3533

AREMOS: AN OBJECT ORIENTED VISUAL
INTARACTIVE LINEAR PROGRAMMING MODELER FOR
PRODUCTION PLANNING IN A PETROLEUM REFINERY

:z’ ,E:b n‘) »,l-‘ "’1
by
Burak Birgoren

B.S. in L.LE,, Bogazi¢i University, 1992

Submitted to the Institute for Graduate Studies in
Science and Engineering in partial fulfillment of
the requirements for the degree of
Master of Science
in

Industrial Engineering

Bogazi¢i University
1994

.0 " TR BORGLE

AREMOS: AN OBJECT ORIENTED VISUAL
INTARACTIVE LINEAR PROGRAMMING MODELER FOR

PRODUCTION PLANNING IN A PETROLEUM REFINERY

APPROVED BY:

Assoc. Prof. Ismail Kuban Altinel
(Thesis Supervisor)

Assistant Prof, Murat Draman

Assoc. Prof. Levent Akin

DATE OF APPROVAL «3/ /’/ng

it

it

ACKNOWLEDGMENTS

I would like to express my deepest gratitute to my thesis advisor, Assoc. Prof. I.
Kuban Altinel for his invaluable guidance, support, motivation and patience not only during .
the thesis but throughout my graduate study. [would like to thank him espécially for
creating an opportunity for me to conduct a comprehensive research, by which I gained a lot

of experience. It was a pleasure to work with him.

I am also deeply thankful to Assistant Prof. Murat Draman for his invaluable -
guidance and advice in the software design and implementation phases of my thesis.

I would like to thank to Assoc. Prof. Levent Akin for his valuable comments and
suggestions as a member of my thesis committee.

I wish to thank great many people. Among them I should mention Halim Karabékir, .
Celal Dogan and Fikret Yeletaysi of Turkish Petroleum Refineries Corporation (TUPRAS) -
for their friendly help and valuable suggestions. I wish to express my special thanks to
Rasim Mahmutogullan for his kind help in the interface implementation of AREMOS in the
Windows operating system; Dr. Nijaz Bajgoric for his valuable comménts -on ,decision.
support systems. |

Finally, I would like to express my deepest gratitude to all of the meémbers of my
family. My parents gave me a great moral support and encouragement in my studies. My
special thanks go to my sister, Giiliim, who helped me a lot in preparing this docuﬁ,;ent. ‘

v

ABSTRACT

A prototype graphical modeling system, AREMOS (A Refinery Modeling System),
has been developed for modeling the production in a petroleum refinery-as a linear program
within the scope of this study. AREMOS is an object oriented modeling system which
provides a visual interactive environment for refinery modeling. Its aim is to support the
management of a refinery in deciding the optimum production policy through a friendly user
.interface, which guides the user throughout the decision making process, and virtually
eliminates the need for mathematical programming expertise.

OZET

Bu caligmada bir petrol rafinerisindeki {iretimi bir dogrusal program olarak
modellemek amaciyla AREMOS. (A Refinery Modeling System) adi verilen bir prototip
grafik modelleme sistemi gelistirilmigti. AREMOS nesne tabanli bir yazilim sistemidir ve
rafineri modellemesi igin gorsel etkilesimli bir ortam saglamaktadir. Sistemin amact en iyi
iiretim politikasinin saptanmasinda gorsel etkilesimli bir kullanic1 arayiizii yoluyla rafineri
yonetimine yardimci olmaktir. Sistemin kullanici arayiizii, karar verme siirecinde kullaniciya
kilavuzluk etmekte ve kullanicinin matematiksel programlama deneyimine gereksinimini en
aza indirmektedir.

TABLE OF CONTENTS

vi

Page
ACKNOWLEDGMENTS. ...ttt e e eeeeees iii
ABSTRACT .ottt ittt ettt ettt et e s et e e bttt a e e e e n e e aas iv
OZET .oeieeeeviieeieeenen, eenens ettt teeh et e aeaee b eaeateae e %
LIST OF FIGURES.ctititititit ettt ittt ettt s e e e ee e viii
1. INTRODUCTION.cuitiuiiinenineeiie ettt iiinineeraesasaeieasanaaans 1
2. LITERATURE SURVEY ...cccvieiiiiniininnennnn. SN 3
2.1. Mathematical Programming Applications in the Petroleum Industry 3
2.2. Mathematical Programming Languages and Systems............c.cccvuneeniinnnnnen. 5
2.3. Visualization in OptimiZationoveuvtiiiineniiniieniiiiiiiieeieiereeciraeanas 7
2.4. Visual Interactive Modeling............cccovviiiiiiiiinnnn. treeireerr e 9
2.5. Object Oriented Programmingcceveuvvnieenenreeneiniiinenenenererareenans ... 10
3. PRELIMINARY WORK......ccoiuiitiiiiiiiiiiiiiiiiiiiii e etnene e nee e 13
4., THE SCOPEOF THE STUDY ..ecttiiiieiiiiiiiieneiiiiiieciiineeneees e anaeaes 15
5. THE REFINERY PROCESS AND MODELINGcccevviiiiiniaiiiiinneniennens 19
6. AREVIEW OF THE MODELING SYSTEM ...c.coivviiiiiiiiiiinininiiiiicinnnenes 21
6.1. The UserInterface.......cccvuverininiiniiiiiiniiiiiiiiii e eeaeee 22
~ 6.2. The Object Oriented Management SYSEM. ..c..oeeiieiisoraotionnisismiienannne 30
6.3. Optimization MOUIE.cevevveririreerereriiiiierereeeiieneeeeneeeeneneeenesens 32
7. DESIGN CHARACTERISTICSOFTHESYSTEMcoiviiiininiiiiniiniininne, 34
';7 .1. Essential Characteristics of the Operating System............ccoviviviiiininininnn. 34
7.2. Object Class HIerarchyoeeevenieinriiniiniiiiiiiiiii e 36
7.3. Design of the ObJECt CLASSEServvvrueneeeriineeeeiiieeriiaeeetreenreeetenneeraene 39
7.3.1. Object Class .iceumrmreimiiieniiiiiiiiiiiiiii e e e 40
7.3.2. RefAPP, RefMDIFrame and RefMDIClient Classes 41
7.3.3. Dialog Classesccceevnnenes P SN 42
T7.3.4. LiStCIaSSES ...cevueriuimiiniiiiineiiiiriiiieiiiiieiierseniireriernsnnes 44
7.3.5. NEtWOIK CIaSS ..eevvveerreeieierreeeeeeeeireeeeeeesssernennnessseressesnens 46
7.3.5.1. Interface Management Functions..............cccveiviiininnn... 47
7.3.5.2. Database Management Functions...............cocovviiinnnene. 48
7.3.5.3. Optimization Management Functionscccceevnennn. 49
~ 7.3.5.4. Non-object Oriented Features.............coeoeiiiiiiiiinnnns 49
7.3.6. NWObject, VisualUnit and VisualFlow Classescceevevvennnnnn 50

7.3.7. Unit and FIOW ClasSE8 ..uviiiiiiiiiireirinriirieieeeeirareeienssesaees 51

7.3.7.1. Interface FUNCHONS.cuiviiiniiieiiieaeiete e eaeee e, 52
7.3.7.2. Database FUNCHONSooviniiiiiiii i ice i eeieeans 53
7.3.7.3. Optimization Functions.............cvcoviiiiiiiiiiiinnn, 54
7.3.7.4. Communication between Network Functions and
Unit and Flow Functions..........cccoviiiiiiiiiiniiiiiinann. 54
7.3.7.5. Non-object Oriented Features..............ooveivviiiiiinininn. 56
7.3.8. CrudeFlow Classcoivviiiiniiniiciiii it e e e anens 57
7.3.9. Child Unit ClasSeSceevveenininiieneniarenereeeeeaeieeenneneneenans 58
7.4. Formulation of a Refinery Linear Programming Model by Unit Objects........ 60
7.4.1. Validity ChecKingcceoieiiiiiiiniiiiniiiiiiiiiiii e, 61
7.4.2. Variable Generationccccceeevreierieineerieiteintrnerninnaanseneens 61
7.4.3. Objective Function Derivation i 63
7.4.4. Constraint Derivation'cccoeeveieeiiiriiiiiiiieiieneiieerneanecnaess 67
7.5. Maintenance of Objects at Run Time.......cooevvnininiiiiiiiiiiiiiiiiiinnn.. 75
8. CONCLUSIONS ...ttt erteerteaeeseseneassensacensssnesarrneneenseens 79
9. FUTURE WORKcceiiieiiiimietiiiieeereereereeeeeeeeeeetunannensaesaenernnnnenssees 81
APPENDIX A. BORLAND C++ COMPILER, OBJECTWINDOWS CILASS
LIBRARY AND CONTAINER CLASS LIBRARYccceueene ...83
APPENDIX B. AREMOS INSTALLATION GUIDE....c.cotiiiiiieiiiiiiiiniianeanannns 84
APPENDIX C. A REFINERY LINEAR PROGRAMMING MODEL PREPARED
BY AREMOS ...ttt e eeneeeen e eeeesee e e eueneenseenannens 86
APPENDIX D. THE VARIABLES GENERATED FOR A REFINERY MODEL
BY AREMOS ..ottt 92
APPENDIX E. AN OPTIMAL RESULTS REPORT PREPARED BY AREMOS 96

FIGURE 4.1
FIGURE 6.1
FIGURE 6.1.1
FIGURE 6.1.2
FIGURE 6.1.3
FIGURE 6.1.4

FIGURE 6.1.5

FIGURE 6.1.6
FIGURE 6.1.7

FIGURE 6.2.1
FIGURE 7.2.1
FIGURE 73.1
FIGURE 7.3.2

FIGURE 7.3.3
FIGURE 7.5.1

FIGURE 7.5.2
FIGURE 7.5.3

LIST OF FIGURES

The Process Flow Chart for TUPRAS Izmit Refinery

A Layered Representation of the General Structure of AREMOS
A View of the Sample TUPRAS [zmit Refinery Model
Developed in AREMOS '

A Zoomed View of the Sample TUPRAS Izmit Refinery
Model in AREMOS

The Optimal Results Reporting Dialog Box for the Sample
Refinery Model

The Appearance of an Input Dialog Box for a Gasoline
Blending Unit

The Appearance of an Input Dialog Box for an

HP Distillation Unit

The Appearance of an Input Dialog Box for a Product Flow
The Appearance of the Utility Dialog Box for an

HP Distillation Unit

The Components of the Object Oriented Management System
The Object Class Hierarchy of the AREMOS System
Object-Dialog Object Association during Data Exchange
Inheritance of Properties of Unit and Flow Classes

through their Parents

Communication between the Methods of Network Object and
the Methods of Unit and Flow Objects

Maintenance of Objects at Run Time

Unit Connections of a Flow Object

Maintenance of a Flow Object by its Tail and Head Units

viii

Page

27

27

29
30
37
43

55
76
77
78

1. INTRODUCTION

TUPRAS, Turkish Petroleum Refinery Corporation, is composed of four refineries;
namely Izmit, {zmir, Orta Anadolu and Batman refineries. TUPRAS Izmit Refinery, the
biggest among the four, processes more than 10 million tons of crude oil each year which
amounts to almost half of the Turkish yearly crude oil consumption. It is obvious from this
very fact that an effective and efficient production planning for this refinery is crucial with
regard to its role in Turkish petroleum industry.

Computer-based mathematical programming techniques have been used and proved
to be very successful in the petroleum industry applications for more than 30 years. It is a
worldwide practice in petroleum refineries to use such techniques for production and process
planning, and strategic planning. TUPRAS is not an exception; TUPRAS management has
been using these methods for a long period of time. At present, a software package called the
Process Industry Modeling System (PIMS), developed by Bechtel Inc., is used in TUPRAS
Izmit refinery for operations and production planning. Moreover a decision support system,
called the Supply Options Optimization System (SOOMS) was developed a few years ago
for the purpose of evaluating capital investment and strategic planning decisions including all
TUPRAS refineries.

On the other hand, it is hard to say that the management is fully utilizing these. ..
management tools. The main reasons for this seem to be the lack of expertise on
mathematical programming and lack of effective communication with the existing
mathematical programming system. Consequently, it has turned out to be difficult to handle
the problems resulted from the improper feed of data into the mathematical modeling system
and the interpretation of system solutions. Besides, the refinery management has faced
important problems in updating the existing system according to the changes in the refinery.
Therefore, the maintenance of the mathematical programming system has appeared to be
another important concern.

As a solution to these problems, AREMOS, a prototype optimization based visual
interactive modeling (VIM) system, has been developed in this study. VIM methodoiogy,
which is currently gaining wide acceptance in Management Science/Operations Research
(MS/OR) applications, aims to provide friendly, interactive and graphic support to decision
makers. In other words, it puts much more emphasis on the user side than the former
decision support tools.

The system has been designed using an object oriented approach. The main objective

of this selection is that object oriented programming is considered to be an obvious vehicle
for the development of visual interactive system packages. In addition, it is a solution for the

software maintenance problem, since object oriented nature of a system considerably
facilitates the maintenance process.

In order to implement the object oriented design, the C++ language is selected as the
programming language and the Microsoft Windows operating system is selected as the
software environment. The reason for this selection is not only their popularity but also the
fact that they provide a very low cost platform for software development. Further, additional
data structure libraries and Windows programming class libraries are used.

Although the starting point of this study is based on the TUPRAS izmit Refinery
case, all the possible processes and products in a typical petroleum refinery are included in
the design, thus the developed system can be applied to any refinery with minor changes.

The interface of AREMOS provides a visual representation of the refinery in the form
of a network, on which refinery process units are represented as nodes and product flows as
arcs. It enables the user to build the refinery visually on the screen, feeding all the necessary
data through dialog boxes. The system generates the corresponding mathematical
programming model in the background, sends it to an optimizer and gets the solutions, and
presents the necessary optimal production results and their interpretations to the user. It also
helps by giving comments on errors and inconsistencies in the refinery building process and
on the results. The system virtually eliminates the need for mathematical programming
modeling expertise, and further, the need for any mathematical programming language.

AREMOS is a prototype system, which needs to be tested by the refinery
management to detect its weaknesses and strengths. According to the comments of the
refinery management, it can be improved by adding more visual utilities and more powefful
mathematical programming techniques. On the other hand, it satisfies the basic requirements
of ease of use, and ease of maintenance to a high degree.

2. LITERATURE SURVEY

The literature survey for this study has been conducted on five different topics :

(@) Mathematical programming applications in the petroleum industry;
(b) Mathematical programming languages and systems;

(c) Visualization in optimization;

(d) Visual interactive modeling methodology;

(e Object Oriented Programming.

First, sufficient knowledge in previous mathematical programming applications in
the petroleum industry is very important for this study since it will constitute the base for
developing a visual interactive modeling system. The related literature survey is mostly
based on refinery applications and covers the period of last 40 years. Second, mathematical
programming languages and systems are surveyed in order to assess the applicability of
different mathematical programming paradigms in refinery modeling. The emphasis in this
survey is given to the new mathematical modeling languages and systems which make use of”
newly developed modeling techniques. Since a visual system is the aim of the study, related
research in the field of operations research, and specifically in the mathematical
programming area is examined. Next, the underlying concepts and the general philosophy of
visual interactive modeling are reviewed. Finally, a brief survey on object oriented
programming, which concentrates on the topics such as general principles of object oriented
programming, the design of an object oriented system and its implementation for visual
interactive user interfaces, is performed.

2.1. Mathematical Programming Applications in the Petroleum Industry

The extensive use of linear programming in the petroleum industry is well known
and often cited as a major triumph of operations research [1]. The use of mathematical
programming in the petroleum industry spans a period of more than 40 years. Many
mathematical programming concepts and techniques together with linear programming have

been applied in almost all facets of oil business from strategic planning through process
control within this long period.

The usage prior to the invention of the electronic digital computers was limited to
small problems that could be solved by hand. As the computer technology advanced, first,
linear programming techniques, and then more advanced techniques, such as nonlinear
programming and dynamic programming, have been applied in the petroleum industry.
Especially in the 1980s, mathematical programming applications in this field became a
worldwide practice which yielded very successful results. Bodington and Baker give a
detailed history of these applications [1].

The 1950s Were a decade of experimentation. By 1955, some oil companies installed
stored program electronic digital computers and experimented with linear programming. For
example Symonds gives an overview of these studies based on the applications in ESSO Qil
Company in a paper published in 1956 [2]. Besides, the studies conducted by Charnes,
Cooper and Mellon [3], Manne [4], and Kawaratani, Ullman and Dantzi g [5] can be given as
the examples of the early research in this field. By the end of the 1960s other linear
programming, successive linear programming and nonlinear programming models were
developed to model different phases of the oil business, which included production
planning, process control, product blend optimization, product distribution and marketing.

In the 1970s model management became the key issue of research since the main
difficulty of the companies, especially involved in large scale refinery modeling, lay in
model management, for example database management, model generation and solution
reporting. Software and consulting firms began to provide model management tools for the
petroleum industry. In this period models with broader scope were developed and all the
techniques and applications were enhanced in speed, capacity and efficiency.

After the 1980s, computers became powerful enough to solve large refinery
problems in reasonably small times, and also database technology finally came of age.
Consequently, computer applications of mathematical programming models of refineries
became both efficient and effective. As a result, the petroleum industry experienced
extensive applications of mathematical programming by operations researchers. To cite a few
of them; Baker and Lasdon made an application of successive linear programming at Exxon
Gil Co. in 1985 [6]. Two years later, Klingman et al. developed an optimization-based
intelligent decision support system implemented at Citgo Petroleum Corporation to address
the complex short-term planning and operational issues associated with the supply,
distribution, and marketing of refined petroleum products [7,8]. Another research,
conducted by Dewitt et al. in Texaco Oil Co., focused on gasoline blending which is a key
refinery operation [9].

Almost all of these applications were based on mainframes and related software.
However there has been a general trend toward microcomputers from mainframes since the

end of the 1980s. Uhlmann discussed the applicability of linear programming modeling for
refineries on microcomputers in 1988 [10]. Refineries are big industrial complexes and
require big algebraic models. Uhlmann gave the size of a linear programming based refinery
model for an average size refinery as having a generated matrix of 717 rows, 2168 columns
and 333 bound elements with a density of 0.77 per cent. It is reported that the model was
solved in 414 minutes on an IBM PC/AT machine, which is quite a long time. Consequently
big sizes and long solution times had been the major problems for not using
microcomputers. Nevertheless, in the recent years microcomputer technology has
experienced a great improvement, and today, microcomputers, which are at least 20 times as
fast as AT machines, are available in the market with reasonably low prices.

There have also been Mathematical programming applications in the Turkish
petroleum industry. In an early application, Kosal developed a methodology for production
planning in a Turkish refinery in 1981 [11]. Another research was conducted for the
development of production planning in izmit TUPRAS Refinery by Kavrakoglu et al. in
1986; they developed a single period linear programming model to optimize the production
[12]. Four years later, a multi-refinery, multi-period modeling system was developed for
TUPRAS including all its refineries [13]. Besides refinery modeling, Giirkan and Kartal
applied mathematical programming to model the Turkish petrochemical industry in a recent
study [14]. Over and above these scientific studies, it should be noted that usage of
mathematical programming packages has been a routine practice in Turkish petroleum
refineries for a long period of time.

2.2. Mathematical Programming Languages and Systems

There has been a recent upsurge of new modeling languages and systems for
mathematical programming. This stems from three basic reasons. First, early systems were
written for specific computing environments and were not immediately adapted to modern
programming environments that emerged in 1980s. Second, a new generation of modelers
and managers became dissatisfied with the perceived complexity of the early systems; in
particular, these had and still have the requirements of a programmer's skill level. Third,
demands for computer assisted modeling and analysis increased not only with the need, but
also with new technologies that render such demands achievable, notably database concepts,

artificial intelligence and graphics. Greenberg [15] gives a detailed annotated bibliography of
the recent studies in this area.

An important issue in the development of mathematical programming systems is
model management which is a main concern of not only industrial engineering but also many
computer related disciplines. Krishnan [16] gives an overview of model management
research on mathematical programming systems. He presents an analysis of the model
management literature, focussing selectively on the tasks that are currently a major focus of
research. This includes topics such as model selection, model composition, model
integration, model formulation, model implementation and model interpretation.

An important attempt to bring formalism for modeling is Geoffrion's Structured
Modeling [17,18,19,20]. Structured Modeling represents a major effort towards a sound
basis for modeling theory and practise. The objective of Structured Modeling is to develop a
comprehensive framework to represent all the essential elements of a variety of management
science models. It provides a very consistent and complete internal representation scheme. In
these works, Geoffrion also explains characteristics of a modern modeling system.

Murphy, Stohr and Asthana [21] review different methods for representing linear
programming models during the formulation phase. They make a comparative analysis of
these systems from the point of view of the interface presented to the user. There are two
major categories of linear programming representation schemes: Those whose underlying
philosophy is primarily symbolic, and those whose underlying philosophy is primarily
graphic. This main classification can be applied to mathematical programming models, in
general. Under symbolic representation schemes lie matrix generators, algebraic languages
and database oriented languages. Matrix generators basically provide language statements
that produce MPS statements directly. The objects to be manipulated are sets, and data tables
and the end result is a list of data triples in MPS format. MPS is the common linear
programming interchange format among different linear programming languages. Examples
of matrix generators include OMNI, DATAFORM and GAMMA [21]. Algebraic languages
represent the structure of a model using a notation that closely resembles conventional
mathematical notation. GAMS [22] and AMPL [23,24] can be given as the examples of
these languages that are widely accepted in the software market. LINDO [25] can also be
regarded as an algebraic language although it allows a very restricted form of algebraic input
in extended coefficient form, allowing no summation or indices. Database oriented
languages, on the other hand, view a linear program as a relational database tables and
~ extend conventional query languages to express algebraic constructs such as summation over
sets. SQMPL [26] is an example for such languages.

Graphic representation schemes comprise structured modeling, block-schematic
languages, network representations and iconic languages. Structured modeling [17] takes an
algebraic view, but classified as graphic since it emphasizes several different graphs that

relate algebraic and data elements in the problem description. Geoffrion has developed the
SML language for structured modeling [27,28]. In block-schematic languages, the graphic
clements that the model builder manipulates conceptually are blocks within the linear
programming matrix together with icons representing their interconnections. MathPro is a
block-schematic language available in the market [29]. Among network representations, an
activity-constraint graph has nodes for activities and constraints and links that connect these
nodes to show which activity participates in which constraint and vice versa. As another
network representation, netform graphs represent networks of activities with one input and
one output in which the nodes represents constraints and the arcs represent flow of
resources. Another promising scheme is iconic languages which attempt to use graphical
objects that are analogous to real life objects. LPFORM is a prototype iconic system for
linear programming model development. The interface for the LPFORM system uses icons
to represent real world objects such as inventories, machines and transportation networks
[30,31]. It should be noted that there is still no graphic, language which has gained
acceptance in the market like GAMS or AMPL.

Finally, Murphy and Greenberg [29] make a comparison of mathematical
programming systems, classifying them as traditional, algebraic and block-schematic. They
choose OMNI, GAMS and MathPro as three representative languages for these categories
respectively, and formulate four linear programs in each language. According to their
experience they make a comparison among these languages using different modeling
aspects. They comment that there is no dominant approach. Each of the systems supports a
valid modeling philosophy and is well designed. Each system also has distinctive capabilities
and features that attract users.

