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ABSTRACT

Possible formulations of gauge field models where the gauge group is a quantum
group are discussed. The exponential map from the generators of the Lie algebra analog of
the quantum group SUq(2) to the quantum group SUq(2) itself is presented. The g-deformed
Yang-Mills theory is introduced via the definition of the g-trace and the q-deformed Yang-
Mills lagrangian which is invariant under the quantum group gauge transformations. The
gauge field takes values in the quantum universal enveloping algebra of SUq(2). As a result
of this construction a Weinberg type mixing angle which depends on the quantum group
deformation parameter q is obtained.

The representations of the n-braid group where generators are given essentially by
2 x 2 matrices whose elements belong to a noncommutative algebra are presented. The
Burau representation arises as a special (commuting) case of this algebra. A closely related
algebra to the braid algebra is introduced and it is shown that the generalized oscillator
system given by this algebra generates a hydrogen-like spectrum.



OZET

Kuantum gruplarina dayah ayar alan teorisi modelleri tartisiidilds. SUq(2) kuantum
grubunun Lie cebri analogunun elemam olan jeneratorler bulundu. Kuantum gurubu ayar
doniigiimi altinda invaryant kalan yeni bir iz tanimi yapildi ve bu tanim kullanilarak deforme
edilmig Yang-Mills Lagranjiyeni inga edildi.

Elemanlan1 komiitatif olmayan bir cebre ait olan 2 x 2 matrisler kullanilarak Artin
orgi grubunun temsilleri elde edildi. Burau temsilinin bu cebrin 6zel bir hali oldugu
gosterildi. Orgli cebrine ¢ok yakin olan, "sozde orgii cebri" diye adlandirdiimiz cebrin
tamimu yapildi ve bu cebrin verdigi genellesmis osilator sisteminin hidrojen tipi spektrum
verdifi gosterildi.
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1. INTRODUCTION

This thesis consists of two seperate studies.The first study involves gauge theories
based on quantum groupswhich appeared in the beginning as a mathematical abstraction in
completely integrable systems[1] and statistical mechanical models[2] have attracted a lot of
attention. Quantum groups found applications in the theory of lattice models[3], string
theories[4], conformal field theories[5] and other topics. The opportunity to use quantum
groups instead of Lie groups as gauge groups may generalize the symmetry and solve the
standard problems of gauge theories, e.g. quark confinement in QCD by the introduction of
Higgs scalars and the difficulties of grand unification. Work along these lines was started by
Arafeva and Volovich[6] followed by Isaev and Popowicz[7] and Castellani[8]. They took
SUq(2) as the gauge group instead of SU(2) and worked on the possible constructions of
gauge theories. In chapter 2 we discuss two of these possibilities. The first possibility is to
take the gauge field as an element of the Lie algebra analog of SUq(2) while in the other
approach the gauge field is an element of the quantum universal algebra of su(2) . In section
2.1, we briefly discuss the quantum Lie group. In section 2.2, we will show that quantum -
groups can be used for the solutions of the equation of motion for chiral fields. The
exponential map from the "generators" to the quantum group SUq(2) is presented in section
2.3. The deformation of the gauge group, i.e. the use of noncommutative matrix elements
instead of the commuting ones, requires modification of the definition of trace and covariant
derivative as well as the Lagrangian which is invariant under the quantum group action. The
q-deformed Yang-Mills theory with the gauge group Uq(2) is discussed and the Weinberg
type mixing angle depending on the deformation parameter q is introduced in section 2.4.

The second study involves the braid group which is related to quantum groups.The
discovery of new algebraic structures related to braids and to knots and links generated by
braid closure has attracted a lot of attention in the past few years[9,10]. The developments
in this area have brought about relations among the areas of knot invariants, gauge
theories[11], statistical mechanical models[12] and quantum groups[13]. In chapter 3, we
shall investigate a class of algebras related to the braid group. We will particularly emphasize
the representations of this algebra in a Hilbert space. Our motivation for such a
representation is to obtain a direct link between mathematics and physics through quantum
mechanics where hermitian operators can be identified with physical observables.

In section 3.1 we will construct a Burau-like representation where each generator of
the n-braid group will be represented by a 7 xn matrix whose nontrivial part is a 2 x 2
matrix with matrix elements belonging to an associative but noncommutative algebra. This
defines a set of commutation-like relations among the four operator elements of the 2 x 2



matrix. In section 3.1 we search for a representation of the algebra in a Hilbert space. We
show that except for trivial representations where one matrix element is identically zero and
the other matrix elements are commutative (Burau representation) further relations have to
be satisfied. We discuss several representations that can be obtained and show that there are
no unitary representations. In section 3.3 we introduce the pseudo-braid algebra by relaxing
the conditions found in section 3.2. We show that this algebra has finite dimensional unitary
representations. For both types of representations, one obtains a raising operator 5" and a
lowering operator b. The hermitian nonnegative operator b"b has eigenvalues depending on
a parameter ¢q. This eigenvalue spectrum, in the limit ¢ — 1, becomes a hydrogen spectrum,
and for g #1 gives a one parameter generalization. For the hermitian representation, q is a

real number whereas for the unitary representations which are finite dimensional ¢ is a root
of unity. In section 4 we present a discusston of our results.



2. GAUGE THEORIES BASED ON QUANTUM GROUPS
2.1. Quantum Lie Group

2.1.1. Quantum Group SL, (2)

An element of the SL(2) group in 2 dimensional representation is

a b
g=[c d] (2.1.1)

where g, b, c and d are complex numbers and the determinant is unity

Det g =ad - bc =1. (2.1.2)
We have the inverse of g
d -b
g l= [ ] (2.1.3)
—-c a

The inverse is also an element of SL(2). We deform SL(2) by taking the entries not as
complex numbers but non-commuting objects



b
g =|:Z ‘Z] (2.1.4)

with the relations

ab=qba (2.1.5)

ac=qca (2.1.6)

bd=qdb 2.1.7)

be=cb (2.1.8)

Det g =ad—-q*bc=da-bc=1 (2.1.9)

and the inverse matrix
1 |a gb d -b
= = . 2.1.10
& [c' d' ] [-qc a ( )

Now the matrix with primed entries satisfies the relations (2.1.5)-(2.1.9), but with g—>¢1. In
fact, the entries of quantum matrix g” satisfy the quantum group relations with ¢” instead
of q.

2. 1. 2. Quantum Group SUq 2

It is known that an element of SU(2) can be represented in the form



g=[a - ] (2.1.11)

where a and ¢ are complex numbers such that the unitarity condition (where (*) means
complex conjugate and (*) means hermitian conjugate)

gef=glg=1I (2.1.12)
gives
aa’ +c'c=1. (2.1.13)

We can take the entries belonging to an associative but noncommutative algebra. If we

impose the unitarity condition on SL q )

gh=g (2.1.19)
which reads
» » d _b
[a. c.]=[ ], 2.1.15)
gb” d -qc a
d=ada", b=-c"

So an element of SU q (2) is given by



g=[a - J (2.1.16)

c a

Equation (2.1.16) is called the canonical form. The relations (2.1.5)-(2.1.9) become

ac' = qc*a (2.1.17)
ac=qgca (2.1.18)

c'a’ = qa*c* (2.1.19)
ce=cc' (2.1.20)

aa’ + qzc*c =a'a+cc’ =1. 2.1.21)

If we have two quantum matrices g, h € SUq (2) with commuting entries, i.e., if [g,-j,hke]

= 0 then gh is also an element of SUq (2). More explicitly if

then

aa' —qc*c‘ -—qac" —qc*a'*
gh=[ e P '*] (2.1.22)
ca'+ac -—qgcc' +aa :

satisfies SUq (2) quantum group relations.



