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ABSTRACT

NUMERICAL SOLUTIONS OF ORDINARY DIFFERENTIAL
EQUATIONS

Sibel Cevik
M.S., Department of Mathematics and Computer
Supervisor: Prof. Dr. Kenan Tasg

June 2003, 65 pages

Since ordinary differential equations are useful in modelling the behavior
of many physical processes, methods of solution for these equations are of
great importance to engineers and scientists. Even though well-known ana-
lytical techniques can solve many important differential equations, a greater
number of physically significant differential equations can not be solved using
these techniques. Fortunately, the solutions of these equations can usually be
generated numerically.

There are many methods for finding approximate solutions to differential
equations. Throughout the thesis, numerical techniques for ordinary differen-
tial equations are considered. In the first chapter, basic concepts which are
going to be used are given. Second chapter contains numerical methods, all
of which do not generate exact solutions, only approximate ones. Finally, in
the last chapter a new numerical integration technique inspired by the Runge-
Kutta method to solve the initial value problem is given. The method pre-
sented adds higher order derivative terms to the Runge-Kutta stage equations
resulting in a higher order method without increasing the number of stages.

Keywords: Ordinary Differential Equations, Numerical Analysis, Runge-Kutta
Method. )
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ADI DH‘ERENSIYEL“D];:NKLEMLERTN NUMERIK
COZUMLERI

Sibel Cevik
Yiiksek Lisans, Matematik-Bilgisayar Boliimit
Tez Yoneticisi: Prof. Dr. Kenan Tag

Haziran 2003, 65 sayfa

Diferensiyel denklemler, bircok fiziksel olay1 modellemede kullamldigindan,
bu denklemlerin ¢6ziim metotlar1 fizik ve miihendislik gibi alanlarda ¢ahigan-
lar i¢in biiytik 6nem tagimaktadir. Bilinen analitik tekniklerle bir¢ok denklem
¢oziilebilmesine ragmen, 6nemli sayida fiziksel uygulamalar i¢in bu metotlar
yetersiz kalmaktadir. Boyle denklemler ancak niimerik metotlarla ¢oziilebilir-
ler.

Diferensiyel denklemlerde yaklagik sonug bulan bir¢ok metot bulunmaktadir.
Bu tezde, ttim bu ntimerik metotlar ele alinmigtir. Birinci bsltimde, tezde kul-
lanilacak temel kavramlar, ikinci béliimde ise; denklemlerin kesin sonuclarmi
degil, ancak yaklagik sonuglarmiveren niimerik metotlar verilmistir. Son béliimde
ise Runge-Kutta metot baz alinarak geligtirilmis baglangic deger problemlerini
¢bzen yeni bir metot incelenmistir. Bu metot, Runge-Kutta metoduna, iglem
sayisini  arttirmadan, ytiksek mertebeden tiirevler eklenerek elde edilmigtir.

Anahtar kelimeler: Adi diferensiyel denklemler, Niimerik analiz, Runge-Kutta
metot.
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CHAPTER 1

INTRODUCTION

1.1 Ordinary Differential Equations

An n-th order differential equation has the form

y™(@) = Flz,y(2),¢ (@), -..,y" ()] (1.1)

where y*) = d*y/dz*. Here y is the dependent variable, and x is the inde-
pendent variable. The order of the differential equation is defined as the order
of the highest derivative appearing in it.

Equation (1.1) is a linear differential equation if F is a linear function of y
and its derivatives. Formally, a linear differential equations may be written as

Ly(z) = f(z) (1.2)
where L is a linear differential operator:

dn—-l an

d
L =p0(l‘) +p1($)'g; + .. +pn_1(.’£)—— +

e g (1.3)

A nonlinear ordinary differential equation is an equation which is not linear.
Nonlinear equations have a richer mathematical structure than linear equa-
tions and are generally more difficult to solve. Nevertheless, we'll see, the
solution of many difficult-looking nonlinear equations is quite routine.

1.2 Initial-Value and Boundary-Value Problems

A solution y(z) to a differential equation is not uniquely determined by the.
differential equation alone; the values of the n independent constants of inte-
gration must also be specified. These constants of integration may be specified
in several disparate ways. In an initial-value problem one specifies y and its first



n — 1 derivatives ¢/, ...,y™ Y, at one point z = zq:

y(:BO) = 4ag, )
Y(z) = ai, (1.4)

Yy D (zg) = ano1.

The numbers ag, a1, . . - , d,_1 are the n constants of integration of the initial-
value problem.

In a boundary-value problem a total of n quantities are specified at two or
more points. For example, for a fifth-order differential equation, one might im-
pose the conditions: y(z1) = a1,y'(z2) = a2,y (z3) = a3, y"(z3) = a4,y (z1) +
[y(z2)]? = as. It may be that some or all of the points z;, %3, ... are interior
to and not on the boundary of the region in which y(z) is to be found. In any
case, the quantities a; are still the constants of integration for the problem.

Initial-value problems are much simpler than boundary-value problems. Initial-
value problems may be subjected to local analysis to determine whether a
unique solution y(z) exists in a sufficiently small neighborhood of z,. If it can
be shown that the initial-value problem has a solution near zo, the next step
is to determine the global properties of this solution. In particular, one must
determine the extent of the interval containing zy on which the local solution
exists.

In example the solution to ¥/ = (tanz)y+1 [y(0) = 1] exists in the interval in
which tan z is continuous, namely (—=/2,7/2). However, the solution y(z) =
(1 +sinz)/ cosz actually exists for —37/2 < z < 7/2

Boundary-value problems are inherently global. Existence and uniqueness
theorems for solutions must be proved for an interval large enough to include
all the points z1, z3, . ... Local analysis of the solution near any of these points
is insufficient.

1.3 Methods Of Solution

When we say that we shall solve a differential equations we mean that we
shall find one or more of its solutions. These equations can be solved by using *
analytical or numerical methods. Numerical methods give approximate values
of the solution functions corresponding to selected values of the independent



variables. These methods are not so desirable as analytical methods because
of the amount of work involved in them and because the results obtained from
them are only approximate; But if analytical methods are not applicable, one
has no choice but to turn to approximate methods.

Modern science and engineering problems continue to give rise to differential
equations to which analytical methods do not apply, and approximate methods
are becoming increasingly more important.

Some of the first order ordinary differential equations ¢an be given

Bernouilli Equation : 3 + P(z)y = Q(z)y™
Riccati Equation  : #/(z) = a(z)y%(z) + b(z)y(z) + c(z) (1.5)
Clairaut’s Equation : f(zy' —y) =g()

These equations are solved analytically. Other analytical method, trans-
formations, may be used to reduce equations to more tractable types. To
illustrate, equidimensional-in-x and equidimensional-in-y equations are left in-
variant under the transformation z — ax and y — ay, where a is a constant.
An equation of the former can be converted to an autonomous equation, in
which there are no explicit occurrences of the independent variable, of the
same order. And the latter can be converted to an equation of lower order.



CHAPTER 2

NUMERICAL METHODS

It is often difficult to find the analytic solution to many differential equa-
tions. There are many methods for finding approximate solutions to differen-
tial equations. These methods are referred to by a variety of different names
including:numerical methods, numerical integration or approximate solutions.

None of the methods generate exact solutions, only approximate ones. Ad-
ditionally, because these methods are based on computation, they provide
solutions only at certain discrete time intervals. Specifically, the solutions are
available at the time of the initial conditions and for every time interval, h,
thereafter (i.e. at t = g,%0 + h,%o + 2h, . ..,% + kh where k is an integer.)

Firstly, quasilinearization technique which is going to be used to linearize the
nonlinear ordinary differential equations is given and later numerical methods
solving ordinary differential equations are considered.

2.1 Quasilinearization
Quasilinearization is the process of solving nonlinear problems by the fol-

lowing steps:

1. Linearizing the nonlinear ordinary differential equations around a solu-
tion which satisfies the specified boundary conditions.

2. Solving a sequence of linear problems in which the solution of the (k)th
linear problem satisfies the specified boundary conditions and is taken
for the (k+1)st linear problem.[1]

In the limit the solution of the linear problems converges to the solution of
the original nonlinear problem. )

Consider the second-order nonlinear ordinary differential equation

3yij+79* =0 (2.1)



with the boundary conditions

y(0) = 0 (2.2)
y(1) = 1

To transform (2.1) into a system of first-order equations, let

n=y Yo = Y1, (2.3)

and replace (2.1) with the set
2

Y1=Y2 = gi(yz), Yo = *“élyg'l' = .92(y1: ) (2-4)

with the boundary conditions

%(0) =0 (1) =1, (2.5)

On expanding the right-hand side of (2.4) in a Taylor’s series around solutions
y¥(t), y5(t) we have

0g; 09 .
gilun) = 600 @) + (G0 + (50 =12 (26)

where the partial derivatives are evaluated using y%(t),y5(t). From (2.4) it
follows that

oo _ 8g: _

ayl 3?}2

01 1,y5(t)\2 892 2 ,y5(t)

= 3G o~ 35 0
51/]{ = k+1( ) — ?/k( ) 59’5 = y2+l(t) 2( )

The set of nonlinear differential equations (2.4) is then replaced by the system
of linear equations, using (2.6) and (2.7):

P = G+ 0 - k) 28)
e+l (yz (t))? 5 (%) k1 Y51\, & 10
i = ~OF L (B0Y o - sty - 3(ED w0 - i)



This is a system linear in y*"1(¢) and 5+ (2).

2.2 Euler’s Method
For a first-order differential equation

L00) = F(9(0) (2.9
With the initial condition
y(to) = 4o (2.10)
Euler’s method is the simplest of approximation techniques.

Consider an approximate solution of (2.9) over a small interval A = At =
tnt1 — tn by writing the integral as [2]

[ v = s yte) 2.1)
to obtain
Y(nt1) = y(tn) + hf(tn, y(tn)) (2.12)
or, in a more concise notation,
Ynt1 = Yn + hf(tn, Yn) = Yn + hfn (2.13)

We can integrate over any larger interval by subdividing the range into sections
of width h and repeating (2.13) for each part. Equivalently we can consider
that we have approximated the derivative with a forward difference

Yntl_¥n—1 ceptered
(—i—y-ln ~ 2h (2.14)

dé Ik backward
respectively.

How accurate is the Euler method? To quantify this we consider a Taylor
expansion of y(t) around ¢,

dy h2d%



and substitute this into (2.13)

d h? d?
dy
= Y, +h—|, 2.1
Yn + dt, (2.16)

Hence, we see that the term in h in the expansion has been correctly reproduced
by the approximation, but that the higher order terms are wrong. Therefore
we describe the Euler method as 1-st order accurate. It follows that rather
small increments h would be needed for high accuracy. The approximation
with step size % lies above the step size h, because the slope of the solution
curves, near the true solution at zg + —'23, exceeds the slope at 3. Thus step of
size 12‘- incur less error than step of size h. The same procedure is applied using
%, %, - - - for higher accuracy.

We can also apply it to the approximation of differential equations of higher
order. The trick is to break down the higher order differential equation into

several first order differential equations.

