MULTIVARIATE DECISION TREES FOR
MACHINE LEARNING

by
Olcay Taner Yildiz g
B.S. in CmpE., Bogazi¢i University, 1997 0.>

A

q’l’}

Submitted to the Institute for Graduate Studies in
Science and Engineering in partial fulfillment of
The requirements for the degree of
Master of Science
In

Computer Engineering

Bogazi¢i University
2000

%€ YOXSEKOGRETIM KURULD
DOKUMANTASYON MERICEZE

MULTIVARIATE DECISION TREES FOR
MACHINE LEARNING

APPROVED BY:

Assoc Prof. Dr. Ethem AlpaydW

(Thesis Supervisor)

ey
Prof. Dr. Aytiil Ercil o

DATE OF APPROVAL: 27-12-1989

iii

ACKNOWLEDGMENTS

I would like to thank Assoc. Prof. Ethem Alpaydin for his supervision in this MS
study and for his support and advises. I am also grateful to all my friends, my family, my
teachers and my love. Without their support, this thesis would have not been

accomplished.

iv

ABSTRACT

In this thesis, we detail and compare univariate, linear and nonlinear decision tree
methods using a set of simulations on twenty standard data sets. For univariate decision
tree methods, we have used the ID3 algorithm and for multivariate decision tree methods,
we have used the CART algorithm. For linear and nonlinear methods, we have used neural
networks at each decision node. We also propose to use the LDA algorithm in

constructing linear multivariate decision trees.

Univariate decision trees at each decision node consider the value of only one feature
leading to axis-aligned splits. In a linear multivariate decision tree, each decision node
divides the input space into two with an arbitrary hyperplane leading to oblique splits. In a
nonlinear one, a multilayer perceptron at each node divides the input space arbitrarily, at
the expense of increased complexity. We propose hybrid trees where the decision node
may be linear or nonlinear depending on the outcome of a statistical test on accuracy. We

also propose to use linear discriminant analysis at each decision node.

Our results indicate that if the data set is small and has few classes, then a univariate
technique does not overfit and can be sufficient and the univariate ID3 has better
performance than multivariate linear methods. ID3 learns fast, learns simple and

interpretable rules.

If the variables are highly correlated, then the univariate method is not sufficient and
we may resort to multivariate methods. We have shown that ID-LDA has better
performance than CART in terms of accuracy, node size and very significantly in learning
time. It has also smaller learning time than ID-LP and the same accuracy. ID-LDA
generates smaller trees than ID3 and CART. This shows that to generate a linear
multivariate tree, using ID-LDA is preferable over CART, and may be preferable over ID-

LP if learning time is critical.

TC. YOKSEKOGRETIM KURULUY
DOKUMANTASYON MERKEZ]

OZET

Bu tezde, tek degiskenli, dogrusal, ve dogrusal olmayan ¢ok degiskenli karar agag
kurma metodlan kargilastinldi. Tek degiskenli karar agaglan i¢in 6rnek olarak ID3, ¢ok
degigkenli karar agaglar1 igin CART yontemi kullanildi. Dogrusal ve dogrusal olmayan
metodlar icinse karar diiglimiinde degisik sinir aglar1 yapilarindan faydalamildi. Ayrica
Fisher’in dogrusal ayirma analizinin ¢ok degiskenli karar agaci olusturulmasinda
kullanilmasi 6nerildi.

Tek degiskenli karar agaglar her karar diigtimiinde tek degiskenin degerine bakarak
eksenlere dik bolmeler yaparlar. Dogrusal karar agaclarinda ise her dalda giris uzay:
rasgele bir diizlemle boliiniir. Dogrusal olmayan karar agaglarinda ise gok katmanh sinir
aglan giris uzaym rasgele boler. Bu tezde melez agaclar 6nerildi. Bu agaglarda karar
diigiimii dogrusal veya degildir. Kararin dogrusal olup olmantasina ise bir istatistik
testinin sonucuna bakilarak karar verilmektedir. Dogrusal ayirma analizi ile dogrusal gok
degiskenli karar agaglar1 yapay sinir ag1 temelli karar agaglarindan ¢ok daha hizl 6grenilir.

Sonuglarimiz gésteriyor ki, eger veri kiimesi kiiciik ve bu kilmede az simuf varsa, tek
degiskenli metod yeterli olabilir ve ID3 gok degiskenli metodlardan daha iyi performans
gosterir. ID3 hizh ve kolay 6grenir, kurallar1 da kolayca yorumlanabilir.

Eger degiskenler birbiriyle gok iliskiliyse, tek degiskenli metod yeterli olmayabilir ve
¢ok degiskenli metodlan kullanabiliriz. Bu tezde gosterildi ki ID-LDA metodu CART tan
daha basarili, daha kii¢iik afaglar iiretmekte ve daha az zaman harcamaktadir. Aym
zamanda ID-LP den daha izl ve esit bagarilidir. ID-LDA ID3 ve CART’tan daha kiigiik
agaclar iiretir. Bu da gosteriyor ki ¢ok degiskenli agag iiretmek i¢in ID-LDA CART’a gore

tercih edilebilir ve eger zaman 6nemli ise ID-LP’ye gore de tercih edilebilir.

vi

TABLE OF CONTENTS
Page
ACKNOWLEDGMENTScocecireennnnssecsensessessissisassesassessessesessassassssarssesssscsssassasasessaesssans I
ABSTRACTorcciinincsensnsssissiesissssssssssssnsssenssssssssssssssasesssssessssesssssesssssssessessssseans v
OZEToveeereerereressesirssssssssssssssssssessessassssssssssasssssssssssnssssssessassssssssssassssssnsesessssssaneensesessnes A%
LIST OF FIGURESccocsreinrcnnnrnrisesincnsessnsnesssssassssassssesesssssssssssssssssessesesssssssssssssasaes VI
LIST OF TABLES.......ccoiiiinnnniisiscsassnsssnsessssasssssssassenesesssssssssssssssssnsssssssssssensassssssseses X1I
LIST OF SYMBOLSccoiritiiinnnisnisnsncsnesissssssisanerssssnsssssssssssssesesssssssssssessessssensassssane X1
1. INTRODUCTION......ccocsirreuirisrrissenssncnsanessssnssssssnssesessssasassssssassssasenssessssssessessasassassns 1
2. DECISION TREE LEARNINGccceeetvemereneesaseesssssncnrencrsssssessessssasssessssssssesessasssosens 3
2.1. Algorithm for Tree Construction........ccoeeeueresersenrersaecessesessiersssssessnssesessssesssesnsonssene 6
2.2. Identification TTEES (ID3)......cceceeeerrsereerrraraeserseseressracssenssssssasssesessascasessssnesessoressassosce 7
2.3. Partition-Merit CIiteria..........ccsrsersrernsersesasnssscenessassesessessssessssssssesssnssssessesssessesssesenes 8
2.3.1. Weak Theory Learning MeasUIeccceereereereresnerersssraeansenessessssssesesesesssne 9
2.3.2. INformation Gaimccceeeerereeresesrensesaesesssaesesssssnssersansassssssssssssnssssssssesorensses 10
2.3.3. GINE INAEX ...uecriniiininiiiiesisisieniesenenesnssesssesesesassensssssenssesssnssessnsnsssssssesesssessses 11
2.4, MUItIPIE SPIILScvvrrrerererrnernersaransesesaraessesssnesessasssnssenssessnssensssesssessssssssssassssenes 11
2.5. Filling in MiSSing VAIUESccecerereerrreemrrnreserensesessssesseseresssssssssessessnssssessssssssosaes 13
2.6. Avoiding OVErfittingcceoeeeesicrrcnrsnersasecseenseserseseesssessesssssesnssssssssssessssseesesssenss 13
2.6.1. PIE-PIUNING.......coveiirersireniseniesicissienesnsasessasssessssssssansnessssssssasssnesssssssssssesesess 14
2.6.2. POSE-PIUNING......cccornrrernsrissrsncsnesissnsnssarasssesassessssessessssssssssessessesassssssrassessssssssens 15
3. MULTIVARIATE DECISION TREES............ccccesururreneereresnresaesessesasssseressesessessssseses 17
3.1. Univariate vs. Multivariate SPLts........ccccccererererereersensereresrsnreesessssransessessensesssensassenes 17
3.2. Symbolic and NUmMETFiC FEAtUTES..........ccccersreurereeereressrseresssraseserssnssesesesessesessesesssones 20
3.3. Feature SElECtONcccerrreerereurrnresesnsasseessrsasasasnssesassssssasessssenssessssssnsasssssssesssssssasoses 21
3.4. Classification and Regression Trees (CART)cccccecereeerenecrereennensernenesneneenesenenns 22
4. NEURAL NETWORK MODELS FOR TREE CONSTRUCTION..........ccecerervevrene. 25
4.1. Training Neural NetWOIKScccccoereeresencsensressrssreessensssssasessssssassssssnssssssssssensssasens 26
4.1.1. Linear Perceptron MOdel...........ccccecervrnenrrenrernereesnrnsaseneseesassesassseresassasssssssennes 26

4.1.2. Multilayer Perceptron MOeL............uecrumnecesssmsrsssssesssnsssssnssssmsssssssssnssssssnnes 28

vii

4.1.3. The Hybrid Modelccccovurrurermsesisrsnseinisnesesnsnsnssnsssnssssessasssssssssssssssesssasessns 30

4.2. Class Separation by Selection Methodccoueueeeinnnnnnnnnnnnsniessesistsssrenncnen, 31
4.3. Class Separation by Exchange Methodccocevreiinnrncsesnnnsensnaneenssesesnnsesennne 32

5. THE STATISTICAL MODEL FOR TREE CONSTRUCTIONcccccouvuerireruruenenes 33
6. RESULTS. ..o oucceeeeerereensesseressssessessasssesssssosssssssasessssasossstasssosssssstsssssssssssasssssssaessssessssons 36
6.1. Results for Identification TTEESccoerercrsursisvinsenssessnisessensnisnisnssessnssnssessssasssnsssanes 37
6.1.1. Comparison of Different Kinds of Learning Measures.............ccoevurrreernesianne 37
6.1.2. Comparison of Pruning TechniqUescccererusneeererermsannsssesssessesensassnsssessnsnes 46
6.1.3. Comparison of Multiple SPIItsc.ceeecerireinrnnsenistnnnsesnnsnssesnenesinsssiessnsnnes 55

6.2. Results for Classification and Regression TTeesccccevvrvrvinisnsininnsessnsnssesnencsnnnes 62
6.3. Results for Neural Network Methods........ccccoveivriniinvinsnninnsinnisnnninnnsisinnen. 70
6.3.1. Comparison of Class Separation Techniquesceceveerererrereererncserenncnnnnnas 70
6.3.2. Comparison of Hybrid Tests in Decision Nodes for Neural Networks........... 77
6.3.3. Comparison of the Network Structures in Decision Nodes............ccocvereunnce. 86

6.4. ReSults for LDA......ccouivereermecsieccosesnsasancassissesisssscssessesssssssesassssssssssessssssssnsasssssssss 95
6.4.1. Effects of PCA on the ReSUILSccoccccrsreurenisinsensesncsensensessnsnsncsisnssissssnsncsesscsnins 95
6.4.2. Effects of PCA Percentage on the Results.......c.ccccecevvnvcnsisnncnnnnnesucnenine. 101
6.4.3. Comparison of Different Linear Multivariate Techniques...........ccoceuereunnce 108

7. CONCLUSIONScoceeentrsnraeesasssssssssessssssssssasssssesssscssssssnsasssssssssnsassssnssssssssssasssssases 118
APPENDIX A......coceemereenrsraesessssesnesessesssssssesssenessasessasssssssssssessassssasesssssessssssesssssssnsssssessases 127
APPENDLIX Bi....uccvcruencressrraesrsenssesnesasssssssssssssssonssssssssassstassssssssssnssossassssossasessssesssssssssssssnes 131
REFERENCEScoeoeeuerennrenissessessssssassussessesnsssssssssssssssssstestostessstossassassssssssssnsssssssssssssssens 133

viii

LIST OF FIGURES

Page
FIGURE 2.1. Instances of the problem Choosing Car (This is an imaginary data set) 3

FIGURE 2.2. Decision tree for the problem Choosing Car 4
FIGURE 2.3.1 Graphs of Impurity Measures 9
FIGURE 2.4.1 A decision tree with multiple splits 12
FIGURE 2.6.1. Overfitting in Learning 14
FIGURE 2.6.2.1 A pruned subtree 16
FIGURE 3.1.1 Comparison of univariate and multivariate splits on the plane 17
FIGURE 3.1.2. An example decision tree for replication problem 18
FIGURE 3.1.3. An example decision tree for fragmentation problem 18
FIGURE 3.1.4 Instances of the problem Choosing Car with multivariate split 19
FIGURE 3.1.5 Multivariate decision tree for the problem Choosing Car 20
FIGURE 3.4.1 A step in CART algorithm 23
FIGURE 4.1 Linear perceptron model for multivariate decision trees 25
FIGURE 4.1.2.1 Multilayer perceptron model with one hidden layer 28
FIGURE 4.1.2.2 A nonlinear split to Choosing Car problem 30
FIGURE 6.1.1.1 Accuracy results for three types of impurity measures 42
FIGURE 6.1.1.2 Node results for three types of impurity measures 43

FIGURE 6.1.1.3 Learning time results for three impurity measures (small data sets) 44
FIGURE 6.1.1.4 Learning time results for three impurity measures (large data sets) 45

FIGURE 6.1.2.1 Accuracy results for pre-pruning and post-pruning techniques 51

LC YUKSEKOGRETIM KURULY
DOKOMANTASYON MERLGZ

FIGURE 6.1.2.2 Node results for two pruning techniques
FIGURE 6.1.2.3 Learning time results for two pruning techniques (small data sets)
FIGURE 6.1.2.4 Learning time results for two pruning techniques (large data sets)
FIGURE 6.1.3.1 Accuracy results for splits with degrees two, three and four
FIGURE 6.1.3.2 Node results for splits with degrees two, three and four
FIGURE 6.1.3.3 Learning time for splits degrees two, three and four (small data sets)
FIGURE 6.1.3.4 Learning time for splits with degrees two, three and four

(large data sets)
FIGURE 6.2.1 Accuracy results for ID3 and CART
FIGURE 6.2.2 Node results for ID3 and CART
FIGURE 6.2.3 Learning time results for ID3 and CART (small data sets)
FIGURE 6.2.4 Learning time results for ID3 and CART (large data sets)
FIGURE 6.3.1.1 Accuracy results for ID-LPS and ID-LPE
FIGURE 6.3.1.2 Node results for ID-LPS and ID-LPE
FIGURE 6.3.1.3 Learning time results for ID-LPS and ID-LPE (small data sets)
FIGURE 6.3.1.4 Learning time results for ID-LPS and ID-LPE (large data sets)
FIGURE 6.3.2.1 Accuracy results for hybrid network models
FIGURE 6.3.2.2 Node results for hybrid network models
FIGURE 6.3.2.3 Learning time results for hybrid network models (small data sets)
FIGURE 6.3.2.4 Learning time results for hybrid network models

(medium size data sets)
FIGURE 6.3.2.5 Learning time results for hybrid network models (large data sets)

FIGURE 6.3.3.1 Accuracy results for network models

52

33

54

58

59

60

61

66

67

68

69

73

74

75

76

81

82

83

84

85

90

FIGURE 6.3.3.2 Node results for network models
FIGURE 6.3.3.3 Learning time results for network models (small data sets)
FIGURE 6.3.3.4 Learning time results for network models (medium size data sets)
FIGURE 6.3.3.5 Learning time results for network models (large data sets)
FIGURE 6.4.1.1 Accuracy results for ID-LDA and ID-LDA-R
FIGURE 6.4.1.2 Node results for ID-LDA and ID-LDA-R
FIGURE 6.4.1.3 Learning time results for ID-LDA and ID-LDA-R
FIGURE 6.4.2.1 Accuracy results for ID-LDA-R and ID-LDA-R99
FIGURE 6.4.2.2 Node results for ID-LDA-R and ID-LDA-R99
FIGURE 6.4.2.3 Learning time results for ID-LDA-R and ID-LDA-R99
(small data sets)

FIGURE 6.4.2.4 Learning time results for ID-LDA-R and ID-LDA-R99

(large data sets)
FIGURE 6.4.3.1 Accuracy results for linear decision tree methods
FIGURE 6.4.3.2 Node results for linear decision tree methods
FIGURE 6.4.3.3 Learning time results for linear decision methods (small data sets)
FIGURE 6.4.3.4 Learning time results for linear decision methods

(medium size data sets)
FIGURE 6.4.3.5 Learning time results for linear decision methods (large data sets)
FIGURE 7.1 Comparison of accuracy results of decision tree methods
FIGURE 7.2 Comparison of node results of decision tree methods
FIGURE 7.3 Comparison of learning time results of decision tree methods

(small data sets)

91
92
93
94
98
99
100
104

105

106

107
113
114

115

116
117
120

121

122

xi

FIGURE 7.4 Comparison of learning time results of decision tree methods

(large data sets) 123
FIGURE 7.5 Comparison of decision tree methods in terms of accuracy and tree size 124
FIGURE 7.6 Comparison of decision tree methods in terms of accuracy and learning

time 125
FIGURE 7.7 Comparison of decision tree methods in terms of tree size and learning

time 126

xii

LIST OF TABLES

Page
TABLE 6.1 Data sets properties 36
TABLE 6.1.1 Definition of methods 37
TABLE 6.1.1.1 Accuracy results for three different types of impurity measures 39
TABLE 6.1.1.2 Node results for three different types of impurity measures 40

TABLE 6.1.1.3 Learning time results for different types of impurity measures (in sec.) 41
TABLE 6.1.2.1 Accuracy results for pre-pruning and post-pruning techniques 47
TABLE 6.1.2.2 Node results for pre-pruning and post-pruning techniques 48