2.3. Visualization in Optimization

Research in optimization has traditionally concentrated on analyzing complicated
problems and developing faster and faster algorithms to solve them. However solving
problems using optimization techniques involves more than just developing clever
algorithms. Building, debugging, validating, and understanding models, algorithms, data,
and solutions require appropriate representations, in other words, visualizations. Operations
researchers have not been focused on the representations that people actually used to help
solve problems until recently. However, today's advanced computer technology provides

very easy-to-use computer programs with very effective user interfaces, which enables
operations researchers to develop appropriate visualizations to help model builders,
algon'thin designers as well as nontechnical specialists. Consequently brand-new user
interface techniques have been emerged and applied in the field of operations research in the
recent years. Jones surveys and makes a long critique of the ongoing researches on
visualization in this field in two feature articles [32,33].

Jones examines the studies using primarily two points of views; modeling life cycle
in a typical optimization problem solving process and available visualization formats. The
modeling life cycle is composed of the following stages; conceptualization, formulation, data
collection, solution (algorithm execution), solution analysis and results presentation. For all
of these stages a number of visualization techniques have been developed. To cite a few of
them, high level languages, formal and informal diagrams and visual interactive modeling as
a new methodology are used to describe the conceptual model at the first stage. Object
oriented programming and spreadsheets as well as the mathematical programming languages
outlined in the previous section are used in the formulation stage to give an appropriate
representation of the model for formulation. Relational databases and spreadsheets are the
most commonly used tools to provide linkages between commercial mathematical
programming systems and the data for the problem instance. The representations developed
for the solution stage aim to promote the exploration of internal algorithm execution. These
include human intervention during the solution process, visualizations to help understand the
execution of the algorithm, as well as visualizations that provide new and novel insights. In
this context, related techniques are dubbed "interactive optimization" and "algorithm
animation”. Solution analysis and results presentation include a long process of debugging
and validation. Much research have been conducted to provide better analysis and
presentation of solutions, and many visual techniques have been used for this purpose such
as animation, graphic plots, hypertext and hypermedia as well as natural language.

As another point of view, available visualization formats can be examined separately.
Software technology provides a number of powerful techniques to be used in many scientific
disciplines and promise much advanced ones in the near future. These techniques include
hypertext, diverse graphic techniques such as pie charts and bar charts, animation, sound
and touch utilities and virtual reality. In addition to these, text can also be regarded as a
visual technique. For example, Geoffrion [27,28] in SML language showed how different
text styles could be used to highlight different aspects of information.

Jones also discusses how different representation formats can be integrated with
different tasks involved in the modeling life cycle [33]. He argues that different users require
different representations according to experimental evidence, and exactly which
representations will be appropriate for particular types of users and tasks remain poorly
understood. Many proposals for different representations for mathematical programming

exist. Yet, given the variety of representations, it does not seem likely that one representation
will come to dominate. Rather different representations will coexist. To support multiple,
simultaneous representations, window-based user interfaces were developed and are now
common. For example Apple Macintosh, Microsoft Windows and X Windows are equipped
with such capabilities. Any modern interface for mathematical programming will involve a
multiple window user interface. On the other hand, commercial optimization tools that
exploit this technology are only now emerging, even though it has been widely available
since the mid 1980s.

In short, visualization helps solve problems. Numerous examples exist to support
this claim. Exactly what problems and what visualizations are most helpful for particular
tasks, and particular people, including researchers, practitioners and consumers of
optimization, remains difficult to assess and, hence, an area for ongoing research.
Nevertheless, emerging technologies hold promise for expanding the range of visualization
techniques employed in optimization. Equipped with these interfaces, operations research
tools will be likely to provide much efficient and effective means of solving problems.

2.4. Visual Interactive Modeling

Visual Interactive Modeling (VIM) has emerged as an MS/OR methodology. It is a
general methodology for creating appropriate model representations. As an important
characteristic, VIM approach gives prominence to conceptual model representations [33]. In
this respect, it can be thought of in terms of a larger movement called User-Centered Design
which spans the fields of human factors, ergonomics, and industrial desi gn. Advocates of
user-centered design believe that designers should begin, continue, and end the design
process focused on users' needs. Adopting these general ideas, VIM starts with the user and
user's problem, not with the model. Therefore VIM does not concentrate on a particular
technique and is not attached to a particular set of modeling constructs, however general.
Rather, it first attempts to represent the actual problem, usually visually. At that point, the
model and the solution technique can be developed. Unfortunately, the VIM methodology
makes it more difficult to assess the quality of the solution produced, since taking the user
centered approach espoused by VIM, forces one to measure the quality of the solution by
less objective measures such as user satisfaction.

10

VIM has visualization and interactivity as its two important characteristics. In the
previous section, what visualization brings into the problem solving process is discussed.
Interactivity can be considered as an inevitable extension of visualization. Interactivity
together with visualization primarily integrates the user into the problem solving process,
letting him to control the process from-the beginning to the end, which makes the modeling
system more user-friendly and effective. Today interactivity is accomplished through mouse-
driven or pen-driven operating systems such as Microsoft Windows. Developments in the
computer technology suggests that the audio-visual interactive modeling systems are not far
away, in which natural speech will be a part of interaction between the user and the
computer.

Bell gives a history of VIM with the present situation and the prospects [34]. In his
paper, he gives a detailed list of VIM applications. Bright and Johnston [35] approach the
subject from another perspective, discussing the intrinsic nature of problems which makes
them susceptible to the VIM approach. They argue that VIM allows the user to redefine the
problem, the objectives and the solution space quickly. It loosen the constraints and
promotes reconsideration of objectives. More importantly, it allows the problem owner to
assess the effects of other objectives. Then they discuss the features that characterize the
nature of VIM software, that are speed, adaptivity, width of application and ease of use. An
interesting issue in this field is the integration of intelligence in VIM. In a recent paper,
Hurrison describes methods by which expertise may be added to visual interactive models
[36].

2.5. Object Oriented Programming

The software systems built today are different from what they were ten or twenty
years ago; they are larger, more domplex, and more volatile. Object oriented programming
aims to manage this increasing complexity providing a number of interrelated principles.
These are data abstraction, data encapsulation, inheritance and polymorphism [37]. Today,
object oriented approach is applied to software development, starting from the analysis of the
real system, through the design of the software to the end of the implementation process
[38,39].

Object oriented programs model a system as composed of objects and the
interrelations among them. The programs perform computations by passing messages

11

between active objects, which are computer analogs of entities in the real world. Objects in a
program belong to classes, in other words an object represents the instance of a class. In an
object oriented school database program, for example, the file of a specific student can be
viewed as an object belonging to the student class. The necessary data is packaged in a class
with the methods that apply to them. The methods of a class describes the behavior of the
class for treating the received messages. This concept is called data abstraction. Further, the
interface to a class, that is the methods of the class, is defined in such a way as to reveal as
little as possible about its inner details, which is called data encapsulation or information
hiding. Another important principle is inheritance, which is the ability to define a new class
that is just like an old one except for a few minor differences. This encourages the
programmer to group similar objects according to common attributes and define
specializations with added local detail, which also help building complex models
hierarchically. Last of all, polymorphism is the ability of objects from different classes to
respond differently to the same message. Polymorphism is partly responsible for a well
known characteristic of object oriented systems; a style of programming sometimes referred
to as differential programming or programming by modifications. It makes it very easy to
- plug new objects into the system if they respond to the same messages as existing ones.

As an important benefit of these complementary principles, object oriented
programming improves the productivity in software development process. It decreases the
time required for testing and removing the programming' errors. On the other hand, much of
the functionality of a software system is added after the initial deployment, which implies the
importance of maintenance. Object oriented programs also enable programmers to make
modifications and improvements more quickly. As another benefit, object oriented approach
lets programmers reuse classes in new projects without reinventing them. Briefly, an object
oriented approach to software system development is likely to lead to more stable and robust
systems, with promoted maintenance and productivity in the development process.

In"addition to these benefits, today's on line, interactive systems devote a great
attention to the user interface, and object oriented approach to such systems -from analysis
through design and into coding- is a more natural way of dealing with such user oriented
systems [39,40]. It is also argued that object oriented languages are suitable for VIM
packages [34]. There are already software development tools and platforms for the
development of object oriented user interfaces. ObjectWindows for C++ [41], for example,
is such a platform supported by extensive class libraries for interface design under Microsoft
Windows operating system.

So far object oriented VIM has found its application mostly in simulation. Object
oriented methodology has been applied just in a few mathematical programming systems.
ASCEND [42], for example, is a model building environment for complex models
comprising la;ge sets of simultaneous nonlinear algebraic equations, which uses and extends

12

object oriented concepts. In this respect, integration of the concepts from VIM and object
oriented programming is a fairly new research area.

13

3. PRELIMINARY WORK

As a preliminary work for this research, a linear programming model for the
TUPRAS izmit Refinery is developed in cooperation with the refinery management [43].
This study is presented in the XVth Turkish National Operations Research and Industrial
Engineering Congress and published in the congress proceedings [44]. In this work, the
linear programming model is generated and solved using LINDO optimization software
package. The model maximizes the daily net profit, and computes an optimal production
plan: It basically computes the amounts of crude oils to be fed into the system and final
products to be produced, refinery unit utilizations, and utility consumptions such as
electricity and different catalysts. A sensitivity analysis is also performed for different
scenarios.

In this study, the model is composed of 218 variables and 171 constraints. The
variables of the model represent the quantities of material flowing at each stage of the
refinery process: Crude oils, semi-finished products and final products. The quantities are
expressed in volume for all the variables. The objective function consists of sales revenues,
crude oil costs and utility costs. The constraints are the mathematical expressions of material
relationships within the refinery. These are mainly material balance constraints, unit capacity
constraints, product specification constraints and demand pattern constraints.

On the whole, the developed model is detailed enough to describe the refinery's
production, furthermore, the validation of the model provided strong insights that the results
obtained through the model are consistent with the real production figures of the refinery.

The same mathematical model is also developed using GAMS. The main purpose of
this application is to check whether an algebraic mathematical programming language like
GAMS or AMPL brings any additional ease into modeling. Using GAMS, related variables
can be grouped through the use of indices, hence general categories for constraints can be
formed. This generalized formulation process is the main advantage of GAMS [22].
However when applied to the linear programming model of the refinery, the number of
constraints is not reduced to a great extent in the new model, since many constraint
categories and related data tables appear to be formulated. The only considerable reduction in
the number of constraints is obtained when formulating the constraints for distillation
process. Furthermore, the formulation process turns out to be time consuming, and in this
respect there is no significant difference between LINDO and GAMS. Nevertheless, using
GAMS brings about a broader view for the refinery model; variables and constraint types
generated in this modeling study can be used while forming the basis for the VIM system.

14

Finally, the current study on the development of AREMOS prototype refinery

modeling system is presented in the XVIth Turkish National Operations Research and
Industrial Engineering Congress and accepted for publication in the congress proceedings

[45].

S,

15

4. THE SCOPE OF THE STUDY

As briefly stated in the introduction section, this study intends to build a prototype
object oriented visual interactive modeling (VIM) system to determine the optimum
production plan in a petroleum refinery by means of linear programming.

Better representations for solving problems are becoming the main concern of

MSI/OR scientists, since end users, in other words decision makers, want to have effective
means of using MS/OR techniques. An obvious solution to this problem is to provide
decision support tools in the form of advanced computer programs, because, as Jones
argues [33], easy-to-obtain, easy-to-use computer programs are the most effective
communication link between high-powered research teams and the average professionals
~ hoping to apply the results of research to real life $ituations.
. This type of managerial need is exactly the case in TUPRAS izmit Refinery, and
constitutes the main motivation for this work. The refinery management doesn't have
sufficient mathématical programming expertise, thus generally unable to interpret the
solutions of the existing mathematical programming based modeling system . (PIMS)
correctly. Moreover, they have difficulty in communicating with the system, since it restricts
the interventions of the user, require data in a strict format, doesn't allow new additions
according to changes in the refinery processes. Lack of user friendliness is also a big
problem, since the management argues that some modules of the system are not utilized,
because these modules are very hard to use. Good maintenance seems to solve some of these
problems, but unfortunately, it has not been available so far. Also it is questionable whether
the design of the existing system is good enough for effective software maintenance.

On the other hand, mathematical programming techniques for refinery processes are
extensively used and well understood, hence there is no current need for better formulations.
Rather, development of an advanced computer system employing such techniques is needed
to solve the problems of the refinery management. Considering the nature of these problems
itis clear that the emphasis should be given to the user side of such a modeling system. This
means a software system with a good user interface, and a robust design which provides
easy means to manage the interface, and to update and extend the system without increasing
its complexity.

VIM methodology, outlined in the literature survey section, seems to be a good
solution for the problems of refinery management. Thus, the question is whether this
methodology is appropriate for modeling a refinery as a mathematical program. Based on the
preliminary study on TUPRAS Izmit Refinery, our answer at this point is that VIM is fit for
this purpose. First, it is clear that the graphical representation of a refinery, namely refinery

16

process flow chart, is analogous to a network, and our experience is that the management of
TUPRAS izmit Refinery also prefers to use such representation schemes in production and
process planning; this is very natural because refinery engineers work on process flow
charts, which lets them gain basic maturity for understanding network models easily. Figure
4.1 depicts a process flow chart covering the whole process in TUPRAS Izmit Refinery,
which is prepared by the refinery management. In the network analogy of a refinery, units
correspond to nodes, and pipes through which products flow correspond to arcs. Second, a
typical refinery can be modeled as a mathematical program simply by répresenting its units
(ie. distillation units, tanks and blending units) and flows between these units. Flows are
conserved by either mass or volume, and most of the fine petrochemical operations can be
approximated by constructing linear relationships between inputs and outputs. In such a
refinery representation, a hidden sub-model stands for the internal chemical processes within
each node. No other mathematical relations, which are independent of this network
representation, are needed in the modeling. Also, success of visual interactive simulation
packages, although the underlying optimization paradigm is different, is a source of
motivation, since many of them use such network based visual representations for modeling
process [34]. . :

The design of the underlying interface management part of the system has almost
equal importance as the design of the interface, as it has been the case for all similar 'séftware
projects. The underlying design should be consistent with the interface, should enable the
programmer to easily manage the interface and underlying database, should be flexible for
modifications, deletions and additions. These characteristics become more important as the
complexity of a system increases, which is the case for the intended system. Object oriented
design approach is claimed to provide these characteristics as discussed it the literature
survey section, and has already been proved to be successful in visual interactive simulation
packages [34].

Bringing these ideas together led to the development of AREMOS modeling system.
Itis a visual interactive refinery modeling system and designed using the concepts of object
oriented programming methodology. The software code of the system is written in C++
which is the most commonly used object oriented programming language in the software
market. In addition, Microsoft Windows is selected as the target operating system
considering its wide usage in the world, its extensive visual utilities and low price.
Consequently, Borland C++ compiler version 3.1, which has necessary utilities for
programming under Microsoft.Windows, is chosen for software development, and as a
benefit of object oriented programming, extra class libraries are used to facilitate the
programming process.

17

— _ 4 NOATHOONW HIISIAYIS NINNIL : NYAVIHIZYH s0p unb zue 114 1apaq waejunzge uag1aycph apuidg
Lizeor} Tove 05| 0DO1 | (onsdwey Za1us.10d J1PUAPYISHD unb/w JounzY @ JON
Lros- 14 4 1IPV0 | 990 | mavieren — -
sy ’e 1zvo |oveo 303 393 X | - WHY —oes T .
grig 424 £280 | €8T |uo 3 seusny nyny €3 0Lt _\|l||| ——————d — PO S - —. | ®
se0z | vir oss0 | 169 stgjang -1 e i || i SO “Ele LI g0 =

! — < ——— - cmes
3 o S T ' 0o - 5551 &
s totoi]| eesa Jmm».on £ 6 weydoy : 3L 4 —— 03AT e <
Tl o 00 1100 Yy e € "dos A — £ -
¢osz | zez | soso | ooz usty 1 5or | _=[* oo —— e w0 Y- 3
sze | oct esii | 1es s W) 8
o 4rsy oSy x — ——
ootsy | sesr | nize | evei) enmnos c08 — s =1 | 003 1 [}-————a— 1A AU
TUS | LUy 06E'L | %Z€ | conpoa ———<&— 94V Gzry = Y o=] — 1m0] w
(4 7] [$1] £900 | 20 s Iry 2 —_ . =] = [ooo%i
9968 | »98 960 J 051 | ‘wepqeno] —¢— o — 2| - os% —gogi)
rwnes [$600 | S6T 0 a N0 “d—oges—: - — |
zisie] vo9: | rese | trer] yamioy T o g e S 8«. °
oy | o9z ooz | 6% - or o —- oS “6oLi i
Teis | ee ozso | so's PRINES] ws | o - N ¥5) ,Szhn_
ress | st se€0 | °T) t-dr e A ¢ g = : — -dosy ¥
veir | &6 2150 | 108 Jorwspug e WS IVTEEE T e oA] 3 06T ! woy
ceey | 9es 803t |29 [auwegs faze 3 =Ll Y 0 5o
cist | ®w1- 1902 | 619 | wrugn =5 5oz ~ - o3
»et i vtoo |10 weapes ——ien a
[324 1 23] 0 | 1Y uSH 09AH t 23le —I‘lln—.—ﬂu»z —e ey
voee | ecr | ec.s | roc ¥st) . *H™ 0651 ﬁ “of” ook o2
vesz | st | ezBo |1z o1 r | o3 " ot O | 2
Py D T onan oot | » = ————pam | 2
ocot | oot | ooot upsorow dl— "% | 7l uerd
—— v | —e—1on 5o | .
TSR E IR T eR = N2 lwm
[%" 5oy
—— 8 +— (43440 A~
HDADN *+—57; [UIses3N"gaTE w6 .Ml&l. e N gl 2 e
c) - o .
AEISY ey _”.\Jw wils : A wori| o
110°4 Jouing 4—grz A ——e—rna st o v u __ e ¥ G| ¢
:0 ' - = Toeous) z £
SN 04 *—gmr—— 7 = —BEEF| uj2uBg5E Y | = _ 2 F el 1 g
SON D' 5, —55oT] VOB |- = & —e o e
Ly ' &5 [———e— ga1 <= 1y [133
RO’ ——5E oL e oo < —— e O
. K . | - o e
HoA‘jo) 1920 RS . ‘ -
HOAUNEISW +—r—— 7 i e ASH 553 _ ourz
D9AH -4—5857 7111 _l t i : }. 110 AN ey
UPIOYOL ~a—57ET [l 5oe7|® AT ———ooan —] 2
ZeQ 45w 85V ME g —yeid —— oosi| =
— — 0OAY -
1-¥ 18 @—5mr—— ——— o <2 R Ta—— oot
b-dl* *—p5r Tg o o4 o | &
8)0ULI0)I0|d *—p55 : e =Gl —B
ujzueg LHQQM 4 T oozt - I =~ |7 =] oocz _ ——— — 431G AH ook
. ————— O PN o - -l
1j2usg |SUUON -¢—prry :) 00l = e — — 100N o 2 lep
USH 4557 1 wM‘“. U L7 “ @303 —gor “
-— -
..:m”MM 453 (1200] —H o — ¥s7 ot - = < = —_— “m.“ —ooe -
~—5Er _ L — Sl vt SO
9d7 g5 0age ¢ G —priy— —
- o4

1209 WABA 4 1205 13U

FIGURE 4.1 The Process Flow Chart for TUPRAS Izmit Refinery

18

The extra class libraries used in the object oriented design of the AREMOS system
are Borland Container class library [46] and Borland ObjectWindows class library [41].
Microsoft Windows is not an object oriented operating system, nevertheless ObjectWindows
provides a consistent object oriented platform forprogram development under Windows.
Appendix A gives detailed information on these libraries and the compiler.

AREMOS modeling system is not intended to be directly used in TUPRAS Izmit
Refinery, but is a prototype, aiming to bring the ideas together from VIM and from
mathematical programming modeling for refineries. The system, proposed as a solution to
the problems of the management of the refinery, is not claimed to provide the best visual
interactive representation scheme, actually there are no objective measures to assess which
representation is better [33j. It is rather aimed to establish a sound basis for the development
of a real refinery mathematical programming system. In this sense, the object oriented nature
of AREMOS has the desired characteristics; it is easily extendible, new modules can be
added and old ones-can be modified or canceled, it easily manipulates the interface and data,
constructing one-to-one relations between interfacé objects and the corresponding data, and
new visual utilities can be easily added provided that they are supported by Microsoft
Windows. As an indication of its consti_iuting a sound basis for refinery modeling, it is
worthwhile mentioning at this point that the addition of an expert system module and a
simulation module as future projects are already under consideration, and this prototype
system is being considered to provide a healthy platform for such improvements. However
these are not within the scope of this ;;L!dy, and will be cited only as future work.

Finally, AREMOS is designed in such a way that it can be applied to any refinery by
quick modifications, hence it is not specific to TUPRAS izmit Refinery, but rather is a
generic prototype object oriented visual interactive linear programming modeler for
production planning in a petroleum refinery.

19

5. THE REFINERY PROCESS AND MODELING

This section gives a brief summary of the refinery process and its mathematical
model. For more detailed information, the reader may refer to a recent research paper [43],
and to Uhlmann’s paper on linear programming on a microcomputer [10]. Besides,
Bodington and Baker give an extensive bibliography on mathematical programming in the
petroleum industry [1].

The primary inputs of a refinery are different crude oils. Crude oils are supplied by
purchase on the market, and hence have a cost. In addition, their procurement is subject to
market constréints. Crudes are first processed in distillation units, where components are
produced. Two different types of distillation units are used in TUPRAS Izmit Refinery,
these are HP distillation units and Vacuum distillation units. The residual remaining after
crude distillation in an HP unit is fed into a Vacuum unit which refines the residual into new
components.

. The components produced by distillation units can be used as feedstock for other
proczsses, or can be blended into end products. Heavy components tend to be reprocessed
whereas light ones are more directly blended into end products. The processes for heavy
products primarily include chemical reactions with catalysts under high temperatures or
pressures. For these processes, yield tables give the nature of component input, nature of
component output, and the relationship between inputs and outputs. These processes are
performed in FCC (catalytic cracking unit), HCC (Hydro-cracking unit), CCR (Unleaded
Gasoline unit), Platformer, Unifier, Desulphurizer, Hysomer and LPG (liquefied petroleum
gas processing) units in TUPRAS [zmit Refinery. Apart from the own production of the
refinery, components can be imported for processing in these units or for blending,

The final step in oil production is the blending of components into end products.
Most of the end products should conform to some specification limits, such as viscosity,
sulphur content, density and octane number limitations. The end products within these
limitations are obtained by blending different products with different specification levels.

To model the refinery as a linear program, variables, constraints, and an objective
function are defined. Variables represent the quantities of material flowing at each stage of
the process. Quantities are expressed in volumes, densities are incorporated wherever
weights are used. A variable corresponds either to a real product flow or a part of real flow
which is needed in modeling blending processes (ie. the amount of product i used in blend
P-

Constraints are the mathematical expression of material relationships within the
refinery. They express the process description, the quality description and other restrictions.