Hence, to integrate (2.9) we iterate (2.13) and use the initial conditions from
(2.10) for

y(te) = Yo,
y(to + h) y(to) + hf (2o, yo(to)),
y(to + 2h) 2 y(to + h) + hf(to + h, yg(to + h)), (217)
y(to + 3h) = y(to + 2h) + hf(to + 2h, yo(to + Qh)),

R

Example 1 Suppose we want to approximate the value of y(1) when y(t) is
defined by

d
E% = ty'/3, y(0) =1 (2.18)

Since this equation is separable, the exact solution is known to be y(t) =
Y (% +1)2. We can use this exact solution to compare the accuracy of the

numerical approximation. It follows that rather small increments h would be
needed for high accuracy.



With o = 0,70 = 1, using h = 0.1, bring

R

1+ (0,1)(0,1) = 1,01
1,01+ (0,1)(0,2)(1,01)/® = 1,03006 (2.19)

n
Yo

2

Table 2.1: Euler approximations with & = 0.1

T=0,1 | y=1,01000 | Exact Solution=1,00500
T=0,2 | y=1,03006 | Exact Solution=1,02006
T=0,3 | y=1,06035 | Exact Solution=1,04533
T=0,4 | y=1,10113 | Exact Solution=1,08105
T=0,5 | y=1,15276 | Exact Solution=1,12756
T=0,6 | y=1,21567 | Exact Solution=1,18529
T=0,7 | y=1,29037 | Exact Solution=1,25474
T=0,8 | y=1,37746 | Exact Solution=1,33650
T=0,9 | y=1,47759 | Exact Solution=1,43121
T=1,0 | y=1,59148 | Exact Solution=1,53960

2.3 Analytic Continuation

A numerical approximation in the form of a Taylor series. Idea is; if the
Taylor series of a function is known at a single point, then the Taylor series of
that function may be found at another point. This process may be repeated
until a particular value is reached.

Given a system of initial value ordinary differential equations, the method
is to replace each dependent variable present by a Taylor series centered at a
certain origin. The coefficients in each Taylor series are regarded as unknown
quantities. The ordinary differential equations are used to obtain a set of
recurrence relations from which the unknown coefficients may be calculated.

Thus, a formal power series solution may be determined to an initial value
problem and the series will be convergent in some region about the origin.
Then, the truncated power series are evaluated at some point within the region
of convergence. At this new point, initial values for the system are obtained
from the already obtained Taylor series. Using these initial values, the recur-"
rence relations then yield a second series solution valid in a region about the
new origin.



This procedure can be iterated and the solution at a given point may be de-
termined via a sequence of Taylor series. This algorithm is a numerical version
of the process of analytic continuation.

Example 2 Suppose we have the system of ordinary differential equations
y = y'+z  y0)=1
7 = 22 z(0) =1 (2.20)
This system can be rewritten as the differential /algebraic system
a = gy b=a+ 2z, c=2
Yy = b, Z=c (2.21)

withd =2, a=c¢c= g = 1 when ¢t = 0. If we define the Taylor series
coeflicients {a(’) b(J ), (o ), yz(f ,zk } by the expansions

at) = Sa@—t)h b =3 0",

k_O k=0
c(t) = Z -tk oy = 0 -t)k (222
k=0 k=0

() = S Pt

k=0

then, using (2.22) in (2.21), the following recurrence relations can be obtained

D Y N RN
n—O

P = Zzw 9D Y9 =k +1), (2.23)
n=0

z}(cj) — (J)/(k+1)

The initial conditions give the starting values: {j = 0,¢y = 0, a(()o) =
( ) = y(o) (0) b(o) = 2}. To determine the Taylor series about the
pomt to = 0, equatlon (2 23) is iterated for k = 1,2, ..., M.



Then a new point ¢; is chosen. A Taylor series for each of a,b,c,y and z is
then found about this new point by taking j = 1 and determining the initial
conditions from.

M M
o =3 a0 —w)F, o) =360t~ t)¥, ... (2.24)
k=0 k=0

The recurrence relations in equation (2.23) are then iterated again. This
process can be repeated indefinitely.

2.4 Runge-Kutta Methods

The differential equation

2~ f(z9) (2.25)

determines a family of curves (the "characteristics") which do not intersect
each other and of which one passes through every point in the plane. (3]

“f/
,,/,s/ﬁ
= |

Figure 2.1: Family of curves

>4

Given a point P(a,b), we know that the gradient of the characteristic
through P is f(a,b), and we want to determine the y = NQ of any other point
on the same characteristic, given that = ON = a+h. A first approximation
is given by taking the tangent PR instead of the characteristic PQ, i.e. taking

y=NL+LR=NL+ PLtan ZRPL =b+hf(a,b) =b+hfs (2.26)

10



But unless h is very small indeed, the error RQ is far from negligible. A more
reasonable approximation is to take the chord PQ as parallel to the tangent
to the characteristic through S, the middle point of PR.

Since S is (¢ + 3h,b+ $hfo), this gives
y=NL+LQ=NL+ PLtan ZQPL = b+ hf(a+ -21-h b+ %hfo) (2.27)

Suppose that the function of y defined by
dy

flz,y), y== when z =a, 2.28
dz
is denoted by y=F(x).
If this can be expanded by Taylor’s theorem,
, h? h3
F(a+ h) = F(a) + hF'(a) + —2—!—F”(a) + §!-F’”(a) +... (2.29)
Now
) dy
Flo)= 2L =f(e.y) = f (2:30)

We shall now take the total differential coefficient with respect to x (that is,
taking the y in f to vary in consequence of the variation of x). Let us denote
partial differential coefficients by

of of 8 &f ,_&f

b= b—m_: q= 5;]'1 = am2: § = BIL’B:I/ = Fy'g—a (231)

and their values when z = a and y = b by pg, go,etc. Then,

" da 0 dyd
P =E = (% + )i =p+fa (2.32)
Similarly
8 dyad
F"(z) = (6w+a—i’—:5§)(p+fq)
= r4+pg+fs+ f(s+¢* + ft) (2.33)

11



Thus

1 1
F(a+h)—F(a) = hfo+ -2*h2(po + fogo) + gha(To + 2fos0 + fato + Podo
+fog3) + - . (2.34)

The second approximation of (2.27), i.e.

1

1
y—b=hflatshb+hfo) =k (2.35)

may now be expanded and compared with (2.34).

Now, by Taylor’s theorem for two independent variables,

1 1 1 1 1/1 1 1
fla+ §h’ b+ —2-hf0) = fo+ Ehpo + tho% + 5 (thro + -2-h2f080 + Zh2f§t0)

+... (2.36)
giving

1 1
kl = hfo -+ Ehz(po -+ fg(]o) -+ §h3 ('I‘o -+ 2f0$0 + fgt()) +... (2.37)

It is obvious that &; is at fault in the coefficient of A3.

Our next step is suggested by the usual methods for the numerical integra-
tion of the simpler differential equation

) (239)

Now the next approximation discussed is generally Simpson’s Rule, which
may be written

y—b=2h{f(a) +4f(at 3h) + fla+R)} (2.39)

12



If we expand the corresponding formula in two variables, namely

Shifo+4f(a+ Shib-t shfo) + flathb+ i), (2.40)

we easily obtain
1 2 1 3 2
hfo + Sh?(po + fodo) + gh*(ro+ 2foso + fito) + -, (2.41)

which is a better approximation than %, but even now has not the coefficient
of h® quite in agreement with (2.34).

To obtain the extra terms in 43, Runge replaces

hf(a+ h,b+ hfo) (2.42)

by & = hf(a+h,b+k"), where ¥’ = hf(a+h,b+hfp). The modified formula
may be briefly written §{¥’ + 4k, + &}, where ¥ = hjo, or 2k + 3ky =
k1 + 3 (ko — k1), where ky = 2(K' + k).

Of course this method will give bad results if the series (2.34) converges
slowly.

If fo > 1 numerically, we rewrite our equation

dz _ 1
dy ~ flz,y)

and now Fy < 1 numerically, and we take y as the independent variable.

F(z,y), (2.43)

To avoid confusion, the calculations should be formed in some definite order,
such as the following:

13



Calculate successively

k' = hfo,
K' = hf(a+h,b+ &),
" = hf(a+h,b+E"),

1
ki = hf(a+ %h b+ 3K, (2.44)

b= (4R,
1

k= k‘l + g(kg - kl)

Moreover, as k; is itself an approximation to the value required, it is clear
that if the difference between k and %, namely %(kg — k1), is small compared
with k; and k, the error in k is likely to be even smaller.

Example 3 % = y%ﬁ ; given that y = 1 when z =0, find y when z = 1.

Divide the range into three parts, 0 to 0.2, 0.2 to 0.5, 0.5 to 1. We take a small
increment for the first step because f(z,y) is largest at the beginning.

First step
a=20 b=1 h=0,2 fo=1

K = hfy=0,200,
k' = hf(a+h,b+ k) =0.143,
K" = hf(a+h,b+ k") = 0.140,

1
b = hf(a+ghbt ZK) = 0167, (2.45)
ky — %(k’ ") = 0.170,

1

giving y = 1,168 when 2 = 0.2.
Second step

a=02 b=1.168 h=0,3 fo= £(0.2,1.168) = 0.708 (2.46) -
Proceeding as before we get k; = 0.170, ky = 0.173 and so k = 0.171,

14



giving y = 1.168 + 0.171 = 1.339 when z = 0.5
Third step

a=0.5 b=1.339 h=0,5 (2.47)
We find &k, = ks = k = 0.160, giving y = 1.499 when z = 1.

Considering the k and &;, the error in this result should be less than 0.001
on each of the first and second steps and negligible on the third, that is, less
than 0.002 altogether.

As a matter of fact, the true value of y is between 1.498 and 1.499, so
the error is less than 0.001. This true value of y is found by integrating the
equation, leading to

7 — 2tan™! % = log,(z* + 1%). (2.48)

The method is easily extended to simultaneous equations.

Example 4

dy _ y_
dx = 2z—;_f($7yaz)a (249)

i AW _ (z,y, 2)
d:L' m g 7y? ?

given that y = 0.2027 and z = 1.0202 when z = 0.2, find y and z when z = 0.4.
Here,

a=0.2,b=0.2027, ¢ = 1.0202, fo = £(0.2,0.2027, 1.0202) = 1.027,
’ go = 0.2070,h = 0.2; (2.50)
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E = hfy=02x1.027 = 0,2054;
I' = hgy=0.2%0.2070 = 0, 0414;

' = hfla+hb+k, c+1')=02x f(0.4,0.4081,1.0616) = 0.2206;
" = hgla+h,b+k,c+1')=0.2%g(0.4,0.4081,1.0616) = 0.0894;
K" = Rhf(a+h b+ k' c+1") =0.2x £(0.4,0.4233,1.1096) = 0.2322;
" = hg(a+h,b+k" c+1")=02%g(0.4,0.4233,1.1096) = 0.0934;

k, = hf(a+ -;-h, b+ %k’, c+ -;-z') = 0.2 % £(0.3,0.3054, 1.0409) = 0.2128;

1
L = hgla+ %h b+ K, c+ %z’) = 0.2 x g(0.3,0.3054, 1.0409) = 0.0641;
1

ke = (K +E") =02188; (2.51)
Iy = %(z' +1") = 0.0674;
k = ki+ %(kz — k1) = 0.2128 4 0.0020 = 0.2148;
I = L+ %(z2 — ;) = 0.0641 + 0.0011 = 0.0652.
giving

y = 0.2027 + 0.2148 = 0.4175
z = 1.0202 + 0.0652 = 1.0854 (2.52)
probably correct to the third place of decimals.

