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ABSTRACT 

Many examples where the resource constrained project scheduling framework is 

applicable for modelling and solving the scheduling problem under consideration can be 

found both in the literature and in practice. Recently, more realistic and accurate resource 

models and objectives have been developed. These models provide better means for 

coping with practical issues faced in real world applications. 

In the resource constrained project scheduling, the heuristics that are existent in the 

literature aim at either minimizing the tardiness or maximizing the Net Present Value 

(NPV). In a project network, the constraints of the resource constrained project 

scheduling problem include precedence constraints representing the technological network 

and resource limitations. The resource constraints used in resource constrained project 

scheduling models have recently become more descriptive of real life situations. It is 

assumed that there is a project due date that is contractual and causes a penalty for each 

tardy period. 

NPV is the exponential or discrete discounting of the cash flows accrued at the 

event occurrence times to the present. Tardiness in a project stands for the total number of 

late periods over the project due date. In real life, it is essential to make money while 

keeping the image of the company at its highest level on customers' eyes. Therefore, in this 

study new heuristics are generated and their performance according to NPV and tardiness 

criteria is statistically compared with that of the heuristics fromthe literature. The trade-off 

between NPV and tardiness is easily illustrated. The new heuristics are named as hybrid 

heuristics, because their priorities are based on the weighted combination of the two 

objectives, namely minimizing tardiness and maximizing NPV. The scheduling algorithm 

used in this study is iterative, making consecutive forwardlbackward scheduling passes. 

The advantages of using the dynamic activity time windows in pushing and pulling event 

times are shown. 
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6ZET 

Kaynak klSlth proJe ~izelgelemesi ~er~evesinde, ~izelgeleme problemini 

modellemeye ve ~ozmeye uygun hem literatiirde hem de pratikte bir~ok ornek 

bulunmaktadlr. Ozellikle son zamanlarda daha ger~ek~i kaynak modelleri ve ama~ 

fonksiyonlarl geli§tirilmi§tir. 

Kaynak klSlth proje ~izelgelemede, literatiirde varolan sezgisel yontemler ya 

gecikmeyi enazlamaYl ya da Net ~imdiki Degeri (N~D) en~oklamaYl am~larru§lardlr. 

Bir proje seriminde, kaynak kiSlth proje ~izelgeleme probleminin kisltlan, teknolojik 

serimi temsil eden oncelik klsltlanm ve kaynak kisltlanm ihtiva etmektedir. Bu modelde 

kontrata bagh olabilen bir proje termini ve her ge~ kalman zaman i~in bir ceza 

ongoriilmektedir. 

N$D olaylann meydana ge1i§ zamanlarmda olu§an nakit akl§lanmn iissel veya 

kesitli bir bi~imde §imdiki zamana indirgenmi§ halidir. Projedeki gecikme ise proje 

termininin iistiine toplam ge~ kalman zaman saYlsml gostermektedir. Ger~ek ya§amda, 

§irketin mii§teri goziindeki durumunu mii§teri memnuniyetini proje terminine uyarak 

saglamak ve para kazanmak esashr. Bu yiizden bu ~all§mada bu iki amaCl da gozoniine 

alan yeni sezgisel yontemler onerilmi§ ve N~D ve gecikme kriterlerine gore bunlann 

performanslan, literatiirdeki sezgisel yontemlerin performanslanyla istatiksel bir 

bi~imde kar§lla§t1nIIlli§t1r. Bu sayede, N~D ve gecikme arasmdaki odiinle§im kolayca 

gosterilmektedir. Yeni geli§tirilen sezgisel yontemler melez olarak adlandmIIlli§t1r; 

~iinkii oncelikler, gecikmeyi enazlamaYl ve Net ~imdiki Degeri en~oklamaYl ama~layan 

iki ama~ fonksiyonunun aglrllkll bile§irnine bagh kilmml§hr. Bu ~ah§mada kullanllan 

~izelgeleme algoritmasl, ardl§lk ilerilgeri ~izelgeleme ge~i§leri yapan iteratif bir 

algoritmadlr. Olay zamanlanm ileri iterek ve one ~ekerek faaliyet zaman arallklarl 

kullanmanm avantajlarl da gosterilmi§tir. 
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1. INTRODUCTION 

A project is a coordinated set of activities consuming resources which are 

generally limited in quantity. Since resources -have costs, a project requires 

reimbursements during its progress. Reimbursements may be contractually bound to the 

occurrence of certain events. Consequently, an event .which does not lead to a 

reimbursement has a cash outflow associated to the activities which are going to start 

once it occurs. Hence, when all activities leading to an event are completed, a cash 

inflow or outflow possibly exists according to the event's nature. In their efforts to 

maximize the net return on investments, project managers are faced with the difficult 

problem of timing the cash flows that take place at event occurrence times which ar,e in 

turn dependent on how resources are allocated among activities. Furthermore, there 

might be a project due date by which the project must be completed. In case the due 

date is violated, management could be penalized for each tardy period. 

Project Management is less difficult if only precedence relationships constrain 

the activity schedule. PERT (Program Evaluation and Review Technique) and CPM 

, (Critical Path Method) techniques, which require polynomial time computations, readily 

provide allowable time windows for scheduling the activities. The objective is to 

complete the, project by the minimal possible time permitted by the precedence 

relationships. However, in practice aCtivities do not get completed on their own; rather, 

they consume resources during their progress. The scheduling problem becomes 

difficult to solve when the required resources are available in limited amounts, because 

the issue of allocating scarce resources among competing activities must be considered 

in optimizing a specific objective. This problem is known as the resource constrained 

project scheduling problem and is NP-hard [4]. Coping with this problem is a 

theoretical challenge and an important contribution for practitioners. 

The resource constrained project scheduling problem does not represent an 

isolated area of research. On the c~ntrary, it subsumes a wide area of scheduling 

problems.The constraints of the resource constrained project scheduling problem 

include precedence constraints representing the technological network and resource 

limitations. The resource constraints used in resource constrained project scheduling 

models have recently become more descriptive of real life situations. They are classified 

under the following categories: renewable, nonrenewable, and doubly constrained. 

Renewable resources are constrained on a period-by-period basis [see, for example, 26]. 

Labor can be considered as a renewable resource if it is used every day and limited on a 

daily basis. Nonrenewable resources are constrained on a project basis [29,30].The 
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project budget or raw materials become nonrenewable resources if the total 

consumption over the whole project duration is limited to a certain value. Finally, 

doubly constrained resources are simultaneously constrained on a period and project 

basis. If, for example, the cash consumed is limited on a daily basis and also for the 

overall project, then it is a doubly constrained resource. Resource constraints complicate' 

the representation of the problem, and the more accurately they describe the actual 

problem, the more difficult they become to handle. 

In this study, we develop heuristic rules for dealing with the resource allocation 

problem where the project has a due date and resources are renewable. They have both 

tardiness and Net Present Value (NPV) considerations for enhancing both objectives. 

Furthermore, we apply' the heuristic rules in an iterative scheduling algorithm which 

realizes consecutive forwardlbackward scheduling passes. A feature of the iterative 

algorithm is that its mechanics are based on. the concept of dynamic time windows. 

Dynamic time windows are generated by the use of information pertaining to the 

schedule obtained in the previous iteration. This feature is well manipulated by the 

heuristic rules which use this information as well as NPV' related information. We 

compare our heuristic rules with tardiness a~d NPV related rules from the literature 

(Dumond and Mabert [15], Ulusoy 'and Ozdamar [36], Russell [29], Baroum and 

Patterson [2], Padman and Smith-Daniels [24]). 
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2. LITERATURE SURVEY 

In the project scheduling literature the objective of minimizing the makespan is 

dealt with more frequently than the objective of maximizing the project's Net Present 

Value (NPV) (to cite a few project-duration oriented references see, e.g., Alvarez

Valdes and Tamarit [1], Bell and Park [3], Boctor [6, 7], 'Christofides et al. [8], Davis 

and Patterson [11], Pritsker et al. [27], Demeulemeester and Herroelen [12], Li and 

Willis [20], Stinson et al. [34], Ulusoy and Ozdamar [36, 37]). However, a project with 

an optimal duration is not necessarily the most economically beneficial. Often, time

based objectives conflict with cost-based objectives such as maximizing a project's Net 

Present Value (NPV). The maximization of the project NPV is a more suitable objective 

function since a project is practically undertaken for making money. Unfortunately, 

fewer researchers deal with money-oriented objectives (Baroum and Patterson [2], 

Doersch and Patterson [13], Elmaghraby and Herroelen [16], Russell [28], Russell [29], 

Smith-Daniels and Aquilano [32], Padman and Smith-Daniels [24], Speranza and 

Vercellis [33], Yang et al. [39]). 

Among the few references cited for money-oriented objectives above, 

Elmaghraby and Herroelen [16] and Russel [28] deal with the problem disregarding the 

resource constraints and considering only the precedence constraints among activities. 

Doersch and Patterson [11] treat cash as the single limited resource in their model 

constrained as a nonrenewable resource. In the other references, all models include 

renewable resource constraints with the exception of Speranza and Vercellis [33] which 

include nonrenewable resource constraints· as well in their hierarchical multiple 

objective structure. The authors who omit the resource constraints demonstrate that 

finding the optimal NPV subject to precedence constraints is not difficult. 

However, when resource consumption is limited, the project scheduling problem 

is shown to be NP-hard [4] for the objective function of minimizing makespan. Recent 

models including nonrenewable resource constraints and discrete time-resource 

functions for representing the activities are proposed by Weglarz et al. [38], Slowinski 

[30,31], Talbot [35] and Patterson et al. [26]. Experimentation indicates that finding the 

optimal project NPV is more difficult than finding the optimal makespan ([Patterson et 

at. [26], Yang et al. [39]). The reason of this complexity is the intertwined relationship 

existing between resource bottlenecks and the NPV criterion. For example, suppose that 

an activity)eading to a negative cash flow is scheduled on its late start time as suggested 

by Elinaghraby and Herroelen [16]. Due to resource limitations, this activity may 
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impede the start of another activity leading to a large positive cash flow, resulting in a 

lower NPV. Hence, the optimal NPV can be discovered by examining every possible 

activity start time.This leads to an explosion of feasible solutions. (Patterson et al. [26]). 

Another problem that the project manager is faced with is the project's 

contractual due date. Due date related objective functions are discussed in the literature 

[17, 18, 19, 30]. Some authors (Bock and Patterson [5], Dumond [14] , Dumond and 

Mabert [15]) aim at assigning due dates to each project in a dynamic environment where 

projects arrive randomly over time. A general situatio!l found in practice is the necessity 

of completing the project by its due date while maximizing its NPV. In recent 

references (Talbot [35], Patterson et al. [26]), NPV is maximized while a due date exists 

as a hard constraint. Multiple objective approaches where efficient solutions with 

respect to time- and cost-based objectives are generated also appear in the literature 

(Daniels [9], Slowinski [30,31], Speranza and Vercellis [33]). 

The overview of the related studies according to the chosen objective are as 

follows: 

2.1. The Objective of Maximizing Net Present Value 

Having thoroughly exploited the objective of minimizing makespan, researchers 

realized that in practice a project cannot be isolated from cost considerations. Neither 

can a feasibility study prior to the launching of the project be carried out without 

considering the scheduling of activities. Since the costs incurred during the project 

depend on the actual progress of the scheduled activities and since the schedule itself is 

closely related to resource constraints other than cash, researchers have included the 

consideration of cash flows explicitly in resource-constrained project· scheduling 

formulations. 
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2.1.1. Models with Precedence Constraints only 

The pioneering work about the maximization of NPV is performed by Russell 

[27]. However, resource constraints are ignored. The nonlinear formulation model of 

Russell with the precedence constraints models is approx~mated by an LP whose dual 

results in a transshipment model where the nonlinear objective function is linearized 

using Taylor's series. This model will be explained ·in detail in "Theoretical Basis of 

NPV Related Heuristics" part of the thesis. In this model, the flows on the arcs provide 

updated occurrences of events which are used to provide an improved LP 

approximation. This process is repeated until successive occurring times are identical. 

