AN EXTENDED SEMANTIC ANALYZER FOR ADA’95

by
Mehmet Ozgiir Karahan
BS. in C.M.P.E., Bogazi¢i University, 1998

e yOKSIKOERETIM mzjxw
DOKTMANTASY OR &1 I etxiAl

Submitted to the Institute for Graduate Studies in
Science and Engineering in partial fulfillment of
the requirements for the degree of
Master of Science
in

Computer Engineering

Bogazi¢i University

2001

AN EXTENDED SEMANTIC ANALYZER FOR ADA’95

APPROVED BY:

Assoc. Prof. Can Ozturan
(Thesis Supervisor)

Assoc. Prof. Levent Akin .

Assoc. Prof. Zeki Bayram @‘M (T WU

DATE OF APPROVAL b TF+ oo

iii

ACKNOWLEDGEMENTS

1 would like to express my appreciation to Assoc. Prof. Can Ozturan for his helpful

advice and guidance throughout this study.

I would also like to thank Assoc. Prof. Zeki Bayram for his comments and

encouragement.

v

ABSTRACT

AN EXTENDED SEMANTIC ANALYZER FOR ADA’95

An extended semantic rule is a rule which we expect a program in a particular
language to obey in addition to the standard semantic rules enforced by the compiler for
the language. Such extended semantic rules may be necessary to ensure that software has
certain software quality attributes. In this work, an Extended Semantic Rule Set (ESRS) that
contains certain semantic restrictions for Ada’95 programs is defined and the effectiveness
of that rule set to increase software quality attributes of Ada codes is examined. The work
done in this thesis also describes the design and implementation of a software tool, a
SemantiC Analyzer (SCA) that checks the compliance of a given Ada code to the Semantic
Rule Set. The effectiveness of the Semantic Analyzer is discussed on sample input and its

output is analyzed for a large set of previously compiled Ada code.

OZET

ADA’95 ICIN GENISLETIiLMIiS ANLAM ANALIZORU

Genisletilmis anlam kural, bir yazihm dilindeki standart anlam kurallarindan farkli
olarak, uygulandig1 yazilimin kalitesini arttirmak i¢in tasarlanmis bir anlam kurahdir. Bu
tezde Ada yazilim dili i¢in bir anlam kurallan kiimesi tasarlanmis ve bu kurallarin yazilim
kalitesi tizerindeki etkinligi tartisgtimistir. Tezde ayrica, Ada yazilim kodlarinin bu anlam
kurallarina uygunlugunu tesbit edebilen bir yazilim aracinin gelistirilmesi anlatiimistir. Bu
yazilim aracinin etkinligi bir 6rnek tizerinde tartisilmig, ayrica genis bir Ada yazilimi kodu

tizerinde denenmistir.

Vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ...ttt e iti
ABSTRACT ...ttt ettt e s bt e e shes e ae e s ba e eab e e s aa s e e eas e e s e ra e e brbeenrae s v
OZET oottt s st b ettt bbb et v
LIST OF FIGURES ...ttt ettt et s e e eneeens viii
LIST OF SYMBOLS/ ABBREVIATIONS. ..o X
1. MOTIVATION ..ottt sttt sttt e b sse s st as s n e ense s e sansnnenns 1
1.1. Syntax and SEMANTICScoeerirrerieeeirieieiieteieteeereee et ss s eae st 2
1.2, Problem StatemEntcoeeiieriiieiieeiet ettt et 3
1.3, Proposed SOIION ..c..ovieiriiiiiiiicceceee e 3
1.4, Related WOTKeveeieiieceee ettt 3
1.5, CONUTIDULIONS ..o esees e es s es e s eesseeess e ee e s neeas 5
2. SEMANTIC RULE SET ...ooiioiieeieeieeeeee ettt 7
2.1. Extended Semantic Rule Set (ESRS)......oooiii e, 8

3. IMPLEMENTATION OF THE SEMANTIC CHECKER.........ccccoiiiiiii 15
3.1, THE SCANMET....uoiiiiiiieeeieeeeeeiteee ettt e e e ettt ee s eatee e s inae e s s e e e e mnee s e e eaansaeeeennaeeenenns 15
3.2, THE PaISET.....uiiiiiieiie ettt ettt e st ae e saa e e e e e e aa e e e rrae e e aes 16
3.3. The Semantics Rule Checker Functionsccoocoeiiiiiiiee 19
33,10 RUIE T ot s 20

332, RUIE 2 oo e 21

3,33, RUIE 3o 22

334, RUIE D ..ot e e s 23

33,5, RUIE 5 et 24

3.3.60. RUIE 6ot 24

33,7, RUIE T ettt 25

3.3.8. RUIE 8 et e 26

3.3.9. RUIE D oo 26

33,10, RUIE TO et e 27

33000 RUIE 11 oot s 27

B30 2. RULE T et e e ie e e e e e e e e e e tbeaeer e e e e irnaeaeeanns 28

vii

3313, RUIE 13 ettt s s 29
3304, RUIE 14 oottt e 29
3315, RUIE 15 ettt e se s sae s s st ssasne s s sa s nn e on 30
3316, RUIE 16ttt 30
3.3.07. RUIE 17 oottt s s e 31
3318, RUIE 18 ettt 31
3.3.19. RUIE 19 ottt et 32
3.3.20. RUIE 20 ..eeieeeeeeeee ettt s s 32
3321, RUIE 2T oottt st s s s 32

4. OUTPUT ANALYSIS OF THE SEMANTIC ANALYZERcccoceiniiiiiiiiicieinnene 33
4.1, A Sample RUN c..ooeeiie ettt st s 33
4.2. ATC Software Analysis by SCA. ..o 34
4.3. Resource Allocation and Time ANalysiS.....coccveerueeerierirerieerierrentreeieeeeecreree s 37
4.3.1. Minimum Memory ReqUir€mentcceoeceiriiiiiiiiniiiiiicecceic e 37

4.4, Multi-Threaded SCAoo ettt e 43

5. CONCLUSION....ccoviiecienerceccveeenees . A Acocncnnene: 45
APPENDIX A: THE REGULAR EXPRESSION SET OF LEX INPUT FILE..................... 46
APPENDIX B: A SAMPLE FROM PARSER DESCRIPTION FILE ..o 47
APPENDIX C: EXAMPLE INPUT FOR SCA ..ot 49
APPENDIX D: A SAMPLE OUTPUT FROM SCAoooiiiiieiirieie e 53
REFERENCES ...ttt ettt s s s 55

T.C. YUKSEXOGRETIM KURULY

TASYON

Figure 3.1.

Figure 3.2.

Figure 3.3.

Figure 3.4.

Figure 3.5.

Figure 3.6.

Figure 3.7.

Figure 3. 8.

Figure 3. 9.

Figure 3.10.

Figure 3.11.

Figure 3.12.

Figure 3.13.

Figure 3.14.

Figure 3.15.

viii

LIST OF FIGURES

SCA component and process diagramcoevevieeininiiiiennneninnnne. 15
Syntax tree node type declaration ... 17
A CFG grammar rule representation for Yacc parser generator 18
‘If” statement rule for Parserccoooiiiiiiiiiii 19
The ‘type’ and ‘subtype’ declaration rules for parser 21

The ‘subtype’ declarations with and without range constraint 21
The nodes sequence up to the goal symbol ... 21
The ‘value’ and ‘comp_assoc’ node structures....... oo N . W 22
‘Others’ keyword usage in aggregate initializations............................. 22
The node structure of aggregate initialization and ‘others’ usage............... 23
The short circuit form and grammar link with expression...............cc....... 23
The expression and negation linkage on parser definition rules................ 25

The ‘case’ statement and ‘others’ keyword linkage in Ada’95 grammar......26

The ‘exit’ statement in Ada’95 grammar..............coovieiiiiiiiiniinnn. 26

Grammar definition of subprogram body in Ada’95....................oo 27

Figure 3.16.

Figure 3.17.

Figure 3.18.

Figure 3.19.

Figure 3.20.

Figure 3.21.

Figure 3.22.

Figure 3.23.

Figure 4.1.

Figure 4.2.

Figure 4.3.

Figure 4.4.

Figure 4.5.

Figure 4.6.

Figure 4.7.

Figure 4.8.

X

The ‘goto’ statementcooiiiiiiiiiiiiiiii 27
The nested control structure node definitions..........ccoeeeveeniieniniininnn. 28
The parameter modes in Ada’95.......oooiiiiiiii e 28
The “Subprog_spec’ Node..........ccoiiiiiiiiiiii e 29
The with and use statements grammar rules in Ada’95 31

Raise statement and itS rammarcc.ooeoieeeieiiiiiniiiiireieeiieeenss 31

Exception declaration rule and its grammarcc.oooeiiiiiiiieninnn..n. 32

‘Generic’ declarations in SUDProgramsccoevieieiiniirinneeineiennns. 32
Error distribution per rule RN SRR Y. 34
Input f11€ S1ZES oo o 38
Generated token number from input file ... e 38
Theoretical minimum and real syntax tree $1Z€ocovieieiiiviniennen.n. 41
The ratio of syntax tree size and input code Sizec.oooiiiiiint oinnen. 42
The ratio of node and token sizescooiiiiiiiiiinn.an, e e 42
Execution time of SCA ondifferent OS ..., 43
Execution time of multi-threaded SCA on different OS 44

LIST OF SYMBOLS/ ABBREVIATIONS

Fgize File size in bytes

Kb Kilo bytes

Nk Number of nodes at level k
ATC Air Traftic Control

CFG Context Free Grammar
CpPU Central Processing Unit
DOS Disk Operating System
ESRS Extended Semantic Rule Set
KLOC Kilo Lines of Code

OS Operating System

POSIX Portable Operating System Interface

SCA : SemantiC Analyzer

1. MOTIVATION

Ada programming language is proven to be an effective software tool [1] for various
systems: Safety systems (such as air traffic control), security systems (to protect digital
information) or financial systems (cash dispensers). As the complexity of these systems
grows, so do the demands for improved techniques for their production. For critical
systems, there is a need to ensure that they have certain properties, and this can only be
achieved by the analysis of the software with static analysis and dynamic testing.
Unfortunately, dynamic analysis of software, which is done by executing the software for
every possible step, is prohibitively expensive. It is necessary to analyze every instruction

in the program during dynamic analysis to ensure the integrity of the data or control flow.

Static analysis and dynamic testing are two complementary ways of comparing an
implementation with its specification. Dynamic testing allows the most direct comparison
between implementation and operational requirements. Testing every possible execution
sequence of instructions exhaustively may not be possible, and testing in general cannot
show the absence of errors. In contrast, the program source size rather than the number of
its possible execution sequences determines the cost of static analysis. In principle static
analysis can be complete in showing absence of errors of some classes depending on the
specification of two main elements: A derived model of the source text, and a rule set that

defines the errors during inspection of the derived model.

