359e-1
4.951165e-1
4.956191e-1
4,963885e-1
4.955236e-1
4.977662e-1
4.964685e-1
5.012991e-1

1.926+0
1.935e+0
1.95e+0
1.965e+0
1.98e+0
1.995e+0
2.01e+0
2.025e+0
2.04e+0
2.055e+0
2.07e+0
2.085e+0
2.1e+0
2.115e+0
2.13e+0
2.145e+0
2.16e+0
2.175e+0
2.19e+0
2.205e+0
2.22e+0
2.235e+0
2.25e+0
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Output file for the calculations of:

D(t) directivity

S(t) sense of mobility
C(t) orientation-mobility amplitude
M(t) mobility amplitude

for a chain of 50 numbber of bonds with A =0.37

D(t)

-4.1409419e-3
-2.8922036e-3
-1.9274736e-3
-1.4182369e-3
-7.3041132e-4
1.6655775e-3
2.369565e-3
1.19063886-4
4.0650292e-4
-8.2562596e-4
-2.8285193e-3
-3.0838042e-3
-3.931717e-3
-5.6307732e-3
-2.2623083e-3
-2.8789858e-3
-8.2189348e-5
2.4249055e-3
3.5443339%e-3
3.5196913e-3
4.0653707e-3
4.5824237e-3
4.3278066e-3
4.5145215e-3
4.2606303e-3
4.9164258e-3
7.0523829e-3
5.3377454e-3
3.9089122e-3
5.0843903e-3
6.3941632e-3
7.8940243e-3
6.6033904e-3
4.8289937e-3
8.7723567e-4
-56.3155172e-6
-5.88757561e-4
-1.4271684e-3
-9.6661726e-4
-6.856164e-4
-4,2302319e-4
1.6356293e-3
2.6951635e-3
1.2308736e-3
4.4476023e-4
-2.1914995e-4
-1.7375e-3
-4.1468441e-3
-4.275593e-3
-6.367512e-3

S(t)

-4.3772761e-2
-4.1098319¢-2
-3.8911987e-2
-3.4968361e-2
-3.3508915¢-2
-3.1819034e-2
-2.95534956-2
-2.9530235e-2
-2.8301701e-2
-2.8711492e-2
-3.0226376e-2
-3.0278834e-2
-3.1162027e-2
-3.4127783e-2
-3.263877e-2
-3.3549957e-2
-3.2131836e-2
-3.0129416e-2
-2.9784698e-2
-2.8281767e-2
-2.6164612e-2
-2.5687503e-2
-2.651177e-2
-2.6920896e-2
-2.8045438e-2
-2.6421372e-2
-2.60534856e-2
-2.6200939e-2
-2.4709349e-2
-2.3981258e-2
-2.349389e-2
-2.1862024e-2
-2.3128657¢-2
-2.326387e-2
-2.5637014e-2
-2.7178381e-2
-2.7862715e-2
-2.9468799%e-2
-2.9684924e-2
-2.9679926e-2
-2.8748766e-2
-2.5699694e-2
-2.4896789e-2
-2.6738297e-2
-2.7761934e-2
-2.7956441e-2
-2.8018313e-2
-3.0018568e-2
-3.06013e-2
-3.1670395e-2

C{t)

-1.3176148e-2
-8.6745918e-3
-7.5884876e-3
-5.75400756-3
-6.78607876-3
-5.9333537¢-3
-4.5100538-3
-2.2408613e-3
-1.8210327e-3
-3.374723e-4
1.5524445¢-3
1.5444485¢-3
9.0700638e-4
-5.421454¢-4
-8.6630008e-4
-2.4083862¢-3
-2.96072156-3
-3.6479114e-3
-4.6554497¢-3
-5.1808422¢-3
-5.22249566-3
-5.7995813e-3
-5.24473666-3
-4.7053262e-3
-5.4848418e-3
-4.7703274¢-3
-5.6588212¢-3
-5.8855307¢-3
-5.4177898e-3
-5.3123464¢-3
-6.6197854¢-3
-6.5170708e-3
-6.35003566-3
-5.3290613e-3
-5.2427552e-3
-4.416313e-3
-4.4504208e-3
-5.017479-3
-5.4820133¢-3
-5.4799942¢-3
-4.42224746-3
-2.9894314e-3
-3.36741426-3
-3.5057741e-3
-4.0814611e-3
-4,095837¢-3
-3.1357331e-3
-3,2103469¢-3
-3.3444262¢-3
-1.94848466-3

