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ABSTRACT

In today’s world of computing, it is hardly possible to do without graphics, im-
ages and sound. Uncompressed data needs very large amount of physical storage
space and transmission time. The availability of storage media and transmission
channels are limited. Transmission of images requires high bandwidth or expen-
sive cables. JPEG is the current standard for compression and decompression of
still, monochrome and color images. The purpose of this study is to develop a
compression algorithm to reduce time in image transmission. The C/C++ lan-
guage is used for implementation. As in JPEG, Discrete Cosine Transform (DCT)
is used as coding transformation. Static Huffman Tree is constituted for our re-
quirements. As a case study, Windows Bitmap (BMP) files are used. The encoded

data is formed as binary file and after transmission it is stored as it was before.
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Giintimiiz bilgisayar diinyasinda, grafikler, goriintiiler ve sesler olmamas: miim-
kiin degildir. Sikigtirtlmamig veri bityiik miktarda fiziksel depolama alani ve uzun
stireli iletim zamanina ihtiyag duyar.Bununla beraber depolama ortamlar1 ve
ileti-sim kanallar1 siirlidir. Goriintii iletimi yliksek bant genisligi ve pahali
iletisim ortamlarn (fiberoptik vs.) gerektirir. Durgun, tek renkli yada renkli
goriintiiniin sikig-tirnnlmasinda JPEG standardi kullanilmaktadir. Bu ¢aligmanin
amac1 veri iletiminde zamandan kazanmak ig¢in bir sikigtirma algoritmasi
gelistirmektirBu c¢alismada C/C++ programlama dili kullanilmustir. JPEG
standardinda da oldugu gibi kodla-ma swrasinda Ayrik Kosiniis Doniigiimii
kullanilmigtir. Bizim ihtiyaglarimiz igin Static Huffman Agaci uygun goriilmiistiir.
Algoritmanin uygulanmas: sirasinda Windows Bitmap (BMP) dosyalan
kullamilmigtir. Kodlanmig veri binary (ikili) dosya formatinda iletilmis ve iletim

sonunda agilarak eski haline doniigtiiriilmiigtiir.
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CHAPTER 1

Introduction

A few years ago home computers were used primarily for text-based applications;
now, with the advent of digital still and movie cameras, we routinely expect to be
able to hold large collections of personal multi-media documents. This huge
amount of data is difficult to handle so we should use compression to gain physi-
cal storage. A second reason for the increase in the use of compression is the strict
boundedness of some communication channels. Storing images on computers and
transmitting them over the Internet, over local-area networks, and over the phone
lines without compression consumes huge amount of physical storage and
transmission time. Therefore, compression technology would obtain benefits in

decreased storage and transmission requirements.

Not only images but also document storage and transmission systems like fax
machines use some kind of image compression technology to compress the data.
Thus, no special communication link is required, as an ordinary twisted pair tele-
phone connection suffices. In this sense, pages can be stored in less space and
transmitted in less time. This study comprises the compression of images. Never-
theless, our algorithm can be applied with a few modifications to the other types

of documents.



The aim of this study is to compress image data and transmit it over the Internet
and decompress data in the receiver side. Thus the original image is taken and
after encoding, it is transmitted as a binary file to the receiver side. At the receiver

side, using the decoding algorithm the output file is formed as it was before.

There are various compression techniques that reduce the amount of data. For in-
creasing the amount of compression ratio, information loss is tolerated in the re-
ceiver side in our model. Thus a combination of lossy and lossless compression
techniques is used. These techniques that are used in this study are described in
the next chapter. Details of our method are given in Chapter 3. Results and discus-
sion are presented in Chapter 4 and conclusions based on this work are in Chapter
5. First appendix is about Windows Bitmap File Format that is used to test the al-
gorithm. The color scheme and representations are described in Appendix B. A

brief description of JPEG compression standard is stated in Appendix C.



CHAPTER 2

2.4.1 Image Concepts and Types

A digital image is represented by a two-dimensional array of samples. Each

sampled point is called a pixel that is given as:

x[n,m2] , 0 <n =N,,0 <np <N,

where N and N, are array sizes, #; is the row index, #; is the column index of the
pixel. The number of intensity levels can be represented is expressed as the
number of bits per pixel (bpp).
There are four types of images.These are

1. Binary images (represented by 1 bpp).

2. Computer graphics (generally represented by 4 bpp).

3. Grayscale images (generally represented by 8 bpp).

4. Color images (represented by 16 or 24 bpp).



2.4.2 Image Compression

Compression is a method that reduces the amount of space needed to store the im-
ages or amount of time necessary to transmit it. In other words, the mapping from
source symbols into fewer target symbols is referred to as compression. The trans-
formation from target symbols back into the source symbols is called decompres-

sion. It may represent the original information or a close form of the original.

2.4.3 Fundamentals of Image Compression

Redundancy: Some sources may deliver data that are represented with more bits
per pixel than is strictly necessary. This is called redundancy. The aim of this
study is to reduce the redundancies and yield a new representation with fewer bits

per pixel.

Fidelity: It is preferred that the decompressed image is the exact replica of the

original image. The fidelity is the measure of similarities.

2.4.4 Image Compression Techniques

A compression system consists of two distinct fundamental parts: an encoder and

a decoder as sketched in Figure2.1. The original image (source image) is fed into



the encoder, which creates a set of symbols from the input data. The encoded data
can be either stored in any storage device for future use or transmitted over the
channel. After transmission over the channel, the encoded data is fed into the de-

coder to generate a reconstructed output image.

Input —» Encoder |—» | Channel | —»| Decoder Output
Image Image

Figure 2.1 A general compression system model

Output image may not be an exact replica of original image. Thus the system may
be error free (information preserving) or lossy.