When the software life-cycle is considered, early detection of errors by static analysis
in the Ada software codes decreases the amount of time. needed to produce the software
system, by decreasing the cost of error repairs. The success of the software tool, which
computerizes this process, depends on the design of the rule set and the derived model of

the software code.

1.1. Syntax and Semantics

Error detection by static analysis starts with a code inspection process, in which the

syntax and semantic of the language is analyzed. A modern compiler performs that
analysis in order to synthesize the machine-language equivalent of the source program.
The steps taken by a compiler for this goal are scanning, parsing, semantic routines check,
optimizing and machine code generation. In the first step, compiler views the source
program as a stream of characters. It begins the analysis of the program by dividing the
stream of characters up into ‘tokens’ (identifiers, integers, reserved words, delimiters,
operators, etc.). Given a precise description of a programming language grammar using a
‘context-free grammar’ (CFG), the compiler uses a parser to read and group tokens into
meaningful units as described in the CFG. In the process, the parser identifies, and may
correct, syntax errors. As portions of the syntactic structure of the source program are
recognized, the parser will call semantic routines to generate target code, or the parser will
build a syntax tree which will be input to the semantic routines once the tree is constructed

(the source program has been completely parsed).

The basis of every language is the language definition, which is composed of syntax
and semantics. The ‘syntax’ of a language defines what sequences of symbols are legal and
it is related with the spelling rules for the basic symbols (keywords, special symbols,
identifiers, etc.). A common property of the rules defining syntax is that they do not affect

the meaning of the program being represented.

The ‘semantics’ of a language describes the meaning of a program in terms of the
basic concepts of the language. Static semantic rules are a set of restrictions that determine
which syntactically legal programs are actually considered to be valid. For example, it
might state that all variables must be declared before being used, the operands must be
type-compatible, and so on. Dynamic semantics specifies what a program actually does or
what it computes. Clearly this involves a specification of the meaning of data types (basic
and composite), the operations that can be performed on them, the notion of type

equivalence, scoping, when and how variables are bound, and so forth.
1.2. Problem Statement

For specific kinds of application areas, it is sometimes necessary to have a stricter set

of rules that programs need to conform to than those enforced by the Ada language. Safety-
critical software, where the lives of people might depend on the correct functioning of the
software, is an example of such an application area. Extended semantic rules can result in
less error-prone and hence more reliable programs. Furthermore, just as the standard
semantic rules are enforced automatically by Ada compilers, it would be better to ensure
conformity of Ada programs to extended semantic restrictions automatically, without the

need for manual code checking.

1.3. Proposed Solution

An extended rule set is defined and justified for safety critical applications written in
the Ada’95 language. An extended semantic analyzer is also implemented that checks

conformity of Ada programs to the extended set of rules.

1.4. Related Work

‘Static analysis’, is the function of a static analyzer to determine the behaviors of a
program that are not intended by the programmer. Allen and Cocke [2] were among the
first to study the problem in general and Gary Kildall [3] was the first to apply lattice
theory to static analysis, bringing a mathematical basis to static analysis. But it was the
ground breaking work of Cousot [4] and that finally provided a solid theoretical foundation
for static analysis, which is called ‘abstract interpretation’. Abstract interpretation is based
on the idea of viewing the analysis of a program as an abstraction of the program's
behavior. The generality of this view allows abstract interpretation to abstract the concept
of analysis altogether, providing a single framework that encompasses all the standard

analysis techniques.

The foundation on which abstract interpretation is built is a formal understanding of
how a program should behave. This discipline of formality benefits from the programming
language implementation and in general, as it precisely defines what every program should
do. This, in turn, makes it possible to prove that an analysis is correct. As analyzers and the

program properties they seek to determine become subtler and more complex to compute,

this proof of correctness will become increasingly important. Fortunately, the framework
of abstract interpretation comes with a guarantee of correctness; only the individual

analyses need to be proved.

Schaeffer [5] statically analyzed the Ada programs to propose a safer exception
handling mechanism. Bacon and Sweeney [6] investigate the ability of static analysis to
improve C++ programs by resol\}ing virtual function calls, thereby reducing compiled code
size and reducing program complexity so as to improve both human and automated
program understanding and analysis. Sundaresan [7] analyze same problem for Java
language. Steindl [8] implemented a static semantic analyzer for object-oriented language
Oberon to implement program slicing methodology. Baer [9] is designed a semantic
analyzer to resolve the layer structure of C programs to enforce a layered structure during
forward engineering and the extraction of layered structure from pre-existing C language

source.

Researchers and commercial groups implemented various automatic verification
tools for coding convention compatibility of program sources based on static analysis. For
C the ‘CodeCheck’ tool is implemented and uses a set of rules that focuses on the
portability of C programs to other hardware platforms. This tool can verify the portability
of a C source code between cross platforms like DOS, Unix, Microsoft Windows, and
other 64-bit machines. Another commercial product for C++ is ‘CodeFix’ and it does same
kind of analysis on C++ grammar and syntax for various platforms. For Java language, a
tool called ‘Hint’, which is implemented by Knizhnik [10] to verify the semantic

verification of Java source for a set of Java coding convention rules.

Several researchers analyzed automatic generation of code scanners for various
programming languages. Horspool and Levy [11] implemented ‘Mkscan’ and Mossenbock
[12] designed ‘Alex’ to generate automatic scanners. Grosch’s [13] ‘Rex” and Nicol’s [14]
‘Flex’ tools are other examples for automatic scanner generators. Parsing process can also
be automatized by a parser generator depending on a CFG description of the programming
language grammar. One example to the parser generator for CFG grammar is implemented

by Bunke, and Haller [15]. Another example is ‘Bison’, which is implemented by

Donnelly, and Stallman [16], which generates a parser in C language. A functional parser

generator is implemented by Uddeborg [17].

1.5. Contributions

In this thesis, a software tool is designed and implemented for Ada programming
language, which is used to increase the software quality of Ada software systems. There is
not any Ada Semantic analyzer in software world, which is based on the static semantic
analysis of code. This is due to the fact that there is not any standardized version of
semantic restrictions to vast semantic space of Ada language and there are lots of different

compiler versions of Ada language.

The Semantic Rule Set of SCA contains semantic restrictions for Ada grammar and it
is designed to decrease the error generation risk during program execution. Even this rule-
set is not checked by a computerized tool, it can be a guideline to Ada programmers during
coding. So ESRS includes software rule items that can help to programmers and

functionality testers to detect and identify certain resource of errors.

The methodology used in SCA to identify the semantics of Ada can be used for other
software languages such as C, C++ or Java. These languages are very popular among
programmers and they are also used in different application areas. Large project codes,
which are implemented with these languages, can be investigated with tools like SCA. It is
also possible to use these languages with Ada and the program interfaces between different
languages can be checked with SCA like tools in order to decrease the production time and

cost.

The SCA rule set and its implementation is extendable to cover further semantic rule
descriptions and needs. Depending on the requirements and circumstances, new rules can
be added or excluded from the set to increase the elasticity of the tool. This might be
possible especially when compiler vendors implement or apply new technologies to Ada

compilers and previous application software might not be possible to be updated.

The SCA tool generated in this thesis can be used for Air Traffic Control (ATC)
applications because most of the semantic restriction set targets the problems, which are
usually detected on ATC applications. Ada is very popular among ATC software area and

this tool increases the validity and safety of ATC programs.

KURULU
T.C. YOKSEKOCRETIM Sy

2. SEMANTIC RULE SET

In this section, semantics rule set is described. The rules are designed to aim one or
more particular software quality targets among five main categories, which are portability,

readability, maintainability, safety and execution efficiency [18,19].

Portability is the ability of software to run on a new platform and/or compile with a
new compiler. Dahlstrand [20] describes portability as "having the same meaning of
software to compiler and hardware". Mooney [21] interprets portability as a measurable
quantity and expresses it as the percentage of unchanged codes during porting of an

application source code.

Readability [22,23] is the ability of software to be easily understood in functional
behavior for an external user. Here external user means any user who has to do some new

development with the code and who has no clear idea about the usage of the code.

Maintainability is the ability of software to be evolved easily in all circumstances
such as additional functionality necessities and removal of some residual errors. Cheaito
[24] defined maintainability as a measure of the ease with which a software system can be

maintained.

Safety [25] is the ultimate goal for most of the software systems. First aim is having
no errors during the software is run. For critical systems like ATC, this needs a further
step, if an error occurs, system should be left in a non-life threatening status. Ada has
additional facilities to control the exceptional cases and strong memory space disposal
operations. Program coding habits sometimes become potential error source that threatens
the safety or reliability of software system. The rules will prohibit certain user coding

schemes that may be potentially dangerous.

Execution efficiency is another important criteria for software programs. Efficiency

can be restored in a program in a way such that the desired functionality can be achieved

by optimum usage of system resources and processors.

2.1. Extended Semantic Rule Set (ESRS)

Rule 1: Usage of predefined types integer and float should be avoided. Definitions of

floating point, fixed point or integer types should include the range constraint.

Ada language facilitates the usage of predefined types float and integer. Redefinition
of the predefined types removes the machine or platform dependency on the representation
of these numbers. For example the float type is defined by several attributes: The number
of decimal digits in the mantissa, largest exponent value, the smallest positive value, the
difference between number ‘1’ and the next number above it (epsilon). These attributes
should be redefined if the target compilation environment has a different byte size or order.
Redefinition of the predefined types is possible in Ada and done by assigning new values
to these attributes depending on the target hardware. Redefinition of the predefined type
increases safety and the portability of the software system. The semantic analyzer SCA
prints a warning message every time the predefined types are used in the code except in the

redefinition statements of these types.

Rule 2: Named association should be preferred to positional association.

In the Ada function and procedure (subprogram) calls, named association usage
increases the readability of the code for argument checking. Named association also
increases safety by decreasing the risk of wrong argument and value usage because all
argument names are listed before its value is entered. This kind of subprogram calling style
informs the programmer about the argument usage and increases readability. All arguments
in the subprogram calls without an associated argument name will be reported by the SCA

to programmer.

Rule 3: Use explicit intervals instead of keyword “others™ when initializing an

aggregate.

This style of programming makes sure complex object is correctly initialized. A
warning message will be printed for every usage of others keyword in an aggregate

initialization and increases safety.

Rule 4: Use short circuit form of logical operations systematically in all cases where

the operands may not be mandatory for proper execution of program.

This style of programming increases the execution efficiency during the logical
operation value calculation. Short circuit formed logical expressions are evaluated rapidly
if the rest of the operands are not necessary to evaluate the expression. Ada enables usage
of shot circuit logical operators to skip the calculation of the unnecessary operand values.
A warning message will be printed for every logical expression where the short circuit

form is not used.

Rule 5: Ada garbage collection library procedure Unchecked Deallocation usage is

prohibited.