M()

7.119375e-1
5.218491e-1
4.126891e-1
3.332182e-1
2.706403e-1
2.275355e-1
1.913676e-1
1.680491e-1
1.479985e-1
1.359359e-1
1.206134e-1
1.100481e-1
1.046552¢-1
9.569741e-2
8.5834309e-2
8.124169e-2
7.7153459e-2
7.2959639e-2
6.6949904e-2
6.1888497e-2
5.56563446-2
5.2870002e-2
4.6678793e-2
4.1858252e-2
3.7594777e-2
3.5121534e-2
3.2950498e-2
3.133988e-2
2.6155159e-2
2.041715e-2
1.6795209e-2
1.7049775e-2
1.651785e-2
1.4197241e-2
1.1443191e-2
1.381248e-2
1.6507924e-2
2.003799e-2
2.105926e-2
1.6365103e-2
1.1952486e-2
1.0188647e-2
6.7155613e-3
7.3788604e-3
1.1424015e-2
1.5704351e-2
1.6167901e-2
1.7108474¢-2
1.6480593e-2
1.5670605e-2

t(ns)

5e-3
1.5e-2
2.50-2
3.5e-2
4.5e-2
5.5e-2
6.5e-2
7.5e-2
8.5e-2
9.5e-2
1.05e-1
1.15e-1
1.25e-1
1.35e-1
1.45e-1
1.55e-1
1.65e-1
1.75e-1
1.85e-1
1.95e-1
2.0be-1
2.15e-1
2.25e-1
2.35e-1
2.45e-1
2.55e-1
2.65e-1
2.75e-1
2.85e-1
2.95e-1
3.05¢e-1
3.15e-1
3.25e-1
3.35e-1
3.45e-1
3.55e-1
3.65e-1
3.75e-1
3.85e-1
3.95e-1
4.05e-1
4.15e-1
4.25e-1
4.35e-1
4.45e-1
4.55e-1
4.65e-1
4.75e-1
4.85e-1
4.95e-1



Output file for the calculations of:

D(t) directivity

S(t) sense of mobility
C(t) orientation-mobility amplitude
M(t) mobility amplitude

for a chain of 50 numbber of bonds with A =0.91

D(t)

--6.9572283e-3

-3.5921638e-3

-5.0740759e-4
2.8661091e-3
5.1979143e-3
6.2348456e-3
7.9796715e-3
9.9223992e-3
1.3066508e-2
1.4940145e-2
1.5194953e-2
1.6696436e-2
1.6550727e-2
1.450917e-2
1.4387596e-2
1.200958e-2
1.0772453e-2
1.1658855e-2
1.2410996e-2
1.1796402e-2
1.2044842e-2
1.25982310-2
1.3754756e-2
1.4071615e-2
1.4920075e-2
1.62018358e-2
1.6477436e-2
1.5870824e-2
1.56220163e-2
1.6468147e-2
1.6472334e-2
1.590188e-2
1.534238e-2
1.5321173e-2
1.4928387e-2
1.337599e-2
1.32534710-2
1.2886958e-2
1.3356574e-2
1.4173828e-2
1.3636909e-2
1.310946¢-2
1.3903248e-2
1.4970625e-2
1.4430027e-2
1.516179e-2
1.5791297e-2
1.5204899e-2
1.5957531e-2
1.5701607e-2

S(t)

-6.4471245e-2
-6.5794148e-2
-6.4013481e-2
-6.2523864e-2
-5.924565e-2

-5.8300719e-2
-5.6827422e-2
-5.6325015e-2
-5.6406949e-2
-5.6526806e-2
-5.6420393e-2
-5.5174168e-2
-5.5676263e-2
-5.5026423e-2
-5.5745147e-2
-5.6230973e-2
-5.7143457e-2
-5.5734672e-2
-5.581256e-2

-5.6803644e-2
-5.6168199e-2
-5.5978306e-2
-5.59602236-2
-5.543945e-2

-5.6672081e-2
-6.5070605e-2
-5.2449644e-2
-5.2532785e-2
-5.2263048e-2
-5.4070313e-2
-5.1354613e-2
-5.2111872e-2
-5.1619634e-2
-5.1887844e-2
-5,1962733e-2
-5.274358e-2