2. 2. Quantum Group Chiral Field

The standard chiral field is a map from R” 10 G,
gR" >5G
where G is a Lie group with the equation of motion
I, (81®) 3,8 () = 0. 2.2.1)
By analogy we can define the quantum group chiral field as a map

8R-G,

satisfying the equation of motion where G q is a quantum group. If we take g€ SUq 2)

g(x)=[ a() -q¢ (")] 222)

c'(x) a'(x)

then

2,8(x =[ 9ua(x)  ~40° (x)}. 2.2.3)



The derivatives, i.e., elements of &,g(x) satisfy the relations found by differentiating
(2.1.17)-(2.1.20). Let us discuss two examples of quantum group chiral fields.

2.2. 1. SUq(Z) WZNW (Wess-Zumino-Novikov-Witten) Chiral Field

The equation of motion for SUq (2) WZNW chiral field model is given by

0, (8! 3,8)=0 (2.2.4)

The general solution g(x, y)=u(x) v(y) where u(x) and v(y) € SUq and hence g(x, y) €

SU q (2) and the matrix elements of u and v commute among themselves, i.e., [u,-j Vke ]=0.

2.2.2. SUq (2) Chiral Field

The equation of motion for SU(2) chiral field in the light-cone variables x, y is

O, (8t 9y8) +0,(g'6,8)=0 (2.2.5)

where g=g(x, y) takes values in SU(2). We can take g=g(x, y) to be an element of SU @
instead of SU(2). After setting,



g'0,8= 6, X and g1, = -3, X (2.2.6)

the matrix X can be obtained by integration. The currents

Jx = (O, 4810, 8)X and J), =(0,+g1 5,8 )X (22.7)

satisfy the conservation law

By Jy + 8y J 0. (2.2.8)



2. 3. Quantum Lie Algebra

10

Let g(t) be a function of a real variable t and take values in G, where G is a Lie

dg

group. Then the tangent vector L = g’r—c—i—— is an element of the corresponding Lie

?le=0

algebra. Let us follow the same procedure to find the Lie algebra analog of the quantum

group SU, (2).
Let g(t) € SU,(2) and g(0)=g, then

L=glg(r )I, -

In general, L has the form

If we differentiate both sides of gtg =I with respect to # we obtain

+98

(g g)| a,

t=0 dthgt ot &

(23.1)

(23.2)

(2.3.3)
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. dg _ d _
Here, if ngt—tzo-L then }[ngt=0_LT

0 (2.3.3) gives Lt + L = 0, which means L is anti-hermitian, i.e.,

o or-n -
1 2|71 ' 23.4
[1; 1*] [-12 -1 23.4)

from this equality we get
* * »*
I=-h hLh=-I I'=-l
Using
L= g’f.d_g
at =g
we obtain
h=a'a+c'¢ ly=c'a"-qa’¢" I1=ad" +q%cc’ (23.5)

and
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ag dg
gL=ggl—> == . (2.3.6)
Since d—f is obviously in canonical form, gL is also in canonical form.Setting
t=0
Xy
], =
where
L R J
x=ah +qc lO y:ak)—qc*l 931
- . (23.7)
z=ch-aly w=cly+al
*
x=w gives
al +qc*l; = I;c* ~la (2.3.8)
*
y=-qz gives
* *
aly—qc l=qglhic +qlya. 239

Assuming the linear independence of the generators /; ,l; ,h in (2.3.8) and (2.3.9) we get
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qc*l; = l;c* qloc = CIO (2310)
ay=qlea  lha =qa’ly (2.3.11)
all =-la _lla* = m*ll (2.3.12)
cl1=-c" -rc=cl. (2.3.13)
It is reasonable to assume
I=xu (2.3.14)

where x is a real parameter.To find the relations between /; and a, Iy and ¢’ we assume

loa" = pa’l (2.3.15)

loc* - rc*lo. (2.3.16)

Again p and r are real numbers which will be found from the consistency of the algebra. Let
us multiply (2.1.21) by /; from the left and from the right

b (aa* + qzc*c) = (aa* +qzc*c)lo.

After using the above relations we get

(Eaa* + quc*c)lo = (aa* + qzc*c)lo. (2.3.17)
q q
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The solution for p and r is p=r=q.

The importance of the exponential map from the Lie algebra to the Lie group is well
known. By analogy, let us try to find the relations between the elements of g and L which
satisfy

g(t) = ge'” g(t) eSU, (t) (tis real).

In series expansion we have

g(t) = g[l +1L+ tzsz +)

g and gL were discussed above. Let us find the relations for the second order term, gL.? , to
be in the canonical form

_[r
i

where

f= all2 —ak)lg + qc*l;ll + qxc*lll;
h=ahly + kalohy +qc' T}l - g*c" 2
k =cl? —cloly —a" Iyl — ra* Iyl

&k *
m=chly + kel —a’ Iy + *a’IZ.

From the preservation of the canonical form we have
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*

f =m
%*
(a2 - alpl} +qc" I + a1} =(chiy + xeloh - a1}l + <%a’12)

2a” - ylya” - qhloe — qrdghe = chily + xclohy - a"lylg + Pa’ 12

Equating the linearly independent terms we get

Za* =xa’I? (23.18)
~lplya” =-a" Il (23.19)
—qhlpc - gqxdolic = clyly + xclply. (2.3.20)

Since h = —qk*

*
—g(er? — cloly -a" i3l - 3" WE}) = alyly + salply + g Iyl — giPc T2

—qllzc* + qlol;c* —gqhlpa - gdplya = alily + xalyly + qc*l;lo - qch*llz

Equating the linearly independent terms one obtains

—qllzc* = —qlczcmll2 (2.3.21)
* *
loloc =c lolo (2322)
—qllloa - qldolla = alllo + xalply. (2.3.23)

Using relations (2.3.10)-(2.3.16) in (2.3.20) and (2.3.23) one can obtain
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(_qlllo - q’doll )c = (—q’dllo - qleol, )c (2329
(~qhl, - qudyl, Ja = (~qudyl, - qx*L i, )a. (23.25)
There are two solutions
i) k=1
ll) 1110 + ’d()ll =0 i.e. lllo = —Idoll. (2326)

Let us take the second solution, i.e., (2.3.26) to find the relation between /, and l; . By

taking the complex conjugate of both sides of (2.3.26) (remember I; = —I;) we obtain
Iyh =~y (23.27)

The only remaining relation is between /, and l; . To find this one can use (2.3.10) and
(2.3.16) with r=q in the equation (2.3.22) and obtain

Ik = a*loly. (2.3.28)

Using these relations and considering the solution (2.3.26) we obtain

L -[0 B] (2.3.29)

where



2
A=12 -1l

_ 272 *
B= k2 - byl

2 4 3
el = [1+t—-L2 +Lp +...]+(t+t—L2 +...JL .
2! 4! 3!