By using this function, any previously allocated memory is disposed and internal
system is informed that this memory piece is ready for further use without a security check.
This can lead to dangling reference and subtle program errors. Compiler should left all
control to user to avoid in use memory disposal so usage of this procedure increases the
erroneous execution risk. It is thus prohibited. A warning message will be printed for every

usage of this procedure.

Rule 6: Expressions more than one negation should be avoided.

The programmer should easily understand the expression meaning and multiple
negation usage distorts the understandability of the meaning. Programmer is warned for

usage of multiple negated expressions.

Rule 7: When using a case control structure avoid using others keyword.

10

Case control structure handles multiple selection problems and it consists of a value
and several choices. If an invalid value is checked by a case control that the program is not
expecting, the ‘others’ field captures the unexpected value. So program security is
decreased and a potential leak point for erroneous values is opened. A warning message

will be printed for every ‘others’ field in a case control structure.

Rule 8: If used, exit statement should only be used with the name of the loop, which

the exit is used for or with a ‘when’ statement.

First usage of ‘exit’ statement removes the risk of erroneous exit in a loop and
increases the readability of the code. Second usage of ‘exit’ specifies explicit conditions
for changing the execution sequence of the code and it is visibly specified for the program
reader. A warning message will be printed for every ‘exit’ statement that is not used with

the specified conditions.

Rule 9: ‘Return’ statement must be used only once in a function.

Multiple return points mean multiple exit points and this is not desirable if new code
is added in the future. A warning message will be printed for every other return statement
in a function.

Rule 10: ‘Goto’ statement must not be used.

‘Goto’ instruction usage leads to “Spaghetti code”, which is very hard to trace and

verify program correctness. An error message will be printed for every ‘Goto’ statement.

Rule 11: Nested structure of control should be limited to four levels.

Block structures in Ada are used for two reasons: To prevent other parts of the
program from using particular objects (locally declared items) and to provide local
exception handler. Nesting of blocking should be restricted in order to easily manage the

specific part of the code. An upper level to the nested structuring eases the control and

11

increases maintainability of the software. A warning message will be printed for higher

levels of nesting.

Rule 12: The formal parameter mode ‘in’ must explicitly be used. Therefore the

default parameter mode is not allowed.

Ada has four argument modes at the procedure or function declarations. These are
“in’, ‘out’, ‘in out’, and ‘default’ modes. If an argument is expected to be updated in the
body of the subprogram that it is named as an out argument. If it is not updated then it is an
‘in’ argument. Usually if nothing is specified compiler takes the ‘in’ mode as default mode.
Specifying explicitly the ‘in” mode for arguments increases the portability of the code

because compiler dependency on default mode interpretation is not removed. A warning

message will be printed for all unspecified parameter modes in subprogram declarations.

Rule 13: All parameters of a subprogram with the ‘out” mode must receive a value

before returning to the caller.

The ‘out’ mode is used to define arguments, which are given permission to be
updated in the body of a subprogram. Any ‘out’ mode argument that is not updated in the
subprogram reflects a semantic error. Usage of a non-updated argument may cause fatal
errors during execution. A warning message will be printed for all unchanged ‘out’
parameters in a subprogram. The semantic error removal increases the run time safety of

the program.

Rule 14: Conventional meaning of overloaded operators should be preserved.

In Ada the functionality of all mathematical operators can be overloaded with new
functionality. For example a plus sign indicates addition and the overloaded functionality
should preserve this meaning to increase the readability of the program source code. A

warning message will be printed for all overloaded operators.

Rule 15: Subprogram arguments should not be initialized in the header part.

7 RULY

12

The initialized argument values in a subprogram declaration are not visible to the
programmer if the source code is located on a separate file. Ada compiler does not force
programmers to locate an argument value for initialized arguments. So if a value is not
specified for the initialized argument then compiler uses the value that is specified at the
declaration. It is better to leave control to the programmer when the arguments are used
during subprogram calls. A warning message will be printed for all initialized parameters

at declaration.

Rule 16: An initialization function should be written to control Elaboration

sequence.

Every execution of a main program in Ada activates elaboration of certain library
units into the program at run-time. During compilation the library packages included into
the code by usage of ‘with’ clauses and every package name specified in the ‘with’ clause
is elaborated. But what happens if there are other packages to elaborate, in the elaborated
packages. To control this in Ada, there is a compiler director command, which is called
‘pragma elaborate’. A package name specified within the pragma is forced to be
elaborated. An ‘Init Packagename’ function can control the sequence of package
elaboration for every package. A warning message will be printed for all packages without

an Init_Packagename procedure.

Rule 17: All package names included with a ‘with” clause should be supported with

a ‘use’ clause to decrease the length of package names used in the code.

The packages elaborated with a “with’ clause can be referred by the absolute naming
notation. This notation specifies all the library hierarchy down to the name of the referred
unit: library.package.class.procedurename. If the library or the package absolute name 1s
specified in a use clause, then the unit name can be referred in the program without the
editing the part mentioned in the ‘use’ clause. The shorter unit names increase readability.
A warning message will be printed for all packages with a ‘with” clause but not supported

with a ‘use’ clause.

13

Rule 18: Do not use predefined exceptions with raise statement.

Ada has five predefined exceptions: ‘Constraint error’, ‘numeric_error’,
‘program_error’, ‘storage errror’ and ‘tasking error’. It is not secure to raise predefined
exceptions because it may not be possible to distinguish between these and real system
exceptions during run time especially if when they are raised by the system because of
another reason. Detecting the system-generated exceptions shortens the determination
period of the run time errors and enables fast debugging to increase system safety and

maintenance. A warning message will be printed for all raised predefined exceptions.

Rule 19: A subprogram declared on a specification package must only use

exceptions in its body that are defined or renamed in its specification package.

This kind of exception usage avoids the exception contamination in the system and
enables fast debugging for safety establishment during functional testing because the
generated exceptions can easily be traced. A warning message will be printed for all

exceptions that are raised and not declared 1n the package.

Rule 20: Numerical values should not be used in the code except constant or type

definitions.

It is not easy to remember the numerical values and the value they represent. It is
better to name every numerical value in the code to increase the readability and
maintainability. Semantic analyzer print a warning message every time there 1s a numerical

value in the code is it is not used in a type or constant declaration.
Rule 21: Generic units should not be declared in subprogram.
The instantiation of a generic body in a subprogram is done each time this

subprogram is called and this may lead to a memory deficiency if it is executed several

times. Declaration of generic unit should be moved to other parts of the code to increase

14

system safety. An error message will be printed for all generic type declarations in a

subprogram.

15

3. IMPLEMENTATION OF THE SEMANTIC CHECKER

The Semantic Analyzer (SCA) for the defined semantic rule set is implemented with
C programming language on Linux operating system platform. SCA has a scanner
generated by Lex and has a parser created by Yacc. The general component structure of

SCA is displayed on Figure 3.1, where the process sequence of the components is also

visualized.
Ada'93 linear
syntax specification
as regular
gxpressions
/ / /—Z
Ada'ds Syntax | -
/ Code /| HEX == YACC == e | /@
R | T x___}\ ,
iz-."
P = . \\ /
Ada’95 hierarchical N Rulen [t
syntax specification
as attribute
grammar

Figure 3.1. SCA component and process diagram

3.1. The Scanner

The scanner generation process initially requires a token description file and this file
is analyzed by Lex to create the scanner code in C language. A sample from the Lex input
file is listed in Appendix A and it should be compiled with other software component parts
of the SCA. The regular expression set, which identifies the Ada tokens, is implemented by
Ada Home software group [26].

The scanner is the first component of the SCA and the character stream of the input Ada
file is decomposed into tokens, which are meaningful objects for Ada grammar. Since the

scanner is the first processing stage, it initiates the calls that invoke the next processing

16

unit: Parser.

3.2. The Parser

As the scanner generates Ada tokens, it sends them to the parser by labeling them
with the proper identifier. The tokens contain two types of data: First the type of the token
and depending on this type, a related data. The reserved words of the Ada language is
identified as an integer value, whereas the character strings that are used to name variables,
functions, or other entities as four different types: ‘char lit’, ‘identifier’, ‘char string’,
‘numeric_lit’. That group of tokens is entered by the user and they are not part of Ada
reserved words. SCA needs the name of functions; type declarations and other data; such
as the line numbers where the tokens are located in the code, to generate a meaningful and

understandable report.

The Ada’95 grammar is edited in the parser definition file, in a way such that the
parser generator can interpret them. There i1s an example code sample in Figure 3.3, and the
grammar rules are written in CFG rules form with an additional C block that is executed
upon reduction. Reduction happens when scanner finds the tokens specified on the right-
hand side. During this reduction process the goal is to create an abstract syntax tree
representation of the input source code by executing the C code. The Ada grammar set is
retrieved from the Ada’95 grammar specification, which is defined by Ada Consortium

[26]. An example section from the parser definition file is listed in Appendix B.

The syntax tree keeps the whole Ada program by keeping every token and reduced
rule headers on the nodes and leaves of the syntax tree. The tree node is defined as a C
structure, which also keeps some additional information about line number where the token
is found in the input file or the value of the function name as a character string and so on,

to generate a semantic error report.

In Figure 3.2, the declaration of the syntax tree node is listed. The ‘type_of node’
field is used to keep the node type. This value is determined by the Ada grammar rule,

which is reduced as this node is created. For example if this is the root node of the tree,

17

then the ‘type_of node’ will be ‘goal symbol’ to reflect that is it created when the goal
symbol rule of the CFG grammar is executed. All node types used in the grammar are
retrieved from the rule headers used in the Yacc parser definition file. The ‘char_val’ field
of the node is used to keep the character string values used to represent or identify the user-

defined parts of the code: a function name, identifier or type names.

typedef struct NODE {
int type of node;
char *char val;
int number of rule;

B W N

int number of nodes;
int linenumber;

struct NODE *nodes(MAX NUMBER OF NODES];
struct NODE *up;
0: } NODE;

= O 35 O

Figure 3.2. Syntax tree node type declaration

The CFG rules can have multiple choices when a node is created or reduced to other
rules. In Figure 3.3, there is an example for this situation. The ‘decl’, which represents any
declaration in Ada language, can be retrieved by reduction of ‘object_decl’, ‘number_decl’
or ‘type_decl’ nodes. These nodes are created if there is an object declaration, a number
declaration or a type declaration exits in input Ada code, respectively. During the syntax
tree generation, the number of the grammar rule, which is reduced for the creation of ‘decl’
node is understood by checking the ‘number_of rule’ field of the node structure. In Figure
3.3, the ‘decl’ node has ‘number of rule’ field that is equal to 1, if it is retrieved from an
object declaration, 2 for number declaration and 3 for type declaration and so on. These
values are entered to the creator or reduced node by making a call to the ‘Create_Node’
function. This function accepts four arguments: First the type of node which is to be
created, the string value associated with this node, the rule number that is used for
reduction, the number of nodes that will be the children of new node on the tree. After a
new node is created from the reduction of nodes, they will be connected to the new node as

children nodes.

