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Abstract

Accretion onto a compact object is the process that is thought to power un-
expectedly intense radiation of some astrophysical objects like Active Galactic Nuclei
and X-Ray Binaries. A similar process is known to exist in Cataclysmic Variables and
Young Stellar Objects. When the accreting matter has enough angular momentum it
forms a disc around the compact object (a black hole, neutron star or white dwarf)

and this disc is called an accretion disc.

In this theses accretion discs around compact objects are studied both ana-
lytically and numericaly. Simplifying hydrodynamic equations in their full generality
by the assumptions of the standart accretion disc theory both time-independent and
time-dependent equations were solved analytically. Time-dependent solutions are sup-
ported by numerical results. In all solutions a viscosity prescription which is a little
more generalized than the standart prescription is used. The solution of the time-
dependent equations with the generalized viscosity belong to the same family with the

earlier ones.



(3zet

Bir tikiz nesnenin iizerine madde yigilmasimn Aktif Galaktik Cekirdek ve X-
g1 ciftleri gibi astrofiziksel nesnelerin beklenmedik yeginlikteki igimasini giidiimleyen
siire¢ oldugu diigiiniilmektedir. Benzer bir siirecin Cogkun Degigenler ve Geng Yildizs:
Nesneler’de de yer aldigy bilinmektedir. Yigilan madde yeterli acisal momentuma
sahipse tikiz nesnenin (karadelik, notron yildiz1 veya beyaz ciice) etrafinda bir disk

olusur ve bu diske birikim diski ad1 verilir.

Bu caligmada tikiz nesnelerin etrafindaki birikim diskleri hem analitik hem de
say1sal olarak incelenmigtir. Hidrodinamik denklemler en genel bigimlerinden Standart
Birikim Diski Kurami’'nmin varsayimlari ile sadelegtirilerek, hem zamandan bagimsiz
hem de zamana bagli durum igin, analitik olarak ¢oziilmiistiir. Zamana bagh ¢oziimler
sayisal sonugclarla desteklenmigtir. Tim c¢ozlimlerde standart teorininkinden biraz
daha genellestirilmig bir viskozite regetesi kullanilmigtir. Zamana bagh denklemlerin

genellestirilmis viskozite ile yapilan analitik ¢6ziimii daha 6ncekilerle aym ailedendir.
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1. INTRODUCTION

Accretion is a process in which an astrophysical object aggregates matter from
its surrounding by its gravitational attraction. The source of the accreting matter
could be the interstellar medium or a star accompanying the accreting star in a binary

system.

The importance of accretion was first recognized in the context of the formation
of planets emerging from the early solar nebula. Jeffreys (1924) correctly described the
evolution of a differentially rotating viscous disc. In the beginning of 1940’s Peek
and von Weizsicker concluded that the early solar nebula would seperate into two
parts —a central core containing most of the mass and a disc containing most of the
angular momentum-by the action of viscous torques which are increased by turbulence
(Pringle, 1981). The equations of motion, which are derived in section (4.2), were first
derived by von Weizsiicker in 1948 who also put forward the argument that turbulent
viscosity must be the dominant dissipation process and hypothesized a mixing length
prescription in which the mixing length varies as a given power of radius. A somewhat

more general solution was given by Liist in 1952.

Accretion is spherical when the accreting matter has no angular momentum
with respect to the accreting object. Hoyle and Lyttleton (1939) examined the possible
change in luminosity of a main sequence star due to its passage through an interstellar
(cold) gas cloud and derived the accretion rate. Bondi (1952) calculated the accretion
rate and gave a full analytic solution of the flow of a polytropic gas falling onto a static
gravitating body. These equations can also describe the case of outflow, i.e. stellar

winds.

Accreting matter forms a disc if its specific angular momentum J is too large
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for it to hit the accreting object directly. That is, if the circularization radius

o=
czrc—'GJM1

(1.1)
is greater than the effective size of the accreting object an accretion disc will form.
This condition is amply satisfied in some binary systems where one of the stars fills
its Roche lobe and overflows matter through the inner Lagrange point, described in
page(6), onto the other star a compact object (a white dwarf, neutron star or a black
hole). An accretion disc is more likely to form if the accreting star is compact because
then the scale length associated with the mass donor star is much larger than the
object onto which accretion occurs and so the circularization radius is more likely
to exceed the effective size of the accreting object. While accreting onto a compact
object the gas has to reduce its specific angular momentum by up to ~ 3 orders of
magnitude. As is described below this presents a severe problem to accretion theory
because the ordinary (molecular) viscous torques and other trivial torques on the disc

are not enough to account this much of transport of angular momentum.

In 1960’s were discovered the quasars (Schmidt, 1962) which had extremely
large luminosities (L ~ 10'2Lg) produced in comparatively small regions (r ~ 1 pc)
and galactic X-ray sources (Giacconi et al., 1962) emitting large powers at very high
temperatures (T' ~ 10"K). Salpeter (1964) and Zel’dovich were the first to recog-
nize the possible importance of accretion as an astrophysical energy source in quasars.
Shlovsky (1967) was the first to propose that a galactic X-ray source (Scorpius X-1)
could be a binary system in which accretion onto a neutron star suppliés the ob-
served luminosity. The role of an accretion disc in XRBs and the similarity with the
cataclysmic variables were pointed out by Prendergast and Burbidge (1968). The im-
portance of disc accretion around a massive black hole was recognized by Lynden-Bell
(1969) and Pringle and Rees (1972) and a detailed discussion of accretion discs with a

computation of emission spectrum was given by Shakura and Sunyaev (1973).



In an accretion disc the matter follows almost keplerian orbits. That is, the

angular velocity €2 of matter at radius r is given by

GM,;

(1.2)

This expression for angular velocity manifests that keplerian rotation is a differential
rotation d2/dr # 0 and so there will be viscous stresses acting between the adjacent
layers of disc. The action of the viscous stresses will have two results: (a)The inner
sides that has greater angular velocity will drag the outer parts to have greater velocity
and the act of the outer parts will delay the motion of the inner parts. So the inner
parts will loose kinetic energy and sink down to keplerian orbits with smaller radius.
However, in order to conserve the angular momentum, the outer parts which gained
energy will recede from the centre, (b) Because of the differential rotation between
adjacent layers the viscous stresses will dissipate energy and make the disc radiate at

a power proportional to the compactness of the accreting object.

Accretion discs, today, appear in many diverse contexts in astrophysics such as
Cataclysmic Variables (CVs), X-ray binaries (XRBs), Young Stellar Objects (YSOs)
and Active Galactic Nuclei (AGN). The direct evidence for accretion discs is irrefutable
in CVs, convincing in YSOs and remarkable in AGN (Papaloizou and Lin, 1995).
Releasing of gravitational energy through accretion is the only possible known way of

producing the luminosity output of XRBs.