It must be better to be given the best known Runge-Kutta formula. The result
yielded these two formulas will be the same. So it is given by

ky = hf(zo,10),
1

1
ko = hf(zo+ §h, Yo + 5191),

1 1
k3 = hf(zo+ -2"% % + 5’“2), (2.53)
k4 = hf(mo + h, Yo + k3)

where

1
y(.'L'g + h) = y(mo) + E(kl + 2k + 2ks + k4) (2.54)
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What is the advantage of Runge-Kutta formulas over the Taylor method?

Though approximately the same as the Taylor polynomial of degree four,
these formulas do not require prior calculation of the higher derivatives of
y(z), as the Taylor method does. Since the differential equations arising in ap-
plications are often complicated, the calculation of derivatives can be onerous.
The Runge-Kutta formulas involve computation of f(z,y) at various positions
instead and this function occurs in the given equation. The method is very
extensively used.

2.5 Predictor-Corrector Methods

To integrate an ordinary differential equation from a point z,, to a new point
Zpi1 = Tn + h, a single formula may be used to predict y,41. Alternately, the
value of y,+; could be predicted by one formula, and then that value could be
refined by an iterative formula (the "corrector").

For the first order ordinary differential equation ¢ = f(z,y), suppose that
the values of x and y are known at the sequence of m + 1 points {Zp—m,. ..,
Tp_1,Zn}. Then the values of 3’ are known at those same points (since 3’ is
determined from x and y via ' = f(z,y) ). A polynomial of degree m can be
fitted to m + 1 values of x and 3/. This polynomial can be used to predict the
value of ¢/ in the interval (z,, Z,41). This, in turn, can be used to predict the
value of y,.1 by a numerical approximation of the relation

Ln+1
Ynt1 = Yn + / y'(z)dz (2.55)

Such a formula is called an "predictor".

A modification of this step can be repeated. The values of x and ¥ are
now known at the m + 1 points {Zn—m+1;- -, Zn,Znr1}- A polynomial can
be fit through these points, and then the quantity in equation (2.55) can be
re-computed. This formula, which furnishes a new estimate of y,.1, is called
a "corrector". The corrector may be used repeatedly.

A simple predictor-corrector pair is

Ukrt =~ Yk + Ay
1
Yor1 yk+§h(y§c+y£+1) (2.56)
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the predictor being Euler’s formula and the corrector being known as the
modified Euler formula.(The modified Euler and second-order Runge-Kutta
methods are identical.[2]) Since y;, = f(zx,yx) and ¥, = f(Trt1, Yre+1) the
predictor first estimates yz4;. This estimate then leads to a g, value and
then to a corrected yx41. Further corrections of y;, +1 and yx 1 successively can
be made until a satisfactory result is achieved.

One set of predictor-corrector equations is the Adams-Bashforth predictor
formula [4]

h
Ynt1 = Yo + o (5555 — 591 + 37y, — Wns) (2.57)
and the Adams-Moulton corrector formula
h
Yntl = Yn + ﬁ(gy;z+1 + 19y, — 5y, 1 + Un_2) (2.58)

where h is the difference between adjacent x points (The x points are assumed
to be equally spaced). These equations are fourth order accurate.

Example 5 Apply modified Euler formula to the problem
y = zyd, y(1) = 1. (2.59)

Assuming y, and y;, already in hand, the two equations
1
Ye+1 ™ Yk + §h(y;c + yl::«l—-l) yl’c-l—l = f(Zr31, Yrt1) (2.60)

are used to determine y1; and y;.,. Applied successively, beginning with
k = 0, this algorithm generates sequences of values y; and yj,. The simpler
Euler formula will be used as a predictor. It provides a first estimate of gy ;.
Here, with 25 = 1 and A = 0.05 it offers

y(1.05) ~ 1+ (0.05)(1) = 1.05 (2.61)

The differential equation then presents us with

o' (1.05) ~ (1.05)(1.016) ~ 1.0661 (2.62)

Now the modified Euler formula serves as a corrector, yielding

y(1.05) ~ 1 + (0.025)(1 4 1.0661) ~ 1.05165 (2.63)
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With this new value the differential equation corrects y'(1.05) to 1.0678,
after which the corrector is reapplied and produces

y(1.05) ~ 1 + (0.025)(1 + 1.0678) ~ 1.0517 (2.64)

Example 6 Apply the Adams method to ¥ = —zy? with y(0) = 2 using
h=0.2.

FEach step involving a prediction and then an iterative use of the corrector
formula.

Table 2.2: Comparing the values of y and errors with h=0.2

x |y (correct) | y (predicted) | Error | y (corrected) | Error
0 [ 2.000000 ‘

1 | 1.000000 1.000798 -789 1.000133 -133
2 | 0.400000 0.400203 -203 0.400158 -158
3 | 0.200000 0.200140 -140 0.200028 -28
4 | 0.117647 0.117679 -32 0.117653 -6
5 | 0.076923 0.076933 -10 0.076925 -2
6 | 0.064054 0.054058 -4 0.054055 -1
7 | 0.040000 0.040002 -2 0.040000

8 | 0.030769 0.030770 -1 0.030769

9 1 0.024390 0.024391 -1 0.024390

10} 0.019802 0.019802 0.019802

2.6 Invariant Imbedding

Invariant imbedding is a type of continuation method. For the usual prob-
lems that are treated,the length of the interval of interest is considered to be
the continuation parameter. Hence the end point in a two point boundary
value problem is treated as a variable. By differentiating with respect to this
variable, an initial value problem can be created.

We begin our study by treating simple linear systems and illustrating the
techniques and results by an example. [5]

Suppose we have the system of ordinary differential equations

£(t) = a(t)z(t) + b()y(t)
a12(0) + aey(0) = 0 (2.65)
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§(t) = c(t)2(t) +d()y(t) + f(2)
a3z(T) + auy(T) =1 (2.66)

where a,b,c,d,f are continuous functions on 0 < ¢ < 7', and {«;} are constants,
1=1,2,3,4.

Our goal is to derive an initial value, rather than two point boundary value
problem which "represents" the solution to (2.65)-(2.66). By "represents",
we mean that the solution of the initial value (or Cauchy) system uniquely
determines the solution to the boundary value problem, and conversely.

The imbedding parameter we shall use to derive a Cauchy system is the
interval length T. Consequently, we rewrite (2.65)-(2.66) to explicitly indicate
the dependence of the solution upon T:

#(t,T) = a(®)z(t, T) + o)y (¢, T) (2.67)
a12(0,T) 4+ apy(0,T) =0

§@t, T) = c(t)=(t, T) + d(t)y(t, T) + f(2) (2.68)
asz(T,T) + ouy(T,T) = 1 0<t<T

‘We make use of linearity and consider the two systems:

SYSTEM I

u(t, T) = a(t)u + b(t)v (2.69)
a1u(0,T) + av(0,7) =0
o(t,T) = c(tyu+ d(t)v + f(¢) (2.70)
asu(T,T) + av(T,T)=0,0<t< T

and
SYSTEM II

p(t,T) = alt)p+ b(t)q
a1p(0,T) + 22q(0,T) =0 (2.71)

4(t,T) = c(t)p + d(t)q
asp(T,T) + auq(T,T) =1,0<t < T (2.72)
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The superposition principle for linear systems then allows us to write

z(t,T) = u(@®,T)+p,T) (2.73)
y(&,T) = v(t,T)+q(T), 0<t<T (2.74)

Let us first consider the functions u and v of system I. We wish to examine
how the solution curves change at a fixed point t, 0 < ¢t < 7T, as the interval
length T is changed. Differentiating (2.69)-(2.70) with respect to T gives

ar(t;T) = a(t)ur(t, T) + b(t)vp(t, T) (2.75)
aluT(O,T) + asz(O,T) =0
or(t, T) = c(t)ur(t, T) + d(t)vr(t,T) (2.76)

Qa3 [u(T’ T) + UT(Ta T)] + a4['&(T7 T) + 'UT(T’ T)] =0

Here a dot represents differentiation with respect to t, () differentiation with
respect to T. Comparing (2.75)-(2.76) with (2.71)-(2.72) we see that

’U.T(t,T) = ——{Ol3’1:t(T,T)+O{41')(T,T)]p(t,T) (277)
v, T) = —|asa(T,T)+cat(T,T)a(t,T), 0<t<T (2.78)

We now consider the bracketed term in equations (2.77)-(2.78). From equations
(2.69)-(2.70) with t=T, we have

WT,T) = a(T)u(T,T)+ b(T)v(T,T) (2.79)
(T, T) = co(T)Yu(T,T)+ d(T)(T,T) + f(T) (2.80)

Introduce the new variables m and n by

m(T) = u(T,T) (2.81)
n(T) = o(T,T), T>0

In view of (2.79)—(2.80), it suffices to determine the functions m and n.
Differentiate equation (2.77) to obtain
m'(T) = 4T, T)+ur(T,T)
= a(TYm(T) + b(T)n(T) — {as[a(T)m(T) + b(T)n(T)] (2.82)
+ay[e(T)m(T) + d(T)n(T) + £(T)]}p(T, T)
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Similarly, for n we have

W(T) = (T, T)+vp(T,T)
= o(T)m(T) + d(T)n(T) — {esla(T)m(T) + 6(T)n(T)] (2.83)
+au[e(T)m(T) +d(T)n(T) + £(T)]}e(T, T)

Equations (2.82) and (2.83) show that we must consider the quantities p(T,T)
and q(T,T).