18

1: decl : object_decl {

2: $$ = Create Node (DECL, "", 1, 1) ;
3: Add One Node ($$, $1);

4: }

5:

6: | number decl f{

7 $$ = Create Node (DECL, "", 1, 1) ;
8: Add One Node ($$, S1);

9: }

10:

11: | type decl {

12: $$ = Create Node (DECL, "7, 1, 1) ;
13: Add One Node ($35, S$1);

14: }

Figure 3.3. A CFG grammar rule representation for Yacc parser generator

In Figure 3.4, there is an example CFG rule for node creation. Here, a new node is
created to represent ‘if stmt’, which corresponds to the ‘if° statement in Ada. The
‘Create_Node’ function will update the ‘type_of node’ field with an integer value to point
that this node is an “if statement” node. The second field is an empty string but it may also
be the function or a variable name. Third argument is the number of rule that is reduced,
which is one. This value has no other option because there is only one rule for reduction.
The final argument is number two, which shows that there will be two other children on
the node. Although there are other tokens on the rule, which are ‘if’, ‘end” and °;’, these
values are hidden and not included in the syntax tree. By looking at the ‘type_of node’ and
‘rule_number’ fields it is possible to retrieve the information necessary to understand that
there are other tokens such as keywords ‘if’, ‘end’, and °;’. The ‘nodes’ and ‘up’ fields of
the structure definition are used to link other child and parent nodes of the new node. The
up field is initially equal to Null and it is updated if it is linked to another node. So
‘Add_Two_Nodes’ function adds the existing nodes of ‘cond_clause s’ and ‘else_opt’ to
the “if_stmt’ node. And links the ‘up’ fields of ‘cond clause_s’ and ‘else_opt’ to point to
the “if stmt’. This sequence of reductions and linking of nodes continues up to the

reduction of ‘goal_symbol’ node, which indicates that the parsing process is successful.

‘19

if stmt : IF cond clause s else opt END IF ';'
{
$$ = Create Node (_IF STMT, "", 1, 2) ;
Add Two Nodes ($$, $2, $3) ;

s W N
v se ae ae we

}i

Figure 3.4. If statement rule for parser

The ‘line_number’ field is used to store the current line number that the token is
located. The scanner keeps a line number data and during token generation it is
incremented as the input stream of characters include a new line character. In order to
report the errors, SCA needs a line number data and during code generation the

‘Create_Node’ function locates the line number information to this field.

3.3. The Semantics Rule Checker Functions

The input source code, which is to be checked by SCA, is now converted to a tree
structure and it is ready to be used by the semantic rule checker functions. These functions
generate the final report about the semantic rule violations and errors. The functions, which
are responsible to check a semantic rule, accept the syntax tree as input, and the semantic
analysis of the input code starts after the syntax tree is created. The functions are
independent from each other in terms of data dependency and they do not update or change
the content of the syntax tree. Every function traverses the tree and generates the messages
as they detect a violation or error. A global variable, ‘Global_Tree’ points the syntax tree

and it becomes ready after the parser creates the ‘goal _symbol’ node.

The mechanism used in the semantic checker functions depends on searching and
detection of a target node. This target node is determined by the rule definition. If a rule
restricts the usage of a certain statement, such as ‘goto’, then the corresponding function
searches the ‘Global Tree’ to find the instances of statements; particularly ‘goto’
statements. So target node search is implemented by every function individually. All
functions search their target node by traversing the tree up and down. This traversal is
possible by using the ‘up’ and ‘nodes[n]’ fields of the node, where ‘n” is the number of
children on the sub-tree. In the following sections, the rule checking functions are

discussed. The rule checker functions traverse the tree left-to-right and depth-first fashion.

20

3.3.1. Rulel

The usage of predefined ‘integer’ and ‘float’ type is restricted by rule 1. Real
numbers are defined in mathematics as consisting of all rational and irrational numbers,
Rational numbers are those which can be expressed as the ratio of two integers, e.g. ', 4/3,
etc. Irrational numbers are those such as V2 which can not be defined in such a way. In
Ada there is a “real type” to represent such numbers. However this real type can only
represent a limited set of infinite set of real numbers, the so-called “model numbers”. Real
numbers can be defined by using floating point or fixed point notation. Thus there are two
kinds of model numbers, one for each notation. Further more, model numbers can be
represented in computer without error. The model numbers may either be predefined or
defined by programmer. The model numbers of a predefined type, such as float or integer
predefined types of Ada, can be different from compiler to compiler, so they are
implementation dependent. Thus, a mathematical routine compiled by different compilers,
has possibility to generate different results at the run time. By contrast, a programmer-
defined type always contains the same set of numbers; it does not depend on the compiler.
Therefore mathematical routines written using such types fully transportable between
machines. If compiler can not meet the requirements of a type declaration it should flag up
an error. Since the fixed point or floating point notations defines same set of numbers, then
the programmer should be warned to use these notations to create new types instead of

using predefined types.

SCA implements first rule, by first detecting all ‘float’ and ‘integer’ identifiers,
which are created as tokens by lexer in the syntax tree. Then, the process continues by the
checking of these tokens to find if they are located in a type declaration. The ‘float’ or
“integer” tokens should be located on the type declaration subtree, which is created on the
syntax tree of the input source code, to represent a type declaration. Since the syntax tree
can be traversed upwards the type declaration or subtype declaration nodes can be
searched. In Figure 3.5, the parser rules are displayed. If the predefined float and integer
types are used in these rules, it is clear that they are used to create new types and by
checking the range constraint definitions, SCA can determine whether the rule is violated

or not. The ‘subtype ind’ and ‘type completion’ nodes exist if the type declaration

21

includes a constraint definition such as a range constraint as it is displayed in Figure 3.6.

1: subtype YEAR TYPE is INTEGER range 1900..2000;
2:
3: subtype CENTURY is INTEGER;
Figure 3.5. The type and subtype declaration rules for parser
1: type decl : TYPE identifier discrim part opt
2: type completion ';'
3:
4: subtype decl : SUBTYPE identifier IS subtype_ind ';'
Figure 3.6. The subtype declarations with and without range constraint
3.3.2. Rule2

According to rule two, name association should be used:in procedures or functions
calls. In Figure 3.7, an example Ada code is listed for named association usage in sub-
program calls. The arguments of the procedure are written before the values they send into
the program body. SCA searches all the sub-program calls by analyzing the syntax tree of

the code and finds the arguments located in the sub-program headers.

1: EXAMPLE FUNCTION (TAPE => TAPE,

2: MODE => MODE,

3: COMPRESS => COMPRESS,
4 STATUS => STATUS);

Figure 3.7. The nodes sequence up to the goal symbol

The ‘index _comp’ node is searched on the syntax tree. The ‘indexed comp’ node has
two children: a name node and a ‘value_s’ node. The ‘name’ node includes the name of the
sub-program, and ‘value_ s’ is the node of the sub-tree that keeps the arguments that have
to be called with named association. The ‘value s’ is composed of other ‘value’ nodes and

it has the structure, which is listed in Figure 3.8. It may have an ‘expression’ node, a

22

‘comp_assoc’ node or a ‘discrete_with_range’ node. So if there is no ‘com_assoc’ node,
this sub-program is called with other ways, which is not permitted. By using the
‘line_number’ field of ‘comp_assoc’ node, the line number is displayed to the programmer

and the name association usage is suggested.

1: value : expression
2: | comp_assoc
3: | discrete with range | error;
4:
5: comp_assoc : choice s RIGHT SHAFT(=>) expression
Figure 3. 8. The “value’ and ‘comp_assoc’ node structures
3.3.3. Rule3

In Ada an aggregate is a basic operation that combines component values into a
composite value. Ada permits an initialization method to initialize the composite elements
easily and it is usually done by using ‘others” keyword. If an aggregate is initialized with
‘others” keyword, the value associated with ‘others’ keyword is assigned to all the
elements of the composite element. The usage of ‘others’ is listed in Figure 3.9 with an

array structure.

1: Type MATRIX ELEMENTS is array (1..5) of INTEGER;
2 COEFFICIENTS : MATRIX ELEMENTS;
n: COEFFICIENTS := MATRIX ELEMENTS’ (25, others => 0);

Figure 3. 9. Others keyword usage in aggregate initializations

The Ada grammar rules and their CFG descriptions are listed in Figure 3.10. SCA
first finds all ‘aggregate’ nodes in the tree and then the choice nodes are searched on the
subtree pointed by ‘comp _assoc’ node. The aggregate definitions in Ada grammar are
identified by the existence of an ‘aggregate’ node. The ‘others’ keyword token is reduced
to a ‘choice’ node whose ‘rule number’ field is equal to three. This value is equal to three

because it is the third rule and during the generation of syntax tree, number three is

23

assigned to ‘rule number’ field of choice node. If SCA detects a node whose node type is
choice node type and ‘number of rule’ field is equal to three, then it reports a warning

message about the usage of ‘others’ keyword.

1: aggregate: '(' comp_assoc ')'

2: ['(' value s 2 ")’

3: | ' (' expression WITH value s ')'

4: ' (' expression WITH NuLL RECORD ')';

5:

6: comp assoc :choice s RIGHT SHAFT expression;

7

81 choice s : choice

9: | choice s '|' choice

10:

11: choice rexpression

12: | discrete with range

13: | OTHERS;

Figure 3.10. The node structure of aggregate initialization and ‘others’ usage

3.3.4. Rule 4

Short circuit usage in logical operations is recommended by rule four and every time
logical operations are used in the code. In logical expressions, which are located in the
subtree of ‘expression’ node, it is possible to detect the existence of short circuit usage by
comparing the second and third reduction rules. In Figure 3.11, the linkage between
expressions and relations is described. So by comparing the expression subtrees, the short

circuit usage is controlled by SCA.

| expression logical relation
| expression short circuit relation;

1: short circuit : AND THEN
2: | OR ELSE;
3:

4: expression : relation
5:

6

Figure 3.11. The short circuit form and grammar link with expression

When an expression is detected during syntax tree traversal, the nodes, which are

labeled with ‘expression’ type, are inspected for the existence of ‘short_circuit’ node. If

24

‘logical’ node is used instead of ‘short_circuit’ node, then it is reported as an error.
3.3.5. Rule 5

When memory deallocation is needed, the library function ‘unchecked deallocation’
can be used to direct the system to free any memory content. During this disposal if the
memory was in use, function do not raise an exception or warning message. So this

function usage is prohibited by rule five.