In this expression the first term is given by

2 4

t t

2 4
0 1+—B+—RB2% 4.,
2! 41

and the second term given by

B3P,
t+—A+§A +... 0

3! [ ll* loJ
35 I
0 t+;—|B+t—|-Bz+... o ™

[ SinhtJ4
| V4 11* ly
0 Sinh t\/f "lo ’dl

I VB

[ SinhtJA,  Sinhtd
| V4 V4
_SinhtyB + SinhtJB

B 5

2 I

h

2
l+2—!A+4—!A +... 0 B Cosht A 0
0 CoshtJl_i

17

(2.3.30)

] (2.3.31)

(2.3.32)
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where

Sinhtﬂ_t+ﬁA+

J4
2

CoshtJA = 1+%A+... .

So by using (2.3.31) and (2.3.32) we find

aSinhtJ4 « SinhtB »  SinhtJ4 » Sinht|B .
————1; +aCoshtJA + qc I, a Ip —gxc Iy —gc CoshtB
gefL _ JZJ_I \/_ q JB;/_ 0 JZJ_O q \/EJ_ 1-4 w/—
Sinhty A » Sinht{B » SinhtJA + Sinht{B *
c 5y +cCosht\JA -a I} c———Ily+xm ———=—1 +a CoshtB
Jx_‘l- 1 \/—- JE 0 JZ 0 JE 1 \/—
m
ge't =[p ] (2.3.33)
r s

Since ge’l‘ belongs to SU, (2) it must be in canonical form. From s = p* (notice A and B

are hermitian) we have

[y}

SinhtJA4 + . SinhtfB  SinhtJA4 « SinhtyB, s
~ly ———a +CoshtjJAa +q| = lo + kxa ————1y +a Cosht+B
1 JZ \/—a qh J—B— JZ 0 ﬁ 1 J—

(2.3.34)

and from m = —qr‘
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qh Smf/%ﬁ ¢ - qushtJZ c + ql Smj%ﬁa =a Sinf/j_;/z Io - ch‘ S’lh‘/;?‘/-i-ll - qc‘CoshtJE .
(2.3.35)
By using (2.3.10)~(2.3.16),(2.3.26)-(2.3.30) we obtain
aA=Ba Aa*=a"B cA=Bc ¢'B=4c" (2.3.36)
llA = All loB = Alo (2337)
and the generalized relation
ad"” = B"a B"c=cA" (2.3.38)
hA4" = A"l [,B" = A", (2.3.39)
so that we have
Sinht4 _ SinhtyB ~Sinh tJA _ SinhtyB .
JAi_ JB JAi B
SinhtA 1 <, Sinh tNA  SinhtJA Sinht/B 23.40)

=1 Iy =1,
JZ 1=4 JZ JZ 0~ JE
aCoshtJZ = CoshtJE a cCoshtJZ = Cosht‘/—E c
Cosht[Alj = ,CoshtJA CoshtJAly = IyCosht/B.

Applying (2.3.40) to the left hand side of (2.3.34) we obtain
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J SinhtyB _ SinhtV4
VB J4

Again by using (2.3.40) and (2.3.10) we get

SinhtA , _ SinhtJB

A T TE

le. (2.3.41)

Following the same procedure for (2.3.35) we obtain

Sinht\B a_asmhtﬁ ;
SBINE g 2MINE,

w5 VA

Using (2.3.40) and (2.3.11)

SinhtJA4, _ SinhtyJB

Ja T B

la. (2.3.42)

Equations (2.3.41) and (2.3.42) require

Al,=BI,,

or more explicitly
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11y~ Iolylo = K124y = Iolylo.

There are various solutions for this equation

i) &*=1
i) 2y =0
iii) o =0 lolo'Ip = 0.

Let us take the third solution which is the interesting solution. We can define the quantum
superplane relations

=0 2=0 (23.43)

together with the previously found relations

hly = -«doly
loly = gLy

Let us summarize this section. The exponential mapping from the Lie algebra analog
L to the quantum group SU ; (2) was constructed. We found that L is of the form

ho
-3
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where the entries of L satisfy the quantum plane relations
Z2=0 =0 hly=-doh Ljlo=q"hl, (2.3.44)
together with l; = —/;. If the entries of L satisfy

aly = qlpa lga* = qa*l;
cly = qlyc lgc* = qc*l;
all = —ldla lla = —m*ll (2.3.45)
Cll = —ldlc llc* = —m*ll

loa* = qa*lo a; = ql;a
*
0
then

™
g() =ge'l eSU,L(2) where g=[‘: 'Zf ] €SU, (2).

An explicit construction of g(?) = getl' was done. In fact, the defined quantum superplane

relations give rise to finite number of elements in the series expansion. Since I? was found
to be

where

A=B=-lyl, (2.3.46)
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L4=A2 o___OO
0 B2 00

because of the quantum plane relations (2.3.44). Hence, only the terms up toL3survive in
the power series expansion , others vanish. More explicitly

, 3 3
Slnhtﬁ=t+t—A=t—£—lol*
JA 3 3100

2 2

t t *
Cosht A =1+—A=1-—Iyl .
(1Y 2 2 00

Using (2.3.45) and (2.3.46) in (2.3.33) we find

3 2 3 3 3 2
t » t » . t * | e t * . t * » t *
. a(f—s—!lolo ]Il +a[1—-5-1010]+qc [1—51010 ]Io a(f—-;!-lolo ]Io —gKc [t—?!-loloJ—qc (1—?1010]

g = 3 2 3 3 3 2
t . t » - t | t » . t . . t .
C[I ——3?1010 ]11 + :{l —71010 } -a (l —’3—!-1010 ]Io C[f —ilolo }Io + ka (f - i’olo )Il +a (1 - —{1010}

Again using the quantum plane relations (2.3.44) we obtain a one parameter group of
automorphisms of the quantum group SU , (2).

3 2
t t
a—>a{z-3—!101; ]11 +a[1-—2-101; J+qtc‘1; (23.47)

3 2
t * t * * ok
c— C[t —?!'lolo )ll +C{l—-2—lolo]—ta IO' (2.3.48)
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2. 4. Quantum Yang-Mills Formulation

2. 4. 1. Possible Formulations

In the quantum group deformation of gauge theory, it seems, at least at the moment,
we have only two possible ways to proceed. In the first way, gauge fields take values in the

Lie algebra analog of the quantum group SU, (2). The relations between the generators are

well defined. The general form of generators were found to be

h I 10 0 1] [0 o
[ = =] ) l ) 2.4.1
bl drefs of+ulS ) @b

If the gauge field takes values in the universal enveloping algebra then we have

1 0 01 Jo o 0
A”(x)=A}‘(x)ll[o K]+A2(x)lol:0 0]+Aj(x)lo[_l 0]+Azl(x)loll[o §]+....

242)

In the second approach the gauge field takes values in the quantum deformation of
the universal enveloping algebra of su(2) ie. U, (su(Z)) generated by X, , X and H
satisfying

H__-H
[B.x:)=22x, [x,x]=1"L—
9-9

(2.4.3)
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For a sensible gauge theory, the usual Lagrangian formulation has to be modified. In
the non-deformed case the Lagrangian is invariant under the usual gauge transformations
while for the deformed case it is invariant under the quantum gauge group.This means that
the Lagrangian is not a complex number but an element of a non-commuting algebra. So a
new trace should be introduced to construct a realistic gauge theory. Using this trace we will
discuss the g-deformed SU(2) x U(1) gauge theory.