TABLE 6.1.2.3 Learning time resulits for pre-pruning and post-pruning techniques

(in sec.) 50
TABLE 6.1.3.1 Accuracy results for splits with degrees two,three and four 55
TABLE 6.1.3.2 Node results for splits with degrees two,three and four 56
TABLE 6.1.3.3 Learning time results for splits with degrees two,three and four 57
TABLE 6.2.1 Definition of tree-based methods 62
TABLE 6.2.2 Accuracy results for ID3 and CART 63
TABLE 6.2.3 Node results for ID3 and CART 64
TABLE 6.2.4 Learning time results for ID3 and CART 65
TABLE 6.3.1 Definition of neural-network based methods 70
TABLE 6.3.1.1 Accuracy results for ID-LPS and ID-LPE 71
TABLE 6.3.1.2 Node results for ID-LPS and ID-LPE 72

TABLE 6.3.1.3 Learning time results for ID-LPS and ID-LPE 72

TABLE 6.3.2.1 Accuracy results for hybrid network models
TABLE 6.3.2.2 Node results for hybrid network models

TABLE 6.3.2.3 Learning time results for hybrid network models
TABLE 6.3.3.1 Accuracy results for different network models
TABLE 6.3.3.2 Node results for different network models
TABLE 6.3.3.3 Learning time results for different network models
TABLE 6.4.1 Definition of neural-network based methods
TABLE 6.4.1.1 Accuracy results for ID-LDA and ID-LDA-R
TABLE 6.4.1.2 Node results for ID-LDA and ID-LDA-R

TABLE 6.4.1.3 Learning time results for ID-LDA and ID-LDA-R
TABLE 6.4.2.1 Accuracy results for ID-LDA-R and ID-LDA-R99

TABLE 6.4.2.2 Node results for ID-LDA-R and ID-LDA-R99

TABLE 6.4.2.3 Learning time results for ID-LDA-R and ID-LDA-R99

TABLE 6.4.3.1 Accuracy results for linear decision tree methods
TABLE 6.4.3.2 Accuracy comparisons
TABLE 6.4.3.3 Node results for linear decision tree methods

TABLE 6.4.3.4 Node comparisons

TABLE 6.4.3.5 Learning time results for linear decision tree methods

TABLE 6.4.3.6 Learning time comparisons

xiii

78

79

80

87

88

89

95

96

96

97

101

102

103

109

109

110

110

111

111

=

H"

R

o~

3

LIST OF SYMBOLS

the number of instances in a node
attribute i of instance

instance ¢

desired output for instance ¢

real output for instance ¢

a decision node

number of splits in a node

possible value j of an unordered feature i
the number of features for a data set
class i in a node

classes in the left branch

classes in the right branch

merit value of partition i

the number of classes in a node

the number of nodes in the tree

an unpruned tree T

a pruned tree T

weight of the feature i

Xiv

1. INTRODUCTION

Machine learning aims at determining a description of a given concept from a set of
concept examples provided by teacher and from the background knowledge. Concept
examples can be positive or negative. Background knowledge contains the information
about the language used to describe the examples and concepts. For instance, it can
include possible values of variables and their hierarchies or predicates. The learning
algorithm then builds on the type of examples, on the size and relevance of the background

knowledge, on the representational issues (Mitchell, 1996).

Having explained the principles of machine learning, we can proceed with the
decision tree construction method, which will be discussed in this thesis. The essence of
this method is very simple. The entire set of examples is split into subsets that are easier to
handle (Mitchell, 1996). The type of the split will determine type of the decision tree. The
split can be based on one feature (Quinlan, 1986) or a linear combination of features

(Breiman et. al., 1984).

The goodness of the split is based on a criterion called the partition-merit criterion.
In the literature several experiments are done to compare these criteria (Brodley and
Utgoff, 1995) (Mingers, 1989). We will also discuss three of them (Dietterich et. al.,
1996) (Breiman et. al., 1984) (Quinlan, 1986).

In this thesis, we will discuss also other aspects of decision tree construction such as
multiple splits, filling in missing values (Quinlan, 1989) and avoiding overfitting, using
different pruning techniques. Although several experiments (Breiman et. al., 1984)
(Quinlan, 1993) show that earlier pruning can decrease performance, we will compare pre-

pruning and post-pruning.

After univariate methods, we will continue with multivariate methods. The methods
can be classified by the method they use to find the contribution of the attributes. They can
be heuristic (Breiman et. al., 1984) or can be based on other machine learning methods
(Guo and Gelfond, 1992). We will also propose a statistical method to construct the tree
(Duda and Hart, 1973) (Rencher, 1995).

In Chapter 2, we will discuss decision tree learning and issues in decision tree

construction. We will also see a univariate algorithm ID3.

In Chapter 3, we give the drawbacks of univariate algorithms and show how the
multivariate methods work introducing the CART algorithm.

In Chapter 4, we discuss neural trees, which are decision trees using neural networks

at each node. We will also propose a hybrid algorithm.

In Chapter 5, we propose a statistical method to construct multivariate decision tree

and discuss problems in this statistical method and how to get rid of them.

Chapter 6 gives simulation results. In this chapter, we see the results of several
aspects of decision tree learning, comparing different types of decision trees on twenty
standard data sets based on accuracy of classification, the size of the constructed decision

tree and learning time.

We conclude and propose future work in Chapter 7.

2. DECISION TREE LEARNING

In machine learning the knowledge is extracted from a training sample for future
prediction. Most machine learning methods make accurate predictions but are not
interpretable. In this study, we concentrate on decision trees, which are simple and easily
comprehensible. They are robust to noisy data and can learn disjunctive expressions
(Mitchell, 1996).

A decision procedure inferring from an example space can be formalized as follows:
The given data represents a set of objects or “instances”. Each object is described in terms
of a collection of discrete or continuous valued independent variables or “attributes” x;.
Each instance has a dependent variable or a “class” associated with it. The data consists of

vectors that give values for the attributes and the class of each object (x;, x2, . xr € x).

The object of supervised learning is to find the function of the attributes that best
predicts the class of an object (a function F: X; x X; x ... x Xy > C). The given data is
considered as the training set and the data that will be predicted is called the fest set.

Year 1
<> | n Ferrari
<> |
& m
1980~ - - - S
Mustana <> m N
O & n
: > [
' > Price

20000 50000

FIGURE 2.1. Instances of the problem Choosing Car (This is an imaginary data set).

An example data (training set) for the problem Choosing Car is shown in Figure 1.1.
Year of the car and price are the two continuous attributes of this example. Both of the
attributes are continuous. There are 16 instances in this data set. Seven of them are for the
class Mustang (shown as diamonds) and nine of them are for the class Ferrari (shown as

squares). Data is splitted by axis-aligned lines, which define the decision tree.

Year

<1960 >am\

Price Price

<500400 =>58000 <20800 >28000

Mustang Ferrari Mustang Ferrari

FIGURE 2.2. Decision tree for the problem Choosing Car

The constructed decision tree is shown in Figure 2.2. Decision trees consist of
internal nodes (drawn as rectangles in Figure 2.2) having one or more attributes to test and

leaves (drawn as Mustang or Ferrari in Figure 2.1) to show the decision made. The test for

the internal nodes is shown as lines below the rectangles. For example the test Year =

1980 line divides the data space in Figure 2.1 into two parts as:

e Year <1980 : Diamonds (Mustang), squares (Ferrari) and

o Year >1980: Diamonds (Mustang), squares (Ferrari).

The test for the data below the Price = 50000 line (shown as left subtree in Figure
2.2) further splits that subspace into two parts as:

e Price <50000: Diamonds (Mustang)
e Price > 50000: Squares (Ferrari)

After the second test we have samples of only one class in each node. Hence we stop
further splitting. The leaf Mustang below Price < 50000 is a leaf node, where the decision
is made that if the year of the car is less than 1980 and the price of the car is less than
50000, we can say that this car is a Mustang. This is a rule, which we have derived from

the decision tree in Figure 2.2.

The rules of decision tree consist of disjunctions of conjunctions, which are paths

from the root node to the leaf nodes. For this example, the rules are:

If (Year < 1980 A Price < 50000) v (Year > 1980 A Price < 20000), then this car is a
Mustang.
If (Year < 1980 A Price > 50000) v (Year > 1980 A Price > 20000), then this car is a

Ferrari.

After the tree is constructed, any instance can be classified given the values of Year

and Price attributes. For example the instance

< Year = 1970, Price = 60000 >

is classified as Ferrari whereas

< Year = 1990, Price = 10000 >

TC YORSEXOGRETIM MURTLY
DOKOMANTASYON BMERIEZ,

would be classified as Mustang. Classification of one instance is done by tracing the
corresponding path for that instance, from the root node until a leaf node. For example, for
the first instance, we compare its year with 1980, while its year is smaller than 1980, we go
to left subtree and compare its price with 50000, while its price is bigger than 50000 we

say that, this car is a Ferrari.

Readability can also be improved by changing the rules of decision tree into if-then

rules. For example the rules above could be changed into if-then rules as follows:

If the year of the car is smaller than 1980 and its price is smaller than 50000, then
this car is a Mustang.

If the year of the car is bigger than 1980 and its price smaller than 20000, then this
car is a Mustang.

If the year of the car is smaller than 1980 and its price bigger than 50000, then this
car is a Ferrari.

If the year of the car is bigger than 1980 and its price bigger than 20000, then this

car is a Ferrari.

Decision tree learning can also be generalized to the case where the target function is

continuous, i.e., regression. This is beyond the scope of this thesis.

2.1. Algorithm for Tree Construction

The basic tree construction algorithm is a greedy search on the space of possible
decision trees. The search starts by creating a root node and continues by processing the

training set according to the following steps given below.

1. If all of the instances belong to the same class C; stop and return the leaf node with
class C..

2. Find the split that best classifies the instances (as will be explained later).

3. Each split divides the data into subsets. (For example the split Year = 1980 divides the
data into two subsets with seven and nine instances in each)

4. For each subset of the data, repeat steps 1, 2, 3 and 4 to construct the decision tree.

So this algorithm is recursive. For each node of the tree it is called once. Finding the
best split takes most of the time. Time complexity of the algorithm is O {/ *

Timecomplexity (Best Split Function)), where / is the number of nodes in the decision tree.

2.2. Identification Trees (ID3)

Identification trees classify instances by sorting them down the tree from the root to
some leaf node. Each internal node in the tree specifies a test of one attribute of the
instance, and each branch descending from that node corresponds to one of the possible
values or intervals for this attribute. An instance is classified by starting at the root node of
the tree, testing the attribute specified by this node, then moving down the corresponding
tree branch. This process is recursively repeated for the subtree of the new node until a

leaf node is reached. The leaf node stores the class code.

In the ID3 algorithm (Quinlan, 1989) the best split is found as follows:

1. For each attribute x; do the following:
e If the feature is symbolic with m possible values, the instances are divided into
m groups, where in each group the instances have the same value for the
attribute x;. Calculate the partition-merit criteria (will be explained in Section
2.3)asp;.
e If the feature is numeric, tt. instances could be divided into two in & different

ways where £ is the number of different values of the attribute x;. For each of

these k ways, the partition-merit criterion is computed and the best is selected as
pi
2. Find the attribute j such that p;= min; p; as the split node attribute.
e If x; is symbolic with m possible values, partition the set of instances into m
subsets where at each partition xi=ap k=1, ..., m.
e Ifx; is numeric, partition the set of instances into two; x; <'a and x; > a, where a

is the split threshold that optimizes the partition-merit criterion.

This algorithm has a complexity of O (f* n) where fis the number of attributes and »

is the number of instances.

To classify the instances in the test set, we start from the root node and trace the tree
node by node. At each internal node, we take the subtree for which the instance has the
correct attribute value or on the correct side of the split threshold. At each leaf node, if the
instance has the same class as the class of the leaf node the instance is correctly classified,

else it is misclassified.

2.3. Partition-Merit Criteria

The central choice in tree algorithms is finding the best split. Each split partitions the
sample into two or more parts and each subset of the partition has one or more classes in it.
If there is only one class in a subset, then it is pure, else it is impure. The purer the
partition is, the better it is. This measure of impurity is specified as the partition-merit
criteria. An impurity measure has the characteristic of being minimum when there are only
instances from one class and maximum when all classes have the same number of

instances.

There are different types of partition-merit criteria. A comparative study (Mingers,

1989), found no significant differences in accuracy whereas there could be an interaction

between partition-merit criteria and data sets (Brodley and Utgoff, 1995). We have used

three types of impurity measures. They are:

1. Weak Theory Learning Measure
2. Information Gain
3. The Gini Index

— Information
N\, Gain

W |—os Weak Theory
Leaming

— - Gini Index

FIGURE 2.3.1 Graphs of Impurity Measures

Impurity measures are shown graphically in Figure 2.3.1. For simplicity, this graph
is plotted for two classes. p denotes the probability of occurrence of the first class and I (p)
denotes the calculated impurity measure. We see that the Weak Theory Learning Measure
has the highest concavity whereas the Gini Index has the lowest concavity. So the Weak

Theory Learning Measure is the most discriminating function.

2.3.1. Weak Theory Learning Measure

Theoretical motivation for an impurity measure is defined as

10

G@)=2yp(-p) 2.1

where p is the probability of positive instances (Dietterich et. al., 1996). This model gives
a basis for our implementation. So given a node ¢ with ¢ different classes where each class

C;has the probability of occurrence p;, the impurity of node ¢ is
G(N) = X \/p.(-p) (22)
i=1

Let S be a split at a node ¢ with m-way split. Assume there are c classes and there are

n instances having the attribute value a;, where ny of them belong to class /. n is the total

number of instances at that node satisfying 1PK =Pk > ¢k =n. Then the impurity

of split S is
. 2N, & |n n
Impurity (S) = Z £ —’[1--ﬂ] (2.3)

2.3.2. Information Gain

This measure of information gained from a particular split is popularized in (Quinlan,
1986). Quinlan takes the famous entropy formula of Information Theory, which is the
minimum number of bits to encode the classification of an arbitrary member of a collection

S. So if we transform this idea into our problem, the entropy of node ¢ is

[

Entropy (f) = .- p, log, p, (2.4)

i=l

11

whereas the entropy of a split S is

"n & n n
Entropy ()= > %3 - 10g, 2.5)
k=1" =1 "k Ay

2.3.3. Gini Index

The Gini Criterion (or Index) was first proposed in (Breiman et. al., 1984). The Gini
Index is originally defined as the probability of misclassification of a set of instances,

rather than the impurity of the split. Gini index of a node ¢ is
Gini ()= 1-Y_ p;’ (2.6)
i=]

From that index we can refer the Gini index of a split as

m 4 2
Gini(S) = 7k 1—2[”ij @.7)

k=17 I=1\ "k

2.4. Multiple Splits

In the univariate decision tree algorithm ID3, there are m splits for symbolic
attributes, one for each possible value of that attribute and there are two splits for numeric
attributes as x; < a and x; > a. Most of the partition-merit criteria give good results for
more splits. So in the selection of the attribute, to make the split, the symbolic attributes

have greater advantage over numeric features. To see and test if this is an advantage we

12

have also put a multiple split option to our decision tree induction algorithms (basically for
ID3).

If there are s splits then the instances are divided into s+1/ parts as x;<aj, a;<x;<a,,
...05.1 £x; <as and x; 2 a,, where ay, ay, ..., a; are the split points. If the feature x; has &
values, then s-way split can be done in k' different ways. During splitting, we split
instances into possible different s+ parts and for each partition we calculate the partition-

merit criterion p; and choose the best one.

This multiple splits only apply to numeric attributes; the data sets with only symbolic
attributes will have no change in their results. Also this replacement prefers smaller split

numbers in case of ties, so that the tree will have less nodes.

/<5 5X=A<? 7<=A<10 AR=10
/ AN T~
i][] g

N

-— rd
b=t B>=i 4<is” 15<mhed =24

~ /
(lass & (lass B ' e
Lt

[tassa | | ClassB |

FIGURE 2.4.1 A decision tree with multiple splits

Figure 2.4.1 shows a decision tree with multiple splits. For the first decision node
three split points are selected as a<5, 5 <a < 7, 7 <a < 10 and g 2 10 whereas there are
one split point for the second decision node and two split points for the third decision node.

As can be seen, the attribute A4 is used twice while constructing the tree.

But we also change the iteration time of the algorithm. The algorithm has a time

complexity of O (r°) instead of O (n) because of the search in a space of £*. So the total

13

complexity is O (f * n°) instead of O (f * n), which can be very huge with large number of

samples. So we have decided S to be at most three.

2.5. Filling in Missing Values

In some cases, some of the values of features may not be available. In such cases we

must fill in the values of missing cases. There are a number of ways (Quinlan, 1989):

1. Ignoring any instance with a missing value of an attribute. This will reduce the number
of available instances.

2. Filling in with the most likely value of the attribute with missing value of the instance.

3. Combining the results of classification using each possible value according to the

probability of that value.

In our implementation, if the missing value is for an ordered feature, we fill it with
the sample mean value of that attribute as it appears in the training set. When the missing
feature is unordered, we fill it with the most probable value of that attribute in the data set.
These statistics are stored so that the same filling can also be done for the test set. This

method is called mean imputation.

2.6. Avoiding Overfitting

The algorithms growing the tree deeply enough to perfectly classify all of the
training examples will not give always good results. This mainly occurs due to two
different causes. Firstly, the data set may contain noise and if we learn all examples we
will also learn noise, which will reduce our performance over the test set. Secondly, our

training set data may not be a good representative (big enough) of the data set. In either of

14

these cases, univariate and multivariate algorithms can produce trees that overfit the

training examples.

Training Set

Aoquracy

Test Set

N

Tree Size

FIGURE 2.6.1. Overfitting in Learning

As the ID3 algorithm adds new nodes to the tree, the training set accuracy increases.