SCA searches all function names used in the code and investigates if this function is
used or not. This is possible if the function names are retrieved from the syntax tree. SCA
finds the function names by checking all the ‘simple name’ nodes in the body and
compares the string content located in the ‘char va’l field of the node with

‘Unchecked Deallocation’.
3.3.6. Rule 6

Checking negated expressions more than one-negation starts finding the expressions
in the syntax tree and counting the negations on the subtrees pointed by their children. The
negated expressions can be detected by checking the ‘rule number” field of factor nodes.
When a factor node is created by reduction of the primary nodes, if there is a ‘not’
keyword before the ‘factor’ node, then the ‘number of rule” field becomes equal to two.
And whenever SCA detects the number of factor typed nodes with ‘number_of rule’ field
is equal to 2, then a warning message is printed. In Figure 3.12, from the expression to
factor, node-creating rules are listed. And in the Figure, the ‘not’ keyword is located on the

second reduction rule of ‘factor’ node.

, LN
. . '-Kﬁ'f'm kU
£.C. YUKSERUCY 1 ppuazd

25

1: term factor

2: | term multiplying factor;

3:

4: simple expression : unary term

5: | term

6: | simple expression adding term;

7

8: relation : simple expression

9: | simple expression relational

10:

12: simple expression

13: | simple expression membership range

14: | simple expression membership name;

15:

16: expression : relation

17: | expression logical relation

18: | expression short circuit relation;

19:

20: factor : primary

21 | NOT primary

22 | ABS primary

23 | primary EXPON primary

24

Figure 3.12. The expression and negation linkage on parser definition rules

3.3.7. Rule?7

Usage of ‘others’ keyword in case structure is also prohibited by seventh rule. The
first step is finding case statements in the syntax tree. The case statements are created on
the ‘case stmt’ nodes in the syntax tree. SCA first detects the existence of all case
statements by finding the choice nodes. SCA understands rule violation by checking the
choice node’s ‘number_of rule” field. If the ‘others’ keyword 1s used this field is equal to

three, because it is the third reduction rule.

3.3.8. Rule8

Exit statement usage is restricted to two cases: The statement must be followed by a
‘loop” name, from which the statement will exit and there must be a “‘when’ statement. For
all cases other than these two, SCA should display an error message. Exit statement is

defined in the grammar as in Figure 3.14.

26

SCA displays an error message if both of the ‘name_opt or when opt’ nodes are

equal to null.

1: case_ stmt : case _hdr pragma s alternative_s END CASE ';'
2:

3: alternative s : { $$ = NULL; }

4: lalternative s alternative;5

5:

6 alternative : WHEN choice s RIGHT_SHAFT statement s;
7: choice_ s : choice

8: | choice s '|' choice

9:

10: choice : expression

11: | discrete with range

12: | OTHERS

Figure 3.13. The ‘case’ statement and ‘others” keyword linkage in Ada’95 grammar

1: exit stmt : EXIT name opt when opt ';'

Figure 3.14. The exit statement in Ada’95 grammar

3.3.9. Rule 9

In a subprogram body, there must be only one ‘return’ statement according to ninth
semantic rule. So for all subprogram bodies, SCA should count and detect if there are
multiple return statements. In Figure 3.15, the ‘subprog_body’ node is shown, and starting
from the ‘block_body’ node, SCA counts the ‘return_stmt’ nodes. If it finds more than one
‘return_stmt’ node located on the procedure of function body, it displays an error message
by giving the name of the function. The name of the sub-program is retrieved by an
upward traversal until the ‘subprog_spec is push’ node is found. A search is performed
here again to detect the function name. After the ‘subprog spec is_push’ node is found
then ‘subproc_spec’ node is detected because the ‘compound name’ node, which keeps the
subprogram name, is located on the subtree of ‘compound name’ node. When the
subprogram name is retrieved for reporting, the line number of the node is also displayed

and programmer becomes aware of multiple return statement usage.

27

subprog body: subprog- spec_is push decl part
block body END id opt ';'

=W N

return stmt : RETURN ';'

Figure 3.15. Grammar definition of subprogram body in Ada’95
3.3.10. Rule 10

SCA displays an error message, for all ‘goto’ statements that are used in the code.
SCA finds this statement by investigating the existence of ‘goto_stmt’ node in the syntax
tree. In Figure 3.16, the structure of goto statement node is written. When it is detected on

the syntax tree, it is reported as an error.

1: goto_stmt : GOTO name ';'

Figure 3.16. The ‘goto’ statement

3.3.11. Rule 11

According to the semantic rule eleven, the nested structure of control is limited to
four levels. This means, the number of any control statement, such as a case, if or loop

structure can be written in other control structures with a limit of four times.

There are eight such statements in Ada’95 grammar and they are defined as different
nodes in the Yacc parser generator rules. The basic structures are ‘if’, ‘case’, “while’ loop,

“basic loop™ and ‘select’. The node definitions of these functions are listed in Figure 3.17.

SCA starts searching these nodes from the beginning of syntax tree and it checks if
the node type of the current node is any one of these nodes. If it detects that the node is a
control structure, it increments the number of previously found control structure node
number and displays an error whenever current number of control is exceeded the limit of

four.

28

1: if stmt : IF cond clause s else opt END IF ';'

2:

3: case_stmt : case_hdr pragma s alternative_ s END CASE ';'
4:

5: basic loop : LOOP statement_ s END LOOP

6:

7 accept stmt : accept hdr ';'

8: | accept hdr DO handled stmt_s END id opt ';'

9:

10: select wait : SELECT guarded select_alt or_select else opt
11: END SELECT ';'

12:

13: async_select : SELECT delay or entry alt THEN ABORT
14: statement s END SELECT ';'

15:

16: timed entry call : SELECT entry call stmts_opt OR delay stmt
17: stmts _opt END SELECT ';'

18:

19: cond entry call : SELECT entry _call stmts_opt ELSE

20: statement s END SELECT ';'

Figure 3.17. The nested control structure node definitions

3.3.12. Rule 12

All parameters of a function or procedure declaration have four different modes in
Ada’95 grammar. A parameter can be ‘access’, ‘in’, ‘out’ or ‘in-out’ mode and one of
these modes is the defined as the default mode. Usually the default mode changes from
compiler to compiler. And semantic rule twelve restricts the unspecified parameter mode
usage during subprogram declaration. SCA finds the argument declarations by tracing the
‘param’ nodes in the syntax tree. Whenever it finds a ‘param’ node, it looks to the mode
node and displays an error of it is not specified. In Figure 3.18, it is possible to see the

‘mode’ node and it is left null if programmer specifies nothing.

mode : { $$ = NULL; }
IN

ouT

IN OUT

ACCESS;

~1 Y s L) N e

param : def id s ':' mode mark init opt ;

Figure 3.18. The parameter modes in Ada’95

29

3.3.13. Rule 13

In Ada’95, an argument declared in ‘out’ mode, should receive a new value in the
body of the subprogram it is used. All the subprogram arguments with an ‘out’ mode,
which is not updated, should be reported by SCA. The first strategy is to check
assignments to find whether the parameters are updated or not. SCA keeps the out
parameters and searches all assignments in the body of the subprogram. All value assigned
parameters are excluded from the list of parameters and the rest of arguments are displayed

with a warning message.

3.3.14. Rule 14

The conventional operators can be overloaded with new functional abilities in
Ada’95 and semantic rule fourteen claims the programmer should be convinced that the
operator keeps its conventional meaning with the new functionality. For example, the
addition operator ‘plus’ sign can be used to name a function that adds an element to a list.
SCA checks all function declarations to find if the conventional operator plus, minus,
divide or multiply are overloaded or not. If they are overloaded then the programmer is
warned to be sure that they are keeping their conventional meanings on the functionality.
Detection of function declarations is possible by tracing the ‘subprog_spec’ nodes in the
syntax tree. If the ‘subprog_spec’ has a ‘compound name’ node, which carries the operator
name, such as a plus or minus sign, a message warns the programmer for its existence. In

Figure 3.19, the structure of ‘subprog spec’ node and an overloaded function declaration

is listed.
i: subprog spec : PROCEDURE compound name formal part opt
2: JFUNCTION designator formal part opt RETURN name
3: { FUNCTION designator
4:
5: function "+" (num: integer, num2:integer) return integer;

Figure 3.19. The Subprog_spec node

30

3.3.15. Rule 15

The sub-program arguments should not be initialized when they are declared. The
initialized arguments of subprograms are checked on the ‘param’ nodes of the syntax tree
and its definition in listed in Figure 3.18. If the param node has an ‘init_opt’ node, this
reflects that it is initialized during the subprogram declaration. SCA prints a warning

message for all initialized arguments of subprograms.

3.3.16. Rule 16

Elaboration of Ada program units is controlled by compiler and initiated by ‘with’
statement usage in the code. During the elaboration sequence, packages are initialized or
declared to the software. In Ada, the elaboration sequence is compiler dependent and
compilers do not perform elaboration in a unique fashion. In rule sixteen, the control of
this elaboration sequence is left to user and it is controlled manually by a user-defined
subroutine that is created for every package. Whenever a package is defined, there must be
an initialization routine, which begins with the name of the package appended to ‘Init’
keyword. SCA checks existence of this function if the input file contains a package
declaration. SCA checks all the declared subprogram names and by comparing their names
with ‘Init_package name’ it understands if there is such an elaboration control function to

fulfill the task.

3.3.17. Rule 17

The ‘with® and ‘use’ statements include other packages definitions in the package
and they start the elaboration. When a package is included with a ‘with’ statement, the
content of the package is referred by the absolute names, which are usually long. For
example, if a variable is defined in the System package any other package uses this
variable should refer this variable with ‘System.variable name’. This convention creates
long variable and function names and to shorten these names for a readable code, the
package can be ‘use’d to call the variable without specifying the absolute path of the

variable or function. According to the rule 17, all packages that are included by a ‘with’

31

statement should be also be supported with a ‘use’ statement.

1: with clause : WITH ¢ name list ';'
2:

3: use clause : USE name_s ';

4: | USE TYPE name s ';'

Figure 3.20. The with and use statements grammar rules in Ada’95

SCA finds the list of package names in “with’ statements and prints a warning

message if their names are not used in a ‘use’ statement.

3.3.18. Rule 18

The programmer should not raise predefined exceptions intentionally. SCA finds all
the raised exceptions, and it checks from a predefined exception list of Ada, whether the
raised exception is in the list or not. As it is listed in Figure 3.21, the ‘name_opt’ node

contains the name of the raised exception.

1: raise_stmt : RAISE name opt ';'

Figure 3.21. Raise statement and its grammar

3.3.19. Rule 19

A subprogram can only raise exceptions that are defined in its package. SCA finds all
declared and raised exceptions. The grammar rule, which is used to declare exceptions, is
listed in Figure 3.22. The node ‘def id s’ keeps the name of the declared exception. The
declared exception names are compared with the raised exception names. SCA prints an

error message if the raised exception is not declared in the current package.

32

1: exception decl : def id s ':' EXCEPTION ';'

Figure 3.22. Exception declaration rule and its grammar

3.3.20. Rule 20

SCA displays a warning message for all the numerical values found in the code
except they are used in a type or constant declaration. SCA finds all the numerical values
that are outside of the type or constant declarations and prints a message to warn

programmer not to use them.