The study of accretion discs in Cataclysmic Variables is of special importance.
The discs in these systems are the most easy to observe and the best understood. As
the theory of accretion discs suffer from many problems, it is hoped that improvements
in the understanding of the discs will be achieved by understanding the discs in these
» easier” systems first. A subtype of cataclysmic variables called dwarf novae exhibit in-
teresting time dependent phenomena understanding of which is important in revealing

the fundamental secret of the accretion discs, the viscosity.



2. HYDRODYNAMICAL EQUATIONS FOR
ACCRETION DISCS

In this section the equations of hydrodynamics describing an accretion disk in
a binary system are given. The accreting (primary) star is at the origin and the system
is rotating around its center of mass. The equations are written in a frame of reference

rotating with the binary system (corotating frame) so that the stars are fixed.

It is assumed that the mass of the material in the disc is much less than the mass
of the central star, My, < M, so that the self-gravity of the disc can be neglected. It

is also assumed that the relativistic effects can be neglected:

P X1 <1 (2.1)

Here 7 is the distance from the center of the accreting object. This assumption is valid
everywhere for discs around neutron stars and white dwarfs and everywhere except at

r < 3r;, for discs around black holes (Lightman, 1974).

The state of a moving fluid is determined by five quantities: The three compo-
nents of the velocity v and any two of the three thermodynamical quantities (pressure
P and density p, for example)(Landau and Lifshitz, 1959). Accordingly a complete
system of equations of fluid dynamics should be five in number. These are conserva-
tion of mass, conservation of momentum (three equations for three components) and
conservation of energy. The third thermodynamic quantity (T in this case) can be

found by means of an equation of state after these five equations are solved.



The intense radiation fields of accretion discs can influence heavily the mo-
mentum and energy gains and loses of the material, and hence its motions. Thus,
one must consider the fluid of accretion discs consisting of both material particles and
photons, and calculate the contributions of both types of particles to the equations of
motion and of energy conservation. In this way one obtains the equations of radiation

hydrodynamics, which describe the coupled flow of the gas and the radiation.

2.1. Mass and Momentum Equations

We write the equations in a conservative form where the LHS has the time
derivative of a quantity plus the divergence of the flux of that quantity. Then anything
on the RHS would be a source (if positive) or a sink (if negative) term. If the RHS is

zero then the quantity is conserved for the system.

The equation of continuity which ensures the conservation of mass is

%+V-(pv)=0 (2.2)

Here p is the mass per unit volume and v is the velocity field. There may be added a
source term S, at the RHS of (2.2) which could either represent the effect of the mass

transfer stream (S, > 0) or the effects of mass loss through a wind (S, < 0).

The equation for the conservation of momentum is

%+V~(pvv)=—VP+V-'7’—pV‘IIR—2pw.,,b><v (2.3)



Here P, 7 and Y¥p represents the pressure, the viscous stress tensor and the Roche
potential, respectively. The last term on the RHS is the Coriolis force where w,,; is

the angular velocity vector of the binary system

|G(My + M),
Worb = Lla—s——-?-)—z (2.4)

a being the binary seperation.

The Roche potential in cylindrical coordinates is

\If (7' Z) —_— _.%— GM2
R\T, ¥, = N ,/ri+a5—2arcosso+72

1
—§w3,,,(r2 + 1% — 2rr) cos @) (2.5)

where the first term is the gravitational potential of the primary (the accreting star)
and the second term is the gravitational potential of the secondary (mass donor star).
Here the mass of the accretor (primary) and the donor star (secondary) are denoted
by M, and M, respectively. The third term will give the centrifugal force due to the

rotation about the center of mass when the gradient is acted upon. Also note that

M,

TN=———a
A VAN VA

(2.6)

is the distance of accreting star from the center of mass of the system. The innermost
equipotential surface pass through the inner Lagrange point L; which is a saddle point
of ®x on the line connecting the center of the two stars. This special equipotential

surface is called the Roche lobe and has a dumbell shape in three dimensions.



The cartesian components of the viscous stress tensor (described in appendices

and in the references therein) are

_ 61),‘ ij 2 6vk

where 7 is the dynamical viscosity and x is the bulk viscosity. Bulk viscosity is neg-
ligible except in the study of the structure of shock waves and in the absorption and
attenuation of acoustic waves (Anderson et al. 1984). It is zero for monatomic gases
(Hughes and Brighton, 1991). The first part of the viscous stress tensor represents the
contribution from the shearing between different layers of the fluid whereas the sec-
ond part is the contribution due to the compressibility of the fluid. This second part
is usually neglected because the shear contribution (especially 7,, is overwhelmingly
large in discs. However there may be locations in the disc (the central parts near the

star) where the bulk viscosity (so the second term) is important (Kley et al., 1993)

2.2. The Energy Equation

The equation for the conservation of energy is

6—(6%6—)+V-(pev)=—V-(PV)+V-(’T’V)—V'Q-‘V‘F (2.8)

where e = 21?2+ ¢+ U+ E/p is the total energy per unit mass. In (2.8) the first term
on the right represents the pressure work per unit volume per unit time. The second
term on the right is the work done by the viscous stresses per unit volume per unit
time. In the third term q is the conductive flux of heat and measures the rate at which

random motions in the gas transport thermal energy, smoothing out the temperature



differences. € is the internal (thermal) energy per unit mass. E is radiation energy
density and F is the radiative flux vector. The term —V - F gives the rate at which
radiant energy is being lost by emission, or gained by absorption per unit volume of

the gas.

The second term on the RHS of (2.8) can be written as V- (7v) = ®+v-(V-7)

where

&=(7-V)v (2.9)

is called the viscous dissipation function which is the rate at which deviatoric stre-
ses do irreversible work on the fluid. The viscous dissipation function in cylindrical

coordinates is given in the appendix C.

The energy equation (2.8) is useful but has the momentum equation (2.3)
hidden in it. When the momentum equation (ignoring the Coriolis force) is multiplied

by v and subtracted from the energy equation one obtains

%(pe+E)+V‘[(P€+E)V]=—PV-v+<I>-—V-q—V-F (2.10)

Surely many other simplifications can be made in these equations in order to

make them tractable and indeed that is what is done in chapter 4.



3. MAGNETOHYDRODYNAMIC EQUATIONS

The gas flowing in an accretion disc around a compact object is ionized (and
thus is conducting) and it is immersed in the magnetic field of the accreting compact
object. This means that for a full discussion of the accretion disc problem one must
consider the effects of the magnetic field. In this section we will write the MHD

equations for this situation.

3.1. MHD Equations

The complete set of MHD equations for an accretion disc in a binary system

—+V-(pv)=0 (3.1)

g%—}l+v-(pvv)=—VP+V-7"+JXB-—pV\IlR—2pwm.bxv (3.2)
(pe) _ - T,
W-+V-(pev)——V-(Pv)+Vo(Tv)+E J-V.q-V-F (3.3)

0B
—_—= 3.4
V XxE+ 5 0 (3.4)
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J=0(E+v xB) (3.6)

where the first three equations stand for the conservation of mass, momentum and
energy ( e = 302 + €+ Ug + E/p), respectively. The third term on the RHS of (3.2)
is the magnetic force. The equations (3.4) and (3.5) are Faraday’s and Ampére’s law,
respectively. Equation (3.6) is the Ohm’s law (Jackson, 1975). These equations are to

be supplemented by an equation of state to find the temperature.