However the test set accuracy first increases then decreases as can be seen in Figure 2.6.1.

One possibility is to prune unnecessary nodes or subtrees after the construction of the
tree to avoid overfitting. In our implementation, we have used two types of pruning

methods namely pre-pruning and post-pruning.

2.6.1. Pre-pruning

Pre-pruning methods simplify decision trees by preventing the tree to be complete.
A simple form of pre-pruning that stops tree expansion in depth two performs surprisingly
well (Holte, 1993). Usually, however the tree is no more expanded when no or not enough

gain is expected.

Pre-pruning methods are more efficient than post-pruning methods because they
terminate tree generation earlier whereas post-pruning methods require a post-processing

step, where the tree is pruned back to give a smaller tree.

15

In our implementation of pre-pruning, we stop splitting further when the instance
ratio (the number of instances of that node divided by the number of instances of the whole
data set) is below a threshold (e.g., five percent). Then we create a leaf node and label it

with class C; where C;is the class having the most instances.

Pre-pruning methods give inconsistent performance because of the horizon effect
(Breiman et. al., 1984). This occurs mainly by stopping tree expansion prematurely. After
this inconsistent behavior is noticed, the research in this area is abandoned in favor of post-
processing methods. But in the case of large-scale data sets, where efficiency may be more

important than accuracy, pre-pruning methods will be considered again.

2.6.2. Post-pruning

Post-pruning is the most frequently used tree simplification algorithm, producing
from an unpruned tree 7, a pruned tree 7. Pruning the tree replaces a subtree with a leaf

node, if doing so, the accuracy on a pruning set, distinct from the training set, improves.

If a decision tree is expanded using only the homogeneity stopping criteria, it will
contain no resubstitution errors on the training set. Thus post-pruning can only increase
resubstitution errors. However when the tree is expanded it may overfit the sample space

by learning noise. So post-pruning can decrease error rate on unseen test cases.

16

" pruned subtree

FIGURE 2.6.2.1 A pruned subtree

In the post-pruning algorithm, at each internal node, we check the classification
accuracy change on the pruning set by pruning the subtree having that node as its root. If
the classification accuracy does not decrease, we decide to prune that subtree into a leaf

node.

Figure 2.6.2.1 shows a decision tree where nodes numbered 8 and 9 are pruned.

After pruning, the subtree below the decision node 7 is converted into a leaf node.

In post-pruning, we use a set other than the training and test sets, called the pruning
set. So in our implementation, we divide the whole data set equally into two parts; one
training set and one test set and then we take 80 percent of the train set to form the growing
set and 20 percent to obtain the pruning set. One observed disadvantage of this division is
that it reduces the number of training cases involved in tree induction, which is not

desirable for small data sets.

17

3. MULTIVARIATE DECISION TREES

3.1. Univariate vs. Multivariate Splits

Multivariate decision trees mainly differ from univariate decision trees in the way
they test the attributes. Univariate decision trees test only one attribute at a node whereas
multivariate decision trees test more than one attribute (generally a linear combination of
attributes) at a node. This limitation to one attribute reduces the ability of expressing
concepts. It shows its disability in three forms. Splits could only be orthogonal to axes,

subtrees may be replicated in the decision tree and there may be fragmentation.

For the first disability, consider the two-dimensional instance space shown in Figure
3.1.1. To approximate the class boundary, the corresponding univariate decision tree uses

a series of orthogonal splits, whereas the multivariate test uses only one linear split.

1980-'-'-§<> \.--

> Price

20000 50000

FIGURE 3.1.1 Comparison of univariate and multivariate splits on the plane

18

This example shows the well-known problem that a univariate test using feature x;
can only split a space with a boundary that is orthogonal to the x; axis. This results in larger

trees and poor generalization.

| Class- | |Attribute D| |Attribute C| | Class +

§ Class - ;§ Class+ | | Class- %IAttributeD|

i Class - | {Class +}

FIGURE 3.1.2. An example decision tree for replication problem

The second problem is the replication of trees. The decision tree shown in Figure
3.1.2 gives an inefficient representation of the proposition (4 A B) v (Ca D). While the
term (4 A B) is described efficiently, the term (Ca D) requires two identical subtrees to be
represented. In general, conjunctions can be described efficiently by decision trees while
disjunctions require a large tree to describe (Pagallo and Haussler, 1990) (Mathues and
Rendell, 1989). One solution to the replication problem is to allow decision nodes

consisting of more than one feature by combining them with an appropriate function.

FIGURE 3.1.3. An example decision tree for fragmentation problem

RETIM
: ON il

£C YOKSEKOG

)

Uz

19

Figure 3.1.3 shows another kind of replication problem that can occur when the data
contains attributes with high arity values i.e., attributes with large number of possible
values. If a tree has high arity attributes (say arity > 5) then it will quickly fragment the
data in that node into small partitions. To avoid this problem we can construct subsets of

the attribute values (Fayyad and Irani, 1992), e.g., seasons instead of months.

But in a multivariate decision tree, each test can be based on more than one feature.
In Figure 3.1.1, we can separate the examples of two classes with one line. The test node
is the multivariate test w; x; + w; x; < ¢. Instances for which w; x; + w; x; is less than or

equal to ¢ are classified as one class; otherwise they are classified as the other class.

The multivariate decision tree-constructing algorithm selects not the best attribute

f

but the best linear combination of the attributes: > w;x; >wgy . w; are the weights
i=1

associated with each feature x; and wy is the threshold to be determined from the data. So
there are basically two main operations in multivariate algorithms: Feature Selection
determining which features to use and finding the weights w; of those features and the
threshold wy.

> Price

FIGURE 3.1.4 Instances of the problem Choosing Car with multivariate split

20

Figure 3.1.4 illustrates a multivariate split for the same problem in Chapter 2. As it
can be seen, the classes (Ferrari’s and Mustang’s) can now be splitted using only one
multivariate split. The corresponding multivariate decision tree is shown in Figure 3.1.5.
The split for the first node is

w; Year + wj Price <wy,
which is a linear combination of features. The size of the tree is now reduced from seven

nodes into three nodes.

w1‘fear +w2Pnce < Wy

Mustang Ferrari

FIGURE 3.1.5 Multivariate decision tree for the problem Choosing Car

Multivariate decision trees differ from univariate trees in two other respects: First,
because the features in the linear combination split are multiplied with the coefficients, we
must convert the symbolic features into numeric features. And second, because the final

weighted sum is numeric, all splits are binary.

3.2. Symbolic and Numeric Features

A decision tree algorithm must handle both ordered and unordered features. In a

univariate decision tree algorithm, we can use ordered features as x; < a, where a is in the

21

observed range of the feature i and unordered features as x; = a; where ag; are possible

values of the unordered feature x; in the train set.

In a multivariate decision tree algorithm, we must convert each unordered feature i
into a numeric representation to be able to take a linear combination of the features. So in
our implementation, where i is the unordered feature with possible values ay, ..., an we
convert it into multiple feature set as ij, ...,in where i; = 1 if x; takes value g; and 0
otherwise. At the end of this preprocessing we convert previous features (some ordered,
some unordered) x;, ...,xs into all ordered features as x;, x27, X22, X23 ... X2m» X31, X32, X33 ...

X3ps X4, ... » X Where x; , x4 ... are ordered, X ,x3; ... are unordered features.

This encoding avoids imposing any order on the unordered values of the feature
(Hampson and Volper, 1986), (Utgoff and Brodley, 1991). Note that the dimensionality

and complexity increases when the number of attributes is increased.

3.3. Feature Selection

In multivariate decision tree construction, we take a linear combination of features.
Our main purpose is to find the coefficients w; for these features. But using all of the
features may be costly and may lead to overfitting on a small training set. So in order to
get rid of these unnecessary features, we use feature selection, thereby effectively setting

w; of unnecessary features to 0.

Feature selection algorithm proceeds as follows: Firstly the coefficients of all
attributes are determined. Afterwards, each attribute x; is dropped by setting w; = 0 and the
increase in the impurity for that attribute is found. If dropping an attribute increases
impurity significantly, it is an important attribute. Applying this rule we can find the most
and least important attributes. Then we check if the impurity increase for the least

important attribute is less than the impurity increase for the most important attribute by a

22

constant ¢ (normally 0.1 or 0.2). If the difference is smaller we conclude that it is an
unnecessary attribute and we drop it. We repeat this process until this condition is not

satisfied for any attribute.

3.4. Classification and Regression Trees (CART)

CART algorithm (Breiman et. al., 1984) for finding the coefficients of the available
features is a step-wise procedure, where in each step, one cycles through the features x;, x»,
..., Xr doing a search for an improved linear combination split. If there are symbolic
features, they are converted to numeric features. Each instance is normalized by centering
each value of each feature at its median and then dividing by its interquartile range. CART
algorithm is very similar to ID3.

Finding the best split with CART algorithm is done as follows:
1. While disorder decreases
2. For each of the feature x;
3. Fory e {-0.25,0,0.25}

o Let the current split be v < ¢, where v = i P Xm the aim is to find the best split of

m=1
the formv- 8 (x;+y) < c.
e Divide the instances into two groups as

v—c v—c
,Xity20and 8 <
x, +y X, +

o2

, XiTv7<0.

4. For each instance:

v, —¢
o Calculate u,= —= . Divide the instances into two groups as for all u, such that
xi,n + y

x;n +7v 2 0, the algorithm finds the best split of the form u < ;. For all u, such that
x;n +v <0, the algorithm also finds the best split of the form u > 8,. Take the better
of these two splits and let 8 be the corresponding threshold.

5. These three best splits are compared and 8, y values corresponding to the best of the

three are used to update v as follows:

23

/
Z mxm:ﬂx dﬂ’m=ﬂmm>land0,=0+8%

6. At this point the updated split is of the form v; < ¢;. The cycle is completed by finding

the best split of the form v; < ¢;’ as ¢;” ranges over all values.

Inttial Line x1

FIGURE 3.4.1 A step in CART algorithm

Figure 3.4.1 shows the first step of the CART algorithm for an example data set. The
initial line is given as x;+x,<0. The lines shown as —0.25,0 and 0.25 are the best splits

found for y=-0.25,0 and 0.25. Here only the coefficient of attribute x; is changed. The
line with y = 0 will be selected for further iteration.

!
Once the best split is found, we create two children as v = Z Pnxm<candv>c,

m=1
and divide the set of instances into two. We then continue recursively until either a subset

is pure enough or the subset is small enough.

This algorithm has a complexity of O (6 * k£ * f* n) where £ is the number iterations

done while disorder decreases, f is the number of features, N is the number of instances.

24

Loop (1) is iterated k times, loop (2) is iterated three times, loop (3) is iterated ftimes and
loop (4) is iterated 2*n times. Also the algorithm is called for each node one time so the

total complexity in training phase is O (6 * k£ * f* n).

The testing phase of the algorithm is as follows: Each instance is first normalized
according to the median and quartile computed from the training set. Then the tree is
traversed until a leaf node is encountered, by taking the linear combination of input
attributes with the coefficients found by the CART algorithm for that node. If the instance
has the class code same as the code of the leaf node, it is correctly classified else it is

misclassified.

Although CART is a good multivariate algorithm it has some basic limitations. First
of all, it is fully deterministic as ID3. There is no built in mechanism for escaping local
minima, although such minima may be very common for some domains. Secondly, it
sometimes makes adjustments that increase the impurity of the split. This feature was

probably included to overcome local minima problem but it also has a drawback.

There is no upper bound on the time spent at any node in the decision tree. Loop (1)
halts when no perturbation changes the impurity more than €, but because impurity may
increase and decrease, the algorithm can spend arbitrarily long time, or in some times
infinite time, at a node. To overcome this problem, we have included also an iteration
constant. If the algorithm cycles more than this iteration constant, it stops and returns the

current split.

25

4, NEURAL NETWORK MODELS FOR TREE CONSTRUCTION

As we have seen in Chapter 3, the aim in multivariate decision tree construction is to
find a way to determine the coefficients of the attributes. In this chapter, we will discuss

how to determine these set of coefficients by using methods based on neural networks.

When neural networks are used in decision trees, at each node of the decision tree,
there is a neural network trained with its corresponding data. Once the weights of the

neural networks are found, they can be used to classify a test example.

xu=1 x1 xz *e

FIGURE 4.1 Linear perceptron model for multivariate decision trees

A model for a linear perceptron is shown in Figure 4.1 (Bishop, 1996). xg x1, x2 ... X4
form the input layer of the neural network whereas the node on top is the output node of
the neural network denoted by y. The output of the neural network is binary. w;,’s are the
weights of the input neurons. The weight of xp = 1.0 is wy, which will be used as a

threshold unit (Corresponding to ¢ of CART). y is computed as follows:

1

y= sigmoid(Z{;O w;x;) = i “4.1)
i=0 Wi%¥i

1+e—Z

26

The sigmoid function gives a value between 0 and 1.

In order to train the linear perceptron, gradient-descent is used. This algorithm is
used to train a single-output linear perceptron to differentiate between two disjoint groups
of classes, which are the classes in the left branch C; and the classes in the right branch Cx.
The desired output for an instance is 1 when its class belongs to the group C; and 0 when
its class belongs to the group Cy. If there are only two classes present in that node, one
class belongs to C;, and other to Cr. Otherwise we must select an appropriate partition for

the classes available.

Finding the best split with neural network algorithms is done as a nested optimization
problem. In the inner optimization problem, the gradient-descent algorithm is used to
minimize the mean-square error and so find a good split as defined by w; for the given two
distinct groups of classes C; and Cg. In the outer optimization problem, we find the best

split of classes into the two groups, C; and Cr.

4.1. Training Neural Networks

The inner optimization problem will be solved by using neural networks at each node
of the decision tree. For this purpose we have used three different kinds of neural network

models. These are linear perceptrons, multilayer perceptrons and a hybrid combination.

4.1.1. Linear Perceptron Model

A linear perceptron neural network model is shown in Figure 4.1. The training of
this network is done by gradient-descent algorithm. Let (x’, d) denote the training data,
where x’ is the instance ¢ and & is the desired output for that instance, which is 1 for left
child and 0 for right child.)’ is the real output found by the formula:

27

f
y! = sigmoid Q. wix] +wp) 4.2)

i=1

A stochastic gradient algorithm for minimizing the mean-square error criterion is

used.

B=L3w@r -y 43)
ny=1

At each epoch of training, all instances are passed one at a time in random order.
While passing the coefficients of the input layer, w; and threshold unit wy are updated by
the given formulas. In these formulae 7 stands for learning rate. Learning rate is started as
0.3 / f and decreased to 10”° by multiplying at each epoch with a constant. ¢ stands for
momentum rate (0.7 in our application). It is used to update w; by multiplying with the

previous update value as:
awl=n(d-y)y (1-¥') x' + a aw!? | i=0,...n, xp=+1 (4.4)
witl=w! + Awf (4.5)

The training of linear perceptron takes O(e * n * (f+1)) where e is the number of
epochs to train the network, # is the number of instances and (f+1) is the number of inputs

(+threshold), which is the number of weights to update.

28

4.1.2. Multilayer Perceptron Model

A multilayer perceptron model for decision making at a node is shown in Figure

4.1.2.1.

FIGURE 4.1.2.1 Multilayer perceptron model with one hidden layer

There is a hidden layer between input and output layers which makes y a nonlinear
function of x. xg, x;, x ... x5 form the input layer, Hy, Hj, ... Hy, form the hidden layer and y
denotes the output of the neural network. For the weights connecting the layers, wp,
connects input neuron i to hidden neuron % and 7}, connects hidden neuron 4 to the output
layer. xgand Ay denote the bias units for the input and hidden layers respectively. The
number of units in the hidden layer is taken as half of the number of features, for suitable

dimensionality reduction from fto 1.

At instance ¢ the real output) and the hidden layer output H;' are found as:

29

f
H ;, = sigmoid(Z whixf +wpo) (4.6)
i=0
m
' = sigmoid(Y T,H}, + Ho) (4.7)
h=0

The update rules are different from single layer perceptron. There are two layers so
there are two update rules, one for updating the wy; and the other for updating 7j. Learning
rate is started as 0.3 / fand decreased as explained in linear perceptron model. The update

rules are:

AT =n(d-y)y (1-y)Hi+ a AT , h=0,...,m, Hy=+1 (4.8)
T,"=T)} + AT} (4.9)
dwii=n(d=y) Y (1-3)Ti B (1- H)) x! + a AT’ (4.10)

where h=0,...,m and i=0, ...,n Hy=+1 xop=+1

wat =W+ Awni (4.11)

The training of the multilayer perceptron takes O(e * N * f %) where e is the number
of epochs to train the network, 7 is the number of instances and f'is the number of features.
It is /2 because there are m * fupdates for the weights in the first layer and m updates in
the second layer. m equals to f/ 2 as explained before. So the total number of updates is f 2

/2 + f12 which is O(f?).

30

Multilayer perceptron models differ from other multivariate models in its nonlinear
nature. With this model one can have nonlinear split at a decision node. In Figure 4.1.2.2,

an example nonlinear split is shown to solve the problem Choosing Car.

Year 1

> Price

FIGURE 4.1.2.2 A nonlinear split to Choosing Car problem

4.1.3. The Hybrid Model

If we compare the complexity of the decision at a node, we see that the univariate
methods are the simplest methods as they test only one feature. Linear methods, which take
a linear combination of features, are more complex and nonlinear methods such as
multilayer perceptrons are the most complex. But the aim of the decision trees is to find a
way of representation of the decision that is as simple as possible and as accurate as
possible. So we should not use always nonlinear methods, which have the additional

disadvantage that they are not easily interpretable.

Therefore, it seems better to find a way of combining linear and nonlinear methods in
a hybrid model. In this model, at each node we train both a linear and nonlinear perceptron
and use a statistical test to check if there is a significant performance difference between
the two. If the performance of the multilayer perceptron is better then the performance of

the linear perceptron with a confidence level of %95, the multilayer perceptron is chosen

31

to have a nonlinear decision node, else linear perceptron is chosen to have a linear decision

node.