2. 4. 2. Quantum Trace

If we have two matrices with commuting entries

Ey E hy T
E=[ 11 12] T=[ 11 12]
Ey Epn Ly I
we know that trace remains invariant under the transformation
-1
E,-j = ]}kEk,I;j .

These matrices are elements of a quantum group, not the ordinary trace but the quantum
trace remains invariant

Tr,(E) = 4"\ Eyy + gy = Tr, (TET™). 2.4.4)
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Example: Let A be any 2x 2 matrix and G be an element of SU, (2) i.e.

TrgA= q‘1x+ qw 2.4.5)
_ _ * x * *
GAG 1=[" 9 ][ e <
c a Z W||l-gc a

Using the fact that entries of the matrix A commute with those of G one obtains

* * % 2 * * x % *

GAG-l =|¥3@ —492c a —quactq’we ¢ xac —qzc ¢ +yaa—qwc a
~ * %* %k * & * * % *

xcc +za ¢ +yca+wa c Xc c+za c +yca+wa a

and

Ir,GAG 12 q'l(xaa* —-qzc a* - qyac+ q2wc *c) + q(xc*c +za'c + yeca+wa *a)

= q'l x(aa* + qzcc*) + z(qa*c* - c*a*) +y(qca - ac) + qw(a*a + c*c)

Using (2.1.17)-(2.1.21) one obtains
Tr,GAG™ =g Vx+qw (2.4.6)

which means that quantum trace remains invariant under quantum group transformations. In
fact, for higher dimensional (N dimensional) matrices we have
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N
Try(E)=Tr,(TET ) =g~ VD 3 g2 E, . (2.4.7)

i=1

2. 4. 3. The g-Deformed Yang-Mills Theory

Before proceeding let us remember the basic features of the usual Yang-Mills
theory. We have a covariant derivative defined by

V=, +A,(x) (2.4.8)

where x, = (xo,xl,....,xd) is the coordinate of the d+/ dimensional space-time and

Ay (x) is the potential taking values in the Lie Algebra. We have

Ay, (x)= AL(x)oj (2.4.9)

where ¢ are the generators of the gauge group G. For G=U(2)=SU(2) x U(1) we take the
identity matrix cand the Pauli matrices o/ , i=1,2,3. For this case the covariant derivative
is given by

Vy=d,+ ALoj +B,0° (2.4.10)

and the Lagrangian is given by

L=1(F,F,) 24.11)
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where

Fu=[VuVy]|=0,4,-0,4,+[4,,4,] (24.12)
The Lagrangian is invariant under the gauge transformations

v, > G(x)V,G7 (x) (2.4.13)

Fuy— G(x)F, Gl (x). (2.4.14)

Now let us take the gauge group elements to belong to the quantum group U, (2). Then

the gauge potentials AL are operators i.e. elements of the quantum universal enveloping

algebra U, (su(2)). We can find the q-deformed curvature F,,, and the g-deformed Yang-

Mills Lagrangian by using the g-trace formula (2.4.4) and using the usual definition of the
covariant derivative. The curvature is

Fuv =YV = (20 + 4207 + 8,0 o, + 450 + B,0®) (0, + 5P + B,0°) 9, + 420" + B,0")-

After cancellations one obtains

Fuy=(0,45- 0,42 )0 +(3,8, - 0,81+ 45,45 |1+16( 4240+ 445 ) +[B,.B, ]
a a _ a

+{[A o ,BV]+[B,,,AV]}0” = B d+F20" (2.4.15)

where o¢’s are Pauli matrices.
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This curvature transforms as (2.4.14), where now G(x) is an element of the quantum
group U, (2) and [AL ,Gij ] = 0. To obtain the invariant "abelian" component ng of F,

we use the g-trace formula. Note that g-trace of ¢’ is not zero but ¢~' — ¢.Then we have

1

Fﬁvﬂ*««(%)[z(q‘“qz)]“/z={ﬁqu—my+[Bﬂ,BvJ+[A:,As]}———q'l”q

2(q"2+q2)
+{a#A3V—aVA3+zga”3(A;A” A4 )+ 4.8, ]-[43.B ]} 4 __
,{ q" +q)
(2.4.16)
_l_
Defining Tan0=1_——2 (2.4.16) becomes
q
0 3 o
F#V= yvCos6+F# Ain 6. (2.4.17)

Since I7, is invariant under quantum group gauge transformation (2.4.14) FL)V is
also invariant. We see from equation (2.4.16) that in the "quantum" case the U(1)

component B,, mixes with the nonabelian components AZ. Now let us investigate the results

of the transformation (2.4.13)

8, +4,6+B,-G3,6 +GA,667 +GB,G™. (2.4.18)

Let us take the g-trace of the right hand side of (2.4.18)
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Al -a)  Bua7+a)
+

[Z(q'z +q2)]y2 [Z(q"z +q? )]%

-1
r{oa,67 + 61,061 s 8,6 olg +?)] % -

+Trq(Ga,,G'1)[2(q2 +q—2)]—%. (2.4.19)

Using (2.4.12) and defining
Ay = AZSin 6+ B,Cos 9 (2.4.20)

we obtain the field 4, which transforms as the "abelian” field in the quantum group

case.We also obtain that the only combination of the operator valued fields 4 z and B,
defined by (2.4.20) is simply shifted without rotation:

4, > 4, +7r,(G3,G)(24% +2472) 23 2421)
In addition to (2.4.20) we can define
Z, =-B,Sin 6+ AzCos 6. (2.4.22)

It is interesting to mention that the formulas (2.4.20), (2.4.22) coincide with the
definitions of the photon and Z-boson in the Weinberg-Salam model where & is the

Weinberg angle. Substituting 4,, and Z, into (2.4.16) one obtains
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F),=0,4,-3,4, +Cos6{[Aﬂ,AV](l+2Sin2 0) +[Z,,,ZV]Cos20}
+Sin 9Cosza([A,,,zV] +[z,. AVD +Cos e([AL,AL] + [Af‘ , Af,D (2.423)

:Q 1 42 241 142 2 41
+iSin G{A”AV +Al4) - 4342 —A”AV}.

Now let us find the gq-analog of the Lagrangian

Ly = Trg(FunFin) = Try B+ E2yo® ) B + B, )
-1, {(B,,,)2 L+ By P +F% B0 + FAFS P }
- [(Bw,)2 4 (F;V)z ](q‘1 +q)+ (B#VF;, +E By, +is“b3F:VFﬁv)(q_l ~q).
(2.4.24)

Here we used the identity 0®o® =ig%°0°, (2.4.15) , (2.4.24) and the fact that only the
identity matrix and o’ contribute to the g-trace.
From the construction of Ly it is clear that L, is invariant under the quantum gauge

transformations

Fyy—> GF,,G™! (2.4.25)

where

[Gk, F}‘V] =0. (2.4.26)

We can obtain another invariant (q-analog of the abelian theory) by using (2.4.15)
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2 2
L, _(T’q F#V)Z =[T’q(BuvI+F:v°ﬂ)] =[Byv(q_l +‘I)2 +F:V(q_l —‘I)}

=l () <o) (B e £l Ja? - ).