20

Process description equations are mostly material balance equations, yield equations or unit
capacity equations. These equations describe the whole product flow scheme in a refinery
process network. Quality description equations are written for blending operations. Certain
specifications are set for products such as minimum and maximum octane levels. Since each
blending component has a different level in each type of quality, the blend has to match the
specifications for the product. Qualities are blended by either weight or volume: For
example, sulphur content specification can be written as a linear equation using weights of
the blended products. Restrictions are the limitations on the amount of crude input, import
products and final products. There are more complicated restrictions which are not
implemented in this study. For instance, in some cases the proportion of each crude, or a
combination of crudes in the total feedstock, is limited according to certain regulations. Also
there are limitations put on the rated combination of components blended into one single
product as a percentage of the total blended weight [10].

The objective function driving the linear programming model is the maximization of
the daily net profit for the refinery. The results are projected over the planning horizons, for
instance 3 or 6 month periods. Only variable incomes and profits are included in the
derivation of the daily net profit. Incomes are essentially due to the sales of products. Costs
are the prices paid for raw materials (crude oils) and components, and the costs of running
the refinery process units.

AREMOS lets the user model the refinery production visually on the screen without
any need of refinery mathematical programming knowledge. The user should only have
basic refinery %ngineeﬁng knowledge to construct the refinery model and enter the associated
data. AREMOS maintains a hidden object oriented model of the visual refinery model, and
generates the mathematical constraints and objective function through the objects of the
hidden model. Subsequent sections explain this process in detail..

22

management, database management and optimization management duties. As depicted in
Figure 6.1, it maintains an internal object oriented representation of the visual refinery
production model. This representation consists of refinery unit objects, product flow objects
and the refinery object which maintains units and product flows. These objects, in turn, have
interface, database and optimization functions. The object oriented management system
performs its duties by means of the functions of these objects. The object oriented
management system retrieves the user messages from the interface, such as menu selections
and mouse clickings, and gives proper responses. [t communicates with the objects of the
refinery network model to perform the required operations.

The optimization module of AREMOS is shown as the third layer in Figure 6.1. It is
an optimization software package, hence it is a distinctly separate part of the system. The
object oriented management system prepares the mathematical programming model using the
data stored in the objects and sends it to the optimization module to obtain the optimum
results. After getting and refining the results, it presents them to the user.

The following three sections examine the user interface, the object oriented
management system and the optimization module. It should be emphasised at this point that
the user interface part is not a distinct module of AREMOS. It is fully managed by the object
oriented management system. On the other hand, they are viewed as separate layers of the
system and covered under separate topics in the following sections. This is primarily due to
the fact that such a conceptual differentiation help assess the AREMOS system from the
user's point of view and also the programmer's point of view. The visual interactive user
interface part concerns the user's side and the object oriented management System part
concerns the programmer's side of the AREMOS system.

6.1. The User Interface

As many other Windows applications, AREMOS appears on the screen as a big
window frame with a menu bar. It is basically used through selecting menu options and
clicking the visual objects on the screen by a mouse. The refinery models appear as multiple
overlapping windows within the outer window frame of AREMOS. Only one of these
windows is active at a time, but the user can easily shift from one window to the other, with
this, the user is able to deal with more than one visual refinery model simultaneously.

—

e e e e s] v .
i File Edit U_l1lt Flow Tpels Optimize Inputs Window elp _
=1 TR c:\bnrlandc\,bumktsﬂdemod net . e M ot |
e s S P R ’“E:E’é’%‘}i%%%?ﬁ&&%‘*&f Avisll |
Kero Tank D ipgl |t
e »H |-
| = S n o Piat ‘iP,':
3BY 3BP nE

HVBO

HVBO Tank

FIGURE 6.1.1 A View of the Sample TUPRAS izmit Refinery Model Developed in
AREMOS

A refinery modeling window supports the construction of a network based
representation of a refinery production scheme. This representation consists of graphic icons
and graphic arrows standing for refinery process units and product flows respectively.
Figure 6.1.1 illustrates a sample model generated for TUPRAS Izmit Refinery. The whole
modeling frame can be thought of as a big sheet that doesn't fit into a window, therefore
only a portion of it is displayed at a time. The user can scroll through the model and reach
any part of it via scroll-bars. A zooming utility is also provided to overlook the generated
refinery scheme. The zoomed representation covering the entire model of TUPRAS izmit
Refinery is depicted in Figure 6.1.2.

The menu bar provides model constructions tools, file management tools, and
mathematical programming model generation and optimization tools. Besides these options
that are central to refinery modeling process, an online help option and standard window
handling options (ie. for tiling or cascading the refinery modeling windows) to facilitate
screen management are supplied in the menu.

24

= F ﬂlen Edﬂ Un!tElow Iools Optlmlze - lnputs ﬂindo\v 'Help

FIGURE 6.1.2 A Zoomed View of the Sample TUPRAS izmit Refinery Model in
AREMOS

Most of the main menu options appearing in Figure 6.1.1 are used for opening pull-
down sub-menus, thus represent categories of operations. 'File' menu option provides the
file management utilities for refinery models. These utilities essentially enable the user to
save a refinery model as a file, and to retrieve it later for further work. The pull-down menu
options lying under the 'File' are namely 'New', 'Save', 'Save As', 'Close All', Delete’
and ‘Exit'. By selecting these, the user can generate a refinery modeling window, save the
active refinery modeling window, save the active window with a new name, close all
windows, delete a refinery model file, and exit AREMOS, respectively. In addition to the
'Close All' option, the user can also close a specific refinery modeling window by selecting
the 'Close' option provided in the standard Control-menu box positioned at the upper left
corner of the window.

The 'Edit’ option has 'Delete’, 'Copy' and "Paste’ as its pull-down menu options,
however only Delete' is implemented for the time being. In order to delete a flow or a bnit,
the user first selects this option, then clicks on the flow to be deleted. When the Delete’ is
selected, the cursor changes to a cloud shape to indicate the deletion phase. This phase ends

when the user actually deletes an object or clicks an empty space on the screen. The 'Copy’
and the 'Paste' can be implemented for carrying one or multiple screen objects from one
network modeling window to another.

The 'Unit' option provides a long pull-down menu of all available refinery process
unit types. The 'Flow' option, on the other hand, has no sub-menu and selected directly.
The "Unit' option together with the 'Flow' provide the means of developing a complete
refinery production scheme on a refinery modeling window.

Refinery model construction starts with generating an empty refinery modeling
window by selecting the 'New' from the 'File' sub-menu. Addition of a new refinery unit to
the model is performed by selecting a unit type from the 'Unit' pull-down menu and clicking
on the window. As a result, the corresponding unit object is created and displayed with its
representative icon on the window. The place of a unit icon can be changed later by dragging
it to a new position. If the unit has inflows or outflows, the associated flow arrows are
automatically moved with the unit icon.

A product flow connection is generated by selecting the 'Flow' option and indicating
first the outflowing and then the inflowing refinery units by clicking on their icons. Then the
product flow appears as:a straight arrow between the associated {init icons. Later the flow
arrow can be given any convenient S-shape by clicking on a point on the arrow and dragging
the point. This helps t()?generate a neater visual network format. Also a flow can be directed
to a new unit by dragging its arrow head onto a new unit icon. In some cases, a flow
connection might be invalid, then the flow can not be created and the user is warned abouiﬁ:
the error. As can be noticed, creating units and flows properly is enough to generate a
visually complete refinery network.

The Tools' option has "Zoom in' and Zoom out' options in its pull-down menu.
The user can have a zoomed view of a refinery network by selecting the Zoom in' option,
but no manipulation is allowed in the zoomed state. The user should select Zoom out' to
turn to the normal view and continue the modeling process.

The 'Optimize’ option provides the sub-menu for optimization utilities. These utilities
are responsible for establishing the interface link between the visual refinery model, which is
known to the user, and the associated mathematical model, which is managed behind the
scenes by AREMOS.

'Compile’, Run' and 'Report’ are the menu commands provided under the
'Optimize' menu option. These commands can only be used after a refinery production
scheme is completely developed. This requires that enough data be input to the refinery
model, which is performed through dialog boxes as will be discussed later in this section.
Nevertheless the 'Compile' command first checks the possible modeling errors and missing
parts in the developed model. If the model is validated, the mathematical programming
model associated with the visual refinery model is formulated and saved in a file. The 'Run’

command first compiles the model if it has not been compiled yet, then runs the LINDO
optimization package and sends the mathematical mode] file to LINDO for obtaining the
optimum production results. The Report' command takes the optimal solutions from
LINDO and reports the results after a pre-processing. This is a simple report utility which
states whether the mathematical programming model results in an infeasible solution, an
unbounded solution or a feasible solution. If the solution is feasible, it reports the objective
function value and the optimal values of the important variables which are the amounts of
product flows between refinery units as well as the amounts of crude oils, component
exports and final products. Figure 6.1.3 illustrates the optimal results reporting dialog box
appearing after optimizing the sample model of the TOPRAS izmit Refinery.

G. BLERDIRG SYATION
- | NMOUNT OF NAPMTA USED IE PLATFORMATE 1863.9091
|AMOURT OF WCH USED IR PLATFORMATE 545.7953
;| AMOURT OF WCE USED IN PLATFORMATE o
' | AMOYRT OF PLAT USED IN PLATFORMATE o
. | AMOUNT OF PLAY USED IN PLATFORMATE 0
.| AMOUNT OF HAPKTR USED IN PREMIWM GASO g
- .|AMOUBT OF WCR USED IN PREMIUM GRSO 9.888B9
| AMOUNY OF WCH USED IN PEEMIUM GASO a
/| WSOURT OF PLAT WSED IN PREMIUM GASO 1.1111
_|AMOUNT OF PLAY WSED IN PREMIVUM GASO L]
| |RMOYNT OF HAPHTA VSED IN NORMAL GASO o e
- {AHOUNY OF WCH USED IN HOEMAL GASO 10 o
| AMOUNTY OF WCH USED 1IN NORMAL GRSO 0 b E
.| KHOYUNT OF PLAT WSED IN ROEMAL GASO 0 -; 3

FIGURE 6.1.3 The Optimal Results Reporting Dialog Box for the Sample Refinery Model

As a typical property of Windows operating system, data exchange is realized
through dialog boxes in AREMOS. Units and flows of a refinery contain the essential part of
the data, therefore most of the refinery-specific data exchange is realized through dialog
boxes that are related with the screen objects. The associated dialog boxes are opened by
double-clicking on these network objects. Figures 6.1.4, 6.1.5 and 6.1.6 illustrate the
dialog boxes of a gasoline blending unit, of an HP distillation unit, and of a product flow
going into a blending operation. These units belong to the sample TUPRAS izmit Refinery
model depicted in Figures 6.1.1 and 6.1.2.

27

FIGURE 6.1.5 The Appearance of an Input Dialog Box for an HP Distillation Unit

FIGURE 6.1.6 The Appearance of an Input Dialog Box for a Product Flow

All these dialog boxes have similar appearances, because they make use of the
standard Windows data exchange resources such as edit boxes, list boxes, buttons, etc.
Note that pressing the TEL, HELP, and UTILITY buttons in these dialog boxes results in
opening of additional dialog boxes. For instance, Figure 6.1.7 illustrates the utility dialog
box opened as a result of pressing the UTILITY button in the dialog box of the HP
Distillation unit, which is given in Figure 6.1.5. Usage of such subsidiary dialog boxes
through buttons are implemented in most dialog box designs.

The remaining menu options that are not covered yet are 'Input!, "Window' and
'Help'. Briefly the Tnput' provides sub-menu options for entering general data about the
refinery production scheme. The 'Window' provides 'Cascade’, Tile' and 'Arrange icons'
options for rearranging the shapes of refinery modeling windows. Finally 'Help' provides
general help on refinery modeling.

As a general principle, the interface of AREMOS guides the user throughout the
modeling process. It checks the validity of the construction at any step, and communicates
feedbacks given by the object oriented management system in case of any dangerous or
infeasible construction attempt. An overview of the associated model construction rules will
be given in the detailed explanation of unit and flow classes. For example an error message
appears with necessary explanations if the user tries to create an invalid flow connection or
enter invalid data in a dialog box. Also help buttons appear in almost all dialog boxes to

provide the user with on-time help about the operations related with the active dialog box (ie.
the help button in the gasoline blending dialog box in Figure 6.1.4).

FIGURE 6.1.7 The Appearance of the Utility Dialog Box for an HP Distillation Unit

An important characteristic of AREMOS is that it virtually eliminates the need for
mathematical programming expertise in model construction, rather encourages the user to
use his/her refinery engineering knowledge. Furthermore its interface doesn't permit the user
to see or intervene with the mathematical programming model. Such an interface is easily
achievable in refinery modeling, because petrochemical operations can be directly modeled
as mathematical relations formulated in the form of well defined functions. Consequently,
AREMOS generates the linear programming model using the available data without any
mathematical programming guidance of the user.

30

6.2. The Object Oriented Management System

The object oriented management system of AREMOS has three basic components:
The interface management component, the database management component and the
optimization management component. These components and their relations with the

optimization module, the interface and the refinery network models are illustrated in Figure
6.2.1.

USER INTERFACE
I Y

INTERFACE
MANAGEMENT
COMPONENT

DATABASE
MANAGEMENT
COMPONENT)

e

OPTIMIZATION
MANAGEMENT
COMPONENT

INPUT
OBJECT ORIENTED MANAGEMENT SYSTEM MSEEEL
OUTPUT
SOLUTIONS
FILE
OPTIMIZATION
9 : MODULE

REFINERY NETWORK MODELS (LINDO SOLVER)

FIGURE 6.2.1 The Components of the Object Oriented Management System

The object oriented management system runs in an event driven way, that is, it runs
according to the events produced by the user on the interface. Moving a refinery icon on the
screen, for instance, is a user-driven event, and the interface component interprets such
events and generates the related messages to be processed by the other components or by

31

itself. Turning back to the previous example, moving an icon requires the tasks of detecting
the specific icon and its underlying refinery unit object, erasing the icon and drawing it in its
new position, and updating the window coordinates of the refinery unit object. These require
a series of message dispatches between interface management and database management
components.

Database management and optimization management components have no direct
connection with the interface, instead the interface management component processes every
kind of interface event and sends the necessary messages to these components. Database
management component is responsible for maintaining refinery models with respect to the
user interface events. It also performs refinery model storage and retrieval operations. As
discussed in the user interface section, it is able to maintain multiple refinery models
simultaneously. Optimization management component has the responsibility of processing
the data of a refinery model kept by the database management component and producing the
corresponding mathematical programrhing model as a text file. It also establishes a link
between these different model representations for further work. If errors are encountered in
this process, interface management is invoked for the display of the generated’ étror S
messages. Oncé the validation and construction of the mathematical programming model is
successfully completed, the user cag run this model. When a run command is given through
the interface, the optimization management comporient sends the generated text filé to the
optimizer which is a distinct module of AREMOS. The optimizer is an LP solver package,
which solves the linear programming model and presents the optimal solutions as a text file.
Using the link with the visual interactive model, the optimization management component
interprets the optimum results and prepares an easy-to-understand report file. Finally these
results are presented to the user.

This component-wise view of the management system facilitates better understanding
of the functioning of AREMOS. However, the system is designed using an object oriented
approach, and object oriented systems put emphasis on the data, not on the functions. The
functions to be performed by the system are designed as behaviors of objects, so that the

- data and the functions to be applied on the data are encapsulated in the objects. Therefore,
the three basic functional components of the object oriented management system need further
review in this respect.

In fact the design of the management system doesn't include any distinct
components. Instead, the interface management, database management and optimization
management functions are implemented as the methods of the refinery network objects,
refinery unit objects and product flow objects. As mentioned in the previous sections, these
three object types are central to the design of the management system, yet there are plenty of
other object types (classes) used in the design. The class hierarchy, the data structures in

32

which the objects are maintained, the message passing rules, and the arrangement of
relations with the operating system will be examined in detail in the succeeding sections.

6.3. Optimization Module

The optimization module of AREMOS integrates an optimization software package
for solving the linear programming model associated with the visual interactive refinery
model that is produced on the interface. However this study does not put emphasis on the
selection of a specific software package, nor on the communication of the object oriented
management system with such a package. Rather, what is needed is merely a linear
programming solver for solving the refinery linear programming model and to obtain the
optimal production results. The LINDO optimization package is used in AREMOS for this
purpose, but this is an arbitrary selection. Later, it can be replaced with any other solver. In
fact, ideally pre-written linear programming solver codes should be integrated into
AREMOS, and such a replacement of LINDO is planned as a future improvement in
AREMOS.

LINDO solves linear, integer, and quadratic programs, and accepts symbolic or MPS
formaited input. It has a user interface which is integrated with a solver. It comes with a’
number of commands, which can be used interactively. However, its usage is restricted in
AREMOS. It is used just as a linear programming solver. LINDO is very appropriate for this
purpose since it requires almost no specific language knowledge. The optimization
management system of AREMOS produces the linear programming model of the refinery as
a symbolic formatted LINDO input file in which all constraints and objective function are
written explicitly as algebraic expressions. However, no LINDO specific command or
modeling method is used in the derivation of the mathematical model (except MAXIMIZE
and SUBJECT TO commands), therefore mathematical program derivation methods of
AREMOS can be easily adapted to any other optimization package. LINDO provides the
utilities for batch runs and sensitivity analysis, yet these are not used in the prototype
system.

The optimization algorithm in LINDO is a black box in the sense that once the user
invokes the algorithm, it runs to completion. This is the common practice in many
optimization packages for linear programming although some of them allow step by step
execution of the algorithm. Nevertheless, such a step by step optimization is not the aim in

33

AREMOS, rather each execution should be regarded as a step in the modeling process.
Therefore refinery modeling and optimization include multiple runs of the system. Each
successive run aims to have better fit for the real refinery process, and for better objective
function values.

&

34

7. DESIGN CHARACTERISTICS OF THE SYSTEM

7.1. Essential Characteristics of the Operating System

Microsoft Windows version 3.1 is the target operating system for the system
development of AREMOS. It runs under IBM-compatible personal computers. The
Windows operating system provides a graphic-based multitasking windowing environment
that allows the programs written specifically for Windows to have a consistent appearance
and command structure.

Windows has three major capabilities: a graphics-oriented user interface, hardware
independence, and a multitasking capability. Individually, none of these capabilities is new
itself, but attempting to combine all three of them into a single microcomputer operating
environment is a new concept for operating systems.

Windows partitions the screen into rectangular windows. Each application program
occupies a window on the screen, and can use many other windows for different purposes.
Each window has a border and a client area, may have a title bar, a system menu, minimize-
maximize boxes, a scroll bar, a menu bar. The client area of a window is the primary output
area for a program. Windows provides several built-in routines that allow the easy
implementation of pull-down menus, scroll bars, dialog boxes, icons and many other
features of a user friendly graphical interface. These provide a standardized user interface for
application programs running under Windows, which are also called Windows applications.

Another capability provided by Windows is hardware device independence.
Windows liberates the programmer from having to account for every possible variety of
monitor, printer, and input device available. As a result, the program developer interacts
with Windows rather than with any specific device. Therefore it is Windows's responsibility
to accomplish the tasks required from the programmer for connecting to existing devices.

Multitasking capability is the most important feature of Windows from the
programmer's viewpoint. The multitasking operating environment allows the user to have
several application programs, or instances of the same program, running concurrently.

Memory is an important shared resource under Windows. With more than one
application program running at. the same time, each program must cooperate to share
memory in order not to exhaust the supply. Also, as new programs are started up and old

35

ones are terminated, memory can become fragmented. Windows is capable of consolidating
free memory space by moving blocks of code and data in system memory.

Another important shared resource is input from the keyboard and mouse. It is for
this reason that C++ language statements for direct input and output are not used for
Windows programming. Windows specific function calls are used instead. Under
Windows, an application does not make explicit calls to read from the keyboard or mouse
input devices. Instead, Windows receives all input from the keyboard, mouse, and timer, in
a system queue. It is the queue's job to redirect the input to the appropriate application
program by copying it from the system queue into the program's queue. At this point, when
the application program is ready to process any input, it reads from its queue and dispatches
the right message to the correct window.

The principal means used to disseminate information in the multitasking environment
is the Windows message system. In fact, Windows is a message-based operating system
since all its functioning is realized through dispatching messages. From the program's point
of view, a message can be seen as a notification that some event of interest has occurred that
may or may not need a specific action. These events may be initiated on the part of the user,
such as clicking or moving the mouse, changing the size of a window, or making a menu
selection. Messages can also be generated by the application program or Wifidows itself.
The principal effect of this processing style on the programmer's side is that the program
written for Windows should be totally oriented toward the processing messages. A program
must be capable of awakening, determining the appropriate action based on the type of
message received, taking that action to completion, and returning to sleep.

In order to equip the programmer with the necessary tools to program under
Windows, Windows provides an application program with access to about 450 function
calls. Nevertheless programming under Windows requires a complete comprehension of
Windows concepts, functions and message processing rules. Borland C++ compiler used
for developing the AREMOS system provides ObjectWindows as an alternative way for
developing Windows programs. Borland's ObjectWindows provides a powerful object-
oriented library to the standard Windows programming environment. It is ‘a complete
collection of objects that describe standard Windows features. Appendix A gives detailed
information about ObjectWindows.

36

7.2. Object Class Hierarchy

A well-known characteristic of object oriented programming is the inheritance
process by which one object can acquire the properties of another object. If an object is
derived from another object, the former is called the parent and the latter is called the child
object. A child object inherits the data and methods of its parent, and has extra specific data
and methods. With multiple inheritance, an object may have more than one parents and
child. In this way additional specification objects can be derived from general objects and
these objects can be hierarchically classified.

An object class hierarchy, which is also known as an 'inheritance tree', shows the
overall parent-child relationships between the objects used in an object oriented design, and
is very helpful for having a general view of the design. y

The object class hierarchy tree of the developed system is depicted in Figure 7.2.1. A
basic design characteristic that can be grasped at first sight from the figure is that all the
relations between child and parent objects are of single inheritance, that is no child objeéi has .
multiple parents. All object classes in the system derive from a base object class named n
'Object’. Object is the base class for all Borland ObjectWindows derived classes and is*
defined in Borland Container class liBrary. There are also other base classes that belong ¢o
these class libraries which have no importance in this design, and hence not shown in the
hierarchy tree. Object, on the other hand, is essential to the design, and used as the root for
all the classes generated for the development of the refinery modeling system. Having such a
root class provides plenty of advantages as will be discussed later.

TWindowsObject, TWindow, TMDIFrame, TMDIClient, TModule, TApplication,
TDialog, TFileDialog are ObjectWindows classes which are central to the design of the
system. RefApp, RefMDIFrame and RefMDIClient are derived from these classes, and are
responsible for the management of the overall system and establishing the connection with
Windows. TDialog class serves as a base for derived classes that manage Windows dialog
boxes. Derived dialog classes are associated with dialog resources, and have methods to
handle communication between a dialog and its control objects. Within dialogs, controls
such as list boxes, buttons, edit boxes, scroll bars allow users to enter data and select
options.