The displacement term 0_12,%1;:_ is neglected from the Ampére’s law (3.5), on the

grounds that we are not dealing with relativistic velocities. This can be justified as
follows: (3.4) implies that E is of the order of BL/7 where L is a characteristic length
and 7 is a characteristic time of the system. Equation (3.1) indicates that L /7 ~ v and
thus E ~ vB. Now, the term V xB in (3.5) which is of the order of B/L is much greater
than the order of the displacement current term E/(c?7) = (v/c¢)B/(cr) = (v/c)B/L

if one is not dealing with relativistic velocities.

3.2. Magnetic Diffusion and Freezing of the Field

Lines

An equation for the evolution of the magnetic field will be obtained. Eliminat-

ing J between (3.6) and (3.5)

E= —VxB-vxB (3.7)
o0
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and using this in (3.4) one finds

—l—Vx(VxB)—Vx(va)+aB
Moo

5 =0 (3.8)

This can be simplified, by using the vector identity Vx(VxB) = —V2B-V(V-B) and
the Maxwell equation V - B = 0, as follows

1
Moo

%—]3 VZB+V x (v x B) (3.9)

The two limit cases that can give insight for the evolution of magnetic field in

a plasma are examined below:

(A)The fluid at rest: For v =0 (3.9) reduces to

1 v (3.10)

B
ot o

which is a diffusion equation. This means that an initial configuration of magnetic field

will decay away in a diffusion time

T = pooL? (3.11)

where L is a length characteristic of the spatial variation of B.

(B)The fluid with infinite conductivity: For ¢ — oo equation (3.9) re-

duces to
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%%— =V x (v xB) (3.12)

which means that the magnetic flux through any loop moving with the local fluid
velocity is constant in time. This effect is also described by saying that the lines of
force are frozen into the fluid and are carried along with it. A plasma with ¢ — oo is
called an ideal plasma. Note that for an ideal plasma E + v x B in (3.6) must vanish

so that J remains finite. Thus

E=-vxB (3.13)

3.3. Magnetic Pressure

Using J from equation (3.5) in its place in equation (3.2) one obtains for the

magnetic force density

f,,mg=JxB=ul(VxB)xB (3.14)
0

which, by the vector identity B x (VxB) = ;V(B - B) — (B - V)B, becomes

1 1
fmeg = —=—(VB?*) + —(B-V)B 3.15
s ==5,-(VB) +--(B-V) (3.15)

The first term on the RHS of this equation shows that the magnetic force is equivalent

to the gradient of a magnetic pressure
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BZ
Prag = e (3.16)

plus a term which can be thought of as additional term along the lines of force (Jackson,
1975).

Just as the sound waves travel with velocity ¢, = /P/p there is another type of

wave called the magnetohydrodynamic wave (Alfvén wave) which travels with a speed

- Pmag . B
At =\ T T otiep

(3.17)

Alfvén waves are associated with the transverse motion of lines of magnetic induction.
The tension in the lines of force tends to restore them to straight-line form, thereby

causing a transverse oscillation.

3.4. Magnetic Reynolds Number

A unitless number called magnetic Reynolds number is defined in order to
distinguish between situations in which diffusion of the field lines relative to the fluid
occurs and those in which lines of force are frozen in. If V' is a typical velocity of the

problem and L is a typical length, then the magnetic Reynolds number is defined as

Vr

Ronag = T (3.18)

where 7 is the diffusion time given in (3.11). Thus
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§Rmag = ,U.oO'VL (319)

If Rpnay > 1 then the diffusive term in (3.9) can be ignored and we arrive at (3.12)
that is, the transport of the lines of force with the fluid dominates over diffusion. In
astrophysical cases this is indeed the case (Jackson, 1975) and the magnetic field lines

flow with the fluid to a very good approximation.



15

4. THE ANGULAR MOMENTUM
TRANSPORT PROBLEM

4.1. The Problem

The specific angular momentum of a blob of gas at a Keplerian orbit is J =
L/m = rv, = (GMr)'/2. As the angular momentum increases with r, in order to
accrete, this gas has to loose angular momentum as well as energy. However angular
momentum is a conserved quantity and if some matter is to accrete because of kinetic
energy loss, angular momentum is to be redistributed among the gas particles such
that while some part of the gas moves inward to a Keplerian orbit with less angular
momentum, some other part should move outwards to take over the rest of the angular
momentum. As keplerian rotation is a differential rotation there is shearing between
adjacent layers and the viscous stresses acting between these layers will cause a re-
distrubition of the angular momentum. So particles with more angular momentum
will gain more angular momentum and move outwards and particles with less angular

momentum will loose angular momentum and move inwards.

“Viscosity governs the local structure, and the time scale of the evolution of the
disc” (Pringle, 1981). However observations imply that ordinary molecular viscosity
is too small to give reasonable time scales for the evolution. So one must propose
different mechanisms for the redistribution of the angular momentum in the disc. The
unknown nature of the viscosity (or rather, the process which redistribute the angular
momentum) is the main problem of accretion disc theory. The uncertainty in the

functional form and the magnitude of the viscosity limits predictive power of the theory.
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Consider the equation (3.2) with (3.15) and (3.16):

——a(gt") + V- (pvv) = V(P + Prgg) + V-7 + LI'E(B "V)B = pV¥g = 20wory X v (4.1)

Any change in the angular momentum of the fluid in the disc is due to a torque
N =r x f where f is the force density and represents the terms on the RHS of (4.1).
Thus one can conclude that, if there is no exotic physics associated with discs, torques
can only be due to pressure gradients, magnetic forces, an anomalous viscosity and
nonaxisymmetric gravitational field. All the sources of angular momentum transport
remain marginal when compared to the anomalous viscosity that could be generated

by turbulence.

4.2. Turbulence as a Source of Anomalous

Viscosity

A steady flow of an incompressible fluid is specified by three parameters v, u
and [ where v is the kinematic viscosity (v = 1/p), v is the velocity of the main stream

and [ is one linear dimension. These quantities have the following dimensions:

[v]=IL*T7Y, [l|=L, [u]=LT™ (4.2)

Only one dimensionless quantity can be formed from the above three. This combination

R=— (4.3)
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is called the Reynold’s number and any other dimensionless parameter can be written
as a function of R. A steady flow can not be realized for all values of ® and flows tend

to become turbulent for R greater than a critical value R,..

The low molecular viscosity implies high Reynold’s number associated with
astrophysical accretion discs. Laboratory shear flows tend to become turbulent for
Reynolds numbers greater than around 103 (Townsend, 1976). The high Reynold’s
number associated with accretion discs have lead authors to conlude that the flow

must be unstable to turbulent motions.