Elmaghraby and Herroelen [16] state that the activities with positive net cash 

flows should be scheduled as early as possible and the ones with negative cash flows as 

late as possible. The authors provide a simple procedure which is based on this property 

of the optimal solution for maximizing NPV, with only precedence constraints 

considered. The authors conclude that the earliest completion time schedule is not 

necessarily the optimal one when the time value of money is considered. They point out 

that while trying to optimize NPV, activities with negative cash flows might be delayed 

indefinitely, unless a project due date or large positive cash flows exists at the final 

phases of the project. 

2.1.2. Models with Renewable Resource Constraints 

Under the presence of resource constraints, maximizing NPV is not an simple 

task. A complex relationship exists between resource bottlenecks and the NPV criterion. 

For example, an activity with a negative cash flow may be scheduled on its late start 

time. Due to resource limitations, this activity may impede the start of another activity 

with a large positive cash flow; resulting in a lower NPV. Hence, for finding the optimal 

solution every possible start time for the activities must be taken into account, leading 

to a very detailed examination of feasible solutions. 

Yang et al. [38] propose an integer programming approach which is an extension 

of the implicit enumeration procedure. The authors solve 10 problems with at most 21 

activities under two cash flow models: one where each activity has a positive terminal 

value and one where terminal values are free to be positive or negatiye. There is also a 
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bonus at the completion of the project, and a project due date is incorporated into the 

model. The authors note that as the project due date moves away from the optimal 

makespan, solutio!1 times explode exponentially. The model with general terminal 

values is more difficult to solve compared to the model with only positive terminal 

values. The computational experience reported in this paper does not encourage 

researchers to pursue 'optimization approaches for the NPV criterion. 

Russell [28] approaches this problem heuristically 'through optimization guided 

dispatching rules which take input from the unconstrained (no resource constraints) 

problem solutions provided by the procedure in [27]. He has hypothesized that the 

heuristic rules utilizing information from the unconstrained cash flow analysis would be 

more effective than the heuristic rules whose objective was to minimize project 

makespan. Superior performance in this analysis means that a higher net present value 

of the project would be achieved subject to precedence relationships, cash flows and 

reource constraints.He tested this hypothesis using analysis of variance to test for 

equality of means in the heuristics' performance on test problems. General cash flows 

are assigned to events in an activity-on-arc representation of the project. The 

unconstrained solution represents an upper bound for this problem, and the optimal 

transshipment flows on arcs approximate the marginal costs of delaying the activities. 

Dispatching rules which are based on these marginal costs are compared with those 

designed for the makespan criterion, and the results demonstrate that in small problems 

(21-26 activities) no distinction can be made among makespan- and NPV-oriented 

dispatching rules with respect to an NPV objective. Furthermore, in larger problems 

where the resource constraints are not very tight, the makespan-oriented rule, 

MINSLACK, outperforms NPV -oriented rules. 

Padman and Smith-Daniels [46] use the cash flow model described in [28] and 

apply optimization guided heuristics in a scheduling algorithm where at every 

scheduling decision time, the project with the resource constraints ignored is 

reoptimized by fixing the start times of completed and in progress activities. The 

authors investigated whether the NPV of project cash flows may be improved by 

releasing an activity to the queue of schedulable activities as soon as its precedence 

constraints are satisfied. Target release rules are also proposed. Immediate release rules 

imply that an activity becomes schedulable as soon as its predecessors ar completed. 

However, in a target release rule an activity does not become schedulable until its 

optimal starting time recommended ,by the unconstrained solution. These rules aim at 

minimizing earliness and tardiness with respect to the target dates. Their hypothesis was 

that the early release of activities to the sc~edule queue may not only result in an 

improved NPV, but also reduce potential bottlenecks induced by resource conflicts. 
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Therefore, increasing the range of scheduling alternatives by allowing all activities to 

join immediately the queue of schedulable activities may be preferred once they are 

precedence feasible.The heuristics they provide require the evaluation of earliness costs 

and tardiness penalties for each activity that are given by the relaxed optimization 

model. The earliness cost of an activity is the sum of the dual prices of its successors, 

whereas the tardiness cost is the sum of the dual prices of its predecessors. The authors 

compare their rules to the cash flow weight approach used,by Baroum and Patterson[2] 

and the non-updated optimization-guided rules given in [28]. An experiment which 

covers a large number of problems with 48 and 110 activities demonstrates that the 

target release rules imbedded in the reoptimization algorithm are superior. 

Smith-Daniels and Aquilano [62] consider a model where cash outflows occur at 

the ~ beginning of each activity and a lump sum is received at the completion of the 

project. The authors propose a heuristic backward scheduling algorithm which obtains 

comparatively higher NPV values than the ones obtained by the earliest start forward 

scheduling algorithm due to the res_ulting right-shifted schedule. The backward 

algorithm treats the project duration provided by the earliest start schedule as the project 

due date and applies a late start scheduling procedure starting from this due date. 

2.1.3. Models with Nonrenewable Resource Constraints 

The simplest model representing nonrenewable resources is proposed by 

Doersch and Patterson [13]. In this model, the activity related inflows and outflows, 

which occur at discrete times during the progress' of an activity, are adde'd and 

subtracted respectively from the corresponding daily cash limit. The cash not utilized at 

the end of a day is carried on to the next day. The activities must be scheduled in such a 

manner that the daily net cash flow is not negative, Thus, cash is treated as the only 

nonrenewable resource. Renewable resource constraints are not considered in the 

model. The constraints also include precedence and activity completion constraints. The 

objective consists of maximizing NPV of the cash inflows and outflows as they occur 

during the progress of activities, and also the NPV of a penalty (reward) realized by the 

project depending on its lateness (earliness). Problems of less than 30 activities are 

reported to be solved to optimality using this formulation. 
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Intensive research has been conducted considering"the objective of minimizing 

makespan subject to renewable resource constraints. More recent contributions are 

discussed here after a brief summary. 

The zero-one integer programming formulation given by Pritsker et al. [27] 

applies to both single and multi-project problems under renewable resource constraints. 

This formulation has initiated studies [35] where improvements in the solution of the 

zero-one integer program are introduced. The formulation is also the backbone of more 

recent representations of the project scheduling problem [26] involving nonrenewable 

resources. However, in spite of the efforts to facilitate the solution of the integer 

program, the associated computational experience involves only small problems of at 

most 27 activities and 3 resource types. 

There is an approach based on line balancing techniques where each activity is 

represented by a number of unit duration tasks equivalent to its duration. The resulting 

network is transformed into a shortest path network. This procedure, together with those 

due to Stinson et al. [34] and Talbot and Patterson [35], is evaluated by Patterson [25] 

with respect to computer storage, solution time and the number of problems solved 

optimally within a reasonable computation time. 

The abundance of zero-one variables and the large number of constraints have led 

researchers to develop branch and bound procedures for the resource constrained project 

scheduling problem [8, 34]. The computational success of a branch and bound 

algorithm depends on its branching technique and the strength of its lower bound. Three 

recent contributions in this area [3, 8, 12] involve problem-specific branching 

techniques which are based on the resolution of resource conflicts. In other words, in 

these procedures, branching occurs only when a resource conflict is encountered. This 

seems to be the main explanation for their computational advantage over the standard 

branch and bound approach given by Stinson et al. [34]. It is shown that the procedure 

given by Christofides et al.[lO] does not always produce the optimal solution. Hence, 

Demeulemeester and Herroelen [12] modify this algorithm to 'guarantee that it results in 

an" optimal solution, employing a depth-first search in contrast to the breadth-first search 

used by Bell and Park [3]. The branching scheme in [12] consists of delaying some 
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activities in progress in order to resolve resource conflicts which occur at a certain time 

point. A delay set consists of a group of activities in progress which, had they not been 

scheduled previously, release sufficient resources for the conflicting activity to be 

scheduled at the current time point. A minimal delay set is a set of activities no proper 

subset of which is a delay set. Each branch in the solution tree is represented by a 

minimal delay set. However, Bell and Park [3] represent a level of the tree by a minimal 

conflict set which is defined as a set of conflicting activities which are no longer in 

conflict if any element of the set is dropped. At each level, an element of this set 

represents a branch. This element is forced to be tht? successor of the earliest finishing 

activity among the remaining members of the same conflict set. Bell and Park [3] solve 

110 standard test problems and report the number of generated and pruned nodes and 

CPU time. The same set of problems are solved by Demeulemeester and Herroelen [12], 

but only average CPU times are reported and they are not comparable with the results 

found in [3] due to differences in operating systems, coding and computer power. 

Christofides et al. [8] and Alvarez-Valdes and Tamarit [1] report results on some test 

problems, 40 with 25 activities and 3 resource types [8] and 38 with 51 and 103 

activities with 6 resource types [1]. Ozdamar and Ulusoy [22] experiment with both sets 

of problems: Patterson's 110 problems arid the 78 problems provided in [8] and [1]. 

Ozdamar and Ulusoy exercise a pruning heuristic using the branching scheme found in 

[3] with a depth-first search. The heuristic results in an average deviation of about 2 per 

cent from the optimum in both sets of problems.In the experimentation, it is observed 

that although the tree is pruned in a heuristic manner and the lower bound calculations 

are based on future resource conflicts and result in early pruning, the number of 

generated nodes is comparatively larger than those reported in [8] for problems with 

tight resource constraints. However, for the loosely constrained problems in [8] and for 

all of the 110 problems, the heuristic reduces the size of the tree drastically as compared 

to [8] and [3] respectively. Thus, the authors justify the conclusion that the branching 

scheme found in [3] is suitable for loose-moderate tightness of resource constraints, 

whereas the one found in [12] is specifically powerful in tightly constrained problems. 

The effective lower bounds, dominance rules and branching techniques applied 

in the branch and bound procedures are observed to be insufficient for problems of 

practical size, however efficient they are. 

The need to solve problems of practical size has motivated researchers to 

. develop effective heuristics. This line of research was conducted by [1, 6, 68]. 

Heuristics are classified into two types [11]: serial heuristics, where activity priority is 

predetermined and remains fixed throughout the scheduling procedure, and parallel 

heuristics, where activity priority is updated each time an activity is scheduled. The 
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network/resource characteristics of problems are analyzed to find out the conditions 

under which specific dispatching rules perform well consistently. Efforts are made to 

identify problem characteristics and their effect on dispatching rules [36]. The 

comparative performance of dispatching rules with respect to.each other and to optimal 

results are evaluated [1, 6, 11]. The results show ~that although there are generally 

accepted good dispatching rules, their performance is problem dependent and they do 

not provide good solutions consistently. A strategy for using heuristics is given by 

Boctor [6] who proposes to run the problem each time with another well-reputed 

heuristic rule and keep the best solution obtained. BO'?tor also provides probabilities for 

obtaining optimal results for specific rule combinations. 