3.3.21. Rule 21

SCA should return a warning message for all generic type declarations in
subprograms. This is necessary to avoid memory insufficiency because the declared type
instantiated every time the procedure is called. In Ada, the declarations done between the
subprogram header and subprogram body. SCA searches the syntax subtree of this area to
find any generic type declaration. In Figure 3.23, the generic declaration node is displayed.
The search starts from ‘decl part” node and SCA searches generic_formal part nodes on
the subtree of ‘decl part’ node. If it is found, this shows that there is a generic type

declaration on the subprogram and it is reported as an error.

subprog body : subprog spec_is_push
decl part block body END id opt ';'

generic formal part : GENERIC
| generic formal part generic formal

O s W N

Figure 3.23. Generic declarations in subprograms

33

4. OUTPUT ANALYSIS OF THE SEMANTIC ANALYZER

The semantic rule set has twenty-one rules for Ada grammar and SCA tool has a C
routine per rule to inspect the source. In this section, the C routines that inspect the rule set
are analyzed. First, the effectiveness of the SCA tool is justified on a sample Ada code.
Then, previously compiled real world application Ada software is inspected with SCA.
The output of the inspection is analyzed in terms of execution time and memory usage.
Also a multi-threaded version of SCA tool is proposed to decrease the inspection time on

multi-processor hardware.
4.1. A Sample Run

The SCA effectiveness is tested on the example code, which is listed in appendix C.
This example code is not a part of any real Ada application. It just contains some semantic
errors or coding parts that has violations to the ESRS. It is the control input and SCA must

generate some messages concerning the compatibility of this code to the ESRS.

The example code contains a package declaration and the package body
implementation, which has some function and procedure calls. It tests the float or integer
type usage by using these predefined types in function or procedure bodies. Also in
aggregate initializations and case statements, ‘others’ keyword is used. An array is
initialized with ‘others’ and there is an ‘others’ choice in one of the case structures. There
are examples of invalid ‘exit’ statement and ‘goto’ statement usage. Also a set of
numerical values is entered both in type declarations and other parts of the code to check
whether SCA has the ability detect them. Invalid subprogram arguments are also declared

in the package specification according to the ESRS.

SCA runs and investigates the example code, and then generates the output in appendix D.
It can be seen that SCA can detect the violations to the ESRS and can generate relevant
information about the Ada code and its semantic content. The example was an artificial

code and it was intentionally created to contain some semantic violations. In the following

34

section, a real-world example is analyzed and the report generated by SCA is discussed.

4.2. ATC Software Analysis by SCA

SCA 1is run on 41 different, previously compiled source code of a real Air Traffic
Control application software. The total number of lines in these files is 56,7 KLOC (Lines
of Code). SCA generated 8687 error or warning messages, after analyzing these Ada files.

In Figure 4.1, the percentage of messages per rule is displayed.

Error Message Distribution per Rule

45,00
40,00
35,00
30,00
25,00
20,00
15,00
10,00

5,00

0,00

§ Ruie No

Error Percentage(%)

12 3 456 7 8 91011121314 1516 17 18 19 20 21
Rule Number

Figure 4.1. Error distribution per rule

The most violated rule is the second rule, which warns programmer to use name
association when calling subprograms. The 39% of report messages are concerning the
name assoclation usage. This value is high because SCA generates a warning message for
every argument in the subprogram call. Usually programmers tend not to use named
association if the used subprogram is linked from another package specification or library
where the function headers are not easily inspected for argument names. In order to
increase readability, named association should be used because the argument names can
give an idea about the usage of the function. Name association usage decreases the chance

of invalid value entry to the subprogram calls because the association ensures that the

35

values are send correctly.

Initialization of subprogram parameters is another common violation, which is
defined by rule fifteen. When variables are initialized at declaration, then it becomes not
necessary to enter a value for initialized arguments for subprogram calls. This may cause
an information deficiency about the usage of function for the code reader. Besides, the
initialized value may cause execution errors because programmers may not take the value
into account, when they build the code. The reason to use initialized variables upon
subprogram declarations is to create a value even the programmer do not enter any value
for the argument. But it is better to leave the control to the programmer and he is forced to

enter the value intentionally.

Default parameter mode usage is the third most violated rule and the default
parameter mode changes from compiler to compiler. Some compilers take in mode as the
default mode and it assumes that it will not be modified in the body. Even it is modified,
when the procedure is returned to its caller, the value change is lost. If the default mode is
‘inout” mode, the value that modifies the argument is kept even the subprogram returns.
These two cases have potential to create execution errors and it may take time to detect.

Using SCA output to enter the parameter modes explicitly can eliminate this risk.

The ‘out’ mode parameters must receive a new value in the subprogram body.
Verifying whether a parameter is modified or not, is done by checking if they are located
on any left part of an assignment statement. If the parameter is updated via another our or
‘inout’ parameter call in a subprogram call, then this modification of the argument is not
inspected by SCA. The programmer should assure that the argument is modified. About
7.5% of the messages are concerning about the usage of ‘out” mode parameters which are

not updated in the subprogram bodies.

Ada has predefined exception set and these exceptions are raised by the system
when an unexpected condition happens. Divide by zero is a common example and
programmers sometimes raise this exception intentionally. But semantic rule 19 restricts

the manual or hard coded raise of predefined exceptions. With a ‘raise’ statement

36

programmers can raise all exceptions. But this kind of usage of raise statement creates a
problem: System raised exceptions and program raised exceptions are not easily detectable
and debugging takes time especially if exceptions are raised because of a system error. In
ATC programs, SCA detected about 459 messages concerning rule 19 and this
corresponds to 5% of total messages. Instead of raising system exceptions, the
programmer should use his own exceptions and they should be defined for every created
package. Raising other exceptions that are not defined in the current package should also
be avoided, because using exceptions that are belonging to the current package can help to
find the reason of the exception easily. About 5% of messages concern with the rule 20,

which restricts usage of other package exceptions.

The ‘with’ statement should be supported with a “use’ statement to increase the
readability of the program. Use statement directs compiler to replace the absolute path
name of the identifier names. About 0.3% of messages are generated to warn the

programmer to use a ‘use’ statement with ‘with’ statements.

Exit statement is used in Ada for breaking the loops and exiting program block when
certain conditions happen. Usage of exit statement can be dangerous because it affects the
execution sequence directly. The exit statement concerning messages is %5 of total
messages and they reflect that exit statement is used without the loop name to exit or a
‘when” condition. This kind of ‘exit’ statement usage is hard to maintain and if it is used
without any condition or a loop name, then it is immediately executed and causes to
change the current execution location to next program block. SCA detects all these invalid
exit statement usage and warns programmer to take extra cautious steps to avoid

unexpected execution errors.

The ‘others’ keyword usage in aggregate initialization is not detected in ATC
applications and they are used in ‘case-control’ structures 24 times. The usage of ‘others’
keyword in case statements creates a leak point for the unexpected values. Detection of
invalid values is important during the production process and ‘others’ choice can be used
in case structures if everything about the program functionality is fulfilled and under

control.

37

4.3. Resource Allocation and Time Analysis

Syntax tree generation is the main memory consumer process and memory is
allocated for the created nodes. Memory requirement for the syntax tree generation
depends on the number of tokens in the input file. The input ATC code used in the
analysis is composed of 41 files and the file sizes are shown in Figure 4.2. During the
semantic analysis, all dynamic memory allocations to generate the syntax tree are

calculated to find the average memory consumption.

Required time for the report generation depends on the size of the tree. Since the
semantic rules are checked by tree-traversing functions, as the number of nodes in the tree
increases, the time needed to traverse all the nodes of the tree also increases. In the next
subsections, the memory consumption of the analysis and the time needed to analyze the
input codes on different platforms are compared to find if the semantic analysis is

performed in a reasonable time and with a reasonable memory consumption.

4.3.1. Minimum Memory Requirement

For every tree node created by the parser, 80 bytes are allocated and the context-free
grammar representation of Ada grammar allows five children to be connected to a node in
the tree. As number of tokens in the files increases, the number of nodes created by the
parser also increases. The number of tokens found by the scanner in the input files is
drawn in Figure 4.3. In average, a token is composed of 4 characters and 1 Kb file has 250

Ada tokens 1n it.

When all of the nodes have five children, the tree size becomes minimum. This is
because of the fact that minimum number of nodes is created to connect the input tokens

as a tree structure.

38

Input File Sizes
140
120
Q2
X
o 80
ﬁ Input File Sizes
» 60
2
w40
20
0
Figure 4.2. Input file sizes
Tokens in Files
25000
T 20000
= |
2 150004
@
o
@ 10000
@
S
+ 5000
~ -~ ~ - o~ o~ o~ o3 o o g
File Number

Figure 4.3. Generated token number from input file

The minimum tree can be constructed if the tree is a full-balanced tree where all
tnner nodes have five children. Starting from the root node, if we donate the number of

nodes at level k as Ny than we can find the nodes at level k with formula 5*:

39

The number of nodes at root level is:

Ni=o = 5° =1 where level is zero.
The number of nodes at level one is:

Ni=1 = 5! =5 where level is one.

And if we continue to the lowest level of the tree where the level is equal to the

height of the tree than:
Ny = 5" where h is the height of tree

Since the leaves of the tree are actually the tokens of the input file, than we can

relate the tokens and tree height as:
Number of Tokens = 5" where h: height of tree 4.1

Total number of nodes from level 0 to the highest level, we can use Equation 4.1 to

find the total number of nodes in the tree.
Total Number of Nodes = 5%+ 5" + 52+ 5>+ 5%+ __+ 5" where h: height of tree (4.2)
The right hand side of the Equation 4.2 is simplified and we can reach to:
Total Number of Nodes = 5" -1/ (5-1) (4.3)
Writing 4.1 into 4.3 results roughly:
Total Number of Nodes = ¥4 (Number of Tokens) (4.4)

The size of the node structure to represent one node in the tree is 80 bytes and in

40

average 4 bytes are used to create one token. So if we know the file size then we can reach

to the number of tokens in it by dividing the file size with four.

Number of Tokens = Fi;,. /4 where Fg, is the file size in bytes (4.5)

So required memory for minimum tree is found by multiplying the number of

created nodes by node size in bytes:

Minimum Allocated Memory = Number of Nodes * 80 (4.6)

Since we know the relation between tokens and created nodes, we can use Equation

4.4 in Equation 4.6 to find the relation between tokens and memory size.

Minimum Allocated Memory = % (Number of Tokens) * 80 4.7)

By using Equation 4.5, we can find the relation between minimum tree size in

memory and input file size.

Minimum Allocated Memory = (Fgi,/4) * 20 =5 * F,e (4.8)

In Figure 4.4, the real tree size and calculated minimum syntax tree sizes of the files
are compared. The minimum tree size is calculated with the real token numbers found in
the files and the generally the real syntax tree size 1s found to be 6 times of theoretical

minimum syntax tree size. In other words, in average:
Real Tree Size = 6 * Theoretical Minimum Tree Size
When the ratio of the real syntax tree size and file size is considered, the average of
the ratio is found to be 15,5 when the average is taken from Figure 4.5. The minimum of

this value is found as 4,5 from Equation 4.8.