Let’s explain each part in Figure 2.1 in detail, starting from the encoder

Input

Symbol Compressed
Image —> P

Mapper | Quantizer |—» g 4. Data

Figure 2.2 Encoder

Encoder is responsible for reducing coding redundancies in the input image. It has

three main parts as shown in Figure 2.2.



1. The mapper transforms the input data into a format that is designed to
reduce the interpixel redundancies in the input image. This operation is
reversible and may or may not reduce directly the amount of data
required to represent the image. The mapper transforms the image into
an array of coefficients [5]. In this study, Discrete Cosine Transform
(DCT) Coding technique is used as mapper. It generates array of coef-
ficients, the array size is equal to input data. The generated array of

coefficients does not represent any image. Therefore, it is non-visual.

2. The Quantizer quantizes the array of coefficients that is produced by
the mapper. It reduces the amount of data required to represent the
image. Therefore, it is responsible for introducing distortion.
Increasing the values of quantization level may increase the amount of

compression. Hence it may distort the replica of the image.

3. Symbol Encoder creates a fixed or variable-length code to represent the
quantizer output. In this study, Huffman Coding is used as Symbol En-
coder. The Huffman Coding assigns the shortest code words to the
most frequently occurring output values, thus it reduces coding redun-

dancy.



The decoder performs the inverse operations of source encoder, as seen in Figure
2.3. It has to use the same model that encoder uses. If compressed data may not
affected by transmission or storing, the difference between input image and output

image will only arise from the coding model.

Compressed »| Symbol Dequantizer Inverse Output
Data Decoder Mapper Image

Figure 2.3 Decoder

Digital image compression can be classified into two categories: lossless and lossy
compression. Lossless compression is a method where in the identical source
image data can be reconstructed from the compressed data of the original image.
Lossy compression is a method where in the decompressed image is not the exact
replica of to the original image but close to it. If the information loss can be toler-
ated at the receiver site, lossy compression may be employed. It is well known
that the eye can tolerate certain image imperfections. The lossy techniques pro-
vide higher compression ratios. Therefore, lossy techniques are more often
applied to image and video compression than lossless techniques. Let’s explain

lossless and lossy compression in details.



2.4.1 Lossless Compression

In lossless compression there are various models. Some of these are:

Lossless Predictive Coding (Differential Pulse Code Modulation

Model)

It is time domain coding method that is based on eliminating pixels with a predic-
tion rule; a pixel value can be predicted from the previous pixel values. If the new
information of a pixel is defined as the difference between the actual and pre-
dicted value of that pixel, the prediction method is called Differential Pulse Code

Modulation (DPCM).

If it is assumed that the data is coded from left to right, the actual value may be

predicted from the value of the left sample as shown in Figure 2.4.

Input - S
ymbol
Imag /|—>f—>*> Encoder >

Predictor || Nearest
Integer

a. DPCM Encoder



vy

Symbol |
| Decoder + ) Decompressed
+ Image

Predictor

b. DPCM Decoder

Figure 2.4 A lossless predictive coding model.

Predictive coding plays an important role in image compression standards such as

JPEG, JBIG and MPEG due to its compression efficiency and its simplicity [6].

Run-Length Coding

This is another type of time domain coding method. If there are sequences of re-
peated pixel this coding is proved to be useful. For example if an image has exten-
sive background, it will have an extensive correlation among neighboring pixels.
There will be sequences of repeated pixels. Run length coding uses a count num-

ber to replace a sequence of repeated pixels.



This technique is demonstrated in Figure 2.5:

Digital Image Run-length coding results
$5$55553555555553558 208
$55555555**$$555555S 9$2*9%
$$$SFFH A **EFF55SS 7$2%272*7$
$EFFF* ¥ AANAAGEEES 582%672*5$
$EFEFHEAMAMMAXXEEESS 582%6"2*5%
$EFPHAAMAMANIEGETES 582%672*5$
$$FF*AANANMNAEAGEEES 582%6"2*5%
$$S$FG*HA**FEFTESS 78$2%*272*7$
$$5555555**$$555555S 9$2*9%
$5355555553555555588 208

Figure 2.5 Example of run-length coding for a digital image represented by

the source symbols {$, *, *}.

Huffman Coding

Instead of using fixed number of bits per pixel, statistically most common sym-
bols are encoded using fewer bits than less frequent symbols. D. A. Huffman [7]
developed a coding technique that produces the shortest possible average code

length given the source symbol set and associated probabilities.

10



A Huffman code may be obtained using binary tree with branches assigned the
values 0 or 1. The top of the tree is called root node, and other points are called

branch node and leaf nodes.

The Huffman algorithm

The Huffman coding may be formed using following steps [6-22]:
Step 1: List the probabilities of the symbols according to frequency in ascending

order. Each character is now a leaf node of a tree.

Step 2: Take two nodes with the two smallest frequency weightings and generate
a new node (branch nodes), which is the sum of these two frequency weightings.
Remember the weights of the two nodes chosen must be smaller than the combi-

nation of any other possible choices.

Step 3: Mark the branch of left leaf node as 0 and the branch of its right leaf node

as 1.

Step 4: Update the node set by replacing the two nodes with the two smallest
probabilities for the newly produced node. If the node set contains only one node,

quit. Otherwise go to Step 2.