L

37

——TWindowsObject———TWindow————— Network
—TDialog Flow Dialogs
Unit Dialogs
—TFileDialog—RefFileDialog

FileOutputDialog

HelpDialog
—IMDIClient——RefMDIClient
—TMDIFrame——-RefMDIFrame

FlowList
—— Container——Collection List Parentlist-EUnitList

Object— NWObjectList
4 VisualFlow Flow CrudeFlow
NWObject—
L VisualUnit ——— { Tnit
—ChemProcUnit —LPG
NWUtils —~UH
* —Desulphurizer
—Tank — Platformer
—UnitUtils | CrudeTank ~—Unifier
—FCC
TModule—TApplication—RefApp [portTank -ggg
—FinalTank
—Blender —GasoBlender
—HPDist—— VacuumDist
Y _RedirectionPoint

FIGURE 7.2.1 The Object Class Hierarchy of the AREMOS System

Control objects provide consistent and simple means of dealing with all kinds of
standard controls defined by Windows operating system. Control object classes derive from
TDialog, and are frequently employed in dialog designs of the refinery modeling system.
Many TDialog derived classes are used in the design, however only the help dialog, the
refinery file management dialog, and the file output dialogs are shown explicitly in Figure
7.2.1. In addition to these, Flow Dialogs' and 'Unit Dialogs' in the class hierarchy refer to
two groups of derived dialog classes which are used in conjunction with refinery unit and
flow classes. Borland Container class library provides many data structures in the form of

38

object classes. List, DoubleList (doubly linked list), Array and BTree (binary tree) classes
are just a few of them. Only List from this library is employed in the system design of
AREMOS. It is used as the parent for the list classes of the system. List object requires that
all the objects that will be kept in the list should have Object as their parent object. The
benefit of this is that it can contain heterogenous objects, that is objects from different
classes, provided that they have Object in their parental roots. This condition is satisfied by
every object in the object class hierarchy of the AREMOS system.

Borland Container class library provides many data structures in the form of object
classes. List, DoubleList (doubly linked list), Array and BTree (binary tree) classes are just a
few of them. Only List from this library is employed in the system design of AREMOS. It is
used as the parent for the list classes of the system. List object requires that all the objects
that will be kept in the list should have Object as their parent object. The benefit of this is that
it can contain heterogenous objects, that is objects from different classes, I:Qrovided that they
have Object in their parental roots. This condition is satisfied by every object in the object
class hierarchy of the AREMOS system. : ,

Network derives from TWindow which is a general purpose window class whose
instances (objects) can represent different types of windows (ie. main, pop-up, child
windows) of a Windows application. Network is the underlying object of a visual refinery
modeling window. Network inherits its windowing characteristics from TWindow and adds
refinery data and methods. The basic duty of a Network object is the maintenance of flow
objects and unit objects and their interface connections. These unit and flow objects appear
as icons and arrows on the refinery modeling window.

NWObject inherits its properties from Object, and is the parent object class of all unit
and flow classes. VisualFlow and VisualUnit derive from NWObject, and supply the visual
properties to their offspring which are Unit and Flow classes. Unit object class models the
general characteristics of a refinery processing unit and serves as the parent of all refinery
processing unit classes. A sub-category of refinery units is ChemProcUnit. ChemProcUnit
possess the general modeling characteristics of the chemical processing units. The most
significant of these characteristics is the usage of input-output yield tables for mathematical
modeling. Flow object class models the refinery product flows, and is the parent of
CrudeFlow class. CrudeFlow utilizes the visual properties of Flow, however represents not
only one flow but multiple crude oil flows.

Many of the refinery units have variable running costs which depend on the amount
of unit input charge. All the cost items used in the refinery, which are called unit utilities, are
modeled in UnitUtils class. A unit object with utility consumption holds an embedded
UnitUtils object for keeping its utility data. NWUTils is very similar to UnitUtils and used by
Network to keep general information on the utilities.

39

There are also other supplementary classes not appearing in the class hierarchy.
Many of the objects make use of dialog box objects derived from TDialog for interface data
exchange. Utility dialog boxes as well as flow and unit dialog boxes are among them.
Moreover, the Network object, some unit objects and CrudeFlow object use internal objects
for keeping their data. CrudeOil used in an CrudeTank unit object and CrudeQilYields used
in an HPDist unit object are good examples of such internal objects.

7.3. Design of the Object Classes

This section aims to give the design of the object classes in terms of their data and
methods. Some classes are considered under groups and some examined one by one as
needed. In any case, data and methods are fiot explained explicitly, instead a general view of
them is given with respect to the lmportant design characteristics. On the other hand, just
explaining the design of classes Jn this way is not enough to describe how the system
maintains the objects at run time. Therefore this topic is separately examined in the next
section.

Network, Unit and Flow classes are the central classes of the AREMOS system
design, and the three management components of the object oriented management system are
implemented through these classes. Therefore each of these classes have interface
management duties, database management duties and optimization management duties which
are covered in the following associated sections.

An important point to emphasize before describing detailed class designs is that C++
language, with which the system is written, has its own means for implementing the
principles of object oriented programming. In C++, the methods of the objects-are declared
as functions, and message passing process between objects is performed through calls of
object functions, which are also called the member functions. Suppose that A is an object of
a system. In order to receive messages from other objects, A declares some of its member
functions as public, which become accessible by other objects. By doing so, A sets a
message receiving protocol, and other objects can only use this protocol to send a message
to A, thus the inside of A is encapsulated from the outside. If object B of the same system
wants to send a message to A, it can call one of the public member functions of A. An object
can also have hidden functions for its internal usage. Note that the terms 'method' and
'function’ are used interchangeably in the following object class descriptions.

40

Another point that may lead to confusion is the difference between the ferms ‘object'
and 'class’. An object refers to an instance of a class, for example Kerosene can be an
instance of Flow class. It is the objects that exist, or 'live', during the execution of a system.

The principle of polymorphism is implemented in C++ by means of virtual
functions. A virtual function has a definition in a parent class, but its children may redefine it
differently for their own purposes. Therefore a virtual function is a common ‘interface to
similar group of tasks in child classes. This encourages the programmer to define generic
virtual function such as 'draw', 'write', 'erase'. Each child has its own implementation for
these generic messages.

The term ‘'abstract class' is frequently used in the following design descriptions, and
refers to an important concept in object oriented programming. Some classes cannot be
instantiated in C++. These are called abstract classes which serve as an umbrella for related
classes. As such, an abstract class has few if any data members, and some or all of its
member functions are pure virtual functions. Pure virtual functions serve as placeholders for
functions of the same name and signature intended to be defined eventually in derived
classes. Abstract classes also have member functions that have certain definitions Children
classes can use these functions directly, or can redefine and then use them. Abstract classes
help the programmer to generate a more robust and reusable class classification, and make it
much easier to extend and modify an object oriented system.

The class hierarchy of AREMOS includes Object, NWObject, ParentList,
VisualUnit, VisualFlow, Unit, and ChemProcUnit as the abstract classes of the system and
no instances of these classes exist at run time. They contain the data and abstract methods
common to all child classes. Moreover, classes belonfging to the two Borland class libraries
are not instantiated at the system run time. Rather, they are treated as abstract classes and
instances of their derivatives are made and used throughout the system run time.

The following is the description of the data and methods of the classes that appear in
the class hierarchy diagram. Although the classes are examined under separate headings,
cross-references among class descriptions are frequently needed, because it becomes
difficult to examine a class without knowing its relations with its parents and children, and
with other classes.

7.3.1. Object Class

At the top of the class hierarchy is the Object which is the abstract base class for all
the classes in the system as well as for the Container class library and the ObjectWindows
class library. Keeping such a common parent class is very useful in manipulating objects

41

through pointers. In C++ language, a pointer type to a parent class can be successfully used
for pointing child classes. Therefore operations on child classes can be performed through
parent pointers without any need to know the actual child class of the object which is being
pointed to. This, of course, necessitates deliberate definitions of object methods.

Since Object is the base class for all classes, an Object pointer can handle any class
of object used in AREMOS. A significant benefit of this is the ability of the list classes to
keep different classes of object, ie. different unit objects such as an HPDist object and an
FCC unit object.

Object contains one pointer data type for error handling, and pure virtual functions
that provide the basic essentials for all derived classes in the Container class library including
List class. 'isA' and 'nameOf ' are the names of two such functions which are frequently
used in the system design. They return a unique number and a unique name to identify the
specific child class of Object.

7.3.2. RefApp, RefMDIFrame and RefMDIClient Classes

AREMOS maintains one instance from each of RefApp, RefMDIFrame and
RefMDIClient classes throughout its life cycle. The RefApp object establishes the connection
of AREMOS with the Windows operating system. The RefMDIFrame and RefMDIClient
objects work under the RefApp object, and are mainly responsible for the overall interface
management of the AREMOS system.

The first requirement of an ObjectWindows application is the definition of an
application class derived from TApplication class, which is derived from TModule.
TModule defines behavior shared by both Windows library and applicatio‘fi' modules.
TModule member functions provide support for window memory management and error-
processing. TApplication class supplies the basic behavior required of all Windows
applications.

RefApp is derived from TApplication as the application class of AREMOS. It inherits
the behavior of creating and displaying the application's main window, initializing the first
instance of the application for any task, processing the Windows messages the application
will receive, and closing the application.

RefMDIFrame and RefMDIClient are derived from TMDIFrame and TMDIClient,
which are the multiple document interface (MDI) classes of ObjectWindows. MDI is an
interface standard for Windows applications that allow the user to simultaneously work with
many open documents. In this sense, refinery networks are the documents of AREMOS.

42

The user can have many open refinery network windows, simultaneously model different
refinery schemes on these windows.

AREMOS constructs one RefMDIFrame object and one RefMDIClient object. The
RefMDIFrame object appears as the main window of AREMOS, which is hold by the
RefApp object. The member functions of the RefMDIFrame object are concerned mainly
with construction and management of MDI child window objects, that are the Network
objects each has a window representation on the screen. They also manage the
RefMDIClient object and menu selections. The RefMDIFrame object keeps Network objects
in a hidden list and provides the basic member functions to manage them. On the other hand,
the primary role of the RefMDIClient object is behind-the-scenes management of Network
objects.

RefMDIFrame and RefMDIClient bring in a great modeling ease by providing the
programmer with an interface for MDI program development. They manage the burdensome
part of the Windows-related operations, and the programmer only deals with the essential
body of the program without bothering the rest.

7.3.3. Dialog Classes

The dialog classes of AREMOS are designed for interface management. They can be
regarded as the interface classes of the AREMOS system. They define the behavior of
dialog boxes through which most of the data exchange between the user and the system is
realized.

A dialog is an interface element whose creation attributes are specified in a Windows
resource file, which is prepared separately from the C++ source code. The creation attributes
in the dialog's resource definition define the appearance and placement of the dialog and its
controls such as buttons, list boxes and edit boxes. However the resource definition does
not specify the behavior of the dialog, instead it is described in the C++ code.

Dialogs are used as child windows within a main window to perform specific input-
output tasks. There are two design options regarding the implementation of dialogs in an
object oriented fashion. As the first option, all the objects take on the control of their own
dialog communications. However this requires an object to dispatch Windows dialog
messages to a dialog, and receive the user messages from the dialog. Consequently this way
is burdensome and lengthy.

The other design alternative makes use of the TDialog class and control classes (ie.
ListBox, EditBox, Button classes) of ObjectWindows. TDialog class serves as a base for
derived classes that manage Windows dialog boxes. Its member functions enable the

43

programmer to handle communication between a dialog and its controls. Moreover usage of
ObjectWindows control classes make it much easier to display and retrieve data in an object
oriented fashion. To take advantage of these features, this alternative is chosen in the dialog
designs of AREMOS.

A drawback of this choice is that it necessitates the generation of several dialog box
classes. Nevertheless the resulting modeling ease compensates this disadvantage. The dialog
classes are designed in such a way that a dialog class serves either to a class or to a group of
related classes. For example a dialog class is derived from TDialog for each of Tank,
CrudeTank, FinalTank, Blender, GasoBlender, Flow, and CrudeFlow classes. On the other
hand HPDist and VacuumDist use the same dialog class generated for distillation process,
and similarly all the child classes of ChemProcUnit shares one dialog class. There are also
other complementary dialog classes which are invoked by button presses or menu option
calls. These are used to input data to a specific part of an object, which can itself be an
internal object. The UnitUtils dialog object, for instance, is used to input utility data into a
refinery unit object, and invoked by a button placed on the main dialog box of the unit
object.

Unit and flow dialogs constitute the main body of dialog process in AREMOS.
When a unit or flow is double-clicked on the screen, the corresponding dialog object is
created, and the dialog box appears on the screen. The dialog object has the responsibility of
verifying the user entries. Once the data exchange is over, the dialog box disappears and the
dialog object is deleted.

Z

M = Associated Dialog box

Dialog object counterpart

Object (ie. a unit or flow object)

FIGURE 73.1 Object-Dialog Object Association during Data Exchange

RefFileDlg, HelpDlg and FileOutputDlg dialog classes are designed to fulfil some
general tasks, rather than establishing a connection with an object's data. RefFileDlg is
invoked through File menu commands. It is derived from TFileDlg that allows the user to
choose a file for any purpose. RefFileDlg defines these tasks as opening, 'gaving, replacing,
and deleting a network modeling file. FileOutputDlg is a general purpose dialog class which
simply outputs the contents of a specified disk file in a large dialog box. This is especially
helpful in outputting the optimal results after solving the mathematical programming model
of a visual refinery scheme. HelpDlg is designed for general usage. Help buttons are
provided in unit and flow dialog boxes, and a help option is also provided in the main menu
bar for general help on network modeling. When the user requests help through these
selections, a HelpDlg object is created and the name of the specific help file is passed to the
dialog object. HelpDlg object provides a list box and a multi-line editing box on the interface
dialog window. Reading the help file, it fills the available help subtopics in the list box and
demonstrates the corresponding explanation in the editing box as the user requests.

It can be concluded that the dialog objects has a key importance in the design of the
overall system, since first of all, they acts as the interface part of the several objects, and
have many data and functions for visual operations. If dialog objects were not generated all
these functions would be embedded in the real objects of the system. Second, they define the
ways how the data are represented and retrieved; and this determines the effectiveness of the
visual interactive interface to a great extent.

7.3.4. List Classes

List classes of the AREMOS system, which derive from the ObjectWindows's List
class, are designed for performing database management tasks. A refinery network object
maintains its unit and flow objects, which hold the main data of a refinery network model, in
two different list objects. Also, a unit object keeps list objects for maintaining its inflows and
outflows. Section 7.5 can be referred to see illustrations which depict how unit and flow
objects are maintained in list objects.

ObjectWindows's List class implements a linear, linked list. Lists are unordered
collections in which objects are linked in one direction only to form a chain. Objects are
added at the start of a list, but any object can be removed from a list. ObjectWindows also
provides a list iterator class to traverse a list from head to tail to access the objects
sequentially. By using member functions of the List class, any basic list operation can be
performed easily. They release the programmer from the complicated pointer operations
which becomes necessary otherwise.

45

A big advantage of List is that it can contain objects from different classes provided
that they all derive from the base Object class. This is the case in the system design of
AREMOS. This feature facilitates the object oriented design of the system as will be
explained while describing the Network class. Another important feature is that an object
contzined in a List object can also be contained in other List objects, that is, it can belong to
more than one List object at the same time. This type of data management is typically
expected in an advanced data structure library like Container class library, and is inevitably
needed in maintenance of objects in AREMOS.

ParentList derives from List and has added functionality for list operations. It serves
as the base class for UnitList, FlowList and NWObjectList whose instances are produced
and extensively used in the system. ParentList objects are also implemented in the internal
designs of some unit classes to hold internal objects.

UnitList keeps a heterogenous list of refinery unit objects. It has no data part, and its
member functions are aimed to facilitate visual operations such as drawing all units or
searching for a unit at given coordinates. Visual operations are intensively used in the
system, and such list functions reduce the burden of the programmer. FlowList is very
simifar to UnitList, and has functions for visual operations to be performed on the flow
objects. Refinery network object has a FlowList object and a UnitList object to maintain all
units and flows used in the refinery model. Another place where FlowList objects are used is
unit objects. A dnit object maintains two FlowList objects to maintain its input flows and
output flows.

NWObjectList has a totally different function. As can be understood from its name,
NWObjectList is generated to maintain the objects from the classes having NWObject in their
roots. These include all classes of units and flows. NWObjectList is used by Network
objects. Each Network object holds one instance of NWObjectList, and stores a
representative object from each unit class and flow class in it. The main purpose of
NWObjectList is to localize the non-object oriented features of the Network class. This is
explained in detail while examining the Network class. It has also some other usage which is
covered under the topic of unit and flow classes.

Storing units and flows in lists enables the generation of unlimited number of units
and objects, therefore the free memory of the computer imposes an upper bound on the total
number. Otherwise, arrays would be used for this storage, and the predefined size of the
arrays would be an artificial bound for the number of stored objects. On the other hand, lists
keep their members in an unordered sequence which is a handicap for the tasks which need
to be performed with respect to some order of list members. Nevertheless, no such ordered
periormance of tasks on units and flows are needed in the system design of AREMOS.

7.3.5. Network Class

Network objects implement the three functional components of the object oriented
management system. The interface management, database management and optimization
management functions of the system are implemented as the methods of the refinery network
objects. Refinery unit objects and product flow objects also have the same categories of
methods, which are used by the methods of the refinery network objects.

The Network class models the visual environment for modeling a refinery in terms of
its product flows and process units. A Network object is represented as a window on the
screen, and normally contains a network of visual flows and units. The RefMDIApp object
can maintain several such Network objects, which enable the user to model multiple refinery
schemes simultaneously.

Network is derived from ObjectWindows's TWindow class. TWindow defines most
of the fundamental behavior of a Windows's window, that includes the behavior for
opening, closing, painting, and scrolling windows. TWindow also includes the behavior for
command message processing and child window management.

Since Network has TWindow as its parent, it has the graphic functions of TWindow.
Upon these functions, Network adds new data and methods for refinery modeling.
Network provides several member functions for interface management, database
management and optimization management. The data part comprises a relatively small
number of data elements. The main data elements are a UnitList object, a FlowList object
and a NWObjectList object. UnitList and FlowList objects keep the flows and units of the
refinery network. A Network object manages all its units and flows by means of these lists.
Implementation of the NWObjectList will be discussed later in this section. There are also
many supplementary pointers and boolean (binary) data elements defined to carry temporary
information among the member functions of the Network. These can be considered as
internal message carriers.

In essence, object oriented programs perform computations by passing messages -
between active objects. In the system design of AREMOS, Network objects have the
responsibility of determining active objects and passing messages to them. The objects of the
system that can be activated by a Network object are all unit objects, flow objects and others
such as utility objects. As it is the case in many windows applications, it is the user who
actually directs the system and initiates the objects in AREMOS. A Network object receives
user messages through mouse inputs or menu selections, and interprets them. Then it
determines which objects are to be activated and which messages will be passed to these
objects. In this sense, Network is in charge of handling the redirection of messages from the

47

user. For instance, when the user double-clicks an HPDist icon on the screen, the Network
object receives the double-click message and screen coordinates, makes a search in its unit
list and flow list to check if any object is at that coordinates. After detecting the HPDist unit
object, the Network object passes a 'Receive-input-through-dialog' message to it. After this
point, it is the HPDist object's responsibility to perform the necessary dialog operation.
Once this operation is over, the control passes back to the Network object. An active flow or
unit object can send messages to their Network object, or send messages directly to other
- objects. A flow object, for instance, can communicate with its head and tail unit objects. In
any case, when the request of the user is performed, the Network object takes the control
back.

In order to have a healthy object oriented design, the Network class is designed in
such a way that among all unit and flow classes, only Unit and Flow are known to it. In
other words, a Network object cannot distinguish between, for example, an HPDist and an
FCC object, nor between a Flow and a CrudeFlow object. Therefore new unit classes or
flow classes can be derived from Unit and .Flow classes respectively (or from any
descendant), and can be easily plugged into the system. Consequently, unit and flow classes
are designed according to this design consideration. They make use of the principle of
polymorphism, and provide functions that respond differently to the same messages. For
example, an abstract 'Receive-input-through-dialog' function is defined in Unit class, and
each child unit class redefines it for its specific dialog communication.

A detailed view of the object oriented design of the Network class can be given by
examining its function types. As explained previously, the functions of a Network object can
be classified as interface management, database management and optimization management
functions, by means of which the three functional components of the object oriented
management system are implemented.

7.3.5.1. Interface Management Functions. Network interface management functions
establish the connection between the underlying objects such as units and flows, and the
user interface. They receive any kind of user message from the interface, interpret the
message, and dispatch it to the necessary place. The database management and optimization
management functions are deliberately separated from interface management functions in
order to have a more consistent design. Any kind of user message, a mouse-click or a file
menu command for example, is first processed by a distinct interface management function,
then the necessary functions are called. Therefore the database management and the
optimization management functions do not have a direct connection with the user interface.
Network interface functions also have the responsibility of displaying the visual result of an
operation, if there is any.

The variety of operations that can be performed via the interface are explained in
detail in the section reserved for the user interface. For any kind of menu or mouse
operation, there is a corresponding interface management function. Some user interface
operations only require interface functions. For instance, when the user changes the shape of
a flow object, this operation results in calling a series of interface management functions
which communicate with the flow object. However, if the user erases or adds a new flow,
the interface management functions also call database management functions to delete or add -
the flow object to the flow list. Optimization operations, on the other hand, are only
performed through menu commands. Consequently, there are interface menu functions
specifically designed for optimization. When called, these functions invoke necessary
optimization management functions. For instance, when the user selects the 'Compile’ menu
item, the related 'Compile' interface function is activated, and this function calls the
optimization management functions for model validation and mathematical model
formulation.

»
¢

7.3.5.2. Database Management Functions. The database management functions perform the
maintenance of the objects such as addition and deletion of units and flows, but they don't
interfere in the internal data management of any object. Instead, each object manages its own
data. In this respect, the database management functions work on the global data which are
mainly the units and flows.

A subgroup of database management functions deal with file retrieval and storage
operations which are performed through menu selections. Each unit and flow object has its
own saving and retrieving functions. A Network object is saved as a file by calling the
saving functions of each object one by one. Finally supplementary objects such as NWUtils
are saved in the network file. The retrieval operation is the reserve of this operation.

13.53. Optimizatibn Management Functions. The optimization operations are similar to the
file management operations. They are performed through optimization menu commands. The
optimization management functions mainly perform the tasks of validating -the refinery
network model, organizing the preparation the mathematical model, running the model and
reporting the results.

Validation and preparation of the mathematical model are performed by calling the
validation and mathematical program generation functions of the unit objects. Each unit
object produces its mathematical program code and writes them into a disk file specified by
the Network object. The flow objects, on the other hand, do not produce any mathematical
programming code, but provide supplementary data to their head and tail unit objects for this
operation. Appendix C gives the mathematical programming model generated by AREMOS

49

for the representative refinery model developed for TUPRAS Izmit Refinery that is depicted
in Figure 6.1.1.

Once the mathematical program file is generated, a temporary ParentList object,
called 'VariableList', is formed, and each unit object is requested to store the meanings of
the generated variables in this list. The objects stored in the VariableList is of type 'VarExp'
(variable explanation) which is derived from Object class. VarExp is a supplementary object
class with 4 data fields:

(a Variable name produced by a unit;
.(b) Meaning of the variable that is known to the user;
(© Name of the unit object that produces the variable,
(d) Name of the head unit if the variable corresponds to an explicit product flow.

Appendix D gives a list containing the first three fields of these objects that are
produced for the representative refinery model for TUPRAS izmit Refinery.