Real Tree Size = 15,5 * Input File Size

41

The minimum required memory to analyze an input file is about 16 times of its size.
The number of tokens in the files and generated number of nodes by the parser is drawn in
Figure 4.6 and the average shows that for every token generated in the lexer, parser
generates 1,28 node. This value shall be 0,25 from Equation 4.4 for minimum tree case

and conforms to the fact that the real tree is about 6 times more of the theoretical tree size.

Minimum And Real Tree Sizes

—e— Min Tree Size —m— Real Tree Size

4500000
4000000
3500000
3000000
2500000
2000000
1500000
1000000

500000

Size in Bytes

File Number

Figure 4.4. Theoretical minimum and real syntax tree size

During abstract syntax tree generation 34% of the code is embedded in the tree by
using the ‘char_val’ pointer of the nodes. This part is the non-predefined set of tokens in
Ada grammar, which are used to name identifiers, function names and so on. That

information is used during the report generation.

After investigation of the memory requirement, we investigate analysis time of SCA
on Ada’95 input codes on different platforms. We run the tool on two different hardware
and software platforms: First on a personal computer, which has Linux OS and on a

Digital Alpha Unix workstation.

Syntax Tree Size/File Size

40.00
35.00
30.00
25.00
20.00

Memory/File

ize in

15.00
10.00
5.00
0.00

Tree Byte S

File Numbe

Figure 4.5. The ratio of syntax tree size and input code size

Token and Node Relationship in Terms of File and Syntax
Tree Sizes

| —— Token=File Size/5 —#- Node=Real Tree Size/80 |

80000
70000
60000
50000
40000
30000
20000
10000

INEEIEn S aman: 18

~

T

13 5 7 9 1113 15 17 19 21 23 25 27 29 31 33 35 37 39 41

File Number

T

Figure 4.6. The ratio of node and token sizes

42

43

SCA EXECUTION TIME (sec/LOC)

10,00

5,00

25,00

9

$ 20,00

11

Z 1500

ko —8— | INUX
o ALPHA SERVER
5

(&

w

X

11}

0,00
0 10000 20000 30000 40000 50000 60000

LINES OF CODE (LOC)

Figure 4.7. Execution time of SCA on different OS

The total time needed to check all of the files on an Alpha Unix station are 11,55
sec. When the software 1s run on Linux platform the required time becomes 20,13 sec. In

Figure 4.7, the execution time versus file sizes is drawn.

4.4, Multi-Threaded SCA

The rule checker functions can be executed in any order and this is a potential
parallelism in the execution sequence of SCA. The syntax tree data is not updated by any
function so there is no data dependency. Creation of multiple threads in the parent process
of SCA and performing analysis with several function threads result an improvement on
the execution time especially on multi-processor hardware. Even on the uni-processor
environments depending on the POSIX implementation, the CPU cycle allocation to
threads result improvements on the execution time. In Figure 4.8, the multi-threaded
version of SCA and its execution time is displayed. The threads are created with default
attributes, such as default stack size and a slight improvement in the Linux machine is

detected even 1t is run on a uni-processor hardware.

EXECUTION TIME (sec)

SCA EXECUTION TIME (sec/LOC)

25,00
20,00
15,00 —#—- LINUX
ALPHA SERVER

10,00

5,00

0,00
0 10000 20000 30000 40000 50000 60000

LINES OF CODE (LOC)

Figure 4.8. Execution time of multi-threaded SCA on different OS

44

45

5. CONCLUSION

The semantic rule set is proven to contain effective restrictions for Ada grammar
semantics to increase software quality and decrease erroneous execution risk. Every rule
in the set has one or more target quality attributes to effect. The rule set is tested on the
ATC application, which needs a high level of safety and integrity and shown that even

ATC applications might have semantic error risk.

The semantic rule set is shown to be analyzable by a software tool and its
methodology, which is similar to an Ada compiler, is described. A scanner and a parser is
designed and integrated to a C program to build a software tool, which can be used to

inspect the Ada codes.

The SCA software tool is run on different UNIX platforms and its effectiveness is
analyzed. The memory allocations of the tool are analyzed and minimum memory

requirement is defined.

The potential parallelism of the SCA tool is identified and a multi-threaded version
of SCA is implemented. The new version is analyzed on uni-processor environments and

its execution time is compared with serial version.

As a result, a new semantic rule set for Ada software is defined and a tool to verify
Ada source codes is implemented successfully. This new semantic rule set can be a
guideline for Ada programmers and the tool can be used to inspect Ada project codes in

order to retrieve high quality Ada projects.

46

APPENDIX A: THE REGULAR EXPRESSION SET OF LEX INPUT

FILE

The following is a sample from the Lex file, which contains the Ada’95 token

descriptions. On the left hand side, the token types are declared and on the right hand side

they are described as regular expressions.

DIGIT

EXTENDED DIGIT
INTEGER
EXPONENT
DECIMAL LITERAL
BASE

BASED INTEGER
BASED LITERAL

[0-9]

[0-9a-zA-7Z]

({DIGIT}{ ?{DIGIT})*)
([eE] (\+?|-) {INTEGER})
{

INTEGER} (\.?{INTEGER}) ? { EXPONENT} ?
{INTEGER}

{EXTENDED DIGIT} (?{EXTENDED DIGIT})*
{BASE} #{BASED INTEGER} (\.{BASED INTEGER})
7# { EXPONENT}?

APPENDIX B: A SAMPLE FROM PARSER DESCRIPTION FILE

47

The following is the Yacc input file, which is used to generate the parser for the

Ada’95 grammar. The rules have the form of context-free grammar and cover all Ada’95

grammar. This file is anayzed by Yacc and it generates a C file, which can be compiled

with other C files.

% {

#include <stdio.h>
#include <string.h>
#include "types.h"
#include "functions.h"

%}

gunion {
char *ident;
struct NODE *Node;

}

TIC
DOT _DOT

3token
%token
$token LT LT

%token BOX

ttoken LT EQ

$token EXPON

%token NE

ttoken GT GT

%token <ident> char 1lit
$token <ident> identifier
$token <ident> char_ string
ttoken <ident> numeric 1lit

stype
ztype
ttype
ttype
3type
ztype
ttype
ttype

cc
T o

<Node> goal_ symbol
<Node> pragma
<Node> pragma arg s
<Node> pragma arg
<Node> pragma_s
<Node> decl

<Node> object decl
<Node> def id s

goal symbol
{

compilation

$$ = Create Node
Add One Node ($%,
Global Tree = $35;

}i

pragma PRAGMA identifier ';'

{
$$ = Create Node

(GOAL SYMBOL,"",
$1)

(_PRAGMA,S2, 1, 1)

1,

’

1)

’

1

’)’ l;'

| PRAGMA simple name '({' pragma_arg_s

{
$8 = Create Node (~PRAGMA,"", 2, 2)
Add Two Nodes ($$, $2, $4);

}i

pragma arg s : pragma_arg
{
$$ = Create Node (PRAGMA ARG S, "", 1, 1) ;
Add One Node ($$, S1);
}

| pragma_arg s ',' pragma arg

{
$$ = Create Node (PRAGMA ARG s, "", 2, 2) ;

Add Two Nodes ($3%, $1, $3);
}i

pragma_arg : expression
{
$$ = Create Node (PRAGMA ARG, "", 1, 1) ;
Add One Node ($$, $1);
}

| simple name RIGHT SHAFT expression

{
$$ = Create Node (PRAGMA ARG, "", 2, 2) ;

Add_Two Nodes ($%, $1, $3);
};

APPENDIX C: EXAMPLE INPUT FOR SCA

49

The following is the example input file to test the capability of SCA tool. It is not a

real application software code instead it is an artificially generated code to contain

semantic errors.

OUTGOING) ;

CALLSIGN;
DATE;
POINT;
DATE;
POINT;
FLOAT;
Float;

access FLIGHT

FLIGHT;
FLIGHT POINTE

new NEW TYPES
new NEW TYPES
COUNT range 1

: in out FILE
: out INTEGER
out INTEGER
FILE_MODE

out FLIGHT LI
FLIGHT LIST)

l:with STANDARD TYPES;

2:use STANDARD TYPES;

3:with NEW TYPES;

4:

5:

6:package AIRPORT IO is

7: B

8:

9: type STATUS is (INCOMING,
10:

11: type FLIGHT is

12: record

13: Callsign

14: Start Time

15: Start Point
16: Stop Time

17: Stop_ Point

i8: Speed

19: Distance

20: end record;

21:

22: type FLIGHT LIST;

23: type FLIGHT POINTER is
24 :

25: type FLIGHT LIST is
26: record

27: Flight

28: Next

29: end record;

30:

31: type FLIGHT MODE is
32: type COUNT is
33: subtype POSITIVE COUNT is
34:

35: procedure CREATE NEW FLIGHT (Flight Name
36: File
37: Init
38: Clr
39: Mode
40:

41: function "+" (Flight 1:in
42 Flight 2:in
43:

44:

45: FLIGHT POINTER) ;

[isS
(o)}

_LIST;

R;

.FLIGHT MODE;
.COUNT;
COUNT"LAST;

out FLIGHT;

’

:= NEW TYPES.DEFAULT MODE) ;

ST
return FLIGHTWLIST;

procedure FREE is new UNCHECKED DEALLOCATION (FLIGHT LIST,

50

47: NO FLIGHT LIST exception;
48: EMPTY FLIGHT LIST exception;
49:

50: SPEED constant := 3.0;

51: HALF SPEED constant := 1.5;
52:

53:end IOCALL_DIRECT IO;
54

5hi————

56:package body AIRPORT IO
57:

58:procedure CREATE NEW FLIGHT (Flight out FLIGHT;

59: Status: STATUS;

60: Distance: in FLOAT;

61: Speed: in FLOAT;

62: Destination LOCATION) 1is
63:begin

64:

65:

66: if (Flight = NULL) then

67: Flight := new FLIGHT;

68: end if;

69:

70:

71: Flight.Callsign := Get Next Callsign;

72

73: case Status is

74:

75:

76: when OUTGOING =>

77

78: Flight.sStart Time = Get Current Time;

79: Flight.Start Point := Get Current Location;

80: Flight.Stop Time := Get Current Time + Distance/Speed;
81: Flight.Stop Point := Destination;

82:

83: when INCOMING =>

84:

85: Flight.Start Time := Find Start Time (Flight);
86: Flight.Start Point := Find Start Point (Flight);
87: Flight.Stop Time := Flight.Start Time + Distance/Speed;
88: Flight.Stop Point := Current Location;

89: goto EXIT PTR;

90:

91: when STOPPED =>

92:

93: Flight.Start Time := Find Start Time (Flight});
94: Flight.Start Point := Find Start Point (Flight);
95: Flight.Stop Time := Flight.Start Time + Distance/Speed;
96: Flight.Stop Point := Current Location;

97: <<EXIT PTR>> exit;

98:

99: when others =>

100: raise Unknown Status;

101: end case;

102:

103:end CREATE NEW FLIGHT;
104:
105:

106:function "+" (Flight 1: in out FLIGHT LIST; Flight 2: in
FLIGHT_LIST)

107: return FLIGHT LIST is
108:

109: List Pointer : FLIGHT POINTER;

110:

111:begin

112: if (Flightl = NULL) then

113:

114: return FLIGHT LIST;

115: end if;

116:

117:

118: if (Flight 2 = null) then

119
120: return Flight 1;

121: end if;

122:

123:

124: if NOT (¢ Flight_l = NULL) OR NOT (Flight_Z = NULL) then
125:

126: return Merger Lists(Flight 1, Flight 2);
127: end if;

128:

129:end "+";

130:

131:

132:

133:function SQUARING (X :IN ITEM) return ITEM is

134: begin

135: return X*X;

136: end SQUARING;

137:

138:

139:procedure FIND ENTRY (PARAM:INTEGER) is

140:

141: UNKNOWN FLIGHT EXCEPTION : EXCEPTION;

142: Internal Flight List : TABLE := (others => 0);
143: generic

144: type ITEM is private;

145: function SQUARING(X : IN ITEM) return ITEM;

146

147 :begin

148:

149:

150: Internal Flight List' (5, 8, 4, 1, others => 0);
151:

152: PARAM := RETURN FLIGHT("ASAP102011", Internal Flight List);
153:

154: if (PARAM < 0 AND PARAM > 200) then

155:

156: raise UNKNOWN FLIGHT EXCEPTION;

157: B B

158: end if;

159:

160: if (PARAM > 0) then

161:

162: if (PARAM > 20) then

163:

ve

.

51

le4: return GREEN RANGE;

165: if (PARAM > 40) then
166:

1e7: return BLUE RANGE;
168: if (PARAM > 60) then
169:

170: return YELLOW_ RANGE;
171: if (PARAM > 80) then
172: return RED RANGE;
173: ' end if;

174: end if;

175: end if;

176: end if;

177: end if;

178:

179: return Get Flight (PARAM);

180:

181:end FIND ENTRY;

182:

183:end IOCALL DIRECT I0;

52

APPENDIX D: A SAMPLE OUTPUT FROM SCA

The following is the output of the SCA after it analyzed the input file, which is

listed in the Appendix C.

1:No syntax errors detected

2: ADA-SEC TOOL

3: All rights reserved

4 .

5:

6:PLEASE WAIT

Jimm e e

3:

9:

10:

11:Generating Report for example.a:

12:0-——————-~

13:

14:AT LINE: 44 TRY TO USE NAME ASSOCIATION
15:AT LINE: 45 TRY TOC USE NAME ASSOCIATION
16:AT LINE: 85 TRY TO USE NAME ASSOCIATION
17:AT LINE: 86 TRY TO USE NAME ASSOCIATION
18:AT LINE: 93 TRY TO USE NAME ASSOCIATION
19:AT LINE: 94 TRY TO USE NAME ASSOCIATION
20:AT LINE: 126 TRY TO USE NAME ASSOCIATION
21:AT LINE: 126 TRY TO USE NAME ASSOCIATION
22:AT LINE: 152 TRY TO USE NAME ASSOCIATION
23:AT LINE: 152 TRY TO USE NAME ASSOCIATION

24 :AT LINE: 179 TRY TO USE NAME ASSOCIATION
25:AT LINE: 142 OTHERS NOT ALLOWED IN AGGREGATE INITIALIZATION
26:AT LINE: 150 OTHERS NOT ALLOWED IN AGGREGATE INITIALIZATION
27:AT LINE: 124 TRY TO USE SHORT CIRCUIT FORM
28:AT LINE: 154 TRY TO USE SHORT CIRCUIT FORM
29:AT LINE: 124 MULTIPLE NEGATION NOT ALLOWED
30:AT LINE: 99 OTHERS NOT ALLCOWED IN CASE STMT
31:AT LINE: 97 INVALID EXIT STATEMENT USEAGE
32:AT LINE: 129 MULTIPLE RETURN NOT ALLOWED

33:AT LINE: 181 MULTIPLE RETURN NOT ALLOWED

34:AT LINE: 89 GOTO USAGE IS NOT ALLOWED

35:AT LINE: 173 NESTED STRUCTURE IS LIMITED TO FOUR LEVELS
36:Default parameter mode is not allowed

37 :PARAM: MODE LINE: 39
38:Default parameter mode is not allowed

39:PARAM: STATUS LINE: 59
40:Default parameter mode is not allowed

41:PARAM: DESTINATION LINE: 62
42:Default parameter mode is not allowed

43:PARAM: PARAM LINE: 139
44:Preserve Conventional Meaning "+" operator 42
45:Preserve Conventional Meaning "+" operator 107
46:In procedure "+" arguments at line: 106

47 :FLIGHT 1
48:Should receive a value

49:
50:Parameters must not initialized

51:PARAM: MODE LINE: 39

52:AT LINE: 3 LIBRARY NEW TYPES SHOULD BE USED

53:AT LINE: 100 EXCEPTION UNKNOWN STATUS IS NOT DEFINED IN THIS
PACKAGE

54 : UNCHECKED DEALLOCATION USEGA IS PROHIBITED AT LINE: 44
55:INITIALIZATION FUNCTION INIT AIRPORT IO IS NOT DECLARED
56:AT LINE: 150 FIND A NUMERIC LITERAL: 5

57:AT LINE: 150 FIND A NUMERIC LITERAL: 8

58:AT LINE: 150 FIND A NUMERIC LITERAL: 4

59:AT LINE: 150 FIND A NUMERIC LITERAL: 1

60:AT LINE: 154 FIND A NUMERIC LITERAL: 200

61:AT LINE: 162 FIND A NUMERIC LITERAL: 20

62:AT LINE: 165 FIND A NUMERIC LITERAL: 40

63:AT LINE: 168 FIND A NUMERIC LITERAL: 60

64:AT LINE: 171 FIND A NUMERIC LITERAL: 80

65:AT LINE: 143 GENERIC DECLARATION NOT ALLOWED:

66: Successfully Done

55

REFERENCES

Barnes, J., High Integrity Ada: The SPARK Approach, Addison-Wesley, New York,
1997.

Allen, F. E. and J. Cocke, “A catalogue of optimizing transformations”, in R. Rustin,
(Ed), Design and Optimization of Compilers, pp. 145-158, Prentice-Hall, Englewood
Cliffs, 1972.

Kildall, G., “A unified approach to global program analysis”, ACM Principles of
Programming Languages, Vol. 56, pp. 194-206, January, 1973.

Cousot, P. and R. Cousot., “Comparing the Galois Connection and Widening
Narrowing Approaches to Abstract Interpretation”, in M. Bruynooghe and M. Wirsing
(Eds.), Proceedings of PLILP'92, pp. 269-295, Springer-Verlag, Berlin, 1992.

Schaeffer, C. F. and G. N. Bundy, "Static Analysis of Exception Handling in Ada",
Software Practice and Experience, Vol.23, pp.1157-1174, October 1993.

Bacon, F. and P. F. Sweeney, “Fast Static Analysis of C++ Virtual Function Calls”,
QOPSLA'96 Conference Proceedings, San Jose, 1-12 October 1996, Vol. 1, pp. 23-40,
1996.

Sundaresan, V., L. Hendren, and C. Razafimahefa, Practical Virtual Method Call
Resolution for Java, Sable Technical Report, No0.1999-2, Sable Research Group,
McGill University, April 1999.

Steindl, C., Program Slicing for Oberon, Technical Report 11, Institut fiir Praktische
Informatik, JKU Linz, 1997.

10.

I11.

12.

13.

14.

15.

16.

17.

18.

56

Baer, J., Static Layer Analysis for C Programs, 1998, http://www.cs.washington.edu/

homes/jbaer/papers/layers.html

Knizhnik J., Java Program Checker, 1999, http://www.ispras.ru/~knizhnik/jlint/
ReadMe. html

Horspool, R.N., and M.R. Levy, “Mkscan: An Interactive Scanner Generator”,
Software Practice and Experience, Vol.17, No.6, pp. 369-378, June 1987.

Mossenbock, H., “Alex - A Simple and Efficient Scanner Generator”, SIGPLAN
Notices, Vol.21, No.12, pp.139-148, December 1986.

Grosch, J., Rex - A Scanner Generator, Compiler Generation Report Number 5, GMD
Forschungsstelle University Karlsruhe, 1991.

Nicol, G.T., Flex: The Lexical Scanner Generator, Free Software Foundation Report

1.03, February 1993.

Bunke H. and B. Haller, “A Parser For Context Free Grammars”, in M. Nagl (Ed),
Graph-Theoretic Concepts in Computer Science, pp. 136-150, Plenum Publishing
Company, Manchester, 1989.

Donnelly, C. and R. Stallman, Bison: The YACC-compatible Parser Generator, Free
Software Foundation Report 1.25, November 1995.

Uddeborg, G., 4 Functional Parser Generator, Technical Report 43, Dept. of
Computer Sciences, Chalmers Umiversity of Technology, Goteborg, 1988.

Narayan, P., Portability and Performance: Applications on Diverse Architectures,
Report TR-92-22, Department of Computer Science, University of Virginia, July,
1992.

19.

20.

21.

22.

23.

24.

25.

26.

57

Tanenbaum, S., P. Klint, and W. Bohm, “Guidelines for Software Portability”,
Software-Practice and Experience, Vol. 8, No. 6, pp. 681-698, 1978.

Dahlstrand, J., Softiware Portability and Standards, Ellis Horwood, Chichester, 1984.

Mooney, J.D., Issues in the Specification and Measurement of Software Portability,
Report TR 93-6, West Virginia University, Morgantown WV, 1993.

Dale, E., J.S. Chall, “A Formula for Predicting Readability”, Educational Research
Bulletin, Vol. 27, pp. 211-233, February 1988.

Barry, J.G., "Computerized Readability Levels", IEEE Transactions on Professional
Communication, Vol. 23, No. 2, pp. 88-90, June 1980.

Cheaito, R., M. Frappier, S. Matwin, A. Mili, and D. Crabtree, Defining and
Measuring Maintainability, Technical Report, Dept. of Computer Science, University
of Ottawa, March 1995.

Leveson, N.G. and P.R. Harvey, “Analyzing Software Safety”, IEEE Transactions on
Software Engineering, Vol. SE-9, No. 5, pp.155-195, 1983.

Ada Home Design Team, Ada Grammar and Parsing, 1998, http://www.adahome.

com/Resources/refs/grammar.html