Differentiate equations (2.71) and (2.72) with respect to T. This yields

ﬁT(t, T) = a(t)pT —+ b(t)qT (2.84)
alpT(Oa T) + O‘2QT(O7 T) =0
4r(t,T) = c(t)pr + d(t)ar (2.85)

as[p(T, T) + pr(T, T)] + au[g(T, T) + qr(T,T)] = 0,
Comparing (2.71)-(2.72) with (2.84)-(2.85) shows that
pr(t,T) = —[asp(T, T) + cag(T, T)]p(ta T) (286)

and
qT(ta T) == _[OZB?(T7 T) + 044(j(T, T)]q(t7 T) (287)

To make use of these relations, we observe that from (2.71) and (2.72) with
t=T ’

(T,T) = a(T)p(T,T) +b(T)q(T,T) (2.88)
4T,T) = T)p(T,T)+d(T)e(T,T)

Let the functions r and s be given by
r(T) =p(T,T) (2.89)
o(T) = a(T,T) (2.90) -
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We now derive a Cauchy system satisfied by r and s.

r(T) = B(T,T)+pr(T,T) (2.91)
= a(T)r(T) + b(T)s(T) — {as[a(T)r + b(T)s] + au[c(T)r + d(T)s]}r

S(T) = c(T)r+d(T)s — {as[a(T)r + b(T)s] + as[c(T)r + d(T)s]}s (2.92)

Combining terms in (2.91)-(2.92) gives

r(T) = b(T)s + r[a(T) — csb(T)s — asd(T)s] — r*lasa(T) + asc(T)] (2.93)
§'(T) = (T)r + s[d(T) — cza(T)r — aue(T)r] — s*[asb(T) + cud(T)),

The initial conditions at T=0 are obtained from equations (2.71) and (2.72)
by solving the system

“ayr(0) + a28(0) =0
a3r(0) + ags(0) =1 (2.94)

Obviously, this forces the compatibility condition a;jas — agas # 0 to insure a
unique solution exists.

Knowledge of r and s allows us to obtain p and q from the initial value system
(2.86) and (2.87). The equations are

pr(t,T) = —{r[asa(T)+ asc(T)] + s[asb(T) + cad(T)]}p(t, T) (2.95)
qT(t,T) = —{rlasa(T) + auc(T)] + s[asb(T) + cd(T)]}q(t,T), 0<t < T

The initial conditions at T=t are

p(t,t) = r(t) (2.96)
qt,t) = s(t)

Returning now to equations (2.82) and (2.83) for the functions m and n, we
see that

m'(T) = a(T)m+b(T)n — {mlaza(T) + asc(T)] + nlasb(T)
+aud(T)] + f(T)}r(T) (2.97)
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W(T) = oT)m+d(T)n+ £(T) - {miasa(T) + cue(T)] + nlash(T)
+asd(T)] + F(T)}s(T), (2.98)

The initial conditions at T=0 are given by equations (2.69) and (2.70) as

m(0) 0 (2.99)
n(0) 0

i

The equations for u and v are determined in terms of m and n by

up(t, T) = —{mfoza(T) + asc(T)] + nlasb(T) + aad(T)] + F(T)}p(¢, T)
. (2.100)
vr(t, T) = —{m[asa(T) + cuc(T)] + n[asb(T) + cud(T)] + f(T)}q(t, T)

At T=t, we have
u(t,t) = m(t) (2.101)

v(t,t) =n(t) (2.102)

This completes our derivation of the complete Cauchy system for determining
the functions u,v,p and q necessary to obtain x and y, the solutions to (2.65)
and (2.66).

Since the derivation was lengthy, we now summarize and collect in one
place the relevant equations. The complete Cauchy system consists of the
following equations for the functions r,s,m,n,p,q,u and v:

r'(T) = b(T)s + r[a(T) — asb(T)s — aud(T)s] — r?[aza(T) + auc(T)]
§'(T) = c(T)r + s{d(T) — aza(T)r — cuc(T)r] — s*[azb(T) + cud(T)]

m/(T) = a(T)m + b(T)n — {m[aza(T) + asc(T)] + nlasb(T)
+ad(T)] + (T)}r(T)
n(T) = e(T)ym +d(T)n + f(T) — {m[osa(T) + cuc(T)] + nlasd(T)
tad(T)) + F(T)}s(T) (2.103)

pr(t, T) = —{rlasa(T) + awc(T)] + s[asb(T) + asd(T)]}p(t,T)
qr(t, T) = —{r{asa(T) + auc(T)] + s[asb(T) + ayd(T)]}q(t, T)

ur(t, T) = —{masa(T) + auc(T)] + nasb(T) + cud(T)] + f(T)}p(t,T)
vr(t, T) = —{mlasa(T) + auc(T)] + nfasb(T) + asd(T)] + F(T)}q(t,T)
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The initial conditions are given by

a;7(0) + as(0) =0
asr(0) + ays(0) =1
m(0) =0
n(0) =0
p(t,t) =r(t)
q(t,t) = s(t)
u(t,t) = m(t)
v(t,t) = n(t)

The solution curves for the original system are then given by

(2.104)

z(t,T) = u(t,T)+p(,T)
y(t,T) = o, T)+q(t,T) (2.105)

Suppose the solution is desired at a set of abscissas 0 < #; <fg <tz <--- <
ty < T*, where T™ is the interval length of interest. The solution procedure is
to integrate the equations for r,s,m and n from 7" = 0 to T = ¢;. At this point
equation for the functions p(¢y,T), q(t1,T), u(t1, T), v(t1,T) are adjoined with
the initial conditions given by (2.89),(2.90),(2.101) and (2.102). The entire
system is then integrated from T = ¢; to T = ¢4, at which point additional
equation for the functions p(t2, T), q(te, T'), u(te, T'), v(t2, T) are adjoined with
the appropriate initial conditions. This procedure is carried out for each ;
and the integration continues until 7= T™. At this point, the desired solution
values are obtained from the functions p(%;, 7™), q(t:;, T™), w(t;, T*), v(t:;, T*) by
means of the relations (2.73) and (2.74).

Exampie 7 Suppose we want to turn the boundary value problem

e 2(0) = 0 (2.106)
dy
il 10z, y(2) =1

into an initial value problem. Using the above notation, we find that oy =
ay = 1,00 = ag = 0,a(t) = d(t) = f(t) = 0,b(t),c(t) = 10,T* = 2. Notice
that since f = 0 only the functions p and q are of interest. The Cauchy system
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then becomes
(T) = 10—10r%, r(0) =0
pr(t,T) = —10r(T)p(t,T), p(t,t) =r(t), (2.107)
gr(t,T) = —10r(T)q(¢,T), q(t,t) = 1,

The nature of the boundary conditions obviously implies s(7") = 1. For this
simple example, this can be seen from the closed form solutions

r(I) = tanh10T, T >0,
sinh 10¢
pt.T) = —om =2 T), (2.108)
cosh 10¢
= — = <t<
q(ti T) COShIOT y(tﬂ T)7 0 —_— t —_ T

The numerical solution of nonlinear problems can be a challenging propo-
sition. The invariant imbedding can be applied directly to the nonlinear prob-
lem. But the resulting system of equations are nonlinear partial differential
equations. Frequently, these equations appear to be at least as difficult to
handle as the original problem.(To circumvent this difficulty, we combine the
technique of quasilinearization.)

Now consider the system of nonlinear ordinary differential equations

4@ = F(u,v,t) (2.109)
v, = Glu,v,t), O<t<T (2.110)
subject to the boundary conditions
u(0) = 0 (2.111)
v(T) = c (2.112)

To indicate the dependence of the functions u and v upon ¢ and T, as well as
upon t, we shall write u(t,c,T) and v(t,c,T).
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By differentiating equations (2.109)-(2.110) with respect to c, it is seen that

Ue(t,e,T) = Fuue+ Fyu,
e(t, e, T) = Guue+ Gyu, (2.113)
4:(0,¢,7) = 0
v(T,e,T) = 1
Similarly, a differentiation in T yields
ur = Fur+ Four
v = Guur + Guur O<t<T
ur(0,¢,T) = 0 (2.114)

(T, e, T) +vs(T,c,T) = 0

In the above equation, ¢ is the derivative of v with respect to the first argument,
while v is the derivative with respect to the third argument.

To make use of these equations, note that from the differential equation
(2.110), when ¢t = T' we have

o(T,c,T) = Gu(T,c¢,T),v(T,c,T),T) (2.115)
= G(r(c,T),c,T)

where the notation
r(¢,T) =u(T,c,T) (2.116)
has been introduced.
Comparing equations (2.113) with (2.114), it follows that

ur(t,e,T) = —G(r{c,T),c,T)u.(t,c,T) (2.117)
vr(t,e,T) = —G(r(e,T),c,T)vc(t,c,T) 0<t<T (2118)

Equations (2.117) and (2.118) are partial differential equations for u and v.
The initial conditions at T=t are

ut,c,t) = r(c,t) (2.119) -
v(t, ¢, 1)

c
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It remains to consider the function r. Differentiate equation (2.116) with re-
spect to T to obtain

re(e, T) = o(T, e, T) + us(T, ¢, T) (2.120)
From equations (2.109) and (2.117), we now see that
re(e,T) = F(r(e,T),¢,T) — G(r(c,T),c, T)re(e, T) (2.121)

This is the first order partial differential equation satisfied by r. From equation
(2.111) we see that

r(c,0) =0 (2.122)

The equations for u,v and r, together with their initial conditions, constitute
the initial value representation for the original nonlinear problem.

Example 8 Consider v" = e*, 4(0) = u(b) =0

Applying the quasilinearization technique for b=1, we consider the se-
quence of approximations defined by

Upyr = €+ e (Upy1 — Un) (2.128)

Un+1(0) = tn41(L) =0

Taking a most obvious initial approximation ug = 0, we compute the functions
u1(z) and uy(z). Table 2.3 indicates the rapidity of convergence.

Table 2.3: The approach of u,(z) to u(z)

z |u(z) | wi(z) | ua(x) u(z)

0 0 0 0 0
0.1 0 |-0.0412 | -0.0414 | -0.0414
0.2 0 -0,0729 | -0,0732 | -0,0732
03| 0 |-0,0953 |-0,0958 | -0,0958
04| O |-0,1087|-0,1092 | -0,1092
05 0 |-0,11311{-0,1137 | -0,1137
0,6 0 -0,1087 | -0,1092 | -0,1092
0,7{ 0 |-0,0953 | -0,0958 | -0,0958
08 0 |-0,0729 | -0,0732 | -0,0732
0,9 0 -0,0412 | -0,0414 | -0,0414

1 0 0 0 0
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2.7 Continuation Method

We embed a given problem into a problem with a continuation parameter o
in it. For one value of o (say o = 1) we obtain the original equations, while for
a different value of o (say o = 0) we have an "easier" problem. We solve the
simpler problem numerically and then slowly vary the continuation parameter
from 0 to 1.[1]

After setting up the problem as described above, we define a metric that tells
how well a function satisfies the problem when the continuation parameter is
between 0 and 1. First, we numerically solve the easier problem (at o = 0).
Then the continuation parameter o is increased by a small amount, and a
solution is found by using Newton’s method or sometimes Newton-Raphson
method (this is accomplished by making the metric as small as possible). We
increase o some more, and repeat this step until we have arrived at o = 1.

Example 9 Suppose we wish to solve the following boundary value problem
for y=y(x).

Yo + €Y =0, y(0) =1, y(g) =0 (2.124)

We embed (2.124) into the problem for v = v(z;0),

Vzz + (1 — 0)v + oe” =0, v(0;0) =1, y(g; o)=0 (2.125)

Note that when ¢ = 1, the problem for v(z; 1) becomes identical to the original
problem that we wanted to solve, (2.124). Note also that, when o = 0, the
problem for v(z; 0) becomes

(z;0)40 +v(z;0) =0,  (0;0) =1, v(—g-; 0)=1  (2.126)

with the solution v(z;0) = cosz

The technique is to solve (2.125) numerically on a grid of values from 0 to Z.
We will start with ¢ = 0 and v(z;0) = cosz and then increase o by a small
amount and allow v(z; o) to change accordingly.