(2.4.27)

A linear combination of the two invariants L, and L, gives us the analog of the g-
deformed Yang-Mills Lagrangian,

L 1 2
" _ q il 3 1 2
Ly _[Lq_ —l) ~ _I:(F:V) “(va) Tan BJH[F#V,F;W]TMB

which is independent of the field B, and is invariant under the quantum gauge group

transformations.
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3. BRAID GROUP RELATED ALGEBRAS, THEIR
REPRESENTATIONS AND GENERALIZED HYDROGEN-LIKE
SPECTRA

3. 1. The Braid Algebra

The n-strand Artin braid group is defined in terms of n-1 invertible generators o;
which satisfy the braid group relations

O'iO'j =O'j0'i |l—_]|?‘:1 (311)

0i0i+10; = 0;+10;0j+]- (3.1.2)

We can represent each generator by an n x n matrix whose nontrivial partis 2x2 and is
given by

M
il
—

a b
c df

Where a,b,c,d are "noncommuting” objects.Then we have

a b 0 1 0 0 0 . 10
cd 0 0 abdb o 01
0 01 0 cd o .

g1 = oy = 00 0 1 On-1=
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In such a representation (3.1.1) is automatically satisfied whereas (3.1.2) imposes
relations for the elements of the matrix A. To find the relations we put these matrices into
equation (3.1.2) and using the fact that in this equality only the 3 x 3 part gives relations.

We obtain
a b 0|1 0 Olla b O 1 0 0
c d 0fJ]0 a bllec d 0|=]0 a b
0 0 10 ¢ df|0 0 1 0 ¢c d

a’ +bac ab+bad b* a ba

ca+dac cb+dad db|=|ac ada+bc adb+bd
c? cd d c? cda+dc cdb+d?

This equality gives us the relations

a? +bac=a
ab+bad = ba
ca+dac = ac
cb +dad = ada + bc
db = adb +bd
cd = cda +dc
d=cdb+d®.

We rearrange these equations to obtain

bac=a—-a*

cdb =d - d*
bc - cb = dad - ada
ab=ba(l—d)
ca=(1—d)ac
bd =(1-a)db
dc:cd(l—a).

(=T - T
(=R

b2

-0 O

O O ==

o 8 ©

QU o o

(3.1.3)
(3.1.4)
(.1.5)
(3.1.6)
G.1.7)
(3.1.8)
(3.1.9)

(3.1.10)
(3.1.11)
(3.1.12)

(3.1.13)
(3.1.14)
(3.1.15)
(3.1.16)
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If the elements of A ,i.e,, a,b,c and d commute among themselves from (3.1.10)-
(3.1.16) we obtain that either a=0 or d=0 ,or b=c=0. If we take a=0 and other elements to
be different from zero, then (3.1.11) gives ch=1-d, or

d=1-bc. (.1.17)

Setting bc=t we obtain

[0 b]
A=|t
— 1-f|
b

By the similarity transformation § “148 = 4’ we obtain

1 1 0 A

Equation (3.1.18) is just the Burau representation of the Artin braid group. The Burau
representation is used to calculate the Alexander polynomial by the use of the Alexander’s

I~0
[a—y
[ ]
-
| I— |
| |
O =
S~ O

theorem which states that each link in three-dimensional space is ambient isotopic (i.e.
having the same link invariant) to a link in the form of a closed braid[14].

Instead of taking a,b,c,d as numbers, let us take them to be elements of an
associative but noncommuting algebra. Using relations (3.1.10)~(3.1.16) together with the
existence of the inverse of 4 one can obtain the expression for 4! as follows. Putting

zZ W

A_l=[x y] . (3.1.19)
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the existence of the right inverse 44 1o implies

ax+bz=1 (3.1.20)
ex+dz=0 (3.1.21)
ay+bw =0 (3.1.22)
cy+dw=1. (3.1.23)

Muitiplying (3.1.20) from left by c, and (3.1.21) by (1-d)a and using (3.1.14) one obtains
[(1-d)ad—cb|z=-c. (3.1.24)

Similarly one can obtain expressions for x, y and w

[da-(1-d)-cb]x=(1-a)a (3.1.25)
[(1-d)ad-cbw=(1-d)a (3.1.26)
[da(l-d)-cb]y:-b. (3.1.27)

The existence of the left inverse 414 =1 gives

xa+yc=1 (3.1.28)
xb+yd =0 (3.1.29)
za+we =0 (3.1.30)
zb+wd =1. (3.1.31)

Repeating the calculations as in the right inverse case we obtain
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z[(l—d)ad-cb] =—c (3.1.32)
x[(1-d)ad - cb] = d(1-a) (3.133)
w|da(1-d) - cb|=a(1-d) (3.1.34)

y[da(1-d) - cb]=-b. (3.1.35)

Solving for x,y,w and z in (3.1.24)-(3.1.27) we obtain the right inverse

1 |A(1-a)d -ATs

A7l= 3.1.36
-Ale  A5M(1-d)a (3.136)
where
Ay =(1-a)da-be =da(1-d)-cb (3.1.37)
Ay =ad(1-a)-bec=(1-d)ad - cb. (3.1.38)

Equation (3.1.36) can be rearranged as

to yield

A=A M1-a+4) (3.139)



where

with

Similarly, using (3.1.32)-(3.1.35) we find the left inverse

d(1-a)at  -bAT
—cA)'  a(1-d)A

al=
and it can be rearranged to give

A7l =(1- 444, A7)

where

38

(3.1.40)

(3.1.41)

(3.1.42)

(3.1.43)

(3.1.44)

(3.1.45)
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Ay ,AZ,A'land A3 can be identifed as "determinants” Now let us find the relations between
the "determinants” and a,b,c and d We have

dA, = d|da(1-d) -cb]

=d%a(1-d)~de

=d?%a(1-d)- c( a)b

= d*a(1-d) - cdb + cdab
=d?a(1-d)-d-d? +cdba(1-d)
=d?a(1-d)-d(1-d)+d(1-d)a(1-d)

=[d2a—d+da—d2a](l—d)

=[d2a—d+da—d2a](l—d)

=-d(1-a)(1-d)
=dA'1

or in a better form

defining
AI—A'I = Az —A'z =

and repeating the same procedure one finds
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aD=Da=0 (3.1.46)
dD=Dd=0 (3.1.47)
[6,41]=[6,41]=0 (3.1.48)
[c,A2]=[c,A'2]=o (3.1.49)
[AI,A'1]=[A2,A'2]=O. (3.1.50)

The relations (3.1.46)-(3.1.50) strongly suggest that A; = A} and Ay = A7. Now we will
show that for a representation of a,5,c,d as linear operators in a Hilbert space this is indeed
true. For D to be diagonalizable the following condition has to be satisfied

[D', D]=0. (3.1.51)

When we discuss the hermitian and the unitary representations of A we will
explicitly show that (3.1.51) is satisfied. From (3.1.46)-(3.1.50) it follows that the operator
D commutes with a,b,c and d. We consider an eigenspace of D with eigenvalue & # 0. Since
aD=Da=0, it follows that in such a subspace a=d=0 and bc=cb, and the representation is
trivial. Thus we need only consider eigenspaces of D with eigenvalue zero. If on this
subspace D is diagonalizable then it is identically zero and

Ay =A1 (3.1.52)
Ay =As (3.1.53)

from (3.1.52)

da - dad - be =(1-a)(1-d)
=-l1+a+d-ad.