In the running phase, the mathematical program file, the one given in Appendix C for
instance, is used as the input file to the solver, and the solver is executed. After the optimal
solutions are received from the solver, the Network report functions refine the raw results,
generate their interpretations through the variable explanation list, and display them as a
report. The final report presented to the user after optimizing the representative TUPRAS
Izmit Refinery model is given in Appendix E.

7.3.5.4. Non-object Oriented Features. In practice, it is very difficult to generate a thorough
object oriented design. In the design of AREMOS, there are some situations, in which a
Network object needs to know the exact class of a unit or a flow object. Nevertheless, such
situations rarely arise, and localizing these non-object oriented features seems to be a good
solution. NWObjectList object is utilized for this localization process. A representative object
from each unit class and each flow class is stored in the NWObjectList object in the
initialization phase of a Network object. By keeping such a list, a Network object knows the
exact classes of objects it maintains, but indirectly. As a result of this localization process,
the rest of the program body maintains its object oriented nature. Of course, this design
solution requires special care. File retrieval is a typical operation for which the
NWObjectList object is made use of. All the unit and flow objects of a Network object are
stored sequentially in one disk file, and different classes of objects are distinguished by
reading a unique code number in the retrieval operation. Retrieval of these objects from the
file requires that the Network object should be able to understand these numbers, in other
words, it should know every unit and flow class. Instead of doing the retrieval this way, the
Network object reads the code number and searches the list for a match. When the object

with the same code number is found, the Network object orders it to retrieve the object data
from the disk. Therefore the Network object has the representative object in the
NWObjectList perform the retrieval operation. This is a longer process, but necessary for the
safety of the object oriented desi gn.

Another advantage of the NWObjectList object is that it enables the Network object
to accomplish tasks which are related with the instances of a specific class in an object
oriented manner. A typical example for these tasks is counting the instances of a class in the
system. It has another advantage in handling the visual resources of flows and units. These
aspects of the NWObjectList are discussed in detail under the topic of unit and flow classes.

7.3.6. NWObject, VisualUnit and VisualFlow Classes

NWObject, VisualUnit and VisualFlow classes are abstract classes which are
designed to define the interface data and functions of Unit and Flow classes.

NWObject is an abstract class derived from Object. It serves as a base for VisualUnit
and VisualFlow classes. NWObject has the data to handle the visual resources of Windows
used by unit and flow objects. These resources include pens, cursors, brushes, bitmaps and
fonts. In addition to visual resources, it has a data field which is utilized by the child objects
for keeping the flow and unit names given by the user. NWObject also provides pure virtual
functions for performing visual operations.

VisualUnit and VisualFlow define the visual properties of a unit object and a flow
object respectively. They redefine the pure virtual functions of the NWObject, and have
added data and functions for managing visual operations. VisualUnit controls the appearance
and movement of a unit on the refinery network window. It defines the response functions
to the user's mouse clickings on the unit icon. Likewise VisualFlow controls the
presentation of a flow on the screen, however it has more complicated data structures and
functions in comparison with VisualUnit, since there is a wide range of visual operations the
user can do with a flow on the screen. VisualUnit and VisualFlow strictly define the
behavior of visual units and flows, but are still abstract, because they let the child classes
define the shape of a unit icon, and thickness and color of a flow arrow, and some other
visual details.

Data input and output through dialog are not considered as visual operations, and
VisualUnit and VisualFlow do not provide any dialog facility. Instead, each unit or flow
object sets its dialog connection through its dialog object counterpart. This is explained
under the heading of dialog classes.

51

Unit and Flow classes inherit their visual features from VisualUnit and VisualFlow.
In other words, visual features of Unit and Flow are isolated in VisualUnit and VisualFlow
classes. The reason for this isolation is that the visual features have a degree of dependence
on the specific visual functions and data of the operating system. As a result of this design
style, operating system-dependent visual functioning of the unit and flow classes is
separated from the operating system-independent data and functions of the child classes.
When an update of the classes are needed for another operating system, this design choice is
expected to facilitate the maintenance process.

7.3.77. Unit and Flow Classes

Unit and flow classes have interface, database and optimization functions which
work in connection with the respective management functions of a Network class.

Unit is the base class for all the derived unit classes, and Flow is the base for
CrudeFlow. Unit and Flow take their interface features from their parents, and add functions
for database and optimization management. Figure 7.3.2 illustrates this relationship.

Unit is an abstract class whose instances can not be produced directly. It provides the
data which are common to all unit classes, and the functions most of which are pure and to
be redefined by the child classes. On the other hand, the Flow class models a typical product
flow in the refinery, hence it can be instantiated. A product flow, by definition, flows from
one unit to another, hence a flow object defines a connection between two different unit
objects. Generation of a flow requires the user to specify these units on the screen. Only
after they are specified a flow can be generated. Throughout the life cycle of a flow object.
the tail unit remains the same, but the head unit can be changed by the user. The reason for
this is that a product flow is produced by its tail unit, and it can be sent to a number of
different units as it is the case in the real refinery process.

The main data of the Unit class are two ParentList objects, named InputList and
OutputList, which hold the input flows and output flows of a unit object, and a UnitUtils
pointer. The child classes who have utility consumption use this pointer to generate a
UnitUtils object which maintains the utility data of the unit. There are also minimum and
maximum capacity fields which hold the daily processing capacities of a refinery unit. The
minimum capacity refers to the minimum feasible production level of a unit with respect to
economical considerations, and the maximum capacity is the maximum physical production
capacity.

The Flow class has simpler data fields as compared with the Unit class. Its important
data are composed of density, viscosity index, sulphur content, octane number fields as well

52

as price, minimum demand, maximum demand, minimum supply and maximum supply
fields which are utilized by import products and final products. It also holds two pointers for
its head and tail units (outflowing and inflowing units).

The functions of Network class are grouped as interface management, database
management and optimization management functions in the section reserved for the Network
class. It is noteworthy that a network and its flows and units have matching classes of
functions as can be observed in Figure 7.3.2. At this point, it will be helpful to examine
these function categories of Unit and Flow classes separately. Later in this section, the
communication between the functions of a network and the functions of its units and flows
will be explained.

NWObject
Abstract Interfaoe Data
and Functions)
VisualUnit YisualFlow
Interface Data and Functions Interface Data and Functions
Unit Flow
Interface Data and Functions Interface Data and Functions
Database Data and Functions Database Data and Functions
Optimization Data and Functions Optimization Data and Functions

FIGURE 7.3.2 Inheritance of Properties of Unit and Flow Classes through their Parents

7.3.7.1. Interface Functions. Unit and Flow inherits its interface properties from their
parents, and have no additional visual functions or visual data. However, these inherited
visual properties are only associated with the graphic unit icons and flow arrows. The dialog

53

communication of flow and unit objects are defined separately in dialog classes which define
the ways how the data exchange is performed.

A general outline of unit and flow dialog objects is given in the section reserved for
dialog classes. A dialog class can be seen as a counterpart of a unit class or flow class. For
instance, the FCC class and its dialog counterpart knows each other, hence the dialog class
can be considered as a part of the FCC class, not a separate class from the viewpoint of
object oriented programming. Whenever a dialog communication is requested, an FCC
object creates its dialog counterpart, feed it with the necessary information, and give the
control of the dialog management to it. The dialog object has the full responsibility for data
input control and verification. When the communication ends, the dialog objects send the
input to the FCC object, and destroys itself. The same process is valid for all unit and flow
classes.

As explained in the section reserved for the user interface of AREMOS, the user is
given feedbacks in case of invalid construction attempts. The validity checking is performed
by the unit objects, and the associated rules are explained in sub-section 7.3.7.5. The main
restriction is that there is a general sequence of process units through which crude oils are
refined into final products. Therefore some product flow connections are invalid. For
instance, an outflowing product from an FCC unit can not be feed into a distillation unit. In
case of such an invalid connection, the associated unit objects communicate an error message
to the interface, saying that the flow connection attempt is invalid. Another type of validity
checking is performed by the unit and flow dialog objects which verify the input during the
dialog communication. For instance, maximum capacity can not be less than minimum
capacity for a unit, therefore a dialog data entry which results in such an invalidity is not
allowed, and the user is given an associated error message. Finally, unit objects have an
optimization function which check the validity of the data for the generation of the linear
programming model. If unit objects detect errors, they communicate these error messages to
the interface, and a list of errors are presented to the user. For instance, if the inflow to an
FCC unit, which has a unit name of FCC-4, is deleted before the 'Compile' command is
given, the FCC unit object communicates an error message saying 'Unit- FCC-4 has
outflows but no inflow".

71.3.7.2. Database Functions. The database functions of the Flow class, except the ones
already defined in VisualFlow, are simpler in nature. They only control the data and
communicate with the head and tail units. Most of the Unit's database functions are designed
to maintain the input and output flow objects. For instance when a flow is created by the
user, the Network object notifies the head and tail units about this addition, and these units
perform the flow addition operations. There are several database functions of the Unit class
for such operations.

File storage and retrieval functions of unit and flow cldsses are designed using a
well-known object oriented method. NWObject defines pure virtual 'save' and 'retrieve'
functions. Each child class redefines these functions in such a way that the save function of
the VisualUnit first calls the NWObject's save function and then save its own data, similarly
Unit's save function first calls VisualFlow's save function, then save its own data, and this
- goes on through the child classes. This process is exactly the same for VisualFlow and its
children. In this way, a new child doesn't need to save the data of its parent, just saves its
own data and let the parent save its data. This process facilitates the generation of the save
and retrieve functions of the child classes.

1.3.7.3. Optimization Functions. The data of the Flow class for optimization include a field
for the variable name associated with the flow, and an index field that helps the generation of
the variable name. The optimization functions of a flow are called only by the optimization
functions of the head and tail units. The unit objects have the essential control of
mathematical code generation, and the data and. functions of a flow assist its head and tail
units in this process. Index and variable name fields of a flow are defined by its tail unit
during the compilation process, and used to be able to recall the produced variable names
and indices.

Writing the mathematical programming code of a refinery model is the responsibility
of unit objects. A determining property of the mathematical models of refinery processes is
that each process unit generates its own code by only using the data of its inflows and
outflows. It does not need to interact with other unit objects for this process. This very
nature makes refinery modeling very appropriate for the object oriented approach, because
otherwise a unit object would interact with other unit objects, and it would need to know the
internal details of these units in many cases. Such kind of interaction is against to general
principles of object oriented design, and do not exist in the design of AREMOS as will be
discussed later in this section.

The optimization functions of the Unit class are defined mostly as purely virtual,
which need redefinition in the child classes. These basically comprise a variable generation
function, an objective function derivation function, a constraint derivation function and a
validation function. Each child unit class, such as the FCC class, defines these functions
according to the mathematical modeling of the specific process, and the specific data
structure. These functions are explained in detail in the section reserved for the formulation
of a linear programming model by unit objects.

71.3.7.4. Communication between Network Functions and Unit and Flow Functions. In the
section reserved for the Network class, the categories of Network functions are explained,
but how these functions communicate with the functions of the flow and unit objects are not

55

explained explicitly. As a requirement of the object oriented design, a network knows only
the Unit and the Flow classes, therefore uses only the methods provided in these parent
classes. The network sends generic messages like 'store yourself’, 'display yourself', 'write
your mathematical programming code' to a unit (or to a flow) without knowing its real class,
and let it perform the rest. Each unit and flow knows how to respond to such a generic
message, but the responses may be different. For instance, an FCC object and an HPDist
object responds differently to the 'write your mathematical programming code' message.

The communication between the methods of the Network object and the methods of
the unit and flow objects are depicted in Figure 7.3.3. As a general principle, each group of
network functions interacts with the same group of flow or unit functions. The functions of
a network have a generic nature, and the functions of units and flows determine the real
implementation of a request from the network.

USER INTERFACE
A
INTERFACE
FUNCTIONS
3
NETWORK
OBJECT
DATABASE OPTIMIZATION
FUNCTIONS FUNCTIONS
J __
[) 1 4
4
INTERFACE
FUNCTIONS
FLOW & UNIT
' OBJECTS
| DATABASE OPTIMIZATION
FUNCTIONS) FUNCTIONS

FIGURE 7.3.3 Communication between the Methods of Network Object and the Methods
of Unit and Flow Objects

As previously explained, an important design consideration about the Network class
is that only the Unit and the Flow classes are known to it. The same consideration is also
valid for units and flows. A flow can not identify a specific class of unit or flow, ie. whether
it is an HPDist object or FCC object, but identify it merely as a unit or flow. The same is
also true for a unit, with the exception that HPDist, VacuumDist and CrudeTank objects can
identify a CrudeFlow object as well. On the other hand, units and flows know the Network
object they are kept in, which is obviously the only way they can answer the messages of the
Network. On the whole, Network, Unit and Flow are the only classes among their children,
which are known by the system.

7.3.7.5. Non-object Oriented Features. The design consideration explained in the previous
paragraph has merit with respect to the object oriented approach, but this is not obtained
without a price: Abstract design features had to be added to eliminate or minimize the needs
of related objects to know about each other’s class. This js required for cases where objects
are closely related, such as refinery units that can not be arbitrarily connected by flows.

There is a general sequence of the refinery unit types from the entrance of the crude
oils to the final products. For instance, a crude oil is first processed in an HP distillation unit
than some products are sent to tanks and chemical processing units, and some to a Vacuum
distillation unit. Therefore some connections turn out to be invalid. In order to accomplish
the addition of this feature to the system, hypothetical refinery process levels are produced.
These levels go from O to 7 successively, and unit can access the level of another unit
without knowing its real class. By comparing the levels of the head and tail units of a flow,
the validity of the flow connection can be checked. The general rule is that a flow can be sent
from a unit of level x to a unit of level X or of a higher level. CrudeTank, HPDist,
VacuumDist and Tank classes have levels 0, 1, 2 and 3 respectively. All the children of
ChemProcUnit has level 4, Blender and GasoBlender has level 5, and FinalTank has level 7.
ImportTank is given the level 0 like CrudeTank, and RedirectionPoint is given the level 6. In
fact, RedirectionPoint is not a processing unit, and it has no requirement about the units it is
connected with, hence its level number has no significance. However, a redirection point
compares the levels of the units it connects, thus decides on the validity of the flows. The
level number 6 is utilized only if redirection points are connected with each other. This
situation requires a recursive level checking of the units. It is expected that possible new unit
types can be levelled according to this general levelling rule. The HCC unit (Hydro-Cracking -
Unit), which is a new type of refinery unit that is planned to start running in 1996, has
already given a level of 4, and added to the system design successfully.

A unit checks the validity of a new inflow connection by checking the level of the
candidate tail unit, and validity of an outflow connection is determined similarly. In case of

57

an invalid connection the unit sends an error message to the network, which informs the
user.

The NWObjectList of a Network object is made use of by its unit and flow objects
for a better allocation of the visual resources, and for performing the tasks which needs
reaching the instances of a specific class.

The instances of each class of unit or flow use the same resources, for instance, all
flow objects use the same type of pen, brush and font. However each instance should
normally create its own visual resources which means loss of memory and speed. Instead of
creating the resources this way, they are allocated only once by the representative objects in
the NWObjectList while initializing a Network object, and instances created afterwards use
the resources of these objects. On the other hand, two different types of instances arise as a
result of this design: The ordinary objects and the ones kept in the NWObjectList.
Nevertheless, such a differentiation did not bring about a programming difficulty, and
implemented by defining extra data and functions to be used only by the members of the
NWObjectList.

The second usage 6f the NWObjectList is the localization of the non-object oriented
tasks which are related with the instances of a specific class. The only such task encountered
so far is the allocation of unique 3-digit variable indices to the instances of each unit class.
For example, the instances of HPDist class in the system should be allocated different
indexes like 1, 2, 3, etc. This task can not be performed by the Network object in an object
oriented way. Instead, the representative HPDist object manages the allocation of these
indices. In this way, the Network only sends generic messages to the NWObjectList, for
allocating new indices for the created objects, or informs the list if a unit is deleted for an
update of related indices. Turning back to the previous example, when a new HPDist object
is created, the Network object finds the HPDist object in the NWObjectList, and let it
dispatch an index number to the newly created HPDist object. Note that this operation does
not require that the Network should distinguish the HPDist object.

7.3.8. CrudeFlow Class

CrudeFlow is generated as a result of a visual requirement. There can be a great deal
of crude oils to be included into a refinery process model, that give rise to lots of crude flow
drawings on the screen. This is a burden for the user, further it makes the screen full of
crude flows, hence much more complicated. Instead of treating crude oil flows as ordinary
flows, it is preferred to represent all crude flows to an HPDist unit as one arrow. Since
crude oils flow only from the crude oil tank to the HPDist units, there are as many crude

connections as the HPDist units, therefore the visual model becomes quite understandable
and manageable.

This visual preference is implemented by generating the CrudeFlow class as a child of the
Flow class. The CrudeFlow inherits the visual characteristics of its parent, and has the crude
connection arrow as its visual representation. However, a CrudeFlow object holds multiple
flow objects, which are maintained as internal data members. CrudeFlow dialog box
provides the means to manipulate the flows in a CrudeFlow object.

An advantage of the CrudeFlow class is that it is possible to impose mathematical
constraints among the amounts of crude oils flowing to an HP distillation unit. These
relations can be easily modeled within a CrudeFlow object without damaging the object
oriented nature of the program. Such features are not included yet, except that the user can
cancel some of the crude oil flows to an HP unit through the CrudeFlow dialog box.

7.3.9. Child Unit Classes

Children of the Unit class do not define any new visual function, but define their
icon shapes, pens, brushes and fonts. These describe the visual appearance of a unit on the
interface. New data and functions are added to model the specific process of each refinery
unit, and pure optimization functions inherited form the Unit class are redefined according to
the mathematical modeling of the process. The following is a summary of the designs of the
child unit classes, and the next section gives a detailed view of the optimization functions.

The Unit class has only one abstract child class which is ChemProcUnit.
ChemProcUnit serves as a base for chemical processing units whose common characteristic
is the usage of input-output yield tables. In these units different types of chemical processes
are applied on the inputs to obtain lighter products. The amounts of the output products can
be defined as a percentage of the input in either volume or mass, and the mathematical model
of the process is derived using this relationship. As a restriction, a chemical processing unit
accepts only one product flow, but have many product yields.

The CrudeTank and FinalTank classes do not represent real refinery units. Only one
instance of the CrudeTank and the FinalTank are allowed in a refinery network. The
CrudeTank object models the crude oil feedstock of a refinery, and the FinalTank object
represents a hypothetical outlet point to which all the final products are connected. The
CrudeTank and the FinalTank objects provide the means of modeling the data about crude
oils and final products. Most important data are obviously crude oil costs and final product
sales prices. Besides, minimum and maximum consumption figures for crude oils, and
minimum and maximum market demands for the final products can be specified. The default

59

values for these minimums and maximums are zero and infinity (which is defined as a very
big number). By redefining these values, lower and upper bounds can be imposed on each
final product and each crude oil.

The ImportTank is similar to the CrudeTank and used to represent the feedstock of
import products, however each ImportTank object models the feedstock of only one type of
import product. Upper and lower bound values can be specified for the import product
consumption like crude oils.

The Tank class represents real refinery tanks for semi-finished products. On the
other hand, tank objects produce no mathematical constraint or objective function figure,
instead behave as pipes with unlimited flux capacity. Addition of an upper flux capacity is a
possible extension to the Tank class, however this requires special care because the upper
bound to be added should correctly represent the long-run restriction of a tank imposed on
the refinery process.

The HPDist and the VacuumDist classes model two different types of distillation
units. Crude oils are first fed to the HP distillation units in which the crude oils are refined
into different products. Then the residual of this process is sent to Vacuum distillation units
for further refinement. The yield ratios of the refinement process in HP and Vacuum units
heavily depend on the specific properties of crude oils. Therefore both of these classes know
the CrudeFlow class, and demand properties of crude oils during modeling. Instances of
these classes make use of complex yield tables for modeling the input-output yield relations.

The Blender and the GasoBlender classes model the blending and gasoline blending
operations. These operations are mostly performed as the last refinery operations to obtain
the final products with required quality limitations. A blending unit takes the quality
specifications of input product flows, ie. density, viscosity index, etc., and the quality
requirements of its output flows (as upper and lower bounds). It uses these values to
generate the mathematical model of the input-output relationships in the form of mathematical
constraints. Gasoline blending is a special type of blending operation in which extra
operations such as tetraethyllead addition are performed. As a result, the GasoBlender class
defined as a child of the Blend, so that it inherits all general blending data and methods.

Finally, RedirectionPoint derives from the Unit class, however it is not a real unit. It
represents a flow connection in the refinery which may have multiple inflows and multiple
outflows. It is mainly used to redirect a flow to different units, or to combine similar product
flows in one flow stream.

(!

7.4. Formulation of a Refinery Linear Programming Model by Unit Objects

The previous section was a general summary of the child unit classes. It is clear that
all the data of these classes are defined to specify the refinery process that are performed in
these units. The optimization functions of a unit use these data for the mathematical
formulation of the process. All the unit classes redefine the optimization functions that are
defined in the parent Unit class, and add supplementary ones to these basic functions.

Unit optimization functions basically comprise a validation function, a variable
generation function, an objective function derivation function, and a constraint derivation
function. These functions of unit objects in a network model are maxiaged by the
* optimization management functions of the associated network object. All unit objects validate
their flow connections and their data before the generation of the linear programming model.
Once the model is validated, all unit objects generate their variable names, and store them in
a list hame 'VarExp'. As explained in the sub-section reserved for the optimization
management functions of the Network class, this list is formed for proceééing the optimal
solytions produced by the optimization module. The objective function derivation functions
and constraint derivation functions are called after the generation of the variable names. Each
unit object is responsible for generating its mathematical constraints and objective function
part. Unit objects make use of well-established refinery linear programming techniques in
their objective function and constraint derivation functions. These techniques were
successfully applied to TUPRAS Izmit Refinery in a previous case study [43], and the
validation of the generated linear programming model provided strong insights that the
results obtained through the model were consistent with the real production figures of the
refinery.

The following sub-sections explain variable generation, validation, objective function
generation and constraint generation functions of refinery unit objects. While explaining the
objective function and constraint generation of unit objects, the examples will be given from
the sample TUPRAS Izmit Refinery model developed in AREMOS, which is depicted in
Figures 6.1.1 and 6.1.2. Appendix C gives the linear programming model file of this
refinery network model. The objective function and the constraints of this linear
programming model are produced by the unit objects of the refinery network model.
Besides, Appendix D gives the meanings of the variables used in the linear program
generation and the names of the unit objects which produce the variables. Finally, Appendix
E gives the associated optimum results report.

61

7.4.1. Validity Checking

The validation function of a unit object is responsible for checking the validity of
inflow and outflow connections, and the validity of the data with respect to the linear
program generation. If an invalidity is detected, an associated error message is produced to
the user for the correction of the error.

Refinery units should have valid product flow connections in order to be able to
produce their constraints and objective function terms. The validity requirements related with
the flow connections are as follows:

(@ A crude oils tank should have at least one outflowing crude oil.

(b) Animport tank should have an outflowing import product.

(© Final products tank should have at least one inflowing final product inflow.

(d) Other units should have both inflows and outflows, or none. If a unit has no inflows
and no outflows, it is not connected with the production network, therefore it is jgggréd in
the linear program generation process.

The other type of requirements are related with the data part of unit objects, and are
as follows:

(@ The units with utility consumption figures should have a positive total utility cost per
input charge.