Let’s take any text as an example to prepare a Huffman Code. In this hypothetical

example if the frequency of occurrence of each character is assumed to be:

‘A’and ‘B’ =0.25, ‘C’and ‘D’=0.14, °‘E’)’F’,‘G’, ‘H’=0.055

11



By using steps described above, let’s prepare Huffman Tree:

0.055

0
0.22
1 0
F G
0.055 0.055

0.47

—>, Root Node

0
Branch
.53 —P> NOde
1 0 1
A B .28
025 025 0
C
1
I_ 0.14
H Leaf Node
0.055

Figure 2.6 Huffman code assignment procedure

0.14

From the tree shown in Figure 2.6, the most commonly used letters in the text A

and B require only 2 bits, less commonly used values require 3 or 4 bits. A may

be represented by 01. The binary representation of the other letters are :

A=01

B=10

C=110

D=111

E=0000

F=0001

G=0010

H=0011

12



To illustrate, if the string ‘AAACCF' is taken, the Huffman code of the string will

be 0101011101100001 (20 bits).

If each character requires 8-bits, the string above would require at least 6 * 8 =48

bits. About 50% compression is achieved.

Once the code has been created, coding and decoding is accomplished in a simple

look-up table.

2.4.1 Lossy Compression

Predictive Coding

In this technique, a quantizer is added to the model introduced in Lossy Predictive
Model. Prediction error appears that establishes the amount of compression and

distortion. In this study, this type of coding is not mentioned.

Other Models

There are some other models such as block truncating, vector quantization, sub-
band, fractial coding etc. After January 1988 ISO (International Standard Organi-

zation) supported DCT model and applications of other models had been reduced.

13



2.4.2 Transform Coding

In this part, compression techniques that are based on the transform of an image
will be introduced. Transforms, generally integral transforms, are used primarily
for the reduction of complexity in mathematical problems. Differentials and
integrals may be replaced into algebraic equations whose solutions are more

easily obtained, by applying appropriate transforms.

A reversible, linear transforms (such as Fourier, Cosine, Wavelet transform) are
used to map the image into a set of transform coefficients. Transform coding
denotes a procedure, in which the image is subjected, prior to coding and trans-
mission, to an invertible transform, with the aim of converting the statistically

dependent image elements to independent coefficients.

Two-dimensional linear transformations are defined as

N, N,
P(my,mp)= Y. > F(ny,np)T(n,np;my,my)
n,=1n,=1

where P is the transformed point, F is the pixel of the original image, T is the

transform coefficient.

An efficient transformation produces fewer correlated transform coefficients than
the original. The transformation process itself does not reduce the data; it prepares

data such that the quantization process can efficiently carry out compression.

14



In transformation, images are divided in subimages so that redundancy adjacent
subimages are reduced to some acceptable levels. n, subimage dimension, is

power of 2. The most popular subimage sizes are 8 by 8 and 16 by 16.

Subimages are transformed and encoded as explained in Section 2.4. The
encoding and decoding operations are shown in schematic form below. The For-
ward Transform takes place of the mapper in Figure 2.2, and also inverse trans-

form takes the place of inverse mapper.

Construct
Input n”(‘): a Forward . Symbol Compressed
&niie)_’ subimages P transform [P| QUANHZT 1P| encoder [P image

(a) Encoder of Linear Transform

(a)
Merge Input
Compressed Symbol Inverse D i n*n _p Image
image decoder > transform P Dequantizer 5 subimage (N*N)

(b) Decoder of Linear Transform

Figure 2.7: A transform coding system: (a) encoder, (b) decoder

Transform selection depends on the amount of reconstruction error that can be

tolerated. There are various transformation techniques:

15



2.5.1 Fourier Transform

The discrete two-dimensional Fourier transform of an image is defined as

1 NS ~ 2
Fluv)=— . > Zf(j,k)exp{ v (uf+vk)}
j=0k=0

where f(j,k) is the input array, i=+v-1,u,v,/, k=0, 1, N-1,
the indices (u, v) are called spatial frequencies of the transformations and the dis-

crete inverse transform is given as:

1N —-1N-1
e > 2 Fl, V)eXp{—(uJWk)}

u=0v=0

The explanation of the parameters is given above.

2.5.2 Discrete Cosine Transform (DCT)

The Discrete Cosine Transform has been selected throughout this thesis. Al-
though, reasons of this choice will be mentioned later, briefly it can be said that

DCT is fast and efficient in real arithmetic.

Derivation of DCT from Fourier Transform

The real part of the Fourier series of any waveform is cosine terms of the series

[8].

16



Iff (G, k) is real and symmetric about the point j =-1/2, k =-1/2

N-IN-1
F =23 3 /00 [%( j %ﬂ [% o %ﬂ

j=0k=0

The 2-D forward cosine transform (FDCT) is defined to be normalized version of

the equation above.

N-IN-1 ,
Fu,»)=Cw)Cm Y. Y f(,k) COS( )+ 1)uﬂjcos( 2k + DWZJ
i=0k= 2N IN
Jj=0k=0
and 2-D inverse cosine transform (IDCT) is defined as
N-IN-1 )
U= Y Cu)CHF@,v) COS[@J + l)uﬂ) COS( 2k + 1)wz)
o= 2N 2N
u=0v=0
L U= 0

where C(u) = \/g

1-D DCT is defined as

N-1 .
Fu)=C@w) ¥ 1)) cos(ﬂ%j
j=0

f()= 2 C@)F(u)cos

u=0

nl ((Zx + 1)u7r]
2N

The implementation of the direct 2-D DCT requires much more effort than that of

the separable 2-D DCT.

17



Row-Column Method:

Both 2-D Forward Discrete Cosine Transform (FDCT) and Inverse Discrete Co-
sine Transform (IDCT) are separable transformations, which means that they can
be obtained by first performing 1-D FDCT/IDCT on the rows, then performing 1-
D FDCT/IDCT on the columns [19]. This method is called row-column method or

indirect method.