The possibility of the existence of turbulence implied by high Reynold’s num-
bers suggests a mechanism called turbulent viscosity which could act as an effective
viscosity for the redstribution of angular momentum. The idea is this: turbulence
consists of a hierarchy of eddies with different lengthscales. In any turbulent flow the
largest eddies play an important part. The size of the largest eddies are of the order
of the dimensions of the region in which the flow takes place. We denote this order of
magnitude for any turbulent flow by I. The velocity in the largest eddies is comparable
with the variation of the mean velocity over the distance [; let Au denote the order of
magnitude of this variation. Since vy, characterises the properties of the turbulent
flow, its order of magnitude must be determined by p, | and Au. The only quantity
that can be formed from these and that has the dimensions of kinematic viscosity is

[Au, and therefore

Viyrh ™~ [Au (44)

For the turbulence in accretion discs, the scale of the largest eddies is less than the disc
thickness H (certainly true) and the turbulence is subsonic (probably true, otherwise

the turbulent motions would be thermalised by shocks). Then we can write

T.C. YOKSEKOGRETIM KURULY
DOKUMANTASYON & ERKEZI
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Viury ~ CoH (4.5)

where ¢, is the sound speed. We can convert this inequality into an equation

v=ac,H (4.6)

where o is a dimensionless parameter less than unity. This is the famous prescription
of Shakura and Sunyaev (1973) for the anomalous viscosity. Note that this is only an
ad hoc prescription and apart from expecting o X 1 one gains nothing as « is not

necessarily a constant.

The time scale for variability during outburst of dwarf novae enables estimates
to be made for the magnitude of the viscosity (Pringle, 1981). Such works (Webbing,
1976) imply an effective Reynolds number of ® ~ 10%. For dwarf novae outbursts,
values of R ~ 10% — 10% (or values of @ in the range 0.1 — 1) provide reasonable fits to

the data (Lynden-Bell and Pringle, 1974), Bath and Pringle, 1982).

The origin of the turbulence in accretion discs poses another problem because
discs are linearly stable to hydrodynamic perturbations by the Rayleigh criterion. The
Rayleigh criterion for the stability of a fluid disc to axisymmetric modes is that the

specific angular momentum not decrease outward:

ad;(rzﬂ) >0 (4.7)

This criterion is not violated in accretion discs and this puts the existence of turbulence
in accretion discs into doubt. In order to save their turbulent viscosity Shakura and

Sunyaev (1973) suggested that the discs might be nonlinearly unstable. However non-
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linear instabilities of keplerian discs are not well demonstrated (Hawley and Balbus,
1995). There could be other ad hoc suggestions (like global instability) but ‘turbulence
should be universal property of an accretion disk, not a consequence of one of a num-
ber of special conditions each unique to a particular type of disc’ (Hawley and Balbus,

1995).

In 1990’s a hydromagnetic instability in shearing flow (which was considered
by Velhikov in 1959 and Chandrasekhar (1961) before) was applied to accretion disc
flows (Hawley and Balbus, 1995). This instability is favored by many authors because
it is local (its cause is a characteristic of the underlying flow field) and linear, and its
existence.is independent of the magnetic field and its orientation but for sufficiently
weak fields, depends only on the angular velocity profile in the disc. Hawley-Balbus
instability also offers the possibility of starting from a simple nonturbulent disc flow
with a simple magnetic field configuration and calculating the angular momentum
transport resulting from the fully developed turbulence produced by the instability
(Papaloizou and Lin, 1995).

Hawley-Balbus instability can be viewed as arising because of a modification
of Rayleigh criterion in the presence of a (even weak) poloidal magnetic field because
of the tendency of the field to enforce corotation. The requirement of this modified

stability criterion is that the angular velocity not decrease outward:

dQ S
dr

This is obviously violated in a Keplerian disc.
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4.3. Magnetic Stresses

Magnetic viscosity is the transfer of angular momentum by magnetic stresses.
Since the early days of accretion discs the possible importance of magnetic stresses
in producing significant angular momentum transport has been considered by many
authors (Eardley and Lightman, 1975), Galeev et al. 1979). The magnetic fields must
be maintained by some local dynamo action otherwise they would decay with some

timescale.

The magnetic (Maxwell) stress is always larger than the Reynolds (velocity)
stress by an average factor of four. The Shakura and Sunyaev (1973) model assumed
that the net stress 7, is proportional to the total disc pressure P. The simulations of

Hawley-Balbus instability imply that 7., is proportional to the magnetic pressure

Trop = amagP mag (49)

with Gmeg ~ 0.5 — 0.6 (Hawley and Balbus, 1995).

A radical idea is the transfer of angular momentum by relativistic magnetized
winds, as suggested by Blandford (1976) and by Lovelace (1976), (also Blandford and
Znajek, 1977) They show that if the disc has embedded in it an ordered magnetic field
with a sufficiently large perpendicular component, then the disc can act as a kind of
two dimensional pulsar. The energy and the angular momentum can be carried away
directly in the form of hydromagnetic winds which are called jets. These winds are
highly collimated and the evidence for the existence of them goes back to the early

radio observations of twin lobes in extended radio galaxies.
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5. STANDART ACCRETION DISC THEORY

5.1. Assumptions and Approximations

In this section the hydrodynamical equations of accretion discs are simplified
by many assumptions and approximations. Cylindrical coordinates where r = 0 corre-
sponds to the center of the disc and z = 0 corresponds to the disc’s midplane are used.

The approximations referred are listed below:

1. The Coriolis and centripetal forces are neglected.

2. The gravitational attraction of the secondary star is neglected. This assumption
means that the analysis of the outermost regions of the disc where this assumption
is not valid is left out. The analysis is confined to the inner portions (r N
0.1R,,:) where the influence of the gravitation of the secondary and the streaming
matter are negligible. With these two assumptions the momentum equation (2.3)

becomes

where

GM,
W

3. The disc is azially symmetric. This means that the derivative of any disc property

U(r,2) = — (5.2)

with respect to ¢ vanishes.
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4. No motion of matter in the vertical direction: v, = 0. With these two asumptions
mass conservation equation (2.2) and the three components of the momentum

equation (5.1) become:

10
5 TP =0 (5.3)

o(pvy) 0 o PV OP 190 Tow GM,pr
gt trartP) T =T g T (r2 + 22)3/2 (5.4)
0 U 10 Tr
(gtv‘p) —(rp'vrvw) 4 Bl ;a—(rTw) + £ (5.5)
OP GM,pz
i ) T (5:6)
where
o O 2 19(rv,)
Trr =21 or +(x - 37')1” or (5.7)
2 19(rv,)
= 27)— +(x - 35 (5.8)
o=mra (%) (59)
5. The disc is thin. If H is the thickness of the disc at r
g <1 (5.10)
This assumption has many important implicatons. They are listed below:
e The vertical hydrostatic equilibrium equation simplifies as
P __Gtyp )

0z r3
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One can write, to order of magnitude, 0P/0z ~ P/H. Therefore (5.11) can

be written as

F= (5.12)
Using ¢2 = P/p and refferring the (5.10) this becomes
GM
< = (5.13)

This shows that the order of the last term in (5.4) is much greater than
c2p/r = P/r and thus radial pressure gradient can be neglected compared to

the gravitational term.