. Recent emphasis has been placed on developing heuristic procedures where 

problem dependency is eliminated. The common feature of these algorithms (Ulusoy 

and Ozdamar [37]) is that they all consider resource and/or temporal conflicts among 

activities as the basic idea and progress in their scheduling procedures by resolving the 

conflicts through varying methods. For example, arbitrary disjunctive precedence arcs 

on conflicting activities are imposed to eliminate resource conflicts among concurrent 

activities in their single pass algorithm. Due to poor solution quality, a backtracking 

algorithm, which evaluates the effect of each added disjunctive arc on the makespan, is 

applied to the initial schedule. The backtracking algorithm is truncated when an 

improved solution cannot be found. Similar reasoning is used in the exact algorithm 

proposed by Bell and Park [3]. In an approach which does not require backtracking, 

precedence relationships are imposed on pairs and groups of conflicting activities in an 

effort to minimize the project duration. The result is a set of partial sequences feasible 

with respect to the imposed precedence constraints. They call their algorithm 

"Constraint Based Analysis" since the precedence setting rules are based directly on the 

temporal and resource constraints and are essential for minimizing makespan. Similar 

reasoning is utilized by Ulusoy and Ozdamar [37] in their rule based algorithm which is 

called "Local Constraint Based Analysis". The difference in the two algorithms is that 

the former algorithm is applied on the whole project whereas Ulusoyand Ozdamar [37] 

apply theirs on small segments of the project. The first approach requires a decision aid 

module to complete the set of feasible partial schedules, and is not time efficient since it 

has to reevaluate conflicts over all the activities of the project each time a precedence 

relationship is established. The second approach evaluates resource conflicts once and 

locally where a small number of schedulable activities are considered in a parallel 

scheduling algorithm. Consequently, it is time efficient and applicable to dynamic 

environments. The performance of such algorithms is less problem dependent than that 

of dispatchi~g rules since they are not based on a priori insight but rather depend on the 

current temporal and resource constraints. The results of conflict based approaches are 
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reported by Ulusoy and Ozdamar [37]. The results show that on average, the project 

durations obtained by the procedure due to Bell and Han [4] is 2.44 per cent above the 

optimal solution, using the 110 test problems provided by Patterson[25]. Local 

Constraint Based Analysis, empowered by an iterative forwardlbackward scheduling 

algorithm, results in an average deviation of 1.14 per cent from the optimum on the 

same set of problems .. 

2.2.2. Nonrenewable Resource Constraints 

A model where activities are represented by a discrete time-resource function is 

proposed by Slowinski [30] where time-based objectives, such as maximum lateness, or 

cost- based objectives, such as processing costs and total consumption of nonrenewable 

resources, are considered. However, the cost-based objectives do not take the time value 

of money into account, but consist of the minimization of total costs. The scheduling 

approach is preemptive and based on an LP formulation of the problem. 

Talbot [35] and Patterson et al. [26] also propose models where activities have 

mUltiple modes. Scheduling is nonpreemptive. Talbot [35] considers the objective of 

minimizing makespan under the presence of a given budget and minimizing total 

nonrenewable resource consumption under the presence of a project due date. A zero

one integer formulation of the doubly-constrained problem with a discrete time function 

for describing activities is also given. The problem is solved to optimality by initially 

ordering activities using a good dispatching rule and applying an enumeration algorithm 

with backtracking. If a feasible solution is found to be acceptable, then the procedure 

can be stopped without reaching the optimal solution. This feature is due to the fact that 

instead of evaluating lower bounds for each possible partial schedule, the algorithm 

starts with the late finish times of the incumbent best schedule as upper bounds for each 

individual activity. An iteration of the algorithm finds an improved schedule with 

activity late finish times one unit less than the best incumbent schedule. Thus, each 

iteration is started with a complete feasible solution w~ich can be accepted as 

satisfactory. It is reported that if there exists a good starting solution, the procedure 

quickly finds improved feasible solutions. Computational experience covers 10-activity 

problems with up to three different modes per activity. Although 20- and 3D-activity 

problems cannot always be solved to optimality good approximate solutions are 

obtained. within a short time. This formulation and solution procedure are extended [26] 

to include predetermined cash inflows and outflows taking place during the progress of 

an activity and a gelayed cash flow after its completion. The delayed cash flow provides 

funds for realizing the remaining activities. Consequently, special care must be taken in 
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deciding on the activity modes to be selected to avoid a premature stoppage of the 

project. In these papers, the objectives of maximizing NPV or minimizing makespan 

under renewable and nonrenewable resource constraints are considered. When 

maximizing NPV a project due date is imposed to prevent the indefinite delay of 

activities. The objective of maximizing NPV is harder to handle because a search is 

made by right shifting the resource feasible starting time of each activity with a negative 

net cash flow to its latest possible resource feasible starting time. It is reported that no 

problem could be solved to optimality within a reasonable computation time. For the 

case of minimizing makespan, the size of problems s.olvable to optimality is small (10-

30 activities). The computational results show the impact of a good starting solution in 

finding the optimal solution. Although it is noted that good feasi~le solutions are 

obtained early in the procedure, the quality of these early solutions are not reported. 

A heuristic approach to the above problem is given by Ozdamar and Ulusoy 

[21]. This approach is an extension of LeBA [37] discussed previously. It consists of 

evaluating the activities and their modes .locally, that is, at every scheduling point in a 

single pass parallel forward scheduling algorithm. Activities which are conflicting with 

respect to available resources are evaluated by certain conditional decision rules which 

prevent an unnecessary extension of the current project duration. The conditional 

decision rules discard some of the activity modes from consideration, because 

scheduling them at that point in time will lead to a longer project duration extension as 

compared to the rest. Resulting from this evaluation is the choice of the combination of 

activity modes which extends the makespan least. Activities in this combination which 

have not been discarded by the decision rules are scheduled at that time. The procedure 

compares favorably with well reputed dispatching rules adapted from the single-mode 

case to this problem. The dispatching rules are adapted to the multiple-mode case in the 

following manner: schedulable activities are listed according to their priorities and the 

operating modes of each activity are sorted in order of ascending duration. Then, 

starting from the top of the activity list, activities are scheduled in the first mode on 

their mode lists, which is resource-feasible with regard to the remaining renewable and 

nonrenewable resources. In a stu~y made independently, Boctor [9] reports that the 

mode-selection rule used in [21] is the best performing rule among others for 

minimizing project duration. 

A heuristic approach to the project scheduling problem with nonrenewable 

resource constraints, where an activity is represented by a single operating mode, is 

given by Li and Willis [20]. In their formulation, variable resource requirements exist 

during an activity's duration, and the availability of nonrenewable resources is renewed 

at fixed periods over time. An iterative forwardlbackward type of scheduling is carried 
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out where activity start times in the forward schedule are utilized in the construction of 

the backward schedule. Similarly, the information provided by the backward schedule is 

used in constructing the forward schedule. The iterations stop when no further 

improvement is obtained in the project duration. Henc~, the project duration is squeezed 

while starting the activities as late as possible. The basic idea behind the procedure is to 

obtain a schedule as short as possible while implicitly considering the minimization of 

the net present value of financing costs. Hence, the tw.o objectives of minimizing 

makespan and the net present value of costs are naturally merged into a single objective. 

The authors compare their heuristic procedure with dispatching rules, used in a forward 

scheduling algorithm, on five sets of 18 problems, each representing different types of 

resources (renewable with constant resource limits, renewable with resource constraints 

varying over time, nonrenewable, doubly-constrained, doubly-constrained with varying 

renewable resource limits) and find it to be promising. Since optimal results are 

available only for the set of problems with renewable resource constraints with resource 

limits constant over time, the authors compare their procedure with the optimal 

solutions for this set of problems and report an average deviation of 5.17 per cent from. 

optimum. 
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3. THEORETICAL BACKGROUND 

3.1. The Model 

In our model, there exist cash inflows or outflows, Fi, taking place at event 

occurrence times, Ti. We assume an activity-on-arc rep,resentation. Activities have 

duration dij, and renewable resource requirements, rjik, where ij is the activity index 

and k is the resource index. The resource limit is denoted by Rk. There is also a project 

due date, DD, which, when violated, causes a penalty, p, accrued each period that the 

project is tardy. The penalty is taken as a percentage of the last cash inflow which 

occurs at the completion time of the project. The objective is to maximize the NPV of 

cash flows including the effect of the due date penalty. However, the minimization of 

tardiness is also measured, since it is usually not possible to reflect the loss of customer 

good will in terms of a monetary penalty. 

3.2. Theoretical Basis of NPV Related Heuristics 

The objective of maximizing NPV is considered in the pioneering work of 

Russell [28] where resource constraints are ignored. Russell's nonlinear formulation 

considers only the precedence constraints among activities and is approximated by an 

LP through Taylor's expansion where known and feasible event occurrence times are 

substituted. The dual of the LP model is a transshipment model. In the dual model, the 

dual prices (flows) on the arcs indicate the marginal cost of delaying an activity beyond 

its unconstrained (resource constraints omitted) optimal completion time. By 

complementary slackness, an activity with a positive dual price has a zero total slack 

time. Hence, the flows imply the optimal occurrence times of the events which are then 

used to provide an improved LP approximation in the next iteration. The process of 

solving the transhipment model with updated event times is repeated until successive 

event occurrence times are identical and the optimal solution is at hand. 

The mathematical formulation of Russell can be described as follows: 

Suppose there are m activites (arcs), with durations dk (k=1, ... ,m) and n events 

(nodes), occuring at times Ti with associated net cash flows Fi (i=1, ... ,n). The preceding 

and succeeding nodes of .activity k are denoted by i(k) and j(k). The initial event is 

numbered 1 and the terminal eventn. All times are referred to the initial event as the 
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datum so that Tl=O. Given a discount rate a, the unconstrained cash flow problem can 

be formulated as: 

n 
maximize L Fi exp (-aTi) 

i=1 

subject to Tj(k) - Ti(k) ~ dk, , k = 1, ... ,m (3.1) 

This is a nonlinear programming problem. The objective function of the above 

problem can be linearized by the approximation using Taylor's series. A current 

nonoptimum but feasible solution T' is assumed. T' is a vector of event times T', which 

satisfies the duration constraints but does not neceesarily optimize the objective 

function. It is assumed that the optimal event times Ti are sufficiently near to the current 

value T'i that the approximation in taking only the first, linear terms in the Taylor 

expansion of the present value is valid. Thus 

Li Fi exp(-aTi) = Li Fi exp(-aT'i) -Li (Ti - T'i) Fi a exp(-aT'i) + ... 

= Li F'i + Li T'i a F'i - Li Ti a F'i where F'i = Fi exp( -aT'i) (3.2) 

Therefore instead of maximizing the original nonlinear objective Li Fi exp(-a 

Ti), the appoximate procedure is to maximize the linear objective -Li Ti ex. F'i. The 

coefficient of Ti in this approximation is the negative of the discount rate times the cash 

flow at event i discounted to the initial event from its current scheduled time T'i. 

The approximate linear programming (primal) problem can be rewritten as 

n 
maximize - L ex. F'i Ti 

i=2 

subject to A T ~ -d 
Tm-Tl~DD (3.3) 
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where F'i = Fi exp (-aT'O, T is the vector of event times (Ti), d the vector of event 

durations (dk), A is the node-arc incidence matrix with zeroes throughout the kth row 

except for a 1 in the i(k)th column and -1 in the j(k)th row (k=l, ... ,m) and PD is the 

project due date. For purposes of formulating the dual one is free to assume that the Ti'S 

are constrained to. be ~ 0 or not as one chooses. (Since T 1 =0), the precedence 

relationships will themselves ensure that the Ti's are ~ 0.) It will be assumed that the 

Ti's are not constrained in sign. the dual problem then becomes 

n 
minimize - :E dk fk -fn+ 1 DD 

k=1 

subject to A' f= -aF' 

fk~O, k= 1, ... ,m (3.4) 

where A', the transpose of A, is the arc-node incidence matrix with all entries in the ith 

row zero except for a 1 in columns corresponding to activities which proceeded from 

th~ ith node and -1 in columns corresponding to activities directed in the jth node. It 

should be noticed that the dual problem has the form of a transshipment problem. fn+ 1 

is the dual variable representing the due date constraint. As realized, the dual of the 

problem is a minimum cost network problem. The right hand sides of the constraints of 

the dual problem involve the event occurence times. In Russell's optimization 

procedure, event occurence times are initially set to their earliest start times given by 

CPM. The dual is resolved and through the Complementary Slackness Theorem, new 

event times are obtained. After adjusting the right hand sides accordingly, the problem 

is reoptimized until the right hand sides in consecutive iterations are equal. 