The general block diagram is shown in Figure 2.8

— |/ 1D —»| Transpose (f 1-D —>
FDCT/IDCT AN FDCT/IDCT

Figure 2.8 2-D FDCT/IDCT using row-column method

Various fast algorithms have been reported for DCT in the literature [21]. The aim
of these algorithms is to reduce the number of additions and multiplications.
These algorithms are usually taking advantage of the symmetry in the cosine basis
functions, and the computation complexity is fixed for all input data. Since multi-
plication requires more hardware and computation time than adding, fewer multi-

plication imply more power.

18



A Fast Cosine Transform Algorithm (Chen’s Algorithm)

Chen’s fast algorithm is the most widely used DCT/IDCT algorithm. It is based

on the symmetry in the DCT / IDCT matrix [10-18].

If these 1D-DCT is represented as matrix, it will be a matrix as X = A . x where is
the transformed data, A is the matrix of transformation coefficients and x is the

matrix of source data values. It can be written as following:

Xl ft 11 1 1 1 1 17 [x0)]
XM b d e g -g -e —-d -b||x()
X(2) c f -f -¢ -¢c -f f ¢ x(2)
X(3) d -g -b —-e e b g -—d||x(3)
X(4) - a —-a —-a a a -a —-a a x(4) (Eq-2.1)
X(5) e -b g d -d -g b -e]|l|x(5
X©))| |f -¢ ¢ —-f —-f ¢ -c [ |]|x(6)
| X(7)| |g -e d -b b -d e -—g]||x(7)]

where the coefficients a, b, ¢, d, e, f, g are given as:
[abcdefg]=1/2[cos (7/4) cos (7/16) cos (7/8) cos (37/16) cos (57/16) cos

(3/8) cos (77/16)]

19



Since the even rows of the matrix are even-symmetric and odd rows are odd-

symmetric, (eq.2.1) can be written as:

xo] [1 1 1 1 1 1 1 17[x0]
X(4) a —-a a —-a a -a a —al||x(2)
X(2) c —-f —-¢c f ¢ —-f —c f||x(4
X@)| |f ¢ -f —¢ f ¢ —=f =c||x(6)
XD |6 e -g d -b -e g -d||x
X(5) e g -d b -e —-g d -b||x(5
X(3) d -b e g -d b -e —-g||x3)

X7 |g d b e -g —-d -b -e]| |x(1)]

By dividing this matrix into four matrix as shown below,

xo] [t 1 1 1|1 1 1 17][x0]
X(4) a —-a a -ala -a a -a||x(?2)
X(2) c -f —-¢c flc¢ —-f —-c f|]|x(4)
X(6) _ f ¢ —-f —-cl|l f ¢ —-f -c||x(6) (Eq.2.2)
X1 b e —-g d|-b —-e g -d||x(D
X(5) e g —-d b |-e —-g d -b||x(5
X(3) d -b e g |-d b -e —-gj||x()
X)) |g d b e |-g —-d -b -e] | x(1)]

A A
It can be easily represented as {B B} matrix thus (eq.2.2) can be rewritten as

following:
X(0) 1 1 1 1 x(0) + x(7)
X)) e f -f -c||x(1)+x(6)
X(4) la -a -a a x(2) + x(5)
X(6) f —c ¢ —f1]ixB3)+x(4)

20



XQ)

X(7)

Similarly the 1-D IDCT can be rewritten as follows:

[Y(0)]|
Y(l)
Y(2)
Y(3)]

Y(D)]
Y(6)
Y(5)

(Y (4)

b d
X@3)| |d -g -b —e
X(5) le -b g

g —e

Q QR & & 8

Q

Q

e

d

gl

d
-b

x(0) — x(7)
x(1) — x(6)
x(2) — x(5)
x(3) — x(4)

(X (0)]
X(2)
X(4)
| X(6) ]
X (0)]
X
X(4)

| X(6)]

+
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X(3)
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LX(7)
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X(3)

X(5)
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CHAPTER 3

Methods and Discussion

In this chapter, the algorithm that is proposed will be discussed. Since our aim is
to compress image data and transmit it over a network channel, compression tech-
niques are examined. There are some other compression techniques that we did
not mention in this study. We preferred lossy compression techniques to increase
the compression ratio. Of course it will cause some distortion, which means that
output image will not be the exact replica of original image. This information loss
is tolerated because the aim of this algorithm is to transmit data over Internet thus
to increase compression ratio, we tolerated the imperfections that eye can tolerate
some imperfections. As stated earlier, Discrete Cosine Transform is used as a

lossy compression model. Some of the reasons can be listed as following:

¢ Since DCT is input independent, DCT provides a good compromise
between information packing ability and computational complexity. In
fact, the properties of DCT have proved to be of such practical that it has
become an international standard as the Joint Photographic Experts Group

(JPEG) image compression method.

22



The DCT has become the foundation of wide applications in image/video
processing. It has become the heart of many other international standards

such as H.26x, and the MPEG family [2]-[9].