-5.4201376e-2
-5.2488737e-2
-5.5144206e-2
-5.4259967e-2
-5.2578051e-2
-5.2227233e-2
-5.0988577e-2
-5.1244918e-2
-5.1961906e-2
-5.0978668e-2
-5.0530959e-2
-4.9748179e-2
-4.88741440-2
-5.0215926e-2

C(t)

1.91566743e-2
1.5917007e-2
1.3595317e-2
1.1942774e-2
1.2871034e-2
1.2797487e-2
1.3000986e-2
1.0925249e-2
8.8714296e-3
6.3827513e-3
5.6795473e-3
4.8714108e-3
5.0273179e-3
6.7019542e-3
6.9315811e-3
7.3449593e-3
6.8122623e-3
6.5110009e-3
5.8102049e-3
4.7725793e-3
4.6171458e-3
4.2032707e-3
2.0837903e-3
1.6082543e-3
9.3727099e-4
2.0140898e-3
4.0199608e-3
3.6458352e-3
4,0585352e-3
2.8937366e-3
4.6886527e-3
5.4797977e-3
7.0699546e-3
7.6547195e-3
8.0950307e-3
8.6324709e-3
7.5576496e-3
8.1675705e-3
7.0495554e-3
7.744649¢-3

7.500106e-3

7.8528114e-3
8.2568619e-3
6.87323566-3
6.3516391e-3
5.5279066e-3
6.5618139e-3
7.1920548e-3
6.4689616-3

7.3223389e-3

M()

7.1064626-1
5.2732446-1
4.171677e-1
3.4367286-1
2.8648056-1
2.436797e-1
2.10582e-1
1.8011486-1
1.553714e-1
1.3820686e-1
1.238104e-1
1.14461e-1
1.053366e-1
9.90689556-2
9.47999136-2
8.93873946-2
8.5628904e-2
8.20872046-2
7.28323686-2
6.77584860-2
6.27681466-2
5.9212103e-2
5.4226413e-2
5.42800466-2
5.7760183e-2
5.54309266-2
5.35547030-2
5.20459496-2
5.14328266-2
4.62495090-2
4.32049826-2
4.47764816-2
4.39122656-2
4.44695390-2
4.33056766-2
4.1219305¢-2
3.4252778e-2
3.54208540-2
3.40709430-2
3.217775e-2
2.9482741e-2
2.61962640-2
2.80523476-2
2.4572019e-2
2.1284398e-2
1.8114209¢-2
1.5209817e-2
1.89473356-2
2.3897797¢-2
2.5532309e-2

t(ns)

5e-3
1.5e-2
2.5e-2
3.5e-2
4.5e-2
5.5e-2
6.5e-2
7.5e-2
8.5e-2
9.5e-2
1.05e-1
1.15e-1
1.25e-1
1.35e-1
1.45e-1
1.55e-1
1.65e-1
1.75e-1
1.85e-1
1.95e-1
2.05e-1
2.15e-1
2.25e-1
2.35e-1
2.45e-1
2.55e-1
2.65e-1
2.75e-1
2.85e-1
2.95e-1
3.05e-1
3.15e-1
3.25¢-1
3.35e-1
3.45e-1
3.55e-1
3.65e-1
3.75e-1
3.85e-1
3.95e-1
4.05e-1
4.15e-1
4.25e-1
4.35e-1
4.45e-1
4.55e-1
4.65e-1
4.75e-1
4.85e-1
4.95e-1



Output file for the calculations of:

D(t) directivity

S(t) sense of mobility
C(t) orientation-mobility amplitude
M(t) mobility amplitude

for a chain of 50 numbber of bonds with A =1.38

D(t)