We choose to solve (2.124) at the N+1 grid points: {z, = hn/for n = .

0,1,2,...,N} where h = %, and we define vJ to be the numerical approxi-
mation to v(z; o) at the n-th grid point. We take v§ = 1 and v% = 0 so that

29 ﬁ\“



the boundary conditions to (2.125) are always satisfied.

Now we must define the metric. We choose

o __ vg+1 _ ZIUZ + vg——l
n h2
We choose this metric since, when &2 is close to zero, (2.125) will be approx-

imately satisfied. This metric was obtained by simply applying a centered
second order difference formula to (2.125).

3 + (1 — 0)2° + oe®» (2.127)

The procedure is now as follows (with og = 0,k = 0):
(A) Increase o by a small amount §o (i.e. ox1 = 0% + 60)

(B) Find {v2} by making €2* ~ 0. This is best accomplished by Newton’s
method. That is, we keep iterating

O O Ok
Uy V2 €y
Ok Ok Ok
v v €
3 3 _ 3
= —J| . (2.128)
Ok (4] TJe
UN-1 / g1 UN-1 / EN-1 /)
q g . a(egk,sgk,...,ska )
where J is the Jacobian matrix defined by J = BTF alF 00;1) )
2 Y3 N1
until the "difference" between
vg* vg*
T L
3 3
and | . (2.129)
(25 O
v
N1/ ma1 UN-1 /)

is smaller than some predefined constant.

Note that the Jacobian and the {7} all depend on the values of {vZk},,.
The initial values for {v2*}o will be given by {vn*'}. If 6o is small -
enough, then Newton’s method should converge.

(C) If oy, # 1, go back to step (A).
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(D) If g% = 1, then we have found a numerical approximation to the solution
of (2.124).

2.8 Shooting Method

The general procedure can be illustrated by studying a second order ordinary
differential equation. Suppose we wish to numerically approximate the solution
y(x) of the equation

Ly",y,y,x) =0
y(0) =0, y(1) = A (2.130)

where A is a given constant. If z(z; «) is defined to be the solution of

L(Z",7,2,2) =0
z(0; ) =0, Z(0;a)=a (2.131)

then y(z) will be equal to 2(xz; ) for one or more values of a. The parameter
a in (2.131) must be determined so that

z2(L;a)=A (2.132)

Since (2.131) is an initial value problem, it is straightforward to integrate it
numerically from z = 0 to z = 1. To use the shooting method, we inte-
grate (2.131) numerically for some arbitrary initial guess for o, say ap. If
z(1; ) = A, then y(z) = z(z; ) and we are done.

If z(1;0) # A, then a new value of & must be chosen, say «;. Equation
(2.131) is then integrated for this new value of a. The process of choosing new
values for o is repeated until the value of 2z(1; @) is sufficiently close to A. If
the new o’s are chosen well, then z(1; «) will converge to A and a numerlcal )
approximation to (2.130) will have been obtained. '

One way to choose the sequence of o’s is by Newton’s method:

z2(1;04) — A
Qi1 = Olp — (2.133)
22(1; )| a=an
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A numerical way to implement (2.133) might be
z(l;00) — A
z(Lan +€) — 2(Lya)]/e’

(2.134)

an+1 = Oy — [
where € is a small number.

Example 10 Suppose we have the nonlinear second order ordinary differential
equation

v+ 2(4)* =0

y0) =1,  y(1)= -;- (2.135)
Analytically, the solution of (2.135) is found to be
| y(z) =1+ —21-10g(1 + 1z (2.136)
Hence,
4 (0) = -1-5'—;;3 ~ —0, 31606 (2.137)

The equation in (2.135) is turned into the two first order ordinary differential
equations
4y
dz
dz

dz
and then integrated by the use of Euler’s method. An initial guess of 3’ (0)=0
is used.

=] z}

= —22 (2.138)

Table 2.4: The successive approximation of y'(0).
Iteration number Value of y’(0)=0

Iteration number Value of y’(0)=-0,50000
Iteration number Value of y’(0)=-0,49857
Iteration number Value of y’(0)=-0,49102
Iteration number Value of y’(0)=-0,46366
Iteration number Value of y’(0)=-0,40465
Iteration number Value of y’(0)=-0,34199
Iteration number Value of y’(0)=-0,31799
TIteration number Value of y’(0)=-0,31608
Iteration number Value of y’(0)=-0,31607

O ~JO O WO
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2.9 Box Method

We will illustrate the procedure on the general second order linear ordinary
differential equation. The same technique can be used, with only slight mod-
ifications, to systems of higher order ordinary differential equations, with the
boundary data given virtually anywhere in the interval of interest. For non-
linear equations or nonlinear boundary conditions, this method can be used
iteratively by quasilinearizing the nonlinear terms at each step.

Given the second order linear ordinary differential equation

a(z)y’ + b(z)y’ + c(z)y = d(z) (2.139)

y(zz) =Yz, y(zv) = yu (2.140)

we introduce the variable z(z) = y/(z) and write (2.139)-(2.140) as the system
d z

r. ( z ) = ( deoy—ba ) (2.141)

Now we choose a grid, not necessarily uniform, on the interval (z.,zy), say
T =21 < Ty < --- < zy = zy. At each one of the grid points, some finite
difference scheme is chosen to approximate the equations in (2.141). The
scheme used can vary from point to point. For instance, if Euler’s method is
used for every point, then

(1) (2) o), o

to first order, where yx = y(zx), 2z = 2(z), and similarly for {ax, b, cx, dx }-
From (2.141) the values y; = y;, and yny = yy are known.

To determine all of the {2}, and the remaining {yx}, all of the relations in
(2.142)(that is, for k = 1,2,..., N) should be combined into one large matrix
equation. First, for ease of notation, define Ay = Zry1 — Zk, ex = di/ax,
fx = ck/ar and g = by/ax. In these new variables, equation (2.142) may be
written as

Y1 = Yr+hezi
Zevr = 2zt h(ex — fele — gr2e). (2.143)
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Combining all of the equations in (2.143) results in

( n \\ ( 0 \\
1 hl -1 0 0 0 21 h161
hlfl -1+ hl g1 0 1 0 0 Ya 0
0 0 1 ,hz -1 0 Z9 — hgez
0 0 h2f2 -1+ h292 0 1 Y3 0
\av )\ wen

To this matrix equation should be added two more rows, one corresponding
to y1 = yr, and one corresponding to yny = yy. With these two rows, there
results an 2N x 2N matrix equation. This equation can be solved to determine
a numerical approximation to the solution at all of the grid points.

Example 11 The second order linear ordinary differential equation

Y +y=3,
w
y(0) =3, y(g) =2 (2.144)

has the solution y = 3 — sinz. We will use the box method to numerically
approximate the solution. Writing (2.144) as a system results in

%(z)=<3fy), (2.145)

We choose a uniform grid: z, = (n — 1)h for n = 1,2,3,4 with b = 7r/6.
Defining y,, = y(z,) and 2, = z(z,), then, using Euler’s method, (2.145) may
be approximated as

Ynt1 = Yo+ hzm
Zng1 = Zn+h(3—yn) (2.146)

combining all the equations in (2.146) for n = 1,2, 3,4 results in
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(191\

1 A -1 0 0 0 0 O 7 0
h -1 0 1 0 0 0 0 Yo 3k
00 1 A -1 0 0 0 z | | 0
0O 0 AR -1 0 1 0 0 ys | | 3n (2.147)
00 0 0 1 h —10 23 0
00 0 0 A -1 0 1 Ya 34

\ 2
Then the following two rows are added, to incorporate the known values of
y(0) and y(n/2)
Y1 \

21
Ya

) Z = ( ;’ ) (2.148)

Z3
Ya

\ % /
Here is the approximate solution:
3.000 -0.701 2.633 -0.701 2.266 -0.509 2.000 -0.124

Here is the exact solution:
3.000 -1.000 2.500 -0.866 2.134 -0.500 2.000 0.000

oo
oo
o O
oo
o O
-
o O

The values for y, are only accurate to one decimal place in this example.
Putting more points in the interval would decrease the error, as would using a
higher order method in place of Euler’s method.

2.10 Differential-Algebraic Equations
2.10.1 Introduction

Most treatments of ordinary differential equations, both analytical and nu-
merical, begin by defining the first order system

F(t,y(),¥(t) =0, (2.149)
where F and y are vector valued. (2.149) can be rewritten in the explicit form
¥ =F(ty(t) (2.150)
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If (2.149) can, in principle, be rewritten as (2.150) with the same state variables
y, then it will be referred to as a system of implicit ordinary differential equa-
tions. We are especially interested in those problems for which this rewriting
is impossible or less desirable. In a system of differential-algebraic equations,
there are algebraic constraints on the variables. The constraints may appear
explicitly as in (2.152) of the system

F(z' z,y,t) =0 (2.151)
G(z,y,t) =0 (2.152)
where the Jacobian of F with respect to ' (denoted by 25 = F.,) is nonsin-

gular, or they may arise because Fyy in (2.149) is singular.

Singular perturbation problems form a special class of problems containing
a parameter €. When this parameter € tends to zero, the differential equation
becomes differential-algebraic. So in equation {6]

e + (A -1)Z+2=0 (2.153)
we insert the identity
ed' + (22 -1)7 = 4 (e + (z_3 —2)) (2.154)
dz 3 b )
=y
so that (2.153) becomes
y = —z=f(y,2)
3

e = y— (_zé_ — z) = g(y, 2) (2.155)

In order to approximate the solution for very small €, we get € = 0 in (2.155)
and obtain

y, = —z=f3(y,z)
0 = y— (%— — z) = g(y, 2) (2.156)
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While (2.155) has no analytic solution, (2.156) can easily be solved to give
2
/

Y =—z=(2~1)27 or In|z| — % =z+C (2.157)

Equation (2.156) is a differential-algebraic equation, since it combines a differ-
ential equation (first line) with an algebraic equation(second line).

The general nonlinear differential-algebraic equation
F(t,y(t),y' () =0 (2.158)
may be linear in the derivative
Alt,y@)y'(8) + ft, y(t)) =0 (2.159)

This system is sometimes referred to as linearly implicit. A special case of
(2.159) is the semi-explicit nonlinear differential-algebraic equation.

21 (t) = fi(z1(t), 72(2), t) (2.160)
0 = f2(m1(t)s$2(t)7t)

‘We shall sometimes refer to a system as semi-explicit if it is in the form

F(a'(t), =(¢), y(t),£) = 0 (2.161)
G(z(t),y(t),t) =0

where F)/ is nonsingular.

2.10.2 Index

For general differential-algebraic systems (2.149), the index along a solution
y(t) is the minimum number of differentiations of the system which would be
required to solve for 3/ uniquely in terms of y and t.