When compared to DFT (Discrete Fourier Transform), DCT reduces some
of the problems, which arise in the application of DFT to a data series.
Naturally, DFT is applied to sampled data, and so the transform domain
has a “repeat” spectrum. Sampling rate should be such that aliasing does
not occur. Transform coefficients are also sampled. Therefore the DFT
representation is not that of isolated segment of the input, but is of that
sample periodically repeated. Such a waveform contains severe disconti-
nuities due to the level difference between start and end of the repeated
segment as shown in Figure 3.1. However, in the case of DCT the segment
is made even symmetric before transforming. The start and end of the new,
even symmetric segment is at the same level [5]. This fact is, also, the rea-

son why even sized DCT is preferred.
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Figure 3.1 The periodicity implicit in the (a) DFT and (b) DCT

Applying DCT we have an array of coefficients that has many 0 values. After
transform coding, we applied run-length coding. This method is lossless and it is
appropriate for the images that have sequences of repeated pixel. Thus run-length

is suitable in this stage of our algorithm.,

The third stage of our algorithm is Huffman Coding; it is another type of lossless
compression. As mentioned in Chapter 2, an appropriate Huffman tree must be
formed. We examined some different pictures and concluded that after the steps
mentioned above we have many Os and small numbers, and few big numbers.
Thus we prepared a table, which has fewer bits for 0 and other numbers, more bits

for big numbers.
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The steps of our algorithm can be given as:

Encoder
e Examining the Properties of Source File
e Transform Coding
e Quantization
e Zigzag Scan, Run Length Coding

e Huffman Coding

Decoder

o Reversing all the steps above

Examining the Properties of Source File

In this study, Windows Bitmap (BMP) files are used as an input file and output
file to test the compression algorithm. For more details about the structure of
BMP files, refer to Appendix A. In BMP, the first 58 byte of the source file is a
header (it includes BMP file header and information header). This header pre-
serves the information about the images such as width, height, resolutions, num-

ber of colors, etc.

BMP uses either color indexes or RGB if it is not monochrome. If BMP is color

indexed, it means that it uses a color table. Each entry in his color table includes
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red, green and blue intensities for a color. Thus, a 4 bytes palette entry is needed
for each color (for more information about color indexes refer to Appendix B).

Therefore, table size will be 256*4 = 1024 byte after information header.

If the BMP is color indexed (in another word, 8 bpp BMP), the header and color
table, which are 1024 + 58 =1082 bytes, are written to the output without any
process. If it is in RGB format (24 bpp), only the first 58 byte of the input image
are written to the output file. If you apply compression to the header file, it will

cause an important damage.

Transform Coding

As an example to show the loss of data in DCT, the numbers between 1, 64 is
taken as the elements of an 8 by 8 matrix, shown in Table (3.1.a). DCT of these
numbers are calculated as Table (3.1.b), IDCT of calculated values are shown in

Table (3.1.c).
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1.000
9.000
17.000
25.000
33.000
41.000
49.000
57.000

260.000
-18.221
0.000
-1.904
0.000
-0.568
0.000
-0.142

1.000
8.996
17.002
24.997
33.002
40.997
49.003
56.999

2.000 3.000
10.000  11.000
18.000  19.000
26.000 27.000
34.000  35.000
42.000  43.000
50.000 51.000
58.000  59.000

-145.775  0.000

0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000

4.000
12.000
20.000
28.000

36.0000
44.000
52.000
60.000

-15.237
0.000
0.000
0.000
0.000
0.000
0.000
0.000

5.000
13.000
21.000
29.000
37.000
45.000
53.000
61.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

6.000
14.000
22.000
30.000
38.000
46.000
54.000
62.000

(a) Original image data

-4.544
0.000
0.000
0.000
0.000
0.000
0.000
0.000

(b) After 2D Cosine Transform

1.999 3.000

9.996 10.996
18.002  19.003
25996  26.997
34.002  35.003
41.996  42.997
50.002  51.003
57.999  59.000

3.999
11.996
20.002
27.996
36.002
43.996
52.003
59.999

5.000
12.996
21.003
28.997
37.003
44.997
53.003
61.000

5.999
13.996
22.002
29.996
38.002
45.996
54.003
61.999

7.000
15.000
23.000
31.000
39.000
47.000
55.000
63.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

7.000
14.997
23.003
30.997
39.003
46.997
55.003
63.000

(c) After 2-D Inverse Discrete Cosine Transform

Table 3.1. Example of DCT / IDCT
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8.000
16.000
24.000
32.000
40.000
48.000
56.000
64.000

-1.141
0.000
0.000
0.000
0.000
0.000
0.000
0.000

8.000
15.996
24.002
31.997
40.002
47.997
56.003
63.999



Table 3.1 shows that after cosine transform and inverse transform, there is not

much difference between input and output data. It can be said that if data are

rounded, there is no difference between input and output data.

Notice that 64 coefficients transformed by DCT, shown in Table (3.1.b) have

many 0 values.

Quantization

After 64 coefficients came into existence, the quantization table (Table 3.2.a) is

represented as:

16
12
14
14
18
24
49
72

11
12
13
17
22
35
64
92

16.25 -12.14794

-1.656537
0
-0.11904
0
-0.014202
0
-0.00234

OO O0OO0OO0OOoO

)

10
14
16
22
37
55
78
95

(@)

16 24 40 51 61

19 26 58 60 55
24 40 57 69 56
29 51 87 80 62
56 68 109 103 77
64 81 104 113 92
87 103 121 120 101
98 112 100 103 99

Quantization Table as in JPEG

0 -1.08841 0 -0.189362 0 -0.015848

OO O0OO0OOO0OOo
OCOO0OO0OOCCOO
OO0 OO O0OO0OO0
OO OO0 O0OOo
[=NeNeNeNolNellol
OO OOOO0OO0O

transformed_data / quantization_value
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16 -12

QOO O 00O
OO O0OOCOO0OO0o
COO0OO0OO0OOO0OC0
OO OO0 OC O~
OO O0OO0O0O0O0O0OOo
OO O OO0 OO
OO0 OO0 O0O0O0O

(c) Rounded (transformed data / quantization value)

Table 3.2 Quantized DCT Coefficients

It is calculated with the equation that was given before

Fy(u,v) = round {%{ﬂ

where F(u,v) is the DCT coefficient, Q(u,v) is quantization coefficient. It is

responsible for the loss of compression.
Zigzag Scan, Run Length Coding

The Zigzag scan table, which JPEG uses, is used to sort the data.