An order of magnitude analysis to (5.3) and (5.5) using o-prescription v ~

csH implies that

’Ulr l/ < HCS CS
r r2 ror r

and so

v, & € (5.14)

that is, the radial velocity is highly subsonic.

Equations (5.7) and (5.8) imply that

H
LN O WL Y P02 GMIP (5.15)
T T rrTr T

so the second and the third terms on the RHS of (5.4) can be neglected.

Using (5.14) in calculating the order of magnitude of the radial acceleration
terms imply
Pl o PSS

- < - (5.16)

so that the radial accelaration terms can also be ignored.
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e The four items above imply that (5.4) simplify as

M. 1/2
v, = (Gr 1) (5.17)

that is v, is Keplerian. Note that (5.13) means that the Keplerian velocity
is highly supersonic. Using Q = v, /r the radial and angular momentum

equations (5.4) and (5.5) become

1/2

Q= (Gfl) (5.18)
9 5y 10 4 18 ,
5;(7‘ pRY) + ;5;(7‘ ) = 7,67,(7’ Trp) (5.19)

and note that (5.9) can be written as

oN o0
Tro =N 5= =VPT 5= (5.20)

o The result that the gas of the disc moves in Keplerian orbits is equivalent to
the fact that gravitational force of the central object is much greater than
the internal stress and pressure gradents in the disc gas. From this follows
that the gravitational energy of the disc gas is much greater than its internal

energy.

e The energy fluz is only in the vertical direction. So only 0F/8z contributes

to the divergence in the energy equation (2.8)

6. The timescale for gas to drift radially inward is long compared with the timescales
Jor energy (heat) and sound waves to travel vertically through the disc. The
implication of this assumption is that we may equate the energy generation rate

to the divergence of the energy flux.

oOF
5= (5.21)

7. The principle sources of opacity are free-free and Compton scattering.

K= I—sff + Res (522)
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where free-free opacity is

Ris = 0.64 x 10%2pT "7/ (5.23)

and electron scattering is

Foes = 0.04 (5.24)
Novikov and Thorne (1973) at p.378 gives a standart derivation of these opacities.

The optical depth is large everywhere in the disc (r > 1), so that the radiation
field is locally very close to the blackbody value.

The gas is a fully ionized plasma. This assumption is true for the typical disc

temperatures of 10°K in hydrogen gas.

Radiation emitted from either the disc or the compact object does not reimpinge

on the disc.

The energy generated in the disc is transported to the surface by radiation rather
than by convection. Thermal conduction as a mechanism for transporting energy
to the surface is at least eight orders of magnitude smaller than radiative transport
for models considered here (Lightman, 1974). Thus we can drop the conductive

term —V - q from the energy equations (2.8) and (2.10).

The pressure is the sum of gas and radiation pressures

P = Pyos + Prag (5.25)
where
okT
P = — 5.26
- = (5.26)
Prog = 4914 (5.27)
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here k, o and ¢ are Boltzmann constant, Stefan-Boltzmann constant and the
speed of light, respectively. u is the mean molecular weight and m, is the proton

mass.

5.2. Vertically Averaged Equations

In this section all equations are averaged vertically by integrating them over

the thickness of the disc. Following new variables are d=fined
H
S(r,t) = /0 pdz (5.28)

D(r,t) = /OH ®dz (5.29)

Here ¥ is the surface mass density and D is the dissipation per unit surface area.
The same symbols for the other variables are pursued to use although they are also
vertically averaged and are now functions of only r and ¢. Because of uncertainty in
vertically averaging the vertically averaged equations will be approximate up to factors

of order unity.

The vertically averaged equations are listed below:

ox 10

GM,

1‘3

(5.31)



2, , 10,4 10 ,,
Bt(r Q) + o (r*ZQu,) = o (r°Try)

=£’f£+i0_T4

K = 0.04 + 0.64 x 10%2T"7/2

v Z,
P=H
a=r

p
T=2K,R
Tr¢=V2T§£2-

or
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(5.32)

(5.33)

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)
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(5.41)

In the last equation the 1/2 factor is because of the fact that the disc has two faces.

By referring (5.31) and (5.39) to use in (5.34) one obtains

and using (5.40) in (5.32)

0, 5 19,, 10,4 _3_9
at(rEQ)_'_T‘BT(TEQUT)—T&”(TVza’r‘)

From this equation and (5.30) one can derive

1 0

o0
_ Iy %)
v = Eeyar o)
which by (5.31), become
— 3 0 1/2
U= R e V)

Using this in (5.30) one obtains

ox

0% 301120, o2
ot~ ror [T BT(VET )

(5.42)

(5.43)

(5.44)

(5.45)

(5.46)
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This is a non-linear (for a general form of v) diffusion equation governing the time
evolution of surface density in a keplerian disc. If v is not a function of ¥ then (5.46)

is linear.

To complete the set we only need a viscosity prescription. Arguments about
the magnetic nature of the viscosity imply that the functional dependency of o can be
carried in o = ag(H/r)® (Vishniac et al., 1990). In order to make our solutions more

general we will use this modified a-prescription:

v= ao(g)"c,H (5.47)

Note that for n = 0 and g = a one obtains the familiar a prescription of Shakura and
Sunyaev (1973). This slighthly generalized prescription was first proposed by Meyer
and Meyer-Hoffmeister (1983) and used to model soft X-ray transients by Mineshige
and Wheeler (1989).

M(r,t), the accretion (mass transfer) rate is

M = 27rS(—v,) (5.48)

Finally we obtained a full set of equations for the disc structure. Once the set of
equations(5.33), (5.35), (5.36), (5.37), (5.38), (5.39), (5.42), (5.46) and (5.47) are solved
simultaneously v, can be found by (5.45) and M can be found from (5.48) afterwards.
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5.3. Regions on the Disc

The disc is assumed to be of three regions. In the outer region the gas pressure
is dominant over the radiation pressure and free-free opacity is dominant over the
electron scattering opacity. In the middle region the gas pressure is still dominant, but
the main source of opacity is electron scattering now. In the inner region radiation

pressure is more important and the main source of opacity is again electron scattering,.

5.4. Timescales on the Disc

There are three fundamental timescales asociated with standart acretion discs;
dynamical, thermal and viscous. A forth timescale is the one associated with the

propogation of transition fronts, but this is not as fundamental as the other timescales.

Dynamical time is the period of a keplerian revolution. It is also the sound
crossing time of the disc thickness ¢, or response time to a perturbation of vertical

hydrostatics by (5.33):

r H
tagn ~ Q71 ~ w s t. (5.49)

The thermal timescale is the ratio of the thermal content to the local dissipation

rate.

e T 1
bp ~ ——~

D(r) "~ vz~ o

(5.50)
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The viscous timescale is the time it takes material to viscously drift inwards.