The tests we have used to compare linear and nonlinear models are combined 5x2 cv
F test and 30 fold cross-validation paired t test. The details of the two tests are given in
Appendix B.

4.2, Class Separation by Selection Method

Class separation is a process that must be done when there are three or more classes
available at the decision node. If there are c classes, then there are 2°'-1 distinct partitions
possible. Because we can not test for all, we use heuristics to get a reasonable partition in
a reasonable amount of time. The first method we have used in class separation is the
selection method, which is a depth-first search method with no backtracking. Let ¢ be a

decision node and C={Cj, ..., Cy,} be the set of ¢ classes at node ¢.

1. Select an initial partition, C; and Cy where each part only consists of examples of two
arbitrarily chosen classes C; and C; respectively.

2. Train the network at node ¢ with the given partition. Do not consider the elements of
other classes yet.

3. For other classes in the class list, search for the class Cy that is best placed into one of
the partitions. Best placing is the placing when C; is assigned into the child where the
impurity is minimum.

4. Put C; into its best partition and continue adding classes one by one using steps 2 to 4

until no more classes are left.

This algorithm is sensitive to the initial class partition due to its depth-first nature.

So a heuristic technique to select the initial partition is used instead of selecting randomly.

32

The Euclidean distance of the means of two classes (for all classes) is calculated, and the

two furthest classes are taken as the initial two classes.

Algorithm traces steps 2 to 4 c-2 times. So the complexity of this algorithm is O(c)

where ¢ is the number of the class available at node 2.

4.3. Class Separation by Exchange Method

The second method in class separation is the exchange method (Guo and Gelfond,

1992). This is a local search with backtracking. Let ¢ be a decision node and C={C}, ...,

C.} be the set of ¢ classes at node ¢.

1.
2.

Select an initial partition of all in classes into two subsets, C;, and Cp.

Train the network to separate C; and Cp. Compute the entropy Ey with the selected
entropy formulae.

For each of the classes k£ € {C}, ..., C.} form the partitions Cy(k) and Cgr(k) by
changing the assignment of the class Cj in the partitions C; and Cg. Train the neural
network with the partitions C;(k) and Cg(k). Compute the entropy E; and the decrease
in the entropy AEy=E-Ey.

Let AE« be the maximum of the impurity decreases for all classes. If this impurity
decrease is less than 0 then exit else set C;, = Cy(k) and Cr= Cg(k), and do the steps 2 to

4 again.

We use a heuristic technique to start, instead of starting randomly.
The two classes C; and C; with the maximum distance are found and placed into C; and
Cr.
For each of the classes k € {C}, ..., C.} find the one with the minimum distance to C;
or Cr and then put it into that group. Repeat this second step until no more classes are

left.

33

5. THE STATISTICAL MODEL FOR TREE CONSTRUCTION

In this section we will discuss how to use a statistical approach to determine the set
of coefficients in a linear decision node. So when we want to find a new split in a node of

the tree, we use a statistical criterion to determine the coefficients of the features.

The statistical approach is named as Fisher’s Linear Discriminant Analysis (LDA)
(Duda and Hart, 1973). This approach aims to find a linear combination of the variables
that separates the two classes as much as possible, which is what we want to do. The
criterion proposed by Fisher is the ratio of between-class to within-class variances, which

we want to maximize. Formally we must find a direction w to maximize

T 2
IW (mp ‘mR)I

Tp - (5.1)
}w Swwl
where m; and my, are the two left and right groups means
1 1
mLz—Zx,mR=—Zx (5.2)
nL XECL nR XECR
and S,, is within-class covariance matrix, which is bias corrected as
1
(npXp +ngXp) (53)
ny +np

where X, and X are the covariance matrices of class groups C; and Cr respectively.

34

L= Y (x-mp)x-my)" X = Y (x-mg)x-mpg)” (5:4)

xeCy, xeCp

There are n; samples in the left class group and ng samples in the right class group. The
solution for w that maximizes Jr can be obtained by differentiating Jr with respect to w
and equating it to zero. So we define w, namely the set of coefficients of the linear

combination as:

w=S;'(m; -mp) (5.5)

But the coefficients of the features is only for the direction, we must also specify a
threshold wy, which is defined as:

1 _ n
wo = (m; +mp) S; (m, —m;;)—log(;’f) (5.6)

Note however that though the direction given in Equation 5.3 has been derived
without any assumptions of normality, normal assumptions are used in Equation 5.4 to set

the threshold for discrimination.

So in our case, we first divide classes into two groups as C, and Cg by an appropriate
class selection procedure (as defined in Sections 4.2 or 4.3). But this time the inner
optimization procedure will be carried out by LDA as we will find the linear split with the
Equations 5.3 and 5.4. There will be no training but only simple calculations with

matrices. So we expect less training time in LDA, than a neural network.

TG YOKSEKOGRETIM KURGALY
nafMs NTACYON MFRKEZE

35

In implementing the idea, we see that if there is a linear dependency between two or
more features then some of the rows or columns of the covariance matrix S,, are the same
or a multiple of the other and it becomes singular. But in this case the determinant will be

zero and we can not find Sw'l .

A possible answer to the problem is PCA, which is principal component analysis
(Rencher, 1995). In this analysis we first find the eigenvectors and eigenvalues of the
matrix S,,. As the multiplication of the eigenvalues of a matrix is equal to the determinant,
we sort the eigenvalues of the matrix and get rid of the eigenvectors with small
eigenvalues. Let us say that the eigenvalues of the matrix S,, are 4;, 47 ... 415 which are

sorted in decreasing order. We will find the new number of features & such that;

A+t Ay
>&
A+t +o+ A

(5.7)

where ¢ is the proportion of variance explained. & is the number of eigenvectors that are
linearly independent. After finding £, we will find the corresponding £ eigenvectors and
store them. For each instance with f features, we will multiply it with the £ eigenvectors to
have a new instance with the number of features k. So our instance space is mapped from f
dimensions into k dimensions. After this we will do LDA now with the mapped instances
and find a new S,, and means and calculate the split. Now S,, can have an inverse so there

is no problem.

In order to test the tree we will convert first the test instances into a space of &
dimensions and then we will multiply the new test instance with the linear split found with
LDA. If the result is greater then -wy this instance is assigned to the left subtree of the
node else to the right subtree of the node.

36

6. RESULTS

For testing the algorithms discussed in this thesis, 20 data sets from the UCI
Repository (Merz and Murphy, 1998) are used. The properties of these data sets are shown
in Table 3.1 (See Appendix A for more details). The number of instances of these sets
varies from 100 to 8000, the number of attributes varies from five to 65 and the number of
classes varies from two to ten. There are also three different types of attributes:

Continuous, discrete and mixed. Seven of these data sets have also missing values.

TABLE 6.1 Data sets properties

Data set name Instances Attributes Classes Missing Type of Attributes

Breast 699 9 2 Y Continuous
Bupa 345 6 2 N Continuous
Car 1728 21 4 N Discrete
Cylinder 541 69 2 b Mixed
Dermatology 366 34 6 Y Continuous
Ecoli 336 7 8 N Continuous
Flare 323 23 3 N Mixed
Glass 214 9 7 N Continuous
Hepatitis 155 19 2 Y Continuous
Horse 368 97 2 Y Mixed
Iris 150 4 3 N Continuous
[ronosphere 351 34 2 N Continuous
Monks 432 6 2 N Continuous
Mushroom 8124 66 2 Y Discrete
Ocrdigits 3823 64 10 N Continuous
Pendigits 7494 16 10 N Continuous
Segment 2310 18 7 N Continuous
Vote 435 32 2 Y Discrete
Wine 178 13 3 N Continuous
Zoo 101 16 7 N Continuous

37

For each method, we performed ten runs on each data set. The results of ten runs
are then averaged and we report the mean and standard deviation of each method
classification rate for each data set. For comparing performance of the methods we have

used the combined 5x2 cv F Test (Alpaydin, 1999).

In our results, > denotes a confidence level between %90 and %95, >> denotes a

confidence level between %95 and %99, >>> denotes a confidence level of over %99.

6.1. Results for Identification Trees

For the rest of these results, the definitions in Table 6.1.1 apply:

TABLE 6.1.1 Definition of methods

Name of the Method Uni/Multi Impurity Measure Pruning Multiple Splits
D3 Uni Information Gain Pre-pruning No

ID3Gini Uni Gini Index Pre-pruning No

ID3Root Uni Weak Theory L. Pre-pruning No

ID3P Uni Information Gain Post-pruning No

ID3-2 Uni Information Gain Pre-pruning Yes Degree 2
ID3-3 Uni Information Gain Post-pruning Yes Degree 3

6.1.1. Comparison of Different Kinds of Learning Measures

In this part, the three impurity learning measures are compared: Information Gain,
Gini Index and Weak Theory Learning Measure. For pruning purposes, pre-pruning is
applied. This section compares these three measures in terms of accuracy, node size and

learning computation time. Accuracy results for impurity measures are shown in Table

38

6.1.1.1 and Figure 6.1.1.1. Node results are shown in Table 6.1.1.2 and Figure 6.1.1.2.

Learning time results are shown in Table 6.1.1.3 and Figure 6.1.1.3.

For three impurity measures there is no significant difference in accuracy (except in

one data set).

For larger data sets, which have more than 1000 samples, in three of five cases,
ID3Root is better then ID3 and ID3 is better then ID3Gini in node size significantly. In

other cases no significant increase or decrease is found.

For mixed data sets, where continuous and discrete attributes are together, it is seen
that the discrete attribute with larger arity is firstly selected as a split attribute. This is due
to the fragmentation problem.

As the node size increases, learning time increases accordingly and this result

becomes significant while the data set size growing.

In terms of learning time, in seven of 20 data sets, ID3 is better then ID3Gini
significantly.

TABLE 6.1.1.1 Accuracy results for three different types of impurity measures

39

Data set name D3 ID3Gini ID3Root Significance
Breast 94.11+1.24 94.13+1.57 94.34+1.53
Bupa 62.2615.33 60.46+3.85 61.39+4.38
Car 80.97+1.26 80.49+1.32 80.90+1.24
Cylinder 68.50+2.22 67.39+2.91 70.06%3.66
Dermatology 92.84+2.37 93.33£2.36 92.51+2.32
Ecoli 78.10+3.57 78.21+2.50 77.92+4.18
Flare 85.2612.03 84.89+2.00 85.07+2.14
Glass 60.65+5.97 59.35+6.14 63.3616.27
Hepatitis 78.4443.71 74.33+10.36 75.47+5.53
Horse 87.55+1.98 87.50£1.93 87.83£1.94
Iris 93.87+2.75 93.87+2.75 93.474+2.47
Ironosphere 87.6313.15 84.961+2.83 87.00+2.37
Monks 92.27+10.15 92.22+10.20 92.22+10.20
Mushroom 99.70+0.06 99.68+0.08 99.62+0.15
Ocrdigits 78.40%1.47 77.33£1.74 76.74+1.32
Pendigits 85.73£1.01 86.59+0.85 85.37+1.16
Segment 91.08+1.16 90.49+2.02 89.08+1.06 1>>3
Vote 94.94+1.06 95.63+1.83 94.94+0.94
Wine 88.65+3.72 89.55+3.97 90.11+3.78
Zoo 92.06+4.80 92.26+4.75 92.454+4.79

TABLE 6.1.1.2 Node results for three different types of impurity measures

40

Data set name ID3 ID3Gini ID3Root Significance
Breast 17.00+2.11 18.80+2.90 18.60+4.30
Bupa 53.4015.48 54.20+6.20 58.00+6.75
Car 25.40+0.70 25.1040.74 25.60+0.52
Cylinder 54.10+5.90 59.40+7.75 56.60%6.70 2>>1
Dermatology 20.40+2.67 19.80+2.15 19.204+2.39
Ecoli 33.80+2.70 35.00+2.67 34.60£6.52
Flare 37.90+4.51 39.30+4.30 37.50+3.87
Glass 38.20+5.90 38.80+4.16 40.20£5.27
Hepatitis 19.60+3.78 20.60+2.95 21.20+2.90
Horse 55.80+5.92 56.60+6.64 55.80+5.92
Iris 8.40+1.35 8.40+1.35 8.40+1.35
Ironosphere 19.20+3.05 21.60+4.53 19.60+3.41
Monks 25.40+13.53 25.20+13.21 25.20+13.21
Mushroom 23.00+0.00 24.40+1.71 22.40£1.26
Ocrdigits 74.40+4.01 97.80+7.50 61.40£3.63 2>>1>>>3
Pendigits 81.80+5.51 99.20+7.27 67.80+3.79 2>>>1>>>3
Segment 41.80+3.79 47.80+5.43 34.40£3.66 2>>3
Vote 18.20+3.16 18.00+3.02 19.40+3.86
Wine 10.40+1.35 10.204£2.15 9.20£1.75
Zoo 15.00+1.89 14.60+1.58 14.60£1.58

41

TABLE 6.1.1.3 Learning time results for different types of impurity measures (in sec.)

Data set name ID3 ID3Gini ID3Root Significance
Breast 240 3+1 2+0 2>>1
Bupa 3+1 410 5+1 2>>1
Car 540 5+0 5+0
Cylinder 10+2 1141 10+1 2>1
Dermatology 310 310 310
Ecoli 3+0 411 4x1 3>1
Flare 240 210 2+1
Glass 310 410 411 2>>]
Hepatitis 1£0 2+0 1+0
Horse 410 4+1 410
Iris 00 0x0 0£0
Ironosphere 3947 48+7 3917
Monks 2+1 2+1 2+1
Mushroom 113+33 84133 92166 3>2,1>>3
Ocrdigits 20749 254+40 170+24 2>>1>>>3
Pendigits 476122 516+107 415190 3>>1>>>2
Segment 345+10 493+33 342156 2>>>1>>3
Vote 1+0 1+0 1£1
Wine 1+0 240 240
Zoo 1£0 10 10

42

sainseaws Ayunduar Jo sad£} 921y 10§ s)nsar £ovIMOOY ['1°1°9 TANDILI

00Z NM 10A 938 N3d HI0O SN NOW Oul

RE ‘B | :
. |
' w % :
_ : .
— — : 2

)as ejeq

r

| HOH d3H V19O ¥i1d 003 H3a 1AD uvd dng8 3u9

- 0005

- 00°09

- 0002

- 0008

- 0008

0000

1004EQIM

oeqio

eqim

faeanaoy

TC YUKSERCGRE i Ui

DOKUMANTASYON MERKEZ

43

samseoawr Ayunduut Jo sadA) 9a1y) 10§ $1NSAL 9PON ' 1°1°9 TANDIA

007 z_}n 10A 9385 N3Id HO00 SN NOW Oodl

j8s ejeq
dOH d3aH v1© vid

003 Y3da

JAD Hv0 dna 344

- 0

- 0Z
- OE
- OF
- 05
- 03
- 02
- 08
- 06
- 00l

- 0L

1004EQI W

UOEQ| O

£ain

- 01

- 01

azI1S SpoN

44

(s190s eyep [[ews) samseaw Ayundwr 9a1y) 10§ synsal swn Jurures € 1°1°9 TANDIA

1as ejeq
tall o

00z NIAA 10A NOW OH d3aH Y19 ¥4 023 d3d TAD dv3d dngd 349

- 0

B4

143

_ ooyeEqI | u9eqa| 0 €qlm -

awy} Bujuiea

45

938

(s19s e1ep 981e) samseowr Kjundur 991y} 10§ s)nsax own Sulwied ' 1°1°9 TANDIA

188 ejeq)
N3d H20 SNIN

odl

1004EQIN

woeaia eam

8

8
=

8

- 002

awy} Bujurea

46

6.1.2. Comparison of Pruning Techniques

As mentioned, two different types of pruning techniques have been used: pre-pruning
and post-pruning. For simplicity, Information Gain is used as the impurity measure. In
this section, we would like to find which pruning technique is better than the other.
Accuracy results for these two pruning techniques are given in Table 6.1.2.1 and Figure
6.1.2.1. Node results are shown in Table 6.1.2.2 and Figure 6.1.2.2. Learning time results
are shown in Table 6.1.2.3 and Figure 6.1.2.3.

TABLE 6.1.2.1 Accuracy results for pre-pruning and post-pruning techniques

Data set name ID3 ID3P Significance
Breast 94.11+1.24 94.68+1.84

Bupa 62.26+5.33 62.84+.3.39

Car 80.97+1.26 79.93+7.90

Cylinder 68.50+2.22 67.6215.11

Dermatology 92.84+2.37 92.51+2.42

Ecoli 78.10£3.57 78.27+4.00

Flare 85.26+2.03 88.35+2.55

Glass 60.65+5.97 60.19+5.35

Hepatitis 78.441+3.71 78.95+4.48

Horse 87.55+1.98 88.80+3.02

Iris 93.87+£2.75 92.9343.33

Ironosphere 87.6313.15 86.15+3.72

Monks 92.27+10.15 89.81+7.82

Mushroom 99.70+0.06 99.87+0.11

Ocrdigits 78.40+1.47 84.34+1.48 2>>1
Pendigits 85.7311.01 92.54+0.61 2>>>1
Segment 91.08+1.16 91.994+0.95

Vote 94.94+1.06 95.63+0.66

Wine 88.65+3.72 86.63+1.94

Zoo 92.06+4.80 82.97+7.36

48

TABLE 6.1.2.2 Node results for pre-pruning and post-pruning techniques

Data set name ID3 ID3P Significance
Breast 17.0042.11 13.00+4.99

Bupa 53.40+5.48 17.40+12.54 1>>>2
Car 25.4040.70 60.78+45.00

Cylinder 54.10+5.90 20.40+8.47 1>>>2
Dermatology 20.40+2.67 12.40+1.35 1>>2
Ecoli 33.80+2.70 14.20+4.64 1>>>2
Flare 37.90+4.51 6.10+6.62 1>>2
Glass 38.20+5.90 14.40+4.01 1>>>2
Hepatitis 19.60+3.78 2.80+2.39 1>>2
Horse 55.80+5.92 45.60+3.92 1>>2
Iris 8.40+1.35 5.40+0.84

Ironosphere 19.20+3.05 7.60+2.67 1>>2
Monks 25.40+13.53 25.40+9.28

Mushroom 23.00:0.00 26.80+1.99 2>1
Ocrdigits 74.40+4.01 104.40+12.44 2>1
Pendigits 81.80+5.51 134.80+13.48 2>>1
Segment 41.80+3.79 43.00+6.93

Vote 18.20+3.16 4.00+2.16 2>>>1
Wine 10.40+1.35 6.80+2.57

Zoo 15.00+1.89 9.20+2.39 1>>>2

There is no significant difference in accuracy between pre-pruning and post-pruning

techniques.