(b) Blending and gasoline blending units should have valid upper and lower quality
specification limits. For example, if product A with a density of 0.9 and product B with a
density of 0.8 are blended, the density of the resulting blend can vary between 0.8 and 0.9.
Therefore an upper density limit which is less than 0.8, and a lower density limit which is
greater than 0.9 are infeasible. The same requirement applies to the other quality types.

7.4.2. Variable Generation

The crucial operation for optimization is the generation of variables. Each unit object
is responsible for creating its own variables. In order for each unit to create distinct variable
names, a unique letter is assigned to each class, and a unique 3-digit index is assigned to
each unit object during the run time. By means of the letter and the index, a unit object is

able to produce its variable names without bothering about the variable names that other units
produce. The variables of a unit refer to the variables corresponding to the unit's outflows
and the variables which are generated internally by the unit (ie. in a blending unit, amount of
inflow i blended in outflow j is expressed as a variable which is produced intermally by the
blending unit). |

A restriction encountered in the generation of variable names is that the solver limits
the variable names to eight characters. In fact, this is a restriction of the MPS format for
linear programming models. Jones argues that this is an important difficulty in the generation
of variable names for large problems [33]. Such a difficulty is encountered in gasoline
blending units in the linear programming formulation of a refinery model by AREMOS. The
following paragraphs explain how this difficulty is overcome, as well as how other units
generate their variable names.

In refinery units except for the gasoline blending unit and the crude oils tank, the first
four letters of a variable name define the specific unit that is producing the variable name,
and following two letters are reserved for defining the outflows. Outflows are enumerated
starting from O to represent them in the last two letter space. For example FO0403 is the
variable associated with the third outflow of an FCC unit with the distinct index 004. It is
clear that 6 letters are enough for generating such a variable name.

The crude oils tank object is an exception to this rule, since there is only one crude
oils tank in a refinery network as explained in the child unit classes section. Therefore, the
crude oils tank object makes use of only its unique letter 'C ' without any need to its 3-digit
number. The crude oils tank enumerates its crude oils and crude oil flows for variable
generation. For example, C0O1 represents the total amount of crude oil 1 used in the refinery
production, and C001001 represents the amount of crude oil 1 flowing in the first crude oil
stream, which is modeled as a CrudeFlow object. A CrudeFlow object defines the crude
flow connection between the crude oils tank and an HP distillation unit. It models multiple
crude oil flows to an HP Unit. The CrudeFlow class section can be referred for detailed
information on crude oil flows.

In blending units additional variables with 8 characters are generated for formulating
the blending process. B0030102, for instance, is produced by a blending unit with the index
003, and expresses the amount of first inflow blended in the third outflow of the unit. A
gasoline blending unit makes use of the variable generation techniques of a blending unit. In
fact, the GasoBlender class is the child of the Blender class. However, it still needs extra
variables with an additional index in order to formulate tetraethyllead (TEL) addition as linear
programming constraints. As a solution to this problem, distinct 3-digit index of variable
names is reduced to a 1-digit index in gasoline blending units. Since TEL formulation is a
rather complicated process, the format of the new variables will not be explained here in
detail. The result of this reduction is that two letter ficlds are saved and these are used for

defining the additional index fields for the new variables. Consequently, total number of
gasoline blending units are restricted to ten in a refinery model, while this bound is a
thousand for other units. Nevertheless, in a refinery normally one gasoline blending unit is
needed and therefore, ten can be accepted as a sufficiently large number. Likewise, a
thousand is a sufficiently large bound for the total number of other units.

7.4.3. Objective Function Derivation

The entire objective function of the linear programming model of a refinery is
produced by requesting each unit object to write its objective function terms in a text file.
The objective of the model is to maximize the daily net profit of the refinery and can be
expressed as follows:

MAXIMIZE
Net Profit = Sales Revenues - Crude Oil Costs - Import Product Costs
- Unit Utility Consumption Costs (7.4.1)
In this formulation,

(a) Sales revenues are produced by final products tank object;

(b) Crude oil costs are produced by crude oils tank object;

(©) Import product costs are produced by import tank objects;

(d) Unit utility consumption costs are produced by the unit objects which have utility
consumptions. These are all chemical processing unit objects, HP distillation unit objects,
and Vacuum distillation unit objects. '

(@ Sales revenues: The objective function part produced by the final products tank
involves the sales revenues from the final products and can be formulated as follows:

Sales Revenues = Y; (SPFP); x (FP); (7.4.2)

where,

(FP); is the variable representing the volume amount of final product i, and
(SPFP); is the selling price of final product i.

Example: The objective function part produced by the final products tank of the TUPRAS
[zmit refinery model is as follows:

+52.51 B04801+134.25 R03401+70.27 B04802+114.56 B04803

+149 R03001+86.32 R04001+119.17 R03902+132.05 R03801 .
+27.73 R04201+225.23 B02101+156.8 B04901+164.31 B04902 (7‘4.3)A
+166 B04903+244.55 GO5001+281.32 G05002+242 G05003

+20 L01603

In this formulation, variables represent final products flowing into the final products tank .
(variable meanings, and the tail units of these product flows can be found in Appendxx D),
and coefficients are the prices per volume of final products.

(b) Crude oil costs: The objective function part produced by the crude oils tank involves
the costs of the crude oils and can be formulated as follows:

Crude Oil Costs = Y; (COC); x(CO); (7.4.4)

where,
(CQ); is the variable representing the volume amount of crude oil i, and
(COC); is the cost of crude oil i.

Example: The objective function part produced by the crude oils tank of the TUPRAS izmit
refinery model includes three terms corresponding to three crude oils used in the modeling:

-92.970001C002-88.589996C001-90.040001C003 (7.4.5)

65

Here, variables C001, CO02 and C003 represent the volume amounts of crude oil types
Sarir, Essider, and Iran Light, respectively. The associated coefficients are the costs per
volume of crude oils.

(© Import product costs: The cost terms associated with the import products are
generated by import tanks. However, since one import tank object corresponds to one
import product type, each import tank object produces just one objective function term.
~Summation of these terms for all import tanks forms the total import product costs:

Import Product Costs = 3 (CIM); x (IM); (7.4.6)

Here,
(IM); is the variable representing the volume amount of import product i, and
(CIM); is the cost of import product i.

Example: There is no import tank used in the modeling of TUPRAS izmit Refinery. To give
an example, suppose that the management considers purchasing naphtha to be used in
gasoline blending operation. In order to model this consideration, a naphtha import unit is
generated and its outflow is connected to the gasoline blending unit. Then, a purchase
(import) cost is specified for the naphtha import. Suppose that the purchase cost per volume
of naphtha import is 40. Then the associated objective function term generated by the import
tank is as follows:

-40 100101 (7.4.7)

In this formulation, 100101 represents the volume amount of naphtha import which is drawn
from the import tank and used in the gasoline blending operation.

(d) Unit utility consumption costs: Unit utility consumption costs are the costs of
running the refinery units. Utility consumptions of a unit depend on the weight amount of
the input charge to the unit. Unit utilities include electricity, burner oil, cooling water, and
water steams of different pressures, and many catalysts. Crude oils tank, final products
tank, refinery tanks for semi-finished products (instance of the Tank class), blending units

and redirection points have no utility consumptions. The total utility consumption cost of
other unit types can be written as follows:

Unit Utility Consumption Costs = 33 (TUC); x djj x (IC); (7.4.8)

Here,

(IC)jj is the variable representing the volume amount of the inflow charge j to refinery unit
i, dij is the density of the inflow charge j to refinery unit i, and

(TUC); is the total utility cost of refinery unit i per input volume charge. (TUC); is a
monetary amount calculated by refinery unit i, using the utility consumption figures of the
unit and utility cost figures of the associated refinery network model.

Example: The HP-2 distillation unit object of the TUPRAS Izmit refinery model is selected °
for explaining how a unit object generates 1tsumt utility consumption terms for the objective
function. The HP-2 unit object first calculates the (TUC)yp-p term. The consumption
figures of HP-2 unit object are specified in’the unit utility dialog box, and kept in the
UnitUtils object of the unit. The appearance of the unit utility dialog box of HP-2 object is
depicted in Figure 6.1.7. Utility consumption costs, on the other hand, are specified in the
utility cost data dialog box of the refinery network, and kept in the NWUltils object of the
network object. The utility consumptions for the HP-2 unit and the related cost figures are as
follows: '

TABLE 7.4.1 Utility Cost and Utility Consumption Figures for an HP Distillation Unit

Utility Consumption/M.Ton charge Utility Cost

Burner Qil 0.0190 metric ton 50.8400 $/metric ton
Electricity 4.8250 Kwh 0.0400 $/Kwh
Cooling Water 2.0110 metric ton 0.3500 $/metric ton
Steam 550 0.0800 metric ton 6.8800 $/metric ton
Steam 150 0.0030 metric ton 6.6900 $/metric ton
Steam 50 0.0139 metric ton 6.4600 $/metric ton
Inhibitor 0.0056 kg 2.3530 $/metric ton
NaOH 0.0152 kg 0.3920 $/metric ton
NH3 0.0040 kg 0.3920 $/metric ton
Demulsifier 0.0050 kg 1.4710 $/metric ton

67

In this table, consumption units, such as metric ton and kg, and the monetary cost unit are
given for clarity of the calculations. On the other hand, these are not necessary in other
formulations, and not given explicitly. It is clear from the table that (TUC)yp.> is calculated
by multiplying the two figures in each line, and summing up the multiplication results over
all lines:

(TUC)yp-2 = 0.0190 x 50.840 + 4.8250 x 0.040 + ... + 0.0050 x 1.471

(7.4.9)
(TUC)yp.p = 2.5511

There are 3 crude oil flows into the HP-2 unit, these are namely Sarir, Essider, and Iran
Light crude oils. The variables representing these crude oil flows are C001002, C002002,
and C003002, and the densities of these crude oils are 0.838, 0.8358, and 0.8555,
respectively. Therefore the objective function part is formulated as follows:

(Utility Costygp.p = - (TUC)yp.> x 0.838 x C001002
- (TUC)yp.2 x 0.8358 x C002002
- (TUC)yp-2 x 0.8355 x CO03002 (7.4.10)

= -2.1378 C001002
-2.1322 C002002
-2.1825 C003002 (7.4.11)

7.4.4. Constraint Derivation

The entire constraint part of a refinery linear programming model is produced by
requesting each unit object to write its constraints in a text file. Constraints of a unit express
the process description, the quality descriptions of the unit's outflows and some other
restrictions.

Process description constraints describe the whole product flow scheme in a refinery
process network. These constraints are material balance equations, yield equations, and unit
capacity constraints. Quality description constraints are used in blending operations, and

other restrictions apply to crude oils, import products and final products. The constraint
types used by different unit objects are as follows:

(2) . Matenal balance equations are produced by the tank and redirection point objects;

() Yield equations are produced by chemical processing unit objects, HP distillation
unit objects, and Vacuum distillation unit objects;

(¢) Unit capacity constraints are produced by chemical processing unit objects, HP
distillation unit objects, and Vacuum distillation unit objects; o

(d) Quality description constraints are produced by blending and gasoline blending unit
objects;

(¢) Other restrictions are produced by final products tank, import product tank, and
crude oils tank objects.

)] Material balance equations are the simplest process description constraints. These are
used by the tank and redirection point objects and have the following form:

3

i (Outflow); - ¥ (Inflow); = 0 '(7.4.12)

In this equation,
(Outflow); is the variable representing the volume amount of inflow i to the unit, and
(Inflow)j is the variable representing the volume amount of outflow j from the unit.

Example: In the TUPRAS Izmit Refinery model, the tank unit object which models the kero
tank in the refinery produces the following material balance constraint:

TO01101-R01302=0 . (7.4.13)
Here, the variables TOO110 represents the volume amount of the outflowing product, and
RO1302 represents the volume amount of the inflowing product.
(b) Yield equations express the mathematical relationships between the amounts of

inflows and amounts of outflows of a refinery unit. There are two major types of yield
equations: The ones used by the chemical processing units and the ones used by the

69

distillation units. The yield equations used by the chemical processing units have the
following general form:

(Outflow); - (OFP); x Inflow =0 (7.4.14)

In this equation,
(Outflow); is the variable representing the volume amount of outflow (yield) i of the unit,

Inflow is the variable representing the volume amount of inflow to the unit, and
(OFP); is the volume yield ratio of inflowing product for outflow i.

Example: The 3-D desulphurizer unit object of the TUPRAS izmit Refinery model, which
has one inflow and two outflows, produces the following equations:

100 D02601-3.35R02702 =0 (7.4.15)
100 D02602-96.65 R02702 =0 (7.4.16)

Here, the variables D02601 and D02602 represent the volume amounts of two outflowing
products from the unit, and RO2702 represents the volume amount of the inflowing product
to the unit. These equations state that 96.65 per cent of the inflow yields one product, and
3.35 percent yield the other product, as a result of the chemical process in the unit.

The yield equations for the distillation units have a different form, because the output
yield ratios of these units depend on the properties of the crude oils. The yield equations
used by the distillation units have the following form:

2i (OFP)j; x (CO); - (OF);=0 (7.4.17)

where,

(CO); is the variable representing the volume amount of crude oil i fed into the distillation
unit,

(OF);j is the variable representing the volume amount of outflow (yield) j of the unit, and
(OFP);; is the volume yield ratio of crude oil i for outflow j.

70

Example: The HP-2 distillation unit object of the TUPRAS izmit Refinery model has 3
inflowing crude oils, and 7 outflowing products (The dialog box of this distillation unit is
depicted in Figure 6.1.5). The associated yield equations are as follows:

100 H00201-1.3 C002002-1.3 C001002-1.4 CO03002 =0 (7.4.18)
100 H00202-52.5 C002002-56.7 C001002-54.63 CO03002 = 0 (7.4.19)
100 H00203-0.2 C002002-0.07 C003002 =0 (7.4.20)
100 H00204-11.2 C002002-11.2 C001002-11.1 C003002 = 0 (7.4.21)
100 H00205-6.8 C002002-6.8 C001002-8.8 CO03002 =0 (7.4.22)
100 H00206-12.5 C002002-12.5 C001002-12.5 C003002 = 0 (7.4.23)
100 HO0207-12 C002002-11.5 C001002-11.5 C003002 =0 (7.4.24)

In Equation 7.4.18, H00201 represents the volume amount of one outflow from the HP-2
unit, and C001002, C002002 and C003002 represent the volume amounts of three different
crude oils, namely Sarir, Essider, and Iran Light crude oils, fed into the unit. The
coefficients are the percent volume yield ratios of the crude oils. For instance, the yield ratio
of 1.3 at the beginning of CO03002 means that 1.3 volume percent of the Essider crude oil
fed into the HP-2 unit is transformed into the product represented by HO0201. The other
equations are written for the remaining six outflows of the HP-2 distillation unit. Note that
the yield coefficients are related with both the crude cil types and the technical conditions of
the specific distillation unit. Therefore these coefficients are kept as the data of the distillation
unit objects, and directly entered in the associated distillation unit dialog boxes.

(¢) Unit capacity constraints apply to distillation units and chemical processing units.
These constraints impose lower and upper bounds to the daily production of units as
follows:

i (Inflow); = MaxCap

(7.4.25)
i (Inflow); = MinCap

where,
(Inflow); is the variable representing the volume amount of inflow i to the unit, and

MaxCap and MinCap are the maximum and minimum bounds for the daily production.

!

Example: The HP-2 distillation unit given in the previous example has 6000 and 8000 as its
lower and upper bounds for the daily production. The associated inequalities have the
following form:

+C003002+C001002+C002002 >= 6000
(7.4.26)
+C003002+C001002+C002002 <= 8000

Here, left parts represent the total volume input charge to the distillation unit, and right parts
are the minimum and maximum bounds for the daily production.

(d) The quality description constraints are used in blending and gasoline blending units.
Certain quality specifications are set for some products and these specifications are satisfied
by blending similar types of products with different quality levels. The quality types
included in AREMOS are density, viscosity, sulphur content and octane number. Blending
and gasoline blending unit objects produce the following complementary equations before
writing the quality description constraints:

(Inflow); - X (InOut)jj = 0

(7.4.27)
(Outflow); - 2 (InOut)jj = 0

In these equations,

(Inflow); is the variable representing the volume amount of inflow i,

(Outflow) i is the variable representing the volume amount of outflow j, and

(InOut)ij is the variable representing the volume amount of inflow i blended into outflow j.

Example: F.Oil blending unit is a blending unit of TUPRAS izmit Refinery Model. It has
two inflowing products to be blended, and three blends as outflows. Let's rename these
inflows as inflow-1, inflow-2, and the outflows as outflow-1, outflow-2 and outflow-3, for
better understanding the following equations produced by the F.Oil blending unit:

72

D02602-B0490101-B0490102-B0490103 =0 (7.4.28)
D03102-B0490201-B0490202-B0490203 =0 (7.4.29)
B04501-B0490101-B0490201 =0 (7.4.30)
B04502-B0490102-B0490202 =0 (7.431)
B04903-B0490103-B0490203 =0 (7.4.32)

In Equation 7.4.28, D02602 is the volume amount of inflow-1, and B0490101, B0490102
and B0490103 represent the volume amounts of inflow-1 blended into outflow-1, outflow-2
and outflow-3, respectively. Equation 7.4.29 is written for inflow-2, and is very similar to
the first one. In Equation 7.4.30, B04901 represents the volume amount of outflow-1, and
B0490101 and B0490201 represent the volume amounts of inflow-1 blended into outflow-1
and inflow-2 blended into outflow-1, respectively. Equations 7.4.31 and 7.4.32 are very
similar to the third one, and written for outflow-2 and outflow-3.

In a blending operation the minimum and maximum density levels for an outflow are
specified in terms of the blended inflows as follows:

(Mind); x (Outflow); - >idix (InOut)jj <0

(7.4.33)
(Maxd); x (Outflow); - 3; dj x (InOub)j; = 0.

where,

(Outflow); is the variable representing the volume amount of outflow j,

(Mind)j is the minimum density level for outflow j,

(Maxd) i is the maximum density level for outflow j,

(InOut);; is the variable representing the volume amount of inflow i blended into outflow j,

and
d; is the density of inflow i.

Similarly, the minimum and maximum viscosity index levels for an outflow are specified as
follows:

(Minv); x (Outflow); - >i Vi X (InOut)jj <0

. (7.4.34)
(Maxv)j x (Outflow); - Yivix (InOut);j =0

¥

where,
(Outflow)j is the variable representing the volume amount of outflow j,

(Minv); is the minimum viscosity index level for outflow j,
(Maxv); is the maximum viscosity index level for outflow j,
(InOut)ij is the variable representing the volume amount of inflow i blended into outflow j,
and
vj is the viscosity index of inflow i.

Note that viscosity indices used in the refineries are specifically produced for refinery
usage such that they blend linearly by volume.

The quality type of sulphur content does not blend by volume but by mass.
Consequently, additional density terms appear in the blending constraints that specify the
minimum and maximum sulphur content levels for an outflow:

(Mins); x dj x (Outflow); - 3j sjxdj x (InOut)jjs O

(7.4.35)
(Maxs); x dj x (Outflow);j -3 sjxdj x (InOut)jj=0

where,

(Outflow) j is the variable representing the volume amount of outflow j,

(Mins); is the minimum sulphur content level for outflow j,

(Maxs)j is the maximum sulphur content level for outflow j,

(InOut);j is the variable representing the volume amount of inflow i blended into outflow j,
d; is the density of inflow i, and

d; is the density of outflow j.

Example: All the above quality description constraints have a very similar form. Therefore,
density level constraints produced by the F.Oil blending unit of the TUPRAS izmit Refinery
model are selected as the demonstrative examples for quality description constraints:

0.785 B04902-O.78i99 B0490102-0.79 B0490202 <=0 (7.4.36)
0.82 B04902-0.78259 B0490102-0.79 B0490202 >= 0 (7.437)

In these inequalities, B0O4902 represents the volume amount of outflow-2, and B0490102
and B0490202 represent the volume amounts of inflow-1 blended into outflow-2 and

74

inflow-2 blended into outflow-2, respectively (as explained in the previous example). In
Inequality 7.4.36, 0.785 is the minimum density level for outflow-2, and 0.78299 and 0.79
are the densities of the inflow-1 and inflow-2. Similarly, 0.82 is the maximum density level
for outflow-2 in Inequality 7.4.37.

Blending operation to satisfy required octane levels of gasoline products, such as
premium and normal gasolines, is only performed in the gasoline blending unit. It has a
different nature, since a catalyst, namely tetraethyllead, is incorporated in the blending
process. Addition of tetraethyllead increases the octane number, but it does not linearly affect
the octane level of the gasoline blend. Therefore a special treatment is required for linearizing
the mathematical formulation of the gasoline blending operation. The technique used in for
this purpose is developed by Kawaratani and et al. [5]. Since this technique is quite
complicated, it will not be given explicitly here. Instead the Kawaratani's paper can be
referred for a detailed discussion. ‘

(e) Other restrictions that apply to refinery production are the limitations on the amount
of crude oil input, import products and final products. Therefore, the associated constraints
are produced by the crude oils tank, the final product tank and the import tanks of a refinery
model. These constraints have a simple form as follows:

(Product Flow); = MinLimit

(7.4.38)
(Product Flow); < MaxLimit

In these inequalities,

(Product Flow); is the variable representing the volume amount of crude oil i, import product
i, or final product i,

MinLimit and MaxLimit are the minimum and maximum daily consumption limits of crude

oil i or import product i, or the minimum and maximum daily demand figures for final
product i.

Example: In the linear programming model of TUPRAS Izmit refinery in Appendix C, the
last 18 constraints are produced by the final products tank, and impose lower and upper
bounds to the daily production amounts of the final products. These bounds can also be
regarded as minimum and maximum demands for the final products.

75

7.5. Maintenance of Objects at Run Time

Having covered the object class hierarchy and the detailed designs of the classes used
in AREMOS, an overall picture of how the objects are maintained at run time is needed in
order to have an enhanced view of the system.

As previously emphasized, the network, the unit and the flow objects are the central
objects of the system. Morcover the RefApp objects, and the RefMDIFrame and the
RefMDIClient objects can be regarded as the important objects of the system with respect to
their functions, however most of these functions are inherited from their parents, which are
standard ObjectWindows classes, and work internally without any need of the programmer's
modification.

'Figure 7.5.1 illustrates how the objects of the system are maintained at run time. The
basic characteristic is the usage of different lists to keep the networks, units and flows. The -
RefApp object sets up the connection of AREMOS with the Windows operating system. It
only maintains the RefMDIFrame object. The RefMDIFrame object maintains an internal list
of the Network objects, and a RefMDIClient object whose primary role is the behind-the-
scenes management of the Network objects. The RefMDIFrame together with the
RefMDIClient manage the Network list.

Elements of the list maintained by the RefMDIFrame are composed of the Network
objects who appear with their modeling windows (or as an icon that represents the
minimized state of a window) on the screen. When the user clicks on a refinery modeling
window, the control passes to the associated Network object, and from that point on any
user message is sent to this object by the RefMDIClient until another refinery window is
clicked and hence takes the control. When a refinery object is closed by the user, the
associated object is detached from the list and destroyed. For this reason, a network model
should be saved before closing if it is to be retrieved for further study. Similarly a network
scheme is either to be developed from scratch or retrieved from a file.