This is the timescale on which changes occur in local surface density:

2 r? 1 /7\2
e~ 5~ oo~ 5 (7) e 531

Since o ~ 1 and in standart thin discs H/r < 1,

tdyn < tth < tvisc (5'52)

5.5. Steady Thin Discs

The changes in radial structure in a thin disc occur on timescales ~ ty;5c = r2/v.
In this section it is assumed that the external conditions change on timescales longer
than t,;,. such that the disc settled to a steady state. We can examine this situation by
setting 8/6t = 0 in the equations of section above. The conservation of mas equation

(5.30) in the steady state becomes

2 (r2u) =0 (5.59)

which from (5.48) gives

M = 2xr¥X(—v,) = Const. (5.54)

that is the inward flux i.e. the accretion rate is constant. The angular momentum
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equation (5.32) with (5.40), in the steady state simplify as

0

9 300
or

v, 2r°Q) = —(VET =

=) (5.55)

and this when integrated, will give v, Zr"Q = vXr3 g} 80 + Const. which may be written

as

o0 Const
—Vz-é? = 2(—1}r)Q +

o (5.56)

The constant in this equation will be determined by the conditions at the boundary
layer. In a realistic case the star will be rotating with a smaller angular momentum
than the keplerian angular velocity at its surface. That means that the matter is
to be slowed down in order to accrete onto the surface of the star. This will take
place at the so called boundary layer of radial extend b which is much smaller than
R, and so the angular velocity will have a maximum at R; + b. This means that
Q'(R; + b) = 0. Thus Const. = 27(R; + b)*Tvg,4sQ(Ry + b). At R; + b the angular
velocity has not yet departed from its keplerian value Q2 = i R +b)3 Thus Const =

21 (Ry + b)¥/2Zug, 13v/GM;. As the accretion rate is a constant as implied by (5.54):

Const. = —M(GM;R;)"/? (5.57)
Substituting this into (5.56)
o0 .
u2—5; = Z’UTQ + M GM1R1 (558)

and by using the keplerian angular velocity (26) in this equation one obtains
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y 1/2
Ve = 3% [1 - (%) l (5.59)
By (5.59) and (5.54)
-1
v = —%’rf 1- (%)1/2] (5.60)

Now, the eight equations (5.33), (5.35), (5.36), 5.37), (5.38), (5.42), (5.47), (5.59)
constitute a full set and can be solved for eight unknowns p, ¥, H, ¢,, P, T, x and v
as functions of M, M, r and parameter a. Once these equations are solved v, can be

found by (5.60). The solutions for the outer region are listed below:

T = Cyay ™F M M = Rt f o5 (5.61)
% = Cyay ™ MR M ¢~ e fatoen (5.62)
v = Cya N - 1S A ey (5.63)
H = Cyo ™ Mt M~ by p iGovm famem (5.64)

-t . -8 6 — 2—
T =Cs0p """ M+ M 51047 7 0w f To3s (5,65)



—=15n4105 34—-2n

—_—f . 17-n 17n+35
P = Cyag ™ Maiewm MG r T f o

8 _ . 3(n+2 132410 _3n-10_ _2n-—28
Uy = __a60+" M '27£'10+n5 M '4{_'tm+n7r‘('4 10+n) f 10+a

where we defined

and the coefficients are

1

C1 = (39.75 x 10%) ™o

Cz = 9.15 x 1074(0.142 x 108)~("+1)(39.75 x 10%)~THe4m

Cs = 1.16 x 102(0.142 x 10°8)"+1(39.75 x 10%)iora

Cy = 0.142 x 10%(39.75 x 10°) 0

Cs = 53.58 x 10 x (0.142 x 10°)72"~3(39.75 x 10%)~+7%

34

(5.66)

(5.67)

(5.68)

(5.69)

(5.70)

(5.71)

(5.72)

(5.73)
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Cs = 87 x 107 x (0.142 x 108)~(+1)(39.75 x 10%) %iosm (5.74)
Oy = 174(0.142 x 10%)"+1(39.75 x 10%) 7oy (5.75)

The middle and inner regions can be solved in a similar way. The important thing
to note is that the solution of the time-independent equations is of the form r!(1 —

(Ry/r)?)™ . This may give insight for the solution of the time-dependent equations.

5.6. Time Dependent Discs

We postulate that ap and n are independent of any disc variable we want to
solve, but may depend on other variables like magnetic fields etc. Of course magnetic
fields depend on the disc variables we want to solve and this requires that we have to
assume the coupling to be weak. The vertically averaged equations to be solved are

(Frank et al., 1992)

z
p= —H— (576)

7'3 1/2
H= Cg (m) (577)

(5.78)



36

kT 4
P = Pgas + Prad = p__ + £T4 (5.79)
umy  3c

o 4 — ———
37_T 81/2 3 (5.80)
T =Xk (5.81)
v=ay (g) csH (5.82)
62 _ 3 3 1/2 6 1/2
5% = Ror {R 67_(1/27' ) (5.83)

We have eight equations for the eight unknowns p, ¥, H,c,, P,T, T and v which are

functions of r and ¢. Once this set of equations is solved, M may be found from

oz _ oM
and boundary conditions. Then vy can be found by
M = 27rE(—v,) (5.85)

Following Bath and Pringle (1981) the boundary conditions will be imposed as
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Z(R’imt) =0, 82 |7'—Rout 0 (5-86)

The first of these boundary conditions allow any material there to be accreted on the
central star. This also ensures that the viscous torque acting on the disc due to the
central star is zero (Pringle, 1977). At the outer edge of the disc in a close binary
system, tidal effects due to the secondary star remove angular momentum efficiently
from the disc material and limit the disc radius to about 0.8-0.9 of the size of the
primary’s Roche lobe (Lin and Pringle, 1976); Papaloizou and Pringle, 1977). Thus
an appropriate boundary condition is to fix the outer radius R = R, and to take
0L /OR = 0 at that point. This ensures v, = 0 at B = R, and removes angular

momentum from matter at that radius at the required rate.

The same opacity law, as before, is used:

R= Ryt + Fes = 6.4 x 102772 4 4.0 x 1072 (5.87)

5.6.1. The solution of the algebraic equations

The equations can be seen to consist of two parts. The first seven equations
are algebraic and the last one is a differential equation for the surface density. The first
seven equations can be solved as a function of M, ¥ and r (temporary solution) and
the solution for the viscosity can then be placed in (5.83) which then can be solved for
Y. This solution for ¥ as a function of r and ¢ then can be placed in the temporary

solutions to get p, H,cs, P,T, 7 and v as functions of r and ¢.