A property known as the index plays a key role in the classification and
behavior of differential-algebraic equations.[7]

Consider the special case of a semi-explicit differential-algebraic equations

2 = f(z,y.t) (2.162)
0 = g(z,9,t) ' (2.163)
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If we differentiate the constraint equation (2.163) with respect to t, we get

z = f(z,y,t) (2.164)
9z(z, 9, )z + gy(2,y,t)y = —g:(=,y,1) (2.165)

If g, is nonsingular, the system (2.164)-(2.165) is an implicit ordinary dif-
ferential equation and we say that (2.162)-(2.163) has index one. If the new
system is not an implicit ordinary differential equation, we repeat the process.
The number of differentiation steps required in this procedure is the index.

In example; the scalar equation y = ¢(t) is a (trivial) index-1 differential-
algebraic equation, because it takes one differentiation to obtain an ordinary
differential equation for y.[8]

For the system

o= q(t), (2.166)
Yo = yi:

we differentiate the first equation to get

y2 =1y = ¢ (t) (2.167)
and then

Yo =11 =¢'(t) (2.168)
The index is 2 because two differentiations of ¢(t) were needed.

A similar treatment for the system

u = qt), (2.169)

I = u,

necessitates three differentiations to obtain an ordinary differential equation
for ys, hence the index is 3.
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2.10.3 Solutions of Differential-Algebraic Equations

Differential-algebraic equations are more difficult to solve than standard or-
dinary differential equations. There are a few analytic solution techniques for
differential-algebraic equation, as the examples show.

Example 12 The differential equation
y=fW) =WV +EP+y+5 (2.170)

for y(z) is an example of a differential-algebraic equation. It is impossible for
(2.170) to be analytically written in the form ' = g(z,y).

However, it is possible to solve differential equations of the form y = f(y/)
parametrically. The solution may be written as

y= (), mi/rw@a+c, (2.171)
where C is an arbitrary constant. Hence, equation (2.170) has the solution
5.4 3.
r = Zt +-2"t +].Ogt+0, (2172)

y = B+ +14+5.
Example 13 If a differential-algebraic equation is of the form z = f(y/), then
the solution may be written parametrically as

z=f), y= / L (8)dt + C, (2.173)

where C is an arbitrary constant. Thus, the equation z = (¢)> — ¢ — 1 has
the parametric solution

z = t3—-t—1, (2.174)
3, 1
= —¢t— 24 C.
y= gttt

Differential-algebraic equations are solved exclusively by numerical means.
One common numerical technique is to use the backwards Euler method.[7]
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That is, (2.149) is approximated by

F (tmyn, 2’”—%‘"—1) (2.175)

and then the resulting system of nonlinear equations is solved for y;, then ¥y,

etc.
For the simplest class of nonlinear differential-algebraic equations, namely,

semi-explicit index-1,

r = f(tz,2)
0 = g(tz,2), (2.176)

where g, is nonsingular.

First we assume that, there exists a function g such that z = §(¢,z). Thus
the differential-algebraic equation (2.176) is equivalent to the ordinary differ-
ential equation 2’ = f(¢,z, §(t, z)).

Now, consider the backward Euler method applied to (2.176),

&’—:;-Tfi = f(tn, Zn,2n) (2.177)
0 = g(tn,Zn,y2n) (2.178)

Solving for z, in (2.178) and substituting into (2.177) yields
20— £ty B §(tn, 7)) (2.179)

So if we consider the differential-algebraic equation

d
= = () (2.180)
0 = ys+1m0(t)
Backward Euler gives
tn) — y2ltn—
w) = 2wl ) (2.181)
y2(tn) = ~"72(t'n,)-

(Note that higher order techniques such as Runge-Kutta methods are general- '
izations of this simple idea.)[9]
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2.11 Other Methods
2.11.1 Weighted Residual Methods

This method changes the numerical calculation of an ordinary differential
equation to the numerical calculation of a set of algebraic equations. We ap-
proximate the solution by taking a linear combination of an arbitrarily chosen
set of functions. The coefficients of the functions, which may be constants or
functions themselves, are unknown. We may use any of a number of schemes
to find the numerical values for the unknown coefficients. More details can be
found in [10].

The method of weighted residuals can be described in its generality by con-
sidering the operator equation

Alu)y=f (2.182)

in domain {2 , where A is an operator, often a differential operator, acting
on the dependent variable u, and f is a known function of the independent
variables.

The solution u is approximated by the expression
N

Uy = ch¢j + ¢0 (2.183)

=1

Substitution of the approximate solution uy into the left-hand side of (2.182)
gives a function fy = A(uy) that, in general, is not equal to the specified
function f. The difference A(uy)— f, called the residual of the approximation,
is nonzero:

N
R=Aluy) - f = A ci¢j + ¢o) — [ #0 (2.184)
j=1
In the weighted-residual method, the parameters c; are determined by
requiring the residual R to vanish in the weighted-integral sense:

[H@vRE ey =0 (=128  (@18)
Q

where ) is a two-dimensional domain and 1; are weight functions, which, in |
general, are not the same as the approximation functions ¢;. The set {¢;} must
be a linearly independent set; otherwise, the equations provided by (2.185) will
not be linearly independent and hence will not be solvable.
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Now we choose N weighting functions, {1;(z)}. It is the choice of the weight-
ing functions that defines the method. For example;

Petrov — Galerkin : 1 # ¢,

Galerkin : ;= ¢, (2.186)
Least — squares : ;= g—g
Example 14 Consider the differential equation
d?
—2—;2‘ —u+2?=0, w0)=0, Y1)=1 (2.187)

For a weighted-residual method, ¢ and ¢; should satisfy the following condi-
tions: '

#0(0) = 0, ¢p(1) = 1 (satisfy actual boundary conditions)
$:(0) = 0, ¢i(1) = 0 (satisfy homogeneous form of the specified boundary
conditions)

For a choice of algebraic polynomials, we assume ¢o(z) = a+ bz and use the
two conditions on ¢q to determine the constants a and b. We obtain ¢o(z) = =

Since there are two homogeneous conditions, we must assume at least a
three-parameter polynomial to obtain a nonzero function, ¢; = a + bz + cz?.
Using the conditions on ¢;, we obtain ¢; = —z(2 — z)

For ¢, we can assume ¢ = a+ bz +dz® with d # 0; ¢, does not contain all-
order terms in either case, but the approximate solution is complete because
{61, 2} contains all terms up to degree three. We obtain ¢» = z(1 — 2z).

The residual in the approximation of the equation is

. _( N f%) (¢O+Zcz¢z)+w (2.188)

=1 =1

2
= ¢(2—-2z+z )+c2(—~2+4x—m2+§x2)—m+xz~

First consider Petrov-Galerkin method.
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Let the weight functions be 1; = z, 43 = z2. Then

1 1
/ zRdz =0, / z’Rdz =0 (2.189)
0 0
Solving for ¢;, we obtain ¢; = %% and ¢y = —315%; the solution becomes
u = 1.3020z — 0.1730z% — 0.01462> (2.190)

Galerkin method: Taking 1; = ¢;, we have

1 1
/ z(2 — z)Rdz = 0, / z3(1 — —i—m)Rdﬂn =0 (2.191)
0 : 0

Hence, the solution becomes u = 1.2894z — 0.139822 — 0.00322>

Least-squares method: Taking ¢; = OR/0c;, we have
1 1 2
/ (2 -2z + 2*)Rdz = 0, — / (2 — 4z + 2® — §z3)Rdm =0 (2.192)
0 0

So we have u = 1.2601z — 0.0801z2 — 0.0332%3

For this problem, the Petrov-Galerkin method gives the most accurate so-
lution.

2.11.2 Finite Element Method

The finite element method is one version of the method of weighted
residuals. The present method is characterized by having "local elements".

Given a differential equation that comes from a variational principle, and a
domain in which the equation is to be solved, the steps are as follows:[11]

[1 ] Discretize the domain into simple shapes (these are the "finite ele-
ments"). Define a basis function ¢x(z) on each of the finite elements.
These basis functions should have bounded support.

[2 ] Assemble the stiffness matrix and the load matrix. These only depend
on the finite elements chosen and not on the differential equation to be
approximated.
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[3 ] Write the given differential equation as a variational principle. Approx-
imate the unknown in the variational principle by a linear combination
of the functions defined on the finite elements; ie. u(z) ~ uy(z) =
S ckdi(z). In this last expression, the {c;} are unknown and must
be determined.

[4 ] Construct element stiffness matrices and load vectors, element by ele-
ment. Then assemble these together into the global stiffness matrix A
and the global load vector f.

[5 ] Relate the minimization in the variational principle to the minimization
of the quadratic functional

Tuy) = cFAc— 27 f (2.193)

When A is symmetric, the minimization of (2.193) will occur when c is
the solution of the system: Ac = f. If the original differential equation
was nonlinear, then A = A(c) or f = f(c).
Example 15 Suppose we have the constant coefficient second order linear or-
dinary differential equation
d du
Lyl = —— —_ = .
=~ ()55 ) + atou = 12 (2,194

on the interval 0 < z < 1. For simplicity, we take p(z) and ¢(z) to be constants.
For this equation, we take the natural boundary conditions

u(0) = u(1) = 0 (2.195)
Then
i =/0 P (2))? + qud(z) — 2f (@)u(e))da (2.196)

It is straightforward to show that the first variation of I[u} yields (2.194) and
(2.195).[10]

Now we define the interval (zz,zs+1) to be "finite element number k." We
choose as basis functions on the finite elements the functions ¢ (z) defined by

=, for ma <z <,
or(z) = BLZ . for 2 < z < Tpar, (2.197)
0, otherwise.



Note that

%, for  mpa<z<amy,
$i(z) = —%, for Tk < % < Tiga, (2.198)

0, otherwise.

Now we approximate the function u(z) by a linear combination of the o(z).
We take
N -

k=1

where the unknowns {c;} must be determined. Once the {ck} are known, then
the approximation to u(z) at any point can be found from (2.199).