The primary elements of a Network are flows and units. A flow object defines a
connection between two different unit objects, and normally all of the unit objects are
connected in this way. The resulting network builds up a refinery process scheme. For the
overall management, a Network object keeps all its units in one list and all its flows in
another list. Any operation on units and flows are performed through traversing these lists.

76

RefApp Object

RefMDIFrame Object

RefMDIClient Object

S

List of Network Objects

List of Unit Objects

List of Flow Objects

FIGURE 7.5.1 Maintenance of Objects at Run Time

A Network object doesn't maintain the connections among units and flows directly.
In fact, these are not known to the Network at all. Instead, each unit knows its flow
connections and each flow knows its unit connections. Consequently a unit itself manages
its connections with the flows and similarly a flow manages the connections it makes with
the head and tail units. According to the user manipulations, the Network object sends

generic messages like 'accept this flow as your inflow’, 'accept this unit as your head unit',
'delete yourself', and the rest is the responsibility of the units and the flows.

A flow knows its head and tail units through two pointers as depicted in Figure
7.5.2, and these are the only connections of a flow with other objects. On the other hand, a
unit can have more than one inflow and outflow, and maintains two lists for keeping them.
As aresult, a flow object is hold by the inflow list of its head unit and the outflow list of its
tatl unit. Figure 7.5.3 demonstrates this relationship.

Since a flow object is also a member of the global flow list of the network, three
different lists maintain a flow object at the same time. Therefore special care is needed for the
management of flow objects. For instance, when the user creates a new product flow, the
network sends ‘accept this flow as your inflow' and ‘'accept this flow as your outflow'
messages to the candidated head and tail units. If they validate the connection, the network
adds the flow object in its flow list, otherwise deletes the created flow. The addition of the
flow into the units' internal flow lists is performed by the units. The deletion of a flow is a
little more complicated. When the user deletes a flow, the Network object first detaches the
associated flow object from its flow list, and sends a 'delete yourself’ message to the flow
object. Then the flow object first sends 'detach me from your flow list' message to its head
and tail units. Only after these detachments the flow object destroys itself.

Tail connection Head connection
- 1 >
| B
Flow object

Tail unit object Head unit object

FIGURE 7.5.2 Unit Connections of a Flow Object

A unit object interacts with its inflows and outflows through traversing its flow lists
while a flow has a direct connection to its head and tail units, and acts as a bridge between
them. For instance, the shared flow object in Figure 7.5.3 defines a product flow from one

unit object to the other, and these unit objects interact with each other by means of this flow
object.

78

Inflow list Outflow list

Unit object

Flow object

L

Inflow list Unit object Outflow list

FIGURE 7.5.3 Maintenance of a Flow Object by its Tail and Head Units

The dialog objects have almost as equal importance as the unit and flow objects have,
however they temporarily exist during the dialog input-output operations. When a dialog
process is initiated (by pushing a button or double-clicking screen objects) a dialog object is
created, and when the process is over it is deleted. For this reason, they are not shown in
Figure 7.5.1. Dialog objects are called directly by the screen objects for which a dialog
request is made by the user. They can be seen as the interface counterparts of their
‘underlying‘ unit and flow objects.

Another important object that is not shown in Figure 7.5.1 is the NWObjectList of A
Network. The NWObjectList can be regarded as a supplementary object whose primary role
is the localization of non-object oriented features that exist in the system design of
AREMOS. It doesn't hold the real data pertaining to the refinery models, however helps
allocating visual resources to unit and flow objects. The NWObjectList is set up when a
Network object is initialized, and kept without any addition or deletion during the life cycle
of the Network.

79

8. CONCLUSIONS

The intention in the development of AREMOS is to provide the management of a
refinery with an effective decision support tool for obtaining the optimal production policy.
It brings ideas together from visual interactive modeling methodology and object oriented
design and programming, and uses well-established refinery mathematical programming
techniques as the underlying optimization paradigm. AREMOS is generated based on the
results of a case study in TUPRAS izmit Petroleum Refinery, but it is designed in such a
way to cover the general characteristics of a typical petroleum refinery, hence it is also
applicable to other petroleum refineries.

Unlike other decision support tools covered in the literature survey section,
AREMOS puts emphasis on the design of the user interface. The interface part represents a
conceptual model frequently used to describe the refinery process: A network model which
shows units (or processes) as nodes and product flows as arcs, thus has an object-based
representation. The interface part enables the user to model the process as a visual network
as neatly as possible. This general representation constitutes the base for the interface design
of AREMOS. Dialog boxes, menus, and other visual utilities come as complementary visual
aids to this network modeling process. The significant characteristics of the visual interface
are that the user can represent the whole process as a picture on the screen, and easily access
any part of it. Furthermore, it can play with several different refinery models
simultaneously. This helps the user to maintain an overall conceptual picture of the process
in mind.

An important interface design consideration in AREMOS is that it should separate
and hide the requirements specific to mathematical programming from the user as much as
possible. This is fully achieved for the refinery model development phase; general refinery
engineering knowledge is sufficient for developing a refinery production scheme, but a
minimum mathematical programming knowledge is still needed to interpret the optimal
results.

In order to test the effectiveness of the interface features of AREMOS, different
models of TUPRAS Izmit Refinery have been built and tried in laboratory environment.
Having built similar refinery models in LINDO and GAMS, it is our experience that
modeling in AREMOS makes it a lot easier to understand the relations among different
processes, to. detect modeling errors and to compare different scenarios. However,
AREMOS needs to be tested in the real reﬁnery environment to observe its real advantages
and disadvantages. We believe no disadvantage in connection with the general design
characteristics will appear, however missing parts are certain to exist, since AREMOS is a

prototype system and many facilities are to be added in order to make it work with full
performance.

Besides the benefits of the user interface, the object oriented system design of
AREMOS provides substantial advantages on the programmer side. The design of the
system is built in a way that is not oriented to the optimization techniques utilized, instead the
real process units and real product flows are modeled as the objects which are the building
stones of the system. This makes the system indifferent to the underlying operations
research technique used. Therefore the general structure of the system forms a suitable
platform for the addition of other techniques such as simulation, non-linear programming, or
mixed-integer programming,

Applicability of these paradigms in an object oriented fashion is a different topic of
concern. This is accomplished for the case of mathematical programming by making use of a
special nature of the refinery mathematical modeling process that the refinery unit objects
don't need to interact with each other for mathematical code generation. In fact, mathematical
programming can be argued as the most difficult modeling paradigm for the application of
object oriented methodology, as it does not use the concept of objects at all. Other techniques
can be applied with less effort, and clever ways can be generated to handle the non-object
oriented tasks that might arise.

More important than the applicability of different techniques is the facilitated
maintenance of the system as a result of its object oriented design. The maintenance process
requires at least as much effort as the system development process requires. The complexity
considerably increases in large systems like AREMOS, consequently the maintenance might
turn out to be a very time consuming task. However, the object oriented nature of AREMOS
provides effective means to modify a part of the system or to add new facilities (or new type
of units, etc.) without any need to deal with unnecessary parts of the system code. The
object oriented design makes AREMOS easily extendable and changeable without damaging
the robustness of the system. These features will be very beneficial for improving the system
according to the specific requirements of the refinery, and there are already lots of
prospective extensions as will be discussed in the future work section.

The object oriented nature brings another important advantage in the interface design.
Because the flow and the unit objects have their visual counterparts on the screen, the
management of the interface is performed in a very natural way. Simply, responsibility of
the screen objects are given to their underlying objects, and the refinery object maintains the
screen by means of its units and flows. It sends the user requests as generic messages to the
ﬁnderlying flows and units, and lets them perform the detailed interface operation. As a
result, the responsibility of interface management is shared in a balanced way. This
correspondence between the underlying objects and the visual objects enable the programmer
easily maintain the interface part of the objects.

81

9. FUTURE WORK

AREMOS is designed using Visual Interactive Modeling methodology which
requires that the design should start, continue and end focusing on the needs of the user.
Therefore development of visual interactive systems require intensive cooperation of the
programmer with the end user. The development of AREMOS has started with the needs of
the management of TUPRAS izmit Refinery. At present it reached a level that the resulting
software can be regarded as the first prototype to be proposed to the refinery management.
Yet there will be successive prototypes on the way to produce a real decision support system
for in-house usage, and the development of these prototypes is very likely to necessitate a
closer collaboration with the management. Consequently, AREMOS should first be tested by
the refinery management, and their comments and requests should be reflected as
improvements to the current system. The system developer should be aware of the fact that
what seems to be a good improvement may not be favored by the management. This picture
summarises the aspect of the future work on AREMOS regarding the end user.

There are prospective improvements which can be proposed as the future steps of the
AREMOS project. It is a good idea to enhance the optimization facilities of the system as the
first step. Two types of enhancement are possible: For the existing underlying mathematical
model, the ways that the data are retrieved and presented can be improved according to the
comments of the refinery management. For instance, the dialog box designs and the optimal
results presentation process can be improved. Addition of sensitivity analysis facilities
should also be considered in this context. Besides, new constraints and objective function
items can be added to the underlying mathematical model, and existing ones can be improved
accordingly. Inclusion of the constraints that restrict the proportion of a crude oil (or a
combination of crude oils) in the crude feed to a distillation unit can be given as examples for
these type of additions. Note that such constraint and objective function enhancements bring
about updates in the interface as a consequence.

As a next step, mathematical programming formulations can be enhanced by the
addition of nonlinearities, but this will require a nonlinear programming solver, and the
solution time will considerably increase as a result.

The addition of new operations research techniques to the existing system can be
considered as important steps toward a comprehensive decision support system. Simulation
scems to be the most promising one among all, since simulation techniques have been used
in petroleum refineries extensively as well as mathematical programming techniques for a
long time. More importantly, object oriented visual interactive simulation packages, most of
which make use of visual network-based representations, have already been proved to be

82

successful, and gained a wide acceptance in the marketplace. These preliminaries arc already
enough to argue that a simulation module can be successfully added to AREMOS. In a
petroleum refinery the production policy is determined for a planning horizon (ie. a 3 month
period) by means of optimization. On the other hand, the refinery production conditions
have a very dynamic and unpredictable nature. For instance, crude oil prices or product salcs
prices are likely to change considerably within a planning horizon, or unexpected
breakdowns may occur in the process. A simulation module can be a great help in doing the
necessary adjustments in the production plan in such circumstances. In fact, this is the
common practice in petroleum refineries. Further, simulation is a different operations
research paradigm from optimization, and the parallel usage of these two techniques is likely
to enable the refinery management to obtain more optimal and reliable production plans.
Because, each technique provides different means to discover different aspects of the
refinery production, combination of results from the two techniques are reasonably expected
to provide better production policies. The simulation module will appear as a new
management component of the object oriented management system in Figure 6.2.1.

A different type of extension to AREMOS is incorporation of an expert system, that
is the addition of intelligence. Integration of decision support systems and expert systems is
a fairly new and promising research area. AREMOS’primarily needs two types of expertise.
Refinery-specific expertise is needed in the model development phase in order to have a
better model in the sense that it represents the real refinery process as closely as possible.
Refinery expertise is especially helpful in eliminating the conception errors and fulfilling the
expert adjustments in modeling. On the other hand, mathematical programming expertise is
needed to aid the user in interpreting the optimal results, discovering the sources of
infeasibilities, and discovering the modeling errors that can not be captured by simple
methods. It is also needed to perform comprehensive sensitivity analyses on the optimum
production results.

APPENDIX A.

BORLAND C++ COMPILER, OBJECTWINDOWS CLASS
LIBRARY AND CONTAINER CLASS LIBRARY

Borland C++ & Application Frameworks 3.1 is a comprehensive C and C++
program development environment which supports generating programs for Microsof t
Windows version 3.1. It comes with supplementary programs; a Windows oriented
integrated program development environment, a debugger which supports Windows
programming, a resource workshop which is used to generate visual resources, such as
dialog boxcs, bitmaps, icons and cursors, to be incorporated into developed C++ codes are
among these supplementary utilities. ‘

Borland C++ & Application Frameworks 3.1 provides two built-in class libraries.
ObjectWindows class library provides the programmer with an object oriented program
development platform under Windows. ObjectWindows is a complete collection of classcs
that describe standard Windows features. By using the property of inheritance, the
programmer can take advantage of pre-written code that performs the repetitive work
required to write Windows applications, and cap design the interface part of the programs in
a completely object oriented way. ObjectWindows classcs ease the program development
under Windows by providing a consistent, intuitive, and simplified interface to Windows.
They supply the behavior for window management and message processing, and structuring
a Windows application, which are performed quite differently from the way a standard C++
program works. Plcase refer to ObjectWindows User's Guide [41] for further information
on the usage of these classes.

The other library is the Container class library which provides several well-known
data structures in the form of object classes. These include Array, SortedArray, List,
DoubleList, Btree (Binary tree), Stack, Queue, Stack, HashTable, and some others as well
as different iterator classes to traverse instance of these objects. Each class is equipped with
the related functions performed on the included elements. The only requirement for the
elements to be hold by these classes is that they should derive from the Object which serves
as the base for all the Container classes. A container class can hold instances of different
Object-derived classes, that is it can have a heterogenous collection of elements. There is no
limitation for the number of elements to be maintained, except for the total available memory.
Borland C++ Programmer's Guide [46] reserves an extensive section for the Container class
library , which can be referred for further information.

APPENDIX B.

AREMOS INSTALLATION GUIDE

AREMOS comes with a number files that can be found in the attached floppy
diskette. These are :

1. aremos.exe : The AREMOS executable Windows Application file.

2. lindo.exe : The LINDO mathematical program solver.

3. bwecc.dll : The dyna.mic link library necessary for running aremos.exe under
Windows.

4. loadbwcc.exe : The executable file which loads bwcc.dll into the Windows
operating system.

5. linrun.bat : The batch file for running LINDO.

6. linbatch.bat : The LINDO batch file for taking, solving and reporting the results
of the refinery mathematical model file generated by aremos.exe.

7. linrun.pif : Program information file that introduces linrun.bat to Windows.

8. linbatch.pif : Program information file that introduces linbatch.pif to Windows.

9. *hlpfiles : Help files to be used by aremos.exe.

10. *.net files : Refinery network model files for demonstration.

Requirements:

1. An IBM compatible computer with 80-386 processor plus math-coprocessor or 80-486
processor or a higher version (Intel Pentium series).

2. Microsoft Windows Operating System with version 3.1 or higher.

3. Atleast2 MB RAM.

Installation Steps:

1. Copy BWCC.DLL into Windows SYSTEM subdirectory.
copy a:\bwce.dll c:\windows\system
- Copy LOADBWCC.EXE into Windows subdirectory.
copy a:\loadbwcc.exe c:\windows
3. Copy AREMOS.EXE and HELP files, *.hlp, and LINDO BATCH files,
*.bat, into a subdirectory.

I

copy a:\aremos.exe c:\aremosl

copy a:*.hlp c:\aremosl

copy a:*.bat c:\aremos1

Add LOADBWCC.EXE to LOAD statement of WIN.INI.
load=loadbwcc.exe

Copy pif files into Windows subdirectory.

copy a:*.pif c:\windows

Copy lindo.exe to any directory and make the necessary updates
in lindo.pif file.

ie. copy a:\lindo.exe c:\aremos

Restart Windows. Normally it will work under 386-enhanced mode.
Note that AREMOS will not work under protected or standard mode.
. Create a new group using File | New menu commands.

Additions :

85

1. The linear programming model file of the last compiled refinery network model can be
found in a file named 'Ipmodel.out'. The information about the variables appearing in

]

this file is stored in another file named 'variable.out'.

. Once the refinery model is constructed and optimization is performed, the report of

optimization results are stored in files with extensions ".rep". For instance report file for
mymodell.net will be stored in mymodell.rep, hence can be examined using any text
editor. However there is also an online report utility within the modeling system for this
purpose. Using a text editor on the other hand may help taking printout of the report or

play with the format of the report.

86

APPENDIX C.

A REFINERY LINEAR PROGRAMMING MODEL PREPARED
BY AREMOS

MAX

-92.970001C002-88.589996C001-90.040001C003
-2.1322C002002-2.1378C001002-2.1825C003002
-4.7005C002001-4.7129C001001-4.8113C003001

-5.0689H00603

-2.33H00202

-10.6345R03002

-5.3848R02402

-20.154R03003

-2.5231U03701

-2.3505U02901

-1.9144R02702

-2.7387R02002

-40.9615R02703

-10.1933R03402

-12.8753R03403

-7.0618R04701
-0.7392G10101T1-1.4784G10101T2-1.6480G10101T3-2.2744G10101T4
-0.7392G10201T1-1.4784G10201T2-1.6489G10201T3-2.2744G10201T4
-0.7392G10301T1-1.4784G10301T2-1.6489G10301T3-2.2744G10301T4
-0.7392G10401T1-1.4784G10401T2-1.6489G 10401T3-2.2744G10401T4
-0.7392G10501T1-1.4784G10501T2-1.6489G10501T3-2.2744G10501T4
-0.7392G10102T1-1.4784G10102T2-1.6489G10102T3-2.2744G10102T4
-0.7392G10202T1-1.4784G10202T2-1.6489G10202T3-2.2744G10202T4
-0.7392G10302T1-1.4784G10302T2-1.6489G 10302T3-2.2744G10302T4
-0.7392G10402T 1-1.4784G10402T2-1.6489G 10402T3-2.2744G 10402T4
-0.7392G10502T 1-1.4784G10502T2-1.6489G 10502T3-2.2744G10502T4
+52.51B04801+134.25R03401+70.27B04802+1 14.56B04803
+149R03001+86.32R04001+119.17R03902+132.05R03801
+27.73R04201+225.23B02101+156.8B04901+164.31B04902

+166B04903+244.55G05001+281.32G05002+242G05003
+20L.01603

SUBJECT TO

C002-C002001-C002002=0

C001-C001001-C001002=0

C003-C003001-C003002=0
+C002002+C001002+C003002>=6000
+C002002+C001002+C003002<=8000
100H00201-1.3C002002-1.3C001002-1.4C003002=0
100H00202-52.5C002002-56.7C001002-54.63C003002=0
100H00203-0.2C002002-0.07C003002=0
100H00204-11.2C002002-11.2C001002-11.1C003002=0
100H00205-6.8C002002-6.8C001002-8.8C003002=0
100H00206-12.5C002002-12.5C001002-12.5C003002=0
100H00207-12C002002-11.5C001002-11.5C003002=0
+C002001+C001001+C003001>=10500
+C002001+C001001+C003001<=15000
100H00601-1.7C002001-1C001001-1.1C003001=0
100H00602-0.2C002001-0.07C003001=0
100H00603-55.1C002001-59.3C001001-57.23C003001=0
100H00604-11.7C002001-11.7C001001-11.6C003001=0
100H00605-8.5C002001-6.5C001001-8.5C003001=0
100H00606-11.5C002001-11C001001-11C003001=0
100H00607-11C002001-10.5C001001-10.5C003001=0
+H00603<=7000
100V00701-23.1C002001-27.3C001001-28C003001=0
1060V00702-14.5C002001-14.5C001001-13C003001=0
100V00703-17.5C002001-17.5C001001-16C003001=0
+H00202<=4000

100V (00501-28.3C002002-28.3C001002-30.43C003002=0
100V00502-19.8C002002-18.5C001002-14.7C003002=0
100V00503-9.9C002002-9.9C001002-9.5C003002=0
T01801-V00502-V00702=0

T00901-H00204-HO0604=0

T01001-H00205-H00605=0

TO1101-RO1301=0

87

+R03002<=2600
100U03701-100R03002=0
+R02402<=1400
100U02301-99.1R02402=0
+R03003<=2000
100U02901-99.1R03003=0
+U03701<=2600
100P03601-10.5U03701=0
100P03602-3U03701=0
100P03603-86.5U03701=0
+U02901<=1900
100P03501-12.57U02901=0
100P03502-8.43U02901=0
100P03503-79U02901=0
+R02702<=1200
100D02601-3.35R02702=0
100D02602-96.65R02702=0
+R02002<=3600
100D02801-4.74R02002=0
100D02802-95.26R02002=0
+R02703<=2800
100D03101-3R02703=0
100D03102-96.65R02703=0
+R03402<=1900
100F03201-19.15R03402=0
100F03202-2.55R03402=0
100F03203-12.43R03402=0
100F03204-20.34R03402=0
100F03205-40.28R03402=0
+R03403<=2700
100F03301-8.2R03403=0
100F03302-4.6R03403=0
100F03303-23.5R03403=0
100F03304-14.57R03403=0
100F03305-44.16R03403=0
+R04701<=1500
100L01601-97R04701=0
100L01602-1R04701=0

100L01603-2R04701=0

F03301-B0480101-B0480102-B0480103=0
F03201-B0480201-B0480202-B0480203=0
V00701-B0480301-B0480302-B0480303=0
V00501-B0480401-B0480402-B0480403=0
B04801-B0480101-B0480201-B0480301-B0480401=0
B04802-B0480102-B0480202-B0480302-B0480402=0
B04803-B0480103-B0480203-B0480303-B0480403=0
0.95B04803-1.05B0480103-0.9746B0480203-0.9418B0480303-0.9524B0480403>=0
R02001-B0210101=0

R02701-B0210201=0

D02802-B0210301=0

F03204-B0210401=0

F03304-B0210501=0
B02101-B0210101-B0210201-B0210301-B0210401-B0210501=0
D02602-B0490101-B0490102-B0490103=0
D03102-B0490201-B0490202-B0490203=0

B04501-B0490101-B0450201=0

B04502-B0490102-B0450202=0

B04503-B0490103-B04%0203=0

0.75B04901-0.78299B0490101-0.79B0490201<=0
0.82B04901-0.78299B0490101-0.79B0490201>=0
0.785B04902-0.78299B0490102-0.79B0450202<=0
0.82B04902-0.78299B0490102-0.79B0490202>=0
P03503-G0500101-G0500102-G0500103=0
P03603-G0500201-G0500202-G0500203=0
F03205-G0500301-G0500302-G0500303=0
F03305-G0500401-G0500402-G0500403=0
R02501-G0500501-G0500502-G0500503=0
G05001-G0500101-G0500201-G0500301-G0500401-G0500501=0
G05002-G0500102-G0500202-G0500302-G0500402-G0500502=0
G05003-G0500103-G0500203-G0500303-G0500403-G0500503=0
0.71G05001-0.7846G0500101-0.7978G0500201-0.7144G0500301-0.7325G0500401
-0.6829G0500501<=0
0.75G05001-0.7846G0500101-0.7978G0500201-0.7144G0500301-0.7325G0500401
-0.6829G0500501>=0

0.725G05002-0.7846G0500102-0.7978 G0500202-0.7144G0500302-0.7325G0500402
-0.6829G0500502<=0

89

0.76G05002-0.7846G0500102-0.7978G0500202-0.7 144G0500302-0.7325GH500402
-0.6829G0500502>=0
G0500101-G10101T0-G10101T1-G10101T2-G10101T3-G10101T4=0
G0500201-G10201T0-G10201T1-G10201T2-G10201T3-G10201T4=0
G0500301-G10301T0-G10301T1-G10301T2-G10301T3-G10301T4=0
G0500401-G10401T0-G10401T1-G10401T2-G10401T3-G10401T4=0
G0500501-G10501T0-G10501T1-G10501T2-G10501T3-G10501T4=0
G0500102-G10102T0-G10102T1-G10102T2-G10102T3-G10102T4=0
G0500202-G10202T0-G10202T1-G10202T2-G10202T3-G10202T4=0
G0500302-G10302T0-G10302T1-G10302T2-G10302T3-G10302T4=0
'G0500402-G10402T0-G10402T 1-G10402T2-G10402T3-G10402T4=0
G0500502-G10502T0-G10502T 1-G10502T2-G10502T3-G10502T4=0
91G05001-96G10101T0-96.563G10101T1-96.821G10101T2-96.862G 1010113
-97G10101T4-98G10201T0-98.563G10201T1-98.821G10201T2-98.862G 1(6201T3
-99G10201T4-93G10301T0-93.563G10301T1-93.821G10301T2-93.862G1G01T3
-94G10301T4-93.5G10401T0-94.063G10401T1-94.321G10401T2-94.362GE0401T3
-94.5G10401T4-68G10501T0-68.563G10501T1-68.821G 10501 T2-68.862G10501T3
-69G10501T4<=0

95G05002-96G10102T0-96.563G10102T 1-96.821G10102T2-96.862G 1010ZT3
-97G10102T4-98G10202T0-98.563G10202T1-98.821G10202T2-98.862G 1(202T3
-99G10202T4-93G10302T0-93.563G10302T1-93.821G10302T2-93.862G 1{BO2T3
-94G10302T4-93.5G10402T0-94.063G10402T 1-94.321G 10402T2-94.362GI0402T3
-94.5G10402T4-68G10502T0-68.563G10502T 1-68.821G10502T2-68.862GI0502T3
-69G10502T4<=0

R04301-P03501-D02601-R04401-R04601=0

R04201-R04301-R00401=0

R04101-L01601-P03602=0

R04001-R04101-P03502=0

R02501-R02401=0

R02401+R02402+R02403-T00901=0

R01701-H00601-H00201=0

R0O0801-H00602=0

R00401-R00801-H00203=0

R01201+R01202-H00206=0

R01301+R01302-H00606-R01201=0

R01401-R01302-H00607-V00703-R01501=0

R01501-R01202-H00207-V00503=0

R02701+R02702+R02703-T01101=0

R03001+R03002+R03003-T01001=0
R03401+R03402+R03403-T01801=0
R03801-R02403-R03%01=0
R03901+R03902-U02301=0
R04401-F03202-R04501=0
R04501-F03302-L01602=0
R04601-P03601-D03101-D02801=0
R04701-R01701-F03203-F03303=0
R02001+R02002-R01401=0
B04801>=100

R03401>=100

B04802>=100

B04803>=100

R0O3001>=100

R04001>=100

R03902>=100

R03801>=100

R04201>=100

B02101>=100

B04901>=100

B04902>=100

B04903>=100

G05001>=1000

G05002>=1000

G05003>=100

G05003<=200

L01603>=10

END

91

APPENDIX D.