For the outer region where Ks5 > Res and Pyqs > Prqq the temporary solution

of the equations in terms of M, r and X is as shown below:

{ U
T.C. YUKS£LL GGRETHM EoRULA
DOKUMANTASYON ! MERKEZE
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e 2 n—8 6
T = Cri0p* ™" Mi=nrii=n T T

16 _13n410 _7n430 _ 3(n+2
v = Chaad—" M~ pation £ 5

2 6 18— 3
H = 0130‘64_" M~ Timmpiien N Ti=n

1
- 8 —18 _ 11—
p=Cuag ™ Mii=s pii=s Y 1ion

17—-n

1 _ 8—n 2(n—12
P = Cl5a64’"'M14—nr (a-n) Y 14~n

And the radiated flux F = (40/37)T* is

16 _ 18—16n  13n—84 __2(n+10)
F = 016064-" M 2032 p2(1d=n) ¥} 14-n

In these equations

2

n+1 Ti=n
Cn = [—216.4 x 102 (L) Gz—z-"-]
320 Hmy

27 k i e 13n-10
Cip=|— (—6.4 X 1021(—-—-)"“) G~
320 pmy
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(5.88)

(5.89)

(5.90)

(5.91)

(5.92)

(5.93)

(5.94)

(5.95)
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1
_ k 27 2, K n+1 R
Cis = = ( 35504 % 10 (ump) Gm (5.96)
k 27 k THS g
Cu = (u_mp)-l (370-6.4 X 1021(;@)"“) GTiEw (5.97)
1
k 2 14-n —n
Cis = — 2 6.4 x 10"’1(—’“—)"+1 Giew (5.98)
umy, \ 320 pm,
e
Cro = 28 [ 264 x 102 (Lymnt) T oS (5.99)
8 umy, \ 320 pumy

5.6.2. Solution of the diffusion equation

When either of the temporary solutions for v is placed in (5.83) it takes the

form
%? = %;% {7‘1/2% [r“Eb]} (5.100)
where
Ap = 3C1z08" M~ HEE (5.101)
Tn+30 1 (5.10)

“=Ma-n) 2
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b_3(n+2)
T 14-n

+1 (5.103)
The temporary solutions for the middle and the inner regions would result in different

values for Ag, a and b. These solutions could then easily be incorporated into the

solution of (5.100).

Now (5.100) will be solved: The form of the solution of the time-independent
equations were of the form r!(1—(R;/r)*/?)™ and one can find the form of the temporal
part by applying a seperation of variables to (5.100). When this is done one can propose

a trial solution

zZ
S(r,t) = K(t + 6)%rY (1 — (r%;)) (5.104)

where K, 8, X, Y, Z and £ are constants to be determined. When this ansatz equation

is placed in (5.100) one obtains:

X=:4 Y= 22(‘{:2)

(5.105)

K= (s g - =28}

The integration constants, £ and Z are to be determined from the boundary conditions.

The boundary conditions (5.86) respectively imply that

£ = Rin (5.106)
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7= [1 F) (5.107)
Thus, the solution can be written as
1
- - -2 a— o
S(r,t) = {Ao [ 22:‘1 _5;; _ 2 y 5b]} (t + 6) o 20ohy frAS (5.108)
where
p=1-— (Fﬂ‘-)l/2 (5.109)

in

Thus, by equations (5.101), (5.102) and (5.103), the solution for the outer region is:

n—=14 =1 n n— —=11n =11ln
S(R,¢) = Cor o3 MR (1 4 5) 5 B pulleh (5.110)

Cou = {Bl(n+ 14)(3n+2)} (5.111)

(n+2)(14 - n)

Now remains only to determine § from the initial conditions. This is the point where
the problem arises. In all our calculations we assumed that 6 was a constant. Using
a general form of initial condition in (5.108) would give é as a function of » and this
would put us into inconsistancy with our initial assumption that 4 is constant. However
two choices of X(r, 0) would not lead to any inconsistenty: (1) X(r,0) = 0 giving d =0
and (2)
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S(r,0) = Britih priS (5.112)
giving
2 —5b 2a—5b])""
_ pl-b _
SRR CEL ) a1

That is, one should have an initial condition of the same form of the solution itself. The
only parameter one is free to determine initially is the constant B. Before going into
the reason for our inability in incorporating a general initial condition to the ansatz
equation, it should be emphasized that whatever the solution of the radial and (non-
linear) part of (5.100) the same problem would arise, beacuse the integration of the
the dependent part is trivial and the problem arises because of the form of it. The
way out of this dilemma is that there is a ”similarity” (Boltzmann) transformation
which, by amalgamating two independent variables into one (¢ = 7°t#), turns (5.100)
into a second-order ordinary differential equation which requires only two boundary
conditions. This could only be achieved by a consolidation of the initial condition
with one of the boundary conditions. Such solutions are called similarity (self-similar)
solutions. Although a similarity variable is not used in the solution above, the existence
of the similarity variable manifests itself by forcing an initial condition of the same form
of the solution itself. Such solutions of the equation (5.100) are described in Pringle
(1974) and the solution found here is from the same family with the one found therein.

A more recent reference for self similar solutions is by Mineshige (1981).

5.6.3. The complete solutions

In this final step, solution for (5.100) is implemented into its place in the

temporary solutions.



T = CHC" A a(}“"‘ Ml4- n(t 4 §)n2 n+21"14—r|. f”u-n

=2 _ 13n410 —2 _7Tn+30 3(n+2
v = CpCr% ad“'" ) (¢ + 6) mrar 30w prifie

H= 0130" ot a64'" M-m(t + 8)=+2 ﬂ+21"14—n f" ren

=% n-—18 11—~n

p=CuCatay ST M= (t+6)m+ w3y iion fhie=n

17—n

P= Cl5Cn = ao4-n Mm—n (t + 6) P 77(1%2% fﬂ Ti——o

=2 3n~54 2 n+10

F=Cs 01;222 a64—n M7—$14_ (t + &)=+ =5 Tmf”‘

where § is given by (5.113).

43

(5.114)

(5.115)

(5.116)

(5.117)

(5.118)

(5.119)
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6. NUMERICAL APPROACH

In this part of the thesis a simple computer program to solve the time-dependent
equations of the standart accretion disc theory is presented. We list the equations below

again

by
=g (6.1)
3\ 12
H= Cs (W) (6 2)
&= -’; (6.3)
40 9 _.GM
T=XRK (6.5)
v=ay (g) csH (6.6)

0 _30 [1p0 (sp
5 = 75 {r o (vErt/?) (6.7)
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The opacity is generalized as

R =a,p2T* (6.8)

where a choice of a; = 6.4 x 10%!, a3 ='1 and a3 = -7 /2 would represent free-free, and
a choice of a; = 0.040, a; = 0 and a3 = 0 would represent electron scattering opacity.
One can choose some other forms which exist in the literature (Faulkner et al., 1983),

as well. In a similar way the pressure is generalized as

P = b p"T" (6.9)

so that the combination b; = ﬁ, b, = 1 and b3 = 1 corresponds to the gas pressure
whereas the combination b, = ;—Z, b, = 0 and b3 = 4 corresponds to the radiation

pressure.