But due to the horizon effect, two data sets have significant accuracy

improvement by using post-pruning.

Post-pruning technique lends to less nodes then pre-pruning technique. (In 11 out of
20 data sets)

49

When horizon effect applies, the node size also increases. So in those two data sets,

the node size is significantly larger then in pre-pruning technique.

In discrete data sets, where the arity is greater then five, like in Car and Mushroom
data sets, post-pruning technique can not prune the tree well. So it has large number of

nodes.

In some data sets, where the number of instances for one class is very high compared
to the other classes, if post-pruning is applied, then the number of nodes goes to one. So

the whole tree is pruned back into only one node.

Post-pruning technique takes significantly large amount of time to learn. It is
because of the fact that post-pruning technique prunes the tree after its construction. In
some cases, pre-pruning takes less amount of time. This is because pruning set is taken

from the training set, so in post-pruning the instances in the training set is less.

50

TABLE 6.1.2.3 Learning time results for pre-pruning and post-pruning techniques (in sec.)

Data set name D3 ID3P Significance
Breast 2+0 341
Bupa 3+1 4+0
Car 5+0 40+3 2>>1
Cylinder 1042 10+1 1>>2
Dermatology 3+0 310
Ecoli 3+0 310
Flare 240 2+1
Glass 310 210
Hepatitis 1+0 1+0
Horse 410 410
Iris 0£0 0+0
Ironosphere 39+7 21+4 1>>>2
Monks 241 3+1
Mushroom 113433 84129
Ocrdigits 20719 497+109 2>>>1
Pendigits 47622 931+255 2>>>1
Segment 34510 26218 1>>>2
Vote 110 2+0 2>>1
Wine 1+0 1+0

Zoo 1+0 0+0

51

00Z NM 10A 935 NId ¥00 SNA NOW oMl

-

L

1

sonbruyo9) Surunid-jsod pue Surunid-a1d 10§ synsax £ovIN0OVY 1°7°1°9 TUANDII

18s ejR()
vid 003 HIa TAD

[HOH daH V19

1

4¥3 dnE8 3yd

- 00°09

- 0002

faeinaoy

- 0008

0o'ool

Eqim

deqio

52

sonbruyoe) Surunid om} 10J s} NSa1 9poN Z°Z 19 TANDIA

)as eje(y
007 ZS,, 1OA 938 N3ad dO0 m:.z ZOE ol [tall

dOH d3H ¥1©9 V14 033 ¥3d

&E

JAD YO dna 3ud

ry
J

1 : 1 L D

- U

o6

- 001
- Ol
- 0CL
- OEl
- oYl

051

deain

egm

- oL

azls apoN

53

(s19s eiep [ews) sonbiuyoo) Surunid om) 1oj syynsas swn SutwieaT €7 1'9 TINDIA

)as ejeq
10A ™l HOH d3H 003 d3a dng

- 9

- 8

- 0l

-)
14

deaio Edm

awyj bujurea

54

935

(s10s ejep 951€]) senbruyoe) Surunid om) 103 synsax swiry FurwredT 7 19 TANOIA

N3d

420

SN

oul

=):20)

- 00Li

deqio

eqm

114}

aw] Bujumea’)

55

6.1.3. Comparison of Multiple Splits

In this section we want to find out if it is better to use multiple splits instead of
binary splits. To check this, we have made experiments on the data set with three-way and
four-way splits and compared it with two-way splits. The results are shown in Table
6.1.3.1 and Figure 6.1.3.1. Node results are shown in Table 6.1.3.2 and Figure 6.1.3.2.
Learning time results are shown in Table 6.1.3.3, Figure 6.1.3.3 and Figure 6.1.3.4.

TABLE 6.1.3.1 Accuracy results for splits with degrees two,three and four

Data set name ID3 ID3-2 ID3-3 Significance
Breast 94.11+1.24 94.08+1.38 93.65+0.87 1>3
Bupa 62.26+5.33 59.41+4.61 59.70+2.78 1>>>2
Cylinder 68.50+2.22 63.62+4.08 65.4415.66
Dermatology 92.84+2.37 92.46+1.80 91.37£2.51
Ecoli 78.10+3.57 76.61£3.97 75.2414.61
Flare 85.26+2.03 85.26+2.03 85.2612.03
Glass 60.65+5.97 56.92+5.82 54.21+4.89
Hepatitis 78.4443.71 73.3848.65 71.0748.41
Horse 87.55+1.98 87.1242.22 86.90+2.37
Iris 93.87+2.75 92.67+3.28 92.93£2.27
Ironosphere 87.63+3.15 87.63+1.39 N/A
Monks 92.27+10.15 91.53+7.29 80.28+18.26 1>>2,1>>3
Ocrdigits 78.40+1.47 67.25+2.24 63.41+1.72 1>>>2>>>3
Pendigits 85.73+1.01 82.19+1.47 N/A 1>>2
Segment 91.08+1.16 N/A N/A
Wine 88.65+3.72 86.6315.28 83.03+4.90
Zoo 92.06+4.80 87.10+4.96 88.69+5.35 1>>2

56

TABLE 6.1.3.2 Node results for splits with degrees two,three and four

Data set name D3 ID3-2 1D3-3 Significance
Breast 17.00+2.11 17.90+3.90 18.80+3.36
Bupa 53.40%5.48 50.70+3.53 54.40+5.58 3>>2
Cylinder 54.10+5.90 52.40+5.21 54.80+4.85
Dermatology 20.40+2.67 20.30+3.56 27.00+3.89 3>>1
Ecoli 33.80+2.70 34.4043.17 36.90+3.87
Flare 37.904+4.51 37.20+3.99 37.8043.55
Glass 38.20+5.90 38.70+4.60 37.30+5.93
Hepatitis 19.60+3.78 20.60+3.81 21.40£3.95
Horse 55.80+5.92 57.50+6.59 58.20+6.92
Iris 8.40+1.35 8.00+2.26 8.10£1.97
Ironosphere 19.2043.05 20.60+3.24 N/A
Monks 25.40+13.53 33.90+6.76 38.5015.04 2>>1,3>>>1
Ocrdigits 74.40+4.01 63.50+4.03 67.90+5.61
Pendigits 81.80+5.51 73.60+5.40 N/A
Segment 41.80+3.79 N/A N/A
Wine 10.40+1.35 12.90+1.91 15.00+2.36 3>1
Zoo 15.00+1.89 16.20+1.99 16.50+2.17 2>1

For multiple splits the accuracy decreases while the degree of the split is increased

from two to four; this difference is significant in six out of 20 data sets. This may be due
to the fragmentation problem.

The number of nodes also increases when the degree of the split increases. Only in

some small data sets there is a drop in node size from going degree two to three.

Learning time of higher degree splits is significantly greater then lower degree splits.

57

The accuracy, number of nodes and learning time does not change in data sets where

all attributes are discrete (as can be expected).

TABLE 6.1.3.3 Learning time results for splits with degrees two,three and four

Data set name D3 " ID3-2 ID3-3 Significance
Breast 2+0 40 11+1 3>>>2>>>]
Bupa 3+1 152 168163 3>>>2>>>]
Cylinder 10+2 70+10 10131246 3>>2>>>1
Dermatology 310 7+1 36121 2>>1
Ecoli 30 2311 419453 3>>>2>>>1
Flare 210 210 210

Glass 310 2914 5561-105 3>>>2>>>1
Hepatitis 140 5+1 4148 3I>>>2>>>]
Horse 410 1412 158180 3>2>>>]
Iris 0+0 1+0 1312 3>>>2>>1
Ironosphere 39+7 604180 N/A 2>>>1
Monks 2+1 210 3+1 2>>1,3>>>1
Ocrdigits 20719 59698 23841352 3>>>2>>>]
Pendigits 476122 927212356 N/A 2>>>1
Segment 345410 N/A N/A

Wine 1+0 1813 266160 3>>>2>>>]

Zoo 1+0 1+0 1+0

58

"InoJ pue 391y ‘oM) 592139p PIM $31[ds 10] S)nsa1 AovMOOY [°€'1°9 TANOLI

198 ejeq
00Z NIAA 935 NI H00 NOW odl 14l HOH d3H Y19 vid 003 d3d IAD dng 34d

- 0002

0oooL

E-£aim Z€aio caim J

Koeinoay

59

00z

NIA

938 Nad

“INOJ pue 3211} ‘0Mm) $92139p Y s)fds 10J s)NSaI 3pON Z°€° 19 TANOLI

HI0

jas ejeq

OH

NOW odl ta] |

daH V19 vid 003

_ —

ot e

¥43a A2

[P ST WL SEPIN

dng

Elal=]

- 000

- 000L

- 0002

- 0D'0E

- 00'0Y

- 00°02

- 0009

EEqIm

ZEQo

Egim

0006

azig apoN

60

007

*(s19§ B)Ep [[BWIS) INOJ PUB 3311} ‘OMm] $22130p sijds 10 swn Suruwres| ¢'¢ 19 FANDIA

)as eleq
NOW il d3H ¥4 43d 349

S

@
awy) BupuieaT

T
Q
<t

09

€-eaim ztaio calm L

61

‘(s19s eep 2818]) INOJ pUE 2211} ‘OM] $33139p Yum sIfds J0] own Surures ¢ 19 TANOIA

)as ejeq
NIM 933 N3d 8OO ol HOH V19 093 A0 dng
. ; . _Ln.- _ i'[l.‘l[.‘ L L : - 0
- oooz
- 000E
- 0005
- 0009
ooz
- 0008
|| - 0006
00004
| cEqim z€dIn cqim

aw) Bujulea

62

6.2. Results for Classification and Regression Trees

For the rest of these results, the definition given in Table 6.2.1 applies.

TABLE 6.2.1 Definition of tree-based methods

Name of the Method Uni/Multi Impurity Measure Pruning Feature Selection
D3 Uni Information Gain Pre-pruning No

CART Multi Information Gain Pre-pruning No

FSCART Multi Information Gain Pre-pruning Yes

In this section, the multivariate method CART and the univariate method ID3 are
compared. Also feature selection is applied to CART to see if there will be a difference in
accuracy or node size. The results of this comparison are shown in Table 6.2.2 and in
Figure 6.2.1. Node results are shown in Table 6.2.3 and Figure 6.2.2. Learning time results
are shown in Table 6.2.3, Figure 6.2.3 and Figure 6.2.4.

ID3 is statistically significantly better than CART in six out 20 data sets. ID3 is
better then FSCART in two cases with 95% and FSCART is better then ID3 in one case

with 99% confidence. So we can say that no one of the three methods is clearly the best.

Concerning the tree size, generally multivariate techniques FSCART and CART
perform better than ID3 and this is significant in six data sets. Note that a CART node

internally is more complex then an ID3 node.

The learmning times of univariate technique ID3 is significantly better than
multivariate techniques CART and FSCART.

63

Feature selection improves accuracy and node size generally but increases learning

time significantly.
TABLE 6.2.2 Accuracy results for ID3 and CART
Data set name 1ID3 CART FSCART Significance
Breast 94.11£1.24 94.85+1.44 94.65+1.23
Bupa 62.26+5.33 61.74+3.38 61.5012.48
Car 80.97+1.26 83.84+2.03 78.3417.40 1>3,2>>3
Cylinder 68.50£2.22 59.52+4.05 N/A 1>2
Dermatology 92.8412.37 80.87+4.56 83.72+7.66 1>>2
Ecoli 78.10+3.57 74.74+3.80 76.90+3.89 1>>3
Flare 85.26+2.03 81.55+3.60 85.75+3.89
Glass 60.65+5.97 53.93+4.20 58.13+6.58
Hepatitis 78.44+3.71 78.961+4.04 78.58+3.72
Horse 87.55+1.98 76.96+3.02 N/A 1>>2
Iris 93.874+2.75 89.33+4.44 90.40+4.48
Ironosphere 87.63+3.15 86.841+4.03 84.78+2.78 1>3
Monks 92.274£10.15 91.20+6.89 82.87+8.09
Mushroom 99.70+0.06 93.45+1.75 N/A 1>>2
Ocrdigits 78.40+1.47 81.35+2.08 N/A
Pendigits 85.73+1.01 87.10+2.91 91.47+0.86 3>>>]
Segment 01.08+1.16 88.07+1.69 92.4611.71 3>2
Vote 94.94+1.06 90.30+3.17 90.44+3.88 1>>2
Wine 88.65+3.72 87.30+4.40 93.03%3.62
Zoo 92.06+4.80 69.92+9.69 69.33+8.93 1>>2,1>>3

TABLE 6.2.3 Node results for ID3 and CART

64

Data set name ID3 CART FSCART Significance
Breast 17.00+2.11 11.60+2.67 10.80+2.39 1>2,1>3
Bupa 53.40+5.48 43.20+3.82 40.60+4.20 1>2,1>>3
Car 25.40+0.70 29.0043.40 30.00+4.14
Cylinder 54.10+5.90 45.00+4.90 N/A
Dermatology 20.40+2.67 28.00+4.74 20.80:+3.46 3>>1
Ecoli 33.8042.70 34.00+5.01 31.40+3.24
Flare 37.90+4.51 33.80+6.20 25.80+9.48 1>>2
Glass 38.2045.90 42.40+4.12 38.20+4.34
Hepatitis 19.60+3.78 14.00+3.43 11.60+1.90 1>>3
Horse 55.80+5.92 28.00+5.19 N/A 1>>2
Iris 8.40+1.35 10.20+2.35 8.20+1.40
Ironosphere 19.2043.05 16.40+3.78 16.0043.68
Monks 25.40+13.53 17.80+10.16 11.40+2.27 1>2,1>>>3
Mushroom 23.00+0.00 43.00+6.53 N/A 2>>>1
Ocrdigits 74.40+4.01 70.80+3.98 N/A 1>>2
Pendigits 81.80+5.51 77.80+10.08 71.00+5.16
Segment 41.80+3.79 45.20+8.97 36.80+4.57
Vote 18.2043.16 17.20+5.29 18.2045.75
Wine 10.40+1.35 9.40+2.27 9.00+1.33
Zoo 15.00+1.89 25.20+4.94 16.40+2.32 2>>1,2>>>3

65

TABLE 6.2.4 Learning time results for ID3 and CART

Data set name ID3 CART FSCART Significance
Breast 2+0 107+17 482+122 3>>>2>>>1
Bupa 3+1 252423 829+119 3>>>2>>>1
Car 5+0 1178£148 1305611661 3>>>2>>>1
Cylinder 10+2 4589+343 N/A 2>>>1
Dermatology 310 858+170 10553+1748 3>>>2>>>1
Ecoli 3+0 221325 859+76 3>>>2>>>1
Flare 210 10324203 8892:+3203 3>>25>>>]
Glass 310 320425 14814154 3>>>2>>>1
Hepatitis 110 209+47 1709+£265 3>>>2>>>1
Horse 410 3481:1101 - NA 2>>1
Iris 0+0 3111 69+17 3>2>>1
Ironosphere 39+7 544194 866411662 3>>>2>>>1
Monks 2+1 12661 273155 3>>>2>>1
Mushroom 113133 3361312942 N/A 2>>>1
Ocrdigits 207+9 91481713 N/A 2>>>1
Pendigits 476122 33114350 24544+1374 3>>>2>>>]
Segment 345+10 12124170 9173£905 3>>>2>>>]
Vote 140 805£167 13058£3920 3>>>2>>>]
Wine 10 84126 5661147 3>>>2>>>1
Zoo 140 453161 20881375 3>>>2>>>]

=0 VWKSKZKDGRET EM KW&M

66

LYV pue €] 10§ sInsa1 £ovIN00Y [°7°9 HYNOIA

)8s ejeq
007 NIM 10A 935 N34 H00 SN NOW OH [H HOH d3aH ¥19 V14 003 H3AA TAD dvd dng 3ud

_ ¥ - 0005
| __ 1R :
o | . i 8. L=
: « B W oooz
, | i | ‘Moo

0000t

- 0008
| LvOSd . LHvo0 Eqim B

Aaenaay

67

00Z N 10A 935 Nad

40O

LVO pue ¢ 10 S}NSAL SPON °C°9 HANDOIA

SN NOW Ol

188 ejeq

M M¥OH d3IH V19 w14 093 ¥3a

TAO HY0 dnE 34

| 1Hv)S .

1¥vyon

£qim |

06

BZ[SEFD"

68

(s19s e1Rp W) [YVO Pue €I J0F synsa1 own Sutures] €79 TANDOIT

19s ejeq
(s]074 NIAA NOW tall d3H

e

003 dng 348

- 0021
L _u_u.m.w
- 0061
- 0002
- 00l
- 00
- O0EC
- 00Fe
005

[LHvOS4m 1ivom caim]

69

10A

9438

N3d

Amaum Blep Owuﬁc JAVD pue (] 10} sjjnsal swn WGMENO\H 79 INODOIA

)as ejeq

400 SN dOH

1

TAD

- 0009

- 00001

:

awy| :l:‘l‘u,luma‘q

1¥vy3Sim

14von eam

0ooo¥

70

6.3. Results for Neural Network Methods

For the rest of these results, the definition given in Table 6.3.1 applies.