Table 3.3 ZigZag Scan Table as given in JPEG standard
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After zigzag scanning, data will be 16 -12 -2000000 -10...0
All data after —1 are 0s. Run length of zeros can be calculated by subtracting the
number of data, other than 0, from 64. So the zigzag scan data will be [16 -12 -2 0

00000-1EOB]

Huffman Coding

The default JPEG Huffman Codes for luminance can be formed from pages 396-

398 on [5].

Coefficient Categories and Coefficient Coding Tables used to decrease number of

bits in this study are as following:

Range Category
0 0
-1 1 1
3,2 2,3 2
T4 4,...,7 3
-15,...,-8 8,...,15 4
-31,...,-16 16,...,31 5
-63,...,-32 32,...,63 6
-127,...,-64 64,...,127 7
-255,...,-128 128,...,255 8

Table 3. 4 Coefficient Coding Categories
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Range in Table 3.4 is data range. Since our data type is signed character, our data
are between 0-128. We assign a Category to each data. For example if we have the

data 14, Category will be 4.

Category Base Code Length Category Base Code Length

0 010 3 4 101 7
1 011 4 5 110 8
2 100 5 6 1110 10
3 00 5 7 11110 12

Table 3.5 Appointing Base Codes and Length for Categories

If the Category is 4, from the Table 3.5, our base code will be 101 and length will
be 7. 14 can be expressed as 00001110 in binary. Thus we may express 14 as

1011110 (7 bits).

The most commonly used value requires only 3 or 4 bits, less commonly used

values requires 8 or 10 bits.

As an example of sequence,
[16,-12, -2,0,0,0,0,0,0, 1, EOB] (11 byte) will be
[1011000, 1010011, 10001, 010, 010, 010, 010, 010, 010, 0110, 111110] (47 bit)

code word of EOB is defined as 111110.
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Decoder

Reversing all the steps above

Results after dequantization is shown below, the distortion can be seen by com-

paring Table 3.6 with Table 3.1.b.

OO OO OOOO0O

Table 3.6 Dequantization

OO OOOO0OOo

OO O0OO0OOCOO0OO0O

[=NeNololoelNolNolNo]

OO O OOO0OO0OO0O

OO OOOO0OO0

Results after dequantization is shown below, the distortion can be seen by com-

paring Table 3.7 with Table 3.1.a

1.161

7.500
16.472
24.592
31.778
39.898
48.870
55.209

1.741
8.080
1.705
2.517
3.235
4.047
4.945
5.579

Table 3.7 Inverse DCT after Dequantization

2.815

9.154
18.126
26.246
33.432
41.552
50.524
56.863

4.216
10.555
10.528
27.647
34.833
42.953
51.926
58.265
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5.734
12.073
21.046
29.166
36.352
44,471
53.444
59.783

7.136
13.475
22.447
30.567
37.753
45.873
54.845
61.184

8.209
14.548
23.521
31.640
38.827
46.946
55.919
62.258

8.790
15.129
24101
32.227
39.407
47.527
56.499
62.838



CHAPTER 4

Results And Conclusion

For testing the algorithm, an aquarium image, as shown in Figure 4.1, is used. It is
a 480 by 224, 24-bit BMP image. Original size of this image is 322560 bytes.

Compressed size is 89634 bytes. Decompressed image is shown in Figure 4.2.

Figure 4.1 Aquarium image (24-bit BMP)

Figure 4.2 Decompressed Aquarium image
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Compression ratio is changing from image to image. It is dependent on image. To

illustrate it, another image that is not much different from first one is examined. If

the image as shown in Figure 4.3 is given;

Figure 4.3 Aquarium image 2

Original size of Figure 4.3 is equal to the image in Figure 4.1 (322560 bytes).

Compressed size is 91450 bytes.

Thus we can calculate the compression ratio as following but we can’t say that it

is a fixed ratio. It differs from image to image.

Compression Performance:

Compression Ratio (Cr) for Figure 4.1 may be calculated as

(322560 — 89634)
322560

=0.72=72%
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If we use 8 bpp BMP, it means we use color indexed BMP. The compression re-

sults are shown in Figure 4.4.

#\

Figure 4.4 Example for loss of DCT/IDCT for 8bpp BMP

Since 8 bpp BMP uses color table, index number 11 is much different from index
number 12. So the distortion of the image is increasing. Hence using RGB format

(24 bpp) image is much better.

As a conclusion, our algorithm is running under BMPs but true color BMPs give

better results.




Future Work

In the past few years, much effort has been spent to provide visual communication
over the existing telephony network. The telephone lines were designed for
transmitting vocal data only, so the bandwidth is bounded. This means that com-
pression is an important part of communication. The speed and the efficiency of
the compression algorithms are considerable. Till now, an algorithm for compres-
sion of still color images is worked out. The next step of this study may be ex-
tended as video coding. The main idea of video coding as in H.261 (video coding
standard published by the ITU (International Telecom Union) in 1990) is based on
inter-frames and intra-frames. The term intra frame coding refers to the fact that
the various compression techniques are performed relative to information that is
contained only within the current frame, and not relative to any other frame in the
video sequence. In this stage of coding our algorithm may be applied. And then
inter frame coding which refers to pseudo-differences from previous frame (pre-
dicted) can be implemented. In video coding, the speed of the algorithm is more
important than still image coding. Thus a new implementation may be done by
using DSPs (Digital Signal Processors). Multiplication is carried out faster whith
yhese boards than the computers. By adding a DSP in this project, a faster
algorithm may be worked out. Another implementation for making algorithm
faster may be parallel computing. Either computers or DSPs can be used for

parallel computing. It may cause a faster and efficient algorithm.
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APPENDIX A

BITMAP FILE FORMAT

BITMAP file format stores raster image data that is independent of the color
specification scheme used on any single hardware device. BMP is a native bitmap
format of MS Windows and it is used to store (virtually) any type of bitmap data.