-7.9116188e-3

-3.1752107e-3
3.2530422e-3
8.565777e-3
1.3061217e-2
1.6089045e-2
2.1377787e-2
2.5972482e-2
2.9219393e-2
3.1048492e-2
3.2320477e-2
3.4279563e-2
3.505424e-2
3.6816385e-2
3.8588408e-2
3.8197625e-2
3.8296193e-2
3.9582301e-2
4.0870193e-2
4.1230317e-2
4.0838182e-2
4.2020015e-2
4.3197289%e-2
4.3132912e-2
4.3256171e-2
4.5261592e-2
4.672610-2
4.8121992e-2
4.8116468e-2
4.7284395e-2
4.872274e-2
4.8795242e-2
4.8932541e-2
4.7704354e-2
4.93423686-2
5.1606923e-2
5.08641e-2
5.2678406e-2
5.1456857e-2
5.1244717e-2
5.1468607e-2
5.1043767e-2
5.1618118e-2
5.2772615e-2
5.278698e-2
5.2600116e-2
5.197034e-2
5.1709589e-2
4.92155550-2
4.8311524e-2

S(t)

-9.9274337e-2
-1.103728e-1
-1.141854e-1
-1.135617e-1
-1.143053e-1
-1.143936-1
-1.136319e-1
-1.122159e-1
-1.121943e-1
-1.136457e-1
-1.137081e-1
-1.144987e-1
-1.144201e-1
-1.13611e-1
-1.143985e-1
-1.146751e-1
-1.141874e-1
-1.138827e-1
-1.117946e-1
-1.124574e-1
-1.12382e-1
-1.1315657e-1
-1.128348e-1
-1.135241e-1
-1.130035e-1
-1.116237e-1
-1.11115e-1
-1.103332e-1
-1.13669e-1
-1.15364e-1
-1.136893e-1
-1.147255¢-1
-1.139759e-1
-1.140914e-1
-1.146828e-1
-1.141419e-1
-1.140502e-1
-1.113997e-1
-1.118418e-1
-1.099121e-1
-1.064311e-1
-1.062002e-1
-1.046843e-1
-1.021098e-1
-1.017876e-1
-1.021403e-1
-1.028212e-1
-1.033386e-1
-1.031902e-1
-1.042481e-1

C(t)

1.343313e-1

1.172702e-1

1.026925e-1

9.4297528e-2
8.6812496e-2
8.096914e-2

7.33148160-2
6.776841e-2

6.2533729e-2
5.8178935e-2
5.5652995%9e-2
5.3396344e-2
5.1897608e-2
5.1120471e-2
4,928351%e-2
4.95943466-2
5.0111435e-2
4.8774865e-2
4.899117e-2

4.7924027e-2
4.7023248e-2
4.6663892e-2
4.6867423e-2
4.4813871e-2
4.3890793e-2
4.2860884e-2
4.1178692e-2
3.978245e-2

3.5428446e-2
3.4832492e-2
3.5211589e-2
3.3320159e-2
3.5010666e-2
3.56933312e-2
3.6188371e-2
3.4701195e-2
3.4541443e-2
3.3856977e-2
3.4355398e-2
3.4748469e-2
3.7396997e-2
3.848264e-2

3.9056875e-2
4.0270533e-2
4.1713025e-2
4.26827670-2
4.1692935e-2
4.1978721e-2
4.2754013e-2
4.3272711e-2

M(t)

6.864060e-1
5.0169846-1
3.896826e-1
3.13162e-1
2.567902e-1
2.204886e-1
1.883001e-1
1.648654e-1
1.461585e-1
1.275348e-1
1.1569035e-1
1.08886e-1
9.9184267e-2
9.2542104e-2
8.5087374e-2
7.8871928e-2
7.9792053e-2
7.8499414e-2
7.6695815e-2
7.4191548e-2
6.8264268e-2
6.51296e-2
6.3865505e-2
5.907451e-2
5.7389289e-2
5.3938661e-2
5.15156479e-2
4.48634290-2
3.8197912e-2
3.4817509e-2
3.2479417e-2
3.1758763e-2
3.0014887e-2
2.9730052e-2
2.9209774e-2
2.906643e-2
3.0698674e-2
2.6924191e-2
2.7081432e-2
2.4955759e-2
2.6366014e-2
2.9292151e-2
2.8691363e-2
3.065821e-2
3.132816e-2
3.0494388e-2
3.2425027e-2
3.2126002e-2
3.5426054e-2
3.6292847e-2

t(ns)