The only differential equation (6.7) in the list, by a change of variables X =
2r'/2 and S = XT becomes

%S - )1(—2263—);(51/) (6.10)
This form of the equation is obviously more convenient to integrate by a finite difference
method. Also, as AX = Ar/r'/2, constant grid sizes in X — domain correspond to
variable grid sizes, which becomes denser in the inner region of the disc, in r — domain.
Short spatial steps near the center is something that we highly prefer. The integration
of (6.10) using the standart first-order explicit method gives
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124t
mtl —gm L __——__(gm
ST =5 A O

1]/!’_"1 + Sﬂ-lyﬂl - 2S:nl/:n) (6.11)
which is the new value of S at the ith zone after m time steps. For this numerical

scheme to be stable the time step At is required to satisfy

1X2AX?

At
<3 1om

(6.12)

Just like its done in the analytic solution, the algebraic equations are to be solved in
terms of r and X. Once such a solution of v is obtained it can easily be transformed
into X — domain and inserted into (6.11). Every variable is then solved by placing
¥ = §/X into their place in the temporary solutions. As is usually prefered in the

literature, a Gaussian density distribution is used as the initial condition:

r—rg )2

X(r,0) = 1073~ Fn (6.13)

which of course was represented in the X — domain as

ZAdy
S(X,0) = 10-%Xe * (6.14)

The solutions were written into data files which were then plotted in order to visualise.
Some of the solutions with parameters iMazx = 130, mMaz = 355000, dt = 1, op = 0.1,
n=0, k= Rfs, P = Pyes, Rin = 10km, M; = 3M, are presented below:
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FIGURE 6.1. Evolution of the surface density
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FIGURE 6.2. Evolution of the density
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FIGURE 6.3. Evolution of the pressure



a0

FIGURE 6.4. Evolution of the temperature
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v_rad (m/s)

FIGURE 6.5. Evolution of radial velocity



52

It should be confessed that, although one is free to choose any prescription for
pressure and opacity by playing with the constants in (6.8) and (6.9), the program is
not capable of handling the different regions of the disc (see section(4.3)) by applying
appropriate pressure and opacity prescriptions in each region and extrapolating be-
tween. This weakness of the program can be overcomed by finding two solutions with
both the radiation and gas pressures in every step and then making a weighted average
of every solution. A similar procedure can be applied for opacity as well. That is,
greater the value of electron scattering compared to free-free scattering greater weight

is given to values found by it.
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7. CONCLUSION

It requires a lot more study to master the physics of accretion discs. With this
thesis only an introductory small step is taken. Standart accretion disc theory is only
one of the four branches of solutions which today exist in the literature. Other solution

branches are more complex to get involved in.

The analytic and numerical solutions found in the thesis are both consistent
with the literature. The numerical solution can be improved and a way for it is ex-
plained. The next step after this improvement could be to incorporate magnetic fields
into the numerical solution. In fact the possibility that the turbulence in the disc is
of hydromagnetic origin implies that any theory of accretion discs without magnetic
fields is naive. However it requires three dimensions for turbulence to emerge naturally
in the simulations and global three dimensional simulations of discs are beyond the

capability of todays’s computers.

The steady and time-dependent analytic solutions are rather general and the
free parameters n and ap can be chosen freely to fit the observations. This could bring
constraints on the functional form of the viscosity which is the main unknown of the

accretion disc theory.
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APPENDIX A:

Vector Operators in Curvilinear Coordinates

In generalized curvilinear coordinates the divergence of any vector V is:

1 0 0 o
V.V= ol 6—2:1(’12’7'3‘/1) + &;(hmsvz) + 5£(h1h2‘/5) (1)

The components of the divergence of any tensor T in generalized coordinates is (An-

derson et al., 1984)

< 1 0 0 0
(V * T)-Tl = h1h2h3 [533 (h2h3Tz1z1) + a_xz(hlhaTzlmz) + a_%(h1h2Ta:1:ca)
+sz Ohy Tz, Ohy _ T:yz, Oho _ Tzgzs Ohs @)
hlhz 6232 h1h3 6.713 h1h2 6271 h1h3 331
- 1 0 0 0
(V . 7“’)1:2 = m‘; [a—xl(h2h3Tzzzl) + %;(h’lh:;Tmza:z) + 6_:1;3(h1h2Tz213)]

Tesey Oy, Tosay Oy _ Tugwy Ohy _ Torey Oy )
h2h3 6x3 h1h2 6:r1 h2h3 61'1 h1h2 6:1:1
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- 1 0 0
(V : T)z‘a = h1h2h3 oz, (h2h3Tzaz‘1) Oz, (h1h3Tza-’52) + (hlh?Tzsza)

+sz Ohy 4 Tz,z, OBy _ Tapay Ohs _ Tayas Ohg (4)
h1h2 6.'D2 h1h3 31173 h1h2 6:1:1 h1h3 6:1:1

The gradient of any scalar function © in any generalized coordinates is

1006, 100, 100
VE = 71,-1—_6;1.1 + h—za—xz_] + h_3-5a_:;k (5)

In cylidrical coordinates where

nn=r hh=1 V=V,
Ty=¢p hp=1 VL=V, (6)
T3 =2 h3=1 ‘/3:‘/2

the divergence of any vector field V becomes

1 A%
V-V=;[§( V)+—-;‘1+—(V)] (7)
The components of the divergence of any tensor becomes
M o109 0Ty , O _Tp
(V-1), = - [ pm (o) + ——= B 6z (rT,z)] - (8)
= 1[0 Ty O Tor
(V-T)p= 7, [67' (rTer) + By + 9z (TTW)] + r (9)



. 1[a T, @
(V1) =~ [ar(r:r,,)+ 5o+ 55 T)

The gradient of any scalar function in cylindrical coordinates becomes

6@r 10© 00
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(10)

(11)
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APPENDIX B:

The Components of the Strain Tensor

The components of the strain tensor in generalized coordinates are as follows

(Hughes and Brighton, 1991):

1 ov; vy Ohy + vs Ohy

U R0 | b 03, huhs 075 @
n = e s o e @
= o T te ek @
= o () + pam(3) @
s = - () + a2 (3 ®)

These, in cylindrical coordinates become:



o8

(9)

(10)

(11)

(12)
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APPENDIX C:

The Viscous Stress Tensor and the Dissipation

Function

The viscous stress tensor in cartesian tensor notation is

2
Tij = 2neij + 6;5(x — gﬂ)v "V (1)

The components of the viscous stress tensor in cylindrical coordinates thus becomes

2

Trr = 2N€pr + (X - gﬂ)V v (2)
2

Too = 2N€py + (X — gn)V ‘v (3)
2

Taz = 21€3, + (X - EU)V 'V (4)

Tro = 2776r<p (5)

Trz = 2N€r; (6)
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Tz = 277€<pz (7)

The viscous dissipation function ® is defined in generalized orthogonal coordinates as

d = n [2 (efl + 6%2 + 633) + (2623)2 + (2631)2 + (2612)2]

2
+(x — 577) (ex1 + €22 + €33)” (8)

This, in cylindrical coordinates become

d = 7 [2 (ef, + €2, + efz) + (2e4:)% + (2e2r)% + (2e,¢)2]

2
+(x — 577) (err + €0y + €::)’ (9)
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