Most applications running under MS Windows (MS DOS) and under other oper-

ating systems support read and write to BMP files.

Major Type of Data: 2D raster

Color Representation: Monochrome, Color lookup table, RGB

Data Organization: Sequential; 2D array of pixel values
Data Encoding: Binary
Data Compression: None, run-length

Resolution: Pixels per meter

Bitmap File Bitmap Info

Figure A.1 Data Organization
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Byte # Data Details
1-2 Must be ASCII text ‘BM’ File type should be BM
3-6 Physical file size ??:Zd g;b;:t;vgzﬁi
7-10 Reserved for future use Must be zero
11-14 Offset of bitmap data Stir;f:jtl;laf;tg:ta
Table A.1 Bitmap File Header
Byte # Data Details
1-4 Info Header Size Currently 40 bytes
5-8 Width of Bitmap In pixels
9-12 Height of Bitmap In pixels
13-14 Number of color planes Must be set to 1
15-16 Number of bits per pixel Valid choices are 1,4,8,24
0:No compression,
17-20 Type of Compression l:run length (8 bpp)
2:run length (4 bpp)
21-24 Size of image Bytes
25-28 Horizontal resolution Pixels/meter
29-32 Vertical resolution Pixels/meter
32-36 Number of color indexes Zero indi.cates all colors are
mportant
37-40 Number.of importapt colors for Zero indipates all colors are
displaying bitmap important
41 Blue color value Beginning color palette
42 Green color value
43 Red color value
44 Reversed for future use Must be zero

. Remaining color palette entries !

Table A.2 Bitmap Information Header
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4 bytes per palette entry, the number of entries is based on the per pixel value
above. Colors should be listed in order of importance. (It is usually best to sort to
colors in the color table and place the colors occurring with the greatest frequency
in the image first. This value can then be stored in Number of important colors

field in the bitmap info header. )

<-Endof Bitmap Data: The pixels are stored left to
bitmap
right within each row. The rows are stored
bottom to top. So image data is always dis-
played starting at the lower-left corner of the
Origin of
the bitmap screen.

A.1 Bitmap File Types

There are four BMP formats:
1-bit BMP data == each bit represents a pixel,
it is monochrome,
the most significant bit in byte is the first pixel value.
4-bit BMP data == each 4 bits in the bitmap array represents a pixel,
has a maximum of 16 colors
8-bit BMP data ) each byte represents one pixel,
has a maximum of 256 colors

24-bit BMP data —> three bytes represent one pixel,
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has a maximum of 16777216 colors
stored in blue, green, red order. (each byte represents the

relative intensities of RGB.)

Because land 8-bit images use palettes, the pixel values read from the BMP data
are index values into the palette that hold the actual pixel color. 24-bit images do

not use a palette; their pixel color data is stored directly in the image data.

A.2 Bitmap Compression

Bitmap data could be compressed using one of the three types of compression.
Type of compression used by the bitmap is specified in Bitmap Info Header

structure in the type of Compression member. It can be set to one of the following

values:

0. BI-RGB
This means that the bitmap is actually not compressed. 1 bpp and 24 bpp
bitmaps are always using this type of compression.

1. BI-RLES
The bitmap data is compressed using run-length encoded format for a 256
-color bitmap.

2. BI-RLE4

The bitmap data is compressed using run-length encoded format for a 16 -

color bitmap.
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APPENDIX B

COLOR

B.1 Color Scheme

In this scheme a color value represents an index into a table, not an actual inten-

sity. This table is named lookup table, color map, palette etc.

e Grayscale images use a single lookup table since they have only one inten-

sity value per pixel.

Palette
0 (255,0,0)
1 (255, 0, 10)
Pixel Value in File 2 (255, 10, 10)
1,2,8,44 3 | (200,0,0)
4 (200, 10, 0)
Program looks 5 (100, 10, 0)
in palette to 6 (50, 50, 50)
translate “8” - (0, 255, 0)
> 8 (100, 15, 0)
9 (150, 43, 0)

Figure B.1 An Example of Color Palette
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A reason for using color palette is to lower the memory requirements for a raster

image. For instance, the memory requirements for a raster image is

width*height*(bits/intensity)*(intensity/pixel)

8 bits per byte

Storage Need For an Image:

Bits/intensity Intensities / pixel Numb:;f zt’lgylt;si:l:eg(ieed Loy
1 1 32,768 =32 KB Black and White
1 262,144 = 256KB Grayscale
3 786,432 = 768KB Full color

An ideal color scheme would allow for a large range of color while reducing the

number of bits needed to represent each pixel’s color.

M=2" m: number of bits per color

M: possible colors

For BMP lookup table size is:

8 bits represents each pixel so 22=256 colors

m=24, M=2**=16,777,216 256 colors out of possible 16,000,000
4 bytes per color*256 colors= 1024 bytes in length.