TABLE 6.3.1 Definition of neural-network based methods

Name Class Separation Impurity Measure = Pruning Linearity
ID-LPS Selection Information Gain = Pre-pruning Linear

ID-LPE Exchange Information Gain Pre-pruning Linear
ID-MLPE Exchange Information Gain ~ Pre-pruning Nonlinear
ID-Hybrid-F Exchange Information Gain Pre-pruning Both with F-test
ID-Hybrid-t Exchange Information Gain = Pre-pruning Both with t-test

6.3.1. Comparison of Class Separation Techniques

The aim of this section is to find which class separation technique (selection or
exchange) is better than the other. For simplicity, other variables such as impurity measure
or pruning technique are fixed. If there are only two classes available in a data set, it is
not included in the results because there will be no class separation. The results are shown
in Table 6.3.1.1 and Figure 6.3.1.1. Node results are shown in Table 6.3.1.2 and Figure
6.3.1.2. Learning time results are shown in Table 6.3.1.3, Figure 6.3.1.4 and Figure 6.3.1.5.

In none of the data sets, the selection method is more accurate than the exchange
method in accuracy. But the exchange method is more accurate than selection method in
three data sets. Two of these data sets Ocrdigits and Pendigits have 10 classes. The other
data set Ecoli has eight classes. So we can conclude that, the more classes you have, the
better is the exchange method compared to the selection method, due to the large number

of division candidates.

71

If the node size results are compared, it is also seen that in two data sets, Pendigits
and Glass (which has eight classes), out of 11, the exchange method is better than the

selection method while the selection is never better.

As we have explained, the exchange method has larger time complexity. So in all
data sets except one, the selection method is better than the exchange method in terms of
learning time. This significance also increases with the size of the data set and the number

of classes.

TABLE 6.3.1.1 Accuracy results for ID-LPS and ID-LPE

Data set name ID-LPS ID-LPE Significance
Car 87.50+3.07 89.48+4.01
Dermatology 69.511+22.01 85.74+7.06
Ecoli 68.511+5.39 82.62+4.06 2>1
Flare 88.17+2.21 88.36+2.37
Glass 55.53+6.16 54.95+7.83
Iris 81.731£14.40 77.60+£15.70
Ocrdigits 54.1416.25 93.87+0.92 2>>>1
Pendigits 67.4615.44 91.94+4.16 2>>>]
Segment 70.55+6.68 79.76£11.58
Wine 85.06+14.00 87.75+12.62
Zoo 78.01+7.67 79.38+8.10

TABLE 6.3.1.2 Node results for ID-LPS and ID-LPE

Data set name ID-LPS ID-LPE Significance
Car 11.40+6.10 7.40+0.84
Dermatology 7.4043.10 8.80+1.48
Ecoli 15.00+5.33 10.80+2.90
Flare 2.80+1.99 3.20+2.20
Glass 20.80+3.46 10.20+4.64 1>>2
Iris 5.60+3.13 4.00+1.05
Ocrdigits 45.20+4.76 34.80+4.94
Pendigits 58.40+9.52 30.40+6.40 1>>>2
Segment 28.60+6.31 16.60+6.65
Wine 4.20+1.03 4.40+0.97
Zoo 11.40+2.07 8.80%1.75

TABLE 6.3.1.3 Learning time results for ID-LPS and ID-LPE

Data set name ID-LPS ID-LPE Significance
Car 79117 152+16 2>>>1
Dermatology 22+4 4219 2>>1
Ecoli 22+4 57+15 2>>1
Flare 5+2 9+4 2>>]
Glass 13+1 3349 2>>>1
Iris 210 310 2>1
Ocrdigits 2764+384 8035+757 2>>>1
Pendigits 41641246 18340+3319 2>>>1
Segment 407+63 937+103 2>>>1
Wine 240 4+1

Zoo 5+1 10+2 2>>1

72

73

00z

NI

QEL)

dd’T-dI Pue Sd'1-dl 10J SHNsa1 AoBIN0dY [°1°¢'9 TYNOIA

1as ejeq

MN3d

43da

ad1aia

sSd1-aim

A

0oL

74

Hd'T-dl pue Sd'I-dl 10F S)NSa1 3pON Z°1°¢°9 HANDIA

jas je()
(0]674 NIAA 024 d3d Uv0

L A

- 000

ﬁ

- 0001

- 0002

H30 all Y19

- 00°0E

- 000y

- 0009

0002

[A-NIa S]

az|s apoy

75

007

NIAA

(s10s esep [[ews) GdT-I PUe SdT-AI 10f s)nsal swry Sutures ¢°1°¢'9 FANOLA

tall

1as ejeq

094

43d

- OF1

0zl

3adi1an

Sdi1am

awy) Bujueay

76

(s10s eyep adre) 44T-AI Pue SJ'T-CI 10J sHnsal1 swy Jured] 4" 1°¢'9 TIANOIA

933

19s eje(y
N3d

430

p=—a

2§ 8

3d1-0I8

sdi-am

auy] Bujueay

71

6.3.2. Comparison of Hybrid Tests in Decision Nodes for Neural Networks

The aim of this section is to find which test measure (F-test or t-test) is best in
comparing the performance of hybrid trees. In big data sets as Mushroom, Ocrdigits,
Pendigits and Segment, training is done with 10 epochs instead of 50 epochs. This is due
to the large amount of computation to train the networks with t-test. For example training
with t-test of Ocrdigits data set takes approximately 4 days, where we have 160 runs like
that.

TABLE 6.3.2.1 Accuracy results for hybrid network models

Data set name ID-Hybrid-F ID-Hybrid-t Significance
Breast 96.62+0.55 96.62+0.63
Bupa 63.4242.57 63.71+3.24
Car 94.51+1.15 92.19+1.37 1>2
Cylinder 71.31+£1.74 71.24+1.89
Dermatology 94.54+4.67 85.74+11.97
Ecoli 83.10+4.19 81.43+3.75
Flare 88.11+2.43 87.98+2.28
Glass 55.05+9.72 60.37+6.60
Hepatitis 83.741+3.41 83.48+3.38
Horse 82.66+2.58 82.01+3.28
Iris 92.67+3.28 92.80+3.34
Ironosphere 87.80+2.15 87.35+1.79
Monks 66.39+1.85 66.30+1.77
Mushroom 99.96+0.03 99.95+0.03
Ocrdigits 92.79+2.20 N/A
Pendigits 90.82+9.62 N/A
Segment 81.77+£12.97 85.13+6.33
Vote 94.71£1.13 94.80+1.06
Wine 96.07+2.07 95.96+2.32
Zoo 86.93+5.39 86.741+4.15

78

TABLE 6.3.2.2 Node results for hybrid network models

Data set name ID-Hybrid-F ID-Hybrid-t Significance
Breast 3.00+0.00 3.00+0.00
Bupa 4.40+1.90 4.40%1.65
Car 7.60+0.97 7.20+1.48
Cylinder 8.80+1.75 9.00+2.11
Dermatology 11.20+1.14 11.00+0.00
Ecoli 10.60+2.27 10.80+2.57
Flare 3.00+1.33 2.4010.97
Glass 11.00+5.50 11.80+2.70
Hepatitis 3.00+0.00 3.00+0.00
Horse 5.60+2.84 5.20+1.75
Iris 5.00+0.00 5.00+0.00
Ironosphere 4.00%1.05 3.80%1.03
Monks 3.00+0.00 3.00+0.00
Mushroom 3.00+0.00 3.00+0.00
Ocrdigits 25.4043.75 N/A
Pendigits 23.40+5.80 N/A
Segment 14.401+2.84 14.60+3.10
Vote 4.20+1.93 4.40£1.90
Wine 5.00+0.00 5.20+0.63
Zoo 12.40£1.90 12.60+1.26

79

The results are shown in Table 6.3.2.1 and Figure 6.3.2.1. Node results are shown in
Table 6.3.2.2 and Figure 6.3.2.2. Learning time results are shown in Table 6.3.2.3, Figure
6.3.2.4 and Figure 6.3.2.5.

There is no significant difference in terms of accuracy and node size between the two

test selection measures (Only in Car in terms of accuracy).

80

But the difference is in learning time. In all data sets, t-test is slower than F-test with
over than %99 level. Because t-test runs with 30 fold cross validation with the whole
training set while F-test runs only 10 fold cross validation with half of the training set.

TABLE 6.3.2.3 Learning time results for hybrid network models

Data set name ID-Hybrid-F ID-Hybrid-t Significance
Breast 30+1 175+4 2>>>1
Bupa 1543 91+17 2>>>1
Car 911+151 64221656 2>>>1
Cylinder 36645 24551346 2>>>1
Dermatology 399425 3428899 2>>>]
Ecoli 219+38 1697+338 2>>>1
Flare 67426 420+134 2>>1
Glass 137428 12754281 2>>>1
Hepatitis 100 66+1 2>>>1
Horse 327+89 2089+392 2>>>1
Iris 14+1 95+11 2>>>1
Ironosphere 5319 300+59 2>>>1
Monks 16+0 97+1 2>>>1
Mushroom” 5529+414 8546934 2>>>1
Ocrdigits" 14791+3204 N/A 2>>>]
Pendigits” 9942:+1566 N/A 2>>>1
Segment’ 47561453 6217529 2>>1
Vote 53+11 37684 2>>>1
Wine 1942 125126 2>>>1
Zoo 66110 422180 2>>>1

81

S[opouI JI0MIaU PLIGAY 10] §}[NSI A0BINOOY ['Z°€°9 TUNDOI

)as ejeq
00Z NM 10A 938 SNW NOW Odl all HOH d3aH V19 Y14 003 d3a AD : dnd 3d4

- 0005

- 0009

- 0002

0o'ool

| 13PuaAH-0I0 J3pugiy-oIm

Kaeinaoy

82

00z

NIAA

S[opOUI JI0M}oU PLIGAY 10§ SHNSAI SPON Z'T'€"9 TANDIA

SNW NOW

oul

138 ejeQ
ol MOH d3H v19

dnd

Jud

-0

- Zl

ﬁ.mp

Ll

13pugid-alo

13pugiH-q|m

a2jS apoN

83

00z

(519 BIEp [[BUIS) S[POUI JIOMIU PLIGAY JOF S)Nsal awy Surures| €7 ¢'9 MANDI

Jas ejeq
10A NOW ol 1l d3H dng

HE

- 001

8 &8 R &
awy] Bujureay

)

- oo

13pugiH-qQ B 3pugiy-qim

84

HOH

(195 €jEp SZIS WINIPSUI) S[SPOW JIOMISU PLIGAY I0J sy nsax swry Surures| $°7°€'9 TANDIL

185 ejRQ
003

H3a

IAD

- 0009
- 0059
- 0004

1JpugiH-QIa

J3pugAH-QIm

002

swy) Bujueasy

85

(s10s Byep 981R[) S[opOUI JI0MISU PLIGAY I0] SYNSaI oW JUIWIedT 67 €9 TIANDIA

)yas ejeq

SN

swy] Bujuea

1Jpugiy-aio

$3PUgAY-aIm

86

6.3.3. Comparison of the Network Structures in Decision Nodes

We must also determine the type of the neural network to train in a decision tree. So
we must find out which type of neural network performs the best. In order to accomplish
this task, we have three different types of networks: Linear perceptron, multilayer
perceptron and a hybrid of them (with F-test). Multilayer perceptron is a nonlinear
method. These three networks are compared according to accuracy, node size and learning
time. Accuracy results are shown in Table 6.3.3.1 and Figure 6.3.3.1. Node results are
shown in Table 6.3.3.2 and Figure 6.3.3.2. Learning time results are shown in Table
6.3.3.3, Figures 6.3.3.3, 6.3.3.4 and 6.3.3.5.

Linear neural network methods results can be divided into two groups. Data sets
having two classes and data sets having more than two classes. If the data set has two
classes and if the classes are not linearly separable, the accuracy results can be very low.
But if they are linearly separable, the results can be very good as in Breast data set. For
nonlinear network models, results are higher in such data sets. More generally in three
data sets out of 20, the nonlinear model outperforms the linear model and in two data sets,
the hybrid model outperforms the linear model. In four data sets; Ocrdigits, Dermatology,
Zoo and Segment, the nonlinear model has good results but does not converge all the time.

So these data sets have larger variance.

If we look at the node results, the nonlinear model is better than linear model in two
data sets and it is better than the hybrid model in two data sets. Any data set having ¢
classes must have at least 2¢-1 nodes so that each class can be in one leaf. The nonlinear
model converges to the optimum solution in the number of nodes. There is an order
between the node size of the models as Linear > Hybrid > Nonlinear model. In some data
sets we see that the hybrid model performs worse than the other two in terms of node size.
This mainly depends on the deviation of the results. The nonlinear model outperforms the
hybrid model in four data sets and the linear model in two data sets. The hybrid and linear
models outperform each other in only one data set.

87

In terms of the time consumed for learning, linear model performs the best as we
have expected. If we compare times we see an ordering as Hybrid > Nonlinear > Linear.
But sometimes, the linear model has larger training time than the nonlinear model, which is
due to the large number of nodes in the tree with the linear model and the large number of

instances of that data set.

TABLE 6.3.3.1 Accuracy results for different network models

Data set name ID-LPE ID-MLPE ID-Hybrid-F Significance
Breast 96.60+0.61 96.77+0.91 96.62+0.55
Bupa 63.53+2.76 63.24+4.31 63.42+2.57
Car 89.48+4.01 96.8612.30 94.51+1.15
Cylinder 70.21+4.48 70.35+9.56 71.31+1.74
Dermatology 85.74+7.06 87.81+13.59 94.54+4.67
Ecoli 82.62+4.06 80.12+5.12 83.10+4.19
Flare 88.36+2.37 87.67+2.56 88.11+2.43
Glass 54.95+7.83 58.04+13.30 55.05+9.72
Hepatitis 84.13+2.86 83.74+2.43 83.7413.41
Horse 82.07+3.48 84.67+2.64 82.661+2.58
Iris 77.60+15.70 92.67+3.57 92.67+3.28 2>1,3>1
Ironosphere 87.80+2.18 87.52+2.11 87.80+2.15
Monks 66.34+1.87 66.99+2.17 66.39+1.85
Mushroom 99.95+0.03 99.99+0.02 99.96+0.03 2>1
Ocrdigits 93.87+0.92 83.90+10.22 92.79+2.20
Pendigits 91.94+4.16 91.3546.55 90.8219.62
Segment 79.76+11.58 80.35+12.36 81.77£12.97
Vote 94.71£1.05 95.58+1.72 94.71+1.13
Wine 87.75+12.62 95.96+2.13 96.07+2.07 2>1,3>1
Zoo 79.38+8.10 85.33+11.86 86.93+5.39

TABLE 6.3.3.2 Node results for different network models

88

Data set name ID-LPE ID-MLPE ID-HybridEf Significance
Breast 3.00+0.00 3.00+0.00 3.00+0.00
Bupa 4.60+1.84 3.80+1.03 4.40+1.90
Car 7.40+0.84 6.60+1.26 7.60+0.97
Cylinder 8.40+1.90 6.40+1.65 8.80+1.75 3>>2
Dermatology 8.80+1.48 9.60+2.32 11.20+1.14 3>1
Ecoli 10.80+2.90 8.80+2.20 10.602.27
Flare 3.20£2.20 2.20£1.03 3.00£1.33
Glass 10.20+4.64 7.20£3.71 11.00+5.50
Hepatitis 3.00:0.00 3.00+0.00 3.00+0.00
Horse 5.00+1.63 4.00x1.41 5.60+2.84
Iris 4.00+1.05 5.00+0.00 5.00+0.00 2>>1,3>>1
Ironosphere 3.80+1.03 3.80+1.03 4.00+1.05
Monks 3.00+0.00 3.00+0.00 3.00+0.00
Mushroom 3.00+0.00 3.000.00 3.00+0.00
Ocrdigits 34.80+4.94 18.40+3.53 25.40+3.75 1>3>>2
Pendigits 30.40:+6.40 17.60+1.35 23.40+5.80 1>>>2,3>>2
Segment 16.60+6.65 11.60+2.12 14.40+2.84
Vote 4.20+1.93 3.000.00 4.20+1.93
Wine 4.40+0.97 5.00+0.00 5.00+0.00
Zoo 8.80+1.75 10.60+2.80 12.40+1.90 3>1

TABLE 6.3.3.3 Learning time results for different network models

89

Data set name. ID-LPE ID-MLPE _ ID-HybridEf __ Significance
Breast 540 7+0 30£1 3>>>1,3>>>2
Bupa 3+1 311 1543 3>>>2>>>1
Car 152+16 216+18 911151 3>>>2>>>1
Cylinder 19+2 102415 366145 3>>>2>>>1
Dermatology 4219 122+19 399+25 3>>>2>>>1
Ecoli 57+15 50+13 219438 3>>>1,3>>>2
Flare 9+4 18+7 67426 3>>2>>1
Glass 3349 2748 137428 3>>>1,3>>>2
Hepatitis 1+0 340 10:0 3>>>1,3>>>2
Horse 1442 97+20 327489 3>2>>>1
Iris 310 310 1411 3>>>1,3>>>2
Ironosphere 411 1442 5349 3>>>2>>>]1
Monks 310 310 1610 3>>>1,3>>>2
Mushroom 628204 1858270 5529+414 3>>>2>>>]
Ocrdigits” 8035+757 10993+1402 14791+3204 3>>>2>1
Pendigits’ 1834043319 84731742 9942+1566 3>>>1>>2
Segment 937+103 927+126 47561453 3>>>1,3>>>2
Vote 6+1 1342 53t11 3>>2>>1
Wine 4+1 4+1 192 3>>>1,3>>>2
Zoo 102 18+4 66£10 3>>>2>>>1

90

S[opOUI YIOMIOU JOJ S}NSAI A0BINOOY ['€°€°9 TUNDILI

jas ejeq

00Z N 10A 948 Niad ¥HOO0 SN NOW oMl 1Hi HOH d3H V¥19 %14 003 dH3Ia TAD H¥D dnhg 3ug

¥ i . . [
:]

I .