The unconstrained optimal solution provided by Russell's procedure [28] is used 

by Russell [29] and Padman and Smith-Daniels [24] in developing heuristic rules for 

dealing with the resource constrained problem. The heuristic approach is based on 

generating optimization guided dispatching rules which take the optimal flows on the 

activities and event occurrence times from the unconstrained problem solution provided 

by the Russell's procedure. The unconstrained solution represents an upper bound for 

the resource constrained problem. Russell [29] solves the unconstrained optimization 

problem once whereas Padman and Smith-Daniels [24] reoptimize the problem at every 

scheduling decision time by reflecting the start times of completed and in progress 

activities to the constraints. Padman and Smith-Daniels [24] define earliness and 

tardiness costs for activities and base their their rules on these concepts. The authors 
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compare their immediate release and target release rules with those of Russell's [29] and 

Baroum and Patterson's [2] which use the unconstrained solution once. Padman and 

Smith-Daniels note that Russell's best perfonning rule (TSILAN) is superior when the 

resource constraints are not tight. Among the 16 heuristic rules collected form -the 

literature (Baroum and Patterson [2], Russell [29]; Padman et al. [23], Padman and 

Smith-Daniels [24]); Eight heuristic rules are selected as the best performing under 

different resource tightness levels. Two of these heuristics are target release rules. An 

interesting result is that the familiar makespan-oriented MINSLACK rule is also present 

among the best eight rules. This result is also valid in the results reported by Russell 

[29]. 

The optimization-guided scheduling algorithm of Padman and Smith-Daniels 

[24] is explained in detail as follows: 

Step 1: Solve the unconstrained NPV project scheduling problem using the 

minimum cost network flow approach. ' 

Step 2: Schedule eligible activities (all activities that are precedence feasible) 

using a heuristic priority rule until available resources are exhausted or the resource 

requirements of the remaining activities exceed the quantity that is available. To derive 

the fair cost of delaying activities in a partially completed schedule, events associated 

with complete activities are tied to the initial node. If all activities have been scheduled, 

stop. 

Step 3: Delay the start times of eligible activities that were not scheduled to the 

next possible time at which resources become available. Add new precedence feasible 

activities to the queue of eligible activities. 

Step 4: Reoptimize the NPV network flow problem with the modified event 

times and durations from Step 3 and proceed to Step 2. 

The updated unconstrained problem is solved using the dual simplex algorithm 

developed for the minimum cost network flow. 

3.3. The Iterative Scheduling Algorithm 

The heuristic rules, which enhance both tardiness and NPV criteria, are 

supported by an iterative scheduling algorithm applying consecutive forward and 

backward scheduling passes. The advantages of backward scheduling are reported by 

Smith-Daniels and Aquilano [32] for the criterion of maximizing NPV, and Li and 
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Willis [20], Ozdamar and Ulusoy [21] demonstrate its benefits when the criterion of 

minimizing makespan is considered. Backward scheduling tends to pull activities to the 

right towards their late start times and disposes of the resource bottlenecks occurring at 

the beginning phases of the project. Consecutive forward I backward scheduling 

iterations lead to a smoother resource profile and hence to a smaller makespan. In the' 

presence of a project due date, the backward iteration attempts at a JIT schedule. In 

maximizing NPV, the consecutive iterations have the effect of right- and left- shifting 

the events along with their respective cash flows. NPV ·related heuristic rules when 

combined with tardiness I makespan related .rules t:TIake good use of the advantages 

provided by dynamic activity time windows in pushing and pulling event times 

according to their corresponding cash flows. 

Our iterative scheduling algorithm is described as follows: 

The initial forward scheduling iteration starts at time zero, and the set of 

schedulable activities are identified. An activity becomes shedulable when its 

predecessors are completed and there are sufficient resources to meet its resource 

requirements. If there are no resource conflicts, all schedulable activities are scheduled 

immediately. Otherwise, a preselected dispatching rule is used to allocate scarce 

resources among competing activities. The scheduling time is updated each time an 

activity is completed. This procedure is repeated until all activities are scheduled. 

Once a scheduling iteration is completed, the allowable time windows of 

activities and event occurrence times are updated in the following manner so that a link 

is established between two scheduling iterations: 

lftij = max {DD,M} - pstartij (3.5) 

Ti = max {DD,M} - min {pstartij} , if the previous iteration is a forwards pass (3.6) 
i E {ISij} 

lftij = late finish time of activity ij. 

M = the best makespan obtained up to the current scheduling iteration. 

pstartij = scheduled start time of activity ij in the previous iteration. 

ISij = the set of activities starting from event i. (if the previous iteration is forward pass) 

= the set of activities ending at event i. (if the previous iteration is backward pass) 
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Hence, the time window of an activity which is specified by its 1ft and the 

current scheduling time, tnow ' is related to its previous scheduled start time. This link 

has the effect of reordering the priorities assigned to the activities during the next 

scheduling iteration. Furthermore, event occurrence t!mes which are used in considering 

the NPV of cash flows are also dynamic and attached to previously scheduled activity 

starting times. 

Having updated activity late finish times, the backward iteration starts at time 

zero. In backward scheduling, activities become schedulable when their successors are 

completed. Other than the definition of schedulability, backward scheduling is no 

different than forward scheduling. The forwardlbackward iterations continue until 

neither NPV nor tardiness improve. 

3.4. Heuristic Rules 

We compare the seven NPV oriented heuristic rules identified as best 

performing by Padman and Smith-Daniels [24] with tardiness oriented rules (Dumond 

and Mabert [15], Lawrence and Morton [19], Ozdamar and Ulusoy [21]) which are 

valid for the objective of minimizing makespan/tardiness. We also develop our own 

rules merging the basic concepts behind the two criteria to enhance both objectives. Our 

rules are not optimization guided and are based simply on cash flows and dynamic 

activity time windows. For a fair comparison we test all heuristic rules using the 

iterative scheduling algorithm. 

The seven best performing NPV oriented heuristic rules are listed in the original 

names used by Padman and Smith-Daniels [24]: 

1. ITS (Target Schedule; Immediate Release): This rule schedules all activities 

based on the difference between the current time and an activity'S target schedule time, 

where all activities are scheduled according to increasing order of difference. The slack 

time available to all activities is used as the primary indicator of the delay or advance 

required in scheduling activity. This heuristic implicitly represents the early-tardy trade

off by attempting to schedule each activity as closely as possible to its target schedule 

date. (Padman and Smith-Daniels [24]) 

2. IOCS (Opportunity Cost Scheduling; ~mmediate Release): This rule is 

intended to capture the opportunity cost incurred for scheduling activity k instead of 



20 

other activities in the queue. The opportunity therefore has two components, the 

tardiness penalties incurred by the delay in scheduling activities in the queue other than 

k, as well as the earliness cost potentially incurred in ~cheduling k ahead of its target 

time. Activities are scheduled in ascending order of opportunity cost, 

priority = L Pk . dk + [ECk (~i(k) - t)] 
kEAk 

(3.7) 

where Pk of activity k is the tardiness penalty defined as the cost of delaying the start of 

an activity by one time period from its currently scheduled time of Ti(k) to TiCk) + 1 and 

computed as the sum of the dual prices of the immediately preceding activities, ECk of 

activity k is the earliness cost evaluated as the sum of the dual prices of the immediate 

successor activities of k, Ak is the set of remaining activities in the schedule queue if 

activity k were to be performed and t is the current time period. (Padman and Smith

Daniels [24]) 

3. ILTPILEC (Lowest Tardiness PenaltyILowest Earliness Cost; Immediate 

Release): The objective of the ILTPILEC rule is to identify the activities resulting in 

early progress payments that are not directly connected to the final completion of the 

project. This rule is implemented in two queues. Activities with positive tardiness 

penalties are scheduled first in ascending order of Pk and those with zero tardiness 

penalties are scheduled subsequently in ascending order of ECk . Ik, where 

(3.8) 

Thus ECk . Ik computes the red~ction in NPV if the activity is considered ahead 

of its target schedule date by Ik units of time. Activities with positive tardiness penalties 

are scheduled first, since they result in immediate progress payments, while activities 

are not selected from the second queue until the priority queue is exhausted, since the 

scheduling of activities with early costs results in early incursion of cash flows. 

(Padman and Smith-Daniels [24]) 

4. LTPILAN (Lowest Tardiness PenaltyILowest Activity Number; Target 

Release): In this rule, activities are not released to the schedule queue until their target 
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schedule time in the revised unconstrained solution. Activities are then scheduled in 

ascending order of tardiness penalties, Pk. Activities with zero tardiness penalties are 

scheduled according to the lowest activity number (LAN). (padman et al. [23]) 

5. CFW/OCC (Cash Flow Weight IOpportunity Cost of Cash Flow; Target 

Release): An activity's cash flow weight (CFW) is computed as the sum of the cash 

flows of all the activities that logically succeed in the prec,edence network. In this rule, 

activities in the priority queue are scheduled according to maximum cash flow weight. 

The OCC selection rule establishes priorities byevaluating the cost of delaying all other 

activities currently in the queue in terms of their cash flow weights. (Padman et al. 

[23]) 

6. CFWILAN (Cash Flow Weight ILowest Activity Number; Immediate 

Release): The activity with maximum CFW is scheduled first, while ties are broken 

using LAN. (Baroum and Patterson [2]) 

7. TSILAN (Target SchedulinglLowest Activity Number; Immediate Release): 

The target scheduling (TS) rule assigns priority based on the maximum difference 

between the current revised early finish time for activity k and the optimal 

unconstrained finish time for that activity defined by 

(3.9) 

Ties are broken with LAN. (Russell [29]) 

All the above rules use Russell's [28] optimization procedure except for 

CFWILAN, which is based on the cash flows occurring at event times. Note that ITS 

and TSILAN are concerned with the reoptimized event occurrence times in specifying 

priorities for activities. IOCS, LTPILAN and ILTPILEC are concerned with the 

reoptimized earliness and/or tardiness costs of activities as well as the optimal event 

occurrence times provided by Russell's [28] procedure. CFWILAN and CFW/OCC use 

the cash flows related to the events which logically succeed the schedulable activity 

under consideration. 

For using ~he above rules in backward scheduling, we reversed the concepts of 

earliness and tardiness costs. In backward scheduling, the immediate successors of a 
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schedulable activity are actually its immediate predecessors in the original network. 

Additionally, in backward scheduling the target starting time of an activity,ij, becomes 

the unconstrained optimal occurrence time of the activity'S ending event, j. Another 

point is that in backward scheduling we reoptimize the unconstrained problem, by, 

reversing the direction of all arcs and reversing the sign of all cash flows related to the 

events. Thus, we obtain meaningful optimal event occurrence times for a backward 

schedule which also starts at time zero. 

The NPV related rules obtain their solutions in two scheduling iterations 

consisting of a forward and a backward iteration. The reason is that in their existing 

form they do not use any information related to dynamic time windows. 

The rules which are only tardiness oriented are listed as: 

8. MINSLACK (Minimum Total Slack Time): Priority to activity ij is given by: 

(3.10) 

Activities are scheduled in ascending order of priority. Note that at the beginning of 

every scheduling iteration activity 1ft are updated as described in the previous section. 

(MINSLACK is redefined in this manner by Ozdamar and Ulusoy [21].) 

9. LFf (Minimum Late Finish Time): Priority to activity ij is given by: (lftij). 

Activities are scheduled in ascending order of priority. 