Hence, on finite element k (i.e., for zx < 2 < zk1)

un(z) = cxdr(T) + ckr10k+1(Z)
uy(z) = :ﬁ%c—'“ﬂ (2.200)

Using uy(z) in (2.196) results in

N o pmpys
Iuy] = [p(uy)? + quiy — 2fun]dz
k=0 k

N

= S+ Ir+ 1, (2.200)
k=0

where -

8 Tt 7 \2 g Cr
I; = / p(uy) dﬂ?z(ck Cr+1 )Kk( )7

X Cl+1

The4-1 :
o= 2z = K % ) . (2202
k /z ) q(un) dz ( Ck  Ckil ) k ( Chi1 ( )

I = /mkHZf(x)uN(ac)dm

k

Here K} and K} are element stiffness matrices, they are defined by

s_p( 1 —1}Y) _gh {21
r-2(4 ), m-f(21). e
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A numerical integration is required to determine I%. If, on finite element num-
ber k, f(z) is approximated by f(z) = fir(z)+ fiet1Pr+1(z), then we find I} =
af 2fx+ frs

( fi )T ( c:j‘_l ), where the load vector is defined by f; = 2 ( ot 2fes )

The system can now be assembled, element by element. That is, we write a
single matrix equation representing (2.201). For this example, we find that

Iuy] = F (K + M)c — 2f%e, (2.204)

where ¢ = (c1,¢9,...,¢n)7, f = %(fo +4fi + fo, i +4fa+ fa,oo Inoa +
4fN—1+fN)T7 and

(2 -1 0 0 ... 0 0)
-1 2 -1 0 ... 0 O
0 -1 2 -1 0 0
K:% ~ e : o, (2.205)
0 0 -1 2 -1 0
0 0 0 -1 2 -1
\ 0 0 0 0 -1 2 )
(4 1 0 0 0 0)
14 1 0 00
Ll 01 4l 00
M:gs" : ;| (2.206)
00 1 4 10
00 .. 0 1 41
\0 0 ... 0 0 14)

To minimize the expression in (2.204), ¢ should be chosen (since the global
stiffness matrix K+M is symmetric in this example) to satisfy the matrix
equation (K + M)c = f. It may be solved by standard linear algebra routines.
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CHAPTER 3

GENERALIZATIONS OF RUNGE-KUTTA METHOD

3.1 Introduction

We introduce a form of Runge-Kutta in which it is assumed that the user
will evaluate both f and f’ in solving ¢/ = f(z,y) numerically. This allows us
to introduce new Runge-Kutta parameters that increase the order of accuracy
of the solution with evaluations of f’ replacing evaluations of f.

We assume that f(z,y) is a continuous function with domain D in R™+!
where z € R, y € R™ and (z,y) € D. We assume that

1f(z,91) = F(@y2)ll2 < Lllyn — g2l (3.1)
for all (z,y1), (z,y2) € D; thus the problem
y = f(z,9) (3.2)

y(zo) = o with (z0,7%0) € D
has a unique solution.

The classical Runge-Kutta method is an algorithm designed to approximate
the Taylor series solution by using a linear combination of values of f(z,y)
to approximate y(z). This linear combination is matched up with the Taylor
series for y(z) to obtain agreement up to a AP term, giving methods of order

p.

For completeness and later comparison, the following outlines the develop-
ment of Runge-Kutta formulas by deriving the classical Runge-Kutta second-
order method. The technique employed in this derivation extends easily to .
the development of all Runge-Kutta type formulas. This method requires two
evaluations of the first derivatives to obtain agreement with the Taylor series
solution through terms order A2
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Given the first-order ordinary differential equation 3y = f(z,y) with the
initial condition y(zo) = yo, this classical method seeks values by, b2, as and ¢,
so as to match

Un+1 = Yn + brky + baks (3.3)
where
ki = hf(zn,Yn),
ky = hf(ZBn + hea, Yn + azkl) (34)

with the Taylor series expansion-
_ 1 1
Trt = Yo+ Y (Tns o) + 571°Y (@, 90) + AW (@ pa) +... (35)

up to and including terms containing h2. In what follows, all arguments of f
and its derivatives will be suppressed when evaluated at (z,, ¥n)-

First, one must expand the function f in the ks equation in a Taylor series
for a function of two variables and drop all terms in which the exponent of h
is greater than two

ky = hf(mn + hes, Yn + azkl) (36)
= h’f(mn + hCZ) Yn + a2hf)

So the object is to match

Jnt1 = Yn +biky + boky
= Yn + blhf + b2h[f + hc?fa: 2 G'thfy + O(hz)] (37)
= yn+ (b1 + b)Rf + boh*(cafs + aaf f,) + O(R®)

with the Taylor series expansion
Unt1 = Unthy + —21—!-h2y" + O(h%)
= Yo +hf+ %hzf’ +O(h%) (3.8
= o+ R+ B+ ) +O0)

Equating coefficients of like terms in the above expression for ¢,+1 and §,41,
one obtains agreement in the following terms
hlf . bl -+ bz =1
hzfx . 6202 = 1/2 (39)
hszy : bgaz = 1/2



These equations can be solved in terms of an arbitrary parameter, bs, to give

by = 1—b (3.10)
ag = (9= 1/(262)

This gives a one-parameter family of explicit two-stage, second order, one-
step Runge-Kutta method, provided b, 5 0. When by = 0, the initial equation
defining this method, §,.1 = yn+b1k1+boks, collapses to the first-order Euler’s
method. Well-known second-order methods are obtained with by = 1/2 and 1.
For by = 1/2, the method is also called the improved Euler’s method

Yni1 = Yo+ (k1 + k2)/2
kl ’ hf(mm yn)a (3'11)
k2 = hf(mn + h7 Yn + kl)

I

For by = 1, the method is also called the modified Euler’s method

Ynil = Ynt ko
kl hf(mmyn)a (312)
kz = hf(mn + h/2a Yo+ kl/z)

I

3.2 Third-order method

Most efforts to increase the order of the Runge-Kutta methods have
been accomplished by increasing the number of Taylor’s series used. New
method introduces new terms involving higher order derivatives of f in the
Runge-Kutta k; terms (i > 1) to achieve a higher order of accuracy without a
corresponding increase in evaluations of f, but with the addition of evaluations
or approximations of f'.

The third-order method, for autonomous systems, assigns

Ynt1 = Yo+ biky +boky (3.13)
ki = hf(ya)

However, additional terms are introduced by assigning

ko = hf(yn + ag1k; + hazgkl) (314) .
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The general procedure employed in all Runge-Kutta methods is to equate
the Taylor series expansion of the method equations with the Taylor series
expansion of y,1. Thus this method requires the Taylor series expansion of
ks to O(h*). Its expansion is as follows

1
ko =hf+ h(a21h + azzhz)ffy + Eh(aglh + a22h2)2f2fyy + O(h4) (3.15)
Thus one must match

Ynt1l = Yn + blkl + b2k2

= yn +01Af + D2hf(Yn + agiks + hagek:) (3.16)
1
= Yo+ b1hf 4+ bz(hf + h(azlh + azghz)ffy -+ Eh(aglh + azzhz)zfoyy)
+O(h*)

1
= Yo+ (b1 + ba)hf + baasth* f f, + boash®f £, + §b2a§1h3f2fyy + O(n*)
with the Taylor series expansion

%hgym 4 O(h4)

Y ¥ %h? n %iﬁ £+ O(hY (3.17)
1 1
= Yo +hf+ 'é‘,hszy + é—!h’?(ffj + 2 fy) + O(h%)

Equating coefficients of like terms for the above expressions for y,.1 and 41,
one obtains the following

1
Unt1 = Yn+hy' + ahzy” +

hlf : i+ =1
h2ffy : bgagl = 1/2
hsffy 0 baagy = %fy
PPfifyy : 3biad =1/6

This reduces to the following system of equations

bl + b2 - 1
bty = 1/2 (3.19)
1
byagy = 'éf y
bga§1 = 1/3

of which the only solution is by = 1/4, by = 3/4, as1 = 2/3 and an = f,.
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In summary, the following specifies a third-order method, satisfying the
Taylor series expansions to O(h®)

2 2
ko = hf(yn+ 3k + 5hIyk) (3.20)
1 3
Yntl = Ynt Zkl + Zkz

3.2.1 Utilizing f,

The previous section developed a two-stage, third-order method; how-
ever, it introduced a term with f,. The result is the addition of a higher
derivative term to the classical Runge-Kutta method. The following describes
three methods to utilize f,.

Method 1: If one knows or can generate f,, and if the evaluation of f,
is cheaper than the evaluation of f, then savings can be realized. For example,
with a linear system of equations, ¥ = Ay, f, is known and constant.

Method 2: Since ' = f' = f,f for autonomous equations and since
k1 = hf, ks can be replaced with

ko = hf(nt okt Shfyh)

S (Y + g-kl + %hfyhf)

= hf(on+ 2k + gHE) (321)
= hf(yn+ gkl + ghzf')

i

or

- 2 2
by = hf(go+ skt HY)

Again, savings can be realized if one can formulate ¢” (or f') and if it is cheaper
to evaluate than f.

Method 3: It suffices to approximate f’ to some given accuracy by using
the current and previous evaluations of f. For the third-order method above,
an approximation of O(h) is enough to retain the third order in the computed
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Ynr1. This can be seen by comparing the computations using the exact f' with
that using a first-order approximation. Let

o =t 31+ Shyhy (3.22)
or
Yn = Yo + gkl + -z—hzf; (3.23)
and let
n = Yn + gkl + giﬂf;, (3.24)
where
ffr,z - f(Yn) _hf(y'n——l) (3.25)

However, since f(4n—1) = f(¥s) — hf'(¥) + O(h?) then

fo = f'ya) + O(h) = f;, + O(h) (3.26)
thus

~ 2 2 2 pt 3
or
Thus, if

Ynt1 = Y+ 2k + 3hF(Gn) s replaced by  Gnt1 = Yo + tk1 + $hSF(Tn)

we have

Just — Yner = Sh(F () — £(50) (329

By the Lipschitz condition,

| (@n) — £ (@n)ll2 < Lllgn — nll2 (3.30)
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S0

. 3 .
gnt+1 — Yni1llz < ZhLHyn — Fnl2 (3.31)
Thus,
|[9nst — Ynsalle < O(A*) (3.32)

Since an O(h) approximation of f’ is given by f' = (f, — fn-1)/h, one can
approximate ks as follows:

2 2
kz = hf(yn -+ 5[(21 + '§h2f’)

= hf(n+ 3k o+ R fa)/B) (3.33)
Bf 4+ 5hs + ghFa — fart))

Since f, is calculated in the current step in the evaluation of &, one only has
to store the previous value, f,_;. In effect, by using previous values for the
approximation, one has created a multistep Runge-Kutta method.

3.3 Fourth-order method
For the fourth-order formula let

Yn+1 = Yn + brks + boko + bgks (3.34)
and
ky = hf(yn)
ky = Rf(yn+ ank: + hasfyk) (3.35)

ks = hf(yn+ asiky + asoky + hasafyky + hasafyke)

The following system of equations can be shown to solve the Taylor series
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expansion of the above

bi+by+b3=1

baasy + b3(as + agz) = 1/2

bga,%l + bs(as; + a32)2 =1/3

bsa3; + bs(as1 + ag)® = 1/4 (3.36)
boagy + bs(anasy + ass + az) = 1/6

bs(ag1a34 + aza32) = 1/24

baas1 a2z + bs[agiaga(tam + asi + ase) + (as + as2)(ass + as4)] = 1/6

However, in order to utilize f' = ff, fully, one must restrict the solution
with agqs = 0. The general solution to the above system of equations (with
as4 = 0) has been found and example solutions are shown in Table 3.1.