- 0005

- 0009

- 00°02

- 0008

- 0006

| J3PUGAH-OI ER

Ad1-Qm

0000l

Aseinaay

91

S[OPOW JIOM]AU JOJ S)NSAI SPON Z'€°€°9 TINDII

188 BjEQ
007 NM IOA 935 Nad H00 SN NOW OHl MOH d3H V19 Vvi4 003 ¥30 A0 Hv0 dng 3u8

-0

- Ol

oy

| 3puaky-arm A IN-QI D adam |

az|g apoy

92

(s19s ®eiep [[EWIS) S[opOW JIOMISU I0] S} NSl o) Suned] €€ ¢°9 TIANDII

)8s ejeq
00Z NIAA 10A NOW oyl 2] d3aH dng 248
— , -0
]] []

- 0L
L 0z
- 0
- OF
- 0%
- 09
- 02

08

3pugiy-gim JdW-QI0 3d-gim

awyj Bujwea

93

HGH

(s19s BIEp 9ZIS WINIPAUI) S[SPOW YIOMISU JOJ S}NSSI SwiN) FUTWIBYT $'€°€°9 TUNOLI

Jas ejeq
003 H3aq TAD

$3pugiH-qim 3dTA-aI0 3d7-ain

awy) Bujuieay

94

(s19s E1Ep 931E]) S]OpOW YI0M)aU J0] SYNSsa1 Swy FurwIed | ¢'g 6 9 TINOIA

)as ejeq
N3d 400

SNIA

T
[}

T

EENFEEEE

:

:

ooovz

13pugiy-gim

3dTA-aI0 ad1-aim

95

6.4. Results for LDA

For the rest of these results, the definition given in Table 6.4.1 applies.

TABLE 6.4.1 Definition of neural-network based methods

Name Class Separation Pruning PCA PCA percentage
ID-LDA Exchange Pre-pruning Always %90
ID-LDA-R Exchange Pre-pruning If Required %90
ID-LDA-R99 Exchange Pre-pruning If Required %99

6.4.1. Effects of PCA on the Results

Previously we saw that PCA must be used to solve the singular covariance matrix
problem in Chapter 5. But there are also data sets where we do not need PCA in some
nodes because the covariance matrix is invertible in those nodes. Hence, we took those
data sets performances two times, one time we used always PCA and the other time we
used PCA when it is required. In this section we will compare these two results and want to
find out if PCA decrements the performance because of the %10 loss in variance. The
results are shown in Table 6.4.1.1 and Figure 6.4.1.1 for accuracy, in Table 6.4.1.2 and
Figure 6.4.1.2 for tree sizes and in Table 6.4.1.3 and Figure 6.4.1.3 for learning time.
Some of the data sets are shown with an asterisk near them. In those data sets, PCA is

never required.

If we look at the accuracy results we see that PCA causes a decrease in performance.
In three data sets out of five, accuracy is significantly dropped when PCA is applied. In
these data sets, PCA is never required. In other data sets where PCA is applied, accuracy
does not change significantly.

L YOKSEKOGRETINM KURULY
DOKDBIANTASYON MERKEZE

TABLE 6.4.1.1 Accuracy results for ID-LDA and ID-LDA-R

Data set name ID-LDA ID-LDA-R Significance
Breast* 96.65+0.66 95.85+0.72
Bupa* 57.28+3.23 67.42+2.97 2>>>]
Ecoli 83.10+2.50 83.69+3.58
Glass 57.85+3.67 55.51+4.43
Iris* 82.67+5.52 97.20+1.47 2>>>1
Monks* 66.34+1.93 74.31+2.26 2>>1
Wine* 94.04+3.18 96.07+2.66
Zoo 80.79+6.97 82.5615.62

TABLE 6.4.1.2 Node results for ID-LDA and ID-LDA-R

Data set name ID-LDA ID-LDA-R Significance
Breast* 8.00+1.05 7.2010.63
Bupa* 6.40+4.90 8.20+1.93
Ecoli 20.20+4.34 17.60+4.81
Glass 20.60+5.64 25.60+3.78
Iris* 8.00+2.16 5.40+0.84 1>>>2
Monks* 3.00+0.00 7.201+2.39 2>1
Wine* 7.40+1.84 5.40+0.84
Zoo 12.60+2.07 12.60+2.07

96

For the node resuits, ID-LDA-R is better than ID-LDA in one data set, whereas ID-
LDA is better than ID-LDA-R in one data set. ID-LDA is better than ID-LDA-R in Monks
data set, where it can not find a split after one split. So it has lower node size. These
results also effect learning time. On the Iris data set where the tree size is significantly
smaller with ID-LDA-R, learning time is also significantly less.

97

When PCA is applied, the number of reduced dimensions is usually decreased from
the root node to a leaf node. For example, while in the root node we need 14 eigenvectors
to define the data on Ecoli data set, we only need 5 eigenvectors to define data in a leaf

node.

TABLE 6.4.1.3 Learning time results for ID-LDA and ID-LDA-R

Data set name ID-LDA ID-LDA-R Significance
Breast* 3+l 210
Bupa* 1+1 140
Ecoli 612 612
Glass 5+1 7+1
Iris* 111 010 1>>2
Monks* 1+1 140
Wine* 1+0 140

Zoo 2+0 2+0

98

A-VAT-dI pue VA'T-AI 10§ s¥nsa1 Aovmooy [°14'9 TYNDIA

)as ejeq

007

NOW 023 dndg 348

HvaTaio va1-aim j

(O
foemaay

99

00z

A-VAT-AI PU® VA'T-A] 103 SHNS3I 3pON '1°%'9 HINOIA

jas eyeq

dng

344

NOW il V19 023

- 0l

- Gl

Hvai-aim Yaiam

a2} apoN

100

00z

NIA

A-vVaA'1-dl Pue VAT-dI *0F sHnsa1 swn Sururesy €'1'4'9 TINOIL

NOW

18s ejeq

) -

Y19

023

dng

349

1

gvaraig

vai-ain

awyy Bujusea

101

6.4.2. Effects of PCA Percentage on the Results

As Section 6.4.1 shows, LDA performance is decreased when PCA is applied
because of the 10% loss (e = 0.90). We have also made experiments with another
percentage levels; with %99 (e = 0.99), and compared the results of two. The results are
shown in Table 6.4.2.1 and Figure 6.4.2.1 for accuracy, in Table 6.4.2.2 and Figure 6.4.2.2
for tree size and in Table 6.4.2.3, Figure 6.4.2.3 and Figure 6.4.2.4 for learning time.

TABLE 6.4.2.1 Accuracy results for ID-LDA-R and ID-LDA-R99

Data set name IDA-LDA-R ID-LDA-R99 Significance
Car 70.02+1.75 92.09+1.07 2>>>]
Cylinder 67.39+2.39 69.80+3.01
Dermatology 94.75+1.91 96.17£1.59
Ecoli 83.69+3.58 83.75+2.53
Flare 88.05+2.39 88.17+2.83
Glass 55.51+4.43 57.2944.16
Hepatitis 83.61+2.12 82.06+5.60
Horse 72.39+2.62 81.09+1.64 2>>1
Ironosphere 86.38+2.68 91.11+£2.22
Mushroom 94.15+0.83 98.25+0.57 2>>>1
Ocrdigits 89.19+0.92 94.59+0.49 2>>>]
Pendigits 91.99+0.94 95.52+0.44 2>>>1
Segment 82.19+2.35 90.31+1.20 2>>>1
Vote 90.85+2.35 94.85+2.17 2>1
Zoo 82.5615.62 81.41+7.25

TABLE 6.4.2.2 Node results for ID-LDA-R and ID-LDA-R99

Data set name IDA-LDA-R ID-LDA-R99 Significance
Car 1.00+0.00 12.00+2.54 2>>>1
Cylinder 10.80+3.33 16.40+8.95
Dermatology 17.00+2.11 12.80+1.48
Ecoli 17.60+4.81 20.00+2.71
Flare 5.20+3.71 5.60+3.13
Glass 25.60+3.78 26.20+4.44
Hepatitis 4.60+3.10 8.60+3.10
Horse 10.20£3.29 16.80+4.05
Ironosphere 5.40+1.84 11.601+2.67
Mushroom 17.40+3.63 19.20+4.85
Ocrdigits 87401837 59.40:2.07 1>>2
Pendigits 80.80+3.71 89.00+6.25
Segment 40.40+5.66 39.80+11.08
Vote 9.20+3.05 9.80+2.53
Zoo 12.60+2.07 11.80£1.93

102

When we look at the accuracy results, we see that there is a dramatic increase in
accuracy while going from ID-LDA-R to ID-LDA-R99. In seven data sets out of 20, there

is a significant increase in accuracy that is especially noticeable on large data sets.

On the Car data set, for which ID-LDA-R can not find any split, ID-LDA-R99 gives
a performance of 92 percent. Therefore its node size in ID-LDA-R99 is significantly more
than in ID-LDA-R. On Ocrdigits the effect is the opposite, that is, while going from ID-
LDA-R to ID-LDA-R99, the accuracy increases and the node size decreases significantly.
These results have also an effect on learning time. ID-LDA-R has significantly lower

learning time on Car because of no split.

103

TABLE 6.4.2.3 Learning time results for ID-LDA-R and ID-LDA-R99

Data set name IDA-LDA-R ID-LDA-R99 Significance
Car 612 2816 2>>1
Cylinder 34+14 7457
Dermatology 1842 1641
Ecoli 6+2 6x1
Flare 312 413
Glass 7+1 741
Hepatitis 1+1 2+1
Horse 38+16 94+40
Ironosphere 3+1 11+4
Mushroom 1846+776 2533£1533
Ocrdigits 3189+270 2288+108 1>>2
Pendigits 996186 1211491 2>1
Segment 154+£15 148+40
Vote 8+4 913
Zoo 210 240

104

664-VA'T-AI PUe ¥-VA'T-AI 10] S}nsa1 A0BIN0OY ['Z'H'9 TANOIL

)as ejeq

HOH d3H Y19 1AD H¥d

- 000

- 0009

- 0002

- 0008

- 0006

00'00l

6EN-YO1-Q1E HvyaT-aim L

faeinaoy

105

66d-vVA'T-AI put Jd-VA'T-dI 10 $}nS31 3pON C'C'4°9 HINDIA

)as ejeq

00z 10A 938 N3d

v19

430 SN ol HOH d3aH

| EENYOT-0IT

dvar-aim

az|s apoN

106

(s19s eyep [[BWS) 669-VAT-AI PUe Y-VA'T-(I 10§ s}nsar swy SuIwies| ¢°7'y'9 TANOIA

oul HOH

)as ejeq

gLy

=k:4)

d3aH Y19 v1d 004 4d3da
N , 1 , 1 L 1

- 02
- OE
- OF

- 09
- 02
- 08
- 06
- 001
- 0Li
- ocl

- OEL

664va1-QI0

dvair-am

ovi

i

awy) Bujurea

107

938

(s19s e1ep 9318Y) 66Y-VAT-AI PUB Y-VAT-AI 10§ SYNsa1 owrny Burwies | 74’9 TINOIA

N3d

)as ejeq

H30

SN

3 &

awyj Bupuiea]

664-va1-ai10

gvaram

oozy

108

6.4.3. Comparison of Different Linear Multivariate Techniques

In this section we compare three types of linear decision tree construction methods.
These are CART (Classification and regression trees), ID-LP (Multivariate decision tree
with neural perceptron) and ID-LDA (Multivariate decision tree with linear discriminant
ID-LDA-R99). The results are shown in Table 6.4.3.1, Table 6.4.3.2 and Figure 6.4.3.1 for
accuracy results, in Table 6.4.3.3, Table 6.4.3.4 and Figure 6.4.3.2 for node results and in
Table 6.4.3.5, Table 6.4.3.6, Figure 6.4.3.3, Figure 6.4.3.4 and Figure 6.4.3.5 for learning
time results. The exchange method is used for simplicity for ID-LP and ID-LDA.

109

TABLE 6.4.3.1 Accuracy results for linear decision tree methods

Data set name CART ID-LP ID-LDA Significance
Breast 94.85+1.44 96.60+0.61 95.85+0.72
Bupa 61.74+3.38 63.53+2.76 67.4242.97
Car 83.84+2.03 89.48+4.01 92.09+1.07 3>>>]
Cylinder 59.52+4.05 70.21+4.48 69.80£3.01 2>>1,3>>>]
Dermatology 80.87+4.56 85.74+7.06 96.17+1.59 3>>1
Ecoli 74.74+3.80 82.62+4.06 83.75+2.53 2>>1,3>1
Flare 81.55+3.60 88.36+2.37 88.17+2.83
Glass 53.93+4.20 54.95+7.83 57.29+4.16
Hepatitis 78.96+4.04 84.13+2.86 82.06+5.60 2>>1
Horse 76.96+3.02 82.07+3.48 81.09+1.64 2>>1
Iris 89.33:4.44 77.60+15.70 97.20+1.47 3>>1>>2
Ironosphere 86.84+4.03 87.80+2.18 91.1142.22
Monks 91.20+6.89 66.3411.87 74.31+2.26 1>>3>>>2
Mushroom 93.45+1.75 99.95+0.03 98.25+0.57 2>>3>>1
Ocrdigits 81.35+2.08 93.87+0.92 94.59+0.49 3>>>1,2>>>]
Pendigits 87.10+2.91 91.94+4.16 95.52+0.44 3>>1
Segment 88.07+1.69 79.76+11.58 90.31+1.20
Vote 90.30+3.17 94.71+1.05 94.85+2.17 2>1,3>>1
Wine 87.30+4.40 87.75£12.62 96.07+2.66 3>1
Zoo 69.9219.69 79.388.10 81.4117.25

TABLE 6.4.3.2 Accuracy comparisons

Method

CART ID-LP ID-LDA

CART
ID-LP
ID-LDA

2

110

TABLE 6.4.3.3 Node results for linear decision tree methods

Data set name CART ID-LP ID-LDA Significance
Breast 11.60+2.67 3.00+0.00 7.2040.63 3>>>2,1>>2
Bupa 43.20+3.82 4.60+1.84 8.20+1.93 1>>>3>>2
Car 29.00+3.40 7.40+0.84 12.00+2.54 1>>>2,1>>>3
Cylinder 45.00+4.90 8.40+1.90 16.40x8.95 1>>3,1>>>2
Dermatology 28.00+4.74 8.80+1.48 12.80+1.48 1>>3>2
Ecoli 34.00+5.01 10.80+2.90 20.00+2.71 [>3>>>2
Flare 33.80+6.20 3.20+2.20 5.601£3.13 1>>>3,1>>>2
Glass 42.40+4.12 10.20+4.64 26.20+4.44 1>>>3>>>2
Hepatitis 14.00+3.43 3.00+0.00 8.60+3.10 1>>>2
Horse 28.00+5.19 5.00+1.63 16.80+4.05 [>>>3>>>2
Iris 10.20+2.35 4.00+1.05 5.40+0.84 1>>3,1>>2
Ironosphere 16.40+3.78 3.80+1.03 11.60+2.67 1>>2,3>>>2
Monks 17.80+10.16 3.00+0.00 7.20+2.39 1>>>2
Mushroom 43.00+6.53 3.00+0.00 19.20+4.85 1>>3>>2
Ocrdigits 70.80+3.98 34.80+4.94 59.40+2.07 1>3>>>2
Pendigits 77.80+10.08 30.40+6.40 89.00+6.25 3>>>2,1>>>2
Segment 45.2018.97 16.60+6.65 39.80+11.08 1>>2
Vote 17.20+5.29 4.20+1.93 9.80+2.53 1>>>2
Wine 9.40+2.27 4.40+0.97 5.40+0.84 1>2
Zoo 25.20+4.94 8.80+1.75 11.80£1.93 1>>>3,1>>>2
TABLE 6.4.3.4 Node comparisons

Method CART ID-LP ID-LDA

CART 0 0

ID-LP 10

ID-LDA 0

111

TABLE 6.4.3.5 Learning time results for linear decision tree methods

Data set name CART ID-LP ID-LDA Significance
Breast 107+17 5+0 240 1>>>2>>>3
Bupa 252423 3+1 110 1>>>2>>3
Car 1178+148 152+16 28+6 1>>>2>>>3
Cylinder 4589+343 19+2 74457 1>>>2,1>>>3
Dermatology 858170 4219 16+1 1>>>2>>3
Ecoli 221425 57+15 6+1 1>>>2>>>3
Flare 10324203 9+4 413 1>>>2,1>>>3
Glass 320+25 3319 7+1 1>>>2>>>3
Hepatitis 209+47 10 241 1>>>2,1>>>3
Horse 3481+1101 14+2 94+40 1>>3>>2
Iris 31+11 310 0+0 1>>2>>>3
Ironosphere 54494 4+1 11+4 1>>>3>2
Monks 126461 3+0 110 1>>2>>>3
Mushroom 33613+2942 6281204 2533+1533 1>>>2,1>>>3
Ocrdigits 9148+713 8035+757 2288+108 2>>>3,1>>>3
Pendigits 3311£350 18340+3319 1211491 2>>>1>>>3
Segment 12124170 937+103 148140 1>2>>>3,
Vote 805+167 61 9+3 1>>>2,1>>>3
Wine 84+26 4+1 1+0 1>>>2>>3
Zoo 453161 10+2 240 [>>>2>>>3

TABLE 6.4.3.6 Learning time comparisons

Method CART ID-LP ID-LDA
CART 1 0
ID-LP 18 2

ID-LDA 20 13

112

If we compare the three linear methods in terms of accuracy, node size and learning

time, we see that:

e Accuracy: ID-LP=ID-LDA>CART.

e Node Size: CART>ID-LDA>ID-LP.

e Learning Time: CART >ID-LP>ID-LDA.