10. WRUP (Weighted Resource Utilization and Precedence) : Priority to activity 

ij is given by: 

w * SUCij + (l-w) * L (fjjk IRk). (Ulusoy and Ozdamar [36]) (3.11) 

Here, w denotes a weight in the interval [0,1] and SUCij denotes the number of 

immediate successors of activity ij. This rule is implemented by increasing w by 

increments of length 0.1 until w reaches on~. The maximum NPV and the minimum 

tardiness schedules are then saved as the best schedules found in the initial forward 
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iteration and then at the end of each subsequent iteration. (The two schedules are 

probably different in each iteration, since the best schedule with respect to tardiness 

need not be the one with the highest NPV.) 

Hence, dynamic time windows are made use of by tardiness oriented rules,' 

except for WRUP, which is a list rule obtaining a solution in exactly two scheduling 

iterations. 

Apart from the above ten rules, we define four hybrid rules. The word "dynamic" 

belonging to the slack time is related with the calculation of· activity late finish times, 

while that belonging to the net present value of cash flows to the calculation of event 

occurence times. At the beginning of each iteration, they have to be recalculated by the 

formulae 3.5 and 3.6, respectively (page 18). The new four hybrid rules are as follows: 

11. D-SLACK-D-NPVCF (Dynamic Minimum Slack TimelDynamic Net 

Present Value of Cash Flows): 

Priority is given to activity ij by: 

(lftu-tnow-dij) 
prioritYij = ------

( L e-aTm * Fm ) 
mE {Sij} 

(3.12) 

{Sij} is the set of events which logically succeed activity ij. Activities are scheduled in 

ascending order of priority. The occurrence times of events, Tm, in dynamic NPVCF 

rule are determined as follows: In the first forward iteration, the occurrence times of 

events with negative cash flows are set to their late start times provided by CPM and the 

ones with positive cash flows are set to their early start times. In subsequent iterations, 

they assume the scheduled occurrence times provided by the solution with the least 

tardiness obtained in the previous scheduling iteration. 

This rule attempts at minimizing tardiness by MINSLACK rule which reflects 

dynamic activity time windows and at maximizing NPV by updating the occurrence 

times of succeeding nodes at consecutive iterations and netting their respective cash 

flows to their present value. The activities with positive denominators constitute the 

first priority queue. Once the activities in the first queue are scheduled, the next priority 

queue which consists of activities with zero denominators are scheduled in ascending 
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order of Slack Time. Then, the last priority queue, which is constituted of activities with 

negative denominators, is activated after negating the denominator. 

12. W-D-SLACK-NPVCF (Weighted Dynamic Minimum Slack TimelNet 

Present Value of Cash Flows): 

Priority is given to activity ij by: 

prioritYij = (l-w) * (lftWtnow-dij) :. (w) *' r ( L e-a.Tm * Fm ) -:- c l- (3.13) 

mE {Sij} 

This rule is the weighted version of rule # 11. Again, w is a weight in the 

interval [0,1 ] and the rule is implemented in the same manner as WRUP. T m are 

calculated using the early and late event times due to CPM analysis in the forward 

iteration. In the backward iteration, T m are calculated by taking the difference between 

the due date, DD, and activity late finish times,lft, provided by the initial CPM analysis. 

Hence, T m are fixed to certain values determined by CPM analysis and at each forward 

iteration they assume the same values. The same goes for backward iterations. Notice 

that the NPV of the succeeding nodes' cash flows are reduced by a factor, c, and then the 

resulting value is truncated to the nearest lower integer. The scaling factor is taken to be 

1000 in our testing environment, since cash flows are of the order of magnitude of 

thousands. Consequently, the orders of magnitude of Slack Time and NPY are brought 

to the same level. Activities are scheduled in ascending order of priority. 

13. W-D-SLACK-D-NPVCF (Weighted Dynamic Minimum Slack 

TimelDynamic Net Present Value of Cash Flows): 

Priority is given to activity ij by: 

prioritYij = (l-w)* (lftittnow-dij) - (w) * r( L e-a.Tm * Fm) -:- c l- (3.14) 

mE {Sij} 

This rule is the dynamic version of W-D-SLACK-NPVCF rule with respect to 

event occurrence times calculated at each iteration. The event occurrence times hence 

reflect the occurrence times found by the solution with the least tardiness obtained in 

the previous iteration. 
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14. W-SUC-D-NPVCF (Weighted Number of Immediate Successors-Dynamic 

Net Present Value of Cash Flows): 

prioritYij = (1-w) * (SUCij) + (w) * f( L, e-aTm * Fro) + c 1-
mE {Sij} 

(3.15) 

This rule is a weighted combination of WRUP and Dynamic NPVCF rules. 

Activities are scheduled in descending order of priority. 

We also compare the results of dispatching rules with a procedure which has 

been tested previously for the makespan criterion and found to be significantly superior 

to all makespan oriented rules under investigation, including MINSLACK and LFf 

[21,36]. This procedure is called Local constraint Based Analysis (LCBA) and treats the 

problems in a different perspective from that of the dispatching rules in the sense that it 

evaluates activities according to relevant essential conditions which represent temporal 

and resource constraints. However, when the essential conditions are not sufficient to 

identify the complete sequence of schedulable activities, a priority rule is called to 

resolve the resource conflicts. In this context, we define the following two priority rules 

. to be used by LCBA: 

15. W-D-SLACK-D-NPVCF (As described above) 

16. WRUP. (As described above) 

Neither the above rules [# 11,12,13,14] nor LCBA [# 15,16] use Russell's (1970) 

optimization procedure which, when repeated at every activity completion time, leads to 

an explosion in solution time. 
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4. AN EXAMPLE 

To illustrate the mechanics of the hybrid rules we solve a small example using 

W-D-SLACK-D-NPVCF rule in the iterative algorithm. The example network is found 

in Figure 4.1. 

14000 

Legend: 

On activities: (-,-):(activity index,duration,resource requirement) 

On events: (-):(Cash flow at event occurrence time) 

Figure 4.1. The Example 

The interest rate is set at one per cent and the penalty per tardy period is $l30. 

The resource limit is five units per period. The optimal resource constrained makespan 

is known to be 11 periods and the due date is set at this tight level. The solution 

procedure starts with the forward scheduling pass. This rule requires event occurrence 

times at each scheduling pass. In the first iteration, these are specified as late or early 

start times according to the sign of their cash flows. Event occurrence times are found in 

Table 4.1. To calculate the slack times, the rule requires activity 1ft times which are also 

displayed in Table 4.1. In Table 4.2. we observe the NPV of succeeding cash flows of 

all activities in the first forward iteration. 

EVENT OCCURRENCE TIMES ACTIVITY LFT 
EVENT 1 2 3 4 5 ACTIVITY 1 2 3 4 5 6 7 

Fonvard# 1 0 6 4 8 8 Fonvard# 1 6 9 11 9 8 11 11 
Backward # 1 13 10 2 5 0 Backward # 1 13 10 13 10 7 2 5 
Fonvard# 2 0 3 8 5 11 Fonvard#2 3 8 11 6 5 11 9 

TABLE 4.1. Event Occurrence Times and Activity LFT at Each Iteration. 
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ACTIVITY 1 2 3 4 5 6 7 
NPVo! 

Succeeding 5436 25451 12000 25451 461 12000 12000 
Events 

TABLE 4.2. NPV of Logically Succeeding Events of Each Activity In the First Forward

Iteration. 

Table 4.3. displays the schedules generated in the first forward iteration by two 

distinctive weights, 0.0 and 0.2 along with activity slacks and priorities. When the 

weight given to the succeeding cash flows is zero, the priorities are determined by 

activity slack times only. This schedule results in an 'NPV of $3455 and a tardiness of 

two periods. However, when the weight is slightly increased to 0.2 we obtain a different 

schedule with an NPV of $4342 and a tardiness of three periods. Actually, the rule is 

implemented for 11 times in the first forward iteration starting from an NPV weight of 

zero and ending at a weight of one. Then the solution which provides the least tardiness 

is taken to calculate the next set of activity lfts and event occurrence times. Assuming 

that the solution with the least tardiness among 11 runs is obtained with an NPV weight 

of zero. Before we start with the backward iteration, we calculate event occurrence 

times, Ti, as the difference between the project duration of the selected solution and the 

earliest scheduled starting time of the activities starting from the event. The activity 1ft 

are also determined using their scheduled starting times as indicated in the previous 

section. These values are found in Table 4.1. 

NPV WEIGHT=O.O NPV WEIGHT=O.2 
Schedule Schedulable Total Priority Action Schedule ScheduIabIe Total Priority Action 

Time Activities # Slack Time Activities # Slack 
0 [1,2,3] 0 [1,2,3] 

1 3 3 scheduled 1 3 1.4 -
2 6 6 - 2 6 -0.2 scheduled 
3 8 8 scheduled 3 8 4 scheduled 

3 [2,4,5] 3 [1] 
2 3 3 scheduled I 0 -1 scheduled 
4 5 5 scheduled 
5 3 3 -

4 [ ] 6 [4,5 ] 
4 2 -3.4 scheduled 
5 0 0 

6 [5,6] 7 [5,6] 
5 0 0 scheduled 5 -1 -0.8 -
6 3 3 - 6 2 -0.8 scheduled 

(random) 

8 [6,7] 9 [5] 
6 I I - 5 -3 -2.4 scheduled 
7 0 0 scheduled 

II [6] -2 -2 scheduled 11 [7] -3 -4.8 scheduled 

13 complete 14 complete 

TABLE 4.3. Solution to The Example in the First Forward Iteration Using Weights 0.0 

and 0.2. 
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Next, we start with the backward iteration with a weight of zero. The resulting 

schedule is observed in Table 4.4. This schedule results in zero tardiness and an NPV of 

$3934. Actually this is the best schedule obtained in the 11 runs with respect to NPV 

and tardiness criteria. Hence, both activity 1ft and event occurring times for the next 

forward iteration are calculated from this schedule and displayed in Table 4.1. Notice 

that even in this small example we obtain two schedules which are not dominated by the 

third with respect to both criteria. Hence, the flexibility of the weighted hybrid rules and 

the advantages of the iterative algorithm with its dynamic ti'me windows are illustrated. 

NPV WEIGHT=O.O 
Schedule Schedulable Total' Priority Action 

Time Activities# Slack 
0 [3,6,7] 

3 10 10 scheduled 
6 0 0 scheduled 
7 2 2 -

2 [2,4,7] 
2 5 5 -
4 7 7 -
7 0 0 scheduled 

3 [ 2,4] 
2 4 4 scheduled 

, 
4 6 6 -

5 [4] 4 4 scheduled 
6 [5] -1 -I scheduled 
8 [I] 2 2 scheduled 
11 complete 

TABLE 4.4. The Backward Schedule Resulting from Weight Zero. 
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5. TESTING ENVIRONMENT 

We use Patterson's [25] 85 problems for testing our heuristics. The size of the 

problems range from 10 activities and one resource type to 45 activities and three 

resource types. The complexity ratio, which is the ratio of activities to events, is 

between [1.2-1.8]. These problems have a resource Average Utilization Factor (AUF), 

which is defined by Kurtulus and Davis [17], in the interval [ 0.7-1.2 ]. However, this 

AUF level indicates that the resource constraints are loose (Padman and Smith-Daniels 

[24]). Since, resource tightness is reported to be an important factor which changes 

heuristic performance ranking (Padman and Smith-Daniels [24]), we create a second 

replicate of Patterson's 85 problems by tightening the resource constraints to result in an 

AUF between [1.8-2.5] and repeat our experiments on this set of problems. However, 

since the optimal resource constrained makespan values for these problems are not 

available, we replace the optimal value by the best makespan found by different 

dispatching rules and a truncated branch and bound algorithm (Ozdamar and Ulusoy 

[22]). 