So that
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bc=1-a-d+ad+da-dad

be=(1-a)-(1-a)d(1-a). (3.1.54)
Using (3.1.12) and (3.1.54) one obtains
cb=(1-d)-(1-d)a(1-d). (3.1.55)

The equality (3.1.53) gives the same relations as in (3.1.54) and (3.1.55). This only leaves
the case where D is not diagonalizable.

A related approach is to consider the uniqueness of the determinant of the operator
matrix A. We have two candidates A;,A, for this "determinant”. The inverse of A exists

only if both A} and A, are invertible. If we insist on a unique determinant then

Al =A2 =A. (3156)

Using (3.1.37) and (3.1.38) we get

da(1-d)—-ch=(1-d)ad-ch
[a,d]=0 (3.1.57)

[a,A]=[b,A]=[c,A] =[d,A]=0. (3.1.58)

Hence A behaves as a "Casimir" operator for the algebra generated by a,b,c and d
and the representation of this algebra can be labeled by the eigenvalue of this "Casimir”
operator. Calling this eigenvalue -g and recalling that a and d commute we find that for
diagonalizable @ and d this covers both the hermitian A" = A4 and unitary 4'= 471
representations to be discussed below.

Before proceeding let us discuss the consequences of (3.1.56)
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AR =AL =—q1.

Multiplying (3.1.39) from left by A; and from right by 4 one obtains

Ap=A-4%+A, 4.

Using (3.1.56) we get

A2 =(1-q)4+q. (3.1.59)

Again multiply both sides by A

A3

(1-¢) 4% +q4
(1-9)[(1-g)4+q]+q4

(1-g+4%)4+4(1-4)

and proceeding in this manner we obtain

1-(=g)" (_ -1
) A+ge )" (3.1.60)
1+¢ 1+¢q




43

(3.1.60) becomes

so that

o =1 (3.1.61)

which means that when you apply a braid group generator on the braid n times you obtain a
configuration whose representation is the same as the representation of the original
configuration of the braid.
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3. 2. Representations of the Braid Group

Now let us take the elements of the matrix A which is the nontrivial part of the braid
group generators, as operators on a vector space. Consider they have the following effects

on a vector |n> in this space

b|n) = b,|n-1) (3.2.1)
c|n) =c, |n + 1) (3.2.2)
aln) =ap ln) (3.2.3)
d|n) =d,|n). (3.2.4)

Notice that b and c¢ are lowering and raising operators respectively and a and d are diagonal

operators in this basis. The vectors |n> are the eigenvectors of a number operator N, i.e.,

N In) = n|n) where n is an integer. Since In) is an eigenvector of the operator cb, we can

express bc as a function of the number operator and the eigenvalues of bc as a function of n.

cbin) = by 1) = ) = ] =

|n) =[N]|n) (3.2.5)
be|n) = bey |1 +1) = byy1cp|n) = [n+1]n) =

[
[N +1]|n) (3.2.6)

Now let us solve a,,b,,c,and d,, using the braid group relations (3.1.10)-(3.1.16).From
(3.1.10) we get

bac|n) =a-a’ |n)
bp+18n+16n = ap “ai

2
a,—-a

byiiCn = if a,4 #0. (3.2.7

an+1



From (3.1.11)

cdb!n) = a—a2|n>

Cn-19n-1bp =dp —d

From (3.1.12)

(bc - cb)|n) = (dad ~ ada)|n)

bp+16n —bpCn-1 = andy (dn —Qp ) .

From (3.1.13)

abln) ba(l d ln)
Ap—1bn =bnan(l"dn)

an-1 =a,,(l—d,,).

From (3.1.14)

ca|n> 1-d acln)
Cn8p = (1 dn+l)an+lcn

ap = (1 - dn+l)an+l-

45

(3.2.8)

(3.2.9)

(3.2.10)

(3.2.11)
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From (3.1.15)

bd|n) = (1~ a)db|n)
bydy = (l‘an—l)dn-lbn
d, =(1-a,_1)dp-,. (3.2.12)

From (3.1.16)

dcln) = cd(l —a)]n)

dp1+1Cn = Cndp (1 —ay )

dyoy =dp(1-ap). (3.2.13)

The equations (3.2.10) and (3.2.11) and the equations (3.2.12) and (3.2.13) are identical
when we replace n by nt+1. Substituting n+1 instead of # in (3.2.8) and using (3.2.13) for
d, 1 and from (3.1.11) i.e. by taking

1- dn+1 =
A +1

(3.2.8) turns out to be

[N+

Cobyol = dn+l(1‘dn+l) _ dn(l‘an) ap__9% "9,
e dy dy An+i1 An+1
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This gives us the same equation as in (3.2.7). One can easily show that (3.2.9) can be

obtained by using (3.2.11),(3.2.13) and (3.2.7). In the previous section we have obtained
that

(l_an)(l‘dn)=(1"an+1)(1"'dn+l)=q- (3.2.14)

Using this equality it is easy to show that equations (3.2.11) and (3.2.13) are identical.

Hence we have only three independent equations (3.2.10),(3.2.7) and (3.2.14). Let us solve
a,, by using (3.2.10) and (3.2.14)

T an(l_dn)

qay
ay_1 =
" l1-a,
! _1(;1)
-1 49\ 9
Defining

1y
an
U,=1+qU,_; (3.2.15)
we find the solution in terms of U,
U, =1+qU,

U, =1+q+q2U0
U3 =1+q+q2 +q3U0

U, = 1+q+q2 +....+q”'l +q"U,



Defining

we get

Using (3.2.14) one obtains

Using (3.2.19) in (3.2.7) we obtain

Cnbpy1 =

Cnbpy1 =

_Cq"M1-9q)
1+Cg" !

an(l"an)

+1

q(1+Cq”'1)(1+éq”+l)

(1+Cq")2

48

(3.2.16)

(3.2.17)

(3.2.18)

(3.2.19)

(3.2.20)

(3.2.21)
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3.2. 1. Hermitian Representations

Now let us discuss the case where A is hermitian.

At=4 (3.2.22)

gives
*
a =a (3.2.23)
b =c (3.2.24)
d" =d. (3.2.25)

For a hermitian representation of the braid group generators, @ and d are themselves
hermitian operators acting on a Hilbert space and have real eigenvalues. Using (3.2.14) we
get

(1-a)(1-d)|n) = (1-4,)(1-4,)

n) = q|n>. (3.2.26)

Since a,, and d,, are real, the parameter ¢ is also real for a hermitian representation. Also we

have

W = (nlc*ln + l) = (n[bln+ 1) = b,H_l(nln) 3.2.27)

(n+1]c|n) = ¢, (n+1[n+1). (3.2.28)

Since the scalar product is well defined in Hilbert space and (nln) = (n + 1|n + l) =1, from
the equality of (3.2.27)-(3.2.28) we can conclude that
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Cn = 0p+1 Cn = Op+l-

Using [a,a*]=0 and [d,d*]=0 together with [a,d]=0 we can take a and d to be

simultaneously diagonal. So the eigenvalues of the operators a,b,c,d become

1 (3.2.29)

decriscr)]

(3.2.30)

_ _ia
Cp=0py1=€7"

(1+Cq")2

Thus we have constructed an infinite dimensional representation of the braid group with
hermitian generators where » is an integer. The right hand side of the equation (3.2.29)
must be positive definite and this condition is satisfied only when C)0 and ¢)0.

Now lets investigate if there is a finite dimensional representation with A hermitian.