THE VARIABLES GENERATED FOR A REFINERY MODEL

Variable’

R02002
R02001
R0O4701
R04601
R04501
R04401
R03902
R03901
R03801
R03403
R03402
R03401
R03003
R03002
R03001
R02703
R02702
R02701
RO1501
RO1401
R0O1302
R01301
R01202
RO1201
R00401
R0O0801
R01701
R02403
R02402
R02401

BY AREMOS

Meaning of the Variable Owning Unit Name
Dies-36D P8
Die P8
LPG P25
FG P24
FG P23
FG P22
SWLSR P16
LSR ~ Pl6
LSR P17
HVGO-7fcc ’ P15
HVGO-4fcc P15
HVGO P15
HSR-6U P14
HSRto36U P14
HSRFinal P14
Kero-6D P13
Kero-3D P13
Kero-Mot P13
Diesel P6
Diesel P5
Kero P4
Kero P4
Kero P3
Kero P3
FG P1
FG P2
LPG P7
LSR P12
LSR P12
LSR P12

R02501
R04001
R04101
R04201
R04301
G0500503
G0500403
G0500303
G0500203
G0500103
G0500502
G0500402
G0500302
G0500202
G0500102
G0500501
G0500401
G0500301
G0500201
G0500101
G05003
G05002
G05001
B0490203
B0490103
B0490202
B04950102
B0490201
B0450101
B04903
B04902
B04901
B0210501
B0210401
B0210301
B0210201
B0210101
B02101

Naphta

LPG

LPG

FG

FG

Amount of Naphta used in Platformate
Amount of WCN used in Platformate
Amount of WCN used in Platformate
Amount of Plat used in Platformate
Amount of Plat used in Platformate

Amount of Naphta used in Premium Gaso
Amount of WCN used in Premium Gaso
Amount of WCN used in Premium Gaso

Amount of Plat used in Premium Gaso
Amount of Plat used in Premium Gaso

Amount of Naphta used in Normal Gaso

Amount of WCN used in Normal Gaso
Amount of WCN used in Normal Gaso
Amount of Plat used in Normal Gaso
Amount of Plat used in Normal Gaso
Platformate

Premium Gaso

Normal Gaso

Amount of Kero used in JP 4
Amount of Kero used in JP 4
Amount of Kero used in JET A-1
Amount of Kero used in JET A-1
Amount of Kero used in Kerosene
Amount of Kero used in Kerosene
JP4

JET A-1

Kerosene

Amount of LCGO used in Motorin
Amount of LCGO used in Motorin
Amount of Diesel used in Motorin
Amount of Kero-Mot used in Motorin
Amount of Die used in Motorin
Motorin

Naphta Unit

P18

P19

P20

P21

G. Blending Station
G. Blending Station
G. Blending Station
G. Blending Station
G. Blending Station
G. Blending Station
G. Blending Station
G. Blending Station
G. Blending Station
G. Blending Station
G. Blending Station
G. Blending Station
G. Blending Station
G. Blending Station
G. Blending Station
G. Blending Station
G. Blending Station
G. Blending Station
Kero Blending
Kero Blending
Kero Blending
Kero Blending
Kero Blending
Kero Blending
Kero Blending
Kero Blending
Kero Blending

Mot Blending

Mot Blending

Mot Blending

Mot Blending

Mot Blending

Mot Blending

B0480403
B0480303
B0480203
B0480103
B0480402
BO480302
B0480202
B0480102
B0480401
B0480301
B0480201
B0480101
B04803
B04802
B04801
LO1603
LO1602
LO1601
F03305
F03304
FO03303
FO3302
F03301
F03205
F03204
F03203
F03202
F03201
D03102
D03101
D02802
D02801
DO2602
D02601
P03503
PO3502
PO3501
PO3603

Amount of VRSD used in Ozel Kal Yak
Amount of VRSD used in Ozel Kal Yak
Amount of F.Oil used in Ozel Kal Yak
Amount of F.QOil used in Ozel Kal Yak
Amount of VRSD used in F.Oil 6
Amount of VRSD used in F.Qil 6
Amount of F.Oil used in F.Qil 6
Amount of F.Oil used in F.Oil 6
Amount of VRSD used in Burner F.Qil
Amount of VRSD used in Burner F.Qil
Amount of F.Oil used in Burner F.Qil
Amount of F.Oil used in Burner F.Qil
Ozel Kal Yak

F.Oil 6

Burner F.Oil

Sulphur

FG

LPG

WCN

LCGO

LPG

FG

F.Gil

WCN

LCGO

LPG

FG

F.Oil

Kero

FG

Diesel

FG

Kero

FG

Plat

LPG

FG

Plat

F.Oil Blending
F.Oil Blending
F.O1l Blending
F.O1l Blending
F.Oil Blending
F.Oil Blending
F.Oil Blending
F.Oil Blending
F.QOil Blending
F.Oil Blending
F.Oil Blending
F.Oil Blending
F.Oil Blending
F.Oil Blending
F.Oil Blending
7LPG

7LPG

7LPG

7 FCC

7FCC

7 FCC

7 ECC

7 FCC

4 FCC

4 FCC

4 FCC

4 FCC

4 FCC

6D

6D

36D

36D

3D

3D

6P

6P

6P

36P

P03602
P03601
U02901
u02301
u03701
TO1101
T01001
T00901
T01801
V00503
V0502
V00501
V00703
VOa702
V0701
HO0607
HO00606
HO00605
H00604
HO00603
HO00602
HO00601
HO0207
HO00206
HO00205
H00204
HO0203
HO00202
H00201
Com
CO001
.Coo2
C002002
C001002
C0mB002

C002001

C001001
C0m001

LPG

FG

LSR

LSR

HSR

Kero

HSR

LSR

HVGO

LVGO

HVGO

VRSD

LVGO

HVGO

VRSD

Diesel

Kero

HSR

LSR

ATSR

FG

LPG

Diesel

Kero

HSR

LSR

FG

ATSR

LPG

Crude Oil iran light
Crude Oil sarir

Crude Oil essider

Crudc Oil essider to 2 HP
Crude Oil sarir to 2 HP
Crude Oil iran light to 2 HP
Crudc Oil essider to 5 HP
Crude Oil sarirto 5 HP
Crude Oil iran light to 5HP

36 P

36 P

6U

3U

36 U

Kero Tank

HSR Tank

LSR Tank

HVGO Tank

2V

2V

2V

S5V

5V

5v

5 HP

5 HP

5 HP

5 HP

5 HP

5 HP

SHP

2 HP

2 HP

2 HP

2 HP

2 HP

2 HP

2 HP

CRUDE OIL TANK
CRUDE OIL TANK
CRUDE OIL TANK
CRUDE OIL TANK
CRUDE OIL TANK
CRUDE OIL TANK
CRUDE OIL TANK
CRUDE OIL TANK
CRUDE OIL TANK

95

APPENDIX E.

AN OPTIMAL RESULTS REPORT PREPARED BY AREMOS

Summary Report:
Current model has the following feasible solution

Objective funtion value: 1592626

P8:

Dies-36D 0
Die 7392.2241
P25:

LPG 868.5976
P24 :

FG 157.2848
P23:

FG 70.8171
P22:

FG 119.2671
P16;

SWLSR 100
LSR 0
P17:

LSR 1726.531
Pi15:

HVGO-T7fcc 1350.677
HVGO-4fce 1900
HVGO 100

P14:
HSR-6U
HSRto36U
HSRFinal

P13:
Kero-6D
Kero-3D
Kero-Mot

P6:
Diesel

P5:
Diesel

P4
Kero
Kero

Kero

Kero

P1:

FG

FG

LPG

P12:
LSR
LSR

1497.95
100

0
310.3983
0

1668.571

7392.2241

2102.9629
310.3983

0
952.381

40.6465

25.4083

315.0186

1726.531
100.9082

LSR 512.283

Naphta Unit :

Naphta 512.283
PI18:

LPG 887.4782
P19:

LPG g 887.4782
P20:

FG 327.5966
P21:

FG 286.9502

G. Blending Station : ,
Amount of Naphta used in Platformate 200

Amount of WCN used in Platformate 0
Amount of WCN used in Platformate 0
Amount of Plat used in Platformate 0
Amount of Plat used in Platformate 0
Amount of Naphta used in Premium Gaso 132.6714
Amount of WCN used in Premium Gaso 596.4588
Amount of WCN used in Premium Gaso 242.9897
Amount of Plat used in Premium Gaso 997.6687
Amount of Plat used in Premium Gaso 0
Amount of Naphta used in Normal Gaso 179.6116
'Amount of WCN used in Normal Gaso 0
Amount of WCN used in Normal Gaso 522.3303
Amount of Plat used in Normal Gaso 298.0581
Amount of Plat used in Normal Gaso 0
Platformate . 200
Premium Gaso 1969.7889

Normal Gaso 1000

Kero Blending :

Amount of Kero used in JP 4
Amount of Kero used inJP 4
Amount of Kero used in JET A-1
Amount of Kero used in JET A-1
Amount of Kero used in Kerosene
Amount of Kero used in Kerosene
P4

JET A-1

Kerosene

Mot Blending :

Amount of LCGO used in Motorin
Amount of LCGO used in Motorin
Amount of Diesel used in Motorin
Amount of Kero-Mot used in Motorin
Amount of Die used in Motorin
Motorin

F.Oil Blending :

Amount of VRSD used in Ozel Kal Yak
Amount of VRSD used in Ozel Kal Yak
Amount of F.Oil used in Ozel Kal Yak
Amount of F.Qil used in Ozel Kal Yak
Amount of VRSD used in F.Oil 6
Amount of VRSD used in F.Oil 6
Amount of F.Oil used in F.Oil 6
Amount of F.Oil used in F.Oil 6
Amount of VRSD used in Burner F.Qil
Amount of VRSD used in Burner F.Oil
Amount of F.Oil used in Burner F.Qil
Amount of F.Oil used in Burner F.Oil
Ozel Kal Yak

F.Oil 6

Burner F.Qil

TLPG:
Sulphur

100

100

100
100
100
100

196.7936
386.46

0

0
7392.2241
7975.478

2156.1899
2934.6641
274.6055
0

0

0

89.2445
10.7555

0

0

0

100
5365.46
100

100

17372

FG
LPG

7 FCC:

WCN
LCGO
LPG
FG
F.Qil

4FCC:

WCN
LCGO
LPG
FG
F.Oil

6D:
Kero
FG

36D:
Diesel
FG

3D:
Kero
FG

6P:
Plat

LPG
FG

36P:
Plat
LPG
FG

8.686
842.5397

596.4588
196.7936
317.409
62.1311
110.7555

7653199
386.46
236.17

48.45
363.85

300
10.3983

o

1205.7271
44.9385
157.2848

100

6U:
LSR

3U:
LSR

36 U:
HSR

Kero Tank :
Kero

HSR Tank:
HSR

LSR Tank :
LSR

HVGO Tank :

HVGO

2V:
LVGO
HVGO
VRSD

5V:

LVGO
HVGO
VRSD

S5HP:
Diesel
Kero
HSR
LSR
ATSR
FG

100

1497.95

310.3983

1597.95

2339.7219

3350.677

754.2857
1508.571
2156.1899

222323
1842.105
2934.6641

1397.459
1460.98
1079.855
1486.3879
7000
25.4083

101

LPG

2HP:
Diesel
Kero
HSR
LSR
FG
ATSR
LPG

CRUDE OIL TANK :
Crude Oil iran light

Crude Oil sarir

Crude Oil essider

Crude Oil essider to 2 HP
Crude Oil sarir to 2 HP
Crude Oil iran light to 2 HP
Crude Oil essider to 5 HP
Crude Oil sarir to S HP
Crude Oil iran light to 5 HP

215971

914.2857
952.381
518.0953
853.3333
15.2381
4000
99.0476

0

0
20323.2207
7619.0479
0

0
12704.1699
0

0

102

(1

[2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

103

REFERENCES

Bodington, C.E., Baker, T.E., "A History of Mathematical Programming in the
Petroleum Industry", Interfaces, Vol. 20, No. 4, pp. 117-127, 1990.

Symonds, G. H., "Linear Programming Solves Refining and Blending Problems",
Industrial and Engineering Chemistry, Vol. 48, No. 3, pp. 394-401, 1956.

Charnes, A., Cooper W. W, and Mellon, B., "Blending aviation gasoline-A study
in programming interdependent activities in an integrated oil company”,
Econometrica, Vol. 20, No. 2, pp. 135-139, 1952.

Manne, Alan, " A linear programming model of the US petroleum refining industry",
Economerrica, Vol. 26, No. 1, pp. 67-106, 1958.

Kawaratani, T. K., Ullman, R. J., Dantzig, G. B., "Computing Tetraethyllead

Requirements in a Linear Programming Format", Operations Research, Vol. 8, pp.
24-29, February 1960.

Baker, T. E., Lasdon, L. S., "Successive Linear Programming a Exxon",
Management Science, Vol. 31, No. 3, pp. 264-274, 1985.

Klingman, D., Phillips, N., Steiger, D., Wirth, R., Padman, R., Krishnan, R., "An
Optimization Based Integrated Short-Term Refined Petroleum Product Planning
System", Management Science, Vol. 33, No. 7, pp. 813-829, 1987.

Klingman, D., Padman, R., Phillips, N., "Intelligent Decision Support Systems: A
Unique Application in the Petroleum Industry”, Annals of Operations Research, Vol.
12, pp. 277-283, 1988.

Dewitt, C. W, Lasdon, L. S., Waren, A. D., Brenner, D. A., Melhem, S. A.,
"OMEGA: An Improved Gasoline Blending System for Texaco", Interfaces, Vol.
19, pp. 85-101, 1989.

(10}

{11

[12]

[13]

(14

[15]

[16]

(17]

(18]

[19]

[20]

104

Uhlmann, A., "Linear Programming on a Micro Computer: An Application in
Refinery Modeling", European Journal of Operations Research, Vol. 35, pp. 321-
327, 1988.

Kosal, H., "A methodology for Production Planning in a Refinery", Unpublished
M. Sc. Thesis, Department of Industrial Engineering, M.E.T.U., Ankara, 1981.

Kavrakogly, 1., Or, I., Eyler, M. A,, Kaylan, A. R., Dogu, G., "TUPRAS izmit
Rafinerisinin Uretim Planlamasinin Gelistirilmesi Projesi Son Raporu”, Miihendislik
Fakiiltesi, Bogazici Universitesi, Istanbul, 1986.

Buchanan, J. E., Garven, S. C., Genis, O., Shapiro, J. F., Singhal, V., Thomas,
J.M,, Torpis, S. , "A Multi-Refinery, Multi-Period Modeling System for the
Turkish Petroleum Refining Industry”, Interfaces, Vol. 20, No. 4, pp. 48-60, 1990.

Giirkan, T., Kartal, N., "Model for thé Development of the Turkish Petrochemical

Industry”, Engineering Costs and Production Economics, Vol. 18, pp. 145-157,
1989.

Greenberg, H. J., "A Bibliography for the Development of an Intelligent
Mathematical Programming System", ORSA CSTS NewsLeiter, Vol. 15, No. 1, pp.
21-37, 1994.

Krishnan, Ramayya, "Model Management: Survey, Future Directions and a
Bibliography", ORSA CSTS Newsletter, Vol. 14, No. 1, pp. 7-22, 1993.

Geoffrion, A. M., "An Introduction to Structured Modeling", Management Science,
Vol. 33, No. 5, pp. 547-588, 1987.

Geoffrion, A. M., "The Formal Aspects of Structured Modeling", Operations
Research, Vol. 37, No. 1, pp. 30-51, 1989.

Geoffrion, A. M., "Structured Modeling: Survey and Future Research Directions",
ORSA CSTS NewsLetter, Vol. 15, No. 1, pp. 1-20, 1994.

Geoffrion, A. M., "Computer Based Modeling Environments", European Journal of
Operations Research, Vol. 41, pp. 33-43, 1989.

105

[21] Murphy, F. H,, Stohr, E. A., Asthana, A., "Representation Schemes for Linear
Programming Models", Management Science, Vol. 38, No. 7, pp. 964-991, 1992.

221 Brooke, A., Kendrick, D., Meeraus, A., GAMS, Release 2.25, A User's Guide,
The Scientific Press, 1991.

[23] Fourer, R., Gay, D. M., Kemighan, B. W., AMPL A Modeling Language for
Mathematical Programming, The Scientific Press, 1993.

[24] Fourer, R,, Gay, D. M., Kerninghan, B. W., "A Modeling Language for
Mathematical Programming", Management Science, Vol. 36, No. 5, pp. 519-555,
1990.

[25] Schrzfge, L., LINDO, Release 5.0, The Scientific Press, 1991.

[26] Chéobineh, Joobin, "SQLMP: A Data Sublanguage for Representation and
Formulation of Linear Mathematical Models", ORSA Journal on Computing, Vol.
3, No. 4, pp. 358-375, 1991.

[27] Geoffrion, A. M.,"The SML Language for Structured Modeling: Levels 1 and 2",
Operations Research, Vol. 40, No. 1, pp. 32-57, 1992.

[28] Geoffrion, A. M., "The SML Language for Structured Modeling: Levels 3 and 4",
Operations Research, Vol. 40, No. 1, pp. 58-75, 1992.

[29] Greenberg, H. J., Murphy, F. H., "A Comparison of Mathematical Programming
Systems", Annals of Operations Research, Vol. 38, pp. 177-238, 1992.

[30] MA, Pai-chun, Murphy, F. H., Stohr, E. A., "Representing Knowledge About
Linear Programming Formulation", Annals of Operations Research, Vol. 21, pp.
149-172, 1989.

[B1] MA, Pai-chun, "An Intelligent Approach Towards Formulating Linear Programs",
Ph.D. Dissertation, New York University, 1988.

[32] Jones, C. V., "User Interfaces”, in: Coffman et al. (ed.), Computing, Handbooks in
OR&MS, Vol. 3, pp. 603-668, North-Holland, Amsterdam, 1992.

(331

[34]

[35]

[36]

371

[38]

[39]

[40]

f41]

[42]

[43]

[44]

[45]

106

Jones, C. V., "Visualization and Optimization", ORSA Journal on Computing, Vol.
6, No. 3, pp. 221-257, 1994. ‘

Bell, P. C., " Visual Interactive Modeling: The Past, The Present and the Prospects”,
European Journal of Operations Research, Vol. 54, pp. 274-286, 1991.

Bright, J. G., Johnston, K. J., "Whither VIM - A Developers View", European
Journal of Operations Research, Vol. 54, pp. 357-362, 1991.

Hurrison, R. D., "Intelligent Visual Interactive Modelling", European Journal of
Operations Research,;,Vol. 54, pp. 349-356, 1991.

Thomas, D., "What is an Object", Byte, pp. 231-240, March 1989.
Coad, P., Yourdon, E., Object Oriented Analysis, Yourdon Press, 1991.
Coad, P., Yourdon, E., Object Oriented Design, Y ourdon Press, 1991.

Dodani, M. H., Hughes, C. E., Moshell, J. M., "Separation of Powers", Byte, pp.
255-262, March 1989.

ObjectWindows for C++, User's Guide, Borland International Inc., 1991.

Piela P.C., Epperly, T. G., Westerberg, K. M., Westerberg, A. W., "ASCEND: An
Object-Oriented Computer Environment for Modeling and Analysis: The Modeling
Language", Computers Chemical Engineering, Vol. 15, No. 1, pp. 53-72, 1991.

Altmel, I. K., Birgoren, B., Draman, M., "TUPRAS izmit Rafinerisi i¢in bir
Dogrusal Programlama Modeli", Research Paper Series No: FBE-IE-06/93-08,
Department of Industrial Engineering, Bogazigi University, Istanbul, 1992.

Altinel, i. K., Birgéren, B., Draman, M., "Bir Tiirk Rafinerisi icin Dogrusal
Programlama Modeli", Yoneylem Aragtirmasi ve Endiistri Mithendisligi X V. Ulusal
Kongresi Bildiriler Kitabi, Bogazi¢i University, Istanbul, 1993.

Birgoren, B., Draman, M., Altnel, i. K., "Bir Petrol Rafinerisinde Uretimin
Eniyilenmesi igin bir Gorsel Etkilesimli Modelleme Sistemi", Y 6neylem Arastirmasi

107

ve Endiistri Miihendisligi X V1. Ulusal Kongresi Bildirler Kitab, Bilkent
University, Ankara, 1994 (to appear).

[46] Borland C++, Programmer's Guide, Version 3.1, Borland International Inc., 1992.

. s O S

4D T ~
e gy B
-