Padman and Smith-Daniels [24] report in their extensive experimentation that 

the relative performance rank among different heuristic rules is preserved irrespective of 

factors such as problem structure, progress payment frequency, interest rate, project size 

and profit margin. The only important factor seems to be the tightness of the resource 

constraints. At the low level of resource tightness the rules ITS and TSILAN are 

reported to be the best performing, whereas at the medium and high levels, the rules 

CFW -OCC and laCS are the best respectively. Furthermore, laCS and CFW -OCC 

perform best under all the levels of the remaining factors. 

Cash outflows and inflows occurring at events are distributed uniformly in the 

interval [1000-20000]. We define and measure a characteristic that indicates the 

distribution of cash flows on the different phases of the project network. This 

characteristic, which we call cash skewedness, is important because it demonstrates 

whether the cash flows are biased towards the starting or ending phases of the project. 

In our testing environment, the skewedness for positive cash flows, described as the 

ratio of the sum of payments over the second half of the events to that of the first half, is 

in the range [1.2-1.4]. The skewedness for negative payments is bet\~een [0.8-1.0]. We 

remark that Patterson's problems have been converted to activity-on-arc networks with 
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ordered event numbers and hence, half of the events almost represents mid-project 

phase. The profit margin in our experiments, which is measured as the ratio of cash 

inflows to cash outflows, is in the interval [%25-%35]. Furthermore, the ratio of the 

final payment to all cash outflows is also kept at a le~el lower than that of Padman and 

Smith-Daniels [24], i.e., at a level between [%10-%15], since a high payment at the end 

of the project leads to the trivial situation where a lower makespan implies a higher 

NPV. In such a case, the trade-off between the two criteria, if it exists, is lost in the 

experimentation. Under these conditions, the due date penalty formally becomes the 

link between the two criteria. In order to have an unbiased experimental design, the due 

date penalty is related to the final payment. It is taken as one per cent of the final 

payment and accrued each period that the project is tardy. Consequently, per period 

tardiness penalty is in the interval between [%0.20-%0.30] of all positive payments and 

it does not eliminate the trade-off between the two criteria. 

The experiment is conducted at two levels of project due date. The first level 

represents the situation where the due date is set at the tightest possible value, that is, at 

the optimal resource feasible makespan value. Ai" this level NPV is expected to be at its 

lowest level if the two criteria are strongly conflicting. The second level is where the 

due date is set at far into the future. At this level, the due date penalty has no effect on . 

NPV and NPV is expected to assume its highest value. Our aim here is to specify the 

trade-off between the two criteria and identify the difference in the performance of 

NPV - and makespan-related rules and our hybrid heuristic rules under all conditions. 

Consequently, our experiments include four testing environments: The first 

experiment involves tight due dates and loose resource constraints; the second 

experiment imposes loose due dates and loose resource constraints; the third experiment 

involves tight due dates and tight resource constraints while the fourth one imposes 

loose due dates and tight resource constraints. 
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6. RESULTS 

We experiment with the dispatching rules and LCBA using the iterative 

scheduling algorithm and show the improvement in performance with respect to both 

tardiness and NPV criteria as a result of multiple scheduling passes. Furthermore, we 

compare makespan-related, NPV -related and the hybrid rules proposed here according 

to their performance in both criteria. We also partially repeat the experiment for certain 

rules to see the effects of using Russell's [28] unconstrained optimization procedure 

only once in the beginning of the scheduling pass. 

In Tables A.I. and A.2., the results of the first and second experiments under 

loose resource constraints are given whereas in Tables A.3. and AA., those under tight 

resource constraints are demonstrated. Tables A.I. and A.3., represent the case where 

the due dates are set equal to the optimal resource constrained makespan. Tables A.2. 

and A.4., on the other hand, demonstrate the results where the project due dates are set 

far in .the future. In all tables, rules are identified by their indexes assigned to them 

earlier in the paper. In Tables A. I. and A.3., the first row conveys the average tardiness 

(with its standard deviation) found by the first forward iteration. Next, the average of 

the least tardiness realized at the end of the iterative scheduling algorithm is displayed 

for all the rules. These two measures are always zero in the second and fourth 

experiments since the due date is set to a value where it becomes ineffective. The third 

row demonstrates the average percentage deviation of the NPV from the unconstrained 

NPV given by Russell's [28] procedure. However, this result belongs to the solution 

providing the final tardiness value. The fourth row represents the average of the 

percentage deviation of the initial forward solution's NPV. The fifth row demonstrates 

the percentage deviation of the highest NPV found at the end of the iterations. The next 

two rows display the average tardiness belonging to the solutions represented in the 

fourth and fifth rows, i.e., they are the corresponding tardiness values of the solutions 

pertaining to the initial forward NPV and final NPV. In rules where more than one 

solution are obtained in the initial forward pass, (WRUP, W-D-SLACK-NPVCF, W-D

SLACK-D-NPVCF, W-SUC-D-NPVCF, LCBA's both options) the solution which has 

the best tardiness may not be the same with the one having the best NPV. Hence, it is 

also necessary to measure the best initial tardiness. In the final two rows we indicate the 

number of problems improved in tardiness and in NPV. 
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In Tables A.l. and A.3., the trade-off between the two criteria is observed by 

analyzing the average best tardiness (second row) and the average tardiness 

corresponding to the best NPV solution (seventh row). We observe that this trade-off is 

more significant under tight resource constraints than that of loose resource constraints: 

Furthermore, when we compare the average NPV percentage deviation belonging to the 

best tardiness solution (third row) with the average percentage deviation of the best 

NPV (fifth row) in Tables A. I. and A.3., we observe that the values in the third row fall 

between the initial forward and final average NPV percentage deviations. Actually, the 

best tardiness values are always better than the ones ~orresponding to the best NPV. In 

fad, when NPV is plotted against tardiness, for each rule, there are three coordinates on 

~e graph provided by the three average value pairs: point a(second row, third row), 

point c(fourth row, sixth row), point b(fifth row, seventh row). Although it is not 

exactly correct to make such a generalization on empirically obtained average values, 

we observe that the function defined by NPV versus tardiness seems to be a unimodular 

one. When the individual problems rather than average values are viewed from the same 

perspective, we reach the same conclusion. The relationship between these pairs is 

illustrated on the graph below. 

NPV b 
a * 
* c 

* 

tardiness 

Figure 6.1. The Graph of Average NPV vs. Average Tardiness 

As expected, when the due dates are not tight, NPV 's are relatively higher than 

the ones under tight due dates irrespective of resource tightness. Yet, the difference in 

average NPV's is not statistically significant at one per cent . level of significance. This 

result is due to the low level of the tardiness penalty. To show the effects of a higher 

tardiness penalty, set at 10% of the final payment accrued per period tardy, we repeat 

the first experiment on four dispatching rules, W-D-SLACK-NPVCF, W-SUC-D

NPVCF, IOCS, TSILAN, under tight due dates and loose resource constraints and 

display the results in Table A.S. Under a loose due date the effect of increasing the 

tardiness penalty is not effective since no schedule can possibly be tardy. Hence, the 

results .in Table A.S. can be compared with the ones in Table A.2. Comparing the tight 

and loose due date results, we observe that there exists a statistically significant 
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difference between the average percentage deviations of NPV, demonstrating the effect 

of a higher tardiness penalty. Furthermore, the average tardiness values corresponding 

to the initial and final NPV solutions in Table AS. are remarkably close to those 

observed as the average initial and final best tardiness values (the first two rows) in 

Table A.l. under all four rules, indicating the complete elimination of the trade-off 

between the two criteria. 

In analyzing Tables AI. to AA., we can classify the rules into three groups in 

terms of performance. The first and best performing group with respect to both criteria 

includes the hybrid rules (# 12,13,14) and LCBA (# 15/16). The second best performing 

group includes the optimization-guided rule TSILAN (# 7) and the makespan-oriented 

rule WRUP (# 10). The final group includes the remaining optimization-guided rules 

and makespan-oriented rules (# 1, 2 , 3, 4, 5, 6, 8, 9, 11). Under tight resource 

constraints, the rule CFWILAN (# 6) is upgraded to the second best performing group 

when NPV criterion is considered. 

Let us first analyze performance with respect to the criterion of NPV. Under 

both loose and tight due date and resource constraints, i.e., observing Tables A.l. to 

AA., the best four rules' with respect to NPV criterion are rules # 15, 12, 13, 14, namely, 

LCBA (option 1), W-D-SLACK-NPVCF, W-D-SLACK-D-NPVCF and W-SUC-D

NPVCF in any order with the exception that LCBA's second option replaces W-SUC-D

NPVCF in the first experiment. The performance ranking with respect to NPV criterion 

is conveyed for each experiment in Table A6. It is observed in Tables Al. to A4. that 

the superior performance of the hybrid rules and LCBA options becomes comparatively 

more impressive under tight resource constraints. For example, we cannot discover a 

statistical difference between the average percentage deviation of final NPV given by 

LCBA's first option (first best performing group element) and TSILAN (second best 

performing group element) under loose resource constraints, though such a difference 

exists between the two rules at both five per cent and one per cent levels of significance 

under tight resource constraints. In fact, TSILAN which is used in the iterative 

algorithm where the unconstrained problem is reoptimized at each scheduling time, 

seems to be the best among NPV -related rules, under both loose and tight resource 

constraints. This result is contradictory to that of Padman and Smith-Daniels [24] who 

claim that TSILAN performs rather poorly under tight resource constraints. 

Surprisingly, the performances of WRUP and TSILAN are quite close to each other, 

except. that WRUP's tardiness performance is considerably superior to that of TSILAN. 

Hence, TSILAN is the closest to hybrid rules and LCBA among optimization-guided 

rules in its performance with respect to both criteria. The remaining optimization

guided rules are removed away from the best performing hybrid rules and LeBA and 
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shown to be consistently poorer in performance. Furthermore, the makespan-oriented 

rules MINSLACK and LFf are not worse than the optimization-guided rules 

considering the criterion of NPV. In the first experiment, there is no statistically 

significant difference between MINSLACK and IOCS. and CFWILAN, which are th~ 

best optimization-guided rules in the third group. As we noted previously, although in 

the first experiment there seems to be no statistically significant difference among 

LCBA and TSILAN, there certainly exists a difference between the best performing 

rules # 15, 12 ,13, and the group of optimization-guided rules, represented by IOCS, 

CFWILAN and ILTPILEC, (# 2,6,3) which are the best in their own group. Under tight 

resource constraints, the performance of CFW ILAN improves considerably and this rule 

becomes as good as TSILAN. Hence, we can conclude that there is a slight change in 

the ranking of optimization-guided rules when the resource constraints switch from 

loose to tight. The first three ranks under loose constraints are held by TSILAN, 

CFWILAN and IOCS (# 7, 6, 2) whereas under tight resource constraints CFWILAN, 

TSILAN and LTPILAN become (# 6, 7, 4) superior. However,"it is important to note 

that the performance of LCBA's second option, and the hybrid rules are not affected by 

the experimental conditions and they are quite reliable. 

When we analyze the results with respect to the criterion of tardiness, the best 

performing rules are the rules # 16, 15, 13, 12, namely, LCBA's second and first option, 

W-D-SLACK-D-NPVCF and W-D-SLACK-NPVCF. In Table A.7. the ranking of 

heuristic performance with respect to the criterion of tardiness is displayed. The 

performance of the first group including LCBA (# 15116) and the hybrid rules (# 12, 13) 

are significantly superior as compared to that of the third group including the 

optimization-guided rules except for TSILAN. The second best performing group now 

includes MINSLACK, LFf , TSILAN (# 8, 9, 7) and the hybrid rules, # 11, 14. We 

note that WRUP (# 10) belongs to the second group under loose resource constraints 

whereas it becomes a member of the first group under tight resource constraints. There 

exist statistically significant differences between the second and third group elements 

and among the first and third groups. We observe that the elements of the groups 

formed for NPV and tardiness criteria are nearly the same with a few exceptions. 