Suppose there is a ground state lO) which is annihilated by the lowering operator b and a
top state |N - l) (for N dimensions) which is annihilated by the raising operator b* We have

b|0)=0 (3.2.31)
dN-1)=0 (3.2.32)
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from which it follows that

8 - q(1+¢)(1+Cq?)

=0. 2.
lca T (3.2.33)

Equation (3.2.33) is satisfied only when C = —¢*. With this value of C

_ 1-q v
a, = 1—q”+2 (3.2.34)
n+l
1-
d, = -f’-—(—li) (3.2.35)
l_qn"‘

|ba|” = . (3.2.36)

Let us look if the braid group relations are satisfied with these eigenvalues. Equation
(3.1.11) gives

cfo) =)o)

0=dy-d}.

This is satisfied only when dy =0 or dy =1. From (3.2.35) we obtain d, =—¢g.The q=0
case makes the representation trivial . Also the ¢ = -1 case is forbidden because it violates

the positive definiteness of |b,,| . Hence there are no finite dimensional hermitian

representations.
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In (3.1.51) we considered [Df, D]=0 and promised to show this explicitly for a
hermitian representation. We have

D=da-dad-chb+1-a-d+ad=A;—A}
s ok %k

D'=a"d"-d"a"d*-b"c*+1-a" -d*+d"a"
D'=ad-dad~cb+1-a-d+da=A;-A1=D.

Since D' = D ,(3.1.51) is trivially satisfied.
3. 2. 2, Unitary Representations

Now let us discuss the case where A is unitary

At= 471

at | [aM(1-a)d  -a7"
vt dt || -ate Al(1-d)a|

Using (3.1.46) and (3.1.47) one obtains



Hence

Using (3.1.56) and (3.2.14),(3.2.39) becomes

¢’ =qb or c=q*b*

b*=qc or b=q*c*.

By substituting (3.2.41) into (3.2.42) one obtains

b* — qq*b*

which gives

33

(3.2.37)

(3.2.38)

(3.2.39)

(3.2.40)

(3.2.41)
(3.2.42)

(3.2.43)

(3.2.44)
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First let us try to find an infinite dimensional unitary representation. Note that
(3.2.41),(3.2.43) and (3.2.44) are the unitarity conditions. We follow the same procedure of

the hermitian case,but this time with the unitarity conditions.The operators b = q“lc and b
are the raising and lowering operators respectively. We find that

n-1{;
a, =14 d,,=£fl——il—q2 (3.2.45)
1+Cq" 1+Cq" !
) (1+Cq”'2)(l+Cq”)
by|” = . (3.2.46)

(1+Cq"'1)2

The unitarity condition (3.2.44) imposes cC* =1. But unfortunately the positive

definiteness of (3.2.46) is violated. For some values of » i.e. for some states, ]b,, |2 becomes

negative. So there are no infinite dimensional unitary representations. There may be a
possibility to preserve the positive definiteness by cutting the spectrum where it passes from
the positive to the negative region. In other words, let us investigate if there is a finite
dimensional representation. Let there be a ground state which is annihilated by the lowering
operator and a top state annihilated by the raising operator. For N dimensions we have

poy=0  N-1)=0.
Using the braid group relation we get

ctfo)=(d-*)o

0=dy(1-dp).

This gives us the solutions dy =0 or dj = 1. The d = 0 solution gives ¢ = 1 which makes
every eigenvalue of a and d zero and there is no value of q satisfying dy = 1. The same
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problem arises for the top state. Hence there are no unitary representations satisfying the
braid group relations (3.1.10)-(3.1.16).

For unitary representations we have stated that [D', D]=0 i.e. D is diagonalizable.
Let us explicitly show that this is indeed true. From (3.2.39) and (3.2.40)

-1
%* -1 * -1 & *
=A% B =l o=-%(a). (3.2.47)

It follows that

C 3 A'zlc(A’;)-l.

Since ¢ and A, commute
A=A or A=A (3.2.48)

and for unitary case we have

= J(-a)1-a)] = () (:249)

(D, D] = [AI ~ALA, (4, )*] (3.2.50)

where D=A;-A| =A, - A,. Using (3.2.48) and (3.2.49) we get



D=4 - ()" =p

so D is also unitary and [D ,D] = 0.

56
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3. 3. The Pseudo Braid Algebra Their Representations And Generalized Hydrogen
Spectrum

In the unitary representation of the braid algebra with b the lowering and b = q“lc

the raising operator, we have defects for the ground state and for the top state. For a finite
dimensional representation we should have ‘b&' = 0.This is satisfied only when C = —q2 in

(3.2.46).Using this value of C in (3.2.45) for N dimensional representation we have

catfo)=(d %))

ad_1[eo["|0) = (do -2 o)

The left hand side of the equation must be equal to zero (because & annihilates the ground

state). But we have d_j = and |b0|2 = 0 and the product d_1|b0|2 = -0 should give a

finite value which is just the value of dy — dg . Hence we have a defect (or inconsistency 0 =

finite nonzero value) for the ground state. Similarly for the top state we have

bad N -1)=(a-a? )| N 1)

qanlow '[N -1)=(ay1 -a}_ |V -1)

The left hand side must be equal to zero (because b = q"lc annihilates the top state). But
we have a) = and |bN|2 =0 and the product a’_1|b0|2 =0-0 should give a finite value

which is just the value of ap;_; —ajzv_l. We have also a defect for the top state just like the

defect for the ground state.
To overcome this difficulty (inconsistency) i.e. to avoid .0 = finite value relations
we must avoid ay and d_; in the relations (3.1.10) and (3.1.11).We replace these

relations by (3.1.54) and (3.1.55). Thus
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bac=a-a® is replaced by bc = (1-a)[1-d(1-a)]
cdb=d-d? is replaced by cb=(1-d)[1-a(1-d)]

The relations on the left belong to the braid algebra (BA) while the relations on the right
belong to what we call the "pseudo braid algebra (PBA)". If q,5,c,d satisfy the braid algebra
and a™ (or d") exists then a,b,c,d also satisfy the pseudo braid algebra. If a,b,c,d satisfy

-1 -1
the PBA and [l—d(l—a)] (and [l—a(l—d)] ) exist then a,b,c and d also satisfy the

BA. Except (3.3.1) and (3.3.2) all of the braid algebra relations remain the same in the
pseudo braid algebra, and (3.1.12) is just a consequence of (3.3.1) and (3.3.2).So we have
six relations instead of seven in the case of PBA

be=(1-a)[1-d(1-a)] (33.1)
cb=(1-d)[1-a(1-d)] (33.2)
ab=ba(1-d) (3.3.3)
ca=(1—d)ac (3.3.4)
bd =(1-a)db (3.3.5)
de=cd(1-a). (3.3.6)

If we repeat the procedure in the previous section we find the eigenvalues of the
operators for the finite dimensional unitary representation as

-1f; _
a, = l—qn d. = Cq" (i_l‘I)
1+Cq 1+Cq
) (1+Cq”“2)(l+Cq”)
ba|” = (3.3.7)
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where qq* = 1.The ground state is annihilated by &

cb|0) = (1-d)[1-a(1-d)]o0)

(3.3.8)
Ibol2 =(1—do)[1-ao(1-do)]=0
For lbol2 =0
14Cqg72 =0 ie C=-¢% (3.3.9)
With this value of C we have
_ntl(y
n = 1_1 ;rf]+2 dy ql_ q(nl+1q)
5 (1 qn+2)(l qn)
|Ba|” = 5 (3.3.10)
(l_qn+l)
dap =L do=—¢q

Then the right hand side of (3.3.8) becomes

(l+q)|:l—q—_1‘_—1-(l+q)]=0.