5e-3
1.5e-2
2.5e-2
3.5e-2
4.5e-2
5.5e-2
6.5e-2
7.5e-2
8.5e-2
9.5e-2
1.05e-1
1.15e-1
1.25e-1
1.35e-1
1.45e-1
1.55e-1
1.65e-1
1.75e-1
1.85e-1
1.95e-1
2.05e-1
2.15e-1
2.25e-1
2.35e-1
2.45e-1
2.55e-1
2.65e-1
2.75e-1
2.85e-1
2.95e-1
3.05e-1
3.15e-1
3.25e-1
3.35e-1
3.45e-1
3.55e-1
3.65e-1
3.75e-1
3.85e-1
3.95e-1
4.05e-1
4.15e-1
4.25e-1
4.35e-1
4.45e-1
4.55e-1
4.65e-1
4.75e-1
4.85e-1
4.95e-1



Output file for the caiculations of:

D(t) directivity
S(t) sense of mobility
C(t) orientation-mobility amplitude

M(t) mobility amplitude

for a chain of 50 numbber of bonds with A =2.00

D(t)

-5.18576756-3
6.04146256-3
1.7693091e-2
2.4870403e-2
2.988182e-2
3.5158392e-2
4.1250650-2
4.4209592e-2
4.75268290-2
4.9486902e-2
5.1631138e-2
5.3347059e-2
5.55445030-2
5.6164369e-2
5.7770394e-2
5.9743807e-2
5.9617378e-2
5.9761904e-2
6.1092671e-2
6.2441103e-2
6.24529420-2
6.32273850-2
6.3224323e-2
6.26863610-2
6.3476607e-2
6.5117873e-2
6.6961303e-2
6.75960036-2
6.72545950-2
6.53876446-2
6.5848231e-2
6.5036789e-2
6.54366916-2
6.5600723e-2
6.4627029e-2
6.3788243e-2
6.1216328e-2
5.93803266-2
5.877997e-2
5.9684996e-2
5.9208263e-2
6.0017962e-2
6.0997466-2
6.1596651e-2
6.1617624e-2
6.1362807e-2
6.0417544a-2
6.0356747e-2
6.1310686e-2
6.3436814e-2

S(t)

-1.581395e-1
-1.8191e-1
-1.879085e-1
-1.900169e-1
-1.907324e-1
-1.897793e-1
-1.803631e-1
-1.804039e-1
-1.904276e-1
-1.899279%e-1
-1.886305e-1
-1.89844e-1
-1.9089666e-1
-1.916429e-1
-1.930833e-1
-1.94543e-1
-1.948688e-1
-1.940924e-1
-1.94163e-1
-1.935738e-1
-1.913252e-1
-1.919425e-1
-1.922221e-1
-1.936718e-1
-1.926222e-1
-1.909619e-1
-1.938659e-1
-1.8932107e-1
-1.936982e-1
-1.912084e-1
-1.888441e-1
-1.871587e-1
-1.875909e-1
-1.858806e-1
-1.850363e-1
-1.855644e-1
-1.843633e-1
-1.834931e-1
-1.821857e-1
-1.809086e-1
-1.847052¢-1
-1.866601e-1
-1.865193e-1
-1.874353e-1
-1.877201e-1
-1.887772e-1
-1.884975e-1
-1.860967e-1
-1.864748e-1
-1.852238e-1

C(t)

2.435548e-1
2.017669e-1
1.798088e-1
1.634354¢-1
1.533568e-1
1.440619e-1
1.362501e-1
1.286787e-1
1.229327e-1
1.195882e-1
1.179622e-1
1.130506e-1
1.097953e-1
1.084198e-1
1.042701e-1
1.015137e-1
9.999293e-2
1.006456e-1
9.912210e-2
9.867867e-2
9.955223e-2
9.950551e-2
9.858854e-2
9.805267e-2
9.659596e-2
9.569814e-2
9.330680e-2
9.355713e-2
9.248182e-2
9.621231e-2
9.713695e-2
9.828531e-2
9.895151e-2
1.010581e-1
1.032804e-1
1.032286e-1
1.060728e-1
1.073081e-1
1.080381e-1
1.080699e-1
1.072956e-1
1.073776e-1
1.079444e-1
1.074919e-1
1.07233e-1

1.076771e-1
1.073662e-1
1.089522e-1
1.074643e-1
1.060932e-1

M(t)