The first four positions in the ranking displayed in both Tables A.6. and A.7., are 

held by hybrid rules (# 12, 13, 14 in Table A.6. only), LCBA's first option or second 

option (# 15116) and in Table A.7., the makespan-related rule, WRUP (# 10 in Table 

A.7. only). To summarize, we can conclude that the best rules with respect to both 

criteria are the hybrid ones which account for the Net Present Value of cash flows of 

logically succeeding events as well as activity total slack time. Furthermore, LCBA, as a 

robust scheduling procedure, has a superior performance with respect to both criteria if 
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its first option is utilized. We remark that the earliness and tardiness costs defined by 

Padman and Smith-Daniels [24] implicitly rely on slack times. In our experimentation 

we obs.erve that using slack time explicitly results in better performance. Another point 

is that the cash flow distribution and tardiness penalty used in the tests result in a~ 

unbiased environment where both criteria are observed independently. In spite of this 

fact, the tardiness and NPV ranking displayed in Tables A6. and A.7. follow each other 

closely leading to the nontrivial result that a rule which is good for one criterion is also 

good for the other. This information is valuable for practitioners who are anxious to 

keep their promised project delivery date while making a profit on the project. 

In all testing environments the iterative algorithm based on dynamic time 

windows and event OCCJ,.lrrence times has an ameliorating effect on both tardiness and 

NPV criteria. Apart from the improvements of about 25 per cent in the average NPV 

percentages and upto 50 per cent in the average tardiness, we observe that the number of 

problems improved in NPV as well as in tardiness due to the iterative algorithm is quite 

large (upto 68 problems out of 85 problems in some rules with respect to NPV and upto 

51 problems with respect to tardiness). We remark that the difference between the initial 

and best NPV is statistically significant for all rules at the five per cent level of 

significance. This result is also true for the average tardiness values. 

In our experimentation we observe that the optimization-guided heuristics take a 

considerable amount of CPU time. Table A8. demonstrates the average CPUsec. taken 

by each rule to solve a single problem in the fourth experiment. The experimentation is 

conducted on an 486 IBM compatible PC and the programming language is Turbo 

Pascal. Notice that the CPU times taken by the makespan~related rules, MINSLACK, 

WRUP and LFf and by LCBA's both options are less than one CPUsec. whereas the 

hybrid rules take about 30-40 CPUsec. However, the optimization guided rules 

proposed by Padman and Smith-Daniels [24] take about 130-140 CPUsec. per problem. 

Hence, in order to investigate the effect of using Russell's optimization algorithm only 

once on both performance and CPU time, we test four optimization-guided rules, IOCS, 

ILTPILEC, CFWILAN, TSILAN (# 2, 3, 5, 7) and apply the iterative scheduling 

algorithm without updating the information from the optimal unconstrained solution 

every time an activity is completed. The results of the experiments carried out under the 

first and fourth testing environments are conveyed in Table A9. It is observed and 

statistically proven that neither the NPV nor the tardiness results are significantly 

different from the corresponding results found in Tables At. and A.4. respectively. In 

other words, it does not matter whether or not the unconstrained problem is 

reoptimized. Naturally, the CPU times taken by these rules drop down to a level of 4-7 

seconds. 
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The results of some statistical tests are consistent with the above explanations 

and. displayed in Appendix B in Tables B.l., B.2., B.3., B.4., B.5., B.6., B.7., B.8., B.9. 

In Table B .1. (experiment # 1), the null hypothesis is that there is not a significant 

difference between the performance of the rules # 2, 7, 12, 15, namely IOCS, TSILAN, 

W-D-SLACK-NPVCF, LCBA's first option respectively according to the final 

percentage of NPV deviation under the loose resource constraints. The observed F value 

is 5.425 while the tabulated F value with 3 numerator 'degrees od freedom and 00 

denominator degrees of freedom (dof) at the level of significance, a=O.OI is 3.78. 

Hence, we reject the null hypothesis. Applying the Duncan's Multiple Range Test at a 

=0.01 to come up with the different rules according to the NPV criterion, we find that 

there are significant differences between the rule pairs (# 2, # 15) and (# 2, # 12). 

In Table B.2., the purpose is the same, but the rules used are the ones # 3, 5, 7, 8, 

namely ILTPILEC, CFW/OCC, TSILAN and MINSLACK respectively. We note that 

they are the rules found in the literature. In this case, the null hypothesis is not rejected, 

meaning that there is not a significant difference between the performance of the rules # 

3, 5, 7, 8. However, Duncan's Multiple Range Test shows that there are significant 

differences between the rule pairs (# 3, # 5) and (# 5, # 8) at a.=0.D1. Table B.3. also 

shows that there is a significant difference according to the same performance criterion 

in rules # 7, 14, 15, namely TSILAN, W-SUC-D-NPVCF and LCBA's first option 

under tight resource constraints at the same level of significance and we find that there 

are significant differences between the rule pairs (# 7, # 14) and (# 7, # 15). 

In Tables B.4. and B.5., the null hypothesis is that there is not a significant 

difference among the 16 heuristic rules according to the average per cent of NPV 

deviation of 85 problems at two levels of project due date, respectively. In both cases, 

the null hypothesis is not rejected with these observed F values at a.=0.01 and a=0.025. 

In Tables B.6., B.7., B.8., B.9., the null hypothesis is that there is not a 

significant difference in performance of ~5 problems according to the NPV criterion 

between the optimization-guided case and the case where the optimization procedure is 

used only once in rules # 7,2,3,6 respectively. At many levels of significance, namely 

a= 0.1, 0.05, 0.025, 0.01, 0.005, the observed F values are less than the tabulated F 

values with one numerator degrees of freedom and 168 denominator degrees of 

freedom. Therefore,· there is not a sufficient evidence to indicate a statistically 

significant difference. 
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7. CONCLUSION 

This paper is focused on developing robust heuristic rules which aim at 

achieving good quality solutions with respect to the criteria of maximizing the project 

NPV and minimizing tardiness in the presence of a project due date. The proposed 

heuristic rules merge two classical concepts: activity slack time and the net present 

value of the cumulative cash flows on succeeding ·events. The rules are basically the 

weighted average of these two magnitudes. The iterative algorithm in which these rules 

are imbedded supports the rules by providing a link between consecutive 

forwardlbackward scheduling passes. This link involves an update on activity time 

windows and event occurrence times based on the scheduled starting times of activities 

obtained in the previous schedule. These updated values are used in giving priorities in 

the next scheduling iteration. All tested rules benefit considerably from the iterative 

scheduling algorithm. 

The proposed heuristic rules are compared with previously published NPV - and 

tardiness-oriented rules. They are found to be superior in quality with respect to both 

criteria. Furthermore, they are robust in the sense that they are not affected by the 

changing testing environment. In the experimentation, the trade-off between the two 

criteria is made visible and for all rules three coordinate pairs are obtained in terms of 

NPV and tardiness average values. We remark that the functional relationship with 

respect to these average values is unimodular. It is also observed that the rules which 

achieve the minimum tardiness are the ones which achieve the maximum project NPV. 

For example, the optimization-guided rules which have the worst tardiness performance 

also have the worst NPV performance. This observation is emphasized, because the 

testing environment, which is 'prepared in an unbiased manner, enables an almost 

independent analysis of each criterion. 

Due to the combinatorial nature of the resource constrained project Scheduling 

problem, it is not possible to generate all efficient solutions with respect to both criteria 

for large size problems. Further research in this area might be aimed at investigating the 

functional relationship between the two criteria by generating the efficient frontier at 

~east for small problems. 
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RULE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Initial tardiness 4.821 3.18/ 3.79/ 3.80/ 3.86/ 3.61/ 2.49/ 1.84/ 2.05/ 1.85/ 2.05/ 1.36/ 1.39/ 2.36/ 1.80/ 1.11/ 
3.25 2.36 3.00 2.96 2.75 2.83 2.23 1.91 1.75 1.60 1.87 1.38 1.49 1.86 2.18 1.25 

Final tardiness 3.34/ 2.121 2.65/ 2.69/ 2.50/ 2.53/ 1.65/ 1.05/ 1.29/ 1.19/ 1.48/ 0.84/ 0.85/ 1.71/ 0.84/ 0.64/ 
2.28 1.81 2.05 2.18 2.02 1.89 1.49 1.12 1.16 1.26 1.42 0.91 0.94 1.49 1.42 . 0.97 

" 

Corresponding NPV 20.221 16.91/ 18.07/ 18.18/ 18.89/ 18.44/ 13.73/ 17.11/ 16.27/ 16.34/ 15.13/ 13.85/ 13.73/ 16.03/ 12.94/ 13.021 
of final tardiness 11.44 8.88 9.83 10.06 11.24 10.50 7.60 13.10 8.78 12.10 8.47 7.85 7.85 9.89 7.85 8.08 
Iniltial % of NPV 26.83/ 20.37/ 21.521 21.64/ 22.98/ 17.24/ 17.53/ 18.64/ 19.76/ 17.41/ 16.56/ 14.18/ 14.61/ 16.321 16.45/ 14.04/ 

deviation 15.00 10.62 12.70 12.80 13.14 8.72 9.25 10.06 10.10 9.44 8.8 7.08 7.97 8.17 11.35 8.63 

Final % of NPV 18.25/ 15.64/ 16.27/ 16.41/ 17.89/ 15.9/ 13.07/ 14.88/ 15.25/ 13.58/ 14.75/ 12.09/ 12.18/ 13.58/ 11.27/ 12.41/ 
deviation 10.25 8.43 8.65 9.13 10.76 8.79 7.30 8.85 8.38 7.54 8.50 7.16 7.16 7.37 7.03 7.96 i 

Corresponding 4.821 3.18/ 3.79/ 3.80/ 3.86/ 3.61/ 2.49/ 1.84/ 2.05/ 2.24/ 2.05/ 1.76/ 1.81/ 2.59/ 1.96/ 1.36/ 
tardiness of initial 3.25 2.36 3.00 2.96 2.75 2.83 2.23 1.91 1.75 1.91 1.87 1.61 1.89 2.09 2.19 1.42 

NPV 
Corresponding 3.85/ 2.66/ 3.021 3.15/ 3.23/ 3.29/ 1.94/ 1.28/ 1.61/ 2.121 1.68/ 1.661 1.541 2.461 1.49/ 1.11/ 

tardiness of final 2.66 1.94 2.19 2.49 2.59 2.58 1.64 1.27 1.34 2.10 1.48 1.50 1.49 1.99 1.73 1.39 
NPV 

No of problems 39 42 31 30 39 32 31 28 36 32 25 26 26 29 39 24 
improved in 

tardiness 
No of problems 58 53 46 48 48 22 53 61 64 52 37 44 45 39 ·58 38 

improvedln NPV 
TABLE A.1. The Results of Experiment 1. (Legend for Tables A.1. - A.4., Table A.9.: average/standard deviation) 

RULE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Iniltial % of NPV 23.731 18.321 19.071 19.25/ 20.46/ 14.841 15.861 18.26/ 18.68/ 17.091 21.201 12.60/ 12.83/ 13.711 16.631 13.381 
deviatio 13.84 10.04 11.82 11.79 12.18 8.06 8.44 9.61 10.11 9.12 14.71 6.92 7.00 7.23 11.32 7.79 