For more information about BMP, refer to Appendix A.
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True Color

Human eyes can discriminate between 22* (16,777,216 colors), although many
fewer colors can be perceived simultaneously. The actual number certainly varies
from person to person and under different conditions of illumination, health, ge-
netics, and attention. A device capable of matching or exceeding the color-re-
solving power of the human eye under most conditions is said to display true-

color.

BMP format supports both color lookup tables and true color.

B.2 Color Representation

There are many types of color images. The trichromatic theory tells us that,
ideally, three arrays of samples (three components) should be sufficient to present

a color image. [1]

In general pixels in a color image have information from the samples of each
component, and the color image is comprised of the two-dimensional arrays of the

component samples. [2]

RGB is one of the types of a color representation that requires three independent

values. Other representations are available that use color components that are
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closely related to the criteria used to describe color perception: brightness (inten-
sity-whether it is white, gray or black), hue (color- red, green, blue, etc.), and

saturation (vivid- strong, pastel).

Varying intensities of light that contain only illumination and no hue are said to be
grayscale colors. Grayscale colors can be described by a single value that repre-
sents the intensity of light. The physics term luminance is often used to describe
light’s intensity, as is the psychological term brightness. Luminance and bright-
ness are not equivalent terms, but from a data representation standpoint they are

typically stored as single numerical value [3].

One component is for luminance and others are related to hue and saturation are

called luminance-chrominance representations. The human is less sensitive to

rapid changes in the hue and saturation properties of the image than to intensity

changes.

B.3 Linear Color transformations

YUV

An image represented in RGB color, can be converted into YUV using the fol-

lowing transformations:
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The luminance (Y) can be calculated as:
Y=03R +0.6G+0.1B

where R is Red, G is green, and B is blue value.

The chrominance is defined as the difference between a color and a reference

white at the same luminance:

V=R-Y

U=B-Y

where V: color ranging from red (¥ > 0) to blue-green (¥ < 0), U: color ranging

from blue (U < 0) to yellow (U < 0)

If R = G = B, the color differences are zero so it has no chrominance, it produces

gray.

YIQ

It uses the same Y coordinate as the YUV

I1=0.74V-027U

0=048 V+041U
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YcbCr

It uses the same Y coordinate as the YUV whereas U and V are scaled and zero-

shifted.

Ch=(U/2)+0.5

Cr=(V/1.6)+0.5

It may be represented as:

Y 0.299  0.587 0.114 (R
Ch|=|-0.169 -0.331 05 |G
Cr 0.5 -0419 -0.0813)\ B
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APPENDIX C

JPEG Compression Standard

JPEG (Joint Photographic Experts Group) is the name of ISO (International
Standardization Organization) working group. The JPEG standard is the first
international digital image compression standard for still images including both

gray scale and color images.

JPEG standard defines four operation modes: sequential DCT based mode,
sequential lossless mode, progressive DCT based mode, and hierarchical mode

[6]. In this study, sequential DCT based mode will be examined.

C.1 JPEG Encoder

: Entropy
» FDCT ¥ Quantizer 4,‘ Coding > dC;tzlpressed

t f

Table Table
Specification Specification

8*8 blocks
v

Figure C.1 DCT based JPEG encoder
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The original image data, in the range [0, 2°-1] , are shifted to sign in the range
[-27/-1]. For a grayscale image, where p = 8, the original image data in the range

[0, 255], are shifted in the range [-128, +127].

The input image samples are grouped into 8*8 blocks, and each block is
transformed by forward DCT (FDCT) . After transformation 64 values are
obtained that are called as DCT coefficients. The top-left value is referred to as

the DC coefficient, other 63 values as the AC coefficients.

In the next step, all 64 DCT coefficients are quantized using a 64-element

quantization table, shown in Table C.1.

In the JPEG system the quantized DCT coefficients are always integers, as are the
quantization values. The integer representation is chosen such that 8-bit precision
image samples to 11 bit-precision quantized DCT coefficients for quantization
values of 1. Consequently, for 8 bit precision input samples, a quantization value

of 16 produces a quantized DC coefficient with 7-bit precision (128 levels)[2].

16 11 10 16 24 40 51 61
12 12 14 19 26 S8 60 35
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 717
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

Table C.1 Typical Luminance Quantization Table

48



The amplitude of the coefficients are reduced by this step, it contributes little to
the quality of the image, and it increases the number of zero-value coefficients. It

discards information, which is not visually significiant.

The quantization is performed as:

Fy(u,v) = round {%}

where F(u,v) is the input image data, Q(u,v) is quantization coefficient.

After quantization, coefficients are ordered into the “zig-zag” sequence, as shown

below.

Figure C.2 Zigzag Scan

The zigzag scan places low-frequency quefficients ,which are more likely to be

nonzero, before high-frequency coefficients. The next step will be entropy coding
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will be entropy coding and it facilitate entropy coding. This is confirmed by the

experiment presented by [2].

The DC coefficients are coded using the predictive coding techniques as

illustrated in Figure C.3
DCi-l DCi
DCi
J _J L Previous
sample
block;.1 block; DCi-1

Figure C.3 Predictive Coding for DC coefficients

There is usually a strong correlation between the DC coefficients of adjacent 8*8
blocks thus the predictive coding is used for DC coefficients. Either Huffman
Coding or Arithmetic Coding can be used for predictive coding. In this thesis,

Huffman Coding is used.

C.2 JPEG Decoder

Entropy .
dC:;npressed —)‘ Coding —p{ Quantizer |—3p DCT |

t f

Table Table
Specification Specification

8*8 blocks

v

Figure C.4 JPEG Decoder
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All steps from encoding process are inversed and implemented in reverse order,as

illustrated in Figure C.4.

The dequantization is implemented as

F(u,v) = F, (u,v)* Q(u,v).
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