6.630935e-1
4.767312e-1
3.818356e-1
3.178402¢-1
2.814041e-1
2.51943e-1
2.2750528-1
2.057534e-1
1.898975e-1
1.810507e-1
1.719059e-1
1.639062¢-1
1.559398e-1
1.496936e-1
1.419661e-1
1.362917e-1
1.358216e-1
1.364236e-1
1.343448e-1
1.328607e-1
1.351247e-1
1.362027e-1
1.335007e-1
1.31305e-1
1.281879e-1
1.275866e-1
1.209122e-1
1.174718e-1
1.1503e-1
1.196323e-1
1.194732e-1
1.249337e-1
1.275004e-1
1.206972e-1
1.31043e-1
1.305844e-1
1.376433e-1
1.392428e-1
1.416555e-1
1.425734e-1
1.411529e-1
1.414447e-1
1.425417e-1
1.398725e-1
1.434135e-1
1.410659e-1
1.40124e-1
1.465904e-1
1.443947e-1
1.385355e-1

t(ns)

5e-3
1.5e-2
2.5e-2
3.5e-2
4.5e-2
5.5e-2
6.5e-2
7.5e-2
8.5e-2
9.5e-2
1.05e-1
1.15e-1
1.25e-1
1.35e-1
1.45e-1
1.55e-1
1.65e-1
1.75e-1
1.85e-1
1.95e-1
2.05e-1
2.15e-1
2.25e-1
2.35e-1
2.45e-1
2.55e-1
2.65e-1
2.75e-1
2.85e-1
2.95e-1
3.05e-1
3.15e-1
3.25e-1
3.35e-1
3.45e-1
3.55e-1
3.65e-1
3.75e-1
3.85e-1
3.95e-1
4.05e-1
4.15e-1
4.25e-1
4.35e-1
4.45e-1
4.55e-1
4.65e-1
4.75e-1
4.85e-1
4.950-1



Output file for hazard plot

Cum.hz.

3.369555e-1
4.847662e-1
6.473255e-1
7.46891e-1
8.426781e-1
9.41743e-1
1.007789e+0
1.085453e+0
1.169269e+0
1.229303e+0
1.2687866+0
1.310005e+0
1.36175e+0
1.416319e+0
1.47404e+0
1.524734e+0
1.578327e+0
1.634744e+0
1.670181e+0
1.719785e+0
1.785042e+0
1.8263336+0
1.854905e+0
1.884316e+0
1.930244e+0
2.011844e+0
2.100176e+0

2.157156e+0

7
t(ns)

5e-3
1e-2
1.5e-2
2e-2
2.5e-2
3e-2
3.5e-2
4e-2
4.5e-2
be-2
5.5e-2
6e-2
6.5e-2
7e-2
7.5e-2
-8e-2 -

8.5e-2
9e-2
9.5e-2
1e-1
1.05e-1
1.1e-1
1.15e-1
1.2e-1
1.25e-1
1.3e-1
1.35e-1

1.45e-1

Cum.hz.

2.679586e-1
3.820179e-1
4.6885479-1
5.538669e-1
6.66506460-1
7.520819e-1
8.365585e-1
9.391253e-1
1.047702e+0
1.162356e+0
1.29253e+0
1.405679e+0
1.467847e+0
1.534348e+0
1.62694e+0
1.765844e+0
1.896648e+0
1.984985e+0
2.064844e+0
2.133851e+0
2.207976e+0
2.28804e+0
2.375079%e+0
2.445425e+0
2.495425¢+0
2.548057e+0
2.6036120+0

2.662436e+0

t(ns)

5e-3
1e-2
1.5e-2
2e-2
2.5e-2
3e-2
3.5e-2
4e-2
4.5e-2
5e-2
5.5e-2
6e-2
6.5e-2
7e-2
7.5e-2
8e-2
8.5e-2
9e-2
9.5e-2
1e-1
1.05e-1
1.1e-1
1.2e-1
1.25e-1
1.45e-1
1.5e-1
1.55e-1