. Final % of NPV 15.69/ 13.89/ 14.41/ 14.33/ 15.86/ 13.71/ 11.n/ 14.05/ 14.08/ 11.951 15.29/ 10.821 11.021 10.14/ 10.38/ 11.99/ 
deviation 9.44 7.98 8.37 8.43 10.42 8.21 6.75 8.04 8.03 7.49 10.79 6.85 6.89 9.56 6.26 7.38 

No of problems 60 53 48 48 48 23 56 66 65 62 49 39 40 48 58 32 
improved in NPV 

TABLE A.2. The Results of Experiment 2. 
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RULE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
Initial tardiness 5.231 3.631 4.671 4.621 4.321 4.131 2.511 2.471 1.761 1.171 2.671 1.641 1.631 2.061 2.731 1.101 

3.85 4.09 4.84 3.87 3.85 3.58 2.75 2.57 2.22 1.54 2.89 2.13 2.06 2.19 2.41 1.70 

Final tardiness 3.321 2.121 2.581 2.311 2.871 2.731 1.441 1.271 1.011 0.741 1.141 o.nl 0.991 1.401 1.051 0.371 
2.65 2.47 2.71 2.76 2.89 2.34 1.79 1.84 1.75 1.28 1.82 1.51 1.62 1.74 1.71 1.18 

Corresponding NPV 43.461 42.381 43.341 43.191 45.681 42.171 35.571 39.191 41.361 38.711 42.351 35.021 30.821 29.531 34.261 37.301 
of final tardiness 19.64 20.53 20.81 20.87 24.13 24.n 17.51 19.15 18.96 17.90 22.83 19.19 14.28 13.79 18.71 17.49 
Iniltlal % of NPV . 53.761 46.041 47.931 47.471 46.521 32.841 38.461 45.121 47.101 39.301 45.021 30.501 31.351 33.011 43.921 36.981 

deviation 25.30 20.91 23.14 21.41 24.19 15.27 16.73 20.67 21.59 18.18 25.42 14.92 14.39 16.21 19.31 18.41 

Final % of NPV 39.761 39.891 39.631 38.001 41.391 32.541 32.721 39.231 40.551 32.591 40.011 29.091 29.621 27.211 27.571 33.061 
deviation 17.95 17.94 19.69 17.68 20.36 15.15 14.59 18.69 18.64 14.83 21.62 14.68 14.11 12.39 13.17 13.90 

Corresponding 5.231 3.631 4.671 4.621 4.321 4.131 2.51/ 2.471 1.76/ 2.851 2.671 3.11/ 2.581 3.201 3.821 2.521 
tardiness of initial 3.85 4.09 4.84 3.87 3.85 3.58 2.75 2.57 2.22 3.62 2.89 3.10 2.65 3.30 2.81 3.04 

NPV 
Corresponding 4.261 2.731 3.731 3.731 3.851 4.051 1.93/ 1.35/ 1.35/ 2.371 1.491 2.461 2.071 3.121 2.451 1.73/ 

tardiness of final 3.45 2.81 3.52 3.70 3.49 3.64 2.21 1.97 1.97 2.81 2.06 2.n 2.05 2.88 2.43 2.50 I 

NPV 
No of problems 40 34 34 39 31 28 31 40 

improved in 
35 23 39 27 28 25 . 51 32 

I 

tardiness 
No of problems 60 45 45 50 33 5 51 62 64 48 33 28 28 47 68 28 

improved in NPV 

TABLE A.3. The Results of Experiment 3. 

RULE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
Iniltial % of NPV 50.711 44.841 45.631 45.151 44.341 30.701 37.121 43.861 45.961 37.551 53.921 29.011 30.991 31.601 43.761 35.821 

deviation 23.76 21.98 22.41 21.04 23.63 15.20 16.63 20.66 21.66 17.96 25.91 14.35 14.34 15.51 20.40 18.58 

Final % of NPV 37.351 38.881 37.691 35.911 39.341 30.461 31.681 38.461 39.761 31.121 36.721 27.781 28.731 25.301 27.571 31.931 
deviation 17.69 18.86 19.19 17.16 19.78 15.03 14.44 18.81 18.66 14.82 18.52 3.16 13.58 11.90 13.59 14.80 

. No of problems 62 47 45 50 33 5 52 64 64 48 62 29 36 55 68 28 
improved in NPV 

TABLE A.4. The Results of Experiment 4. 
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RULE 2 7 12 14 I 

Iniltial % of NPV 38.421 32.131 23.771 30.771 
deviation 19.86 19.98 14.39 17.08 

Final % of NPV 28.841 24.201 18.641 25.731 
deviation 15.77 14.78 10.66 15.43 

Corresponding 3.181 2.491 1.371 2.391 
tardiness of initial 2.36 2.23 1.39 1.99 

NPV 
Corresponding 2.211 1.681 0.921 1.891 

tardiness of final 1.83 1.51 1.03 1.78 
NPV 

No of problems 48 44 43 35 
improved in NPV _L.....----- ---

TABLE A.5. The Results Obtained in Experiment 1 l)sing a Higher Tardiness Penalty. 

RANK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
EXPERIMENT #1 

FABLE 1) 
RULE # 15 12 13 16 7 14/10 10/14 11 8 9 2 6 3 4 5 1 

EXPERIMENT #2 
(TABLE 2) 

RULE # 14 15 12 13 7 10 . 16 6 2 8 9 4 3 11 1 5 
EXPERIMENT #3 

JTABLE3) 
RULE # 14 15 12 13 6 10 7 16 4 8 3 1 2 11 9 5 

EXPERIMENT #4 
(TABLE 4) 

RULE # 14 15 . 12_ 13 6 10 7 16 4 ~--~~~ ~ -~- 8 
-

2 5 9 

TABLE A.6. Heuristic Performance Ranking with respect to NPV Criterion. (Legend for Tables A.6. and A.7.: rule1/rule2 implies the rules share the position) 
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RANK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
EXPERIMENT #1 

(TABLE 1) 
RULE # 16 15/12 12115 13 8 10 9 11 7 14 2 5 3 6 4 1 

EXPERIMENT #3 
(TABLE 3) 

RULE # 16 10 12 13 9 15 11 8 14 7 2 ~- 3 6 5 1 I ---

.. ___ ...... __ .. _ .. _ _ _ ... .lngwL. _. _. __ . __ .. _ .... ___ ... __ .. __ _ TABLE A.7. Heuristic Perf Rank' 'th t to Tard' c·· . 
RULE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

EXPERIMENT # 4 
...Averaae CPU sec. 134.56 139.48 140.28 138.8 141.47 2.83 138.78 0.12 0.12 0.81 4.02 33.9..L 37.75 ~8.45 _,--0.98 _ 0.21 

TABLE A.B. Average CPU Times in Experiment 4. 

EXPERIMENT # 1 EXPERIMENT # 4 
RULE 2 3 5 7 2 3 5 7 

Initial tardiness 3.29/ 3.621 3.89/ 2.54/ - - - -
2.83 2.60 2.78 2.40 

Best tardiness 2.05/ 2.49/ 2.55/ 1.98/ - - - -
1.69 2.11 2.03 1.60 

Iniltial % of NPV 20.33/ 22.321 22.97/ 17.15/ 47.87/ 45.48/ 46.33/ 36.90/ 
deviation 11.59 12.05 13.65 9.22 25.80 24.03 24.82 15.97 

Final % of NPV 15.60/ 16.40/ 17.51/ 12.89/ 40.071 38.301 37.901 32.111 
deviation 9.06 9.27 10.30 7.13 20.61 19.56 18.05 14.18 

Corresponding 3.29/ 3.621 3.89/ 2.541 
tardiness of initial 2.83 2.60 2.78 2.40 . - - - -

NPV 
Corresponding 2.56/ 2.95/ 3.33/ 2.06/ 

tardiness of final 1.86 2.25 2.72 1.77 - - - -
NPV 

No of problems 
improved in 37 35 32 35 - - - -

tardiness 
No of problems 51 49 50 47 43 46 40 47 

improved In NPV 
Average CPU sec. - - - - 4.36 7.27 6.59 4.28 

TABLE A.g. Results of Optimization-Guided Rules where the Optimization Procedure is Applied Only Once. 
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SOURCE SUM OF DEGREES OF MEAN SQUARE F RATIO 

SQUARES FREEDOM 

RULE 916.021 3 305.340 5.425 

ERROR 18912.906 336 56.288 

TABLE B.1. The ANOVA Table for Comparing the Final Percentage of NPV Deviation of Rules # 2,7, 12, 15 in Experiment 1. 

SOURCE SUM OF DEGREES OF MEAN SQUARE FRATIO 
I SQUARES FREEDOM 

RULE 701.009 3 233.670 3.195 

ERROR 24570.735 336 73.127 

TABLE B.2. The ANOVA Table for Comparing the Final Percentage of NPV Deviation of Rules # 3,5,7,8 in Experiment 1. 

SOURCE SUM OF DEGREES OF MEAN SQUARE . F RATIO 

SQUARES FREEDOM 

RULE 1598.010 2 799.005 4.495 

ERROR 44795.885 252 177.761 

TABLE B.3. The ANOVA Table for Comparing the Final Percentage of NPV Deviation of Rules # 7,14,15 in Experiment 3. 
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SOURCE SUM OF DEGREES OF MEAN SQUARE F RATIO I 

SQUARES FREEDOM 

TIGHTNESS 19.290 1 19.290 4.003 

ERROR 144.540 30 4.818 _._-

TABLE B.4 The ANOVA Table to Test whether There Exists a Difference Between Experiments 1 and 2 in the Performance of the 

16 Rules According to the Final Percentage of NPV Deviation. 

SOURCE SUM OF DEGREES OF MEAN SQUARE F RATIO 

SQUARES FREEDOM 

TIGHTNESS 19.245 1 19.245 0.558 

ERROR 1034.853 30 34.495 

TABLE B.5. The ANOVA Table to Test whether There Exists a Difference Between Experiments 3 and 4 in the Performance of the 

16 Rules According to the Final Percentage of NPV Deviation. 

SOURCE SUM OF DEGREES OF MEAN SQUARE F RATIO 

SQUARES FREEDOM 

RULE 1.157 1 1.157 0.022 

ERROR 8699.773 168 51.784 

TABLE B.6. The ANOVA Table to Test whether There Exists a Difference Between the Optimization-Guided Case and the Case 

where the Optimization is Applied Only Once in the Performance of 85 Problems of Rule # 7 According to NPV Criterion. 
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SOURCE SUM OF DEGREES OF MEAN SQUARE FRATIO 
SQUARES FREEDOM 

RULE 1.743 1 1.743 0.023 

ERROR 12778.856 168 76.064 I 

TABLE B.7. The ANOVA Table to Test whether There Exists a Difference Between the Optimization-Guided Case and the Case 

where the Optimization is Applied Only Once in the Petiormance of 85 Problems of Rule # 2 According to NPV Criterion. 

, 

SOURCE SUM OF DEGREES OF MEAN SQUARE F RATIO 
SQUARES FREEDOM 

RULE 2.960 1 2.960 0.037 

ERROR 13287.143 168 79.090 

TABLE B.8. The ANOVA Table to Test whether There Exists a Difference Between the Optimization-Guided Case and the Case 

where the Optimization is Applied Only Once in the Petiormance of. 85 Problems of Rule # 3 According to NPV Criterion. 

SOURCE SUM OF DEGREES OF MEAN SQUARE F RATIO 
I 

SQUARES FREEDOM 

RULE 0.448 1 0.448 0.006 

ERROR 12998.652 168 77.373 

TABLE B.9. The ANOVA Table to Test whether There Exists a Difference Between the Optimization-Guided Case and the Case 

where the Optimization is Applied Only Once in the Petiormance of 85 Problems of Rule # 6 According to NPV Criterion. 
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