Table 3.1: Example of fourth-order autonomous solutions

by by b3 axn axn azy  azx  as
112 I 3 1 0
6 6 3 2 8 ]
SN N
Frh b s 2 g
i1 2z L 1 _3 15 _35
16 2 5 3 18 24 8 18
r 1 2 1 __1 35 _5 5
0 2 35 3 6 94 8§
3.4 Fifth-order method
For the fifth-order formula let
Ynt1 = Yn + biky + bako + bsks + baka (3.37)
and
ki = hf(yn)
ky = hf(yn+a21k1 +ha22fyk1) (338)
k3 = hf(yn—l—aslkl+a32k2+ha33fyk1)

ks = hf(Yyn+ askr + asnks + assks + has fyky)
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The following system of equations can be shown to solve the Taylor series
expansion of the above :

by +by+bs+bs=1

boag; + bs(azy + asa) + ba(aa1 + aag + as3) = 1/2

byad, + bs(ag; + az2)? + ba(aar + asz + ag3)® = 1/3

baags + bz(az ass + 033) + by(ag1a4s + aas(as + as2) + ay) = 1/6

bga21 + bg(agl + a,32) + b4(a41 + a4g + a43) = 1/4

boasiags + ba(—amaaz + (as; + as2)(az1a32 + ass)) + 54(021“42

+aqs(as + 032) + 2(ag1 + aa2 + Gu3) (a2 842 + (@31 + a32)a43 + aas)) = 1/6
b3aneass + ba(az1as2a4s + Azaass + aszass) = 1/24

b2a21 + b3(az + asz)? + ba(@a + ass +a)* =1/5 (3.39)
3bya2,ans + bs (a3,ase + 3(as1 + asa)? (a,21a32 + ag3)) + ba(a;as

+(agy + az2)>a3 + 3(ag + aso + a4s)?(a21040 + (@31 + a32)ae3 + a4q)) =7/20
53021032(031 + az2) + b4(aa1 + ass + ass)(adiaa2 + (a3 + as2)’ 043) =1/15
£bya3, + bs (a21a32(2a21a32 + agg + ass) + azass(as: + asz) 4 503s)

+b4(2021 (agaas3 + a2,) + (@31 + ass)(az1 (as2aas + G42043) + a43(a33 + Qgq)

+3 5 (as1 + ass)ass) + 021042(022 + as4) + (a1032043 + 022042

+a33a43)(a41 + a2 + aas) + 305,) = 11/120

b4a22a32a43 = 1/120

The solution verified using the above system of equations is

kl = h’f (yn)
1 1
]{:2 = hf(’yn -+ gkl -+ '1—8hfyk‘1)
152 252
k’3 = hf(yn — k’l + fykl) (340)

125 125 125

19 72 25
ks = hf(yn+ 5 —ky — —7—kz + Eks + Ehfykl)
5 27 125 1
n = Yn k r ===k oA
Yn+1 y+48 1+56k‘2+ 336 3-!-2476

Additional solutions can be found in Table 3.2.
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Table 3.2: Example of fifth-order autonomous solutions

b | 1/24 | 5/54 1714
by | 125/336 | 250/567 | 32/81
bs | 27/56 | 32/81 | 250/567
b, | 5/48 | 1/14 5/54
am | 1/5 3/10 1/4
am | 1/50 | 9/200 1/32
as | -52/27 | -9/8 | -329/250
asz | 70/27 | 15/8 | 252/125
ass | -8/27 | -9/32 | -259/1000
an | 43/5 | 17/3 | 209/35
ap | -64/7 | -490/81 | -32/5
a | 54/35 | 112/81 | 10/7
am | 13/10 | 23/18 | 11/10

3.5 Non~autonomous derivations

If we proceed as above for ¥ = f(z,y) we need to augment the terms

involving f,k; with hf,.

3.5.1 Third-order method

A third-order method with two functional evaluations would have

Ynt1 = Yn + brky + boky (3.41)
where
ki = hf(@n yn), (3.42)
k2 = hf(mn + hc217 Un + (121]{;1 -+ ha22(fy(mn1 yn)kl + hfa:(mna yn)))

Again, utilizing Taylor series expansion techniques, the above is satisfied as
follows

kl = h'f(mm yn)
2 2 2
ky = hf(z,+ '3',7': Yn + gkl + §h(fy($nayn)k1 + hfe(Tn, Yn))) (3-43) )
1 3 '
Ynt1 = Yn+ Zkl + Zk'z
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Here hf' = fy(zn, yn)k1 + hfz(2zn,yn) and the method is the similar to the
method derived for the autonomous case.

3.5.2 Fourth-order method

Similarly, for a single non-autonomous equation, the fourth-order method
is derived by letting

Yn+1 = Yn + biky + boka + bsks (3.44)
where
kl = hf(ﬂ?n, y'n)
ky = hf(Tn+hco +hicaafy, Yn + anki + hasg fyki) (3.45)

ks = hf(Za+ hest + hPcanfy, Yn + a3iky + agake + hass fyky + hasa fyke)

The following system of equations can be shown to solve the Taylor series
expansion of the above:

bi+by+b3=1

baca1 + b3czr = 1/2

62031 +bycd; = 1/3

bgcgl + b3c§1 = 1/4

bacas + bs[caass + c32] = 1/6

bscaicziagy = 1/8 (3.46)

2byCo1Con + bs[ch az + 2c31082] = 1/12 ’

bs[cazass + caazs] = 1/24

C31 = Q31 1 A32

C32 = Q33 + Q34

Co1 = G2y

Cao = G2
Solutions to this system of equations have been found and example solutions
are shown in Table 3.3.

Table 3.3: Example fourth-order non-autonomous solutions

b1 by by cn&ay ca&axn c; ca asy O3 ass a3q

1/6 1/6 2/3 1. /2 1/2 0 1/8 3/8 -1/&4 1/4
1/6 2/3 1/6 1/2  3/32 1 -1/8 -1/2 3/2 -11/32 7/32
1/10 1/2 2/5 1/3  1/90 5/6 5/90 -7/24 9/8 -53/180 7/20
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3.6 Stability analysis

If the step size used is too small, excessive computation time and errors
occur. On the other hand, if the step size is too large, the method can be-
come numerically unstable, and the numerical solution produced no longer
corresponds qualitatively with the exact solution. Stability analysis is impor-
tant for studying the growth of numerical errors in a computed solution to a
differential equation. Stability analysis of Runge-Kutta and other numerical
methods is carried out using a "test equation", ¥’ = Ay, where A is a complex
constant. Then the region of stability is defined to be the set of values of A
and A for which a perturbation in a single value ¥, will produce a change in
subsequent values which does not increase from step to step.

If one attempts to solve the standard test problem using the autonomous
third-order method presented here while using a functional evaluation of f,
one obtains the following

ki = hf(ys)
2 2
1 3
Yn+1 = UYn 48 Zkl i Zk2
sincey = f= Ay and f, = A
kl = h)\yn
by = BA(g + gh/\yn + ZhAAg,) (3.48)
or
_ 2,9v2  2:3y3
ko = hAy, + 3h Ay + gh A'Yn
thus

3 2 2 .
-4—(h)\yn + —?:hz)\zyn + §h3)\3yn)

1 1
= Un + h/\yn + §h2)\2yn + €h3)\3yn

1
Yntl = Yn T Zh)\yn +

1 1
= Yu(1+hA+ §h2A2 + 6h3,\3) (3.49)
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or

1 1
Ynt1/Yn =1+ RA+ —2-h2>\2 + -(-);h3A3

Letting z = hA and W = Yn41/Yn = Yn/Yn—1, then

1 1
=1 24 8
w +z+2z +6z
or

1 1
w—(1+z+—2-zz+€z3)::0

(3.50)

(3.51)

This is the same stability equation as the classical third-order Runge-Kutta
method. In fact, when using a functional evaluation of f,, all of the new
methods presented here have the same stability as the classical Runge-Kutta

method of equivalent order.

However, the region of stability shrinks if one uses an approximation to f,,.

For example, using a linear approximation to f,
ki = hf(yn)

2
ky = hf(yn+_

3
1 3
Yntl = UYnt ‘4‘131 - Zk‘z

kl + gh(fn " fn—l))

Then, using f = Ay

b = bf(n+ 3k + Sh(fa— for)

2 2
== hf(yn + gh)‘yn + '§h(’\yn - )‘yn~1))
2

2
3h’>‘yn + 'é'h()‘y'n - )\yn——l))

= hA(yn +

and

1 3
Yntl = y"+Zkl+Zk2

(3.52)

(3.53)

1 3 2 2
= Yot JhAm + —hA(Yn + ShAY, + §h()\yn — A1) (3.54)

4 3

1 1 1
= gy, + hAy, + —2-h2A2yn + gh%\2y,,, — 6h%\zyn_1
2 1
= Y, + hAyn + §h2)\2yn - ghz,\zyn_1
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or

yn+1/ Yn

w

2 1

L+ X+ Zh2A% — <h2\y s [y
2 1 5
L+ hA+ hT — Zh2N
2
1+ 2z+ §z2 - ézz/w
(1+z+ §z2)w - ézz
(1+z+gz2)w+lz2~0
3 6~

(3.55)

Figure 3.1 compares the stability region of the new third-order method us-
ing a linear approximation to f’ with classical Runge-Kutta methods. One
can see that the stability region is smaller than the region of both third and
second-order Runge-Kutta methods.

|RK2

ar
RK3 & Proposed M. (Exact fy)
Proposud M. (Agp fy)

1
-5

I

Figure 3.1: Stability vs. Runge-Kutta

Since using previous values for the approximation has created a multistep
Runge-Kutta method, it is interesting to compare this method against other
multistep methods. Figure 3.2 compares the new third-order method using
a linear approximation to 4" with the multistep Adams-Bashforth methods. -
The figure shows that the region of stability for the new method is larger than
that of the Adams-Bashforth methods.
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RK3 & Proposed M. {Exact fy)
Proposad M. {Approx. Ty}
2 _Adams-Basmorth

Figure 3.2: Stability vs. Adams-Bashforth

3.7 Numerical Results

To verify that the new methods are of the order claimed, the nonlinear
autonomous equation

) y>

y=y-  v0)=1 (3.56)
whose exact solution is y(z) = 40/1 + 39¢(-?), has been solved using the new
fourth-order method and classical fourth-order Runge-Kutta methods. Both
the exact and an approximated solution to y” were computed. Results are
comparable to a classical Runge-Kutta solution of equal order, thus demon-
strating the claim.
It is applied three times these formulas with h = 1, writing the results with
four decimal places. Results show the accuracy of the new method both the
exact and approximated solution to f,.

Table 3.4: Comparing methods and the exact solution with A =1

Classical Proposed Method | Proposed Method
Z, | Runge-Kutta Method Exact f, Approximating f’ H—43(S))—e“_”“
0 1 1 1 1.
1 2.5987 2.5998 2.6050 2.6063
2 6.3414 6.3483 6.3059 6.3714
3 13.5333 13.5482 13.4500 13.5976
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Figure 3.3: Equation 3 =y — %

Table 3.5: Error in methods for ¢/ =y — % with y(0) =1

Classical Proposed Proposed Method
Z, | Runge-Kutta Method | Method Exact f, | Approximating f’
0 0 0 0
1 0.0076 0.0065 0.0013
2 0.0300 0.0231 0.0655
3 0.0642 0.0495 0.1476
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