Hence (3.3.2) is satisfied for the ground state. Now we will investigate if (3.3.1) is satisfied
for the top state lN - 1)
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bclN—l)=(1—a)[1—d(1—a)]|N—l).

Since ¢ annihilates the top state
by |” = (1-an_1)[1-dy-1(1-ay_1)]=0 (33.11)
, (l_qN+2)(l_qN)
|| =— >—=0.
(l_qN+1)
This is satisfied when
; 2r
gV =1 g=e N+2, (3.3.12)
Using (3.3.12) we obtain
1
ay-1=-9 dy-1 =g+l

and with these values the right hand side of (3.3.11) becomes

(1+q)|:1—(“1—q)-(l+q)]=0.

Hence (3.3.1) is satisfied for the top state and this completes the construction of the finite

dimensional unitary representation of the pseudo braid algebra with the spectrum (3.3.10)
2z

1-—.—

-1
and q = e "+2 for an N dimensional representation. Since [1 -d (1 - a)] does not exist this
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unitary representation belongs only to the PBA not to the BA. Now let us show that |b,,, |2 is

positive definite. Expressing ¢ in terms of trigonometric functions and after a few
manipulations we obtain

/4

5 Sin? N2
" N+2”

It is obvious that for » =0,1,.....N-1 (3.3.13) is positive definite.
For the hermitian representation of the PBA we have

At=4
a ¢ _fa b
' 4t |c d
a'=a c=b" d=d" (3.3.14)

Again identifying b the lowering operator and c¢ the raising operator and repeating the
procedure of (3.2.1) we find that
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where ¢ is a real parameter. For an infinite dimensional representation where=0,1,2,......

the lowering operator & annihilates the ground state

cb|0) = (1-a)[1-a(1-4)]0).

The left hand side must be equal to zero

) q(l+Cq")(l+Cq"‘2)
lbo|” = = 0.

(1+Cq""l)2

This is satisfied when C = —q2 and by substituting this value we get

__1-g
an l_qn+2
g - -¢"*!(1-q)
n- 1 n+1
-q

The right hand side of (3.3.15) must be equal to zero for consistency, i.e.,

(1—d0)[1—a0(1—d0)]=o.

(3.3.15)

(3.3.16)

(3.3.17)

(3.3.18)
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Using

ay=—— and dy=-¢q

we find that
(1+g)[1-——(1+g) |=0
l+q
so (3.3.15) is satisfied. Since there is no value of ¢ satisfying (3.3.1) for the top state i.e.

be|N -1)=(1-a)[1-d(1-a)| ¥ -1)

we have only infinite dimensional hermitian representations. Since [l—a(l—d)] is not

invertible this hermitian representation belongs only to the PBA not to the BA. If we don't
have a ground state i.e. if n =......,-2,-1,0,1,2,...... then the hermitian representations belong

both to the BA and to the PBA.
Now let us discuss the g — 1 limit. From (3.1.59) we have

A2 =(1-¢)A+q.

This reduces to
A2=1 (3.3.19)

Equation (3.3.19) shows that in the g—1 limit the hermitian and the unitary

representations coincide
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A=A71=4"

We can also see this from the eigenvalues of the operators . In both representations

the eigenvalues reduce to

ay=— (3.3.20)
d, = —n—l—l (3.3.21)

18] = (n+2): i ! S (3.3.22)
n+1 (n+1)

or

b =M=c (3.3.23)
" n+1 "IN o

We can identify (3.3.22) as a hydrogen-like spectrum and interpret the g # 1 case as
a one parameter generalization of the hydrogen spectrum.
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3. 4. OTHER REPRESENTATIONS

Let us investigate other possible representations of the braid algebra. In section 3.1.,
we have shown that

0. (3.4.1)

[5.,(1-a)(1-4)]

Assuming a ! and 57! exist and using the relation (3.1.13) we get

ab=ba(1-d) 642)
(1-d)=a""p"'ab. -
Substituting this value in (3.4.1)
[b,(l—a)a"lb'lab] -0,
This reduces to
[b, (1-a) b“laJ 0. (3.43)
a

In fact this is the only relation to be satisfied. By solving ¢ and d in terms of @ and b
using (3.1.13) and (3.1.10), that is

c= a"lb_la(l - a) 3.44)
d=1-ap7lab (3.4.5)
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and substituting into the braid algebra relations, it can be shown that all of the relations
(3.1.10)-(3.1.16) are satisfied when (3.4.3) is satisfied. Hence different solutions to (3.4.3)
are different representations of the braid algebra. Finite dimensional representations exist for
this case but it can be proven that they cannot be made hermitian or unitary.
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4. CONCLUSION

The use of the g-deformation of Lie groups -quantum groups- may be an
opporfunity to solve the standard problems of field theories by generalizing the symmetry.
Quantum groups, we have discussed only the SUq(2) case, can be used as gauge groups and
we have two possibilities for the gauge field. One of the possibility is to take the gauge field
as an element of the quantum universal enveloping algebra of su(2) while the other
possibility is to take the gauge field as an element of the Lie algebra analog of the gauge
group SUq(2). It would be interesting to find the relation between the superplane defined by
(2.3.44) and the superplane introduced in the Manin formulation of quantum
groups[15].The relation between the exponential mapping (2.3.33) and the exponential
representation found in [16] and [17] still remains as an unsolved problem.

To construct the Lagrangian which is invariant under quantum group gauge
transformations the usual notion of trace has to be modified. The g-trace which is invariant
under quantum group transformations is defined. But the physical meaning of the
noncommuting objects in the Lagrangian has to be clarified and this is another problem for
future works.

~We have defined two closely related associative algebras by considering a 2 x2
matrix whose elements satisfy certain commutation-like relations. If the relations of which
we have called the braid algebra are satisfied then a representation of the n-braid group can
be constructed. Looking for hermitian and unitary representations of the braid algebra in
Hilbert space by identifying raising and lowering operators we have found that the braid
algebra has such representations without a ground or top state. If the existence of a ground
and/or a top state is desired then one has to define a new algebra which we have called "the
pseudo-braid algebra".

The pseudo-braid algebra has two physically interesting representations, one of
which corresponds to the case where the 2 x 2 matrix whose elements generate the algebra
is hermitian. In this case the structure is that of a generalized oscillator with creation and
annihilation operators 5" and b such that the spectrum of b'b is a one parameter
generalization of the hydrogen spectrum. The other interesting representation corresponds
to the case where 2x2 matrix with operator elements is unitary. In this case, the
representations are finite dimensional. The spectrum of 5°b, although finite, is again a

generilization of the hydrogen spectrum since in the limit g = exp(Z i / (N +2)) —>1it
becomes hydrogen-like. In this limit &, the dimension of the representation goes to infinity.
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For the pseudo-braid algebra one can again use the 2 x 2 matrix A with operator
elements to construct "the pseudo-braid group".In this case the braid group relation
0;0;,10; = 0;,10;0; . is only approximately satisfied. Both the braid algebra and the
pseudo-braid algebra have mathematically and physically interesting properties.
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