In terms of accuracy, CART outperforms ID-LP in those data sets where ID-LP does
not always converge. On the Monks data set, CART outperforms ID-LP and ID-LDA quite
significantly.

113

00Z N I0OA 938

N3d

i i

SPOY)SUI 931} UOISIOIP IBIUL] 10J SYNSI AOBINOOY ['€°H'9 TUNDIA

jas ejeq
¥id 003 M¥3d 1TAD dW¥3d dng 3449

400 SN NOW Odl Il HOH d3H v

1
v

- 0009

- 0002

feinaoy

- 0008

- 0006

0o'col

Livom B

d1-Qi3

Ya1-aim

114

00Z N LOA 938 N3d

SPOSUI 991} UOISIOAP JBUI[I0J SHNSAI SPON Z°€ #'9 TUNDIA

HO0 SN NOW Ol

jas ejeq
141 HOH daH Vv19 W14 0303 H3AG A3 HvDd dnd 344

_ _ : i

L0
Lol

- 02

- 09

- 04

- 06

ool

Yai-aim

d1-aia

iyvom

az|g apoN

115

(s30s BIEp [[EWS) SPOYIOW UOISIOSP JBAUI] 10] S)nsal awm Suruies| €' €49 TUNOLI

)as ejeq
00z NI NOW i d3H V19 003 dng 348
. . -0

- 05
- 00l
- 051
- 002
- 052
- 00
- 05E
- a0y
- 0
- 00
055

varam d1-aio Leyom |

awy| Hupues

116

10A

(s19s BJEp 9ZIS WNIPOUI) SPOYISUW UOISIOSP JBIUT] J0J S)NSAI sum Sures | €49 TINOIA

Jas e)eq

938 odl 43a

H¥3

- 0001

- 80k

Va1 d1-aia 1HyOm

awy | Gupuiean

117

N3d

(s19s ejep 981e[) SPOYIOW UOISIOSP IBIUI] I0] S)NSa1 o) Sutured| ¢ ¢ 4'9 TYANDILA

400

)as ejeq
SN

HOH

1A0

.

- 00052

- 0000E

va-aim

d1-aig

lyvyOm

awy) Bujwea

118

7. CONCLUSIONS

In this study, we have detailed and compared unmivariate, linear and nonlinear
decision tree methods using a set of simulations on twenty standard data sets. For
univariate decision tree methods, we have used the ID3 algorithm and for multivariate
decision tree methods, we have used the CART algorithm. For linear and nonlinear
methods, we have used neural networks at each decision node. We also propose to use the
Linear Discriminant Analysis (LDA) algorithm in constructing linear multivariate decision

trees.

The comparison results of these four decision tree methods can be seen in Figures
7.1,72,7.3,7.4,7.5,7.6 and 7.7. The first four figures compare the four methods in terms
of accuracy, tree size and learning time. Last three figures compare the four methods in

terms of two of these criteria.

Results for ID3 and CART can be grouped as follows:

e There is not a significant difference between different impurity measures in terms of
accuracy, tree size and learning time.

e Post-pruning is better than pre-pruning in terms of tree size; they are same in terms of
accuracy and learning time. Also post-pruning sometimes finds significantly better
trees than pre-pruning, where pre-pruning stops tree creation process earlier.

e Feature selection does not always improve performance of CART, but increases

learning time significantly.

Results for neural trees can be grouped as follows:

o There is not a significant difference between the F-test and the t-tests in terms of
accuracy and tree size. But t-test has high learning time because of 30-fold
crossvalidation.

o Among the class separation heuristics, the exchange method is better than the selection

method in terms of accuracy and tree size but is worse in terms of learning time.

119

There is low difference in terms of tree size and accuracy between neural trees (Linear,
Nonlinear and Hybrid).
Learning time results of neural trees is in the following order: Hybrid > Nonlinear >

Linear.

Results for LDA trees can be grouped as follows:
Using PCA with low percentage of explained variance decreases performance in
accuracy and tree size.
Using PCA when it is not required decreases performance in accuracy, tree size and

learning time.

Results for univariate and multivariate methods can be ordered as follows:
Accuracy: ID-LP =ID-LDA > CART ?=1D3.
Tree Size: ID3 > CART > ID-LDA > ID-LP.
Learning Time: CART > ID-LP > ID-LDA > ID3.

We can conclude by the following statements:

If the features are not correlated, we should use univariate decision trees (ID3)
If the features are correlated, we should use multivariate decision trees.
If pre-pruning is to be applied, we should not use nonlinear multivariate decision trees.
If a multivariate method is to be used, do not use CART, instead:

e Iftime is important, use ID-LDA.

e If space is important, use ID-LP.

e ID-LDA has the same accuracy as ID-LP.

120

oA 938

SpOYjawW 931} TOISIOAP JO s)nsal Aoemnooe Jo GOmEQEOU 'L INDOIA

H30

SN NOW Oul

g

)as ejeq
HOH

1]

d3H V18 V14

m
I

o
i

003 Y34 TAD uYO

- 0009

- 0002

- 0008

- 00°06

Yai-aim

1yvoa

EqQim

0o'ool

Kawinaay

121

00Z WM 10A 938

SpOYJauI 921) UOISIOAP JO s}nsal apou Jo uosuedwio)) 7'/ MUNOLI

j8s eye(

N3d HO0 SN NOW OoHl I

HOH d3aH V19 V14 093 830 A0 dvd dng 344

g 7 [7 E B ? 3 v g e w g 0
N L] = ! TN T T LIl
1 W i] i] . B 8)
i __ i i __ flug Wi ML o
! ! i . m |
[_« %
I i
oe
_ _ _ - _ - OF
| 0o
m | - 02
|
ww. - 08
w B
ool
| val-qim d1-gim luvon cQIm

az)s apoy

122

007

NI

(s19s ejEp [[RWIS) SPOYISW 931) UOISIOAP JO synsal aurr) Suruwres] yo vosuedwo) €'/ MINOLI

10A

NOW

jJas ejeq

ol 1l

L

d3aH

Y190

W

024

d3d

dng

349

0
- 001
- 002
- 00E
- 00F
- 005

- 002

- 00LL

var-alg

d1-aim

- lHvon

eqm

oozl

aw)) Bujuiea

123

938

(s10s eyRp 95I1]) SPOYIdW 991} UOISIOAP JO SYNsax dwil) Furures] Jo uosuedwo) 4/ TINDIA

Nad

400

jJas ejeq

HOH

¥4 TAD

uvo

}

.} _1D

L]

va1-ale

d1-aim

J¥v0@

EqQu

awy| Bujuiea

124

9ZIs 991} puB AJBINDOE JO SULIS) UT SPOYISW 331} UOISIop Jo uosuedwo)) ¢/ TINDLI

Aaeinaay
0006 oo'es 0008 o0'es 0o00L 00's9 00°09

00's5

00'0s

000

- 0ool

- 0002

- 00°'0E

- 000y

- 0005

- 0009

- 0004

- 0008

|varax diai- Livow care

0006

az1§ apoN

125

owy) Sururea] pue AovINOOE JO SUWIIS) UL SPOYJSUI 391} UOISIOAP Jo uostredwo)) 9°/ AUNOI

foeinoay

0

‘ot 00s6 ~ 00Cs 0008 009 0ooZ 00ss 0009 00'ss as
.0 L 3 t * 1 . .x i - L 1 1 L

x ¢ * x X -
XU.‘ &= - & *
*
M x
x = - * ﬁ ol
X LN -
x
* . .. * 00!
ae 2 -
+
]
B .
x . w® - 0001
x
s
]
. - 00001
0ooaot

Va1l d1-0i= Livo = €01+ |

awy| Bujurea

126

owr) Suruies] pue 9zIs 991} JO SULIS) UT SPOYISUI 931} UOISIOAP Jo wosuedwio) /7 TANDIA

azZ|§ 9poN

0o'o8

0004

00'0s

0005 Dooy

o

L 2

- 0l

- 001

- 00001

0c0ooot

|varai arai- Luvow care|

auirj Bujuieaq

127

APPENDIX A

Brief description of data sets wused in thesis is given below: (See
http://www.ics.uci.edu/~mlearn/MLRepository.html)

Breast: This data set was created by Dr. William H. Wolberg (physician) University of
Wisconsin Hospitals USA. The aim is to detect the type of breast cancer (malignant or
benign) from 9 different attributes.

Bupa: This data set was created by BUPA Medical Research Ltd. Five Attributes of the
data set are blood tests results, by which users want to find out liver disorders induced by

alcohol consumption.

Car: This data set was created by Marko Bohanec. Car Evaluation Database was derived
from a simple hierarchical decision model originally developed for the demonstration of
DEX (M. Bohanec, V. Rajkovic: Expert system for decision making. Sistemica 1(1), pp.
145-157, 1990.)

Cylinder: This data set was created by Bob Evans RR Donnelley & Sons Co. 40 attributes

are used to determine the existence of cylinder bands.

Dermatology: This data set was created by Nilsen Ilter from Gazi University and H Altan
Giivenir from Bilkent University. The aim is to determine the type of Eryhemato-

Squamous Disease from clinical and histopathological attributes.

Ecoli: This data set was created by Kenta Nakio from Institue of Molecular and Cellular
Biology in Osaka University. The aim is to localize the site of the protein.

128

Flare: This data set was created by Gary Bradshaw. The database contains 3 potential
classes, one for the number of times a certain type of solar flare occured in a 24 hour

period. Each instance represents captured features for 1 active region on the sun.

Glass: This data set was created by B. German from Central Research Establishment. The
aim is to find out type of the glass.

Hepatitis: The task for this domain is to predict from test results whether a patient will live
or die from hepatitis.

Horse: This data set was created by Mary McLeish and Matt Cecile. The aim of this data

set is to determine whether the lesion is surgical.

Iris: This data set was created by R. A. Fisher. This is perhaps the best known database to
be found in the pattern recognition literature. Fisher's paper is a classic in the field and is

referenced frequently to this day. The aim is to decide the class of the iris plant.

Ironosphere: This data set was created by Vince Sigillito. The aim is to find out the type
of the radar returns. "Good" radar returns are those showing evidence of some type of
structure in the ionosphere. "Bad" returns are those that do not; their signals pass through

the ionosphere.

Monks: This data set was created by Sebastian Thrun from Carnegie Mellon University.
The MONK's problem were the basis of a first international comparison of learning
algorithms. The result of this comparison is summarised in "The MONK's Problems - A

Performance Comparison of Different Learning algorithms".

129

Mushroom: Mushroom records were drawn from The Audubon Society Field Guide to
North American Mushrooms. This data set includes descriptions of hypothetical samples
corresponding to 23 species of gilled mushrooms in the Agaricus and Lepiota Family (pp.
500-525). Each species is identified as edible or poisonous.

Ocrdigits: This data set was created by E. Alpaydin and C. Kaynak from Bogazigi
University. The aim is to recognize optically of ten different digits.

Pendigits: This data set was created by E. Alpaydin and F. Alimoglu from Bogazigi

University. The aim is to recognize pen written digits.

Segment: This data set was created by Vision Groups from University of Massachusetts.
For this data set the task is to learn to segment an image into seven classes: sky, cement,
window, brick, grass, foliage and path. The data set was formed from seven images of
buildings from the University of Massachusetts campus that were segmented by hand to

create the class labels.

Vote: This data set was drawn from Congressional Quarterly Almanac. This data set
includes votes for each of the U.S. House of Representatives Congressmen on the 16 key

votes identified by the CQA. The task is to determine the party of the senators voted.

Wine: This data set was formed by Forina, M. et al, PARVUS of Institute of
Pharmaceutical and Food Analysis and Technologies. These data are the results of a
chemical analysis of wines grown in the same region in Italy but derived from three
different cultivars. The analysis determined the quantities of 13 constituents found in each
of the three types of wines.

130

Zoo: This data set was created by Richard Forsyth. The animal in zoo are divided into
seven groups and the task is to find from 17 different attributes of the animals the type of

the animal.

131

APPENDIX B

Statistical tests we have used in this thesis are the F test and the t test.

Steps for the 5x2 F tests are as follows 0:

1. Split the original data randomly into two equal-sized parts. Call the first one training
set and the other one, the test set.

2. Run the two algorithms on the training set and test on the test set.

3. For each algorithm divide the number of correct classifications to the size of the test
set.

4. Record also other measures such as the number of nodes in the tree and the average
time spent in learning,

5. Exchange train and test sets, do steps 2, 3 and 4 again.

In this test, p,w is the difference between the error rates of the two methods on fold
j=1,2 of replication i = 1, ..., 5. The average on replication i is p; = (p;” + p{?) / 2 and
the variance is s = (- p)? + @i(z)_ p)’. The following statistic is approximately F
distributed with ten and five degrees of freedom:

52 .
> X
F=E =15 B.1)
2Ys?
~

According to the value of f; the hypothesis that they have the same error rate is

rejected or accepted according to a specified confidence level.

Steps for the 30 fold cross-validation t test are 0:

132

e Partition the available data into 30 disjoint subsets 77, T>, ..., T3p of equal size.
o For each subset T} use it for test set and the remaining data for training set.
e Train both algorithms with the training set and test them on the test set. Call the

difference between error rates of the two methods on the test set at iteration i, J;. Let
& denote the average of §;.

e Find the estimate of the standard deviation. The following statistic is approximately t-
distributed with 29 degrees of freedom.

\/ FE-D 2 Z(;- (B.2)

e According to the value of ¢, the hypothesis that they have the same error rate is

accepted or rejected according to a specified confidence level.

133

REFERENCES

Alpaydm, E., “Combined 5x2 cv F Test for Comparing Supervised Classification Learning
Algorithms”, Neural Computation, Vol. 11, pp.1975-1982, 1999.

Bishop, C., Neural Networks for Pattern Recognition, Oxford University Press, 1996.

Breiman, L., J. H. Friedman, R. A. Olshen and C. J. Stone, Classification and Regression
Trees, Wadsworth: Belmont, CA, 1984.

Breslow, L. A. and D. W. Aha, Simplifying Decision Trees: A Survey, NCARAI Technical
Report No. AIC-96-014, 1997.

Brodley, C. E. and P. E. Utgoff, “Multivariate Decision Trees”, Machine Learning Vol. 19,
pp- 45-77, 1995.

Dietterich, T., M. Kearns and Y. Mansour, “Applying the weak learning framework to
understand and improve C4.5”, Proceedings of the Thirteenth International Conference on
Machine Learning, Bari, Italy: Morgan Kaufmann, 1996.

Duda, R. O. and P. E. Hart, Pattern Classification and Scene Analysis, Wiley-Interscience
Publication, 1973.

Esposito, F., D. Malerba and G. Semeraro, “Decision tree pruning as a search in the state
space”, Proceedings of the European Conference on Machine Learning, Vienna, Austria:

Springer-Verlag, pp.165-184, 1993.

Fayyad U. M. and K. B. Irani, “The attribute selection problem in decision tree
generation”, In Proceedings of AAAI-92, pp. 104-110, 1992.

134

Guo, H. and S. B. Gelfond, “Classification Trees with Neural Network Feature
Extraction,” IEEE Transactions on Neural Networks, Vol. 3, pp. 923-933, 1992.

Hampson, S. E. and D. J. Volper, “Linear Function neurons: Structure and Training”,
Biological Cybernetics, Vol. 53, pp. 203-210, 1986.

Holte, R. C., “Very simple classification rules perform well on most commonly used data
sets”, Machine Learning, Vol. 11, pp. 63-91, 1993.

Mathues, C. J. and L. A. Rendell, “Constructive induction on decision trees”, In IJCAI-89,
pp. 645-650, 1989.

Merz, C. J. and P. M. Murphy, UCI Repository of Machine Learning Databases, 1998,
http://www.ics.uci.edu/~mlearn/MLRepository.html.

Mingers, J., “An empirical comparison of selection measures for decision tree induction”,
Machine Learning, Vol. 3, pp. 319-342, 1989.

Mitchell, T., Machine Learning, McGraw-Hill, 1996.

Pagallo G. and D. Haussler, “Boolean feature discovery in empirical learning”, Machine
Learning, pp. 71-99, 1990.

Rencher, A. C., Methods of multivariate analysis, Wiley Series, 1995.

Quinlan, J. R., “Induction of decision trees”, Machine Learning, Vol. 1, pp. 81-106, 1986.

Quinlan, J. R., “Unknown attribute values in induction”, Proceedings of the Sixth
International Workshop on Machine Learning pp. 164-168, 1989.

135

Quinlan, J. R., “C4.5: Programs for machine learning”, San Mateo, CA: Morgan
Kaufmann, 1993.

Utgoff, P. E. and C. E. Brodley. “Linear Machine decision trees”, (COINS Technical
Report 91-10), Amberst, MA: University of Massachusetts, Department of Computer and

Information Science, 1991.

136

REFERENCES NOT CITED

Bennett, K. P. and O. L. Mangasarian, “Robust linear programming discrimination of

two linearly inseparable sets”, Optimization Methods and Sofiware, Vol. 1, pp. 23-24,
1992.

Murthy, K. S., S. Kasif and S. Salzberg, “A system for induction of oblique decision
trees”, Journal of Artificial Intelligence Research, Vol. 2, pp. 1-32, 1994.

Oliver, J. J., “Decision Graphs — An Extension of Decision Trees”, Proceedings of

the Fourth International Workshop on Artificial Intelligence and Statistics, pp. 343-350,
1993.

€. YOKSEXOGRETIM KUROLY
DOKOMARTASYON MERKEZ)