1.6e-1

=1. A=2.00
Cum.hz. t(ns) Cum.hz.
2.737752e-1 5e-3  2.365897e-1
3.820364e-1 1e-2  3.124864e-1
4.772498e-1 1.5e-2 3.983052e-1
5.8291556-1 2e-2 5.090594e-1
6.773447e-1 2.5e-2 6.045866e-1
7.526505e-1 3e-2 6.710908e-1
8.126882e-1 3.5e-2 7.691868e-1
8.660949e-1 40-2 8.473389e-1
9.279314e-1 4.5e-2 8.891829e-1
9.817411e-1 S5e-2 9.392024e-1
1.051712e+0 5.5e-2 9.987074e-1
1.12678e+0 6e-2 1.091699e+0
1.177526e+0 6.5e-2 1.201864e+0
1.231398e+0 7e-2 - 1.288675e+0
1.287878e+0 7.5e-2 1.374218e+0
1.339328e+0 862  1.445706e+0
1.421735e+0 8.5e-2 1.558614e+0
1.490414¢40 9e-2 1.6714450+0
1.553834e+0 9.5e-2 1.712361e+0
1.657063e+0 1e-1 1.78453e+0
1.758067e+0 1.05e-11.845786e+0
1.812634e+0 1.15e-1 1.878044e+0
1.8412060+0 1.2e-1 1.928619e+0
1.870618e+0 1.3e-1 2.000093e+0
1.94882e+0 1.35e-1 2.077073e+0
2.087164e+0 1.40-1 2.13874e+0
2.1834580+0 1.56-1 2.204945e+0
2.2923656+0 1.56e-1 2.300292e+0
C,, -

189

t(ns)

5e-3
1e-2
1.5e-2
2e-2
2.59-2
3e-2
3.5e-2
4e-2
4.5e-2
5e-2
5.5e-2
6e-2
6.5e-2
7e-2
7.5e-2
8e-2
8.5e-2
9e-2
9.5e-2
1e-1
1.05e-1
1.1e-1
1.15e-1
1.2e-1
1.25e-1
1.35e-1
1.4e-1
1.45e-1
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2.21799e+0

2.282301e+0
2.327756e+0
2.375375e+0
2.425375e+40
2.505785e+0
2.623636640
2.721552e+0
2.792981e+0
2.869904e+0
3.099197e+0
3.380257e+0
3.5623114e+0
3.689781e+0
3.889781e+0
4.139781e+0
4.473114e+0
4.973114e+0
5.973114e+0

1.5e-1 2.758269e+0
1.65e-1 2.863031e+0
1.7e-1 2.939954e+0

1.75e-1 3.023288e+0
2.05e-1 3.114197¢+0

2.1e-1 3.214196e+0

2.3e-1 3.325308e+0
2.35e-1 3.450308e+0
2.4e-1 3.593165e+0

2.55e-1 3.759831e+0
2.65e-1 3.959831e+0

3.05e-1 4.209831e+0
3.16-1 4.5431656+0
3.15e-1 5.043165e+0

3.55e-1 6.043165e+0
3.8e-1

4.3e-1

5.15e-1

5.45e-1

1.65e-1 2.411676e+0
1.75e-1 2.464308e+0

1.8e-1 2.549275e+0
1.95e-1 2.641187e+0
2e-1 2.707854e+0

2.05e-1 2.817744e+0
2.1e-1 2.984993e+0
2.15e-1 3.130447e+0
2.25e-1 3.241559e+0

2.35e-1 3.366559e+0

3.05e-1 3.509416e+0
3.1e-1 3.676082e+0
3.2e-1 3.876082e+0
3.45e-1 4.1260826+0
3.85e-1 4.459416e0+0
4,959416e+0
5.959416e+0

1.65e-1 2.434568e+0
1.75e-1 2.554802e+0
1.85e-1 2.694729e+0
1.9e-1 2.853154e+0
2.15e-1 2.9440638+0
2.2e-1 3.044063e+0
2.25e-1 3.155174e+0
2.3e-1 3.280174e+0
2.35e-1 3.4230316+0
2.4e-1 3.589698e+0
2.56-1 3.914698e+0
2.55e-1 4.373031e+0
2.6e-1 4.873031e+0
2.65e-1 5.873031e+0
3.3e-1

3.4e-1

3.75e-1

1.5e-1
1.556-1
1.6e-1
1.65e-1
1.85e-1
1.9e-1
1.85e-1
2.1e-1
2.3e-1
2.55e-1
2.75e-1
3e-1
3.35e-1

3.95e-1
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